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Preface

YATBIP: Yet another textbook on biomedical image processing? – Hopefully
not. . .

Based on the tutorial SC086 – Fundamentals of Medical Image Processing
regularly offered at the International SPIE Symposium on Medical Imaging,
the Springer-Verlag Series Editor of Biological and Medical Physics, Medical
Engineering invited me in January 2009 to compile this book. Actually, the
idea of providing a “suitable” textbook – comprehensive but short, up-to-date
but essential, and detailed but illustrative – for novices like experts, and at
reasonable costs, is not new. For years, the lack of any such textbook in image
processing covering all of the special needs in biology and medicine is evident.
In any teaching lecture, tutorial as well as graduate class. I’m always asked
by the students to suggest literature but cannot answer satisfyingly, simply
because there isn’t a “suitable” textbook yet.

So we aimed at compiling a high-quality collection of chapters, written
for scientists, researchers, lectures and graduate students as well, covering
the recent advantages in the broad field of biomedical imaging and image
processing in an exemplary way. In February 2009, several fruitful discussions
with colleagues at SPIE Medical Imaging convinced me to face the challenge,
and I started recruiting author teams for contributions. Finally, 47 authors
from 11 nations all over the world collaborated – all of them leading experts in
their field. Intensive efforts were made to direct all authors towards a similar
style of presentation and equal degree of technical details. Beside some written
guidelines, the overview chapter was provided to the authors as an example
before they started writing. All authors first provided a short outline and
a detailed table of content, which were distributed between all contributors
together with a strictly enforced time line. In October 2009, submission of
chapters started, and each manuscript was edited carefully. Editor requests
have been processed by the authors improving completeness and clarity of
presentation, and finally in June 2010, the manuscript was submitted to the
publisher.



VIII Preface

Fig. 1. Eierlegende Wollmilchsau. Every morning,
this special animal provides a cooked egg with chilled
fresh milk. Its wool is used for high-quality clothes
and the meat for excellent dining. It is the first

As a result, this book has appeared as uniform monograph with an
overview chapter contributed by the editor, followed by some twenty chap-
ters focusing on particular parts selected from biomedical imaging and image
processing. Each chapter gives an introduction and overview of recent trends
in its field and provides particular case examples, usually taken from the
author’s own research.

Primarily addressing engineers and system developers in computer sci-
ences, the book covers the entire processing pipeline of biomedical imaging.
In particular, the following parts are included, with about three chapters in
each of it:

1. Image formation
2. Image enhancement
3. Feature extraction and selection
4. Segmentation
5. Classification and measurements
6. Image data visualization
7. Image management and integration
8. Evaluation and customizing

Many people might object me at this point, because we clearly aimed at
reaching the unreachable. In Germany, we have the common phrase “eier-
legende Wollmilchsau”, a metaphor that directly translates to “egg-providing
wool-milk-pig” describing the union of all benefits (Fig. 1).

You as the reader shall judge our success realizing this all-in-one approach:
YATBIP or eierlegende Wollmilchsau? Any feedback is deeply welcome and
should be directed personally to me as the editor.

Facing now the final manuscript, I want to thank Claus Ascheron for
encouraging me to initiate this project, and all contributers for timely deliver-
ing their high-quality material and appropriately responding to the editorial
remarks and suggestions. Jens Hoffmann was assisting me in LATEX program-
ming and Max Jung helped in text and image conversion and optimization.

Also, I want to mention Peter Jentsch and Dirk Bartz, who have passed
away during the very last iterations of the manuscript, which leaves me behind
speechless. We have included the obituaries in the next pages.

Aachen, December 2010 Thomas M. Deserno, né Lehmann

all-in-one approach documented in history
(Courtesy                                                       of: http://neulehrer.wordpress.com/)



Obituaries

Prof. Dr. Peter Jensch died unexpectedly during
the period of the proof-reading of this book chapter on
April 15, 2010 after a fulfilling life. Peter Jensch was
the initiator of the DICOM research activities at the
OFFIS - Institute for Information Technology, Olden-
burg, Germany, in the early 1990s and was pushing this
topic forward for the rest of his life. The most popu-
lar result of this engagement is the well-known Open
Source DICOM toolkit DCMTK that is hosted and
maintained by OFFIS since 1993. Against this back-
ground, all members of the DICOM team at OFFIS

would like to thank Peter Jensch for establishing this extraordinary project
and for being such a likeable, energetic boss, mentor, and colleague to us.
Without him, OFFIS would not be the popular name in the world of DICOM
it is today and we all would not have such encouraging opportunities and
research projects we still enjoy. As Chap. 17 of this book is the last publica-
tion Peter Jensch participated in and since the content of this chapter is the
very topic that strongly influenced his work, we like to use this opportunity
to express our sincere gratitude to Peter Jensch.

Oldenburg, June 2010 Michael Onken
Marco Eichelberg

Jörg Riesmeier



X Obituaries

Prof. Dr. Dirk Bartz died unexpectedly on March
28, 2010 while attending the thirtieth Vattenfall Berlin
Half Marathon. Running half-marathon in Berlin was
one of his favorite activities.

During his academic career, Dirk strongly supported
the idea of building a German Interest Group on Medi-
cal Visualization and actively took part the whole time
giving advice to many students; particularly supporting
female researchers was an important issue. Further-
more, Dirk organized many tutorials at Visualization,

Eurographics, and Computer-Assisted Radiology and Surgery (CARS).
In 2005, I was very glad that Dirk joined the effort of writing a textbook

on “Visualization in Medicine”. For an 18 month period, we communicated
daily on the various aspects of the book. It was enlightening and a pleasure
to discuss with Dirk all the time. He was always perfectly reliable and good-
humored even in situations where he had a very high workload.

In the end of 2006, Dirk became appointed as Full Professor for Computer-
Assisted Surgery at the International Center for Computer-Assisted Surgery
(ICCAS), Leipzig, Germany, and started to build a new research group. He
focused on visualization techniques, such as illustrative rendering, percep-
tual studies (from Dirk I learned the term “psychophysical studies”), and
applications in neurosurgery and Ear, Nose and Throat (ENT) surgery.

Dirk belonged to the core team which tried to establish a new workshop
series “Visual Computing in Biology and Medicine”. It was quite natural that
Dirk would host the second event, scheduled to take place in July in Leipzig.
Until the very last days of his life, he discussed strategies for this workshop.

Dirk was only 42 years old, leaving behind Heidi, his wife, and his two little
sons.

Magedeburg, June 2010 Berhard Preim
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Fundamentals of Biomedical Image Processing

Thomas M. Deserno

Summary. This chapter gives an introduction to the methods of biomedical image
processing. After some fundamental preliminary remarks to the terminology used,
medical imaging modalities are introduced (Sect. 1.2). Sections 1.3 and 1.4 deal
with low-level image processing and visualization, respectively, as far as neces-
sary to understand the following chapters. Subsequently, the core steps of image
analysis, namely: feature extraction, segmentation, classification, quantitative mea-
surements, and interpretation are presented in separate sections. On account of
its high relevance, the focus is on segmentation of biomedical images. Special seg-
mentation methods and techniques have been developed in the medical application
domain. Section 1.9 provides a brief summary of image communication. The elec-
tronic transmission and exchange of medical images will become more important in
future for multimedia applications such as electronic patient records in health telem-
atics and integrated care. Section 1.10 completes this chapter with an overview of
past, present, and future challenges to biomedical image processing.

1.1 Introduction

By the increasing use of direct digital imaging systems for medical diagnostics,
digital image processing becomes more and more important in health care. In
addition to originally digital methods, such as Computed Tomography (CT)
or Magnetic Resonance Imaging (MRI), initially analogue imaging modalities
such as endoscopy or radiography are nowadays equipped with digital sensors.
Digital images are composed of individual pixels (this acronym is formed from
the words “picture” and “element”), to which discrete brightness or color val-
ues are assigned. They can be efficiently processed, objectively evaluated, and
made available at many places at the same time by means of appropriate
communication networks and protocols, such as Picture Archiving and Com-
munication Systems (PACS) and the Digital Imaging and Communications
in Medicine (DICOM) protocol, respectively. Based on digital imaging tech-
niques, the entire spectrum of digital image processing is now applicable in
medicine.

T.M. Deserno (ed.), Biomedical Image Processing, Biological and Medical Physics,

Biomedical Engineering, DOI: 10.1007/978-3-642-15816-2 1,

c© Springer-Verlag Berlin Heidelberg 2011



2 T.M. Deserno

Fig. 1.1. Modules of image
processing. In general, image
processing covers four main
areas: image formation,
visualization, analysis, and
management. The algorithms
of image enhancement can be
assigned as pre- and post-
processing in all areas
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1.1.1 Steps of Image Processing

The commonly used term “biomedical image processing” means the provision
of digital image processing for biomedical sciences. In general, digital image
processing covers four major areas (Fig. 1.1):

1. Image formation includes all the steps from capturing the image to forming
a digital image matrix.

2. Image visualization refers to all types of manipulation of this matrix,
resulting in an optimized output of the image.

3. Image analysis includes all the steps of processing, which are used for
quantitative measurements as well as abstract interpretations of biomedical
images. These steps require a priori knowledge on the nature and content of
the images, which must be integrated into the algorithms on a high level of
abstraction. Thus, the process of image analysis is very specific, and devel-
oped algorithms can be transferred rarely directly into other application
domains.

4. Image management sums up all techniques that provide the efficient
storage, communication, transmission, archiving, and access (retrieval) of
image data. Thus, the methods of telemedicine are also a part of the image
management.

In contrast to image analysis, which is often also referred to as high-level
image processing, low-level processing denotes manual or automatic tech-
niques, which can be realized without a priori knowledge on the specific
content of images. This type of algorithms has similar effects regardless of
the content of the images. For example, histogram stretching of a radio-
graph improves the contrast as it does on any holiday photograph. Therefore,
low-level processing methods are usually available with programs for image
enhancement.
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Fig. 1.2. Levels of abstraction. The general terms (left) are exemplified for a
panoramic radiograph of upper and lower jaws (right). At the pyramid’s top,
the dental status corresponds to an abstract scene analysis, which only contains
standardized information (existence and condition) on the tooth positions

1.1.2 Remarks on Terminology

The complexity of an algorithm, the difficulty of its implementation, or the
computation time required for image processing plays a secondary role for the
distinction between low-level and high-level processing methods. Rather, the
degree of abstraction of the a priori knowledge is important for this meaning.
Although the following definitions are not standardized in the literature, they
are used consistently within this book (Fig. 1.2):

• The raw data level records an image as a whole. Therefore, the totality of
all raw data pixels is regarded on this level.

• The pixel level refers to discrete individual pixels.
• The edge level represents the One-dimensional (1D) structures, which are

composed of at least two neighbored pixels.
• The texture level refers to Two-Dimensional (2D) or Three-Dimensional

(3D) structures. On this level however, the delineation of the area’s contour
(in three dimensions: the surface of the volume) may be unknown.

• The region level describes 2D or 3D structures with a well-defined bound-
ary or surface.

• The object level associates textures or regions with a certain meaning or
name, i.e., semantics is introduces on this level.

• The scene level considers the ensemble of image objects in spatial and/or
temporal terms. If 3D structures are imaged over the time, also Four-
Dimensional (4D) data is acquired.

From an iconic (concrete) to a symbolic (abstract) description of images, infor-
mation is gradually reduced. Methods of low-level image processing operate
on the raw data as well as on pixel, edge, or texture levels, and thus at a min-
imally level of abstraction. Methods of high-level image processing include
the texture, region, object, and scene levels. The required abstraction can be
achieved by increased modeling of a priori knowledge.
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1.1.3 Biomedical Image Processing

With these definitions, a particular problem in high-level processing of bio-
medical images is inherently apparent: resulting from its complex nature, it
is difficult to formulate medical a priori knowledge such that it can be inte-
grated directly and easily into automatic algorithms of image processing. In
the literature, this is referred to as the semantic gap, which means the dis-
crepancy between the cognitive interpretation of a diagnostic image by the
physician (high level) and the simple structure of discrete pixels, which is
used in computer programs to represent an image (low level). In the medical
domain, there are three main aspects hindering bridging this gap:

1. Heterogeneity of images : Medical images display living tissue, organs, or
body parts. Even if captured with the same modality and following a stan-
dardized acquisition protocol, shape, size, and internal structures of these
objects may vary remarkably not only from patient to patient (inter-subject
variation) but also among different views of a patient and similar views
of the same patients at different times (intra-subject variation). In other
words, biological structures are subject to both inter- and intra-individual
alterability. Thus, universal formulation of a priori knowledge is impossible.

2. Unknown delineation of objects : Frequently, biological structures cannot be
separated from the background because the diagnostically or therapeuti-
cally relevant object is represented by the entire image. Even if definable
objects are observed in biomedical images, their segmentation is problem-
atic because the shape or borderline itself is represented fuzzily or only
partly. Hence, medically related items often can be abstracted at most on
the texture level.

3. Robustness of algorithms : In addition to these inherent properties of med-
ical images, which complicate their high-level processing, special require-
ments of reliability and robustness of medical procedures and, when applied
in routine, image processing algorithms are also demanded in the medi-
cal area. As a rule, automatic analysis of images in medicine should not
provide wrong measurements. That means that images, which cannot be
processed correctly, must be automatically classified as such, rejected and
withdrawn from further processing. Consequently, all images that have not
been rejected must be evaluated correctly. Furthermore, the number of
rejected images is not allowed to become large, since most medical imag-
ing procedures are harmful and cannot be repeated just because of image
processing errors.

1.2 Medical Image Formation

Since the discovery of X-rays by Wilhelm Conrad Röntgen in 1895, medical
images have become a major component of diagnostics, treatment planning
and procedures, and follow-up studies. Furthermore, medical images are used
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Fig. 1.3. Medical imaging modalities. The body region (here: cervical vertebra)
appears completely different when altering the imaging modality

Name Symbol Mass Charge

Proton p 1 u +1 e
Neutron n 1 u 0 e
Alpha particle α 4 u +2 e
Electron β 0 u −1 e
Positron β+ 0 u +1 e
Photon γ 0 u 0 e

Table 1.1. Atomic particles. The given
values for mass and charge are only
rough estimates. The atomic mass unit
1 u = 1.660538782 · 10−27 kg.
The elementary charge
1 e = 1.602176487 · 10−19 C

for education, documentation, and research describing morphology as well as
physical and biological functions in 1D, 2D, 3D, and even 4D image data (e.g.,
cardiac MRI, where up to eight volumes are acquired during a single heart
cycle). Today, a large variety of imaging modalities have been established,
which are based on transmission, reflection or refraction of light, radiation,
temperature, sound, or spin. Figure 1.3 emphasizes the differences in image
characteristic with respect to the imaging modality. Obviously, an algorithm
for delineation of an individual vertebra shape that works with one imaging
modality will not be applicable directly to another modality.

1.2.1 Basic Physics

To understand the different nature of medical images and imaging modalities,
we need to recall some basic physics of matter. Roughly, all matter is build
from atoms, where a nucleus composed of protons and neutrons is surrounded
by a electron shell. Table 1.1 lists charge and mass of nuclear particles.

The number of protons determines the element number. In the equilibrium
state, the number of electrons equals the number of protons and there is no
external Coulomb field. However, the positions of the particles are not con-
stant. In particular, the electrons orbit the nucleus. According to the Maxwell
laws, accelerated (continuously changing its direction) charge induces electro-
magnetic radiation: the electron would lose energy gradually spiraling inwards
and collapsing into the nucleus.

Within the Bohr model of the atom, there are certain shells where an elec-
tron can orbit its nucleus without releasing electromagnetic radiation. These
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Fig. 1.4. Bohr model of the atom. The shells where
an electron can orbit the nucleus without releasing
electromagnetic radiation are numbered, and there is
a maximal number of electrons for each shell.
Sometimes, the shells are also referred to by letters k,
l, m, etc. The difference of energy between shells is
released as radiation when an electron changes its
position

+

–
–

k, n =1

l, n =2

m, n =3

shells are numbered n (Fig. 1.4) and allow for 2 · n2 electrons. The energy
of an electron En = (−13.6 eV) 1

n2 depends on the orbit number n, where
inner shells are energetically preferred and ionizing needs higher energy if an
electron of an inner shell is removed. The unit Electron Volt (eV) refers to the
kinetic energy of an electron after passing the acceleration voltage of 1.0 V.

1.2.2 Imaging Modalities

From the plenty of medical imaging modalities, we will focus on X-ray imaging,
CT, MRI, and ultrasound. However, optical modalities such as endoscopy,
microscopy, or photography are not less important.

X-Ray Imaging

According to the Bohr model, X-radiation – the term was initially introduced
by Röntgen – can be generated, for instance, if an electron from a higher shell
jumps over into a free position of an inner shell (Fig. 1.4). The discrete differ-
ence of energy ΔE is released as a photon (γ particle). ΔE is characteristic
to the numbers of shells and the element.

Technically, free positions in inner shells are produced from shooting elec-
trons to the atom. Figure 1.5 schematically shows an X-ray tube. The high
voltage between cathode and anode accelerates the electrons that are released
from a filament. Passing the acceleration voltage, these electrons are loaded
with kinetic energy. Hitting the target material, usually tungsten for skeletal
imaging and molybdenum for mammography, two types of interactions may
occur, i.e., the accelerated electron interacts with the:

• Nucleus, where the electron is slowed down by the Coulomb field of the
protons, and a photon is released with an energy equal to the loss of kinetic
energy of the electron (Bremsstrahlung).

• Shell, where the characteristic radiation is released as described above.

When X-radiation passes through matter, e.g., the human body we would
like to image, the X-ray photons again may interact with the nucleus or the
shell resulting in:
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Fig. 1.5. X-ray tube. The vacuum tube (A) houses cathode (B) and anode (C). A
current heats up the filament, releasing electrons (D), which are accelerated towards
the anode. Interacting with either the nucleus or the shell of the target material,
Bremsstrahlung and characteristic radiation are released (E), respectively

• Absorption: The photon is completely vanished giving all its energy to
the absorbing material. This effect is harmful and causes damage to living
cells, but it is required to obtain a contrasted image.

• Scattering: A secondary photon is produced, that might be coherent
(Thomson effect) or incoherent (Compton effect). Both effects lower the
Signal to Noise Ratio (SNR), since the secondary photon usually travels
in another direction and contributes to the image at a wrong location, and
scatter rasters from lead are used to filter the scattered radiation.

The absorption coefficient μ uniquely describes the material, and is mapped
to the gray scale for image display. In plain radiography, high-attenuating
material (e.g., bone) is displayed in white (see Fig. 1.3a) while in fluoroscopy,
the scale is inverted (see Fig. 1.3d), and the high-absorbing contrast agent is
displayed in black.

However, the absorption sums up along the path through the matter. In
particular, the absorption is described by an exponential function. In a first
approximation, the intensity I of radiation depends on the thickness d of
the imaged material I = I0e−μd. However, a human body is not made from
constant material μ ∼ μ(d), and furthermore, the absorption depends on
the photon’s energy μ ∼ μ(E). Since X-radiation cannot be obtained mono-
energetic (Bremsstrahlung), the absorption equation yields

I =
∫
I0(E)e−

∫
μ(z,E)dzdE (1.1)

The dependence of the absorption on the energy of the photon is obvi-
ous. Photons with low energy are more likely absorbed or scattered than
high-energetic photons. Consequently, the spectrum of X-radiation, which is
released from the X-ray tube, hardens when passing matter. This effect is
called beam hardening.

Computed Tomography (CT)

X-ray imaging produces summation images, where all attenuation coefficients
along the path are integrated. From a single image, one cannot determine the
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order of overlapping objects. This is different with CT, where the absorption
is determined in 3D for each volume element (voxel). For imaging, a volume
is acquired slice by slice, and each slice is reconstructed from several measures
in different angulation.

Although back projection or filtered back projection in k-space (spatial
frequency domain after Fourier transform) are nowadays used for image recon-
struction, we will explain the principle based on the arithmetic reconstruction
technique, which in fact was applied to the first CT machines. Suppose a slice
being divided into four pixels, and two parallel rays passing it in two differ-
ent directions (Fig. 1.6). This results in four independent equation (Fig. 1.6B)
allowing to compute the four absorption coefficients μij (Fig. 1.6E). To obtain
more rows and columns, the number of parallel rays and the number of
angles must be increased accordingly. Today, fan beam gantries are build
(Fig. 1.7), enabling continuous rotation of the imaging fan and continuous
longitudinal movement of the patient (spiral CT). Further speedup of acqui-
sition is obtained from scanners, where up to 64 lines of X-ray receptors are
mounted. From 1972, the acquisition time per slice has decreased about 105

(Table 1.2).

Fig. 1.6. Arithmetic CT
reconstruction. Two parallel X-rays
pass the slice in 90◦ and the measures
are recorded. (A) logarithm allowing
assignment of absorption coefficients
μ; (B) four linear equations are
obtained; (C) iterative solution;
(D) assignment; (E) inverse logarithm
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Fig. 1.7. CT gantry. Detaching the
housing from the CT exposes the
X-ray tube and the detector fan
(http://wikepedia.org)
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Year Resolution Gray scales Thickness Time

1974 80× 80 64 (6 bit) 10 mm 300 s
1984 256× 256 256 (8 bit) 5 mm 10 s
1994 512× 512 512 (9 bit) 0.8 mm 0.5 s
2004 1024× 1024 1024 (10 bit) 0.4 mm 0.005 s

Table 1.2. CT slice
parameters. Today, a 64 line
scanner rotates about three
times a second yielding up to
192 slices per second

Fig. 1.8. Precession [1]. A spinning
proton in a magnetic field (left) moves
like a gyroscope in the mass
gravitation field of the earth (right).
According to the Larmor theorem, the
precession frequency is determined by
the strength of the external magnetic
field

Magnetic Resonance Imaging (MRI)

Almost simultaneously to CT, MRI has been introduced to medicine. It is
based on electromagnetic effects of the nucleus. Since the human body consists
of about 70% water, we focus on hydrogen. Its nucleus is composed of only
one proton. As mentioned before, the particles forming the nucleus are contin-
uously moving. For hydrogen, this movement is a self rotation (spin), which
has a magnetic moment. As shown in Fig. 1.8, the magnetic moment is aligned
to an outer magnetic field, and precession ν is started.

To understand MRI, we need to regard a probation of tissue, which is
composed of billions of hydrogen atoms. In other words, we move from a
microscopic to a macroscopic view, where the spins sum up to a macroscopic
magnetic momentM . Suppose the external magnetic field Bz is directed along
the z-axis, the magnetic moments can align parallel or anti-parallel, where
the latter occurs slightly minor (six less in a million). Therefore, Mz > 0. In
addition, all precession is dephased (Mxy = 0).

The next component of MRI is a so called Radio Frequency (RF) impulse.
Such an impulse can excite the system of spinning protons if the electromag-
netic frequency equals the precession frequency. Depending on the amplitude
and time of excitement, M can be arbitrarily directed. In Fig. 1.9b, for exam-
ple, M has been turned into the (x, y)-plane; the corresponding RF impulse
is referred to as 90◦ impulse.

RF excitement is followed by exponential relaxation, where the system is
restoring its equilibrium state. The stored energy is released as signal (i.e., the
Free Induction Decay (FID) when measured in Fourier domain), which can
be detected and transformed to an image. However, the relaxation process is
complex, since two independent effects superimpose:
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a b c d

hgfe

Fig. 1.9. Excitement and relaxation [1]. Without excitement, M = Mz (a); a 90◦

RF impulse turns M = Mxy (b); dephasing (spin–spin relaxation) starts first,
continuously decreasing Mxy (c,d); spin–spin relaxation completed (e); dealign-
ment (spin–lattice relaxation) starts, steadily increasing Mz (f,g); relaxation
completed (h)

• spin–spin relaxation with relaxation time T2 affects the phase of the spins.
For water-based and fat-based tissues, T2 is in the 40 − 200ms and 10 −
100ms range, respectively.

• spin–lattice relaxation with relaxation time T1 affects the parallel vs. anti-
parallel alignment of spins. For water-based and fat-based tissues, T1 is in
the 0.4− 1.2 s and 0.10− 0.15 s range, respectively.

Therefore, spin–spin relaxation is almost completed before spin–lattice
relaxation is detectable. Relaxation is visualized in Fig. 1.9. After 90◦ impulse,
M = Mxy and Mz = 0. Note that Mxy rotates with precession frequency ν
in the (x, y)-plane. When T2-relaxation is completed (Fig. 1.9e), Mxy = 0 and
Mz = 0. The T1-relaxation is visualized in Fig. 1.9f–h. In Fig. 1.9h, the spins
gave back the energy they obtained from the RF pulse to the surrounding
lattice.

To obtain a high-quality relaxation signal, spin-echo sequences are applied,
where different RF impulses are induced, and readout of T1 and T2 is per-
formed in between. Therefore, spin-echo sequences are characterized by the:

• echo time TE determining half of the delay between a 90◦ and a 180◦ RF
impulse, and the

• repetition time TR denoting the rate of re-applying a 90◦/180◦ sequence.

Figure 1.10 emphasizes the differences in contrast and appearance depend-
ing on the echo sequence. In particular, a M0-, T1-, or T2-weighted MRI is
obtained if (TE � T2 and TR � T1), (TE � T2 and TR ≈ T1), or (TE ≈ T2

and TR � T1), respectively.
However, the theory we discovered so far does not allow us to obtain

such images because we do not have any spatial alignment with the signal
yet. This is obtained using gradient fields, which are superimposed to the
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Fig. 1.10. Forming MRI with spin-echo sequences. (Courtesy: Tony Stöcker, FZ
Jülich)

constant external field B. For instance, let us superimpose a gradient field in
x-direction: B = B0+BG(x), BG(x1) < BG(x2) ∀x1 < x2. Now, the Larmor
frequency of precession ν ∼ ν(x) is slightly shifted along the x-axis. Since the
induced RF impulse covers all frequencies, excitement results in the entire
probation, and from the frequency of the FID signal, the according slice can
be located. Another gradient, for instance in y-direction, allows for addressing
a line rather than a plane. As we have seen with CT reconstruction, capturing
signals from different lines through the volume finally allows voxel assignment.
Advantageous to CT, gradient fields in MRI can be generated with gradient
coils, where the current is adopted, and no mechanical rotation is required.
In fact, steering the gradient fields produces the noise of MRI devices, since
strong currents need to be turned on and off quickly.

Ultrasound

In contrast to CT and MRI, ultrasound is a medical imaging modality that
is based on reflection of sound waves. Depending on the transducer, 1D to
4D data is obtained. We start from the 1D case (signal), where a longitudinal
sound wave is traveling through the tissue of the human body. At transi-
tions between different matter (e.g., muscle and fat), the sound wave is partly
reflected and transmitted (refracted if the surface is not hit perpendicular).
In other words, the echo runtime indicates the distance between transducer
and tissue border while the echo strength is related to material properties.
More precisely, these sound-relevant properties of matter are described by the
speed of sound cs and the density ρ, yielding the acoustic impedance Z = cs ·ρ.
Interfacing two materials Z1 = Z0 and Z2 = Z0 + ΔZ, the reflection ratio r
and transmission ratio t are given by
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Table 1.3. Speed of sound in
matter. The acoustic
impedance Z = csρ computes
from density ρ and speed of
sound cs. All numbers refer
to body temperature of
37◦ centigrade

Material cs in m/s ρ in kg/m3 Z in kg/m2s

Bone 3,600 1.70 · 103 6.12 · 106

Marrow 1,700 0.97 · 103 1.65 · 106

Blood 1,570 1.02 · 103 1.61 · 106

Muscle 1,568 1.04 · 103 1.63 · 106

Water 1,540 0.99 · 103 1.53 · 106

Fat 1,400 0.97 · 103 1.36 · 106

Air 340 1.20 4.08 · 102

right ventricle

left ventricle left atrium

aorta

transducer

time
A mode B mode TM diagram

Fig. 1.11. Ultrasound visualization modes [2]. A section through the heart is drawn
schematically (left). From a simple sampling line, reflections of sound may be plot-
ted (i) according to their amplitude (A-mode), (ii) coded as dots with a gray scale
mapped to the amplitude (B-mode), which supports 2D images if a array of Piezo-
electric crystals is applied, and (iii) in their position over the time, to visualize
motion (TM diagram)

r =
√
I0
IA

=
Z2 − Z1

Z2 + Z1
=

ΔZ

2Z0 +ΔZ
and t = 1 − r ≈

{
1, if ΔZ � Z0

0, if ΔZ � Z0

(1.2)
where I0 and IR denote the intensity of the initial and reflected wave, respec-
tively. As we can see from Table 1.3, t ≈ 0 from air to water and soft tissue to
bone, while t ≈ 1 within the soft tissue. Therefore, a sonographic view behind
bony structures or through organs filled with air is almost impossible. Fur-
thermore, water-based gel must be used for air-free coupling the transducer
to the human body.

Furthermore, the sound intensity is attenuated from expansion. The atten-
uation increases linear with the sound frequency but spatial resolution requires
high frequency. Therefore, typical diagnostic scanners operate in the frequency
range of 2 − 18MHz trading-off spatial resolution and imaging depth.

Technically, a piezoelectric crystal is used to convert an electrical signal
into a mechanical movement, and the deformation of the crystal is coupled
into the body. Then, the same transducer is used to detect the echos. There
are several options to form an image from this pulse-echo signal (Fig. 1.11):

• A-mode: In amplitude mode, the echo intensity is plotted on the screen as
a function of depth;
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Fig. 1.12. B-mode sector scan [2]. An
array of transducers is used to scan a
sector. In B-mode, reflections at tissue
borders are displayed within a
fan-shaped aperture, which is typically
for medical ultrasound. Turning the
transducer array perpendicularly
allows for imaging cone-shaped
volumes

• B-mode: In brightness mode, the echo intensity is coded with gray scales.
This allows composing an array of transducers simultaneously scanning
a plane through the body (Fig. 1.12). Parallel and sector scanners are
available;

• TM-mode: Time motion diagrams visualize movements of sound-reflecting
tissue borders. This mode offers functional rather than morphological
inspection;

• M-mode: In motion mode, a sequence of rapidly acquired B-mode scans
is displayed as moving picture. This is the most common mode in clinical
ultrasound;

• D-mode: The doppler mode makes use of the doppler effect (i.e., a shift in
frequency that occurs if the source of sound, the receptor, or the reflector
is moved) in measuring and visualizing blood flow. Several visualization
modes are used:
– Color Doppler : The velocity information is presented as a color-coded

overlay on top of a B-mode image;
– Continuous Doppler : Doppler information is sampled along a line

through the body, and all velocities detected at each point in time
are presented (on a time line);

– PW Doppler : Pulsed-wave Doppler information is sampled from only a
small sample volume (defined in the 2D B-mode image), and presented
on a time line;

– Duplex: Color and (usually) PW Doppler are simultaneously displayed.

1.2.3 Digitalization

Digital image processing implies a discrete nature of the images. Regardless
whether a film-based radiograph is digitized secondarily with a scanner, or
the device primarily delivers a digital pixel (voxel) matrix, digitization effects
alter the image. Digitization applies to both the definition (sampling) and the
value range (quantization).
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Fig. 1.13. Quantization. A lateral chest radiograph is shown with 6 bit, 3 bit, and
2 bit, which equals 64, 8, and 4 different gray scales in panel (a), (b), and (c), respec-
tively. Disregarding saturation effects occurring within bone and air, the difference
between 8 bit and 7 bit representation results in white noise (d,e). Panel (d) shows
the histogram-optimized difference image, and (e) a centered Region of Interest
(ROI) of 100 × 100 pixel

Quantization

Quantization refers to the digitization of the value range. We need to deter-
mine the maximal number of gray scales for every image. Usually, 8 bit and
24 bit are chosen for gray scale and full color images, respectively, allowing 256
different values in each band. In medicine, radiography or CT usually delivers
12 bit = 4,096 different values. If we assume a continuous brightness, quan-
tization always worsen the image quality. The alteration can be modeled as
additive noise, and the SNR of our digital image is improved by an increased
number of gray scales.

Quantization noise is visualized in Fig. 1.13. With printing, we do not see
any differences between 8 bit, 7 bit, or 6 bit quantization. If the number of gray
scales becomes small, artefacts are apparent (Fig. 1.13b,c). Subtracting the
7 bit representation from the original 8 bit image illustrates the quantization
noise (Fig. 1.13d,e).

Sampling

Sampling refers to the digitization of the definition range. According to the
linear system theory, an analogue signal can be unambiguously represented
with a discrete set of samples if the sampling rate exceeds two times the high-
est frequency occurring in the image (Nyquist theorem). Shannon’s popular
version of the sampling theorem states [3]:

If a function x(t) contains no frequencies higher than fb Hz, it is com-
pletely determined by giving its ordinates at a series of points spaced
t = 1

2fb
seconds apart.

Once the sampling theorem is satisfied, we cannot improve the image qual-
ity adding more pixels, which is contrarily to the effects of quantization. In
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Fig. 1.14. Sampling. Artefacts from sub-sampling are visible if the printer resolution
is smaller than the pixel scale. In panel (b), the first partial pixel effects should be
notable

Fig. 1.15. Moiré pattern. This pattern is obtained from radiographing a lead grid.
The spatial resolution of the entire X-ray imaging chain, disregarding whether it
ends analogously or digitally, is measured by the distance from the center to that
radius where individual lines can be differentiated. Furthermore, a four leaf clover
can be seen in the center although it is neither with the lead lamella nor the squared
pixel grid

spatial discretization, increasing the number of samples beyond the Nyquist
rate only increases the file size of raw data, but not the information coded
in it.

Figure 1.14 emphasizes the loss of information that results from applying
an insufficient number of pixels for image acquisition. For instance, the spon-
gious structure of the jaw bone disappears (Fig. 1.14c–e). Furthermore, gray
scales are obtained misleadingly indicating a different material. For instance
at the border of the implants, pixel values with μ of bone are obtained. In
CT imaging, this partial pixel effect is also known as partial volume effect,
see Sect. 1.8.1.

Similar to insufficient quantization, subsampling suppresses information
in the digital image representation. In contrast to quantization, information
is falsely added to an image if the sampling theorem is not fulfilled. Partial
effects are one example. More important are aliasing effects. In 2D imaging,
Moiré patterns are obtained whenever a regular structure mismatches the grid
(Fig. 1.15).
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1.3 Image Enhancement

Low-level methods of imaging processing, i.e., procedures and algorithms
that are performed without a priori knowledge about the specific content
of an image, are mostly applied to pre- or post-processing of medical images
(Fig. 1.1). Therefore, the basic methods of histogram transforms, convolu-
tion and (morphological) filtering are mostly disregarded unless required
for further understanding of this text (see the list of related textbooks on
page 49). As a special preprocessing method for medical images, techniques
for calibration and registration are briefly introduced.

1.3.1 Histogram Transforms

Point operations (pixel transforms) are based on the histogram of the image.
Modifying the pixel values, all pixels are transformed independently from
their positions in the image and their immediate neighborhood. Therefore,
these type of transform is also referred to as point operation.

Histogram

The histogram shows the frequency distribution of pixel values (e.g., gray
scales) disregarding the certain positions where the gray scales occur in the
image. Simple pixel transforms can be defined using a histogram. For example,
through the stretching of gray scales, the contrast of an image is improved
(Fig. 1.16). After determining the histogram, upper and lower bounds are

a

0 50 100 150

h(g)

200 255

b c

Fig. 1.16. Histogram stretching. A ROI is taken in the area of the temporomandibu-
lar joint from an intra-oral radiograph (a). Resulting from under-exposure, the
spongy bone structure is displayed quite poorly. The associated histogram (b) is
only narrow occupied (red). By stretching the histogram, the columns are linearly
pulled apart (blue) and the contrast of the transformed radiograph is increased (c)
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Old New pixel value Old New pixel value
Gray Red Green Blue Gray Red Green Blue

0 0 0 0 ... ... ... ...
1 1 0 2 246 254 244 239
2 2 0 3 247 255 245 243
3 3 0 5 248 255 245 244
4 4 1 7 249 255 246 246
5 5 1 9 250 255 247 248
6 5 2 12 251 255 249 250
7 5 2 14 252 255 251 252
8 5 3 16 253 255 251 253
9 5 4 18 254 255 253 254
... ... ... ... 255 255 255 255

Table 1.4. Look-up table for
pseudo coloring. For each value
in the range of the input
image, the lookup table holds a
value from the range of the
output image. The color
palette shown here is used for
pseudo coloring keeping the
original brightness progression
of the input image [4]

a b c d

Fig. 1.17. Pseudo coloring [4]. X-ray image of a pelvic bone metastasis after radio-
therapy (a); pseudo-colored image of (a) using the corner colors of the RGB cube
(b), colors of constant brightness (c), and colors with continuous brightness pro-
gression obtained from a spiral around the gray diagonal of the RGB cube (d). The
arrow indicates local contrast enhancement

located, and a linear transform is applied that maps the lower bound to zero
and the upper bound to the maximal gray scale (i.e., 255 for 8 bit images).
If the histogram of the initial image does not contain all possible gray scales,
the gray scale distance between neighbored pixels is enlarged, which results
in an enhanced contrast.

Look-Up Table (LUT)

Technically, computation of histogram transforms is based on a Look-Up Table
(LUT). For all pixel values, the lookup table contains a new value, which can
also originate from another range of values. The example in Table 1.4 assigns
each gray scale with a triple for Red, Green, and Blue (RGB). This transform
is called pseudo coloring, and it is frequently used in the biomedical domain
to enhance local contrast (Fig. 1.17). Computer graphic boards may limit the
number of gray scales to 256 (8 bit), but offer 2563 = 16,777,216 colors. Special
algorithms are recommended for the pseudo coloring in the medical context.
In other words, pseudo coloring allows presentation of data, where the range
of values exceeds the length of the RGB cube’s edges without reducing the
information as it would result from windowing.
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Fig. 1.18. Convolution templates. The sliding average (a) and the binomial low-
pass filter (b) cause a smoothing of the image. The binomial high-pass filter (c),
however, increases contrast and edges, but also the noise in the image. The templates
(a) to (c) must be normalized to make sure that the range domain of values is not
exceeded. The contrast filter (d) is based on integer pixel values. The convolution
with (d) is therefore easy to calculate. The anisotropic templates (e) and (f) belong
to the family of Sobel operators. Eight Sobel masks can be generated by rotation
and mirroring for direction-selective edge filtering (see Fig. 1.24)

1.3.2 Convolution

In contrast to point operations (histogram transforms), the considered pixels
are combined with the values of their neighborhood when discrete filtering
is applied. The underlying mathematical operation, i.e., convolution, can be
characterized with the help of so-called templates (Fig. 1.18). A template is
a mostly small, squared mask of usually odd lateral length. This template is
mirrored along two axes (hence, the name “convolution” is commonly used)
and positioned in one corner of the input image. The image pixels under the
mask are named kernel1. Each pair of corresponding pixel values of template
and kernel are multiplied and then summed up. The result is registered at the
position of the mask’s center pixel in the output image. Then, the template is
shifted row by row and column by column to the next positions on the input
image, until all the positions have been visited, and thus, the output image
has been calculated completely.

The pixel values of the template determine the effect of the filter. If only
positive values are used in the template, basically a (weighted) averaging is
calculated in the local neighborhood of each pixel (Fig. 1.18a,b). The resulting
image is smoothed and appears with reduced noise. However, the sharpness
of edges is also reduced. If the template is composed of positive and nega-
tive coefficients, the contrast in the image is intensified, and the edges are
highlighted (Fig. 1.18c–f). Anisotropic (i.e., not rotationally symmetric) tem-
plates also have a preferred direction (Fig. 1.18e,f). Hereby, the contrasts can
be direction-selectively strengthened.

1.3.3 Mathematical Morphology

Another approach to filtering is adapted from the mathematical morphology.
Although morphologic operators can also be defined for gray scale images,
1 In the literature, “mask”, “kernel”, and “template” frequently are used as syno-

nyms.
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Binary image Template Skeleton

Erosion ClosingDilatation Opening

Fig. 1.19. Binary
morphology. The binary
pattern is outlined in red.
The small circle marks the
center pixel in disk-shaped
template with radius 1

morphologic filtering is principally performed on binary input images, i.e.,
each pixel is assigned either TRUE or FALSE. According to a general convention,
the white pixels in the binary image indicate relevant segments and the black
pixels indicate the background. For printing, however, this assignment may be
inverted. The binary template, which is also referred to as structural element
(structuring element, structel, strel), is associated to the binary image using
logical operations, in particular:

• erosion (based on logical AND of structel and binary image),
• dilation or dilatation (based on logical OR of structel and binary image),
• opening (erosion followed by dilatation using the same structel),
• closing (dilation followed by erosion using the same structel), and
• skeleton (e.g., by erosion with various structels).

As it can be seen in Fig. 1.19, the erosion reduces the size of a segment, and
the dilation leads to its enlargement. The opening removes small details on
the outline of segments or the background, without affecting the total size of
relevant regions. The closing is able to remove holes in the interior of a region
and smooth its contour. Here, the size of the segment is roughly maintained,
too. The skeleton is a path with thickness of one pixel, which is located in the
middle of the segment.

Binary morphology is applied frequently in medical image processing, for
instance to clean up shapes after pixel-based segmentation (see Sect. 1.6.1).
Gray scale morphology is simply a generalization from 1 bit (binary) images
to images with multiple bits per pixel, where MIN and MAX operations replace
the AND and OR operations of binary morphology, respectively.

1.3.4 Calibration

If the physician intents to take quantitative measurements from an image, a
careful calibration of the imaging modality is required. Both, geometry (spatial
domain) and brightness or color intensity (value domain) must be adapted
to the modality. Calibration is device-specific but disregards the biological
content captured, and thus, it is part of low-level processing methods. While
reading a radiograph, calibration is made unconsciously by the radiologist.
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a b

Fig. 1.20. Geometric distortion and brightness variation [5]. By endoscopic exam-
inations, barrel distortions are often generated, which must be corrected before the
image can be analyzed quantitatively. In addition, the boundary areas in the video
appear darker and blurred. Image (a) is generated with a rigid laryngoscope, which is
used for the examination of the larynx. Image (b) is taken with a flexible endoscope
for nasal laryngoscopy. Both endoscopes are used in clinical routine. Microscopy and
other optical methods may produce similar artifacts

However, it must be explicitly implemented for computerized image analysis
and measurements.

Geometric aberrations (distortions) have the consequence, that relevant
structures of the same size are displayed depending on the position within the
image. In the biomedical sciences, the positioning of the imaging device must
not affect any measurements. For example in endoscopy, resulting from the
optical devices in use, so called barrel distortions are originated (Fig. 1.20).
Even in simple planar radiography, the objects, which are far away from the
image plane, appear larger than those, which are located close to the imaging
device. This must be kept in mind whenever geometric measurements in digital
X-rays are taken and displayed to the physicians: point distances in digital
images can be converted into length measurements only if a fixed scale is
assumed, which is often not fulfilled.

In the same way, the absolute assignment of the pixel values to physical
measurements usually is problematic. For example in X-ray imaging, the linear
correspondence of brightness values to the accumulated absorption coefficient
of the imaged structure is possible, if an aluminum (step) wedge with known
X-ray absorption properties is placed beside the object. In digital video record-
ing, white balancing must be performed such that the color values corresponds
with reality. However, different illumination of the same scene may still alter
the captured colors.

1.3.5 Registration

Often, an absolute calibration of examination procedures is not possible or
only limitedly feasible. Then, registration can be used to achieve an approx-
imation of two or more images such that at least a change in measured
dimensions can be quantified. For example, an acute inflammation turns tissue
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subtraction segmentation

follow-up
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Fig. 1.21. Unimodal Registration. In dental implantology, reference and follow-up
images are taken at various points of time. Geometric registration with subsequent
contrast adjustment enables pixel-by-pixel subtraction. In the subtraction image,
bone destruction is clearly emphasized and can be segmented easily on the pixel
level of features (red)

into a reddish color. Under treatment, the absolute redness of the tissue is less
interesting than its relative change as compared to the findings of previous
recordings.

Unimodal Registration

This term refers to the relative calibration of images that have been acquired
with the same modality. For instance, images that have been taken from the
same patient but at different points of time are adjusted in order to quantify
the course of the disease. As in the field of calibration, we differ between
geometric registration and color or contrast adjustment, if the registration is
performed in the spatial domain or the value range, respectively. Figure 1.21
illustrates the diagnostic potential of registration in dental implantology. After
registration, the appraisal of the status of peri-implant bone is significantly
simplified by the subtraction of recall and follow-up recordings.

Multi-Modal Registration

The images to be compared are captured with different modalities. For exam-
ple, a 3D rigid registration is illustrated as the movement of the hat on the
head. Especially in neurology, these methods have a crucial meaning. Since
tumor resection in the brain must be executed very carefully, in order to avoid
damage of neighbored brain areas, functional and morphological brain images
are registered to plan the procedure. While morphology can be adequately
represented in MRI or CT data, function of brain areas is frequently local-
ized using Positron Emission Tomography (PET) or Single Photon Emission
Computed Tomography (SPECT). Thus, multi-modal registration of func-
tional and morphological data provides valuable additional information for
diagnosis and therapy (Fig. 1.22).
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Fig. 1.22. Multi-modal registration
and fusion [6]. 1. Row : T1-weighted
MRI of a 66 year old subject with
right parietal glioblastoma; 2. Row :
Corresponding PET layers after
multi-modal registration; 3. Row :
Fusion of registered layers to support
intervention planning; 4. Row : The
fusion of MRI with PET of the
sensorimotor-activated cortex area
proves that the relevant area is out of
focus

Table 1.5. Taxonomy of 3D visualization methods. Triangulation for surface-based
rendering is described in textbooks on computer graphics. The marching cube
approach is described in the text. As a simple example of surface-based direct vol-
ume rendering methods, depth shading visualizes the length of rays passing through
the volume until they hit the surface. Integral shading codes the sum of voxel values
along the ray as gray scale. It is therefore frequently used to obtain radiograph-like
images based on CT data

Concept Surface-oriented method Volume-oriented method

Surface reconstruction Triangulation Cuberille approach
and rendering Marching cube

Direct volume rendering Depth shading Integral shading
Depth gradient shading Transparent shading
Gray gradient shading Maximum projection

1.4 Image Data Visualization

Under the concept of image visualization, we had summarized all the trans-
forms which serve the optimized output of the image. In medicine, this includes
particularly the realistic visualization of 3D data. Such techniques have found
broad applications in medical research, diagnostics, treatment planning and
therapy. In contrast to problems from the general area of computer graph-
ics, the displayed objects in medical applications are not given implicitly
by formal, mathematical expressions, but as an explicit set of voxel. Con-
sequently, specific methods have been established for medical visualization.
These methods are based either on a surface reconstruction or on a direct
volume visualization, and lighting and shading are also regarded (Table 1.5).
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1.4.1 Marching Cube Algorithm

The marching cube algorithm was specifically developed for surface recon-
struction from medical volumes. Here, the voxel is no longer interpreted as a
cube of finite edge length but as a point. It is equivalent to a point grid for
visualizing volumes. In this volume, a cube is considered with four corners
in each of the two adjacent layers. Utilizing symmetry, the complex prob-
lem of surface production is reduced to only 15 different topologies, which
can be calculated most efficiently since the polygon descriptions that belong
to the basic topologies can be stored in a lookup table. Similar to the pro-
cess of spatial convolution, the cube is positioned successively at all points
in the volume dataset (marching). After completion of the marching cube
algorithm, a segmented volume is transformed into a triangulated surface.
However, the surface is build from a very large number of triangles, which
may be reduced significantly by heuristic procedures without any discernible
loss of quality. Reducing the number of elements to be visualized supports
real-time visualization of the volume.

1.4.2 Surface Rendering

To generate photo-realistic presentations of the volume surface, the lighting
is simulated analog to natural scenes. According to the lighting model by
Phong, ambient light is created through overlapping of multiple reflections,
diffuse scattering on non-shiny surfaces, and direct mirroring on shiny surfaces.
While the intensity of the ambient light remains constant in the scene for all
surface segments, the intensities of diffuse and speckle reflections depend on
the orientation and characteristics of surfaces as well as their distances and
directions to the light source and the observing point of viewing.

Without shading, one can recognize the initial triangles. This is a nasty
artifact in computer graphics. Therefore, various strategies for shading have
been developed to improve significantly the visual impression. For instance,
the Gouraud shading results in smooth blunt surfaces, and the Phong shading
also provides realistic reflections. In newer applications, transparencies are
also modeled to glance at encapsulated objects. Moreover, textures or other
bitmaps on the surfaces can be projected to reach a more realistic impression
of the scene.

1.4.3 Volume Rendering

Direct volume visualization is abstained from preliminary calculation of the
object surface. The visualization is based directly on the voxel data and,
therefore, possible without any segmentation. This strategy allows visualiza-
tion of medical 3D and 4D data by radiologists for interactive localization
of pathological areas. The volume is processed either along the data layers
(back-to-front or front-to-back) or along an imaginary light ray. Based on
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the observer position, rays will be pursued through the volume (ray-tracing).
Hereby, the recursive follow-up of secondarily reflected rays is also possible
(ray-casting). Although quite realistic visualizations can be provided to the
observer, problems arising from the discrete nature of pixel topology (see
above) have led to a multitude of algorithmic variants.

In general, parameters are extracted from voxel intensity along the rays
and applied as gray or color value at the corresponding position in the view-
ing plane. This procedure is also referred to as shading. By the methods
of the surface-based shading, light source and image plane are placed on
the same side of the object, while the volume-oriented procedures radio-
graph the entire object according to X-ray imaging, i.e., the object is located
between light sources and the observation (Table 1.5). Combining direct vol-
ume with surface-based approaches, amazingly realistic scenes can be created
(Fig. 1.23).

liver

Fig. 1.23. 3D-visualization with Voxel–Man [7]. This 3D model of the internal
organs is based on the Visible Human data. The Voxel–Man 3D-Navigator provides
unprecedented details and numerous interactive possibilities (left). Direct volume
rendering and surface-based visualization of segmented objects are combined with
integral shading (right)



1 Fundamentals of Biomedical Image Processing 25

1.5 Visual Feature Extraction

In Fig. 1.1, feature extraction is defined as the first stage of intelligent (high
level) image analysis. It is followed by segmentation and classification, which
often do not occur in the image itself, i.e., the data or pixel level, but are
performed on higher abstraction levels (Fig. 1.2). Therefore, the task of fea-
ture extraction is to emphasize image information on the particular level,
where subsequent algorithms operate. Consequently, information provided on
other levels must be suppressed. Thus, a data reduction to obtain the char-
acteristic properties is executed. The schema in Fig. 1.1 is greatly simplified
because many connections between the modules were left out on behalf of
readability. So for example, cascades of feature extraction and segmentation
at various levels of abstraction can be realized gradually, before classification
is eventually performed at a high level of abstraction. Just before classifica-
tion, a step of feature extraction that is based on the region level is often
performed as well.

1.5.1 Data Level

Data-based features depend on the joint information of all pixels. Therefore,
all transforms manipulating the whole matrix of an image at once can be
regarded for data feature extraction. The most famous example of a data
feature transform is the Fourier transform, which describes a 2D image in
terms of frequencies, according to their amplitude and phase. Furthermore,
the Hough, wavelet or Karhunen-Loève transforms provide possibilities of data
feature extraction (see list of textbooks on image processing on page 49). These
methods are not in the focus of research in biomedical image processing. In
fact, these procedures are rather adapted from technical areas into medical
applications.

1.5.2 Pixel Level

Since pixel-based features depend on the values of individual pixels, all point
operations that have been defined in Sect. 1.3 can be regarded as feature
extraction on the pixel level. Another example was already presented in
Fig. 1.21, namely, the arithmetic combination of two images. The subtraction
of reference and recall images after appropriate registration in both spatial
and value ranges enforce local changes in the images as characteristic pixels.

1.5.3 Edge Level

Edge-based features are defined as local contrast, i.e., a strong difference of
(gray scale or color) values of adjacent pixels. Thus, the discrete convolu-
tion introduced in Sect. 1.3 can be used with appropriate templates for edge
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Fig. 1.24. Edge extraction using the
Sobel operator. The X-ray image
(center) was convolved with the eight
direction-selective Sobel templates.
The strong contrasts on the edges of
metallic implants are further
strengthened by binarization of the
edge images. An isotropic edge image
is obtained if, e.g., the maximum at
each pixel position is chosen from the
eight direction-selective sub-images
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extraction. All masks for high-pass filtering amplify edges in an image. The
templates of the so called Sobel operator (Fig. 1.18) are particularly suited for
edge extraction. Figure 1.24 exemplarily presents the result of the orientation-
selective Sobel masks when applied to a dental radiograph. The edges of
the metallic implants are clearly highlighted. An isotropic Sobel-based edge
image is achieved, e.g., by a linear or maximum combination of the eight
sub-images.

1.5.4 Texture Level

Textural features have been used in medicine for a long time. In textbooks
on pathology one can read many metaphors to describe texture, such as a
cobblestone-shaped mucosal relief, onion-like stratification of subintima, or
honeycomb-structured lung tissue. As intuitive as these metaphors are for
people, as difficult is their computational texture processing, and a variety of
procedures and approaches have been developed.

Texture analysis attempts to quantify objectively the homogeneity in a
heterogeneous but at least subjectively periodic structure (see the spongious
bone structure in Fig. 1.18c as an example). In general, we can distinguish:

• structural approaches that are based on texture primitives (textone, tex-
ture element, texel) and their rules of combinations and

• statistical approaches that describe texture by a set of empirical parame-
ters.

1.5.5 Region Level

Regional features are used primarily for object classification and identification.
They are normally calculated for each segment after the segmentation process.
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The most important parameters to be mentioned here are:

• localization-descriptive measurements such as size, position, and orienta-
tion of the major axis and

• delineation-descriptive measures such as shape, convexity, and length of
the border.

Since the degree of abstraction on the region level is rather high as com-
pared to the previous levels, a priori knowledge has already been largely
integrated into the image processing chain. Therefore, universal examples can-
not be specified. In fact, the definition of regional feature extraction is strongly
dependent on the respective application (see Sects. 1.5.5 and 1.6.3).

1.6 Segmentation

Segmentation generally means dividing an image into connected regions. With
this definition, the production of regions is emphasized as the pre-stage of
classification. Other definitions accentuate the various diagnostically or ther-
apeutically relevant image areas and, thus, focus the most common application
of medical imaging, namely, the discrimination between healthy anatomical
structures and pathological tissue. By definition, the result of segmentation
is always on the regional level of abstraction (cf., Fig. 1.2). Depending on the
level of feature extraction as an input to the segmentation, we can method-
ically classify pixel-, edge-, and texture- or region-oriented procedures. In
addition, there are hybrid approaches, which result from combination of single
procedures.

1.6.1 Pixel-Based Segmentation

Pixel-based procedures of segmentation only consider the gray scale or color
value of current pixels disregarding its surroundings. It should be noted that
pixel-based approaches are not segmentation procedures in the strict sense
of our definition. Since each pixel is considered only isolated from its neigh-
borhood, it cannot be ensured that actually only connected segments are
obtained. For this reason, post-processing is required, e.g., by morphologic
filtering (see Sect. 1.3.3). Most pixel-based procedures use thresholds in the
histogram of an image and employ more or less complex methods to determine
this threshold. Furthermore, statistical methods for pixel clustering are used.

Static Thresholding

If the assignment of pixel intensities is well known and constant for a certain
type of tissue, static thresholds are applicable. A static threshold is indepen-
dent of the individual instance in a set of similar images. For example, bone or
soft tissue windows in the CT can be realized (Fig. 1.25) with static thresholds
on the Hounsfield Unit (HU).
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Fig. 1.25. Static thresholding [5].
Pixel-based segmentation in CT relies
on Hounsfield Units (HU), which
allow the definition of windows for
different types of tissue: bone
[200 . . . 3,000], water [−200 . . . 200],
fat [−500 · · · − 200], or air
[−1, 000 · · · − 500]

air fat water boneair fat water bone

Adaptive Thresholding

Globally adaptive thresholds result from analyzing each individual image
entirely. They are exclusively used in this image. The well-known method
of Otsu is based on a simple object vs. background model. The threshold
in the histogram is determined such that the two resulting classes minimize
the intra-class variance of gray scale values, while the inter-class variance is
maximized. For example in skeletal radiography, bone, soft tissue and back-
ground can be seen, but the actual mean gray scale of this tissue classes may
vary with respect to illumination and exposure parameters. By adopting the
threshold to the image, the Otsu segmentation is able to balance this variation
in imaging.

Using locally adaptive thresholds, the threshold is computed not only for
each image individually, but also for each region within an image. In the
extreme case, an individual threshold is determined for every pixel posi-
tion (i.e., pixel-adaptive). This is particularly necessary if the simple object
to background assumption is globally invalid because of continuous bright-
ness gradients. For example, due to the irregularity of optical illumination,
the background in microscopy imaging of cell cultures (Fig. 1.26a) runs from
light shades of gray (top right) to dark shades of gray (bottom left), where
also the gray scale values of the cells are located. A global threshold deter-
mined with the dynamic procedure of Otsu (Fig. 1.26b) does not separate
the cells from backgrounds, although the global threshold had been deter-
mined image-individually. The locally adaptive segmentation (Fig. 1.26c) leads
to a significantly improved result, but isolated block artifacts appear. These
artifacts can be avoided only by pixel-adaptive thresholding (Fig. 1.26d).

Clustering

Pixel clustering is another way of pixel-based segmentation. This statistical
method is particularly suitable if more than one value is assigned to each pixel
and regarded in the segmentation process (e.g., color images). Figure 1.27
illustrates the iso-data clustering algorithm (also referred to as k-means clus-
tering) in a simple 2D case. All pixel values are registered as data points in
the 2D feature space. Initialized by the number of segments to be obtained,
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Fig. 1.26. Dynamic thresholding in microscopy [8]. The microscopy of a cell culture
(a) was segmented using a global threshold (b), locally adaptive (c) and pixel-
adaptive (d). According to morphological post-processing for noise reduction and a
connected components analysis, the final segmentation is shown in (e)
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Fig. 1.27. Iso-data pixel clustering. The iterative iso-data algorithm for pixel clus-
tering is exemplified in a 2D feature space. The number of clusters is given a priori.
After arbitrary initialization, the data points are assigned to the nearest cluster
center. Then, the positions of the centers are recalculated and the assignment is
updated until the process finally converges. The final location of cluster centers is
not affected by their initial position. This may only have impact to the number of
iterations

the initial cluster centers are arbitrarily placed by the algorithm. Then, the
following two steps are repeated iteratively until the process converges:

1. Each data point is aligned to the closest cluster center.
2. Based on the current assignment, the cluster centers are recalculated.

It can be proven mathematically that the resulting cluster centers are
independent of initial positions, which may only impact the number of itera-
tions and hence, the calculation time. However, either a fixed distance metrics
(e.g., Euclidean (geometric) distance) or a data-adaptive metrics (e.g., Maha-
lanobis distance) must be selected, which certainly impacts the clustering
result. Also, the predefined number of cluster centers is an important param-
eter. If the application domain does not allow to determine the number of
segments a priori, pixel clustering can be performed for a different number



30 T.M. Deserno

of centers and the residual error of the computed model can be analyzed to
determine the appropriate number of centers.

Post-Processing

Segments obtained from pixel-based analysis usually are incoherent and highly
noisy (see Fig. 1.25 or Fig. 1.26b). Therefore, post-processing is required. Noisy
structures can be effectively reduced with methods of mathematical morphol-
ogy. While a morphologic opening removes spread parts from the segments,
holes are closed by morphologic closing (see Sect. 1.3.3). The connected com-
ponents algorithm provides each separated segment with a unique reference
number. In the segmentation of the cell image (Fig. 1.26a); clustering provides
a rough cluster of “cells”, which is separated from the “background”, although
many individual cells are shown separately in Panel 1.26(d). After morpholog-
ical post-processing and connected components analysis, cells are separated
and colored (labeled) differently according to their segment number. Now,
they can be further processed as independent objects (Fig. 1.26e).

1.6.2 Edge-Based Segmentation

This type of segmentation is based on the abstract level of edges and tries
to capture the objects due to their closed outline in the image. Hence, edge-
based segmentation procedures are only used for such problems, where objects
are represented as clearly defined boundaries. As described in Sect. 1.1.3, this
occurs rather seldom when biological tissue is imaged. One of these special
cases is a metallic implant, which is displayed in a radiograph.

In general, the image processing chain for edge-based segmentation is com-
posed of edge extraction and edge completion. Edge extraction is usually
obtained by edge-based feature extraction, as described in Sect. 1.5.3, such as
generated with the Sobel filter (see Fig. 1.24). The next steps of processing
are binarization, to obtain only edge pixels and non-edge pixels, morphologi-
cal filtering to reduce noise and artifacts, and, finally, a skeleton of the edge
is computed. Tracing and closing of binary contours are the main tasks of
the edge-based segmentation. Almost exclusively, heuristic methods are used.
For example, one can search along differently directed rays to find connecting
pieces of a contour. This procedure aims at bridging local gaps on the edge
profile.

Livewire Segmentation

In practice, edge-based segmentation is often realized semi-automatically. By
the interactive livewire segmentation, the user clicks onto or near by the edge
of the Object of Interest (OOI), and the computer determines the exact edge
location based on local gradients. Then, the computer calculates a cost func-
tion, which again is based on local gradients. For all paths (wire) to the current
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position of the cursor, the path with the lowest cost is displayed in real time
(live) as the cursor is moved manually. Therefore, the metaphor “livewire”
is commonly used to refer to this interactive method of segmentation. If the
cursor moves far from the object, the contour is lost but if the cursor is placed
near to the contour again, the cost function ensures that the wire snaps back
to the desired object. Finally, the user must provide only a few support-
ing points by hand and can directly verify the correctness of segmentation
(Fig. 1.28). Application of such procedures can be found at computer-assisted
(semi-automatic) segmentations in layers of CT data, e.g., to produce a model
for surgical intervention planning. Guided by the cost function, the segmen-
tation result (delineation) is independent of the user placing the supporting
point (localization).

1.6.3 Region-Based Segmentation

As an advantage of region-based segmentation, only connected segments are
produced, and morphological post-processing is avoided. There are agglom-
erative (bottom-up) and divisive (top-down) approaches. All approaches are
based on a certain distance or similarity measure to guide the assignment
of neighbored pixels or regions. Here, plenty of methods are used. Easiest,
one can compare the mean gray value but complex texture measures (see
Sect. 1.5.4) are often used, too.

Fig. 1.28. Edge-based interactive livewire segmentation [9]. The user marks a start-
ing point with the cursor (yellow) on the border between white and gray matter (a).
The connection to the current cursor position is denoted with red, cf. (b) to (e).
Depending on the cursor position, the contour can also jump between very different
courses (d, e). So, the user can interactively place an appropriate fix point. The
fixed curve segment is shown in blue, cf. (e) to (g). In this example, only five points
are manually marked to achieve a complete segmentation (h)
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Agglomerative Algorithm

Region growing, in 3D also referred to as volume growing, is a well known
example of an agglomerative procedure. Starting from seed points, which may
be placed either automatically or manually, neighbored pixels are iteratively
associated to the growing areas if the distance measure is below a certain
threshold. This process is iterated until no more merges can be carried out.
From this qualitative description, the variety and sensitivity of the parame-
ters of such procedures are already clear. Special influence on the result of
agglomerative segmentation has:

• the number and position of seed points,
• the order in which the pixels or voxels are iteratively processed,
• the distance or similarity measure applied, and
• the threshold used to guide merging.

Therefore, agglomerative algorithms for segmentation often are affected
by small shifts or rotations of the input image. For instance, if x- and y-axis
of the image matrix are transposed, the result of segmentation is different
regarding size and shape of OOI, which is an unwanted effect in medical
image processing.

Divisive Algorithm

The divisive approach somehow inverts the agglomerative strategy. By split-
ting, the regions are iteratively subdivided until they are considered suf-
ficiently homogeneous in terms of the chosen similarity measure. As an
advantage, seed points are not required anymore, because the first split is
performed throughout the whole image. As a drawback, the dividing lines are
usually drawn horizontally or vertically, and this arbitrary separation may
separate the image objects. Therefore, split is unusually performed as a self
standing segmentation procedure, but rather combined with a subsequent
merging step (split and merge). Another drawback of divisive segmentation
procedures is the resulting wedge-formed boundary of objects, which may
require post-processing such as contour smoothing.

1.6.4 Over- and Under-Segmentation

A fundamental problem of pixel- and region-based segmentation is the dual-
ism between over- and under-segmentation. For a definition of these terms,
we rely on the general model of the image processing chain (see Fig. 1.1).
Here, segmentation is regarded as a pre-stage for classification, in which the
extracted image segments are assigned to their semantic meaning. This can
take the form of automatically assigning concrete terms for the segments (for
example, the organ “heart” or the object “TPS implant screws” or, more
abstract, a “defect” or an “artifact”).
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In any case, the segment should be related directly to an object, if an
automatic classification is desired. In this context, under-segmentation occurs
if resulting segments are composed from parts of several objects. Analogously,
over-segmentation is obtained if a particular object is disintegrated into several
segments or parts of segments. The big problem with segmentation of medical
images is that over- and under-segmentation usually occur simultaneously.

Hierarchical Algorithm

Hierarchical procedures are one of the concepts to deal with the dualism
between over- and under segmentation. Starting on a lower resolution of the
image, where it is represented with a small number of pixles only, the chance
of splitting objects into more than one segment is decreased. Then, the exact
outline of each segment is reconstructed on higher resolutions, where more
details are contained (Fig. 1.29).

Hybrid Algorithm

In the practice of medical image processing, hybrid approaches of segmenta-
tion have come to the greatest importance. Here, one is trying to combine the
advantages of individual (usually edge- and region-based) algorithms without
maintaining their disadvantages.

For example, the watershed transform extends an agglomerative, regional
segmentation procedure with edge-based aspects of segmentation. Indeed, it
is based on the very intuitive analogy of the image with a topographic sur-
face: the gray levels of the pixels correspond to the altitude of the relief. In

Fig. 1.29. Hierarchical region merging. The skeletal radiograph of the hand (a)
has been segmented at various levels of resolution, cf. (b) to (d). The initial step
is obtained with the watershed transform (see Sect. 1.6.4). Depending on the size
of the objects, they can be localized in the appropriate level (e), approximated by
ellipses (f), or visualized as nodes in a graph (g)
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hydrology, a catchment basin relative to a body of water (e.g., a river or an
ocean) is defined as a region where water from rain drains downhill into this
reference body, whereas the watershed lines (also known as water parting or
divide) separate different drainage basins. Similarly, a catchment basin sur-
rounded with watershed lines can be defined for every regional minimum in the
image. In general, the image gradient is taken as the topographic surface, so
as the catchment basins to correspond to connected and homogeneous regions
(structures of interest), and watershed lines to lie on higher gradient values.

The so-called classical watershed transform takes into account all regional
minima of the image to compute a primitive catchment basin for each one.
As natural images contain many regional minima, in general, too many basins
are created. The image is over-segmented (see, for example, Fig. 1.29b). How-
ever, over-segmentation can be reduced by filtering the image and, therefore,
decreasing the number of minima.

On the other hand, when applied to segmentation of medical images, the
watershed transform especially has the following advantages:

• From the region-based idea of the flooding process, contiguous segments
are determined inherently.

• From the edge-based approach of the watersheds, the objects are exactly
delineated.

• The problem of under-segmentation is avoided, since the merging of smaller
pools is prevented by the watersheds.

1.6.5 Model-Based Segmentation

State of the art methods for model- or knowledge-based segmentation involve
active contour models and deformable templates as well as active shape and
active appearance models.

Active Contour Model

Active contour models apply edge-based segmentation considering region-
based aspects and an object-based model of a priori knowledge. In the medical
application domain, so called snake and balloon approaches are applied for
segmentation of 2D and 3D image data and the tracing of contours in 2D
image and 3D image sequences, i.e., 3D and 4D data, respectively. The con-
tour of the objects, which is usually closely modeled, is presented by individual
nodes, which are – in the simplest case – piecewise connected with straight
lines forming a closed polygon. For the nodes, a scalar quality measure (e.g.,
energy) is calculated and optimized in the local environment of the nodes.
Alternatively, adjusted forces are determined that directly move the nodes.
The iterative segmentation process completes at minimal energy or if an opti-
mum balance of forces was found. Thus, the potential of this approach is kept
in the choice of capable quality criteria (e.g., energy) or forces.
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Snake

In 1988, Kass et al. have introduced classical snake approach [10]. It models
an internal and an external quality criterion, both as undirected energy. The
internal energy results from a predefined elasticity and stiffness of the contour,
which is high in places of strong bends or on buckling. The external energy
is calculated from an edge-filtered image. The external energy is small, if the
contour runs along edges. The idea behind this approach is an edge-based
segmentation combined with the a priori knowledge that biological objects
rarely have sharp-bending boundaries. With an optimal weighting of energy
terms, the contour course is primarily determined by the information of edges
in the image. However, if the object’s contour is partially covered or incom-
pletely captured, the internal energy ensures an appropriate interpolation of
the region’s shape.

So simple this approach has been formulated verbally, so difficult it is
to implement. During the iteration, the number of nodes must be constantly
adjusted to the current size of the contour. Furthermore, crossovers and entan-
glements of the moving contour must be avoided. The classical snake approach
also requires an already precisely positioned starting contour, which often
must be defined interactively. Then, the two steps of segmentation, i.e., local-
ization and delineation are performed again by man and machine, respectively.
This concept was also applied in the first publications of this segmentation
method. For a contour tracking of moving objects in image sequences, the
segmentation of image at time t serves as initial contour of iteration in image
t + 1. After a single initialization for the image t = 0, the procedure runs
automatically. Hence, fluoroscopy and endoscopy are suitable modalities for
the application of the snake approach to track the shape of moving objects.

Balloon

Balloons are based on forces rather than energies. Besides the internal and
external force, an inner pressure or suction is modeled, which lets the contour
continuously expand or shrink. Figure 1.30 shows the inflation movement of
a balloon to segment the cell membrane, which is visualized by the synaptic
boutons of contacting dendrites in a microscopy of a motoneuron. Although
segmentation is done without an accurate initial contour, in the course of
iteration the balloon nestles onto the real contour of cell membrane. Another
advantage of the balloon model is that this concept is directly transferable
into higher dimensions (Fig. 1.31).

Other Variants

In recent developments of active contour models, it is attempted to incor-
porate further a priori knowledge, e.g., in the form of anatomical models.
Prototypes of the expected object shapes are integrated into the algorithm:
In each iteration, the distance of the current object shape to a suitable selected
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Fig. 1.30. Balloon segmentation of motoneuron cell membrane [11]. The frames
show the balloon at different iterations. By touching the cell membrane, the strong
image forces prevent further movement of the active contour. In this application, the
internal forces correspond physically to a membrane. This is clearly recognizable at
the “adhesion border” of the balloons reaching the dendrites (bottom left)

prolapse

Fig. 1.31. Segmentation with a 3D balloon model [12]. The CT of a spine (left)
was segmented with a 3D balloon. In the surface-based rendering after automatic
segmentation, the prolapse is clearly visible (right). The visualization is based on
Phong shading (see Sect. 1.4.2)

prototype is modeled as an additional force on the node. With those exten-
sions, a “break out” of the active contour model is prevented also for long
passages of the local object boundary without sufficient edge information.

The complex and time-consuming parameterization of an active contour
model for a specific application can be based on manual and also automatic
reference segmentations. For the latter approach, different combinations of
parameters are determined and the segmentation is performed for all cases.
All resulting segmented contours are compared with the appropriate reference
contour, a priori defined as the ground truth of the training data. Then, that
set of parameters with the best approximation of the reference contour is
selected automatically.

Active Shape Model

In the biomedical sciences, OOIs such as bones or organs often have a sim-
ilar form or projected shape that may vary between individuals or different
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points of time. Therefore, a probabilistic model may be applied to explain the
shape variation. Segmenting an image imposes constraints using this model
as a prior. Usually, such a task involves:

1. registration of the training examples to a common pose,
2. probabilistic representation of the variation of the registered samples, and
3. statistical inference between the model and the image.

Introduced by Cootes et al. in 1995, active shapes aim at matching the model
to a new image [13]: for probabilistic representation (Step 2), the shapes are
constrained by the Point Distribution Model (PDM) allowing variation only in
ways that have been seen in the training set of labeled examples. For statistical
inference (Step 3), a local neighborhood in the image around each model
point is analyzed for a better position. Alternating, the model parameters are
updated to best match to these newly determined positions, until convergence
is reached.

Similar to active contour models, each training shape is represented by a
set of points, where each point corresponds to a certain landmark. To form a
feature vector xi, all landmark coordinates are concatenated. A mean shape x̄
and its covariance matrix S from N training sets is obtained by

x̄ =
1
N

N−1∑
i=0

xi and S =
1
N

N−1∑
i=0

(xi − x̄)(xi − x̄)T (1.3)

The Principle Component Analysis (PCA) is applied for dimension reduc-
tion computing normalized eigenvectors and eigenvalues of S across all train-
ing shapes. The base Φ of eigenvectors φ represents the principle modes of
variation, and the eigenvalues λ indicate the variance per mode. The prior
model is generated from the t largest eigenvalues. Now, any shape x may be
approximated by x ≈ x̄ + Φν, where the weighting vector ν is determined
minimizing a distance measure in the image, e.g., the Mahalanobis distance.

Figure 1.32 shows an application of the active shape method for bone
age assessment. The BoneXpert R© method2 robustly detects carpal bones and
phalanges as well as epiphysis using active shapes.

1.7 Classification

According to the general processing chain (see Fig. 1.1), the task of the clas-
sification step is to assign all connected regions, which are obtained from the
segmentation, to particularly specified classes of objects. Usually, region-based
features that sufficiently abstract the characteristics of the objects are used to
guide the classification process. In this case, another feature extraction step
is performed between segmentation and classification, which is not visualized

2 Visiana Ltd, Holte, Denmark, http://www.bonexpert.com
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Fig. 1.32. Active shape segmentation of hand
radiopraph. BoneXpertR© detects relevant bones and
measures distances, geometry and sizes to compute
skeletal maturity. Although in this example the first
metacarpal bone is misaligned, the automatically
suggested bone age, which is computed over several
regions, lies within the range of human inter-observer
variation

in Fig. 1.1. These features must be sufficiently discriminative and suitably
adopted to the application, since they fundamentally impact the resulting
quality of the classifier.

For all types of classifiers, we can differ supervised (trained), unsupervised
(untrained) and learning classification. For example, pixel clustering, which
has been already introduced for pixel-based segmentation, is an unsupervised
classification process (see Fig. 1.27). As a goal, individual objects are divided
into similar groups. If the classification is used for identification of objects, the
general principles or an exemplary reference must be available, from which the
ground truth of classification can be created. The features of these samples are
then used for parameterization and optimization of the classifier. Through this
training, the performance of the classifier can be drastically improved. How-
ever, supervised object classification is always problematic, if the patterns
that are classified differ remarkably from the trained patterns. In such cases,
the training set does not sufficiently reflect the real world. A learning classifier
has advantages here, because it changes its parameterization with each per-
formed classification, even after the training phase. In the following, however,
we assume a suitable set of features that are sufficiently characteristic and
large set of samples.

The classification itself reverts mostly to known numerical (statistical) and
non-numerical (syntactic) procedures as well as the newer approaches of Com-
putational Intelligence (CI), such as neural networks, evolutionary algorithms,
and fuzzy logic. In general, the individual features, which can be determined
by different procedures, are summarized either to numerical feature vectors
(also referred to as signature) or abstract strings of symbols. For example, a
closed contour object can be described by its Fourier-descriptors as a feature
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vector, or by means of basic line items such as “straight”, “convex”, and
“concave” forming a symbol chain.

1.7.1 Statistic Classifiers

Statistical classification regards object identification as a problem of the sta-
tistical decision theory. Parametric procedures for classification are based on
the assumption of distribution functions for the feature specifications of the
objects, and the parameters of the distribution functions are determined from
the sample. Non-parametric methods, however, waive such model assump-
tions, which are sometimes unobtainable in biomedical image processing. A
common example of such a non-parametric statistical object classifier is the
Nearest Neighbor (NN) classifier. All features span the feature space, and each
sample is represented by a point in this feature space. Based on the signature
of a segment, which has not been included in the training and now is assigned
to its nearest neighbor in feature space, the segment is classified to the asso-
ciated class of the assigned feature vector. The k-Nearest Neighbor (k-NN)
classifier assigns the majority class from the k nearest neighbors in feature
space (usually, k = 3 or k = 5). An example of the k-NN classifier is given in
Fig. 1.33.

1.7.2 Syntactic Classifiers

In symbol chains, it is neither useful nor possible to define distance measure-
ments or metrics and to evaluate the similarity between two symbol chains,
such as used for feature vectors. An exception of this statement is given with
the Levenshtein distance, which is defined as the smallest number of modi-
fications such as exchange, erase, or insert, required to transform a symbol
chain into another.

The syntactic classification is therefore based on grammars, which can
possibly generate an infinite amount of symbol chains with finite symbol
formalism. A syntactic classifier can be understood as a knowledge-based
classification system (expert system), because the classification is based on a
formal heuristic, symbolic representation of expert knowledge, which is trans-
ferred into image processing systems by means of facts and rules. If the expert
system is able to create new rules, a learning classifier is also realizable as a
knowledge-based system.

It should be noted that the terms “expert system” or “expert knowl-
edge”, however, are not standardized in the literature. Therefore, “primitive”
image processing systems, which use simple heuristics as implemented distinc-
tion of cases to classification or object identification, are also referred to as
“knowledge-based”.
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Branemark

Frialit

TPSTPS

feature space

i

Fig. 1.33. Identification of dental fixtures [14]. An implant is shown in the intra-
oral radiograph of the lower jaw (a). For feature extraction, the image is binarized
with a local adaptive threshold (b). The morphological filtering (erosion) separates
individual areas (c) and eliminates interference. In this example, three regions were
segmented (d). Further processing is shown for the blue segment. After its fade-
out, the gap of morphological erosion is compensated by a subsequent dilation (e),
and the result is subtracted from the intermediate image (b). Any coordinate of blue
segment from (d) identifies the corresponding region, which can be extracted now (g)
and aligned into a normal position using the Karhunen-Loève transform. Geometric
dimensions are determined as region-based features and stored in a feature vector
(signature). As part of the training, the reference measures of different implant types
have been recorded in the feature space. The classification in the feature space is
done with the statistical k-NN classifier (i), which identifies the blue segment reliably
as Branemark implant screw (j)

1.7.3 Computational Intelligence-Based Classifiers

As part of the artificial intelligence, the methods of CI include neural net-
works, evolutionary algorithms and fuzzy logic. These methods have their
examples in biological information processing. Although they usually require
high computational power, they are frequently used in biomedical image pro-
cessing for classification and object identification. Thereby, all the procedures
have a mathematical-based, complex background.

Neural Network

Artificial neural networks simulate the information processing in the human
brain. They consist of many simply constructed basic elements (i.e., neu-
rons), which are arranged and linked in several layers. Each neuron calculates
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the weighted sum of its input excitations, which is mapped over a nonlinear
function (i.e., characteristic curve) to the output. The number of layers, the
number of neurons per layer, the network’s topology, and the characteristic
curve of the neurons are predefined within the network dimensioning step.
On the one hand, heuristics are usually applied rather than methodological
derivations. On the other hand, the individual weights of the excitements are
identified numerically during the training of the network. Then, the network
remains unchanged and can be used as a classifier.

Evolutionary Algorithm

Evolutionary algorithms are based on the constant repetition of a cycle of
mutation and selection following the Darwinian paradigm of the survival of the
fittest. Genetic algorithms work on a number of individuals (the population).
The crossing of two randomly selected individuals and afterwards the mutation
changes the population. A fitness function evaluates the population in terms of
their goodness to problem solution. Although the selections are equipped with
a random component, fit individuals are frequently selected for reproduction.
Evolutionary algorithms can solve complex optimization problems amazingly
well, but for object classification, they are less successfully used than other
methods.

Fuzzy Algorithm

The idea of fuzzy logic is to extend the binary (TRUE or FALSE) computer
model with some uncertainty or blur, which exists in the real world, too.
Many of our sensory impressions are qualitative and imprecise and, therefore,
unsuitable for accurate measurements. For example, a pixel is perceived as
“dark”, “bright” or even “very bright”, but not as a pixels with the gray
scale value “231”. Fuzzy quantities are based mathematically on the fuzzy
set theory, in which the belonging of an element to a set of elements is not
restricted to the absolute states TRUE (1) or FALSE (0), but continuously
defined within the entire interval [0..1].

Beside classification, applications of fuzzy logic in biomedical image pro-
cessing can be found also for pre-processing (e.g., contrast enhancement),
feature extraction (e.g., edge extraction, skeleton), and segmentation.

1.8 Quantitative Measurements and Interpretation

While the visual appraisal by experts is qualitative and sometimes subject to
strong inter- as well as intra-individual fluctuations, in principle, a suitable
computer-aided analysis of biomedical images can deliver objective and repro-
ducible results. First of all, this requires a precise calibration of the imaging
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modality. Furthermore, partial (volume) effects of the imaging system and
particularities of the discrete pixel topology must be taken into account and
handled accordingly to ensure reliable and reproducible measurements.

Quantitative measurement is focused on automatic detection of objects as
well as their properties. Image interpretation steps further towards analyzing
the order of individual objects in space and/or time. It may be understood in
the sense of analyzing an abstract scene that corresponds to the ambiguous
goal of developing a “visual sense for machines”, which is as universal and
powerful as that of humans.

1.8.1 Partial Volume Effect

The digitalization of the local area or volume of a pixel or voxel, respectively,
always yields an averaging of the measured value in the appropriate field.
For example in CT, a voxel containing different tissue is assigned a certain
Hounsfield value that results from the proportional mean of the individual
Hounsfield values of the covered tissue classes. Thus, a voxel containing only
bone and air preserves the Hounsfield value of soft tissue and, thus, may dis-
tort quantitative measurements. In general, this partial (volume) effect occurs
in all modalities and must be accounted appropriately for any automatic
measurement (see Fig. 1.14).

1.8.2 Euclidean Paradigm

The common paradigms of the Euclidean geometry do not apply in the dis-
crete pixel domain. For example, the discrete representations of two straight
lines may not join in a common pixel although the lines are crossing. Fur-
thermore, different neighborhood concepts of discrete pixel’s topology have
remarkable impact on the result of automatic image measurements. In partic-
ular, the areas identified in region growing may be significantly larger if the
8-neighborhood is applied, i.e., if eight adjacent pixels are analyzed instead of
the four direct neighbors (4-neighborhood).

1.8.3 Scene Analysis

The fundamental step of image interpretation is to generate a spatial or tem-
poral scene description on the most abstract level (symbolic image description,
see Fig. 1.2). A suitable form of representation is the attributed relational
graph (semantic web), which can be analyzed at different hierarchy levels (see
Fig. 1.29, right). Therefore, the considered grid matrix of pixels (iconic image
description, see Fig. 1.2) so far is inappropriate for image interpretation.

The primitives of the graph (node) and their relationships (edges) must
be abstracted from the segmented and identified objects or object parts in
the image. So far, only a few algorithms can execute this level of abstrac-
tion. Examples for the abstraction of primitives are given by the numerous
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approaches to shape reconstruction: Shape-from-shading, -texture, -contour,
-stereo, etc. Examples for the abstraction of relationships can be found at the
depth reconstruction by trigonometric analysis of the projective perspective.
Recently, considerable progress has been achieved in symbolic image analysis
in the fields of industrial image processing and robotics. Because of the special
peculiarities of the biomedical imagery (see Sect. 1.1.3) the transfer of these
approaches into health care applications and medical image processing is only
sparingly succeeded so far.

1.8.4 Examples

We will now discuss some examples for image measurements. For instance
in Fig. 1.33, geometrical features are used for the automatic classification of
implant systems. The feature measures are extracted on the abstract level of
regions. Frequently, further measures are extracted after object identification,
which use the information of the certain object detected, i.e., they operate
on the level of objects. In Fig. 1.33i, we can use the knowledge that the blue
segment corresponds to a Branemark implant to parameterize a special mor-
phological filter that is adapted to the geometry of Branemark implants and
count the number of windings of the screw.

Another example of object-based image measurements is given in Fig. 1.34.
The result of balloon segmentation of a cell membrane (see Fig. 1.30) is
labeled automatically with local confidence values based on model assump-
tions (Fig. 1.34a). These values indicate the contour segment belonging to
a cell membrane and thus a classification via fuzzy logic (see Sect. 1.7.3).
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Fig. 1.34. Quantification of synaptic boutons on a cell membrane [15]. The cell
membrane was segmented with a balloon (see Fig. 1.28). Analyzing the impact of
internal vs. external forces at a certain vertex, local confidences can be determined
to fuzzily classify the affiliation of the contour section to the actual cell membrane
(a). The cell contour is extracted, linearized, normalized, and binarized before the
occupation of the cell membrane with synaptic boutons of different sizes is analyzed
by morphological filtering (b). The confidence values are considered for averaging
the occupation measure along the cell membrane (c)
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Fig. 1.35. Scheme of automatic image interpretation. The panoramic radiograph
contains all relevant information of a dental chart. The symbolic description of
the scene is obtained with a semantic network. Despite its already considerable
complexity, the shown part of the network represents only the marked ROI. In the
dental chart, information is coded differently. The teeth are named in accordance
with the key of the Fédération Dentaire Internationale (FDI): the leading digit
denotes the quadrant clockwise, the second digit refers to the number of the tooth,
counting from inside to outside. Existing teeth are represented by templates, in
which dental fillings, crowns and bridges are recorded. The green circle at tooth 37
(say: three, seven) indicates a carious process

To increase robustness and reliability of measurements, the confidence values
are accounted for an averaging of quantitative measures along the contour,
which are extracted, linearized, normalized, and morphologically analyzed
(Fig. 1.34b), such that finally a reliable distribution statistics of connecting
boutons according to their size is obtained (Fig. 1.34c).

Figure 1.35 displays exemplarily the automatic extraction of a dental chart
based on image processing of a panoramic radiograph. It clearly shows the
immense difficulties, which have to be faced by the automatic interpretation of
biomedical images. Initially, the segmentation and identification of all relevant
image objects and object parts must succeed, so that the semantic network
can be built. This includes the instances (“tooth 1”, “tooth 2”, etc.) of the
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previously identified objects (e.g., “teeth”, “crown”, “filling”). The interpre-
tation of the scene based on the network must be carried out in a further, not
less difficult step of processing. Thus, all teeth must be named according to
their position and shape. Then, crowns, bridges, fillings, and carious processes
can be registered in the dental chart. However, the automation of this process,
which can be accomplished by dentist in a few minutes, is not yet possible
automatically with sufficient robustness.

1.9 Image Management

Introductorily, we have summed with the term “image management” all image
manipulation techniques, which serve the effective archiving (short and long
term), transmission (communication) and the access (retrieval) of data (see
Fig. 1.1). For all three points, the specifics in medical applications and health
care environments have led to specific solutions, which are briefly introduced
in the following sections.

1.9.1 Archiving

Already in the seventies, the invention of CT and its integration with clin-
ical routine has involved the installation of the first Picture Archiving and
Communication System (PACS), which main task is the archiving of image
data. The core problem of archiving medical images is the immensely large
volume of data. A simple radiography with 40 × 40 cm (e.g., a chest X-ray)
with a resolution of five line pairs per millimeter and 10 bit = 1,024 gray
levels per pixel already requires a storage capacity of more than 10MB. Dig-
ital mammography, which is captured with high resolution on both breasts
in two views results in about 250MB of raw data for each examination. Ten
years ago, radiography, CT, and MRI accumulated in a university hospital
to already about 2TB of image data each year (Table 1.6). This estimate
can easily increase tenfold with the resolution-increased novel modalities such
as spiral CT and whole-body MRI. For instance in Germany, according to
relevant legislations, the data must be kept at least for 30 years. Therefore,
efficient storage, retrieval, and communication of medical images have required
effective compression techniques and high speed networks. Due to noise in
biomedical images, lossless compression usually has a limited effect of com-
pression rates of two or three. Only in recent years, feasible hybrid storage
concepts have become available. Storage of and access to medical image data
is still of high relevance.

1.9.2 Communication

With increasing digitization of diagnostic imaging, the motto for medical infor-
mation systems, i.e., to provide “the right information at the right time and



46 T.M. Deserno

Table 1.6. Volume of medical image data [5]. The data is taken from the Annual
Report 1999 of the University Hospital of RWTH Aachen University, Aachen, Ger-
many (about 1,500 beds). The data is based on the Departments of (i) Diagnostic
Radiology, (ii) Neuroradiology, (iii) Nuclear Medicine, and (iv) Dentistry, Oral and
Maxillofacial Surgery for a total of 47,199 inpatient and 116,181 outpatient images.
Services (such as ultrasound, endoscopic or photographic) from other departments
were excluded. For modalities of nuclear medicine, 20 slices per study are assumed.
For comparison, the total number of analyses performed in the central laboratory
of the Institute for Clinical Chemistry and Pathobiochemistry was estimated with
an average of 10 measured values per analysis with highest precision of 64 bit. But
still, the annual image data volume is about 10,000 times larger

Modality Resolution Range [bit] Size per Units in Total per
Spatial [pixel] image [MB] year 1999 year [GB]

Chest radiography 4000 × 4000 10 10.73 74,056 775.91
Skeleton radiography 2000 × 2000 10 4.77 82,911 386.09
CT 512 × 512 12 0.38 816,706 299.09
MRI 512 × 512 12 0.38 540,066 197.78
Other radiography 1000 × 1000 10 1.19 69,011 80.34
Panoramic and skull 2000 × 1000 10 2.38 7,599 17.69
Ultrasound 256 × 256 6 0.05 229,528 10.11
Dental radiography 600 × 400 8 0.23 7,542 1.69
PET 128 × 128 12 0.02 65,640 1.50
SPECT 128 × 128 12 0.02 34,720 0.79
Σ 1,770.99

For comparison
Laboratory tests 1 × 10 64 0.00 4,898,387 0.36

the right place,” is projected to the field of medical image processing. Hence,
image communication is the core of today’s PACS. Image data is not only
transferred electronically within a department of radiology or the hospital,
but also between widely separated institutions. For this task, simple bitmap
formats such as the Tagged Image File Format (TIFF) or the Graphics Inter-
change Format (GIF) are inadequate, because beside the images, which might
have been captured in different dimensions, medical meta information on
patients (e.g., Identifier (ID), name, date of birth, . . .), the modality (e.g.,
device, parameters, . . .) and organization (e.g., investigation, study, . . .) must
also be transferred in a standardized way.

Since 1995, the communication is based on the Digital Imaging and Com-
munications in Medicine (DICOM) standard. In its current version, DICOM
includes:

• structural information about the contents of the data (“object classes”),
• commands on what should happen to the data (“service classes”), and
• protocols for data transmission.

DICOM is based on the client-server paradigm and allows the coupling of
PACS in Radiology Information System (RIS) or Hospital Information Sys-
tems (HIS). DICOM incorporates existing standards for communication: the
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International Organization for Standardization (ISO) Open System Inter-
connection (OSI) model, the Transmission Control Protocol (TCP) Internet
Protocol (IP), and the Health Level 7 (HL7) standard. Full DICOM com-
pliance for imaging devices and image processing applications is achieved
with only a few supported object or service classes, since other DICOM
objects, which are not relevant for the current device, simply are handed over
to the next system in the DICOM network. The synchronization between
the client and server is regularized by conformance claims, which are also
specified as part of the DICOM standard. However, the details of imple-
mentation of individual services are not specified in the standard, and so
in practice, vendor-specific DICOM dialects have been developed, which can
lead to incompatibilities when building PACS. In recent years, the Inte-
grating the Healthcare Enterprises (IHE) initiative became important. IHE
aims at guiding the use of DICOM and other standards such that complete
inter-operability is achieved.

1.9.3 Retrieval

In today’s DICOM archives, images can be retrieved systematically, only if
the patient name with date of birth or the internal system ID is known.
Still, the retrieval is based on alphanumerical attributes, which are stored
along the image data. It is obvious that diagnostic performance of PACS
is magnified significantly if images would be directly available from similar
content of a given example image. To provide the Query by Example (QBE)
paradigm is a major task of future systems for Contend-Based Image Retrieval
(CBIR). Again, this field of biomedical research requires conceptually different
strategies as it is demanded in commercial CBIR systems for other application
areas, because of the diverse and complex structure of diagnostic information
that is captured in biomedical images.

Figure 1.36 shows the system architecture of the Image Retrieval in Med-
ical Applications (IRMA) framework3. This architecture reflects the chain of
processing that we have discussed in this chapter, i.e., registration, feature
extraction, segmentation, classification of image objects towards the tip of
the pyramid (see Fig. 1.2), which is the symbolic interpretation respective
scene analysis. In IRMA, the image information that is relevant for retrieval
is gradually condensed and abstracted. The image bitmap is symbolically
represented by a semantic network (hierarchical tree structure). The nodes
contain characteristic information to the represented areas (segments) of the
image. Its topology describes the spatial and/or temporal condition of each
object. With this technology, radiologists and doctors are supported similarly
in patient care, research, and teaching.

3 http://irma-project.org
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Fig. 1.36. System architecture of the IRMA framework [16]. The processing steps
in IRMA are shown in the middle column. Categorization is based on global fea-
tures and classifies images in terms of imaging modality, view direction, anatomic
region, and body system. According to its category, the image geometry and con-
trast are registered to a reference. The abstraction relies on local features, which
are selected specifically to context and query. The retrieval itself is performed effi-
ciently on abstracted and thus information-reduced levels. This architecture follows
the paradigm of image analysis (cf. Fig. 1.1). The in-between-representations as pre-
sented on the left describe the image increasingly abstract. The levels of abstraction
(cf. Fig. 1.20) are named on the right side

1.10 Conclusion and Outlook

The past, present, and future paradigms of medical image processing are
composed in Fig. 1.37. Initially (until approx. 1985), the pragmatic issues of
image generation, processing, presentation, and archiving stood in the focus
of research in biomedical image processing, because available computers at
that time had by far not the necessary capacity to hold and modify large
image data in memory. The former computation speed of image processing
allowed only offline calculations. Until today, the automatic interpretation of
biomedical images still is a major goal. Segmentation, classification, and mea-
surements of biomedical images is continuously improved and validated more
accurately, since validation is based on larger studies with high volumes of
data. Hence, we focused this chapter on image analysis and the processing
steps associated with it.

The future development is seen in the increasing integration of algorithms
and applications in the medical routine. Procedures in support of diagnosis,
treatment planning, and therapy must be easily usable for physicians and,
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therefore, further standardized in order to ensure the necessary interoperabil-
ity for a clinical use.
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Fusion of PET and MRI for Hybrid Imaging

Zang-Hee Cho, Young-Don Son, Young-Bo Kim, and Seung-Schik Yoo

Summary. Recently, the development of the fusion PET-MRI system has been
actively studied to meet the increasing demand for integrated molecular and anatom-
ical imaging. MRI can provide detailed anatomical information on the brain, such
as the locations of gray and white matter, blood vessels, axonal tracts with high res-
olution, while PET can measure molecular and genetic information, such as glucose
metabolism, neurotransmitter-neuroreceptor binding and affinity, protein–protein
interactions, and gene trafficking among biological tissues. State-of-the-art MRI sys-
tems, such as the 7.0 T whole-body MRI, now can visualize super-fine structures
including neuronal bundles in the pons, fine blood vessels (such as lenticulostri-
ate arteries) without invasive contrast agents, in vivo hippocampal substructures,
and substantia nigra with excellent image contrast. High-resolution PET, known as
High-Resolution Research Tomograph (HRRT), is a brain-dedicated system capable
of imaging minute changes of chemicals, such as neurotransmitters and –receptors,
with high spatial resolution and sensitivity. The synergistic power of the two, i.e.,
ultra high-resolution anatomical information offered by a 7.0 T MRI system com-
bined with the high-sensitivity molecular information offered by HRRT-PET, will
significantly elevate the level of our current understanding of the human brain, one
of the most delicate, complex, and mysterious biological organs. This chapter intro-
duces MRI, PET, and PET-MRI fusion system, and its algorithms are discussed in
detail.

2.1 Introduction

Among the modern medical imaging technologies, Positron Emission Tomog-
raphy (PET) and Magnetic Resonance Imaging (MRI) are considered to be the
most powerful diagnostic inventions. In the 1940s, modern medical imaging
technology began with advancements in nuclear medicine. In the early 1970s,
by combining the diagnostic properties of X-rays with computer technology,
scientists were able to construct 3D images of the human body in vivo for
the first time, prompting the birth of the Computed Tomography (CT). The
emergence of CT was an important event that motivated scientists to invent
PET and MRI. These imaging tools were not based on simple modifications

T.M. Deserno (ed.), Biomedical Image Processing, Biological and Medical Physics,
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of existing techniques or devices. Instead, they are the new medical imaging
modalities that were the result of the combined effort of numerous scientific
disciplines such as physics, mathematics, chemistry, computer science, biology,
medicine, and pharmacology.

Initially, PET was based on somewhat primitive form of positron imaging
device created in 1953 by Gordon Brownell et al. Massachusetts Institute of
Technology (MIT) and then newly born concept of the CT. The first modern
PET device was developed by two groups of scientist. One was at Univer-
sity of California at Los Angeles (UCLA) in the mid 1970s by Cho et al [1]
and the other was by Ter-Pogossian & Phelps at Washington university, St.
Louis [2]. Subsequently, a new detector material, Bismuth-Germanate (BGO)
was introduced for use in high-resolution imaging [3]. Today, most commer-
cial PET scanners have adopted the ring-type detector system, based on
the use of BGO or Cerium-doped Lutetium Oxyorthosilicate (LSO) scintil-
lators [4]. These PET systems now have spatial resolutions of 5–6 mm at
FWHM (Fig. 2.1).

The development of MRI was based on Nuclear Magnetic Resonance
(NMR), explored in 1940s by Felix Bloch at Stanford University and Edward
Mills Purcell at Harvard University. The first principles of MRI were proposed
in 1973 by Paul Lauterbur, and necessary image reconstruction algorithm
were developed in the mid 1970s by Richard Ernst. For their achievements,
Ernst received 1990 the Nobel Prize in Chemistry, and in 2003, Lauterbur
and Mansfield won Nobel Prize in Physiology or Medicine. Much of the MRIs

Fig. 2.1. Historical
development of PET and
MRI. The exponential
increase of system
performance is visualized.
The ordinate shows
resolution and field strength
for PET (top) and MRI
(bottom), respectively
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rapid success can be attributed to its non-invasiveness and tissue discrimina-
tion capability in the brain. Continuous hardware and software advancements
have followed, and new MRI scanners boast sub-millimeter resolution with
excellent contrast. The strength of the magnetic field used in the device is
described with a unit of Tesla (T) or Gauss G. 1 T is equal to 10,000 G.
Although currently available MRI in the market for humans use is up to 8 T,
only 4 T is permitted for clinical use by the Food and Drug Administration
(FDA) of the United States.

The invention of PET and MRI changed the scene of modern medicine
and was perhaps one of the greatest achievements in medicine and the biol-
ogy. This chapter provides a brief introduction of the basic principles of MRI
and PET, followed by an overview of state-of-the-art PET and MRI systems.
Subsequently, we described the complementary use of these two devices and
technical aspects related to the new PET/MRI fusion system, which has been
recently developed, and potential applications are discussed.

2.2 Positron Emission Tomography

2.2.1 Basic Principles

PET is an imaging system that detects two annihilation photons or gamma
rays originating from the tracer compounds labeled with positron-emitting
radionuclides, which are injected or administered into the subject. Many
proton-rich radioisotopes may decay via positron β+-decay, in which a proton
in the nucleus decays to a neutron by emission of a positron and a neutrino.
The decay product has one atomic number less than the parent. Examples
of radionuclides which undergo decay via positron emission are shown in
Table 2.1 [5].

Positron-emitting radionuclides possess an important physical property
that makes PET a unique high-resolution molecular imaging device. That is
the directionality or collinearity of two simultaneously emitted photons by
the annihilation process. When the emitted positron collides with a nearby
electron, they annihilate and produce two annihilation photons of 511 keV.
The two annihilation photons, which are identical to two gamma photons
with 511 keV of energy, then travel in nearly exact opposite directions of

Isotope Half life Positron energy Positron range
(min) maximum (MeV) in water (mm)

11C 20.30 0.96 1.1
13N 9.97 1.19 1.4
15O 2.03 1.70 1.5
18F 109.80 0.64 1.0
68Ga 67.80 1.89 1.7
82Rb 1.26 3.15 1.7

Table 2.1. Radionuclides and
their physical properties. The
positron range is given at
FWHM



58 Z.-H. Cho et al.

each other. This near collinearity of the two annihilation photons allows to
identify the location of the annihilation event or the existence of positron
emitters through the detection of two photons by detectors poised exactly on
opposite sides of the event, which are contacted by the photons at nearly the
same time. This simultaneity also plays an important role for the coincident
detection.

A set of detectors converts the high-energy photons into electrical signals
that are subsequently processed by signal processing electronics. For detec-
tion of these two annihilation 511 keV photons, two scintillation detectors
are coupled to an individual Photo-Multiplier Tube (PMT), pulse timer and
amplitude analyzer. The detectors of current PET systems are made of inor-
ganic materials called scintillation detectors. Scintillators convert the incident
gamma quantum into a large number of light photons. The scintillator must
be made of a highly dense material with high atomic number to maximize
the gamma photon absorption. In the early development of PET and up to
the late 1970s, NaI(Tl) was a commonly used for scintillation detectors. Cur-
rently, most modern PET use BGO [3]. While BGO has larger absorption
power, LSO has a faster response time and more light output. The light, visi-
ble photons, from these scintillators are converted to electrical signals by the
PMT or equivalent device. The PMT multiplies the weak signals from the
scintillation detectors to electrically detectable signals with both pulse timing
and amplitude. Although PMT is the most widely used light photon amplifier,
more recently semiconductor type PMTs, such as an Avalanche Photodiode
(APD) and the Silicon Photomultiplier (SiPM) have been developed and are
in use. A semiconductor type PMT has the advantage over conventional PMTs
due to its non-magnetic properties, which supports use in MRI environments,
but it has several disadvantages in rigidity and stability (Fig. 2.2).

The amplified electrical signals from PMTs, as electrical pulses, are ana-
lyzed to determine when the signal occurred and whether the signal is above
a certain threshold. When the valid PET signal is generated by annihila-
tion photons of 511 keV that pass the energy threshold, time information is
recorded and used for coincident time analysis. The detected pulses are then

electron (β -)

positron (β +)

# of protons > # of electrons

neutron

proton

positron (β +)

electron (β -)

~ 180°

photon (γ)
512 keV

photon (γ)
512 keV

Fig. 2.2. Positron generation and annihilation. Left : positron emission from a
radionuclide; Right : positron annihilation, which generates two annihilation photons
or gamma photons



2 Fusion of PET and MRI for Hybrid Imaging 59

fed to a coincidence module, which examine whether two pulses are truly due
to the annihilation process. The smaller the difference between the two pulses,
the closer the detection stems from the true annihilation event. Modern elec-
tronics, however, can measure time with a resolution of 10−8 s or larger. As a
result, the event is registered as coincidence only if a pair of detectors (oppo-
site to each other) detects the signal simultaneously within a certain time
window. The coincident time window used is in the range of 10 ns.

2.2.2 Image Reconstruction

In a typical PET scan, 106–109 events (decays) are detected depending on
the radioactivity injected and the time of measurement. Coincidence events
are saved as the special data set called sinogram. The sinogram is the line-
integral projection data obtained from a large number of detectors at different
views surrounding the entire object. The sinogram data is used to reconstruct
an image through mathematical algorithms such as analytical or iterative
reconstruction methods. Analytical methods calculate the radionuclide tracer
distribution directly from the measured sinogram data. Backprojection and
Filtering (BF) or Filtered Backprojection (FB) are typical algorithms used
for analytical methods. They require less computational burden than statisti-
cal methods such as the Expectation Maximization (EM) algorithm. Analytic
approaches, however, often suffer from an artifact known as the streak arti-
fact, which arises from the physical gaps existing between the detectors. In
contrast, iterative methods like EM reconstruct the image in an iterative fash-
ion using the measured sinogram. Iterative methods, therefore, are often more
robust to noise, such as streak artifacts, and can provide better Signal to Noise
Ratio (SNR) at a given spatial image resolution. Although iterative methods
require much more computational burden, due to the recent improvement of
computing technologies and algorithms, EM algorithm is now widely used as
the main stream method of PET image reconstruction.

2.2.3 Signal Optimization

In addition to the basic image reconstruction, it is important to note that there
are several physical phenomena, such attenuation, scattering, and random
coincidences, which are necessary to correct when more quantitatively accu-
rate PET images are required. Interactions within the body with incident pho-
tons, which result in scattering and attenuation, are known as scatter and coin-
cidence events, respectively, and require correction. The scattered coincidence
events and attenuation corrections are two major problems together with
accidentally-occurring coincidence events. In addition, the efficiency of each
detector may vary between each detector and influence the measured data.
Therefore, various correction techniques have been developed to correct the
effect of attenuation, scatters, and random events. Only when these corrections
schemes are completely incorporated into the main reconstruction algorithm,
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Fig. 2.3. PET system
components. The simplified
diagram shows the ring
detector system and the
coincident board, which is
fundamental for image
reconstruction in the
computer

Fig. 2.4. PET image
examples. The PET images
of dopamine transporter and
receptor binding using
18F-FP-CIT and
11C-Raclopride radionuclides
are displayed as examples of
how PET can be used for the
measurements of neural
status of the brain

PET can quantitatively image various radio-labeled ligands binding to specific
receptors, transporters, and enzymes. This quantitatively calibrated molecular
imaging is one of the strengths of PET imaging. For example, the interac-
tion and distribution of the dopamine transporters or receptors in the brain
can be measured using a PET with 18FluoroPropyl-CarbomethoxyIodophenyl-
norTropane (F-FP-CIT) or 11C-Raclopride (Figs. 2.3, 2.4).

2.2.4 High-Resolution Research Tomograph

One of the most advanced PET scanners is the High-Resolution Research
Tomograph (HRRT), which has been introduced by Siemens. HRRT-PET is
designed to obtain the highest spatial resolution and the highest sensitiv-
ity known in human brain PET imaging [6]. In contrast to the commercial
PET, which usually has a system diameter of more than 80 cm to accom-
modate the whole body, the system diameter of HRRT-PET is only 46.7 cm,
which is only suitable for a human brain scan. This small system diameter
improved each detector’s solid angle and, therefore, the sensitivity. In addi-
tion, the HRRT-PET has a longer axial Field-of-View (FOV) of 25.2 cm, as
compared with the conventional PET, which has only 17 cm of axial FOV.
The shorter system diameter and the longer axial FOV provide a dramatically
improved detection efficiency, and thereby enhance the overall system sensitiv-
ity. With this increased sensitivity, HRRT-PET provides a considerably high
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Fig. 2.5. Detector configuration of HRRT-PET. The HRRT-PET detector system
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layers of 8 × 8 detectors. This results in a total of 119,808 scintillation detector
crystals with dimension of 2.3 × 2.3 × 10 mm3. These small detector crystals are
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spatial resolution together with the small detector size, which has dimensions
of 2.3 mm × 2.3 mm for width and height, respectively (Fig. 2.5).

This high spatial resolution combined with enhanced sensitivity [7, 8]
makes the HRRT-PET the most advanced PET scanner for human brain stud-
ies [9]. Simultaneously, the improved spatial resolution reduces partial-volume
effects, thereby improving quantification of metabolic rates in the brain such as
the regional Cerebral Metabolic Rate of Glucose (rCMRGlc) [10]. In addition,
transmission images are also obtained, supporting a more accurate attenuation
and scatter correction.

These improvements in performance by the brain optimized configuration
of the HRRT provided better imaging and allowed us to image smaller Region
of Interest (ROI) than the previously available. In addition to PET’s ability
to measure and visualize metabolism, the distribution of neuroreceptors and
neurotransporter in the brain can be measured. Also, HRRT-PET now allows
the ability to measure the specific distribution of different ligands in various
neurodegenerative disorders [10]. According to recent report, many small brain
structures can be studied due to the availability of HRRT-PET [10,11]. These
structures include:

1. The dopamine transporter-enriched nuclei in the midbrain where the
dopaminergic cell bodies are located [12].

2. The substantia nigra, from which dopaminergic neurons projecting to the
dorsal striatum.

3. The ventral tegmental area, from where neurons project to the limbic
regions and the cerebral cortex [13].
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Fig. 2.6. Resolution of HRRT-PET. A section of the brain is captured with cur-
rently available PET scanner (left) and the HRRT-PET (right), which shows much
more details and higher resolution

Other small regions such as the ventral striatum are actively pursued in
search of potential ROIs for HRRT-PET research. Even arterial blood sam-
pling in the human brain using the HRRT-PET is being studied by several
groups [9, 13].

The previously mentioned features made HRRT-PET have the one of
the highest sensitivities and spatial resolutions among any currently avail-
able PET scanners. In Fig. 2.6, two comparative 18F-Fludeoxygloucose (FDG)
PET images emphasize the clear advantage of HRRT-PET over a conventional
PET. In these images, the cortical gyri are seen much clearer with HRRT-PET
than with PET/CT, suggesting that the HRRT can more accurately localize
the molecular interactions in the brain than any other PET system available
today.

2.3 Magnetic Resonance Imaging

2.3.1 Basic Principles

The main components of the MRI system are the main magnet, the Radio
Frequency (RF) system, the gradient coil, the shim system, and the com-
puter. The main magnet generates a strong magnetic field, which determines
the imaging power of MRI. Permanent magnets and resistive magnets can
be used to produce the external magnetic field; however, they are unable to
produce high magnetic fields and are only used for the low field MRI. Today,
the main magnetic field is commonly produced by a superconducting magnet
maintained at a very low temperature. The superconducting electromagnet
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consists of a coil that has been made super-conductive by a cooling system,
which often consists of liquid helium surrounded by liquid nitrogen. By cool-
ing, the superconductor becomes resistance free, which means large amounts
of current can flow through the coil to produce high magnetic fields.

Once the coil becomes a superconducting magnet, it is capable of pro-
ducing strong and stable magnetic fields suitable for MRI applications. The
superconducting wire is usually made of Niobium-Titanium (NbTi), a rigid
material that is simple to handle. Once a magnet is constructed with the
strong magnetic field, one can insert an object which has spins of nuclei such
as water protons. The spins in the object then will be aligned either parallel
or anti-parallel to the main magnetic field. A slightly larger fraction of these
protons will be oriented in the anti-parallel form and lead to a net magnetiza-
tion. In a given magnetic field, all the spins precess with the specific frequency
known as the Larmor frequency, which is specific to the strength of the mag-
netic field. If an external magnetic field or energy oscillating at the Larmor
frequency is applied to the spins, the spins absorb the applied energy and are
excited to the high energy status due to the magnetic resonance absorption
phenomena.

The external energy is usually delivered by RF coils, which transmit RF
energy to the object with a specific resonance frequency, often within a certain
bandwidth that has a center frequency equivalent to the Larmor frequency.
The precessing spins with the corresponding frequency at the non-excited or
resting states are then flipped to a higher excited state where they last for a
certain time depending on the relaxation properties of the object. The excited
spins will return to the steady state and give off energy in the form of an
electromagnetic signal or radiation, which is referred to as the Free Induction
Decay (FID) signal. During the spin flips, the large numbers of small electrical
dipoles, which are proportional to the resonant proton density, induce current
on the RF coils that are surrounding the object. The simplest form of an RF
system is composed of a transmitter coil and receiver coil. The RF system
is an antenna which is sending excitatory RF pulses to the object or brain
and also receiving the signals generated from the object. RF coils are one
of the key components that determine the SNR of images. The development
of specific purpose RF coils, therefore, is one of the central themes of MRI
research.

2.3.2 Image Reconstruction

Each signal received by the antenna or RF coil contains information of the
total sum of the object signals, but they are not encoded to produce an image
yet. Formation of MRI requires the magnetic gradients to encode spatial
information to the object. The gradient system has various functions such
as slice selection, spatial encoding, spoiling, rewinding, echo production, and
pre-saturation, among others. Among them, slice selection and spatial encod-
ing are the most essential functions of the gradients system to spatially localize
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the magnetic resonance signal. There are three gradient coils located within
the bore of the magnet, which are wrapped along three orthogonal axes. The
gradient is called according to the axis along which they act when switched
on. For example, Gx is assigned for the horizontal axis of the magnet bore
and alters the field along the x-axis.

These magnetic gradients are referred to as slice-selection gradient (Gz),
phase-encoding gradient (Gy), and frequency-encoding frequency-encoding
gradient or readout gradient (Gx), respectively. Slice selection gradients are
usually applied at the RF excitation period so that only spins within a slice
corresponding to the specific RF bandwidth are excited. Frequency-encoding
or phase-encoding gradients are typically applied during or before data acqui-
sition. This encoding scheme encodes spatial information into the RF signal.
The received signal is in the spatial frequency domain, what is called k-space,
equivalent to the 2D or 3D Fourier transform of the object.

2.3.3 Signal Optimization

The raw field produced by a superconducting magnet is approximately 1,000
parts per million (ppm) or worse, thus the magnetic field has to be corrected or
shimmed. The shim system is used to correct field inhomogeneity and optimize
for each imaging session. Field homogeneity is measured by examining an
FID signal in the absence of field gradients. Shimming is important for a
number of imaging applications. Most modern MRI techniques such as Echo
Planar Imaging (EPI) and Chemical Shift Imaging (CSI) require homogeneous
magnetic fields to be less than 3.5 ppm over the imaging volume. Usually this
is accomplished by a combination of current loops (active or dynamic shim)
and ferromagnetic material (passive or fixed shim). Gradient coils are used to
provide a first-order shim. Since the introduction of a patient also distorts the
magnetic field, often an active shim correction is made before scanning.

The signals that are detected via the RF coils are recorded in the computer
system, and an image is reconstructed using a mathematical algorithm, such
as the Fourier transform. The complexity of modern MRI arises mainly due
to the many physical parameters involved such as spin relaxations of different
kinds, for example spin-lattice and spin-spin relaxation times (T1 and T2),
respectively. Most of the conventional imaging utilizes these magnetic prop-
erties, such as T1, T2, and susceptibility. In simple terms, the T1 value is the
recovery time of the flipped spins and determines the interactions between
spins and its surrounding lattice (tissue). The T2 value is the dephasing time
of the in-phased spins due to spin-to-spin interaction, and the susceptibility
is a spin dephasing factor due to surrounding magnetic fields. These magnetic
properties can be weighted in the image by adjusting the pulse sequence and
related imaging parameters.

In summary, MRI is a multi-purpose medical imaging instrument utilizing
those intrinsic parameters mentioned and offers exquisite spatial resolution
often more than an order of magnitude better than PET (Fig. 2.7). MRI,
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Fig. 2.7. Diagram of MRI
gantry. The super-conduction
coils are cooled with liquid
nitrogen. The inner
temperature is only 25 K

however, lacks molecular specificity, although a number of new techniques
are being developed in combination with spectroscopic techniques or, more
recently, with nano-particles.

2.3.4 High-Field MRI

The magnetic resonance signal is commonly proportional to the volume of
data acquired and magnetic field strength. Therefore, high-field MRI sys-
tems provide an image with a higher SNR. In higher magnetic fields, it
is possible to decrease the volume or voxel without sacrificing the SNR. It
means that a high-field MRI system makes it possible to obtain higher spa-
tial resolution and sensitivity than low-field MRI. Structural, metabolic, and
functional assessments of an intact, living brain can be made using high-field
MRI systems.

The 7.0 T MRI system, which uses an ultra-high field magnet, currently
exists for human imaging with the high performance gradient coil set and
RF coils. It provides us with many exquisite high-resolution images with
an extremely high SNR. Recently, many ultra high-resolution images were
obtained from 7.0 T MRI (Figs. 2.8, 2.9). Many fine structures, which were
once thought impossible to image using MRI, were observed in the brain in
vivo. The structures include the substantia nigra, red nucleus, and cerebral
peduncle or crus cerebri in the midbrain. As demonstrated in Fig. 2.8a, the
red nucleus and substantia nigra are clearly visible. In addition, the image
of the cerebral peduncle surrounding the substantia nigra shows not only
the fine vascular structures but also the fibers, suggesting that the details
of ultra-fine high-resolution images can be of great help in identification of
various neurological disorders and in the planning of surgical operations in a



66 Z.-H. Cho et al.

substantia nigra

a

line of Gennari

b

corticospinal tract

c

Fig. 2.8. High-field MRI image examples. The brain images are obtained from the
7.0 T MRI. In contrast to previous MRI systems, details of brain substructures can
now be observed

totally non-invasive manner. The line of gennari in the visual cortex (Fig. 2.8b)
and the perforating arteries and the corticospinal tracts in the pontine area
(Fig. 2.8c) are also visualized in the 7.0 T MRI. Note the details of the thala-
mic area and the structures of the deep gray and white matter areas, like the
anterior commissure, the mammillary body, and the red nucleus.

The substantia nigra is an important region in the area of Parkinson’s
disease research. Figure 2.9a and b are images of the central midbrain areas
obtained from the same subject using 1.5 T and 7.0 T, respectively. As seen,
7.0 T MRI images are far superior and clearer than 1.5 T, particularly, in the
boundary between the substantia nigra and surrounding tissues in 7.0 T MRI.
Since the substantia nigra is believed to include iron, it is darker than other
regions due to T2-related signal reduction. Likewise, the structure of the hip-
pocampus and the parahippocampal regions, major ROI in the Alzheimer’s
studies, were clearly visualized by T2-weighted imaging in vivo by using 7.0 T
MRI (not shown here). 7.0 T MRI began to show possible visualization of
micro-vascular structures, such as the Lenticulostriate Arterie (LSA) in the
human brain, which would be extremely useful for clinical purposes. Recently,
we have reported regarding the advancements in micro-vascular imaging,
such as the in vivo visualization of LSAs, which was once thought to be
impossible [14].
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Fig. 2.9. High- and low-field MRI. Resolution in 1.5 T images (left) is lower as
compared to 7.0 T (right), as it can be seen in the substantia nigra (top) and
hippocampal region (bottom)

2.4 Hybrid PET Fusion System

PET is one of the most widely used imaging tools in both clinical areas as
well as neuroscience research, especially for its ability to perform non-invasive,
in vivo imaging of biochemical changes. PET can show how well tissues are
working by the consumption of the amount of nutrients, neurotransmitter
bindings, and blood flow within the tissue. In addition, there have been many
new developments in radiopharmaceutical ligands and probes. PET uses var-
ious radioactive pharmaceuticals as tracers, which make it possible to detect
molecular changes down to the pico-molar range. It has allowed us to look at
in vivo physiology as well as the molecular chemistry of living humans non-
invasively and has opened up modern quantitative molecular neuroscience.
PET applications also expanded to the study of amino acid metabolism
([Methyl-11C]-l-Methionine) and gene proliferation 18F-L-Thymidine (FLT).
PET has changed classical nuclear imaging concepts and has led to an
entirely new domain of molecular imaging. Various radionuclide tracers of
PET are listed in Table 2.2. Depending on the radionuclides and their labeled
compounds, various PET imaging techniques are available [15–22].

Although PET provides direct information about tracer uptake into the
cell for specific tissues, the spatial resolution of PET is poor in comparison to
CT or MRI. As of today, 2.5 mm FWHM is the best spatial resolution that
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Table 2.2. Radionuclide tracers for PET [23]. The generation of the nuclides 11C,
13N, 15O, 18F, and 124I requires a cyclotron

Hemodynamic parameters H2
15O, 15O-butanol, 11CO, 13NH3

Hypoxia or angiogenesis 18FMSIO, 64Cu-ATSM, 18F-Galacto-RGD
Substrate metabolism 18F-FDG, 15O2, 11C-acetate
Protein synthesis 11C-Methionine, 11C-leucine, 11C-tyrosine
DNA synthesis 18F-FLT, 11C-thymidine, 18F-fluorouracil
Drugs 11C-Cocaine, 13N-cisplatin, 18F-fluorouracil
Receptor affinity 18F-FESP, 18F-FP-Gluc-TOCA,18F-FES
Gene expression 18F-FHBG, 18F-Penciclovir, 18I-FIAU
Antibodies 124I-CEA mimibody, 64Cu-DOTA Her2/neu minibody

PET can have [24]. This resolution is still relatively poor for the localization
of many delicate organs in the brain, such as the sub-regions in hippocampus.

In order to overcome its limitations, combining PET images with other
high-resolution morphological imaging modalities such as radiography, CT
and MRI has been studied [25–27]. Combining two or more imaging modalities
is probably the best solution, especially in the field of neurological imaging.

In the past, to combine two different modalities, software registration has
been used, and it works well in some studies where resolution requirement is
relatively low.

2.4.1 PET/CT Systems

PET/CT is the first successful product in this series of research. Although
it was the simple overlay of two images based on a mechanically calibrated
shuttle bed or table, high-resolution anatomical images from CT partially
aided the PET image, which has poor spatial resolution. The hybrid PET/CT
imaging system can provide the functional image of PET with the superior
anatomical delineation of CT. For example, PET/CT provides better distinc-
tion between cancerous tissue and healthy tissue in the diagnosis of cancer
and the planning of radiation therapy.

2.4.2 PET/MRI Systems

On the other hand, magnetic resonance has much greater soft tissue contrast
than CT, making it especially useful in neurological, musculoskeletal, cardio-
vascular, and oncological imaging. Unlike CT, it uses no ionizing radiation.
Instead, it uses a powerful magnetic field to align the magnetization of hydro-
gen atoms in the body and provides excellent tissue contrasts in both brain
and body imaging.

MRI has many advantages, such as its nonhazardous nature, high-resol-
ution capability, potential for chemically specified imaging, capability of
obtaining cross-sectional images in any desired directions, ability to use a
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large variety of high tissue contrasts, diffusion imaging capabilities, flow-
related imaging capabilities, and ability to perform functional MRI [28]. MRI
is, therefore, preferred to CT in the new fusion imaging system.

In contrast to PET/CT, which provides the simple combination of func-
tional and anatomical images, PET/MRI could provide the complex com-
bination of various functional information, such as PET, functional MRI
(fMRI) or Magnetic Resonance Spectroscopy (MRS), and detailed morpho-
logical information through using soft tissue contrasts, for example. Thus, the
PET/MRI system allows us to complement quantitative biological functional
information from PET, such as metabolisms and binding potentials, with
the high-resolution morphological information or other functional information
from MRI. When PET/MRI fusion images are available, perhaps unique bio-
chemical and molecular information with high resolution will be obtained from
our body, especially where high-resolution imaging is of utmost importance,
such as the brain.

Fusion Concepts

A major obstacle in developing a fusion PET/MRI system is that conventional
PET uses PMTs for detector components. Because PMTs are very vulnerable
to magnetic fields, especially in ultra high-field MRI such as 7.0 T, the unac-
ceptably large stray magnetic fields from MRI practically prohibit any close
positioning of the PET to the MRI.

In order to alleviate this problem, two types of approaches have been
suggested [29–40]:

1. Fiber optics is used to relay the scintillation light from detection crystals to
the PET modules, which would be located outside the magnetic field of the
MRI. Since the scintillation crystals and optic fibers are not sensitive to the
magnetic field, this arrangement would be suited for the PET/MRI combi-
nation. Fiber optics, however, attenuate the optical signals and, therefore,
degrade the overall sensitivity and spatial resolution.

2. APD and a semiconductor-type PMT in the PET/MRI fusion system is
used. APDs can replace PMTs since they are insensitive to magnetic fields.
Although APDs have been used successfully on small scale PET scanners
for animal use, APD-based PET appears to suffer from long term stability.

Extensive research is still ongoing and some progress have been be achieved.
In 2008, Judenhofer et al. developed an APD-based PET and MRI hybrid
imaging system for animal use [41]. In three-dimensional (3D) animal PET,
the APD-based and magnetically compatible scanner can be inserted into an
animal 7.0 T MRI system to simultaneously acquire functional and morpho-
logical PET/MRI images from living mice. With this PET/MRI system, they
have found a tumor hidden in tissue through using high-resolution magnetic
resonance data and simultaneously determined whether it is malignant by
functional PET data.
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A PET/MRI hybrid system for humans using this APD-based PET inser-
tion is being developed by Siemens, Inc. and the Max Plank Institute in
Germany. This human PET/MRI consists of an APD based PET-insert and
a low field MRI (3.0 T MRI) system. Other companies and institutions are
also developing integrated PET/MRI systems using a 3 T or 1.5 T MRI [36–
39]. The major obstacle of this integrated PET/MRI system appears to be
the stability of APD circuitry due to interference with the magnetic fields and
radiofrequency waves from the MRI unit. It has been reported that there is
significant variation of the timing resolution of the APDs, thereby increasing
the coincidence timing window up to 40 ns, compared to less than 10 ns in
most of the current PET systems [36].

2.4.3 High-Resolution Fusion

In order to avoid these interferences and to fully utilize the molecular imag-
ing capability of PET and the anatomical imaging capability of UHF-MRI
such as 7.0 T in human imaging, each scanner can be operated separately and
connected using a high precision mechanical shuttle bed. This configuration
shares many characteristics with the current PET/CT configuration [42, 43].
In this manner, one can conveniently avoid any possible artifacts due to the
magnetic field interference incurred with PET-inserts or magnetic field influ-
encing the PET operation. The major drawback of this approach is that image
acquisition is performed sequentially rather than simultaneously.

In 2007, Cho et al. [23] developed this kind of PET/MRI hybrid system
using shuttle bed system. One of the major differences of the system with
others is the coupling of two high-end systems, i.e., HRRT-PET and 7.0 T
MRI, was achieved without any compromise. For molecular imaging, HRRT-
PET is used and provides a spatial resolution of 2.5 mm FWHM, the highest
resolution among the human PET systems, and 7.0 T MRI system for the
highest resolution anatomical imaging. These two devices together will provide
the highest sensitivity and resolution molecular information, further aided by
sub-millimeter resolution 7.0 T MRI imaging.

The conceptual design of the new fusion PET/MRI is shown in Fig. 2.10.
PET and MRI are installed as closely as possible. The two are connected by
a shuttle system composed of a bed and its guided rails. Proper magnetic and
RF shielding was designed both in the PET side as well as shuttle bed to avoid
interference of strong magnetic fields of the 7.0 T MRI. The shuttle system is
designed to fulfill the mechanical precision of less than 0.05 mm and is able to
operate under a high magnetic field, such as 7.0 T. This precision is sufficient
to meet the spatial resolution of the 7.0 T MRI so that HRRT-PET images are
precisely guided into the desired neuroanatomical region(s). The major advan-
tage of this type PET/MRI system is that it allows the exploitation of the
best qualities of the two systems, i.e., the available resolution and sensitivity of
HRRT-PET and UHF 7.0 T MRI without any compromise and interference.
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Fig. 2.10. PET/MRI fusion system. The system combines by two separate high-end
imaging devices (top), the HRRT-PET (left) and the 7.0 T MRI (right) by means
of a high-precision shuttle railway system (bottom)

Fig. 2.11. PET/MRI fusion image example. The functional HRRT-PET image
(left) and the high-resolution 7.0 T MRI image (middle) are overlaid (right)
providing full diagnostic information

Critical issues for the success of this approach are the design and development
of precision mechanics including the shuttle and railway, proper magnetic
shield, and image fusion algorithm. The calibration method is also one of the
important components of this system to correctly align the image coordinates
of both imaging systems.
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2.4.4 PET/MRI Fusion Algorithm

Two approaches are under development to integrate anatomical and molecular
information. One is the image visualization approach and the other is the
image restoration approach.

Image Visualization Approach

Most of the functional or molecular images, by themselves, cannot easily
localize their signal origin. Overlaying the molecular information onto the
structural image greatly improves the ability to characterize the desired
anatomical location in the brain or organs [25–27, 44–46]. Advancement in
image fusion methods allow for blending of higher spatial information of
anatomical images with the higher spectral information of functional or molec-
ular images (Fig. 2.11). These methods are classified into two categories by the
fusion domain:

• Principal Component Analysis (PCA) [47], the Brovey method, and the
Hue Intensity Saturation (HIS) method [48] are fused in the spatial
domain.

• Discrete Wavelet Transform (DWT) and “A-trous” wavelet methods are
fused in the transform domain [49, 50].

There are several ways to represent the color information depending on the
color models: Red, Green, Blue (RGB), Cyan, Magenta, Yellow (CMY), and
Intensity, Hue, Saturation (IHS). In some cases, the color transform between
color models, such as RGB and IHS, is useful to combine the information from
the multiple sensors.

CIHS = M · CRGB or CRGB = M − 1 · CIHS (2.1)

where
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Hue and saturation information is obtained from the intermediate variables
v1 and v2 as following

H = tan−1

(
v2
v1

)
and S =

√
v2
1 + v2

2 (2.4)

The IHS model separates the image information I into the spatial information,
such as intensity, and spectral information, such as hue H and saturation S.
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The most common method of image fusion using HIS model is to substitute
the whole or partial information of intensity channel from the lower resolution
IL to the higher resolution IH .

Brovey’s method simply modifies the brightness information by multiply-
ing the intensity ratio of the higher resolution and the lower resolution.

C′
RGB = γ · CRGB where γ =

IH
IL

(2.5)

The PCA technique transforms the inter-correlated variables to the uncor-
related variables.

CPCA = Φ · CRGB where CPCA =
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The hue and saturation is obtained in a similar way as the HIS method.

H = tan−1
(
PC3
PC2

)
and S =

√
PC22 + PC32 (2.7)

The primary component PC1H of the higher resolution image replaces the
one PC1L of the lower resolution in the image fusion algorithm. The PCA
fusion has the advantage of minimally distorting the spectral characteristics.

The wavelet transform method can be applied to the image fusion based
on the multi-resolution analysis approach.

CRGB = RRGB + [WRGB]n (2.8)

where
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⎤
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The CRGB image is composed of a multi-resolution wavelet plane, [WRGB]n,
and the residual multi-spectral images, RRGB. RRGB and [WRGB]n contain the
lower and higher spatial frequency of the image, respectively. For the image
fusion, replacing wavelet coefficients [WRGB]n,L of the lower resolution image
to the ones [WRGB]n,H of the higher resolution image.

Image Restoration Approach

Most of the functional or molecular images have lower resolution than anatom-
ical images. For example, the intrinsic resolution of PET images is substan-
tially poorer than MRI images. The intrinsic resolution of the PET system is
determined mainly by the scintillation detector or crystal size and is approx-
imately half of the detector width. The actual measured resolution is worse
than the intrinsic resolution due to other image blurring factors, such as the
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source size, the positron range, the traveling distance, the penetration effect
due to the adjacent detectors, and the angular jitters due to variations in the
angles of the annihilation photons. These blurring factors can be mathemati-
cally modeled as the spatially invariant system. Among the blurring factors,
the source size and the positron range are source-dependent and spatially
invariant factors, while the others are spatially variant.

For simplicity, PET system can be assumed to be the spatially invariant
system and the system blurring can be defined as a Point Spread Function
(PSF). Once the exact PSF of the system is properly estimated, it can be
used for an image deblurring operation or deconvolution. The PET image
deblurring operation can be performed using a number of parameters that are
extractable from neurochemical and molecular information, as well as image
resolution information obtainable from MRI. For example, it is well-known
that glucose utilization within cells takes place in the gray matter rather
than in the white matter or in the Cerebrospinal Fluid (CSF). To execute
the PET/MRI image fusion process, an appropriate segmentation of MRI
images is essential to separate the corresponding tissues (gray matter) from
the others such as white matter and CSF [51]. From an actual image processing
point of view, it is equivalent to deconvolution of the measured PET sinogram
with a Gaussian PSF derived from the MRI data to enhance the resolution
of the PET image [51–53]. It is often accomplished in an iterative fashion
(Fig. 2.12). The resolution of molecular image of PET, which is usually much
poorer than that of MRI, can be enhanced by combining the high-resolution
image of MRI with additional information such as neurochemical or molecu-
lar a priori information, such as the potential neurophysiological location of

PET Data
(Sinogram)

Deblurring

PET Image
Reconstruction

Deblurred Data
(Sinogram) Compare

Fusion Image

Reference
(Sinogram)

Updatesf

PSF

Segmentation

Projection

Anatomical
Information

MR Data
(Image)

Fig. 2.12. Iterative fusion algorithm. The anatomical information of MRI data is
utilized iteratively to confine the blurred PET image
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receptor distribution for a particular ligand. In this fusion scheme, the seg-
mented anatomical information from the MRI image is important and must
be strongly correlated to the molecular information from the PET image.

Mismatched a priori information may cause over- or under-estimation of
the PSF and the resultant fusion image may be biased. In order to utilize
the anatomical image as a priori information, the contrast of the target tis-
sue is also important. For instance, we know that the neuronal activities are
generally confined to the gray matter rather than white matter, and segmen-
tation of gray matter provides important morphological structures that can
be registered with cortical activity (confined to the gray matter) as detected
by FDG PET.

A preliminary human study was conducted to validate the usefulness of
our fusion algorithm. A human brain image obtained by PET/MRI and the
fusion algorithm is shown in Fig. 2.13, demonstrating that PET images can
indeed be confined and localized with help of MRI, especially with an ultra
high-resolution MRI such as the 7.0 T system.

Segmented Gray Matter FDG PET Image

PET-MRI Fusion Image

Fig. 2.13. High-resolution PET/MRI fusion image of human brain. The source
images are obtained with the author’s new PET/MRI fusion system. The spatial
resolution of the PET is improved via the deblurring process based on the anatomical
information of the MRI. The image data is processed in the sinogram domain
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2.5 Conclusions

PET and MRI have been the most promising diagnostic tools among medical
imaging tools, especially in the area of neuroscience. PET delivers information
on molecular activities of human brain in vivo including enzymes and receptor
distributions with resolutions down to 2.5 mm FWHM. On the other front,
the MRI can obtain images with sub-millimeter resolution (down to 250 μm)
and allows us to visualize the entire brain including the brain stem areas
as well as other cortical and sub-cortical areas. For advanced and accurate
diagnosis, these two systems are combined to overcome their limitations.

Although a few problems still remain, the current PET/MRI fusion sys-
tem produces the highest quality images of molecular activities of the human
brain in vivo and provides unprecedented molecular activity matched high-
resolution images, which represent highly correlated molecular information to
anatomically well established organs. This new PET/MRI fusion system, for
the first time, began to provide anatomically well-defined molecular activities
in the brain hitherto unavailable by any other imaging devices. This molecular
fusion imaging system would be an important and essential tool for studying
cognitive neurosciences and neurological diseases, such as the Parkinson’s and
Alzheimer’s diseases. A mathematical image processing strategy that inte-
grates anatomical and molecular information together is a still unfinished
challenge in the field of medical image processing. We hope that the tech-
nology will provide novel and unique information to clinicians and research
scientists in the field of neuroscience.
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Cardiac 4D Ultrasound Imaging

Jan D’hooge

Summary. Volumetric cardiac ultrasound imaging has steadily evolved over the
last 20 years from an electrocardiography (ECC) gated imaging technique to a true
real-time imaging modality. Although the clinical use of echocardiography is still to a
large extent based on conventional 2D ultrasound imaging it can be anticipated that
the further developments in image quality, data visualization and interaction and
image quantification of three-dimensional cardiac ultrasound will gradually make
volumetric ultrasound the modality of choice. In this chapter, an overview is given
of the technological developments that allow for volumetric imaging of the beating
heart by ultrasound.

3.1 The Role of Ultrasound in Clinical Cardiology

Ultrasound (US) imaging is the modality of choice when diagnosing heart
disease. This is due to fact that it is non-invasive; does not show adverse
biological effects; has an excellent temporal resolution; is portable (and can
thus be applied bed-side) and is relatively cheap when compared to other
imaging modalities. As such, US imaging has become an indispensable tool
for daily management of cardiac patients.

Historically, cardiac ultrasound started with acquiring a single image line
as a function of time, which is referred to as motion mode (M-mode). It allowed
studying basic morphological properties of the heart such as estimating the
dimension of the left ventricular cavity or the segmental wall thickness. In
addition, the motion of the heart during the cardiac cycle could be monitored
which can give information on cardiac performance. However, as the field-
of-view of this imaging approach remained very limited, correct navigation
through the heart and interpretation of the recordings was difficult.

Hereto, two-dimensional (2D) ultrasound imaging (brightness mode
(B-mode)) was introduced by mechanically moving (i.e., tilting), the trans-
ducer between subsequent line acquisitions. This mechanical motion of the
transducer was replaced by electronic beam steering in the late sixties when
phased array transducer technology was introduced. As such, cross-sectional
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images of the heart could be produced in real-time at typical frame rates of
about 30Hz. Although continuous improvements in image quality and image
resolution were obtained in the following decades, imaging a 2D cross-section
of a complex 3D organ such as the heart continued to have intrinsic pitfalls.
As such, three-dimensional (3D) US imaging of the heart has been a topic of
research for several decades.

3.2 Principles of Ultrasound Image Formation

The fundamental principle of echocardiography is relatively simple: an US
pulse is transmitted into the tissue and the reflections that occur while the
wave propagates (due to local inhomogeneities in mass density or regional
elasticity) are detected by the same transducer as a function of time. As the
velocity of sound in tissue is known, the time at which a reflection is detected
and the distance at which this reflection took place are linearly related. As
such, the reflected signal can be used to reconstruct a single line in the ultra-
sound image giving information on the tissue reflectivity (i.e., its acoustic
properties) as a function of depth. In order to generate a 2D or 3D image, the
above measurement is repeated by transmitting ultrasound in different direc-
tions either by mechanically translating/tilting the transducer or by electronic
beam steering.

3.2.1 The Pulse-Echo Measurement

The basic measurement of an ultrasound device can shortly be summarized
as follows:

1. A short electric pulse is applied to a piezoelectric crystal. This electric field
re-orients the (polar) molecules of the crystal and results in a change of its
shape. The crystal will thus deform.

2. The sudden deformation of the piezoelectric crystal induces a local com-
pression of the tissue with which the crystal is in contact (Fig. 3.1a).

3. This local compression will propagate away from the piezoelectric crystal
(Fig. 3.1b). This compression wave (i.e., the acoustic wave) travels at a
speed of approximately 1,530 m/s in soft tissue through the interaction of
tissue elasticity and inertia. Indeed, a local compression is counteracted
upon by the tissue elasticity which results in a return to equilibrium. How-
ever, due to inertia, this return to equilibrium is too large resulting in
a local rarefaction (i.e., de-compression), which in turn is counteracted
upon by tissue elasticity. After a few iterations, depending on the tis-
sue characteristics and of the initial compression, equilibrium is reached
since each iteration is accompanied by damping, i.e., attenuation. The rate
of compression/decompression determines the frequency of the wave and
is typically 2.5–8 MHz for diagnostic ultrasound imaging. As these fre-
quencies cannot be perceived by the human ear, these waves are said to
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Fig. 3.1. Generation and propagation of sound waves. Left : Local tissue compression
due to deformation of the piezoelectric crystal; Right : The generated compression
propagates away from the transducer

be ultra-sonic. Typically, the higher the ultrasound frequency, the more
attenuation and therefore – for a given amplitude – less penetration.

4. Inhomogeneities in tissue density or tissue elasticity will result in a dis-
turbance of the propagating wave. They will cause part of the energy in
the wave to be scattered, i.e., re-transmitted in all possible directions. The
part of the scattered energy re-transmitted back into the direction of origin
of the wave is called backscatter. At interfaces between different types of
tissue (i.e., blood and cardiac muscle), part of the acoustic wave is reflected
(i.e., specular reflections). Both specular and backscatter reflected waves
propagate back towards the piezoelectric crystal.

5. When the reflected (compression) waves impinge upon the piezoelectric
crystal, the crystal deforms which results in the generation of an elec-
tric signal. The amplitude of this electric signal is proportional to the
amount of compression of the crystal, i.e., the amplitude of the reflected
or backscattered wave. This electric signal is called Radio Frequency (RF)
signal (Fig. 3.2).

For diagnostic frequencies used in cardiac ultrasound, the above pulse-echo
measurement typically takes about 250 μs.

3.2.2 Gray Scale Encoding

A single pulse-echo measurement results in a single line in the US image. The
RF signal is further processed:

1. Envelope detection: The high frequency information of the RF signal is
removed by detecting the envelope of the signal (Fig. 3.3). This is most
commonly done by using the Hilbert transform.

2. Grayscale encoding: As a function of time, the signal is sub-divided in
small intervals (i.e., pixels). Each pixel is attributed a number defined by
the local amplitude of the signal. Usually, these gray scales range between
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Fig. 3.2. Radio frequency
signal. Reflected waves (i.e.,
the echos) are detected using
the same transducer resulting
in a signal in the
radio-frequency range (a few
MHz) as a function of time.
Two strong specular
reflections are detected at 50
and 83 μs while scatter
reflections are received
within this time interval
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Fig. 3.3. Ultrasound demodulation. The RF signal is demodulated in order to detect
its envelope (left). This envelope signal (bold) is color encoded based on the local
signal amplitude (right)

0 (black) and 255 (white). By definition, bright pixels thus correspond to
high amplitude reflections (Fig. 3.3).

3. Attenuation correction: As wave amplitude decreases with propagation dis-
tance due to attenuation, reflections from deeper structures are intrinsically
smaller in amplitude and would thus show less bright. Identical struc-
tures should have the same gray value however and, consequently, the
same reflection amplitudes. To compensate for this effect, the attenua-
tion is estimated and compensated for. Since time and depth are linearly
related in echocardiography, attenuation correction is often called time or
depth gain compensation. Sliders on the ultrasound scanner allow for a
manual correction of this automatic compensation in case it fails to correct
appropriately.
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Fig. 3.4. Cross-sectional ultrasound
image of the heart. The four cardiac
chambers Left Ventricle (LV), Right
Ventricle (RV), Left Atrium (LA),
and Right Atrium (RA) are
visualized dark – as blood is little
reflective – together with the leaflets
of the Mitral Valve (MV) and the
cardiac muscle, which appear as gray
region around the dark cavities

4. Logarithmic compression: In order to increase the contrast in the dark
regions of the image (as the RF signal typically has a large dynamic range),
gray values in the image are re-distributed according to a logarithmic curve.

3.2.3 Gray Scale Imaging

In order to obtain an ultrasound image, the gray scale encoding procedure is
repeated. For B-mode imaging, the transducer is either translated or tilted
within a plane (conventional 2D imaging) or in space (3D imaging) between
two subsequent pulse-echo experiments. In this way, a cross-sectional image
can be constructed (Fig. 3.4).

Typically, a 2D cardiac image consists of 120 lines spread over an angle
of 90◦. The construction of a single image thus takes about 120 × 250 μs
equaling (approximately) 30 ms. Per second, about 33 images can therefore
be produced which is sufficient to look at motion (e.g., standard television
displays only 25 frames per second). However, a straight forward extension of
this approach to 3D will result in a frame rate below 1 Hz which is unaccept-
able for cardiac applications. Therefore, cardiac volumetric imaging requires
other approaches.

3.2.4 Phased Array Transducer Technology

Rather than mechanically moving or tilting the transducer, modern US devices
make use of electronic beam steering. Hereto, an array of piezoelectric crys-
tals is used. By introducing time delays between the excitation of different
crystals in the array, the US wave can be send in a particular direction with-
out mechanical motion of the transducer (Fig. 3.5a). Similarly, the ultrasound
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Fig. 3.5. Phased array transducer. An array of crystals can be used to steer (left)
and/or focus (right) the ultrasound beam electronically by introducing time delays
between the activation of individual elements in the array

τ
τ
τ
τ
τ
τ
τ
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Fig. 3.6. Receive focusing. By applying the appropriate time delays on the received
RF signals of the individual array elements, the receive “beam” can be steered and
focused in a similar way as the transmit beam as reflections arriving from the chosen
direction/position will constructively interfere

wave can be focused in a specific point by making sure that the contributions
of the individual elements arrive simultaneously in this point (Fig. 3.5b).

The detected RF signal for a particular transmitted (directed, focused)
pulse is then simply the sum of the RF signals received by the individ-
ual elements. These individual contributions can be filtered, amplified and
time-delayed separately before summing. This process is referred to as beam
forming and is a very crucial aspect for obtaining high-quality images. For
example, by introducing the proper time delays between the contributions of
the individual crystals prior to summation, beam focusing can also be achieved
during receive. As the sound velocity in tissue is known, the depth from which
reflections can be expected at a certain moment after transmit can be esti-
mated. As such, the focus point can dynamically be moved during reception
by dynamically changing the time delays upon reception. This approach is
referred to as dynamic (receive) focusing which has a significant impact on
image quality (Fig. 3.6).

3.3 Limitations of 2D Cardiac Ultrasound

Despite of the fact that significant advances in 2D ultrasound image resolution
(both spatially and temporally) and quality, i.e., Signal to Noise Ratio (SNR),
Contrast to Noise Ratio (CNR) have been made over the years, 2D imaging
to visualize a moving 3D structure such as the heart has intrinsic pitfalls.
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3.3.1 Complex Anatomy (Congenital Heart Disease)

The heart can roughly be seen as a four compartment box in which two atria
sit on top of two ventricles (Fig. 3.7).

The right atrium pumps de-oxygenated blood coming from the peripheral
organs (through the inferior and superior vena cava) to the right ventricle
that – in turn – propels the blood through the lungs into the left atrium.
The – now oxygenated – blood then passes through the mitral valve into the
left ventricle in order to be pumped into the aorta and to the rest of the body.
The different chambers are separated by valves in order to avoid retrograde
flow to occur and therefore make sure that pumping function is efficient.

Although most cardiac patients do indeed have a normal cardiac anatomy,
a significant amount of patients are born with cardiac malformations, i.e.,
congenital heart diseases. In such patients, cardiac anatomy and morphology
deviates from normality. Moreover, some of the big vessels (e.g., aorta, pul-
monary artery) may be inappropriately connected to the cardiac chambers.
For example, a connection may exists between the left and right ventricles
due to a defect in the inter-ventricular or inter-atrial septum, i.e., Ventric-
ular Septum Defect (VSD) or Atrial Septal Defect (ASD), respectively. In
some patients, the ventricular septum is totally absent (i.e., uni-ventricular
hearts). Others have the aorta implanted on the right ventricle while the pul-
monary artery is implanted on the left ventricle (i.e., malposition of the big
vessels). The abnormal anatomy of these hearts can have a significant impact
on both the function and the morphology of each of the cardiac chambers.
As such, the congenital heart is typically very complex in shape and struc-
ture. Reconstructing and understanding the exact 3D anatomy of such a heart
needs expert training as this reconstruction needs to be done in the operator’s
mind by navigating through a number of 2D cross-sections. Even for highly
skilled experts, this remains challenging.
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3.3.2 Geometric Assumptions to Assess Volumes

An important clinical parameter for a patient’s prognosis is the volume of
the cardiac chambers. As such, the assessment of the left ventricular volume
is part of all routine clinical echo examinations. However, as conventional
ultrasound equipment only allows measuring distances (M-mode, B-mode) or
areas (B-mode), assumptions have to be made on the geometry of the left
ventricle in order to assess its volume.

Different models of different complexities have been proposed. Most often
the assumption is made that the left ventricle can be modeled as an ellipsoid
of revolution. Measuring its long and short axis dimensions (on a 2D US
image) is then sufficient to estimate its volume (Fig. 3.8). Moreover, if the
additional assumption is made that the long-to-short axis ratio of this ellipsoid
is known, a single measurement of the diameter of the left ventricular cavity
on an M-mode image is sufficient to estimate the entire volume. Although this
method relies strongly on the geometrical assumptions made, this approach is
the most commonly used clinical method for assessing left ventricular volume.
By making this measurement both at end-diastole and at end-systole (end
of the ejection period of the ventricle) the amount of blood ejected by the
ventricle into the aorta during one cardiac cycle (i.e., the stroke volume), and
the ejection fraction, i.e., the stroke volume normalized to the end-diastolic
volume, can also be estimated.

Although a normal left ventricle roughly resembles half an ellipsoid of
revolution the diseased ventricle does not necessarily. For example, after
myocardial infarction, an aneurysm can form resulting in regional bulging
of the myocardial wall. Similarly, during pulmonary hypertension the septum
will bulge into the left ventricular cavity due to the high blood pressure in
the right ventricle. Obviously, in such cases, the boundary conditions to be
able to use the geometric model do not hold and the estimated volumes can
be seriously biased.

Similarly, the shape of the other cardiac chambers (right ventricle, left
and right atrium) is much more complex (even in the normal heart) and good
geometrical models are not available. As such, a correct and reliable estimation
of their volume using US imaging remains challenging.

b
D

Fig. 3.8. Ellipsoid model for volume estimation. Assuming that the left ventricle
can be modeled as an ellipsoid of revolution, its volume can be calculated based on
the long and short axis dimensions of this ellipsoid. Those can be assessed by 2D
ultrasound
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Fig. 3.9. Principle of foreshortening.
Myocardial inwards motion and
thickening during the cardiac cycle
(left) are visually scored in daily
clinical practice in order to assess
regional myocardial function. However,
out-of-plane motion of the heart (right)
can result in oblique cross-sections that
can easily be misread as inward motion
or wall thickening (especially near the
highly curved apex). This effect is
referred to as foreshortening

3.3.3 Out-of-Plane Motion and Foreshortening

Coronary artery disease is a major cardiovascular problem in the Western
world. Echocardiography is typically used to evaluate the impact of the coro-
nary narrowing on segmental function of the cardiac muscle (as the narrowing
will result in a hypo-perfusion of the distal myocardium which will as such
not be able to contract normally). For that, the heart is visualized (some-
times while stressing the heart pharmaceutically) in order to detect regions
of abnormal wall thickening and motion.

Although cardiac US does indeed allow visualization of segmental wall
motion and deformation, a common pitfall is the problem of foreshortening
due to out-of-plane motion of the heart during the cardiac cycle. As a result,
the image plane might cut correctly through the heart at end-diastole (i.e.,
along the long axis of the left ventricle) while the end-systolic cross-section
cuts in a parallel (anatomical) plane. As such, segmental wall motion and
thickening may appear normal while they are in fact abnormal (Fig. 3.9). It
remains a major difficulty for stress echocardiography and its interpretation.

3.4 Approaches Towards 3D Cardiac Ultrasound

Given the intrinsic difficulties with 2D ultrasound to study a complex 3D
organ such as the heart, volumetric ultrasound imaging would offer obvious
advantages. However, as mentioned above, a straight forward implementation
of the typical 2D imaging concepts for a 3D ultrasound system would result
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in a frame rate below 1 Hz. This is clearly unacceptable given that a com-
plete cardiac cycle typically takes less than a second. Several approaches have
therefore been proposed to solve this problem.

3.4.1 Freehand 3D Ultrasound

The most straight forward way of acquiring volumetric US cardiac data at
an acceptable temporal resolution is by merging different 2D US acquisitions
taken over subsequent cardiac cycles into one 3D volumetric data set. By
tracking the position and orientation of the transducer by an electromagnetic
tracking device while moving it freely manually, the 3D+ t volume can be
filled with data points [1].

Obviously such an approach is cumbersome and time consuming. More-
over, it can have problems with motion artifacts as a result of patient motion
and breathing and the 3D+ t volume will typically be sampled in an irregular
manner. Finally, the tracking devices have limited accuracy which will result
in misalignment of the collected 2D data in 3D space.

3.4.2 Prospective Gating

In order to make the volumetric acquisition process more reproducible and to
fill the 3D+ t space more homogeneously, the motion of the transducer can
be guided by an external device that rotates the transducer by a certain angle
at every heart beat (prospective gating). In this way, a full volume data set
can be constructed as a fan of US images through ECG gating as illustrated
in Fig. 3.10. Here, the ECG signal is used to synchronize data acquisition over
several heart beats.

Although fully applicable, this approach has several disadvantages. Firs-
tly – as in any gating technique – acquisition time is significantly prolonged. It
is directly proportional to the number of image planes and inversely propor-
tional to the heart rate. Given that a rotation of 180◦ is sufficient to cover the
entire volume (as the 2D ultrasound sector image is symmetric), a 2◦ rotation

Fig. 3.10. Rotating transducer. Rotating the 2D
ultrasound image allows filling 3D space in a regular
way. In order to obtain a sufficiently high frame rate
2D image data need to be merged over several heart
beats

T
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step will require 90 2D acquisitions, i.e., heart beats. This corresponds to a
typical acquisition time of 1–1.5min. Secondly, as acquisition time becomes
significant, this approach is sensitive to motion and respiratory artifacts that
will result in a spatial misalignment of the image planes within the 3D vol-
ume. Finally, this approach can only be applied in patients in sinus rhythm.
Any heart rate variability, which is physiologic and, therefore, always present
(even in a healthy individual) will result in a temporal misalignment of some
of the image data.

Obviously, this 3D imaging approach requires an off-line reconstruction of
the volumetric image. This implies that no volumetric feedback can be given to
the operator which makes the acquisition of high quality data sets more cum-
bersome. Indeed, during rotation of the 2D image plane, drop-outs (e.g., due
to rib artefacts) can occur which may require to re-start the acquisition pro-
cess after re-positioning the transducer on the patient’s chest. Although such
problems could be avoided by taking proper scouting images, this scouting
again prolongs the acquisition process.

Despite these potential pitfalls, this approach has been introduced and
validated in several clinical studies (e.g., [2]).

3.4.3 Retrospective Gating

In order to avoid some of the problems met with ECG-gating, a fast-rotating
array transducer has been proposed [3]. In this approach, the transducer
rotates very quickly around its axis (approx. 400–500 rpm) so that it makes
several revolutions (approx. 8) per heart beat. Obviously, one cannot use
a conventional ultrasound transducer as the electrical cable connecting the
transducer to the ultrasound system would quickly wind up and break. Djao
et al. have proposed to use a slip-ring system whereby the piezoelectric ele-
ments of the array transducer remain connected to their electrodes in a sliding
manner [3].

The major advantage of this system over the approach described in
the previous sections is that volumetric data becomes available in real-time
(16 vols./s) and can thus be shown to the operator as visual feedback in order
to optimize the volumetric data acquisition. Moreover, ECG gating is not
strictly required as the volume can simply be updated continuously at a rate
of 16 vols./s. However, if volumetric data at higher temporal or spatial reso-
lution are required, (retrospective) ECG-gating – with its associated pitfalls –
remains a must.

The major disadvantage of this approach is that a dedicated array trans-
ducer is needed. Although the slip-ring principle has been proven to work
well, the mechanical interconnection comes at the expense of noise. Moreover,
volumetric image reconstruction becomes quiet challenging. Indeed, given the
high rotation speed of the transducer and given that a 2D image is con-
structed by acquiring subsequent image lines (Sect. 3.3) the image planes are
curved (Fig. 3.11). In addition, spatial sampling becomes rather irregular and
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Fig. 3.11. Prospective and retrospective gating. Although prospective ECG gating
results in equidistant image plane (left) retrospective gating combined with a fast
rotating array results in curved image planes (right). The latter makes reconstruction
of the volumetric data more challenging

is dependent on the heart rate to rotation rate ratio. Reconstruction of 3D vol-
ume data from this irregular sampled space is not trivial but several methods
to do so have been presented [4].

3.4.4 Two-Dimensional Arrays

The concept of a phased array transducer can be extended towards volumetric
imaging. Indeed, if a 2D matrix of piezoelectric elements can be constructed,
the US beam can be steered electronically both in plane (as for the 1D
array transducer, cf. Sect. 3.4) and out-of-plane (as required for 3D imag-
ing). Although this is theoretically feasible, its practical implementation is
not straight forward due to the large number of elements required in a 2D
phased array transducer. Indeed, a regular 1D phased array transducer typ-
ically consists of 64 up to 128 elements. As such, a full 2D array transducer
will contain 64 × 64 = 4,096 elements up to 128 × 128 = 16,384 elements.
Each of these elements needs to be electrically isolated from its neighbors and
needs wiring. As the footprint of the transducer needs to be limited in size
for cardiac applications (approx. 1.5× 1 cm; it has to fit in between ribs) this
becomes very challenging in terms of dicing the piezoelectric materials and
wiring/cabling.

Sparse 2D Array Transducers

Because of the wiring issues, the first 2D array transducers had only a lim-
ited amount of active elements (about 512). As such, they are referred to as
“sparse 2D array transducers”. Although these transducers can be used for
volumetric imaging, the major challenge lies in finding the optimal configura-
tion of the active elements, i.e., which elements should be used in transmitting
and receiving in order to obtain the optimal volumetric image quality. Sev-
eral element distributions have been investigated and compared in numerous
publications [5, 6].

Although the 2D (sparse) phased-array transducer can avoid mechanical
rotation or motion of the transducer, it does not solve the problem of acqui-
sition rates as a line-per-line acquisition of a 3D volume of US data at a
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spatial resolution comparable to what is used in conventional 2D imaging
would require about 1 s. This is unacceptable for cardiac applications.

The simplest solution to this problem is reducing the field-of-view and/or
the spatial resolution of the volumetric data set. For example, lowering the
opening angle from 90◦×90◦ to 40◦×40◦ and reducing the line density to 1 per
2 degrees instead of 1 per degree would result in a volume rate of about 10 Hz.
Obviously, this increased temporal resolution then comes at the expense of
spatial resolution and/or the field-of-view.

Parallel Beam Forming

As an alternative solution, parallel beam forming has been proposed [7]. In
this technique, multiple image lines are constructed for each transmit pulse.
As electronic beam steering implies that time delays have to be introduced
between different elements in the array, the same is done during receive (i.e.,
for the received beam, see Sect. 3.4). Indeed, for a certain US transmit, all
crystals in the array receive an echo RF signal. Before summing these signals –
to obtain a single RF signal (and then after reconstruction a single image
line) – they are time-delayed in order to steer and focus the received beam in
the same direction as the transmitted beam. In this way, the transmit-receive
(i.e., two-way) beam profile is optimal.

In parallel beam forming, the RF signals from the individual elements will
be summed by introducing time delays to direct the receive beam a bit to the
side of the original transmit beam. Using the same RF signals, this summation
will also be done by time delaying for a receive beam oriented a bit to the
other side (Fig. 3.12). As such, two image lines can be constructed for a single
ultrasound transmit. This implies that an US image can be constructed twice
as fast.
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Fig. 3.12. Conventional and parallel beam forming. The reflections were originating
from a reflector (black dot). In conventional beam forming (top) time delays are
applied in order to focus the receive beam in the same direction as the transmit
beam. In parallel beam forming (bottom) the same RF signals (blue) are time delayed
in order to focus the receive beam slightly to the left and right. As such, they are
not longer perfectly aligned after time delaying (green and red)
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Parallel beam forming was initially introduced for conventional 2D imag-
ing in order to increase the temporal resolution of these systems further. In
this way, current high-end systems have default frame rates of approximately
70 Hz. The flip-side of the medal is that the beam former of such systems needs
to be doubled. As this is an expensive part of an US device, this has a signif-
icant impact on its cost. The same principle can be used to have quadruple
receive beams (by including 4 beam formers in the system) or more. As such,
the first true volumetric ultrasound device, developed at Duke University, had
16 parallel receive lines which allowed real-time 3D scanning at acceptable vol-
ume rates [8, 9]. The first commercial real-time 3D ultrasound system using
2D phased array technology was available at the end of the 1990’s and was
produced by Volumetrics Medical Imaging (Durham, North Carolina). The
system was based on technology developed in the ultrasound research group
at Duke University and was later acquired by Philips Medical Systems.

Second Generation 2D Array Transducers

Although the design of the sparse 2D arrays has been optimized for image
quality, intrinsically, image quality would be better when more elements of
the 2D array could be used. Indeed, the more elements that are used for
transmit/receive, the better the US beam characteristics for imaging. As such,
a need remained to improve the 2D array transducer technology in order to
allow more transmit/receive elements (and thus improve image quality).

An important step forward was made by Philips Medical Systems (Best,
the Netherlands) by putting part of the beam former of the imaging system
in the housing of the US transducer. In such a system, certain elements of the
2D transducer array form a sub-group of elements that are beam formed (i.e.,
time delayed, amplitude weighted and potentially filtered) both in transmit
and in receive in the transducers handle. Subsequently, these pre-beam formed
signals are transferred to the US system where they are combined (i.e., beam
formed) into a single RF signal. The beam forming process thus becomes a
two-step procedure in which signals from certain elements are combined inside
the transducer handle while combining these pre-beam formed signals is done
inside the US system. As such, the number of cables going to the transducer
from the US scanner can be limited while many more elements in the trans-
ducer can effectively be used for imaging (Fig. 3.13). Clearly, optimizing the
design of such a 2D transducer setup is not obvious as there are a lot of degrees
of freedom (e.g., which elements to combine in groups, how to pre-beam form
the groups of elements, how to beam form the remaining signals).

The pre-beam forming concept combined with parallel beam forming
allows current state-of-the-art real-time volumetric scanners to produce nar-
row volumes (approx. 25◦ × 90◦) at a frame rate of 25 Hz with acceptable
image resolution. In order to increase the field-of-view to a full volume of
90◦ × 90◦, data needs to be collected over multiple cardiac cycles (typically
four) and merged into a single full-volume.
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Fig. 3.13. Pre-beam forming. In the first generation of 2D array transducers each
element was linked directly to the US scanner for beam forming (left). In the second
generation of 2D arrays, part of the beam forming is done inside the transducer
handle which reduces the number of cables going to the system significantly (right).
This in turn allows to use more elements in the array for a given number of channels

Aortic Valve Aortic Valve

Mitral Valve Mitral Valve

Fig. 3.14. Volumetric ultrasound using state-of-the-art clinical equipment. Looking
from the apex of the heart towards the atria, one clearly sees both aortic and mitral
valves throughout the cardiac cycle. Left : aortic valve opened; mitral valve closed;
Right : aortic valve closed; mitral valve opened

Today, all major vendors of cardiac US equipment have a 3D system com-
mercially available that allows full-volume imaging (i.e., 90◦ × 90◦) at frame
rates of about 25 Hz by gating over four to six cardiac cycles. True real-time
volumetric scanning typically requires a reduction of the field-of-view however.
An example of a volumetric data set acquired using this (gated) real-time 3D
technology is given in Fig. 3.14.

3.5 Validation of 3D Cardiac Ultrasound Methodologies

The validation of 3D ultrasound systems for the assessment of cardiac chamber
volumes can be done:

• In-vitro: Typically, latex balloons of known volume are scanned using
3D ultrasound (and sometimes using an alternative imaging technique as
reference).

• In-vivo: Most often, another medical imaging modality is used as reference
(e.g., Cardiac CT, Cardiac MRI).
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• Ex-vivo: In the special case of heart transplantation, the pre-transplan-
tation (myocardial) volume measured by 3D ultrasound in-vivo has been
compared to post-transplantation volumes measurements [10].

Both in-vitro and in-vivo validations of the free-hand and real-time 3D
approaches for all cardiac chambers (left and right ventricle and left and right
atrium) have been presented in numerous publications, e.g., [11–16]. Although
volumes measured by 3D ultrasound typically show a bias with respect to
cardiac MRI as it systematically measures smaller (cavity) volumes, all studies
show excellent corrections with this reference technique. The underestimation
of LV cavity volume has been attributed to the fact that the spatial resolution
of the 3D systems remains limited making it hard to distinguish trabeculae
from myocardium. It can be expected, however, that this bias will gradually
disappear with the further improvements of volumetric US systems.

3.6 Emerging Technologies

3.6.1 Transesophageal 3D Imaging

In Transesophageal Echocardiography (TEE), an US transducer is inserted
into the oesophagus through the mouth of the patient in order to be able
to approach the heart more closely. This in turn allows using US waves
of higher frequency (as less penetration of the US wave is required) which
improves image resolution. TEE has become a well-established clinical tech-
nique (Fig. 3.15).

Although ECG-gated TEE imaging does allow reconstructing 3D vol-
umes [17], a potentially more favourable approach has more recently been
introduced by Philips Healthcare (Best, the Netherlands). Indeed, Philips
Healthcare was able to build a transesophageal 2D matrix array transducer

Fig. 3.15. Transesophageal echocardiography. Left: mitral valve; Right : device
inserted into the heart in order to close an atrial septum defect. (Courtesy: Philips
Healthcare)
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that allows volumetric transesophageal imaging [18]. Given that the probe
needs to be swallowed by a patient, its size has to be limited and additional
safety precautions need to be taken which implies that building such a probe
is a true technological achievement. Numerous articles published in the last
two years show that this new imaging approach is very promising and seems
to be particularly useful in the operation theatre for monitoring and guiding
of interventions [19]. For some interventions, this new real-time volumetric
imaging technique may replace other guiding techniques completely (most
often X-ray fluoroscopy) as it does not bring radiation hazard to the patient
and/or operator and is relatively cheap and easy to use.

3.6.2 True Real-Time Volumetric Imaging

Full volume (i.e., 90◦ × 90◦) 3D imaging still requires merging data acquired
over four to six heart beats. As such, this is not true real-time volumet-
ric imaging yet and so-called “stitching artifact” (i.e., the registration errors
between the sub-volumes) can occur and need to be accounted for in the
volume reconstruction [20].

Very recently, Siemens Medical Solutions (Mountain View, CA) introduced
their newest US system that combines 2D array technology (including trans-
ducer pre-beam forming) with a system embedding 64 parallel beam formers.
In this way, their system is able to provide full volume data sets (90◦ × 90◦)
in real-time at a frame rate of approximately 50 Hz. As such, this system
allows true real-time volumetric imaging (Fig. 3.16). Another true real-time
3D system was also recently introduced by GE Health Care.

However, obtaining good image quality for such a highly parallelized sys-
tem remains challenging. The above mentioned system thus remains to be
validated both in-vitro and in-vivo.

Fig. 3.16. Real-time full
volume imaging. The new
system architecture
introduced by Siemens
Medical Solutions allows true
full volume imaging in
real-time at acceptable frame
rates (Courtesy: Shane
Williams, Siemens Medical
Solutions)
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3.7 Remaining Challenges in 4D Cardiac Ultrasound

3.7.1 Resolution

Although spatial and temporal resolution of 3D ultrasound systems have
steadily improved over the last few years by the introduction of parallel beam
forming and pre-beam forming, both spatial and temporal resolution remain
inferior to what is currently available in 2D ultrasound. The increased field-
of-view of the volumetric systems thus comes at the expense of both spatial
and temporal resolution of the US data set. As such, 3D systems have not
yet replaced conventional 2D systems in clinical routine but are rather used
in specialized centers as an add-on to 2D echocardiography.

Temporal Resolution

Temporal resolution of the US data set is mostly restricted by the speed
of sound. Indeed, as an US wave propagates at finite speed (approximately
1,530 m/s) through soft tissue, a pulse-echo experiment for imaging up to
15 cm intrinsically takes about 200 μs. Per second, a maximum of about 5,000
pulse-echo measurements can thus be made; this limit is set by physics. These
5,000 measurements need to fill up space-time as much as possible. It thus
remains a challenge to find the optimal balance between line density (i.e.,
spatial resolution), the temporal resolution (i.e., number of scans per second)
and the field of view.

Spatial Resolution

Clearly, adding an additional spatial dimension in volumetric imaging will
intrinsically result in a reduction in sampling in the other dimensions. Parallel
beam forming has increased the amount of information available in four-
dimensional (4D) space-time significantly. However, parallelization not only
comes at an economical cost but also at the cost of image quality. As such,
massive parallelization (i.e., reconstructing a full volume for a single transmit)
may be theoretically possible but would come at the expense of image qual-
ity unless adapted reconstruction algorithms are developed. In this context,
a complete different imaging paradigm for US image formation has been pro-
posed, which would theoretically allow producing volume data at acceptable
spatial resolution at a frame rate of 5 kHz [21].

Spatial resolution of the volumetric US data set is mostly determined
by the number of 2D array elements that can effectively be used and by
aperture size (i.e., the active area of the transducer). Indeed, both system
characteristics are essential for proper steering and focusing of the US beam.
For example, when using few transducer elements for an US transmit, not
only the total amount of energy in the US wave will be reduced (and thus
the signal-to-noise ratio of the resulting image will decrease) but also part of
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the US energy will “leak” into other directions (referred to as “side lobes”
or “grating lobes”). These will reduce the SNR further and can result in
significant image artifacts [22]. The technological improvements in wiring and
cabling in combination with more advanced and optimized pre-beam forming
techniques will play an important role in this context.

In order to allow for larger US transducers (to improve focusing and there-
fore image quality), the introduction of silicon-based US transducers is likely
an important step forward as they allow building conformable arrays [23].
These transducer systems can – in theory – be positioned as a flexible path
on top of the patient’s chest in order to increase the active area of the
transducer. Beam steering and focusing with these transducers becomes how-
ever non-trivial and requires specialized image reconstruction algorithms [24].
Nevertheless, one can anticipate that these conformal arrays will play an
important role in future volumetric US systems.

3.7.2 Image Quality

The current approach towards increasing the field-of-view of the US system
without compromising line density and/or temporal resolution dramatically is
the implementation of parallel beam forming . Although parallel beam forming
does indeed allow reconstructing multiple image lines for a single US transmit,
it meets several drawbacks.

Amplitude Reduction and Inhomogeneity

The sensitivity of the US system is determined by its two-way beam pro-
file, i.e., the product of the transmit and the receive beam characteristics
(Fig. 3.17). In conventional 2D imaging, the transmit focus and receive focus
are identical which results in a maximal narrowing of the US two-way
beam profile and therefore an optimal image resolution (for a given trans-
ducer/system setup). However, for parallel beam forming the receive beams
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Fig. 3.17. Two-way beam
profile. The US beam profile
refers to its amplitude as a
function of distance
orthogonal to the image line
(left). Due to parallel beam
forming the sensitivity of the
system is intrinsically
reduced (right) resulting in
lower SNR of the
reconstructed images
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will be positioned around the transmit beam focal point. As such, the ampli-
tude of a reflected signal will be reduced (with respect to conventional
imaging) which has a direct (negative) impact on the SNR of the reconstructed
image. Moreover, when more than two lines are reconstructed in parallel (e.g.,
four), the sensitivity of the two inner beams and the two outer beams is dif-
ferent. After image reconstruction, this would result in two brighter and two
darker lines respectively (i.e., strike artifacts) unless this amplitude difference
is corrected for.

Although this correction can indeed be done, it requires an accurate knowl-
edge of the transmit beam profile characteristics. Unfortunately, this beam
profile not only depends on geometrical parameters of the transducer design
but also on the properties of the tissue that is being imaged. As such, this is
not a trivial task. In any case, the SNR of these image lines remains lower.

Beam Broadening

As a possible solution to the above mentioned amplitude inhomogeneity prob-
lem, the transmit beam can be broadened. Indeed, by broadening the transmit
beam, the spatial variations in transmit beam amplitude are reduced. As a
result, the two-way beam profiles become more homogeneous. This principle
is used in current volumetric US scanners in order to reduce the inhomogene-
ity in sensitivity between image lines as much as possible. However, a broader
transmit beam intrinsically results in a broader two-way beam profile and
therefore in an imaging system with decreased spatial resolution.

Beam Distortion

A straight forward implementation of parallel beam forming would position
the receive beam centrally around the transmit beam. However, this implies
that the two-way beam profiles are “pulled” towards the transmit beam so
that the effective angle between parallel beam formed lines and other ones
is different. This effect is called beam warping and results in strike artifacts
in the reconstructed images (Fig. 3.18). A simple theoretical solution to this
problem is steering the receive beams further out so that the effective two-way
beam profiles are regularly sampled. However, as the width of the US beam
is spatially variant (and dependent on the medium in which the US wave is
traveling), this may require dynamic beam steering (i.e., reconstructing curved
receive beams rather than straight beams) [25]. Similarly, steering the receive
beams away from the focus point will results in an asymmetric two-way beam
profile with mirrored asymmetry for parallel beam formed lines. This effect is
referred to as “beam skewing” and, again, results in typical image artifacts.

These problems show that a straight forward implementation of parallel
beam forming intrinsically is associated with a reduction in image resolution
and contrast. The higher the degree of parallelization, the more difficult the
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Fig. 3.18. Beam warping.
Conventional 2D ultrasound
image of an US phantom
containing three cystic
regions (left). In a straight
forward implementation of
parallel beam forming,
beam warping results in
strike artifacts (right)

associated image artifacts and the more ingenious solutions need to be devel-
oped. As such, further research is required in order to optimally use massive
parallel beam forming for volumetric US imaging at preserved image quality
and resolution.

3.7.3 Data Visualization and Interaction

A major difficulty with volumetric imaging (independent of the imaging
modality used) is data visualization and interaction. Indeed, standard moni-
tors remain two dimensional which implies that volume rendering techniques
are essential for display. Unfortunately, some of these rendering techniques
neutralize the volume information of the object making navigation and image
interpretation difficult.

Although experiments have been carried out with stereoscopic vision of
cardiac volumetric data through colored/polarized glasses or 3D screens [26],
volume rendering using a depth-encoding color maps remains the current
standard (Fig. 3.15). Similarly, holograms have been used to visualize the 3D
cardiac data sets but only in a research setting [27].

As for data visualization, data interaction is typically not straight for-
ward in a volume data set most importantly due to the lack of a good depth
perception. Novel data visualization and interaction tools will thus become
important for the further introduction of volumetric US in clinical cardiology
(Fig. 3.19).

3.7.4 Segmentation/Automated Analysis

The visual presentation of the volumetric US data can give useful informa-
tion about the heart anatomy. In particular, cardiac surgeons gain valuable
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Fig. 3.19. 3D visualization. New data interaction tools will be important for the fur-
ther introduction of volumetric US imaging in clinical cardiology (Courtesy: Personal
Space Technologies, Amsterdam)

information on valve leaflets and shape prior to surgery for valve reconstruc-
tion or replacement [19]. Nevertheless, quantification of chamber volumes and
the myocardial volume (i.e., mass) is important for prognosis, diagnosis and
treatment follow-up. Obviously, this requires segmentation of the relevant
structures in the US volume data set.

To date, myocardial segmentation is most often done manually or involves
at least a significant amount of manual user interaction. As such, analysis
times can be significant making the clinical application of these methods less
practical and decreasing reproducibility. Hereto, several approaches towards
automated segmentation are developed [28, 29]. They will be important to
move volumetric echocardiography to the clinical routine. Toshiba Medical
Systems recently combined such an automated segmentation tool with 3D
motion estimation algorithms which allows obtaining functional information
of the heart with minimal user interaction [30].
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Morphological Image Processing Applied
in Biomedicine
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and André V. Saúde

Summary. This chapter presents the main concepts of morphological image pro-
cessing. Mathematical morphology has application in diverse areas of image pro-
cessing such as filtering, segmentation and pattern recognition, applied both to
binary and gray-scale images. Section 4.2 addresses the basic binary morphologi-
cal operations: erosion, dilation, opening and closing. We also present applications
of the primary operators, paying particular attention to morphological reconstruc-
tion because of its importance and since it is still not widely known. In Sect. 4.3,
the same concepts are extended to gray-scale images. Section 4.4 is devoted to
watershed-based segmentation. There are many variants of the watershed transform.
We introduce the watershed principles with real-world applications. The key to suc-
cessful segmentation is the design of the marker to eliminate the over-segmentation
problem. Finally, Sect. 4.5 presents the multi-scale watershed to segment brain struc-
tures from diffusion tensor imaging, a relatively recent imaging modality that is
based on magnetic resonance.

4.1 Introduction

There are several applications of Morphological Processing (MP) in diverse
areas of biomedical image processing. Noise reduction, smoothing, and other
types of filtering, segmentation, classification, and pattern recognition are
applied to both binary and gray-scale images. As one of the advantages of
MP, it is well suited for discrete image processing and its operators can be
implemented in digital computers with complete fidelity to their mathematical
definitions. Another advantage of MP is its inherent building block concept,
where any operator can be created by the composition of a few primitive
operators.

This text introduces and highlights the most used concepts applied to real
situations in biomedical imaging, with explanations based on a morpholog-
ical intuition of the reader, whenever possible. However, although the lack
of full details, the text is as coherent as possible to the mathematical the-
ory and the motivated reader is invited to investigate the many texts, where
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these details and formalisms are treated in depth [1, 2]. In this chapter, only
the main mathematical equations are given. Source codes of implementations
of these equations are available on the toolbox IA870 in the Adessowiki1

project [3]. Other text with example applications from image microscopy using
this toolbox is also available [4].

Morphological image processing is based on probing an image with a
structuring element and either filtering or quantifying the image according
to the manner in which the structuring element fits (or does not fit) within
the image. By marking the locations at which the structuring element fits
within the image, we derive structural information concerning the image. This
information depends on both the size and shape of the structuring element.
Although this concept is rather simple, the majority of operations presented
in this chapter is based on it: erosion, dilation, opening, closing, morphological
reconstruction, etc., applied both for binary and gray-scale images.

In this chapter, only symmetric structuring elements will be used. When
the structuring element is asymmetric, care must be taken as some properties
are valid for a reflected structuring element. Four structuring elements types
will be used in the illustrations and demonstrations throughout this chapter:

• cross: the elementary cross is a 3× 3 structuring element with the central
pixel and its four direct neighbors (4-neighborhood).

• box: the elementary box is a 3× 3 structuring element with all nine pixels,
the central and its eight neighbors (8-neighborhood).

• disk: the disk of a given radius is a structuring element with all pixels that
are inside the given radius.

• line: the linear structuring element can be composed for a given length
and orientation.

4.2 Binary Morphology

4.2.1 Erosion and Dilation

The basic fitting operation of mathematical morphology is erosion of an image
by a structuring element. The erosion is computed by scanning the image with
the structuring element. When the structuring element fits completely inside
the image, the scanning position is marked. The erosion consists of all scanning
locations where the structuring element fits inside the image. The erosion of
set A by set B is denoted by A�B and defined by

A�B = {x : Bx ⊂ A}, (4.1)

where ⊂ denotes the subset relation and Bx = {b+ x : b ∈ B} the translation
of set B by a point x.

1 http://www.adessowiki.org
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Fig. 4.1. Erosion and
dilation. Left : input image
in black and gray and
erosion in black (region
where the center of the
robot can move); Right :
input image in black and
dilation in black and gray

A binary image is formed by foreground and background pixels. In mor-
phology, for every operator that changes the foreground, there is a dual
operator that changes the background. The dual operator for the erosion is
the dilation. Since dilation involves a fitting into the complement of an image,
it represents a filtering on the outside, whereas erosion represents a filtering
on the inside (Fig. 4.1). For intuitive understanding, the structuring element
can be seen as a moving robot.

Formally, the dilation of set A by B, denoted by A⊕B, is defined by

A⊕B = (Ac �
�

B),c (4.2)

where Ac denotes the set-theoretic complement of A and
�

B = {−b : b ∈ B}
is the reflection of B, i.e., a 180◦-rotation of B about the origin. Foreground
is generally associated to white color while background is associated to black
color. But note that in impression works, the inverse convention is sometimes
used.

Another alternative equivalent way to compute the dilation is by
“stamping” the structuring element on the location given by every foreground
pixel in the image. Formally, the dilation can also be defined by

A⊕B =
⋃
a∈A

Ba. (4.3)

Dilation has the expected expanding effect, filling in small intrusions into
the image (Fig. 4.1, right) and erosion has a shrinking effect, eliminating small
extrusions (Fig. 4.1, left).

As dilation by a disk expands an image and erosion by a disk shrinks an
image, both can be used for finding boundaries for binary images. The three
possibilities are:

1. External boundary: dilation minus the image.
2. Internal boundary: the image minus the erosion.
3. Combined boundary: dilation minus erosion.

The latter straddles the actual Euclidean boundary and is known as the mor-
phological gradient, which is often used as a practical way of displaying the
boundary of the segmented objects.
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4.2.2 Opening and Closing

Besides the two primary operations of erosion and dilation, there are two
important operations that play key roles in morphological image processing,
these being opening and its dual, closing.

The opening of an image A by a structuring element B, denoted by A◦B,
is the union of all the structuring elements that fit inside the image (Fig. 4.2,
left):

A ◦B =
⋃
{Bx : Bx ⊂ A} or (4.4)

A ◦B = (A�B) ⊕B. (4.5)

It can also be defined as an erosion followed by a dilation (4.5) and has its
dual version called closing (Fig. 4.2, right), which is defined by

A •B = (Ac ◦
�

B)c or (4.6)
A •B = (A⊕B)�B. (4.7)

Note that whereas the position of the origin relative to the structuring
element has a role in both erosion and dilation, it plays no role in opening
and closing. However, opening and closing have two important properties [5]:

1. Once an image has been opened (closed), successive openings (closings)
using the same structuring element produce no further effects.

2. An opened image is contained in the original image which, in turn, is
contained in the closed image (Fig. 4.2).

As a consequence of this property, we could consider the subtraction of the
opening from the input image, called opening top-hat, and the subtraction of
the image from its closing, called closing top-hat, respectively, defined by

A◦̂B = A− (A ◦B) and (4.8)
A•̂B = (A •B) −A. (4.9)

Fig. 4.2. Opening and
closing. Left : input image in
black and gray and opening
in black (region where the
robot can move); Right :
input image in black and
closing in black and gray
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Opening top-hat and closing top-hat correspond to the gray parts of
Fig. 4.2 left and right, respectively.

As a filter, opening can clean the boundary of an object by eliminating
small extrusions; however, it does this in a much finer manner than erosion, the
net effect being that the opened image is a much better replica of the original
than the eroded image (compare left parts of Figs. 4.2 and 4.1). Analogous
remarks apply to the closing, the difference being the filling of small intrusions
(compare right parts of Figs. 4.2 and 4.1).

When there is both union and subtractive noise, one strategy is to open to
eliminate union noise in the background and then close to fill subtractive noise
in the foreground. The open-close strategy fails when large noise components
need to be eliminated but a direct attempt to do so will destroy too much
of the original image. In this case, one strategy is to employ an Alternating
Sequential Filter (ASF). Open-close (or close-open) filters are performed iter-
atively, beginning with a very small structuring element and then proceeding
with ever-increasing structuring elements.

The close-open filter is given by

ASFnoc,B(S) = (((((S •B) ◦B) • 2B) ◦ 2B) . . . • nB) ◦ nB (4.10)

and the open-close filter by

ASFnco,B(S) = (((((S ◦B) •B) ◦ 2B) • 2B) . . . ◦ nB) • nB, (4.11)

where nB = B +B + ....+B (n times).

4.2.3 Morphological Reconstruction from Markers

One of the most important operations in morphological image processing is
reconstruction from markers, the basic idea being to mark some image compo-
nents and then reconstruct that portion of the image consisting of the marked
components.

Given a neighborhood relationship, a region (collection of pixels) is said
to be connected if any two pixels in the region can be linked by a sequence
of neighbor pixels also in the region. 4-neighborhood and 8-neighborhood are
usual neighborhoods that include vertically and horizontally adjacent pixels
and, only for the latter one, diagonally adjacent pixels.

Every binary image A can be expressed as the union of connected regions.
If each of these regions is maximally connected, which means that it is not a
proper subset of a larger connected region within the image, then the regions
are called connected components of the image. The union of all connected
components Ck recovers the input image A and the intersection of any two
connected components is empty.

To find all the connected components of an image, one can iteratively find
any pixel of the image, use it to reconstruct its connected component, remove
the component from the image, and iteratively repeat the same extraction
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Fig. 4.3. Reconstruction from
markers. Left : input image,
Middle: marker image; Right :
reconstructed image

until no more pixels are found in the image. This operation is called labeling
(cf. panel (c) in Fig. 4.5). The labeling decomposes an image into its connected
components. The result of the labeling is usually stored in a numeric image
with each pixel value associated to its connected component number.

The morphological reconstruction of an image A from a marker M
(a subset of A) is denoted by A � M and defined as the union of all con-
nected components of image A that intersect marker M . This filter is also
called component filter:

A � M =
⋃

{Ck : Ck ∩M �= ∅}. (4.12)

In addition to the input image and the marker, the reconstruction opera-
tion also requires a connectivity. The marker informs which component of the
input image will be extracted, and the connectivity can be specified, in some
software packages, by a structuring element, usually the elementary cross for
4-neighborhood or the elementary box to specify 8-neighborhood.

An example of reconstruction from markers, based on 8-connectivity, is
shown in Fig. 4.3. The input image is a collection of grains. The markers are
made of a central vertical line intersecting the grains. The reconstruction from
the markers extracts the three central components from the original image.

There are typically three ways to design the marker placement for the
component filter:

1. A-priori selection,
2. Selection from the opening, or
3. Selection by means of some rather complex operation.

The edge-off operation, particularly useful to remove objects touching
the image frame, combines reconstruction and top-hat concepts. The objects
touching the frame are selected by reconstructing the image from its frame as
an a priori marker. The objects not connected to the image frame are selected
by subtracting the input image from the reconstructed image.

4.2.4 Reconstruction from Opening

With marker selection by opening, the marker is found by opening the input
image by a structuring element. The result of the reconstruction detects all
connected components where the structuring element fits.

Using the same mechanism of the reconstruction from opening to detect
objects with particular geometric features, more complex techniques can be
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designed to find the markers from combined operators. At the last step, the
reconstruction reveals the objects that exhibit those features.

The following biomedical application (Fig. 4.4) detects overlapping chro-
mosomes. To identify overlapping chromosomes (Fig. 4.4, panel (b)) only the
shapes (connected components) are chosen that all the four linear structur-
ing elements can fit. This is achieved by intersecting the four reconstructions
from opening using four linear structuring elements: vertical, horizontal, 45◦,
and −45◦, as visualized in Fig. 4.4 on panels (c), (d), (e), and (f), respectively.

The top-hat concept can be applied to reconstruction by opening pro-
ducing the reconstruction from opening top-hat (i.e., the image minus its
reconstruction). In this case, the operator reveals the objects that do not
exhibit a fitting criterion. For instance, to detect thin objects, one can use a
disk of diameter larger than the thickest of the thin objects.

Another common criterion for selection of connected component is its area.
This is achieved by the area opening which removes all connected component
Ci with area less than a specified value α:

A ◦ (α)E =
⋃
{Ci, area(Ci) ≥ α}. (4.13)

The next demonstration targets cytogenetic images of meta-phase human
cells. This is a classification application of area opening. The task is to prepro-
cess the image by segmenting the chromosomes from the nuclei, stain debris
and the background. Figure 4.5 shows the input image (a), the thresholded
(b), the labeling (c) identifying the connected components, and the result (d)
with the components classified by area. The components with area less than

Fig. 4.4. Detecting overlapping chromosomes. (a) Input image; (b) intersection (in
gray) of four reconstruction from openings; (c) opening (in gray) by horizontal line
and its reconstruction; (d) opening (in gray) by vertical line and its reconstruction;
(e) opening (in gray) by 45◦-line and its reconstruction; and (f) opening (in gray)
by −45◦-line and its reconstruction
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input image

a

threshold

b

labeled (gray-scaled)

c

classified by area

d

Fig. 4.5. Chromosome spreads and area opening. Residues are coded in white (area
less than 100), chromosomes in light gray (area between 100 and 10,000), and nuclei
in dark gray (area larger than 10,000)

Fig. 4.6. Representation
of a gray-scale image. Left :
gray-scale mapping, zero is
bright and 255 is dark;
Middle: top-view shading
surface; Right : surface
mesh plot

100 pixels are background noise, the ones with area larger than 10,000 pixels
are nuclei (dark gray) and the rest are the chromosomes (light gray).

So as not to be restricted to openings, analogous dual concepts can be
developed to form sup-reconstruction from closing, sup-reconstruction from
closing top-hat and area closing.

4.3 Gray-Scale Operations

It is useful to look at a gray-scale image as a surface. Figure 4.6 shows a
gray-scale image made of three Gaussian-shape peaks of different heights and
variances. The image is depicted in three different graphical representations:
(a) the inverted print, where the pixel values are mapped in a gray scale: low
values are bright and high values are dark gray tones; (b) a top-view shading
surface; and (c) a mesh plot of the surface.
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A gray-scale image can also be seen as the cardboard landscape model,
i.e., a stack of flat pieces of cardboard. Thus, the threshold decomposition of
a gray-scale image f is the collection of all the threshold sets Xt(f) obtained
at each gray level t:

Xt(f) = {z : f(z) ≥ t}. (4.14)

The image can be characterized uniquely by its threshold decomposition
collection and can be recovered from its threshold sets by stack reconstruction:

f(x) = max{t : x ∈ Xt(f)}. (4.15)

In all gray-scale operations presented hereafter, we will use flat structur-
ing elements, i.e., structuring elements that have no gray-scale variation, the
same used in the binary case. Although they are the same structuring ele-
ments, we will use the term flat structuring elements not to confuse with
their gray-scale versions. This restriction has many simplifications in the def-
inition, characterization and use of the gray-scale operators as an extension
from the binary operators. Care must be taken however, when the reader uses
a gray-scale structuring element, as the erosion (dilation) is not a moving min-
imum (moving maximum) filter, the threshold decomposition property does
not hold for the primitive operators nor for gray-scale morphological recon-
struction. Moreover, as we said before, only symmetric structuring element
will be used.

4.3.1 Erosion and Dilation

Gray-scale erosion (dilation) of an image f by a flat structuring element D is
equivalent to a moving minimum (moving maximum) filter over the window
defined by the structuring element. Thus, erosion f �D and dilation f ⊕D
in this case are simply special cases of order-statistic filters:

(f �D)(x) = min{f(z) : z ∈ Dx} and (4.16)
(f ⊕D)(x) = max{f(z) : z ∈ Dx}. (4.17)

An example of gray-scale erosion by a disk on a gray-scale image is shown
in Fig. 4.7. The two images on the left, input and eroded, are represented in
gray-scale shades and the two on the right are the same images represented
by their top-view surfaces. Note how well the term “erosion” applies to this
illustration. The eroded surface appears as being created by a pantograph
engraving machine equipped with a flat disk milling cutter. The pantograph
is guided to follow the original surface while shaping the eroded surface using
the flat disk milling cutter.

The geometric intuition for erosion is the following: slide the structuring
element along beneath the surface and at each point record the highest altitude
the location of the structuring element can be translated while fitting beneath
the surface.
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input image

a

surface view of (a)

b

erosion by a disk

c

surface view of (c)

d

Fig. 4.7. Gray-scale erosion

Alternatively, one can simply compute the erosion (dilation) of a gray-scale
image by computing the stack decomposition of the image, applying binary
erosion (dilation) on the threshold sets, and finally stack reconstruction.

Figure 4.8 illustrates the discrete gray-scale erosion by means of threshold
decomposition. At the right of the gray-scale images (original and eroded),
there are three threshold sets at gray levels 80, 120, and 180. Note that the
binary images shown in (f), (g), and (h) are eroded versions of the binary
images shown in (b), (c), and (d).

Observe that the morphological gradient, described for binary pictures, is
directly extensible to gray-scale with gray-scale erosions and dilations (dilation
minus erosion). At each point, the morphological gradient yields the difference
between the maximum and minimum values over the neighborhood at the
point determined by the flat structuring element.

4.3.2 Opening and Closing

As an extension of the binary case, gray-scale opening (closing) can be sim-
ply achieved by stack decomposition, binary opening (closing), and stack
reconstruction.
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input

a b

t = 80

c

t = 120

d

t = 180

e

erosion

f

t = 80

g

t = 120

h

t = 180

Fig. 4.8. Gray-scale erosion by threshold decomposition. The threshold sets are
indicated by the threshold t

The geometric intuition for opening is the following: slide the structur-
ing element along beneath the surface and at each point record the highest
altitude the structuring element can be translated while fitting beneath the
surface. The position of the origin relative to the structuring element is irrel-
evant. Note the slight difference between the opening and the erosion: while
in the opening the highest altitude is recorded for all points of the structur-
ing element, in the erosion, only the location of the structuring element is
recorded.

Geometric intuition regarding closing can be obtained from the duality
relation. Whereas opening filters from below the surface, closing filters from
above; indeed, by duality, closing is an opening of the negated image.

The gray-scale opening and closing have the same properties of their binary
equivalents [6]. The top-hat concept is also valid: gray-scale opening top-hat
is given by the subtraction of the opened image from the input image, and
the gray-scale closing top-hat is the subtraction of the image from its closing.

Open top-hat is very useful as a preprocessing step to correct uneven
illumination before applying a threshold, thereby acting as an adaptive
thresholding technique. The following application illustrates this.

Figure 4.9 shows the open top-hat transform applied to a Fluorescent
In-Situ Hybridization (FISH) image. FISH is a key technique for molecu-
lar diagnosis in which labeled hybridizing agents (such as Deoxyribonucleic
Acid (DNA) or Ribonucleic Acid (RNA) probes) are exposed to intact tissue
sections. The probe hybridizes to a defined target nucleotide sequence of DNA
in the cell. Each chromosome containing the target DNA sequence will pro-
duce a fluorescent signal (spot) in every cell when the specimen is illuminated
with suitable excitation. Hence, FISH is an excellent method for detection of
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Fig. 4.9. Gray-scale open top-hat. (a) Input image; (b) opening top-hat by a disk
of radius 4; (c) thresholded area open (by 2 pixels); and (d) dilation of centroids by
arrow, for illustration, overlaid on original

input image

a b

single close-open

c

3-stage ASF

Fig. 4.10. Gray-scale alternating sequential filtering (ASF)

gene copy number alterations in cancer and other diseases, and the task of
image processing is automatic detection of these spots. Owing to noise, the
top-hat methodology typically yields very small spots in the thresholded top-
hat image. These can be eliminated by area open. So, the image is filtered by a
gray-scale area opening of two. In Fig. 4.9d, the arrows were overlaid automat-
ically by a dilation of the centroids of the detected spots by an arrow-shape
structuring element, with the origin slightly translated from the arrow tip so
as not to disturb the visualization of the original spots.

Gray-scale opening can be employed to filter noise spikes lying above the
signal and the closing can be used to filter noise spikes beneath the image.
Typically noise is mixed, there being noise spikes both above and below the
signal. So long as these noise spikes are sufficiently separated, they can be
suppressed by application of either a composition of opening and closing or of
closing and opening. Selection of an appropriately sized structuring element
is crucial. In addition, if there is a mixture of unevenly spatially sized noise
spikes and they are not sufficiently dispersed, one can employ an ASF, which
is a composition of alternating openings and closings with increasingly wide
structuring elements (Fig. 4.10). A single stage close-open filter results from
closing followed by opening using a 3 × 3 diamond structuring element. For
the second stage, another close-open is concatenated using a 5 × 5 diamond
structuring element. In Fig. 4.10c, a three stage ASF was applied with the last
stage being processed by a 7× 7 diamond structuring element.
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4.3.3 Component Filters and Morphological Reconstruction

The concept of connected component filter built from morphological recon-
struction from markers, reconstruction from openings and area open intro-
duced in the binary morphology section can be extended for gray-scale. These
binary operators can be used to construct a correspondent gray-scale opera-
tor by using the notion of threshold decomposition. The level component in
a gray-scale image is defined as a connected set of the pixels in a threshold
set of the image at a given level. When modeling the gray-scale image by
a cardboard landscape, the cardboard is first cut into the shape of each iso
line (i.e., lines of same height), then all pieces are stacked up to form the
topography. Each cardboard piece is a connected component of a level set of
the gray-scale image. A gray-scale component filter is an operator that selects
only a few level components (cardboard pieces) in such a way that the stack
reconstruction is not disturbed, i.e., a level component is removed only if all
the level components above it are also removed.

Since the notion of connected components is intrinsically related to this
section, it is wise to recall that the definition of all component filters require
the specification of a connectivity, which is normally the 4- or 8-neighborhood.
One important property of a component filter is that it never introduces a false
edge, so it is part of the so-called family of edge-preserving smoothing filters.

Morphological reconstruction is one of the most used tools to build com-
ponent filters [7–9]. As with binary reconstruction, gray-scale reconstruction
proceeds from markers. The morphological reconstruction of an image from
a marker can be obtained by stack decomposition of the image and the
marker, binary reconstructions at each gray-level, and stack reconstruction
of the results. This can be intuitively explained by using the cardboard land-
scape model of the image. Imagine that the cardboard pieces are stacked
but not glued. The markers are seen as needles that pierce the model from
bottom to top. If one shakes the model while holding the needles, every
cardboard pieces not pierced by the needles will be removed. The remain-
ing cardboards constitute a new model that corresponds to the gray-scale
morphological reconstruction, also called Inf-reconstruction. By duality, the
sup-reconstruction works in the same manner but on the negated image.
Observe that the marker can be a gray-scale image, the pixel intensity
corresponding to the height the needles reach when they pierce the model.

Gray-scale area opening is another component filter [10]. It is defined anal-
ogously to the binary case. The size α area opening of a gray-scale image can
be modeled as a stack filter in which at each level, only binary connected
components containing at least α pixels are passed: it removes all cardboard
pieces whose area is less than α.

An important class of component filters is composed of those generated
from alternating reconstructions from openings and closings. They are called
Alternating Sequential Component Filter (ASCF).
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input image

a

reconstr. close-open

b

area close-open

c

Fig. 4.11. Gray-scale alternating sequential component filtering (ASCF). The recon-
structive and area close-open was performed with a 3 × 3 diamond of stage 3 and
an area parameter of 30 pixels, respectively

input image

a b

ASCF

c

edge-off

d

thresholding

Fig. 4.12. Segmenting the corpus callosum with gray-scale component filters. In
panel (b), an area close-open ASCF is applied

Figure 4.11 shows two examples of gray-scale ASCF using the same input
image as in Fig. 4.10. A three stage close-open filter is performed by sup-
reconstruction from closing followed by a reconstruction from opening using
a 3 × 3, 5 × 5, and 7 × 7 diamond structuring element in the first, second
and last stage, respectively. An ASCF area close-open with area parameter of
30 pixels yields similar effects (Fig. 4.10c). Note the high fidelity of the edges
maintained by component filters.

The gray-scale edge-off operator can be easily derived from the binary
case and it is very useful in many situations. As in the binary case, the edge-
off is the top-hat of the reconstruction from a marker placed at the image
frame (case where the marker is placed a priori). In the cardboard land-
scape model (threshold decomposition), all the cardboard pieces that touch
the image frame are removed, leaving only the cardboard pieces that form
domes inside the image.

The following application illustrates the use of area close-open ASCF as
a preprocessing filter followed by the edge-off operator to segment the corpus
callosum from an Magnetic Resonance Imaging (MRI) of the brain (Fig. 4.12).
The area close-open ASCF is used with area parameter 1,500 pixels, first filling
cardboard holes of less than this size, and removing cardboards with area less
than 1,500 pixels afterwards. After applying the edge-off operator, a hard
segmentation can be obtained by thresholding at level 40.



4 Morphological Image Processing Applied in Biomedicine 121

The reconstruction of an image f from itself subtracted by h is called
h-maxima: HMAXh,D(f). It is a component filter that removes any dome
with height less than or equal h and decreases the height of the other domes
by h. For a geometric interpretation of the h-maxima based on the threshold
decomposition concept, the height attribute associated to a level compo-
nent (cardboard piece) is one plus the maximum number of levels that exist
above it. The h-maxima filter removes all the cardboard pieces with height
attribute below or equal to h.

The dual operator of h-maxima is called h-minima: HMINh,D(f) fills in
any basin of image f with depth less than h and decreases the depth of the
other basins by h.

4.3.4 Regional Maxima

Considering the threshold decomposition of a gray-scale image, regional max-
ima are level components with height attribute equal to one, i.e., there is no
other level component above them. These are the cardboard pieces that are on
top of a dome. For instance in Fig. 4.18, panel (c) shows the regional maxima
of the image in panel (b). All regional maxima of an image f can be found by
subtracting the h-maxima with h = 1 from image f :

RMAXD(f) = f −HMAX1,D(f). (4.18)

By duality, a regional minimum is a flat connected region that is at the bot-
tom of a basin. Regional maxima and minima are generically called extrema of
the image. Due to the inherent noise associated with the acquisition process, a
biomedical image typically presents a large number of regional maxima. If the
regional maximum operator is applied to a gradient image, then the situation
is even worse. Dynamics provide a tool for selecting significant extrema with
respect to a contrast criterion [11]. The dynamics of a regional maximum is the
height we have to climb down from the maximum to reach another maximum
of higher altitude. The dynamics of a minimum is the minimum height a point
in the regional minimum has to climb to reach a lower regional minimum. Fil-
tering the domes of the image also removes regional maxima. Dome filtering
can be accomplished using opening, reconstruction from opening, area open,
or h-maxima. The choice of appropriate filter is part of the design strategy.

Figure 4.13 shows the regional maxima of the input image following dif-
ferent filters. Note how the over-segmentation given by the direct regional
maxima was reduced. These markers can be used to segment the image using
the watershed transform. One of the crucial steps in the watershed transform
is marker extraction. A marker must be placed in a representative sample
of the region of the object to be extracted. The marker finding using the
regional maxima (minima) of filtered images is a powerful method since it is
independent of gray-scale thresholding values.
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Fig. 4.13. Regional maxima of filtered image. (a) input image; (b)–(f) regional
maxima; (c) after opening by a disk of radius 3; (d) after reconstruction from opening
by the same disk; (e) after area open of 100 pixels; and (f) after h-maxima filtering
with h = 40

4.4 Watershed Segmentation

The watershed transform is a key building block for morphological segmenta-
tion [12]. In particular, a gray-scale segmentation methodology results from
applying the watershed to the morphological gradient of an image to be seg-
mented. The watershed methodology has become highly developed to deal
with numerous real-world contingencies, and a number of implementation
algorithms have been developed [13,14]. There are many watershed algorithms
in the literature. Here, we only cover the basic methodology.

4.4.1 Classical Watershed Transform

The most intuitive formulation of the watershed transform is based on a flood-
ing simulation. Consider the input gray-scale image as a topographic surface.
The problem is to produce the watershed lines on this surface. To do so, holes
are punched in each regional minimum of the image. The topography is slowly
flooded from below by letting water rise from each regional minimum at a uni-
form rate across the entire image. When the rising water coming from distinct
minima is about to merge, a dam is built to prevent the merging. The flooding
will eventually reach a stage when only the tops of dams are visible above the
water surface, and these correspond to the watershed lines. The final regions
arising from the various regional minima are called the catchment basins.
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Fig. 4.14. Flooding simulation of the watershed transform

Fig. 4.15. Classical watershed, regional minima filtering. (a) small synthetic input
image (64 × 64); (b) morphological gradient; (c) watershed on the morphological
gradient; (d) watershed on the h-minima (h = 9) filtered morphological gradient

Figure 4.14 illustrates this flooding process on a signal with four regional
minima generating four catchment basins. At first, holes are punched at the
minima (cf. panel (b)). Then, the flooding process is initialized. A dam is
created whenever water from different minima are about to merge (cf. panel
(c)). The final flooding yielding three watershed lines and four catchment
basins (cf. panel (d)).

For image segmentation, the watershed is usually (but not always) applied
on a gradient image. As real digitized images present many regional minima
in their gradients, this typically results in a large number of catchment basins,
the result being called watershed over-segmentation.

4.4.2 Filtering the Minima

A solution to cope with the over-segmentation problem is to filter the image, in
order to reduce the number of regional minima, creating less catchment basins.
Figure 4.15 shows the typical application of the classical watershed transform.
Although the image is synthetic, due to the discretization process there are
several regional minima in the image, each one generating one catchment
basins. By filtering the gradient image using the h-minima with parameter
h = 9, the watershed gives the desired result. This kind of filtering is very
subtle for our eyes as we cannot distinguish the difference from the original
morphological gradient and the filtered one, despite the difference between
their number of regional minima.

In Fig. 4.16, watershed over-segmentation is reduced by filtering the min-
ima of the input image with a close by a disk of radius 3 (cf. panel (c));
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Fig. 4.16. Reducing over-segmentation by minima filtering. (a) Input image;
(b) watershed of the input image; (c) watershed of the input image after closing
by a disk of radius 3; (d) watershed of the input image after sup-reconstruction
from closing by the same disk; (e) watershed of the input image after area open
of 100 pixels; and (f) watershed of the input image after h-minima filtering with
h = 40

with sup-reconstruction from closing by the same disk (cf. panel (c)); with
area closing (cf. panel (d)); and with h-minimum (cf. panel (f)). This example
is equivalent to the regional maxima simplification shown in Fig. 4.13. If we
compute the regional minima of the filtered images, we get the same results
of that figure. Note that to filter regional minima, the filters used are those
that operate with the valleys such as closings and h-minima. Applying filters
that operate on domes do not result in any simplification on the number of
minima or on the number of catchment basins of the watershed.

4.4.3 Watershed from Markers

Markers are very effective to reduce over-segmentation if one knows how to
place the markers within the objects to be segmented. The watershed from
markers can also be described as a flooding simulation process (Fig. 4.17). At
first, holes are punched at the marker regions and each marker is associated
with a color. The topography is then flooded from below by letting colored
water rise from the hole associated with its color, this being done for all holes
at a uniform rate across the entire image. If the water reaches a catchment
basin with no marker in it, then the water floods the catchment basin with-
out restriction. However, if the rising waters of distinct colors are about to
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a b c d

Fig. 4.17. Flooding simulation of the watershed from markers. (a) punched holes
at markers and initial flooding; (b) flooding a primitive catchment basin without
marker; (c) a dam is created when waters coming from different markers are about
to merge; (d) final flooding, only one watershed line

merge, then a dam is built to prevent the merging. The colored regions are
the catchment basins associated with the various markers. To differentiate
these catchment basins from the ones obtained with the classical watershed
transform, we call the latter primitive catchment basins.

The classical watershed transform can be constructed using the watershed
from markers and vice-versa. If we place the markers for the watershed from
markers at the regional minima of the input image, then we get the classi-
cal watershed transform. To get the watershed from markers from the standard
watershed transform is a bit more complicated: we need to apply the classical
watershed transform on the sup-reconstruction of the image from the markers.

4.4.4 Inner and Outer Markers

A typical watershed-based segmentation problem is to segment cell-like objects
from a gray-scale image. The general approach is threefold:

1. Preprocessing using a smoothing connected filter.
2. Extracting object (inner marker) and background markers (outer marker).
3. Obtaining watershed lines of the morphological gradient from the markers.

Usually, the most crucial part is the extraction of object markers (Step 2): if an
object is not marked properly, then it will be missed in the final segmentation.

To illustrate watershed segmentation using inner and outer markers, we
consider a poor quality microscopic image of a cornea tissue (Fig. 4.18). The
cell markers are extracted by the regional maxima of the opening by a disk of
the input image. The criterion used with regional maxima is mainly topolog-
ical. We can model each cell as a small hill and we want to mark the top of
each hill that has a base larger than the disk used in the opening. The regional
maxima constitute the inner markers, and the outer markers are obtained by
a watershed on the negated input image. After labeling the markers, the mor-
phological gradient is computed. Although it is a very noisy gradient, the final
watershed lines provide a satisfactory segmentation.

While it is often the case that the watershed transform is applied to a
gradient image, a top-hat image or a distance function image, in some other
cases, the input image itself is suitable for application of the watershed.
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Fig. 4.18. Segmentation of cornea cells. (a) input image; (b) filtered by open; (c)
regional maxima of the open (inner markers); (d) inner and outer markers (water-
shed lines of the negated input image from the inner markers); (e) morphological
gradient of the original image; (f) final watershed lines overlaid on input image

4.5 Segmentation of Diffusion MRI

Diffusion Tensor Imaging (DTI) is a MRI-based modality able to characterize
water molecules diffusion inside tissues and useful to demonstrate subtle brain
abnormalities caused by diseases, such as stroke, multiple sclerosis, dyslexia,
and schizophrenia [15,16]. However, while most traditional imaging methods in
medicine produce gray scale images, DTI produces a tensor valued image (i.e.,
each pixel or voxel contains a tensor), demanding new, and usually complex,
visualization and/or processing methods, cf. Chap. 16, page 403.

One example of DTI can be seen in Fig. 4.19. Each voxel contains a tensor,
represented by an ellipsoid, where the main hemiaxis lengths are proportional
to the square roots of the tensor eigenvalues λ1, λ2, and λ3 (λ1 ≥ λ2 ≥ λ3)
and their directions correspond to the respective eigenvectors.

Several approaches for DTI-based segmentation, where regions of simi-
lar diffusion characteristics must be delineated, have been proposed in the
last decade [17–22]. One possible solution is to segment DTI using concepts
from mathematical morphology, such as the morphological gradient and the
watershed transform. Instead of adapting the watershed to work with ten-
sorial images, a tensorial morphological gradient is defined, which translates
relevant information from tensors to a scalar map. The desired segmentation
is achieved by applying the watershed over this scalar map.

Let E = Z × Z be the set of all points in the tensorial image f . The
Tensorial Morphological Gradient (TMG) is defined by

∇T
B(f)(x) =

∨
y,z∈Bx

dn(T y,T z), (4.19)
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Fig. 4.19. DTI. One slice of
a diffusion tensor image of
the brain. The color of each
ellipsoid is related to the
principal eigenvector
direction of the tensor
associated to that voxel

original image

a b

TMG

Fig. 4.20. Tensorial morphological gradient (TMG)

∀x ∈ E, where
∨

is the supremum of a subset, B ⊂ E is a structuring element
centered at the origin of E, dn represents any of the similarity measures pre-
sented in DTI literature [23,24], T y is the tensor that represents the diffusion
in y, and T z is the tensor that represents the diffusion in z (y and z are in
the neighborhood of x, defined by E). ∇T

B denotes the TMG.
The TMG, as the morphological gradient presented in Sect. 4.2.1, can be

used to display the boundary of objects (Fig. 4.20).
Once the tensorial information from DTI is mapped to a gray-scale

image, all morphological operators described in Sect. 4.3 can be used to pro-
cess it. Since the classical watershed transform would lead, in this case, to
an over-segmentation, the best choice is to use the hierarchical watershed or
Multi-Scale Watershed (MSW) transform, which creates a set of nested par-
titions. The MSW presented here can be obtained by applying the watershed
from markers to a decreasing set of markers. The watershed at scale 1 (finest
partitioning) is the classical watershed, made of the primitive catchment
basins (perhaps an over-segmentation). As the scale increases, less markers
are involved and the coarsest partition is the entire image obtained from a
single marker at the regional minimum of largest dynamics.

Figure 4.21 illustrates the MSW transform applied to the TMG from
Fig. 4.20b. The decreasing sets of markers are obtained by applying h-minima
filter, i.e., dynamics of the minima are used. We show two levels in the hierar-
chy with markers as the regional minima with the n highest dynamics. With
n = 60, we are able to correctly segment the corpus callosum. With n = 150,
the corpus callosum is already subdivided into four regions.
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n = 60

a

n = 150

b

Fig. 4.21. Multi-scale watershed (MSW). The MSW transform is computed using
the n regional minima with highest dynamics as markers

4.6 Conclusions

Morphological tools are very powerful and useful for biomedical image pro-
cessing, both for binary and gray-scale images. Unfortunately, they are still
not widely known for the majority of the researchers in the field. This chapter
illustrated that there are difficult real-world problems that can be solved just
using morphological tools. Particularly, there are two important techniques
well established such as the watershed-based segmentation and the morpho-
logical reconstruction as the primitive operator of a family of component
filters.
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5

Medical Image Registration

Daniel Rueckert and Julia A. Schnabel

Summary. Over the last decade, image registration has emerged as one of key
technologies in medical image computing with applications ranging from computer
assisted diagnosis to computer aided therapy and surgery. This chapter introduces
the theory of medical image registration, its implementation and application. In par-
ticular, the three key components of any image registration algorithm are described:
transformation models, similarity measures, and optimization techniques. The eval-
uation and validation of image registration is crucial in clinical applications and
the chapter discusses techniques for the validation of image registration algorithms.
Finally, the chapter illustrates the use of image registration techniques for image
segmentation, shape modeling and clinical applications.

5.1 Introduction

Medical image registration [1] plays an increasingly important role in
many clinical applications including Computer-assisted Diagnosis (CAD),
Computer-aided Therapy (CAT) and Computer-assisted Surgery (CAS). A
particular reason for the importance of image registration is the growing
and diverse range of medical imaging modalities: Some modalities provide
anatomical information about the underlying tissues such as the X-ray attenu-
ation coefficient from X-ray Computed Tomography (CT) and proton density
or proton relaxation times from Magnetic Resonance Imaging (MRI). Such
images allow clinicians to quantify and visualize the size, shape and spa-
tial relationship between anatomical structures and any pathology, if present.
Other imaging modalities provide functional information such as the blood
flow or glucose metabolism from Positron Emission Tomography (PET) or Sin-
gle Photon Emission Computed Tomography (SPECT), and permit clinicians
to study the relationship between anatomy and physiology. Finally, optical
images acquired either in-vivo or ex-vivo (in form of histology) provide another
important source of information which depicts structures at microscopic levels
of resolution.
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The goal of image registration is to find corresponding anatomical or func-
tional locations in two or more images. Image registration can be applied
to images from the same subject acquired by different imaging modalities
(multi-modal image registration) or at different time points (serial image regis-
tration). Both cases are examples of intra-subject registration since the images
are acquired from the same subject. Another application area for image regis-
tration is inter-subject registration where the aim is to align images acquired
from different subjects, e.g., to study the anatomical variability within or
across populations.

In general, the process of image registration involves finding the optimal
geometric transformation which maximizes the correspondences across the
images. This involves several components:

• A transformation model which defines a geometric transformation between
the images. There are several classes of transforms including rigid, affine
and deformable transforms. The question, which model is appropriate, is
strongly linked to the application.

• A similarity metric or registration basis, which measures the degree of
alignment between the images. In cases where features such as landmarks,
edges or surfaces are available, the distances between corresponding fea-
tures can be used to measure the alignment. In other cases, the image
intensities can be used directly to determine the alignment.

• An optimization method which maximizes the similarity measure. Like
many other problems in medical imaging, image registration can be formu-
lated as an optimisation problem whose goal it is to maximize an associated
objective function.

• A validation protocol which measures the performance of the registration
techniques in general terms such as accuracy and robustness as well as in
application-specific terms such as clinical utility.

In this chapter, we will discuss these components in more detail. We will
also illustrate how image registration can be used in clinical applications.
An extensive survey of registration techniques can be found in Zitova and
Flusser [2]. Throughout this chapter, we will use X, x, and x to indicate a
matrix, vector, or scalar quantity, respectively.

5.2 Transformation Model

The goal of image registration is to find a transformation T : (x, y, z) �→
(x′, y′, z′), which maps any point in the source (or floating) image into the
corresponding point in the target (or reference) image. There are several trans-
formation models, ranging from simple (e.g., rigid or affine transformations) to
more complex transforms (e.g., deformable transforms). The spectrum of sim-
ple to complex transforms is usually characterized by an increasing number of
parameters that describe the Degrees of Freedom (DoF) of the transformation.
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There are several key considerations which must be taken into account
when choosing a transformation model:

1. It must be able to characterize the geometric transformation between the
images. For example, if there is a significant amount of non-rigid deforma-
tion between the images, e.g., respiratory motion in images of the liver,
then a transformation model only allowing for rigid or affine transforms is
inappropriate as it cannot represent the transforms required to align the
images.

2. It should be a simple as possible. For example, if two images are related
by a simple rotation, then a non-rigid transformation is inappropriate as it
has many parameters, which are not necessary to describe the solution.

5.2.1 Rigid Transformation

A common assumption in medical image registration is that both images are
related by a rigid transformation. For example, for images of the head the
rigid-body assumption is normally justified as the skull is rigid and constrains
the motion of the brain sufficiently. In three dimensions, a rigid transformation
involves six DoFs: three rotations and three translations. Using homogeneous
coordinates [3], the rigid transformation can be expressed in matrix form

T rigid(x, y, z) =

⎛
⎜⎜⎝
x′

y′

z′

1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝
x
y
z
1

⎞
⎟⎟⎠ (5.1)

where tx, ty, tz define the translations along the axes of the coordinate system,
while the coefficients rij are the result of the multiplication of three separate
rotation matrices, which determine the rotations about each coordinate axis.

5.2.2 Affine Transformation

In some cases, it is necessary to correct not only for rigid transformation but
also for scaling. This additional scaling can be expressed in matrix form as

T scale =

⎛
⎜⎜⎝
sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

⎞
⎟⎟⎠ (5.2)

where sx, sy, and sz define the scaling along the different coordinate axes.
In some cases, it may also be necessary to correct for shears, for example
caused by the gantry tilt of CT scanners. A shear in the (x, y) plane can be
expressed as
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Txy
shear =

⎛
⎜⎜⎝

1 0 hx 0
0 1 hy 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ (5.3)

Combining the rigid transformation matrix with the scaling and shearing
matrices yields an affine transformation

T affine(x, y, z) = T shear ·T scale ·T rigid · (x, y, z, 1)T (5.4)

whose twelve DoF represent rotations, translations, scaling and shears. Like
rigid or affine transforms, global transforms affect the entire image domain.
Higher-order global transforms such as tri-linear (24 DoF) or quadratic (30
DoF) transforms can be modeled in a similar fashion [4].

5.2.3 Projective Transformation

Projective transforms play an important role in applications involving the
alignment of 3D volumes like CT or MRI to 2D images such as radiography
and photography. Different types of projections including parallel or perspec-
tive projections can be used depending on the application [3]. However in
most cases, the transformation that relates the 3D and 2D images is a combi-
nation of a projective with a rigid transformation, which determines the pose
of the 3D volume relative to the camera. Often it is possible to determine
the perspective transformation parameters using either knowledge about the
internal geometry of the camera, or by camera calibration techniques [5], in
which case the problem is reduced to rigid registration.

5.2.4 Non-Rigid Transformation: Parametric Models

The transformation models discussed so far can be characterized by a small
number of parameters (six for rigid and twelve for affine transforms). While
such transformation models are frequently used for the registration of anatom-
ical structures like the brain or bones, they are not applicable in the case where
significant deformation is expected, e.g., in soft tissues like the liver or breast.
In these cases, deformable or non-rigid transforms are required. These non-
rigid transforms can be modeled either using parametric or non-parametric
models. In the case of non-parametric transformation models, a dense dis-
placement field is stored which describes the deformation at every voxel. In
contrast to this, parametric transformation models are controlled by a set of
parameters (typically, the number of parameters is much smaller than the
number of voxels).

Basis Functions

A common approach for modeling non-rigid transforms is to describe the
transformation as a linear combination of basis functions θi:
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T (x, y, z) =

⎛
⎜⎜⎝
x′

y′

z′

1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
a00 . . . a0n

a10 . . . a1n

a20 . . . a2n

0 . . . 1

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎝

θ1(x, y, z)
...

θn(x, y, z)
1

⎞
⎟⎟⎟⎠ (5.5)

A common choice is to represent the deformation field using a set of (orthonor-
mal) basis functions such as Fourier (trigonometric) [6, 7] or wavelet basis
functions [8]. In the case of trigonometric basis functions this corresponds to
a spectral representation of the deformation field where each basis function
describes a particular frequency of the deformation. Restricting the summa-
tion in (5.5) to the first N terms (where 1 < N < n) has the effect of limiting
the frequency spectrum of the transformation to the N lowest frequencies.

Splines

Many registration techniques using splines are based on the assumption that
a set of corresponding points or landmarks can be identified in the source
and target images (see also the topic point-based registration in Sect. 5.3.1).
These corresponding points are often referred to as control points. At these
control points, spline-based transforms either interpolate or approximate the
displacements, which are necessary to map the location of the control point
in the target image into its corresponding counterpart in the source image.
Between control points, they provide a smoothly varying displacement field.
For each control point, the interpolation condition can be written as

T (φi) = φ′i i = 1, . . . , n (5.6)

where φi and φ′i denote the location of the control point in the target and
the source image, respectively. There are a number of different ways of how
the control points can be determined. For example, anatomical or geometrical
landmarks which can be identified in both images can be used [9]. In addi-
tion, Meyer et al. [10] suggested to update the location of control points by
optimization of a voxel similarity measure such as mutual information. Alter-
natively, control points can be arranged with equidistant spacing across the
image forming a regular mesh [11]. In this case, the control points are only
used as a parameterization of the transformation and do not correspond to
anatomical or geometrical landmarks. Therefore, they are often referred to as
pseudo- or quasi-landmarks.

Thin-Plate Splines

Thin-plate splines are part of a family of splines which are based on radial
basis functions. They have been formulated by Duchon [12] and Meinguet [13]
for the surface interpolation of scattered data. In recent years, they have been
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widely used for image registration [9,14,15]. Radial basis function splines can
be defined as a linear combination of n radial basis functions θ(s):

t(x, y, z) = a1 + a2x+ a3y + a4z +
n∑
j=1

bjθ(|φj − (x, y, z)|) (5.7)

Defining the transformation as three separate thin-plate spline functions
T = (t1, t2, t3)T yields a mapping between images in which the coefficients
a and b characterize the affine and the non-affine part of the transforma-
tion, respectively. The interpolation conditions in (5.6) form a set of 3n linear
equations. To determine the 3(n + 4) coefficients uniquely, twelve additional
equations are required. These twelve equations guarantee that the non-affine
coefficients b sum to zero and that their crossproducts with the x, y, and z
coordinates of the control points are likewise zero. In matrix form, this can
be expressed as (

Θ Φ
ΦT 0

)(
b
a

)
=
(

Φ′

0

)
(5.8)

Here a is a 4×3 vector of the affine coefficients a, b is a n×3 vector of the non-
affine coefficients b, and Θ is the kernel matrix with Θij = θ(|φi−φj |). Solving
for a and b using standard algebra yields a thin-plate spline transformation,
which will interpolate the displacements at the control points.

The radial basis function of thin-plate splines is defined as

θ(s) =
{
|s|2 log(|s|) in 2D

|s| in 3D (5.9)

There are a wide number of alternative choice for radial basis functions
including multi-quadrics and Gaussians [11,16]. Modeling deformations using
thin-plate splines has a number of advantages. For example, they can be
used to incorporate additional constraints such as rigid bodies [17] or direc-
tional constraints [18] into the transformation model. They can be extended
to approximating splines where the degree of approximation at the landmark
depends on the confidence of the landmark localization [19].

Free-Form Deformations and B-Splines

In the late 1980s a number of techniques for modeling deformations emerged in
the computer graphics community. In particular, Sederberg and Parry devel-
oped Free-Form Deformations (FFD) [20] as a powerful modeling tool for
3D deformable objects. The basic idea of FFDs is to deform an object by
manipulating an underlying mesh of control points. The resulting deformation
controls the shape of the 3D object and produces a smooth and continuous
transformation. In the original paper by Sederberg and Parry [20], tri-variate
Bernstein polynomials were used to interpolate the deformation between con-
trol points. A more popular choice is to use tri-variate B-spline tensor products
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as the deformation function [21, 22]. The use of FFDs based on B-splines for
image registration was first proposed by Rueckert et al. [23, 24]. Over the
last decade, the use of FFDs for image registration has attracted significant
interest [25–28].

To define a spline-based FFD, we denote the domain of the image volume
as Ω = {p = (x, y, z) | 0 ≤ x < X, 0 ≤ y < Y, 0 ≤ z < Z}. Let Φ denote a
nx×ny×nz mesh of control points φi,j,k with uniform control point spacing δ
(Fig. 5.1). Then, the FFD can be written as the 3D tensor product of the
familiar 1D cubic B-splines:

Tlocal(p) =
3∑
l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)φi+l,j+m,k+n (5.10)

where i = �xδ � − 1, j = � yδ � − 1, k = � zδ � − 1, u = x
δ − �xδ �, v = y

δ − � yδ �, w =
z
δ −� zδ � and where Bl represents the l-th basis function of the B-spline [21,22]:

B0(u) = (1 − u)3/6
B1(u) = (3u3 − 6u2 + 4)/6
B2(u) = (−3u3 + 3u2 + 3u+ 1)/6
B3(u) = u3/6

In contrast to thin-plate splines [15] or elastic-body splines [11], B-splines
are locally controlled, which makes them computationally efficient even for
a large number of control points. In particular, the basis functions of cubic
B-splines have a limited support, i.e., changing control point φi,j,k affects the
transformation only in the local neighborhood of that point.

Fig. 5.1. B-spline free-form deformations. The axial, coronal and sagittal view of
a 3D MRI of the brain is shown without control point mesh (a) and with control
point mesh (b)
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5.2.5 Non-Rigid Transformation: Non-Parametric Models

In contrast to parametric transformation models, non-parametric models char-
acterize the deformation at every voxel. These models offer the greatest
amount of flexibility in describing the transformation but are also expensive
in terms of memory storage.

Small Deformation Models

Small deformation models encode the transformation at every voxel directly
as a displacement vector. In computer vision, these models are closely related
to the notion of optical flow [29], while in medical image registration their
first use has been proposed in the context of elastic models [30]: The idea is to
model the deformation of the source image into the target image as a physical
process, which resembles the stretching of an elastic material such as rubber.
This physical process is governed by two forces: The first term is the internal
force, which is caused by the deformation of elastic material (i.e., stress) and
counteracts any force, which deforms the elastic body from its equilibrium
shape. The second term corresponds to the external force which acts on the
elastic body. As a consequence, the deformation of the elastic body stops
if both forces acting on the elastic body form an equilibrium solution. The
behavior of the elastic body is described by the Navier linear elastic Partial
Differential Equation (PDE):

μ∇2u(x, y, z) + (λ+ μ)∇(∇ · u(x, y, z)) + f (x, y, z) = 0 (5.11)

Here u describes the displacement field, f is the external force acting on the
elastic body; ∇ and ∇2 denote the gradient operator and the Laplace operator,
respectively. The parameters μ and λ are Lamé’s elasticity constants, which
describe the behavior of the elastic body. These constants are often interpreted
in terms of Young’s modulus E1, which relates the strain and stress of an
object, and Poisson’s ratio E2, which is the ratio between lateral shrinking
and longitudinal stretching:

E1 =
μ(3λ+ 2μ)

(λ+ μ)
, E2 =

λ

2(μ+ λ)
(5.12)

The external force f is the force which acts on the elastic body and drives the
registration process. A common choice for the external force is the gradient of
a similarity measure such as a local correlation measure based on intensities
[30], intensity differences [31] or intensity features such as edge and curvature
[32], however, in principle any of the similarity metrics described in Sect. 5.3
can be used as a force.

The PDE in (5.11) may be solved by finite differences and Successive
Over-Relaxation (SOR) [33]. This yields a discrete displacement field for each
voxel. Alternatively, the PDE can be solved for only a subset of voxels which
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correspond to the nodes of a finite element model [32, 34]. These nodes form
a set of points for which the external forces are known. The displacements at
other voxels are obtained by finite element interpolation. An extension of the
elastic registration framework has been proposed by Davatzikos [35] to allow
for spatially varying elasticity parameters. This enables certain anatomical
structures to deform more freely than others.

Large Deformation Model

In the small deformation model, the displacements are stored at each voxel
with respect to their initial position. Since the regularization in (5.11) acts
on the displacement field, highly localized deformations cannot be modeled
since the deformation energy caused by stress increases proportionally with
the strength of the deformation. In the large deformation model, however,
the displacement is generated via a time dependent velocity field v [36]. The
relationship between v and the displacement u(x, y, z, 1) is given by

u(x, y, z, 1) =
∫ 1

0

v(u(x, y, z, t)) dt (5.13)

with u(x, y, z, 0) = (x, y, z). The resulting transformations are diffeomophic
as they provide a smooth one-to-one (invertible) mapping. One of the first
approaches to use such a representation of the deformations coined the term
fluid registration [37]. Here the deformations are characterized by the Navier–
Stokes partial differential equation

μ∇2v(x, y, z) + (λ+ μ)∇(∇ · v(x, y, z)) + f (x, y, z) = 0 (5.14)

similar to (5.11) except that differentiation is carried out on the velocity field
v rather than on the displacement field u and is solved for each time step.
Christensen [37] suggested to solve (5.14) using SOR [33]. However, the result-
ing algorithm is rather slow and requires significant computing time. A faster
implementation has been proposed by Bro-Nielsen et al. [38]. Here, (5.14) is
solved by deriving a convolution filter from the eigenfunctions of the linear
elasticity operator. Bro-Nielsen et al. [38] also pointed out that this is similar
to a regularization by convolution with a Gaussian as proposed in a non-rigid
matching technique by Thirion [39], in which the deformation process is mod-
eled as a diffusion process. However, the solution of (5.14) by convolution is
only possible if the viscosity is assumed constant, which is not always the case.

5.3 Registration Basis

The second component of a registration algorithm is the registration basis,
which measures the degree of alignment of the images. The two main approa-
ches are feature-based and voxel-based similarity measures.
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5.3.1 Feature-Based Registration

Feature-based registration approaches are usually based on points, lines or
surfaces and aim at minimizing the distance between corresponding features
in the two images. This requires the extraction of the features as well as the
estimation of correspondences.

Points

One of the most intuitive registration criteria is the proximity of corresponding
point features, which can be identified in the two images. Given two point sets
p and q, we can define a similarity measure based on the squared distance of
the points:

S = −
∑
i

||qi − f (pi)||2 (5.15)

In (5.15), we assume that the correspondences across the point sets are known
a priori (we will see later how to formulate this problem if correspondences
are unknown, e.g., aligning surfaces described by point clouds). For a rigid
transformation, three or more non collinear landmarks are sufficient to estab-
lish the transformation between two 3D images. The optimization problem
defined in (5.15) can be solved in closed-form [40] and does not require any
iterative optimization techniques: It involves the alignment of centroids of the
two sets of points followed by a rotation to minimize the sum of the squared
displacements between source and destination points. This is achieved by sim-
ple matrix manipulation using the method of Singular Value Decomposition
(SVD) [33].

Points that can be used for registration can be intrinsic, anatomical land-
marks which correspond to point-like structures (e.g., apical turn of the
cochlea) or to points can be unambiguously defined (e.g., junction of the ver-
tebral arteries or center of the orbit of the eyes). Other possibilities include
the identification of geometrical features of anatomical structures such as a
maximum of 2D curvature (e.g., cartoid syphon) or a maximum of 3D cur-
vature (e.g., occipital pole of the brain). A disadvantage in using intrinsic
landmarks is the sparse nature and the difficulty of automatic identification
and extraction of these landmarks, even though several approaches exist [19].
Alternatively, one can use extrinsic landmarks such as pins or markers fixed
to the patient and visible on each image. These markers may be attached to
the skin or screwed into the bone. The latter can provide very accurate regis-
tration but are more invasive and uncomfortable for the patient. Skin markers
on the other hand can easily move by several millimeters due to the mobility
of the skin and are difficult to attach firmly. However, well-designed, extrin-
sic markers can be accurately localized with sub-voxel precision, for instance,
by computing the center of gravity of spherical or cylindrical markers [41].
The task of identifying the markers can be automated using computer vision
techniques [42].
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Surfaces

Point features are relatively sparse and for many tasks, in particular for non-
rigid registration, more dense features are required. Another feature that can
be used for the registration of images are the boundaries of corresponding
anatomical structures. This requires the segmentation of a contour or surface
representing the boundary of the anatomical structure in both images and can
be achieved using an interactive or automated procedure. The resulting con-
tours or surfaces are often represented as point sets, which can be registered
by minimizing the distance between corresponding points of both sets [43,44].
However, since the correspondences between both point sets are not known
a priori, these need to be estimated at the same time. Besl and McKay pro-
posed a generic registration algorithm for point sets, called Iterative Closest
Point (ICP) algorithm [45], which assumes that there is a correspondence
between each point in the first set and its closest point in the second set. In
this approach, the similarity measure can be defined as

S = −
∑
i

||yi −T (pi)||2 (5.16)

where
yi = min

qj∈q

{
||qj −T (pi))||2

}
(5.17)

is the closest point in q. To register two surfaces in form of point sets we
first estimate correspondences between the point sets using (5.17). Then,
the resulting point sets can be registered by minimizing (5.16), e.g., using
the point-based technique discussed in the previous section. The process is
repeated until convergence is achieved. In practice, the computational cost
can be significantly reduced by using efficient spatial data structures such as
octrees [46] or distance transforms [47,48] to pre-calculate the distance to the
closest point.

5.3.2 Voxel-Based Registration

The advantage of feature-based registration is that it can be used for both
mono- and multi-modality registration. However, the disadvantage of feature-
based registration is the need for feature extraction in form of landmark
detection or segmentation. Moreover, while features can be extracted manually
or automatically, any error during the feature extraction stage will propagate
into the registration and cannot be recovered at a later stage. To avoid these
errors, it is possible to use the image intensities directly without the need
for feature extraction. In this case, voxel-based similarity measures aim at
measuring the degree of shared information of the image intensities. This is
relatively simple in the case of mono-modality registration, but more complex
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for multi-modality registration. Over the last decade, voxel-based similarity
measures have been come the method of choice for measuring image alignment,
largely due to their robustness and accuracy.

Statistical Similarity Measures

The simplest statistical measure of image similarity is based on the Sum of
Squared Differences (SSD) between the intensities in the images IA and IB,

SSSD = − 1
n

∑
(IA(q) − IB(T (p)))2 (5.18)

where n is the number of voxels in the region of overlap. This measure is based
on the assumption that both imaging modalities have the same characteris-
tics. If the images are correctly aligned, the difference between them should
be zero except for the noise produced by the two modalities. If this noise is
Gaussian distributed, it can be shown that the SSD is the optimal similarity
measure [49]. Since this similarity measure assumes that the imaging modal-
ities are identical, it is restricted to mono-modal applications such as serial
registration [50, 51].

In a number of cases, the assumption of identical imaging modalities is too
restrictive. A more general assumption is that of a linear relationship between
the two images. In these cases, the similarity between both images can be
expressed by the Normalized Cross Correlation (NCC)

SNCC =
∑

(IA(q) − μA)(IB(T (p)) − μB)√
(
∑

IA(q) − μA)2(
∑

IB(T (p)) − μB)2
(5.19)

where μA and μB correspond to average voxel intensities in the images IA
and IB, respectively. Nevertheless, the application of this similarity measure
is largely restricted to mono-modal registration tasks.

Information-Theoretical Measures

There has been significant interest in measures of alignment based on the
information content or entropy of the registered image. An important step
to understanding these methods is the feature space of the image intensities
which can also be interpreted as the joint probability distribution: A simple
way of visualizing this feature space is by accumulating a 2D histogram of the
co-occurrences of intensities in the two images for each trial alignment. If this
feature space is visualized for difference degrees of image alignment, it can be
seen that the feature space disperses as misalignment increases, and that each
image pair has a distinctive feature space signature at alignment.

In an information theoretic framework the information content of images
can be defined as the Shannon–Wiener entropy, H(IA) and H(IB) of images
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IA and IB:
H(IA) = −

∑
a∈IA

p(a) log p(a) (5.20)

and
H(IB) = −

∑
b∈IB

p(b) log p(b) (5.21)

where p(a) is the probability that a voxel in image IA has intensity a and p(b)
is the probability that a voxel in image IB has intensity b. The joint entropy
H(IA, IB) of the overlapping region of image IA and IB may be defined by

H(IA, IB) = −
∑
a∈IA

∑
b∈IB

p(a, b) log p(a, b) (5.22)

where p(a, b) is the joint probability that a voxel in the overlapping region of
image IA and IB has values a and b, respectively.

To derive a measure of image alignment one can use concepts from infor-
mation theory such as Mutual Information (MI) [52,53]. In terms of entropies,
MI is defined as

SMI(IA; IB) = H(IA) +H(IB) −H(IA, IB) (5.23)

and should be maximal at alignment. Mutual information is a measure of
how one image “explains” the other but makes no assumption of the functional
form or relationship between image intensities in the two images. It is also not
independent of the overlap between two images [54]. To avoid any dependency
on the amount of image overlap, Normalised Mutual Information (NMI) has
been suggested as a measure of image alignment [54]:

SNMI(IA; IB) =
H(IA) +H(IB)
H(IA, IB)

(5.24)

Similar forms of normalised mutual information have been proposed by Maes
et al. [55].

Information-theoretic voxel similarity measures are based on the notion
of the marginal and joint probability distributions of the two images. These
probability distributions can be estimated in two different ways: The first
method uses histograms whose bins count the frequency of occurrence (or
co-occurrence) of intensities. Dividing these frequencies by the total number
of voxels yields an estimate of the probability of that intensity. The second
method is based on generating estimates of the probability distribution using
Parzen windows [56], which is a non-parametric technique to estimate prob-
ability densities. The Parzen-based approach has the advantage of providing
a differentiable estimate of mutual information, which is not the case for the
histogram-based estimate of mutual information.
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5.4 Optimization

Like many other problems in medical image analysis, the problem of image
registration can be formulated as an optimization problem whose goal is to
maximize an objective function. In general, the objective function can be
written as combination of two terms: The first term aims at maximizing the
similarity of the images and is the driving force behind the registration pro-
cess. The second term aims at minimizing the cost associated with particular
transformations. In the case of rigid or affine registration, the second term
usually plays no role and is often omitted. In this case, maximizing the objec-
tive function is equal to maximizing the similarity metric. However, in the
case of non-rigid registration, the second term can act as a regularization or
penalty function which can be used to constrain the transformation relating
both images: For example, in elastic or fluid registration the regularization
term (linear-elasticity model) forms an integral part of the registration. Other
regularization models are the Laplacian or membrane model [6, 57] and the
biharmonic or thin-plate model [15, 58]. Both models have an intuitive phys-
ical interpretation: While the Laplacian model approximates the energy of a
membrane (such as a rubber sheet), which is subjected to elastic deforma-
tions, the biharmonic term approximates the energy of a thin plate of metal
which is subjected to bending deformations [59]. From a probabilistic point of
view, the regularization term can be interpreted as a prior which represents
a priori knowledge about the expected transformation, whereas the similarity
metric can be viewed as a likelihood term that expresses the probability of a
match between the images.

5.5 Validation of Registration

Prior to clinical use, medical image registration algorithms need to be val-
idated. However, the validation of registration performance usually suffers
from the lack of knowledge as to whether, how much, and where patient
movement has occurred between and even during scanning procedures, and
whether such movement affects the clinical usefulness of the data. To maintain
clinical usefulness, and inherently improve patient treatment and health care,
it is, therefore, mandatory to ensure that registration is successful [60].

A registration method can be assessed in an independent evaluation in the
absence of a ground truth. An initial visual inspection allows for a qualita-
tive assessment of registration performance, which can be complemented by
quantitative checks for robustness and consistency. The former establishes the
measurement precision by testing the bias sensitivity when adding noise or
choosing different starting estimates [61]. The latter assesses the capability of
a registration technique to find circular transforms based on a registration cir-
cuit, but can be sensitive to bias and may not be applicable to non-invertible
transforms generated by many non-rigid registration methods. Nonetheless,
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consistency checks have been successfully used for intra-modality rigid body
registration applications (e.g., serial MRI of the brain [62]). In addition, an
expert observer can perform a visual assessment of the registration perfor-
mance. This can involve the inspection of subtraction images, contour or
segmentation overlays, alternate pixel displays, or viewing anatomical land-
marks. These approaches have been applied to rigid registration [63], and
since they involve inspection of the entire volume domain of the image pair,
they can be extended to non-rigid registration [64]. For non-rigid registration,
visual assessment is an important step toward clinical acceptance and routine
use of a registration method, but may be compromised by locally implausible
deformations which may not be readily picked up by observers [65]. Nonethe-
less, visual assessment often forms the first and last line of defense of any
image registration validation.

In the absence of ground truth, registration accuracy can be studied by
setting up a gold standard transformation. For example, the Retrospective
Registration Evaluation Project (RREP) used skull-implanted markers in
patients undergoing brain surgery to derive a gold standard for multi-modal
rigid-body image registration of the head to compare different established
rigid registration methods [66]. For non-rigid registration validation, extrinsic
markers cannot easily be used as they would need to be implanted into soft
tissue. In a recent study by Koshani et al. [67], markers were inserted into a
CT lung phantom, which was deformed and imaged under controlled condi-
tions. In an alternative approach [68], a bio-mechanical motion simulator was
introduced that allowed the simulation of physically plausible deformations
for clinically realistic motion scenarios, with application to contrast-enhanced
Magnetic Resonance Mammography (MRM). This motion simulator was
designed to be independent of the image registration and transformation
model used. Similar approaches have been proposed for the simulation of
X-ray type compression for MRM [69] and Alzheimer’s Disease [70].

Finally, the segmentation of anatomical structures provide the means to
measure the structure overall or surface distances before and after registration,
but does not provide any insight as to whether the registration is accurate
within the structure, or along its outline. If, however, the objective of the regis-
tration is to propagate (and hence automate) segmentation, the segmentation
quality can be used as a surrogate measurement. For example in [71], a num-
ber of non-rigid registration methods were compared for inter-subject brain
registration including segmentation quality. A number of carefully annotated
image databases1 are emerging, which can be used to establish the accuracy
of non-rigid registration methods on the basis of carefully delineated image
structures.

1 http://www.nirep.org/
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5.6 Application

There are numerous applications of image registration ranging from clinical
applications and trials to image registration as a tool for other image analysis
tasks such as segmentation or shape modeling.

5.6.1 Intra-Subject Registration

Intra-subject registration applications can be divided into registering images
of the same subject acquired using different imaging modalities (multi-modal
registration or fusion) or at different time points (serial registration).

Multi-Modal Image Fusion

Medical imaging modalities can be broadly distinguished into two categories:
anatomical and functional. In many clinical applications, imaging modalities
from both categories must be combined for an effective diagnosis. One such
example is the registration of PET with either CT or MRI for applications
in oncology. Here, the PET is used to determine the tumor activity and the
CT/MRI allows accurate localization of this activity. Similarly, in many neu-
rological diseases the metabolism in the brain is altered by the disease. This
can be detected using PET and localized using CT/MRI. Multi-modal regis-
tration is usually based on features such as points and surfaces [43] or uses
information theoretic similarity measures such as mutual information [72,73].

Quantification of Changes

A key application of image registration is the alignment of images from the
same subject acquired at different time points. The difference between succes-
sive time points can range from fractions of a second (e.g., cardiac motion) to
several years (e.g., longitudinal growth, atrophy). The comparison of images
across time enables the quantification of the anatomical differences between
the time points of measurement. These differences can have a number of rea-
sons, such as bulk patient motion, organ motion (e.g., respiratory or cardiac
motion), growth, atrophy, or disease progression.

In neuroimaging, image registration has been widely used for the detec-
tion of changes in the human brain: For example, the rigid registration of
serial MRI is well suited for the visualization of subtle changes in the brain
[50,51]. Moreover, it is also possible to quantify the amount of changes by using
non-rigid registration of serial MRI [74, 75]: When two images are related to
each other by a non-rigid transformation, the target image is subjected to
local deformation, which locally changes the volume of regions in the coordi-
nate space. The local volume change in an infinitesimally small neighborhood
around any given point is represented by the local Jacobian determinant of
the coordinate transformation at that point
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If there is no local volume change, J = 1. If there is a local volume decrease
or increase, J < 1 or J > 1, respectively. Thus, local volume change can be
estimated directly from the deformation field that aligns baseline and follow-
up images. In such a way, growth patterns have been mapped in 4D (3D
plus time) in older children [76,77], and clinically useful information has been
extracted in conditions such as Alzheimer’s Disease [78, 79], and imaginative
studies of neurogenetics and development have been undertaken [80].

5.6.2 Inter-Subject Registration

In cross-sectional studies, non-rigid registrations between images of different
subjects can be used to characterize the differences between populations or
the differences between an individual and a reference image. Approaches that
focus on the transformations in this way have been referred to as Voxel-Based
Morphometry (VBM), Deformation-Based Morphometry (DBM) or Tensor-
Based Morphometry (TBM).

In a simple cross-sectional study, for example, where two clinical groups
are to be separated, it is possible to non-rigidly register all the images to a
reference image. If the non-rigid registration only accounts for global shape,
differences methods such as voxel-based morphometry [81] can be used to
investigate the differences in the probabilistic segmentations. If, however, the
non-rigid registration also accounts for local shape differences, the differences
between the subjects are encoded in the resulting transforms and their prop-
erties can be used to identify group differences. Such approaches usually
use properties such as the Jacobian of the deformation fields as defined in
eq. (5.25) to analyze these differences and is often referred to as DBM or
TBM [82].

Segmentation

The amount of data produced by imaging increasingly exceeds the capacity for
expert visual analysis, resulting in a growing need for automated image analy-
sis. In particular, accurate and reliable methods for segmentation (classifying
image regions) are a key requirement for the extraction of information from
images, cf. Chap. 11, page 279. A common approach to automatic segmenta-
tion is atlas-based segmentation in which an anatomical atlas is registered to
an individual’s anatomical image [83, 84]. By transforming the segmentation
of the atlas into the coordinate system of the subject, one can obtain a seg-
mentation of the subject’s image. Errors in the registration process will affect
the accuracy of the propagated segmentation.



148 D. Rueckert and J.A. Schnabel

More recently, it has been shown that using multiple atlases and com-
bining the multiple segmentations obtained by registration, random errors in
the registration can be compensated for, resulting in an improved segmenta-
tion [85]. Using this method, each atlas is registered to the subject in question.
The resulting transformation is then used to transformation the atlas seg-
mentation into the subject’s coordinate system. By applying decision fusion
techniques at every voxel in subject space, e.g., using the vote rule [86] or
Simultaneous Truth And Performance Level Estimation (STAPLE) [87], an
average segmentation can be generated (Fig. 5.2).

Shape Modeling

Statistical models of shape variability have been successfully applied to
perform various analysis tasks in 2D and 3D images. In particular, their appli-
cation for image segmentation in the context of Active Shape Models (ASMs)
has been very successful [88]. In building those statistical models, a set of
segmentations of the shape of interest is required as well as a set of land-
marks that can be unambiguously defined in each sample shape. However,
the manual identification of such correspondences is a time consuming and
tedious task. This is particularly true in 3D where the amount of landmarks
required to describe the shape accurately increases dramatically as compared

Fig. 5.2. Example of multi-atlas segmentation in brain MRI [85]. (a) Normal elderly
subject and (c) corresponding segmentation. (b) subject with Alzheimer’s Disease
and (d) corresponding segmentation. Despite the significant differences between nor-
mal and pathologic anatomy, the segmentation produced by multi-atlas fusion is
stable
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to 2D applications. While several approaches have been proposed that aim at
addressing this problem by automating the process of correspondence estima-
tion [89–91], the problem of finding correspondences for the construction of
shape models can be solved via registration. For example, Frangi et al. [92]
have proposed an procedure in which an atlas or reference shape is registered
to all other shapes and the landmarks of the atlas are propagated to all other
shapes. The registration used for this purpose can be either surface-based [93]
or image-based registration [92].

A complementary approach to building statistical shape models of anatom-
ical variability is the concept of statistical deformation models, which is closely
related to the rapidly developing discipline on computational anatomy pio-
neered by the work of Grenander and Miller [94]. One of the key ideas here
is to carry out a statistical analysis directly on the deformation fields that
describe a dense correspondence between the anatomies. There are two dis-
tinct advantages of this approach: First, the resulting statistical models are
not limited to single anatomical structures but can instead describe the intra-
and inter-structure variability of the anatomy across a population. Second, the
deformation fields can be obtained by non-rigid registration, thereby eliminat-
ing the need for any segmentation. Such an approach has been developed by
several groups [95–97].

5.7 Summary and Conclusions

In this chapter, we have presented a number of theoretical and practical
aspects of medical image registration. Medical image registration is widely
used, both in clinical applications (e.g., image fusion, image-guided surgery)
as well as a tool for biomedical research (e.g., to study populations in clinical
trials). The components of a registration method very much depend on the
clinical application at hand: The majority of applications in clinical practice
uses rigid or affine registration where automated solutions have been shown
to be accurate, robust and fast. The transformation model in rigid/affine
registration is obviously fixed, but current developments focus on finding bet-
ter registration bases (similarity measures, in particular for multi-modal or
contrast-enhanced imaging), as well as faster optimization techniques for auto-
mated real-time image guidance. There is an increasing interest in non-rigid
registration for clinical applications. However, automated solutions have not
yet reached the same degree of maturity as for rigid or affine registrations.
non-rigid registration is still an area of on-going research and most algorithms
are in the stage of development and evaluation.

A particular development focus is on diffeomorphic transforms, which
allow a one-to-one (invertible) mapping between different subjects, and more
accurate intra-subject registration in dynamic imaging, such as contrast-
enhanced MRI. For physically more plausible transforms, local constraints
are investigated in an attempt to preserve volume locally, and ensure smooth
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deformation fields. Biomechanical motion models are limited by lack of
a priori knowledge about patient-specific tissue properties, and are generally
computationally very complex. The lack of a generic gold standard for assess-
ing and evaluating the success of non-rigid registration algorithms is mostly
performed using volume overlaps, sparse landmark distances or surface dis-
tances of delineated structures, but non-rigid validation methodologies have
been emerging using biomechanical motion or disease simulations [68, 70] or
physical phantoms [98] for specific clinical applications.
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Texture in Biomedical Images

Maria Petrou

Summary. An overview of texture analysis methods is given and the merits of
each method for biomedical applications are discussed. Methods discussed include
Markov random fields, Gibbs distributions, co-occurrence matrices, Gabor functions
and wavelets, Karhunen–Loève basis images, and local symmetry and orientation
from the monogenic signal. Some example applications of texture to medical image
processing are reviewed.

6.1 Introduction

Texture is variation of the data at scales smaller than the scales of interest.
For example, if we are interested in identifying the human brain in a Mag-
netic Resonance Imaging (MRI) image, any variation in the gray values of the
imaged brain may be thought of as texture. According to this definition, even
variation due to noise may be thought of as texture. In the computer graphics
community this is acceptable, but among image processing and pattern recog-
nition researchers, texture is a property intrinsic to the imaged object and not
something caused by the instrument with which the image has been captured,
like noise is. Once we accept texture to be an intrinsic property of the imaged
object, then texture becomes a valuable cue in relation to the recognition of
this object. For example, the texture created by the sulci helps us to identify
the brain as such.

The most important characteristic of texture is that it is scale dependent.
Different types of texture are visible at different scales. For example, if we
look at a section of the human brain through a microscope, we are going to
see different structure of the tissue than the sulci mentioned above. In order
to be able to use texture to identify different types of tissue or different human
organs, we must be able to measure it in a repeatable and reliable way. In
other words, it is necessary to be able to characterize texture in an objective
way, independent of human perception and visual abilities. In this chapter,
we first present a brief overview of texture quantification methods and discuss
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the peculiarities of texture analysis in relation to biomedical images. Then
some examples of successful use of texture cues in medical applications are
presented.

The simplest problem one tries to solve using texture is to identify the class
of a texture swatch. In this case, one assumes the availability of a library of
textures of different classes, all captured under the same imaging conditions as
the texture swatch in question. The issue then is to quantify the query texture
in the same way as the library textures have been quantified, and compare
the extracted values with those of the library textures, to assess similarity or
divergence. The query texture is identified as of the same class as the texture
in the library with the most similar numerical values.

The second, and most difficult problem one has to deal with, is that of
simultaneous isolation and characterization of the texture. This problem arises
very often, as in the same image, different depicted objects may be character-
ized by different textures. The problem becomes complicated as soon as one
realizes that the borders between the different textures are often diffuse, with
the textures blending gradually into each other, and that the shapes of the dif-
ferent texture patches are not necessarily regular and sometimes the patches
are not even extensive enough for the texture to be easily characterizable by
automatic methods.

Next, we shall discuss these two problems in turn.

6.2 Characterizing the Texture of Swatches

6.2.1 From Grammars to Markov Random Fields

Texture may be characterized by structural or statistical methods. A struc-
tural method identifies a texture primitive pattern and the rules by which this
is repeated to create the viewed appearance. This approach leads to the so
called grammars for texture description. Such methods are of little interest to
biomedical applications, but they tend to be appropriate for man-made tex-
tures that present some regularity. Statistical approaches are of more interest.
Figure 6.1 shows schematically how natural the transition from deterministic
methods to statistical methods is. In this example, we may easily infer in the
first case that a possible texture primitive is a 1 surrounded by four 0s in its
four immediate neighboring positions. In the second case, we may work out
the pattern by inspecting the instantiations of this type of neighborhood we

Fig. 6.1. Deterministic versus probabilistic
context dependence. Left : It is obvious that the
missing value should be 1. Right : The missing
value has probability 58% to be 1 and
probability 42% to be 2
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have. To avoid border effects, we may ignore the pixels in the periphery of the
image. We can see then that, in 7 out of the 12 cases, the cross arrangement
of four 0s indicates the presence of a 1 in the middle, while in the remaining
5 cases, it indicates the presence of a 2. We may then say that the missing
value is a 2 with probability 42% and a 1 with probability 58%. Such texture
modeling is known as Markov Random Field (MRF) modeling.

In MRF, we model the probability with which the values of the neighbors
determine the value of the pixel in question. The parameters of this modeling
are used to characterize the texture. As the statistics have to be performed
on neighbor value combinations, and as pixels, particularly in medical images,
take up a large number of gray values, one needs a very large sample of the
texture in order to work out these parameters. It is often the case that the
gray values of the pixels are re-quantized in fewer bins, in order to be able to
work out the local patterns.

6.2.2 From Markov Random Fields to Fractals

One of the issues in MRF texture approaches is the definition of the size of
the neighborhood. The neighborhood we considered in the above example was
the smallest possible: only the four immediate neighbors in the grid. However,
neighborhoods may be much larger, to include pixels further away from the
focal pixel, and they may also consist of disconnected pixels, i.e., pixels that
are not physical neighbors in the grid. At the extreme case, all other pixels in
the image may be thought of as neighbors. In that case, the model explicitly
models the dependence of the value of a pixel on the values of all other pixels.
It is as if we are assuming that the value of a pixel is directly influenced by
the values of all other pixels in the image. This is like saying that no matter
how far a pixel is in the image, it has a saying in dictating the value of the
pixel in question. In other words, all scales of influence are important.

Such a model leads to the fractal modeling of texture. Fractal models
assume that at whatever scale the pattern is viewed, it will look the same.
Such models may be relevant in modeling the texture created by vascularity,
since the branches of the vascular tree create smaller branches and those
create smaller branches and so on, so that a snapshot of this pattern looks
the same at whatever scale it is viewed. Indeed, fractal models have been
used in medical applications to model such structures. However, they are not
very appropriate as generic texture descriptors, as patterns rarely show such
statistical regularity for a wide range of scales.

6.2.3 From Markov Random Fields to Gibbs Distributions

Going back to MRF texture descriptors, and given that the value of a pixel
is modeled as depending on the values of the neighbors, which have values
that depend on their own neighbors, which also have values that depend on
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their own neighbors, and so on, the idea that the value of a pixel is influenced
by the values of all other pixels does not seem that absurd. The difference is
that fractal models model this global dependence explicitly, and with a model
that has a particular form across the scales, while MRF models model this
global dependence implicitly. It is obvious then that an MRF formulation may
lead to a formulation that models the joint probability density function of a
particular combination of values of the whole image to arise. Indeed, under
certain conditions, an MRF modeling is equivalent to a Gibbs modeling that
expresses exactly that: the joint probability density function of the whole grid
of values.

This model is expressed in terms of the so called clique potentials. A clique
is a set of grid positions that are neighbors of each other according to the
Markov model, and, therefore, directly influence each other’s value accord-
ing to this model. In the example of Fig. 6.1, the Markov neighborhood we
used consisted of the four immediate neighbors of the pixel. Then the only
cliques one can have are pairs of pixels next to each other either vertically
or horizontally. In the corresponding Gibbs formalism, there are parameters
which multiply either the product or the difference of the pairs of values of
neighboring pixels, to express their dependence. These parameters character-
ize the texture and they correspond to the Markov parameters of the MRF
formalism.

6.2.4 Co-occurrence Matrices

Gibbs distributions as such have not been very helpful in texture description.
They are, however, very helpful in other problems of medical image processing,
like image restoration or image matching. What is important for us to consider
here is how we moved from the local description (neighborhood dependent
modeling) to a global (joint probability) and that from this global description,
we may try to go back to local descriptors, but by a different route. Indeed, we
may think of an MRF formalism as the calculation of a marginal distribution:
from the global joint probability density function of the whole configuration
of gray values, we calculate the local conditional probability of the values
of a pixel, given the values of its neighbors. It is very logical then to define
other marginals that may do even a better job than the MRFs. This naturally
leads to the definition of the so called co-occurrence matrix. From the global
joint probability density function, we may move to the joint probability of the
values of a pair of grid cells, in a particular relative position from each other.
This joint probability is computed directly from the data, in the form of a
double entry table: each cell of this table corresponds to a pair of gray values;
the value of the cell tells us how many pairs of these values in the particular
relative position were identified in the image.

For the example of Fig. 6.1, this table will be 3× 3 in size, as the possible
values of a pixel are only three. Figure 6.2 shows some co-occurrence matrices
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Fig. 6.2. The concept of co-occurrence
matrix. Four co-occurrence matrices
of the image at the top, for pixels in
relative positions (b) [(i, j), (i + 1, j)],
(c) [(i, j), (i, j + 1)], (d)
[(i, j), (i + 2, j − 2)], and (e)
[(i, j), (i + 2, j + 1)]. In the bottom
row the co-occurrence matrices
normalized so that their elements add
up to 1 and, so, they can be treated
like discretized probability density
functions

of this image, constructed for the following four relative positions of grid
cells: (a) next door neighbors along the horizontal direction, (b) next door
neighbors along the vertical direction, (c) two positions in the direction of the
main diagonal once removed, and (d) pairs of positions expressed as (i, j) and
(i + 2, j + 1). These co-occurrence matrices are directional. It is possible to
consider rotationally symmetric matrices, where the relative distance between
two pixels is considered instead of their relative position. In either case, we
can construct as many co-occurrence matrices as we like. These are bulky
texture representations, that may not be used directly. It is a common practice
to use them in order to compute image characteristic features from them.
For example, if C(i, j) is a co-occurrence matrix and we compute the sum∑

i

∑
j |i−j|C(i, j), we shall have a measure of image contrast for the relative

positions used to construct the matrix, since indices i and j refer to the gray
values in that pair of positions, and C(i, j) tells us how frequently this pair
of values is observed. For the co-occurrence matrices of Fig. 6.2, the values of
this feature are: 1.41, 1.45, 0.38, and 1.47, respectively.

6.2.5 Generalized Co-occurrence Matrices

All the methods discussed so far utilize the gray values of the image. It is
possible, however, to transform the image before any of the above methods is
used. An image transform does not create any new information. It does, how-
ever, make explicit information that is only implicit there. A simple image
transform is to compute the magnitude and orientation of the local gradient
vector at each pixel position. So, each pixel now carries three numbers: (a)
its gray value, (b) its gradient magnitude, and (c) its gradient orientation,
measured with respect to some reference direction. One may envisage then



162 M. Petrou

marginals that measure the joint probability density function of any combi-
nation of these pixel values. This leads to the definition of the generalized
co-occurrence matrices [1]. Such a matrix may present the number of pairs of
pixels that are at a particular relative position from each other, one has this
gray value, the other has that gray value, one has such gradient magnitude,
the other has such gradient magnitude, and the relative orientation of their
gradient vectors is such. The obvious consequence of such a generalization
is that the co-occurrence matrix now is multi-dimensional. In this particular
example, we need two indices for the gray values of the two pixels, we need
two indices for their gradient magnitudes and we need one index for the rela-
tive gradient orientation of the two pixels. This means that the co-occurrence
matrix is now five-dimensional. The issue is that gradient magnitude and ori-
entation are continuous variables, so we have to decide what we mean by
“index”corresponding to these variables. The way to deal with this problem is
to quantize these values to a small number of levels, and use them as indices.
The small number of levels is necessary also in order to keep the size of the
co-occurrence matrix down.

6.2.6 Orientation Histograms

Alternatively, one may work out the marginal distribution of gradient vector
orientations. This can be done counting the number of gradient vectors per
orientation. Again, language must be used carefully: orientation is a contin-
uous variable and one obviously has to use bins to quantize the orientations
into a finite number. This way, the so called orientation histogram is created.
For a 2D image the orientation histogram is 1D since one angle is enough to
measure orientation. For 3D data, like the data obtained from various types
of tomography, an orientation is defined by two angles, the polar and the
azimuth angle [2]. The orientation histogram then is 2D. In this case care
should be taken so that the solid angle represented in the 3D space by each
bin is the same for all bins.

Often, for visualization purposes, the orientation histogram is presented
in polar coordinates (Fig. 6.3). It is very easy then at a glance to identify data
anisotropies and their direction. For example, if the texture is isotropic, the
orientation histogram of the 2D image will resemble a circle and for 3D data a
sphere. If the data are anisotropic, the orientation histogram will be elongated
along the direction of maximum image variation.

In either case, features may be computed from the orientation histogram
to characterize its shape and thus characterize the texture to which it corre-
sponds. These features may be computed from the bin values, if we treat them
as the samples of a function. So, their standard deviation or the ratio of the
maximum over the minimum value of the function are useful. Other features
may be the ratio of a particular pair of values of this histogram/function.
An alternative way to see the histogram, when plotted in polar coordinates,
is to view it as a shape that has to be characterized by a few numbers.
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Fig. 6.3. Orientation histogram. (a) An image with the gradient vectors associated
with its pixels. (b) The orientation histogram of this image with 8 bins. In each
bin we count the number of gradient vectors that have orientation in the range of
values of the bin. (c) The orientation histogram may be visualized as a function
plotted in polar coordinates. The radius of the function along the orientation that
corresponds to the center of each bin is equal to the value of the bin. Looking at
this representation we immediately infer that this image is anisotropic, with strong
variation along direction 22.5o with respect to the reference direction

These numbers, could be, for example, the coefficients of the expansion of
this shape in terms of spherical harmonics, that could be used as texture fea-
tures. Yet another way to view the orientation histogram is like a probability
density function and compute its various moments as features of the texture
it represents.

6.2.7 Textons

Gradient magnitude is a measure of the first order image differences. One
may also use filters that respond to second image differences, i.e., they detect
lines or ribbons. A combination of such filter outputs may be used and a
statistical approach may followed to identify representative outputs, which
are called textons [3]. The similarity then of the outputs of the same filters
when applied to a test image with those of the prototypes identified may be
used to characterize the image.

6.2.8 Features from the Discrete Fourier Transform

Another obvious transform before proceeding to quantify texture is to trans-
form the image to the spatial frequency domain. Indeed, the Discrete Fourier
Transform (DFT) identifies the frequency content of an image. In general, the
DFT is complex, but we usually adopt its magnitude, which is known as the
power spectrum. The power spectrum may help us identify the basic period-
icities that are present in the texture. For example, if it contains spikes at
some frequencies, the implication is that some basic structure, not necessarily
discernible by the human eye, is repeated in the data with that periodicity.
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We may wish to analyze the frequency content of the image in terms of dif-
ferent frequency ranges (bands). Then, it is necessary to isolate different bands
in the frequency domain and work out image characteristics that correspond
to these bands. This can be done with the help of some window, centered at
a particular frequency, which isolates the required band. The most commonly
used window is the Gaussian, because it does not create artifacts in the image
(Fig. 6.4).

The DFT of the image is multiplied with the appropriate masking win-
dow to isolate the right frequency band, and the result is Fourier transformed
back. The resulting “image” contains only characteristics that have frequen-
cies in the selected bands. We may then compute features from them to
characterize the texture. The most commonly used feature is the sum of the
squares of the values of the output image in order to find its energy in the
particular frequency band. Doing this systematically, for all bands that are
needed to cover the full frequency domain of the input image, will yield a
feature vector, the components of which are the components of the energy of
the input image in the different bands.

We must remember that multiplication in the frequency domain corre-
sponds to convolution with the inverse DFT of the used filter in the spatial
domain. We must also recall that the inverse Fourier transform of a Gaussian
is also a Gaussian, with standard deviation the inverse of the standard devi-
ation of the Gaussian in the frequency domain. This immediately leads to
the idea that the features we compute, by multiplying the DFT of the image
with a Gaussian and inverting the result back to the spatial domain, are not
only localized in frequency, but also in space, since convolution of the image
with a Gaussian is effectively a way of isolating part of the image around one
pixel at a time. This way of interpreting the approach naturally leads us to
the second problem of texture, namely that of the simultaneous segmentation
and recognition of textures.

ωx

DFT of the
image

ωy

take
inverse
DFT

image with
frequencies
only in the
selected band

multiply

Fig. 6.4. Frequency band splitting. The DFT of an image may be multiplied with a
masking filter to isolate the frequency content of the image in a certain band. The
mask we use here is a Gaussian, with elliptical cross section. We have to make sure
we use a pair of such masks symmetrically placed about the (0, 0) frequency, so that,
when we take the inverse DFT, we obtain a real, as opposed to a complex, output
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6.3 Simultaneous Texture Segmentation
and Recognition

The simultaneous segmentation and recognition of a texture requires the cal-
culation of local features. The natural way to proceed is to consider small
sub-images around each pixel and compute the features we wish to compute
inside these subimages, while assigning the result to the central pixel. This
brute force approach allows one to generalize easily all methods discussed in
the previous section, for use in the calculation of local features.

One has to be careful, however, particularly if one is computing statistical
features (as is usually the case): one needs a sufficiently large sub-image in
order to have enough pixels to compute reliable statistics; one also needs
a small enough sub-image in order to avoid interference between different
textures. This is the well known aperture problem in image processing, for
which there exists no solution. Every time, only a compromise in the choice
of the size of the local window is reached.

Features that are considered inappropriate for such a treatment are
features that require particularly intensive statistics, like MRFs and co-
occurrence matrices. As the resolution required in medical applications is
measured in millimeters, the decision whether we have enough samples for
the statistical calculation depends on the resolution of the sensor. For exam-
ple, a 2D Magnetic Resonance Imaging (MRI) image with 1mm resolution per
pixel allows us to have one hundred pixels inside 1 cm2. However, if the data is
3D, the same resolution allows us to have one thousand samples inside 1 cm3.
Depending on the method we use, one hundred points may not be enough,
but one thousand points may be plenty.

To improve the chances of reliable statistics, we re-quantize the number
of gray levels. Typical medical images are 12-bit and often 16-bit. Typical
images for other applications are 8-bit. Reducing the medical images to 8-bit
is not adequate for computing reliable statistics for co-occurrence matrices.
The number of gray levels has to reduce by at least another order of magnitude
in order to have enough points to populate all cells we use. For example, if we
have only ten gray levels, the co-occurrence matrix is 10× 10, i.e., it consists
of one hundred cells. In 2D, the hundred samples of 1 cm2 are far too few
to populate one hundred cells, given that for a co-occurrence matrix of fixed
relative position, at most one hundred pairs of pixels may be created. In 3D,
the one thousand samples may be just about enough. For a co-occurrence
matrix that considers pairs of pixels in fixed relative distance from each other,
things are better, as each pixel may be used to create several pairs, depending
on the distance considered. In the simplest of cases, where the distance is 1,
each pixel contributes to two pairs (not four, because we do not want to count
each pair twice) and this may produce just about acceptable statistics from
the samples of 1 cm2.

Even with only ten gray levels, the MRF parameters cannot be estimated
reliably: in the simplest of cases, where only the four immediate neighbors of
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a pixel are considered, there are 104 possible combinations of neighborhood
values. For each one such combination, the statistics of the possible values
of the central pixel have to be worked out. This is not possible, so MRF
and directional co-occurrence matrix approaches are rather excluded from
localizing the calculations. The approach that uses the orientation histogram
may be localized, if we are careful in selecting the number of histogram bins.
We have to make sure that the bins are not too many for the number of
samples we have [4].

These problems do not arise if one uses frequency-based features to charac-
terize the image locally. The use of a Gaussian filter in the frequency domain is
known as expansion of the image spatio-frequency content in terms of Gabor
functions. Once the process depicted in Fig. 6.4 has been repeated for several
frequency bands, each image has been analyzed in a stack of new images, one
for each band used. So, each pixel now carries a vector of values, one for each
frequency band. These values may be used to cluster the pixels in a feature
space and identify clumps of pixels with similar values, indicating that they
belong to the same type of region.

This approach does not necessarily lead to spatially coherent clusters of
pixels. Such clusters of pixels are recorded by the so called mean shift algo-
rithm, which clusters the pixels in a spatio-feature space. In other words, if
there are features constructed from L bands, the pixels are characterized by
L+ 2 numbers, their values in the L bands plus their two spatial coordinates
(or L+ 3 numbers in the case of volume data).

An alternative to Gabor functions are the wavelets. Wavelets also form
bases for the spatio-frequency domain, allowing the analysis of an image
in a stack of images that contain information localized in space and in fre-
quency. The difference with Gabor functions is that wavelets allow the trade off
between accuracy in the localization in space with accuracy in the localization
in frequency [5–7].

6.3.1 From Spatio-Frequency to Spatio-Structural Space

All methods we discussed so far treated texture either as a statistical variation
in the data, or as a variation with some repetition that may be characterized in
the frequency domain. However, texture manifests itself also as a structure in
the data. We touched upon this when we discussed the deterministic textures,
where a texture primitive may be considered as repeated regularly, according
to some rules (Fig. 6.1). The local structure of the data, however, may be
captured by expanding the image locally in terms of some appropriate basis.
The frequency content of the image is captured by expanding the image locally
in terms of an appropriate spatio-frequency basis, either this is called Gabor
functions or wavelets. In a similar way, the spatio-structural content of the
image may be captured by using an appropriate basis too. In [5, 8], such a
basis is constructed with the help of Walsh functions [9]. In fact, in [5] this
space is referred to as the “what-looks-like-where” space. An incomplete such
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basis may be formed by Laws masks [10]. These bases measure the degree to
which the image locally looks like a vertical edge from darker to brighter, a
horizontal edge from darker to brighter, a horizontal edge from brighter to
darker, a corner, etc.

Figure 6.5 shows a complete basis, in terms of which any 3 × 3 image
neighborhood might be expanded, and another one, in terms of which any
5 × 5 image neighborhood might be expanded. The expansion of the image
patch in terms of one such basis yields the coefficients of the expansion which
tell us how much the local patch looks like the corresponding patch of the
basis. Note that in both cases the first coefficient refers to the flat patch, i.e.,
it yields the local average of the image. This coefficient is of no relevance to
texture, so it may be ignored, or used to normalize the other coefficients, so
they become invariant to local image brightness. The normalized coefficients
may be used as a feature vector to characterize the central pixel of the patch.
They may even be combined in a unique way into a single scalar, so one does
not have to deal with a multi-dimensional feature space. This was the case
presented in [8], where the normalized coefficients were quantized and treated

W0

W0

W1

W2

W0

a b

W1

W2

W3

W4

W1 W2W0 W1 W2 W3 W4

Fig. 6.5. Bases constructed using the Walsh functions. A complete basis in terms
of which any (a) 3 × 3 or (b) 5 × 5 image patch may be expanded. The coefficients
of the expansion may be used as texture features. Symbol Wx, with x ∈ {0, . . . , 4},
indicates the Walsh function along the left that has to be multiplied with the Walsh
function along the top, in vector outer product manner, to create the corresponding
basis image
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as the digits in a binary or a hexadecimal system, to form scalars. The result
was called “structural image”.

It is obvious that such an approach can be used either to classify swatches
of texture, or to characterize an image locally so it can be segmented into
textures. It is also obvious that the larger the local patch considered, the less
appropriate this method becomes for medical images, as the basis images used
contain several straight lines, that extent to the full width (or height) of the
basis image, as well as corners, characteristics that are not often encountered
in medical images (Fig. 6.5b). The question then arises: is it possible to con-
struct a basis that is more appropriate for the type of data we have? The
answer of course is yes, and this brings us back into the realm of statistics.

6.3.2 Statistical Spatio-Structural Space

If we have a collection of samples, we can always construct a basis in terms of
which any sample of the collection can be represented as a linear combination.
There are various methods for that. The simplest is to use clustering, as in
[3]. The most well known method, however, is called Principal Component
Analysis (PCA). This method is also known as Karhunen–Loève Transform
(KLT). Other more complicated methods have also been developed, like, for
example, Independent Component Analysis (ICA) and Non-negative Matrix
Factorization (NMF). PCA constructs an orthogonal basis of uncorrelated
components, while ICA constructs a basis of independent components. Once
the basis has been constructed, any image patch of the same size may be
expressed as a linear combination of the basis images. The coefficients of the
expansion may be treated as the feature vector of the central pixel of the
patch (Fig. 6.6).

This approach allows the creation of bases that are appropriate for the
analysis of images of a certain type, e.g., mammograms. One may consider,
however, the extraction of some more generic image characteristics, like, for
example, quantities such as local contrast, local dominant orientation and
local symmetry, which are not associated with a particular image type. Such

Fig. 6.6. Constructing a basis using
statistics. Once a basis of local image
patches has been identified, any patch
of the test image may be expanded
in terms of this basis. The coefficients
of the expansion form the feature
vector that is associated with the
central pixel of the test patch
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features may be extracted with the help of the frequency domain, although
they are not frequency-type features. This leads to the use of the so called
monogenic signal [11].

6.3.3 Monogenic Signal

The monogenic signal allows us to characterize an image locally, by its local
contrast, local dominant orientation and local symmetry, without the need
of statistics. Its definition appears to be complicated from the mathematical
point of view, but it is really totally intuitive [9].

Let us start from the local contrast. This can be measured either by the
magnitude of the local gradient vector, or by the second image derivative
along various directions. The orientation may clearly be estimated from the
relative strength of the components of the gradient vector. The local symmetry
requires a little more thinking. A purely symmetric signal has a purely real
Fourier transform, while a purely antisymmetric signal has a purely imaginary
Fourier transform. One may then consider the creation of an appropriate basis
in the Fourier domain, in terms of which the local signal is expanded. The
ratio of the components of this expansion may be treated as a measure of
local symmetry (or antisymmetry).

The first and second image derivative may be computed with the help of
a pair of filters, designed for that job. The filters have to be appropriately
normalized so that the sum of the squares of the elements of each is 1. An
example of such a pair is (1/

√
2, 0,−1/

√
2) and (−1/

√
6, 2/

√
6,−1/

√
6). Note

that the first one is an antisymmetric filter, so it has a purely imaginary
Fourier transform, while the second is a symmetric filter, so it has a purely
real Fourier transform. The sum of the squares of the elements of each filter
is 1, so these two filters constitute an orthonormal basis in the complex Fourier
domain. Such a pair of filters is known as a Hilbert transform pair. If we
convolve a 1D signal with these filters, the output of the first one will be
an estimate of the local first derivative of the signal, while the output of the
second one will be an estimate of the local second derivative of the signal. The
sum of the squares of the two outputs will be the total local signal contrast.
The angle of the inverse tangent of the ratio of the two outputs will be a
measure of local symmetry (Fig. 6.7).

Generalization to 2D is straightforward for the symmetric filter. However,
in 2D we can have two antisymmetric filters, one in each direction. The outputs
of these three filters constitute the monogenic signal. The outputs of the three
filters squared and added will yield the local image contrast. The angle of the
inverse tangent of the ratio of the outputs of the two antisymmetric filters will
be the local orientation (naturally, since the outputs of the antisymmetric filter
along the two orientations correspond to the components of the local gradient
vector). The angle of the inverse tangent of the ratio of the square root of the
sum of the squares of the outputs of the two antisymmetric filters (=gradient
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Fig. 6.7. Measuring local image symmetry. A signal may be neither purely symmet-
ric, nor purely antisymmetric. Angle Φ may be used to characterise the local signal
symmetry. This angle may be computed as Φ = tan−1 A

S
, where A and S denote

the output of convolution with the antisymmetric and symmetric filter, respectively.
In 2D, as we have two antisymmetric filter outputs, one along each direction, the
numerator in this expression is replaced by

√
A2

1 + A2
2, where A1 and A2 denote the

output of the first and second antisymmetric filter, respectively

vector magnitude), over the output of the symmetric filter, will be a measure
of local symmetry.

The monogenic signal is computed via the frequency domain, with the
help of the Riez transform and it consists of three components that lead to
the estimation of these three numbers for each pixel, namely local contrast,
local orientation, and local symmetry.

6.3.4 From Monogenic Signal Back to Gabor Functions

We shall now close the loop by going back from the monogenetic signal to
the Gabor functions: the two simple example Hilbert pair filters we saw in
the previous section, for the calculation of the first and second order signal
derivatives, are very specific. Local image contrast and local image symmetry
may be computed in different ways too. For example, Fig. 6.8 shows a pair
of symmetric-antisymmetric filters which may be used to characterize the
signal locally in terms of symmetry (Fig. 6.7) and in terms of the presence of
this type of ripple in the signal. Such filters may be created by considering
specific bands in the frequency domain, isolated, for example, with the help
of a Gaussian.

This leads us back to the use of Gabor functions to characterize the signal
locally. The only difference now is that we consider pairs of such functions,
one symmetric and one antisymmetric, that allow us not only to measure
the presence or not of the particular type of ripple in the signal, but also
to work out the local orientation of such a ripple and the local symmetry.
This leads to an enhanced way of characterizing the image locally, in terms
of frequency content (different pairs of filters will give us the content of the
image in different bands), and in terms of its structural content, measured by
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Fig. 6.8. A Hilbert pair of filters. A pair of symmetric-antisymmetric filters that
can be used to estimate how much the local image structure resembles a ripple of
such frequency, how much this ripple is symmetric or antisymmetric and what its
local orientation is

the local contrast (also referred to as local image energy), local orientation,
and local symmetry.

6.3.5 Beyond Spatial Patterns into Gray Value Distributions

All methods discussed above took into consideration the relative values of
the pixels in brightness and in space or in spatial-frequency. If, however, we
accept that the term texture means “variation at scales smaller than the
scale of interest” [5], then we may consider also the case where the pixels do
not show any spatial correlation to form recognizable spatial patterns, either
deterministic or statistical. It is possible then, for different human organs or
different types of tissue to be characterized by different distributions. Then,
we may try to characterize texture from the gray value distributions only.
In this case, neither frequency nor structural features are relevant: the only
thing we have to go about is the gray level distribution of the pixels. This
may be expressed by the local histogram of the pixels that make up a region,
which may be thought of as the discretized version of the probability density
function of the gray image values.

It is customary in ordinary image processing applications to assume that
the gray values of a region are Gaussianly distributed. This, however, is not
the case in medical images. For a start, given that negative values are not
recorded by the sensors, even if there were a Gaussian distribution, its negative
tail would have been curtailed, with the result to have the introduction of
asymmetries in the distribution. Second, if we assume that there is natural
variation of the recorded brightness values due to genuine tissue variation,
there is no reason to expect this variation to be Gaussianly distributed.

One may speculate that subtle tissue changes may manifest themselves in
the tail of the distribution, i.e., in the asymmetry of the gray value distribution
and its departure from Gaussianity. Asymmetry of a distribution is measured
by its third moment, otherwise known as skewness, while the bulginess of
a distribution is measured by its fourth order moment, otherwise known as
kurtosis. Note that for a Gaussian distribution, the value of the skewness
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Fig. 6.9. Statistical edge detection. If
we have some prior knowledge of the
existence of a boundary, we may slide
a bipolar window orthogonal to the
hypothesized direction of the
boundary and compute the exact
location of the boundary as the place
where the difference in the value of the
computed statistic is maximal
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is zero and the value of the kurtosis is expressible in terms of the standard
deviation of the distribution.

This leads to the idea of being able to characterize a tissue by the skewness
or the kurtosis of the distribution of the gray values of the pixels that make
it up, and use this to segment tissues of different types (Fig. 6.9).

As this method relies again on the calculation of statistics, and actually
high order statistics that require several samples to be estimated reliably, one
has to be careful on the number of pixels inside the local window used. So,
to have enough points inside the local window, in order to compute reliably
the high order statistic, we have to use 3D data, as 2D data will require far
larger windows, leading to unacceptably low boundary resolutions. One way to
reduce this requirement is to either interpolate spatially the data, so we create
extra samples which carry values relevant to neighboring pixels, or to use a
kernel-based approach. In a kernel-based method, we place a kernel at each
sample we have, somehow to spread its effect. Summing up the continuous
kernels associated with all samples leads to a much smoother representation
of the data, from which reliable statistics may be computed (Fig. 6.10).

6.4 Examples of the Use of Texture Features
in Biomedical Applications

6.4.1 Mammography

Texture has been used extensively in biomedical applications. For example, in
mammography it has been used not only to help the recognition of tissue type,
but also to help image registration [12–14], cf. Chap. 13, page 329. In [15] and



6 Texture in Biomedical Images 173

Fig. 6.10. Kernel-based estimation. Every straight line represents a datum. If we
use directly the raw data, we have a spiky distribution. If we associate with each
datum a smooth bell-shaped kernel and sum up at each point of the horizontal axis
the values of the kernels that pass through that point, we get the thick black line,
which is much smoother than the distribution of the original discrete points

[16] the method of textons was used to classify mammographic parenchyma
patterns, while in [17] wavelet features were used to characterize breast
density. Breast density was also characterized with the help of directional
co-occurrence matrices [18], while in [19] breast density was characterized by
the construction of gray level histograms from multiple representations of the
same image at various scales.

6.4.2 Brain Image Data

In general, one may distinguish two broad approaches, which correspond to
the two problems we discussed above, namely characterization of already seg-
mented tissue, assumed to have uniform texture, and segmentation of tissue.
In most papers the problem considered is the first one. This is particularly
relevant to brain image data analysis, and more specifically to the charac-
terization of degenerative conditions that affect the whole brain. The second
approach has been used mainly to segment local tissue degeneration, like for
example the growth of a tumor.

An early work in the characterization of degenerative brain states is that
presented in [20]. In [21] the authors used texture features that were rota-
tionally sensitive, computed directly from the PET sinograms of Alzheimer’s
patients, to distinguish between data that referred to patients and normal
controls. The idea had come from an earlier study which had shown that the
brains of patients with degenerative disorders tend to be more isotropic than
the brains of normal people [2].

In [22] measures of texture anisotropy were used in order to character-
ize the brains of schizophrenics from MRI data. These authors showed that
at the resolution scales of 1–2mm, the inferior quarters of the brains of
schizophrenics show statistically significant structural differences from the
brains of normal controls, in the volume structure of the tissue of the gray
matter. To show that, the authors used the 3D orientation histogram and
they characterized its shape with the help of simple features, like the ratio
of the value of the most populated bin over the value of the least populated
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bin. In [23] it was shown that there exists a strong correlation between the
texture anisotropy features calculated from MRI data and the score of the
patients (and normal controls) in the Mini Mental State examination. This is a
remarkable result, as it shows a correlation between a purely image processing
measurement and the score in a psychological test.

Such global methods, however, treat the whole brain as a unit. The authors
in [22] were able to localize the structural differences between normal controls
and schizophrenics to the inferior quarter of the brain by simply considering
the corresponding slices of the 3D MRI data and calculating the 3D orientation
histogram from them (after the brain parenchyma was manually segmented
and the gradients associated with surface shape, i.e., with the sulci, were
excluded). In the same paper, in order to localize the differences in the gray
matter, a different method was used: the generalized co-occurrence matri-
ces method, for pairs of voxels and the relative orientation of their gradient
vectors. Once such a texture representation is created, and once these repre-
sentations appear to be different between patients and controls, one can trace
back the pairs of voxels that contributed to the cells of the co-occurrence
matrix that made it different from the reference matrix. This way the texture
features that contributed to the detected difference could be mapped back to
locations in the data volume.

Leaving the characterization of manually segmented tissue and moving to
the problem of tissue segmentation, the idea of using high order statistics,
to characterize and segment tissue became possible with the availability of
high resolution 3D data. In [6], the authors were able to show that boundaries
present in the data, but not discernible by the human eye, could become
visible by using the methodology of Fig. 6.9 and computing the skewness inside
each half of the sliding window. These authors, using this approach, identified
boundaries around glioblastomas. In absence of any ground truth, their only
way of checking the validity of their results was to check for consistency:
indeed, the data were consistent across modalities (MRI-T1 and MRI-T2) and
the data showed consistency in the sign of the change as the scanning window
was moving from the interior of the tumor outwards [7]. More recently, in
[24] the authors were able to separate asymptomatic patients of Huntington’s
disease from normal controls, by using high order statistics computed from
segmented layers of the patient’s hippocampus. To enhance the accuracy of
the calculation of the high order statistics, a kernel-based estimation method
was used.

6.5 Discussion and Conclusions

The entire potential of texture-based methods has not yet been fully exploited
in medical applications, although texture has been used in hundreds of papers
on medical image processing.
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A very promising direction of research is that of high order statistics. This
is an important advance, as the human eye is known to have difficulties in
discerning transitions in high order statistics, and the use of such analysis
may help reveal data characteristics which otherwise are not visible. There is,
however, a problem here: if we cannot see these changes in the data, how are
we sure that what we compute is actually there? The quick answer to this is
to perform tests of consistency as it was done in [6, 7]. The real answer will
be given only if major studies are undertaken which follow patients for a few
years and post-mortem pathology results are compared with image analysis
data from the patient’s medical history. Such studies are very challenging and
they are the way forward.

One has to be careful, however, in using texture-based methods: the vari-
ation in the data observed may be due to inhomogeneities and imperfections
in the process of data capture, rather than due to genuine tissue variation.
Indeed, the inhomogeneity of the magnetic field in MRI data collection is well
known. The only way that conclusions based on texture analysis can be drawn
is if the data that refer to patients and controls have been captured by the
same instrument and under the same operational protocol. Assuming that the
generic inhomogeneities of the instrument are the same for all sets of data,
comparison between them then is safe.
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7

Multi-Scale and Multi-Orientation
Medical Image Analysis

Bart M. ter Haar Romeny

Summary. Inspired by multi-scale and multi-orientation mechanisms recognized
in the first stages of our visual system, this chapter gives a tutorial overview of the
basic principles. Images are discrete, measured data. The optimal aperture for an
observation with as little artefacts as possible, is derived from first principles and
leads to a Gaussian profile. The size of the aperture is a free parameter, the scale.
Convolution with the derivative of the Gaussian to any order gives regularized deriva-
tives, enabling a robust differential geometry approach to image analysis. Features,
invariant to orthogonal coordinate transformations, are derived by the introduction
of gauge coordinates. The multi-scale image stack (the deep structure) contains a
hierarchy of the data and is exploited by edge focusing, retrieval by manipulations
of the singularities (top-points) in this space, and multi-scale watershed segmenta-
tion. Expanding the notion of convolution to group-convolutions, rotations can be
added, leading to orientation scores. These scores are exploited for line enhance-
ment, denoising of crossing structures, and contextual operators. The richness of
the extra dimensions leads to a data explosion, but all operations can be done in
parallel, as our visual system does.

7.1 Introduction

The notion of a multi-scale approach has given rise to many discussions. It may
seem a loss of information to blur the image, the computational complexity
increases, and the desired goal should obviously be as sharp as possible. In this
chapter, we explain the notion carefully, based on mathematical and physical
grounds, and give proper answers to such concerns.

There are strong indications that the first stage of our visual perception
system has a large set of filter banks, where not only filters at multiple scales,
but also multiple orientations are present. The receptive fields in the cortex
can be modeled by many functions, e.g., the Gabor functions specifically model
local spatial frequencies, and the Gaussian derivatives model local differential
structure. In the following, we will focus on the Gaussian derivative model.

T.M. Deserno (ed.), Biomedical Image Processing, Biological and Medical Physics,

Biomedical Engineering, DOI: 10.1007/978-3-642-15816-2 7,

c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 7.1. Zoom of an image.
Typically, pixels are measured with
the wrong aperture function, such as
squares, giving rise to spurious
resolution, i.e., sharp edges and
corners that are not in the original
scene. Blurring (squeeze eye lashes)
reduces the artefacts

The expert in medical image analysis has to translate a clinical question
about an image into a practical and robust algorithm. This is typically done
by geometrical reasoning. The extra dimensions of scale and orientation give
a neat opportunity to add extra “language” to this algorithm design process.

7.2 The Necessity of Scale

Multi-scale image analysis is a physical necessity. It is the necessary conse-
quence of the fact that images are measurements (actually often millions of
them). The content of each pixel or voxel is the result of a physical observation,
done through an aperture, the physical opening that takes e.g. the incoming
photons when we measure light. This aperture has to be finite and small, to
have sufficient resolution. But it cannot be made infinitesimally small, as no
photons could be measured anymore. The typical aperture shape in today’s
image acquisition equipment is square, as it is easy to fabricate on a detector
chip, but Koenderink [1] already noted in the eighties that such a represen-
tation gives rise to spurious resolution, non-existing edges and corners. The
effect appears most clearly when we zoom in (Fig. 7.1): the face of Einstein
certainly had no square corners all over and sharp edge discontinuities. So
what is the shape of the optimal aperture?

7.2.1 The Optimal Aperture Function

The optimal shape can be derived from first principles. The derivation below
is based on Nielsen [2]:

• A measurement with a finite aperture is applied.
• All locations are treated similarly; this leads to translation invariance.
• The measurement should be linear, so the superposition principle holds.

These first principles imply that the observation must be a convolution (the
example is for simplicity in 1D):
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h(x) =
∫ ∞

−∞
L(y)g(x− y)dy (7.1)

L(x) is the luminance in the outside world, at infinite resolution, g(x) is
the unknown aperture, h(x) the result of the measurement. The following
constraints apply:

A. The aperture function g(x) should be a normalized filter:∫ ∞

−∞
g(x) dx = 1 (7.2)

B. The mean (first moment) of the filter g(x) is arbitrary (and is taken 0 for
convenience): ∫ ∞

−∞
xg(x)dx = x0 = 0 (7.3)

C. The width is the variance (second moment), and set to σ2:∫ ∞

−∞
x2g(x)dx = σ2 (7.4)

The entropy H of our filter is a measure for the amount of the maximal
potential loss of information when the filter is applied, and is given by:

H =
∫ ∞

−∞
−g(x) ln g(x)dx

We look for the g(x) for which the entropy is minimal given the constraints
(7.2), (7.3) and (7.4). The entropy under these constraints with the Lagrange
multipliers λ1, λ2 and λ3 is:

H̃ =
∫ ∞

−∞
−g(x) ln g(x)dx+λ1

∫ ∞

−∞
g(x) dx+λ2

∫ ∞

−∞
xg(x)dx+λ3

∫ ∞

−∞
x2g(x)dx

and is minimum when ∂H̃
∂g = 0. This gives

−1 − log[g(x)] + λ1 + xλ2 + x2λ3 = 0

from which follows
g(x) = e−1+λ1+xλ2+x2λ3 (7.5)

λ3 must be negative, otherwise the function explodes, which is physically
unrealistic. The three constraint equations are now∫ ∞

−∞
g(x) dx = 1, λ3 < 0 → e

√
−λ3 = eλ1− λ2

2
4λ3

√
π (7.6)

∫ ∞

−∞
xg(x)dx = 0, λ3 < 0 → eλ1− λ2

2
4λ3 λ2 = 0 (7.7)

∫ ∞

−∞
x2g(x)dx = σ2, λ3 < 0 →

e−1+λ1− λ2
2

4λ3
√
π
(
λ2

2 − 2λ3

)
4 (−λ3)

5/2
= σ2 (7.8)
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The three λ’s can be solved from (7.6) to (7.8):
{
λ1 =

1
4

log
[

e4

4π2σ4

]
, λ2 = 0, λ3 = − 1

2σ2

}

These λ′s now specify the aperture function g(x) in (7.5), which is the
Gaussian kernel:

g(x) =
1√
2πσ

e−
x2

2σ2 (7.9)

The Gaussian kernel has all the required properties. It is smooth, does
not generate spurious resolution, is circular, and is the unique solution of this
simple set of constraints. Many other derivations have been developed, based
on other prerequisites, like causality or the non-generation of new maxima,
with the same result. See for overviews [3] and [4]. When other constraints are
added (or removed), other families of kernels are generated; e.g., preference
for a certain spatial frequency leads to the Gabor family of kernels.

7.2.2 Derivatives of Sampled, Discrete Data, Such as Images

Now we have the Gaussian kernel as optimal sampling aperture, we obtain a
discrete sampled dataset in two or more dimensions. It is a classical problem to
take derivatives of discrete data [5], as we cannot apply the famous definition.

The Gaussian kernel is the Green’s function of the diffusion equation:

∂L

∂s
=

⇀

∇.
⇀

∇L or
∂L

∂s
=
∂2L

∂x2
+
∂2L

∂y2

where
⇀

∇ = { ∂
∂x ,

∂
∂y} is the so-called nabla or gradient operator.

In the next section, the notion of differential structure is discussed. The
derivative of an observed entity is given by convolution with a Gaussian
derivative

∂

∂x
{L0(x, y) ⊗G(x, y;σ)} = L0(x, y) ⊗

∂

∂x
G(x, y;σ). (7.10)

The Gaussian derivative functions are widely used in medical image anal-
ysis and are excellent models for the sensitivity profiles of the so-called simple
cell receptive fields in the human visual cortex. Note that differentiation and
observation are done in a single step: convolution with a Gaussian deriva-
tive kernel. A Gaussian derivative is a regularized derivative. Differentiation
is now done by integration, i.e., by the convolution integral. It may be coun-
terintuitive to perform a blurring operation when differentiating, but there is
no way out, differentiation always involves some blurring. The parameter σ
cannot be taken arbitrarily small; there is a fundamental limit given the order
of differentiation, accuracy and scale [6]. A good rule of thumb is to not go
smaller than σ = 0.7

√
n pixels for n-th order derivatives.
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Fig. 7.2. Edges at different scales give different sized details. Left : Digital Subtrac-
tion Angiography (DSA) of a kidney in a scale showing the small vessels. Middle:
gradient magnitude at σ = 1 pixel; this scale emphasizes the vessel tree. Right :
σ = 15 pixels, which is the scale of the entire kidney (outline). The image resolution
is 704 × 754 pixels

The parameter σ is a free parameter, we are free to choose it. The selection
of the proper scale depends on the task. This is illustrated in the example of
Fig. 7.2. In this example, we may aim at emphasizing the entire kidney, the
vessel tree, or the small vessels themselves.

7.3 Differential Invariants

Derivatives with respect to x or y do not make much sense, as the position
and direction of the coordinate system is completely arbitrary. We need to
be invariant with respect to translation and rotation of the coordinate sys-
tem. There are several ways to accomplish this. In this section, we discuss
two methods (for 2D images): intrinsic geometry with gauge coordinates and
tensor contraction [7, 8].

7.3.1 Gauge Coordinates

An elegant and often used way is to take derivatives with respect to a coor-
dinate system, which is intrinsic, i.e. attached to the local image structure,
in our case to the isophotes. Such coordinates are called “gauge coordinates”.
Isophotes (lines of constant intensity) fully describe the image. A first order
gauge frame in 2D is defined as the local pair of unit vectors {v, w}, where
v points in the tangential direction of the isophote, and w in the orthogonal
direction, i.e., in the direction of the image gradient. So in every pixel we
have a differently oriented {v, w} frame attached to the image. The impor-
tant notion is that any derivative with respect to v and w is invariant under
translation and rotation, and so any combination of such gauge derivatives.
So, ∂L

∂w is the gradient magnitude. And ∂L
∂v ≡ 0, as there is no change in the

luminance as we move tangentially along the isophote, and we have chosen this
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Table 7.1. Lowest order of differential
invariants

Order Invariant

Lv 0

Lw

√
L2

x + L2
y

Lvv
−2LxLxyLy+LxxL2

y+L2
xLyy

L2
x+L2

y

Lvw
−L2

xLxy+LxyL2
y+LxLy(Lxx−Lyy)

L2
x+L2

y

Lww
L2

xLxx+2LxLxyLy+L2
yLyy

L2
x+L2

y

direction by definition. However, we can only measure derivatives in our pixel
grid along the x-axis and the y-axis (by convolution with the proper Gaussian
derivatives), so we need a mechanism to go from gauge coordinates to Carte-
sis coordinates. This is derived as follows: writing derivatives as subscripts
(Lx = ∂L

∂x ), the unit vectors in the gradient and tangential direction are

w =
1√

L2
x + L2

y

(
Lx
Ly

)
v =

(
0 1
−1 0

)
.w

as v is perpendicular to w. The directional differential operators in the direc-
tions v and w are defined as v.∇ = v.( ∂

∂x ,
∂
∂y ) and w.∇ = w.( ∂∂x ,

∂
∂y ). Higher

order derivatives are constructed1 through applying multiple first order deriva-
tives, as many as needed. So Lvv, the second order derivative with respect to
V is now

⎛
⎝
(

0 1
−1 0

)
1√

L2
x + L2

y

(
Lx
Ly

)
.

(
∂

∂x
,
∂

∂y

)⎞
⎠

2

f(x, y)

Table 7.1 shows the lowest order differential invariants. The second order
gauge derivative Lvv is a well-known ridge detector. In Fig. 7.3, the ridges
(centerlines) are extracted of a vascular pattern on the fundus of the eye.

7.3.2 Invariants from Tensor Contraction

In differential geometry, general derivatives are often denoted as (lower-script)
indices, where the index runs over the dimensions, e.g., in 2D:

Li =
(
Lx
Ly

)

When two similar indices occur in the same formula, they are summed over.
The so-called Einstein convention means that in such a case the summation

1 See for Mathematica code of the formulas in this chapter [6]
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Fig. 7.3. Ridge detector based on gauge coordinates. Left: The fundus image of the
eye has a resolution of 936 × 616 pixels. Right : The scale of the ridge operator Lvv

is 14 pixels

Table 7.2. Lower order examples of Einstein convention invariants

Order Invariant Description

L L Intensity
LiLi L2

x + L2
y Gradient magnitude square

Lii Lxx + Lyy Laplacian
LiLijLj L2

xLxx + 2LxLyLxy + L2
yLyy Ridge strength

LijLij L2
xx + 2L2

xy + L2
yy Deviation from flatness

sign is left out (Table 7.2):

LiLi =
y∑
i=x

LiLi = L2
x + L2

y

7.4 Second Order Image Structure and Features

7.4.1 Isophote Curvature

In gauge coordinates the Cartesian formula for isophote curvature is eas-
ily calculated by applying implicit differentiation twice. The definition of an
isophote is

L(v, v(w)) = c

where c determines a constant. One time implicit differentiation with respect
to v gives

Lv + Lw(v)w
′(v) = 0

from which follows that w′(v) = 0 because Lv = 0 by definition. Using that,
and second implicit differentiation gives:

Lvv + 2Lvww′(v) + Lwww
′(v)2 + Lww

′′(v) = 0
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The isophote curvature is defined as w′′[v], the change of the tangent vector
w′[v] in the v-direction, so

κ = w′′(v) = −Lvv
Lw

=
L2
xLyy − 2LxLyLxy + L2

yLxx(
L2
x + L2

y

)3/2 (7.11)

7.4.2 Flowline Curvature

The formula for isophote flowline curvature (flowlines are always perpendicu-
lar to the isophotes) is:

λ = −Lvw
Lw

=
L2
xLxy − LxyL

2
y + LxLy (−Lxx + Lyy)(
L2
x + L2

y

)3/2 (7.12)

7.4.3 Corners

A corner is defined as a location on a contour, i.e., on an edge, with high cur-
vature (Fig. 7.4). Blom [9] derived an affine invariant formula for ‘cornerness’
by assuming a product of the edge strength Lw and the isophote curvature
κ = −Lvv

Lw
with weight n for the edge strength: K = Lnw κ. Affine invariance

leads to the single choice n = 3, so the formula for cornerness Θ becomes

Θ = −Lvv
Lw

L3
w = −LvvL2

w = L2
xLyy − 2LxLxyLy + LxxL

2
y (7.13)

Fig. 7.4. Corner detection for screw localization. Left: The radiograph has a
resolution of 469 × 439 pixels. Right : The scale operator is σ = 2.5 pixels
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7.4.4 Principal Curvatures

The second order derivatives on the 2D isophote landscape form the second
order structure matrix, or the Hessian matrix:

H =

⎛
⎜⎜⎝

∂2L

∂x2

∂2L

∂x∂y
∂2L

∂y∂x

∂2L

∂y2

⎞
⎟⎟⎠

The eigenvalues of the Hessian are found by solving the so called characteristic
equation |H − κI| = 0 for κ:

κ1 =
1
2

(
−
√
−2LxxLyy + L2

xx + 4L2
xy + L2

yy + Lxx + Lyy

)
(7.14)

κ2 =
1
2

(√
−2LxxLyy + L2

xx + 4L2
xy + L2

yy + Lxx + Lyy

)
(7.15)

They are the so-called principal curvatures. On every location on the
isophote landscape, one can walk in many directions. For each of these direc-
tions the path has a local curvature, different in each direction. Gauss has
proven that the smallest and largest curvature directions are always perpen-
dicular to each other: the principal curvature directions. These directions are
given by the eigenvectors of the Hessian matrix.

κ1 =

⎛
⎝−−Lxx + Lyy +

√
L2
xx + 4L2

xy − 2LxxLyy + L2
yy

2Lxy
, 1

⎞
⎠ (7.16)

κ2 =

⎛
⎝Lxx − Lyy +

√
L2
xx + 4L2

xy − 2LxxLyy + L2
yy

2Lxy
, 1

⎞
⎠ (7.17)

with κ1.κ2 = 0 (the vectors are perpendicular). In Fig. 7.5 the local principal
curvatures are plotted as ellipses with the long and short axes being defined
by the Hessian eigenvectors.

The product of the principal curvatures is equal to the determinant of the
Hessian matrix, and is called the Gaussian curvature (Fig. 7.6):

G = κ1κ2 = detH = LxxLyy − L2
xy (7.18)

The mean curvature is H = κ1+κ2
2 . From (7.15) it can be seen that the two

principal curvatures are equal when 4L2
xy + (Lyy − Lxx)

2 = 0. This happens
in so-called umbilical points. In umbilical points the principal directions are
undefined. The surface is locally spherical. The term 4L2

xy+(Lyy − Lxx)
2 can

be interpreted as “deviation from sphericalness”. The principal curvatures are
often used to extract and enhance vascular structures. The notion of “vessel-
ness”, introduced by Frangi et al. [10] is a multi-scale shape analysis, based on
a local zero and a high principal curvature, which indicates a cylindric shape.
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Fig. 7.5. Principal
curvature ellipses. The
resolution of the MRI is
256 × 256 pixels
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Fig. 7.6. Gaussian curvature. Left: Second order shapes. Right : an application is
automatic polyp detection in virtual endoscopy. The highly curved surface of the
polyp on the fold in the intestine is highlighted with a red color: high Gaussian
curvature G. (Courtesy of Philips Healthcare, Best, The Netherlands)

7.4.5 The Shape Index

When the principal curvatures κ1 and κ2 are considered coordinates in a 2D
“shape graph”, we see that all different second order shapes are represented.
Each shape is a point on this graph. Table 7.3 summarizes possibilities for the
local shape.

The shape index ζφ is defined as the angle of the shape vector in this
graph [1]:
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Principal curvature Local shape

κ1 = 0, κ2 = 0 Flat
κ1 > 0, κ2 > 0 Convex
κ1 < 0, κ2 < 0 Concave
κ1 < 0, κ2 > 0 Saddle
κ1 = κ2 Spherical
κ1 = 0, κ1 �= 0 Cylindrical

Table 7.3. Local shapes. The local
shape is determined by the principle
curvatures (κ1, κ2)

ζφ ≡
2
π

arctan
κ1 + κ2

κ1 − κ2
=

2
π

arctan
2
π

⎛
⎝ −Lxx − Lyy√

−2LxxLyy + L2
xx + 4L2

xy + L2
yy

⎞
⎠

(7.19)
for κ1 ≥ κ2. The curvedness is defined as the length of the shape vector:

ζs ≡
1
2

√
L2

xx + 2L2
xy + L2

yy (7.20)

7.5 Third Order Image Structure: T-Junctions

A nice example of geometric reasoning is the derivation of the formula for an
invariant T-junction detector. Typically, at a T-junction the isophote curva-
ture changes notably for small steps perpendicular to the isophotes, i.e., in the
w gauge direction. So the T-junction detector T = ∂κ

∂w is a good candidate.
The formula below shows the third order spatial derivatives, and becomes
quite complex:
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)

(7.21)

The division by
(
L2
x + L2

y

)3 gives problems at extrema and saddlepoints,
where the gradient is zero, but this term may as well be taken out. The
performance is quite good (Fig. 7.7).

7.6 Adaptive Blurring and Geometry-Driven Diffusion

In order to reduce noise in images, blurring is effective, but this also reduces
the edges. Edge-preserving smoothing can be accomplished by an adaptive
diffusion process. The strategy is simple: blur at homogeneous areas, and
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Fig. 7.7. T-junction detection. Left : Image with T-junctions (at the red circles).
Right : detection of points with a rapid change of isophote curvature in the gradi-
ent direction. This is an example of geometric reasoning for the design of specific
features, given their geometric behavior

reduce the blurring at the locations of edges. Perona and Malik [11] pioneered

this and proposed a modification of the diffusion equation ∂L
∂s =

⇀

∇.c
⇀

∇L, where

c
⇀

∇L is the “flow” term, and c is a function of the gradient magnitude: c =

c(|
⇀

∇L|). Perona and Malik proposed c = e−
∣∣∣∣
⇀∇L

∣∣∣∣
2

k2 , so the non-linear diffusion
equation in 2D becomes
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and in 3D:
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Alvarez [12] introduced a flow, using only the direction of the gradient, i.e.,
he used the unit gradient vector as the flow. His non-linear diffusion equation
(known as Euclidean shortening flow) becomes:
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L2
x + L2

y

= Lvv (7.24)

This is a striking result. Compared to normal diffusion, described by the nor-
mal isotropic diffusion equation ∂L

∂s = Lvv+Lww, the term Lww is now missing,
which indicates that the flow in the direction of the gradient w is penalized.
The blurring is along the edges, not across the edges. Alvarez was so pleased
with this result, that he coined his formula the “fundamental equation”.
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This non-linear evolution of the images leads to adaptive blurring, in this
case to adaptive “edge-preserving” smoothing. The conductivity term c can
contain any geometrical information, e.g., curvature terms, local structure
tensor information, vesselness, etc. Hence, the general term “geometry-driven
diffusion”. See for a an early overview [6], and the excellent review by
Weickert [13].

7.7 Edge Focusing

The deep multi-scale structure of images is rich in information. It contains
the information of the scale of features, which can be exploited to establish
their importance. Stated differently, it contains the hierarchy of the structures
in the image. A good example is the extraction of larger edges from a noisy
background by edge focusing. The disk visualized in Fig. 7.8 has a very low
Signal-to-Noise Ratio (SNR). Blurring an image to reduce the noise destroys
the localization.

The steepest point of an edge is given by the maximum of the gradient,
which can easily be found by the zero crossing of the second order derivative.
In Fig. 7.9 the zero crossings (black for down-going, white for up-going edges)
are plotted along the image line profile as a function of scale. This is a so

Fig. 7.8. Image of a disk at low SNR. Right : gradient magnitude extraction with
scales of σ = 1, 2, 3, 4 pixels. The SNR increases, the localization accuracy decreases.
Left : intensity profile of the middle row of the noisy disk image (as indicated by the
red line)

Fig. 7.9. Multi-scale signature function of Fig. 7.8 (left). The zero crossings of the
second order derivatives are indicated as white (up-going edges) or black (down-
going edges) dots, as a function of exponential scale (vertical). Horizontal is the
x-direction. The two most important edges (of the disk) survive the blurring the
longest time. The signature function generates the intrinsic hierarchy of structure
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Fig. 7.10. Top-points in scale-space.
The geodesic paths over scale (vertical
direction) can be constructed from the
intersections of ∂xL = 0 and ∂yL = 0
planes, the top-points (red dots) form
from the intersections of the geodesics,
and the plane detH = 0 where H is
the Hessian matrix [15] (Courtesy:
B. Platel)

called “signature function”. The edges follow geodesic tracks. Some edges
survive the blurring for a long time, and they form the “important” edges.
Note that a black geodesic annihilates with a white geodesic in a singularity,
a so called top-point. Note also that the up- and down-going edges of the disk
come together, indicating their intrinsic relation. From this we see important
cues emerging from the deep structure analysis for the notion of symmetry
and long-range contextual connections (Gestalt).

The same can be done in 2D. In this case, we follow specific singular points,
i.e., maxima, minima and saddle points over scale. The geodesic tracks of
these singular points can easily be calculated from the intersections of the
zero-crossing surfaces of ∂L

∂x , ∂L
∂x . The top of the path is found where the

determinant of the hessian ∂2L
∂x2

∂2L
∂y2 − ( ∂

2L
∂x∂y )

2 is zero. In Fig. 7.10, the surfaces
are shown, as well as the top-points (red dots). The top-points generated from
low contrast areas are unstable and can be detected and removed [14].

The top-points are highly descriptive for the structure in the image [16].
Duits [17] showed that the generating image can be reconstructed again from
the top-points (not identically, but to a high degree of similarity). They have
also been successfully exploited in Content-Based Image Retrieval (CBIR) of
sub-scenes from larger complex scenes, despite scaling, rotation, and occlusion
[15, 18]. As huge databases of medical images are now digitally accessible,
this may have important applications. However, the variability of medical
images for retrieval has not yet been mastered. Other, similar methods have
been proposed for the generation of multi-scale singularity points, such as the
Shift-Invariant Feature Transform (SIFT) [19].

7.8 Orientation Analysis

Recent discoveries in the mechanisms of the processing in the visual cortex
are a rich source of inspiration for mathematical models. Optical measure-
ments of the visual cortex that exploit voltage-sensitive dyes have revealed



7 Multi-Scale and Multi-Orientation Medical Image Analysis 191

intricate structures, the so-called cortical columns. In each column, receptive
fields (filters) are present at all orientations, highly organized in a pin-wheel
fashion [20]. This inspires to the generalization of the notion of convolution
[21, 22], the so-called group-convolutions, where any group can be applied to
the convolution kernel. The convential convolution is based on translation
(shift integral):

Wψ[f ] (b) =
∫

Rn

ψ∗ (x− b) f (x) dx

When the kernel ψ is scaled by a dilation operation, we have the well-known
family of wavelets:

Wψ[f ] (a, b) =
∫

Rn

ψ∗
(

x− b

a

)
f (x) dx

The (Euclidean) group of rotations and translations gives the definition of
“orientation bundles” or “orientation scores” [23]:

Wψ [f ] (a, b, α) =
∫

Rn

ψ∗RRR−1
α

(
x− b

a

)
f (x) dx

Just as the multi-scale deep structure, the orientation score is rich in
information. Here, not the hierarchy, but the contextual relations between
elongated structures emerge. Medical images (as any images) and their dif-
ferential counterparts are rich in elongated structures, e.g., vessels, nerves,
contours (in 2D edge maps), etc. The orientation score adds a new dimen-
sion to the realm of geometric reasoning, now with the notion of orientation
(Fig. 7.11).

It is essential to have an invertible orientation score, i.e., to be able
to reconstruct the image again from the orientation score, much like the
Fourier transform has an inverse Fourier transform. The inverse transform
is written as:

L(x) = G−1

ψ̃

[
L̂ψ̃(bbb, α)

]
(x):=

∫ 2π

0

∫
R2
ψ̃
(
R−1
α (x− b)

)
L̃ψ̃(bbb, α)dbdα

Fig. 7.11. Generating an orientation score. An image (left) is convolved with a
rotating anisotropic kernel to generate a multi-orientation stack, the orientation
score
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Fig. 7.12. Spatial orientation filters. The filters generate an invertible multi-
orientation score by (7.25) for m = 0. Higher orders of m generate orientation

derivative kernels ∂
(m)
φ [25]

The condition for invertibility on the kernels ψ̃(ρ, φ) is:

∫ 2π

0

ψ̃∗(ρ, φ)ψ̃(ρ, φ)dφ =
1

4π2

It can be shown that a special class of filters can be constructed giving exact
invertibility [17], see also [22, 24, 25]:

ψ(ρ, φ) =
∞∑
n=0

∞∑
m=−∞

amn
eimφρ|m|L|m|

n

(
ρ2
)

√
π
√

(n+ 1)|m|
e−

ρ2

2 (7.25)

A member of this class (anm = 0, n > 0) is depicted in Fig. 7.12.
The theory for orientation scores has recently been extended to 3D. It

is interesting that the data structure of High Angular Resolution Diffusion
Imaging (HARDI) in MRI is closely related to a 3D orientation score [26] (it
is a factorial subgroup of the 3D Euclidean group).

7.9 Applications

7.9.1 Catheter Detection

Many interventional catherization procedures take a substantial time (some
even up to hours), and the accumulation of the X-ray dose is a serious
concern. However, if the dose is reduced, the SNR in the resulting navigation
image seriously decreases. With the help of enhancement by the orientation
based enhancement the visibility of dim catheters can be markedly improved
(Fig. 7.13), and the dose reduced.
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Fig. 7.13. Catheter detection in fluoroscopy [27]. (a) Imaging with reduced dose
leads to noisy images. (b) Detection of the elongated structures and suppressing
the noise. (c) The right trace is detected and selected from all traces exploiting the
markers at the tip

Fig. 7.14. Segmentation of
endocard contour in MRI.
The segmentation results
are displayed without (left)
and with adding of 30 %
noise (right)

7.9.2 Endocard Contour Detection

To detect the endocard contour in MRI, profiles from a center of gravity point
are sampled, and the main edges are found on each contour by coarse-to-fine
edge focusing. The detection is robust, despite the addition of 30% noise
(Fig. 7.14).

7.9.3 Denoising of Crossing Lines

The orientation score untangles the local orientations (Fig. 7.15). Denoising
of crossing line structures has typically been problematic, as at the crossing
point it is not clear what direction an elongated filter should take. This is now
handled elegantly in the orientation scores [22].

The evolution of an image in a non-linear scale-space, where geometry-
adaptive constraints are built in with respect to the diffusion (leading to
non-linear diffusion equations), can be integrated into the orientation scores.
Figure 7.16 shows the result of denoising for a noisy microscopy image with
many crossing fiber structures. This is another example of geometric reasoning
for the design of specific features, given their orientation behavior.
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Fig. 7.15. Orientation score. Crossing lines (left) are untangled in the orientation
score. Orientation adaptive non-linear denoising filters can now be applied easier at
each orientation individually without being hampered by the other directions

Fig. 7.16. Denoising of crossing elongated structures in an orientation score [28].
Left : collagen fibers in tissue engineered cartilidge in a noisy 2-photon microscopy
image. Right : Result after orientation-adaptive geometry-driven diffusion

7.10 Conclusion

This chapter discussed the mathematical theory of multi-scale and multi-
orientation analysis of (medical) images. It is interesting to note that both
approaches can be recognized in the filter banks formed by the receptive fields
in the human front-end visual system. The Gaussian kernel emerges as a gen-
eral smooth aperture kernel and its derivatives are the natural operators for
taking derivatives of discrete data. They have the intrinsic property of regu-
larization. The multi-scale nature (“deep structure”) leads to the important
notion of structural hierarchy, also in the differential structure such as edges
(“edge focusing”) and curvature. Also the long-range interaction between sym-
metric edges can be extracted from the geodesic paths in the deep structure.
The multi-orientation nature of the analysis gives us short-range interactions
between elongated structures. Contextual line completion (not described in
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this chapter) is now possible [25], which is useful in the analysis of dim and bro-
ken lines and contours in medical images. The angular directions at crossings
are untangled in the orientation score. Non-linear diffusion in this orientation
score gives a good denoising. The general approach of group-convolutions
gives the theory a firm basis. The added dimensions of scale and orientation
may seem computationally costly and counter-intuitive at start, but they are
intrinsically suited for parallel implementation, and they give a rich new space
for geometric reasoning.
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Feature Extraction and Selection
for Decision Making

Agma J.M. Traina, Caetano Traina Jr., André G.R. Balan,
Marcela X. Ribeiro, Pedro H. Bugatti, Carolina Y.V. Watanabe,
and Paulo M. Azevedo-Marques

Summary. This chapter presents and discusses useful algorithms and techniques
of feature extraction and selection as well as the relationship between the image
features, their discretization and distance functions to maximize the image repre-
sentativeness when executing similarity queries to improve medical image processing,
mining, indexing and retrieval. In particular, we discuss the Omega algorithm
combining both, feature selection and discretization, as well as the technique of
association rule mining. In addition, we present the Image Diagnosis Enhancement
through Associations (IDEA) framework as an example of a system developed to
be part of a computer-aided diagnosis environment, which validates the approaches
discussed here.

8.1 Introduction

The development of algorithms for gathering a set of representative and suc-
cinct features extracted from medical images that can truly represent an image
remains a challenge for the researchers in the image processing and informa-
tion retrieval fields. Mathematical and statistical methods aimed at extracting
specific information from the images have been tailored in this regard. How-
ever, it is necessary to keep in mind that the process to get a summary of
the image given by its features is driven by the need to store and retrieve
images following specific intents. One of them concerns the Content-Based
Image Retrieval (CBIR) systems, which have a strong potential to support
the decision making process demanded by radiologists and health specialists,
because they can retrieve similar cases analyzed in the past, bringing together
every information associated to them. Another use for CBIR systems in health
systems is to help teaching new physicians and the technical staff, presenting
similar cases and providing a platform for learning and discussion [1]. This
subject will be well explained and discussed in Chap. 21 of this book.

Images hold complex data, getting the most relevant information from
them is a complex endeavor. Thus, one of the main challenges is how to
automatically extract features from the images that are able to represent
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their “essence”. The quest for features that can be automatically obtained
comes from the huge load of images that are generated in the day to day
activities in hospitals and medical centers. Usually, only low-level features
can be automatically obtained, which are basically extracted as brightness,
color, texture and shape distributions. These features are usually placed in a
feature vector, also referred to as signature.

However, these features lack on conveying the image description expected
by the user. This leads to the semantic gap, which is, basically, the difference
between the user’s image perception and what the extracted features actually
represent. One could imagine that the way out of it should be getting as
many features from the images as possible, trying to cover any aspect of
the image. Such approach turns out to be a drawback, as it significantly
increases the number of features. In fact, when the dimensionality is high, the
indexing techniques collapse and do not help to execute retrieval operations.
This effect is called curse of dimensionality. Therefore, to have an efficient
system supporting clinical decision making, it is important to address the
main aspects of the image with a small number of features. Comparing image
features also demands a careful choice for a distance function (dissimilarity
function) that allows a correct image separation. A proper distance function
can largely improve the answer precision [2].

Similarity-based image mining techniques can help on turning a Computer-
Aided Diagnosis (CAD) system into a more useful tool for the decision making
process, improving the day-to-day activities in a radiology center. In this
chapter, we also present and discuss the IDEA framework, which exemplifies
how to deal with the aforementioned issues, and how an automatic system
can help on providing a second-opinion suggestion to the radiologist analyzing
mammograms.

8.2 Image Representation

The main features extracted from the images (feature vector or signature)
are of foremost importance. The most common approach is computing image
summarizing values and place them into a feature vector F = {f1, . . . fE},
which represents each image as a point in an E-dimensional feature space,
where E is the number of features extracted. Using this model, the image
content can be compared using any existing distance metric, such as the well-
known Euclidean one. Therefore, indexing techniques should be applied to
speed up query answering.

There are two approaches to extract global features:

1. Compute features directly from the raw image data,
2. Compute features from transformed data.

A local approach is obtained from segmentation of relevant image regions,
which are then indexed individually using the same techniques.



8 Feature Extraction and Selection for Decision Making 199

Color histograms are one of the most popular image features that are com-
puted directly from image data. Transforming image data, on the other hand,
allows computing important image features, such as texture and shape. Fourier
and Wavelet transforms are well-known techniques employed to extract infor-
mation from data in the frequency and spatial domains respectively.

Image segmentation is another important way to obtain image features.
Segmentation enables finding elements that constitute a particular image and,
consequently, add semantics to the feature vector, for example, allowing to
find information about the number of elements in the image, their particular
arrangement, their sizes, shapes, color, and so on. An example in the medical
domain is the process to determine the presence of a specific lesion in a tissue.
After having found a lesion, it is quite relevant to determine its characteris-
tics. Thus, we can, for example, help a physician by automatically grouping
hundreds of clinical images with similar diagnosis.

In the following section, we describe the most common low-level, generic
features used to represent images from medical examinations.

8.2.1 Medical Image Segmentation and Feature Extraction

Many image segmentation methods were proposed in the literature, but there
is a consensus that no such a method exists that is able to successfully segment
every image type. In the medical domain, there is a strong tendency to consider
that image data are generated from Random Variables (RVs) ruled by normal
probability distributions. This is coherent for most of the imaging devices, and
specially for magnetic resonance where a relatively larger number of tissues
can be imaged. Hence, a well-grounded approach for image segmentation in
medical domain is to model the probability distribution of image data, a non-
parametric curve, as a parametric mixture of Gaussians, or, in other words,
to employ a Gaussian Mixture Model (GMM).

It is important to have a prior information about the image we aim at
segmenting in order to develop a segmentation algorithm based on a principled
data modeling. Another model employed in medical image segmentation is
the Markov Random Field (MRF). In this model, the random variables that
“generate” image data (there is one RV per image pixel) are considered to
have a local neighborhood interaction, meaning that the normal distribution
of a given variable is, in some degree, influenced by the normal distribution of
its neighbor variables. This property allows a segmentation algorithm to cope
with the high frequency random noise inherent to many imaging technologies,
including MRI. Also, this neighborhood interaction can be tuned in such a way
that some texture patterns present in the images, mainly grainy patterns, can
be successfully detected. Hence, texture-based image segmentation is achieved,
in some degree, by the use of MRF in the data modeling.

The Expectation Maximization (EM) algorithm [3] is a well-known method
for finding the parameters of a given GMM of an image. To combine the
GMM and MRF statistical models, the EM algorithm is usually employed
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in combination with an optimization algorithm. The idea is to combine, via
the Bayes rule, the parameters of the GMM and the parameters of the MRF
to formulate a compound probability distribution called posterior. Then, the
goal is to find a segmentation result that maximizes the posterior distribution,
for which two strategies are usually employed: the Maximization A Posterior
(MAP), and the Maximization of the Posterior Marginals (MPM).

The EM/MPM [4] is an image segmentation algorithm well suited to seg-
ment a wide range of medical image categories, since it combines the GMM
and the MRF models. In this method, the EM algorithm is interleaved with the
Gibbs sampler algorithm to achieve a maximization of the posterior marginals.
However, depending on the noise level in an image, the EM/MPM can take a
relatively long time to converge. In this case, extracting features from a large
amount of images may be impractical. An optimized EM/MPM method was
proposed by Balan et al. [5] to achieve faster convergence. The optimization
consists of iteratively varying the spatial neighborhood interaction imposed
by the MRF model. With little interaction at the beginning of the process, the
EM algorithm has more freedom to change the parameters of the model and
quickly get closer to an optimal segmentation solution. Then, as the process
evolves, the spatial interaction increases, leading to a stable convergence and
a noise-free segmentation result.

Figure 8.1 illustrates an image segmentation carried out by the EM/MPM
method. The number of classes in the segmented image is a parameter to
the algorithm. To obtain this figure, we set the number of classes to five,
since we aim at finding four types of tissues and the background. In each
class of Fig. 8.1, the segmented image has a predominant tissue (e.g., white
matter, gray matter). Balan et al. [5] proposed an effective feature vector F
based on image segmentation using the aforementioned technique. Each seg-
mented image class is described by the following set of features: size, centroid
(x and y), average gray level and fractal dimension. Thus, the number of
features E is six times the number of classes found. The fractal dimension
is a compact and effective shape feature, since it is capable of distinguishing
objects formed by thin segments (Fig. 8.1f) from objects composed of larger
compact blocks (Fig. 8.1e).

Fractal Dimension

A simple way of determining the fractal dimension of a region formed by N
points [p1, . . . , pN ] is to compute its correlation integral C(r), such as follows

C(r) =
1
N2

N∑
i=1

N∑
j=i+1

H(r − ||pi − pj||) (8.1)

where r ∈ R and H(α) is the heaviside function

H(α) =
{

0 if α ≤ 0
1 if α > 0
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Clinical exam

a b

Segmentation

c

Class 1

d

Class 2

e

Class 3

f

Class 4

Fig. 8.1. MRI segmentation using the EM/MPM method. (a) Clinical exam, MRI
head axial, slice thickness 1mm; (b) Image segmentation with five classes; (c) Class
1, predominant tissue: cerebrospinal fluid; (d) Class 2, predominant tissue: gray
matter; (e) Class 3, predominant tissue: white matter; and (f) Class 4, predominant
tissues: dura, fat, and bone marrow

Then, the fractal dimension D2 of the region is given by

D2 = lim
r→0

logC(r)
log r

(8.2)

In other words,D2 is computed as the angular coefficient of a linear regres-
sion over of the plot log(C(r)) versus log(r), and represents quite closely the
correlation fractal dimension.

Figure 8.2 presents the plots used to compute the fractal dimensions of
the four regions of Fig. 8.1. Observe that the region corresponding to class 3
(Fig. 8.1e) obtained the highest fractal dimension, meaning that it is more
related to a plane than to a line. On the other hand, the region corresponding
to class 4 (Fig. 8.1f) obtained the lowest fractal dimension, meaning that it is
more related to a linear object.

8.2.2 Color Features

Histogram

One of the most common techniques used to represent an image regarding
to the gray-level (color) content is the traditional histogram. It gives the
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Fig. 8.2. Plot of fractal dimensions. The graphs correspond to the tissue Classes
1–4 in Fig. 8.1 (c)–(f), respectively

frequency of occurrences of a specific color histogram obtained from the pixels
of the image, cf. Sect. 1.3.1, page 16. Its almost omni-presence in imaging
systems is mostly due to its nice properties of linear cost to be obtained,
as well as its invariance to rotation, translation and scale, for normalized
histograms. It can also be used as a cheap first step when comparing images
to select the most relevant one to answer a query, thus reducing the candidate
set before applying a costlier feature extractor [1].

Metric Histogram

One of the drawbacks of traditional histograms is the high dimensionality,
usually ranging from around 100 to more that 4,000 gray-levels for x-ray
images (the Hounsfield units in CT). A histogram with 100 different colors
represents an image as a point in a space with dimensionality E = 100. Most
structures indexing datasets in this order of dimensionality are heavily affected
by the dimensionality curse [6].

Traina et al. [7] proposed the metric histogram aiming at handling his-
tograms and dealing with the dimensionality curse. This feature vector has
a variable dimensionality to describe the images, maintaining only the gray-
levels that really represents the image. In a metric histogram, the equivalent
to a traditional histogram bin is called a bucket, and each one corresponds
to a concatenation of one or more bins from the original histogram. Metric
histograms bounds the histogram contour and thus reduce its dimensionality.
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It creates histograms with varying dimensionality for distinct images, so it is
well-suited for metric indexing structures.

8.2.3 Texture Features

Among the low-level features used to represent medical images in retrieval
systems, the texture-based extractors stand out due to their effectiveness in
discriminating tissues. The texture measures mainly capture the granularity
and repetitive patterns in the pixels distribution.

The most widely used approach to describe region textures are the statis-
tical ones, which describe textures as smooth, homogeneous, uniform, among
other features. In this Chapter, we present the statistical moments of the inten-
sity histogram of an image or image region [8]. A detailed introduction to tex-
ture analysis in medical images has already been given, cf. Chap. 6, page 157.

Co-Occurrence Matrix

The co-occurrence matrix, also called as Spatial Gray Level Dependence
(SGLD) matrix [9], is the most popular techniques for texture feature rep-
resentation. Its rows and columns represent the relative frequency of gray
level of pixel pairs occurring at each direction and distance.

Let us consider an image f with L possible intensity levels. Let Pd,φ(i, j)
be the co-occurrence matrix (Fig. 8.3), where each element (i, j) indicates the
number of times that each pair of pixels with intensities i and j, 0 ≤ i, j ≤ L−1
occurs in f in the position specified by a distance d and an angle φ. Formally,
each element (i, j) represents the number of times that p1 = p2(d cos θ, d sin θ),
where p1 and p2 have intensity i and j, respectively. The number of possible
intensity levels in the image determines the size of the co-occurrence matrix
P for a given distance d and angle φ

Several features fj can be extracted from a co-occurrence matrix for a
feature vector F . Haralick [9] proposed 14, calling them descriptors. Table 8.1
presents the Haralick features most used in the literature, where

gij =
Pd,φ(i, j)

n
(8.3)

and n is the sum of the elements of Pd,φ.

0 0 1 1 4 2 1 0

0 1 2 3 0 1 2 3

2 4 0 0

1 0 6 1
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3 1 0 2
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0 0 1 1

0 2 2 2
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Fig. 8.3. Co-occurrence matrix. Left: image with L = 4, orientations φ = 0◦ and
φ = 135◦ and d = 1 are indicated; Middle: co-occurrence matrix with φ = 0 and
d = 1; Right : co-occurrence matrix with φ = 135◦ and d = 1
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Table 8.1. Haralick
descriptors. From the 14
descriptors initially suggested
by Haralick, we list the most
used only

Feature Formula

Contrast
∑

i,j (i − j)2gij

Uniformity (or energy)
∑

i

∑
j g2

ij

Homogeneity
∑

i

∑
j

gij

1+|i−j|
Entropy (or suavity) −∑i

∑
j gij log2 gij

Step (or intensity)
∑

i

∑
j gij

Third moment (or distortion)
∑

i

∑
j (i − j)3gij

Inverse of variance
∑

i

∑
j

gij

(i−j)2

Fig. 8.4. Tumors in
mammographies. The
examples show a benign
(left) and a malignant
(right) tumor

8.2.4 Shape Features

Representing images based on shape is one of the most difficult problem to
be dealt with due to its inherent subjectivity. The difficulty derives from the
segmentation task, previously discussed in this chapter. Shape descriptors are
important in several contexts. For instance, the shape and the size of tumors in
mammograms are essential to classify them as benign or malignant. According
to Alto et al. [10], tumors with irregular shape are usually malignant and
tumors with regular shape are usually benign. Figure 8.4 shows an example
of benign and malignant tumors.

A desirable property for shape features is that they must be invariant to
scale, rotation and translation (geometric transformations), and, moreover, it
can be able to describe the object’s shape even when the image is noisy.

According to Zahn [11], we can describe shape and boundary by poly-
nomial approximations, moment invariants and Fourier descriptors. In this
section, we discuss the moment invariants and the Zernike moments, two
shape-based extractors frequently used to provide shape-based features fj
for images.

Zernike Moments

Zernike moments are often used to build rotation invariant descriptors. Zernike
polynomials form an orthogonal basis on a unit circle x2 + y2 ≤ 1. Thus,
they do not contain any redundant information and are convenient for image
reconstruction [12]. The complex Zernike moments are expressed as Zn,m, as
follows
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Table 8.2. Orthogonal radial polynom. The table shows the first six orthogonal
radial polynomials

R0,0(ρ) = 1 R2,0(ρ) = 2ρ2 − 1 R3,1(ρ) = 3ρ3 − 3ρ
R1,1(ρ) = ρ R2,2(ρ) = ρ2 R3,3(ρ) = ρ3

Zn,m =
n+ 1
π

∑
x

∑
y

f(x, y) V ∗
n,m(x, y), x2 + y2 ≤ 1 (8.4)

where f(x, y) is an image, n = 0, 1, 2, . . . defines the Zernike polynomial order,
∗ denotes the complex conjugate, and m is an integer (either positive or neg-
ative) depicting the angular dependence, or rotation. Considering n and m,
they must satisfy

n− |m| must be even and − n ≤ m ≤ n (8.5)

and Z∗
n,m = Zn,−m is true.

The Zernike polynomials Vn,m(x, y) expressed in polar coordinates are

Vn,m(x, y) = Vn,m(ρ cos(θ), ρ sin(θ)) = Rn,m(ρ)eimθ (8.6)

where (ρ, θ) are defined over the unit disc, ρ =
√
x2 + y2, θ = arctan( yx),

x = ρ cos θ, y = ρ sin θ, i =
√
−1 and Rn,m is the orthogonal radial polynomial

defined as

Rn,m(ρ) =

n−|m|
2∑
s=0

(−1)s
(n− s)!

s!
(
n+|m|

2 − s
)
!
(
n−|m|

2 − s
)
!
ρn−2s (8.7)

Notice that Rn,m(ρ) = Rn,−m(ρ). If the conditions of (8.5) are not satis-
fied, then Rn,m(ρ) = 0. The first six orthogonal radial polynomials are given
in Table 8.2.

8.3 Image Features and Distance Functions

Describing images by visual content relies on comparing image features using
a distance function to quantify the similarity between them. A challenge to
answer similarity queries is how to properly integrate these two key aspects.
Plenty of research has been conducted on algorithms for image features extrac-
tion. However, little attention has been paid to the importance of selecting
a well-suited distance function to compare the image features given by each
image extractor. This section targets this problem. We show that a careful
choice of a distance function improves in a great extent the precision of sim-
ilarity queries even when the same features are used, and shows the strong
relationship between these two key aspects.
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8.3.1 Similarity Search and Metric Spaces

When working with image datasets, performing exact searches are not useful,
since searching for the same data already under analysis usually has no mean-
ing. Hence, the representation of complex data types, like images, is mainly
performed considering similarity [13].

New query operators are required to compare data by similarity. As we saw
in the previous section, feature vectors are often of very high dimensionality,
rendering the multi-dimensional access methods useless. Moreover, there are
also kinds of features that are “adimensional”, when the number of features
per image is not fixed, such as the metric histograms. Therefore, an ideal way
to index images represented by feature vectors should be “dimensionality-
independent”. Considering that, whenever a function to compute the distances
between the signatures is defined, both adimensional and dimensional data can
be represented in a metric space. Thus, metric spaces turn out to be the best
choice to represent these plethora of data, as they only require the elements
and their pairwise distance [14].

A metric space is formally defined as a pair M = 〈S, d〉, where S denotes
the universe of valid elements and d is the function d : S × S → R

+, called a
metric, that expresses the distance between elements in S. To be a metric, a
function d must satisfy the following properties for every s1, s2, s3 ∈ S:

1. Symmetry: d(s1, s2) = d(s2, s1).
2. Non-negativity: 0 < d(s1, s2) <∞ if s1 �= s2 and d(s1, s1) = 0.
3. Triangular inequality: d(s1, s3) ≤ d(s1, s2) + d(s2, s3).

Using a metric to compare elements, a similarity query returns the stored
elements that satisfy a given similarity criterion, usually expressed in terms
of one or more reference elements, which are called the query center(s). The
main comparison operators to perform similarity queries are:

• Range query: Given a dataset S ∈ S, a query center sq ∈ S and a
radius rq ∈ R

+, a range query selects every element si ∈ S, such that
d(si, sq) ≤ rq.

• k-NN query: Given a dataset S ∈ S, a query center sq ∈ S and an integer
value k ≥ 1, the Nearest Neighbor (NN) query selects the k elements si ∈ S
that are at the shortest distances from sq.

A k-nearest neighbor query example is: “Given the head x-ray of Jane Doe,
find in the image database the 10 images most similar to it”. A range query
example is: “Given the head x-ray of Jane Doe, find in the image database
the images that differ up to 5 units from it”.

8.3.2 Distance Functions

The distance functions most widely employed to perform similarity queries
over vector spaces are those of the Minkowski family (or Lp norm) [15], where
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the objects are identified with n real-valued coordinates. Considering two
feature vectors F = {f1, . . . , fE} and G = {g1, . . . , gE}, the Lp distances are
defined as

Lp ((f1, . . . , fE), (g1, . . . , gE)) = p

√√√√ E∑
j=1

|fj − gj|p (8.8)

Varying the value assigned to p we obtain the Lp family of distance func-
tions. They are additive, in the sense that each feature contributes positive
and independently to the distance calculation. The well-known Euclidean dis-
tance corresponds to L2. The L1 distance, also called city block or Manhattan
Distance (MHD), corresponds to the sum of coordinate differences. The L∞
distance, also known as infinity or Chebychev distance, corresponds to taking
the limit of (8.8) when p tends to infinity. The result obtained computing the
L∞ distance is the maximum difference of any of its coordinates. A variation
of the Minkowski family distance is the weighted Minkowski, where differ-
ent weights are assigned to each feature from a given image. The idea of the
weighted Minkowski distance is to emphasize the most important features.
Different datasets require different weighting vectors, considering that some
features present a higher or lower relevance regarding to others at a given
application.

Besides the Minkowski family, several other distances are useful for com-
paring images. Considering the comparison of two feature vectors F =
{f1, . . . , fE} and G = {g1, . . . , gE}, we can define the:

• Jeffrey divergence, which is symmetric and presents a better numerical
behavior than the Minkowski family. It is stable and robust regarding
noise [16]

dJ (F,G) =
E∑
j=1

(
fj log

fj
mj

+ gj log
gj
mj

)
where mj =

fj + gj
2

(8.9)

• Statistic Value χ2, which emphasizes the elevated discrepancies between
two feature vectors and measures how improbable the distribution is

dχ2(F,G) =
E∑
j=1

(fj −mj)
2

mj
where mj =

fj + gj
2

(8.10)

• Canberra distance, which is a comparative Manhattan distance and the
most restrictive distance function

dC(F,G) =
E∑
j=1

|fj − gj |
|fj |+ |gj|

(8.11)

• Quadratic distance, which takes into account the fact that certain pairs
of attributes, correspond to features that are more important for the
perceptual notion of similarity than others
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dQ(F,G) =
√

(f − g)TA(f − g) (8.12)

where A = [aij ] is an E × E similarity matrix, and aij denotes the
dissimilarity between the features i and j.

There is a close relationship between the features and the distance func-
tion used to compare the data, in order to return what the human beings
would expect from such comparison. However, the majority of the works con-
cerning indexing and retrieval of images overlooks this relationship and go for
the most known and used distance functions, such as the Euclidean or other
members of the Lp family, relegating the distance function to a secondary
importance. However, it is important to highlight that the efficiency and the
efficacy of a signature-based decision support system is significantly affected
by the distance function ability on separating the data.

8.3.3 Case Study: Evaluating Distance Functions
for Separating Data

In this section, we present experiments aimed at supporting our claim that
a careful choice of a distance function considerably improves the retrieval of
complex data [2].

Study Design

We performed k-NN queries on image datasets, using different distance func-
tions and compared their retrieval ability. Each set of feature vectors was
indexed using the Slim-tree metric access method [17] to accelerate execut-
ing the similarity query evaluation. To assess the distance function ability on
properly separating the images, we have generated plots based on the Pre-
cision and Recall (P&R) approach [18], obtained executing the same sets of
similarity queries using distinct metrics. A rule of thumb to read these plots
is that the closer the curve to the top, the better the retrieval technique is.
Therefore, the best combination of features and the distance function pushes
the P&R curve nearest to the top.

To allow exploiting the ability of the several distance functions to identify
the class of each image, we created a dataset mixing eight classes of images
remarkably different, obtained from distinct body regions. In total 704 images
were collected. The images have of 256 × 256 pixels and are represented by
8 bits, resulting in 256 gray-levels. Figure 8.5 illustrates an image example of
each class.

All images of each dataset were employed as query centers to compose
each query set. The feature vectors are composed of gray-level histograms,
Zernike moments, Haralick descriptors, metric histograms, and the improved
EM/MPM algorithm, all of them presented in Sect. 8.2.
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Fig. 8.5. Examples of MRI slices from the dataset. (a) MR angiography with 36
images; (b) axial pelvis with 86 images; (c) axial head with 155 images; (d) axial
abdomen with 51 images; (e) coronal abdomen with 23 images; (f) coronal head
with 36 images; (g) sagittal head with 258 images; and (h) sagittal spine with 59
images

a

c d

b

Fig. 8.6. Precision and recall graphs. The graphs illustrate the retrieval ability of
several distance functions: (a) texture using Haralick descriptors; (b) shape/texture
using the EM/MPM algorithm; (c) gray-level histogram; and (d) shape using Zernike
features

Achieved Results

Since the dataset was composed of 704 MR images, for each distance function
we posed 704 queries, using each image as the center of a query. The average
values obtained from the P&R calculation was used to generate the plots of
Fig. 8.6.

The plots in Fig. 8.6a show the results obtained using the Haralick feature
vector. We can see that the Canberra distance allows a considerable gain in
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precision compared to the others, achieving approximately 80% of precision at
a 40% of recall. The next one is the χ2 distance, followed by the Jeffrey diver-
gence and by L1, obtaining a precision from 55% up to 60% at a 40% recall
level. The most commonly used Euclidean (L2) and Chebychev (L∞) distances
presented the poorest results. The difference in precision reaches values of up
to 92% when the Canberra and the Chebychev functions are compared. This
value would make a huge difference in the response set returned to the users.

The plots of the EM/MPM descriptor in Fig. 8.6b show that the Canberra
distance presents the highest precision, achieving up to 95% at a recall level of
60%. The L2 and L∞ distances gave the worse results when compared to the
other distances. It is important to note that the difference in precision when
Canberra and Chebychev reaches values of approximately 36% of precision at
a 55% of recall.

Analyzing the plots of Fig. 8.6c, we observe that the clear winner is the
MHD distance, which is also the fastest distance to compute, being in average
four times faster than L1. The χ2, the quadratic form, the Jeffrey diver-
gence and the L1 distance functions present almost the same behavior until
25% of recall. The difference in precision when MHD and L∞ are compared,
reaches values of approximately 75%. For these features, the Canberra dis-
tance presents initially the lower levels of precision, improving its behavior
for recall levels above 35%. We present the MHD distance also in the other
graphs as a baseline to provide comparison among the features.

Finally, the plots of Fig. 8.6d illustrate the precision and recall values
obtained using the Zernike features. We can notice that all distances but
the L∞ and the MHD distances almost tie. That is, the best distance when
considering histograms became the worst for Zernike feature vectors. Notice
that the gain for a careful choice of distance can reach 43% when comparing
the MHD distance and χ2 distance at 45% of recall.

Resumee

These results show that choosing of a proper distance function can improve to
a great extent the precision of similarity queries (i.e. the quality of retrieving
medical images). In general, we can see that Canberra would be a nice choice
for both texture and Zernike features, remembering that it also presents low
computational cost, whereas Euclidean and L∞, the most frequently used
metrics, never obtained good results, at least in these experiments.

8.4 Feature Selection

Images are traditionally described by a combination of raw features (recall
Sect. 8.2), so different aspects of the image can be represented. This approach
usually renders a feature vector F = {f1, . . . fE} with hundreds or even
thousands of features.
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8.4.1 Curse of Dimensionality

Differently from what common sense would tell, instead of helping on better
separating the images, this approach actually introduces a problem. As the
number E of features grows, the processes of indexing, retrieving, comparing
and analyzing the images become more ineffective, since in high dimension-
ality the data tend to be not separable, and the comparisons are more time
consuming. Moreover, in most cases a large number of features are correlated
to each other, providing redundant information that actually disturbs the
image’s differentiation, and leads to the dimensionality curse [19]. In fact, a
larger number of features only makes each feature less meaningful. Therefore,
it is mandatory to keep the number of features small, establishing a trade-off
between the discrimination power and the feature vector size.

8.4.2 Traditional Algorithm for Feature Selection

Feature selection can be seen as a mining process to access the most meaning-
ful features to classify images. Recently, the mining of association rules has
been successfully employed to perform feature selection. Traditional associ-
ation rule mining is adequate when dealing with categorical (nominal) data
items. However, image features consist of continuous attributes, so a type of
association rule that considers continuous values is necessary. A recent type of
continuous association rules is the statistical association rules, where the rules
are generated using statistical measurements from images [20]. In this case,
the mined association rules are used to weight the features according to their
relevance, making a new and enhanced representation of the images. However,
we first discuss some of the traditional algorithms for feature selection.

Relief Algorithm

One of the most well-known feature selection algorithm is Relief [21]. The
Relief algorithm aims at measuring the quality of features according to how
their values distinguish instances of different classes. One limitation of the
Relief algorithm is that it works only for datasets with binary classes. This
limitation is overcome by Relief-F [22] that also tackles datasets with multi-
valued classes.

Relief-F finds 1-Nearest Neighbor (NN) of every instance E1 from every
class. Let CE1 be the class of the instance E. For each neighbor, Relief-F
evaluates the relevance of every feature f ∈ F updating the weight W [f ] in
(8.13). The NN from the same class E1 and from a different class C is referred
to as hit H and miss M(C), respectively

W [f ] = W [f ]− dist(f,E1, H) +
∑

C 
=CE1

P (C) × dist(f,E1,M(C)) (8.13)
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The dist(f,E1, E2) is the distance (normalized difference module) of attribute
f values between the instances E1 and E2. The prior probability of class P (C)
is employed in the summation.

One drawback of Relief-F is that it is unable of detect redundant attributes
relations. For example, if there is a duplicated feature, the weight returned by
Relief-F to both features is the same.

Decision Tree Method

Another well-known feature selection technique is the Decision Tree Method
(DTM) [23]. DTM adopts a forward search to generate feature subsets, using
the entropy criterion to evaluate them. DTM runs the C4.5 algorithm [24],
an algorithm that builds a decision tree. Since a decision tree is a sequence
of attributes that defines the state of an instance, DTM selects the features
that appear in the pruned decision tree as the best subset, i.e., the features
appearing in the path to any leaf node in the pruned tree are selected as the
best subset.

Decision trees are hierarchical tree structures developed to perform data
classification, where each intermediate node corresponds to a decision taking
on the value of a feature (attribute) to divide data samples. Training samples
are hierarchically split into smaller and usually more homogeneous groups,
taking into account the value of one feature at each level of the decision tree,
that is, the value of one feature is evaluated per node. The leaf nodes represent
the pure classes of the samples.

Classification is performed by testing the samples through the hierarchical
tree, while performing simple test on a feature at each step [25]. The decision
tree construction leads to perform feature selection among the features avail-
able. The most discriminating features are the ones usually employed in the
first levels of the decision tree. The least discriminating features tends to occur
in the lower levels of the trees, which are generally responsible for classifier
over-fitting. Such over-fitting may be partially overcome by employing prun-
ing methods. One pruning technique is the backward pruning. This essentially
involves growing the tree from a dataset until all possible leaf nodes have been
reached and then removing specific subtrees. One way of pruning is measuring
the number of instances that are misclassified from the test sample by prop-
agating errors upwards from leaf nodes, at each node in a tree. Such error is
compared to the error rate that would exists if the node was replaced by the
most common class resulting from that node. If the difference is a reduction
in the error rate, then the subtree at the node should be pruned [24].

The DTM consists in taking the (features) attributes that occurred in the
nodes of the pruning decision tree as the relevant features, discarding the
remaining ones from the dataset [23]. The usage of feature selection provided
by DTM has been shown to increase the precision of content-based queries
and the classifier accuracy, also speeding up the learning process [26].
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8.4.3 Combined Feature Selection and Discretization

Feature selection is important to discard irrelevant features and to diminish
the dimensionality curse problem. Feature discretization works as a filter of the
feature values in the mining process: it reduces the number of possible features
to be evaluated in the mining process (making it faster), adds some semantic to
the features values and makes it possible to some mining algorithms designed
to categorical data to work with continuous features. In fact, it is possible to
bring together the tasks of feature selection and feature discretization in the
same algorithm.

Omega Algorithm

As an example, we present the Omega algorithm that performs both tasks
together. Omega [26] is a supervised algorithm that performs discretization
of continuous values. Omega processes each feature separately and discretizes
a range of N values following four steps, having linear cost on N . Let fj be
a feature from a feature vector F and fj(i) be the value of the feature type
fj in the image i. Omega uses a data structure that links each instance value
fj(i) with the instance class label cj(i). Let an image instance I(i) be a pair
(fj(i), cj(i)). Let Uk and Uk+1 be the limits of an interval Tk.

Lemma 1. An instance I(i) = (fj(i), cj(i)) belongs to an interval Tk =
[Uk, Uk+1] if and only if Uk < fj(i) < Uk+1.

The Omega algorithm processes a range of N sorted values in four steps,
having linear cost in N . In particular, the steps are:

1. Omega sorts the continuous values and defines the initial cut points. A cut
point is placed before the smallest value and another cut point is placed
after the highest value of the feature. Whenever a value is modified or the
class label changes, a new cut point is created. This step produces pure bins,
where the entropy is equal to zero, minimizing the inconsistencies created
by the discretization process. However, the number of bins produced tends
to be very large and susceptible to noise.

2. Omega restricts the minimum frequency that a bin must present, avoid-
ing increasing the number of cut points too much. To do so, it removes
the right cut points of the intervals that do not satisfy the minimum
frequency restriction given by an input parameter Hmin. Only the last
interval is allowed to not satisfy the minimum frequency restriction. The
higher the value of Hmin, the fewer bins result from this step. However, the
higher Hmin, the higher the inconsistencies generated by the discretization
process. Figure 8.7 shows an example of the cut points found in the first
and eliminated in the second step of Omega, using Hmin = 2.
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Fig. 8.7. Step 2 of the
Omega algorithm. Cut
points are eliminated by the
Omega algorithm using
Hmin = 2 cut points eliminated

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

C1 C2 C2 C1 C1 C2 C1 C1

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

C1 C2 C2 C1 C1 C2 C1 C1

Fig. 8.8. Step 3 of the Omega algorithm. A cut point is eliminated by Omega using
ζmax = 0.35

3. Omega fuses consecutive intervals, measuring the inconsistency rate to
determine which intervals should be merged. Let MTk

be the majority class
of an interval Tk. The inconsistency rate ζTk

of an interval Tk as given by

ζTk
=

|Tk| − |MTk
|

|Tk|
(8.14)

where |Tk| is the number of instances in the interval Tk, and |MTk
| is the

number of instances of the majority class in the interval Tk. The Omega
algorithm fuses consecutive intervals that have the same majority class and
also have inconsistency rates below or equal to an input threshold ζmax

(0 ≤ ζmax ≤ 0.5). Figure 8.8 shows an example of a cut point (Fig. 8.7)
that is eliminated using ζmax = 0.35. The inconsistency rates ζTk

of the
second and third intervals shown in Fig. 8.8 are respectively ζT2 = 0/2 = 0
and ζT3 = 1/3 = 0.33. Since T2 and T3 have the same majority class, i.e.
MT2 = MT3 = “C1” and ζT2 ≤ ζmax and ζT3 ≤ ζmax, the second and third
intervals are fused. The cut points remaining in Step 3 are the final cut
points returned by the algorithm.

4. Omega performs feature selection. Let T be the set of intervals in which
a feature is discretized. For each feature, Omega computes the global
inconsistency

ζG =

∑
Tk∈T (|Tk| − |MTk

|)∑
Tk∈T |Tk|

(8.15)

The feature selection criterion employed by Omega removes from the fea-
ture vector every feature whose global inconsistency value is greater than
an input threshold ζGmax (0 ≤ ζGmax ≤ 0.5). Since the number of inconsis-
tencies of a feature is the factor that most contribute to disturb the learning
algorithm, discarding the most inconsistent features contributes to improve
the accuracy as well as to speed up the learning algorithm.
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8.5 Association Rule Mining

Feature selection can also be seen as a mining process to access the most
meaningful features to classify images. A mining task that has been recently
employed to perform feature selection is the association rule mining. Recently,
the mining of association rules has been successfully employed to perform
feature selection.

A mining process corresponds to the application of a data analysis algo-
rithm to the raw data to produce interesting and useful knowledge about it.
For some image mining process, after the feature extraction process, feature
selection and feature discretization are employed in order to make the mining
process more feasible and accurate.

8.5.1 Definition

Association rule mining is a popular and well researched method in data min-
ing for discovering interesting relations between variables in large databases.
It has been extensively studied and applied for market basket analysis.

The problem of mining association rules was firstly stated in [27], as fol-
lows. Let I = {i1, . . . , in} be a set of literals called items. A set X ⊆ I is called
an itemset. Let R be a table with transactions t involving elements that are
subsets of I. An association rule is an expression X → Y , where X and Y
are itemsets, X is the body or antecedent of the rule and Y is the head or
consequent of the rule:

• Support is the ratio between the number of transactions of R containing
the itemset X ∪ Y and the total number of transactions of R.

• Confidence is the fraction of the number of transactions containing X that
also contain Y .

The problem of mining association rules, as it was firstly stated, consists
of finding association rules that satisfy the restrictions of minimum support
(minsup) and confidence (minconf ) specified by the user.

However, traditional association rule mining is adequate when dealing with
categorical (nominal) data items. However, image features consist of continu-
ous attributes, so a type of association rule that considers continuous values is
necessary. A recent type of continuous association rules is the statistical asso-
ciation rule, where the rules are generated using statistical measurements from
images [20]. In this case, the mined association rules are used to weight the fea-
tures according to their relevance, making a new and enhanced representation
of the images.

8.5.2 Case Study: Improving Computer-Aided Diagnosis
by Association Rule Mining

In this section, we present the Image Diagnosis Enhancement through Asso-
ciations (IDEA) method [28], a method based on association rules to support
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the diagnosis of medical images. The method suggests a set of keywords to
compose the diagnosis of a given image and uses a measure of certainty to
rank the keywords according to their probability of occurring in the final
diagnosis of the image prepared by the radiologist. It is an example of appli-
cation of feature extraction and feature selection techniques together with
image mining approaches to improve diagnosis of medical images, i.e., build-
ing a CAD method. The main mining technique employed in this case study
is association rule mining. It is important to state that association rules were
also successfully employed to classify mammograms [29] and to analyze brain
tumors [30].

The IDEA Method

IDEA is a supervised method that mines association rules relating the features
automatically extracted from images to the reports given by radiologists about
the training images. It aims at identifying the set of keywords that have a high
probability of being in the report given by the specialist, based on the features
extracted. Figure 8.9 shows the pipeline execution of IDEA and Algorithm 1
summarizes its steps.

Algorithm 1 The steps of the IDEA Method
Require: Training images and Test images datasets
Ensure: Report (Set of keywords).
1: Extract features of the training images
2: Perform supervised discretization of training image features (Omega)
3: Mine association rules
4: Extract features of the test image
5: Execute the associative classifier engine (ACE)
6: Return the suggested report (set of keywords)

The IDEA method has two phases: training and testing. In the training
phase, features are extracted from the images to create the feature vectors
that are used to represent the images (Algorithm 1, Step 1). The feature
vector and the class of each training image are submitted to the Omega mod-
ule (Sect. 8.4), which removes irrelevant features from the feature vector and
discretizes the remaining features (Step 2). The class is the most important
keyword chosen by the specialist to describe the image. In the training phase,
a processed feature vector is merged with the diagnosis keywords about the
training images, producing the transaction representation of each image. The
transaction representing all the training images are submitted to the Apriori
algorithm [31] to perform the association rule mining (Step 3), setting the
minimum confidence to high values. In the test phase, the feature vector of
the test image is extracted and submitted to the Associative Classifier Engine
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Fig. 8.9. The IDEA method. In the training phase, the image features are submitted
to Omega algorithm, whose output is aggregated with high level information about
the images to compose the image records. The image records are submitted to an
association rule mining algorithm to produce a set of training association rules that
is employed to classify new images

(ACE), which uses the association rules to suggest keywords to compose the
diagnosis of the test image (see next section).

The IDEA method employs the Apriori algorithm [31] to mine association
rules. The output of the Omega algorithm and the keywords of the report of
the training images are submitted to the Apriori algorithm. A constraint is
added to the mining process to restrict the diagnosis keywords to the head of
the rules. The body of the rules is composed of indexes of the features and
their intervals. The minimum confidence values are set high (usually greater
than 97%). The mined rules are used as input to the ACE algorithm.

Associative Classifier Engine

In the test phase, IDEA employs the associative classifier engine (ACE) to
classify new test images. It is said that an image (a) matches, (b) partially
matches or (c) does not matches a rule, if the image features, respectively,
satisfy the whole body, satisfy part of the rule’s body or does not satisfy any
part of it. The ACE algorithm stores all sets of keywords (itemsets) belonging
to the head of the rules in a data structure. An itemset h is returned by ACE
in the suggested diagnosis whenever the following conditions are satisfied:
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Fig. 8.10. Example of ACE working. In this example, h = {benign} is returned if
4
5
≥ wmin

M(h) ≥ 1 ∧ w = 3M(h)+P (h)
3M(h)+P (h)+N(h) ≥ wmin

where M(h) is the number of matches of the itemset h, P (h) is the number
of partial matches, and N(h) is the number of no matches automatically
computed. Variable w is the weight of the itemset. The weight indicates the
certainty level that an itemset h will belong to the final image diagnosis given
by a specialist. The higher the weight, the stronger the confidence that h
belongs to the image diagnosis. A threshold for the minimum weight wmin

(0 ≤ wmin ≤ 1) is employed to limit the weight of an itemset in the suggested
diagnosis. If wmin = 0, all itemsets matching at least one rule are returned.

Figure 8.10 shows an example of ACE working. In this example, M(h) = 1,
P (h) = 1 and N(h) = 1 for the itemset h = {benign}. Therefore, if 4

5 ≥ wmin,
the itemset h = {benign} is returned, otherwise it is discarded.

Study Design

Following, an application of the IDEA method to mammography is presented.
The parameters of the Omega algorithm were set to Hmin = 2, ζmax = 0.2
and ζGmax = 0.3, which are tunning parameters of the algorithm. The values
of minimum support minsup = 0.005 and confidence minconf = 1.0 were used
as the Apriori input parameters. The value wmin = 0, which maximizes the
ACE accuracy, was employed as the ACE input parameter.

We employed in the experiments the Region of Interest (ROI) dataset,
which consists of 446 images of ROIs comprising tumoral tissues, taken from
mammograms collected from the Breast Imaging Reporting and Data Sys-
tem (BI-RADS) Tutorium1 of the Department of Radiology of University
of Vienna. The IDEA method was applied over the ROI dataset employing
10% of the images from the dataset for testing and the remaining images for
training. Each image has a diagnosis composed of three main parts:

1. Morphology (mass or calcification).
2. The Breast Imaging Reporting and Data System (BI-RADS) level.
3. Histology.

1 http://www.birads.at
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Feature Position

Average intensity, contrast 1–2
Smoothness, skewness 3–4
Uniformity, entropy 5–6
Invariant moments 7–13
Histogram mean, standard deviation 14–15

Table 8.3. Mammography signature.
The table shows the features
extracted from the ROI dataset and
their positions in the feature vector

Measure Performance

Accuracy 96.7%
Sensitivity 91.3%
Specificity 71.4%

Table 8.4. Results. The results were achieved by
IDEA in detecting the BI-RADS levels over the
ROI dataset

In the feature extraction step, the images were segmented and the features
of texture, shape and color were extracted from the segmented regions. The
segmentation process were performed eliminating from each image the regions
with gray-level smaller than 0.14 (in a gray-scale range of [0–1]) and applying
the well-known Otsu’s technique over the resultant image. The features shown
in Table 8.3 were extracted from the segmented regions and used to compose
the feature vector representation of the images.

The Omega algorithm was applied to the image features, removing the
13th feature, because the 13th feature is the least differentiating feature for
the ROI dataset. The output from Omega was submitted to a priori, which
mined 662 rules. The association rules generated and the test images were
submitted to the ACE algorithm, which produced diagnosis suggestions for
each test image.

Results

The experiments with the IDEA system were performed in a batch execution.
The accuracy obtained considering the main parts of the diagnosis were 91.3%
and 96.7% for morphology and BI-RADS value, respectively. Since BI-RADS
categorization has a fuzzy separation among consecutive levels, even for a
human being, we considered an answer correct if the BI-RADS level suggested
was the same or an adjacent level of the one annotated by the radiologist
in the image report. The result indicates that the features employed better
represented the BI-RADS level of the lesion than the morphological properties
of the images. Table 8.4 shows the values of accuracy, sensitivity and specificity
achieved by IDEA in detecting the BI-RADS levels.

Figure 8.11 shows a screenshot of the system when analyzing the image
shown on the left of the window. The values in parenthesis to the right of the
suggested keywords are the degree of confidence that the keyword would be
included in the diagnosis generated by the specialist.
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Fig. 8.11. Screenshot of the IDEA system. The mammogram and the keywords
suggested by the system are shown on the left and on the top right, respectively.
The values in parenthesis are the degree of confidence that the keyword would be
included in the diagnosis given by the specialist

Resumee

The results obtained are very promising, mainly due to the fact that they
show a very small error rate regarding the main part of the diagnosis
(BI-RADS level), making the system reliable. In further studies, the perfor-
mance of physicians with and without the aid of the IDEA-based system must
be compared to finally prove the impact of association rule mining.

8.6 Conclusions

This chapter presented and discussed the use of image features to help
constructing computational systems to aid in decision making over medical
images. The main points highlighted in this chapter are:

• Present the main feature extractors that compose the image descriptors,
based on color, shape and texture.

• Present the most common distance functions and discuss their relationship
with the extracted features when processing similarity queries.

• Show that keeping low the dimensionality of the feature vector helps
answering similarity queries in a more efficient and effective way.
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The relationship among the extracted features and the distance function
employed to compare them is relevant to improve precision when answering
queries. It was also shown that, depending on the distance function employed,
the precision can be improved up to 100%, what certainly results in better
answers when applying image retrieval techniques to support decision making
when analyzing images.

Section 8.5 was dedicated to discuss a case study on the IDEA framework.
It employs the concepts presented in the two previous sections and integrates
association rule discovery techniques to mine patterns from the images that
are related to the report provided by the specialist to train images used in the
learning phase of the framework. By doing so, IDEA learns how to provide
meaningful keywords that should be part of the report being generated to the
new image under analysis.

From the results presented in this chapter, it can be seen that integrating
image feature extraction, comparison selection and indexing, allied to image
mining techniques provides strong support to CAD and are powerful allies to
the medical specialist during the decision making process of analyzing sets
of medical images and exams to provide diagnosis. These techniques are also
valuable to help teaching students and radiologists.
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Segmentation



9

Parametric and Non-Parametric Clustering
for Segmentation

Hayit Greenspan and Tanveer Syeda-Mahmood

Summary. In this chapter, we contrast the medical image segmentation problem
with general image segmentation and introduce several state-of-the-art segmentation
techniques based on clustering. Specifically, we will consider two types of cluster-
ing, one parametric, and the other non-parametric, to group pixels into contiguous
regions. In the first approach which is a statistical clustering scheme based on para-
metric Gaussian Mixture Models (GMMs), we develop the basic formalism and add
variations and extensions to include a priori knowledge or context of the task at
hand. In this formalism, each cluster is modeled as a Gaussian in the feature space.
Each model component (Gaussian) can be assigned a semantic meaning; its auto-
mated extraction can be translated to the detection of an important image region,
its segmentation as well as its tracking in time. We will demonstrate the GMM
approach for segmentation of MR brain images. This will illustrate how the use of
statistical modeling tools, in particular unsupervised clustering using Expectation-
Maximization (EM) and modeling the image content via GMM, provides for robust
tissue segmentation as well as brain lesion detection, segmentation and tracking in
time. In the second approach, we take a non-parameterized graph-theoretic cluster-
ing approach to segmentation, and demonstrate how spatio-temporal features could
be used to improve graphical clustering. In this approach, the image information is
represented as a graph and the image segmentation task is positioned as a graph
partitioning problem. A global criterion for graph partitioning based on normalized
cuts is used. However, the weights of the edges now reflect spatio-temporal similarity
between pixels. We derive a robust way of estimating temporal (motion) informa-
tion in such imagery using a variant of Demon’s algorithm. This approach will be
illustrated in the domain of cardiac echo videos as an example of moving medical
imagery.

9.1 Introduction

Image segmentation has been a long-standing problem in computer vision [1].
It is a very difficult problem for general images, which may contain effects
such as highlights, shadows, transparency, and object occlusion. Segmenta-
tion in the domain of medical imaging has some characteristics that make the
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segmentation task easier and difficult at the same time. On the one hand, the
imaging is narrowly focused on an anatomic region. The imaging context is
also well-defined. While context may be present to some extent in segmenting
general images (e.g., indoor vs. outdoor, city vs. nature, people vs. animals), it
is much more precise in a medical imaging task, where the imaging modality,
imaging conditions, and the organ identity is known. In addition, the pose
variations are limited, and there is usually prior knowledge of the number
of tissues and the Region of Interest (ROI). On the other hand, the images
produced in this field are one of the most challenging due to the poor quality
of imaging making the anatomical region segmentation from the background
very difficult. Often the intensity variations alone are not sufficient to distin-
guish the foreground from the background, and additional cues are required
to isolate ROIs. Finally, segmentation is often a means to an end in medical
imaging. It could be part of a detection process such as tissue detection, or
for the purpose of quantification of measures important for diagnosis, such as
for example, lesion burden which is the number of pixels/voxels within the
lesion regions in the brain.

To illustrate these subtleties, consider brain MRI imaging, as an example.
We can select to use a single modality, such as T1, or multi-modalities; we
know that there are three main tissues of interest: white matter, gray matter,
and cerebro-spinal fluid. We also know that in a pathological situation there
may be one additional class such as lesions or tumors. Additional information
may be on the relative sizes of the regions, their expected intensity distribu-
tions, and their expected geometric location (spatial layout). When treating
a specific disease, e.g., Multiple Sclerosis (MS), we often also have context
regarding the relevant regions in the brain. For example, we may be inter-
ested in specifically finding the relapsing-remitting lesions, which are actively
changing in size, or alternatively, we may be interested in the static lesions.

The core operation in all these applications is the division of the image
into a finite set of regions, which are smooth and homogeneous in their con-
tent and their representation. When posed in this way, segmentation can be
regarded as a problem of finding clusters in a selected feature space. In this
chapter, therefore, we will elaborate on approaches to segmentation based on
clustering. Specifically, we will consider two types of clustering, one paramet-
ric, and the other non-parametric to group pixels into contiguous regions. In
the first approach, which is a statistical clustering scheme based on parametric
Gaussian Mixture Models (GMMs), we develop the basic formalism and add
a variety of variations and extensions to include a priori knowledge or context
of the task at hand. We will demonstrate the GMM approach for segmen-
tation of brain MRI. In the second approach, we take a non-parameterized
graph-theoretic clustering approach to segmentation, and demonstrate how
spatio-temporal features could be used to improve graphical clustering. This
approach will be illustrated in the domain of cardiac echo videos as an example
of moving medical imagery. We begin by motivating the clustering approaches
to segmentation.
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9.2 Image Modeling and Segmentation

In general, the information contained in an image can be modeled in sev-
eral ways. A simple approach is to record the intensity distribution within
an image via a One-dimensional (1D) histogram and use simple threshold-
ing to obtain the various segments. Based on the example images displayed
in Fig. 9.1. Figure 9.2a shows such a histogram of a T1-weighted brain MRI.
As it can be seen, there are three intensity peaks each corresponding to the
three main tissue types: white matter, gray matter, and cerebro-spinal fluid,
which is indicated with high, mid-rande and low intensity values, respectively.
By choosing appropriate thresholds, we can separate the desired classes. Two
potential thresholds are shown in Fig. 9.2 as bars in the valleys of the his-
togram. The segmentation is then achieved by grouping all pixels of similar
intensity ranges into a class.

Fig. 9.1. Brain MRI. The brain slice from multiple acquisition sequences was taken
from BrainWEB (http://www.bic.mni.mcgill. ca/brainweb). From left to right:
T1-, T2-, and proton (P )-weighted image

histogram

a

feature space

b

Fig. 9.2. Brain MRI image characteristics. The histogram of the T1-weighted brain
MRI shows three apparent classes (a). The 2D feature space shows five apparent
classes (b)
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Such a simple segmentation approach, however, is often insufficient for
medical images where the imaging protocol can lead to variations in regional
contrast making the task of segmentation difficult. This is illustrated in
Fig. 9.1 which shows a sample MR brain slice, acquired with multiple acquisi-
tion protocols. Each protocol presents the image information in a unique range
of contrasts. T1-weighting, for example, causes fiber tracts (nerve connections)
to appear white, congregations of neurons to appear gray, and cerebro-spinal
fluid to appear dark. The contrast of white matter, gray matter, and cerebro-
spinal fluid is reversed using T2-weighted imaging, whereas proton-weighted
imaging provides little contrast in normal subjects.

9.2.1 Image Modeling

Several variations on classical histogram thresholding have been proposed for
medical image segmentation that incorporate extended image representation
schemes as well as advanced information modeling. These include:

• Multi-modal or multi-sequence data: Multi-dimensional are histograms
formed from the intensity values produced by each of the imaging pro-
tocols. It is often the case that several acquisitions are available for the
same image. In MRI of the brain, for example, common imaging sequences
include T1, T2, P and more. Each input provides different intensity valued
information regarding the image to be analyzed. Thus, the intensity feature
can be a single one I(T1) or a multi-dimensional one: [I(T1), I(T2), I(P )].
Figure 9.2b shows a scatter plot which is the intensity distribution of pixels
in the image in two dimensions, with the x-axis and y-axis representing the
intensity in the T1 and T2 image, respectively. With the multi-dimensional
feature representation, other features besides intensity can be added, such
as for example, texture around pixels in the image.

• Spatial information: Since intensity histograms do not preserve spatial
contiguity of pixels, one variation is to add spatial position (x, y) or (x, y, z)
to form a multi-dimensional feature vector incorporating spatial layout.

• Temporal information: If the medical images are in a time sequence (e.g.,
moving medical imagery), then time can be added as an additional feature
in the representation space. If certain behaviors can be identified in time,
and clustering in time is informative, the representation space can have
time as one of its dimensions.

9.2.2 Segmentation

Thus, these approaches represent each image pixel as a feature vector in a
defined multi-dimensional feature space. The segmentation task can be seen
as a combination of two main processes:

1. Modeling: the generation of a representation over a selected feature space.
This can be termed the modeling stage. The model components are often
viewed as groups, or clusters in the high-dimensional space.
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2. Assignment: the assignment of pixels to one of the model components or
segments. In order to be directly relevant for a segmentation task, the
clusters in the model should represent homogeneous regions of the image.

In general, the better the image modeling, the better the segmentation
produced. Since the number of clusters in the feature space are often unknown,
segmentation can be regarded as an unsupervised clustering task in the high-
dimensional feature space.

9.2.3 State of the Art

There is a large body of work on clustering algorithms. For our purposes, we
can categorize them into three broad classes: deterministic clustering, prob-
abilistic clustering (model-based clustering), and graph-theoretic clustering.
The simplest of these are the deterministic algorithms such as K-means [2],
mean-shift [3], and agglomerative methods [4]. For certain data distributions,
i.e. distributions of pixel feature vectors in a feature space, such algorithms
perform well. For example, K-means provides good results when the data is
convex or blob-like and the agglomerative approach succeeds when clusters
are dense and there is no noise. These algorithms, however, have a difficult
time handling more complex structures in the data. Further, they are sensitive
to initialization (e.g. choice of initial cluster centroids).

The probabilistic algorithms, on the other hand, model the distribution in
the data using parametric models, such as auto-regressive model, GMM, MRF,
and conditional random field. Efficient ways of estimating these models are
available using maximum likelihood algorithms such as the Expectation Max-
imization (EM) algorithm. While probabilistic models offer a principled way
to explain the structures present in the data, they could be restrictive when
more complex structures are present (e.g., data is a manifold). The last type
of clustering algorithms we consider are non-parametric in that they impose
no prior shape or structure on the data. Examples of these are graph-theoretic
algorithms based on spectral factorization [5,6]. Here, the image data is mod-
eled as a graph. The entire image data along with a global cost function is used
to partition the graph, with each partition now becoming an image segment.
In this approach, global overall considerations determine localized decisions.
Moreover, such optimization procedures are often compute-intensive. Better
data modeling by refining the cost of an edge using domain knowledge could
improve the effectiveness of such clustering approaches as we will show in
Sect. 9.5.

9.3 Probabilistic Modeling of Feature Space

We now consider an approach to segmentation that falls into the second class
of clustering algorithms mentioned above, the probabilistic approach. Here,
we will focus on the GMM-EM framework for parameterized Modeling of the
feature space.
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9.3.1 Gaussian Mixture Models

The feature space is generated from image pixels by a mixture of Gaussians.
Each Gaussian can be assigned a semantic meaning, such as a tissue region. If
such Gaussians could be automatically extracted, we can segment and track
important image regions.

A single mode histogram can be modeled by a Gaussian. A mixture of
Gaussians can be used to represent any general, multi-modal histogram.
Using a Maximum Likelihood (ML) formalism, we assume that the pixel
intensities (or more generally, the corresponding feature vectors) are indepen-
dent samples from a mixture of probability distributions, usually Gaussian.
This mixture, called a finite mixture model, is given by the probability
density function

f(vt|Θ,α) =
n∑
i=1

αifi(vt|θi) (9.1)

where vt is the intensity of pixel t; fi is a component probability density
function parameterized by θi, where Θ = [θ1 . . . θn] and the variables αi are
mixing coefficients that weigh the contribution of each density function, where
α = [α1 . . . αn].

9.3.2 Expectation Maximization

The EM algorithm [7] is often used to learn the model parameters, using iter-
ative optimization. It obtains the maximum likelihood estimation by iterating
two steps: the Expectation Step (E-step) and the Maximization Step (M-step).
Based on the current estimation of the parameter set, the E-step produces
the probabilistic classification values, wit, t = 1, . . . , T , which indicate the
probabilistic affiliation of pixel vt to Gaussian i, i = 1, . . . , n

wit = p(i|vt) =
αifi(vt|μi, Σi)∑n
l=1 αlfl(vt|μl, Σl)

(9.2)

In the M-step, the model parameters are re-estimated using the classifica-
tion values of the E-step

αi =
ni
n
, ni =

T∑
t=1

wit (9.3)

μi =
1
ni

T∑
t=1

witvt, Σi =
1
ni

T∑
t=1

wit (vt − μi)
2

In each iteration of the EM algorithm, the log-likelihood of the data is guar-
anteed to be non-decreasing. In convergence, the parameter values found are
therefore at a local maximum of the likelihood function. The iterative updating
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process above is repeated until a predefined condition is fulfilled. Possible con-
ditions include a threshold applied to the increase of the log-likelihood and
a limit on the number of iterations. In order to ensure a meaningful maxi-
mization point at the outcome, data-driven initialization schemes, such as the
frequently used K-means algorithm [2], are appropriate.

9.3.3 Visualization

An immediate transition is possible between the extracted image representa-
tion and probabilistic segmentation. In the representation phase, a transition
is made from voxels to clusters (Gaussians) in feature space. The segmentation
process can be thought of as forming a linkage back from the feature space
to the raw input domain. A segmentation map can be generated by assigning
each pixel to the most probable Gaussian cluster, i.e., to the component i of
the model that maximizes the a posteriori probability

Label{vt} = arg max
i

{αif(vt|μi, Σi)} (9.4)

We illustrate the GMM modeling of the feature space using an example
x-ray image (Fig. 9.3). To produce this visualization, we projected the GMM
models formed from a Three-dimensional (3D) feature space of intensity and
pixel coordinates (I, x, y) onto the image plane (x, y). The resulting shapes
of such regions are therefore ellipsoidal as shown in this figure. Figure 9.3
also shows the visual effect of varying the number n of Gaussians in the
GMM. A small n provides a very crude description. As we increase the number
of Gaussians, finer detail can be seen in the blob representation. Larger n
provides a more localized description, including finer detail such as the fingers.
This seems more representative to the human eye and definitely closer to the
original image. Thus the GMM models can be an effective way to partition
an input image into a collection of regions. This approach can also be used to
group regions into semantically meaningful entities such as tissue regions and
lesions.

Fig. 9.3. Level of granularity in the representation. Different number n of Gaussians
per image model



234 H. Greenspan and T. Syeda-Mahmood

9.4 Using GMMs for Brain Tissue
and Lesion Segmentation

The initial segmentation of pixels directly from the Gaussian clusters is suffi-
cient for the search and retrieval function. In fact, GMMs were shown to be
effective in image matching for general (e.g., web-based) as well as medical
image search and retrieval [8, 9]. However, if the goal of segmentation is also
to identify tissue regions and lesions or tumors, then such fragmented regions
in the image plane must be further grouped to form these structures. This
can be guided by a priori knowledge, which is formulated algorithmically by
constraints.

9.4.1 Application Domain

The tissue and lesion segmentation problems has been attempted earlier by
different approaches for brain MRI images [10]. In such images, there is interest
in mainly three tissue types: white matter, gray matter and cerebro-spinal
fluid. The volumetric analysis of such tissue types in various part of the brain
is useful in assessing the progress or remission of various diseases, such as
Alzheimer’s desease, epilepsy, sclerosis and schizophrenia.

The predominant approach to tissue segmentation in clinical settings is
still manual. Manual partitioning of large amounts of low contrast and low
Signal to Noise Ratio (SNR) brain data is strenuous work and is prone to
large intra- and inter-observer variability. Automatic approaches to tissue
segmentation have also become recently available, using intensity information
and/or spatial layout.

Algorithms for tissue segmentation using intensity alone often exhibit high
sensitivity to various noise artifacts, such as intra-tissue noise, inter-tissue
contrast reduction, partial volume effects and others [11]. Reviews on meth-
ods for brain image segmentation (e.g., [10]) present the degradation in the
quality of segmentation algorithms due to such noise, and recent publica-
tions can be found addressing various aspects of these concerns (e.g. partial
volume effect quantification [12]). Due to the artifacts present, classical voxel-
wise intensity-based classification methods may give unrealistic results, with
tissue class regions appearing granular, fragmented, or violating anatomical
constraints [13].

9.4.2 Spatial Constraints

One way to address the smoothness issue is to add spatial constraints. This
is often done during a pre-processing phase by using a statistical atlas, or as
a post-processing step via MRF models. A statistical atlas provides the prior
probability for each pixel to originate from a particular tissue class [14–16].

Algorithms exist that use the Maximum A-Posteriori (MAP) criterion to
augment intensity information with the atlas. However, registration between
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a given image and the atlas is required, which can be computationally
prohibitive [17]. Further, the quality of the registration result is strongly
dependent on the physiological variability of the subject and may converge
to an erroneous result in the case of a diseased or severely damaged brain.
Finally, the registration process is applicable only to complete volumes. A
single slice cannot be registered to the atlas, thus, cannot be segmented using
these state-of-the-art algorithms.

Segmentation can also be improved using a post-processing phase in which
smoothness and immunity to noise can be achieved by modeling the neigh-
boring voxel interactions using a MRF [15, 18, 19]. Smoother structures are
obtained in the presence of moderate noise as long as the MRF parameters
controlling the strength of the spatial interactions are properly selected. Too
high a setting can result in an excessively smooth segmentation and a loss
of important structural details [20]. In addition, MRF-based algorithms are
computationally intractable unless some approximation is used. Finally, there
are algorithms that use deformable models to incorporate tissue boundary
information [21]. They often imply inherent smoothness but require careful
initialization and precisely calibrated model parameters in order to provide
consistent results in the presence of a noisy environment.

9.4.3 Modeling Spatial Constraints Through GMM

For complex tissue patterns or small lesions, a very refined segmentation is
needed to achieve robust segmentation in the presence of strong thermal noise,
without using an atlas as prior information. Ideally, since spatial information
can be included in the feature space, coherent clusters in feature space can lead
to coherent spatial localized regions in the image space. For regions of complex
shapes in the image plane, for which a single convex hull is not sufficient (will
cover two or more different segments of the image), a plausible approach is to
utilize very small spatial supports per Gaussian. This in turn implies the use
of a large number of Gaussians.

Using Gaussians that are very localized in space, and have a small spatial
support, can result in a relatively small number of (affiliated) pixels affecting
the Gaussian characteristics. This may be problematic in regions that have
a substantial noise component, as well as in regions located close to tissue-
borders. In order to provide a more global perspective, the over-segmented
(localized) regions need to be grouped per tissue.

Figure 9.4 illustrates how a large set of Gaussians can be used to represent
an image. Here again we show projection of the 3D feature space into the image
plane. Different shades of gray represent the three distinct tissues present. All
Gaussians of a particular tissue influence the global intensity modeling of that
tissue (and are pseudo-colored in a constant shade in the Figure).

Our approach to tissue modeling using GMMs is called Constrained GMM
(CGMM) [22]. CGMM model each tissue region by a separate collection of a
large number of Gaussians. The overall approach is as follows. We first use
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Fig. 9.4. Image modeling via GMMs
[22]. Each Gaussian is colored with the
mean gray level of its pixels and
projected onto the (x, y)-plane

K-means algorithm based on intensity alone to result in an initial segmentation
of the image into tissue groups (i.e., white matter, gray matter, cerebro-spinal
fluid). Next, each tissue is modeled with many small locally convex Gaussians
based on intensity and spatial features (I, x, y, z). Since each Gaussan supports
a small location region, it can be assumed to be convex. Further, the intensity
is roughly uniform within the Gaussian support region. This means, the spatial
and intensity features are separable and can be independently estimated using
the EM algorithm. Thus, a modified M-step is used in which the Gaussians
for intensity and pixel locations are estimated separately. This modification
ensures that smooth boundary segmentations are possible.

Constrained GMM Formulation

We now describe the CGMM approach in detail. Let the intensity compo-
nent of the feature vector representing the voxel be denoted by vI. In order
to include spatial information, the (X,Y, Z) position is appended to the
feature vector. The notation vXYZ = (vX , vY , vZ) is used for the three spa-
tial features. The set of feature vectors extracted per volume is denoted by
{vt | t = 1, . . . , T} where T is the number of voxels. The image is modeled as
a mixture of many Gaussians (9.1).

The spatial shape of the tissues is highly non-convex. However, since we use
a mixture of many components, each Gaussian component models a small local
region. Hence, the implicit convexity assumption induced by the Gaussian
distribution is reasonable. The high complexity of the spatial structure is an
inherent part of the brain image. The intra variability of the intensity feature
within a tissue (bias) is mainly due to artifacts of the MRI imaging process
and once eliminated (via bias-correction schemes) is significantly less than the
inter-variability among different tissues. It is therefore sufficient to model the
intensity variability within a tissue by a small number, or a single Gaussian
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(in the intensity feature). To incorporate this insight into the model, we further
assume that each Gaussian is linked to a single tissue and all the Gaussians
related to the same tissue share the same intensity parameters.

Technically, this linkage is defined via a grouping function. In addition to
the GMM parameter set Θ, we define a grouping function π : {1, . . . , n} →
{1, . . . , k} from the set of Gaussians to the set of tissues. We assume that
the number of tissues is known and the grouping function is learned in the
initialization step. The intensity feature should be roughly uniform in the
support region of each Gaussian component, thus, each Gaussian spatial and
intensity features are assumed uncorrelated. The above assumptions impose
the following structure on the mean and variance of the Gaussian components

μi =
(
μXYZ
i

μI
π(i)

)
, Σi =

(
ΣXYZ
i 0
0 ΣI

π(i)

)
(9.5)

where π(i) is the tissue linked to the i-th Gaussian component and μIj and ΣI
j

are the mean and variance parameters of all the Gaussian components that
are linked to the j-th tissue.

The main advantage of the CGMM framework is the ability to combine,
in a tractable way, a local description of the spatial layout of a tissue with a
global description of the tissue’s intensity.

Learning CGMM Parameters

The EM algorithm is utilized to learn the model parameters. In the proposed
framework, Gaussians with the same tissue-label are constrained to have the
same intensity parameters throughout. A modification of the standard EM
algorithm for learning GMM is required, as shown in the following equations.
The E-step of the EM algorithm for the CGMM model is the same as of the
unconstrained version; denoting ni

n = αi yields

wit = p(i|vt) =
αifi(vt|μi, Σi)∑n
l=1 αlfl(vt|μl, Σl)

, ni =
T∑
t=1

wit, kj =
∑

i∈π−1(j)

ni

(9.6)
such that ni is the expected number of voxels that are related to the i-th
Gaussian component and kj is the expected number of voxels that are related
to the j-th tissue. The maximization in the M-step is done given the constraint
on the intensity parameters

μXYZ
i =

1
ni

T∑
t=1

witv
XYZ
t , ΣXYZ

i =
1
ni

T∑
t=1

wit
(
vXYZ
t − μXYZ

i

)(
vXYZ
t − μXYZ

i

)T

μI
j =

1
kj

∑
i∈π−1(j)

T∑
t=1

witv
I
t, ΣI

j =
1
kj

∑
i∈π−1(j)

T∑
t=1

wit
(
vI
t − μI

j

)2
(9.7)
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The grouping function π that links between the Gaussian components and
the tissues is not altered by the EM iterations. Therefore, the affiliation of a
Gaussian component to a tissue remains unchanged. However, since the learn-
ing is performed simultaneously on all the tissues, voxels can move between
tissues during the iterations.

In the first step, the K-means clustering is done based only on the intensity
features (T1, T2 and P ), which gives a good initial segmentation into the three
major tissue classes. We utilize T1 to give tissue labels to the three groups.
Then, each tissue is modeled with many small locally convex Gaussians. To
ensure that small isolated areas are explicitly represented by local Gaussians,
we first apply a 3D connected component process to each tissue. If a connected
component contained less than three voxels, it was ignored and disregarded
as noise. For each connected component (of voxels all from the same tissue)
a subset of voxels is randomly chosen and a new Gaussian is formed at each
of the chosen voxels. To compute initial covariance values for each Gaussian,
we assign each voxel to the nearest center with the same tissue label. The
Gaussian covariance (both intensity and spatial) is computed based on all the
voxels that are assigned to the Gaussian center. As a result of the initialization
process each Gaussian is linked to one of the tissues and each voxel is affiliated
with a selected Gaussian.

9.4.4 Tissue Segmentation

The CGMM model uses multiple Gaussians for each tissue. Thus, we need to
sum over the posterior probabilities of all the identical tissue Gaussians to get
the posterior probability of each voxel to originate from a specific tissue

Label{vt} = arg max
j∈{1,...,k}

⎧⎨
⎩

∑
i∈π−1(j)

αifi(vt|μi, Σi)

⎫⎬
⎭ (9.8)

such that Label{vt} ∈ {1, . . . , k} is one of the tissues. The linkage of each
voxel to a tissue label provides the final segmentation map.

Figure 9.5 illustrates the segmentation induced from the CGMM model
and shows how the EM iterations improve the segmentation quality. Since
much of the algorithmic effort is spent on finding a good initialization, the
EM needs only few iterations to converge. Thus, the CGMM is an effective
approach to segment tissues in images.

9.4.5 Lesion Segmentation

The CGMM approach can also be used effectively to segment lesions. Lesion
segmentation is important for diagnosis of many brain disorders including MS.
The most common quantitative parameter of interest in such cases is the lesion
burden (load) of the disease expressed in terms of the number and volume of
the brain lesions. The MRI-measured lesion burden is highly correlated with
clinical finding [23–27].
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initial segmentation

a

convergence after five iterations

b

Fig. 9.5. Tissue segmentation in brain MRI. As the parameter estimation improves
with the iterations, the segmentation induced from the model becomes more and
more robust to noise. The colors green, yellow and blue indicate gray matter, white
matter, and cerebro-spinal fluid, respectively

Segmentation of abnormal structures like MS lesions, is a difficult a task.
Lesions differ from each other in size, location and shape. Also, as each MR
modality reflects different physical properties, the exact lesion boundaries
may vary between different MR channels. To complicate matters, the number
of voxels that are associated with MS lesions is significantly smaller than
the number of voxels that are associated with healthy tissues. Thus, simple
clustering algorithms (e.g. K-means), fail to discern MS-lesion voxels from the
rest of the image.

In a model-based approach, the lesion category can be modeled explic-
itly, as an additional category, or alternatively, the lesions may be defined as
outliers to the tissue-extracted models. While several authors (e.g. [28, 29])
model the MS lesions as a distinguished class in addition to the healthy tissue
classes (CSF, GM, WM), another approach is to model the lesions as outliers.
For example, Van Leemput et al. treat voxels that are not well explained by
either of the healthy tissue models) as candidates to be classified as lesions [30].
Among these candidates, the separation into lesion and non-lesion voxels is
made according to contextual information and a set of rules. It is also possible
to treat lesions as outliers only in an intermediate stage, and then to build an
explicit model for them [31].

Using the CGMM framework, we exemplarily address MS-lesion seg-
mentation. Instead of using a voxel-based lesion characterization, we use a
Gaussian-based (or “blob”-based) approach, whereby lesions are detected as
Gaussian outliers [32]. For this, the model is initialized with three tissue
classes, and its parameters are learned as described above. Due to the fact
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that lesion voxels are significantly outnumbered by the healthy tissue vox-
els, the clusters still succeed in representing the healthy tissues. The lesion
voxels are of course misclassified at this point as one or more of the healthy
tissues. Moreover, at this stage there are misclassified Gaussians, i.e., Gaus-
sians labeled as healthy tissues that are supposed to be labeled as lesions.
The purpose of the current stage is to identify these Gaussians, and change
their labels accordingly. In other words, lesion detection is performed on the
Gaussian rather than the voxel level.

For each Gaussian a decision is made, based on its features, whether it
should in fact be labeled as MS, or remain labeled as one of the healthy
tissues. Both supervised and unsupervised approaches can be used to deal
with this task. For example, a rule-based system can be used to distinguish
the lesion Gaussians from the normal tissue Gaussians. A Gaussian for which
all these conditions hold, is then labeled as a lesion. An example of such a
rule set for Gaussians labeled as GM is the following:

1. T2 mean-intensity of the Gaussian > T2 mean-intensity of the GM tissue
+ εGM,T2 .

2. T2 mean-intensity of the Gaussian > P mean-intensity of the GM tissue
+ εGM,P .

3. A large Mahalanobis distance between the mean-intensity of the Gaussian
and the mean-intensity of the three healthy tissue classes.

4. The majority of the Gaussian’s k-nearest Gaussians are labeled as WM.

where εGM,T2 and εGM,P are thresholds that can be tuned and optimized. The
first two rules reflect the general appearance of the MS lesions. The rules that
rely on Mahalanobis distance imply that only Gaussians that are not well
explained by the healthy tissue models are suspected as lesion Gaussians. The
last rule incorporates contextual information by reflecting our expectation to
find lesions within the WM tissue. These rules are similar to rules used by
Van Leemput et al. [30]. However, note that at this point decisions are made
at the Gaussian level rather than the voxel level.

Following the Gaussian-based MS lesion detection stage, all the re-labeled
Gaussians now form a fourth class (MS lesion), with its own global intensity
parameters. The EM is now applied to CGMM with four tissue types and
segmentation of the tissues and the lesions is obtained (Fig. 9.6). Thus the
CGMM can be seen as a versatile framework for image segmentation, tissue
detection as well as lesion characterization.

9.5 Non-Parametric Clustering Approaches
to Segmentation

So far, we have discussed model-based clustering approaches to segmen-
tation. We now turn to a second segmentation algorithm that is a non-
parametric approach to clustering regions. As mentioned in Sect. 9.1, inten-
sity information is often insufficient in segmenting medical images. This is
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Fig. 9.6. MS lesion segmentation. The MS lesion is color-coded red. Left : Input
T2 images with 9% noise; Middle: CGMM segmentation; Right : ground truth
segmentation

particularly true in challenging medical videos generated during an echo-
cardiographic or a cardiac MRI study, where spatio-temporal information is
captured by moving medical imagery.

We now describe an approach to segmentation that caters to these types
of data. Due to the temporal nature of these videos, we exploit motion in
addition to intensity and location information. Specifically, each pixel in the
moving medical image is represented by its location, intensity and motion
vectors. The relation between adjacent pixels is captured by the difference in
their location, intensity and motion. Using the graph-theoretic formulation for
clustering, each pixel represents a node of the graph and the distance between
pixels is captured through the cost of the edge. The normalized cut algorithm
is then used to partition the graph into segments.

9.5.1 Description of the Feature Space

Since motion is critical to segmenting objects in these videos, we first develop
a method of reliably estimating inter-frame motion. Ideally, a simple way of
estimating spatio-temporal motion is to use optical flow-based methods. These
are suitable for small deformations in temporal sequences of images. In fact,
Electrocardiography (ECG)-gated cardiac MRI was segmented using motion
information derived from optical flow [33]. The basic idea of optical flow is as
follows.

Optical Flow

The intensity between corresponding pixels is captured via the brightness
change constraint equation which states that the corresponding points at
successive time instants have equal intensity. Thus, if I(x, y, t) is the pixel
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intensity at a given pixel location (x, y) at time t, then its corresponding pixel
at time t+ δt has the same intensity as given by

I(x, y, t) = I(x+ δx, y + δy, t+ δt) (9.9)

Assuming the relative change between successive images is small, the
intensity can be approximated by the first few terms in a Taylor series
expansion as

I(x+δx, y+δy, t+δt) = I(x, y, t)+
∂I

∂x
∂x+

∂I

∂y
∂y+

∂I

∂t
∂t+higher order terms

(9.10)
Ignoring the higher order terms, this implies

∂I

∂x
∂x+

∂I

∂y
∂y +

∂I

∂t
∂t = 0 (9.11)

or in matrix notation
∇IT · V = −It (9.12)

Thus the spatio-temporal motion estimation problem is to recover the
velocity vectors from the above equation. Clearly, one equation alone is not
sufficient to solve for the unknown velocity vectors V [34]. All optical flow
methods, therefore, introduce additional constraints to estimate the veloc-
ity including a regularization term for smoothing[35]. One solution is to
consider that the end point of velocity vectors are the closest point of a high-
dimensional surface m with respect to spatial (x,y,z) translations which leads
to a regularization term as

V =
−It∇I
∇I2

(9.13)

This equation is unstable for small values of gradient, leading to infinite veloc-
ity values. In fact, optical flow estimates of motion in moving medical imagery
are often noisy and incoherent. As such they have not been able to adequately
model the complex motion of the heart that manifests as different directional
motion at different locations.

Demon’s Algorithm

To make (9.13) stable for small values of gradient, Thirion introduced the
notion of regularization (or stabilization) by applying a smooth deformation
field [36]. That is, we can estimate motion by treating each successive pairs
of intensity image frames as surfaces (x, y, I(x, y)) and finding a deformable
(changeable) surface model that warps one frame into the next [36]. It pro-
duces a displacement field between two successive frames which indicates the
transform that should be applied to pixels of one of the images so that it can
be aligned with the other. The resulting deformation field gives a consistent
set of directional velocity vectors, sampling motion densely in both space and
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Table 9.1. Final algorithm

Step Action

1 Compute initial gradient estimate for each pixel ∇I
2 Set initial velocity estimates V = 0
3 For each pixel i, repeat steps 4–6
4 Compute intensity in deformed image using (9.11)
5 Compute the additional displacement vector using (9.14)
6 Update the displacement vector V = Vprev + V from above
7 Regularize the velocity field by applying Gaussian smoothing
8 Repeat steps 3–7 until convergence is reached

time. Thus this algorithm called the Demon’s algorithm, treats the motion
estimation as a surface registration problem. More specifically, to make (9.13)
stable for small values of gradient, the Demon’s method multiplies (9.13) by
a term ∇I2

∇I2+(It)2
to give the flow estimate as

V =
−It∇I

∇I2 + (It)2
(9.14)

With this expression, the motion estimates can be computed in two steps.
We first compute the instantaneous optical flow from every point in the target
images using (9.12), and then regularize the deformation field as in (9.14).
Thus the Demon’s algorithm is inspired from the optical flow equations but
is renormalized to prevent instabilities for small image gradient values. To
further ensure unique and consistent motion in a local region, an elastic-like
behavior can be ensured by smoothing with a Gaussian. Table 9.1 summarizes
the algorithm.

While there is a large body of literature on surface registration algorithms
[37], the Demon’s algorithm has been particularly popular in medical imaging
due to its proved effectiveness, simplicity, and computational efficiency. Hence
we adopt this approach to estimate the spatio-temporal motion in moving
medical imagery.

9.5.2 Clustering Intensity, Geometry, and Motion

Once a description of the spatio-temporal content of moving medical imagery
is obtained, segmentation can proceed using one of the many available clus-
tering approaches. In [33] in fact, spatio-temporal segmentation was based
on using K-means clustering of intensity and motion features derived from
optical flow. However, K-means clustering is sensitive to the selection of ini-
tial centroids for region growing, which together with noisy motion estimates
from optical flow methods will give rise to inaccurate segmentation of such
imagery.
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Graph-Based Clustering

In our method, we take a non-parametric approach to clustering based on
graph theory. Using the graph formalism, the segmentation problem for a set
of moving medical images can be modeled by a graph G = (V,E,W ) where
V are the pixels, and edges E connect pairs of neighboring pixels, and W
denotes the strength of the connectivity between pixels. Typically, W cap-
tures the similarity between pixels using an exponential weighting function.
The overall quality of segmentation depends on the pairwise pixel affinity
graph. Two simple but effective local grouping cues are: intensity and prox-
imity. Close-by pixels with similar intensity value are likely to belong to one
object. But because of texture clutter, the intensity cue alone often gives poor
segmentations, hence we add local neighborhood information. Using intensity
and proximity, the affinity matrix can be given by

WI(i, j) = e−||Xi−Xj ||/δx−||Ii−Ij ||/δI (9.15)

where Xi denotes pixel location, and Ii is the image intensity at pixel
location i.

Once the affinity between pairs of pixels is defined, there are several seg-
mentation algorithms based on graph theory [5, 38]. Here, we used a graph
clustering algorithm called the normalized cut algorithm [5] that was reported
earlier to partition a single image pixels into self-similar regions, and adapt it
for use on moving medical imagery.

Normalized Cut Algorithm

To understand this algorithm, consider the goal of segmentation which is
to partition the image into regions. In terms of the graph formulation, this
means dividing the graph by removing key edges such that the individual
connected regions becomes disconnected. To ensure that such a removal does
not remove close nodes, the set of edges (called a cut) to be removed should
have the minimum weight. In order to ensure that the graph does not split
into small isolated components, this weight must be normalized by the weight
of the edges incident on a node. Thus, normalized cut edge cost between a
pair of nodes is defined as

W (A,B) =
w(A,B)
w(A, V )

+
w(B,A)
w(B, V )

(9.16)

where w(A,B) is the cost of the affinity edge between nodes A and B.
If we assemble all the edge weights into a weight matrix W , let D be the

diagonal matrix with entries D(i, i) = W (i, j), then the normalized cut cost
can be written as

yT (D −W )y
yTDy

(9.17)



9 Parametric and Non-Parametric Clustering for Segmentation 245

where y is an indicator vector, y = 1 if the i-th feature belongs to A and −1
otherwise. While finding the exact minimum of the normalized cut is NP-
complete, if we relax y to take on continuous values instead of binary values,
we can minimize the cost by solving the generalized eigenvalue problem
(D − W )y = λDy. The solution y is given by the eigenvector correspond-
ing to the second smallest eigenvalue from the Raleigh quotient. Using the
edges indicated by the eigenvector, we can now split the graph into connected
regions at the next level. This segmentation step recursively proceeds until
convergence is reached.

Recently, Cour et al. improved the efficiency of the normalized cuts algo-
rithm using a scale-space implementation [39]. In the multi-scale adaptation
of normalized cuts, the graph links in W are separated into different scales
according to their underlying spatial separation. That is

W = W1 +W2 + ...Ws (9.18)

where Ws contains affinity between pixels with certain spatial separation
range: Ws(i, j) �= 0 only if Gr,s−1 ≤ rij ≤ Gr,s, where Gr,s is the distance
between pixels. This decomposition allows different graph affinities at different
spatial separations to be modeled.

We adapt the above multi-scale version of normalized cuts to our segmen-
tation of moving medical imagery problem as follows. First, we augment the
affinity matrix with a motion term, since motion boundaries provide a natural
way to group objects as well. Specifically, we define a new affinity matrix as

WI(i, j) = e−||Xi−Xj ||/δx−||Ii−Ij ||/δI−||Vi−Vj ||/δV (9.19)

Thus, the weighting function combines image intensity, proximity and
motion information so that nearby pixels with similar intensity values and
motion are likely to belong to one object. Using the revised affinity matrix, we
use the multi-scale adaptation of normalized cuts to find the various clusters.

9.6 Using Non-Parametric Clustering
for Cardiac Ultrasound

9.6.1 Application Domain

In an echocardiography study, an ultrasound-based diagnostic procedure is
used for morphological and functional assessment of the heart. In particular,
it is used to study the heart chambers called the atria and ventricles (Fig. 9.7).
Bad blood enters the right atrium, and through the right ventricle is sent to
the lungs for cleaning. The cleaned blood enters the left atrium and is supplied
to the rest of the body through the aorta originating from the left ventricle. Of
these chambers, the performance of the left ventricle is crucial to assessing the
heart performance. The flow of blood is gated by the valves between the atria
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Fig. 9.7. Illustration of an
echocardiogram. A case of
left ventricular hypertrophy
is shown where the left
ventricle has significantly
altered shape due to muscle
growth

and ventricles, such as the mitral valve between left atrium and left ventricle,
and the aortic valve in the entrance to the aorta. The opening and closing
motion of these valves needs to be properly timed within the heart cycle. The
echocardiogram is therefore used to study valvular motion abnormalities as
well as septal and regional wall motion abnormalities in addition to estimating
the performance of the left ventricular contraction.

The end result of this procedure is data in the form of echocardiogram
videos. The objects of interest in echocardiogram videos are, therefore, the
cardiac chambers (atria and ventricles), valves and septal walls as shown in
Fig. 9.7. As can be seen, the various cardiac regions are difficult to segment
based on image information alone. The interesting chambers are essentially
dark feature-less regions. Further, the complex non-rigid motion alters their
shape through the heart cycle, making it difficult to model them using para-
metric models such as Gaussian mixtures we described earlier. In such cases,
non-parametric approaches such as graph-theoretic clustering are better suited
as they keep alive multiple interpretation possibilities allowing both local and
global constraints to be incorporated.

9.6.2 Cardiac Motion Estimation

We now illustrate the type of motion estimates produced by using the Demon’s
algorithm for echocardiographic sequences. Figure 9.8a,d show successive
frames of an echocardiographic sequence. Using the Demon’s algorithm, the
displacement fields produced are shown in Fig. 9.8e. In comparison, the result
of using straightforward optical flow is shown in Fig. 9.8b. The smooth and
coherent estimation of motion in comparison to optical flow can be clearly
seen in the enlarged portions of cardiac regions (Fig. 9.8c,f).

9.6.3 Segmentation of Meaningful Regions

We now describe the overall segmentation algorithm for moving medical
imagery. The algorithm consists of two major steps: (a) pre-processing to
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Fig. 9.8. Motion estimation in echocardiograms. The ultrasound images in (a) and
(d) are three frames apart. Motion estimation using plain optical flow (b, c) is
improved applying demon’s algorithm (e, f)

extract affinity information between pixels and (b) multi-scale graph-theoretic
clustering. To extract the motion field, we pre-process the videos to remove
background text (recording information from instrument) through simple
frame subtraction. An edge-enhancing diffusive smoothing algorithm (as
described in Weickert [40]) is then applied to each frame to remove high-
frequency noise from the tissue while retaining both tissue edges and intra-
tissue intensity band structure. Demon’s algorithm is run between frames that
are less than three frames apart as described in the earlier section. Finally,
the affinity values using (9.19) is used for multi-scale normalized cut-based
segmentation.

Figure 9.9 illustrates cardiac region segmentation using the modified
multi-level normalized cut combining intensity and motion information. Fig-
ure 9.9a,b show adjacent frames of an echo video. Figure 9.9c shows the results
of using normalized cut-based segmentation based on intensity alone. Finally,
Fig. 9.9d shows the result using both intensity and motion recovered from
deformable registration. As can be seen, the combined use of intensity and
motion information has resulted in improved delineation of relevant medical
regions.
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Fig. 9.9. Segmentation of echocardiograms. The combined use of intensity and
motion information has improved the delineation of chamber and septal wall
boundaries

9.7 Discussion

In this chapter, we have introduced two approaches to medical image seg-
mentation based on parametric and non-parametric clustering. The GMM
approach has been shown to be useful in not only segmentation but also in
quantification of lesions in Multiple-sclerosis images. In the second approach,
we showed how spatio-temporal information can be used to guide the nor-
malized cut algorithm in segmentation of moving medical imagery based on
graph-cut clustering. Future work will develop additional methodologies of
segmentation, detection and quantification for improving quantitative disease
evaluation, the prediction of disease outcome, and clinical knowledge.

References

1. Haralick RH, Shapiro LG. Computer and Robot Vision, Vol. I. Philadelphia:
Addison-Wesley; 1993.

2. Bishop CM. Neural Networks for Pattern Recognition. University Press, Eng-
land: Oxford; 1995.



9 Parametric and Non-Parametric Clustering for Segmentation 249

3. Comaniciu D, Meer P. Mean shift: a robust approach toward feature space
analysis. IEEE Trans Pattern Anal Mach Intell. 2002;24(5):603–19.

4. Duda RO, Hart PE, Stork DG. Pattern Classiffication. 2nd ed. New York:
Wiley-Interscience; 2000.

5. Shi J, Malik J. Normalized cuts and image segmentation. IEEE Trans Pattern
Anal Mach Intell. 2000;22(8):888–905.

6. Ng A, Jordan MI, Weiss Y. On spectral clustering: analysis and an algorithm.
Proc Adv Neural Inf Process Syst. 2001.

7. Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data
via the EM algorithm. J R Stat Soc Ser B (Methodological). 1977;39(1):1–38.

8. Carson C, Belongie S, Greenspan H, et al. Blobworld: image segmentation using
expectation-maximization and its application to image querying. IEEE Trans
Pattern Anal Mach Intell. 2002;24(8):1026–38.

9. Greenspan H, Pinhas A. Medical image categorization and retrieval for
PACS using the GMM-KL framework. IEEE Trans Inf Technol Biomed.
2007;11(2):190–202.

10. Pham DL, Xu C, Prince JL. Current methods in medical image segmentation.
Annu Rev Biomed Eng. 2000;2:315–37.

11. Macovski A. Noise in MRI. Magn Reson Med. 1996;36(3):494–7.
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10

Region-Based Segmentation:
Fuzzy Connectedness, Graph Cut

and Related Algorithms

Krzysztof Chris Ciesielski and Jayaram K. Udupa

Summary. In this chapter, we will review the current state of knowledge on region-
based digital image segmentation methods. More precisely, we will concentrate on
the four families of such algorithms: (a) The leading theme here will be the frame-
work of fuzzy connectedness (FC) methods. (b) We will also discuss in detail the
family of graph cut (GC) methods and their relations to the FC family of algorithms.
The GC methodology will be of special importance to our presentation, since we will
emphasize the fact that the methods discussed here can be formalized in the lan-
guage of graphs and GCs. The other two families of segmentation algorithms we
will discuss consist of (c) watershed (WS) and (d) the region growing level set (LS)
methods. Examples from medical image segmentation applications with different FC
algorithms are also included.

10.1 Introduction and Overview

In this chapter, we will review the current state of knowledge in region-based
digital image segmentation methods, with a special emphasis on the fuzzy con-
nectedness (FC) family of algorithms. The other image segmentation methods
are discussed in the other chapters of this book and we will refer to them only
marginally. We will put a special emphasis on the delineation algorithms, that
is, the segmentation procedures returning only one Object Of Interest (OOI)
at a time rather than multiple objects simultaneously. This will make the
presentation clearer, even for the methods that can be easily extended to the
multi-object versions.

We will discuss only the region-growing-type delineation algorithms, which
in Chap. 1 are referred to as agglomerative or bottom-up algorithms. More pre-
cisely, we will concentrate on the four families of such algorithms. The leading
theme will be the framework of FC methods developed since 1996 [1–6], includ-
ing a slightly different approach to this methodology, as presented in papers
[7–9]. For some applications of FC, see also e.g. [10, 11]. We will also discuss
the family of Graph Cut (GC) methods [12–20] and their relations to the FC
family of algorithms. The GC methodology will be of special importance to
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our presentation, since we will formalize the FC framework in the language of
graphs and graph cuts. The other two families of segmentation algorithms we
will discuss consist of Watershed (WS) [21–23] and region growing Level Set
(LS) methods from [24,25].

The common feature of all the presented algorithms is that the object
to be segmented by them is indicated (by user, or automatically) by one or
more space elements (spels) referred to as seeds. In addition, if P is an object
returned by such an algorithm, then any spel belonging to P is connected to at
least one of the seeds indicating this object. The word “connected” indicates,
that the topological properties of the image scene play important role in this
class of segmentation processes. So, we will proceed with explaining what we
mean by the image scene, its topology, as well as the notion of connectedness
in this context.

For the rest of this chapter, n ≥ 2 will stand for the dimension of the image
we consider. In most medically relevant cases, n is either 2 or 3, but a time
sequence of 3D images is often considered as a 4D image.

10.1.1 Digital Image Scene

A digital image scene C can be identified with any finite subset of the n-
dimensional Euclidean space R

n. However, we will concentrate here only on
the case most relevant for medical imaging, in which C is of the rectangular
form C1×· · ·×Cn and each Ci is identified1 with the set of integers {1, . . . ,mi}.

A topology on a scene C = 〈C,α〉 will be given in terms of adjacency
relation α, which intuitively determines which pair of spels c, d ∈ C is “close
enough” to be considered connected. Formally, an adjacency relation α is a
binary relation on C, which will be identified with a subset of C ×C, that is,
spels c, d ∈ C are α-adjacent, if and only if, 〈c, d〉 ∈ α. From the theoretical
point of view, we need only to assume that the adjacency relation is symmetric
(i.e., if c is adjacent to d, then also d is adjacent to c).2 However, in most
medical applications, it is enough to assume that c is adjacent to d when the
distance3 ||c−d|| between c and d does not exceed some fixed number. In most
applications, we use adjacencies like 4-adjacency (for n = 2) or 6-adjacency
(in the Three-dimensional (3D) case), defined as ||c − d|| ≤ 1. Similarly, the
8-adjacency (for n = 2) and 26-adjacency (in 3D) relations can be defined as
||c− d|| ≤

√
3.

1 This identification of the coordinates of spels with the integer numbers is relevant
only for the computer implementations. For theoretical algorithmic discussion,
especially for anisotropic images, we will assume that Ci’s are the real numbers
of appropriate distances

2 Usually, it is also assumed that α is reflexive (i.e., any spel c is adjacent to itself,
〈c, c〉 ∈ α), but this assumption is not essential for most considerations

3 In the examples, we use the Euclidean distance || · ||. But any other distance
notion can be also used here
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The adjacency relation on C translates to the notion of connectivity as fol-
lows. A (connected) path p in a subset A of C is any finite sequence 〈c1, . . . , ck〉
of spels in A such that any consecutive spels ci, ci+1 in p are adjacent. The
family of all paths in A is denoted by P

A. Spels c and s are connected in A
provided there exists a path p = 〈c1, . . . , ck〉 in A from c to s, that is, such
that c1 = c and ck = s. The family of all paths in A from c to d is denoted
by P

A
cd.

10.1.2 Topological and Graph-Theoretical Scene Representations

The topological interpretation of the scene given above is routinely used in the
description of many segmentation algorithms. In particular, this is the case
for FC, WS, and most of the LS methods. On the other hand, the algorithms
like GC use the interpretation of the scene as a directed graph G = 〈V,E〉,
where V = C is the set of vertices (sometimes extended by two additional
vertices) and E is the set of edges, which are identified with the set of pairs
〈c, d〉 from V = C for which c and d are joined by an edge.

Note that if we define E as the set of all adjacent pairs 〈c, d〉 from C (i.e.,
when E = α), then the graph G = 〈V,E〉 and the scene C = 〈C,α〉 are the
identical structures (i.e., G = C), despite their different interpretations. This
forms the basis of the duality between the topological and graph-theoretical
view of this structure: any topological scene C = 〈C,α〉 can be treated as a
graph G = 〈C,α〉 and, conversely any graph G = 〈V,E〉 can be treated as
topological scene C = 〈V,E〉.

Under this duality, the standard topological and graph theoretical notions
fully agree. A path p in C is connected in C = G in a topological sense, if and
only if, it is connected in the graph G = C. A subset P of C is connected, in a
topological sense, in C = G, if and only if, it is connected in the graphG = C.
The symmetry of α translates into the symmetry of the graph G = 〈C,α〉,
and since any edge 〈c, d〉 in G can be reversed (i.e., if 〈c, d〉 is in E = α, then
so is 〈d, c〉), G can be treated as an undirected graph.

10.1.3 Digital Image

All of the above notions depend only on the geometry of the image scene and
are independent of the image intensity function. Here, the image intensity
function will be a function f from C into R

k, that is, f : C → R
k. The value

f(c) of f at c is a k-dimensional vector of image intensities at spel c. A digital
image will be treated as a pair 〈C, f〉, where C is its scene (treated either as
a topological scene or as a related graph) and f is the image intensity. We will
often identify the image with its intensity function, that is, without explicitly
specifying associated scene adjacency. In case when k = 1 we will say that the
image is scalar; for k > 1 we talk about vectorial images. Mostly, when giving
examples, we will confine ourselves to scalar images.
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10.1.4 Delineated Objects

Assume that with an image 〈C, f〉 we have associated an energy function e,
which for every set P ⊂ C associates its energy value e(P ) ∈ R. Assume also
that we have a fixed energy threshold value θ and a non-empty set S ⊂ C
of seeds indicating our OOI. Let P(S, θ) be a family of all objects P ⊂ C,
associated with e, S, and θ, such that e(P ) ≤ θ, S ⊂ P , and every c ∈ P
is connected in P to some seed s ∈ S. Threshold θ will be always chosen
so that the family P(S, θ) is non-empty. Any of the region-based algorithms
we consider here will return, as a delineated object, a set P (S, θ) ∈ P(S, θ).
Usually (but not always) P (S, θ) is the smallest element of P(S, θ).

In the case of any of the four methods FC, GC, WS, and LS, the value
e(P ) of the energy function is defined in terms of the boundary bd(P ) of P ,
that is, the set K = bd(P ) of all edges 〈c, d〉 of a graph C = 〈C,E〉 with
c ∈ P and d not in P . We often refer to this boundary set K as a graph cut,
since removing these edges from C disconnects P from its complement C \P .
The actual definition of e depends on the particular segmentation method.

Let κ : E → R be a local cost function. For 〈c, d〉 ∈ E the value κ(c, d)
depends on the value of the image intensity function f on c, d, and (sometimes)
nearby spels. Usually, the bigger is the difference between the values of f(c)
and f(d), the smaller is the cost value κ(c, d). This agrees with the intuition
that the bigger the magnitude of the difference f(c)−f(d) is, the greater is the
chance that the “real” boundary of the object we seek is between these spels.
In the FC algorithms, κ is called the affinity function. In the GC algorithms
κ is treated as a weight function of the edges and is referred to as local
cost function. For the classical GC algorithms, the energy function e(P ) is
defined as the sum of the weights of all edges in K = bd(P ), that is, as∑

〈c,d〉∈K κ(c, d). The delineations for the FC family of algorithms are obtained
with the energy function e(P ) defined as the maximum of the weights of
all edges in K = bd(P ), that is, as max〈c,d〉∈K κ(c, d). The same maximum
function works also for the WS family with an appropriately chosen κ. The
energy function for LS is more complicated, as it depends also on the geometry
of the boundary, specifically its curvature.

10.2 Threshold-Indicated Fuzzy Connected Objects

Let I = 〈C, f〉 be a digital image, with the scene C = 〈C,E〉 being identified
with a graph. As indicated above, the FC segmentations require a local mea-
sure of connectivity κ associated with I, known as affinity function, where for
a graph edge 〈c, d〉 ∈ E (i.e., for adjacent c and d) the number κ(c, d) (edge
weight) represents a measure of how strongly spels c and d are connected to
each other in a local sense. The most prominent affinities used so far are as
follows [26], where σ > 0 is a fixed constant. The homogeneity-based affinity

ψσ(c, d) = e−||f(c)−f(d)||2/σ2
where 〈c, d〉 ∈ E (10.1)
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with its value being close to 1 (meaning that c and d are well connected)
when the spels have very similar intensity values; ψσ is related to the notion
of directional derivative.

The object feature-based affinity (single object case, with an expected
intensity vector m ∈ R

k for the object)

φσ(c, d) = e−max{||f(c)−m||,||f(d)−m||}2/σ2
where 〈c, d〉 ∈ E (10.2)

with its value being close to one when both adjacent spels have intensity values
close to m. The weighted averages of these two forms of affinity functions –
either additive or multiplicative – have also been used. The values of these
affinity functions, used in the presented algorithms, are in the interval [0, 1].

10.2.1 Absolute Fuzzy Connectedness Objects

Let κ be an affinity associated with a digital image I. As stated in Sect. 10.1,
an FC delineated object Pmax(S, θ), indicated by a set S of seeds and an
appropriate threshold θ, can be defined as

Pmax(S, θ) is the smallest set belonging to the family PFC(S, θ), (10.3)

where PFC(S, θ) is the family of all sets P ⊂ C such that: (a) S ⊂ P ; (b)
every c ∈ P is connected in P to some s ∈ S; (c) κ(c, d) ≤ θ for all boundary
edges 〈c, d〉 of P (i.e., e(P ) = max〈c,d〉∈bd(P ) κ(c, d) ≤ θ). This definition of
the object is very convenient for the comparison of FC with GC and with
the other two methods. Nevertheless, for the actual implementation of the FC
algorithm, it is more convenient to use another definition, standard in the FC
literature. The equivalence of both approaches is given by Theorem 1.

A path strength of a path p = 〈c1, . . . , ck〉, k > 1, is defined as μ(p) def=
min{κ(ci−1, ci) : 1 < i ≤ k}, that is, the strength of the κ-weakest link of p.
For k = 1 (i.e., when p has length 1) we associate with p the strongest possible
value: μ(p) def= 1.4 For c, d ∈ A ⊆ C, the (global) κ-connectedness strength in
A between c and d is defined as the strength of a strongest path in A between
c and d; that is,

μA(c, d) def= max
{
μ(p) : p ∈ P

A
cd

}
. (10.4)

Notice that μA(c, c) = μ(〈c〉) = 1. We will often refer to the function μA as a
connectivity measure (on A) induced by κ. For c ∈ A ⊆ C and a non-empty
D ⊂ A, we also define μA(c,D) def= maxd∈D μA(c, d). The standard definition
of an FC delineated object, indicated by a set S of seeds and an appropriate

4 For k = 1 the set {κ(ci−1, ci) : 1 < i ≤ k} is empty, so the first part of the
definition leads to equation μ(〈c1〉) = min ∅. This agrees with our definition of
μ(〈c1〉) = 1 if we define min ∅ as equal to 1, the highest possible value for κ. Thus,
we will assume that min ∅ = 1
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threshold θ < 1 and referred to as Absolute Fuzzy Connectedness (AFC)
object, is given as PSθ =

{
c ∈ C : θ < μC(c, S)

}
.5

Theorem 1. PSθ = Pmax(S, θ) for all S ⊂ C and θ < 1.

10.2.2 Robustness of Objects

If a set of seeds S contains only one seed s, then we will write Psθ for the
object PSθ = P{s}θ. It is easy to see that PSθ is a union of all objects Psθ for
s ∈ S, that is, PSθ =

⋃
s∈S Psθ. Actually, if Gθ = 〈C,Eθ〉 is a graph with Eθ

consisting of the scene graph edges 〈c, d〉 with weight κ(c, d) greater than θ,
then Psθ is a connected component of Gθ containing s, and PSθ is a union of
all components of Gθ intersecting S.

One of the most important properties of the AFC objects is known as
robustness. Intuitively, this property states that the FC delineation results do
not change if the seeds S indicating an object are replaced by another nearby
set T of seeds. Formally, it reads as follows.

Theorem 2. (Robustness) For every digital image I on a scene C =
〈C,E〉, every s ∈ C and θ < 1, if Psθ is an associated FC object, then
PTθ = Psθ for every non-empty T ⊂ Psθ. More generally, if S ⊂ C and
T ⊂ PSθ intersects every connected component of Gθ intersecting PSθ (i.e.,
T ∩ Psθ �= ∅ for every s ∈ S), then PTθ = PSθ.

The proof of this result follows easily from our graph interpretation of the
object, as indicated above. The proof based only on the topological description
of the scene can be found in [2, 5]. The robustness property constitutes the
strongest argument for defining the objects in the FC fashion. Note, that none
of the other algorithms discussed here have this property.

10.2.3 Algorithm for Delineating Objects

The algorithm presented below comes from [1].

Algorithm κθFOEMS
Input: Scene C = 〈C,E〉, affinity κ defined on an image I = 〈C, f〉, a

set S ⊂ C of seeds indicating the object and a threshold θ < 1.
Output: AFC object PSθ for the image I.
Auxiliary Data
Structures:

A characteristic function g : C→{0, 1} of PSθ and a queue
Q of spels.

5 In the literature, an AFC object is usually arrived at (see [3, 5]) as P≤
Sθ ={

c ∈ C : θ ≤ μC(c, S)
}
. However, if θ+ denotes the smallest number greater than

θ of the form κ(c, d), with 〈c, d〉 ∈ E, then PSθ = P≤
Sθ+ . Thus, our definition of

AFC object can be also expressed in the standard form, with just slightly different
threshold. On the other hand, the following presentation is considerably easier
expressible with the AFC object defined with the strict inequality
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begin
1. set g(s) = 1 for all s ∈ S and g(c) = 0 for all c ∈ C \ S;
2. push to Q all spels c ∈ C for which κ(c, s) > θ for some s ∈ S;
3. while Q is not empty do
4. remove a spel c from Q;
5. if g(c) = 0 then
6. set g(c) = 1;
7. push to Q all spels d ∈ C for which κ(d, c) > θ;
8. endif ;
9. endwhile;

10. create PSθ as a set of all spels c with g(c) = 1;
end

It is easy to see that κθFOEMS runs in linear time with respect to the
size n of the scene C. This is the case, since any spel can be pushed into
the queue Q (Line 7) at most Δ-many times, where Δ is the degree of the
graph C (i.e., the largest number of spels that can be adjacent to a single
spel; e.g., Δ = 26 for the 26-adjacency). Specifically, κθFOEMS runs in time
of order O(Δn).

10.3 Optimization in Foreground-Background Case

So far, we discussed algorithms delineating an object, P , indicated by some
seeds S belonging to P . Since we had no direct information on the spatial
extent of the desired object, the actual extent of the delineated object P was
regulated only by a mysterious parameter: a threshold θ setting the upper limit
on the energy function value e(P ). The difficulty of choosing this threshold is
overcome by setting up and solving an appropriate optimization problem for
an energy function e. The setting part is done as follows.

First, we choose a proper initial condition, which, in the case of FC and
GC algorithms, consists of indicating not only the foreground object (i.e., the
OOI) by a set S of seeds, but also a background (i.e., everything except the
OOI) by another set T of seeds. The stipulation is that S is contained in the
delineated P , while T is disjoint with P . This ensures that we will consider
only non-trivial sets P as possible choices for the object.

Let P(S, T ) be the family of all sets P ⊂ C such that S ⊂ P and T∩P = ∅.
We like the desired object P to minimize the energy e(P ) over all P ∈ P(S, T ),
that is, sets P satisfying the initial condition indicated by seeds S and T . In
other words, if we define emin = min{e(P ) : P ∈ P(S, T )}, then the OOI
PS,T will be chosen, by an algorithm, as an element of the family Pmin =
{P ∈ P(S, T ) : e(P ) = emin}. This is a typical setup for the energy optimiza-
tion image delineation algorithms.

Notice that, although the minimal energy emin is always uniquely defined,
the family Pmin may have more than one element, so our solution PS,T ∈ Pmin
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still may not be uniquely determined. In the case of GC framework, the family
Pmin has always the smallest element (smallest in terms of inclusion) and this
element is taken as PS,T . The situation is the same in the FC framework,
when S is a singleton. In the case when S has more seeds, the family Pmin is
refined to a smaller family P∗

min and PS,T is the smallest element of P∗
min. All

of this is discussed in more detail below.

10.3.1 Relative Fuzzy Connectedness

In the FC framework, the optimization technique indicated above is called
Relative Fuzzy Connectedness (RFC). Once again, the actual definition of
the RFC object PS,T (see [2]) is in a slightly different format from the one
indicated above – it emphasizes the competition of seed sets S and T for
attracting a given spel c to their realms. The attraction is expressed in terms
of the strength of global connectedness μC(c, S) and μC(c, T ): PS,T claims a
spel c when μC(c, S) exceeds μC(c, T ), that is,

PS,T = {c ∈ C : μC(c, S) > μC(c, T )}

Notice that, PS,T = {c ∈ C : (∃s ∈ S)μC(c, s) > μC(c, T )} =
⋃
s∈S P{s},T ,

as μc(c, S) = maxs∈S μC(c, s). Below, we will show that, if the number
μC(S, T ) = maxs∈S μC(s, T ) is less than 1, then PS,T ∈ P(S, T ), that is,
that PS,T contains S and is disjoint with T . (If μC(S, T ) = 1, then sets S and
T need not be disjoint. In this case the set PS,T is empty.) It is also important
that

if P ∈ P(S, T ), then e(P ) ≥ μC(S, T ) (10.5)

Indeed, choose a path p = 〈c1, . . . , ck〉 from s ∈ S to a t ∈ T such that μ(p) =
μC(S, T ). Since c1 = s ∈ P and ck = t /∈ P , there exists a j ∈ {2, . . . , k}
with cj−1 ∈ P while cj /∈ P . This means that 〈cj−1, cj〉 ∈ bd(P ). Hence,
e(P ) = max〈c,d〉∈bd(P ) κ(c, d) ≥ κ(cj−1, cj) ≥ min{κ(ci−1, ci) : 1 < i ≤ k} =
μ(p) = μC(S, T ).

Next note that each object P{s},T is indeed a result of the optimization,
as stated above.

Lemma 1. Assume that θs = μC(s, T ) < 1. Then P{s},T = Psθs . Moreover,
θs equals emin = min{e(P ) : P ∈ P({s}, T )} and Psθs is the smallest set in
the family Pmin = {P ∈ P({s}, T ) : e(P ) = emin}.

The description of the RFC object PS,T when S has more than one seed
is given in the following theorem. Intuitively, it says that each seed s ∈ S
generates separately its own part P{s},T ∈ P({s}, T ) and although their union,
PS,T , minimizes only its own lower bound θS = μC(S, T ), each component
P{s},T minimizes its own version of the minimum, θs = μC(s, T ), which may
be (and often is) smaller than the global minimizer θS = μC(S, T ). In other
words, the object PS,T can be viewed as a result of minimization procedure
used separately for each s ∈ S, which gives a sharper result than a simple
minimization of global energy for the entire object PS,T .
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Theorem 3. Assume that θS = μC(S, T ) < 1. Then e(PS,T ) = θS = emin

and PS,T =
⋃
s∈S Psθs is the smallest set in the family P∗

min of the sets of the
form

⋃
s∈S P

s, where each P s belongs to Psmin = {P ∈ P({s}, T ) : e(P ) = θs}.
Moreover, P∗

min ⊂ Pmin.

10.3.2 Algorithm for Delineating Objects

The algorithm presented below is a multiseed version of the algorithm from
[1]. It is a main step for defining the RFC object PS,T .

Algorithm κFOEMS
Input: Scene C = 〈C,E〉, affinity κ defined on an image I = 〈C, f〉, a

set T ⊂ C.
Output: A connectivity function h : C → [0, 1], h(c) = μC(c, T ).
Auxiliary Data Structures: A queue Q of spels.
begin

1. set h(t) = 1 for all t ∈ T and h(c) = 0 for all c ∈ C \ T ;
2. push to Q all spels c ∈ C for which κ(c, t) > 0 for some t ∈ T ;
3. while Q is not empty do
4. remove a spel c from Q;
5. find M = max{min{h(d), κ(d, c)} : 〈d, c〉 ∈ E}
6. if M > h(c) then
7. set h(c) = M ;
8. push to Q all d ∈ C for which min{M,κ(c, d)} > h(d);
9. endif ;

10. endwhile;
11. output connectivity function h : C → [0, 1], h(c) = μC(c, T );

end

The algorithm runs in quadratic time with respect to the size n of a scene
C. More precisely, the maximal number of possible values for the connectivity
function h is the size of the range of κ, which does not exceed the size of the
set of all edges E, that is, Δn. Therefore, each spel d may be pushed back to
Q at most Δn many times: when the value h(c) is changed (maximum Δn-
many times) for each of Δ-many spels c adjacent to d. Since each instance of
performing the while command operation is of time order O(Δ) and we have
n spels, the κFOEMS ends, in the worst case, in time of order O(Δ2n2).

If a connectivity function h(c) = μC(c, T ) is calculated, then numbers
θs = μC(s, T ) < 1 are readily available, and object PS,T =

⋃
s∈S Psθs

can be delineated, in quadratic time of order O(Δ2n2), by calling algorithm
κθFOEMS for each s ∈ S.

10.3.3 Graph Cut Delineation

For the GC algorithms, a graph GI = 〈V,E〉 associated with the image I =
〈C, f〉, where C = 〈C,α〉, is a slight modification of the graph 〈C,α〉 discussed
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above. Specifically, the set of vertices V is defined as C∪{s, t}, that is, the stan-
dard set C of image vertices is expanded by two new additional vertices s and
t called terminals. Individually, s is referred to as source and t as sink. The set
of edges is defined as E = α∪{〈b, d〉 : one of b, d is in C, the other in {s, t}}.
In other words, the edges between vertices in C remains as in C, while we
connect each terminal vertex to each c ∈ C.

The simplest way to think about the terminals is that they serve as the
seed indicators: s for seeds S ⊂ C indicating the object; t for seeds T ⊂ C
indicating the background. The indication works as follows. For each edge
connecting a terminal r ∈ {s, t} with a c ∈ C associate the weight: ∞ if either
r = s and c ∈ S, or r = t and c ∈ T ; and 0 otherwise. This means, that the
source s has infinitely strong connection to any seed c in S, and the weakest
possible to any other spel c ∈ C. (We assume that all weights are nonnegative,
that is, in [0,∞].) Similarly, for the sink t and seeds c from T .

Now, assume that for every edge 〈c, d〉 ∈ α we give a weight κ(c, d) asso-
ciated with the image I = 〈C, f〉. Since the algorithm for delineating RFC
object uses only the information on the associated graph (which includes the
weights given by the affinity κ), we can delineate RFC object P ∗

{s},{t} ⊂ V

associated with this graph GI . It is easy to see that the RFC object PS,T ⊂ C
associated with I is equal to P ∗

{s},{t} ∩ C. Similarly, for θ < 1, if P ∗
sθ ⊂ V is

an AFC object associated with the graph GI , then the AFC object PSθ ⊂ C
associated with I is equal to P ∗

Sθ ∩ C. All of this proves that, from the FC
framework point of view, replacing the graph G = 〈C,α〉 with GI is only
technical in nature and results in no delineation differences.

Historically, the rationale for using in GC frameworks graphs GI , with
distinctive terminals, is algorithmic in nature. More precisely, for a weighted
graph G = 〈V,E〉 with positive weights and two distinct vertices s and t
indicated in it, there is an algorithm returning the smallest set PG in the family
Pmin = {P ∈ P(s, t) : e(P ) = emin}, where P(s, t) = {P ⊂ V \ {t} : s ∈ P},
emin = min{eΣ(P ) : P ∈ P(s, t)}, eΣ(P ) =

∑
e∈bd(P ) we, and we is the weight

of the edge e in the graph.
Now, let GI = 〈C ∪{s, t}〉, E〉 be the graph associated with an image I as

described above, that is, weights of edges between spels from C are obtained
from the image I (in a manner similar to the affinity numbers) and weights
between the other edges by seed sets S and T indicating foreground and
background. It is easy to see that the object PΣS,T = C ∩ PGI contains S, is
disjoint with T , and has the smallest cost eΣ among all such sets. Thus, the
format of definition of the GC object PΣS,T is the same as that for RFC object
PS,T , the difference being only the energy functions e they use.

In spite of similarities between the GC and RFC methodologies as indi-
cated above, there are also considerable differences between them. There are
several theoretical advantages of the RFC framework over GC in this setting:
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• Speed: The FC algorithms run faster than those for GC. Theoretical esti-
mation of FC algorithms worst scenario run time (for slower RFC) is O(n2)
with respect to the scene size n (Sect. 10.3.2), while the best theoretical
estimation of the run time for delineating PΣS,T is of order O(n3) (for
the best known algorithms) or O(n2.5) (for the fastest currently known),
see [15]. This is also confirmed by experimental comparisons.

• Robustness: The outcome of FC algorithms is unaffected by small (within
the objects) changes of the position of seeds (Theorems 2 and 4). On the
other hand, the results of GC delineation may become sensitive for even
small perturbations of the seeds.

• Multiple objects: The RFC framework handles easily the segmentation
of multiple objects, retaining its running time estimate and robustness
property (Sect. 10.4.1). The GC in the multiple object setting leads to
an NP-hard problem [12], so all existing algorithms for performing the
required precise delineation run in exponential time. However, there are
algorithms that render approximate solutions for such GC problems in a
practical time [12].

• Shrinking problem: In contrast to RFC methods, the GC algorithms have a
tendency of choosing the objects with very small size of the boundary, even
if the weights of the boundary edges is very high [16, 19]. This may easily
lead to the segmented object being very close to either the foreground
seed set S, or the complement of the background seed set T . Therefore,
the object returned by GC may be far from desirable. This problem has
been addressed by many authors, via modification of the GC method.
Notice that RFC methods do not have any shrinking problem.

• Iterative approach: The FC framework allows an iterative refinement of its
connectivity measure μA, which in turn makes it possible to redefine e as
we go along. From the viewpoint of algorithm, this is a powerful strategy.
No such methods exist for GC at present.

All of this said, it should be noticed that GC has also some nice properties
that FC does not possess. First notice that the shrinking problem is the result
of favoring shorter boundaries over the longer, that is, has a smoothing effect
on the boundaries. This, in many (but not all) cases of medically important
image delineations, is a desirable feature. There is no boundary smoothing fac-
tor built in to the FC basic framework and, if desirable, boundary smoothing
must be done at the FC post processing stage.

Another nice feature of GC graph representation GI of an image I is that
the weights of edges to terminal vertices naturally represent the object feature-
based affinity, see (10.2), while the weights of the edges with both vertices in
C are naturally connected with the homogeneity type of affinity (10.1). This
is the case, since homogeneity-based affinity (a derivative concept) is a binary
relation in nature, while the object feature-based affinity is actually a unary
relation. Such a clear cut distinction is difficult to achieve in FC framework,
since it requires only one affinity relation in its setting.
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10.4 Segmentation of Multiple Objects

Now, assume that we like to recognize m > 1 separate objects, P1, . . . , Pm, in
the image I = 〈C, f〉. What general properties the family P = {P1, . . . , Pm}
should have? The term “segmentation” suggests that P should be a parti-
tion of a scene C, that is, that sets are pairwise disjoint (i.e., no two of then
have common element) and that they cover C (i.e., C =

⋃m
i=1 Pi). Unfor-

tunately, insuring both of these properties is usually neither desirable not
possible for the medical image segmentation problems. We believe, that the
most reasonable compromise here is to assume that the objects Pi are pair-
wise disjoint, while they do not necessarily cover the entire image scene C.
The motivation here is the delineation of major body organs (e.g., stomach,
liver, pancreas, kidneys). Therefore, the term image segmentation refers to a
family P = {P1, . . . , Pm} of pairwise disjoint objects for which the background
set BP = C \

⋃m
i=1 Pi might be nonempty.

It should be stressed, however, that some authors allow overlap of the
objects, while ensuring that there is no nonempty background BP [7,8]. Other
methods (like classical WS algorithms) return a partition of a scene.

10.4.1 Relative Fuzzy Connectedness

Assume that for an image I = 〈C, f〉 we have a pairwise disjoint family
S = {S1, . . . , Sm} of sets of seeds, each Si indicating an associated object
Pi. If for each i we put Ti =

(⋃m
j=1 Sj

)
\ Si, then the RFC segmentation is

defined as a family P = {PSiS : i = 1, . . . ,m}, where each object PSiS is equal
to PSi,Ti = {c ∈ C : μC(c, Si) > μC(c, Ti)}.

Since, by Lemma 1, each PSi,Ti equals
⋃
s∈Si

P{s},Ti
=
⋃
s∈S Psθs , where

θs = μC(s, Ti), using the algorithms from Sect. 10.3.2, the partition P can be
found in O(n2) time. Also, the robustness Theorem 2 can be modified to this
setting as follows.

Theorem 4. (Robustness for RFC) Let S = {S1, . . . , Sm} be a family of
seeds in a digital image I and let P = {PSiS : i = 1, . . . ,m} be an associated
RFC segmentation. For every i and s ∈ Si let g(s) be in P{s},Ti

. If S′ =
{S′

1, . . . , S
′
m}, where each S′

i = {g(s) : s ∈ Si}, then PSiS = PS′
iS′ for every i.

In other words, if each seed s present in S is only “slightly” shifted to a
new position g(s), then the resulting RFC segmentation {PS′

iS′ : i = 1, . . . ,m}
is identical to the original one P .

When an RFC object PSiS is indicated by a single seed, then, by Theo-
rem 3, it is equal to the AFC object Psiθi for appropriate threshold θi. But
even when all objects are in such forms, different threshold θi need not be
equal, each being individually tailored.

This idea is best depicted schematically (Fig. 10.1). Figure 10.1a represents
a schematic scene with a uniform background and four distinct areas denoted
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Fig. 10.1. Relative fuzzy connectedness. Each object is optimized separately. Panels
(c) and (d) show delineations

by S, T , U , W , and indicated by seeds marked by ×. It is assumed that each
of these areas is uniform in intensity and the connectivity strength within
each of these areas has the maximal value of 1, the connectivity between the
background and any other spel is ≤ 0.2, while the connectivity between the
adjacent regions is as indicated in the figure: μ(s, t) = 0.6, μ(s, u) = 0.5,
and μ(u,w) = 0.6. (Part b): The RFC segmentation of three objects indi-
cated by seeds s, t, and u, respectively. (Part c):Three AFC objects indicated
by the seeds s, t, u and delineated with threshold θ = 0.6. Notice that while
Ps,{s,t,u} = Ps,.6 and Pt,{s,t,u} = Pt,.6, object Pu,.6 is smaller than RFC indi-
cated Pu,{s,t,u}. (Part d): Same as in Part (c) but with θ = 0.5. Note that
while Pu,{s,t,u} = Pu,.5, objects Ps,.5 and Pt,.5 coincide and lead to an object
bigger than Ps,{s,t,u} and Pt,{s,t,u}.

10.4.2 Iterative Relative Fuzzy Connectedness

The RFC segmentation P = {PSiS : i = 1, . . . ,m} of a scene can still leave
quite a sizable “leftover” background set B = BP of all spels c outside any
of the objects wherein the strengths of connectedness are equal with respect
to the seeds. The goal of the Iterative Relative Fuzzy Connectedness (IRFC)
is to find a way to naturally redistribute some of the spels from BP among
the object regions in a new generation (iteration) of segmentation. Another
motivation for IRFC is to overcome the problem of “path strength dilution”
within the same object, of paths that reach the peripheral subtle and thin
aspects of the object.

In the left part of Fig. 10.2, two object regions A and B, each with its core
and peripheral subtle parts, are shown, a situation like the arteries and veins
being juxtaposed. Owing to blur, partial volume effect and other shortcom-
ings, the strongest paths from s1 to t1, s1 to t2, s2 to t1, and s2 to t2 are
all likely to assume similar strengths. As a consequence, the spels in the dark
areas may fall in BP , the unclaimed background set.

The idea of IRFC is to treat the RFC delineated objects PSiS as the first
iteration P 1

SiS approximation of the final segmentation, while the next step
iteration is designed to redistribute some of the background spels c ∈ BP ,
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Fig. 10.2. RFC vs. IRFC. Left: The strongest paths from s1 to t1, s1 to t2, s2 to t1,
and s2 to t2 are likely to have the same strength because of partial volume effects;
Right : Pictorial illustration of IRFC advantages over RFC

for which μC(c, Si) = μC(c, Ti) for some i. Such a tie can be resolved if the
strongest paths justifying μC(c, Si) and μC(c, Ti) cannot pass through the
spels already assigned to another object. In other words, we like to add spels
from the set P ∗ = {c ∈ B : μB∪PSiS (c, Si) > μB∪PSjS (c, Sj) for every j �= i},
to a new generation P 2

SiS of P 1
SiS , that is, define P 2

SiS as P 1
SiS ∪ P ∗. This

formula can be taken as a definition. However, from the algorithmic point of
view, it is more convenient to define P 2

SiS as

P 2
SiS = P 1

SiS ∪
{
c ∈ C \ P 1

SiS : μC(c, Si) > μC\P 1
SiS (c, Ti)

}

while the equation P 2
SiS = P 1

SiS ∪P ∗ always holds, as proved in [5, thm. 3.7].
Thus, the IRFC object is defined as P∞

SiS =
⋃∞
k=1 P

k
SiS , where sets P kSiS are

defined recursively by the formulas P 1
SiS = PSiS and

P k+1
SiS = P kSiS ∪

{
c ∈ C \ P kSiS : μC(c, Si) > μC\Pk

SiS (c, Ti)
}

(10.6)

The right side of Fig. 10.2 illustrates these ideas pictorially. The initial seg-
mentation is defined by RFC conservatively, so that PSiS corresponds to the
core aspects of the object identified by seed s ∈ Si (illustrated by the hatched
area containing s). This leaves a large boundary set B where the strengths of
connectedness with respect to the different seeds are equal (illustrated by the
shaded area containing c). In the next iteration, the segmentation is improved
incrementally by grabbing those spels of B that are connected more strongly
to PSiS than to sets PSjS . When considering the object associated with s,
the “appropriate” path from s to any c ∈ B is any path in C. However, all
objects have to compete with the object associated with s by allowing paths
from their respective seeds t ∈ Ti to c not to go through PSiS since this set
has already been declared to be part of the object of s.

The IRFC segmentation is robust in the sense of Theorem 4, where in its
statement the objects PSiS are replaced by the first iteration P 1

SiS of P∞
SiS .

This follows easily from Theorem 4 [5]. It is also worth to notice that the
witnessing strongest paths from c ∈ P∞

SiS to Si can be found in P∞
SiS [5].
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10.4.3 Algorithm for Iterative Relative Fuzzy Connectedness

The algorithm presented below comes from [5]. Note that we start the recur-
sion with P 0

SiS = ∅. It is easy to see that with such definition P 1
SiS obtained

with (10.6) is indeed equal to PSiS .

Algorithm κIRMOFC
Input: Scene C = 〈C,E〉, affinity κ defined on an image I = 〈C, f〉,

a family S = {S1, . . . , Sm} of pairwise disjoint set of seeds, a
sequence 〈T1, . . . , Tm〉, with Ti =

(⋃m
j=1 Sj

)
\ Si for every i.

Output: A sequence 〈P∞
S1S , . . . , P

∞
SmS〉 forming IRFC segmentation.

Auxiliary
Data
Structures:

A sequence of characteristic functions gi : C → {0, 1} of
objects P kSiS and affinity κgi equal to κ for pairs 〈c, d〉 with
gi(c) = gi(d) = 0, and 0 otherwise. Note that μC(·, Ti) for
κgi equals to μC\PSiS (·, Ti) for PSiS indicated by gi.

begin
1. for i = 1 to m do
2. invoke κFOEMS to find h0(·) = μC(·, Si);
3. initiate gi(c) = 0 for all c ∈ C;
4. set κgi = κ and flag = true;
5. while flag = true do;
6. set flag = false;
7. invoke κFOEMS to find h(·) = μC(·, Ti) for κgi ;
8. for all c ∈ C do
9. if gi(c) = 0 and h0(c) > h(c) then

10. set gi(c) = 1 and flag = true;
11. for every d ∈ C, d �= c, adjacent to c do
12. set κgi(c, d) = 0 and κgi(d, c) = 0;
13. endfor ;
14. endif ;
15. endfor ;
16. endwhile;
17. endfor ;
18. output sets P∞

SiS indicated by characteristic functions gi;
end

The proof that the algorithm stops and returns proper objects can be
found in [5]. Since it can enter while loop at most once for each updated spel,
it enters it O(n) times, where n is the size of C. Since κFOEMS runs in time
of order O(Δ2n2), the worst scenario for κIRMOFC is that it runs in time
of order O(Δ2n3).

A slightly different approach to calculating IRFC objects comes from the
Image Foresting Transform (IFT) [20,27]. This approach distributes the spels
unassigned by IRFC to different objects, according to some ad hoc algorithmic
procedure.
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10.4.4 Variants of IRFC

In the papers [7–9] (in particular, see [8, page 465]), the authors employ differ-
ent affinity κi for each i-th object to be delineated, and apply the algorithm
that returns the objects P̂∞

SiS =
⋃∞
k=0 P̂

k
SiS , with sets P̂ kSiS being defined

recursively by the formulas P 0
SiS = ∅ and

P̂ k+1
SiS = P̂ kSiS ∪

⋃
j 
=i

{
c ∈ C \ P̂ kSiS : μCi (c, Si) ≥ μ

C\P̂k
SiS

j (c, Sj)
}

(10.7)

where μj is the global connectivity measure associated with the affinity κj .
In general, the segmentations defined with different affinities, in the format

of (10.7) (even with just one step iteration, that is, in the RFC mode), are
neither robust nor have path connectedness property mentioned at the end of
Sect. 10.4.2 (See [2]). Although, the lack of path connectedness property may
seem to be of little consequence, it undermines the entire philosophy that
stands behind IRFC definitions. Nevertheless, it solves some problems with
dealing with the object-feature based affinity in single affinity mode, which
was discussed in [28].

10.5 Scale-Based and Vectorial Fuzzy Connectedness

In our discussion so far, when formulating affinities κ, we considered κ(c, d) to
depend only (besides the spatial relation of c and d) on the (vectorial or scalar)
intensities f(c) and f(d) at c and d, cf. (10.1) and (10.2). This restriction can
be relaxed, yielding us scale-based and vectorial affinity.

In scale-based FC [26], instead of considering just c and d, a “local scale
region” around each of c and d is considered in scene C for defining κ. In the
ball scale approach, this local region around c is the largest ball bc, centered
at c, which is such that the image intensities at spels within bc are homoge-
neous. For defining κ(c, d) then, the intensities within bc and bd are considered.
Typically a filtered value f ′(x) is estimated for each x ∈ {c, d} from all inten-
sities within bx by taking their weighted average, the weight determined by
a k-variate Gaussian function centered at f(x). The filtered values f ′(c) and
f ′(d) are then used in defining κ(c, d) instead of the original intensities f(c)
and f(d). In place of the ball, an ellipsoid has also been proposed for the scale
region, which leads to the tensor scale approach [29]. The underlying idea
in these approaches is to reduce the sensitivity of FC algorithms to spel-level
random noise. Note that when local scales are used in this manner, none of the
theoretical constructs of FC needs change. Actually, the scale-based approach
can be seen as a preprocessing step: replace the original intensity function f
with its scale-based filtered version f ′, and then proceed with the regular FC
algorithm applied to the image I ′ = 〈C, f ′〉 in place of I = 〈C, f〉.

In vectorial FC [6], the vectorial intensity function f(x) ∈ R
k is used in

defining κ. For example, in such a case, (10.1) and (10.2) become k-variate
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Gaussian functions (i.e., we apply k-variate Gaussian to a vector, like f(c)−
f(d), instead of simple Gaussian function to its length ||f(c) − f(d)||). Obvi-
ously, the scale concept can be combined with the vectorial idea [6]. In fact,
these two concepts can be individually or jointly combined with the principles
underlying AFC, RFC, and IRFC.

10.6 Affinity Functions in Fuzzy Connectedness

An affinity function for an image I = 〈C, f〉, with C = 〈C,α〉, is a function,
say κ, defined on a set C ×C. More precisely, it is of importance only for the
adjacent pairs 〈c, d〉, that is, from α ⊂ C × C. The affinity functions defined
in (10.1) and (10.2) have the values in the interval [0, 1], are symmetric (i.e.,
κ(c, d) = κ(d, c) for all c, d ∈ C) and have the property that κ(c, c) = 1 for all
c ∈ C. We will refer to any such affinity as a standard affinity.

In general, any linearly ordered set 〈L,! 〉 can serve as a range (value
set) of an affinity[30]: a function κ : C × C → L is an affinity function (into
〈L,! 〉) provided κ is symmetric and κ(a, b) ! κ(c, c) for every a, b, c ∈ C.
Note that κ(d, d) ! κ(c, c) for every c, d ∈ C. So, there exists an element in
L, which we denote by a symbol 1κ, such that κ(c, c) = 1κ for every c ∈ C.
Notice that 1κ is the largest element of Lκ = {κ(a, b) : a, b ∈ C}, although it
does not need to be the largest element of L. Clearly, any standard affinity κ
is an affinity function with 〈L,! 〉 = 〈[0, 1],≤ 〉 and 1κ = 1. In the discussion
below, 〈L,! 〉 will be either the standard range 〈[0, 1],≤ 〉 or 〈[0,∞],≥ 〉.
Note that, in this second case, the order relation ! is the reversed standard
order relation ≥.

10.6.1 Equivalent Affinities

We say that the affinities κ1 : C × C → 〈L1,!1 〉 and κ2 : C × C → 〈L2,!2 〉
are equivalent (in the FC sense) provided, for every a, b, c, d ∈ C

κ1(a, b) !1 κ1(c, d) if and only if κ2(a, b) !2 κ2(c, d).

For example, it can be easily seen that for any constants σ, τ > 0 the
homogeneity-based affinities ψσ and ψτ , see (10.1), are equivalent, since
for any pairs 〈a, b〉 and 〈c, d〉 of adjacent spels: ψσ(a, b) < ψσ(c, d) ⇐⇒
||f(a)−f(b)|| > ||f(c)−f(d)|| ⇐⇒ ψτ (a, b) < ψτ (c, d). (Symbol ⇐⇒ means
“if and only if.”) Equivalent affinities can be characterized as follows, where ◦
stands for the composition of functions, that is, (g◦κ1)(a, b) = g(κ1(a, b)) [31].

Theorem 5. Affinities κ1 : C × C → 〈L1,!1 〉 and κ2 : C × C → 〈L2,!2 〉
are equivalent if and only if there exists a strictly increasing function g from
〈Lκ1,!1 〉 onto 〈Lκ2 ,!2 〉 such that κ2 = g ◦ κ1.
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The FC objects, defined in the previous sections, have the same definition
with the general notion of affinity, when the standard inequality ‘≤’ is replaced
by ‘!.’ The implications of and our interest in equivalent affinities are well
encapsulated by the next theorem, which says that any FC segmentation
(AFC, RFC, or IRFC) of a scene C remains unchanged if an affinity on C
used to get the segmentation is replaced by an equivalent affinity.

Theorem 6 ([31]). Let κ1 : C × C → 〈L1,!1 〉 and κ2 : C × C → 〈L2,!2 〉
be equivalent affinity functions and let S be a family of non-empty pairwise
disjoint subsets of C. Then for every θ1 ≺1 1κ1 in L1, there exists a θ2 ≺2 1κ2

in L2 such that, for every S ∈ S and i ∈ {0, 1, 2, . . .}, we have P κ1
Sθ1

= P κ2
Sθ2

,
P κ1
SS = P κ2

SS , and P i,κ1
SS = P i,κ2

SS .
Moreover, if g : C → C is a strictly monotone function such that κ2 = g◦κ1

(which exists by Theorem 5), then we can take θ2 = g(θ1).

Keeping this in mind, it makes sense to find for each affinity function an
equivalent affinity in a nice form:

Theorem 7 ([31]). Every affinity function is equivalent (in the FC sense) to
a standard affinity.

Once we agree that equivalent affinities lead to the same segmentations, we
can restrict our attention to standard affinities without losing any generality
of our method.

Next, we like to describe the natural FC equivalent representations of the
homogeneity-based ψσ (10.1) and object feature-based φσ (10.2) affinities. The
first of them, ψσ(c, d), is equivalent to an approximation of the magnitude of
the directional derivative

∣∣D−→
cd
f(c)

∣∣ =
∣∣∣ f(c)−f(d)

||c−d||
∣∣∣ of f in the direction of the

vector
−→
cd. If spels c and d are adjacent when ||c − d|| ≤ 1, then for adjacent

c, d ∈ C we have ψ(c, d) def=
∣∣D−→

cd
f(c)

∣∣ = |f(c) − f(d)|. Such defined ψ is
an affinity with the range 〈L,! 〉 = 〈[0,∞],≥ 〉. The equivalence of ψ with
ψσ is justified by Theorem 5 and the Gaussian function gσ(x) = e−x

2/σ2
, as

ψσ(c, d) = (gσ ◦ ψ)(c, d) for any adjacent c, d ∈ C.
The natural form of the object feature-based φσ affinity (for one object)

and a spel c is the number ||f(c) − m||, a distance of the image intensity
f(c) at c from the expected object intensity m. For two adjacent distinct
spels, this leads to the definition φ(c, d) = max{||f(c)−m||, ||f(d)−m||}. We
also put φ(c, c) = 0, to insure that φ is an affinity function, with the range
〈L,! 〉 = 〈[0,∞],≥ 〉. Once again, φ is equivalent with φσ, as φσ = gσ ◦ φ.

The homogeneity-based connectivity measure, μψ = μCψ , can be elegantly
interpreted if the scene C = 〈C, f〉 is considered as a topographical map in
which f(c) represents an elevation at the location c ∈ C. Then, μψ(c, d) is
the highest possible step (a slope of f) that one must make in order to get
from c to d with each step on a location (spel) from C and of unit length.
In particular, the object Pψsθ = {c ∈ C : θ > μψ(s, c)} represents those spels
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c ∈ C which can be reached from s with all steps lower than θ. Note that all
we measure in this setting is the actual change of the altitude while making
the step. Thus, this value can be small, even if the step is made on a very steep
slope, as long as the path approximately follows the altitude contour lines –
this is why on steep hills the roads zigzag, allowing for a small incline of the
motion. On the other hand, the measure of the same step would be large,
if measured with some form of gradient induced homogeneity-based affinity!
(Compare Sect. 10.7.2.)

The object feature-based connectivity measure of one object has also a nice
topographical map interpretation. For understanding this, consider a modified
scene C̄ = 〈C, |f(·)−m|〉 (called membership scene in [1]) as a topographical
map. Then the number μφ(c, d) represents the lowest possible elevation (in
C̄) which one must reach (a mountain pass) in order to get from c to d,
where each step is on a location from C and is of unit length. Notice that
μφ(c, d) is precisely the degree of connectivity as defined by Rosenfeld [32–
34]. By the above analysis, we brought Rosenfeld’s connectivity also into the
affinity framework introduced by [1], particularly as another object feature
component of affinity.

10.6.2 Essential Parameters in Affinity Functions

Next, let us turn our attention to the determination of the number of
parameters essential in defining the affinities:

• Homogeneity-based affinity ψσ has no essential parameter, that is, the
parameter σ in its definition is redundant, as ψσ = gσ ◦ ψ is equivalent
to ψ, which is independent of σ. This beautiful characteristic says that
FC partitioning of a scene utilizing homogeneity-based affinity is an inher-
ent property of the scene and is independent of any parameters, besides a
threshold in case of AFC.

• Object feature-based affinity φσ for one object has two explicit parameters,
m and σ, of which only parameterm is essential. Parameter σ is redundant,
since φσ = gσ ◦ φ is equivalent to φ defined above.

• Object feature-based affinity φ̄σ̄ for n > 1 objects is usually defined as
φ̄(c, d) = maxi=1,...,n φσi (c, d) [28], where each φσi is defined by (10.2),
with the parameter m replaced with the ith object average intensity mi.
Here σ̄ = 〈σ1, . . . , σn〉. This affinity has 2n explicit parameters, but only
2n− 1 are essential. Indeed, if δ̄ = 〈1, δ2, . . . , δn〉, where δi = σi/σ1, then
φ̄σ̄ and φ̄δ̄ are equivalent, since φ̄δ̄ = hσ1 ◦ φ̄σ̄, where hσ(x) = xσ

2
.

Similar results for the averages, additive and multiplicative, of ψ and φ,
as well as their lexicographical order combination, can be found in [28].
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10.7 Other Delineation Algorithms

We have already discussed deep similarities between FC and GC methods.
In both cases, the image scene can be represented as weighted graphs (with
different ways of assigning these weights) and the segmentations consist of
different subsets P ’s of the graph vertices. In both cases, we associate with
each object P in the graph its energy (cost) value e(P ) represented in terms
of the weights of edges in the boundary of P , that is, with one spel in P ,
another in its complement. The difference is the format of the energy cost
function: in GC it is a sum of the weights of the boundary edges, while in FC
it is the maximum among all these numbers.

10.7.1 Generalized Graph Cut

Despite the similarities, the segmentations resulting from FC and GC have dif-
ferent properties. For example, the FC segmentations are robust with respect
to seed choice, but GC delineations are not. On the other hand, GC output
smoothes the boundary of the resulting object (via penalizing long bound-
aries) – which is sometimes desirable – while FC have no such properties. An
interesting problem was considered in [35]:

“For what classes of graph energy cost functions e(P ) (not necessarily
defined in terms of the edge weights) can we find graph weights such
that the GC optimization of the resulting graph is identical to the
optimization of the original function e?”

The necessary condition given there implies, in particular, that the maxi-
mum energy of FC cannot be represented that way. This also follows from the
fact that FC and GC segmentations have different properties, like robustness.

It should be clear that, if one uses in FC an object feature-based affinity,
then, under an interpretation of μ as Rosenfeld’s degree of connectivity, the
resulting segmented object is the water basin, as in the WS segmentations. If
one desires more than one basin/object, then RFC results agree with the WS
basin interpretation, as long as one “stops pumping the water” when a spill
to another basin occurs.

At that point, we face a problem discussed in Sect. 10.4.1: should we leave
the spels where competition breaks unassigned to any object, or should we find
a way to redistribute them among the objects. In RFC, we opt for the first of
these choices. In standard WS, the second option is followed by “building the
dams” at the “mountain passes” where conflict occurs, and then continuing
“land submerging” process until every spel is assigned. In other words, the
outcome of WS can be viewed as the outcome of RFC used with proper object
feature-based affinity, if we opt for leaving unassigned the spels where “ties”
occur.

In summary, the FC, GC, and WS methods, to which we will refer here
as Generalized Graph (GG) methods, can be viewed as the same class of
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segmentation methods, with their outcomes – resulting from the optimization
of appropriate energy functions – obtained as segmentations of appropriate
weighted graphs. This was clearly demonstrated above, if one chooses treating
segmentation as an assignment of disjoint regions, when some spels belong
to no object. In the other extreme, when the “spels with ties” are assigned
according a proper (slightly ad hoc) procedures typical for each method, the
GG algorithms are also equivalent. They all can be expressed in the IFT
framework [20, 27, 36].

10.7.2 Level Set vs. Generalized Graph Cut

The relation of GG to LS is not straightforward. First of all, we will under-
stand that the name relates to the image segmentation methods that have the
following properties:

1. Set the segmentation problem in the continuous setting (i.e., images are
defined on the regions Ω in the Euclidean space R

n, usually with n = 2 or
n = 3), solve it as such, and, only at the last stage of method development,
use discretization (i.e., finite approximation) of the continuous case to the
digital image case

2. In the problem set-up, use an energy function e associating with image
segmentation P its energy value e(P)

3. Usually (but not always) considered as a problem solution a segmentation
P that minimizes e in an appropriate class of segmentations

4. Usually (but not always) the minimization is achieved by variational meth-
ods, which leads to a differential equation and returns a local minimum
for e

Some optimization methods, like active contour (snake) [37] satisfy all
these properties, but are not region-based methods, since they concentrate on
finding only parts of a region boundary at a time. Some others actually do
not explicitly optimize an energy (i.e., there is no clear Step 3), but it can be
viewed as a solution for a variational problem (i.e., Step 4), that is, a solution
for an implicitly given optimization problem [24]. Perhaps the most influential
and prominent LS delineation method is that of Mumford and Shah [38], and
its special case, due to Chan and Vese [39].

The biggest difference between such described LS methods and GG meth-
ods is the property (1) of LS: it makes a precise theoretical comparison
between the methods difficult, and, at the purely discrete level, actually impos-
sible. This is the case, since the precise outcome of LS is a segmentation of
Ω, while the other methods return segmentations on a discrete scene C. If
we try to compare LS and GG segmentations of a discrete scene C, then
the comparison is between a precisely defined GG output and an unspeci-
fied approximation of the continuous LS segmentation, and any conclusion
of such effort will be only approximate. Therefore, the only precise theoret-
ical comparison between LS and GG segmentation methods can be made at
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the continuous level, that is, on the images defined on an Euclidean scene
Ω. A natural approach how to relate the GG with the continuous output is
described in [40].

For a continuous image F : Ω → R
k and a digital scene C ⊂ Ω let F � C be

a digital image on C approximating F . We think about it here as a restriction
of F (i.e., (F � C)(c) = f(c) for all c ∈ C). For a segmentation algorithm
A, let A(F � C,p ) be the output of A applied to the image F � C and
some parameters p, like seeds and cost function. We like to think of an A-
segmentation of the entire scene Ω of F as a result of application of A to
the “image F � C obtained with infinite resolution.” More formally, it will be
understood as a limit A∗(F,p) = limC→Ω A(F � C,p) over all appropriate
finite sets C ⊂ Ω [40]. In this set-up, we can say that a discrete segmentation
algorithm A agrees (or is equivalent) at infinite resolution with a continuous
(say, level set) segmentation model M in the class F of images F : Ω → R

k

provided for every F ∈ F and appropriate parameter vector p, the limit
A∗(F,p) exists and is equal to a segmentation M(F,p) of Ω predicted by
M . In this sense, we have proved

Theorem 8. [40] The FC delineation algorithm A� used with the gradient
based affinity is equivalent, at infinite resolution, with a level set delineation
model MLS from Malladi, Sethian, and Vemuri paper [24].

Here, the gradient based affinity is a natural discretization of a notion
of gradient (see [40]) similar in spirit to the homogeneity based affinity. We
should stress that there are a few hidden elements in this theorem. First of all,
we consider, after the authors of [24], the outcome of the model as the viscosity
solution of the propagation problem, in which the curvature parameter used
in the model goes to zero. In other words, the actual outcome of the model
M� does not guarantees smoothness (in a curvature sense) of the boundary.
This is the only way the equivalence with GG algorithms can be achieved
(at least, with the energy functions we consider), as the graphs associated
with the images consist only of the first order image intensity information
(the weights of edges are based on the intensities of at most two adjacent
spels, which can be viewed as an approximation of the first derivative of the
intensity function), while the curvature is the second order (based on the
second derivative) notion, which requires information of at least three spels
to be defined [16].)

The strange twist of Theorem 8 is that, in fact, it tells us nothing on the
level set algorithm ALS, which is obtained as a discretization of the model
MLS. Although we proved [40] that the limit limC→Ω A�(F � C,p) exists
and is equal to MLS(F,p), there is no formal prove in the literature that, for
appropriate functions F , the limit limC→Ω ALS(F � C,p) exists or that it is
equal to MLS(F,p). Although there are general results in the theory of dif-
ferential equations indicating when a discretization of a differential equation
converges to its continuous solution (in the MLS case, the discrete approx-
imation of the level set function, property (iv), can indeed converge to the
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continuous level set function), such convergence implies neither the existence
of the limit limC→Ω ALS(F � C,p) nor, even if it exists, that it is equal to the
continuous object indicated by the limiting surface. The story of other level
sets algorithms is similar – there is a great ravine between their continuous,
mathematical models and the associated discrete approximation algorithms,
which should approximate the continuous models, but that are unknown (at
least, theoretically) when they do so.

10.8 Medical Image Examples

The FC algorithms have been employed in segmenting medical Computed
Tomography (CT), Magnetic Resonance Imaging (MRI), and ultrasound
under various medical applications. They have also been used in non-medical
image segmentation tasks. Our own application focus has been medical. These
include:

• Delineation of gray matter, white matter, Cerebrospinal Fluid (CSF),
lesions, diseased parts of white matter, and parcellations of these entities
in different anatomic and functional regions of the brain via multi-protocol
MRI for studying the multiple sclerosis disease (Fig. 10.3) and in elderly
subjects to study aging-related depression and dementia

• Delineation of bone and soft tissue structures in CT images for craniomax-
illofacial surgery planning (Fig. 10.4)

• Separation of arteries and veins in Magnetic Resonance Angiography
(MRA) images (Fig. 10.5)

• Delineation of brain tumors in multi-protocol MRI (Fig. 10.6)
• Delineation of upper airway and surrounding structures in MRI for study-

ing pediatric Obstructive Sleep Apnea (OSA) (Fig. 10.7)

Fig. 10.3. FC and AFC segmentation of brain images. Top: Cross-sectional brain
image from visible woman data set, white and gray matter segmentations via vecto-
rial scale-based FC, and proton density-weighted MRI; Bottom: T2-weighted MRI,
white matter, gray matter, CSF and lesion segmentations via AFC
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Fig. 10.4. Skin peeling via
AFC segmentation. Left:
volume rendering from CT
image of a patient with mid
facial clefts; Right : Result
after skin peeling

Fig. 10.5. Vessel separation
via IRFC. Left : A segment of
the peripheral vascular tree
from MRA; Right : arteries
and veins separated via
IRFC

The need for image segmentation in medical applications arises from our
desire to:

1. Characterize and quantify a disease process
2. Understand the natural course of a disease
3. Study the effects of a treatment regimen for a disease
4. Guide therapeutic procedures

In our applications, the motivation came from 1 to 3. The performance of
the different FC algorithms has been evaluated in these applications quite
extensively; please refer to the specific application related papers cited in
[41]. The reasons for choosing FC in these applications are mainly three-fold:

• We are intimately familiar with the FC technology, have the full resources
of its implementation, and have the expertise for optimally utilizing them
in medical applications. These are crucial requirements for the optimal use
of any segmentation algorithm.

• Among comparable other families of algorithms (such as graph cuts, water-
shed, level sets), FC constitutes one of the fastest groups of algorithms.

• The FC formulation is entirely digital starting from first principles, and
so there are no ad hoc/unspecified continuous-to-digital conversion issues.
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Fig. 10.6. Tumor
segmentation. Left column:
FLAIR and T1 weighted
MRI without and with
contrast agent; Right
column: The edematous
tumor region segmented via
AFC from the FLAIR image
and from the subtracted
(post from pre-contrast)
image showing enhancing
aspects of the tumor

mandible

adenoid

tonsils

airway

tongue

Control OSA

Fig. 10.7. Surface rendering of
AFC-segmented MRI. Left : Upper
airway and other surrounding
structures (mandible, adenoid, tonsils,
tongue) of a normal child; Right : a
child with OSA
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10.9 Concluding Remarks

Focusing mainly on FC methods, we have presented a unified mathematical
theory wherein four currently predominant, purely image-based approaches –
GC, WS, LS, and FC – are described in a single framework as energy opti-
mization methods in image segmentation. Among these, LS has a continuous
formulation and poses some challenges, unenunciated in the literature, on how
to reconcile it with the eventual computational/algorithmic requirements of
discretization. The remaining – GC, WS, FC – have an inherently discrete
formulation and lend themselves naturally to combinatorial optimization solu-
tions. The unifying treatment has helped us in delineating the similarities
and differences among these methods and in pinpointing their strengths and
weaknesses.

All segmentation methods rely on a (local) attribute functional of some
sort – we called them affinity for FC and edge cost in general – for trans-
forming intensity information into contributions to the energy functional. The
notion of equivalent affinities is useful in characterizing the distinct and unique
aspects of this function that have a real impact on the energy functional. Such
an analysis can also be carried out for the attribute functionals of GC, WS,
and LS, and of any other segmentation methods, although this does not seem
to have been done (cf., [35]). Its consequence on nailing down the real inde-
pendent parameters of a segmentation algorithm has implications in setting
the segmentation algorithm optimally for a given application domain and in
evaluating its robustness to parameter settings.

In all FC developments so far, for theoretical and algorithmic simplic-
ity, only 2-ary fuzzy relations have been considered (meaning, affinity and
connectedness have been considered only between two spels). Further, in the
composition of fuzzy relations such as ψσ and φσ (for a given object and for
all objects), only union and max-min constructs have been employed for the
same reasons. Relaxing these restrictions may lead to new, more powerful and
effective algorithms. For example, m-ary relations can be defined by consid-
ering all spels in the local scale region. Further, considering fuzzy relations as
both fuzzy subsets of the scene and as m-ary relations (m ≥ 2), various fuzzy
subset operations (e.g., algebraic union, product) and compositing operations
(e.g., max-star, sum-min, sum-product, algebraic sum-min) can also be used.
Prior object shape and appearance fuzzy models can also be brought into this
realm. These require considerable theoretical, algorithmic, and application
related work.
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Model-Based Segmentation

Tobias Heimann and Hervé Delingette

Summary. This chapter starts with a brief introduction into model-based seg-
mentation, explaining the basic concepts and different approaches. Subsequently,
two segmentation approaches are presented in more detail: First, the method of
deformable simplex meshes is described, explaining the special properties of the
simplex mesh and the formulation of the internal forces. Common choices for image
forces are presented, and how to evolve the mesh to adapt to certain structures.
Second, the method of point-based statistical shape models (SSMs) is described.
The model construction process is explained and the point correspondence problem
is treated in detail. Several approaches of how gray level appearance can be mod-
eled are presented, and search algorithms that use this knowledge to segment the
modeled structures in new images are described.

11.1 Introduction

Automatic medical image segmentation is such a challenging task because it
involves highly variable objects that have to be extracted from images of very
low quality. Often, lack of contrast or artifacts lead to missing data in the
image to be segmented, and the boundary of the Object of Interest (OOI)
cannot be determined from local information as edges or region homogeneity
alone. Medical experts are still able to delineate the object because they know
what it is supposed to look like: they have a model of the object in their mind,
they have an a priori knowledge about its shape and appearance. Model-based
segmentation methods strive to translate this knowledge into smart algorithms
that have a prior knowledge about the structures of interest. Those methods
can be qualified as top down and usually consists of two stages. The former
initializes the location and appearance of the model. It is based on user input
(mouse clicks in an image), the registration of an atlas or machine learning
approaches. The latter optimizes the shape and appearance of the model such
that it closely matches the ones measured in the images.

As the shape of a model is optimized during the segmentation process,
one important property of model-based segmentation lies in the choice of
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the deformation strategy. There are two basic ways of deforming a shape: by
deforming the embedding space of a shape and by modifying their parame-
ters or Degree of Freedom (DOF). For instance, applying a rigid transform
(i.e., rotation and translation) lies in the first category while modifying the
vertex position of a mesh lies in the second category. Of course, those two
mechanisms are often combined but their formalism and approaches are fairly
different. Deforming a shape by deforming the embedding space can be qual-
ified as a registration approach whereas modifying the parameters of a shape
can be qualified as a deformable model approach. The geometric representa-
tion of the models is specifically important in the latter case. In Fig. 11.1, we
show a coarse taxonomy of possible geometric representations. Each represen-
tation having pros and cons, the choice of a representation is often problem
dependent. In Sect. 11.2, we detail the deformable model formulation based
on simplex meshes. Among others, common representations are level-sets,
triangulated meshes and spline curves or surfaces.

If many segmentations of a specific object are available, there are further
possibilities to make models more specific. In addition to knowledge about an
average template shape, Statistical Shape Models (SSMs) also include some
knowledge about the principal modes of variation. The SSMs presented in
Sect. 11.3 are based on the Point Distribution Model (PDM). To perform sta-
tistical analysis on these shapes, point correspondences have to be known: a
challenging problem, for which just recently automatic methods have been
proposed. The visual appearance of the object can also be captured by statis-
tics on training samples, using techniques from computer vision and machine
learning. Finally, there exist specific algorithms to employ the statistical
information to drive a model towards an instance of the object in an image.

Fig. 11.1. Taxonomy of deformable models. The classification scheme of deformable
models for medical image segmentation is based on their geometric representation
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To conclude the chapter, we compare the concepts of a deformable simplex
mesh and the SSM and give hints about which technique to use under which
circumstances.

11.2 Deformable Simplex Meshes

In a deformable model approach, the shape of a model is optimized in order
to match that of a structure of interest in an image. This technique has been
pioneered in 1987 by Terzopoulos et al. [1] with the introduction of active
contours or snakes [2]. This has been later generalized to active surfaces [3]
but one difficulty arises when dealing with three-dimensional (3D) surfaces:
the continuous parameterization of surfaces. Indeed, even for surfaces having
the same topology as the sphere, it is not straightforward to define a C1

parametric surface.
In order to avoid this issue, authors have proposed to work with implicit

parameterization (e.g., using level-sets function) or with C0 continuous meshes
(e.g., using triangulated or simplex meshes). In the latter case, shape smooth-
ing or regularization cannot be defined in the continuous domain (since the
representation is not even C1) but must be defined in a discrete fashion.

A simplex mesh is an original mesh representation that has been intro-
duced in 1992 [4] as a model-based segmentation method for range data and
volumetric images. A k-simplex meshes can represent a manifold surface of
dimension k (k = 2 for 3D surfaces) and can be defined as a k + 1-cell. We
provide below a recursive definition of a cell (Fig. 11.2).

Definition 1. A 0-cell is defined as a vertex P and a 1-cell as an edge, i.e.,
an unordered pair of distinct vertices (P,M). We then recursively define a
p-cell (p ≥ 2) C as the union of c (p− 1)-cells, c ∈ N, such that:

1. Each vertex belonging to C also belongs to p distinct (p− 1)-cells.
2. A (p− 2)-cell belongs to 2 and only 2 (p− 1)-cells.
3. The intersection of 2 (p− 1)-cells is empty or is a (p− 2)-cell.
4. A p-cell is simply connected, i.e. that given 2 vertices of that cell, there

exists at least one set of edges that connect those 2 vertices.

1−Cell = Edge 3−Cell2−Cell = Face0−Cell = Vertex

Fig. 11.2. Examples of p-cells. A collection of p-cells is given for 0 ≤ p ≤ 3. An
edge is a 0-simplex mesh, a face is a 1-simplex mesh, and a 3-cell a 2-simplex mesh
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Two fundamental topological properties result from this definition. First, a
k-simplex mesh has a fixed vertex connectivity: every vertex is adjacent to
k + 1 distinct vertices. Second, a k-simplex mesh is a topological dual of a
k-triangulation. In this duality relationship, a triangle is associated with a
vertex of a 2-simplex mesh, a triangulation edge with an edge and a vertex
with a face (a 2-cell).

In a deformable 2-simplex mesh for image segmentation, the vertex posi-
tion Pi evolves over time under the influence of internal f int

i and external forces
fext
i capturing the influence of prior knowledge on shape and appearance,

respectively

Pt+1
i = Pt

i + (1 − δ)(Pt
i −Pt−1

i ) + αf int
i + βf ext

i (11.1)

A description of those forces are the topic of the next two sections.

11.2.1 Internal Forces on Simplex Meshes

Local Internal Forces

There are two types of prior knowledge that can be applied. A weak shape
prior consists in assuming that the structure of interest is smooth, which is a
reasonable assumption for many anatomical structures (liver, heart, bones. . .)
but not all of them (e.g., infiltrating tumor, brain gray matter). With a strong
shape prior, it is assumed that the structure of interest has a typical shape,
i.e. that its shape varies to a “small extent” around a reference shape.

Simplex meshes are well suited to enforce both types of priors. Indeed, one
can define at each vertex of a 2-simplex mesh, discrete geometric quantities
that locally control the shape of the mesh. At vertex Pi those quantities are
the three metric parameters (ε1i, ε2i, ε3i) and the simplex angle φi (Fig. 11.3,
left). Metric parameters control the relative spacing of vertices through a
tangential internal force while the simplex angle controls the local surface
smoothness through a normal internal force. By combining those two tangen-
tial and normal components of the internal force, it is possible to define weak
and strong shape priors in a simple way.

For instance, Fig. 11.3 (right) shows the effect of a specific tangential
force that leads to a concentration of vertices at parts of high curvatures.
In Fig. 11.4, the tangential component impose metrics parameters equal to
1/3, while the normal component of the internal forces smooths the surface
with normal and mean curvature continuity. In some restricted cases, discrete
mean curvature on a simplex mesh has been proved [5] to converge towards
its continuous value.

The straightforward definition of forces imposing mean curvature conti-
nuity is a major advantage of simplex meshes. Indeed, with such regularizing
constraint, no shrinking effect is observed unlike the mean curvature flow [6]
widely used in the level-sets method [7]. With those flows minimizing surface
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AB

C

F

P

Fig. 11.3. Metric parameters. Left: point P and its three neighbors on a 2-simplex
mesh define a circumscribed sphere. The simplex angle in P is related to the height
‖FP‖ of point P with respect to triangle A, B, C such that the angle stays constant
when P lies on the circumsphere. The metric parameters (ε1, ε2, ε3) are simply the
barycentric coordinates of F in the triangle A, B, C; Middle: cube simplex mesh with
metric parameters equal to 1/3; Right : mesh with optimized metric parameters so
that vertices are concentrated at parts of high curvature

Fig. 11.4. Regularization of a simplex mesh. Left: Simplex mesh with zero mean
curvature; Middle: The red part is smoothed with a mean curvature continuity to
the four cylinders; Right : Normal continuity between the surface and 3D contours
can also be enforced

areas, it is often necessary to limit the shrinking effect by adding a “balloon
force”, which may lead to additional problems [8].

To provide a strong shape prior, a specific internal force has been proposed
that constrains the metrics parameters and simplex angle to be equal to some
user-defined values corresponding to a reference shape. Under the influence
of this shape-memory force, a simplex mesh is attracted towards a reference
shape up to a translation, rotation and scale. This local representation of shape
is also a unique feature of simplex meshes compared to other representations.

11.2.2 Image Forces

Image forces drive a deformable simplex mesh towards the apparent bound-
ary of a structure of interest and rely on some prior knowledge about the
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appearance of that structure. In all cases, the external force is formulated as
displacement in the normal direction towards the closest boundary point Ci

of the structure: fext
i = ((Ci−Pi)·ni)ni. Again one can rely on a weak appear-

ance prior that assumes generic boundary features (such as gradient maxima)
or on a strong appearance prior that relies on machine learning trained on
segmented dataset. In fact, there is a continuum of priors between those two
extremes:

• Contour prior : The closest boundary points are searched among the max-
ima of the gradient norm in the gradient direction. Additional criteria may
be used to select the proper boundary point such as intensity values or the
dot product between the surface normal ni and the gradient vector at that
point [9].

• Contour and region prior: The principle is to characterize the inner (or
outer) region by a range of intensity. The boundary is then determined as
the voxel located next to this region whose gradient norm is greater than
a threshold [10].

• Region histogram prior: From a collection of segmented structure, one can
build the probability density function that a pixel belongs to the struc-
ture from the region histogram (using Parzen windowing for instance).
The closest point is then determined as the one which maximizes (resp.
minimizes) the probability for the inner (resp. outer) voxels to belong to
the inner region [11].

• Intensity profile matching prior: At each mesh vertex, an intensity profile
along the normal direction is extracted. The external force is computed by
searching along the normal direction the displacement which maximizes
the correlation with a reference intensity profile. That reference profile
may result from a Principal Component Analysis (Fig. 11.5) (PCA) as
described in Sect. 11.3.4. Several criteria may be used such as the sum of
the square differences, the linear correlation or the Mahalanobis distance.

• Block matching prior : This approach is similar to the intensity profile
approach but based on the matching of image blocks rather than intensity
profiles. The main difference is that the search for the closest point is
no longer constrained to be along the normal direction but may be in
all directions. This is of interest when homologous points can extracted
from images (such as points of high curvatures or anatomically relevant
features).

• Texture classification prior : The image force can be applied after per-
forming some image classification based on machine learning methods.
The output of the classification is a map of the probability that a voxel
belongs to the structure of interest. The closest point along the normal
direction whose probability is equal to 50% may then be used to compute
the image forces. Linear classifiers, support vector machines [12] or even
neural networks [13] can be trained on segmented datasets to classify the
image.
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Fig. 11.5. Deformable simplex meshes. The meshes are driven by the matching of
intensity profiles; Upper row : reference CT image scan (left) and head segmented
with a simplex mesh (right). Lower row : an intensity profile is stored at each vertex
as a reference and this mesh is used to register the head of the same patient on an
MRI: mesh position before (left) and after rigid registration (right)

11.2.3 Globally Constrained Deformation

As mentioned previously, the first stage of model-based segmentation consists
in positioning the deformable model in the image through various methods,
manual or automatic. Due to the convergence to a local minimum of the
functional, the second stage corresponding to the optimization of the model
parameters may not give good segmentation results if the initialization is
not close enough to the final shape. One common strategy to decrease the
sensitivity of the optimal shape to the initialization position is to use a coarse-
to-fine framework. In this approach, the complexity (in terms of DOF) of
the model is slowly increased in order to start the optimization with a small
number of local minima and then track the global optimum during the increase
of complexity.

A first method to control the DOF consists in using a multi-resolution
approach where a coarse mesh is deformed on a given image and replaced with
a finer mesh when convergence is reached. This technique is fairly straight-
forward to implement but requires to create meshes of increasing resolution
which is not trivial on unstructured meshes [14]. On simplex meshes, the√

3 subdivision scheme is well suited to globally or even locally refine the
mesh [15]. One limitation of multi-resolution schemes is that the coarser mesh
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Table 11.1. Geometric transforms and constrains. The table shows geometric
transforms that can constrain the deformation of a simplex mesh

Transform Number of DOF Transformation type

Rigid 6 Global
Similarity 7 Global
Affine 12 Global
B-spline 3 × Number of control

points
Restricted to a bounding box

Axis-symmetric 3 × Number of points on
the central line

Restricted to the mesh

PCA 6 + Number of modes Restricted to the mesh

may still have too many DOF to prevent falling into a local mimimum of the
functional.

An alternative is to use globally constrained deformations [16], where
global spatial transforms are used in the early stages of segmentation in order
to constrain the DOF. Table 11.1 lists some transforms that may be applied
with a growing number of DOF. Starting from a rigid transform, it is possible
to use only six DOF which greatly constrain the optimization problem.

However, is it often difficult to smoothly increase the number of DOFs,
except when using the PCA (Sect. 11.3.3). To this end, the concept of globally
constrained deformation has been introduced [16] that can tune the com-
plexity of the deformation with a locality parameter λ. More precisely, the
motion equation (11.1) is refined by adding a global force fglobal

i = T (Pt
i)−Pt

i

computed from the application of a global transform T

Pt+1
i = Pt

i + (1 − δ)(Pt
i −Pt−1

i ) + λ
(
αf int
i + βf ext

i

)
+ (1 − λ)fglobal

i (11.2)

When λ = 0 the simplex mesh deforms according to the application of a
global transformation (with few DOFs) whereas when λ = 1, the deformation
is only driven by local internal and external forces. When 0 < λ < 1 the
deformation is a trade-off between global and local behaviors corresponding
to an intermediate number of DOFs. The transformation T is computed such
that it minimizes the discrepancy between the vertex position Pt

i and its
closest point on the image Ct

i.
In many cases, it is sufficient to apply global transforms from rigid to affine

and then to slowly increase the locality parameter from 0 to 1 or to a smaller
value (Fig. 11.6). The concept of globally constrained deformation may also
be successfully applied to enforce to some degree the axis-symmetry around a
deformable axis (for instance to segment vessels) or to take into account the
statistical shape variation around a mean shape.

11.2.4 3D+t Deformable Simplex Meshes

For the analysis of time series of medical images, e.g., gated cardiac imag-
ing, it is important to not only to segment a structure but also to track its
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Fig. 11.6. Coarse-to-fine strategy of 3D mesh reconstruction. The coarse to fine
strategy runs from clouds of points: the different stages of the deformations with
increasing deformation complexity are shown ending with a globally constrained
deformation (λ = 0.3 in panel (f))

deformation over time. A common approach consists in using the result of
the segmentation at time t as the initialization of the segmentation at time
t + 1. However this approach is prone to the propagation of errors if one
image is especially challenging and tends to bias the result noticeably by
underestimating the motion of the structure.

Rather than processing the images one after the other, 3D+T deformable
models [17] can be used to process all images of the time series at once (if
they can fit in the memory of the computer). In this framework, a family of
simplex meshes having the same topology (Fig. 11.7) are deformed on each
image of the time series, the mesh deformation at time t being coupled with
that of time t− 1 and t+ 1.

The temporal coupling forces act as additional internal forces and can be
formulated in a weak or a strong way. The weak prior consists in minimizing
the kinetic energy of the system and thus tries to make vertex Pt

i close to
both points Pt−1

i and Pt+1
i . With a strong motion prior, the shape of the

trajectories of each vertex are constrained to be similar to some reference
trajectory curves, described with geometric quantities that are invariant to
translation, rotation and scale. Examples of segmentation of time-series of
echocardiographic images are shown in Fig. 11.8.
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Fig. 11.7. 3D+T simplex
mesh. The array of meshes
has the same topology but
different geometries

Fig. 11.8. Segmentation of the left ventricle endocardium. Segmentation from 3D+T
echo-cardiographic images by 3D+T simplex meshes

11.2.5 Advanced Segmentation Strategies

The segmentation of anatomical structures from medical images is often a
difficult problem due to their low contrast with surrounding structures, the
inter-subject variability, the presence of pathologies, etc. Problem specific
segmentation strategies must be defined in order to achieve a robust and
accurate delineation.

Atlas-Based Initialization

The first stage of model-based segmentation consists in finding the location of
the structure of interest in the image. This can be done manually by the user
but the inter-user variability in providing this information may be very large
and may impair the reproducibility of the method. An interesting alternative
is to use non-rigid registration [12] to find a geometric transformation between
a reference image (or an atlas) and the target image. In the reference image,
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meshes of the structures of interest can then be mapped by this transformation
in the space of the target image and finally serve as initial shape for model-
based segmentation. This approach has the advantage of being automatic
(and therefore reproducible) and usually provides good model initializations.
However, when the structure location varies greatly, it is required to provide
a suitable initialization of the non-rigid registration algorithm, which can be
achieved by performing some coarse exhaustive search [18].

Multi-Structure Segmentation

It is often a good strategy to first segment the most contrasted structures and
then proceed with more challenging ones (least contrasted). Indeed, already
delineated structures can restrict the possible shape of neighboring struc-
tures during the model-based segmentation of other structures. Furthermore,
when boundaries between structures are hardly visible, it is best to segment
both structures at the same time, the shape of the former providing inter-
penetration constraints [19] for the latter. Those constraints are based on the
computation of distance maps measuring the distance of a given points to the
two surface meshes. Figure 11.9 shows an example of the joint segmentation
of bladder and prostate.

Rule-Based Segmentation

Ideally, all model-based segmentation algorithms should proceed in two stages:
initialization followed by an optimization stage. However, most segmentation
algorithms are meant to be applied on patients with some pathologies (e.g.,
tumor, metastasis) or some rare anatomical configurations (e.g., abnormal
branching of vessels, already ablated tissue). In such case, it is difficult to
build a shape and appearance model that can cope with such variation of

Fig. 11.9. Joint segmentation of bladder and prostate. The bladder (red) and
prostate (green) are shown in a CT image. Left : No inter-penetration constraints are
used which causes a leakage; Middle: With inter-penetration constraint and some
statistical shape constraint on the prostate, the segmentation is improved despite
the low contrast between structures; Right : 3D view of the two organs
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cases. Therefore, to improve the robustness of the segmentation, some alert
mechanisms should be included in order to detect that the segmentation is
not performing well. For instance, for segmentation of hippocampi in brain
MRI, a projection on the main PCA mode was used [20] to detect the leakage
of a deformable model thus signaling that the locality parameter λ should be
decreased. Additional rules and meta-rules can be used to test the validity of
hypothesis and eventually reset the optimization stage with new parameters.

11.2.6 Geometric Representations
for Model-Based Segmentation

The choice of a geometric representation of a model has a significant impact
on the performance of a model-based segmentation algorithm. Many compo-
nents of those models can be implemented independently of the representation,
however some implementations may be far easier than others. For instance,
PCA of the shape variability may be implemented for both point-set distri-
butions [21] (Sect. 11.3.1) and level-set functions [22] but are far simpler for
the former.

Simplex Meshes vs. Triangulations

Triangulations are widely used representations for computational purposes.
They can represent manifold and non-manifold surfaces while simplex meshes
are only suitable for manifold surfaces. Furthermore, it is straightforward to
compute the closest distance between a point to a triangulation because of its
planar faces (triangles). On simplex meshes, the faces are curved and there-
fore computing accurately the closest point is more complex (no closed form
solution). However, due to its fixed vertex connectivity, it is much easier to
control the spreading of vertices on simplex meshes for instance to concen-
trate vertices at parts of high curvature. Also one can define on simplex meshes
shape memory regularization as well as curvature continuous smoothing with-
out shrinkage. On triangulations, the most common way to smooth a shape
is to use the mean-curvature flow [23] which entails shrinkage.

Simplex Meshes vs. Parametric Surfaces

Parametric surfaces, such as B-splines, the Non-Uniform Rational B-Spline
(NURBS), or Finite Element Model (FEM), can provideCk continuity (k > 0)
everywhere while for simplex meshes only C0 continuity is enforced. Therefore,
they describe smoother surfaces which can be important for some applications
(e.g., rapid prototyping, physical simulation). Also, differential quantities such
as surface normals or curvatures can be described everywhere, which is impor-
tant for shape analysis (e.g., extraction of feature points). However, using
those parametric surfaces brings additional complexity especially when the
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surface cannot be parameterized by a single planar patch (i.e., surface of pla-
nar, cylindrical and toroidal topology). Indeed, even for surfaces of spherical
topology, parametric surfaces may be complex to handle for instance with the
creation of poles (deformable super-quadrics [3]). Simplex meshes as well as
triangulated surfaces can cope with surfaces of any topology. Furthermore in
many image segmentation problems, only the position, volume and distance
of the segmented structure are of interest. Therefore, describing surfaces with
C0 continuity is a good trade-off between complexity and accuracy.

Simplex Meshes vs. Level-Sets

Level-sets rely on an implicit description of the geometry. They can describe
manifolds of co-dimension one (i.e., hyper-surface) of any topology but can-
not represent surfaces with borders (except if the border is on the edge of
the image) such as a planar patch or a cylinder. Simplex meshes can repre-
sent a manifold of any dimension and co-dimension. In level-sets, differential
quantities (normal, curvatures) may be computed everywhere by filtering the
embedding image while in simplex meshes they are only available at vertices.
Level-sets can adapt their topologies easily while it is much more difficult for
simplex meshes [24] or triangulations [25]. Also, the coupled segmentation of
structures is easier to implement with level-sets since the distance function is
already computed to update their position. Since they are based on an Eule-
rian scheme, level-sets are not suited to transport a priori information from
a model to the segmented structure. Also, the regularization of level-sets is
usually local and based on the mean curvature flow which entails shrinkage.

11.3 Statistical Models of Shape and Appearance

As presented in Sect. 11.2.1, shape priors can be employed as stabilizing forces
during the evolution of a deformable model. With strong shape priors, it is
possible to enforce smooth shape changes around a defined template. Apart
from the smoothness constraint, vertices generally move independently from
one another, driven by their individual image forces. For many structures in
the human body, it is possible to constrain the possible variations further,
creating more specific models while still maintaining a good ability to adapt
to individual instances. The higher the specificity of a model, i.e. the fewer
non-plausible shapes it produces, the more robust it can segment images in
the presence of noise and artifacts.

To determine plausible and non-plausible shapes for a certain structure
requires either an artificial parametric model (which has to be hand-crafted
each time), or a large amount of examples from which this information can be
extracted automatically. The SSM employs the latter approach; it generally
uses second order statistics to extract the principal modes of variation from
a set of example shapes. These modes can be used instead of the internal
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forces of deformable models. In addition, it is also possible to employ statistics
to generate more specific image forces. As for shape modeling, the required
information is extracted from a set of example images. Using both techniques
together allows to develop very specific and accurate segmentation algorithms
for medical applications. A more detailed discussion of the techniques and
approaches is given in the comprehensive review by Heimann and Meinzer [26].

11.3.1 Shape Representation

As mentioned in Sect. 11.2.6, there exist several different representations for
shapes. In the following, we assume the most common and simplest represen-
tation: a cloud of points densely sampled on the surface of each shape. Thus,
each training shape can be represented as a single vector x that concatenates
coordinates from all k points on the surface

x = (x1, y1, z1, . . . , xk, yk, zk)T (11.3)

Connecting edges between neighboring points leads to a mesh structure.
Although these connections are not required for a PDM [21], they are essential
to define inside, outside, and normal vectors for segmentation applications.

11.3.2 Point Correspondence

To be able to perform statistical analysis on a set of training shapes, the
individual points representing each training shape have to correspond over
the entire set of examples (Fig. 11.10). This means that if a point is placed on

Fig. 11.10. Correspondences for a set of liver shapes. Corresponding areas are
marked by colors and a sparse coordinate grid
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a certain anatomic landmark in one example, it should be placed on the same
landmark in all other shapes (and the number of sample points is necessarily
equal for all training shapes). Thus, all points do represent a kind of landmark,
and the two terms are often used synonymously in shape modeling.

Setting landmarks manually on 3D shapes is an extremely tedious and
time-consuming process. Additionally, results are not reproducible, as different
experts will label different landmarks, especially in areas without discernible
features. For this reason, methods to automatically determine correspondences
are of paramount importance to shape modeling, and the quality of extracted
correspondences has a large impact on the quality of the resulting shape
model. The variety of approaches to determine correspondences over a set
of shapes can be classified according to the type of registration used to match
one shape to the other. In the following sections, we briefly present the most
important approaches.

Mesh-to-Mesh Registration

Assuming that the original training shapes are available as meshes, a straight-
forward solution to the point correspondence problem is to register the
different surfaces to each other. One training shape is selected as template
and matched to all others by a generic surface matching method as Iterative
Closest Point (ICP) [27] or Softassign Procrustes [28]. For each point of the
template, these algorithms deliver the closest point in the target mesh after
both have been aligned by an optimal similarity transform. However, this solu-
tion has a number of draw-backs. Firstly, the selection of the template induces
a bias in the process; different templates usually lead to different correspon-
dences. Secondly, possible corresponding points are limited by the resolution
of the target mesh: if this mesh is not sampled densely enough, the approach
can introduce considerable artificial variation in the resulting SSM. Finally,
the most serious problem is that the employed similarity transform may be
insufficient to match the template to the other training shapes if the training
set shows large geometric variations. In this case, the approach leads to invalid
correspondences and the resulting statistical model is not representative of the
training data.

An alternative approach is to use non-rigid registration to match the train-
ing surfaces. For this, a limited number of matching landmarks is determined
in advance, either by manual labeling or by automatic feature matching.
These sparse point sets can then be used to initialize a non-rigid registra-
tion as the thin-plate-spline deformation, which produces exact matches for
the pre-defined landmarks. Correspondences for the remaining points can
be determined simply by Euclidean distance. However, to avoid topological
problems it is safer to regularize this matching, e.g., by mesh relaxation [29].



294 T. Heimann and H. Delingette

Mesh-to-Volume Registration

Most training shapes for medical imaging applications originate from volumet-
ric image modalities as CT or MRI. In these cases, it is possible to acquire
point correspondences by registering a deformable mesh to each volumetric
training image. The basic idea is that the positions to which vertices of the
deformable mesh converge are corresponding over the entire training set. Obvi-
ously, the deformable mesh has to adapt accurately to each shape, which is
difficult when using one of the typical image forces (Sect. 11.2.2) on intensity
images. Therefore, the deformable mesh is mostly used with the segmented,
binary volumes, which provide a hard feature for the image force. The geome-
try for the deformable mesh can be extracted from an arbitrary instance of the
training set. However, this procedure can introduce a bias in the correspond-
ing detection. A technique to minimize this bias has been proposed in [30],
where intermediate templates are generated for difficult cases.

Volume-to-Volume Registration

Similar to registering a deformable mesh to all training volumes, it is also
possible to employ a volumetric atlas for that purpose. The atlas can either
consist of a single volume or can be built from a collection of images. After reg-
istering the atlas to an instance of the training set, the resulting deformation
field is used to propagate landmarks on the atlas to the respective training
shape. As with mesh-to-volume registration, the atlas registration is usually
conducted on the segmented volumes to increase accuracy. To provide the
required flexibility, non-rigid transforms are essential for the registration; pop-
ular methods include B-splines or thin-plate-splines deformations. As usual,
a multi-resolution approach increases robustness of the matching.

Parameterization-to-Parameterization Registration

A parameterization is a bijective mapping between a mesh and an appropriate
base domain [31]. For closed 2D contours, this base domain is the circle, and
determining correspondences by parameterization is equivalent to matching
points by relative arc-length. Depending on the topology of training shapes
the respective base domains can change, which makes registration between
them impossible. This means that a prerequisite for using this approach
is that all training shapes have to feature the same topology. Please note
that this is also true for the previously presented registration approaches,
with the difference that this constraint is not verified there. For 3D shapes,
most parameterization approaches are geared to genus zero shapes, i.e. 2-
manifolds without holes or self-intersections. The corresponding base-domain
is the sphere. When using unconstrained parameterizations as spherical har-
monics [32], the obtained correspondences are often arbitrary. Therefore, a
common approach is to determine a limited set of matching landmarks in
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advance (as for the mesh-to-mesh registration) and employ parameterization
to match the remaining regions of the shape.

Population-Based Optimization

In all the correspondence approaches presented above, matching points are
determined in a pair-wise comparison or without a comparison at all (for
the parameterization-based approaches). Population-based correspondence
methods analyze the complete set of training shapes at the same time and
select corresponding points based on a global cost function. Starting from
initially arbitrary landmarks, an optimization algorithm iteratively modifies
correspondences until the cost function converges at its minimum. Although
this procedure sounds straight-forward and should lead to optimal results,
there are a number of challenges involved in the design.

First, as it is difficult to define what good correspondences are, coming up
with a practically usable and theoretically sound cost function is not evident.
Practically all current approaches rely on a form of Minimum Description
Length (MDL) as cost function, which was pioneered for correspondence opti-
mization by Davies [33]. MDL implements the principle of Occam’s razor that
a simpler model is better than a complex one. Translated to SSMs, this means
that a model is better when it features fewer and more compact modes of vari-
ation. As the cost function for the full MDL is computationally very expansive,
a simplified version [34] is often used. Here, costs F are directly calculated
from the eigenvalues λ of the shape model

F =
∑
m

Lm with Lm =

{
1 + log(λm/λcut) for λm ≥ λcut

λm/λcut for λm < λcut

(11.4)

where λcut describes the amount of noise in the dataset.
A second challenge is to adjust the landmark positions in the course of

optimization. The difficulty lies in the fact that the optimization problem is
heavily constrained, as individual landmarks cannot be moved independently
from their neighbors (to avoid flipping triangles in the model mesh). Addition-
ally, all 3D landmarks have to remain on the 2D manifolds of the surfaces of the
training shapes. This is either accomplished by employing parameterizations
to modify landmark positions [33, 35] or by particle approaches [36].

11.3.3 Construction of Statistical Shape Models

Once point correspondences are known, each training shape i can be repre-
sented as coordinate vector xi in (11.3). Before applying the dimensionality
reduction that delivers the predominant modes of variation, the individual
shapes first have to be aligned into the same coordinate system.
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Alignment

The commonly used procedure to align a set of training shapes is the Gen-
eralized Procrustes Analysis (GPA) [37]. The underlying Procrustes analysis
determines the optimal similarity transform to minimize the sum of squared
distances between two corresponding point sets. GPA employs this method
iteratively to match a whole set of shapes to their unknown mean. An addi-
tional step for constructing a shape model is a rescaling of the thus aligned
shapes. This is required since the minimization of squared distances introduces
non-linearities in the shape space, which are difficult to capture by commonly
used techniques. A straight-forward solution is to scale each training shape i
with 1/(xi · x̄), where x̄ is the mean as determined by GPA.

Dimensionality Reduction

Statistical shape modeling is essentially a problem of dimensionality reduction:
The input data of s training shapes xi (with the dimension of xi generally in
the thousands) should be reduced to a limited number of modes of variation.
This task is usually solved by PCA [38]. The first step is to calculate the mean
shape x̄ of the training set

x̄ =
1
s

s∑
i=1

xi (11.5)

Then, the covariance matrix S of the input data is computed by:

S =
1

s− 1

s∑
i=1

(xi − x̄)(xi − x̄)T (11.6)

An eigendecomposition of S yields the eigenvectors φm (representing the
principal modes of variation) and the corresponding eigenvalues λm (indi-
cating the variance per mode). Sorting all modes from largest to smallest
variance, the first c modes are employed to model the distribution, while the
remaining modes are discarded. Thus, all valid shapes can be approximated
by a linear combination

x = x̄ +
c∑

m=1

bmφm (11.7)

with b as the vector of shape parameters. To constrain variation of the model,
b is usually bound to certain limits, either by constraining |bm| < 3λm for each
mode individually or by constraining b globally to lie within an appropriate
ellipsoid. Typically, c is chosen so that the accumulated variance

∑c
m=1 λm

reaches a certain percentage (e.g. 95%) of the total variance. Figure 11.11
shows the first three principal modes of variation as extracted from a collection
of liver shapes.
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Fig. 11.11. Statistical shape model of the liver. Panels (a,b), (c,d), and (f,g) show
the first three modes of variation for a SSM of the liver with mean shape (d)

11.3.4 Modeling Object Appearance

In Sect. 11.2.2, we already described possible image forces for deformable mod-
els. As we assume to have training data available for statistical modeling, we
now focus on strong appearance priors.

Boundary-Based Features

The most popular appearance models for SSMs are related to the above-
mentioned intensity profile. At each landmark of the shape model, a profile is
sampled in normal direction and compared to a model built from training data
at the same landmark. This implies that one shape model commonly features
a large number of appearance models. The employed profiles are not limited
to plain intensity alone; gradient profiles and normalized intensity or gradient
profiles are also popular choices. Different features can also be combined in
the same model. Each appearance model is built similar to the shape model,
i.e. mean profile and covariance matrix are generated. Using the covariance
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matrix, the Mahalanobis distance to profiles sampled during the search can
be determined. For Gaussian distributions, this represents a robust measure
of the goodness of fit [39].

In cases where the distribution of profiles is essentially non-Gaussian
(e.g., because the modeled object is adjacent to several tissues of differ-
ent appearance), non-linear appearance model can deliver better results.
A straight-forward method to employ a non-linear model is using a k-Nearest-
Neighbor (k-NN) classifier [40]. To train it, both true and false examples of
boundary profiles must be used. The required false examples can be generated
by shifting profiles from their known positions towards the inside and outside
of the OOI.

Region-Based Features

As mentioned in Sect. 11.2.2, region histogram priors can be used to evolve
a deformable model in order to match a certain distribution of intensities.
For statistical models, it is straight-forward to model this distribution from
training data. However, there are a number of much more specific features that
can be used in this case. The most consequent approach for learning object
appearance uses the entire texture of the OOI [41]. To combine textures from
all training images, the respective objects are morphed to the same shape (the
mean shape of the SSM). Subsequently, the mean texture and its covariance
matrix can be calculated as usual. A drawback of this approach is the high
memory footprint of the appearance model, especially for 3D models where
a volumetric texture is used. One solution is to model the texture only in
certain parts of the object, e.g. around the boundary.

Modeling local regions inside and outside of the OOI opens up more possi-
bilities regarding the search algorithm for model evolution (Sect. 11.3.5), as the
goodness of fit can be determined locally (like when using profiles). In addi-
tion to the above mentioned techniques of histogram matching and texture
matching, local appearance can also be modeled by multi-scale derivatives,
Gabor filterbanks, wavelets, etc. In comparison to boundary-based features,
region-based features are often more robust as they use more image data to
determine the goodness of fit. At the same time and for the same reason, they
are also computationally more demanding.

11.3.5 Local Search Algorithms

As mentioned in Sect. 11.2.5, the first step to employ a deformable model
for segmentation is to initialize it for the respective image. This initialization
places the model close to the OOI (e.g., by atlas registration), so that the
model can iteratively evolve towards the correct contour. In the following,
we present several techniques to conduct this subsequent evolution (the local
search) for statistical models of shape and appearance.



11 Model-Based Segmentation 299

Active Shape Model

The Active Shape Model (ASM) was introduced by Cootes et al. [21]. It is
one of the most popular model-based approaches for segmentation of medical
images. An instance y of the model in an image is defined by a similarity
transform T and the shape parameter vector b

y = T (x̄ + Φb) (11.8)

where Φ = (φ1 . . . φc) is the matrix of eigenvectors (11.7). To evolve the shape
over time, the optimal displacement dyp is determined for each landmark
point separately by querying the goodness of fit for the respective appearance
model at various positions along the normal vector. The update then consists
of two steps: First, transform T is updated by the result of the Procrustes
match of the model to y+dyp. This leads to new residual displacements dys.
Second, shape parameters b are updated by transforming dys into model
space and then applying a projection into shape space

db = ΦT T̃−1 (dys) (11.9)

where T̃ is equal to T without the translational part. The resulting adjust-
ments db are added to b. Usually, b is restricted to certain limits to maintain
a valid shape (Sect. 11.3.3). The presented two steps are repeated iteratively
until the model converges at the best local fit in the image.

To increase robustness, especially against incorrect initialization, the search
is commonly conducted in a multi-resolution fashion. Contrary to the multi-
resolution approach presented for simplex meshes (Sect. 11.2.3), the DOF
usually remains unchanged. Instead, appearance models are constructed for
a number of down-sampled versions of all training images, and the search
is started on a down-sampled version of the original image. Here the search
radius is larger, since the goodness of fit is evaluated at points at a greater
distance from the original contour. When the model evolution converges on
the rough scale, appearance model and search radius are switched to the next
(more detailed) versions, until the original resolution is reached.

Another approach to increase robustness is to decrease the effect of out-
liers, i.e. wrongly detected optimal displacements for specific landmarks. There
are two basic techniques for this problem. Firstly, outliers can be detected
(e.g. by comparing suggested landmark positions to collected statistics) and
corrected before the shape is updated. Secondly, the update of transform
and shape parameters can be weighted and each suggested landmark position
receives a reliability weighting in each step.

Active Appearance Model

The Active Appearance Model (AAM) [41] belongs to the class of genera-
tive models, i.e., it can generate realistic images of the modeled data. This
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is accomplished by storing a complete texture model, consisting of the mean
and the principal modes of variation, in addition to the shape model. How-
ever, AAMs are more than a shape model with region-based features, they
employ a specific search method which is completely different from the ASM
approach. Moreover, shape and appearance parameters are combined into one
linear system, where shape x and appearance g are described by a common
parameter vector c

x = x̄ + ΦsWsQsc
g = ḡ + ΦgQgc

(11.10)

Here, Φs and Φg are the independent eigenvector matrices of shape and
appearance model, respectively, and Ws is a diagonal weight matrix for the
shape parameters. Q =

(Qs

Qg

)
is the eigenvector matrix of the combined shape

and appearance parameters. It is the result of a PCA on the independent
parameters b =

(Wsbs

bg

)
. An instance of the model in an image is defined by a

similarity transformation T and the combined shape-appearance parameters
c. In the following, we name the latter ones simply parameters p. To evaluate
the goodness of fit, the image texture is warped to the mean shape and nor-
malized, resulting in gs. With the modeled appearance gm = g from (11.10),
the residuals are given by r(p) = gs − gm, and the error by E = r2.

The key idea of AAM search is to assume a constant relationship between
texture residuals r(p) and parameter updates dp over the entire search

dp = −Rr(p) (11.11)

The success of this optimization scheme largely depends on the derivative
matrix R. In the first presentation of AAMs, R was computed using multi-
variate linear regression on a large number of simulated disturbances of the
training images. Later, regression was replaced by numeric differentiation,
claimed to be both faster and more reliable.

The main challenge when employing AAMs for medical image segmen-
tation is the enormous amount of data that has to be captured by the
model. For 3D models, appearance is generally modeled as a 3D texture,
which quickly leads to prohibitively large equation systems. Therefore, tex-
ture resolution generally has to be scaled down. It it noteworthy that the AAM
search procedure is not limited to region-based features. Indeed, the general
idea of determining parameter updates from residuals can also be used with
alternative appearance features as described in Sect. 11.3.4.

11.4 Conclusion

Model-based approaches to segmentation are arguably the most robust meth-
ods when image data is noisy or includes artifact. Therefore, they are a
prime choice for many applications in medical image analysis. The deformable
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simplex meshes and point-based statistical models presented in this chapter
represent state-of-the-art techniques for this purpose.

Comparing both methods, an obvious difference is that building a shape
model requires a large collection of training images (typically 20–50 as a min-
imum for 3D models), while a simplex mesh with strong shape prior can be
based on a single example. Another point is that the additional constraints of
SSMs generally result in a higher robustness, but at the same time limit the
accuracy of the final result. Statistical models are therefore often applied as
part of a coarse-to-fine strategy that features an additional refinement step
afterwards. As already hinted to in Sect. 11.2.3, it is also possible to combine
both techniques in one framework. That way, the strict shape constraints can
gradually be lifted and the final free deformation ensures an optimal fit to the
data.
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Melanoma Diagnosis

Alexander Horsch

Summary. The chapter deals with the diagnosis of the malignant melanoma of the
skin. This aggressive type of cancer with steadily growing incidence in white popu-
lations can hundred percent be cured if it is detected in an early stage. Imaging
techniques, in particular dermoscopy, have contributed significantly to improve-
ment of diagnostic accuracy in clinical settings, achieving sensitivities for melanoma
experts of beyond 95% at specificities of 90% and more. Automatic computer anal-
ysis of dermoscopy images has, in preliminary studies, achieved classification rates
comparable to those of experts. However, the diagnosis of melanoma requires a
lot of training and experience, and at the time being, average numbers of lesions
excised per histology-proven melanoma are around 30, a number which clearly is too
high. Further improvements in computer dermoscopy systems and their competent
use in clinical settings certainly have the potential to support efforts of improving
this situation. In the chapter, medical basics, current state of melanoma diagnosis,
image analysis methods, commercial dermoscopy systems, evaluation of systems,
and methods and future directions are presented.

12.1 The Cutaneous Melanoma

Skin cancer develops in the upper layer of the skin, the epidermis (Fig. 12.1).
The most common types are the basal cell carcinoma, the squamous cell car-
cinoma, and the Cutaneous Melanoma (CM). Of these three types, CM is the
most aggressive one.

12.1.1 Medical Basics

The CM is a malignant type of a Pigmented Skin Lesion (PSL) or melanocytic
skin lesion. A PSL typically is a dark spot, mole or nevus on the skin (Fig. 12.4)
originating from an aggregation of the skin color pigment melanin. Special
cells, the melanocytes, produce melanin in small granules called melanosomes.
The melanin is then transported to cells in the outer skin keratocytes, where
they appear as “color” of the skin.

T.M. Deserno (ed.), Biomedical Image Processing, Biological and Medical Physics,

Biomedical Engineering, DOI: 10.1007/978-3-642-15816-2 12,
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Fig. 12.1. The human skin. Left : Anatomy; Right : Histology

The CM, also referred to as malignant melanoma or simply melanoma, is
a cancerous tumor that arises in the melanocytes. It accounts for about 4%
of all skin cancers. The most common CM types are1:

• The Superficial Spreading Melanoma (SSM) accounts for about 70% of
diagnosed CM). It usually spreads along the epidermis and then grows
deeper to the dermis (Fig. 12.1). It is curable when it is removed before it
invades the dermis.

• The Acral Lentiginous Melanoma (ALM) is the most common melanoma
in dark-skinned races (50% in dark-skinned). It is frequently mistaken for
a bruise or nail streak in its early stages and therefore often diagnosed in
a later stages when it is very aggressive.

• The Lentigo Maligna Melanoma (LMM) accounts for about 10% of CMs
diagnosed in the United States. It develops in a sun-induced freckle and
typically occurs on sun-damaged skin in the elderly and may in its early
stages be mistaken for a benign age spot or sun spot.

• The Nodular Melanoma (NM) accounts for approximately 15% of diag-
nosed melanomas. It is a very aggressive CM type that tends to grow
downwards into deeper skin tissue rather than along the surface of the
skin.

Cancer statistics prove increasing incidence of CM in many countries with
white population over the last four decades [1]. Rates were highest in Aus-
tralia. With an estimated increase of 3–7% it is the most rapidly increasing
cancer in white populations, suggesting a doubling of rates every ten to twenty
years. Incidence rates in central Europe are in the middle, with a north-south

1 http://www.skincarephysicians.com/skincancernet/glossary.html
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gradient due to darker skin type in Mediterranean compared to central and
northern European populations. Risk factors include: the number of PSLs
on the body; the presence of atypical PSLs; sun-exposure and sunburns; and
hereditary factors [2].

12.1.2 Relevance of Early Diagnosis

Unlike other types of cancer, there is good chance for 100% cure for CM.
Detected in an early, non-invasive stage, a CM can surgically be removed
(excised), with an excellent prognosis for the patient. CM screening pro-
grams are therefore promoted [3]. In fact, currently in about 90% of cases
a CM is diagnosed at the primary tumor stage. However, the rate of diag-
nostic excisions, i.e. the number of PSLs excised per CM, also referred to as
Number Needed to Treat (NNT), is very high, with estimated averages of
10–90, depending on the age group of the patients and the experience of the
examiner [4,5] (some expert centers may reach a NNT of around 5). CM diag-
nosis is very demanding and needs a lot of experience. Since the main goal
is not to overlook any CM, in suspicious cases more often excision is decided
(increasing sensitivity on cost of specificity). PSM excisions are performed
with certain safety margins. Current recommendations are 0.5, 1, and 2 cm
for in situ CM, CM with Breslow thickness ≤2 mm and CM with thickness
>2mm, respectively [2]. As surgical interventions, excisions implicate inher-
ent risks and costs. Therefore, the average NNT should be reduced by suitable
measures such as enhanced training and improvements of diagnostic imaging
techniques and algorithms.

As digital image analysis is concerned, this article focuses on the diagnosis
(i.e., malignancy assessment) of PSLs, not on detection. Both tasks, detection
and diagnosis, can be supported by digital image analysis. Related systems are
commonly referred to as Computer-Aided Detection (CADe), and Computer-
Aided Diagnosis (CADx), respectively. For CADe in CM screening see the
literature on mole mapping and total body mapping.

12.2 State of the Art in CM Diagnosis

Diagnosis of CM has been a very active research field over the past decades,
both in terms of diagnostic algorithms to be applied by human examiners, and
in terms of skin imaging techniques, including the support by digital image
processing. However, the task of differing Cutaneous Melanomas (CMs) from
benign Pigmented Skin Lesions (PSLs) still is challenging (Fig. 12.2).

12.2.1 Diagnostic Algorithms

The differential diagnosis for PSLs is challenging even for specialists. For this
reason, a 2-step approach (Fig. 12.3) was suggested by a virtual consensus
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Fig. 12.2. Pigmented skin lesions. In the dermoscopic view, cutaneous melanomas
(upper row) and benign pigmented skin lesions (lower row) appear very similar

Fig. 12.3. Flow chart. The
differential diagnosis of
pigmented skin lesions is
performed with a 2-step
approach

pigmented skin lesions

melanocytic non-melanocytic

benign malignantsuspicious

Step 1

Step 2

Table 12.1. Evaluation of
diagnostic algorithms. The
algorithms were evaluated by
the CNMD regarding the inter-
and intra-observer agreement

Algorithm Inter-observer Intra-observer
κ (95% CI) κ (range)

First-step 0.63 (0.62–0.63) 1.00 (0.73–1.00)
Pattern analysis 0.55 (0.54–0.56) 0.85 (0.12–1.00)
ABCD rule 0.48 (0.47–0.48) 0.72 (0.11–1.00)
7-point checklist 0.47 (0.46–0.47) 0.72 (0.29–1.00)
Menzies method 0.52 (0.51–0.52) 0.75 (0.21–1.00)

meeting of 40 actively participating experienced clinicians known as the Con-
sensus Net Meeting on Dermoscopy (CNMD). In the first step, a classification
in melanocytic and non-melanocytic lesions is performed, following a 6-step
algorithm. In the second step, melanocytic lesions are classified in benign
and malignant. It is primarily the second step that is currently addressed by
dermoscopy CADx.

Current diagnostic algorithms in dermoscopy evaluated by the CNMD
(cf. [6]) are summarized in Table 12.1. Pattern analysis [7, 8] performed by
physicians allows distinction between benign and malignant growth features.
Typical patterns of some common PSLs are: dots, globules, streaks, blue-white
veil, blotch, network, network borders:
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• The Asymmetry, Border, Color, and Differential structures (ABCD) rule
[9, 10] as applied by physicians scores the features:

1. Asymmetry, 0–2 points: 0 = symmetric in two axes; 1 = symmetric in
one axis; 2 = no symmetry at all;

2. Border, 0–8 points: number of half-quadrants with diffuse border;
3. Color, 1–6 points: number of colors appearing in the lesion (white, red,

light brown, dark brown, blue-gray, black); and
4. Differential structures, 1–5 points: number of differential structures in

the lesion (pigment network, dots, globules, streaks, structureless areas)

with particular weight factors and sums up to a total score ranging from
1.0 to 8.9. Depending on this Dermatoscopic Point Value (DPV), DPV =
1.3A+ 0.1B + 0.5C + 0.5D, a lesion is considered benign (DPV = 1.00−
4.75), suspicious (DPV = 4.75−5.45), or malignant (DPV = 5.45−8.90).

• The 7-point checklist [11] distinguishes 3 major criteria, each with a score
of two points (atypical pigment network; blue-white veil; atypical vascular
pattern) and four minor criteria, each with a score of one point (irreg-
ular streaks; irregular pigmentation; irregular dots/globules; regression
structures). Diagnosis of CM requires a minimum total score of three.

• For a diagnosis of melanoma according to the Menzies method [12] both
of the two negative features (lesion shows only a single color; patterns
are point or axial symmetric) must not be found, and at least one of
9 positive features (blue-white veil; multiple brown dots; pseudopods;
radial streaming; scar-like depigmentation; peripheral black dots-globules;
multiple colors; multiple blue/gray dots; broadened network) must be
found.

• Two more diagnostic algorithms which were not evaluated by the CNMD
are the 3-point score and the Color, Architecture, Symmetry, and Homo-
geneity (CASH) system.

• According to the 2002 staging system of the American Joint Committee
on Cancer (AJCC), melanomas classified in ten stages, from 0 (in situ) via
II–III (primary tumor) to IV (tumor with distant metastases) [13].

12.2.2 Imaging Techniques

In order to improve diagnostic performance for PSL various imaging tech-
niques have been explored [14–17]. Important imaging techniques in clinical
settings are summarized with their main characteristics in Table 12.2:

• Photography is the most common form of skin imaging. Follow-up of lesions
over time can help in early detection.

• Dermoscopy adds significant information compared to photography by
making structures in the epidermis and the papillary dermis (Fig. 12.1)
directly visible.
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Table 12.2. Imaging techniques. Diagnosis of PSL in clinical settings

Technique Physical principle Penetration depth

Photography Visible light 0.1mm
Dermoscopy Visible light 2mm
Spectral imaging Visible and near infrared 0.1–1mm
LASER Doppler perfusion imaging Laser light N/A
Magnetic resonance imaging Nuclear magnetic resonance <7mm
Infrared thermal imaging Infrared spectrum N/A

• Spectral imaging can map biochemical properties such as chromophore
concentration.

• LASER Doppler perfusion imaging creates maps of the blood flow, which
can be used for melanoma detection and lymph node assessment. Imaging
techniques such as X-ray Computed Tomography (CT), Magnetic Reso-
nance Imaging (MRI), or Positron Emission Tomography (PET) combined
with CT (PET-CT) have a high spatial resolution and a high sensitivity
for the detection of metastatic disease. However, they increase the number
of false-positive findings [2].

• For research, a variety of other imaging techniques with different depth
penetration are explored, including:

– Profilometry (assessment of changes in skin surface topology);
– Optical Coherence Tomography (OCT) (near infra-red low coherence

laser, 1–2 mm);
– Confocal mode imaging (near infra-red laser, 300 μm);
– Terahertz pulse imaging;
– Video-microscopy.

Currently, dermoscopy [6, 10, 18, 19], also referred to as dermatoscopy,
skin surface microscopy, Epi-Luminescence Microscopy (ELM), or in vivo
cutaneous surface microscopy, is clinically the most relevant in vivo imag-
ing technique for CM diagnosis [20]. The history of this technique goes back
to 1663, the beginning of skin surface microscopy [6]. The use of immersion
oil in microscopy was introduced by Abbe (1878) and transferred to skin sur-
face microscopy by Unna (1893). Saphier (1920) and Goldman (1950s) further
developed the technique.

Modern dermoscopy devices create high-quality magnified images of the
skin subsurface (typically 10–20 fold magnification [2]). Normally, around
4–7% of light is reflected from the dry skin surface [15], limiting the visu-
alization of deeper structures. To reduce reflection, in dermoscopy either (a)
the light source is directly coupled to the epidermis by immersion oil sprayed
on the skin before the optics with its front-glass plate is pressed on the skin
surface, or (b) polarized light is used. The optically magnified image of the skin
surface and subsurface – flattened by the glass plate in case (a), non-flattened
in case (b) – is then either visually inspected or captured by a computer for
subsequent digital image analysis and examination at the computer screen [6].
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Fig. 12.4. Example of a
malignant melanoma. Left :
macroscopic (“clinical”)
view with the naked eye;
Right : microscopic
(“dermoscopic”) view

Compared to photographic images, dermoscopic images are very rich
of details (Fig. 12.4). To support the difficult interpretation of dermoscopic
images, various computer diagnosis systems have been proposed in the pub-
lished literature, commonly referred to as computer dermoscopy as a specific
type of CADx for skin lesions. In analogy to the field of computer-aided breast
cancer diagnosis [21], dermoscopy CADx is a suitable synonym.

12.2.3 Diagnostic Accuracies

Compared to purely visual examination, dermoscopy is clearly more accu-
rate [20]. According to a meta-analysis by Vestergaard et al. [22] from 2008,
the relative diagnostic odds ratio for CM in this comparison is 15.6 (95%
CI 2.9–83.7, p = 0.016) for 9 eligible studies published from 1987. Similarly,
CADx systems accuracies on dermoscopic images outperform CADx systems
accuracies on clinical images (log odds ratios 4.2 vs. 3.4, p = 0.08) [23].

Annessi et al. [24] compared the performance of three diagnostic algo-
rithms – pattern analysis, ABCD rule, 7-point checklist – on doubtful PSLs
in 195 patients (89 male, 106 female, average 43 y): 198 consecutive atypical
melanocytic lesions, of these 102 Atypical Melanocytic Nevi (AMN) (Clark’s
melanocytic nevus, benign), 96 Thin Melanoma (TM) (malignant, 24 in situ
melanomas and 72 SSMs with an average tumor thickness of 0.3mm). Two
dermoscopy-experienced dermatologists classified the lesions in benign and
malignant using the three algorithms. Surgical excision followed. The diag-
nostic accuracy (ratio of true positives to real positives plus false positives),
sensitivity and specificity are: 70.8, 85.4, 79.4 for the pattern analysis, 67.8,
84.4, 74.5 for the ABCD rule, and 57.7, 78.1, 64.7 for the 7-point checklist,
respectively.

There is evidence that dermoscopy CADx systems can reach the perfor-
mance of CM experts and help improving early CM diagnosis [2]. Rajpara
et al. [25] reviewed 765 articles and performed a meta-analysis on 30 eligible
studies comparing human dermoscopy to computer dermoscopy. They found
the pooled sensitivity for computer dermoscopy was slightly higher than for
human dermoscopy (91% vs. 88%, p = 0.076), while pooled specificity was
significantly better for human dermoscopy (86% vs. 79%, p = 0.001). In the
meta-analysis of Rosado et al. [23] from 2003 on 10 eligible studies with a
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total of 6579 cases CADx systems diagnosis was statistically not different
from human diagnosis (log odds rations 3.36 vs. 3.51, p = 0.80).

12.3 Dermoscopy Image Analysis

The analysis of digital dermoscopy images can follow different approaches,
either driven by the medical expert perspective, or driven by a machine intel-
ligence perspective. All approaches share basic steps in the processing pipeline,
including: segmentation, feature extraction, and classification.

12.3.1 Image Analysis Approaches

Two major approaches can be distinguished in dermoscopy digital image
analysis for melanoma diagnosis:

1. Machine learning approach or black box approach. Typically, a large number
of (more or less) low-level features are computed, typically some hundreds,
features discriminating best between melanoma and benign PSLs are auto-
matically selected by a certain strategy, reducing the number of features
to typically some tens, and finally a classifier based on these features is
constructed. In general, it is not transparent to the human user what such
features really measure and how the classifier comes to its conclusion.

2. Mimic approach. Typically, a small number of high-level diagnostic fea-
tures used by medical experts for visual evaluation of the images are
modeled mathematically. Semi-quantitative diagnostic algorithms such as
the ABCD rule are then automated using the computed features instead
of the human scores. Usually, the user can easily understand the mean-
ing of the features and the way the proposed diagnosis is created by the
classification algorithm.

In practice, both approaches seldom appear in a pure form. Rather, follow-
ing a mimic approach, a system developer will slightly extend the number of
features (e.g., by introducing variants) and adapt the classification algorithm,
if this improves the performance of the system and pertains the comprehen-
sibility by users. On the other hand, applying the black box approach, the
number and type of features as well as the choice of classifiers can be steered
to gain transparency.

An example for the black box approach is Blum et al. [26], where the
researchers did not follow a preformed strategy (e.g., ABCD rule). Instead,
the authors applied a large number of algorithms of vision algebra to the
pictures. In particular, the authors used 64 analytical parameters to build
their classifier.

An example for the mimic approach is Horsch et al. [27–29]. This research
group used high-level features in line with the ABCD rule of dermatoscopy.
Some methodological details of the approach will be given as examples in the
next sections.
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12.3.2 Segmentation of Skin Lesions

The first step in the analysis of a dermoscopic PSL image is segmentation, i.e.
the automatic or semiautomatic separation of the lesion from the surrounding
skin [30]. This can be done e.g. by transforming the original color image in
Red, Green, and Blue (RGB) color model into a better suited color space.
In [28], for example, a simplified YUV color space with luminance channel Y
and chrominance channels U and V is used:

Y =
1
3
(R+G+B), U =

1
2

R−B

R +G+B
, V =

1
2
√

3
2G−R−B

R+G+B
(12.1)

In order to emphasize the intensity difference between skin and lesion, sub-
sequently a Mahalanobis transform X → X − E(X), X → X/E(X2) and an
enhancement of Y by factor 4 are performed, resulting in a scaled YUV rep-
resentation fsY UV (x, y) of the dermoscopic image. Next step is a reduction to
the first principal component f1

sY UV (x, y) = z, 0 ≤ z ≤ 255. Due to the clear
intensity difference between lesion and skin, f1

sY UV usually shows a bimodal
histogram, which is used to compute a segmentation threshold zseg between
the two modes. Simple thresholding and a subsequently applied cleaning oper-
ation Clean() for filling holes and detecting and masking out hair, delivers the
lesion segment

L = Clean
({

(x, y) : f1
sY UV (x, y) < zseg

})
(12.2)

Possible results of the automatic segmentation algorithm are illustrated in
Fig. 12.5. In cases where the segmentation result is considered correct in shape,
but slightly too big or too small, the dermatologist can adjust the threshold
manually. In few cases, no reasonable segmentation is possible, especially if the
lesion is very large. It is worth mentioning that this pragmatic and transparent
segmentation procedure with on-demand, minimal machine-user interaction,
fits well for systems following the mimic approach.

Another segmentation procedure, employing a hybrid method that com-
bines statistical clustering of the color space and hierarchical region growing,

Fig. 12.5. Examples of segmentation. The results are obtained fully automatic
(left), manually adjusted (middle), and the automatic segmentation fails (right)
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is used in the Artificial Neural Network (ANN) classifier of the DANAOS
expert system [31]. A validation and comparison of automatic segmentation
with manual segmentation performed by the physician by drawing the lesion
outline into the image can be found in [30].

12.3.3 Feature Extraction

Numerous features can be extracted from segmented PSLs. For example, in
the case of a mimic system following the dermatoscopic ABCD rule, features
modeling the diagnostic criteria asymmetry (A), border diffusiveness (B),
color variety (C), and differential structures (D) are in the core of the
approach. The more asymmetric, diffuse-bordered, diversely colored, and
diversely structured a lesion, the higher its probability of being malignant
(Sect. 12.2.1).

Asymmetry

Mathematically, asymmetry can be modeled, for instance, as field color
asymmetry AH or as pixel color asymmetry AC [28] with symmetry axes
computed by a principal component analysis (PCA). Absolute differences of
color entropies on symmetric quadratic tiles qij (edge 50–100 pixels, depend-
ing on the lesion size) or single color values fH (x, y) are summed up in the hue
channel H of the HSI color space (for the complicated color space transform
see e.g. [32]), resulting in asymmetry scores

DH
x =

∑
|Hi,j −Hi,−j)| (12.3)

Dx =
1
NL

∑
(x,y)∈L

|fH(x, y) − fH(x,−y)| (12.4)

and DH
y and Dy, analogously (Dx and Dy normalized by lesion size NL).

Then, the maxima

AH = max{DH
x , D

H
y } (12.5)

AC = max{Dx, Dy} (12.6)

serve as quantifications of lesion asymmetry. Both features are of very high
disciminative power, and they are correlated. It should be mentioned that
these features are obviously also sensitive to irregular spatial distribution of
differential structures in the lesion.

Border Diffusiveness

Border diffusiveness can be measured e.g. by quantifying the properties of a
portion of pixels around the lesion border. In [28], for this purpose the Scaling
Index Method (SIM) [33,34] has been used. It assigns a scaling index α(x, y)
to each pixel (x, y). Pixels belonging to point-like structures (on a certain,
definable scale) will have indexes α close to 0, those in linear structures around
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one, and those in area-like structures close to two. The higher the number of
pixels with an α > 1, the more diffuse is the lesion border. This leads to the
feature

BSIM = Nα>1/NB (12.7)

as a possible quantification of the dermatoscopic B score. Since it is the ratio
of pixels with diffuse local environment to the total number of pixels in the
border area, the feature is independent of absolute lesion size and border
length.

Color Variety

Color variety can be modeled as the entropy on the hue (H) channel of the
HSI color space (compare asymmetry, above), considering the relative portions
pi = p(ci) = N(ci)/NL of color tones ci, and computing from these the color
entropy

CH = − 1
ln 256

256∑
i=1

(pi ln pi) (12.8)

of the lesion area. It reflects the diversity of colors in the PSL. The higher
CH , the more distinguishable colors occur in the lesion.

Differential Structures

For the SIM-based modeling of differential structures it is referred to [29].
Instead, the lesion size expressed by the number of lesion pixels

SL = NL (12.9)

shall be included, here. The size of a PSL is known to be an easily compre-
hensible and strong feature commonly used in the so-called clinical ABCD
rule (naked eye inspection of the skin), with D for diameter as simple size
measure. At this point, the strict modeling of the dermatoscopic ABCD rule
is altered, without leaving the mimic approach, though.

12.3.4 Feature Visualization

As the finial diagnosis always lies in the responsibility of the physician, the
visualization of computed features is an important part in supporting the
diagnostic decision making process. Moreover, if computed features are made
visible, e.g. as colored overlays on the original images, the criteria for the
final decision become more transparent and documented. This, in turn, may
improve the diagnostic skills of the physician.

While for the machine learning approach the visualization of features typ-
ically will cause problems because of the large number of features, and also
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because normally a considerable number of features hard to comprehend for a
human being are employed (e.g. frequency-based features), the typically few
high-level diagnostic criteria used in the mimic approach should be easy to
visualize, especially because they usually follow well-known diagnostic proce-
dures. Visualizations of three features introduced in the previous section shall
illustrate some options.

Figure 12.6 shows the visualization of field color asymmetry AH . Degrees
of asymmetry are codified by a color scale, from green (low asymmetry) via
blue to red (high asymmetry). Since entropy values on tiles are compared for
computing the feature AH , the visualization shows homogeneously colored
tiles with the color representing the difference in entropy of tiles lying sym-
metrically to the first or second principal axis (maximum, cf. (12.5)). The axes
are visualized as white lines. Only one half of the asymmetry coding overly
along the first principal axis is shown, because the other half is symmetric
and displaying it would not add further information, but rather hide informa-
tion by covering the entire PSL. It seems worth noting that the spontaneous
visual impression of asymmetry does, at least for the layman, not necessarily
coincide with the complex asymmetry to be assessed in PSL diagnosis.

An example for the visualization of border diffusiveness measured by the
feature BSIM is given in Fig. 12.7. In this visualization, pixels belonging to the
lesion border area are colored either blue or red. The color indicates whether
the local environment of the pixel shows low (blue) or high (red) diffusiveness
(scaling index α ≤ 1, or α>1, cf. (12.7)). In a lesion or lesion part sharply

Fig. 12.6. Field color asymmetry. Visualization of feature AH for a CM (left) and
a benign PSL (right)

Fig. 12.7. Border diffusiveness. Visualization of feature BSIM for a CM (left) and
a benign PSL (right)
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Fig. 12.8. Color variety. Visualization of feature CH for a CM (left) and a benign
PSL (right)

separated from the surrounding skin the border area appears (more or less)
as a one or few pixels broad line. Dominating color is blue for such a lesion
or lesion part. For diffuse sections of a lesion border, the border area is broad
and the majority of pixels belonging to such sections are colored red.

The visualization of color variety modeled by the feature CH in (12.8) is
illustrated in Fig. 12.8. A color scale from blue via green to red is employed
to codify the number of colors appearing in a PSL. In this visualization,
a specific color code does not correspond to a specific lesion color. Rather
than coding colors, the relative amount of colors appearing in a lesion are
visualized, so that comparably homogeneous lesions appear in blue tones only,
more inhomogeneous lesions will in addition show green tones, and lesions
with a high number of different colors will in the feature visualization show
red tones, as well. Note that for such a color variety visualization, in order to
utilize the full range of color codes from blue to red, the spectrum of colors
that practically can appear in dermoscopic skin images has to be used as
reference, not the entire color spectrum.

12.3.5 Classification Methods

A type of classification methods frequently used in a machine learning
approach is the ANN (Fig. 12.9). The ANN is trained by a set of features
computed from images of nevi with known malignancy. Applying the trained
ANN to a feature vector of an unknown PSL will result in a certain malignancy
score (in the simplest case with only two possibilities, benign and malignant).
Unless other methods are used in parallel for computation and visualization
of diagnostic criteria, the way in which the ANN comes to its conclusion is
normally not transparent to the user. This has often been criticized as one of
the major drawbacks of ANN. An example of a system using an ANN classifier
is the DANAOS expert system [31]. For this system it has been shown that
the area under the Receiver Operating Characteristic (ROC) curve (AUC)
increases rapidly with an increase of training dataset size from 50 images
(AUC = 0.67) to 2,000 images (AUC = 0.86).

Classification methods appropriate for the mimic approach are e.g. logistic
regression (Logreg) and Classification And Regression Tree (CART). In [28],
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Fig. 12.9. Principle of a
3-layer ANN
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Table 12.3. Classifier comparison on 466 PSLs (125 CM, 341 benign PSL)

Classifier Validation ρ κ SN SP

Logreg 10 × 10-fold cross-validations 0.895 0.737 0.862a 0.911a

CART (AACS) 10-fold cross-validation 0.89 –b 0.76a 0.94a

ANN (linear layer) 10 × 100/100 train/test 0.896 0.792 0.896 0.896
a at ρ-maximizing operating point; b not computed by S-Plus

both methods have been applied to a set of 466 PSLs (125 melanomas, 341
benign nevi), using the 5 mimic features AH (field color asymmetry), AC
(pixel color asymmetry), BSIM (border diffusiveness), CH (color variety) and
SL (lesion size) introduced in Sect. 12.3.3.

To estimate the classification performance of logistic regression, a ten-fold
cross-validation was computed 10 times, resulting in a mean value of 0.945
for the AUC (cf. Table 12.3). To build a best classifier from all data, logistic
regression was computed for all 5 features. Significant features in the resulting
regression model were AH (p < 0.001), and CH (p < 0.001) and SL (p < 0.05).
With these three features another logistic regression was computed resulting
in an estimate for the melanoma probability of

P (f ∈ KCM ) = 1/(1 + e−2.25AH−21.30CH−0.0000128SL+13.89) (12.10)

and a set of threshold classifiers Logregs for cut points s:

Logreg(f) =
{

benign if P (f ∈ KCM ) < s
malignant otherwise (12.11)

with KCM being the class of CMs. Figure 12.10 shows the ROC curve for this
set of classifiers.

To create a reasonable CART classifier, a CART analysis was performed. In
the course of this analysis, a large number of classification trees with binary
splits have been computed, and for each of these trees, the ten-fold cross-
validated discriminative power has been estimated. Based on these results, a
tree with a reasonable number of splits has been chosen (Fig. 12.11), not too
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Fig. 12.10. ROC curve for the Logreg classifier in (12.11)

big, in order to avoid over-fitting of the model, and not too small, in order to
gain satisfactory accuracy. As in the logistic regression analysis, the accuracy
is estimated by cross-validation, while the final tree is constructed from the
entire set of images.

As a look at the splits shows, the two most powerful (i.e., top-level) ones are
based on the two asymmetry features AC and AH , classifying 286 + 29 = 315
of the benign PSLs correctly, while subsequently color variety CH and lesion
size SL are involved in the final decision for CM in 95 cases.

For comparison, also an ANN has been trained and tested with a cross-
validation scheme on the same set of 466 PSLs in [28]. Figure 12.9 shows
the principle layout of the employed 3-layer ANN, a so-called linear-layer
perceptron. The weight factors w1ij and w2ij reflect the knowledge about
how to distinguish CMs from benign PSLs. These factors have to be trained
by a suitable learning strategy such as error back propagation. The input
layer receives the feature values, at the output layer the classification result is
obtained, here: b1 = malignant and b2 = benign. Assuming five input nodes
(“neurons”) for the five features, four hidden layer nodes, and two output
layer nodes, this network has 5× 4 + 4× 2 = 28 weight factors that had to be
learned from the training set in each of the cross-validation tests.

Classification results achieved with Logreg, CART and ANN classifiers are
compared in Table 12.3. The cross-validated total correct-classification rate
ρ is around 0.89 for all three types of classifiers. Logreg and CART show, at
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Fig. 12.11. CART deci-
sion tree. The example
shows a decision tree with
four splits 341 125
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the operating point that minimizes the distance between the ROC curve and
the ideal classifier point (sensitivity = specificity = 1), specificities superior
to sensitivities due to the fact that the dataset contained less CMs (125)
than benign PSLs (341) and therefore correct assessment of benign lesions is
trained better than that of malignant lesions. In contrast to this, the ANN
compensates different class sizes (sensitivity = specificity).

12.4 Commercial Systems

The current market offers a variety of dermoscopy devices and systems.
Beyond common system design principles the products show more or less
essential differences in terms of image acquisition devices, system functional-
ities, and the approach and degree of CADx support.

12.4.1 System Design Principles

The design of dermoscopy systems for the medical practice is commonly char-
acterized by the goal of supporting the entire workflow of diagnostic decision
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making and patient management. Hereby, digital image analysis is one aspect,
only. Required functions of a dermoscopy system include:

1. Electronic patient record;
2. Image acquisition and management;
3. Report creation and storage;
4. Image analysis and decision support;
5. Support of continued medical training;
6. Tele-consultation (optional).

Important features of a dermoscopy system built according to these require-
ments include: patient-, case- and lesion-based documentation; follow-up
support by means of (qualitative and quantitative) comparison of the same
lesion at different examination dates; automatic computation of scores derived
from diagnostic algorithms (Sect. 12.2.1) such as the ABCD rule or the 7-point
checklist; comparison of pathohistologic report with the corresponding dermo-
scopic image, so that the physician can validate his diagnostic skills; support
of diagnostic skills training by offering similar cases from a reference database;
explanations and visualizations of diagnostic scores and the features employed
for a skin lesion under examination.

12.4.2 Image Capture Devices

Common image capture devices use calibrated Charge-Coupled Device (CCD)
video camera technology or digital still image camera technology for dermo-
scopic image acquisition [14, 16]. The devices acquire either one image in the
visible light spectrum (mono-spectral imaging), or a set of images in different
wavelength bands (multi-spectral imaging). The latter is motivated by the
fact that light of different wavelengths penetrates the skin to different depths.
For example, MelaFind and SIAscope (Table 12.4) acquire a set of narrow
band images between 400 and 1,000nm (violet to near-infrared). Instead of
using immersion oil, the MoleMax uses polarized light to suppress reflection
from the skin surface.

Dermoscopic devices with image acquisition capability are, for example:

• The HEINE DELTA 20 Dermatoscope (HEINE Optotechnik GmbH & Co.
KG, Herrsching, Germany) handheld device with digital camera adapter.

• The DermLite FOTO (3gen LLC, San Juan Capistrano, CA, USA), a
dermoscope that is combined with a digital camera (polarized light).

• The DermLite II Multi-spectral (3gen LCC), a handheld device for multi-
spectral imaging with polarized light (white, blue, yellow, red).

• The EasyGenius (BIOCAM GmbH, Regensburg, Germany) handheld
device, combining the DermoGenius basic dermatoscope with a digital
camera.

• The Fotofinder dermoscope (FotoFinder Systems GmbH, Bad Birnbach,
Germany) camera. the SolarScan Sentry (Polartechnics Ltd, Sydney, Aus-
tralia) high-resolution digital oil immersion dermoscopy camera.
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Table 12.4. Commercial dermoscopic systems with image analysis component

Systema Company Spect Image analysis

DB-Mips Biomips Engineering mono ANN, similarity
DermAssist Romedix mono clin-ABCD
DermoGeniusb ultra BIOCAM mono ABCD, ref-DB
Fotofinder dermascope FotoFinder Systems mono ref-DB
MelaFindc Electro-Optical-Sciences multi ref-DB
MicroDerm Visiomed AG mono ANN, ABCD
MoleMax II/3 Derma Medical Systems mono ABCD, 7-point
MoleView Astron Clinica multi SIAscopy scored, 7-point
Solarscan Polartechnics mono ref-DB
VideoCap 100 DS Medica mono ref-DB

spect = spectrum (mono/multi); ABCD = dermatoscopic ABCD rule with D for differential
structures; clin-ABCD = clinical ABCD rule with D for diameter; ref-DB = reference image
database. asystem names are registered trademarks of the companies; bregistered trademark of
LINOS AG, exclusive rights with BIOCAM; cunder approval; dproprietary scoring scheme

• The MoleMate (Astron Clinica Ltd, Cambridge, UK) melanoma screening
device with the SIAscope handheld scanner.

• The Nevoscope Ultra (TransLite, Sugar Land, TX, USA) handheld with
adapter for digital camera or camcorder.

• The EasyScan Pico (Business Enterprise S.r.l., Trapani, Italy) handheld
high-definition video dermatoscope system.

• The DG-3 digital microscope and the VL-7EXII video microscope (Scalar
America, Sacramento, CA, USA).

12.4.3 Dermoscopy Computer Systems

Several commercial dermoscopy systems with integrated image analysis com-
ponents are on the market (Table 12.4) [14–17]. Most of these systems support
both microscopic (typically 5- to 15-fold magnification) and macroscopic imag-
ing (e.g., EasyScan TS Pico, FotoFinder dermoscope). In addition, some
systems comprise room cameras capable of capturing whole body images (mole
mapping) in a standardized way to aid the detection of new moles (e.g., Mole-
Max II, Molemax 3, DB-Mips). The systems are therefore equipped with one
up to three digital video and still image cameras of specific types.

12.5 Evaluation Issues

High-quality, state-of-the-art evaluation of CADx systems is, without any
doubt, a challenging task. Attempts to give reliable estimates of the perfor-
mance of such systems are hampered by different types of biases caused by lim-
itations in resources and study designs. This may, to a certain extent, explain
why the methodological quality of studies is generally not good [15, 23, 25].
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12.5.1 Case Databases

Particularly critical for evaluation is the composition of case databases used
for evaluation. In order to guarantee that a case database reflects realistic
clinical conditions, the choice of cases must meet certain requirements [23]:

• Random or consecutive selection of lesions (to avoid selection bias).
• Clear definition of inclusion and exclusion criteria.
• Inclusion of all lesions clinically diagnosed as PSLs.
• Inclusion of clearly benign lesions that were not excised (to avoid verifica-

tion bias); diagnostic gold standard in these cases is short-term follow-up.

In order to gain sufficient accuracy in statistical terms, the size of the case
database has to be large enough. Depending on the classification method
under evaluation and the narrowness of the Confidence Interval (CI) aimed
at for point estimates such as sensitivity and specificity, datasets will have to
be of a size of some hundreds to some thousands of cases with biopsy-proven
and clearly benign PSLs.

12.5.2 Evaluation Methods

In order to avoid methodological weaknesses, requirements have to be added
to the list of database-related requirements of Sect. 12.5.1 ([23], extended):

• Clear definition of the study setting.
• Reporting of instrument calibration.
• Intra- and inter-instrumental repeatability.
• Classification on independent test set.
• Comparison of computer diagnosis with human diagnosis.
• Comparison of human diagnosis without and with CADx support.

Recent publications indicate that there is awareness for the problem, especially
in the field of lung and breast cancer CADe and CADx (see e.g. [21,35]). But
the implementation of good practice addressing the above listed requirements
is still a great challenge also in these fields.

12.6 Conclusion

In the published literature, the accuracy reached by current dermoscopy
CADx systems for CM diagnosis is comparable to the accuracy achieved by
human specialists. But this evidence is still weak. Large randomized controlled
trials evaluating dermoscopy CADx systems under routine conditions are lack-
ing. Many dermatologists therefore continue to be skeptical about the routine
use of such systems [15]. Obviously, there is a need for large, high-quality case
databases to support system validation. Future trials should not only evaluate
the accuracy of the computer system and compare this accuracy to that of
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human experts, but should also compare the diagnostic performance of human
readers alone with the performance of human readers using a dermoscopy
system as second opinion.

New imaging techniques, such as multi-spectral imaging, could be a next
step in the development of more accurate systems for the classification of
PSMs. Intensified efforts towards an extension of the computer support to non-
melanocytic skin lesions are another important step forward. To develop and
validate sophisticated algorithms and systems supporting such new imaging
techniques for an extended range of skin lesions and bring them into routine
use, embedded in the physician’s work flow as one of several components of
computer support – electronic patient record, whole body imaging (CADe),
tele-dermatology, and others – will demand a lot of research and innovative
system development. But certainly there is the potential to further improve
early recognition of CM and other threatening diseases of the human skin.
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13

CADx Mammography

Lena Costaridou

Summary. Although a wide variety of Computer-Aided Diagnosis (CADx) schemes
have been proposed across breast imaging modalities, and especially in mammogra-
phy, research is still ongoing to meet the high performance CADx requirements. In
this chapter, methodological contributions to CADx in mammography and adjunct
breast imaging modalities are reviewed, as they play a major role in early detec-
tion, diagnosis and clinical management of breast cancer. At first, basic terms
and definitions are provided. Then, emphasis is given to lesion content derivation,
both anatomical and functional, considering only quantitative image features of
micro-calcification clusters and masses across modalities. Additionally, two CADx
application examples are provided. The first example investigates the effect of seg-
mentation accuracy on micro-calcification cluster morphology derivation in X-ray
mammography. The second one demonstrates the efficiency of texture analysis in
quantification of enhancement kinetics, related to vascular heterogeneity, for mass
classification in dynamic contrast-enhanced magnetic resonance imaging.

13.1 Introduction

Breast cancer is the most common cancer in women worldwide and the second
leading cause of cancer deaths after lung cancer. Breast imaging modalities
have a major role in early detection, diagnosis and clinical management of
breast cancer, relying on observer interpretation. The accuracy of mammo-
graphic image interpretation depends on both image quality, provided by
the various breast imaging modalities, and quality of observer interpretation,
subjected to intra- and inter-observer performance variabilities.

Image analysis methods targeted to aid medical image interpretation have
evolved in Computer-Aided Detection (CADe) and Computer-Aided Diagno-
sis (CADx) schemes [1–3]. CADe is targeted to identification of the location
of suspect regions in a medical image. CADx is targeted to characterization
(malignancy vs. benignity) of a Region of Interest (ROI) or a lesion region
(presupposing a segmentation stage), initially located (or delineated) either by
a CADe or an observer, by providing the probability of malignancy/benignity.
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Image enhancement methods have also been proposed to aid detection and
diagnosis, by improving image contrast and visibility of detail, often taking
advantage of multi-scale image representations, such as wavelets to deal with
varying mammographic image lesion sizes [4–6].

CADx, by definition, is targeted to increasing diagnostic specificity (i.e.
fraction of benign lesions correctly characterized by the system), while main-
taining high sensitivity (i.e. fraction of malignant lesions correctly charac-
terized by the system), to aid patient management (follow-up vs. biopsy)
and reduce intra- and inter-observer variability. The large variability of lesion
appearance and low conspicuity challenges CADx research [7, 8].

In this chapter, lesion content derivation, by means of both anatomical
and functional quantitative image features of Micro-Calcification (MC) clus-
ters and masses across modalities is highlighted. Additionally, two CADx
application examples are provided. The first example highlights the effect
of segmentation algorithm accuracy on MC cluster content derivation and
classification in X-ray mammography. The second example demonstrates the
efficiency of texture analysis to quantify enhancement kinetics (vascular)
heterogeneity for mass classification in Dynamic Contrast Enhanced (DCE)
Magnetic Resonance Imaging (MRI).

13.2 Basic Terms and Definitions

In this section, we provide basic terms and definitions of CADx schemes,
including a short mention of CADe schemes and their performance.

13.2.1 Breast Imaging Modalities

Screen-Film Mammography (SFM) provides structural (anatomical) detail of
tissue properties (spatial resolution 30 μm). Currently, it is the most effective
modality in detecting lesions, such as MCs, breast masses and architectural
distortions, however challenged by the presence of dense breast parenchyma.
Inherent limitations of SFM, such as the sigmoid response of the screen-film,
have lead to the development of Full-Field Digital Mammography (FFDM).
FFDM utilizes digital detectors to accurately and efficiently convert x-ray
photons to digital signals, although with somewhat decreased spatial resolu-
tion (i.e. 45 μm), demonstrating improved detection accuracy in screening of
dense breasts [9]. Currently, emerging Digital Breast Tomosynthesis (DBT)
offers the capability of tomographic images at various breast depths, dealing
with tissue superimposition along the breast depth axis, to improve detection
of soft tissue abnormalities, lending itself also to functional imaging, by means
of contrast-enhanced DBT.

When image interpretation is not supported by X-ray imaging of breast
anatomy, additional structural and functional (i.e. related to physiology)
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tissue properties are solicited from breast imaging modalities, such as Ultra-
sonography (US) and MRI.

Technological developments in high frequency (≥10MHz) transducer US
technology combined with compounding and tissue harmonic imaging have
provided improved contrast resolution and margin detection 2D/3D US
anatomical imaging, with axial resolution of B-Mode scanning, representing
the clinical standard, ranging from 130 to 300 μm. Contrast harmonic imaging
and power Doppler US, providing information about blood flow, offer func-
tional information to assess tissue vascularity (vessel architecture), related to
angiogenesis, while strain (compression) US imaging provides the capability to
characterize elastic breast tissue properties. US adjunctively used with X-ray
mammography has been found to increase mass detection rates [10].

MRI provides 3D anatomy of the uncompressed breast through specially
designed breast coils, with in plane spatial resolution of 1.5T systems, a cur-
rent clinical standard, at least 1mm and z-axis resolution ≤2.5mm, with
emerging systems targeting sub-millimeter resolution. More importantly MRI
may assess physiologic information indicative of increased vascular density and
vascular permeability changes related to angiogenesis, by means of DCE-MRI,
with temporal resolution of 60–120 s per volume acquisition, representing the
current clinical standard. The functional character of MRI is further aug-
mented by proton (1H) Magnetic Resonance Spectroscopy Imaging (MRSI).
MRI plays a major role as an adjunctive screening tool for high risk of heredi-
tary cancer in women, detecting mammographically occult cancer, as well as a
diagnostic tool for lesions undetermined by mammography and US, providing
also extent and multi-centricity of the disease [11, 12].

In addition to improvements within each modality, there is a trend towards
hybrid breast imaging systems combining anatomical and functional breast
tissue properties, providing co-registered breast images, including but not lim-
ited to the above mentioned modalities [13]. Specifically, prototype systems
have been developed combining whole-breast 3D ultrasound with FFDM-DBT
imaging and optical imaging (diffuse optical tomography) to MRI anatomical
imaging.

13.2.2 Mammographic Lesions

The Breast Imaging Reporting and Data System (BI-RADS) of American
College of Radiology (ACR) [14] lexicon defines masses, MC clusters, archi-
tectural distortion and bilateral asymmetry as the major breast cancer signs
in X-ray mammography. A mass is a space occupying lesion seen at least in
two different mammographic projections. If a mass is seen only in a single
projection is called asymmetric density. When a focal area of breast tissue
appears distorted with spiculations radiating from a common point and focal
retraction at the edge of the parenchyma, while no central mass is definable,
it is called architectural distortion.
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Masses have different density (fat containing masses, low density, isodense,
high density), different margins (circumscribed, micro-lobular, obscured, indis-
tinct, spiculated) and different shape (round, oval, lobular, irregular). Round
and oval shaped masses with smooth and circumscribed margins usually indi-
cate benign changes. On the other hand, a malignant mass usually has a
spiculated, rough and blurry boundary.

Architectural distortion of breast tissue can indicate malignant changes
especially when integrated with visible lesions such as mass, asymmetry or cal-
cifications. Architectural distortion can be classified as benign when including
scar and soft-tissue damage due to trauma. Asymmetry in a pair of left and
right mammograms is expressed as volume, breast density or duct prominence
differences without a distinct mass.

MCs are deposits of calcium in breast tissue, associated to underlying
biological disease processes. A number of MCs grouped together is termed
a cluster and it may be a strong indication of cancer. A cluster is defined
as at least three MCs within a 1 cm2 area. Benign MCs are usually larger
and coarser with round and smooth contours. Malignant MCs tend to be
numerous, clustered, small, varying in size and shape, angular, irregularly
shaped and branching in orientation.

13.2.3 CADe Schemes

CADe schemes in X-ray imaging account for a successful paradigm of appli-
cation of image analysis to the clinical environment, resulting in several FDA
approved systems. MC clusters and masses have been the main subject of
CADe research [1–3], especially challenged by subtlety, while architectural
distortions and bilateral asymmetry, also important early non-palpable breast
cancer signs, are currently under-researched, however important subjects of
future research [3].

CADe schemes for MCs are based on supervised pattern classification
methods, usually involving an initial stage of candidate MC cluster detection
(segmentation), followed by feature extraction and classification for removal
of false positive detections. In addition, image enhancement and stochastic
image modeling methods have been exploited to enhance MC local contrast
to their surrounding tissue.

Most of CADe schemes for masses also follow the two stage pattern classifi-
cation paradigm, involving detection (segmentation) of candidate mass regions
and classification of candidate masses to true masses or normal tissue. ROI-
based pixel-wise or mass region analysis, pre supposing a mass segmentation
step, have both been utilized in the first stage, often in combination to mass
filtering methods.

The advent of FFDM and emerging DBT systems has already motivated
the development CADe schemes, taking advantage of successful film-based
CADe schemes [15].
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At the laboratory level, clinical evaluation studies of CADe systems have
reported increased cancer detection rate (i.e. detection sensitivity). In case of
MCs, they enable radiologists to detect more subtle cancers. In case of masses,
decreased detection rates have been observed. Here, the higher false positive
detection rates represent a major challenge, reducing radiologists confidence
in CADe system output and increased recall rate. The impact of commercially
available CADe systems, as assessed by large scale clinical studies, is some-
what mixed. There are studies reporting significant increase of breast cancers
detected with an acceptable increase of recall rate [16], while no improvement
was recently reported [17].

13.2.4 CADx Architectures

Classification is the main task of a CADx system. The majority of the reported
systems formulates mammographic ROI or lesion characterisation in the con-
text of quantitative image feature extraction and supervised feature pattern
classification in two classes (i.e. benignity or malignancy) or more (e.g. cyst,
benign and malignant solid masses in breast US). During training, classifica-
tion rules are learned from training examples and subsequently applied to the
classification of new unknown ROIs or lesion segment/segments.

The typical architecture of a single breast imaging modality (“unimodal”)
CADx is depicted in Fig. 13.1. Initialization of a CADx scheme requires iden-
tification of a lesion ROI provided either by a radiologist or by the output
of a CADe scheme. This step benefits from denoising, contrast enhance-
ment and/or segmentation techniques, the later introduced to restrict image
analysis in the breast parenchyma region.

The first two stages deal with lesion segmentation and feature extraction,
specifically designed to derive lesion ROI image content. The lesion segmenta-
tion stage is often optional, with subsequent classification relying on features
extracted from the input ROI.

Fig. 13.1. Flowchart of a
CADx scheme. Typical steps
are indicated by solid lines,
while dashed ones represent
more elaborate options.
Additional outputs of
Content-Based Image
Retrieval (CBIR) systems
are indicated by italics
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In case of a segmentation stage, pixel-wise accuracy should be quantita-
tively accessed utilizing pixel-wise ground truth. Segmentation performance
metrics utilized include shape differentiation metrics, Area Overlap Measure
(AOM), which is defined as the ratio of the intersection to the union between
computer- and radiologist-based segmented areas, and the fraction of correctly
segmented lesions as a function of area overlap threshold.

Image feature extraction methods aim to capture and quantify image
appearance alterations, due to underlying biological processes reflected either
as morphology or texture variations, mimicking or complementing radiolo-
gist interpretation. Recent advances of CADx architectures involve extraction
of complementary image content derived from additional mammographic
views [18] or breast imaging modalities [19, 20], following the multi-modality
approach to breast imaging and leading to lesion intra- and inter-modality
feature fusion or decision fusion systems. Quantification of temporal change
involving serial analysis of lesion ROI in one modality is another promising
architecture category [21]. When merging lesion content from multiple images,
automated image registration methods play an important role [22].

Increasing dimensionality of the feature vector describing lesion content
often decreases supervised classification performance, due to sparse distri-
bution in the feature space. This, combined with the fact that feature
discriminative power is varying, introduces the need for selection of the most
discriminant features. As optimal feature selection by means of exhaustive
search is not feasible in case of highly dimensional feature vectors, heuristic
approaches, such as Linear Discriminant Analysis (LDA), sequential forward
selection and backward elimination, as well as Genetic Algorithms (GA) are
applied. Use of feature selection techniques has been reported to significantly
influence classification performance [23].

The most widely used classifiers are the k-Nearest Neighbor (kNN), Arti-
ficial Neural Network (ANN) and Support Vector Machine (SVM), as well
as regression methods such as LDA and Logistic Regression Analysis (LRA).
Comparison of different classifiers performance has been reported for specific
case samples analyzed [23, 24].

Recently, the Content-Based Image Retrieval (CBIR) architectures have
enriched CADx architectures, by providing the classification outcome not in
terms of a decision, but as a pictorial display of relevant image examples of
known pathology, stored in an image database relevant (similar) to a pictorial
query regarding an unknown ROI sample [25–27]. This type of output acts as
a “visual” aid to support clinical decision making. The key factor of CBIR sys-
tems is selection of appropriate features to quantify image content in terms of
perceptual similarity, ranging from image distance metrics to machine learn-
ing algorithms, trained to predict qualitative (observer/perceptual) image
similarity ratings in terms of quantitative image lesion features, “learned
similarity”[25]. Post-query user feedback (relevance feedback) indicating pos-
itive or negative relevance of retrieved images, due to differences between
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human and computer implemented similarity, is suggested as an additional
alternative to previously “silent”(i.e. decision-only) CADx.

The performance of CADx schemes is evaluated by a Receiver Operating
Characteristic (ROC) curve, expressing sensitivity as a function of 1− speci-
ficity, and utilizing the Az metric and its Standard Error (SE), where Az is
denoting the area under the ROC curve. As the performance requirements of
CADx systems are targeted to increase specificity without sacrifying sensi-
tivity, partial ROC curve, such as 0.9Az defined as the area under the ROC
curve with 0.9 indicating the target minimum sensitivity, is a more representa-
tive indicator of classification performance [28]. In case of CBIR performance,
precision-recall curves are also utilized [25].

Following, CADx schemes for MCs and masses across three breast imaging
modalities (X-ray mammography, US, MRI) are reviewed with emphasis on
feature extraction methods across modalities.

13.3 CADx Schemes in X-ray Mammography

CADx schemes performances obtained report higher performances for masses,
rendering MC cluster characterization more challenging [1–3] and reversing
the trend observed in performance of corresponding CADe schemes. Com-
puter extracted features are obtained on a single image lesion-basis from one
mammographic view (left or right; CC or MLO) or on a case-basis from two
or more views (e.g. CC, MLO, special diagnostic views or prior views).

13.3.1 Morphology Analysis of MC Clusters

In Fig. 13.2, the variability in morphology of individual MCs of a benign and a
malignant cluster is depicted. The images are obtained from Digital Database
for Screening Mammography (DDSM)1. Image content analysis includes mor-
phology and location of the cluster, morphology of individual MCs and spatial
distribution of MCs within the cluster. In particular, two major approaches
are followed in deriving cluster content:

A: Individual MCs – Content is derived from statistics features of individual
MC members of a cluster. In particular:

• Size (area, perimeter, length, effective thickness, and volume).
• Shape (circularity, elongation, compactness, eccentricity, concavity

index, central and boundary moments, shape signature, boundary
Fourier descriptors).

• Contrast.

1 http://marathon.csee.usf.edu/Mammography/Database.html
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Fig. 13.2. Morphology variability of a malignant and a benign MC cluster in
X-ray mammography. Left : Malignant MCs are numerous, more densely packed,
small, varying in size, shape and orientation (B 3136 RIGHT MLO); Right : Benign
MCs are larger, more rounded, smaller in number, less densely packed and more
homogenous in size and shape (C 0246 LEFT CC)

B: Cluster region – The MC cluster is considered as region entity. Corre-
sponding features are:

• Size (area, perimeter), number of MCs in a cluster.
• Distribution of location of MC in a cluster (proximity: mean num-

ber of nearest neighbors, distance to nearest neighbor; cluster density:
mean distance between MCs), cluster location (distance to pectoral
and breast edge).

• Shape (circularity, elongation, eccentricity, central moments).

In deriving cluster features from individual MCs, statistics such as mean,
standard deviation, coefficient of variation, maximum, median, range of indi-
vidual MC shape, contrast and spatial distribution are considered. Most of the
statistics utilized highlight the variability of individual features as a strong
indicator of malignancy.

In Table 13.1, discriminant MC cluster features of representative CADx
schemes, which include a filter-based feature selection method enabling iden-
tification of discriminant features, are summarized.

The commonly adopted pixel size of 100 μm challenges shape estimation
of small size MCs, with pixel sizes ≤50 μm suggested for accurate analysis.
Even at 50 μm, only the three largest MCs in a cluster are considered reli-
able [29]. Furthermore, MC cluster shape analysis is also dependent on the
accuracy of MC segmentation algorithms, challenged by MC shape variabil-
ity, superimposition of dense or heterogeneously dense surrounding tissue and
high frequency noise.
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Table 13.1. Morphology-based CADx schemes for MC clusters. A and B refer to
MC cluster feature categories. Image- and case-based performance considers one or
two mammographic views, respectively

Study Discriminant features Performance
(Az±SE)

Betal et al. [29] A: Percentage of irregular and round MCs,
inter-quartile range of MC area

0.84 (case)

B: Number of MCs
Chan et al. [30] A: Coefficient of mean density variation,

moment ratio variation and area variation,
maximum moment ratio and area

0.79±0.04
(image)

Jiang et al. [31] A: Mean area and effective volume, Standard
Deviation (SD) of effective thickness and
effective volume, second highest MC shape
irregularity measure

0.92±0.04 (case)
0.83±0.03
(image)

B: Number of MCs, circularity, area
Veldkamp et al.
[32]

A: Mean and SD of individual MC area,
orientation and contrast, cluster area

0.83 (case)
0.73 (image)

B: Number of MCs, distance to pectoral edge
and breast edge

Sklansky et al. [33] A: Mean area, aspect ratio and irregularity 0.75 (image)
B: Number of MCs

Leichter et al. [34] A: Mean shape factor, SD of shape factor,
brightness and area

0.98 (image)

B: Mean number of neighbors, mean distance to
the nearest MC

Buchbinder et al.
[35]

A: Average of length extreme values 0.81 (image)

Paquerault et al.
[36]

A: Mean area and effective volume, relative SD
of effective thickness and effective volume,
second highest MC shape irregularity

0.86 (case)
0.82 (image)

B: Number of MCs, circularity, area
Arikidis et al. [37] A: SD of length extreme values 0.86±0.05 (case)

0.81±0.04
(image)

The segmentation of individual MC of an MC cluster ROI is a criti-
cal pre-requisite for the extraction of features representing its morphological
attributes. Early approaches were based on simple criteria, such as high
absolute gray level or local contrast to label pixels belonging to the MC
or the surrounding tissue. To deal with surrounding tissue, image enhance-
ment methods relying on edge detection [29], the Laplacian of Gaussian (LoG)
operator applied to the difference of two Gaussian smoothed images [38], frac-
tal models [39], texture classification-based segmentation [40], and wavelet
coefficient weighting and modeling [5, 41], were utilized.

False positive segmentations, resulting from application of such criteria
applied to the MC cluster ROI, compromise CADx performance [38], leading
to semi-automatic segmentation methods, requiring manual seed annotation.
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Those methods are based on region growing [31], radial gradient analysis [36]
and multi-scale active rays [37].

In Sect. 13.6.1, an application paradigm of the effect of two recently
proposed individual MC segmentation algorithms on MC cluster content
derivation and classification accuracy is provided.

13.3.2 Texture Analysis of MC Clusters

Texture analysis of ROIs containing MC clusters is an alternative to morphol-
ogy analysis, based on the hypothesis that malignancy, as indicated by MCs,
would cause changes in the texture of tissue surrounding a cluster.

Another texture-based approach for classification of MC clusters focuses
on analyzing texture of the tissue surrounding MC [42–44], rather than ROIs
containing MCs. This approach takes into account the fact that the MC is
a tiny deposit of calcium in breast tissue that can neither be malignant nor
benign. This approach, taking account of the MC surrounding tissue only, is
also aligned to tissue pathoanatomy and immunochemistry, subjecting only
surrounding tissue to analysis.

A main advantage of texture-based schemes is that they overcome the
increased accuracy demands of shape analysis CADx schemes on MC seg-
mentation algorithms. In case of ROI analysis containing MCs, the MC
segmentation step is completely omitted; while in the MC surrounding tissue
approach only a coarse MC segmentation step is required.

Gray-Level Co-occurrence Matrices (GLCM) analysis provides image sec-
ond order statistics characterizing the occurrence of pairs of pixel gray levels
in an image at various pixel-pair distances and orientations is widely used
in texture based MC clusters schemes. Grey level quantization is commonly
adopted in co-occurrence analysis.

Features extracted from GLCMs provide texture heterogeneity/homo-
geneity and coarseness, not necessarily visually perceived. High spatial res-
olution (pixel size ≤ 50 μm) is required to capture fine texture.

The discriminating ability of GLCMs features, as extracted from original
image ROIs containing MCs, has been demonstrated by most studies [30,
45, 46]. In addition, GLCM-based features have shown to be more effective
than morphology analysis [30], while their combination can provide an even
higher classification performance. Soltanian-Zadeh et al. demonstrated that
GLCMs extracted from ROIs containing the MCs were superior to GLCMs
extracted from segmented MCs and suggested that “there may be valuable
texture information concerning the benignity or malignancy of the cluster in
those areas that lie outside the MCs”[46].

To capture tissue texture alterations in multiple scales, First Order Statis-
tics (FOS) (i.e. energy, entropy and Square Root of the Norm of coefficients
(SRN)) were extracted from wavelet or multi-wavelet transform sub-images.
Wavelet/multi-wavelet FOS have shown to be more effective than GLCMs
features [47] and shape features [46], suggesting the advantages offered by
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Table 13.2. Texture-based CADx schemes for MC clusters. Image- and case-based
performance considers one or two mammographic views, respectively

Study Discriminant features Performance (Az±SE)

Dhawan et al. [45] • GLCM features 0.86±0.05 (image)
• Entropy, energy (decomposition:

wavelet packets; filters: Daubechies
6/20; levels: 0, 1)

• Cluster features
Kocur et al. [47] • SRN (decomposition: wavelet

transform; filters: Daubechies 4 &
Bi-orthogonal 9.7; levels: 0-5)

Wavelet:
88% overall classifica-
tion accuracy (image)

• GLCM features (angular second
moment)

• Eigenimages (Karhunen-Loève
coefficients)

Chan et al. [30] • GLCMs features 0.89±0.03 (image)
• Cluster features (morphological) 0.93±0.03 (case)

Soltanian-Zadeh et al. [46] • GLCMs features from segmented MCs
and ROIs containing MCs

Multi-wavelet:
0.89 (image)

• Entropy, energy (decomposition:
wavelet packets; filters: Daubechies
6/10/12; levels: 1, 2)

• Entropy, energy (decomposition:
multi-wavelet (3 Filters); levels: 1, 2)

• Cluster features (shape)
Karahaliou et al. [44]
(analyzing tissue
surrounding MCs)

• First order statistics
• GLCMs features
• Laws texture energy measures
• Energy, entropy (decomposition:

redundant wavelets; filter: B-spline;
levels: 1-3)

• Co-occurrence based (decomposition:

redundant wavelets; filter: B-spline;
levels: 1-3)

0.98±0.01
(image)

GLCM = Gray-Level Co-occurrence Matrices; SRN = Square Root of the Norm of coefficients

the multi-scale analysis. Table 13.2 summarizes representative feature spaces
exploited for MC cluster characterization.

13.3.3 Morphology and Texture Analysis of Masses

Morphology and texture analysis also play an important role in mass content
derivation in X-ray mammography. A mass ROI includes the mass region
and its surrounding tissue. The mass region, resulting from a segmentation
method, is further differentiated to the mass central region and the mass
margin region, including pixels inner and outer to the mass contour. Features
extracted from mass margin region are specific of masses, providing strong
discriminant descriptors for mass classification. Mass features include:
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• Intensity/contrast, extracted from the mass region or mass central region.
• Size, extracted from the mass region (e.g. perimeter, area, perimeter-to-

area ratio, boundary Fourier descriptor).
• Shape, extracted from the mass region (e.g. convexity, rectangularity,

circularity, normalized radial length).
• Mass margin region sharpness (e.g. radial distance metrics and scale space

analysis of directional derivatives).
• Radial gradient analysis of the mass region or/and surrounding tissue

(e.g. gradient convergence, gradient uniformity) in case of masses with
spiculations.

• Texture analysis, including fractals, of the mass region or/and mass margin
region.

• Micro-lobulation, extracted from the mass margin region based on a
gradient analysis at different scales.

• MC likelihood, extracted from the mass region.

Examples of mammographic appearance of a benign mass with sharp mar-
gin and a spiculated malignant mass, originating from DDSM database, both
challenged by superimposition with heterogeneously dense surrounding tissue,
are provided in Fig. 13.3.

A number of mass segmentation methods have been proposed, such as
region growing [48], active contour models [49] and dynamic programming-
based algorithms [50]. Multistage methods, including the radial gradient
index-based method [48] as an initialization step with an active contour
model [51] and a level set method initialized by K-means clustering and
morphological operations [52] have been proposed.

Fig. 13.3. Example of a benign and a malignant mass in X ray-mammography. The
arrows indicate corresponding mass regions and margins. Left : The benign mass is
of oval shape and circumscribed margin (A 1594 Left CC). Right : The malignant
mass is irregularly shaped and spiculated margin (B 3012 Right CC)
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Table 13.3. CADx schemes for masses in X-ray mammography. Image- and case-
based performance considers one or two mammographic views, respectively

Study Discriminant features Performance
(Az±SE)

Mudigonda et al. [55] • GLCM texture (mass region)
• Radial gradient
• GLCM texture (mass margin region)

0.85 (image)
mass margin only

Lim and Er [56] • FOS and GLCM texture (mass ROI) 0.868±0.020 (image)
Varela et al. [50] • Intensity/contrast (mass region)

• Sharpness, micro-lobulation, GLCM and
RLS texture (mass margin region)

• Radial gradient (surrounding tissue)

0.81±0.01 (image)
0.83±0.02 (case)

Park et al. [54] • Intensity, size, shape, radial gradient
(mass region)

0.914±0.012 (image)

Georgiou et al. [53] • Sharpness of DFT, DWT (mass margin
region)

0.993 (image)

Delogu et al. [57] • Size, shape, intensity (mass region) 0.805±0.030 (image)
Rangayyan and
Nguyen [58]

• Fractal (mass margin region) 0.93 (image)

Shi et al. [52] • Size, shape, MC likehood (mass region) 0.83±0.01(image)
0.85±0.01(case)

• GLCM, RLS texture of RBST, sharpness
(mass margin region)

GLCM = Grey-Level Co-occurrence Matrices; RLS = Run-Length Statistics; RBST = Rub-
ber Band Straightening Transform; FOS = First-Order Statistics; DFT = Discrete Fourier
Transform; DWT = Discrete Wavelet Transform

Pixel-wise segmentation accuracy, with ground truth provided by radiolo-
gists delineation, has been reported for some of the proposed mass segmenta-
tion algorithms utilized for mass classification performance [50–52].

In Table 13.3, representative recent publications are provided, including
feature categories employed in feature analysis and best performance achieved.
It is worth noting that features are extracted not only from spatial domain,
but also from other transformed domains (rubber-band straightening, Fourier
and wavelet) with rich information content, achieving improved classifica-
tion performance [53]. This, in combination with more advanced classification
schemes, such as SVM, resulted in further improvement of classification
accuracy (Az = 0.993) [53]. Several CADx schemes for masses in X-ray mam-
mography have exploited the CBIR classification paradigm demonstrating
encouraging results [26, 54].

13.4 CADx Schemes in Breast Ultrasound

CADx schemes in breast US have focused on cysts, benign and malignant
solid masses, with the emerging high spatial resolution systems capable
of detection of MCs. Most of the reported systems, employ user-defined
most representative 2D conventional cross-sectional images, while emerging
3D systems have demonstrated obvious advantages in mass volumetry [59].
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Ultrasonic imaging provides scattering characteristics of tissue, by captur-
ing backscattered echoes averaged from contributions of tissue components
(scatterers). Scatter statistics depend on the location, individual cross-sections
and the number of the scatterers, rendering analysis of echogenic texture a
powerful tool in benign from malignant lesion discrimination. Figure 13.4
provides examples of echogenic appearance of a benign and a malignant mass.

A characteristic of ultrasound images is the presence of speckle noise
generated by the reflections on a number of randomly distributed scatter-
ers, whose size is smaller than the wavelength of the ultrasound beam.
Two approaches are followed regarding speckle in subsequent lesion content
derivation, one considering de-speckling mandatory and the other utilizing
speckle related image features, associated to the distribution pattern of noise
(speckle emphasis) [59].

Texture is extracted from mass ROIs, mass margin and surrounding tissue
ROIs, as well as mass posterior acoustic behavior ROIs, unique to ultrasound
imaging. Autocorrelation, auto-covariance [60] and GLCM [61] analysis have
been widely utilized to derive discriminant features. In addition, statistical
models, such as the Nakagami and the K-distribution ones, result in model
derived discriminant features [62].

Fig. 13.4. Example of a benign and a malignant mass in B-mode US. The arrows
indicate corresponding mass regions, mass margins, and the posterior acoustic
behavior. Left : The benign mass has circumscribed margin and posterior enhance-
ment. Right : The malignant mass has a lobulated margin and some posterior
shadowing (absence of enhancement)
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In addition to texture and in accordance to BI-RADS, mass morphol-
ogy, mainly shape, size, orientation and margin analysis are also highly
discriminant, however pre-supposing accurate mass segmentation methods as
well. In Table 13.4, representative recent publications are provided, includ-
ing feature categories employed in feature analysis and best performance
achieved.

Accurate segmentation of the mass region, a prerequisite of morphol-
ogy analysis, is a highly challenging task in breast US, due to the presence
of speckle noise. Consequently, most CADx schemes employ either manual
delineations for mass region and mass margin, while a few incorporate an auto-
mated mass segmentation stage. Specifically, grey level thresholding followed
by morphological operations on pre-processed ROIs [65], radial gradient-based
analysis [63], active contours [66] and level sets applied on pre-processed, by
anisotropic diffusion filtering and the stick method [67] have been proposed.

Table 13.4. CADx schemes for masses in US imaging. Image- and case-based
performance considers one or two mammographic views, respectively

Study Discriminant features Performance (Az±SE)

Chen et al. [60] Auto-correlation/auto-covariance texture
of DWT (mass region and surrounding

tissue ROI)

0.940±0.018 (image)

Sivaramakrishna
et al. [61]

GLCM texture (mass region), PAB
(surrounding tissue ROIs)

0.954 cyst/non-cyst
0.886 benign/malignant
(case)

Horsch et al. [63] Shape (mass region), texture (mass ROI),
PAB (surrounding tissue ROIs)

0.87±0.02 all benign
0.82±0.02 solid
benign (case)

Shankar et al. [62] K- and Nakagami distributions (ROIs
inside mass), margin sharpness (mass
margin ROI) spiculations, PAB
(surrounding tissue ROIs)

0.959±0.020 (case)

Chang et al. [64] Auto-covariance texture in
speckle-emphasis, non speckle emphasis
and conventional (mass ROI)

0.952 speckle-
emphasis (image)

Joo et al. [65] Shape, texture, intensity (mass region) 0.95 (image)
Sahiner et al. [66] Shape, PAB (mass region), GLCM texture

(mass margin ROI)
0.92±0.03 3D AC
0.87±0.03 2D AC
(image)

Chang et al. [67] Shape, size (mass region) 0.947 (image)
Shen et al. [68] Shape, intensity, orientation, gradient

(mass region), sharpness (mass margin
and surrounding tissue ROIs), PAB
(surrounding tissue ROI)

0.97 (image)

PAB = Posterior Acoustic Behavior; DWT = Discrete Wavelet Transform; AC = Active Contour
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Fig. 13.5. Example of a malignant and a benign mass in DCE-MRI. A wash-out
(b) and a persistent (d) type signal intensity curve generated from a rectangular
ROI within a malignant (a) and a benign (c) mass. Masses are depicted in images
subtracting the pre-contrast from the first post-contrast frame

13.5 CADx Schemes in Breast MRI

DCE-MRI is a significant complement to mammography, characterized by
high sensitivity in detecting breast masses. However, specificity in distin-
guishing malignant from benign tissue is varying (ranging from 37% up to
90%), attributed to lack of standardized image acquisition protocols and
interpretation schemes adopted in the clinical practice at present.

Diagnostic criteria in DCE-MRI of breast masses, according to the ACR
BI-RADS MRI lexicon include assessment of morphologic features, from early
post-contrast frames, such as lesion shape, margin and enhancement homo-
geneity (internal architecture) and time analysis of signal intensity curves,
generated from manually selected ROIs, within the lesion area [14, 69].
In Fig. 13.5, examples of representative benign and malignant masses in
DCE-MRI and corresponding signal intensity curves, are provided.

The main contribution of DCE-MRI to breast imaging and ultimately
to CADx in mammography, is imaging of mass vascular heterogeneity (het-
erogeneity of micro-vascular structure) related to angiogenesis, by means of
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series acquisition of a time signal related to the distribution of intravenously
administered contrast agent [70].

ROI-based analysis within a lesion, providing average enhancement kinet-
ics, ignores the heterogeneity of tumor micro-vascular structure [71]. Pixel-
wise analysis of enhancement kinetics enables visualization of lesion vascular
heterogeneity, however, care has to be taken to compensate for pixel mis-
registration among time frames, referred to as noise or low SNR, due to
respiratory, cardiac motion and patient movement artifacts.

Signal intensity-time curves can be analyzed quantitatively employing
pharmaco-kinetic/physiological model fitting, or by means of semi-quantitative
analysis employing empirical parameters of time curves, without fitting [72].
Meaningful fitting of pharmaco-kinetic/physiological models to time curves
requires assumptions about mass tissue physiology, knowledge of contrast con-
centration in the blood as a function of time, which is difficult to obtain, as
well as noise free measurements. Alternatively, empirical mathematical func-
tions can be used to fit time curve data accurately, relaxing the requirements
of the physiological models [73]. Empirical parameters of time curves, such
as relative enhancement, time-to-peak enhancement, washout ratio have been
proposed, however indirectly related to tumor physiology.

Texture analysis has been proposed as a method for quantifying lesion
vascular heterogeneity, which is important for cancer diagnosis and evaluation
of anticancer therapy [70].

CADx schemes in breast DCE-MRI, focusing on quantifying lesion vas-
cular heterogeneity, have exploited FOS analysis applied on exchange rate
parameter maps [74], on normalized maximum intensity-time ratio projec-
tion data [75] and on empirical enhancement kinetics parameters [76], as well
as GLCM-based texture analysis applied on a particular post-contrast time
frame [77–81] and on empirical enhancement kinetics parameter maps [82].
Table 13.5 summarizes studies analyzing texture properties of masses, includ-
ing those integrating mass morphology (shape/size) and/or enhancement
kinetics.

Furthermore, a 4D co-occurrence texture analysis approach (considering
signal intensity variation over time) [83], and a multi-spectral co-occurrence
analysis with three random variables (defined by three pharmaco-kinetic
parameters) [84] were proposed for voxel classification-based segmentation
of the malignant breast tissue yielding promising results.

Additional representative approaches towards lesion segmentation [85]
account for thresholding on difference images and on images reflecting lesion
enhancement properties, unsupervised (by means of fuzzy c-means clustering)
or supervised classification of pixel/voxel intensity curves, dynamic pro-
gramming and level-set methods on single post-contrast data and Gaussian
mixture modeling combined with a watershed-based method applied on serial
post-contrast data [86].

In Sect. 13.6.2, an application paradigm of texture analysis in quantifi-
cation of enhancement kinetics, related to vascular heterogeneity of masses,
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Table 13.5. Texture analysis of masses in DCE-MRI. 2D and 3D indicate two-
and three-dimensional analysis, respectively. Performance is given either in terms of
Az±SE or in terms of sensitivity (sens) and specificity (spec)

Study Features Time type analysis considered
in texture feature extraction

Performance
(Az±SE)

Sinha et al. [77] GLCMs, enhancement
kinetics, morphology

Single post-contrast data (2D) 93% (spec)
95% (sens)

Issa et al. [74] FOS Serial post-contrast data (2D)
(exchange rate parameter map)

88% (spec)
88% (sens)

Gibbs et al. [78] GLCMs, enhancement
kinetics, morphology

Single post-contrast data (2D) 0.92±0.05

Chen et al. [76] Enhancement-variance
dynamics, enhancement
kinetics, morphology

Serial post-contrast data (3D) 0.86±0.04

Ertas et al. [75] FOS Serial post-contrast data (3D)
(normalized maximum
intensity-time ratio map)

0.97±0.03

Chen et al. [79] GLCMs Single post-contrast data (3D) 0.86±0.04
Nie et al. [80] GLCMs, morphology Single post-contrast data (3D) 0.86
McLaren et al.
[81]

GLCMs, LTEMs,
morphology

Single post-contrast data (3D) 0.82

Karahaliou et al.
[82]

GLCMs Serial post-contrast data (2D)
(signal enhancement ratio map)

0.92±0.03

proposed in a recently reported CADx scheme in DCE-MRI breast cancer
diagnosis, is provided.

13.6 Application Examples

13.6.1 Segmentation Accuracy on MC Cluster Content

In this application example, the effect of segmentation accuracy on MC
content derivation is demonstrated. Specifically, two recently proposed semi-
automatic segmentation methods are investigated by means of derivation of
‘relevant’ features and overall classification performance.

Segmentation accuracy is quantitatively assessed by means of AOM, uti-
lizing manual segmentation of individual MCs as ground truth, provided
by expert radiologists. A total of 1,073 individual MCs in a dataset of 128
MC clusters, digitized at 50 μm pixel resolution, originating from the DDSM
database, were segmented manually (by one expert radiologist) and auto-
matically (by two methods) [36, 37]. The dataset used consists of mainly
pleomorphic MC clusters, characterized by increased size and shape variabil-
ity. The first method [36] is a radial gradient-based method and the second
one employs directional active contours implemented in a rich multi-scale
framework [87]. In terms of the AOM measure, the method of multi-scale
active contours achieved 0.61±0.15, outperforming the radial gradient method
(0.42±0.16) statistically significantly (Fig. 13.6).
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Fig. 13.6. Method comparison. Area
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segmentation method

Table 13.6. Features types of individual MCs and MC clusters

Type Feature

Individual spot Area, length, eccentricity, compactness, radial standard deviation, contrast,
first regional 2D moment, second regional 2D moment, boundary 1D moment,
boundary Fourier descriptor

MC cluster Average of feature values of the three largest in size MCs. Range of feature
values between the largest and the smallest, in size, MCs in a cluster

In Fig. 13.7, an application example of the performance of the two auto-
mated segmentation methods and expert manual delineations, applied on an
MC cluster, originating from DDSM database, is provided. As observed, the
radial gradient method cannot adapt to size and shape variations of individual
MCs.

The cluster features utilized to analyze morphology are based on the aver-
age of individual morphology features of the 3 largest in size MC [29] and the
range of individual morphology features of all MC in a cluster [35].

Individual morphology features are listed in Table 13.6. To capture the
degree of variability within a cluster, range statistics are considered suitable,
as a strong indicator of malignancy.

To assess the relevance of the features, Pearson correlation coefficient of
features, extracted from expert manual delineations and the automated meth-
ods, were utilized. Only features demonstrating high correlation (r > 0.70)
were considered within the feature spaces of the two automatic segmentation
methods.

For features extracted from manual segmentations, the radial gradient and
the multi-scale active contours segmentation methods resulted in two and
eleven MC cluster features with high correlation. Stepwise LDA resulted in
two (contrast average, contrast range) and three out of eleven (length average,
contrast average, contrast range) uncorrelated MC cluster features, respec-
tively. Accordingly, the corresponding four uncorrelated MC cluster features
from manual delineations are compactness average, contrast average, contrast
range, and boundary moment range.
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Fig. 13.7. Automatic vs. manual delineation. Top: Original ROI (128×128)
of an MC cluster (left) and expert manual delineations (right, gray). Bottom:
Segmentation using radial gradient (left, green) and multi-scale active contours
(right, red)

Three CADx schemes were implemented, utilizing the selected features
from the outcome of the two automated segmentation methods and the manual
delineations. Their classification accuracy was evaluated on the same dataset
of 128 MC clusters. Table 13.7 presents selected relevant features and per-
formances achieved. Differences in performances achieved between the radial
gradient and (a) multi-scale active contour and (b) the manual delineations
were statistically significant (p = 0.0495 and p = 0.0039, respectively). How-
ever, the difference of the multi-scale active contour segmentation method to
the manual one is not statistically significant, indicating similar performance.
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Table 13.7. Segmentation accuracy and classification performance

Segmentation method Selected features (stepwise LDA) Performance
(Az±SE)

Radial gradient Contrast average, contrast range 0.739±0.044
Multi-scale AC Length average, contrast average, 0.802±0.041

contrast range
Manual Compactness average, contrast 0.841±0.037

average, contrast range, range of
boundary first moment

AC = Active Contour

13.6.2 Heterogeneity of Enhancement Kinetics in DCE-MRI

An approach toward the quantification of lesion enhancement kinetics het-
erogeneity for breast cancer diagnosis [82] is summarized in this section. The
study is focused on quantifying heterogeneity of masses with respect to three
enhancement kinetic parameters, commonly adopted in clinical practice for
analysis of signal intensity-time curves, and on investigating its feasibility in
discriminating malignant from benign breast masses.

The method is demonstrated on a dataset of 82 histologically verified
breast masses (51 malignant, 31 benign) originating from 74 women subjected
to MRI with a 1.5 T system. A coronal 3D T1-weighted spoiled gradient echo
sequence (TR 8.1ms, TE 4ms, flip angle 20◦, matrix 256×256, FOV 320mm,
in-plane resolution 1.25×1.25mm2, slice thickness 2.5mm, number of slices 64,
acquisition time 1min) was acquired before and five times after intravenous
administration of 0.2mmol/kg gadopentetate dimeglumine.

For each mass, a single most representative slice was selected in consensus
by two experienced radiologists, the one containing the largest cross section
of the mass. From the corresponding time series, three enhancement kinetic
parameters, namely, initial enhancement, post-initial enhancement and Signal
Enhancement Ratio (SER), were calculated in a pixel-wise fashion and used to
create three parametric maps. The initial enhancement parameter describes
the initial signal increase within the first 3min after the administration of
contrast medium. Both post-initial enhancement and SER describe the post-
initial behavior of the signal curve, with the second one incorporating both
the signal change in the initial and the post-initial phase relative to the pre-
contrast signal measurement. The initial enhancement map was further used
to delineate mass boundary by applying histogram thresholding on a rectangu-
lar ROI containing the mass, followed by morphological operations (Fig. 13.8).
The delineated mass boundary was subsequently used to define correspond-
ing mass areas in each parametric map (Fig. 13.8) providing the basis for
texture analysis. Fourteen GLCM-based texture features were extracted from
each mass parametric map and their ability in discriminating malignant
from benign masses was investigated using a least squares minimum distance
classifier. For comparison purposes, GLCM-based texture features were ex-
tracted from the 1st post-contrast frame mass area.
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Fig. 13.8. Illustrative example of mass parametric map generation. (a) First post-
contrast coronal slice with black arrow indicating a mass (invasive ductal carcinoma).
(b) Magnified ROI containing the mass on 1st post-contrast slice. (c) Initial enhance-
ment map ROI with delineated mass boundary (boundary pixels assigned to white
gray level). (d) Initial enhancement mass map. (e) Post-initial enhancement mass
map. (f) Signal enhancement ratio mass map

GLCM-based features were capable of capturing such heterogeneity prop-
erties and thus discriminate malignant from benign breast masses. GLCM-
based features extracted from the SER and postinitial enhancement map
demonstrated an increased discriminating ability, as compared to corre-
sponding features extracted from the initial enhancement map and the 1st
post-contrast frame mass area (Fig. 13.9). When considering classification
based on selected feature subsets per parametric map (by means of stepwise
LDA) a similar trend was observed (Table 13.8).

Results suggest that texture features extracted from parametric maps that
reflect mass washout properties (postinitial enhancement and SER map) can
discriminate malignant from benign masses more efficiently as compared to
texture features extracted from either the 1st post-contrast frame mass area or
from a parametric map that reflects mass initial uptake (initial enhancement
map).

The approach of quantifying the heterogeneity of mass parametric maps for
breast cancer diagnosis should be further exploited with respect to additional
enhancement kinetic parameters, including those directly related to tumor
physiology provided by pharmacokinetic modeling, and additional texture
features.
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Fig. 13.9. Classification performance. The performance is given in terms of Az

index of individual texture features extracted from each parametric map and the
first post-contrast frame mass area

Table 13.8. Classification performance of selected feature subsets

Type Selected features Performance (Az±SE)

Initial enhancement map Entropy, sum average 0.767±0.053
Post-initial enhancement map Sum entropy, sum average 0.906±0.032
Signal Enhancement Ratio map Entropy 0.922±0.029
First post-contrast frame Entropy 0.756±0.060

13.7 Discussion and Conclusions

The potential of CADx schemes across breast imaging modalities in improving
radiologists performance and reducing intra- and inter-radiologist performance
variability has been well recognized.

A major limitation of reported CADx schemes is that achieved perfor-
mances are reported at the laboratory level, i.e. very few large scale clinical
studies have been carried out at present. As almost entirely the reported breast
lesion CADx schemes are based on the supervised classification paradigm, use
of heterogeneous data sets, in terms of origin, number and level of difficulty
of the image datasets analyzed renders direct comparison of reported CADx
methodologies not feasible.

A major step towards CADx methods inter-comparison is taken only in
X-ray mammography, by means of publicly available data sets, such as the
DDSM database, comprised entirely of digitized films. However, the reported
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CADx schemes in X-ray mammography have also utilized varying DDSM
subsets. Recently, a coded and annotated benchmark collection, aimed at
supporting requirements of current and upcoming CADx schemes, has been
introduced [88].

Additionally, pixel-wise accuracy evaluation of lesion segmentation algo-
rithms is not supported by existing ground truth of available databases. To
aid radiologists in the tedious task of pixel-wise ground truth derivation, effi-
cient semi-automatic segmentation methods for initial contour delineation are
needed.

A further limitation is lack of separate optimization of each of the prior to
classification stages, i.e. lesion segmentation, feature spaces exploited and fea-
ture selection methods, capable of identifying useful or“relevant”lesion image
features.

Imaging modalities adjunct to X-ray mammography, such as breast US and
MRI contribute additional unique anatomical and highly promising functional
breast lesion features, such as those related to time intensity curves.

Multi- and prior-image and multimodality CADx schemes are currently
researched approaches, with the latter following the migration of breast imag-
ing from X-ray mammography to multiple modalities and exploiting comple-
mentary tissue properties, as provided by these modalities. “Bimodal”CADx
schemes (i.e. X-ray mammography and breast US) have been reported, based
either on feature fusion or on decision fusion.

CBIR based CADx schemes, by providing the classification outcome not
in terms of a decision, but as a pictorial display of image examples of known
pathology, stored in an image database, relevant (similar) to a pictorial
query, have the potential to make the CADx decision making transparent
(visible) to the user, while providing interaction capabilities (e.g. relevance
feedback). Such “interactive”CADx schemes have been proposed as alterna-
tives to “silent”CADx schemes, which provide only a classification decision
and are expected to increase radiologists confidence in use of CADx schemes.

Appropriately designed graphical user interfaces of CADx schemes, includ-
ing accurate and efficient lesion segmentation and registration algorithms,
have the potential to further enhance the role of CADx schemes into quan-
titative image tools of assessment of lesion response to various therapeutic
schemes.
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14

Quantitative Medical Image Analysis
for Clinical Development of Therapeutics

Mostafa Analoui

Summary. There has been significant progress in development of therapeutics for
prevention and management of several disease areas in recent years, leading to
increased average life expectancy, as well as of quality of life, globally. However,
due to complexity of addressing a number of medical needs and financial burden
of development of new class of therapeutics, there is a need for better tools for
decision making and validation of efficacy and safety of new compounds. Numerous
biological markers (biomarkers) have been proposed either as adjunct to current
clinical endpoints or as surrogates. Imaging biomarkers are among rapidly increas-
ing biomarkers, being examined to expedite effective and rational drug development.
Clinical imaging often involves a complex set of multi-modality data sets that require
rapid and objective analysis, independent of reviewer’s bias and training. In this
chapter, an overview of imaging biomarkers for drug development is offered, along
with challenges that necessitate quantitative and objective image analysis. Exam-
ples of automated and semi-automated analysis approaches are provided, along with
technical review of such methods. These examples include the use of 3D MRI for
osteoarthritis, ultrasound vascular imaging, and dynamic contrast enhanced MRI
for oncology. Additionally, a brief overview of regulatory requirements is discussed.
In conclusion, this chapter highlights key challenges and future directions in this
area.

14.1 Introduction

Advances in development of new and novel therapeutics, medical devices
and associated procedures have significantly contributed to improved global
health and well being [1]. The impact of such development is directly notice-
able in increased quality of life and economic productivity and prosperity.
Research has been a backbone for discovery, development, and delivery of
novel therapeutics. However, due to scientific complexity and regulatory pro-
cesses involved, introduction of a new drug could take between 11–15 years [2].
This long process is associated with ever-increasing cost, which is estimated
to be around $ 1Billion on the average per drug [3]. Key reason for such a high
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Fig. 14.1. Drug development time line. From the idea to the drug, there are various
stages in drug discovery and development. The time line is calibrated in years

cost and long duration is attrition through various stages of drug Research
and Development (R&D). Figure 14.1 depicts various stages associated with
drug discovery and development. Of millions of chemical entities enter drug
discovery pipeline, perhaps one or two become approved drug available for
patients.

Despite consistent increase in global R&D budget, the pace of approval of
new chemical and molecular entities has not kept pace with expenditure [3].
It is evident that with the current failure rate and ever-increasing cost, such
a model for drug development is not sustainable. In response, drug develop-
ment industry, along with their academic and regulatory partners, has been
looking for alternative approaches to develop new therapeutics much faster
and more efficiently. Such approaches include a wide variety of business mod-
els, investment strategies and scientific approaches. Examples include rational
drug design, use of computational modeling/simulations and utilization of
biologocal markers (short: biomarker) for timely and cost-effective decision
making.

In this chapter, we specifically focus on imaging biomarkers and how these
are helping resolving key challenges in drug R&D. Next section provides a
brief overview of biomarkers, followed by examples of imaging biomarkers
currently being used. The main focus of this chapter is quantitative methods
for medical imaging in drug R&D. Several challenges and examples for semi-
and fully-automated imaging analysis will be presented. Among other issues
that readers need to be aware are steps involved in technical and clinical
validation of such imaging tools, as well as regulatory acceptance for these
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biomarkers, which will be covered briefly. In closing, this chapter offers key
challenges that are focus of future directions in this field.

14.2 Key Issues in Drug Research
and Clinical Development

14.2.1 Biological Marker

Among approaches to achieve better and more cost-effective decision making
is use of precise pre-clinical and clinical measurements tools for assessment
of impact of therapeutics. These tools are ultimately intended to generate
biological and clinical markers. To assure clarity for topics in this chapter
we will use definition of biomarkers put forward by the National Institutes
of Health (NIH) Biomarker Definitions Working Group (BDWG) [4]. The
following definitions and characteristics are intended to describe biological
measurements in therapeutic development and assessment:

• Biological marker: A characteristics that is objectively measured and eval-
uated as an indicator of normal biological processes, pathogenic processes,
or pharmacologic response to a therapeutic intervention.

• Clinical endpoint: A characteristic or variable that reflects how a patient
feels, functions, or survives.

• Surrogate endpoint: A biomarker that is intended to substitute for a clin-
ical endpoint. A surrogate endpoint is expected to predict clinical benefit
(or harm or lack of benefit/harm) based on epidemiologic, therapeutics,
pathophysiologic, or other scientific evidence.

Biomarkers have broad applications in early efficacy and safety assess-
ment, in vitro and in vivo animal studies to establish Proof of Mechanism
(POM), and early stage clinical trial to establish Proof of Concept (POC).
Other applications include diagnostics for patient selection, staging disease,
prognosis, and patient monitoring.

Clinical endpoints are specifically intended for measurement and analysis
of disease and response to treatment in the clinical trials. These endpoints are
often considered credible observation and measurement for clinical evaluation
of risk and benefit.

The surrogate endpoints, a subset of biomarkers, are key clinical measure-
ments that expected to provide key decision points in lieu of specific clinical
outcome. Achieving such status for a clinical measurement requires significant
and large-scale evidence, which is source of decision making for clinicians and
regulators. Currently, there are numerous biomarkers that are being utilized
from drug screening to preclinical and clinical assessments. Examples include
genetic makers, blood and plasma assays, and imaging.

Imaging is one of biomarkers, perhaps with the broadest applications from
in vitro assessment to clinical endpoints in late stage clinical trials. Choice of
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imaging modality, with and without contrast agent, and specific measurements
are among key steps for design and execution of imaging biomarker strategy
for a preclinical or clinical program. Rest of this chapter will focus on issues
specifically around quantitative clinical imaging in drug development.

14.2.2 Imaging Modality

In recent years, several imaging modalities have been used in drug discov-
ery and development. These modalities offer a broad range of options for
in vitro, in vivo preclinical and clinical imaging. A comprehensive coverage
of such a broad range of applications will require extensive length and it is
certainly beyond a single chapter. To narrow down the focus, this chapter
will cover applications of imaging for clinical trials, thus in vivo imaging for
healthy and diseased populations. Figure 14.2 depicts most commonly used
modalities in clinical imaging, i.e. Ultrasound (US), Computed Tomography
(CT), Magnetic Resonance Imaging (MRI), Single Photon Emission Com-
puted Tomography (SPECT), and Positron Emission Tomography (PET).
Optical imaging modalities (not shown in Fig. 14.2) offer a broad family of
tools with rapidly expanding utilization for clinical trials.

Key factors for selecting an imaging modality in a clinical trial for a specific
disease area depends on multiple factors, including (i) the physical perfor-
mance of imaging modality, (ii) specific presentation of disease, (iii) impact of
therapeutics, and (iv) dynamics of change (or lack of it) as a result of therapy.
For example, spatial and temporal resolutions, as well as molecular affinity
of contrast agent (if one is involved) and sensitivity of a modality are among
physical performance criteria for selection of appropriate modality:

MRI

SPECT

X-ray / CT

Ultrasound

PET

Targeted PET

Anatomy

Function

Drug
DistributionMetabolism

Molecular
Targets /

Receptors /
Binding Sites

Molecular
Pathways

Viability
Perfusion

Fig. 14.2. Imaging modalities. Common medical imaging modalities used for in
vivo clinical assessment for drug development (Courtesy: GE Healthcare)



14 Quantitative Medical Image Analysis 363

• Radiographic imaging also referred to as radiography (projection and quan-
titative imaging), has been used extensively for osteoporosis studies quite
frequently [5, 6]. In its simplest form, these imaging modalities provide a
crude measure of bone quantity for a selected Region of Interest (ROI);

• Computed tomography has been a dominant tool for tumor detection and
assessment in oncology. These measures often include one-dimensional
(1D) and two-dimensional (2D) slice-based analysis of tumor morphology
and its response to treatment;

• Magnetic resonance imaging as well as functional MRI (fMRI), has found a
very strong traction for a number of disease areas, such as Central Nervous
System (CNS), arthritis, and pulmonary disease. Recent progress in MRI,
with and without contrast agents, has positioned it as an indispensable
tool for structural and molecular imaging.

• Nuclear medicine imaging also referred to as diagnostic nuclear medicine
imaging, provide modalities such as PET and SPECT are among critical
tools for clinical molecular imaging for a broad range of applications in
oncology and psychotherapeutics. As resolution and SNR steadily improve
in these modalities, they are finding their ways in a number of clinical
protocols for patient selection and therapy assessment.

• More sophisticated approaches such as Peripheral Quantitative CT (pQCT)
and high-resolution MRI, provide tree-dimensional (3D) view of various
components of bone structure, as well as structure of new formed bone [7].

While there is fundamental physical and utility difference in the modalities,
one key question is repeatability of imaging and measurements between and
within such modalities. More importantly, there are several acquisition param-
eters involved for a given modality, which also attribute greatly to quality
differences from images acquired with the same modality.

Another key complicating factor is subjectivity involved in definition, iden-
tification and analysis of imaging content, which heavily impacts study design
and analysis. To address these issues, there has been a shift in scientific com-
munity toward development of tools to assure: (i) repeatable acquisition of
clinical images, independent of operator or manufacturer and (ii) objective
and quantitative measurements for assessment of response to treatment.

There is a large body of work focusing on various techniques to assure
repeatability of image acquisition. Thus, the focus of this chapter is to provide
an overview of quantitative analytical approaches for handling such images.

14.3 Quantitative Image Analysis

There are numerous automated and semi-automated approaches of quanti-
tative image analysis in clinical trials and a comprehensive coverage of such
applications is certainly beyond scope of a single chapter. Thus, this section
offers a selective set of examples that should provide the readers with some
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of key approaches being used, as well as innovative tools under development
and validation. These examples also cover a range of modalities and disease
areas.

14.3.1 Assessment of Osteoarthritis

Osteoarthritis (OA) is generally viewed as clinical and pathological outcome
of range of disorders that cause structural degradation and functional fail-
ure of synovial joints [8]. Progressive joint failure associated with OA may
lead to pain and disability, which is ranked as the leading cause of disabil-
ity in the elders [9]. Conventionally, measurement of osteoarthritis structural
changes is been made via radiographic examination. The standardized mea-
surement of Joint Space Width (JSW) is a commonly accepted endpoint
for assessment of cartilage [10]. Due to inherent limitation associated with
radiographic assessment, MRI has been proposed as a non-invasive tool for
3D imaging of cartilage morphology [11]. Figure 14.3 shows saggital view,
marked bone-cartilage boundaries and 3D view of cartilage, based on high
resolution T1-weighted slices. As shown, 3D acquisition of signal, as well as
variation in signal intensity, could provide unique anatomic and content-based
measurements.

Although there is a large body of research on identifying correlation
between MRI-based measurements and OA, regulatory acceptance of such
end points is still an open question. Key MRI measurement are focused on
longitudinal change in cartilage morphology (e.g., thickness, volume, shape),
as well as bone-related anomalies, such as bone marrow edema.

While initial MRI image analysis was heavily done by manual tracing of
cartilage boundaries in consecutive slices, the most commonly used methods
are currently either based on semi-automated or fully automated approaches.

Semi-automated approaches generally start with manual boundary mark-
ing of selective slices, followed by algorithm-based method for extending
boundary identification to other slides. This step is followed by formation of

Fig. 14.3. Cartilage assessment with MRI. Based on saggital high resolution
T1-weighted slices (left), bone and cartilage boundaries marked with yellow lines
(middle), and femoral (grey) and tibial (blue) cartilages are highlighted (right)
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volume by computing iso-voxel model, which also can accommodate the sce-
nario where slice resolution differs that of slice thickness. While this method is
relatively easy to implement, it is labor-intensive and heavily requires training
and calibrations of analysts.

Alternatively, fully automated methods have been under development and
validation. For example, the method developed by Tames-Pena et al. achieves
3D segmentation via two steps [12]:

1. initial segmentation using intensity-based, unsupervised 3D segmentation,
2. fine tuning of the initial 3D segmentation using a knee atlas and sur-

face/volume computation.

Also, in this approach, rather than using voxel-based representation of
volume, spline-based surfaces are computed for defining and calculating 3D
volumes and its substructures. Figure 14.4 shows examples of initial input
used in this approach, as well as segmented volume and labeled sub-regions.
It must be noted, however, that labeling of sub-region often involves some
subjective decision making and requires confirmation by a trained radiologist.

14.3.2 Assessment of Carotid Atherosclerosis

Atherosclerosis is a broad class of disease beginning by a process in which
deposits of fatty substances, cholesterol, cellular waste products, calcium and
other substances build up in the inner lining of an artery. This buildup, plaque,
usually affects large and medium-sized arteries. Plaques can grow large enough
to significantly reduce the blood’s flow through an artery. But most of the
damage occurs when they become fragile and rupture. Plaques that rupture
cause blood clots to form that can block blood flow or break off and travel to

Fig. 14.4. Automatic segmentation by Tames-Pena et al. [12]. Left : selected saggi-
tal, coronal slices; middle: fully automated 3D segmentation of bone and cartilage;
right : tibial (gray) and femoral (pink) bones and cartilage (brown and blue) labeled
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Fig. 14.5. Carotid
intima-media thickness
assessment. In the US image
of human carotid segment,
the boundaries of lumen,
intima and adventia are
marked by technician
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another part of the body. If either happens and blocks a blood vessel that feeds
the heart, it causes a heart attack. If it blocks a blood vessel that feeds the
brain, it causes a stroke. And if blood supply to the arms or legs is reduced,
it can cause difficulty walking and eventually lead to gangrene1.

There are a number of imaging approaches for detection and quantification
of plaque. Examples include external and intra-vascular US, MRI and PET
imaging. The external US approach is the most common for assessment of
carotid imaging. In this approach, an external transducer is used to image
carotid to measure thickness changes in intima-media segment. Thus, the
method is referred to as Carotid Intima-Media Thickness (CIMT) assessment
(Fig. 14.5).

In a typical procedure for CIMT assessment, US technician acquires a
video sequence containing several frames. Then, one frame is selected via
visual examination. Intima and media boundaries are either marked manu-
ally or via automatic edge detection methods. Manual edge detection clearly
requires training and calibration of analysts. This in turn extends analysis
time and potential variability due to use of multiple analysts. Automated
edge detection has been shown to obtain accurate and precise measurement,
without requiring manual operation [13].

Another key challenge is selection of the best frame for image analysis.
For a video of duration of 8 s, with 20 fps, technician has 160 frames to exam-
ine, ultimately select one and discard 159 frames. The key question has been
whether it would be possible to utilize the entire 160 frames for composing a
much higher resolution image to be used in automated edge segmentation.

Super-Resolution (SR) is an approach by which a series of images from a
fixed-resolution sensor array is used to compute an image at a resolution higher
than original sensor array, with improved Signal-to-Noise Ratio (SNR) [14].

1 see, for instance, the Web site of the American Heart Association (AHA) at
http://www.americanheart.org
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Using this concept, a technique called “pixel compounding” was proposed
to achieve a sub-pixel accuracy reconstruction of US images [15]. Pixel com-
pounding parallels the more common spatial and frequency compounding and
uses the additional intensity information available from random movements of
edges within the image. Images in the sequence should have slight, sub-pixel
shifts due to either transducer or subject motion (which naturally occurs dur-
ing course of image acquisition). Since the intensity at a particular pixel is
given by the integral of the incident signal over the area of the pixel patch,
the intensity weight center of a pixel for a feature that is smaller than a pixel
should be a sub-pixel location within the pixel.

The technique operates on a sequence of US B-mode images acquired
with random motion. Sub-pixel registration is estimated and a Maximum
a Posteriori (MAP) approach with the shift information is used to recon-
struct a high-resolution single image. A non-homogeneous anisotropic diffusion
algorithm follows from the estimation process and is used to enhance the
high-resolution edges.

Figure 14.6(top) shows a selected frame and rectangular ROI shown. Using
nine consecutive frames, a new super-resolution image is computed (3 ×
resolution increase). Figure 14.6(left) compares a subset of ROI, represent-
ing CIMT to the conventional bicubic interpolation and SR. Pseudo-colored
reconstructed ROIs are also shown on the right.

This approach provides a unique opportunity for achieving a resolution
beyond inherent resolution of sensor, which in turns adds significant accuracy
and precision in the clinical measurement. This increased accuracy and pre-
cision will be used to either conduct clinical trials with a smaller number of
subjects or maintain the same number of subjects in each arm, and in turn
increase accuracy in measurement of clinical response.

14.3.3 Assessment of Cancer

With increased effort for better understanding of underlying molecular events
that lead to cancer, there is an increased demand for a wider range of
structural, functional and molecular imaging modalities. Structural imaging,
based on projection radiography and CT, is the most common modality of
tumor response assessment [16]. In addition to CT, MRI also provides unique
anatomical view for tumor size and structure, which is quite important for
quantitative assessment of tumor response to treatment. Also, other modal-
ities, such as PET, SPECT and Magnetic Resonance Spectroscopy (MRS)
provide ability to characterize and measure biological processes at the molec-
ular level [17, 18]. It must be noted that specific utility of such modalities is
directly related to biological, functional and anatomical manifestation of the
disease.

Among these imaging techniques, Dynamic Contrast Enhanced (DCE)-
MRI is a unique modality that provides opportunity to examine micro-
circulation of tumor and normal tissues at high spatial resolution. Angiogenesis
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Fig. 14.6. Super-resolution in ultrasound imaging. Top: A selected frame from a
series of clinical scans, with ROI marked; left : original ROI, bicubically interpolated
ROI, and results of super-resolution reconstruction; right : pseudo-colored images
corresponding to the gray scale images shown in the left

is a complex process critical to growth and metastasis of malignant tumors,
with directly impacting micro-vasculature growth and behavior of tumors.

This process results in the development of vascular networks that are
both structurally and functionally abnormal. A broad range of compounds
are developed and are under development to disrupt new vessel formation
(anti-angiogenic) or destroy existing vessels. There has been clear demand
and significant development of imaging biomarkers for angiogenesis, which can
serve as early indicators of drug activity in clinical trials and may facilitate
early Pharmacodynamic (PD) assessment. DCE-MRI is intended to capture
the Pharmacokinetic (PK) of injected low-molecular weight contrast agents as
they pass through the tumor micro-vasculature [19]. This technique is sensi-
tive to alterations in vascular permeability, extracellular and vascular volumes,
and in blood flow.
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Fig. 14.7. Treatment
followup. The sample
DCE-MRI image from a
patient with adenoid cyst
carcinoma shows decline in
tumor perfusion post
treatment [21]

In T1-weighted DCE-MRI, an intravenous bolus of gadolinium contrast
agent enters tumor arterioles, passes through capillary beds and then drains
via tumor veins [20]. Gadolinium ions interact with nearby hydrogen nuclei
to shorten T1-relaxation times in local tissue water. This causes increase in
signal intensity on T1-weighted images to a variable extent within each voxel.
The degree of signal enhancement is dependent on physiological and physical
factors, including tissue perfusion and Arterial Input Function (AIF). T1-
weighted DCE-MRI analysis generates parameters that represent one of, or
combinations of these processes, and can be used to measure abnormalities in
tumor vessel function such as flow, blood volume, and permeability.

There are various approaches for DCE-MRI imaging. However, commonly
three types of data are acquired:

1. initial image for tumor localization and anatomic referencing,
2. sequences that allow calculation of baseline tissue T1-values before contrast

agent administration,
3. dynamic data are acquired every few seconds in T1-weighted images over

a period of around 5–10min.

Using this data, a number of parameters, such as volume transfer func-
tion, are computed. These parameters are used for quantitative analysis of
vascular response for a given therapeutic agent. Figure 14.7 shows sample
DCE-MRI images from a patient with adenoid cystic carcinoma at baseline
and after three cycles of treatment with an experimental anti-angiogentic
compound [21].

While there is a consensus on utility of DCE-MRI for tumor imaging and
it’s response to therapy, there are a number of critical issues impacting quan-
titative analysis of such approach. Among these issues are choice of model for
pharmacokinetic models, imaging protocol, estimation of arterial estimation
function, and selection of ROI for analysis. These parameters are even more
critical when imaging for clinical trials is conducted across multiple sites using
different MRI machines, and there is heavy manual-analysis involved. Lack of
control in these parameters is among key sources of error.

14.4 Managing Variability in Imaging Biomarkers

In every clinical and preclinical measurement, one needs to be aware of source
of variations, how it can be controlled and accounted for. Perhaps the most
critical question in value of an imaging endpoint is how repeatable it is.
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Regardless of whether imaging endpoint is intended to measure pharmacoki-
netics or -dynamics, target affinity, dose response, etc., it would essentially
useless if one cannot reliably repeat the results of a given procedure. There
is a broad range of sources of variability in imaging procedures. However, in
this chapter we will classify them into broad categories:

• Clinical variations (and one can extend this to in vitro and preclinical
variations) are related to biological/physiological characteristics that lead
to between and within differences for patients under identical treatments.
This is also referred to as biologic noise [22].

• Technical variations also contains a range of sources that one can divide
them into modality/device related and operator-related sources.

While in managing variability we deal with accuracy and precision [23,24],
it is important to note that technical accuracy is directly linked to biologic
noise and its impact on the measurement. It is common to assess technical
repeatability of imaging measurement through repeated scans and repeated
measurements. Figure 14.8, captures various possible combinations factors
contributing to technical precision of measurement.

14.4.1 Technical Validation

To establish impact of variation within and between imaging devices, for a
given modality, it is common to run repeated imaging sessions using a single
device (scanner) or multiple devices. When possible, it is preferable to use the
same brand and model of imaging device throughout clinical trial(s). How-
ever, since most clinical trials are conducted across multiple clinical centers,
in multiple countries, it is not practical and/or cost effective to enforce this.
Moreover, as technology evolves and clinical centers upgrade their imaging
hardware/software, it is not possible to guarantee that in clinical trials of long
duration, baseline and follow up imaging will be done by the same platform in
a given clinical center. Quantitative understanding of device-related variabil-
ity is extremely crucial, which directly impacts number of patients required,
duration of clinical trials, and number of imaging observations throughout a
given study. To establish and manage device performance, it is important to
have a clear protocol for calibration and monitoring imaging devices, as well
as operator/technician performing patient preparation and image acquisition.
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The other source of variability in this graph is related to post-acquisition
image analysis. Image analysis approaches that heavily rely on subjective
identification of imaging content and manual segmentation are often prone to
high degree of variability. The most critical step in initiating such analysis
is assuring that there is well-defined and well-communicated set of rules for
defining anatomical landmark, lesions, etc.

Another key element in analysis approaches that heavily rely on manual
processing is assuring that the image analysis operators are well calibrated
throughout analysis period. This would require assessment and calibration
for short and long term experiments. To avoid calibration drift, some tend to
conduct image analysis for entire clinical trial at the end of trials, as opposed
to analyzing images as they arrive. While this could address long-term drift
and variation between analysts, it tends to miss any imaging error that could
have been detected by interim analysis.

In general, to minimize technical variations in the clinical trials is highly
advisable to use automated methods that require minimal post-analysis
adjustment by human operator. While there has been significant progress
in development of automation for image analysis, the need for quality control
remains with us.

14.4.2 Standard Operation Procedures

Every good quality management system is based on its Standard Operat-
ing Policies (SOP) or Standard Operating Procedures (SOP), which repre-
sents the afore mentioned set of well-defined and well-communicated set of
rules. Hence, SOPs can act as effective catalysts to drive performance- and
reliability-improvement results.

For example, in a comparative image analysis, a set of MRI images of
patient’s knee were provided to two independent groups. Each group was
asked to conduct and report measurement of knee cartilage volume. No further
instruction was provided. Figure 14.9 compares the results initially reported
from these two analyses. While both groups agreed that images are of high
quality, measurements show very low correlation. Detailed examinations iden-
tified two sources for such a low agreement: (i) use of different criteria for
defining cartilage boundaries and (ii) use of direct voxel counting vs. spline-
based method to measure volumes. The other contributing factor was heavy
use of manual segmentation by one group and semi-automated approach by
the second group.

Collectively, a clear definition for selection of cartilage boundary was
identified and provided to both image analysis teams. Figure 14.10 shows
results of new analysis, which clearly confirms improvement in measurement
correlation.
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Fig. 14.9. Variation without
SOPs. Comparison of
cartilage volume
measurement by two
independent image analysis
groups, using manual and
semi-automated methods
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Fig. 14.10. Variation using
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14.4.3 Regulatory Issues

Two critical regulatory questions for acceptance and deployment of imaging
biomarkers can be summarized as:

1. What is utility of imaging endpoint (surrogate, auxiliary, etc)?
2. How reliable is such measurement (biologic and technical noises)?

These two questions are not unique for imaging endpoint from regulatory
perspective, and they arise every time a new tool is proposed for existing or
new endpoints. While the first question is very clear, establishing answer for
it could be quite complex and often requiring very long and tedious validation
studies. Examples of such studies include a number of completed and ongo-
ing experimental and clinical studies for validation of imaging endpoints in
oncology, CNS, cardiovascular, inflammation diseases.

Perhaps progress in technical validation of such imaging endpoints are fur-
ther along mainly due to relative simplicity of addressing technical variations
(compared to biologic noise), and significant progress in hardware availability
and algorithm development.
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In general, addressing regulatory concerns requires a well-coordinated col-
laboration between various players involved this area. This is to assure the
framework for acceptance is clearly stated, validation studies are accepted by
clinical and technical communities, and a timeline for achieving goals are
committed to. Currently there are a number of such collaborative efforts
ongoing, such as Alzheimer’s Disease Neuroimaging Initiative (ADNI) and
OsteoArthritis Initiative (OAI).

14.5 Future Directions

While there has been significant progress in enhancing current imaging modal-
ities and introduction of new ones, the focus of this chapter has been on
image analysis issues related to imaging biomarkers. In looking into current
landscape of ongoing developments and projecting future demand, the author
offers the following areas as the key issues to be addressed in future directions:

• Moving toward quantitative and objective imaging: As volume of medical
data increases and additional modalities are introduced, reliance on visual
and manual assessment of medical imaging will be becoming impracti-
cal and unreliable. Also, dealing with such complexity will increase time
required to render final diagnosis that would be quite critical to patient
care, as well as slowing rampant increase in cost of medical imaging in
clinical practice and clinical trials. Thus key drivers are cost-effective and
reliable tools for addressing ever-increasing imaging data.

• Minimizing operator variability by developing fully-automated algorithms:
Considering global and distributed nature of clinical trials, it is inevitable
that in the course of a clinical program, imaging data will be examined
by a number of radiologists and technicians. Such operators are trained
and licensed under a diverse set of curricula and re-certification rules.
While such differences may not have noticeable impact on patient care,
it will certainly have adverse effect on quality of analysis associated with
clinical trials. Moving to fully-automated analytical tools faces two key
challenges:

1. Lack of availability of such tools for most of modalities and disease
areas.

2. Lack of regulatory acceptance for most of tools currently available.

Addressing such challenges require further development of automated ana-
lytical tools and prospective, broad clinical validation. Success in these two
steps would be critical for regulatory acceptance, hence, broad deployment
of such tools.

• Integration of analytical algorithm within pathophysiology of disease and
imaging modalities: While imaging modalities are capable of capturing
tremendous amount of structural and functional data, full understanding
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of underlying pathophysiology require additional non-imaging data. Non-
imaging data includes:

1. general and population-based a priori knowledge about disease and/or
organ under study, and

2. specific non-imaging data collected for a given patient in the course of
clinical trial.

Examples of the latter include medical history, clinical evaluation, labo-
ratory tests. To development an accurate and automated image analysis
tool, it is critical to incorporate such non-image in the process.

• Model-based approaches for adaptive and predictive measurements: His-
torically, early approaches for medical image analysis deployed pixel/voxel
information capture in an imaging dataset to offer measurement/diagnosis
for what has been already observed. Accuracy of voxel-based approaches
is heavily impacted by resolution and speed of imaging device, as well as
overlapping and . Although increase in physical performance of imaging
devices has been quite significant in past few years, and there is more
on the near-term horizon, inclusion of mathematical model of underlying
organs and system will provide complementary information for significant
improvement in speed and accuracy of image analysis. Also, such models
are quite crucial for development of tools to project forward from current
observation; i.e. prognostic and quantitative tools.
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Visualization and Exploration of Segmented
Anatomic Structures

Dirk Bartz† and Bernhard Preim

Summary. This chapter provides an introduction into the visualization of seg-
mented anatomic structures using indirect and direct volume rendering methods.
Indirect volume rendering typically generates a polygonal representation of an organ
surface, whereas this surface may exhibit staircasing artifacts due to the segmenta-
tion. Since our visual perception is highly sensitive to discontinuities, it is important
to provide adequate methods to remove or at least reduce these artifacts. One of the
most frequently visualized anatomical structures are blood vessels. Their complex
topology and geometric shape represent specific challenges. Therefore, we explore
the use of model assumptions to improve the visual representation of blood vessels.
Finally, virtual endoscopy as one of the novel exploration methods is discussed.

15.1 Introduction

The visualization of volumetric and multi-modal medical data is a common
task in biomedical image processing and analysis. In particular after identi-
fying anatomical structures of interest, cf. Chap. 11, page 279, and aligning
multiple datasets, cf. Chap. 5, page 130, a Three-dimensional (3D) visual
representation helps to explore and to understand the data.

Volume visualization aims at a visual representation of the full dataset,
hence of all images at the same time. Therefore, the individual voxels of the
dataset must be selected, weighted, combined, and projected onto the image
plane. The image plane itself acts literally as a window to the data, repre-
senting the position and viewing direction of the observer who examines the
dataset.

† On March 28, 2010, our colleague Dirk Bartz passed away unexpectedly. We will
remember him, not only for his contributions to this field, but for his personal
warmth and friendship

T.M. Deserno (ed.), Biomedical Image Processing, Biological and Medical Physics,
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15.2 Indirect and Direct Volume Rendering

In general, two different options are available to generate this visual represen-
tation; indirect and direct volume rendering. Indirect volume rendering, also
frequently called surface – or isosurface – rendering, extracts an intermedi-
ate, polygonal representation from the volume dataset. This representation
is then rendered using commonly available standard graphics hardware. In
contrast, direct volume rendering generates the visual representation with-
out an intermediate representation, by projecting the voxels onto the image
plane [1, 2].

15.2.1 Indirect Volume Rendering

The standard approach of extracting an intermediate, polygonal representa-
tion of the volume dataset is the “marching cubes” algorithm [3], where the
volume dataset is processed voxel cell by voxel cell. A voxel cell is represented
by eight neighboring voxels in two neighboring volume slices, where these vox-
els form a cube shaped cell. The edges of this cube indicate the boundaries of
the cell between the directly neighboring voxels. In that process, the respec-
tive isosurface is extracted for each voxel cell by first identifying the edges of
the voxel cell that the isosurface intersects. Based on intersection points and
a case table, the isosurface for this voxel cell is computed.

Typically, an isosurface indicates a material interface of an object (e.g., an
organ). Technically, this isovalue is a binary opacity transfer functions, where
the voxels below the isovalue mark the outside, the voxels above that isovalue
mark the inside of the object. If the voxel is equal to the isovalue, it is located
directly on the respective isosurface. While binary opacity transfer functions
are equivalent to threshold-based segmentation (thresholding, cf. Sect. 1.6.1,
page 27), they do not take into account any spatial information of the voxels’
locations. To achieve a voxel specific isosurface extraction, we need to segment
the respective object in the dataset first and to limit the isosurface extraction
to the segmented region. If more than one object is segmented, the information
is combined into a Label volume, where the label of each voxel determines its
affiliation to an object or organ. The isosurface extraction is then performed
consecutively one object at the time with the respective isovalue.

Note that the standard isosurface extraction method assumes that only one
isosurface intersects an edge (up to one time). Hence, if more than one object
or material intersects a volume cell, the algorithm leads to severe inconsisten-
cies in the triangulation. A general solution to this problem was proposed by
Hege et al.[4] and later by Banks and Linton [5].

15.2.2 Rendering of Multiple Objects

Multiple objects are typically rendered in polygonal graphics with different
colors to enable a good differentiation between these objects (Fig. 15.1). If
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Fig. 15.1. Segmented polygonal model. Left : Model of the lungs, with blood vessels
and tumor (green); Right : Model of the liver, where the colored regions indicate risk
areas with respect to the portal vein (Courtesy: Milo Hindennach, Bremen)

one object is embedded into another object, the transparency of at least the
outer object can be reduced to allow an unobscured view on the inner object
(Fig. 15.1b). Furthermore, we need to address several additional aspects for
a successful semitransparent rendering. Since the rendering of the individual
objects are blended together, the sufficiently correct blending order is impor-
tant to ensure a correct representation. Therefore, the objects must be ordered
according to the depths of their barycenters, where the farthest objects are
rendered first, the closest last. Nevertheless, highly nested objects should be
avoided, since they lead to a convoluted visual representation.

One of the drawbacks of semitransparent polygonal rendering is the limited
ability to represent depths, since the transparency value does not include any
distance-related attenuation term. To address this significant perception issue,
the transparency of every individual polygon can be modulated based on its
orientation to the viewer. If the polygon is parallel to the user, it should be
rendered with a low transparency, if it is oriented more orthogonal to the
viewer, a high transparency should be used (Fig. 15.2). This approach goes
back to an idea of Kay and Greenberg who assumed that a light ray will be
more attenuated, if it traverses a medium in a more acute angle [6].

If objects from several volume datasets (multi-modal volume data) are
combined, the user needs to ensure that the datasets are correctly aligned (reg-
istered) to each other, even if the different data volumes provide incomplete
or even very limited overlap, cf. Chap. 5, page 130.
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Fig. 15.2. Transparency
modulated objects. Left :
Oriented transparency
modulation; Right : Constant
transparency modulation
(Courtesy: Detlev Stalling,
Berlin)

Fig. 15.3. Conceptual model
of direct volume rendering. A
ray S from the view point
accumulates contributions at
samples sk from entry point
k = n − 1 to exit point k = 0

15.2.3 Direct Volume Rendering

In a direct volume rendering approach, no intermediate representation is com-
puted. Instead, the contributions of the volume dataset are either directly
projected on the image plane, or the contributes are accumulated by a col-
lecting ray casted from the image plane through the volume (Fig. 15.3) [7].
Direct volume rendering (short: volume rendering) is based on the transport
theory of light [8]. After several simplification steps, the basic optical model
of volume rendering is the Density Emitter Model (DES) of Sabella [9], where
every voxel is considered as a tiny light source (emitter) that is attenuated
or absorbed when the light rays travel through a dense volume (density).
Hence, this model only considers emission and absorption as the basic physical
components [10].

Since volume data is only defined on voxel positions, each approach must
specify how to reconstruct the contributions from the whole voxel space
between the voxel positions:

1. Reconstruction: This is typically specified by the used reconstruction ker-
nel. For image space algorithms like ray casting [11], the standard kernel
is the trilinear interpolation in the voxel cell, which essentially is a cubic
function. The standard reconstruction kernel (or filter) for object space
algorithms like splatting [12, 13] is a three-dimensional Gaussian kernel
with a specific cut-off range that limit the support of the filter.
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2. Sampling: The approaches also need to specify the sampling, or how often a
contribution (“sample”) is taken from the volume dataset. Since all voxels
are classified by transfer functions into a 4-tupel of red, green, blue, and
opacity (r, g, b, α) based on their voxel value, their individual color and
opacity contribution must be accumulated appropriately.

3. Order of operations: The standard order first computes the samples, clas-
sifies the samples by applying the transfer functions, and computes the
lighting based on the individual sample. This order is called post-shading,
since the lighting (and shading) is performed after sampling. In contrast,
the pre-shading approaches first classify and shade the voxels, and the
samples are computed based on the colored and opacity-weighted voxels.
While pre-shading enables several performance advantages, its quality is
far inferior to post-shading, since the reconstruction leads to a blurred
representation in most cases.

Today, the most popular implementations of volume rendering use an
hardware accelerated Graphics Processing Unit (GPU)-based or Central Pro-
cessing Unit (CPU)-optimized ray casting with trilinear interpolation and
post-shading [14].

One of the key elements of volume rendering is the specification of the
transfer functions, since it defines how the individual samples are weighted
in the final image [15]. While most approaches focus on the identification of
object boundaries [16], this topic is still subject of active research. Render-
ing multiple objects, color blending [17] and opacity adaption [18] become
relevant.

15.2.4 Rendering of Segmented Data

The integration of transfer functions and segmentation does not easily arise in
direct volume rendering. Early approaches pre-classified the volume dataset
based on a segmentation [19]. This pre-shading approach, however, leads to
excessive blurring and henceforth to a reduced image quality. Furthermore,
color bleeding effects might occur, if no precaution have been taken [20].
Alternatively, separate transfer functions can be provided for every label of
a segmentation (Fig. 15.4). These tagged voxel sets are then volume rendered
locally, and afterwards combined in a global compositing step. Due to the
local and global compositing, this approach is also called two-level volume
rendering [21].

Alternatively, Hastreiter et al. suggested to handle the voxel set specific
transfer functions through hardware supported lookup tables that switch
between the specific transfer functions, which are also implemented through
hardware supported Look-Up Tables (LUTs) [22].

However, sampling on the boundaries between different compositing
regions may lead to an abrupt material change or an abrupt end of the sam-
pling, which in turn leads to color bleeding and staircasing artifacts. A solution
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Fig. 15.4. Direct volume rendering of neurovascular compression syndrome. Left:
Important anatomical structures (backround/tag 0, cerebrospinal fluid and blood
vessels/tag 1, cranial nerves/tag 2 and brain stem/tag 3) near the brain stem based
on MRI data. Right : Visualization of the segmented structures using individual
transfer functions (Courtesy: Peter Hastreiter, Erlangen)

to this problem was presented by Tiede et al., who suggested to use a trilin-
ear interpolation that takes into account only the current (closest) segment
and which computes a sample closer to the segments surface than the regular
sampling pattern [23], thus approximating the actual segment surface. Beyer
et al. have improved Tiede’s approach by extending the considered area along
the gradient direction of the sample [24]. The new sample is then re-classified
to determine a closer segment surface (Fig. 15.5).

15.2.5 Discussion

Overall, both indirect and direct volume rendering are viable options to visu-
alize segmented medical data, although each option provides a different set
of advantages or disadvantages. The biggest advantage for indirect volume
rendering is the significantly easier specification of color and transparency in
a visual representation of multiple objects and datasets. Because of its high
flexibility, direct volume rendering is advantageous when small changes of the
material interfaces have to be addressed. A small shift of a feature in the
opacity and color transfer functions can be done quite fast and the effect
can be seen instantaneously. With indirect volume rendering, new polygo-
nal isosurfaces have to be extracted, which typically requires more time than
generating a new direct volume rendering image. Hence, the exploration of
unknown datasets is typically easier with direct volume rendering.

Another remarkable advantage of direct volume rendering is image quality.
Due to superior reconstruction filter, the standard direct volume rendering
algorithms provide a significantly better visual quality than indirect volume
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Fig. 15.5. Direct volume rendering of segmented data. Tumor and blood vessel
segments are rendered using direct volume rendering. The samples are re-classified
along the gradient direction (right) for a better surface reconstruction, whereas
trilinear interpolation of the labels exposes staircasing artifacts (Courtesy: Johanna
Beyer, Vienna)

Fig. 15.6. Diamond artifact of
marching cubes. The image shows a
close-up of a virtual bronchoscopy

rendering approaches. In particular, the marching cubes algorithm provides
only a linear interpolation for vertex computation and a bilinear interpolation
for the triangle surface (Gouraud shading). This frequently leads to diamond
interpolation artifacts (Fig. 15.6). This effect can be compensated with sub-
voxel decomposition methods that induce higher computational costs [25] or
avoided applying implicit surface methods [26].
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15.3 Generation of Smooth
and Accurate Surface Models

Patient-specific medical surface models are used to convey the morphology
of anatomic and pathologic structures as well as spatial relations between
them. Moreover, surface models are essential for generating volume models
for simulations.

An inherent problem of medical image data is the limited resolution and
the anisotropic character of the voxels (slice thickness is usually considerably
larger than the in-plane resolution). Thus, the extracted surface meshes may
contain several artifacts such as staircases, holes, and noise (Fig. 15.7).

Due to these artifacts, the reconstructed vessel may differ significantly
from the real anatomic structures, which are usually smooth, and influence
the visual and numerical evaluation of spatial relationships. Especially for
surgical planning, it is essential to employ accurate models, e.g. to ensure
the correct computation and visualization of safety margins and potential
infiltrations.

15.3.1 Mesh Smoothing with Fairing

An essential class of smoothing approaches addresses the fairing of meshes.
Since traditional surface fairing methods from geometric modeling are compu-
tationally too expensive to be considered, a variety of local fairing methods are
frequently used. Most local fairing operators take into account the weighted
average of the direct neighbors of the current vertex (the “umbrella region”
to re-position the current vertex (Fig. 15.8).

However, it is not trivial for an application to select appropriate smooth-
ing algorithms and parameters (neighborhood, number of iterations, weighting
factor) from the class of umbrella operators. Bade et al. [27] compared several

Fig. 15.7. 3D reconstruction of binary segmentation. The liver was accurately
segmented from CT data. However, it appears noisy (Courtesy: Tobias Mönch,
Magdeburg)
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Fig. 15.8. Part of a triangle mesh. Left : the bold lines represent the neighbor-
hood. The small umbrella illustrates why this region is called umbrella; Right : the
topological neighborhood of two is displayed

Fig. 15.9. Visual smoothing. Left: A
surface model of bones extracted from
strongly anisotropic MRI data;
Middle: Smoothed mesh based on
Laplacian smoothing; Right : Laplacian
smoothing with extended
neighborhood. The smoothing results
in strongly reduced curvature of the
surface (Courtesy: Jens Haase,
Magdeburg)

variations of umbrella operators for different categories of segmented medical
structures, such as organs, skeletal structures, small compact structures, such
as lymph nodes and elongated structures. They also included extended neigh-
borhoods, where instead of direct neighbors their second order neighbors are
also considered (a topological neighborhood of two, where two represents the
maximum path length in a local graph from the current vertex vi to a neigh-
bor vj . Figure 15.8, right). In its simplest form, all vertices have the same
influence. In a more elaborate version, the influence of a vertex represents the
distance to the central vertex vi.

v′i = (1 − α)vi +
α

n

∑
(vj − vi) (15.1)

The simplest approach is to apply the well known Laplacian function,
which smoothes every vertex in the mesh according to (15.1). With this equa-
tion, the vertex vi is modified according to its previous value and the vertices
vj in the neighborhood of vi, where α is the smoothing factor. Laplacian
smoothing is applied iteratively, usually with 10 to 20 iterations (Fig. 15.9).

Unfortunately, the Laplacian filter tends to shrink the smoothed object.
Hence, it is usually considered unsuitable for the smoothing of medical
segmentations [27]. An extension of Laplacian fairing was proposed in [28].
In this approach, the smoothed umbrella regions are corrected in a second
stage by moving the current vertex back towards its original position, thus
maintaining the overall volume of the object. Another approach to surface
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Fig. 15.10. Smoothed dual marching cubes mesh. The mesh shows a close-up of
a segmented isosurface of the third cerebral ventricle. The hole corresponds to
the adhesio interthalamica. Left : Original marching cubes mesh with staircasing
artifacts; Right : Smoothed dual marching cubes surface

smoothing is based on signal theory, where the discrete Fourier theory is
used to provide low pass filtering to (two dimensional discrete) surface signals
by interpreting the eigenvalues of the Laplacian matrix as frequencies [29].
Model shrinking is controlled by alternating low pass filtering with different
filter sizes.

As a final smoothing approach, we discuss a variation of marching cubes
itself, the dual marching cubes algorithm [30]. After computing a quadrilateral
patch structure from an original marching cubes generated mesh, the dual
mesh of the patch mesh is generated. A dual of a mesh replaces a patch
surface cell by a vertex and connects every neighboring dual vertex with an
edge. Thus, every dual edge crosses an edge of the patch mesh, and every
dual mesh cell contains a patch vertex. This also means that in contrast to
the original triangular mesh, the dual mesh is composed of quadrilaterals. By
iteratively applying this dualing operator, the original marching cubes mesh
is successively smoothed (Fig. 15.10).

15.3.2 Improving Mesh Quality

While the methods mentioned above ensure a high visual quality of a surface
mesh, the triangle quality with respect to the ratio between triangle sizes may
still be too low for deriving simulation meshes. There are a variety of basic
operations improving this quality significantly. As an example, very small
edges and triangles may be removed or edges flipped (Fig. 15.11). The most
common criterion for mesh quality is the equi angle skewness (Fig. 15.12).
Cebral et al. discuss a pipeline of algorithms to yield smooth high quality
meshes for visualization and simulation of blood flow [31].
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Fig. 15.11. Improving mesh quality. Left: Simple geometric operations: collapsing of
small edges and triangles; Right: Edge flipping (Courtesy: Ragnar Bade, Magdeburg)

Fig. 15.12. Surface model of a
cerebral aneurysm. Top: Initial mesh
derived from marching cubes; Bottom:
Smoothed mesh (Taubin’s λ|μ filter)
after subdivision and optimization.
With these modifications, the equi
angle skewness is significantly reduced
(Courtesy: Tobias Mönch, Magdeburg)

15.4 Visualization of Vascular Structures

The visualization of vascular structures is an important and established topic
within the broader field of visualizing medical volume data. General visual-
ization techniques, such as slice-based viewing, direct volume rendering, and
surface rendering (Sect. 15.2), are applicable in principle to display vascular
structures from contrast-enhanced CT or MRI data. However, to recognize
the complex spatial relations of a vascular tree and its surrounding structures
more clearly, dedicated techniques are required. Furthermore, the required
accuracy of the visualizations is different for diagnostic purposes, such as the
search and analysis of vascular abnormalities, and therapy planning scenarios,
where the vascular structures, themselves are not pathologic.

In general, there are two classes of surface visualization methods:

• Strictly adhering to the underlying data (model-free visualization).
• Relying on certain model assumptions and forcing the resulting visu-

alization to adhere to these assumptions at the expense of accuracy
(model-based visualization).
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15.4.1 Surface-based Vessel Visualization

The most common surface reconstruction technique is marching cubes with
an appropriate threshold. Unfortunately, the quality of the resulting visu-
alizations is relatively low, due to inhomogeneities in the contrast agent
distribution and due to the underlying interpolation (linear interpolation
along the edges compared to trilinear interpolation in most direct volume ren-
dering realizations). Textbooks on radiology warn their readers on the strong
sensitivity of the selected isovalue on the visualization illustrating that a small
change of 1 or 2 Hounsfield Unit (HU) may lead to a different diagnosis (e.g.,
presence or absence of a severe stenosis – a region where the vessel diameter
is strongly reduced).

Recently, a surface visualization based on segmentation results was devel-
oped, which provides a superior quality compared to constrained elastic
surface nets [26]. This method is based on Multi-level Partition of Unity
(MPU) implicits [32], a technique originally developed for visualizing point
clouds with implicit surfaces. The points are generated for the border voxels
of the segmentation result. At thin and elongated structures, additional sub-
voxels are included and more points are generated (Fig. 15.13). The point set
is locally sampled and approximated with quadric surfaces which nicely blend
together. Implicit surfaces, in general, are able to represent a given geometry
smoothly without explicitly constructing the geometry (Fig. 15.14).

15.4.2 Model-based Surface Visualization of Vascular Structures

For therapy planning (in case that not the vessels themselves are affected)
and for educational purposes, model-based techniques are appropriate. The
essential model assumption is usually that the cross-section is always circular.
Cylinders [33] and truncated cones [34] have also been employed.

Model-based techniques require another preprocessing step beyond noise
reduction and segmentation: vessel centerline and local vessel diameter have to
be determined. For this purpose, skeletonization algorithms are used [35, 36].

To achieve smooth transitions at branchings, a variety of methods have
been investigated. B-spline surfaces have been proposed to approximate small
vascular structures and nerves, which could not be completely segmented [37].

Fig. 15.13. Point generation with MPU implicits [26]. Left : Points resulting
from segmentation; Middle: Additional points avoiding artifacts at corners; Right :
Inclusion of additional subvoxels improves visualization
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Fig. 15.14. Visualization based on MUP implicits [26]. A segmented liver tree is
visualized with marching cubes (left) and with MPU Implicits (right). Maintaining
accuracy, the appearance is strongly improved

Fig. 15.15. Subdivision
surfaces. The vessel tree is
visualized applying
subdivision surfaces

Felkl et al. [38] describe a method based on subdivision of an initial coarse
base mesh. The advantage of their method is the adaptivity with respect to
branchings, where more polygons are created (Fig. 15.15).

Also for model-free visualization of vascular structures, implicit surfaces
may be used. Convolution surfaces, developed by Bloomenthal [39], allow to
construct a scalar field along skeletal structures. With an appropriate filter
for the convolution, the scalar field can be polygonized in such a way that the
vessel diameter is precisely represented. The filter selection must also avoid
so-called “unwanted effects” [40], such as blending and bulging, which are
typical for implicit surfaces (Fig. 15.16).

A general problem of the high-quality visualization methods is that they
are typically slower. For reasonably large datasets, the visualization with con-
volution surfaces takes 20–50 s [40], compared to 3–5 s with truncated cones.
Another problem is that the accuracy of most of these methods has not been
carefully investigated. Comparisons of different methods with respect to the
resulting surfaces and their distances are necessary to state how reliable the
results really are [41]. However, it must be noted that the good results (mean
deviation: 0.5 times the diagonal size of a voxel) relate to datasets without
any pathologies.



392 D. Bartz and B. Preim

Fig. 15.16. Convolution
surfaces [26]. Visualization
of the portal vein derived
from CT with 136 edges

Fig. 15.17. Visualization of a segmented cerebral aneurysm [26]. Left : Marching
cubes; Middle: MPU implicits; Right : Convolution surfaces

Figure 15.17 compares visualizations of an aneurysm with marching cubes,
MPU implicits and convolution surfaces. Despite the high visual quality, the
convolution surface is less appropriate than MPU Implicits due to pathologic
variation of the blood vessels (strong deviation from the circular cross-section).

15.4.3 Volume Rendering of Vascular Structures

The most commonly used volume rendering technique in a clinical environ-
ment is the Maximum Intensity Projection (MIP), which basically displays the
voxel with the highest image intensity for every ray. Based on the enhance-
ment with a contrast agent, vessels are usually the brightest structures and
can thus be selectively visualized with this method. This basic strategy fails
when contrast-enhanced vessels and skeletal structures, which also exhibit
high intensity values, are close to each other [42]. More general, the 3D
visualization of vascular structures benefits from an enhancement of elon-
gated vessel-like structures, which may be accomplished with a shape analysis
(Fig. 15.18).

Since static MIP images do not provide any depth perception they are
either interactively explored or presented as animation sequences. This, how-
ever, does not account for another problem related to MIP: small vascular
structures are often suppressed, since they are represented primarily by bor-
der voxels. Due to averaging, those voxels appear less intense than the inner
voxels of large vascular structures (partial volume effect). In order to display
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Fig. 15.18. Vesselness
filter [43]. Left : MIP image
of MRA data; Right :
Preprocessing with the
“vesselness filter” suppresses
other structures

small vessels in front of larger ones, the MIP method was modified by a thresh-
old which specifies that the first local maximum above the threshold should
be depicted instead of the global maximum. This method is known as either
local MIP or Closest Vessel Projection (CVP).

In contrast to projection methods, direct volume rendering (e.g., ray cast-
ing, splatting) computes a weighted accumulation of different samples along
viewing rays according to their spatial position. These rendering techniques
provide realistic depth cues by blending data, since the samples are accu-
mulated in depth order (front-to-back, back-to-front). Volume rendering of
vascular structures usually involves only a small fraction of the overall data
size. Frequently, the Transfer Function (TF) is adjusted, such that only 1%–2%
of the voxels become visible [44]. Therefore, volume rendering may be strongly
accelerated through techniques, such as empty space skipping.

The ability of 1D TFs to discriminate vascular structures from its sur-
rounding is limited particularly in the neighborhood of skeletal structures
which exhibit a similar range of image intensity values. Therefore, 2D TFs
have been explored [45], where gradient magnitude has been used as second
dimension in addition to image intensity (Fig. 15.19).

As a example of using direct volume rendering for diagnosis, we introduce
a method for the diagnosis of the coronary artery disease based on multi-
slice CT data with high spatial resolution. The major diagnostic task is to
detect, characterize and quantify abnormalities of the vessel wall, so-called
plaque which might be calcified (hard plaque) or fibrous (soft plaque). The
structures to be emphasized are too small to yield a substantial footprint in
a global histogram. Moreover, contrast agent distribution cannot be ensured
to be uniform. Hence, a TF with fixed parameters will not be able to cope
with the variability of the datasets. Based on a segmentation of the coro-
nary vessels, a local histogram may be derived and analyzed with respect
to a Gaussian distribution (mean and standard deviation) of the vessel wall
voxels (Fig. 15.20).
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Fig. 15.19. 2D transfer function. Left : Vessels and skeletal structures differ in the
2D histogram; Right : Visualization of skeletal structures is effectively suppressed
using an appropriate 2D TF (Courtesy: Peter Hastreiter, Erlangen)

Fig. 15.20. Direct volume rendering. Left : Patient without plaque burden; Middle:
Three stents (arrowheads); Right : Patient with many hard plaques. Even small hard
plaques are recognizable (arrow) (Courtesy: Sylvia Glaßer, Magdeburg)

15.5 Virtual Endoscopy

The typical examination of a graphical representation of anatomical image
data is from an exo- or geocentric perspective, i.e., the representation is viewed
with a viewpoint that is located outside of the anatomical scene. This is
analogous to a camera that captures a scene from the outside. To change the
perspective to another image section, affine transformations (e.g., rotation,
translation, scaling) are applied, which in turn transform the coordinate sys-
tem of the graphical representation. Typical changes include zooming to an
interesting detail, after moving that detail into the focus. While the coordinate
system is transformed, the camera remains fixed at its position.

Specific diagnostic questions, however, cannot be sufficiently addressed
with an overview of the anatomical visualization. Instead, details are of



15 Visualization and Exploration of Segmented Anatomic Structures 395

interest that cannot be viewed from the outside. In these cases, we speak of
an egocentric perspective, since the camera is now moving with the observer
through the respective anatomy. Due to the similarity to an endoscopic camera
that is moved through a preformed cavity of the body, this visual repre-
sentation is called virtual endoscopy [46]. It has four different application
scenarios:

• Diagnosis and screening, e.g. [47].
• Intervention and therapy planning, e.g. [48, 49].
• Intra-operative support, e.g. [50].
• Education and training.

15.5.1 Graphical Representation

Once the Organ Of Interest (OOI) is identified, a graphical representation can
be derived that represents the organ. However, the image acquisition stage
must ensure a sufficient contrast between the preformed inside of the organ
to the surrounding voxels. This is to ensure a clear separation between the
inside and the outside of the organ and hence of the inspected organ cavity.

An important advantage of virtual endoscopy (compared to video
endoscopy) is the possibility for semi-transparent rendering of organs. Hence,
occluded structures (e.g., blood vessel, nerve tract, tumor) may become vis-
ible through the organ wall (Fig. 15.21). Nevertheless, the used visualization
methods must provide for semi-transparent rendering to ensure the correct
blending, and hence the correct rendering of the structures.

Fig. 15.21. Virtual bronchoscopy using indirect volume rendering [51]. The dataset
shows the lower airways of the lungs, the pulmonary arterioles (red), and a lung
tumor (green). Left : Virtual endoscopic; Right : Lungs overview
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15.5.2 Interaction Model

The probably most under-estimated technical aspect of virtual endoscopy is
the interaction necessary to steer a virtual camera through the visual OOI
representation. Depending on the quality of the underlying interaction model,
camera control can be very intuitive and easy, or very cumbersome. While con-
sidering the interaction model, it is interesting to note that the actually used
interaction device (e.g., computer mouse, graphic tablet, 3D mouse, joystick)
plays only a minor role.

Since virtual endoscopy of an organ (e.g., colon) should cover the whole
organ surface, the interaction model must ensure sufficient coverage. Exper-
iments have shown that a regular fly-through of a tubular organ in one
direction – probably one of the topological simple cases of virtual endoscopy –
ensures only the inspection of 70% of the inner surface, while a fly-through in
both directions covers up to 95% [52].

In general, we differentiate three interaction paradigms for virtual endo-
scopy [53]:

• Planned or automatic interaction limits the possible interaction of the
camera to the reply along a pre-defined camera path. This paths is either
pre-defined by a user or generated automatically. This interaction provides
only a movie player-like functionality pause, forward, and backward.

• Manual or free interaction imposes no limitations to the movement of the
virtual camera. Unfortunately, the often narrow and non regular structures
of a patient’s anatomy do not permit an easy navigation of the virtual
camera with standard geometric transforms. Furthermore, this interaction
option does not allow for an easy collision avoidance.

• Guided interaction limits the movement of the camera by a number of
constraints. If the right constraints are specified, it provides a good mixture
of flexibility and guidance to a target structure [53]. For example, the
interaction system mimics a submarine that is immersed into a drift to the
target, while the kinematic control of the camera mimics the propulsion
of the submarine.

15.5.3 User Interface

The Graphical User Interface (GUI) implements the actual connection between
the user and the virtual camera. Hence, it must be embedded into the clini-
cal workflow. In particular, the user interface must be clearly structured and
address the requirements of the user (e.g., radiologist, surgeon) [54, 55].

In particular, the GUI should contain facilities to switch between different
graphical representations and interaction models as well as to parameter-
ize them e.g. with respect to speed and colors so that user can adapt it to
their viewing preferences. Often, it is desired to incorporate annotations, such
as free-hand drawings to mark information for surgery [56] or measurement
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facilities, e.g. to show the current diameter of a structure. However, care is nec-
essary not to overwhelm user with too many options. Simplicity and guidance
is often more important than maximum flexibility.

15.5.4 Case Study: Virtual Colonoscopy

Cancer of the colon and rectum is the second leading cause of cancer deaths in
the USA. Approximately 150,000 new cases of colorectal cancer are diagnosed
every year [57], and similar numbers are assumed for western Europe and parts
of Asia. Consequently, it is imperative that an effective diagnostic procedure is
found to detect colonic polyps or tumors at an early stage (smaller than 5mm
in diameter), usually using video or optical endoscopy. Here, a fiber optical
probe is introduced into the colon through the rectum. By manipulating the
tiny camera attached to the tip of the probe, the physician examines the inner
surface of the colon to identify abnormalities. This invasive procedure takes
about one hour and requires intravenous sedation, resulting in high costs.

However, this endoscopic method is typically rather expensive or to cir-
cumstantial for prophylactic screening, somewhat unpleasant, and results in
a low patient acceptance. Consequently, virtual colonoscopy was proposed to
limit optical colonoscopy to cases in which either a suspicious polyp was found
(which induced a biopsy or removal of the polyp) or which were inconclusive
in virtual colonoscopy. An inconclusive result typically happens if (shape)
defects of the graphical representation of the inner colon surface cannot be
identified as either polyps or residual stool.

After cleansing and inflating of the colon (both actions are also required
for video colonoscopy), a CT or MRI scan is performed. The resulting image
stack is pre-processed and examined using a the virtual endoscopy system.

Hong et al. compared the results of video/optical and virtual endoscopy
based on polyps found in both procedures (Fig. 15.22). A similar study has
been presented by Fenlon et al. [58]. The authors found that the performance
of virtual colonoscopy is comparable to video colonoscopy, as long as the
data resolution is sufficient to detect polyps of the respective size. Problems
arose from residual stool, which often was the cause of a false positive finding.
More recently, Pickhardt et al. [47] found several positively identified polyps in
virtual colonoscopy, which have not been seen in the initial video colonoscopy.
Overall, virtual colonoscopy achieved a sensitivity of more than 88% for polyps
larger than 6mm, and a specificity of close to 80%.

15.6 Conclusions

In this chapter, we have described the various options available to render
complex anatomical image data. Segmentations are used to differentiate dif-
ferent organs, in particular if the intensity contrast of the image data is
insufficient to depict the boundaries. Next to the technical aspects, we have



398 D. Bartz and B. Preim

Fig. 15.22. Polyps in video and virtual colonoscopy [53]. Top: video colonoscopy;
Bottom: virtual colonoscopy; Left : 8mm polyp; Middle: 4mm polyp; Right : colon
overview. The polyp positions (yellow marker) are indicated with arrows

discussed advantages and disadvantages of the different ways of visualizing the
image data. Special visualization techniques have been discussed for vascular
structures. In particular, model-based techniques for both, direct and indirect
volume rendering techniques have been presented.

Finally, we have introduced virtual endoscopy. As a principle limitation,
all visualized structures are identified either directly by intensity contrast of
the voxels in the image dataset, or through a segmentation. An incompletely
segmentation of important anatomical structures (e.g., blood vessels) may
lead to critical complications if the physician puts too much trust in this
data. Therefore, a segmentation must be performed with utmost diligence,
while the use of virtual endoscopy must be accompanied with a healthy level
of skepticism.
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Processing and Visualization of Diffusion MRI

James G. Malcolm, Yogesh Rathi, and Carl-Fredrik Westin

Summary. This chapter provides a survey of techniques for processing and visu-
alization of diffusion magnetic resonance imagery. We describe various approaches
to modeling the local diffusion structure from scanner measurements. In particular,
we differentiate between parametric and non-parametric models, and describe regu-
larization approaches. We then look at techniques to trace out neural pathways and
infer global tissue structure. Deterministic, probabilistic, and global trajectories are
analyzed, and techniques of validation are introduced. Last, we draw upon these
as building blocks for the visualization and analysis of the neural architecture of
individuals and groups. Special attention is drawn to volume segmentation, fiber
clustering, and tissue analysis.

16.1 Introduction

The advent of diffusion magnetic resonance imaging (dMRI) has provided
the opportunity for noninvasive investigation of neural architecture. While
structural MRI has long been used to image soft tissue and bone, dMRI
provides additional insight into tissue microstructure by measuring its micro-
scopic diffusion characteristics. To accomplish this, the magnetic field induces
the movement of water while the presence of cell membranes, fibers, or other
macro-molecules hinder this movement. By varying the direction and strength
of the magnetic fields, we essentially use the water molecules as a probe to
get a sense of the local tissue structure.

At the lowest level, this diffusion pattern provides several insights. For
example, in fibrous tissue the dominant direction of allowed diffusion cor-
responds the underlying direction of fibers. In addition, quantifying the
anisotropy of the diffusion pattern can also provide useful biomarkers. Sev-
eral models have been proposed to interpret scanner measurements, ranging
from geometric abstractions to those with biological motivation. In Sect. 16.2,
various models and methods for interpreting the diffusion measurements are
introduced.
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By connecting these local orientation models, tractography attempts to
reconstruct the neural pathways. Tracing out these pathways, we begin to see
how neurons originating from one region connect to other regions and how
well-defined those connections may be. Not only can we examine properties
of the local tissue but we begin to see the global functional architecture of
the brain, but for such studies, the quality of the results relies heavily on the
chosen fiber representation and the method of reconstructing pathways. In
Sect. 16.3, several techniques for tracing out pathways are described.

At the highest level, neuroscientists can use the results of local model-
ing and tractography to examine individuals or groups of individuals. In
Sect. 16.4, approaches to segment tissue with boundaries indistinguishable
with structural MRI are surveyed, applying network analysis to characterize
the macroscopic neural architecture, reconstruct fiber bundles from individual
fiber traces, and analyzing groups of individuals.

16.2 Modeling

16.2.1 Imaging the Tissue

The overall signal observed in an dMRI image voxel (millimetric) is the
superposition of signals from many underlying molecules probing the tis-
sue (micrometric). Thus, the image contrast is related to the strength of
water diffusion. At each image voxel, diffusion is measured along a set
of distinct gradients, u1, . . . ,un ∈ R

3, producing the corresponding sig-
nal, s = [ s1, . . . , sn ]T ∈ R

n. A general weighted formulation that relates
the measured diffusion signal to the underlying fiber architecture may be
written as:

si = s0
∑
j

wje−bjuT
i Djui , (16.1)

where s0 is a baseline signal intensity, bj is the b-value, an acquisition-specific
constant, wj are convex weights, and Dj is a tensor describing a diffusion
pattern. One of the first acquisition schemes developed, diffusion tensor imag-
ing (DTI) uses these measurements to compute a Gaussian estimate of the
diffusion orientation and strength at each voxel [1].

Going beyond this macroscopic description of diffusion, various higher
resolution acquisition techniques have been developed to capture more infor-
mation about the diffusion pattern. One of the first techniques, diffusion
spectrum imaging (DSI), measures the diffusion process at various scales (mul-
tiscale) by sampling densely throughout the voxel [2]. From this, the Fourier
transform is used to convert the signal to a diffusion probability distribution.
Due to a large number of samples acquired (usually more than 256 gradient
directions), this scheme provides a much more accurate description of the dif-
fusion process. However, on account of the large acquisition time (of the order
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of 1–2h per subject), this technique is not typically used in clinical scans, and
its use is restricted to few research applications.

Instead of spatially sampling the diffusion in a lattice throughout the voxel,
a spherical shell sampling could be used. Using this sampling technique, it has
been demonstrated that the orientation distribution function (ODF) could
be recovered from the images acquired on a single spherical shell [3]. This
significantly reduced the acquisition time, while providing most of the infor-
mation about the underlying diffusion in the tissue. Naturally, this led to
the application of techniques for estimating functions on a spherical domain.
For example, Q-Ball Imaging (QBI) demonstrated a spherical version of the
Fourier transform to reconstruct the probability diffusion as an iso-surface [3].

To begin studying the microstructure of fibers with these imaging tech-
niques, we need models to interpret these diffusion measurements. Such
models fall broadly into two categories: parametric and non-parametric.

16.2.2 Parametric Models

One of the simplest models of diffusion is a Gaussian distribution: an ellip-
tic (anisotropic) shape indicates a strong diffusion direction, while a more
rounded surface (isotropic) indicates less certainty in any particular direction
(Fig. 16.1c). While robust, assuming this Gaussian model is inadequate in
cases of mixed fiber presence or more complex orientations where the sig-
nal may indicate a non-Gaussian pattern. To handle these complex patterns,
higher resolution imaging and more flexible parametric models have been pro-
posed including mixtures of tensors [4, 6–9] and directional functions [10, 11].
While these typically require the number of components to be fixed or esti-
mated separately, more continuous mixtures have also been proposed [12].
Furthermore, biologically inspired models and tailored acquisition schemes
have been proposed to estimate physical tissue microstructure [13, 14].

16.2.3 Non-parametric Models

Non-parametric models can often provide more information about the diffu-
sion pattern. Instead of modeling a discrete number of fibers as in parametric
models, non-parametric techniques estimate a spherical orientation distribu-
tion function indicating potential fiber directions and the relative certainty
thereof. For this estimation, an assortment of surface reconstruction methods
have been introduced:

• QBI to directly transform the signal into a probability surface [3]
• Spherical harmonic representations [5, 15, 16]
• Higher-order tensors [17, 18]
• Diffusion profile transforms [19, 20]
• Deconvolution with an assumed single-fiber signal response [21, 22]
• And more
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Fig. 16.1. Model comparison. Comparison of various models within a coronal slice
(a) passing through the corpus callosum. In (b) the original signal appears noisy. In
(c) a single tensor fit provides a robust estimate of the principal diffusion direction.
In (d) a two-tensor model is fit to planar voxels and the two axes are reported [4]. In
(e) spherical harmonics provide a smoothed non-parametric estimate of the signal
surface eliminating much of the noise seen in (b) [5]

A comparison of techniques is given in Fig. 16.1. For example, Fig. 16.1e
shows a spherical harmonic reconstruction of the signal. Compare this to the
original signal in Fig. 16.1b.

It is important to keep in mind that there is a distinction made often
between the reconstructed diffusion ODF and the putative fiber ODF; while
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most techniques estimate the diffusion function, its relation to the underlying
fiber function is still an open problem. Spherical convolution is designed to
directly transform the signal into a fiber distribution [15,19,21], yet diffusion
sharpening strategies have been developed to deal with Q-ball and diffusion
functions [23].

While parametric methods directly describe the principal diffusion direc-
tions, interpreting the diffusion pattern from model-independent representa-
tions typically involves determining the number and orientation of principal
diffusion directions present. A common technique is to find them as surface
maxima of the diffusion function [16, 21, 23], while another approach is to
decompose a high-order tensor representation of the diffusion function into a
mixture of rank-1 tensors [24].

16.2.4 Regularization

As in all physical systems, the measurement noise plays a nontrivial role, and
so several techniques have been proposed to regularize the estimation. One
could start by directly regularizing the MRI signal by designing filters based on
the various signal noise models [25, 26]. Alternatively, one could estimate the
diffusion tensor field and then correct these estimated quantities. For spherical
harmonic modeling, a regularization term can be been directly included in the
least-squares formulation [5, 16].

Attempts such as these to manipulate diffusion-weighted images or tensor
fields have received considerable attention regarding appropriate algebraic and
numeric treatments [27, 28].

Instead of regularizing signal or model parameters directly, an alterna-
tive approach is to infer the underlying geometry of the vector field. Another
interesting approach treats each newly acquired diffusion image as a new sys-
tem measurement. Since diffusion tensors and spherical harmonics can be
estimated within a least-squares framework, one can use a Kalman filter to
update the estimate and optionally stop the scan when the model parameters
converge [29]. Furthermore, this online technique can be used to alter the gra-
dient set so that, where the scan to be stopped early, the gradients up to that
point are optimally spread (active imaging) [30].

16.2.5 Characterizing Tissue

The goal of diffusion imaging is to draw inferences from the diffusion measure-
ments. As a starting point, one often converts the diffusion weighted image
volumes to a scalar volume much like structural MRI or CT images. Starting
with the standard Gaussian diffusion tensor model, an assortment of scalar
measures have been proposed to quantify the size, orientation, and shape of
the diffusion pattern [31]. For example, fractional anisotropy (FA) quantifies
the deviation from an isotropic tensor, an appealing quantity, because it cor-
responds to the strength of diffusion while remaining invariant to orientation.
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Derivatives of these scalar measures have also been proposed to capture more
information about the local neighborhood [32, 33], and these measures have
been extended to high-order tensors [34]. Furthermore, a definition of general-
ized anisotropy has been proposed to directly characterize anisotropy in terms
of variance in the signal, hence avoiding an assumed model. While geomet-
ric in nature, studies have shown these to be reasonable proxy measures for
neural myelination [35, 36]. Some studies have also examined the sensitivity
of such measures against image acquisition schemes [37, 38].

Meaningful visualization of diffusion images is difficult because of their
multivariate nature, and much is lost when reducing the spectral signal down
to scalar intensity volumes. Several geometric abstractions have been pro-
posed to convey more information. Since the most common voxel model is
still the Gaussian diffusion tensor, most of the effort has focused on visualiz-
ing this basic element. The most common glyph is an ellipsoid simultaneously
representing the size, shape, and orientation; however, since tensors have six
free parameters, more elaborate representations have been proposed to visu-
alize these additional dimensions using color, shading, or subtle variations in
shape [31, 39]. Apart from tensors, visualization strategies for other models
have received comparatively little attention, the typical approach being to
simply to visualize the diffusion isosurface at each voxel.

A vast literature exists on methods of acquisition, modeling, reconstruc-
tion, and visualization of diffusion images. For a comprehensive view, we
suggest [31, 40].

16.3 Tractography

To compliment the wide assortment of techniques for signal modeling and
reconstruction, there is an equally wide range of techniques to infer neural
pathways.

At the local level, one may categorize them either as tracing individual
connections between regions or as diffusing out to estimate the probability of
connection between regions.

In addition, more global approaches have been developed to consider
not only the local orientations but also the suitability of entire paths when
inferring connections.

16.3.1 Deterministic Tractography

Deterministic tractography involves directly following the diffusion pathways.
Typically, one places several starting points (seed points) in one region of
interest (ROI) and iteratively traces from one voxel to the next, essentially
path integration in a vector field. One terminates these fiber bundles when
the local diffusion appears week or upon reaching a target region.
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Fig. 16.2. Tractography. Cutaway showing tractography throughout the left hemi-
sphere colored by FA to indicate diffusion strength [41]. From this view, the fornix
and cingulum bundle are visible near the center

Figure 16.2 offers a glimpse from inside the brain using this basic approach.
Often additional regions are used as masks to post-process results, e.g.,
pathways from Region A but not touching Region B.

In the single tensor model, standard streamline tractography follows the
principal diffusion direction of the tensor, while multifiber models often
include techniques for determining the number of fibers present or when path-
ways branch [9, 42]. Since individual voxel measurements may be unreliable,
several techniques have been developed for regularization, for example, using
the estimate from the previous position [43] as well as filtering formulations
for path regularization [44] and model-based estimation [41].

The choice of model and optimization mechanism can drastically effect
the final tracts. To illustrate, Fig. 16.3 shows tractography from the center
of the corpus callosum using a single-tensor model and a two-tensor model
using the filtered technique from [41].

16.3.2 Probabilistic Tractography

While discrete paths intuitively represent the putative fiber pathways of inter-
est, they tend to ignore the inherent uncertainty in estimating the principle
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Fig. 16.3. Tractography [41]. Tractography from the center of the corpus callosum
(seed region in yellow). The single-tensor model (top) captures only the corona
radiata and misses the lateral pathways known to exist. The two-tensor method [41]
(bottom) reveals many of these missing pathways (highlighted in blue)

diffusion directions in each voxel. Instead of tracing discrete paths to connect
voxels, one may query the probability of voxel-to-voxel connections, given the
diffusion probability distributions reconstructed in each voxel.

Several approaches have been developed based on sampling. For example,
one might run streamline tensor tractography treating each as a Monte Carlo
sample; the more particles that take a particular path, the more likely that
particular fiber pathway [45]. Another approach would be to consider more of
the continuous diffusion field from Q-ball or other reconstructions [8, 46–48].
By making high curvature paths unlikely, path regularization can be naturally
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enforced within the probabilistic framework. Another approach is to propagate
an arrival-time isosurface from the seed region out through the diffusion field,
the front evolution force being a function of the local diffusivity [49, 50].

Using the full diffusion reconstruction to guide particle diffusion has
the advantage of naturally handling uncertainty in diffusion measurements,
but for that same reason, it tends toward diffuse tractography and false-
positive connections. One option is to constrain diffusivity by fitting a model,
thereby ensuring definite diffusion directions yet still taking into account
some uncertainty [8, 45, 47]. A direct extension is to introduce a model
selection mechanism to allow for additional components where appropri-
ate [6, 51]. However, one could stay with the nonparametric representations
and instead sharpen the diffusion profile to draw out the underlying fiber
orientations [23, 52].

16.3.3 Global Tractography

Despite advances in voxel modeling, discerning the underlying fiber configura-
tion has proven difficult. For example, looking at a single voxel, the symmetry
inherent in the diffusion measurements makes it difficult to tell if the observed
pattern represents a fiber curving through the voxel or a fanning pattern. Reli-
able and accurate fiber resolution requires more information than that of a
single voxel. For example, instead of estimating the fiber orientation, one could
infer the geometry of the entire neighborhood [53].

Going a step further, one could say that reliable and accurate connectivity
resolution requires even more information, beyond simply a voxel neighbor-
hood. In some respects, probabilistic tractography can be seen to take into
account more global information. By spawning thousands of particles, each
attempting to form an individual connection, probabilistic techniques are able
to explore more possibilities before picking those that are likely. However, if
these particles still only look at the local signal as they propagate from one
voxel to the next, then they remain susceptible to local regions of uncertainty.
Even those with resampling schemes are susceptible since the final result is
still a product of the method used in local tracing [48].

A natural step to address such problems is to introduce global connectiv-
ity information into local optimization procedures of techniques mentioned
above. The work of [54] does this by extending the local Bayesian formulation
in [6] with an additional prior that draws upon global connectivity informa-
tion in regions of uncertainty. Similarly, one could use an energetic formulation
still with data likelihood and prior terms, but additionally introduce terms
governing the number of components present [55].

Another approach is to treat the entire path as the parameter to be opti-
mized and use global optimization schemes. For example, one could model
pathways as piecewise linear with a data likelihood term based on signal fit
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and a prior on spatial coherence of those linear components [56]. One advan-
tage of this path-based approach is that it somewhat obviates the need for
a multi-fiber voxel model; however, such a flexible global model dramatically
increases the computational burden.

An alternative formulation is to find geodesic paths through the volume.
Again using some form of data likelihood term, such methods then use tech-
niques for front propagation to find globally optimal paths of connection
[57–61].

Tractography is often used in group studies which typically require a com-
mon atlas for inter-subject comparison. Beginning with the end in mind, one
could determine a reference bundle as a template and use this to drive tractog-
raphy. This naturally ensures both the general geometric form of the solution
and a direct correspondence between subjects [62,63]. Alternatively, the tract
seeding and other algorithm parameters could be optimized until the tracts
(data driven) approach the reference (data prior) [64]. Since this requires pre-
specifying such a reference bundle, information that may be unavailable or
difficult to obtain, one could even incorporate the formulation of the reference
bundle into the optimization procedure itself [65].

16.3.4 Validation

In attempting to reconstruct neural pathways virtually, it is important to keep
in mind the inherent uncertainty in such reconstructions. The resolution of
dMRI scanners is at the level of 3–10mm3; while physical fiber axons are often
an order of magnitude smaller in diameter – a relationship that leaves much
room for error. Some noise or a complex fiber configuration could simply look
like a diffuse signal and cause probabilistic tractography to stop in its tracks,
while a few inaccurate voxel estimations could easily send the deterministic
tracing off course to produce a false-positive connection. Even global methods
could produce a tract that fits the signal quite well but incidentally jumps over
an actual boundary in one or two voxels it thinks are noise. Consequently, a
common question is: Are these pathways really present?

With this in mind, an active area of study is validating such results. Since
physical dissection often requires weeks of tedious effort, many techniques
have been used for validating these virtual dissections. A common starting
point is to use synthetic and physical phantoms with known parameters when
evaluating new methods [66]. When possible, imaging before and after inject-
ing radio-opaque dyes directly into the tissue can provide some of the best
evidence for comparison [67,68]. Another powerful approach is to apply boot-
strap sampling or other non-parametric statistical tests to judge the sensitivity
and reproducibility of resulting tractography against algorithm parameters,
image acquisition, and even signal noise [37, 38, 64, 69, 70].
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16.4 Applications

Having outlined various models and methods of reconstructing pathways, we
now briefly cover several methods of further analysis.

16.4.1 Volume Segmentation

Medical image segmentation has a long history, and much of it focused
on scalar intensity-based segmentation of anatomy. For neural segmenta-
tion, structural MRI easily reveals the boundaries between gray-matter and
white-matter, and anatomic priors have helped further segment some internal
structures [71]; however, the boundaries between many structures in the brain
remain invisible with structural MRI alone. The introduction of dMRI has
provided new discriminating evidence in such cases where tissue may appear
homogeneous on structural MRI or CT but contain distinct fiber populations.

To begin, most work has focused segmentation of the estimated ten-
sor fields. Using suitable metrics to compare tensors, these techniques often
borrow directly from active contour or graph cut segmentation with the
approach of separating distributions. For example, one could define a Gaus-
sian distribution of tensors to approximate a structure of interest [72]. For
tissues with more heterogeneous fiber populations, e.g., the corpus callosum
as it bends, such global parametric representations are unsuitable. For this,
non-parametric approaches are more appropriate at capturing the variation
throughout such structures [73, 74]. Another approach to capture such vari-
ation is to limit the parametric distributions to local regions of support,
essentially robust edge detection [75].

In Fig. 16.4, a graph cut segmentation of the corpus callosum is visu-
alized [74]. The color-coded FA image is shown for visualization, while
segmentation was performed on the underlying tensor data.

When computing regional statistics for segmentation, one needs to calcu-
late the distance between any two tensors in the field. To do so, one must take
into account that tensor parameters do not lie in a Euclidean vector space,
i.e., addition of two tensors’ coefficients does not necessarily still produce a
new valid tensor. Ignoring this and using the standard L2-norm produces a
poor segmentation (Fig. 16.4, middle), while properly accounting for the non-
linearity via a Riemannian mapping produces a more accurate segmentation
(Fig. 16.4, bottom).

An altogether different approach to segmenting a structure is to divide it
up according to where portions connect elsewhere. For example, the thala-
mus contains several nuclei indistinguishable in standard MR or even with
contrast. After tracing connections from the thalamus to the cortex, one
study demonstrated that grouping these connections revealed the underlying
nuclei [76].
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Fig. 16.4. Tensor segmentation [74]. Segmenting the corpus callosum using the
graph cut technique from [74] (side view) is visualized as color-coded anisotropy,
where the color intensity is based on FA (between 0 and 1) and the color red, blue,
or green indicates the orientation of that voxel along the x-, y-, or z-axis, respectively.
Top: initial seed regions; Middle: Euclidean mapping not taking into account the
structure of the underlying tensor manifold; Bottom: Riemannian mapping taking
this structure into account when computing statistics and so produces a correct
segmentation

16.4.2 Fiber Clustering

The raw output of full-brain tractography can produce hundreds of thou-
sands of such tracings, an overwhelming amount of information. One approach
to understanding and visualizing such results is to group individual tracings
into fiber bundles. Such techniques are typically based around two important
design choices: the method of comparing fibers and the method of clustering
those fibers.

In comparing two fibers, one often starts by defining a distance measure,
these typically being based on some point-to-point correspondence between
the fibers [77–79]. With this correspondence in hand, one of the most common
distances is then to take the mean closest point distance between the two
fibers (Hausdorff distance). An alternative is to transform each fiber to a
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new vector space with a natural norm, e.g., a fiber of any length can be
encoded with only the mean and covariance of points along its path and
then use the L2 distance [80]. An altogether different approach is to consider
the spatial overlap between fibers [81]. Since full-brain tractography often
contains many small broken fragments as it tries to trace out bundles, such
fragments are often separated from their actual cluster. Measures of spatial
overlap may be more robust in such cases. In each of these methods, fibers were
only considered as sequences of points, i.e., connections and orientations were
ignored. Recent work demonstrates that incorporating such considerations
provides robust descriptors of fiber bundles [82].

Based on these distances, several methods have been developed to cluster
the fibers. Spectral methods typically begin by computing the pairwise dis-
tance (affinity) between any two fibers and encode this as an n × n Gram
matrix, after which normalized cuts can be applied to partition the Gram
matrix and hence the fibers [80]. Affinity has recently been demonstrated as
an efficient and robust alternative which automatically determines the num-
ber of clusters to support a specified cluster size preference [83]. In Fig. 16.5,
shows how clustering can automatically reveal known structures and provide
a more coherent view of the brain. In addition, clustering can be used to judge
outliers. For example, Fig. 16.6 reveals several streamlines that appear to have
gone off track relative to the cluster centers.

Another clustering approach is to use the inner product space itself. For
example, one can efficiently group directly on the induced manifold by itera-
tively joining fibers most similar until the desired clustering emerges. To avoid
construction of the large Gram matrix, variants of expectation maximiza-
tion (EM) have been demonstrated to iteratively cluster fibers, an approach
that naturally lends itself to incorporating anatomic priors [79, 81, 84]. Alter-
natively, one can begin with the end in mind by registering a reference

Fig. 16.5. Clustered tractography. Full-brain streamline tractography clustered
using affinity propagation. Viewed from the outside (left) and inside cutting away
the left hemisphere (right). Among the visible structures, we see the cingulum bundle
(yellow), internal capsule (red), and arcuate (purple)
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Fig. 16.6. Clustered fronto-occipital fibers. Fronto-occipital fibers from the right
hemisphere using streamline tractography and clustered into bundles (left). Viewing
the most representative fiber in each bundle (right), we see a fiber from one cluster
(red) that appears to have wandered off the pathway

fiber bundle template to patients thus obviating any need for later spatial
normalization or correspondence [65].

16.4.3 Connectivity

While tissue segmentation can provide global cues of neural organization, it
tells little of the contribution of individual elements. Similarly, while clustered
tracings are easily visualized, deciphering the flood of information from full-
brain tractography demands more comprehensive quantitative analysis. For
this, much has been borrowed from network analysis to characterize the neural
topology. To start, instead of segmenting fibers into bundles, one can begin
by classifying voxels into hubs or subregions into subnetworks [85, 86].

Dividing the brain up into major functional hubs, one can then view it as
a graphical network as in Fig. 16.7. Each of these edges is then often weighted
as a function of connection strength, but may also incorporate functional
correlation to give further evidence of connectivity.

One of the first results of such analysis was the discovery of dense hubs
linked by short pathways, a characteristic observed in many complex physi-
cal systems (small-world phenomena). Another interesting finding came from
combining anatomic connections from dMRI with neuronal activity provided
by fMRI [87]. They found that areas which are functionally connected are
often not structurally connected; hence, tractography alone does not provide
the entire picture.

For a recent review of this emerging field of structural and functional
network analysis, we recommend [88].
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Fig. 16.7. Neural network. The brain viewed as a network of weighted connec-
tions. Each edge represents a possible connection and is weighted by the strength of
that path. Many techniques from network analysis are applied to reveal hubs and
subnetworks within this macroscopic view

16.4.4 Tissue Analysis

Several reviews exist documenting the application and findings of using various
methods [89–91].

In forming population studies, there are several approaches for framing
the analysis among patients. For example, voxel-based studies examine tis-
sue characteristics in regions of interest [92]. Discriminant analysis has been
applied to determine such regions [93]. Alternatively, one could also perform
regression on the full image volume taking into account variation not only
in diffusion but also in the full anatomy [94]. In contrast, tract-based studies
incorporate the results of tractography to use fiber pathways as the frame of
reference [77, 95], and several studies have demonstrated the importance of
taking into account local fluctuations in estimated diffusion [63,78,84,96,97].

A common approach in many of these studies is to focus on characterizing
individual pathways or bundles. To illustrate this analysis, Fig. 16.8 shows
fibers connecting a small region in each hemisphere. We then average FA
plotted along the bundle as a function of arc-length. Furthermore, we plot
the FA from both single- and two-tensor models to show how different models
often produce very different tissue properties.
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Fig. 16.8. Pathway analysis. Plotting FA as a function of arc-length to examine
local fluctuations. Fibers are selected that connect the left and right seed regions
(green). Note how the FA from single-tensor (blue) is lower in regions of crossing
compared to two-tensor FA (red)

16.5 Summary

Diffusion MRI has provided an unprecedented view of neural architecture.
With each year, we develop better image acquisition schemes, more appro-
priate diffusion models, more accurate pathway reconstruction, and more
sensitive analysis.

In this survey, we began with an overview of the various imaging techniques
and diffusion models. While many acquisition sequences have become widely
distributed for high angular resolution imaging, work continues in developing
sequences and models capable of accurate resolution of biological properties
such as axon diameter and degree of myelination [14]. We then reviewed var-
ious parametric models starting with the diffusion tensor on up to various
mixture models as well as high-order tensors. Work continues to develop more
accurate and reliable model estimation by incorporating information from
neighboring voxels [41, 53]. Furthermore, scalar measures derived from these
models similarly benefit from incorporating neighborhood information [33].

Next we outlined various methods of tractography to infer connectiv-
ity. Broadly, these techniques took either a deterministic or probabilistic
approach. We also documented the recent trend toward global approaches,
those that combine local voxel-to-voxel tracing with a sense of the full
path [55]. Even with such considerations, tractography has proven quite sen-
sitive to image acquisition and initial conditions; so much work has gone
into validation. Common techniques are the use of physical phantoms [66] or
statistical tests like bootstrap analysis [64, 69, 70].
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Finally, we briefly introduced several machine-learning approaches to make
sense of the information found in diffusion imagery. Starting with segmenta-
tion, several techniques for scalar intensity segmentation have been extended
to dMRI. With the advent of full-brain tractography providing hundreds of
thousands of fiber paths, the need to cluster connections into bundles has
become increasingly important. The application of network analysis to con-
nectivity appears to be an emerging area of research, especially in combination
with alternate imaging modalities [88]. Finally, we noted several approaches
to the analysis of neural tissue itself in ROIs or along pathways.
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Summary. Over the past 15 years Digital Imaging and Communications in Medicine
(DICOM) has established itself as the international standard for medical image
communication. Most medical imaging equipment uses DICOM network and media
services to export image data, thus making this standard highly relevant for medi-
cal image processing. The first section of this chapter provides a basic introduction
into DICOM with its more than 3,600 pages of technical documentation, followed
by a section covering selected advanced topics of special interest for medical image
processing. The introductory text familiarizes the reader with the standard’s main
concepts such as information objects and DICOM media and network services.
The rendering pipeline for image display and the concept of DICOM conformance
are also discussed. Specialized DICOM services such as advanced image display
services that provide means for storing how an image was viewed (“Softcopy Pre-
sentation States”) and how multiple images should be aligned on an output device
(“Structured Display” and “Hanging Protocols”) are described. We further describe
DICOM’s sophisticated approach (“Structured Reporting”) for storing structured
documents such as CAD information, which is then covered in more detail. Finally,
the last section provides an insight into a newly developed DICOM service called
“Application Hosting”, which introduces a standardized plug-in architecture for
image processing, thus permitting users to utilize cross-vendor image processing
plug-ins in DICOM applications.

17.1 DICOM Basics

This section provides an overview of the Digital Imaging and Communications
in Medicine (DICOM) standard and, therefore, lays a foundation for discussion
of advanced DICOM services later in this chapter.
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edly. We will remember him for his evident contributions to this field and for his
outstanding personal character.
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17.1.1 Introduction and Overview

DICOM is a standard in the area of medical informatics and has success-
fully penetrated wide areas of medical image communication [1]. Today, most
imaging modalities are digital and offer a DICOM interface. Originating from
radiology, the standard has established in other medical fields such as oncology
or cardiology and has been extended beyond the communication of images,
e.g., by providing workflow and security services.

DICOM emerged in 1993 from the American College of Radiology (ACR) –
National Electrical Manufacturers Association (NEMA) standard [2], which
was not very successful due to some conceptual weaknesses. Grandfather-
ing some building blocks of ACR/NEMA but eliminating most of its flaws,
DICOM was able to widely supersede early proprietary protocols and to pre-
vent “private” communication solutions from being established. The DICOM
standard is being developed together by industry and users. Since the stan-
dard’s initial release in 1993, it has been continuously evolving over the years.
Thus, the standard has grown from originally around 750 pages in 1993 to cur-
rently more than 3,600 pages. Starting as an industry standard, DICOM has
also become an international standard over the last years. In 2004, DICOM
was published under the title Medical Image Communication (MEDICOM)
as European Standard (EN) [3] and in 2006 as international ISO standard [4].

The DICOM standard text currently consists of 18 documents each focus-
ing on different aspects. The standard is being extended regularly by the
so-called supplements and correction proposals. Supplements are used for
introducing new services and objects into the standard as necessary. In rare
cases objects or services are also retired, meaning that they should not be
implemented by modern systems any more but may be supported for back-
ward compatibility. Correction proposals are applying only small changes to
the standard, e.g., they correct ambivalent wordings in the text that may lead
to non-interoperable implementations. After being balloted, supplements and
correction proposals immediately become part of the standard (status “Final
Text”). Frequently, every 1 or 2 years all final text documents are applied
to the full standard text which is then published. Thus when talking about
the “current standard”, the last edition of the standard must be taken into
account (at this time “DICOM 2008”), plus all documents that received status
“Final Text” since then.

17.1.2 Information Objects

Part 3 describes information objects representing data structures for medical
images or other documents. There are object definitions for CT, ultrasound,
MRI and so on. Also some objects are dedicated to non-images such as elec-
trocardiograms (ECGs) and raw data. DICOM image objects – being the
most common kind of DICOM objects and being most relevant in the context
of this book – do contain lots of information besides the actual pixel data.
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Thus, a DICOM image contains information regarding the patient examined
(e.g., name, sex, date of birth), device parameters, or rendering information.
Because of intermixing information from different fields, these kind of objects
are called “Composite Objects”. They can be thought of persistent docu-
ments that can be stored to an archive, in comparison to so-called Normalized
Objects (not further discussed here) which in most cases are transient and may
be more associated with a message than a document.

In part 3, DICOM defines the structure of objects by Information Object
Definitions (IODs). An IOD consists of a short description followed by a so-
called module table. A module consists of a list of attributes from a specific
field, e.g., the patient module contains attributes such as patient’s name or
patient’s sex. Since many modules like the patient module are needed in dif-
ferent object types (i.e., different IODs), they are only printed once in the
standard and then referenced from the module table. Modules as well as their
contained attributes can be mandatory, optional or conditional. Attributes
sometimes have further restrictions on the values to be stored.

An attribute is uniquely defined by its so-called Tag, a number composed
of two 16-bit numbers written in hexadecimal form. The first and second
number are often referred to as group and element number, respectively. An
attribute also has a name, like patient’s name being the name of the attribute
with tag (0010,0010). A value for a specific attribute is not only constrained
by its description in the corresponding module but also due to the fact that
every attribute in DICOM is tied to one of 27 data types. These are called
value representation (VR). Each VR is abbreviated with two capital letters.
There are VRs for numbers, texts, codes, person names, binary data, etc. The
full ruleset for every VR can be found in part 5 of the standard. Tag, Name
and VR can be looked up in part 6 of the standard which provides a list of
all defined DICOM attributes sorted by tag (Table 17.1).

All attributes defined in the standard have even group numbers. However,
it is permitted to include vendor-specific attributes into an IOD. Those always
have an odd group number and are called “Private”(attributes).

Table 17.1. Excerpt from DICOM Data Dictionary. The last column Value Mul-
tiplicity (VM) describes how many values can be stored into that attribute. Most
frequently, VM is exactly one, but attributes such as “Other Patient Names” can
store one to many items

Tag Name VR VM

(0010,0010) Patient’s Name PN 1
(0010,0020) Patient ID LO 1
(0010,0021) Issuer of Patient ID LO 1
(0010,0030) Patient’s Birth Date DA 1
(0010,0040) Patient’s Sex PN 1
(0010,1000) Other Patient IDs LO 1-n
(0010,1001) Other Patient Names PN 1-n
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As described, a DICOM image object is composed of a list of DICOM
attributes collected from different modules. Sometimes it can be useful to
structure attributes not only in a flat list but also in a more tree-like fash-
ion. This is achieved by attributes having a special VR called “Sequence
of Items”(SQ). Like other attributes, sequence attributes have a name and
a VR. However, the value of a sequence attribute is made of a list of so-
called items. An item is a block structure containing a list of (generally)
arbitrary attributes. Often the number of items and also their content is
restricted in terms that the permitted attributes inside are constrained in
the corresponding module definition.

In DICOM, all composite objects are sorted into a four-level hierarchy.
Every object belongs to exactly one so-called Series. Each Series is contained in
exactly one “Study” and a Study relates to exactly one patient. The other way
round, a patient can have multiple Studies which may consist of one or more
Series including one or more objects (e.g., images) each. DICOM does not
clearly define whether to start an additional Study or Series when new images
are acquired. Therefore, a Study is never “completed” from the technical point
of view. However, it is not possible to place images from different modalities
or devices (e.g., CT and MR) into the same Series.

17.1.3 Display Pipeline

DICOM offers a generic image model that allows for storing a wide range of
image types, including movies, color and grayscale, high and low resolution
images. The Image Pixel Module is included in any DICOM Image IOD. It
contains attributes for the actual pixel data and information about how to
interpret it for visualization. Besides other information, this module includes
attributes for:

• Image Resolution: The attributes Rows and Columns are used to denote
width and height of the image. If pixels are not square, the proportion of
pixels can be defined in the Pixel Aspect Ratio attribute.

• Photometric Interpretation: This attribute stores the color model to be
used for interpretation of the pixel data. Possible values range from RGB,
YCbCr, monochrome to palette-based color models and others.

• Pixel Representation: The values in the Pixel Data attribute can be stored
to be interpreted signed or unsigned as denoted by the Pixel Representa-
tion attribute. Unsigned pixel values are typically needed for CT images,
where the pixel values represent (the signed range of) Hounsfield Units.

• Pixel Data (uncompressed images): Each pixel sample value, representing
either a grayscale or a color component value, is stored here in a “pixel
cell”. However, the sample value must not necessarily fill a whole cell
but some bits may remain unused. Three attributes, Bits Allocated, Bits
Stored, and High Bit, determine the alignment of sample values in cells.
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Fig. 17.1. Bits Allocated, Bits Stored and High Bit

Bits Allocated denotes the number of bits for one cell, Bits Stored the num-
ber of those bits actually used, and High Bit the highest bit position used
within the cell. Figure 17.1 shows two examples. All pixels of the image
are stored one after another, from left to right and in top-down direction.
If multiple frames are stored, the next frame just starts immediately after
the last pixel of the previous frame.

• Pixel Data (compressed images): In case the pixel data is compressed, the
content of the attribute contains a special sequence called Pixel Sequence
which usually contains one so-called pixel item per frame1. The very first
pixel item is dedicated to an (optionally empty) offset table holding byte
offsets to each frame. Each pixel item containing a frame consists of a
“blob” of encoded data. The type of compression used can be derived from
the Transfer Syntax (Sect. 17.1.4) of the image object. Attributes such as
Image Resolution, Photometric Interpretation and so on then describe the
characteristics of the uncompressed image. Pixel Data being compressed
are often referred to as “encapsulated”.

Rendering an image to an output device is based on the attributes from
the Image Pixel Module, but they are not sufficient for resulting in similar
viewing impressions of a single image on different output devices. That is
why over the years, DICOM also standardized the rendering process resulting
in the display pipeline shown in Fig. 17.2. The overall idea is to transform
the implementation-specific input values from the Pixel Data attribute into
a standardized color space: For grayscale those output values are called Pre-
sentation Values (P-Values), and for color they are named Profile Connection
Space Values (PCS-Values), which then can be interpreted by a rendering
system supporting appropriate calibration means. However, to produce P- or
PCS-Values the stored pixels pass a chain of transformations. For the majority
of images, most of them are optional.

The following transformation steps apply to grayscale (monochrome)
images:

• Modality LUT Transformation: This transformation can be used for trans-
forming originally stored manufacturer-dependent pixel values into manu-
facturer-independent values that are appropriate for the corresponding
modality, e.g., Hounsfield Units for CT images or optical density for film

1 It is also permitted to have frames spanning more than one item but that is not
very common
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Fig. 17.2. DICOM Grayscale and Color Image Transformation Models

digitizers. Either a linear transformation (attributes Rescale Slope and
Rescale Intercept) can be defined or a Lookup Table (LUT) for a non-linear
transformation.

• Mask Subtraction: The Mask Subtraction Module can be used to define
how frames of one or more images can be subtracted from each other
to construct a meaningful result image. This transformation makes sense
especially for X-ray angiography (XA) or X-ray radio-fluoroscopy (XRF)
images to compare frames taken from a body part acquired one time with
and another time without contrast media. When subtracted, the resulting
image nicely highlights the vessel system.

• VOI LUT Transformation: Offering the same operations as the modal-
ity LUT transformation (using different attributes, e.g., Window Width
and Window Center instead of Rescale Slope and Intercept), the Value
of Interest (VOI) LUT Module transforms the incoming grayscale values
in such manner that relevant details of the image are selected and high-
lighted. This is due to the fact that usually a medical grayscale image
contains more shades of gray than the human eye (and the monitor) is
able to distinguish simultaneously. Hence, it is necessary to either focus
on a specific range of grayscale values and/or map the input values to
appropriate output values. VOI LUT transformations are often used as
presets highlighting either bones, soft tissue or other image content.

• Presentation LUT Transformation: For use in calibrated environments,
the Presentation LUT may be used as a final step after the VOI LUT to
produce P-Values. P-Values then can be interpreted by systems calibrated
according to the grayscale standard display function defined in DICOM
part 14. For a human observer, similar viewing impressions on different
output devices are obtained.
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The module for the Presentation LUT Transformation is available for the
DICOM print service and can also be defined in Presentation State objects
(Sect. 17.2.1). For some grayscale images, it may be interesting to introduce
pseudo colors that replace the original shades of gray. This can be done using
the Palette Color LUT module.

For color images, the rendering pipeline is comparably short. True color
images can be converted to PCS-Values by the Profile Connection Space
Transformation which makes use of an International Color Consortium (ICC)
profile [5] stored within the attributes of the image object. For indexed color
models, first the Palette Color LUT Transformation has to be evaluated before
applying the Connection Space Transformation.

17.1.4 Network and Media Services

Section 17.1.2 has outlined how DICOM image objects are composed out of
attributes. In the following, the network and media services are discussed,
which operate on the defined IODs, i.e., by sending an image object to an
archive or burning it to CD. Therefore, it is not sufficient to define which
attributes (like Patient’s Name or the image resolution) must be included,
but also how the data are encoded for network transmission or media storage.
This chapter selects and summarizes the most (practically) relevant DICOM
services and describes how encoding of objects is characterized by means of
so-called Transfer Syntaxes.

A service in DICOM is called Service Object Pair (SOP) Class. This notion
already implies that a specific service is always paired with a specific object
(i.e., IOD). For example, there is one service for transmitting CT Images
that are based on the CT Image IOD (CT Image Storage SOP Class) and
another for MRI objects (MRI Storage SOP Class). In the standard, related
SOP Classes are grouped together in a so-called Service Class. For example,
the above CT and MR storage services belong to the group named “Storage
Service Class”.

Transfer Syntaxes

When two parties are about to exchange DICOM information (e.g., images),
they must agree which kind of information to exchange (SOP Class) but also
how these data are encoded. DICOM offers 35 Transfer Syntaxes with 14 of
them being already retired from the standard. All Transfer Syntaxes share a
common approach (Fig. 17.3) and differ only in three aspects:

• Implicit vs. Explicit VR: One Transfer Syntax does not send the VR field
but leaves it up to the receiver to look up the VR from a data dictionary
(electronic counterpart of part 6 of the standard). This behavior is called
“Implicit VR” while sending with VR information is named “Explicit VR”.

• Little vs. Big Endian: When transferring binary values that need more
than one byte for transmission, it must be decided which byte should be
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Fig. 17.3. Attribute encoding for DICOM data streams. All attributes of an object
are sorted by tag in ascending order and then transmitted with their VR (exception:
Little Endian Implicit VR), the attribute value and its length

sent or stored first. When choosing Little Endian, the least significant byte
is stored first, for Big Endian vice versa.

• Compression of pixel data: In practice, transmission and storage in DICOM
often happens uncompressed. However, DICOM also offers compression
methods, that are only common for some medical disciplines (e.g., ultra-
sound movies) but generally can be used for any kind of DICOM image
object. All those methods only compress the contents of the Pixel Data
attribute inside the DICOM object but leave attributes like Patient’s
Name, etc. untouched. Compression schemes offered include different
JPEG variants (e.g., JPEG Baseline, JPEG-LS, JPEG2000), RLE and
others.

Not all combinations of these three aspects are valid (see part 5 of the
standard). Basically, all DICOM systems communicating over a network must
support at least one Transfer Syntax, which is Little Endian Implicit VR
(uncompressed). As depicted in Fig. 17.3, only attributes are written and not
any module information, because these are only means for organizing IODs
in part 3.

Network Services

While part 3 of the standard describes data structures, part 4 specifies high-
level network services (thus, SOP Classes grouped in Service Classes) working
on these objects that can be used for communication between parties. Gener-
ally, DICOM defines its own low-level network protocol which is based on the
OSI paradigm [6]. Basically, it is designed for being used together with differ-
ent low-level protocols. However, the only protocol binding currently defined
is based on TCP/IP (called “DICOM Upper Layer Protocol for TCP/IP”).

A DICOM node on the network is called Application Entity (AE). Each
AE is either a client, Service Class User (SCU) that is using or a server, Service
Class Provider (SCP) that is providing services. Every AE uses two kind of
messages for communication: Association Control Service Element (ACSE)
messages are used for connection management and DICOM Message Ser-
vice Element (DIMSE) messages are used for transmitting the payload data,
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e.g., a DICOM image object. An SCU starts communication by sending an
ACSE message offering the SCP the desired DICOM services by referring to
selected SOP Classes. For each SOP Class, a list of Transfer Syntaxes is pro-
posed. The SCP receives this proposal and assembles a response message in
which every proposed SOP Class is either denied or accepted together with
a single selected Transfer Syntax. When receiving this response package, the
SCU knows which services can be used on that connection. This phase of
DICOM communication is called Association Negotiation. If one of either
party wants to terminate the communication, it can do so by sending an
appropriate ACSE message.

An example scenario including the described services is shown in Fig. 17.4.
The most common DICOM services used in practice are:

• Storage and Storage Commitment Services: The DICOM Storage SOP
Classes (e.g., CT Image Storage SOP Class) are used for transmitting
a composite DICOM object over the network. For each kind of object,
there is a dedicated Storage SOP Class. An MR modality, for example,
would probably negotiate the MR Image Storage SOP Class with an SCP
and then send acquired MR images on that connection. The receiver could
be a Picture Archiving and Communication System (PACS), a system
that is used for archiving composite DICOM objects. Also, the modality
could be able to create a more generic kind of DICOM image based on the
Secondary Capture Image SOP Class. It then could additionally offer to
transfer the acquired MR images as Secondary Capture images.

The Storage SOP Classes transmit objects from one AE to another,
but there are no rules what the receiver is about to do with the received
objects, e.g., a workstation may delete it after image review. With Storage
Commitment, a further message is exchanged between SCU and SCP for
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assuring that the SCP (probably a PACS) has received the images for
archival, i.e. that the SCU (e.g., imaging modality) itself must not keep a
copy of the objects but may delete them.

• Query/Retrieve Service: Like the Storage Service Class, the DICOM
Query/Retrieve (Q/R) service and its corresponding SOP Classes have
been in DICOM since 1993. Q/R services allow for searching an archive for
DICOM images and to initiate the transmission of selected objects. There-
fore, Q/R is typically provided by PAC systems. Q/R offers different SOP
Classes for searching and retrieving varying in what information can be
searched and how transmission of objects is performed. In the query phase,
an archive can be searched for images based on filter mechanisms, e.g., it
is possible to ask for a list of studies based on a defined patient name. If
the SCU decides to download any DICOM objects (retrieve phase), the
Q/R protocol is used to initiate the transfer. However, the transmission
itself is done via the Storage SOP Classes. It is also possible for an SCU
to tell the SCP not to transfer the DICOM objects to the SCU itself but
to a third system.

• Worklist Service: Over the years, DICOM was extended around its core
services, among others in the area of work flow support. Using the Modal-
ity Worklist SOP Classes (belonging to the Basic Worklist Management
Service Class), a modality can query an information system for a so-called
worklist. For example, in a radiology department a CT modality may ask
the Radiology Information System (RIS), which CT exams are planned
for a specific time of day or which patients are about to be examined, thus
querying a timetable of pending examinations that reside on the informa-
tion system. The patient’s name and other information can be taken over
by the modality into the acquired images which then may be stored to the
archive. As a result, Modality Worklist Management brings patient and
other information available in the RIS to the modality and into the image
objects without the need of re-entering or even re-typing information, thus
leading to consistent data in RIS and PACS.

• Modality Performed Procedure Step (MPPS) Service: However, the IS does
not receive any responses about what the connected modalities are actually
doing – which might substantially differ from what was originally planned.
Hence, the MPPS Service was introduced consisting of three SOP Classes.
The most common one is the Modality Performed Procedure Step SOP
Class that permits modalities to send status, patient, billing and other
information about an ongoing examination to an IS.

Media Services

Unlike the exchange of DICOM objects over the network, for media exchange
the communicating parties are not able to negotiate SOP Classes, Transfer
Syntaxes or the kind of media and file system to be used. Also, in the same
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kind as for networking, it should be possible to describe the kind of objects and
encoding exchanged in the Conformance Statement (Sect. 17.1.5). For those
reasons, DICOM defines so-called Media Storage Application Profiles. Each
profile exactly defines a set of SOP Classes, Transfer Syntaxes and media that
can be used for exchange. For example, the STD-GEN-CD Profile permits all
kind of SOP Classes, encoded using Transfer Syntax Little Endian Explicit VR
on a CD medium with ISO 9600 Level 1 file sytem. Every medium exchanged
must contain a special DICOM object called DICOMDIR in the root directory
that serves as an index of DICOM objects on the medium. There are currently
more than 100 Standard Application Profiles, supporting DVD, MODs, USB
flash drives and so on.

17.1.5 Conformance

As already noted, DICOM offers lots of different objects, services and other
specifications such as display calibration requirements and so on. Of course,
only a subset of these services is usually supported by a specific system.
Every device only implements those services that make sense in its appli-
cation domain; e.g., there is no reason for a CT modality to implement the
MR Image Storage SOP Class. On the other hand, there are no guidelines
in DICOM which require specific devices to implement a defined set of ser-
vices, e.g., whether the above-mentioned CT also supports worklist and/or
MPPS. Users and possible buyers of those systems must know in advance
which services are supported to fit into the planned workflow and integrate
into the existing infrastructure. That is why DICOM requires every system
claiming DICOM conformance to publish a document called DICOM Confor-
mance Statement (CS), which describes all services and options implemented
by that device.

Form and content of a CS are quite exactly defined in part 2 of the
DICOM Standard; e.g., it dictates the order and naming of chapters, table
layouts and some required drawings. After a title page, overview and table of
content, two important chapters have to follow: network-related and media-
related services. Both chapters must contain detailed information about which
SOP Classes and Transfer Syntaxes in which roles (SCU/SCP) are supported,
system-specific status codes, options supported (e.g., supported query keys in
Q/R) and configuration parameters. For media services, it must also be docu-
mented whether the system works as a File Set Creator (FSC), Updater FSU
or Reader FSR. The following sections of the document summarizes character
sets, security profiles (e.g., signing and encrypting of objects), private exten-
sions like private attributes, coding schemes (e.g., SNOMED) and calibration
means supported by the system. Overall, a Conformance Statement offers
indispensable information about a system’s DICOM capabilities.
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17.2 Advanced DICOM Services

17.2.1 Advanced Image Display Services

When the DICOM standard was conceived in the early 1990s, it was primarily
intended as a technology enabling an image transfer between imaging modal-
ities, image archives and display workstations of multiple vendors. However,
the undisputed success of DICOM at this task highlighted a weakness of the
standard in a related area. Even though DICOM enabled to display the same
image on different workstations, in many cases the resulting display looked
quite different. A consistent image display across multiple devices was not
guaranteed [7].

There are multiple reasons for this problem, the most important one being
the fact that the color models used in the DICOM standard are rather vaguely
defined. For example, “MONOCHROME2” refers to a monochrome image
where the lowest possible image pixel value corresponds to black, and the high-
est possible image pixel value corresponds to white. Unfortunately, DICOM
does not define the meaning of pixel values between black and white. If for
example pixel values would range from 0 to 255, the mean value 127 could be
interpreted as 50% of the maximum luminance of the display device, as 50%
of the optical density of an X-ray film to which the image is to be printed, as
50% of the maximum tissue density encountered in the image, or as 50% of
the maximum “brightness” of a monitor as perceived by a human observer.
Different interpretations have been implemented by different vendors, causing
inconsistent image display and, in some cases, a very poor quality of displayed
images.

Another problem is related to the clinical workflow. It is quite likely that
the physician interpreting the images will adjust the image display such that
the medically relevant image features are optimally visible. However, when
these adjustments are made, the original image is most probably already
stored in an irreversible manner in the image archive; so the adjustments
cannot be stored as part of the image unless every image is duplicated, which
is usually not acceptable.

A number of DICOM extensions have been developed to address these
issues.

Softcopy Presentation States

DICOM Softcopy Presentation States (in short: “Presentation States”) are
DICOM documents that store precise instructions on how to display a specific
image or a related set of images. A Presentation State contains the parame-
ters for all grayscale or color transformations that apply to a specific image
type according to the DICOM image transformation model (Fig. 17.2), over-
riding values encoded in the image itself. In addition, a Presentation State
can contain graphical annotations and a number of spatial transformations to
be applied to the image (Fig. 17.5):
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Fig. 17.5. DICOM Common Spatial and Annotation Transformation Model

• Shutter Transformation: Display shutters allow for masking unwanted
parts of the image, e.g., unexposed parts of an X-ray that would otherwise
be displayed very brightly and negatively affect the visibility of relevant
parts of the image.

• Image Relative Annotation: To highlight regions of interest or to show
measurements, images can be annotated with graphical and textual com-
ments, which are displayed as overlays. Since they are not “burned” into
the image, annotations in a Presentation State can be switched on and off
interactively.

• Spatial Transformation: Images can be rotated and flipped (often required
for Computed Radiography images). Images can be zoomed to a defined
“displayed area” or by a specified factor. Also, an image can be displayed
at its true physical size, if the size is known.

• Displayed Area Relative Annotation: This type of graphical annotation is
not “attached” to the image but to the display (view port). This permits,
for example, certain textual comments to be displayed in the corners of
the screen independent from the zoom factor or rotation applied to the
image.

Over time, several different types of Presentation States (i.e., different SOP
Classes in DICOM terminology) have been defined by the DICOM committee
to support different use cases:

• Grayscale Softcopy Presentation States (GSPS) [8] were the first type of
Presentation State to be standardized, in 1999. GSPS apply to mono-
chrome images only and contain all parameters of the grayscale display
pipeline depicted in the upper row of Fig. 17.2, plus the transforma-
tions described above. The output of a GSPS is defined in P-Values, i.e.,
grayscale values in a perceptionally linearized space where equal differ-
ences in pixel value correspond to equal perceived changes in brightness
by an average human observer. Such grayscale values can be displayed on
a monitor calibrated according to the DICOM Grayscale Standard Display
Function or the CIELAB curve [9].

• Color Softcopy Presentation States (CSPS) [10] are the counterpart to
GSPS for color images, both true color and palette color images. Instead
of grayscale transformations, a CSPS contains an ICC Input Profile [5]
that describes the conversion of the color values of the image (or, more
precisely, the device that created the image) to a device-independent Pro-
file Connection Space (PCS) defined by the ICC, which is either the CIE
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1931 XYZ curve [11] or CIELAB [9]. Such PCS color values are used as
input to an ICC color management system, which describes the capabili-
ties of a monitor through an ICC Output Profile and provides a mapping
to the color space of the display device that retains the original colors as
good as possible, given the physical limitations of the display device.

• Pseudo-Color Softcopy Presentation States (PCSP) [10] are used to display
monochrome images such as nuclear medicine or Positron Emission Tomog-
raphy (PET) images in pseudo-color using a color LUT that is applied after
the VOI LUT transform, i.e., after adjustment of the grayscale window
center and width (Fig. 17.2). Like CSPS, pseudo-color presentation states
contain an ICC profile enabling a consistent color display on calibrated
displays.

• Blending Softcopy Presentation States (BSPS) [10] are used to encode the
blending of two spatially co-registered sets of grayscale images (e.g., CT,
PET) such that one set of images is displayed as grayscale, and the other
one superimposed as color of varying opacity. BSPS do not describe the
actual spatial registration of the two image sets. This is done by “‘Spatial
Registration’ objects”. The transformation model for BSPS is shown in
Fig. 17.6.

• XA/XRF Grayscale Softcopy Presentation States [12] are an extension
of GSPS specifically for use with X-ray angiography and X-ray radiofluo-
roscopy images. Unlike GSPS, different shutters can be defined for different
frames of a multi-frame image, and for mask operations (subtraction of a
mask generated by averaging non-contrast image frames), multiple image
regions within the mask with different pixel shift offsets per region can be
defined.

A Presentation State only contains references to the images it applies to and,
therefore, does not duplicate the image data. Presentation States are relatively
small (typically only few Kbytes) and can be stored and transmitted with a
minimal resource increase. Presentation States fit well into the established
DICOM information model (they are just a separate DICOM series within
the study containing the images) and can be transmitted, stored and retrieved
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with the existing DICOM Storage and Q/R services, requiring few changes
in existing systems. It is possible to have a single Presentation State for a
complete series of images or to have different Presentation States (“views”)
of the same image.

Structured Display

DICOM Structured Display objects [13] are similar in concept to DICOM
Presentation States. While Presentation States describe how exactly a specific
image should be displayed on screen, a Structured Display object describes the
layout of a display that may be composed of multiple images or Presentation
States, including cine or stack mode displays.

A Structured Display object mainly consists of a list of “image boxes”,
i.e., rectangular areas on the screen each of which is filled with one image or
another DICOM document. For each of these boxes, the following parameters
are defined:

• Position and size of the image box on screen (relative to the screen size)
• A list of images or a single Presentation State, stereometric image or non-

image object (e.g. structured report) to be displayed in the image box
• Horizontal and vertical alignment of images displayed in the image box
• Layout type (stack mode display, cine display or single image)
• Priority in case of overlapping image boxes
• Cine related parameters: playback type (loop, sweep or stop), playback

speed and initial state (playing or stopped)
• Synchronization information for a synchronized display of images in mul-

tiple image boxes

Furthermore, a Structured Display may contain a list of text annotations to be
displayed on screen (possibly as overlays over the images). Finally, it contains
the resolution and minimum bit depth of the monitor for which the Structured
Display was generated.

Hanging Protocols

While a DICOM Structured Display object specifies the layout and display of a
specific set of DICOM images, which are referred to by their unique identifiers,
a Hanging Protocol [14] can be seen as an abstract template that describes
how a certain type of study should be arranged on screen. The result of this
layout (“hanging”) process could then be stored as a Structured Display.

This means that Hanging Protocols are not related to a specific patient,
but to an imaging modality, study type or body part. DICOM defines spe-
cific network services enabling the storage and retrieval of Hanging Protocols
based on these properties; a search by user name is also supported. Once a
user selects an image study at a diagnostic workstation, the workstation can
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extract sufficient information from the images to query for the most appropri-
ate Hanging Protocol, retrieve and apply the best match, while still providing
the user with the capability of changing the layout to his or her preferences,
and possibly saving these preferences as a new Hanging Protocol.

Once a Hanging Protocol has been selected, a three-phase process takes
place: selection, processing and layout. In the first phase, so-called image sets
are selected. Each image set is either a part of the study for which the Hanging
Protocol was selected, or part of a related prior study (e.g. the last prior or a
prior study that is at least 6 but not more than 24months old). It is up to the
diagnostic workstations to locate and retrieve priors based on these abstract
definitions. In the second phase, so-called Display Sets are defined. Each Dis-
play Set is a rectangular area on one of the possible multiple screens of the
display workstation into which either a single image or a rectangular grid of
images (“tile mode”) taken from a single image set is to be rendered. Filter
criteria describe which images from the image set should be displayed in each
Display Set (for example, in Mammography one Display Set could display
only the left-hand side images, and another one could select the right-hand
side images from the same image set). In addition to the layout parameters
available for Structured Display, in a Hanging Protocol certain image process-
ing techniques can be requested, e.g., a multi-planar reconstruction (MPR),
3D volume/surface rendering or Maximum Intensity Projection (MIP) of a
volume defined by a set of CT, MRI or PET images. Furthermore, the order
in which multiple images should be displayed (e.g., in “tile” or “stack” mode)
in one Display Set can be defined. Finally, the so-called Presentation Intent
describes how the images should be rendered within the Display Set – this
information is essentially a subset of a Presentation State and can be used to
generate Presentation States for the selected images. In the third and final
phase, the screen layout is generated, based on the display set definitions, and
images are rendered into each image box.

In summary, as [14] states, Hanging Protocols enable users to conveniently
define their preferred methods of presentation and interaction for different
types of viewing circumstances once, and then to automatically layout image
sets according to the users’ preferences on workstations of similar capability.

17.2.2 DICOM Structured Reporting

The idea of exchanging structured medical reports electronically is at least
as old as computers are used in medicine. However, it took more than a
decade from the initial release of DICOM’s predecessor ACR/NEMA before
the DICOM committee started to deal with this topic. Before, the main focus
was to push the “imaging world” where these standards also have their seeds.

In the mid of the 1990s when the work started, another extension of the
DICOM standard had major influence on the introduction of DICOM Struc-
tured Reporting (SR): “Visible Light Image for Endoscopy, Microscopy, and
Photography” [15]. Besides the actual pixel data and describing attributes,
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the new image objects for pathology, dermatology and ophthalmology also
contain information on the “image acquisition context”. In order to avoid the
introduction of dedicated DICOM attributes for each acquisition technique,
a generic approach was developed: medical concepts and context-dependent
terms are specified indirectly by means of codes.

After an unpromising draft that was regarded as too complex and hard
to implement, the extension for Structured Reporting (SR) was completely
revised and published for Final Text in April 2000 [16]. The coding part was
sourced out and released as a separate extension about 1 year later [17]. The
following sections give an overview of the basic concepts of DICOM SR, the
codes and document templates as well as selected SR applications.

SR Concepts

DICOM Structured Reporting allows for storing almost arbitrary information
in a structured way in DICOM format. Not only medical reports and clinical
records but also measurements, procedure logs and the like can be archived
and exchanged in a standardized manner. Therefore, the name “Structured
Reporting” is somewhat misleading since it suggests a rather limited scope.
“Structured Data” would be a more appropriate name, applicable to many
fields of application. For all applications, the same basic principles apply:

• Pieces of structured information are related to each other
• In addition to simple text, codes and/or numerical values are used
• External DICOM objects like images are referenced

In this context, it is already sufficient if a single principle applies. For
example, if a couple of DICOM objects are to be flagged in some way, DICOM
Structured Reporting is suited in the same way as for the standardized storage
of less structured reports. SR documents also do not have to be complex or
qualified for being transformed into a human readable form: the exchange of
measurements from an ultrasound machine is an example for this. However,
the DICOM standard only specifies the semantical level of such a structured
document, aspects of visualization are more or less excluded [18].

Basically, a Structured Reporting document is constructed in the same way
as other composite objects, i.e., they consist of a list of attributes. However,
instead of pixel data like in DICOM images, SR documents contain a so-called
document tree that represents the actual structured content. Compared to
other DICOM objects, sequence of items elements are more frequently used,
e.g., to map the hierarchical structure of the document tree adequately to the
DICOM data structures. And, for Structured Reporting there is no limitation
for the nesting of sequences; the document can be structured with arbitrary
complexity. However, to keep the requirements for a certain SR application
low, there are three general SR IODs: “Basic Text” is the simplest IOD and
mainly used for simple, text-oriented documents; “Enhanced IOD” also allows
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for coding numerical values; and “Comprehensive IOD” comprises all aspects
of DICOM Structured Reporting. Recently, more specialized SR IODs have
been introduced (see Sect. “SR Applications”).

In addition to the general modules like Patient and Study which are also
used for other composite objects, the SR IODs contain a special Series and two
SR Document modules. The “SR Document General” module includes infor-
mation that refers to the whole document, e.g., for document management
and workflow support. Among others, there is a flag indicating whether the
content of the document is completed or partial and a flag indicating whether
or not the document is attested by a verifying observer, who is accountable
for its content. There is also a mechanism for storing references to previous
versions of the document like a preliminary draft.

The “SR Document Content” module contains the hierarchically struc-
tured document tree that consists of a number of content items which are
related to each other. Each content item carries a piece of the whole infor-
mation of the document. The type of the information is described explicitly
by the value type. The DICOM standard currently defines 15 different value
types, e.g., for texts, numerical values, codes, dates, times, person names, spa-
tial and temporal coordinates, references and containers. In addition to the
actual value, each content item has a concept name that identifies the pur-
pose of the item, e.g., whether a numerical value describes a diameter or an
area. The root node of the document tree always has to be a container and
its concept name describes the title of the document.

The type of the relationship between two content items is also explicitly
specified. The standard currently defines seven different relationship types
(e.g., contains has observation context, has concept modifier, has properties
and inferred from). The relationship is directed and points from the higher-
level content item (source) to the lower-level content item (destination). As an
exception, for some SR IODs it is also possible to refer from one content item to
a content item in another sub-tree of the document tree. This kind of relation-
ship is called “by-reference” in contrast to the usual “by-value” relationship.
In doing so, the document tree becomes a Directed Acyclic Graph (DAG)
because references to ancestor content items are forbidden to prevent loops.

Figure 17.7 shows an extract from a DICOM SR document tree in which
the malignancy of a mass is inferred from the observation that the mass has
an irregular margin. The rectangles in this figure represent the content items
where the first line denotes the value type, the second line the concept name
and the third line the actual value. The diamonds represent the relation-
ships between the content items. The dashed line illustrates a by-reference
relationship.

Codes and Templates

The use of controlled terminology is an integral part of any approach for
structured documentation. Coded entries have a distinct advantage over clear
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text: they are unique. In DICOM Structured Reporting, codes are, therefore,
used in many places. In some places, they are even required.

A code in DICOM consists of at least three components: the coding scheme
designator, the code value and the code meaning. The coding scheme desig-
nator identifies the system of concepts or catalog in which the code is defined
(e.g., ICD-10, SNOMED). Within such a scheme, the code value has to be
unique; outside of the scheme, it has no value because different coding schemes
can use the same code value. Finally, for each code the associated meaning
has to be specified. The benefit of this requirement is that applications even
if they do not support a certain scheme still can use the textual description
instead of the typically cryptic code value.

In DICOM Structured Reporting, codes are mainly used for specifying con-
cept names, values in code content items and measurement units in numerical
value content items. In addition, they are used to uniquely identify persons,
medical procedures, anatomic regions, etc. In order to avoid that, e.g., ICD-10
instead of SNOMED codes are used to specify an anatomic region, codes can
be grouped by semantic aspects. These groups of codes that are to be used
in a particular context are called “context groups”. For example, DICOM
describes in the context group with ID 4 which codes are to be used for
anatomic regions. When referring to a certain context group in the standard,
the list of codes could either be mandatory (“Defined Context Group”) or a
recommendation only (“Baseline Context Group”).

A context group may contain codes from different coding schemes and
may even include other context groups. Furthermore, a context group can be
designated as extensible or non-extensible, i.e., whether it is allowed to extend
this group for a certain application or not. There is also a version number for
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each context group which can be used to reference a particular context group
in an unambiguous manner. This is because even a non-extensible context
group can be extended with new codes in a future edition of the DICOM
standard.

Usually, the standard only defines its own codes when there is no appropri-
ate code in a common coding scheme like SNOMED. All these DICOM-specific
codes are listed and defined in part 16 of the standard, the “DICOM Content
Mapping Resource (DCMR)”. The numerous context groups used throughout
the standard are also defined in this part. Furthermore, for certain local appli-
cations, it might be useful to define private codes. DICOM explicitly supports
this by providing a mechanism that avoids conflicts between different locally
defined coding schemes.

Another important aspect of DICOM SR is the flexibility for structuring
the content of a document. On the one hand, this can be considered as an
advantage since it allows for storing almost any kind of document. On the
other hand, it has the disadvantage that the same information can be encoded
very differently by arranging the various content items and connecting them
with relationships in different ways. In particular, applications that need to
read and process SR documents would profit from a more constrained tree
structure.

The DICOM standard, therefore, defines so-called templates, i.e., “pat-
terns that specify the concept names, requirements, conditions, value types,
value multiplicity, value set restrictions, relationship types and other attributes
of content items for a particular application” [1]. A template can either specify
a substructure of the document tree (e.g., the properties of a lesion) or a com-
plete document (e.g., radiology report). The latter is called “root template”
because it starts at the root of the document tree.

The template definitions are also part of the DCMR in part 16 of the
DICOM standard. Similar to the context groups, all templates are identi-
fied by a number, e.g., 2000 for the “Basic Diagnostic Imaging Report”, and
they can also be extensible or non-extensible. The content of a template
is defined in a table where each line represents a content item or specifies
which other template is to be included at this position. A few templates can
also be parametrized which is in particular useful for generic templates like
measurements.

In practice, the use of templates really helps to unify the structure and
content of SR documents. Unfortunately, the mechanism for identifying the
templates used in a document is very limited. Therefore, DICOM SR docu-
ments are usually defined completely based on templates, i.e., using a root
template. However, the decision to specify the structure and content of an SR
document in the DCMR almost independently from the underlying DICOM
data structures has significantly supported integrating special knowledge from
different medical fields.
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SR Applications

The flexible format of DICOM SR allows for many different applications. The
extensive use of codes enhances the machine-readability and facilitates the
automatic analysis of the stored data. Furthermore, the use of templates brings
a consistent structure of the document content and, therefore, improves the
automatic processing by a reading application. For these reasons, SR docu-
ments are best-suited for the standardized device communication, especially
for the exchange of measurements and related data.

For example, the various measurement values determined at an ultrasound
machine can be transmitted to another system in a standardized manner using
an appropriate SR document and the DICOM storage service. Another exam-
ple of use is the standardized storage of the results of a CADx or CADe
system. Currently, the standard defines templates and SOP Classes for mam-
mography, chest and colon CAD. DICOM SR is also used to document and
exchange radiation dose information of X-ray and CT exams, supporting more
details than the MPPS service.

Of course, DICOM SR is also used for medical reports and other clinical
documents. Since the level of structuring and coding can be chosen individu-
ally, almost any document can be converted into the DICOM SR format. SR
documents are, therefore, suitable for both radiology where less-structured
documents are still predominant and other medical fields where more fine-
grained information is collected (e.g., cardiology). This flexibility also allows
for a smooth migration of today’s free-text reports to more structured and
standardized documents.

In addition, there are a couple of SOP Classes that use the concepts of
DICOM Structured Reporting for other purposes. A famous example is the
Key Object Selection Document which allows for flagging particular DICOM
images and other composite objects for various reasons, e.g., to select the rel-
evant images of a CT series or to sort out images for quality reasons. And
finally, the Procedure Log IOD is used “for the representation of reports
or logs of time-stamped events occurring during an extended diagnostic or
interventional procedure, typical of the cardiac catheterization lab” [1].

17.2.3 Application Hosting

Over the past years, the possibilities in medical image processing have evolved
enormously. This development is due to different reasons: New modalities like
the modern generation of CT and MR devices provide more data for post-
processing of images. Accompanied by the massively increased computational
power of computer systems, this has led to new, complex analysis methods,
e.g., in the area of 3D visualization, multi-modality fusion or quantitative
biomarker software. Against this background, there is a rising demand for
the consistent, comparable and vendor-neutral exchange of image processing
results but also of the post-processing applications itself. Hence, the latter
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offers the chance to facilitate the exchange of these applications between dif-
ferent commercial systems to ease the comparability of processing results from
different sites in clinical trials and to close the gap between application of such
tools in the research and commercial area [19]. A new approach aiming at these
targets is currently addressed by DICOM Working Group 27 (Web Technology
for DICOM) with the development of Supplement 118 “Application Hosting”
[20]. The extension is currently in public comment phase, i.e., it soon could
be balloted and thus be incorporated (with minor changes if applicable) into
the standard as the new document part 19.

Basic Concepts

Supplement 118 defines a plug-in concept permitting the development of post-
processing applications which plug into an imaging application by utilizing
specified launching and communication services. This approach tries to over-
come the problem that a third-party image processing plug-in (e.g., fusion of
CT and PET images) must be adapted for each vendor separately due to the
lack of a standardized communication between plug-in and hosting software.
By defining a generic API, a single plug-in should be able to work “out of the
box” on top of different vendor’s software products (Fig. 17.8).

A system making use of such a standardized plug-in is called “Hosting Sys-
tem” while the plug-in itself is named a “Hosted Application”. For the said CT
and MR image fusion, a Hosting System would launch a Hosted Application
which then retrieves the corresponding data (e.g., CT/PET image objects)
from the Hosted System. It then starts the fusion computations and notifies
the Hosting System about any result images as soon as they are available.
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Fig. 17.8. Single plug-in implementation (A) utilized by different vendor’s products
(B-D)
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Web Service API

It was tried for the API to find a sufficient trade-off between ease of use (and
implementation) and mechanisms being sufficient and generic enough to sup-
port a broad range of possible applications. Besides other aspects, the API
is designed to be implementable for any common programming language and
operating system and to leverage existing technology. Also, the API should be
extensible in future versions of the Application Hosting concept while stay-
ing backward compatible. The first version of the API concentrates on the
exchange of input and result data (DICOM and non-DICOM) between Host-
ing System and Hosted Application. Implementations could run on Windows,
Unix or Mac OS X systems and their corresponding GUIs (if applicable for
the Hosted Application). It is also foreseen that the Hosted Application may
use part of the screen assigned by the Hosting System as a playground for
manual data input or notification messages. Later versions of the API may
enrich this functionality; thus the API is said to be developed and rolled out
in “stages” over the next years.

The API between Hosted Application and Hosted System can be divided
into two categories:

• Life Cycle Management: The Hosting System must be able to launch and
terminate the Hosted Application.

• Interaction: While running, Hosting System and Hosted Application must
at least be able to exchange input, processing and output data and to
communicate status information.

In this first version of the Application Hosting API, a Hosted Application
is launched in a pre-configured, vendor-specific way, e.g. from the command
line or by selecting a menu entry in the Hosting System’s GUI. When running,
a Hosted Application may switch between the states (Table. 17.2). All possible
state transitions are also defined in the supplement.

There are three interfaces defined which must be implemented by a Hosting
System and/or a Hosted Application:

Table 17.2. States of Hosted Application

State Description

IDLE In IDLE state the Hosted Application is waiting for a new task assignment
from the Hosting System. This is the initial state when the Hosted
Application starts.

INPROGRESS The Hosted Application is performing the assigned task.
SUSPENDED The Hosted Application is stopping processing and is releasing as many

resources as it can, while still preserving enough state to be able to
continue processing.

COMPLETED The Hosted Application has completed processing, and is waiting for the
Hosting System to access and release any output data that the Hosted
Application has informed it of.

CANCELED The Hosted Application is stopping processing, and is releasing all
resources with no chance to resume processing.

EXIT The terminal state of the Hosted Application
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• Application Interface: It is implemented by a Hosted Application and per-
mits the Hosting System to set and get the Hosted Application’s state.
Also the Hosted Application can be asked to bring its GUI windows (if
any) to the front.

• Host Interface: It is implemented by the Hosting System and is used by
the Hosted Application during plug-in execution to request services (like a
screen area for drawing) from the Hosting System or to notify it about any
events and state transitions. Furthermore, the plug-in can ask the Hosting
System to provide a newly created Unique Identifier (UID). Other API
calls are devoted to the Hosted Application’s file system interactions. The
Hosting System may be asked to return a directory for temporary files as
well as one to store the final output data.

• Data Exchange Interface: It must be supported by both Hosting System
and Hosted Application. It offers functionality for exchanging data using
either a file-based or a model-based mechanism.

The model-based mechanism supports information exchange over XML
Infosets [21]. At the moment two models are defined for use in DICOM, the
Native DICOM Model and the Abstract Multi-Dimensional Image Model.
A recipient of such data must not know how to parse the original native
format (which may be binary as for DICOM), but instead works on the
abstraction of such data in the form of an XML Infoset. Therefore, existing
standard tools can be used for querying the XML Infoset model using
XPath [22] expressions without the need of accessing the original format.
For both models, it is also possible to link to binary bulk data instead of a
text string as usually needed for the XML Infoset approach. This is useful
if a text string encoding of a specific data value (pixel data, lookup tables
etc.) is not appropriate because of performance issues, etc.

While the DICOM Native Model uses an XML structure being organized to
directly represent the structure of an encoded DICOM dataset (thus, arrang-
ing DICOM elements with its sequences and items in a tree), the Abstract
Multi- Dimensional Image Model offers a way of exchanging multidimensional
image data. The dimensions are not necessarily spatial coordinates but may
also represent measure points in time or measurements of other physical units.
For example, the latter approach could be used for storing 3D MR reconstruc-
tion volumes or, by adding time as a fourth dimension, 3D MR volumes over
time.

All API calls are realized as Web Services specified using the Web Service
Description Language (WSDL) [23].

Use Cases

There are a lot of use cases for processing DICOM objects in a standardized
environment. Here, the two examples chosen are anonymization of DICOM
images and screening applications with the latter taken from the supplement
itself.
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A feature often desired by users of PACS workstations or other systems is
the anonymization of DICOM images. Usually, such a functionality is not even
offered as an add-on by the original vendor. Supposed that the system provides
an Application Hosting interface, a user could easily buy an anonymization
plug-in from a third party, configure it and start it each time DICOM objects
should be anonymized. In this setting, the add-on is the Hosted Application
running on top of the original software, thus, the Hosting System. Before,
the Hosted Application must be installed and announced to the Hosting Sys-
tem manually (may change in later API stages). The same applies for the
startup which may be done by clicking the Hosting System’s GUI controls.
After startup, further processing steps can be done using the described API.
The Hosted Application is activated by setting its state to “INPROGRESS”
and then is notified about DICOM images to be anonymized using (proba-
bly) the file-based method. The Hosted Application accesses the announced
objects by loading them from the reported files. After (or while processing)
the plug-in asks for an output directory where it should store the resulting,
anonymized objects, stores the data in that directory and notifies the Hosting
System about the availability of anonymized result images. Accordingly, the
plug-in notifies the Hosting System about its new status “COMPLETED”.
The Hosting System then asks the Hosted Application for a descriptive list of
files where the announced result objects can be found and receives this infor-
mation from the plug-in. After reading the anonymized images (and, e.g.,
sending them to a case study archive), the Hosting System sets the state of
the anonymization plug-in to its default state, “IDLE”.

The other example deals with the CAD. Applications in that area are often
designed for supporting the physician reading a set of images for diagnosis.
Therefore, the software tries to identify abnormalities or issues of interest
the physician may further check. One problem preventing CAD software for
becoming much more popular is that one vendor’s workstation software often
only permits CAD implementations from the same vendor. Also, some com-
panies are only offering very specialized CAD solutions, which only work for
very specific body parts and tasks, e.g. for detection of cancer in mammogra-
phy images. Thus, a user must buy different workstations or even servers from
different companies to run different CAD applications. With the API defined
for Application Hosting, the different third-party CAD plug-ins may run on
top of a single platform.

Synopsis

The concept defined with Application Hosting is mostly valuable for users
who will have a greater palette of applications and vendors to choose from.
Furthermore, also vendors can avail the opportunity to have their applications
(sold and) running at sites that till then were fully tight to products of a
competing company. Especially for smaller specialized vendors, Application
Hosting offers a good chance by easing market access.
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The current API is quite simple and, therefore, should be relatively easy
to implement. However, the future will show whether the proposed interface
is specific enough to handle all workflows, e.g., whether the Hosting System
can be designed in a way that resulting image objects or other results can
be handled in a reasonable fashion. Nevertheless, by staging the development
it becomes possible to refine the Application Hosting concept based on the
experiences collected with earlier versions.

Overall, Application Hosting definitely offers great chances for users and
vendors and might prove itself first as a very valuable extension to DICOM
and second as a further step of bringing Web Technology to the standard.

17.3 Conclusions and Outlook

The DICOM standard has enormously grown since its initial release in 1993
and will probably keep evolving into new medical and technological areas. As
the previous development shows, demands for new objects and services often
come up with new modality and technology trends appearing on the market.

Built around core image management services (transmission, query, print-
ing), the standard introduced concepts for procedure planning (e.g., Modality
Worklist and MPPS) and also was extended to take more control over the com-
plete image life cycle. The latter was and still is accomplished by specifying a
full rendering pipeline for image visualization. The accompanied objects and
services such as Hanging Protocols, Structured Display and different kinds of
Presentation States are very valuable concepts for achieving this goal and
hopefully will be widely found in products in the near future. The same
applies to Structured Reporting which provides powerful means for storing
and transmitting structured and coded information.

With the proposed Application Hosting concept, DICOM seriously opens
up for Web Service communication which is already playing an important
role in areas outside medical image communications. The DICOM standard is
freely available; nevertheless, sometimes it is criticized for defining dedicated
binary data encodings and network protocols instead of relying on existing
technology, especially XML. However, when DICOM established more than
15 years ago and originating from ACR/NEMA standard from the 1980s,
recent developments such as XML and Web Services have not been around
at all or at least to that extent. The aforesaid DICOM-specific concepts have
been exposed to be a powerful and reliable base for establishing sustainable
interoperability between systems and many (partly open source) solutions
are available greatly supporting DICOM-based implementations. Besides the
expected benefits of Application Hosting already discussed in this chapter,
the underlying Web Service communication may also facilitate access to the
world of DICOM for people being more familiar with Web Service technology.

It can be expected that DICOM will keep the standard for medical
image communication and related issues over the next years. The standard’s
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permanently growing complexity may seem challenging to follow – however,
understanding the basic concept should greatly help approaching specialized
topics within the standard.
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PACS-Based Computer-Aided Detection
and Diagnosis

H.K. (Bernie) Huang, Brent J. Liu, Anh HongTu Le, and Jorge Documet

Summary. The ultimate goal of Picture Archiving and Communication System
(PACS)-based Computer-Aided Detection and Diagnosis (CAD) is to integrate CAD
results into daily clinical practice so that it becomes a second reader to aid the
radiologist’s diagnosis. Integration of CAD and Hospital Information System (HIS),
Radiology Information System (RIS) or PACS requires certain basic ingredients from
Health Level 7 (HL7) standard for textual data, Digital Imaging and Communica-
tions in Medicine (DICOM) standard for images, and Integrating the Healthcare
Enterprise (IHE) workflow profiles in order to comply with the Health Insurance
Portability and Accountability Act (HIPAA) requirements to be a healthcare infor-
mation system. Among the DICOM standards and IHE workflow profiles, DICOM
Structured Reporting (DICOM-SR); and IHE Key Image Note (KIN), Simple Image
and Numeric Report (SINR) and Post-processing Work Flow (PWF) are utilized in
CAD-HIS/RIS/PACS integration. These topics with examples are presented in this
chapter.

18.1 Introduction

Picture Archiving and Communication System (PACS) technology for health-
care enterprise delivery has become a part of the daily clinical imaging service
and data management operations for most health care institutions. Alongside
PACS, new technologies have emerged including Computer-Aided Diagnosis
(CAD), which utilizes computer methods to obtain quantitative measurements
from medical images and clinical information to assist clinicians to assess a
patient’s clinical state more objectively. However, CAD needs image input and
related information from PACS to improve its accuracy; and PACS benefits
from CAD results online and available at the PACS workstation as a second
reader to assist physicians in the decision making process. Currently, these
two technologies remain as two separate independent systems with only min-
imal system integration. This chapter addresses the challenges and solutions
encountered by both technologies.

T.M. Deserno (ed.), Biomedical Image Processing, Biological and Medical Physics,

Biomedical Engineering, DOI: 10.1007/978-3-642-15816-2 18,

c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 18.1. PACS and CAD not integrated. The physician must manually transfer the
image to the CAD workstation (1a), initiate the CAD processing, which is archived
in the CAD system only (2), and transfer the results back to the PACS by means
of natural language writing the report (3)

Figure 18.1 depicts the PACS environment (shaded boxes) and a CAD
workstation or server location that is outside the realm of PACS. These two
systems are usually disjoint. When an image is needed for CAD processing,
the workflow is as follows:

1a. A technologist or radiologist transmits the original images from the PACS
server or PACS workstation to CAD workstation for processing

1b. CAD processing of the exam is ordered through RIS, or directly from its
creating modality

2. The results are stored within the CAD domain, since the CAD workstation
or server is a closed system

3. A clinician needs to physically go to the CAD workstation to view results
and transfer into the clinical report with natural language worded by the
investigator writing the report

18.2 The Need for CAD-PACS Integration

In most CAD systems, the analyzed images need to reside on the local storage
of the workstation running the applications. In the current best practice clini-
cal workflow, medical images are stored in PACS. Therefore, the images must
be queried for and retrieved by the workstation for a CAD system to process.
The DICOM Query and Retrieve (Q/R) begins by sending a DICOM query
command that contains query keys, such as patient name, medical record,
modality, etc. to PACS and then waits for a response. Once the worksta-
tion receives the response, which contains a patient name or a list of patients
satisfying the query keys, it then sends another DICOM command to PACS
to retrieve the images back to the workstation. If the CAD application is not
implemented with the Q/R functionality from PACS, one must manually load
the images to the workstation for CAD process or manually push the images
from PACS. After the images are loaded, the CAD performs two tasks:
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• Automatic segmentation to detect the location of possible abnormalities
in images

• Quantification to classify the detected regions or lesions

The main purpose for integrating CAD with PACS for clinical operations is
to utilize CAD as a second reader for diagnosis of medical images [1,2]. In order
to utilize CAD results more efficiently for this purpose, the CAD should be
integrated within the daily clinical PACS environment. Currently, some PACS
and CAD vendors have had some success integrating several CAD applications
within a PACS environment, but the solution is either CAD-specific or in a
closed PACS environment with proprietary software.

18.2.1 Approaches of CAD-PACS Integration

Computer-aided detection (CADe) is based on images, which must be
received from the archive for analysis. This is usually done using a DICOM
Query/Retrieve (Q/R) command. Conceptually, integration of CAD with
DICOM PACS can have four approaches, which differ in the systems per-
forming the query and retrieve commands. In the first three, the CAD is
connected directly to the PACS, while the fourth approach is to use a CAD
server to connect with the PACS:

• PACS Workstation Retrieves and CAD Workstation Performs Detection:
In this approach, the PACS workstation queries and retrieves images from
the PACS database while the CAD workstation performs the detection.
Figure 18.2a illustrates the steps of the integration. This method involves
the PACS server, the PACS workstation, and the CAD workstation. A
DICOM C-store function must be installed in the CAD workstation.

The major disadvantage to this approach is that the particular studies
must be queried for by the PACS workstation and manually pushed to the
CAD workstation for processing, which is a complex workflow. In addition,
once the results are generated, they reside only on the CAD workstation.

• CAD Workstation Retrieves and Performs Detection: In this approach,
the CAD workstation performs both, querying and retrieving of the image
data from the archive, and thereafter the detection within the image data.
This method only involves the PACS server and the CAD workstation.
The function of the PACS server is almost identical to that of the last
method. The only difference is that the last method uses the PACS work-
station for querying and retrieving images, whereas in this method the
CAD workstation performs this step. For this reason DICOM Q/R must
be installed in the CAD workstation (Fig. 18.2b).

Although for this approach, the CAD workstation can directly query
and retrieve from the PACS to obtain the particular image study for pro-
cessing, the workflow is still manual and a disadvantage. In addition, once
the results are generated, they reside only on the CAD workstation.
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Fig. 18.2. Conceptual methods of integrating CAD with PACS. (a) PACS
workstation queries/retrieves and the CAD workstation performs the detection
(C-GET is a DICOM service); (b) the CAD workstation queries/retrieves and per-
forms detection; (c) the PACS workstation has the CAD software integrated; and
(d) a CAD server is integrated with the PACS

• PACS Workstation with Integrated CAD Software: A more advanced
approach is to install the CAD software within the PACS workstation. This
method eliminates all components in the CAD system and its connection
to the PACS (Fig. 18.2c).

Most of the CAD components can be eliminated which is an advantage.
However, the major disadvantage is that because the CAD must be inte-
grated directly with PACS, the CAD manufacturer must work very closely
with the PACS manufacturer, or vice versa, to open up the software which
rarely happens due to the competitive market.

• Integration of CAD Server with PACS : In this method, the CAD server is
connected to the PACS server. The CAD server is used to perform CAD
for PACS workstations (Fig. 18.2d).

This is the most ideal and practical approach to a CAD-PACS integra-
tion. The CAD server can automatically manage the clinical workflow
of image studies to be processed and can archive CAD results back
to PACS for the clinicians to review directly on PACS workstations.
This also eliminates the need for both the PACS manufacturer and the
CAD manufacturer to open up their respective software platforms for
integration.
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18.2.2 CAD Software

CAD software [1] can be implemented within a stand-alone CAD worksta-
tion, a CAD server, or integrated in PACS as PACS-based CAD. Currently
several PACS and CAD companies have successfully integrated their CAD
applications within the PACS operation, but these applications are either
in a CAD-specific workstation or in a closed PACS operation environment
using proprietary software. For example in mammography, cf. Chapter 13,
page 329, CAD has become an integral part of a routine clinical assessment
of breast cancer in many hospitals and clinics across the United States and
abroad. However, the value and effectiveness of CAD usefulness are compro-
mised by the inconvenience of the stand-alone CAD workstation or server,
certain DICOM standards and IHE workflow profiles are needed, which will
be described in the next section.

18.3 DICOM Standard and IHE Workflow Profiles

In order to integrate CAD and HIS/RIS/PACS efficiently, certain basic ingre-
dients are needed from Health Level Seven (HL7) standard1 for textual
data, DICOM standard for image communication [3], and Integrating the
Healthcare Enterprises (IHE) profiles 2 in order to comply with the Health
Insurance Portability and Accountability Act (HIPAA) requirements. These
requirements include:

• Health Care Access
• Portability
• Renewability
• Preventing Health Care Fraud and Abuse
• Administrative Simplification
• Medical Liability Reform, containing five rules:

– The Privacy Rule
– The Transactions and Code Sets Rule
– The Security Rule
– The Unique Identifiers Rule
– The Enforcement Rule

• The HITECH Act addressing privacy and security concerns associated
with the electronic transmission of health information

Among the DICOM standard and IHE workflow profiles, DICOM Struc-
tured Reporting (DICOM-SR), and IHE Key Image Notes (KINs), IHE Simple
Image and Numeric Reports (SINRs), and IHE Post-processing Work Flows
(PWFs) are important components in CAD-HIS/RIS/PACS integration [4,5].

1 http://www.hl7.org
2 http://www.ihe.net
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18.3.1 DICOM Structured Reporting

The scope of DICOM Structured Reporting (DICOM-SR) is the standardiza-
tion of structured clinical reports in the imaging environment [6]. DICOM-SR
documents record observations made for an imaging-based diagnostic or inter-
ventional procedure, particularly information that describes or references
images, waveforms, or a specific Regions of Interest (ROI). DICOM-SR was
introduced in 1994 and achieved major recognition when Supplement 23 was
adopted into the DICOM standard in 1999 as the first DICOM-SR for clinical
reports. The DICOM Committee has initiated more than 12 supplements to
define specific DICOM-SR document templates, cf. Sect. 17.2.2, page 442.
Among these supplements, two that relate to capturing CAD results have
been ratified:

• The Mammography CAD SR (Supplement 50, 2000)
• The Chest CT CAD SR (Supplement 65, 2001)

In practice, the use of structured forms for reporting is known to be beneficial
in reducing the ambiguity of natural language format reporting by enhancing
the precision, clarity, and value of the clinical document.

DICOM-SR is generalized by using DICOM Information Object Defini-
tions (IODs) and services for the storage and transmission of structured
reports. Figure 18.3 provides a simplified version of the DICOM model of
the real world showing where DICOM-SR objects reside. The most impor-
tant part of an DICOM-SR object is the report document content, which is
a DICOM-SR template that consists of different design patterns for various
applications. Once the CAD results with images, graphs, overlays, annota-
tions, and text have been translated into a DICOM-SR template designed for
this application, the data in the specific template can be treated as a DICOM
object stored in the worklist of the data model (Fig. 18.3, shaded boxes), and it
can be displayed for review by a PACS workstation with the DICOM-SR dis-
play function. The viewing requires the original images from which the CAD
results were generated so that the results can be overlaid onto the images.

Fig. 18.3. Real world model
of DICOM. The DICOM-SR
document is located in the
DICOM data module (shaded
box), which is at the same
level as the DICOM image
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The DICOM-SR display function can link and download these images from
the PACS archive and display them as well on the workstation.

18.3.2 IHE Profiles

IHE profiles provide a common language to discuss the integration needs of
healthcare sites and integration capabilities of healthcare IT products. They
organize and offer clear implementation paths for communication standards,
such as DICOM, HL7, and World Wide Web Consortium (W3C), and security
standards to meet specific clinical needs. The first large-scale demonstration
(IHE connectathon) was held at the Radiological Society of North Amer-
ica (RSNA) annual meeting in 1999, and in subsequent meetings thereafter.
In these demonstrations, manufacturers came together to show how their
products could be integrated together according to IHE protocols.

There are three IHE profiles useful for CAD-PACS integration:

1. KIN allows users to flag images as significant (e.g., as reference, for surgery)
and to add a note explaining the content

2. SINR specifies how diagnostic radiology reports (including images and
numeric data) are created, exchanged, and used

3. PWF provides a worklist, its status and result tracking for post-acquisition
tasks, such as CADe, Computer-Aided Diagnostics (CADx), or other image
processing tasks

18.4 The CAD-PACS
TM

Toolkit

In the beginning of this chapter, we have discussed the current workflow
of CAD in clinical use. To overcome the several bottlenecks, a CAD-PACS
toolkit (Fig. 18.4, elliptic box), which can integrate with the PACS server
and/or workstation with the CAD server and/or workstation via the DICOM
standard and IHE profiles, passes the CAD results to the PACS server for
archiving and the PACS workstation for viewing; and query/retrieves original
images from PACS server to PACS workstation to be overlaid with the CAD
results. In addition, it can automatically pass images directly from the PACS
server or PACS workstation to the CAD workstation for processing.

Modality
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CAD Server /
Workstation
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Fig. 18.4. PACS and CAD integrated.
The CAD workflow (dotted lines) is
integrated in the PACS environment
(shaded box) using the

CAD-PACS
TM

Toolkit (elliptic box)
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18.4.1 Concept

The CAD-PACS
TM

Toolkit is a software toolkit using the HL7 standard
for textual information; the DICOM standard for various types of data for-
mats, including images, waveforms, graphics, overlays, and annotations; and
IHE workflow profiles described in the aforementioned section for the inte-
gration of CAD results within the PACS workflow [5]. This CAD software
toolkit is modularized and its components can be installed in five different
configurations:

1. A stand-alone CAD workstation
2. A CAD server
3. A PACS workstation
4. A PACS server or
5. A mix of the previous four configurations

In general, a CAD manufacturer would be more comfortable with the first
two approaches because there is very little collaboration needed for the PACS
software, which is too complex for most CAD manufacturers. On the other
hand, a PACS manufacturer would prefer to use an in-house CAD or acquire
the CAD from a third party and integrate it with its own PACS using the
latter three approaches.

18.4.2 Structure, Components, and Editions

The CAD-PACS
TM

Toolkit has five software modules:

1. i-CAD-SC
TM

creates the screen shot for any CAD application, converts it
to a DICOM object and sends it to PACS for storage

2. i-CAD
TM

resides in the CAD workstation and provides key functions for
CAD-PACS integration, including DICOM-SR object creation and archival,
query and retrieval of images for CAD processing, and communication with
the i-PPM

TM
module

3. i-PPM
TM

residing in the PACS server provides functions to schedule and
track status of CAD-PACS workflow. This module is also used as a supple-
ment for those PACS manufacturers which do not support post-processing
management in order to be DICOM and IHE-compliant for CAD-PACS
integration

4. Receive-SR
TM

resides in the PACS server and performs the functions of
archiving, query and retrieving DICOM-SR objects from the PACS server

5. Display-SR
TM

resides in the PACS workstation. This module is used when
PACS does not support DICOM-SR C-Store Service Class User (SCU) and
C-Find. It is built as a display Web server with DICOM-SR C-Store and
C-Find features
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Fig. 18.5. Architecture of the CAD-PACS
TM

Toolkit [5]. The five modules are com-
bined to three different editions (left). The concept of four levels of integration with

the CAD-PACS
TM

Toolkit is shown on the right

Furthermore, the CAD-PACS
TM

Toolkit has three editions for the different
levels of PACS integration requirements. Each edition contains some or all of
the software modules (Fig. 18.5) [5]:

• DICOM-SC
TM

: The first edition converts a simple screen capture output,
and the CAD data are not stored for future use.

• DICOM-PACS-IHE
TM

: The second edition is for full CAD-PACS integra-
tion requiring elaborate collaboration between the CAD developer and the
PACS manufacturer.

• DICOM-CAD-IHE
TM

: The third edition does not require the elaborate
integration efforts of the two parties, and proper use of the CAD-PACS
toolkit is sufficient, which favors the independent CAD developer.

18.5 Example of CAD-PACS Integration

In this section, we provide a step-by-step procedure to integrate a CAD with
PACS using the Bone Age Assessment (BAA) of children on a hand and wrist
radiograph as an example.

The classical method of BAA is a clinical procedure in pediatric radiol-
ogy to evaluate the stage of skeletal maturity based on a left hand and wrist
radiograph through bone growth observations. The determination of skeletal
maturity (“bone age”) plays an important role in diagnostic and therapeutic
investigations of endocrinological abnormality and growth disorders of chil-
dren. In clinical practice, the most commonly used BAA method is atlas
matching by a left hand and wrist radiograph against the Greulich and Pyle
atlas, which contains a reference set of normal standard hand images collected
in 1950s with subjects exclusively from middle and upper class Caucasian pop-
ulations. The atlas has been used for BAA around the world for more than
50 years [7].

18.5.1 The Digital Hand Atlas

Over the past 30 years, many studies have raised questions regarding the
appropriateness of using the Greulich and Pyle atlas for BAA of contemporary



464 H.K. (Bernie) Huang et al.

children [8]. However, these studies did not provide a large-scale and system-
atic method for validation. A digital hand atlas with normal children collected
in the United States along with a CAD-BAA method has been developed dur-
ing the past 10 years in our laboratory as a means to verify the accuracy of
using the Greulich and Pyle atlas to assess today’s children bone age [9].

The digital hand atlas consists of eight categories, where each category
contains 19 age groups, one group for subjects younger than 1 year, and 18
groups at 1-year intervals for subjects aged 1–18 years. The case distribution
within each of these 18 groups is as even as possible during the case collection
of gender and ethnicities (Table 18.1).

The total is 1,390 cases. For each case, at least two pediatric radiologists
had verified the normality and chronological age, and assessed the bone age
of the child based on the Greulich and Pyle atlas matching method [10].

18.5.2 CAD Evaluation in a Laboratory Setting

After the CAD was completed, the system needed to be integrated with the
PACS. The integration is then evaluated first in a laboratory setting, followed
by the clinical environment. After image acquisition using Computed Radiog-
raphy (CR), Digital Radiography (DR), or film scanner, the image is archived
in the PACS server. The laboratory set up then mimics the clinical workflow
as shown with four steps (Fig. 18.6):

0. The PACS workstation query/retrieves the hand image from the PACS
archive and displays it on the monitor

1b. The modality/PACS server also sends a second copy of the hand image
to the CAD server which generates CAD results

Table 18.1. The digital hand atlas.
A breakdown of cases according to
gender and ethnics

Ethnics/Gender Female Male Total

Asian 167 167 334
African-American 174 184 358
Caucasian 166 167 333
Hispanic 183 182 365

Sum 690 700 1,390

Fig. 18.6. Laboratory
setting for BAA
evaluation [11]. The
BAA-CAD system in the
laboratory environment
using a PACS simulator is
composed of four steps
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2. The CAD server sends CAD results to the PACS workstation. The radi-
ologist reviews both the image and CAD result on the PACS workstation

3. The diagnosis from the radiologist assisted by CAD results is sent back
to the CAD server for storage

18.5.3 CAD Evaluation in a Clinical Environment

After laboratory validation, the BAA-CAD system and the PACS worksta-
tion were installed in a clinical environment for further evaluation. In this
example, the clinical environment is located at the Radiology Department of
Los Angeles County Hospital (LAC) and University of Southern California
(USC), where the CAD workstation can access the PACS and CR images.
The clinical workflow is similar to the laboratory workflow (Fig. 18.7):

1. The CR modality sends a copy of the hand image to the Web-based CAD
server located in the radiology reading room. The PACS workstation also
receives a copy of the image from the PACS server

2. The CAD program at the CAD server receives the image, performs BAA
and records the results in the CAD server database

3. The CAD server searches the PACS workstation to locate the original
image and links up with the CAD result, as well as the best-matched
image from the digital hand atlas in the CAD database

4. The Graphical User Interface (GUI) in the PACS workstation displays the
original image and the best-matched image (Fig. 18.6, the right most image
set on the duel monitors), and assists the radiologist to take advantage of
the CAD results to make the final diagnosis

CR
Modality Gateway

PACS
Server

PACS
WS

Los Angeles County General Hospital Environment
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1

2
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Fig. 18.7. Clinical BAA evaluation setup. The diagram depicts the BAA-CAD
system in clinical environment and the according workflow implemented in the LAC
Hospital with the clinical PACS and the CAD server
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18.5.4 CAD-PACS Integration Using DICOM-SR

In Sect. 18.3.1, we presented the concept of DICOM-SR and the need for con-
verting a text file CAD report to DICOM-SR format in order to overlay the
contents within the DICOM-SR onto the original image and to display it on
the PACS workstation. Referencing to two ratified CAD DICOM-SR tem-
plates for mammography and chest CT in the DICOM standard Supplement
50 and 65, a DICOM-SR object for the BAA-CAD based on a tree structure
was designed and implemented.

Figure 18.8 illustrates the DICOM-SR template for the BAA-CAD. This
design, which utilizes the DICOM standard Supplement 23, has a Document
Root BAA-CAD which branches into four parent nodes: Detection Performed
(DP), Analysis Performed (AP), Findings summary and Image library. Each
DP and AP parent nodes can have one or more children nodes. In this case, DP
describes one imaging processing algorithm, which is the BAA algorithm. The
AP parent node has two children nodes; each describes methods of quantita-
tive analysis that were performed on the hand image. Each analysis performed
can be further branched out to one or multiple grandchild nodes called Single
Image Findings (SIF). As shown in Fig. 18.8, each AP children node only has
one SIF. The findings summary parent node is the most important part of
an SR which includes the BAA-CAD results. The Image Library parent node
is optional; however, in the BAA-CAD SR, it is used to reference the images
from the digital hand atlas. The data structure format for each child can be
obtained directly from the DICOM standard, Supplement 23.

Figure 18.9 depicts the first page of the BAA-CAD report in DICOM-SR
format of Patient 1. To the right is the plot of the bone age (vertical axis)
against the chronological age (horizontal axis) of Patient 1 (red dot) within
the ± two standard deviations of the normal cases in the digital hand atlas.

Figure 18.10 shows an image page of the DICOM-SR report of Patient
2 including the original image (left) from which the BAA-CAD result was
obtained, the Greulich and Pyle atlas best-matched image (middle), and the
digital hand atlas best-matched image (right). The chronological age and the
CAD-assessed age of Patient 2, and the chronological age of the best-matched

Fig. 18.8. Nested DICOM-SR
templates for BAA-CAD. The
template is designed based on
the types of output
radiologists are required to
review
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Fig. 18.9. Integrating BAA-CAD with DICOM-SR. Left: The CAD report in
DICOM-SR format is based on the design of the DICOM-SR template as shown
in Fig. 18.8; Right : The plot of the CAD-BAA results of a patient (red dot) com-
pared with the normals and ± two standard deviations in the digital hand atlas is
a component in the DICOM-SR template

image in the digital hand atlas are enclosed inside the green ellipse in the upper
right corner. The plot of the CAD-assessed bone age of the patient within the
± two standard deviations of the normal cases in the digital hand atlas is
shown in the upper right corner. The best-matched digital hand atlas image
is obtained by using the CAD age of Patient 2 to search the digital hand atlas
in the order of race, sex and age. The image with the closest chronological age
(the best matched age) is the matched image in the digital hand atlas. The
chronological age, BAA bone age, and the matched digital hand atlas age are
shown at the upper right of the screen within the green ellipse.

18.6 Conclusion

In order for CAD to be useful to aid diagnosis and/or detection, it has to
be integrated into the existing clinical workflow. In the case of image-based
CAD, the integration is with the PACS daily workflow. We have presented
the rationale and methods of CAD-PACS integration with emphasis in PACS
workflow profiles using the DICOM standard and IHE workflow profiles.

In the PACS-based workflow approach, the CAD results do not reside in
the PACS server and storage; instead they are in the CAD server. PACS
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Fig. 18.10. BAA-CAD GUI on the PACS workstation. Left : Original image; Center :
Best matched Greulich and Pyle atlas image; Right : Best matched digital hand atlas
image. The CAD-assessed bone age of the patient compared to the children in the
normal range in the DHA is shown in the plot

images used by the CAD are linked with the CAD results so that both images
and CAD results in DICOM format can be displayed on the PACS worksta-
tion. We use an example in BAA on hand and wrist joint radiographs as an
introduction to the advantage of CAD and PACS integration for daily clinical
practice. In general, physicians can assess the bone age of a child using the
Greulich and Pyle method, but the question is whether the classic method is
still valid for assessing the bone age of children of today. With the integra-
tion of BAA-CAD directly into the PACS workflow, the radiologist has the
CAD results as the second opinion to assist his/her BAA and to confirm the
diagnosis.

In conclusion, the integration of CAD to PACS clinical workflow has many
distinct advantages:

• PACS technology is mature. Integrating CAD with the PACS can take
advantage of the powerful computers and high-speed networks utilized in
PACS to enhance the computational and communication power of the
CAD

• The DICOM-SR and IHE workflow profiles can be readily applied to
facilitate the integration of CAD results to PACS workstations
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• PACS-based query/retrieve tools can facilitate the CAD user to obtain
images and related patient data more directly from PACS for CAD
algorithm enhancement and execution

• CAD-PACS integration results can be directly viewed and utilized at the
PACS workstation together with relevant PACS data

• The very large, dynamic, and up-to-date PACS databases can be utilized
by CAD to improve its diagnostic accuracy

To utilize the DICOM-SR content more efficiently, the current trends
for CAD and PACS integration is to promote the development of DICOM-
compliant databases and services which combine CAD findings and DICOM
key image references [5]. This incorporation allows content-based query/
retrieval of DICOM imaging studies based on DICOM-SR with its quan-
titative findings rather than header information of DICOM objects and/or
disease category. The benefits of querying/retrieving content-based imaging
data could have a large impact on medical imaging research and clinical prac-
tice. However, there are many challenges in the development of data mining
methodology for CAD including the following:

• Collaboration with PACS vendors at multiple medical centers to open
access to both PACS and CAD data

• Acknowledgment of Institutional Review Board (IRB) and personal health
information requirements for using human subjects for research with
information within the PACS

• Adoption and utilization of DICOM-SR templates in all PACS vendors
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Content-Based Medical Image Retrieval

Henning Müller and Thomas M. Deserno

Summary. This chapter details the necessity for alternative access concepts to the
currently mainly text-based methods in medical information retrieval. This need is
partly due to the large amount of visual data produced, the increasing variety of
medical imaging data and changing user patterns. The stored visual data contain
large amounts of unused information that, if well exploited, can help diagnosis,
teaching and research. The chapter briefly reviews the history of image retrieval and
its general methods before technologies that have been developed in the medical
domain are focussed. We also discuss evaluation of medical content-based image
retrieval (CBIR) systems and conclude with pointing out their strengths, gaps, and
further developments. As examples, the MedGIFT project and the Image Retrieval
in Medical Applications (IRMA) framework are presented.

19.1 Introduction

Content-Based Visual Information Retrieval (CBVIR) or Content-Based Image
Retrieval (CBIR) has been one on the most vivid research areas in the field of
computer vision over the past almost 20 years. The availability of large and
steadily growing amounts of visual and multimedia data, and the development
of the Internet underline the need to create access methods that offer more
than simple text-based queries or requests based on matching exact database
fields. Many programs and tools have been developed to formulate and exe-
cute queries based on the visual or audio content and to help browsing large
multimedia repositories. Still, no general breakthrough has been achieved with
respect to large varied databases with documents of differing sorts and with
varying characteristics. Answers to many questions with respect to speed,
semantic descriptors or objective image interpretations are still open and wait
for future systems to fill the void [1].

In the medical field, images, and especially digital images, are produced
in ever-increasing quantities and used for diagnosis and therapy. The Radiol-
ogy Department of the University Hospitals of Geneva alone produced more
than 114,000 images a day in 2009, risen form 12,000 in 2002. Large hospital
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groups such as Kaiser Permanente that manage several hospitals had by early
2009 even 700 TB of data stored in the institutional archives and very large
hospitals such as the University Hospital of Vienna currently produces over
100 GB of image data per day.

With Digital Imaging and Communications in Medicine (DICOM), a stan-
dard for image communication has been set and patient information can be
stored with the actual image(s), although still a few problems prevail with
respect to the standardization. In several articles, content-based access to
medical images for supporting clinical decision-making has been proposed
[1, 2]. Still, only very few systems are usable and used in clinical practice as
most often development takes place in computer science departments, which
are totally disconnected from clinical practice.

19.1.1 Motivation and History

Image retrieval has been an extremely active research with first review articles
on access methods in image databases appearing already in the early 1980s
[3]. The following review articles explain the state-of-the-art and contain ref-
erences to a large number of systems and descriptions of the technologies
implemented [4–7]. The most complete overview of technologies to date is
given by Smeulders et al. in [8]. This article faces common problems such as
the semantic gap or the sensory gap and gives links to a large number of arti-
cles describing the various techniques used in the domain. In a more recent
review, the developments over the past 5–10 years are described [9].

Although early systems existed already in the beginning of the 1980s [10],
the majority would recall systems such as IBM’s Query by Image Content
(QBIC)1 as the start of CBIR [11].

Most of the available systems are, however from academia. It would be
hard to name or compare them all but some well-known examples include
Photobook [12] and Netra [13] that all use simple color and texture character-
istics to describe the image content. Using higher level information, such as
segmented parts of the image for queries, was introduced by the Blobworld2

system [14, 15]. PicHunter [16] on the other hand is an image browser that
helps the user to find a certain image in the database by showing to the user
images on screen that maximize the information gain in each feedback step.
A system that is available free of charge is the GNU Image Finding Tool
(GIFT)3 [17].

19.1.2 Query-by-Example(s) Paradigm

One of the biggest problems in CBIR is the formulation of queries without
text. Everyone is used to formulate queries with text (as 90% of Internet

1 http://wwwqbic.almaden.ibm.com/
2 http://elib.cs.berkeley.edu/photos/blobworld/
3 http://www.gnu.org/software/gift/
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users are using Google) and explain one’s information needs but with visual
elements this is far from trivial. Drawing small designs is one possibility requir-
ing artistic skills and being unsuitable for the majority of users. Formulating
a Query by Image Example (QBE) is currently the most common way to
search for similar images. This is used by most image retrieval systems. Thus,
a system can search for visually similar images with one or several example
image(s). The problem remaining is to find a suitable example image, which
is not always obvious (“page zero problem”) [18].

In the medical domain images are usually one of the first examinations
performed on patients, and thus query examples are available. Once the user
has received a results set of images or cases similar to a given example image or
case, systems most often offer the possibility to mark images/cases as relevant
and irrelevant and thus refine the search through what is called “relevance
feedback”[19].

19.2 General Image Retrieval

General image retrieval started with the main concepts already in 1980 [3].
Still, the real research did not start before the late 1980s, when several systems
using simple visual features became available [11].

19.2.1 Classification vs. Retrieval

One of the first and basic questions in image retrieval is whether it is rather
an information retrieval task or a classification task. While there are many
similarities between them, there are two principle differences [20]:

• Classification tasks have a limited number of classes of topics/items and
training data for each of the classes that allow training of class-specific
parameters.

• Retrieval tasks have no fixed classes of items/objects in the database and
usually no training data available; documents can be relevant for a par-
ticular retrieval task or information need, with relevance being potentially
user-dependent.

In general, the techniques according to the classification paradigm follow
the general machine learning literature and its approaches, whereas the
(information) retrieval approaches follow techniques from general information
retrieval.

In the end, when used for CBIR, both represent images by visual features
and then find similar images using a distance measure, showing the most
similar images to the user ordered by their visual similarity.



474 H. Müller and T.M. Deserno

Fig. 19.1. Retrieval system
architecture. Overview of the main
components that most image retrieval
systems are constituted of
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19.2.2 System Components and Computation

Most of these systems have a very similar architecture for browsing and archiv-
ing/indexing images comprising tools for the extraction of visual features, for
storage and efficient retrieval of these features, for distance measures or simi-
larity calculation, and a type of Graphical User Interface (GUI). This general
system setup is shown in Fig. 19.1.

Computational efficiency is another often regarded question. Particularly
the visual analysis can take an enormous time for large databases and as
the challenge is to scale to millions of images, tools such as grid networks
and parallel processing have been used for feature processing. This is mainly
done for the off-line step of representing images by features, whereas for the
query processing efficient indexing structures are used for quick response times
tr < 1 s.

19.2.3 Features and Signatures

Visual features were classified into primitive features such as color or shape,
logical features such as identity of objects shown and abstract features such
as significance of depicted scenes [6]. However, basically all currently available
systems only use primitive features such as:

• Color: In stock photography (large, varied databases for being used by
artists, advertisers and journalists), color has been the most effective fea-
ture. The Red, Green, Glue (RGB) color space is only rarely used as it
does not correspond well to the human color perception. Other spaces
such as Hue, Saturation, Value (HSV) or the Commission Internationale
de L’Eclairage (CIE) Lab and Luv spaces perform better because distances
in the color space are similar to the differences between colors that humans
perceive. Much effort has also been spent on creating color spaces that are
optimal with respect to lighting conditions or that are invariant to shades
and other influences such as viewing position [21].

• Texture: Texture measures try to capture the characteristics of the image
with respect to changes in certain directions and the scale of the changes.
This is most useful for images with homogeneous texture. Some of the
most common measures for capturing the texture of images are wavelets
and Gabor filters. Invariances with respect to rotation, shift or scale can
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be included into the feature space but information on the texture may get
lost in this process [22]. Other popular texture descriptors contain features
derived from co-occurrence matrices [23, 24], the Fourier transform [22],
and the so-called Wold features [25].

• Local color and texture: Both, color and texture features can be used also
on a local or regional level, i.e. on parts of the image. To use blocks of fixed
size, so-called partitioning, is the easiest way employing regional features
[26]. These blocks do not take into account any semantics of the image
itself. When allowing the user to choose a Region of Interest (ROI) [27], or
when segmenting the image into areas with similar properties [28], local
features capture more information about relevant image structures.

• Shape: Fully automated segmentation of images into objects itself is an
unsolved problem. Even in fairly specialized domains, automated segmen-
tation causes many problems. In image retrieval, several systems attempt
to perform an automatic segmentation for feature extraction [29]. The seg-
mentation process should be based on color and texture properties of the
image regions [28]. The segments can then be described by shape features,
usually being invariant to shift, rotation and scaling [30]. Medical image
segmentation with respect to browsing image repositories is frequently
addressed in the literature as well [31].

• Salient points: In recent years’ salient point-based features have had best
performances in most of the image retrieval and object classification tasks
[32]. The idea is to find representative points (or points that attract the
attention) in the images and then analyze the relationships of the points.
This permits to extract features that possess several invariants such as
invariance to shifts, rotations, scale and even view-point. A large number
of such techniques exist for detecting the points and then for extracting
features from the salient points.

• Patches and visual words: Patches and visual words are closely linked to
salient point-based features. As the patches and/or visual words are most
often extracted from regions in the images that were identified to con-
tain changes or high gradients and then local features are extracted in
these regions. It is also possible to put a regular grid on the image and
then extract patches around the points of the grid to well represent the
entire image. The term visual words stems from the fact that the features
extracted around the selected points are often clustered into a limited num-
ber of homogeneous characteristics that can have distributions similar to
the distribution of words in text allowing to use techniques well known
from text retrieval [33].

All of these features have their benefits and domains where they operate
superiorly, but all these features are low-level visual features and might not
correspond to semantic categories. For this reason, text, whenever available
should be used for the retrieval of images as well, as semantic information is
conveyed very easily. All benchmarks show that text has superior performance
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compared to visual characteristics, but can be complemented efficiently by
visual retrieval.

19.2.4 Distance and Similarity Measures

Basically all systems use the assumption of equivalence of an image and its
representation in feature space. These systems often use measurements sys-
tems such as the easily understandable Euclidean vector space model [11] for
measuring distances between a query image (represented by its features) and
possible results representing all images as feature vectors in an n-dimensional
vector space. This is done although metrics have been shown to not correspond
well to human visual perception [34]. Several other distance measures do exist
for the vector space model such as the city-block distance, the Mahalanobis
distance [11] or a simple histogram intersection [35]. Still, the use of high-
dimensional feature spaces has shown to cause problems and great care needs
to be taken with the choice of distance measurement to retrieve meaningful
results [36,37]. These problems with a similarity definition in high-dimensional
feature spaces is also known as the “curse of dimensionality” and has also been
discussed in the domain of medical imaging [38].

Another approach is a probabilistic framework to measure the probability
that an image is relevant [39]. Another probabilistic approach is the use of
a Support Vector Machine (SVM) [40,41] for grouping of images into classes
of relevant and non-relevant items. In most visual classification tasks, SVMs
reach best performance in general.

Various systems use methods that are well known from the field of text
retrieval and apply them to visual features, where the visual features have
to correspond roughly to words in text [26, 42]. This is based on the two
principles:

• A feature frequent in an image describes this image well.
• A feature frequent in the collection is a weak indicator to distinguish

images from each other.

Several weighting schemes for text retrieval that have also been used in image
retrieval are described in [43]. A general overview of pattern recognition
methods and various comparison techniques are given in [44].

19.3 Medical Image Retrieval

The number of digitally produced medical images has rising strongly, mainly
due to large tomographic series. Videos and images produced in cardiology are
equally multiplying and endoscopic videos promise to be another very large
data source that are planned to be integrated into many Picture Archiving and
Communication Systems (PACS). The management and the access to these
large image repositories become increasingly complex. Most accesses to this
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Fig. 19.2. Medical CBIR system architecture. All images in the PACS archive and
the QBE image are described by a signature. Comparing signatures instead of images
allows fast CBIR response

data is based on the patient identification or study characteristics (modality,
study description) [45].

Imaging systems and image archives have often been described as an
important economic and clinical factor in the hospital environment [46, 47].
More than ten years ago, several methods from the fields of computer vision
and image processing have already been proposed for the use in medicine
more than 10 years ago [48]. Several radiological teaching files exist [49] and
radiology reports have also been proposed in a multimedia form [50].

19.3.1 Application Fields

Content-based retrieval has also been proposed several times from the medical
community for the inclusion into various applications [2,51], often without any
implementation. Figure 19.2 shows the general system architecture.

Almost all sorts of images have already been used for image retrieval at one
point or another. The first separation is on whether systems use a large and
varied set of images [52] or work on a very focused domain as diagnosis aid [53].

Typical application domains for CBIR-based image management is case-
based reasoning and evidence-based medicine, in particular in fields where
diagnosis is regarded as hard and where purely visual properties play an
important role, such as mammography [54] or the diagnosis of interstitial
lung diseases [55, 56]. CBIR-based eLearning has also been discussed [57].

19.3.2 Types of Images

The medical domain yields an extremely large amount of varying images, and
only very few have so far been exploited fully for visual similarity retrieval.
When thinking of medical images, clearly radiographs and maybe Computed
Tomography (CT) come instantly to mind but there is much more than this
usually gray scale set of images.

Here is a list of some of the types of visual data that is available in hospitals
and often stored in the PACS:

• 1D signals: EEG, ECG
• 2D gray scale images: X-ray radiography
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• 2D color images: microscopy, photography, dermatology
• Gray scale video: ultra-sonography
• Color video: monitoring in a sleep laboratory
• Pseudo-3D (slices): CT, MRI, PET, SPECT
• 3D models: reconstructions of tomographic images
• 4D data: temporal series of tomographic images such as CT images of a

beating heart
• nD data: Multi-modal images obtained from combined PET/CT or PET/

MRI scanners

It is obvious that medical imaging is much more varied then the images of the
general CBIR domains, such as photographs in the Internet.

19.3.3 Image Preprocessing

Image pretreatment is most often used to harmonize the content in a database
and thus make feature extraction from the images based on the same grounds.
Such preprocessing can be the normalization of gray levels or colors in images.

Another application of pretreatment in the medical domain is the back-
ground removal from images and automatic detection of the field of view [58]
to concentrate the search on the important objects. Although medical images
are taken under relatively controlled conditions, there is a fairly large variety
remaining particularly in collections of scanned images.

Some typical images from our database are shown in Fig. 19.3 (top row).
The removal is mainly done through a removal of specific structures followed
by a low pass filter (median) and then by thresholding and a removal of
small unconnected objects. After the object extraction phase, most of the
background is removed but only a few images had part of the main object
removed (Fig. 19.3, bottom row).

19.3.4 Visual and Non-Visual Image Features

Most of the visual features used in medical images are based on those existing
for non-medical imaging as well [59]. For radiographs, there is clearly a need
to highlight gray level instead of the color values in non medical image, which
can make the search harder. On the other hand, most of the medical images
are taken under fairly standardized conditions, requiring fewer invariances and
allowing direct comparisons of downscaled versions of the images.

In contrast to non-medical image archives, all medical images do have meta
data attached to them as the images are part of a clinical record, that consists
of large amounts of structured data and of free text such as laboratory results,
anamnesis and release letter. Without this meta information, interpretation
of medical cases is impossible. No radiologist would read an image without a
minimum of meta data on the patient (e.g., age, sex) and a basic anamnesis
as many of the clinical parameters do have a strong influence on the visual
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Fig. 19.3. Image pretreatment. Images before (top row) and after (bottom row) the
removal of logos and text

characteristics of the images. For instance, old patients have less dense bones,
and the lung of a smoker differs significantly from that of a non-smoker.

One of the largest problems is how to combine structured/free text data
with visual features. Several fusion approaches have been proposed in [56].
Most often, late fusion is considered best as there are potentially many features
and there can be negative interactions between certain of the clinical data
and certain visual features. It is also clear that the data quality in patient
records is often far from optimal. In an anamnesis for instance, parameters
are asked unsystematically, leaving often incompleteness, e.g., if the patient
was a smoker or not. Incompleteness of data must be handled appropriately
for classification or retrieval [59].

19.3.5 Database Architectures

Many tools and techniques have been used for quick access to large collec-
tions of images, similar to access models in general database architectures.
Frequently, the goal is to accept a rather long off-line phase of data pre-
treatment followed by a rather short time of query response. Techniques from
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text retrieval have proven fast response in sparsely populated spaces and are
frequently applied.

Parallel access to databases and grid networks are also used for the off-line
phase, i.e., the computationally most heavy phase. For on-line processing this
is often too slow, though, as often there is an overhead in grid networks, for
example, for the job submission and load balancing part.

19.3.6 User Interfaces and Interaction

Most of the current user interfaces follow the QBE paradigm and allow to
upload images to start with, or have a random function to browse images in
the database to find a starting point. Most interfaces show a ranked list of
image results ordered by similarity. A clear distinction is required for how
visual and how textual queries can be formulated. Both together form the
most powerful framework [60].

Another important aspect of the user interface is the possibility to obtain
more information about the users information need by marking images as
positive and/or negative feedback. Many techniques exist for calculating sim-
ilarity between several positive and negative input images, from combining
all features for a joint pseudo-image to performing separate queries with each
image and then combining the results.

19.3.7 Interfacing with Clinical Information Systems

The use of content-based techniques in a PACS environment has been pro-
posed several times [61]. PACS are the main software components to store
and access the large amount of visual data used in medical departments [62].
Often, several layer architectures exist for quick short-term access and slow
long-term storage, but these are steadily replaced by fully hard disk-oriented
solutions. The general scheme of a PACS within the hospital is shown in
Fig. 19.4. The Integrating the Healthcare Enterprise (IHE) initiative is aiming
at data integration in healthcare including all system components.

An indexing of the entire PACS causes problems with respect to the
sheer amount of data that needs to be processed allowing efficient access
by content to all the images. This issue of the amount of data that needs

Fig. 19.4. System
interconnection. The PACS
is connected with imaging
modalities such as CT or
MRI, the Radiology (RIS)
and the Hospital
Information System (HIS)

CT

RIS
PACS

Archive, Management
Viewing Stations

HIS

MRI X-ray Scanner Camera Imaging procedures
Modalities

Radiology

Hospital

orders

order
scheduling,

report
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to be indexed is not discussed in any of the articles. Qi and Snyder have
proposed to use CBIR techniques in a PACS as a search method but no
implementation details are given [63]. Bueno et al. extend a database man-
agement system for integrating content-based queries based on simple visual
features into PACS [64]. A coupling of image classification with PACS is given
in [45]. Here, it is possible to search for certain anatomic regions, modali-
ties or views of an image. A simple interface for coupling PACS with CBIR
is also proposed. The identification is based on the DICOM Unique Iden-
tifier (UID) of the images. An IHE compliant procedure calling external
CBIR application as well as returning the CBIR results into the PACS is
described [65].

19.4 Evaluation

Whereas early evaluation in image retrieval was only base on small databases
showing a few example images, evaluation in text retrieval has always been a
very experimental domain. In CBIR, a first real standardization was achieved
with the ImageCLEF4 medical image retrieval task that started in 2004
and has been organized every year since, including a classification task and
a retrieval task based on a data set of the Image Retrieval in Medical
Applications (IRMA)5 group.

19.4.1 Available Databases

Medical image databases have increasingly become available for researcher in
the past 5 years. Some of the prominent examples is the Lung Image Database
Consortium (LIDC) data, the IRMA database with many different classes and
an increasing number of images and the images of the ImageCLEF competition
taken first from medical teaching files and then from the scientific medical
literature.

Nowadays, the National Institutes of Health (NIH) and the National Can-
cer Institute (NCI) require funded research to make their data available, and
several databases indeed have become available for the public.

19.4.2 Tasks and User Models

When evaluating image retrieval, a certain usage model and information must
be defined. A few research groups have actually conducted surveys on the use
of images for journalists [66] and in other domains such as libraries or cultural
heritage institutions [4].

4 http://www.imageclef.org/
5 http://irma-project.org/
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For ImageCLEF 2005, the topic development was based on two surveys
performed in Portland, OR and in Geneva [67, 68]. In total, about 40 med-
ical professionals were surveyed on their image use and search behavior to
learn more on how they use images and how they would like to search for
them. It became clear that depending on the role of the person (clinician,
lecturer, researcher) the information needs are significantly different, so each
person who had more than one role had to respond to the questions for all
roles. Librarians and students were also included into the survey. Most fre-
quently, people said that they would like to be able to search for pathology
and then for modality and the anatomic region. People prefer web engines
to search for interesting images for lectures, but were concerned, while on
the contrary being about image reliability. Based on these surveys, topics for
ImageCLEFmed were developed along the following axes:

• anatomic region shown in the image
• imaging modality (e.g., X-ray, CT, MRI, microscopy)
• pathology or disease shown in the image
• abnormal visual observation (e.g., enlarged heart)

It was tried that topics covered at least two of these axes. A visual query
topic is shown in Fig. 19.5, and a query topic requiring more than purely
visual features is shown in Fig. 19.6. As ImageCLEF is on multilingual infor-
mation retrieval and as the collection is in three languages, the topics were
also developed in these three languages.

19.4.3 Ground Truth and Gold Standards

One of the most important aspects of evaluation is that there is a clear idea
of what a good or perfect query result would be like. In the case of the IRMA
collection, this ground truth (or gold standard) is given by the IRMA code
that is attributed to each image by a clinician [69]. Its mono-hierarchical
multi-axial architecture allows unambiguous ground truth labeling. Therefore,

Fig. 19.5. Visual query. An example
of a query (topic) of ImageCLEF
2005 that is at least partly solvable
visually, using the image and the text
as query. Still, use of annotation can
augment retrieval quality. The query
text is presented in three languages,
English: “Show me chest CT images
with emphysema”; German: “Zeige
mir Lungen CTs mit einem
Emphysem”; French: “Montre-moi
des CTs pulmonaires avec un
emphysème”
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Fig. 19.6. Semantic query. A query of
ImageCLEF 2005; English: “Show me
all X-ray images showing fractures”;
German: “Zeige mir Röntgenbilder mit
Brüchen”; French: “Montres-moi des
radiographies avec des fractures”,
which requires more than only visual
retrieval. Visual features, however, can
deliver hints to good results

depending on the data sets, classes can be generated using the entire hierarchy
or a partial hierarchy. Image classification systems can then be evaluated by
comparing them to the correct class labels.

For image retrieval as in the ImageCLEFmed benchmark, evaluation is
slightly different since fixed classes do not exist. Based on well-defined informa-
tion such as those in Fig. 19.6 experts can judge whether an image is relevant
to this query or not. In images three categories were used, relevant, irrelevant,
or indeterminable. Based on the judgments of clinicians on such relevance,
several retrieval systems can well be compared.

Performance measures for the evaluation of information retrieval in general
and image retrieval in particular have initiated intensive discussion for many
years. Whereas in image classification the choice is smaller (correctly classified,
incorrectly classified), there are many measures existing for retrieval tasks.

19.4.4 Benchmarks and Events

Information retrieval benchmarks have been established in the 1960s with the
Cranfield tests. Since 1991, the Text Retrieval Conference (TREC) has created
a strong testbed for information retrieval evaluation. For several years, TREC
contained a biomedical retrieval called TRECgenomics.

The Cross Language Evaluation Forum (CLEF) started within TREC in
1997 and has been independent since 2000. With ImageCLEF that started
in 2003, a new medical task was introduced as well, promoting the search
for medical images with textual and visual means combined. From a small
database of 8,000 images in 2004 the data sets and tasks have grown larger
and more complicated every year. Also regarding the IRMA database and the
image classification task, the complexity over 4 years was increased annually.

19.5 Examples for Medical CBIR Systems

In this section, we describes two example projects for medical CBIR.
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19.5.1 Medical Gnu Image Finding Tool

Initially, the Medical GIFT (MedGIFT)6 project was based on the GIFT,
which resulted from the Viper7 project at the University of Geneva [26]. The
visual features used are meant for color photography and include a simple color
histogram as well as color blocks in various areas of the images and at several
scales. To separate the actual query engine from the GUI, the Multimedia
Retrieval Markup Language (MRML)8 was developed. This query language
is based on direct communication of search engine and interface via sockets
and eases a variety of applications such as meta-search engines and also the
integration of a retrieval tool into a variety of environments and applications.

After a while, however, it became clear that new techniques were necessary
in the medical domain, and the build components were grouped around five
axes:

• Data access, ontologies, data annotation
• Techniques for retrieval and efficient structures to use them on large data

sets
• Applications in the medical field such as lung image retrieval, fracture

retrieval
• Inclusion of higher dimensional data sources into the retrieval process such

as the use of 3D and 4D data
• Evaluation, mainly with the ImageCLEF benchmark describes in Sect. 19.4

Figure 19.7 shows a typical web interface after a query was executed. The
query results are displayed ordered by their visual similarity to the query,
with a similarity score shown underneath the images as well as the diagnosis.
A click on the image links with the case database system and allows to access
the full-size images.

In the context of heading towards indexing of higher-dimensional images
an interface for browsing 3D repositories was developed [70] (Fig. 19.8).

19.5.2 Image Retrieval in Medical Applications

In Sect. 19.4, we have already introduced the IRMA framework. This
research-driven project has been activated for almost 10 years, combining
inter-disciplinary expertise from diagnostic radiology, computer science, and
medical informatics.

IRMA aims at developing and implementing high-level methods for CBIR
including prototypical application (e.g., [41, 71, 72]) to medico-diagnostic
tasks on a radiological image archive. They want to perform semantic and
formalized queries on the medical image database, which includes intra- and
inter-individual variance and diseases.
6 http://www.sim.hcuge.ch/medgift/
7 http://viper.unige.ch/
8 http://www.mrml.net/
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Fig. 19.7. MedGIFT user
interface. A screen shot of a
typical web interface for
medical image retrieval
system allowing QBE with
the diagnosis underneath the
image is shown

Fig. 19.8. CBIR user
interface supporting 3D data.
An interface that allows
searching in 3D databases by
visual content and then
visualises the images with
abnormal regions marked in
various colors is shown

IRMA is based on a (i) central database that hold images, features, and
the processing methods, (ii) a scheduler that provides distributed processing,
(iii) a communicator that is used to interconnect CBIR with RIS and PACS,
and (iv) web-based GUIs are provided for applications [45]. Three levels of
image content similarity are modeled:

• Global features are linked to the entire images and used to automati-
cally classify an image according to the anatomy, biosystem, creation, and
direction (registered data layer) [69].

• Local features are linked to prominent image regions and used for object
recognition (feature layer).

• Structural features are linked to spatial or temporal relations between the
objects and used for high-level image interpretation (object layer).

A pipeline of image processing is suggested. Iterative region merging is used
to build up a Hierarchical Attributed Region Adjacency Graph (HARAG), the
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data structure that is used to represent images, Objects of Interest (OOIs),
and object constellations (scene analysis). Hence, image retrieval is trans-
formed to graph matching. Object comparison operates on the HARAG nodes,
while scenes are modeled by graph to sub-graph comparison.

Extended query refinement is provided to the user and allows for undo and
redo commands and logical combinations of individual query responses [73].
Figure 19.9 visualized the interaction loops that are all encapsulated within
one browser window. Parameter modules are used to transfer the input and
parameters from the user to the system (e.g., QBE), and the output modules
are used to display the query result (Fig. 19.9, green). Query refinement is
supported by the orange loop, and yellow indicates undo, and redo options.
The outer loop (Fig. 19.9, blue) allows combining individual queries by AND

and OR. Here, the user can seek images having a certain characteristic in one
local area and another elsewhere.

A typical IRMA user interface is shown in Fig. 19.10. Here, a spine X-ray
databased is searched by shape and shape similarity [74]. The slider bars below
the images allow the user to evaluate the retrieval result (query refinement).

Currently, the IRMA group is working on integration of CBIR into the clin-
ical workflow. Figure 19.11 shows the dataflow for CBIR-assisted pre-fetching
of previous radiographs supporting the radiologist in reading the scheduled
exam. Both, Health Level Seven (HL7) and DICOM interfaces are provided by
the IRMA communicator module. The communication steps are performed (i)
at time of examination scheduling (steps 1–4); (ii) in the night before the exam
(step 4); and (iii) on the day of the examination (steps 5–12). The additional
communication steps that have been added to the communication because of
CBIR integration are: 2c, 3, 6c, 7, 8, 9, 10a. To support CBIR-based hanging
protocols, steps 10b and 11b are required additionally.

Fig. 19.9. IRMA extended
query refinement [73]. Four
nested loops are integrated
within one browser interface.
Green: simple QBE; Orange:
query refinement; Yellow :
undo and redo; Blue: AND
and OR
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Fig. 19.10. IRMA user
interface. A typical IRMA
web interface supporting
QBE, relevance feedback,
and extended query
refinement. Here, a shape
retrieval interface in
collaboration with the
National Library of Medicine
(NLM), National Institutes
of Health (NIH), USA is
shown

RIS
Report

Management
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HIS
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IRMA
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Fig. 19.11. IRMA
integration with HIS and
PACS [75]. The regular
workflow and its components
are visualized in blue; the
IRMA system addons in red.
Interfacing is based on the
Application Programming
Interface (API)

19.6 Discussion and Conclusions

Medical images have often been used for retrieval systems and the medical
domain is frequently cited as one of the principal application domains for
content-based access technologies [76, 77] in terms of potential impact. Still,
there has rarely been an evaluation of the performance and the description of
the clinical use of systems is even rarer. Two exceptions are the Assert system
on the classification of high resolution CTs of the lung [53] and the IRMA
system for the classification of images into anatomical areas, modalities and
view points [52].

Still, for a real medical application of content-based retrieval methods and
the integration of these tools into medical practice, a very close cooperation
between the two fields is necessary for a longer period of time. This can-
not simply be substituted by an exchange of data or a list of the necessary
functionality.
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19.6.1 Strengths and Weaknesses of Current Systems

It was pointed out in this chapter that image retrieval has gone a long way
from purely theoretical laboratory style developments, where single images
were classified into a small number of classes without any clinical application,
towards tools that combine visual and clinical data to really aid diagnosis and
deliver valuable information to the clinicians. Tools have shown to improve
diagnosis in real settings when properly applied [78]. With ImageCLEF there
is also a benchmark to compare techniques for visual classification as well as
for multi-modal medical information retrieval combining text and image data.
Such benchmarks are necessary to proof the performance of techniques and
entire systems.

Still, there is currently a total lack of system that are used in clinical
practice and in close collaboration with clinicians.

19.6.2 Gaps of Medical CBIR Systems

In [59, 79], several technical gaps in medical image retrieval have been iden-
tified (Fig. 19.12). However, there are several other levels of gaps that need
to be mentioned in this context. Legal constraints currently limit the appli-
cation domain as the secondary use of medical data is ruled by nationally
different laws that are not always easy to follow. In general, informed con-
sent is required even if data is anonymized. This limits the amount of data
potentially accessible and thus also the usefulness of the approach. Tools as
the one described in [80] to access research data in patient records with an
on-the-fly anonymization should limit these effects, but at the moment, it is
still far from being usable in many institutions.

All these gaps finally lead to a usage gap. Clinicians rather use Google
to search for images on the web than to search in patient records, where the
access is limited via the patient Indentifier (ID). User interface, speed and
retrieval quality seem to provide advantages with simple tools such as Google
and this needs to be taken into account for new medical CBIR interfaces.

19.6.3 Future Developments

Image retrieval does have a bright future as does information retrieval in gen-
eral. Information is produced in ever-increasing quantities and it also becomes
increasing available, whether through patient record or via the Internet in
teaching files or the scientific literature. One of the future challenges is to
navigate in a meaningful way in databases of billions of images, allowing for
effective and efficient retrieval, and at the same time a diversity in the results
displayed and not simply duplicate images. Modern hospitals produced in
the order of 100GB or 120,000 images per day, and only few image retrieval
systems could index this data providing a high response speed.
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By far the largest data volume is produced with 3D and 4D tomo-
graphic devices, and there is still little research in this domain although a few
approaches mainly for surface models do exist. To better integrate the entire
amount of available information, it also seems necessary to merge visual, tex-
tual and structured data retrieval into unique systems. Currently the research
domains are totally separated, and a closer collaboration is necessary for work-
ing systems. The goal in the end should be to deliver the right information,
to the right people at the right time, and this information needs to include
the visual data.

Another important future task is comprehensive evaluation of retrieval
systems in clinical practice and thus in collaboration with clinicians to show
their practical benefit. This is required to quantity the impact of CBIR and
to determine its limits. Component-level evaluation is necessary to better
understand what is currently working and what is not. Having all compo-
nents accessible via standard interfaces could also help to optimize the overall
system performance, which itself will impact CBIR system acceptance by the
physicians.
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Systematic Evaluations and Ground Truth

Jayashree Kalpathy-Cramer and Henning Müller

Summary. Every year, we see the publication of new algorithms for medical image
analysis including segmentation, registration, classification and retrieval in the liter-
ature. However, in order to be able to translate these advances into clinical practice,
the relative effectiveness of these algorithms needs to be evaluated.

In this chapter, we begin with a motivation for systematic evaluations in sci-
ence and more specifically in medical image analysis. We review the components
of successful evaluation campaigns including realistic data sets and tasks, the gold
standards used to compare systems, the choice of performance measures and finally
workshops where participants share their experiences with the tasks and explain the
various approaches. We also describe some of the popular efforts that have been con-
ducted to evaluate retrieval, classification, segmentation and registration techniques.
We describe the challenges in organizing such campaigns including the acquisition
of databases of images of sufficient size and quality, establishment of sound metrics
and ground truth, management of manpower and resources, motivation of partici-
pants, and the maintenance of a friendly level of competitiveness among participants.
We conclude with lessons learned over the years of organizing campaigns, including
successes and road-blocks.

20.1 Introduction

Medical images are being produced in ever-increasing quantities as a result
of the digitization of medical imaging and advances in imaging technology
in the last two decades. The assorted types of clinical images are critical in
patient care for diagnosis and treatment, monitoring the effect of therapy,
education and research. The previous chapters have described a number of
techniques used for medical image analysis from 3D image reconstruction to
segmentation and registration to image retrieval. The constantly expanding
set of algorithms being published in the computer vision, image processing,
machine learning and medical image analysis literature underscores the need
for sound evaluation methodology to demonstrate progress based on the same
data and tasks.

T.M. Deserno (ed.), Biomedical Image Processing, Biological and Medical Physics,

Biomedical Engineering, DOI: 10.1007/978-3-642-15816-2 20,

c© Springer-Verlag Berlin Heidelberg 2011



498 J. Kalpathy-Cramer and H. Müller

It has been shown that many of these publications provide limited eval-
uation of their methods using small or proprietary data sets, making a fair
comparison of the performance of the proposed algorithm with previous algo-
rithms difficult [1, 2]. Often, the difficulty in obtaining high quality data sets
with ground truth can be an impediment to computer scientists without access
to clinical data. We believe that any newly proposed algorithms must be com-
pared to the existing state-of-the-art techniques using common data sets with
application-specific, validated metrics before they are likely to be incorporated
into clinical applications. By providing all participants with equal access to
realistic tasks, validated data sets (including ground truth), and forums for
discussing results, evaluation campaigns can enable the translation of superior
theoretical techniques to meaningful applications in medicine.

20.2 Components for Successful Evaluation Campaigns

Evaluation is a critical aspect of medical image analyses and retrieval. In the
literature, many articles claim superior performance compared to previously-
published algorithms. However, in order to be able to truly compare and
contrast the performance of these techniques, it is important to have a set of
well-defined, agreed-upon tasks performed on common collections using mean-
ingful metrics. Even if the tasks are very different from a technical standpoint
(segmentation vs. retrieval, for example), their evaluations share many com-
mon aspects. Evaluation campaigns can provide a forum for more robust and
equitable comparisons between different techniques.

20.2.1 Applications and Realistic Tasks

First of all, the goal of the algorithms being evaluated must be well under-
stood. A technique such as image segmentation is useful in many clinical areas;
however, to perform a thorough evaluation of such algorithms, one must keep
the ultimate application in mind. For example, consider the following two seg-
mentation tasks: tumor segmentation to monitor a response to cancer therapy,
and anatomical segmentation of the brain from an fMRI study. The nature of
each task informs the choice of the optimal evaluation metric. In the first case,
missing portions of the tumor (and thereby under-estimating its size) can have
serious consequences, and therefore penalties for under-segmentation might
be more appropriate. In other applications, however, under-segmentation and
over-segmentation may be considered to be equally inconvenient.

An image retrieval system used for performing a systematic review might
have different goals than a system used to find suitable images for a lecture
or scientific presentation. In the first case, the goal might be to find every
relevant article and image, while in the second case a single image that meets
the search need might be sufficient. For some applications accuracy might be
more important while for those being used in real-time, speed can be critical.
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Evaluation campaigns are usually geared toward a specific clinical appli-
cation. For instance, the Medical Image Computing and Computer Assisted
Intervention (MICCAI) grand challenges for segmentation [3] target very spe-
cific tasks (e.g., segmentation of prostate, liver etc.). The goal for the image
retrieval task in the Cross Language Evaluation Forum (CLEF),1 medical
retrieval campaign (ImageCLEF 2009) is to retrieve images from the medical
literature that meet information needs of clinicians [4].

Once the overall goal of the algorithm has been well understood, it is
important to identify a set of realistic, meaningful tasks towards that goal. For
evaluating an image retrieval system this might consist of a set of reasonable
search topics (often derived from user studies or log file analyses [5–7]). For the
evaluation of a registration algorithm, an appropriate task might be to register
structures in an atlas to equivalent structures in a set of patients. For seg-
mentation challenges the task might be to segment normal anatomical organs
(e.g., lung, liver, prostate, vasculature) or abnormalities (e.g., lung nodule,
liver tumor, lesion). Classification tasks might include classifying radiographs
based on the anatomical location [8], or separating voxels in the brain into
white, gray matter and Cereborspinal Fluid (CSF) in Magnetic Resonance
Imaging (MRI) data [9]. The number and scale of these tasks (how many top-
ics, how many structures for how many different patient studies, etc.) must be
carefully chosen to support the derivation of statistically meaningful metrics.

20.2.2 Collections of Images and Ground Truth

In order to perform a fair comparison of different algorithms, ideally all
techniques must be compared on the same database or collection of images.
Additionally, these data must be of a sufficient variety, so as to encompass
the full range of data found in realistic clinical situations.

Often, computer scientists wishing to evaluate state-of-the-art algorithms
do not have access to large amounts of clinical data, thereby limiting the
scope of their evaluations. In general, getting access to the large collections
necessary for a robust evaluation has been challenging, even for researchers
associated with clinical facilities due to issues of cost, privacy and resources.

Recently, there has been a growing trend towards making databases of
images available openly towards the goal of promoting reproducible science.
Many governmental agencies, including the National Institutes of Health
(NIH) in the United States have funded initiatives like the Lung Imaging
Database Consortium (LIDC) [10] and the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI)2 [11] that create well-curated collections of images and
clinical data. These collections are typically anonymized to preserve patient
privacy, and openly available to researchers. These and other similar initiatives

1 http://www.clef-campaign.org/
2 http://www.loni.ucla.edu/ADNI
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foster collaboration between groups across the world and researchers from dif-
ferent domains including clinicians, imaging scientists, medical physicists and
computer scientists.

The task of attaining ground truth or a gold standard continues to be
challenging. For most applications, the best references are manually generated,
and therefore their construction is an extremely time consuming and resource-
intensive task. However, often the absolute truth is unknown or unknowable.
For instance, it would be quite difficult to absolutely verify the registration
of a brain atlas to the MRI of a patient. Similarly, in order to evaluate the
performance of segmentation algorithms, experts usually manually delineate
the Regions of Interest (ROI). However, the true segmentation of a tumor
that is not physically resected may never be definitively established.

Additionally, even if there theoretically exists an “objective truth”, experts
often disagree on what constitutes that truth. In cases with more than one
human rater, these questions of inter-observer agreement make the creation of
a gold standard difficult. By providing segmentation in the form of annotations
of lung nodules by four independent raters, the LIDC database exemplifies this
difficulty in obtaining ground truth. Recent research has demonstrated that
all four raters agreed on the presence of a nodule at a given location in only
approximately 40% of the cases [12].

The problem is not limited to segmentation gold standards. When evaluat-
ing the effectiveness of information retrieval systems, relevance judgments are
typically performed by domain experts. However, the kappa-measures (used
to quantify inter-observer agreement) between experts in relevance judgment
tasks often indicate significant levels of disagreement as to which documents
count as “relevant”. The concept of relevance as applied to images is partic-
ularly problematic, as the relevance of a retrieved image can depend on the
context in which the search is being performed. An additional source of judg-
ment difficulty is that domain experts tend to be more strict than novices [4],
and so the validity of their judgments for a particular task may depend on
the nature of the intended users.

20.2.3 Application-Specific Metrics

The choice of metrics should depend on the clinical goal of the algorithm being
evaluated. In classification tasks, error rate is often the metric of choice. How-
ever, if the cost of a miss (e.g., missed detection of a lung nodule) is high, a
non-symmetric measure of cost can be used. For registration and segmenta-
tion, measures related to volumetric overlap or surface distances can be used.
If the goal of an image retrieval system is to find a few good images to satisfy
the information need, early precision might be a good measure. On the other
hand, if the goal of the task is to find every relevant image in the database,
recall-oriented measures might be better suited.

In most evaluation campaigns, the evaluation measures are specified
at the outset. Often, a single measure that combines different aspects of
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the evaluation is preferred, as this makes comparisons between participants
straightforward (see Sect. 20.3).

20.2.4 Organizational Resources and Participants

Evaluation campaigns are usually conducted on a voluntary basis as funding
for such efforts can be hard to obtain. Organizing such campaigns can be
quite resource and time-intensive as the organizers need to acquire databases
of images of sufficient size and quality, establish sound performance metrics
and ground truth, provide the tabulation of the results, potentially organize
the publications of the proceedings and motivate participation by balancing
competitiveness with a friendly spirit of collaboration and cooperation.

Having a diverse set of loyal participants is a hallmark of a good evaluation
campaign. Often, significantly larger number of groups register for and obtain
data to evaluation campaigns than actually submit results and participate
in the workshops. It is important to strive to increase the number of actual
participants as the collaborative atmosphere, as found in the evaluation cam-
paigns, engenders strides in the field by enabling participants to leverage each
other’s techniques. One of the challenges of organizing an evaluation campaign
is providing tasks that are appropriate for research groups with varying levels
of expertise and resources. If the task is too challenging and requires massive
computing resources, participation by groups without access to such facilities
can be limited. On the other hand, if the task is regarded as being too trivial,
the sought-after participation by the leading researchers in the area can be
difficult to attract. Options explored by some of the campaigns include pro-
viding multiple tasks at different levels, providing baseline runs or systems
that can be combined in a modular fashion with the participants’ capabilities
(ImageCLEF) or providing the option of submitting both fully automatic and
semi-automatic runs. Participants can generally be motivated by the oppor-
tunity to publish, by providing access to large collections of images that they
might otherwise not have access to, as well as the spirit of the competition.

Many evaluation campaigns (see Sect. 20.4) organize workshops at the end
of the evaluation cycle where participants are invited to present their methods
and participate in discussions. They are often, but not exclusively, held in
conjunction with larger conferences.

These workshops are an important part of the evaluation cycle and can
be a great opportunity for researchers from across the globe to meet face-to-
face in an effort to advance their fields. In addition to the technical aspects,
the workshops also provide a chance for participants to provide feedback to
the organizers about the collections, the nature of the task as well as the
level of difficulty and organizational issues. They also provide a forum where
participants can offer suggestions for future tasks, collections, and metrics.
Furthermore, an in-person workshop is an excellent opportunity to recruit
new organizers, thereby aiding the sustainability of the campaign.
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20.3 Evaluation Metrics and Ground Truth

This section describes several of the commonly used performance metrics in
medical imaging tasks including registration, segmentation and retrieval.

20.3.1 Registration

One of the first steps in the evaluation of the performance of registration algo-
rithms is simply a visual check. This can be accomplished using image fusion
in which one image is overlaid on top of the other with partial transparency
and potentially different colors. Alternatively, the images can be evaluated
using a checkerboard pattern.

The intensities of the registered images, cf. Chap. 5, page 130, can be
used as metric [13]. The rationale behind this approach is that the better the
registration performance, the sharper the composited image is expected to be
as the registered image will be closer to the target image. With respect to the
template image j, the intensity variance is given as

IVj(x) =
1

M − 1

M∑
i=1

(Ti(hij(x)) − avej(x))2 (20.1)

where avej(x) = 1
M

∑M
i=1 Ti(hij(x)) denotes the average, Ti is the i-th image

of the population, hij(x) is the transform from image i to j with respect to a
Eulerian coordinate system and M is the number of images being evaluated.

Other methods include comparing the forward and reverse transforms
resulting from the registration. In a perfect situation, the forward transform
would be the inverse of the reverse. The inverse consistency error measures
the error between a forward and reverse transform compared to an identity
mapping [13]. The voxel-wise Cumulative Inverse Consistency Error (CICE)
is computed as

CICEj(x) =
1
M

M∑
i=1

‖hji(hij(x)) − x‖2 (20.2)

where ‖‖ denotes the standard Euclidean norm. The CICE is a necessary but
not sufficient metric for evaluating registration performance [13].

In addition, Christensen et al. [13] note that the transforms resulting from
registration algorithms should satisfy the transitivity property. If HAB is the
transform from A to B, transitivity implies that hCB(hBA(x)) = hCA(x) or
hAC(hCB(hBA(x))) = x ∀A,B,C Ti is the ith image of the set and hij is the
registration transform.

The Cumulative Transitive Error (CTE) is defined as

CTEk(x) =
1

(M − 1)(M − 2)

M∑
i=1
i
=k

M∑
j=1
j 
=i
j 
=k

∥∥hki(hij(hjk(x)))− x
∥∥2 (20.3)
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Another common approach in registration is to define a structure in the ini-
tial image (e.g., in an atlas), register the initial image to the final image (e.g.,
actual patient image), and deform the structure using the resulting deforma-
tion field. If manual segmentation is available on the final image, then many
of the metrics defined in the following subsection can be used to compare the
manual segmentation to that obtained using registration of the atlas.

20.3.2 Segmentation

Image segmentation, the task of delineating an image into meaningful parts or
objects, is critical for many clinical applications. One of the most challenging
aspects in evaluating the effectiveness of segmentation algorithms is the estab-
lishment of ground truth against which the computer-derived segmentations
are to be compared.

Metrics Without Ground Truth

In real-life clinical images, establishing true segmentation often is difficult due
to poor image quality, noise, non-distinct edges, occlusion and imaging arti-
facts. Physical and digital “phantoms” have been used to establish absolute
ground truth; however, they do not contain the full range of complexity and
variability of clinical images [14].

To avoid the use of phantoms, Warfield et al. [14] proposed the Simul-
taneous Truth and Performance Level Estimation (STAPLE) procedure, an
expectation-maximization algorithm that computes a probabilistic estimate
of true segmentation given a set of either automatically generated or manual
segmentations. STAPLE has been used for establishing ground truth in the
absence of manual segmentations as well as to provide a quality metric for
comparing the performance of segmentation algorithms.

However, it should be pointed out that manual segmentations are not
reproducible, i.e., they suffer from inter- as well as intra-observer variabil-
ity, and hence, their usefulness in absolute evaluation of medical image
segmentation is limited.

Volume-Based Metrics

Consider the case where the results of a segmentation algorithm are being
compared to ground truth using binary labels (i.e., a label of “1” is given
to a voxel that belongs to the object being segmented and a label of “0”
otherwise). Let A indicate the voxels belonging to the object according to the
segmentation under consideration (as determined by either another user or
an automatic algorithm) and G refers to the ground truth (Fig. 20.1). A com-
monly used simple measure is based on the volumes enclosed by the respective
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Fig. 20.1. Venn diagram. The diagram shows the
intersection between the segmented label A and the
gold standard G

segmentations. The Volumetric Difference (VD) [15] is defined as

VD =
Va − Vg
Vg

× 100 (20.4)

The Absolute Volumetric Difference (AVD) is the absolute value of the above
measure. However, these measures do not take into account the spatial loca-
tions of the respective volumes, and hence have limited utility when used
alone. Additionally, they are not symmetric.

The Dice [16] and Jaccard coefficients [17] are the most commonly used
measures of spatial overlap for binary labels. In both cases, the values for the
coefficients range from zero (no overlap) to one (perfect agreement).

D =
2 |A ∩G|
|A| + |G| × 100 J =

|A ∩G|
|A ∪G| × 100 (20.5)

This is also sometimes known as the relative overlap measure. As all these
measures are related to each other, typically only one or the other is calculated.

J =
D

2 −D
(20.6)

The Dice coefficient has been shown to be a special case of the kappa
coefficient [18], a measure commonly used to evaluate inter-observer agree-
ment. As defined, both of these measures are symmetric, in that over- or
under-segmentation errors are weighted equally. To characterize over- and
under-segmentations in applications where these might be important (e.g.,
tumor delineation where the cost for missing the tumor is higher), false pos-
itive and false negative Dice measures can be used. The False Positive Dice
(FPD) is measure of voxels that are labeled positive (i.e., one) by the seg-
mentation algorithm being evaluated but not the ground truth and hence is a
measure of over-segmentation. The False Negative Dice (FND) is a measure
of the voxels that were considered positive according to the ground truth but
missed by the segmentation being evaluated. Let Ā and Ḡ be the complements
of the segmentation and the ground truth (i.e., they are the voxels labeled 0).

FPD =
2
∣∣A ∩ Ḡ

∣∣
|A| + |G| × 100 FND =

2
∣∣Ā ∩G

∣∣
|A| + |G| × 100 (20.7)

The above-mentioned spatial overlap measures depend on the size and shape of
the object as well as the voxel size relative to the object size. Small differences
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in the boundary of the segmentation can result in relatively large errors in
small objects compared to large objects.

Additionally, the measures discussed above assume that we are compar-
ing the results of one algorithm with one set of ground truth data. However,
often there is either no ground truth available, or alternatively, manual seg-
mentations from multiple human raters are available. In these cases, many
approaches have been considered, ranging from fairly simplistic majority votes
for the class membership of each voxel to the STAPLE algorithm mentioned
above [14] or the Williams index [19].

The Williams index [19, 20] considers a set of r raters labeling a set of n
voxels with one of l labels. D is the label map of all raters where Dj is the
label map for rater j and Dij represents the label of rater j for voxel i. Let
a(Dj,Dij) be the agreement between rater j and ji over all n voxels. Several
agreement measures can be used. The Williams index Ij as defined below, can
be used to assess if observer j agrees at least as much with other raters as
they agree with each other.

Ij =
(r − 2)

∑r
j′ 
=j a(Dj , Dj′)

2
∑r
j′ 
=j

∑j′
j′′ 
=j a(Dj′ , Dj′′)

(20.8)

All of the metrics discussed thus far have assumed that the class labels
were binary, i.e. each voxel belonged to either the structure or the background.
Although this has been the case historically and continues to be the predom-
inant mode for classification, more recently, methods as well as probabilistic
methods have required the use of partial labels for class membership. Crum
et al. [21] discussed the lack of sufficient metrics to evaluate the validity of the
algorithms in these cases. They proposed extensions of the Jaccard similarity
measure, referred to as Generalized Tanimoto Coefficient (GTC) using results
from fuzzy set theory. These overlap measures can be used for comparison of
multiple fuzzy labels defined on multiple subjects.

Surface-Based Metrics

Unlike the region-based approaches, surface distance metrics are derived from
the contours or the points that define the boundaries of the objects. The Haus-
dorff Distance (HD) is commonly used to measure the distance between point
sets defining the objects. The HD (a directed measure as it is not symmetric)
between A and G, h(A,G) is the maximum distance from any point in A to
a point in G and is defined as

h(A,G) = max
a∈A

(d(a,G)) (20.9)

where d(a,G) = minG∈G ‖a − g‖. The symmetric HD, H(A,G) is the larger
of the two directed distances, defined more formally as

H(A,G) = max(h(A,G), h(G,A) (20.10)
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The Hausdorff distance, although commonly used, has a few limitations. It is
highly susceptible to outliers resulting from noisy data. However, many varia-
tions of a more robust version of this measure have been used for applications
in segmentation as well as registration.

Software Tools

The Valmet software tool, although no longer actively supported, incorporated
many of these measures and has been used for evaluation and visualiza-
tion of 2D and 3D segmentation algorithms [22]. It includes the measures:
volumetric overlap (true and false positives, true and false negatives), prob-
abilistic distances between segmentations, Hausdorff distance, mean absolute
surface distance, and interclass correlation coefficients for assessing intra-,
inter-observer and observer-machine variability. The software also enabled
the user to visualize the results.

20.3.3 Retrieval

Information Retrieval (IR) has a rich history of evaluation campaigns, begin-
ning with the Cranfield methodology in the early 1960s [23] and the System
for the Mechanical Analysis and Retrieval of Text (SMART) [24], to more
recent Text Retrieval Conference (TREC)3 campaigns [25].

Precision, Recall, and F-Measure

Precision and recall are two of the most commonly used measures for eval-
uation retrieval systems, both for text and images. Precision is defined the
fraction of the documents retrieved that are relevant to the user’s informa-
tion need. For binary relevance judgments, precision is analogous to positive
predictive value. Consider a 2 × 2 table for relevant and retrieved objects
(Table 20.1) where A is the set of relevant objects and B is the set of retrieved
objects

precision =
relevant documents retrieved

retrieved documents
P =

|A ∩B|
|B| (20.11)

Precision is often calculated for a given number of retrieved objects. For
instance P10 (precision at 10) is the number of relevant objects in the first
ten objects retrieved. Recall, on the other hand, is the ratio of the relevant
objects retrieved to the total number of relevant objects in the collection

recall =
relevant documents retrieved

relevant documents
R =

|A ∩B|
|A| (20.12)

3 http://trec.nist.gov/
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Relevant Not relevant

Retrieved A ∩ B Ā ∩ B B
Not retrieved A ∩ B̄ Ā ∩ B̄ B̄

A Ā

Table 20.1. Fourfold table.
A 2× 2 table for relevant and
retrieved objects

Recall is equivalent to sensitivity. It is important to note that recall does
not consider the order in which the relevant objects are retrieved or the total
number of objects retrieved.

A single effectiveness measure E, based on both precision and recall was
proposed by van Rijsbergen [26]

E = 1 − 1
α/P + (1 − α)/R

(20.13)

where α denoting a fraction between zero and one can be used to weigh the
importance of recall relative to precision in this measure.

The weighted F-score (F-measure) is related to the effectiveness measure
as 1 − E = F

F =
1

α/P + (1 − α)/R
=

(β2 + 1)PR
β2P +R

(20.14)

where β2 = 1−α
α and α ∈ [0, 1], β2 ∈ [0,∞].

In the balanced case where both precision and recall are weighted equally,
α = 1/2 and β = 1. It is commonly written as F1, or Fβ=1. In this case, the
above equation simplifies to the harmonic mean

Fβ=1 =
2PR
P +R

However, α or β can be used to provide more emphasis to precision or recall
as values of β < 1 emphasize precision, while values of β > 1 emphasize recall.

Average Precision

Overall, precision and recall are metrics based on the set of objects retrieved
but not necessarily the position of the relevant objects. Ideal retrieval systems
should retrieve the relevant objects ahead of the non-relevant ones. Thus, mea-
sures that consider the order of the returned items are also important. Average
precision, defined as the average of the precisions computed for each relevant
item, is higher for a system where the relevant documents are retrieved earlier.

AP =
∑N

r=1(P (r) × rel(r))
number of relevant documents

(20.15)

where r is the rank, N the number retrieved, rel() a binary function on the
relevance of a given rank, and P () precision at a given cut-off rank.
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In evaluation campaigns with many search topics, the Mean Average Pre-
cision (MAP) is a commonly used measure. The MAP is the mean of the
average precisions for all the search topics and is meant to favor systems that
return more relevant documents at the top of the list. However, the maximum
MAP that a system can achieve is limited by its recall, and systems can have
very high early precision despite having low MAP.

Software

Trec eval, a software package created by Chris Buckley4 is commonly used
for retrieval campaigns. This package computes a large array of measures
including the ones specified above [27]. The ideal measure depends on the
overall objective, but many information retrieval campaigns, both text-based
(TREC) and image-based (ImageCLEF) use MAP as the lead metric but also
consider the performance of early precision.

20.4 Examples of Successful Evaluation Campaigns

20.4.1 Registration

Image registration is another critical aspect of medical image analysis. It
is used to register atlases to patients, as a step in the assessment of
response to therapy in longitudinal studies (serial registration), and to
superimpose images from different modalities (multi-modal registration). Tra-
ditionally, rigid and affine techniques were used for registration. More recently,
deformable or non-rigid registration techniques have been used successfully for
a variety of application including atlas-based segmentation, and motion track-
ing based on 4D CT. The evaluation of non-rigid registration can however be
quite challenging as there is rarely ground truth available.

The original Retrospective Registration Evaluation Project (RREP) and
the more recent Retrospective Image Registration Evaluation (RIRE)5 are
resources for researchers wishing to evaluate and compare techniques for
CT-MR and PET-MR registration. The “Vanderbilt Database” is made
freely available for participants. Although the “truth” transforms remain
sequestered, participants can choose to submit their results on-line, enabling
them to compare the performance of their algorithms to those from other
groups and techniques.

The Non-rigid Image Registration Evaluation Project (NIREP)6 is an
effort to “develop, establish, maintain and endorse a standardized set of rel-
evant benchmarks and metrics for performance evaluation of nonrigid image

4 http://trec.nist.gov/trec eval/
5 http://www.insight-journal.org/RIRE/index.php
6 http://www.nirep.org/index.php?id=22
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registration algorithms”. The organizers are planning to create a framework to
evaluate registration that does not require ground truth by utilizing a diverse
set of metrics instead. The database consists of 16 annotated MR images from
eight normal adult males and eight females acquired at the University of Iowa.
The metrics that are currently implemented include: squared intensity error,
relative overlap, inverse consistency error and transitivity error.

20.4.2 Segmentation

MICCAI Grand Challenges are the most prominent of the evaluation events
for segmentation. In 2007, a Grand Challenge workshop was held in con-
junction with MICCAI to provide a forum for researchers to evaluate their
segmentation algorithms on two anatomical sites, liver and caudate, using a
common data sets and metrics. This popular workshop has continued to grow
with three and four different sub-tasks in 2008 and 2009, respectively.

MICCAI Segmentation in the Clinic: A Grand Challenge

The liver is a challenging organ for CT-based segmentation as it lies near other
organs that are of similar density. Additionally, in the case of diseases there can
be significant non-homogeneity within the liver itself, adding to the challenge.
The MICCAI Grand Challenge Workshop was one of the most prominent
efforts to provide an opportunity for participants to compare the performance
of different approaches to the task of liver segmentation. Twenty studies were
provided as training data, while ten studies were used for the testing and an
additional ten were used for the on-site portion of the evaluation. Participants
were allowed to submit results from both completely automated techniques
as well as interactive methods.

The training data in the caudate part (33 data sets) were acquired from
two different sites using different protocols: 18 healthy controls from the Inter-
net Brain Segmentations Repository (IBSR)7 from Massachusetts General
Hospital and 15 studies consisting of healthy and pathological subjects from
Psychiatry Neuroimaging Laboratory at the Brigham and Women’s Hospi-
tal, Boston. The test data consisted of 34 studies from a challenging mix of
ages (adult, pediatric, elderly), sites (Brigham and Women’s Hospital, Boston,
UNC’s Parkinson research group, University of North Carolina at Chapel
Hill, Duke Image Analysis Laboratory) and acquired along different axes
(axial, coronal) The gold standard was established by manual segmentation
of experts.

The organizers were interested in establishing a single score that combined
many of the commonly used metrics for segmentation described above. They
included volumetric overlap error (or Jaccard coefficient), the relative volume

7 http://www.cma.mgh.harvard.edu/ibsr/
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Table 20.2. MICCAI Grand Challenges. For all experiments, the ground truth was
provided manually

Year Topic Data Type Training Test

2007 Liver MRI 20 10
Caudate MRI 33 34

2008 Lumen line CTA 8 24
MS lesion MRI 20 25
Liver tumor CT 10 tumors 10 tumors

from 4 patients from 5 patients
2009 Lumen segmentation

and stenosis grading CTA 15 31 + 10 on site
Prostate MRI 15 5
Head and neck CT 10 8 off-site, 7 online
Left ventricle MRI 15 15 online, 15 testing

difference, average surface symmetric distance, root mean square surface dis-
tance and the maximum symmetric surface distance. This common score was
provided for both the liver and the caudate cases. In addition, the caudate
evaluation consisted of a test of reproducibility by providing a set of scans
for the same subject on different scanners. The variability of the score across
these scans was evaluated. The Pearson correlation coefficient between the
reference and the segmentation volumes was another metric provided for the
caudate set.

The organizers have continued to make available all the test and training
data, enabling new algorithms to be evaluated against the benchmarks estab-
lished in 2007. Furthermore, the success of the Grand Challenge in 2007 lead
to the continuation of this endeavor in 2008 and 2009 with more clinically-
relevant segmentation tasks [28, 29], including coronary artery central lumen
line extraction in CT angiography (CTA), Multiple Sclerosis (MS) lesions,
and others (Table 20.2).

Extraction of Airways from CT

The Extraction of Airways from CT (EXACT)8 challenge was held as part of
the Second International Workshop on Pulmonary Image Analysis in junction
with MICCAI 2009. It provides participants with a set of 20 training CTs that
had been acquired at different sites using a variety of equipment, protocols,
and reconstruction parameters. Participants were to provide results of algo-
rithms for airway extraction on the 20 test sets. The results were evaluated
using the branch count, branch detection, tree length, tree length detected,
leakage count, leakage volume and false positive rate. Fifteen teams partic-
ipated in this task. The organizers noted that “there appears to be a trade
off between sensitivity and specificity in the airway tree extraction” as “more

8 http://image.diku.dk/exact/information.php
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complete trees are usually accompanied by a larger percentage of false posi-
tives.” They also noted that the semi-automatic methods did not significantly
outperform the automatic methods.

Volume Change Analysis of Nodules

Again performed in junction with MICCAI as part of the Second Interna-
tional Workshop on Pulmonary Image Analysis, the goal for the Volume
Change Analysis of Nodules (VOLCANO)9 challenge was to measure volu-
metric changes in lung lesions longitudinally using two time-separated image
series. This was motivated by the notion that measuring volumetric changes
in lung lesions can be useful as they can be good indicators of malignancy and
good predictors of response to therapy.

The images were part of the Public Lung Database provided by the Weill
Cornell Medical College. 53 nodules were available such that the nodule was
visible on at least three slices on both scans. These nodules were classified into
three categories: 27 nodules ranging in diameter from 4 to 24mm visible on
two 1.25mm slice scans with little observed size change, 13 nodules ranging in
size from approximately 8–30mm, imaged using different scan slice thicknesses
to evaluate the effect of slice thickness and 9 nodules ranging from 5 to 14mm
on two 1.25mm scans exhibiting a large size change. The participants were
provided with information to locate the nodule pairs. The participants were
to submit the volumetric change in nodule size for each volume pair, defined
as (V2−V1)

V1
where V1 and V2 are the volumes of the nodule on the initial and

subsequent scan.

20.4.3 Annotation, Classification and Detection

ImageCLEF IRMA

The automatic annotation task at ImageCLEFmed ran from 2005 until
2009 [30]. The goal in this task was to automatically classify radiographs
using the Image Retrieval in Medical Applications (IRMA) code along for
dimensions: acquisition modality, body orientation, body region, and biologi-
cal system. The IRMA code is a hierarchical code that can classify radiographs
to varying levels of specificity. In 2005, the goal was flat classification in to 57
classes while in 2006 the goal was again a flat classification into 116 unique
classes. Error rates based on the number of misclassified images was used as
the evaluation metric. In 2007 and 2008, the hierarchical IRMA code was used
where errors were penalized depending on the level of the hierarchy at which
they occurred. Typically, participants were provided 10,000–12,000 training
images and were to submit classification for 1,000 test images. In 200910, the

9 http://www.via.cornell.edu/challenge/details/index.html
10 http://www.imageclef.org/2009/medanno/
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goal was to classify 2000 test images using the different classification schemes
used in 2005–2008, given a set of about 12,000 training images.

Automatic Nodule Detection

Lung cancer is a deadly cancer, often diagnosed based on lung CT’s. Algo-
rithms for the automated Computer Aided Diagnosis (CAD) for lung nodules
are a popular area of research. The goal for the Automatic Nodule Detection
(ANODE)11 challenge in 2009 was the automated detection of lung nodules
based on CT scans. The database consisted of 55 studies. Of these, five were
annotated by expert radiologists and were used for training. Two raters (one
expert and one trainee) reviewed all the scans, and a third rater was used to
resolve disputes. The evaluation was based on a hit rate metric using the 2000
most suspicious hits. The results were obtained using Free-Response Receiver
Operating Characteristic (FROC) curves.

Another effort towards the detection of lung nodules in the Lung Imaging
Database Consortium (LIDC). The LIDC initiative provides a database of
annotated lung CT images, where each image is annotated by four clinicians.
This publicly available database enables researchers to compare the output
of various Computer Aided Diagnosis (CAD) algorithms with the manual
annotations.

20.4.4 Information Retrieval

In information retrieval, evaluation campaigns began nearly fifty ago with
the Cranfield tests [23]. These experiments defined the necessity for a doc-
ument collection, query tasks and ground truth for evaluation, and set the
stage for much of what was to follow. The SMART experiments [24] then
further systematized evaluation in the domain. The role model for most cur-
rent evaluation campaign is clearly TREC [25], a series of conferences that
started in 1992 and has ever since organized a variety of evaluation campaigns
in diverse areas of information retrieval. A benchmark for multilingual infor-
mation retrieval is CLEF [31], which started within TREC and has been an
independent workshop since 2000, attracting over 200 participants in 2009.
In addition to its other components, CLEF includes an image retrieval track
(called ImageCLEF) which features a medical image retrieval task [32].

20.4.5 Image Retrieval

Image retrieval is a burgeoning area of research in medical informatics [33].
Effective image annotation and retrieval can be useful in the clinical care
of patients, education and research. Many areas of medicine, such as radiol-
ogy, dermatology, and pathology are visually-oriented, yet surprisingly little
research has been done investigating how clinicians use and find images [6]. In

11 http://anode09.isi.uu.nl/
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particular, medical image retrieval techniques and systems are underdeveloped
in medicine when compared with their textual cousins [34].

ImageCLEF12, first began in 2003 as a response to the need for standard-
ized test collections and evaluation forums and has grown to become today
a pre-eminent venue for image retrieval evaluation. ImageCLEF itself also
includes several sub-tracks concerned with various aspects of image retrieval;
one of these tracks is the medical retrieval task. This medical retrieval task
was first run in 2004, and has been repeated each year since.

Image Databases

The medical image retrieval track’s test collection began with a teaching
database of 8,000 images. For the first several years, the ImageCLEF medical
retrieval test collection was an amalgamation of several teaching case files in
English, French, and German. By 2007, it had grown to a collection of over
66,000 images from several teaching collections, as well as a set of topics that
were known to be well-suited for textual, visual or mixed retrieval methods.

In 2008, images from the medical literature were used for the first time,
moving the task one step closer towards applications that could be of interest
in clinical scenarios. Both in 2008 and 2009, the Radiological Society of North
America (RSNA) made a subset of its journals’ image collections available
for use by participants in the ImageCLEF campaign. The 2009 database con-
tained a total of 74,902 images, the largest collection yet. All images were
taken from the journals Radiology and Radiographics, both published by the
RSNA. The ImageCLEF collection is similar in composition to that powering
the Goldminer13 search system. This collection constitutes an important body
of medical knowledge from the peer-reviewed scientific literature, and includes
high quality images with textual annotations.

Images are associated with specific published journal articles, and as such
may represent either an entire figure or a component of a larger figure. In either
event, the image annotations in the collection contain the appropriate caption
text. These high-quality annotations enable textual searching in addition to
content-based retrieval using the image’s visual features. Furthermore, as the
PubMed IDs of each image’s article are also part of the collection, participants
may access bibliographic metadata such as the Medical Subject Headings
(MeSH) terms created by the National Library of Medicine for PubMed.

Goals of ImageCLEF

A major goal of ImageCLEF has been to foster development and growth
of multi-modal retrieval techniques: i.e., retrieval techniques that combine

12 http://www.imageclef.org/
13 http://goldminer.arrs.org/
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visual, textual, and other methods to improve retrieval performance. Tradi-
tionally, image retrieval systems have been primarily text-based, relying on
the textual annotations or captions associated with images [35]. Several com-
mercial systems, such as Google Images14 and Yahoo! images,15 employ this
approach. Although text-based information retrieval methods are mature and
well-researched, they are limited by the quality of the annotations applied
to the images. There are other important limitations facing traditional text
retrieval techniques when applied to image annotations:

• Image annotations are subjective and context sensitive, and can be quite
limited in scope or even completely absent.

• Manually annotating images is labor- and time-intensive, and can be very
error prone.

• Image annotations are very noisy if they are automatically extracted from
the surrounding text.

• There is far more information in an image than can be abstracted using a
limited number of words.

Advances in techniques in computer vision have led to a second family of meth-
ods for image retrieval: Content-Based Image Retrieval (CBIR). In a CBIR
system, the visual contents of the image itself are mathematically abstracted
and compared to similar abstractions of all images in the database. These
visual features often include the color, shape or texture of images. Typically,
such systems present the user with an ordered list of images that are visually
most similar to the sample (or query) image.

However, purely visual methods have been shown to have limitations and
typically suffer from poor performance for many clinical tasks [36]. On the
other hand, combining text- and image-based methods has shown promising
results [37].

Several user studies have been performed to study the image searching
behavior of clinicians [6, 38]. These studies have been used to inform the
development of the tasks over the years, particularly to help ImageCLEF’s
organizers identify realistic search topics.

User Studies

The goal in creating search topics for the ImageCLEF medical retrieval task
has been to identify typical information needs for a variety of users. In the
past, we have used search logs from different medical websites to identify
topics [39, 40]. The starting point for the 2009 topics was a user study con-
ducted at Oregon Health & Science University (OHSU) during early 2009.
This study was conducted with 37 medical practitioners in order to under-
stand their needs, both met and unmet, regarding medical image retrieval.

14 http://images.google.com/
15 http://images.yahoo.com/
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During the study, participants were given the opportunity to use a variety of
medical and general-purpose image retrieval systems, and were asked to report
their search queries. In total, the 37 participants used the demonstrated sys-
tems to perform a total of 95 searches using textual queries in English. We
randomly selected 25 candidate queries from the 95 searches to create the top-
ics for ImageCLEFmed 2009. We added to each candidate query 2–4 sample
images from the previous collections of ImageCLEFmed, which represented
visual queries for content-based retrieval. Additionally, we provided French
and German translations of the original textual description for each topic to
allow for an evaluation of multilingual retrieval.

Finally, the resulting set of topics was categorized into three groups: 10
visual topics, 10 mixed topics, and 5 semantic topics. This classification was
performed by the organizers based on their knowledge of the capabilities of
visual and textual search techniques, prior experience with the performance
of textual and visual systems at ImageCLEF medical retrieval task, and their
familiarity with the test collection. The entire set of topics was finally approved
by a physician. An example of a visual topic can be seen in Fig. 20.2 while
that of a textual topic is shown in Fig. 20.3.

In 2009, we also introduced case-based topics [4] as part of an exploratory
task whose goal was to generate search topics that are potentially more aligned
with the information needs of an actual clinician in practice. These topics were
meant to simulate the use case of a clinician who is diagnosing a difficult case,
and has information about the patient’s demographics, list of present symp-
toms, and imaging studies, but not the patient’s final diagnosis. Providing this
clinician with articles from the literature that deal with cases similar to the
case (s)he is working on (similar based on images and other clinical data on
the patient) could be a valuable aide to creating differential diagnosis or iden-
tifying treatment options, for example, with case-based reasoning [41]. These
case-based search topics were created based on cases from the teaching file
Casimage, which contains cases (including images) from radiological practice.

Fig. 20.2. Example image of a
visual query task. The tasks consists
of two or three images and a textual
description in three languages, in this
case representing the information
need “MRI of a rotator cuff”
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Fig. 20.3. Sample images of a semantic retrieval task. The need of information
“images of pituitary adenoma” yields a semantic query topic with potentially a
large variety of visually quite different images of various modalities and, thus, it is
better suited for techniques of textual information retrieval

Ten cases were pre-selected, and a search with the final diagnosis was per-
formed against the 2009 ImageCLEF data set to make sure that there were at
least a few matching articles. Five topics were finally chosen. The diagnoses
and all information about the chosen treatment were removed from the cases
to simulate the aforementioned situation of a clinician dealing with a diffi-
cult diagnosis. However, in order to make the judging more consistent, the
relevance judges were provided with the original diagnosis for each case.

Relevance Judgments

During 2008 and 2009, relevance judgments were made by a panel of clinicians
using a web-based interface. Due to the infeasibility of manually reviewing
74,900 images for 30 topics, the organizers used a TREC-style pooling system
to reduce the number of candidate images for each topic to approximately
1,000 by combining the top 40 images from each of the participants’ runs.
Each judge was responsible for between three and five topics, and sixteen of
the thirty topics were judged multiple times (in order to allow evaluation of
inter-rater agreement). For the image-based topics, each judge was presented
with the topic as well as several sample images.

For the case-based topics, the judge was shown the original case description
and several images appearing in the original article’s text. Besides a short
description for the judgments, a full document was prepared to describe the
judging process, including what should be regarded as relevant versus non-
relevant. A ternary judgment scheme was used, wherein each image in each
pool was judged to be “relevant”, “partly relevant”, or “non-relevant”. Images
clearly corresponding to all criteria were judged as “relevant”, images whose
relevance could not be safely confirmed but could still be possible were marked
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as “partly relevant”, and images for which one or more criteria of the topic
were not met were marked as “non-relevant”. Judges were instructed in these
criteria and results were manually verified during the judgment process.

As mentioned, we had a sufficient number of judges to perform multiple
judgements on many topics, both image-based and case-based. Inter-rater
agreement was assessed using the kappa metric, given as:

κ =
Pr(a) − Pr(e)

1 − Pr(e)
(20.16)

where Pr(e) is the observed agreement between judges, and Pr(a) the
expected (random) agreement. It is generally accepted that a κ > 0.7 is good
and sufficient for an evaluation. The score is calculated using a 2× 2 table for
the relevances of images or articles. These were calculated using both lenient
and strict judgment rules. Under the lenient rules, a partly relevant judgment
was counted as relevant; under strict rules, partly relevant judgments were
considered to be non-relevant. In general, the agreement between the judges
was fairly high (with a few exceptions), and our 2009 overall average κ is
similar to that found during other evaluation campaigns.

20.5 Lessons Learned

Conducting the ImageCLEF campaigns has been a great learning opportunity
for the organizers. Most evaluation campaigns are run by volunteers with mea-
ger resources. However, a surprising number of researchers willingly donate
their data, time and expertise towards these efforts as they truly believe that
progress in the field can only come as a result of these endeavors.

Participants have been quite loyal for the ImageCLEFmed challenge, an
annual challenge that has been running since 2004. Many groups have partic-
ipated for four or more years although each year sees newcomers, a welcome
addition. A large proportion of participants are actually PhD students who
obtain valuable data to validate their approaches. The participants have been
quite cooperative, both at the workshops and during the year. They have pro-
vided baseline runs or allowed their runs to be used by others in collaborative
efforts. Many of the new organizers were participants, thus ensuring a steady
stream of new volunteers willing to carry on the mantle of those that have
moved away. By comparing the relative performance of a baseline run through
the years, we have seen the significant advances being made in the field.

20.6 Conclusions

Evaluation is an important facet of the process of developing algorithms for
medical image analysis including for segmentation, registration and retrieval.
In order to be able to measure improvements resulting from new research



518 J. Kalpathy-Cramer and H. Müller

in computer vision, image processing and machine learning when applied to
medical imaging tasks, it is important to have established benchmarks against
which their performance can be compared. Computer scientists are making
huge strides in computer vision, image processing and machine learning, and
clinicians and hospitals are creating vast quantities of images each day. How-
ever, it can still be quite difficult for the researchers developing the algorithms
to have access to high quality, well curated data and ground truth. Similarly,
it can also be quite difficult for clinicians to get access to state-of-the-art
algorithms that might be helpful in improving their efficiency, easing their
workflow and reducing variability.

Evaluation campaigns have provided a forum to bridge this gap by
providing large, realistic and well annotated datasets, ground truth, mean-
ingful metrics geared specifically for the clinical task, organizational resources
including informational websites and software for evaluation and often work-
shops for researchers to present their results and have discussions. Examples
of successful evaluation campaigns include ImageCLEFmed for medical image
retrieval and annotation, the VOLCANO challenge to assess volumetric
changes in lung nodules, the EXACT airway extraction challenge and the
popular set of MICCAI segmentation grand challenges. Other efforts to pro-
vide publicly accessible data and ground truth include the LIDC set of images
for the detection of chest nodules based on CTs, the CT and PET images
from the ADNI initiative, and the RIRE and NIREP efforts to evaluate reg-
istration. Many of these efforts are continuing beyond the workshops by still
enabling participants to download data, submit results, evaluating and post-
ing the results, thereby providing venues for the progress in the field to be
documented.
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Toolkits and Software for Developing
Biomedical Image Processing

and Analysis Applications

Ivo Wolf

Summary. Solutions in biomedical image processing and analysis usually consist
of much more than a single method. Typically, a whole pipeline of algorithms is
necessary, combined with visualization components to display and verify the results
as well as possibilities to interact with the data. Therefore, successful research in
biomedical image processing and analysis requires a solid base to start from. This
is the case regardless whether the goal is the development of a new method (e.g.,
for segmentation) or to solve a specific task (e.g., computer-assisted planning of
surgery).

This chapter gives an overview of toolkits and software that support the devel-
opment of biomedical image processing and analysis applications. After the initial
introduction, Sect. 21.2 outlines toolkits and libraries that provide sets of already
implemented methods for image processing, visualization, and data management.
Section 21.3 covers development environments that offer a specialized programming
language or visual programming interface. Section 21.4 describes ready-to-use soft-
ware applications allowing extensions by self-written code. All sections begin with
open-source developments.

21.1 Introduction

The development of biomedical image processing and analysis applications
can be supported on different levels. The available support and tools can be
categorized as follows:

• Toolkits, which are basically (class) libraries that provide support for
specific tasks and offer the highest level of adaptability

• Development environments, which provide a comprehensive application for
use during development

• Extensible software, which are ready-to-use end-user applications that can
be extended by custom code

Which category to use depends on the problem at hand. Solutions to real
world problems require all levels: starting with the exploration of algorithms,
ending at a tailored solution running within a graphical front-end.

T.M. Deserno (ed.), Biomedical Image Processing, Biological and Medical Physics,

Biomedical Engineering, DOI: 10.1007/978-3-642-15816-2 21,

c© Springer-Verlag Berlin Heidelberg 2011
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The boundaries between the categories are not always clear. Development
environments and extensible software applications are usually based on pre-
existing toolkits. Some provide additions to the underlying respective toolkits.
Conversely, some toolkits offer powerful showcase applications, partly with the
possibility to extend them with custom code.

21.2 Toolkits

Toolkits provide sets of already implemented methods for image processing,
visualization, and data management. Typically, toolkits are object-oriented
class libraries implemented in standard programming languages. Most fre-
quently, C++ is the base language, but quite often wrappings are provided
for scripting languages such as Python, the Tool Command Language (TCL)
or Java.

The use of toolkits typically requires a rather high level of programming
experience and knowledge, but they provide the highest level of flexibility
and adaptability to the problem at hand, especially when the development
is open-source. Figure 21.1 tries to visualize the usage of toolkits, which can
range from building small scale tools to large multi-purpose applications.

21.2.1 The NA-MIC Kit

The multi-institutional National Alliance for Medical Image Computing (NA-
MIC) is one of the seven National Centers for Biomedical Computing (NCBC)
funded under the National Institutes of Health (NIH) Roadmap for Bioinfor-
matics and Computational Biology. To enable research in medical image com-
puting, NA-MIC develops and maintains the NA-MIC Kit [1] and organizes
training events. The NA-MIC Kit is a set of tools and toolkits (Table 21.1),

Fig. 21.1. Solving small to large problems using toolkits. Left : The VTK-based tool
for surface extraction and visualization requires about 50 lines of code. Middle: The
viewer for multi-planar reformation of images and surface data is based on MITK
(which in turn uses VTK and ITK) and requires about 80 lines of code. Right :
The extensible, multi-purpose end-user application (MITK ExtApp) is additionally
based on the BlueBerry toolkit. The version shown has 17 modules consisting of
about 16,000 lines of code
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Language: Mainly C++, parts with wrappings for
TCL, Python, Java

Platform: Windows, Linux, Unix, Mac
License: BSD-style
Developer: Multi-institutional
Availability: Open-source
URL: www.na-mic.org/Wiki/index.php/NA-

MIC-Kit

Table 21.1. NA-MIC Kit

Language: C++, wrappings for Tcl, Python, Java
Platform: Linux, Windows, Mac, Unix
License: BSD-style
Developer: Insight Software Consortium
Availability: open-source
URL: www.itk.org

Table 21.2. ITK. The
developer consortium consists of
six principal organizations, three
commercial (including Kitware)
and three academic

which are all free open source software distributed under a Berkeley Software
Distribution (BSD)-style license without restrictions (including possible com-
mercial use). Thus, the NA-MIC Kit is itself not a single toolkit or software,
but a collection of toolkits and software. It includes:

• 3D Slicer, an extensible software package for visualization and medical
image computing (cf. Sect. 21.4.1)

• The Insight Segmentation and Registration Toolkit (ITK) and the Visu-
alization Toolkit (VTK) (cf. Sects. 21.2.2 and 21.2.3)

• KWWidgets, which is a Graphical User Interface (GUI) class library based
on Tcl/Tk with a C++ Application Programming Interface (API)

Additionally, it defines a software engineering methodology and provides a
number of tools to support this methodology, including support for automatic
testing for quality assurance and multi-platform implementations.

21.2.2 Insight Segmentation and Registration Toolkit

The Insight Segmentation and Registration Toolkit (ITK) is probably the
most widely used toolkit in medical image processing. It provides an extensive
set of (multi-dimensional) algorithms for almost all kinds of image processing
tasks with a special focus on segmentation and registration (Table 21.2).

The design of the registration framework separates the registration process
into four pluggable components, which can easily be interchanged: similarity
metric, transform, optimizer, and interpolation (e.g. nearest-neighbor, linear,
B-spline, windowed-sinc). Available metrics include simple measures such as
mean squares and normalized cross-correlation as well as different types of
mutual information and a Kullback–Leibler distance measure. Transforms
include rigid, similarity, affine as well as parametric deformable methods such
as B-spline and kernel-based transforms (e.g., elastic body splines and thin-
plate splines). ITK’s optimization algorithms are generic and can be used



524 I. Wolf

for applications other than registration. Examples include gradient descent,
conjugate gradient, Nelder–Mead downhill simplex, Powell optimization and
many more.

The segmentation framework includes standard methods such as Otsu
thresholding and different types of region growing as well as advanced methods
like level sets, including a variant with shape guidance, watershed segmenta-
tion, and fuzzy connectedness.

The execution of ITK algorithms is based on a demand-driven pipeline con-
cept: an algorithm is only executed when its output data objects are requested
and are out-of-date with respect to its input data objects.

ITK is based on advanced C++ constructs, especially templates. For exam-
ple, the ITK class for image data is templated over the dimension of the image
and its data type.

ITK does not include methods for displaying images, nor a development
environment or an end-user application for exploring the implemented algo-
rithms. Many of the features of the toolkit are described with source code
examples in the book entitled The ITK Software Guide (with more than 780
pages), which is available for free as a PDF document from the ITK website
(also available in a printed version). Additionally, several example applications
demonstrating sub-sets of the algorithms included in ITK are available.

Most of the development environments described in Sect. 21.3 provide
wrappings of ITK algorithms. An end-user application providing several ITK
algorithms is VolView (cf. Sect. 21.4.8).

21.2.3 The Visualization Toolkit

The Visualization Toolkit (VTK) is for visualization what ITK is for image
processing algorithms: one of the most popular toolkits in its area. It offers
methods for scalar, vector, tensor, texture, and volume visualization
(Table 21.3).

Additionally, a large number of algorithms are provided for 3D computer
graphics (like modeling methods) as well as for image processing. Examples
include implicit modeling, polygon reduction, mesh smoothing, cutting, con-
touring, marching cubes surface extraction, and Delaunay triangulation. Data
processing in VTK is based on a pipeline concept, which was originally similar
to that of ITK (or vice versa), but has since been reworked and generalized
with VTK version 5. It now allows implementation of updating mechanisms
other than the demand-driven concept, which is still principally used.

Table 21.3. VTK Language: C++, wrappings for Tcl, Python, Java
Platform: Windows, Linux, Unix, Mac
License: BSD-style
Developer: Kitware Inc.
Availability: open-source
URL: www.vtk.org
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Mechanisms for interaction with the visualized data are available including
predefined classes for common tasks.

As is the case with ITK, VTK does neither come with a development
environment nor an end-user application. There are, however, several front-
ends available that can be used to interact with VTK’s algorithms and build
visualizations: ParaView (cf. Sect. 21.4.5) is an example for an end-user type
of application for this purpose, development environments with VTK-support
are OpenXIP (cf. Sect. 21.3.2), DeVIDE (cf. Sect. 21.3.3), and MeVisLab (cf.
Sect. 21.3.6).

21.2.4 Open Inventor

Open Inventor
TM

is an object-oriented wrapping of OpenGL R© written in C++
(Table 21.4). The central paradigm of Open Inventor is the scene graph. A
scene graph is an ordered collection of nodes [2]. Each node holds some piece
of information about the scene, such as material, shape description, trans-
formation, or light. So-called actions can be performed on a scene graph,
the most important being the rendering of the scene graph. Other actions are
picking, searching, computation of bounding boxes, and writing to files. When
performing an action (e.g., rendering), the scene graph is traversed, starting
from the root node, from top to bottom and left to right. Open Inventor man-
ages a so-called traversal state, which is a collection of elements or parameters
in the action at a given time. During traversal, the nodes modify the traversal
state, depending on their particular behavior for that action.

This type of scene graph paradigm is quite different from the one VTK
uses. In VTK, an object in a scene is a shape and “owns” its (relative) trans-
formation and properties (e.g., color, texture). In Open Inventor, a shape
object does not have a transformation or properties without the context of a
scene graph traversal.

Open Inventor also has a data-flow pipeline concept, whose objects are
called engines. Notifications of changed values are pushed through the scene
graph, but the evaluation of an engine (processing object) is pulled through
the scene graph on demand [3].

Scene graphs including engines with their respective parameters can be
serialized into files. This also works for custom extensions. When de-serializing
and the code for an extension is not available, the respective node/engine is
included as an unknown-node/unknown-engine object. In this case, one can
at least perform reading, writing and searching on unknown nodes [2].

Open Inventor has originally been developed by SGI Inc. in the 1990s. The
SGI version is open source under the Lesser General Public License (LGPL) of
the GNU’s Not Unix! (GNU) organization. Commercially supported, extended
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Table 21.4. Open Inventor Language: C++
Platform: Linux, IRIX; ports for Windows, Mac
License: LGPL (original version, for commercial

versions: see text)
Developer: Silicon Graphics Inc.
Availability: open-source
URL: oss.sgi.com/projects/inventor

Table 21.5. MITK. The
package is developed by the
Division of Medical and
Biological Informatics,
Deutsches
Krebsforschungszentrum
(DKFZ)

Language: C++
Platform: Windows, Linux, Mac
License: BSD-style
Developer: German Cancer Research Center (DKFZ)

Availability: open-source
URL: www.mitk.org

versions of the API are available from the Visualization Sciences Group
(VSG)1 and Kongsberg SIM (Coin3D)2.

As in the case of VTK, Open Inventor does not come with an application
and was not specifically designed for biomedical imaging, but it is successfully
used as the base for OpenXIP and MeVisLab (Sects. 21.3.2 and 21.3.6).

21.2.5 Medical Imaging Interaction Toolkit

The Medical Imaging Interaction Toolkit (MITK) supports the development
of interactive medical imaging software [4] (Table 21.5). Based on ITK and
VTK, MITK adds features required in interactive systems that are out of the
scope of ITK and VTK.

MITK uses a data-centric scene concept. Data objects (e.g., image, sur-
face) are added to a data repository called “data storage”, which is then
passed to one or (typically) several views for visualization and interaction.
This allows multiple, consistent 2D and/or 3D views on the same data (e.g.,
three orthogonal 2D views and a 3D rendering) without additional custom
code for coordinating the contents of the views. The data storage also allows
the definition of semantic relationships between data object, for example, from
which original image a segmentation has been derived or that the left atrium
is part of the heart. MITK provides support for time-resolved (3D+t) data, an
undo/redo concept for interactions, data object properties of arbitrary type,
serialization of the data storage, and a module for Image-Guided Therapy
(IGT) with support for several tracking systems.

MITK itself is not an application framework and can be used within exist-
ing applications. Additionally, MITK has an optional layer on the application
level, which is based on BlueBerry. BlueBerry, which can also be used inde-
pendently of MITK, is a modular, cross-platform, C++ application framework
1 www.vsg3d.com/vsg prod openinventor.php
2 www.coin3d.org
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based on the well-established ideas from the Open Services Gateway initia-
tive (OSGi)3 and the Eclipse Rich Client Platform (RPC). Except for a small
kernel, all the framework functionality is located in plug-ins. Each plug-in
has a manifest file declaring its interconnections to other plug-ins: Any num-
ber of named extension points, and any number of extensions to one or more
extension points in other plug-ins can be defined. Thus, a plug-in’s extension
points can be extended by other plug-ins. BlueBerry itself and the MITK-
based application layer provide several useful services, also implemented as
plug-ins, for typical tasks like logging.

On top of the BlueBerry-based MITK application layer, an open-source,
extensible end-user application using Qt (version 4) for the GUI is provided
(Sect. 21.4.2).

Medical Imaging Toolkit

There is another development with the same abbreviation: the Medical
Imaging Toolkit4, which comes with an extensible application system called
3DMed [5] (Table 21.6). Contrary to the aforementioned MITK, the Medical
Imaging Toolkit is not based on VTK or ITK, but inspired by them, and
independently implements similar concepts such as a data flow pipeline. It
consists of a computational framework providing processing algorithms and
a visualization and interaction framework for displaying data. 3DMed is a
Qt-based application with a plug-in interface. The basic functions include data
I/O, 2D manipulation, image segmentation and registration, 3D visualization
and measurement, and virtual cutting [5]. Both, toolkit and application, are
implemented in C++ and free for use in research and education. 3DMed is
open-source whereas the underlying toolkit is open-interface only [5].

21.2.6 The Image-Guided Surgery Toolkit

The Image-Guided Surgery Toolkit (IGSTK) is dedicated to providing com-
mon functionality for Image-Guided Surgery (IGS) applications (Table 21.7).

Language: C++
Platform: Windows, Linux, Mac
License: proprietary
Developer: Chinese Academy of Sciences (CAS)
Availability: open-interface, 3D-Med: open-source
URL: www.mitk.net

Table 21.6. Medical Imaging
Toolkit. The toolkit is developed
by the Medical Image Processing
Group, Institute of Automation,
Chinese Academy of Sciences
(CAS), and is free for research
and education

3 www.osgi.org
4 www.mitk.net
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Table 21.7. IGSTK. The developer
consortium consists of six participants
including Georgetown University and
Kitware Inc.

Language: C++
Platform: Windows, Linux, Mac
License: BSD-style
Developer: Insight Software Consortium
Availability: open-source
URL: www.igstk.org

Table 21.8. OpenMAF. The developers
include the BioComputing Competence
Centre, the Rizzoli Institute, the
CINECA Supercomputing Center
(all Italy), and the University of
Bedfordshire, United Kingdom

Language: C++
Platform: Windows, Linux
License: BSD-style
Developer: group of institutions
Availability: open-source
URL: www.openmaf.org

With a strong focus on robustness, which is supported by a state machine con-
cept to prevent unintended use of classes, IGSTK provides a set of high-level
components integrated with low-level open-source software libraries and APIs
from hardware vendors, especially for tracking systems. IGSTK is based on
ITK and VTK. Additionally, optional components for graphical user interfaces
are available (for Qt, FLTK).

21.2.7 The Multimod Application Framework

OpenMAF or Multimod Application Framework (MAF) provides high level
components that can be combined to develop vertical, multi-modal visualiza-
tion applications (Table 21.8). Based on VTK, the rendering mechanism of
OpenMAF allows different, synchronized views of the same data.

Components in OpenMAF control data entities and application services.
Data entities are classes and objects that represent the data. They are called
Virtual Medical Entities (VME). Application services are:

• View, allowing display and examination of data
• Operation, allowing data alteration
• Interaction
• Interface element, allowing user-interface communication

Data entities and services are managed by associated manager components.
An OpenMAF application is an instance of the logic component, which
essentially controls the communication between the underlying components.

Currently, a new version of OpenMAF is in development (MAF3)5, which
will provide a higher level of modularity, a plug-in extension mechanism,
scripting integration, and multi-threading support.

5 biomedtown.org/biomed town/maf3
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Language: C++
Platform: Windows, Linux
License: CeCILL2
Developer: INRIA Sophia Antipolis, France
Availability: open-source
URL: www-sop.inria.fr/asclepios/software/

/vtkINRIA3D

Table 21.9. vtkINRIA3D

Language: mixture of ANSI C and C++
Platform: Windows, Linux, Unix
License: BSD-style
Developer: OFFIS e.V., Oldenburg, Germany
Availability: open-source
URL: dicom.offis.de/dcmtk.php.en

Table 21.10. DCMTK. The
developing center is called
Oldenburger Forschungs- und
Entwicklungsinstitut für
Informatik (OFFIS)

21.2.8 vtkINRIA3D

The vtkINRIA3D toolkit is an extension of VTK providing synchroniza-
tion of views and interaction, and management of spatio-temporal data [6]
(Table 21.9). It consists of three libraries:

1. The vtkRenderingAddOn library implements the strategy for synchroniza-
tion of views and interactions, which is based on a cyclic directed tree (each
view has a unique parent) structure. When a synchronizing method of any
view is called, the synchronization request is transmitted to the children
and hence to all nodes of the cyclic structure (avoiding infinite loops).

2. The vtkVisuManagement library provides support for specific complex data
types, like tensor fields and neural fibers from Diffusion Tensor Imaging
(DTI). It is a combination of VTK classes into new classes to simplify the
incorporation of complex data manipulation and visualization into custom
software.

3. The vtkDataManagement library adds support for time sequences by pro-
viding a container for several instances of VTK data objects (one per point
in time) and simplifying their creation and manipulation.

21.2.9 OFFIS DICOM ToolKit

The OFFIS DICOM ToolKit (DCMTK) is a widely used collection of libraries
and applications implementing large parts of the Digital Imaging and Com-
munications in Medicine (DICOM) standard (Table 21.10). This includes
DICOM image file handling, sending and receiving images over a network
connection, image storage, and a worklist server. DCMTK provides methods
for data encoding/decoding, compression/decompression, presentation states,
digital signatures, and DICOM Structured Reporting (DICOM-SR). However,
DCMTK does not include functions for image display.
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Table 21.11. GDCM. Java
and PHP support are currently
in testing and experimental
state, respectively

Language: C++; wrappings: Python, C, Java, PHP
Platform: Windows, Linux, Unix
License: BSD-style
Developer: Mathieu Malaterre (project leader)
Availability: open-source
URL: gdcm.sourceforge.net

Table 21.12. CTK. The
Common Toolkit is a
multi-institutional effort, which
is still in its initial phase

Language: C++
Platform: Windows, Linux, Mac
License: BSD-style
Availability: open-source
URL: www.commontk.org

21.2.10 Grassroots DICOM Library

Grassroots DICOM Library (GDCM) supports reading/parsing and writing
of DICOM files as specified in Part 10 of the DICOM standard (Table 21.11).
GDCM attempts to support all possible DICOM image encodings including
lossy and lossless compression. Contrary to DCMTK (cf. previous section),
GDCM does not include methods for networking. GDCM can be used as part
of ITK and provides classes for reading and writing VTK data objects.

21.2.11 The Common Toolkit

Since June 2009, the Common Toolkit (CTK) is organized by a pro-tempore
group of like-minded technically oriented software tool builders (Table 21.12).
The goals are to:

• Provide a unified set of basic features for use in medical imaging using
BSD-style licenses

• Facilitate the exchange and combination of code and data
• Document, integrate, and adapt successful solutions
• Avoid duplication of code and data
• Continuously extend to new tasks within the scope of the toolkit (medical

imaging) without burdening existing tasks

21.2.12 Simulation Open Framework Architecture

The Simulation Open Framework Architecture (SOFA) is targeted at real-time
simulation, with an emphasis on medical simulation (Table 21.13). SOFA sup-
ports the development of simulation algorithms and prototyping simulation
applications [7].

In SOFA, simulation components, i.e., data objects (e.g., deformable
model, instrument) can have several representations (multi-model representa-
tion), which are connected through a mechanism called mapping. This allows
each representation to be optimized for a particular task (e.g., collision detec-
tion, visualization) as well as interaction of different model types like rigid
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Language: C++
Platform: Windows, Linux, Mac
License: LGPL
Developer: INRIA, France
Availability: open-source
URL: www.sofa-framework.org

Table 21.13. SOFA. The toolkit is
developed mainly by three INRIA teams:
Alcove, Evasion, and Asclepios, all in France

Fig. 21.2. Visual programming environments (VPEs). VPEs allow defining
dataflows and/or rendering tasks by visually connecting building blocks. Left :
SCIRun; Right : XIP-Builder

bodies, deformable objects, and fluids. SOFA uses a scene-graph concept to
organize and process the elements of a simulation while clearly separating the
computation tasks from their possibly parallel scheduling.

21.3 Development Environments

Development environments provide a comprehensive application for use dur-
ing development. Often, a specialized programming language is defined (e.g.,
MATLAB). There are Visual Programming Environments (VPEs), where the
visual programming itself can be regarded as a programming language. The
building blocks, which are visually connected in the development environment,
are generally implemented in a standard programming language. Again, C++
is the most commonly used language.

VPEs have a long tradition in image processing. The main advantage is
that results of different combinations of image processing techniques can be
explored without the need for writing code. Thus, no programming experience
with a standard language is required – as long as the goal can be achieved with
the means available (Fig. 21.2). One of the first systems was Khoros6 with its
visual programming environment called Cantata. More recent examples are
presented in this section.
6 www.khoral.com
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Table 21.14. SCIRun. This
visual environment is
developed at the Scientific
Computing and Imaging
Institute, U of U, Salt Lake
City, UT

Language: C++, GUI with Tk
Platform: Windows, Linux, Mac
License: MIT
Developer: University of Utah (U of U), UT, USA
Availability: open-source
URL: www.scirun.org

Table 21.15. OpenXIP. The
VPE of OpenXIP is
developed by Siemens
Corporate Research Inc.,
Princeton, NJ

Language: C++
Platform: Windows (including XIP-Builder);

libraries only: Linux, Mac
License: caBIG (BSD-style)
Developer: Washington University, St. Luis, MO,

USA and Siemens Corporate Research Inc.
Availability: open-source, XIP-Builder: closed-source
URL: www.openxip.org

21.3.1 SCIRun

SCIRun is an extensible visual programming environment with a focus on
modeling, simulation and visualization [8] (Table 21.14). The VPE allows
interactive construction and debugging of dataflow networks composed of
modules. Visualization is included in the dataflow semantics. Additionally,
customized user interfaces (PowerApps) are available that are built on top of
a dataflow network, which controls the execution and synchronization of the
modules.

Sets of modules are called packages in SCIRun and can be added to
SCIRun through a plug-in mechanism. Extension packages to the core applica-
tion include BioPSE for bio-electric field calculations and interfaces to ITK,
MATLAB and some of the Teem Libraries7 with Nearly Raw Raster Data
(NRRD) file handling and DTI routines.

Available applications (PowerApps) include:

• BioFEM for finite element problems,
• BioTensor for post-processing and visualization of diffusion-weighted MRI
• BioImage for the processing and visualization of image volumes
• Seg3D, an extensible application for automatic and interactive volume

segmentation based on ITK filters with volume rendering capabilities

21.3.2 OpenXIP

The eXtensible Imaging Platform
TM

(XIP
TM

) project aims at providing an
environment for rapidly developing medical imaging applications from an
extensible set of modular elements (Table 21.15). The XIP Platform consists of
a set of tools and libraries, including the XIP Reference Host, DICOM Applica-
tion Hosting APIs, sample applications, and development tools. XIP is based
7 teem.sourceforge.net
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on the Open Inventor library (Sect. 21.2.4), which is extended with classes for
DICOM data handling and navigation, overlay and region of interest (ROI)
definition, as well as ITK and VTK support.

The XIP-Builder development tool is a visual programming environment
for constructing and testing scene graphs including field-to-field connections
and Open Inventor engines. The Open Inventor concepts of engines and field-
to-field connections are similar to pipelines in VTK/ITK. Together with the
extensions of Open Inventor provided by the XIP library, the visual program-
ming interface XIP-Builder makes it possible to explore image processing,
segmentation, and visualization techniques without the need for writing code.

21.3.3 DeVIDE

The Delft Visualisation and Image processing Development Environment
(DeVIDE) is a VPE for medical visualization and image processing algorithms
[9] (Table 21.16). DeVIDE, written in Python, allows scripting with Python
and access to any object or variable in the system at runtime.

DeVIDE supports a combination of event- and demand-driven schedul-
ing (hybrid scheduling). Modules can either support event- or demand-driven
scheduling (more complex to implement). The hybrid scheduling functionality
applies demand-driven scheduling where possible and otherwise event-driven
scheduling.

DeVIDE comes with support for VTK, ITK, GDCM, and DCMTK, as well
as packages for scientific computing and 2D plotting. Extension of DeVIDE
is possible using Python code or libraries with a Python wrapping. Each
module (block in the visual programming interface) represents a visualization
or image processing algorithm implemented as a Python class (or wrapped into
a Python class). A special “blank” module called CodeRunner is provided
that allows the user to add Python code directly. The setup section of a
CodeRunner module is executed one time after each modification whereas the
execute section is always executed.

Besides the visual programming interface, DeVIDE allows running dataflow
networks from the command-line (so-called black-box interface) and applying
them to arbitrary datasets.

Language: Python
Platform: Windows, Linux

License: BSD-style
Developer: Delft University of Technology, Delft,

The Netherlands
Availability: open-source
URL: graphics.tudelft.nl/Projects/DeVIDE

Table 21.16. DeVIDE. At Delft
University, the Computer
Graphics Group and the
CAD/CAM Group are developing
this VPE
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21.3.4 VisTrails

VisTrails is a scientific workflow and provenance management system [10]
(Table 21.17). The goal is to support exploration of data by keeping track
of all steps the user performs during the process and hence the provenance
of (intermediate and final) results. A workflow in VisTrails is a dataflow and
may include functional loops and conditional statements. When creating a
workflow, detailed history information is maintained about the steps followed
and data derived in the course of an exploratory task. The history information
can be stored in XML files or in a relational database. Users can navigate
workflow versions, undo changes without loosing results, visually compare
different workflows and their results, and examine the actions that led to a
result. Workflows can be run interactively in the GUI of VisTrails, or in batch
using a VisTrails server.

VisTrails allows the combination of loosely-coupled resources, specialized
libraries, grid and web services. It comes with support for VTK and can
be extended by other libraries. Additionally, the VisTrails provenance infras-
tructure can be used within other interactive tools. For example, ParaView
(cf. Sect. 21.4.5) includes a VisTrails plug-in.

21.3.5 LONI Pipeline

The pipeline-based VPE from the UCLA’s Laboratory Of Neuro Imaging
(LONI) [11] allows defining and executing workflows on grid computing archi-
tectures, with “workflow” used in the sense of data being processed by a
sequence of algorithmic modules (Table 21.18). Workflows can be defined in
a visual programming-like GUI. Execution of modules can be performed on
the server side of the LONI Pipeline (but also locally, depending on the mod-
ule definition). Each module is a separate command-line executable with an
associated XML file describing its input and output parameters and other

Table 21.17. VisTrails.
Like SCIRun, this VPE
is developed at the
Scientific Computing
and Imaging Institute,
U of U, Salt Lake City,
UT, USA

Language: Python, GUI with Qt
Platform: Windows, Linux, Mac
License: GPL
Developer: U of U, UT, USA
Availability: open-source
URL: www.vistrails.org

Table 21.18. LONI.
This VPE is developed
at the Laboratory of
Neuro Imaging, UCLA

Language: Java, modules are executables (any language)
Platform: Platform with JRE 1.5, some server features

on Linux/Unix only
License: LONI software license
Developer: University of California at Los Angeles (UCLA),

CA, USA
Availability: closed-source
URL: pipeline.loni.ucla.edu
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meta-data (e.g., description, citation of the implemented algorithm, author,
tag). Another GUI is available for creating these XML files. The executable
itself does neither need conformance to any specific rules (except for being
a command-line tool) nor including any LONI pipeline libraries. It is, there-
fore, completely independent. The LONI Pipeline handles the passing of data
between the executables. In case a grid is available, it can exploit parallelism
in workflows, and make processing of large data sets take about as much time
as a single one.

The GUI also allows searching the server-side library of modules against
the provided meta-data, graphically constructing workflows, as well as exe-
cution control and debugging. Optionally, provenance files can be generated,
which store the history of data, workflow and execution of all processes. A
command-line variant for executing workflows is also available.

The LONI Pipeline primarily targets neuro-imaging researchers, but it
is completely independent of a specific processing library. It can run as a
light-weight middle-ware and does not include a set of filters or image process-
ing algorithms. The developing institution, the Laboratory Of Neuro Imaging,
grants access to their LONI Pipeline server (a 600 CPU computing grid) upon
request.

21.3.6 MeVisLab

MeVisLab is closed-source, extensible VPE for image processing, and interac-
tion, with a special focus on medical imaging (Table 21.19). MeVisLab allows
the definition of hierarchical data flow and visualization networks as well
as GUIs. Based on Open Inventor, it provides image processing algorithms,
2D/3D visualization and interaction tools, integration of ITK and VTK,
DICOM support, movie and screenshot generation, scripting support (Python,
including a debugger, and JavaScript), and wizards for image processing,
visualization and macro modules.

MeVisLab comes with the MeVis Image Processing Library (ML), which
is a generic framework for image processing consisting of self-descriptive mod-
ules. The library implements a request-driven, page-based update paradigm
with a priority-controlled page cache. A special memory management for large
images allows global, random access to paged images.

Modules in MeVisLab can either be ML, Open Inventor, or ITK modules.
MeVisLab can be extended by custom modules in either of these module types
using one of the supported C++ development environments and by macro
modules. The commercial version allows signing and encrypting modules
for redistribution. Free licenses for non-commercial research and evaluation
purposes with a few restrictions are available.

21.3.7 MATLAB R©

The MATrix LABoratory (MATLAB) R© is a specialized vectorized high-level
language for numerical applications including an integrated development
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Table 21.19. MeVisLAB Language: C++, scripting with Python and JavaScript
Platform: Windows, Linux, Mac
License: proprietary (commercial, non-commercial,

unregistered)
Developer: MeVis Medical Solutions and Fraunhofer

MEVIS, Bremen, Germany
Availability: closed-source
URL: www.mevislab.de

Table 21.20. MATLABR© Language: MATLAB, bindings with other languages
Platform: Windows, Linux, Unix, Mac
License: proprietary
Developer: The MathWorks Inc., USA
Availability: closed-source
URL: www.mathworks.com

environment. MATLAB provides mathematical functions for linear algebra,
statistics, Fourier analysis, filtering, optimization, numerical integration, as
well as plotting of functions and tools for building GUIs. Interfacing with
programs in other languages is possible (Table 21.20).

The MATLAB language has a particular strength in matrix manipulation,
and as images can be regarded as matrices, MATLAB is well-suited for image
processing. A large number of MATLAB extensions (toolboxes) are avail-
able from the software provider/vendor. Examples are toolboxes for image
processing, signal processing, statistics and data analysis, partial differential
equations, and computer algebra (Symbolic Math Toolbox ).

Simulink R© is an additional product that is based on MATLAB. It is a tool
for modeling, simulating and analyzing multi-domain dynamic systems. Open
source alternatives to MATLAB, which are intended to be mostly compatible
with the MATLAB language (not with the development environment), are:

• GNU Octave, www.gnu.org/software/octave
• Scilab, www.scilab.org
• FreeMat, freemat.sourceforge.net

21.3.8 Interactive Data Language

As MATLAB, the Interactive Data Language (IDL) is a vectorized high-level
language including an integrated development environment, the IDL Work-
bench. Compared to MATLAB, IDL focuses more on data analysis, data visu-
alization and application development. Image and signal processing features
are already included in the base language, whereas some advanced mathemat-
ical and statistical routines have to be purchased separately (Table 21.21).

IDL programs are compiled to an interpreted, stack-based intermediate
pseudo code. It is run by the IDL Virtual Machine (VL)

TM
, which is available

as a free runtime utility allowing redistribution of compiled code without
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Language: IDL, bindings with other languages
Platform: Windows, Linux, Unix, Mac
License: proprietary
Developer: IT Corp., Boulder, CO, USA
Availability: closed-source
URL: www.ittvis.com/IDL

Table 21.21. IDL. The vendor of
IDL is ITT Visual Information
Solutions, USA

Fig. 21.3. Extensible end-user applications. Left : 3D Slicer (image courtesy 3D
Slicer, www.slicer.org); Right : ParaView

additional licensing fees. The IDL development environment is based on the
open-source Java-framework Eclipse8.

21.4 Extensible Software

Extensible software applications are ready-to-use end-user applications that
can be extended by custom code. The applications come with features most
commonly required by users. Usually, a certain look and feel is defined and
fixed. Developers do not need to care about implementing a front-end for
standard tasks. Thus, extensible software applications provide high-level sup-
port on the GUI-/front-end-level, but with the least degree of adaptability
(Fig. 21.3). The language for implementing fully-integrated extensions is,
again, most commonly C++. Additionally, scripting support is sometimes
available.

21.4.1 3D Slicer

Slicer or 3D Slicer is an extensible end-user application for visualization and
medical image computing [12] (Table 21.22). It comes with functionality for
segmentation, registration and 3D visualization of multi-modal image data, as
well as advanced image analysis algorithms for DTI, FMRI and IGT. Addi-
tional, pre-compiled modules can be downloaded from a web resource with
the built-in “Extension Manager Wizard”.
8 www.eclipse.org
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Table 21.22. 3D Slicer. The
consortium is lead by the Surgical
Planning Laboratory, Brigham and
Women’s Hospital, Boston, USA

Language: C++, GUI with Qt (formerly Tk
and KWWidgets)

Platform: Windows, Linux, Mac
License: BSD-style
Developer: multi-institutional
Availability: open-source
URL: www.slicer.org

Table 21.23. MITK ExtApp and
MITK 3M3. The application is
developed at the Division of Medical
and Biological Informatics, German
Cancer Research Center (DKFZ)

Language: C++, GUI with Qt
Platform: Windows, Linux, Mac
License: BSD-style
Developer: DKFZ, Heidelberg, Germany
Availability: open-source; extended 3M3:

closed-source (free download)
URL: www.mitk.org, 3m3.mitk.org

Slicer is based on a data model called Medical Reality Markup Language
(MRML). A MRML scene is a collection of datasets and their current state,
viewing parameters, semantic descriptions, as well as parameterizations of
algorithms. MRML scenes can be written to files.

Extensions to Slicer can be implemented on three different levels:

• Loadable Modules can access the MRML scene instance of the Slicer appli-
cation and perform function calls to the slicer core and related APIs. They
are dynamically discovered and loaded.

• Scripted Modules are like Loadable Modules, but written in Tcl or Python.
• Command Line Modules are separate stand alone executables that under-

stand a specific command line syntax; access to the MRML scene is not
available. C++ code for parsing the command line syntax can be gen-
erated by the “GenerateCLP” tool provided with Slicer. The GUI is
automatically generated by the Slicer application based on information
requested from the module. Command Line Modules can also be compiled
as shared libraries for dynamic linking with Slicer, which omits the need
of writing/reading input/output data to/from disk.

21.4.2 MITK ExtApp and MITK 3M3

As mentioned in Sect. 21.2.5, MITK comes with an extensible application
(MITK ExtApp), which allows performing image processing tasks such as
visualization of 3D and 3D+t images, rigid and deformable fusion (reg-
istration) of multiple image volumes, and interactive organ segmentation
(Table 21.23). An extended version of this application is called MITK 3M3
and contains additional, closed-source plug-ins, e.g., for vessel tree segmenta-
tion, shape-based segmentation of liver and heart, and DTI. It is available for
free download.
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Language: C++, GUI with wxWidgets
Platform: Windows, Linux
License: BSD-style
Developer: Universitat Pompeu Fabra (UPF),

Barcelona, Spain
Availability: open-source
URL: www.gimias.org

Table 21.24. GIMIAS. The
toolkit is developed at the
Center for Computational
Image and Simulation
Technologies in Biomedicine
(CISTIB) at UPF, Spain

21.4.3 Graphical Interface for Medical Image Analysis
and Simulation

The Graphical Interface for Medical Image Analysis and Simulation (GIMIAS)
is intended as an integrative end-user platform for medical imaging, computa-
tional modeling, numerical simulation, and computer graphics, to support
multi-disciplinary research and medical studies (Table 21.24). GIMIAS is
based on several toolkits described earlier in this chapter: VTK (Sect. 21.2.3),
ITK (Sect. 21.2.2), DCMTK (Sect. 21.2.9), and MITK (Sect. 21.2.5). GIMIAS
comes with the Medical Image Modeling and Simulation Toolkit, which is a set
of specialized libraries of medical image modeling and simulation algorithms.

The user is provided with a general visualization tool with DICOM func-
tionality that can be extended through plug-ins for specific applications.
GIMIAS provides an API for the plug-ins to interact with the application
core and with other plug-ins. Plug-ins can have different complexity, from
simple execution of a new algorithm and visualizing the results with the stan-
dard viewers, to complex plug-ins that change the entire user interface or allow
new types of interaction with the data. For the GUI, WxWidgets is used.

21.4.4 OsiriX

OsiriX is an extensible application primarily dedicated to 2D/3D visualization
of multi-modal and multi-dimensional images, but also offering image process-
ing functionality, especially for registration and image fusion. It is available
for Mac only (Table 21.25). Besides reading DICOM image files (and many
other formats), it is able to receive images transferred by the DICOM com-
munication protocol from any Picture Archiving and Communication System
(PACS) or imaging modality.

OsiriX has a plug-in architecture that gives full access to the Cocoa
framework and allows accessing image data, DICOM header data, etc.

21.4.5 ParaView

ParaView is an extensible data analysis and visualization application provid-
ing qualitative and quantitative techniques (Table 21.26). ParaView offers
some functionality for image data, though this is not the primary focus.
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Table 21.25. OsiriX.
Osirix has been developed
at UCLA, and is now owned
by Pixmeo, a
Switzerland-based company

Language: Objective-C, GUI with Cocoa
Platform: Mac
License: BSD-style
Developer: Pixmeo Sarl., Bernex, Switzerland
Availability: open-source
URL: www.osirix-viewer.com

Table 21.26. ParaView Language: C++, GUI with Qt (formerly KWWidgets);
scripting with Python

Platform: Windows, Linux, Unix, Mac
License: BSD-style
Developer: Kitware Inc.
Availability: open-source
URL: www.paraview.org

Although originally developed to analyze extremely large datasets using dis-
tributed memory computing resources on supercomputers, ParaView can be
run on standard PCs or notebooks.

ParaView is based on VTK and provides access to many VTK filters, which
can be combined and parameterized. Additionally, data can be explored and
edited interactively in 3D and programmatically using batch processing and
scripting.

Besides scripting, ParaView can be extended using a plug-in mechanism.
Processing filters (client-side or server-side) as well as extensions of the appli-
cations base functionality is possible. For examples, the provenance support
of VisTrails (Sect. 21.3.4) has been added as a plug-in and is provided with
ParaView since version 3.6.2 (but is not loaded by default).

21.4.6 ImageJ and Fiji

ImageJ is an extensible, Java-based image processing application that is
mainly dedicated to (and widely used for) 2D images, but also supports
image stacks (Table 21.27). ImageJ supports essentially all standard image
processing functions such as convolution, smoothing, median filtering, edge
detection, sharpening, logical and arithmetical operations, contrast manipu-
lation, Fourier analysis, scaling, rotating, etc.

ImageJ can be extended by recordable macros and Java plug-ins. More
than 500 plug-ins are available from the ImageJ website9, which differ signif-
icantly in perfomance, quality and usability.

Fiji is Just ImageJ (Fiji)10 is a distribution of ImageJ bundled with a
selected set of plug-ins, originally intended for neuro-scientists. Distributed via
GPL v2, Fiji is particularly oriented towards image registration, segmentation,
3D reconstruction, and 3D visualization (based on Java3D).

9 rsb.info.nih.gov/ij/plugins
10 pacific.mpi-cbg.de
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Language: Java
Platform: any with Java 1.4 or later
License: public domain
Developer: NIH, Bethesda, MD, USA
Availability: open-source
URL: rsbweb.nih.gov/ij

Table 21.27. ImageJ. ImageJ is developed
by the National Institutes of Health (NIH),
Bethesda, MD, USA

Language: Java
Platform: any with Java 1.4 or later
License: MIPAV license
Developer: NIH, Bethesda, MD, USA
Availability: closed-source
URL: mipav.cit.nih.gov

Table 21.28. MIPAV. The toolkit is
developed at the Center for Information
Technology (CIT), NIH, USA

21.4.7 MIPAV

The Medical Image Processing, Analysis, and Visualization (MIPAV) appli-
cation is dedicated to quantitative analysis and visualization of n-dimensional
medical images (Table 21.28). MIPAV provides a large number of standard
image processing algorithms as well as specialized methods for biomedi-
cal imaging, for example for microscopy, abdomen and muscle segmenta-
tion, shading correction, and DTI. DICOM support includes reading files,
DICOM send and receive, as well as displaying and editing DICOM tags and
anonymization of patient information. An extensive documentation compris-
ing two books (in PDF format) with more than 700 pages each is available
for MIPAV from the website.

MIPAV can be extended by scripting (including scripts produced by a
macro recorder) and plug-ins. Additionally, scripts can be called from the
command line (or another program).

21.4.8 VolView

VolView is an extensible application primarily dedicated to volume visual-
ization (Table 21.29). VolView allows reading (one or more) images in many
image file formats, oblique reformatting, measurement, annotation, and gen-
eration of movies. Additionally, many image filters from ITK (Sect. 21.2.2)
are available. VolView can be extended by custom data processing methods
written in C/C++ using a plug-in API.

21.4.9 Analyze

Analyze is a software package for multi-dimensional display, processing, and
measurement of multi-modal biomedical images (Table 21.30). Analyze is
based on the A Visualization Workshop (AVW) library, a collection of more
than 600 image processing functions.

The Analyze Developers Add-On, which needs to be purchased separately,
allows extending Analyze by add-on modules.
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Table 21.29. VolView Language: C++, GUI with KWWidgets
Platform: Windows, Linux, Mac
License: proprietary
Developer: Kitware Inc.
Availability: closed-source
URL: www.volview.org

Table 21.30. Analyze. At
Mayo Clinic, the toolkit is
developed at the Biomedical
Imaging Resource (BIR)

Language: C, GUI with Tcl/Tk
Platform: Windows, Linux, Mac
License: proprietary
Developer: AnalyzeDirect Inc., Overland Park, USA

& Mayo Clinic, Rochester, MN, USA
Availability: closed-source
URL: www.analyzedirect.com

Table 21.31. Amira. The
toolkit was originally
developed by the Visualization
and Data Analysis Group at
Zuse Institute Berlin (ZIB),
Germany

Language: C++, GUI with Qt; scripting with Tcl
Platform: Windows, Linux, Mac
License: proprietary
Developer: Visage Imaging, Richmond, Australia
Availability: closed-source
URL: www.amira.com

21.4.10 Amira

Amira is a visualizing, interactive data exploration and processing software
for a wide range of applications in life science and biomedicine (Table 21.31).
Amira supports multi-dimensional images, surface and volume meshes, vector
and tensor fields, CAD data, and other specialized data types and file formats,
including time series. A free extension for reading/writing of DICOM files and
DICOM Send is available. The processing features of the basic package include
image filtering, segmentation, cropping, registration, surface generation and
editing. Tools are provided for creating presentations (e.g., animation, movie).

Optional packages are available for microscopy, molecular model visualiza-
tion and analysis, skeletonization, mesh generation and analysis, additional
quantification methods for volume analysis (including labeling, morphology,
watershed transform), Virtual Reality (VR) (support for tiled displays and
immersive VR configurations such as Cave Automatic Virtual Environments,
CAVEs) and very large datasets.

Amira supports scripting in Tcl. The Developer Option, which needs to be
purchased separately, allows developing custom data types, visualization and
processing modules, and input/output routines in C++. Rendering is based
on Open Inventor (Sect. 21.2.4).
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21.5 Conclusion and Discussion

All toolkits, development environments and extensible applications presented
in this chapter have their particular strengths and areas of applications. Some
are mutually exclusive; others can be used in combination and benefit from
each other. Often, it is a matter of taste which to choose.

As a general rule, development environments with specialized languages
and visual programming interfaces have their largest benefits in the explo-
ration of different methods to solve a problem. In case an end-user needs to
apply a method, e.g., for further evaluation, implementing that method for
use within an extensible applications can save a lot of time. Toolkits provide
the highest amount of flexibility and adaptability and form the base of many
development environments and extensible applications.

All three categories can complement each other. In the future, a hierarchy
of toolkits with different foci may be used as base for a development environ-
ment as well as an extensible application, with the development environment
providing the possibility to create modules for use within the extensible
application. In case the flexibility of a module created by the development
environment is insufficient, the underlying toolkits can be used directly –
or a completely new, specialized application can be implemented on top of
the toolkits, integrating modules created by the development environment or
originally written for the extensible application.
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Image Processing and the Performance Gap

Steven C. Horii and Murray H. Loew

Summary. Automated image processing and analysis methods have brought new
dimensions, literally and figuratively, to medical imaging. A large array of tools
for visualization, quantization, classification, and decision-making are available to
aid clinicians at all junctures: in real-time diagnosis and therapy, in planning, and
in retrospective meta-analyses. Many of those tools, however, are not in regular
use by radiologists. This chapter briefly discusses the advances in image acquisition
and processing that have been made over the past 30 years and identifies gaps:
opportunities offered by new methods, algorithms, and hardware that have not been
accepted by (or, in some cases, made available to) radiologists. We associate the gaps
with (a) the radiologists (a taxonomy is provided), (b) the methods (sometimes
unintuitive or incomplete), and (c) the imaging industry (providing generalized,
rather than optimized, solutions).

22.1 Introduction

Extracting as much information as possible from medical images has long been
a goal of those who create the images as well as the physicians who interpret
them. In many cases, the effort has been directed at enhancing particular
information in the image and suppressing what is regarded as noise.

In imaging techniques for which there was a need, image processing was
done in an analog fashion. Mask films in angiography were used for optical
subtraction. Analog video processing circuitry was used in fluoroscopic imag-
ing chains for contrast enhancement and inversion. Conventional radiography
used asymmetric intensifying screens to exploit more fully the dynamic range
of film.

With the advent of inexpensive, fast computing, various forms of image
processing have become nearly ubiquitous in radiological imaging. The
digital imaging first pioneered in nuclear medicine and computed tomog-
raphy required computer processing to create viewable images from the
signals obtained. As the other chapters of this book have amply explained,
applications of image processing methods in radiological imaging are
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widespread. Given this, what is the “gap” that forms the subject matter of
this chapter?

To understand the concept of a gap, what it means, and why it exists, it is
perhaps best to examine some use cases where image processing is widely used
and accepted clinically (Sect. 22.2). We will then motivate the reason for gaps
from the user’s (the radiologists) point of view (Sect. 22.3). In Sect. 22.4, we
discuss the goals of image processing for medical imaging, before some ideas
to bridge the gap are presented in Sect. 22.5.

22.2 Examples of Clinically Useful Image Processing

22.2.1 Windowing and Image Display

One readily apparent problem that was exposed as digital imaging replaced
analog was the large difference between the dynamic range of signals that
could be captured digitally and what could be presented to the observer – first
on film and later on cathode ray tube (CRT) or liquid crystal displays (LCDs).
Computed tomography (CT), for example, typically had pixels that could
represent a range of 4,096 values (12 bits), whereas typical display devices
were limited to approximately 256 (8 bits). Photostimulable phosphor (PSP)
plate radiography extended the exposure-to-contrast range over film-screen
systems by at least an order of magnitude. Fairly simple mapping of the
available display range to a subset of bits in the CT pixel allowed for “window”
and “level” adjustments. More complex image processing was done at the CT
reconstruction step where filter kernels optimized for different types of imaging
(e.g., detail bone vs. brain) were, and are, used.

22.2.2 Contrast and Edge Enhancememt

Digital subtraction angiography (DSA) expanded widely in the early 1980s. It
replaced the analog mask film and subtraction with the digital equivalent. The
image processing was not terribly complex as it involved contrast inversion,
pixel shifting, and image addition, but the imaging technique became very
widely used, moving digital image processing into routine clinical use.

PSP radiography was the next large-scale application of digital image
processing methods for clinical applications. Unprocessed images from these
systems looked very “flat” and radiologists wanted images that more closely
resembled those on film. The vendors of the PSP radiography systems res-
ponded by developing image processing algorithms that could do this. The
algorithms were, and are, proprietary. However, the parameters that can be
adjusted to alter the appearance of the resulting images indicate the types of
processing used. Simple gamma adjustment for contrast is one. Edge enhance-
ment of varying degrees is another. Some systems perform what amounts to
histogram equalization to yield images in which soft tissue and bone (for
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example) are both visible and are diagnostically useful. Still other vendors
use segmentation to turn the area outside the collimated portion of the image
black.

22.2.3 Noise Reduction and Color Coding

Ultrasound imaging by nature includes much speckle in the images produced.
Analog methods of reducing speckle, such as temporal compounding, had been
tried, but not widely used. Spatial compounding was possible with the analog
articulated-arm scanners and was used clinically, but with the development of
real-time ultrasound imaging, spatial compounding was initially eliminated.
However, the ultrasound system vendors provided frame averaging methods
(effectively temporal compounding) to reduce speckle. When phased-array
ultrasound systems became more widely available, the vendors responded with
methods that re-introduced spatial compounding. Using the transducer’s mul-
tiple elements to generate multiple beams, anatomy was imaged from multiple
slightly different angles. Through the coding of the Doppler shift of flowing
blood as color and then registering the color signal on the gray-scale image,
color flow Doppler was rapidly adopted as a way of showing both blood vessels
and qualitative and quantitative blood flow on the same image.

22.2.4 Registration and Segmentation

Multi-detector CT has been the second revolution in CT imaging. These sys-
tems are capable of dynamic imaging of the beating heart, long an area on
the “wish list” of radiologists and cardiologists. Certainly novel and efficient
algorithms for reconstructing the helically acquired data were part of the
innovation. The availability of spatially isotropic voxels also enabled three-
dimensional (3D) and four-dimensional (4D) imaging of a quality unsurpassed
by other imaging methods. Fortunately, image processing methods from the
computer graphics community were readily available. CT angiography, virtual
colonoscopy, and various forms of surgical and radiation therapy planning all
derive from 3D reconstructed information. Segmentation plays a major role in
these methods as organs of interest (OOI) are separated from the surround-
ing structures. Combined with positron emission tomography (PET) images,
PET-CT can show not only anatomic structure, but also normal, and par-
ticularly abnormal, function. PET-CT relies on image registration, a task
simplified by having the PET and CT imaging systems around a common
axis, so that the patient is imaged by both systems with only minimal time
differences between the image acquisitions.

Magnetic resonance imaging (MRI) has benefited from image process-
ing and techniques such as diffusion tensor imaging (DTI) and functional
MRI can provide clinical insight into function and dysfunction in the brain.
Image fusion of these imaging methods has been done as a way of improv-
ing image-guided neurosurgery. In their paper on the subject, Talos et al.
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describe a number of image processing methods required [1]. These included:
segmentation, motion correction, rigid and non-rigid registration, and 3D
tractography [2].

22.2.5 Image Compression and Management

Image compression has a long and well-documented history. The motivation
for compression is to reduce the sizes of the files that contain data from images
and sequences of images. A current multi-slice CT scan can easily produce
400MB or more for a given patient study. To transmit or store files of these
sizes becomes costly in time and/or money. Two basic approaches exist for
compression: lossless and lossy. Lossless methods (e.g., run-length encoding)
allow the original image(s) to be recreated perfectly from their compressed
versions. A typical compression ratio (i.e., size of the original compared to
the size of the compressed) for a lossless method applied to medical images is
approximately 3:1.

Lossy methods such as the Joint Photographic Experts Group (JPEG) or
JPEG2000 standard and numerous proprietary variants can yield compres-
sion ratios of 20:1 or higher and thus are very attractive when one considers
time/space/cost constraints as well as the routine use of tele-radiology. Here,
however, the re-created image is not a perfect copy of the original. Many mea-
sures have been proposed for assessing the extent of the loss of image content,
including mean-square error (aggregated across all pixels in the image), peak
signal-to-noise ratio (SNR), and preservation of edge content. None of those,
however, addresses directly the central question: is the recreated image useful
clinically? The answer depends on several important factors: the modality, the
anatomy, the compression ratio, and the “user” of the image – is it a human
radiologist, or a computer-assisted detection (CADe) algorithm?

Clearly, it would seem that if the user is a human, the judgment as to
usefulness must be made by the radiologist. In practice, this requires a human-
observer study that asks a set of expert observers to assess images compressed
in various ways and to express preferences. Much of the early work made
extensive use of observer studies. In recent years, much effort has gone into
the search for automated methods that can objectively evaluate the utility
to a human observer of a given image for a given task. Such methods would
enable the rapid comparison of compression methods across a variety of con-
ditions. No methods have yet been accepted for that purpose, though they
are becoming increasingly sophisticated (e.g., [3]) and are including models of
human visual perception.

A recent review of the question of whether lossy compression can be used in
radiology concluded that small images can be compressed up to 10:1 without
perceptible information loss, and that large images can be compressed up to
20:1 or 25:1 without perceptible loss when JPEG or JPEG2000 are used [4].
The ratios ranged from 6:1 (JPEG for angiography) to 50:1 (JPEG2000 for
chest computed radiography (CR) or digital radiography (DR)).
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22.3 Why are there Gaps?

22.3.1 The Conservative Radiologist

Roentgen’s original discovery of X-rays was made on film. From that time
until the 1980s, film was the standard for acquiring, displaying, and storing
radiographic images. The manufacture, processing, and quality assurance of
radiographic film were developed to a high art. Radiologists were so particular
as to demand a certain “feel” of the film; it had to have a certain “snap” as
it was placed on a light box. Experienced radiologists could often tell when
there was a problem with a radiographic film processor by the feel of the film.
Besides the physical characteristics of film, the whole of radiologist pattern
recognition was based on film images viewed by transillumination. Even with
the development of digital imaging, early digital images were printed on film
for interpretation. The first PSP systems were supplied with laser film printers.
A major objection to these printers in the USA was that the films were printed
in a smaller size than conventional radiographic film [5].

The spatial resolution of PSP images was also lower than that of con-
ventional film-screen radiographic systems. The modulation transfer function
(MTF) of film-screen systems had a limiting spatial resolution of 5–10 line
pairs per mm (l p/mm). For PSP, the typical value was 2.5 l–5 l p/mm [6].
Early acceptance was among technologists (radiographers) who found the PSP
systems much more forgiving of exposure errors because of the wide exposure
latitude of these systems.

The actual and perceived difficulties of PSP systems tended to reinforce the
radiologist’s conservative attitudes when it came to the means by which they
provided patient care and earned their livelihood. Digital image processing
was yet another thing that altered the images the radiologist was trained to
read. For PSP systems, much of the image processing was to achieve a “film-
like” look. Acceptance of image processing for digital radiographic images was
earned through showing the radiologist the advantages that could be achieved
as noted previously. Still, the idea that something is altering the pixels in the
digital image the radiologist has to interpret is viewed with some skepticism.

22.3.2 The Busy Radiologist: Digital vs. Analog Workflow

Radiologists are essentially piece workers. Income is often directly tied to
the number of examinations that a radiologist interprets over time. Even in
academic practices, the trend in the USA is to have radiologists interpret
enough examinations to cover their salaries and generate some excess revenue
to benefit the department and hospital. Film-based operations were highly
optimized for radiologist productivity. Film library clerks put films to be read
on multiviewers, put associated paperwork in order, supplied any comparison
films needed, and removed films for storage once read. Transcriptionists picked
up recorded tapes or logged into digital dictation systems often 24 h a day to



550 S.C. Horii and M.H. Loew

type or enter radiographic reports. Physicians who wanted to review films with
a radiologist came to the radiology department for such consultations. Digital
imaging had the potential to change all this radically, and this has largely come
to pass. One author [SH] and colleagues studied the change of behavior as
his department transitioned from film-based to digital operation. What they
discovered was another factor contributing to radiologist resistance to the
change to digital Picture Archiving and Communication Systems (PACSs).
They found that work often was “shifted” to radiologists. As an example,
prior studies were, as noted, retrieved by film library clerks and put up (in
the proper order) with the current examination. In PACS operation, it was
the radiologist who had to perform this function by looking at the electronic
patient directory and finding the examination to compare [7]. Technologists
were responsible for printing films from digital sources and, for those with a
larger gray-scale range than could be accommodated on film (e.g., CT), would
print the images with two different settings so that the anatomy of interest was
optimally displayed (for CT, lung and mediastinum). With PACS, changing
the display characteristics fell to the radiologist. These various sorts of work
shifting tended to add to the radiologist’s interpretation time, an undesirable
trend. Adding image processing that would require the radiologist to select a
function to perform was, for this reason, regarded with great skepticism. How
these objections were, and could be, overcome is the subject of Sect. 22.5.

22.3.3 The Wary Radiologist: Malpractice Concerns

The popular as well as medical literature are replete with both anecdotal
stories and scholarly works about malpractice (“medical misadventure” in the
United Kingdom (UK)) and the resulting effects on healthcare [8]. In 2000, the
Institute of Medicine published a sobering report that described how large a
number of patients in the USA died each year as a result of mostly preventable
errors [9]. Most practicing physicians in the USA would describe at least
some impact on their practice as a result of a rise in the cost of malpractice
insurance. There is considerable debate about the causes of this increased
cost, with insurance carriers claiming the large sums resulting from verdicts
against the physician as a major factor and skeptical physicians citing poor
investments on the part of the insurance companies and the resulting need
for operating revenue. Whatever the cause, the effect has been to increase the
wariness of the physician from working outside of the standard of practice.

For radiologists, using equipment in a manner for which it was not
intended, not following well-accepted policies and procedures, and being
impaired when performing work are among the reasons cited as root causes
for negligence claims [10]. This has made radiologists very wary of anything
that potentially alters the image in some way that is not widely used in the
radiology community. This tends to limit the introduction of novel image pro-
cessing methods. Image processing, such as used by the PSP vendors, that
has been vetted through the Food and Drug Administration (FDA) processes
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reduces the radiologist’s concern since it then places some liability burden on
the equipment vendor. The FDA typically does not evaluate image processing
software itself unless, as for computer-aided detection (e.g., Device: Analyzer,
medical image,1 Device: Lung computed tomography system, computer-aided
detection2), it has the potential to result in harm to a patient (FDA Class 3).
What the FDA does is to require a Good Manufacturing Practice (GMP)
with the idea that software developed using such processes is likely to func-
tion as intended and to have few errors (Medical Device Exemptions 510(k)
and GMP Requirements3). With some limitations and exceptions, the FDA
does include Off-the-Shelf (OTS) software in the general equipment premarket
approval process [11].

Software developed in an academic research laboratory and used in exper-
imental imaging is exempt from FDA regulation. However, research use of
software on patient images is subject to Institutional Review Board (IRB)
requirements. These generally involve assessments of risk to the patient, devel-
opment of an appropriate protocol including informed consent, and ensuring
patient safety. For image processing, the typical research methods involve com-
paring a novel technique against established ones. Patient risk is minimized
as the images are typically interpreted both in a conventional manner and
using the proposed new technique. Also, studies are usually done on images
that have already been interpreted.

22.3.4 The Skeptical Radiologist:
Evidence-Based Requirements

When image processing is unobtrusive, does not add to workload, and pro-
vides visible improvement in an image, many radiologists would be willing to
accept such a technique. The cautious radiologist would also want to know if
the method at least did not result in a deterioration of diagnostic performance
and, preferably, would improve it. The radiologist familiar with observer per-
formance studies will even expect that statistically robust methods are used
for the evaluation of an image processing method and will look for these in
published studies. Most radiologists are familiar with receiver operating char-
acteristic (ROC) techniques, as they are often part of the radiology trainee’s
curriculum. ROC analysis provides a comprehensive description of diagnostic
accuracy because it estimates and reports all of the combinations of sensitivity
and specificity that a diagnostic test (e.g., radiograph, radiologist’s report) is
able to provide [12, 13].

1 http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPCD/

classification.cfm?ID=4699
2 http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPCD/

classification.cfm?ID=4676
3 http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpcd/

315.cfm?GMPPart=892#start



552 S.C. Horii and M.H. Loew

That is not to say that radiologists are all so compulsive about what is
done to the images they interpret. The proprietary processing algorithms used
by the PSP vendors were, and are, largely unknown by practicing radiologists,
though the physicists and engineers in radiology often could “figure out” at
least what class of image processing was being performed on the raw data.
With PSP a nearly ubiquitous replacement for film-screen systems, the use
of these digital images has become the standard of practice. More recently,
direct capture radiography – using area detectors that can provide digital data
directly (e.g., DR) – has been replacing PSP for some applications. These
images also rely on image processing.

Radiologists in academic centers tend to be more interested in the evi-
dence for applying particular image processing methods to images. The
peer-reviewed articles they then write regarding comparisons and observer
performance help influence the production-oriented practicing radiologist.

22.3.5 Tails, Dogs, and Gaps

Scientific contributions to image analysis in radiology almost always make
their way to the practicing radiologist by way of industry – commercial devices
and systems comprise hardware and/or software that often embody techniques
or algorithms from the scientific literature. In 2006, Morgan et al. citing a 2004
editorial [14] observed that the challenges of transferring innovative research
into industry solutions were related to Reiner’s reference to the industry “tail”
wagging the healthcare “dog” [15]. Morgan et al. identified a gap between
the generalized solutions industry is willing to provide and the optimized
solutions healthcare providers (read radiologists) want. This was called the
“value innovation gap”. Morgan et al. further wrote that those experiencing
this gap have a nagging frustration that the end-users are not driving the
process [15].

The authors’ approach to a solution involved a paradigm shift from
a “passive vendor-driven model” to an innovative and “active user-driven
model”.

This idea was taken up more recently in a radiology context by Flan-
ders [16]. He proposes a data-driven approach to software design in which
there is a critical study of user interactions with applications in a variety of
clinical settings. The field of usability could be brought to bear as well, to
help in objective evaluation of user interaction. All of this would lead to the
capability for real and substantive customization by the user. He argues for
the use of new technologies, such as Web services, Application Programming
Interfaces (APIs), and Asynchronous Javascript XML (AJAX), which are
machine-independent and can provide a method for exchanging data between
disparate applications and a customized user interface.

In the application of new image processing algorithms, or the extension/
combination of existing ones, this philosophy of meeting customer-driven
requirements seems especially valuable. As new users become familiar with a
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system, they should be able to experiment safely with alternative approaches
to visualizing, measuring, and extracting details from their images.

With customer leadership comes responsibility. Flanders notes that cus-
tomers must take an active role in the assessment of core applications and
services. He concludes that most important, knowledgeable customer domain
experts should be allowed to take a more active role in the entire product
development cycle [16].

22.4 The Goals of Image Processing
for Medical Imaging

22.4.1 Automation of Tasks

As described in Sect. 22.3.2, radiologists are highly driven by the need to be
productive, so that any image-processing technique that can speed up the
reading process tends to be viewed more positively than a method that does
not change, or lengthens, interpretation time. Image-processing techniques
that can automate routine, but time-consuming, tasks are of a sort that would
be beneficial.

Appropriate Image Presentation

Even the replacement of film-screen systems with CR/PSP or DR has still not
eliminated, one problem faced by technologists and radiologists. Radiographs
taken at the patient bedside often are done because the patients are too ill to
travel to the radiology department and often are also done urgently. Under
these circumstances, it is not difficult to understand why the PSP cassette
or direct capture plate can be misoriented for the radiograph despite marks
on the cassettes or plates. The resulting inverted or rotated image must then
be corrected by either the technologist or the radiologist. Automation of this
process has been accomplished with a high degree of accuracy and with speed
sufficient for incorporation into routine workflow [17]. Although the situa-
tion has improved with more manufacturer adherence to Digital Imaging and
Communications in Medicine (DICOM), which is a standard for handling,
storing, printing, and transmitting information in and about medical images
[18], with PSP systems, a conventional two-view (Postero-Anterior (PA) and
lateral) chest radiograph could be displayed on a workstation with the PA
view on the left monitor and the lateral view on the right, or vice versa.
The problem is that most radiologists prefer a particular arrangement of the
images, and the choice may vary between radiologists. In what has come to be
known as the “hanging protocol”, images are arranged automatically as the
radiologist would like to view them. In film-based operation, this was done
by the film library clerks, but automation of this function in PACS required
that either the views be properly identified (one element in DICOM) or to be
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able to identify a view automatically. Boone et al. developed a neural network
classifier to determine automatically if a chest radiograph was a PA or lateral
view [19]. They were able to demonstrate both the success of the method and
documenting time savings as a result of the radiologist not having to rearrange
the images.

Reliable Measurements

A long-established evaluation of a person’s heart size on a chest radiograph
has been the measurement of the ratio of the transverse diameter of the heart
to the transverse diameter of the chest; the Cardio-Thoracic Ratio (CTR).
The traditional way to do this quantitatively was to measure these dimen-
sions on the film. With PSP and digital imaging, at least the measuring
calipers could be made electronic. A very early application of image process-
ing in radiography was the automation of the computation of the CTR. There
are applications of this that were attempted before digital imaging. In 1973,
Sezaki and Ukena described an apparatus for scanning and digitizing a chest
radiographic film and using detected edges of the heart and lungs to compute
the CTR [20] and were granted a patent for the process in 1975 [21]. Digital
image processing methods have improved the speed of automatic computation
of this ratio and do so without specialized equipment. A paper from 2006 by
von Ginneken, Stegmann and Loog [22] describes automated CTR computa-
tion (and, in addition, describes some of the segmentation methods discussed
subsequently). Despite these (and many other) methods for automatic deter-
mination of CTR, the resulting algorithms, even though automated, have not
found wide utilization. This is largely because radiologists are very adept at
recognizing an enlarged heart without computing this ratio. CTR is some-
times used when the heart size is perceived as being borderline, but is quickly
computed using the linear measurements available on workstations. In this
instance, despite the ability to compute the CTR quickly and in an automated
fashion, it is not widely used by radiologists.

An area of great interest for physicians who study vascular diseases such as
arteriosclerosis (a leading cause of morbidity and mortality in the USA [23])
is the quantification of narrowing of vessels (stenoses). Conventional catheter
angiography, in which contrast material is injected into vessels through
catheters placed into them, opacifies the lumen of the vessels and provides
some qualitative assessment of stenoses. Quantitative measurements can be
done, but are difficult because of the various geometric magnification aspects
of the imaging process. Placing reference objects of known size at the same
position from the film (or detector) and X-ray source as the vessel is required
for actual measurement. The advent of digital subtraction angiography helped
reduce the radiation exposure associated with film-based angiography and
the resulting images provided high-contrast vessel lumen images amenable
to automated analysis. However, the method did not eliminate the difficulty
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with actual measurement [24] as the image acquisition was still a projection
radiographic technique.

3D Measurements

CT was a major advance for quantitative measurement of many anatomic
structures. The relationship of the pixel size of the image to the real-world
size could be determined accurately. With the development of multi-detector
or multi-slice CT, isotropic voxels could be produced. This allowed for accu-
rate dimensional measurement in all three machine axes and the resulting
anatomic planes. An outcome of this has been the ability to measure actual
blood vessel diameters, both the external dimension and the lumen measure-
ments. These measurements can be used to compute vascular stenoses much
more accurately than has been possible. The digital nature of these images led
to the development of algorithms for automatic assessment of blood vessels,
particularly coronary arteries [25–27]. Software is available from some vendors
that can carry out extensive automated evaluation of the coronary arteries.
These methods offer fast, automated results, though some questions about
accuracy have been raised. Blackmon et al. showed that there is a high degree
of correlation between manually done and automated coronary analyses [27].
Because the reconstruction algorithms can directly affect the way vessel edges
and the contrast-enhanced lumens appear in the images, the use of particular
reconstruction kernels for coronary imaging has proven useful [28]. Develop-
ment of examination-specific reconstruction kernels is an active area for image
processing research.

22.4.2 Improvement of Observer Performance

Radiologists make errors when interpreting images. Overall, the error rate
has been estimated at 4% [29]. For chest radiographs, images of patients ini-
tially read as “normal” and later diagnosed with lung cancer showed that in
approximately 90% of the cases, the cancer was visible on the chest image in
retrospect [30]. Similarly, for “normal” mammograms of patients subsequently
found to have breast cancer, the lesion was detectable on the mammogram in
retrospect approximately 75% of the time [31]. The problem for the patient
and radiologist in these situations is not that the imaging system failed to ren-
der the abnormality, but that the radiologist did not detect it. How much a
lesion stands out from the background, both in gray-scale value (contrast) and
difference from surrounding complexity was termed “conspicuity” by Kundel
and Revesz [32]. Building on those results, recent work has begun to objec-
tively characterize conspicuity by combining human visual psychophysics and
signal processing [33]. Increasing the conspicuity of abnormalities is one way
in which it has been theorized that the miss rate could be reduced. Image
processing has had a prominent role in methods to increase conspicuity.
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Of reasons why abnormalities are difficult to detect, that they may not
“stand out” enough from their surroundings is one cause. Various image pro-
cessing methods for improving conspicuity have been, and are, being used or
evaluated. Koenker provides an overview of various post-processing methods
in digital radiography [34], and Prokop et al. published an overview of image
processing in chest radiography [35].

Contrast Enhancement

If a lesion is only subtly different in gray-scale value from its surroundings,
the lack of contrast will make it difficult to see. Contrast enhancement of
various types has long been a staple image-processing technique. One author
[SH] recalls that this was done even with film. He was taught that contrast
could be increased in light areas of a film by tilting the film and in so doing,
increasing the thickness of film emulsion through which light from the light
box had to pass. For lesions that were only slightly more exposed than their
surroundings, this would increase the attenuation of these areas more than
it would for the less exposed background. Digital imaging made it possible
to manipulate contrast very readily. For some imaging methods, changing
contrast is essential. Since CT produces images with a wider range of digital
values than can be represented by directly viewable display devices (and than
can be appreciated by the eye), remapping a variable number of bits in the
display range to the bit range of the image (the “window width” and “window
level” operations) allows for display of the whole range of the CT image,
though not on a single static image.

An examination of the gray-scale histogram of many medical images will
show that pixel values tend to be clustered around certain values. The image-
processing technique of histogram equalization attempts to use the available
range of display values by equalizing the histogram. Done in the simplest
manner, the flattening of the histogram tends to reduce the image contrast, not
increase it. For this reason, adaptive histogram equalization and its variations
were developed to maximize the utilization of display gray levels without
decreasing contrast [36].

Edge Enhancement

Since the human visual system includes various receptors sensitive to edges,
enhancing the boundaries, or edges, of a structure or lesion might increase
its conspicuity. Edge enhancement techniques from image processing are well
known and are another class currently used in CR/PSP and DR systems.
There are also CT reconstruction algorithms that enhance edges. The use
of, typically through unsharp masking, though direct high-pass filtering, dif-
ferentiation, and neural network methods [37] have also been used. Edge
enhancement has been shown to improve detection of abnormalities and struc-
tures with edge-like properties [38, 39]. Edge enhancement can be overdone,
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since high-frequency noise also tends to be enhanced resulting in images that
are too difficult to interpret. This suggests that noise reduction methods could
also be of value in improving detectability.

Noise Reduction

Noise is a companion of all medical imaging and is responsible for at least some
component of the complexity that forms part of the conspicuity equation. For
radiographic images, the typical source of noise is quantum mottle resulting
from the statistics of X-ray photons and detectors [40]. CR/DR systems also
introduce noise in the digitization process and electronic noise in the various
components of the imaging chain. MRI has several sources of noise, the chief of
which is actually the patient. Thermal motion of the various molecules in the
body perturb the radio-frequency (RF) signal induced by the imaging process
[41]. MRI also has noise arising from the magnet system and coils, the RF
generators and amplifiers, and the digitizing process. Ultrasound imaging has
speckle as the main type of noise. This arises from the superposition of sound
waves reflected by randomly distributed scattering foci in tissues. Ultrasound
imaging also has electronic noise from the pulser and analog receiver circuitry
and the analog-to-digital conversion process.

Image processing for noise reduction is aimed at the source noise. Readers
of this book are likely to be familiar with many forms of noise reduction. Some
examples are provided in the paragraphs that follow and are not intended to be
a comprehensive review of noise reduction techniques. Since quantum mottle
in radiographs is random and results from the quantum statistical process of
the exposure (whether analogue film or digital device), the only way to reduce
quantum mottle is to increase the number of photons, which means increasing
exposure (dose). For a given exposure, however, if a detector is more efficient
at capturing the photons that it does receive, it will have lower noise than a
less-efficient detector. An advantage of some newer types of PSP phosphors
and direct capture digital detectors is increased quantum detection efficiency
(QDE) compared to earlier PSP systems or film. Radiographic images are also
plagued by scatter. Rather than traveling in a straight line from the X-ray
source, a photon may be scattered, striking the detector at an angle that does
not represent the anatomic structures through which it passed. This results
in an overall decrease in image contrast. Scatter is also random, but can be
reduced through the use of an air gap between the patient and detector. This
allows some of the scattered photons to miss the detector. A more practical
method is the use of a collimating grid (collimator). This is a device composed
of X-ray attenuating strips alternating with open (or low attenuating) spaces.
Off-angle photons will strike the strips and be absorbed rather than going
through to the detector. While grids reduce scatter very effectively, they can
introduce their own noise in the form of narrow stripes on the image. Image
processing has been applied to reduce the noise resulting from grids [42] as
well as some quantum mottle in certain frequency bands.
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Reduction of noise has been primarily attempted through various filtering
methods [43], though averaging techniques have also been used, the latter to
great advantage in ultrasound and fluoroscopy. A review of major techniques
is provided by Rangayyan [44].

Processing Context-Dependent Noise

In the clinical use of images, however, another class of noise exists. This is
the noise of structures not of interest for the clinical question to be answered.
In a chest X-ray, for example, the usual interest is the lungs. In that case,
the ribs (which are projected over the lungs) are “noise”. However, if the
patient has sustained a traumatic injury of the chest, then the ribs (which
might have been fractured in the injury) become “signal”. This sort of noise
problem is much more difficult to approach by image processing, though there
are techniques that can help. PSP and DR can potentially record images from
different portions of the energy spectrum of the exposing X-ray beam. From a
single exposure, through the use of energy filtering (not, in this case, filtering
in the sense of signal processing) two different images can be made, one from
the higher energy portion of the X-ray beam and the other from the lower
energy portion. Because of differential attenuation of tissues at different X-
ray energies, it is possible through processing of these images to yield images
that are weighted to soft tissue or bone [45]. A conventional image, the soft
tissue (lung), and bone images can all be displayed for the radiologist offering
images that reduce anatomic “noise” though it is dependent on the radiologist
to determine whether or not these are useful. The problem of superimposed
anatomy as noise on projection radiographs is one reason that CT provides
advantages over projection images. Anterior anatomic structures that would
be superimposed over posterior ones on projection images are separated by
CT imaging.

Change Detection

A major task that the radiologist has is to detect changes. A typical clinical
question is whether a particular disease process is getting worse or better in
a patient. Such questions are often based on the size of an abnormality, such
as an area of pneumonia in a lung decreasing or increasing. Digital imaging
allows for mathematical operations to be performed on images simply, as the
images are already in a numeric representation. One method to detect change
is to subtract the current image from a prior one; changes will be enhanced
by such techniques. Temporal subtraction has been developed and tried and
readily demonstrates that the resulting images can direct the radiologist to
pay more attention to the areas that show change [46,47] potentially improving
detection and making comparisons simpler. The processing power available in
current workstations and servers allows for image warping to be included in the
subtraction process, providing for reduced artifacts in the subtracted images.
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Change detection has not been limited to radiographic images. Patriarche
and Erickson developed an algorithm to track the change of brain tumors on
MRI and display the changes to the radiologist [48,49]. Sensitivity, specificity,
and accuracy for detection of tumor progression were 0.88, 0.98, and 0.95,
respectively.

Computer-Aided Diagnosis

Automated change detection and increasing conspicuity are two classes of
methods that point to a successful application of image processing in radiol-
ogy: computer-aided diagnosis (CAD) – sometimes differed between computer-
aided detection (CADe) and computer-aided diagnostics (CADx). The interest
in applying computer-based analysis to assist diagnosis has a long history.
An early paper by Lodwick et al. in 1966 described some of the then-current
attempts at applying various computer-based analysis methods to radiographs
[50]. In 1984, the National Aeronautics and Space Administration (NASA)
with support from the National Institutes of Health (NIH) National Heart
Lung and Blood Institute (NHLBI) sponsored work in surveying computer
applications in radiograph enhancement and automated extraction of quan-
titative image information [51]. CAD has now become a commercial software
product for mammography (the first product approved by the FDA in 1998)
and lung nodule detection. In general (and the reason for some preference
for “computer-aided detection” as the meaning of the acronym), these sys-
tems are used as an adjunct to a radiologist’s interpretation. The systems
make “marks” on the images where the software has detected a suspicious
area. The radiologist then evaluates these and may dismiss them or raise a
concern about them. For mammography, a large study determined that the
use of CAD increased the detection of cancers by 19.5% and increased the
proportion of detected early stage cancers from 73 to 78% [52]. These results
were achieved with no change in the positive predictive value of biopsies done
(a desirable result – the concern about CAD is that it would increase the
biopsy rate based on the CAD marks and not on radiologist and referring
physician judgment). Although the patient recall rate (bringing patients back
because of suspicious findings) did increase (from 6.5 to 7.7%), the authors
point out that the increased rate of detecting true abnormalities would justify
an increase in recall rate.

Lung nodule detection poses another challenge for radiologists. Lung
lesions often have low conspicuity because of low contrast and high surround-
ing complexity. Even with the use of CT for evaluating the lungs, nodules can
be inconspicuous because of small size or adjacency to normal blood vessels.
White et al. showed that CAD on CT has some success in improving radiol-
ogist sensitivity for detecting lung nodules [53]. Recent work has shown that
lung CT CAD can significantly increase radiologists’ detection of nodules less
than 5mm in size [54]. Nodules of this size have a greater likelihood of being
overlooked by the radiologist. Even though small nodules of this size have a
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low probability of being malignant (in a low-risk population), it is desirable
to find these nodules so they can be followed-up in the high-risk population.

Texture discrimination, particularly in ultrasound, is another important
facet of diagnostic interpretation. Diseases of most solid organs in the abdomen
result not only in anatomic distortion but also in texture alteration. Theories
of human perception of texture were first given a computational basis by Julesz
who examined texture using a statistical treatment [55]. A well-known conjec-
ture was put forward in this work: that humans cannot distinguish between
textures that have the same second-order statistics (homogeneity). Julesz him-
self later showed that this conjecture was incorrect [56], but the work did
establish one computational method of analyzing and synthesizing texture.
The examination of co-occurrence matrices as well as modeling of texture
based on scattering physics are two (among a number) of the methods used
to provide quantitative comparisons of the texture of normal and abnormal
tissues. Garra et al. used the former approach in analyzing breast lesions and
yielded a 100% sensitivity for classifying breast lesions as malignant [57]. The
methods were not able to exclude all of the benign masses (cysts, s, and fibro-
cystic nodules) included, but the analyses did result in correctly excluding the
majority of these from the malignant category. The implication of the study is
that use of texture analysis in breast ultrasound could reduce the biopsy rate
by excluding non-malignant lesions. Using scattering modeling and decompo-
sition of the echo signal into coherent and diffuse components, Georgiou and
Cohen developed algorithms that successfully discriminated malignant from
benign lesions in liver and breast ultrasound images [58]. Statistical ultrason-
ics was studied extensively by Wagner [59] and Insana [60] and a historical
summary and tribute is provided by Insana [61]. Despite these successful appli-
cations of texture analysis in ultrasound, the equivalent of CAD for ultrasound
has not yet emerged. That is not to say that the years of research on texture
and speckle in ultrasound did not yield clinically useful results; most of the
ultrasound vendors use various signal processing methods based on statisti-
cal ultrasonics research to reduce speckle and other noise in the ultrasound
machine itself. One of the authors [SH] has been doing clinical ultrasound since
the late 1970s and can readily testify to the vast improvement in ultrasound
image quality.

Virtual Imaging

In recent years, CAD has been used in CT colonography (CTC). In this imag-
ing technique, high-resolution CT studies of the colon are used to reconstruct
3D volumetric images of the large bowel. These can then be viewed either
in a “fly through” mode, which simulates optical colonoscopy, or with the
image virtually opened and flattened. The 2D cross-sectional images are also
reviewed. CAD has been successfully applied to CTC (sometimes referred to
as “virtual colonoscopy”) in the search for polyps. Colon polyps, when small
and difficult to detect, are often benign, but can be precursors of malignant
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lesions, so need to be followed. Yoshida and Dachman reviewed the back-
ground of CTC and concluded that it showed promise in detecting polyps but
that additional refinement was needed [62]. More recently, Taylor et al. stud-
ied the use of CAD in CTC in two modes – concurrent with reading (much
as CAD for mammography), and as a “second reader” [63]. They found that
using CAD for CTC in a concurrent mode was more time efficient, but use
as a second reader increased sensitivity for detection of smaller lesions. While
CAD for CTC is not yet as widely used as CAD for mammography, use is
increasing. Overall, CAD has proven to be a very successful application of
image-processing techniques in radiology.

22.5 Closing the Gap

As the authors hope to have shown, though there are gaps between the large
body of research on medical image processing and clinical applications, that
there are many instances of the use of image processing in daily clinical work.
Much of this is “hidden” from the radiologist and included in such things as
the automated preprocessing of PSP radiographic images, the reconstruction
kernels for CT, segmentation for 3D volumetric image display, and speckle
reduction in ultrasound. The growth of CAD is a more readily visible appli-
cation, though the internal steps used in the process are not typically well
understood by the radiologist.

The two major means by which the gaps between image processing research
and clinical practice can be narrowed or bridged are neither unexpected nor
(the authors believe) too far outside the experience of researchers and clini-
cians. These means are education and research – the two building blocks of
academic radiology.

22.5.1 Education

While years of educating radiologists about imaging physics included exten-
sive descriptions of fundamentals such as the transfer function of film and
means for producing subtraction radiographs, much of the traditional study
of radiologic physics by the radiologist was heavily weighted to analog imag-
ing. The preponderance of digital imaging has forced a revision of much of
the physics curriculum for radiology residents (for whom the Board exami-
nation has a whole part devoted to physics). The opportunity was taken by
the American Association of Physicists in Medicine (AAPM) which, in 2009,
produced an extensive revision of the radiology physics educational program
for residents [64]:

• Basic Imaging Science and Technology: Module 7 of the curriculum inclu-
des items in the “Fundamental Knowledge”, “Clinical Application”, and
“Clinical Problem-Solving” sections directly involving image processing.
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• Describe the different processes used to convert the acquired raw data into a
final image used for interpretation: Item 3 of the Fundamental Knowledge
Section.

• Determine how changes in each image processing procedure impact the final
image produced. Evaluate how these changes affect the image of different
objects or body parts and their associated views : Item 2 of the Clinical
Application Section.

• Choose the appropriate image processing to be used for a specific exam:
Item 3 of Clinical Problem-Solving Section.

While “image processing” in these sections applies largely to PSP radiog-
raphy, an instructor could use these curricular elements to expand on image
processing, what is involved, how the particular algorithms were developed,
and why they are valuable. The more fundamental aspects of image processing
are not disregarded in the AAPM proposal, in fact, Sect. 7.3 of Module 7 is
devoted entirely to image processing. The outline includes many of the topics
covered in this volume (e.g., image segmentation, image enhancement, volume
rendering).

Radiology trainees have, if not an aversion, at least a dislike of concepts
explained with extensive mathematics. However, since their primary inter-
est is in learning to interpret images, demonstrations of the effects of image
processing can be a very effective educational tool. In some, this will pro-
duce enough curiosity that they will want to know the mathematics behind
what they have seen. Showing, or maybe better with an interactive demon-
stration, such processes as: high- and low-pass filtering, edge enhancement
(through various means), histogram equalization, frequency domain represen-
tation through the Fourier transform, and segmentation could all be very
effective educational tools. Astute residents may, for example, come to under-
stand the relationship of these processing elements and the practical steps the
technologists use when selecting an examination type on a PSP plate reader;
with experience, residents may come to suggest additional processing steps
that will complement their own understanding of an image or study.

22.5.2 Research

To help close the research-practice gap will likely also require a parallel edu-
cation of the graduate and postdoctoral students (from engineering, computer
science, or physics) in clinical aspects of radiology. The authors are not advo-
cating sending these students to medical school, but rather that radiologists
should be willing to spend their time explaining the problems they face in the
practice of their specialty. A graduate student or postdoctoral trainee with
an understanding of all that image processing can do should be able to think
of possible (novel) solutions (i.e., research) when sitting with a radiologist
who shows the student a problem, for example, finding the tip of a vascular
catheter on a chest radiograph.
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The bi-directional education processes – image processing researchers
educating radiologists about techniques and radiologists teaching image pro-
cessing experts about clinical problems – is certainly not novel or unique.
It can, however, provide a model that can also be extended to more collab-
orative projects. On the research side, this can mean translational research
that is directed at particular clinical needs. Clinical radiologists can aim to
understand enough about image processing that they can serve as advisors
on grants, or to work with senior research faculty as mentors for graduate
students.

It will be important, as suggested above, to involve industry in the process
as a full partner. Researchers reach most radiologists through commercial
equipment that is used in a production rather than a research setting. Industry
can make equipment that builds in usability and flexibility, and includes a
robust API [16] that permits extensive customization by the user. Not all users
may want to be so heavily involved in design and feedback to the suppliers –
but those who wish to should find it straightforward.

22.6 Conclusion

In one of the authors’ [SH] experience, an approach that might prove useful
in having image-processing be more integrated in clinical imaging is to find
a “champion” in radiology who both understands image processing and is
enthusiastic about it. This has been a successful approach in the information
technology area and has been helpful in making a radiology department’s
transition from analog to digital imaging much smoother than it otherwise
would have been. A champion for image-processing applications in radiology
could be either at a departmental level, or even multiple such individuals
in the various sections of a department. The role of the champion is as an
“educator”, instructing colleagues about the potential use of image processing
to solve particular problems. The role also includes “translator” working to
make the principles behind image processing methods understandable to the
clinical radiologist and to explain the importance of various clinical problems
to image-processing researchers.

That many image-processing techniques have found their way into prod-
ucts or procedures used in the clinical practice of radiology is an illustration
that gaps can be bridged if radiologists and image-processing researchers
understand each other’s work.
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Air, 28
Air-free coupling, 12
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mean shift, 166
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ALM, 308

Alpha particle, 5
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Amira, 542
AMN, 313
A-mode, 12
Amplitude

analyzer, 58
mode, 12
reduction, 99

Analyze, 541
AnalyzeDirect Inc., 542
Anatomical landmark, 135, 140
Anatomic prior, 413, 415
Anatomy, 485
Aneurysm, 88
Angiogenesis, 331
Animal PET, 69
Anisotropy, 162, 405, 408

filter, 18
MRI, 387
template, 18

ANN, 316, 319, 321
Annihilation, 58

photon, 58, 74
process, 57

Annotation, 541
ANODE, 512
AOM, 334, 346, 347
Aorta, 87
Aortic valve, 95
AP, 466
APD, 58
APD-based PET, 69
Aperture, 98, 165
API, 448–450, 487, 523, 528, 532, 539,

541, 552
Appearance

model, 276, 298, 299
prior, 284, 297

Application
development, 536
Hosting, 448, 449, 452

Approximation, 135
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closing, 114
opening, 113, 119

Arithmetic reconstruction, 8
Arrival-time, 411
Arteriosclerosis, 554
Arthritis, 363
Artificial intelligence, 40

ASCF, 119, 120
ASD, 87
ASF, 111, 118
Asia, 397
ASM, 148, 299
Aspect ratio, 430
Association

negotiation, 435
rule mining, 215, 217

Asymmetry, 316
Atlas, 294, 463

registration, 298
Atlas-based segmentation, 147, 288, 508
Atomic number, 58
Attenuation, 59

correction, 84
AUC, 319
Australia, 308, 542
Automatic

classification, 43
interaction, 396
landmarking, 149
segmentation, 36

Auto-regressive model, 231
AVD, 504
Axons, 412

BAA, 463
Back projection, 8
Background

marker, 125
model, 28

Backscatter, 83
Back-to-front, 23, 393
Backward pruning, 212
Ball scale, 266
Balloon, 34, 36

force, 283
model, 35
segmentation, 36, 43

Barrel distortion, 20
Barycenter, 381
Basal cell carcinoma, 307
Basis function, 134
Bayes rule, 200
BDWG, 361
Beam

broadening, 100
distortion, 100
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focusing, 86, 99
forming, 86
hardening, 7
skewing, 100
steering, 85, 86, 93, 99
warping, 100

Benchmark, 488
Bernstein polynomial, 136
β+-decay, 57
BF, 59
BGO, 56
BI-RADS, 218
Bicubic interpolation, 367
Big Endian, 433
Bilinear interpolation, 385
Binarization, 26, 30
Binary

morphology, 19
reconstruction, 119

Binding potential, 69
Bio-electric field, 532
Biological

noise, 370
tissue, 30

Biomarker, 403
Bio-mechanical

model, 150
motion, 145

BioPSE, 532
Biosystem, 485
Bipolar window, 172
BIR, 542
BI-RADS, 218, 331, 343, 344
Black-box, 314, 533
Blending

order, 381
surface, 391

Blob representation, 233
Blobworld, 472
Block prior, 284
Blood

flow, 13, 388
vessel, 381, 384, 555

BlueBerry, 526
Blurring, 73

adaptive, 187
B-mode, 12, 13, 81, 85, 88, 331, 367
Body imaging, 68
Bohr model, 5, 6

BoneXpert, 37
Bootstrap

analysis, 418
sampling, 412

Border
diffusiveness, 316
length, 27

Bottom-up, 31
Boundary, 204
Boundary-based feature, 298
Bounding box, 286, 525
Bowel, 560
Brain, 21, 120, 273, 384

imaging, 68
MRI, 228, 290

Branemark implant, 40, 43
Breast

cancer, 329, 555
imaging, 330
parenchyma, 333
ultrasound, 560

Bremsstrahlung, 6, 7
Brightness

mode, 13
variation, 20

Brovey method, 72
BSD, 523
B-spline, 137, 286, 290, 294, 523

FFD, 137
surface, 390
tensor, 136

BSPS, 440
Bulging surface, 391

CAD, 131, 198, 221, 451, 455, 458, 512,
533, 559

CADe, 309, 325, 329, 330, 332, 333, 335,
447, 457, 548, 559

CADx, 309, 313, 325, 329, 330, 333–335,
337, 338, 341, 343, 348, 351, 352,
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Calcium, 365
C4.5 algorithm, 212
Calibration, 16, 41, 134, 325
CAM, 533
Camera

calibration, 134
control, 396

Canberra distance, 207, 209
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Cantata, 531
Cardboard piece, 119
Cardiac

CT, 95
cycle, 81
MRI, 95
ultrasound, 81

Cardiovascular imaging, 68
CARS, X
CART, 319, 321

classifier, 320
Cartesian coordinates, 182
CAS, 131, 527
Case

database, 325
table, 380

CASH, 311
CAT, 131
Catchment basins, 122
Catheter angiography, 554
CAVE, 542
CBIR, 47, 190, 197, 333–335, 341, 471,

488, 514
CBVIR, 471
CC, 335
CCD, 323
Cell, 281

culture, 29
membrane, 35, 36, 43

Centerline, 182
Centroid, 140
Cerebral

aneurysm, 389
cortex, 61
peduncle, 65

Cerebro-spinal fluid, 228–230, 234, 384
CGMM, 235, 236
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curve, 41
equation, 185
radiation, 6, 7

Chebychev distance, 207, 210
Checkerboard pattern, 502
Chest, 447, 466

radiograph, 553, 554
Cholesterol, 365
Chromosome, 113, 117
CI, 38, 40, 325
CICE, 502

CIE Lab, 474
CIMT, 366
Circular transform, 144
CISTIB, 539
CIT, 541
City block distance, 207
Classification, 25, 32, 37, 325, 332, 333,

473, 483
method, 319

Classifier over-fitting, 212
CLEF, 483, 499
Clinical

ABCD rule, 317
application, 149, 561
endpoint, 361
evaluation, 333, 374
imaging, 362
trial, 149, 362, 368, 369, 373
validation, 373
variability, 370

Clique potential, 160
Close-open filter, 111, 120
Closing, 19, 108, 110, 116
Clustering, 28, 230, 241, 414, 415
CM, 307, 309, 310, 321
CMY, 72
CNMD, 310
CNR, 86
CNS, 363, 372
Coarse-to-fine strategy, 285, 287, 301
Cocoa framework, 539
CodeRunner, 533
Coincident

board, 60
detection, 58
time, 58

Collapsing, 389
Collimating grid, 557
Collimator, 557
Collinear landmark, 140
Colon, 396, 447, 560
Colonic polyp, 397
Color, 384, 474, 525

adjustment, 21
bleeding, 383
blending, 383
coding, 413
histogram, 199, 202, 484
map, 101
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transform, 316
variety, 317

Colorectal cancer, 397
Colored glasses, 101
Combined boundary, 109
Communication, 2, 45
Complexity, 3
Component filter(s), 112, 119, 120
Compounding, 547
Compression, 83, 145

ratio, 548
syndrome, 384

Compton effect, 7
Computation

cost, 385
model, 539
speed, 261
time, 3

Computer
algebra, 536
dermoscopy, 313
graphics, 22, 539
mouse, 396
scientist, 500

Computer science, 484, 562
Computer vision, 280
Conditional

random field, 231
statement, 534

Cone-shaped volume, 13
Confocal mode imaging, 312
Conjugate gradient, 524
Connectathon, 461
Connected component(s), 29, 111, 113,

119, 238
Connectivity, 269, 411, 416

measure, 255
Consistency error, 509
Conspicuity, 555
Context group, 445
Contour, 524

prior, 284
Contrast, 18, 161, 170, 204, 395, 440,

555, 556
adjustment, 21
agent, 7, 363, 392, 393
enhancement, 41, 333, 555, 556
filter, 18
inversion, 546

manipulation, 540

Contrast-enhanced

CT, 389
imaging, 149

MRI, 145, 149

Control point, 135
Conventional beam forming, 93

Convexity, 27

Convolution, 16, 18, 178, 191, 540
kernel, 191

surface, 391, 392

Co-occurrence, 143
matrix, 160, 203, 560

contrast, 161

generalized, 161, 162
local, 165

Coordinate system, 394

Cornea tissue, 125
Cornerness, 184

Coronary

artery, 555
vessel, 393

Corpus callosum, 120, 127, 406, 410,
413

Correction proposal, 428

Correlation
fractal dimension, 201

integral, 200

Correspondence estimation, 149
Corresponding point, 132, 135

Cortical column, 191

Corticospinal tract, 66
Cost function, 254

Coulomb field, 5, 6

Covariance matrix, 298
CPU, 383

CR, 464, 548, 553

Cranfield methodology, 506
Cranfield test, 483

Cranial nerve, 384

Cross-validation, 320, 321
CRT, 546

Crus cerebri, 65

Crystal size, 73
CS, 437

CSF, 74, 273, 499

CSI, 64
CSPS, 439
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202, 273, 294, 312, 362, 363, 367,
386, 392, 413, 428, 431, 442, 448,
477, 478, 480, 546, 555

angiography, 547
gantry, 8
reconstruction, 11

CTA, 510
CTC, 560
CTE, 502
CTK, 530
CTR, 554
Cuberille approach, 22
Curse of dimensionality, 476
Curvedness, 187
CVP, 393
Cyclotron, 68
Cyst, 560

1D, 5, 229, 363
2D, 3, 5, 81, 363
3D, 3, 5, 82, 233, 252, 363, 379, 547

model, 300
mouse, 396
Navigator, 24
reconstruction, 540
Slicer, 523, 537
texture, 300
visualization, 540

4D, 3, 5, 98, 547
3DMed, 527
DAG, 444
Darwinian paradigm, 41
Data

analysis, 536, 539
level, 3
mining, 216
prior, 412

Data-adaptive metric, 29
Data-based feature, 25
Data-driven, 412, 552

initialization, 233
Dataflow network, 532
Daubechies, 339
DBM, 147
DBT, 330, 332
DCE, 367
DCE-MRI, 331, 344–346, 368, 369
DCMR, 446

DCMTK, 529, 530, 533, 539
DDSM, 335, 346, 351
Deblurring, 74, 75
Decision

making, 317, 361, 365
support, 208, 323
tree, 212

Deconvolution, 74, 405
Deep structure, 194
Deformable

fusion, 538
model, 235
object, 531
super-quadric, 291
transform, 132

Deformation
field, 242, 503
model, 138

Delaunay triangulation, 524
Delineated object, 254
Delineation, 3, 27, 31, 35
Demand-driven

concept, 524
pipeline, 524
scheduling, 533

Dementia, 273
Demon’s algorithm, 243
Dendrite, 35, 36
Denmark, 37
Denoising, 195, 333
Density, 382
Dental

chart, 44
implantology, 21
status, 3

Depression, 273
Depth

cue, 393
encoding, 101
shading, 22

Dermatology, 443, 512
Dermatoscopy, 312
Dermoscopy, 311, 312

ABCD rule, 317
CADx, 310, 313
device, 322, 323
image, 315
system, 322

DES, 382
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Detector
crystal, 61
system, 61

Deterministic
clustering, 231
tractography, 408

Development environment, 521, 543
DeVIDE, 525, 533
DFT, 163
Diagnosis, 102, 395
Diagnostics, 22

algorithm, 310, 313, 314
radiology, 484
skill, 317
test, 551

Diamond artifact, 385
Dice coefficient, 504
DICOM, 1, 46, 427, 455, 472, 529, 530,

535, 539, 541, 553
application hosting, 532

DICOM-SR, 443, 444, 446, 447, 455,
459, 460, 466, 529

Diffeomorphic transform, 139, 149
Differential

equation, 139
structures, 317

Differentiation, 556
Diffusion, 195

equation, 180, 188
field, 410, 411
geometry-driven, 187, 189
MRI, 418
non-linear, 188
orientation, 404
pattern, 403, 404
process, 139
profile, 405, 411
strength, 404
tensor, 407

Diffusion-weighted MRI, 532
Digital

image, 1, 253
sensor, 1
signature, 529

Dilation, 19, 40, 108, 109, 115
Dimensionality curse, 198, 202, 211, 213
DIMSE, 434
Directed graph, 253
Direct rendering, 398

Discrete filtering, 18
Discriminant analysis, 417
Displacement field, 242
Distance function, 198, 205, 208, 209
Distance-related attenuation, 381
Distortion, 20, 204
Divisive

algorithm, 32
segmentation, 32

DKFZ, 526, 538
D-mode sonography, 13
dMRI, 403, 412, 413, 416, 419
DNA, 117
DOF, 132, 133, 280, 286
Dome filter, 121
Dopamine, 61

transporter, 60
Doppler effect, 13
Doppler imaging, 547
Doppler mode, 13
Doppler ultrasound, 331
DP, 466
DPV, 311
DR, 464, 548, 552, 553
Drug

development, 362
screening, 361

DSA, 181, 546
DSI, 404
DTI, 126, 404, 529, 532, 537, 538, 541,

547
DTM, 212
Dualing operator, 388
Duplex mode, 13
DVD, 437
DWT, 72
Dynamics, 121, 127

imaging, 149
shim, 64
thresholding, 29

Dyslexia, 126

Early precision, 500
ECG, 90, 241, 428, 477

gating, 91
ECG-gated TEE, 96
Echo

production, 63
time, 10
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Echocardiogram, 246, 248
Eclipse, 527, 537
Edge, 281

collapsing, 389
completion, 30
detection, 413, 540

statistical, 172
enhancement, 546, 556, 562
extraction, 25, 30, 41
filtering, 18
flipping, 389
focusing, 194
image, 35
level, 3
location, 30
profile, 30

Edge-based feature, 25, 30
Edge-based segmentation, 30, 34
Edge-off operation, 112, 120
Edge-preserving filter, 119
Edge-preserving smoothing, 187, 189
Education, 395, 562
EEG, 477
Effectiveness measure, 507
Egocentric perspective, 395
Eigendecomposition, 296
Eigenfunction, 139
Eigenimage, 339
Eigenvalue, 296
Eigenvector, 296, 299
Einstein, 178

convention, 182, 183
Ejection fraction, 88
Elastic

deformation, 144
registration, 144

Elasticity, 35, 82
Electrical dipole, 63
Electron, 5
Electronic, 58

patient record, 323
Ellipse, 33
ELM, 312
EM, 59, 199, 227, 231, 415
EM algorithm, 232, 236, 237, 503
EM/MPM, 200

algorithm, 208, 209
descriptor, 210

Emission, 382

Empty space skipping, 393
EN, 428
Endoscopy, 1, 6, 20, 35, 442
Endpoint, 361, 364
End-user application, 537
Energy, 204

filter, 558
Engineering, 562
Engraving machine, 115
ENT, X
Entropy, 142, 179, 204
Envelope detection, 83
EPI, 64
Epidermis, 307
Epilepsy, 234
Equi angle skewness, 388, 389
Equilibrium state, 5, 9
Erosion, 19, 40, 108, 115
E-step, 232
Euclidean, 191

boundary, 109
distance, 29, 198, 207, 210, 252, 293
geometry, 42
group, 192
mapping, 414
norm, 502
shortening flow, 188
space, 413
vector space, 476

Eulerian
coordinate, 502
scheme, 291

Europe, 309, 397
Evaluation, 149, 324, 482

database requirements, 325
methodology requirements, 325

Event-driven scheduling, 533
Evolutionary algorithm, 38, 40, 41
EXACT, 510
Examination-specific reconstruction,

555
Excitement, 10
Exclusion criteria, 325
Exocentric perspective, 394
Expert system, 39
Explicit VR, 433, 437
Extensible

application, 543
software, 521
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External
boundary, 109
energy, 35

Extrema, 121
Extremum, 187
Ex-vivo, 96, 131

FA, 407, 409, 414, 417
Factorial subgroup, 192
Fairing, 386
False positive, 333
Fan-shaped aperture, 13
Fast-rotating array, 91
Fat, 28
FB, 59
FC, 251

algorithm, 255
iterative relative, 263

FDA, 57, 332, 550, 559
FDG, 62
FDI, 44
Feature

extraction, 25, 41, 198, 216, 316
selection, 212, 216, 334
space, 28, 40, 142, 228, 230, 231, 233
vector, 38, 198, 230
visualization, 317

Feature-based affinity, 255, 261, 269,
270

Feature-based registration, 141
FEM, 290
Ferromagnetic material, 64
FFD, 136
FFDM, 330, 332
FFDM-DBT, 331
Fiber clustering, 414
Fibroadenoma, 560
Fibrocystic nodule, 560
FID, 9, 63
Field color asymmetry, 316
Field-of-view, 81, 95, 99
Fiji, 540
Filament, 6
Film-screen system, 553
Filter

kernel, 546
Filter(ing), 16, 179, 191, 536
Filtered back projection, 8
Finite mixture model, 232

First moment, 179
First-order shim, 64
FISH, 117
Fitness function, 41
Fixed shim, 64
Fix point, 31
Flexibility, 563
Flowline, 184
FLT, 67
Fluid registration, 144
Fluoroscopy, 7, 35, 193, 558
F-measure, 507
fMRI, 69, 363, 416, 537
FND, 504
Focusing, 98
Foreshortening, 89
Formalized query, 484
FOS, 338
Fourier analysis, 536, 540
Fourier basis function, 135
Fourier descriptor, 204, 335, 340, 347
Fourier domain, 9
Fourier theory, 388
Fourier transform, 8, 64, 191, 199, 404,

405, 562
Fourth order moment, 171
FOV, 60
FPD, 504
Fractal, 159, 340

dimension, 200, 202
model, 159, 337

France, 529
Free interaction, 396
FreeMat, 536
Free text, 478
Frequency

compounding, 367
domain, 199

Frequency-based feature, 318
Frequency-encoding gradient, 64
FROC, 512
Front-end, 537
Front evolution, 411
Front-to-back, 23, 393
FSC, 437
F-score, 507
FSR, 437
FSU, 437
Full-brain tractography, 414, 416, 419
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Full volume imaging, 95, 97
Fully-automated algorithms, 373
Functional

data, 373
loop, 534
MRI, 547

Fusion, 22, 448
Fuzzy

connectedness, 524
logic, 38, 40, 41, 43
model, 276
relation, 276
segmentation, 505
set theory, 505

FWHM, 56
FZ Jülich, 11

GA, 334
Gabor family, 180
Gabor filterbank, 298
Gabor function, 166, 170, 177
Gamma

photon, 57, 58
quantum, 58

Gantry tilt, 133
Gauge coordinates, 181, 182
Gauss, 185
Gaussian, 136, 139, 180, 199

cluster, 234
covariance, 238
curvature, 186
derivative, 177
diffusion, 407, 408
distribution, 171, 298, 393, 405, 413
estimate, 404
filter, 166
function, 267
kernel, 180, 194
model, 405
PSF, 74
shape, 114

GC, 251
GDCM, 530, 533
GE Health Care, 97
Generative model, 299
Generic feature, 199
Genus zero shape, 294
Geocentric perspective, 394
Geodesic, 412

path, 190
track, 190

Geometric
aberration, 20
distance, 29
feature, 43
landmark, 135
measurement, 20
modeling, 386
reasoning, 178, 191, 195
registration, 21
transform, 396

Geometry-adaptive constraint, 193
Geometry-driven diffusion, 189, 194
Germany, 529
Gestalt, 190
GG, 270
Gibbs distribution, 160
Gibbs modeling, 160
Gibbs sampler, 200
GIF, 46
GIFT, 472
GIMIAS, 539
GLCM, 338
Global

feature, 198, 485
threshold, 29
tractography, 411
transform, 134, 286

GMM, 199, 227, 228, 231
modeling, 233
parameter, 237
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GNU, 525

Octave, 536
Gold standard, 145, 150, 325, 482, 500,

504, 509
Goodness of fit, 298–300
Google, 488
Gouraud shading, 23, 385
GPA, 296
GPU, 383
Gradient

coil, 62
descent, 524
direction, 384
frequency-encoding, 64
operator, 138, 180
phase-encoding, 64
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readout, 64
shading, 22
slice-selection, 64
system, 63

Grammar, 158
Gram matrix, 415
Graph

cut, 241, 254, 413
matching, 486

Graphic
clustering, 228
network, 416
representation, 394
tablet, 396

Graph-theoretic clustering, 228, 231,
241, 246

Grating lobe, 99
Gravitation field, 9
Gray level histogram, 209
Gray matter, 31, 200, 228–230, 234,

273, 413
Gray scale

encoding, 83
image, 368
reconstruction, 119
shade, 115
thresholding, 121

Green’s function, 180
Greulich and Pyle, 463
Grid

computing, 534
network, 480
service, 534

Ground truth, 36, 145, 241, 482, 500,
503, 508

GSPS, 439
GTC, 505
GUI, 396, 449, 465, 474, 523, 527,

534–537, 539
Guided interaction, 396
Gyri, 62
Gyroscope, 9

Hand atlas, 464
Hanging protocol, 441, 452, 553
HARAG, 485
Haralick

descriptor, 203, 208, 209
feature, 203, 209

HARDI, 192
Hard plaque, 393
Hardware

acceleration, 383
vendor, 528

Hausdorff distance, 414, 506
HD, 505
Health care, 45
Heart, 538, 554

attack, 366
cycle, 5

Heaviside function, 200
Hessian, 190

eigenvector, 185
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Heuristic method, 30
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High-field MRI, 65, 69
High-level

diagnostic, 318
feature, 314

language, 536
processing, 2, 3

Highlight, 227
High-order

statistics, 171, 175
tensor, 405, 418

High-pass filter, 18, 556, 562
High-resolution

CT, 560
imaging, 56, 69
MRI, 363

High voltage, 6
Hilbert pair, 169
Hilbert transform, 83, 169
HIPAA, 455, 459
Hippocampus, 66, 68
HIS, 46, 72, 455, 480, 487
Histogram, 16, 27, 199, 208, 229, 556

equalization, 556, 562
matching, 298
orientation, 162
prior, 284, 298
stretching, 16
thresholding, 230
transform, 16, 18

History of data, 535
HL7, 47, 455, 459, 486
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h-maxima, 121
filter, 121, 122

h-minima, 121
filter, 127

Hologram, 101
Homogeneity, 204, 560
Homogeneity-based affinity, 254, 261,

269
Homogeneous coordinates, 133
Hosted application, 449
Hounsfield value, 42
Hourgh transform, 25
HRRT, 55, 60
HRRT-PET, 60, 61
HSI color space, 317
HSV, 474
HU, 27, 202, 390, 431
Human

dermoscopy, 313
perception, 560

Huntington’s disease, 174
Hybrid

scheduling, 533
storage, 45

Hydrogen, 68
Hyper-surface, 291

IBSR, 509
ICA, 168
ICC, 433, 439
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ICD-10, 445
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description, 3
image, 42

ICP, 141, 293
ID, 46
IDEA, 197, 215, 217
IDL, 536

Workbench, 536
IFT, 265, 271
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IGSTK, 527
IGT, 526, 537
IHE, 47, 455, 459, 480

profile, 461
protocol, 461
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Image
acquisition, 323, 367, 412, 443
analysis, 2, 25, 323, 537
annotation, 512
compression, 548
contrast, 100
enhancement, 2, 562
filtering, 542
formation, 2
frame, 440
fusion, 22, 149, 502, 539, 547
interpretation, 2, 101
management, 2, 323
matching, 234
measurement, 43
post-processing, 2
pre-processing, 2
processing, 524, 533, 535, 536
quality, 384
registration, 149, 540
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restoration, 72
retrieval, 47, 234
search, 234
segmentation, 262, 562
visualization, 2, 72

ImageCLEF, 483, 488
ImageCLEFmed, 483
Image-guided neurosurgery, 547
Image-guided surgery, 149
ImageJ, 540
Imaging

biomarker, 360, 368
depth, 12
endpoint, 372
modality, 539
scientist, 500

Immersive VR, 542
Implementation, 3
Implicit

modeling, 524
surface, 385, 391
VR, 433, 434

Inclusion criteria, 325
Indirect rendering, 398
Induced manifold, 415
Inertia, 82
Infinity distance, 207
Information retrieval, 473, 488
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Inf-reconstruction, 119
Inherent smoothness, 235
Initial centroid, 243
Initialization, 289
Inner

marker, 125
product, 415

INRIA, 531
Integral shading, 22, 24
Intensity, 204

function, 253
Intensity-based segmentation, 413
Interaction, 101, 526, 527

device, 396
model, 396
paradigm, 396
tool, 102

Inter-class variance, 28
Inter-disciplinary expertise, 484
Interference, 70
Interfering anatomy, 374
Inter-frame motion, 241
Inter-individual variance, 484
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energy, 35
force, 287

Inter-observer
agreement, 500, 504
variability, 38, 234, 506

Interpolation, 135, 367, 523
artifact, 385

Intersection point, 380
Inter-subject

comparison, 412
registration, 132
variability, 4, 288

Inter-tissue contrast, 234
Inter-user variability, 288
Intervention, 395
Intra-class variance, 28
Intra-individual variance, 484
Intra-observer variability, 234, 506
Intra-operative support, 395
Intra-subject

registration, 132, 149
variability, 4

Intra-tissue noise, 234
Intricate structure, 191

Intrinsic
geometry, 181
landmark, 140
resolution, 73

Inverse of variance, 204
In vitro, 95, 361, 362
In vivo, 95, 131, 361, 362
IOD, 429, 433, 443, 447, 460
Ionizing radiation, 68
IP, 47
IR, 506
IRB, 469, 551
IRFC, 263, 267
IRMA, 47, 471, 481, 484, 511

framework, 48
ISO, 47, 428
ISO 9600, 437
Isodata

algorithm, 29
clustering, 28

Isoline, 119
Isophote, 181, 184, 188

curvature, 184
Isosurface, 380, 405, 411

rendering, 380
Isotropic, 162, 405

filter, 18
tensor, 407

Isovalue, 380
Italy, 528
IT Corp., 537
ITK, 523, 527, 528, 532, 533, 535, 539,
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Jaccard coefficient, 504, 509
Jaccard similarity, 505
Jacobian determinant, 146
Java, 522
Jeffrey divergence, 207, 210
Jitters, 74
Job submission, 480
Joystick, 396
JPEG, 434, 548
JPEG-LS, 434
JPEG2000, 434, 548
JSW, 364

Kalman filter, 407
Kappa coefficient, 504
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Kappa metric, 517
Karhunen-Loève transform, 25, 40, 339
Keratocytes, 307
Kernel, 18, 180
Kernel-based estimation, 173
Kernel-based transform, 523
Khoros, 531
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Kinematic control, 396
Kinetic energy, 6
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K-means, 231

algorithm, 233, 236
clustering, 28, 238, 243
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classifier, 40
query, 206

Knowledge-based system, 39
Kongsberg SIM, 526
K-space, 8, 64
Kullback–Leibler distance, 523
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KWWidgets, 523

LA, 85
Labeling, 112
Label volume, 380
Laboratory test, 374
LAC, 465
Lagrange multiplier, 179
Lamé’s elasticity, 138
Landmark, 132, 135, 148, 150, 293, 294,

299
Landscape model, 119, 120
Laplace operator, 138
Laplacian, 144

fairing, 387
filter, 387
function, 387
matrix, 388
model, 144
smoothing, 387

Larmor frequency, 11, 63
Larmor theorem, 9
Laryngoscope, 20
Larynx, 20
Laser film printer, 549
Lateral

pathway, 410
shrinking, 138

Laws mask, 167
3-Layer ANN, 321
LCD, 546
LDA, 334
L2 distance, 415
Learning

algorithm, 214
classification, 38

Least-squares, 407
Left ventricle, 87, 246
Length measurement, 20
Lesion

burden, 238
segmentation, 333

Level
component, 119
set, 119, 280–282, 291, 524

function, 290
Levenshtein distance, 39
LGPL, 525
LIDC, 481, 499, 500, 512
Lighting, 22
Light photon, 58
Limbic region, 61
Line of Gennari, 66
Line scanner, 9
Linear

algebra, 536
classifier, 284
elasticity model, 144
interpolation, 385, 390
layer perceptron, 321
system, 14, 300
transform, 17

Little Endian, 433, 434, 437
Liver, 381, 386, 538
Livewire segmentation, 30
LMM, 308
Load balancing, 480
Local appearance, 298
Local fairing, 386
Local feature, 198, 485
Local gap, 30
Local gradient, 30
Locality parameter, 286
Local MIP, 393
Local orientation, 404
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Local search, 298
Localization, 27, 31, 35
LoG, 337
Logarithmic compression, 85
Logistic regression, 319, 320
Log-likelihood, 232
Logreg, 319
Longitudinal stretching, 138
LONI, 534

pipeline, 535
Lossless compression, 548
Lossy compression, 548
Lower jaw, 40
Low-field MRI, 65
Low-level

feature, 198, 203, 314
processing, 2

Low-pass filter, 18, 388, 562
Low-risk population, 560
LRA, 334
LS, 252
LSA, 66
LSO, 56, 58
Lung, 550, 554

cancer, 555
nodule detection, 559

LUT, 17, 383, 431, 432, 440
Luv, 474
LV, 85, 96
Lymph node, 387

Machine learning, 280, 314
Mac OS X, 449
Macroscopic imaging, 324
MAF, 528
MAF3, 528
Magnetic

field, 9, 63
moment, 9

Mahalanobis distance, 29, 37, 240, 284,
298, 476

Mahalanobis transform, 315
Major axis, 27
Malignant melanoma, 308
Mammography, 6, 168, 447, 466, 559,

561
lesions, 331

Mandible, 275
Manifold surface, 290

Manual interaction, 396
MAP, 200, 234, 367, 508
Mapping, 530
Marching cubes, 22, 23, 380, 385, 388,

390–392, 524
Marginal distribution, 160
Marker extraction, 121
Markov model, 160
Mask, 18
Matching prior, 284, 297
Material interface, 380
Mathematica, 182
Mathematical

model, 374
morphology, 18, 30

MathWorks Inc., 536
MATLAB, 531, 532, 535
Max-star, 276
Maxima, 190
Maximum

likelihood, 231
projection, 22

Maxwell’s law, 5
Mayo clinic, 542
MC(s), 330, 331, 335, 338, 346–348
MDL, 295
Mean

curvature, 291
shape, 286
shift, 166, 231
squares, 523

Mean square error, 548
MedGIFT, 484
Median filter, 540
Mediastinum, 550
Medical

application, 25
history, 374
image processing, 76
imaging toolkit, 527
informatics, 484, 512
misadventure, 550
physicist, 500
simulation, 530
ultrasound, 13

MEDICOM, 428
Melanin, 307
Melanocytes, 307
Melanoma, 308
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Melanosomes, 307
Membership scene, 269
Membrane model, 144
Menzies method, 311
Mesh, 513

fairing, 386
generation, 542
relaxation, 293
smoothing, 524

Mesh-to-mesh registration, 295
Mesh-to-volume registration, 294
Meta-data, 535
Meta-information, 478
Meta-rule, 290
Metabolic rate, 61
Metabolism(s), 67, 69
Metallic implant, 30
Metric

histogram, 202, 208
space, 206

MeVisLab, 525, 526, 535
MHD, 207

distance, 210
MI, 143
MICCAI, 499
Micrometric, 404
Microscopy, 6, 20, 28, 29, 35, 193, 442,

541
imaging, 324

Microstructure, 405
Midbrain, 61
Middle-ware, 535
Millimetric, 404
Mimic approach, 314
Minima, 190
Mining

approach, 216
process, 215

Minkowski distances, 206
Minkowski family, 206
MIP, 392, 393, 442
MIPAV, 541
Mirroring, 23
MIT, 56
MITK, 526, 538, 539

3M3, 538
ExtApp, 538

Mitral valve, 87, 95, 246
Mixture model, 418

Mixture of Gaussians, 232
ML, 232, 535
MLO, 335
M-mode, 13, 81, 88
MOD, 437
Modality worklist, 452
Model-based approach, 299, 374
Model-based clustering, 231
Model-based estimation, 409
Model-based segmentation, 34, 281
Model-based technique, 390, 398
Model-based visualization, 389
Model-free visualization, 389, 391
Modeling, 230, 532
Model selection, 411
Moiré pattern, 15
Mole, 307
Molecular

diagnosis, 117
imaging, 57, 60, 363

Mole mapping, 309, 324
Molybdenum, 6
Moment, 204

invariant, 204
Monogenetic signal, 170
Monogenic signal, 169, 170
Mono-hierarchical, 482
Mono-modal

application, 142
registration, 142

Mono-modality registration, 141
Mono-spectral imaging, 323
Monte Carlo sample, 410
Morphology, 19

closing, 30
erosion, 40
filtering, 16, 19, 40, 43
gradient, 109, 116, 127
opening, 30
operator, 18
post-processing, 29, 31
reconstruction, 108, 115, 119
segmentation, 122

Mosaic panel, 61
Motion

correction, 548
mode, 13, 81
simulator, 145
tracking, 508
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vector, 241
Motoneuron, 35, 36
Moving maximum, 115
Moving medical imagery, 241
Moving minimum, 115
MP, 107
MPM, 200
MPPS, 436, 447, 452
MPU, 390

implicit, 392
MRA, 273, 393
MRF, 158–160, 165, 199, 200, 231, 235

model, 234
MRI, 1, 5, 9, 11, 21, 55, 68, 95, 120,

131, 134, 145, 146, 157, 165, 173,
186, 192, 273, 275, 294, 312, 330,
331, 335, 344, 352, 362, 363, 389,
413, 428, 442, 478, 480, 499, 515,
532, 547

gantry, 65
signal, 407

MRI-based modality, 126
MRM, 145
MRML, 484, 538
MRS, 69, 367
MRSI, 331
MS, 228, 238, 510
M-step, 232
MSW, 127, 128
MTF, 549
Multi-atlas fusion, 148
Multi-axial, 482
Multi-detector CT, 555
Multi-dimensional image, 539
Multi-domain system, 536
Multi-fiber model, 409
Multi-frame, 440
Multi-modal

CADx, 352
data, 230
histogram, 232
image, 537, 539
imaging, 149
registration, 21, 22, 132, 141, 145,

146, 508
Multi-model representation, 530
Multi-orientation

analysis, 194
score, 192

stack, 191
Multi-protocol MRI, 273
Multi-quadrics, 136
Multi-resolution approach, 285, 294,

299
Multi-scale, 404

analysis, 178, 194
approach, 177
derivative, 298
segmentation, 247
shape analysis, 185
singularity, 190

Multi-sequence data, 230
Multi-slice CT, 393, 555
Multi-spectral, 326

imaging, 323
Multi-structure segmentation, 289
Multi-threading support, 528
Multi-variate nature, 408
Multiple sclerosis, 126, 273
Muscle, 541

growth, 246
Musculoskeletal imaging, 68
Mutual information, 135, 146, 523
MV, 85
Myelination, 408, 418
Myocardial

infarction, 88
segmentation, 102

Nabla, 180
NaI(Tl), 58
NA-MIC, 522

Kit, 522, 523
NASA, 559
Navier equation, 138
Navier–Stokes equation, 139
Navigation, 101
NbTi, 63
NCBC, 522
NCC, 142
NCI, 481
Nearest-neighbor, 523
Neighborhood, 16, 27, 42, 111, 411
4-Neighborhood, 42, 108, 111, 119
8-Neighborhood, 42, 108, 111, 119
Nelder–Meade downhill simplex, 524
NEMA, 428
Netra, 472
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Network analysis, 416
Neural

fiber, 529
network(s), 38, 40, 284, 556
pathways, 408
segmentation, 413
tractography, 408

Neurodegenerative disorders, 61
Neurogenetic, 147
Neuroimaging, 146, 535
Neurological

disease, 76
imaging, 68

Neurology, 21
Neuron, 40
Neuroreceptor, 55, 61
Neuroscience, 76
Neurotransmitter, 55
Neurotransporter, 61
Neutron, 5
Nevus, 307
NHLBI, 559
NIH, 361, 481, 487, 499, 522, 541, 559
NIREP, 508
NLM, 487
NM, 308
NMF, 168
NMI, 143
NMR, 56
NN, 39, 206, 211
NNT, 309
Nobel prize, 56
Noise, 386, 407, 412

reduction, 29, 390, 557
Non-empty set, 254
Non-imaging data, 374
Non-invertible transform, 144
Non-linear

diffusion, 188, 193, 195
scale-space, 193

Non-melanocytic lesion, 326
Non-negativity, 206
Non-parametric

clustering, 228
model, 134

Non-rigid
motion, 246
registration, 139, 141, 144–147, 149,

289, 293, 508, 548

transform, 134, 146
Non-symmetric measure, 500
Normal vector, 299
Normalized cut, 241, 415
Normalized cross-correlation, 523
Normalized filter, 179
NP-complete, 245
NRRD, 532
Nuclear imaging, 363
Nuclei, 113
Numerical

classification, 38
simulation, 539

NURBS, 290
Nyquist rate, 15
Nyquist theorem, 14

OA, 364
OAI, 373
Object

appearance, 298
level, 3
marker, 125
occlusion, 227

Objective
evaluation, 552
imaging, 373

Oblique reformatting, 541
Observer-machine variability, 506
Observer performance, 552
Occam’s razor, 295
Occlusion, 190
OCT, 312
ODF, 405, 406
OFFIS, IX, 529
Omega algorithm, 213, 214, 217
Oncological imaging, 68
OOI, 30, 251, 254, 257, 279, 298, 395,

486, 547
Opacity, 383

adaption, 383
function, 380

Open-close filter, 111
OpenGL, 525
Opening, 19, 108, 110, 116
Open Inventor, 525, 533, 535, 542
Open source, 452
Opening

top-hat, 110, 117
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OpenXIP, 525, 526
Operator variability, 373
Ophthalmology, 443
Optical

colonoscopy, 397, 560
endoscopy, 397
flow, 241
magnification, 324
model, 382

Optimization, 41, 144, 289, 295, 536
method, 132

Optimizer, 523
Order-statistic filter, 115
Organ segmentation, 538
Orientation, 27, 170

bundles, 191
histogram, 162
score, 191, 195

Orthogonal radial polynom, 205
OSA, 273, 275
OSGi, 527
OSI, 47
OsiriX, 539
OTS, 551
Otsu, 28

segmentation, 28
thresholding, 219, 524

Outer marker, 125
Out-of-plane motion, 89
Over-fitting, 212, 321
Overlap measure, 505
Overlapping anatomy, 374
Over-segmentation, 32, 121, 123, 124,

127, 235, 498, 504

PA, 553
PACS, 1, 45, 435, 455, 458, 476, 480,

487, 539, 550, 553
Page zero problem, 473
Palette, 433
Panoramic radiograph, 3
Pantograph, 115
Parahippocampal region, 66
Parallel

beam, 93, 99, 100
implementation, 195
projection, 134

Parameterization, 36, 135, 294, 295
Parameter vector, 300

Parametric
clustering, 228
model, 134, 418
surface, 290

Param-to-param registration, 294
ParaView, 525, 534, 539
Parenchyma, 330
Parkinson’s disease, 66, 76
Partial effect, 15
Partial pixel, 15
Partial volume, 15, 42, 61, 234, 392
Partitioning, 475
Parzen window(ing), 143, 284
Passive shim, 64
Patches, 475
Path, 253

strength, 255
Pathology, 443, 512
Pathway, 412, 416, 419

reconstruction, 418
Pattern

analysis, 310
recognition, 549

PCA, 37, 72, 168, 284, 286, 290, 316
PCS, 439
PCSP, 440
PCS-Value, 431
PD, 368
PDE, 138
PDM, 37, 280
Pearson correlation, 347, 510
Peer-reviewed article, 552
Perceptron, 321
Performance measure, 483
Perfusion, 369

imaging, 312
Personal Space Technologies, 102
Perspective projection, 134
PET, 21, 55, 60, 131, 146, 173, 312, 362,

363, 440, 442, 448, 478, 547
PET/CT, 312
PET/MRI fusion, 57
Phantom, 412
Pharmacokinetic model, 369
Phased-array

transducer, 92
ultrasound, 547

Phase-encoding gradient, 64
Philips Healthcare, 96



586 Index

Phong
model, 23
shading, 23, 36

Photobook, 472
Photography, 6, 134, 311, 442
Photon, 5, 57, 58

amplifier, 58
Physical phantom, 150, 412
Physics, 562
PicHunter, 472
Pico-molar range, 67
Piezoelectric crystal, 12, 82, 83
Pipeline concept, 524
Pixel

affinity graph, 244
clustering, 27–29
color asymmetry, 316
compounding, 367
level, 3
shifting, 546
transform, 16

Pixel-adaptive thresholding, 28
Pixel-based analysis, 30
Pixel-based feature, 25
Pixel-based segmentation, 19, 27, 28
Pixmeo Sarl., 540
PK, 368
Plain radiography, 7
Planned interaction, 396
Plaque, 365, 393
Plug-in architecture, 539
PMT, 58
POC, 361
Point-based registration, 135
7-point checklist, 311, 313, 323
Point cloud, 140
Point operation, 16, 18
3-point score, 311
Point set, 290
Poisson’s ratio, 138
Polar coordinate, 162
Polarized glasses, 101
Polygonal

graphics, 380
isosurface, 384
model, 381
reduction, 524
rendering, 381
representation, 380

Polynomial approximation, 204
Polyp, 560
POM, 361
Pontine area, 66
Population, 41
Population-based knowledge, 374
Population-based optimization, 295
Portal vein, 392
Position, 27
Positive predictive value, 506, 559
Positron, 5, 57, 58

emission, 57, 58
Posterior

distribution, 200
marginal, 200
probability, 238

Post-processing, 27, 30, 32, 234
Post-shading, 383
Powell optimization, 524
PowerApps, 532
Power spectrum, 163
ppm, 64
pQCT, 363
P&R curve, 208
Pre-beam forming, 94, 95, 97, 99
Pre-processing, 41, 120, 234
Precession, 9
Precision, 506
Predictive measurement, 374
Presentation

intent, 442
state, 438, 440, 452, 529

Pre-shading, 383
Principal curvature, 185, 186
Principal mode, 291
Probabilistic

clustering, 231
framework, 411, 476
segmentation, 147, 233
tractography, 409, 411

Procrustes
algorithm, 293
analysis, 296

Profilometry, 312
Prognosis, 102
Programming language, 531
Projection radiography, 367
Projective transform, 134
Prolapse, 36
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Prophylactic screening, 397
Prospective gating, 90, 92
Proton, 5

density, 63
Proton-weighted

imaging, 230
MRI, 229

Prototype, 36
Pruning method, 212
Pseudo-color(ing), 17, 235, 367, 368,

440
Pseudo-landmark, 135
PSF, 74
PSL, 307, 309, 310, 321, 325

classification, 319–321
segmentation, 315

PSP, 546, 553
system, 549, 552

Pulmonary
artery, 87
disease, 363
hypertension, 88

Pulse-echo
measurement, 83
signal, 12

Pulse timer, 58
Pulsed-wave Doppler, 13
P-Value, 431
PWF, 455, 459
Python, 522

Q-ball, 410
QBE, 47, 473, 477, 480, 485–487
QBI, 405
QBIC, 472
QDE, 557
Q/R, 436, 437, 441, 456, 457
Quadratic

distance, 207
form, 210

Quantitative
imaging, 373
measurement, 2

Quantization, 13, 14
noise, 14

Quantum
mottle, 557
noise, 557

Quasi-landmark, 135

Query
center, 206
refinement, 486
response, 479
result, 482, 486

RA, 85
Radial polynomial, 205
Radiography, 1, 68, 134

imaging, 363
Radioisotope, 57
Radiology, 512, 562
Radionuclide, 57, 58, 60, 67
Radio-opaque dye, 412
Radiopharmaceutical ligand, 67
Raleigh quotient, 245
Random coincidences, 59
Randomized controlled trial, 325
Range

data, 281
query, 206

Rank-1 tensor, 407
Ray

casting, 24, 383, 393
tracing, 24

rCMRGlc, 61
R&D, 360
Reading, 541
Readout gradient, 64
Real-time, 94, 97

imaging, 149
simulation, 530
visualization, 23

Recall, 506
Recall-oriented measure, 500
Receive focusing, 86
Receiver coil, 63
Receptive field, 191
Receptor binding, 60
Reconstruction, 119, 382, 556

from markers, 111
from opening, 112, 120
from opening top-hat, 113
kernel, 555, 561

Red nucleus, 65
Reflection, 11, 109
Region

growing, 32, 42, 243, 252, 338, 524
level, 3
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merging, 33
prior, 284

Regional
maxima, 121
minimum, 121

Region-based feature, 37, 40, 298, 300
Region-based segmentation, 31
Registration, 16, 20, 21, 132, 149, 234,

440, 524, 537–539, 542
accuracy, 145
basis, 132
inter-subject, 132
intra-subject, 132
mesh-to-volume, 294
multi-modal, 132
param-to-param, 294
serial, 132
surface-based, 141
volume-to-volume, 294
voxel-based, 141

Regression, 417
Regularization, 139, 144, 194, 281, 291,

409
Regularizing constraint, 282
Related graph, 253
Relative

calibration, 21
overlap, 509

Relaxation, 9, 64
Relevance feedback, 473
Reliability, 4
Relief algorithm, 211
Relief-F, 211
Rendering, 101, 398, 442, 525
Repeatability, 325, 363
Repetition time, 10
Report creation, 323
Reproducibility, 412
Research-driven project, 484
Residual, 300
Resolution, 73
Retrieval, 2, 45, 47, 473
Retrospective gating, 92
Rewinding, 63
RF, 9, 62, 83, 557

coil, 63
excitement, 9
shield, 70
signal, 83

RFC, 258, 267, 270
RGB, 17, 72, 315
Rib artefact, 91
Ridge detector, 182
Riemannian mapping, 413, 414
Riez transform, 170
Right information, 490
Right people, 490
Right time, 490
Right ventricle, 87
Rigid

registration, 21, 134, 145, 149, 293,
538, 548

transform, 133, 134, 280, 286
Ring detector, 56, 60
RIRE, 508
RIS, 46, 436, 455, 480, 485
RLE, 434
RNA, 117
Robustness, 4, 142, 256, 261, 299, 528
ROC, 319, 335, 551

analysis, 551
curve, 320

ROI, 14, 16, 61, 218, 228, 329, 333, 334,
349, 363, 408, 419, 460, 475, 500,
533

Rosenfeld’s connectivity, 269
Rotation, 190, 394
Rotator cuff, 515
RPC, 527
RREP, 145, 508
RSNA, 461, 513
Rule-based segmentation, 289
Rule-based system, 240
Run-length encoding, 548
RV, 85, 199
RWTH Aachen University, 46

Saddle point, 187, 190
Salient point, 475
Sampling, 13, 14, 383, 405

theorem, 14, 15
Scalar visualization, 524
Scale-based affinity, 266
Scale-based FC, 273
Scale-space, 190, 245
Scaling, 190, 394
Scatter/Scattering, 7, 23, 59, 83, 557
Scene, 252
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analysis, 47, 486
graph, 525
level, 3

Schizophrenia, 126, 173, 234
Scilab, 536
Scintillation, 58, 61

detector, 58, 73
Scintillator, 56, 58
SCIRun, 532
Sclerosis, 234
Scouting image, 91
SCP, 434, 437
Screening, 309, 395
Scripting integration, 528
SCU, 434, 437, 462
SD, 337
SE, 335
Secondary capture, 435
Second moment, 179
Second-order

derivative, 189
statistics, 560

Sector scan, 13
Seed

point, 32, 252, 408
region, 410, 414

Segmentation, 23, 25, 27, 35, 37, 41,
102, 148, 199, 254, 262, 332, 333,
337, 338, 347, 383, 390, 413, 533,
537, 540–542, 547, 548, 561, 562

atlas-based, 288
framework, 524
multi-structure, 289
rule-based, 289

Selection bias, 325
Self-intersection, 294
Self rotation, 9
Semantics, 3

gap, 4, 198, 472
meaning, 32
network, 44
query, 483, 484
retrieval, 516

Semi-transparent, 381, 395
Semiconductor, 58
Sensitivity, 99, 219, 309, 412, 507
Sensory gap, 472
SER, 349
Serial registration, 132, 142, 146, 508

Serie, 430
Service class, 433
Set-theoretic complement, 109
SFM, 330
SGI Inc., 525
SGLD, 203
Shading, 22, 24

correction, 541
Shadow, 227
Shannon, 14
Shannon-Wiener entropy, 142
Shape, 27, 199, 204, 298, 475

analysis, 392
guidance, 524
index, 186
model, 148, 149, 295
parameter, 299
prior, 102, 282, 291
space, 299
vector, 186, 187

Shape-based feature, 204
Shape-based segmentation, 538
Shape-from-shading, 43
Shape-memory force, 283
Shared information, 141
Shear, 133
Shift integral, 191
Shim

correction, 64
system, 62

Shrinking
effect, 282
problem, 261

Shuttle
bed, 68
railway, 71
system, 70

Side lobe, 99
Siemens Inc., 60, 532
Siemens Medical Solutions, 97
SIF, 466
SIFT, 190
Signal

enhancement, 369
noise, 412
processing, 58, 536
theory, 388

Signature, 38, 190, 198, 206
Silicon-based US, 99
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Silicon Graphics Inc., 526
SIM, 316
Similarity, 205

measure, 141, 142
metric, 132, 144, 523
query, 206

Simplex mesh, 281, 290
Simulation, 532

algorithm, 530
application, 530

Simulink, 536
Simultaneity, 58
Single-tensor model, 417
Sink, 260
Sinogram, 59, 74, 173
SINR, 455, 459
Sinus rhythm, 91
SiPM, 58
Size, 27
Skeletal

imaging, 6
radiograph, 33
structure, 391, 393

Skeleton, 19, 30, 41
Skeletonization, 390, 542
Skewness, 171, 388
Skin

lesion, 323
peeling, 274
surface microscopy, 312

Skull-implanted marker, 145
Slice-based viewing, 389
Slicer, 537
Slice selection, 63, 64
Slim-tree metric, 208
Small-world phenomena, 416
SMART, 506
Smoothing, 18, 32, 187, 387

algorithm, 386
connected filter, 125
edge-preserving, 187
effect, 261
filter, 119

Snake, 34, 35, 271, 281
SNOMED, 437, 445
SNR, 7, 14, 59, 63, 86, 99, 100, 189,

234, 366, 548
Sobel

filter, 30

mask, 18
operator, 18, 26

SOFA, 530
Softassign Procrustes, 293
Soft plaque, 393
SOP, 371, 433, 447
SOR, 138, 139
Sound wave, 11
Source, 260
Space elements, 252
Spatial

compounding, 367, 547
convolution, 23
domain, 19, 21, 199
encoding, 63
frequency, 8, 64, 163
information, 230, 380
registration, 440
resolution, 12, 55, 68, 98, 362, 393,

549
Spatio feature space, 166
Spatio-temporal

feature, 228
information, 241

Specificity, 219, 309
Speckle reduction, 561
SPECT, 21, 131, 362, 363, 478
Spectral

imaging, 312
method, 415

Spectrum, 323
Spherical

harmonic modeling, 405, 407
shell, 405

Sphericalness, 185
Spin, 9

flip, 63
Spin-echo sequence, 10, 11
Spine X-ray, 486
Spin-lattice relaxation, 10, 64
Spinning proton, 9
Spin-spin relaxation, 10, 64
Spiral CT, 8
Splatting, 393
Spline-based FFD, 137
Spline-based transform, 135
Spline curve, 280
Split and merge, 32
Splitting, 32
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Spoiling, 63
Squamous cell carcinoma, 307
SR, 366, 367, 442, 443
SRN, 338
SSD, 142
SSM, 280, 291, 293, 295, 298, 308
Stack reconstruction, 115, 119
Stain debris, 113
Staircasing artifact, 383, 385, 388
Standard

affinity, 267
monitor, 101
programming, 531

STAPLE, 148, 503
Static thresholding, 27
Statistical

approach, 26
association rule, 215
atlas, 234
classification, 38
clustering, 228
model, 148, 298
shape variation, 286
test, 412

Statistics, 536
Steering, 82, 98
Stiffness, 35
Stitching artifact, 97
Storage, 2
Streamline, 410, 415

tractography, 409, 415
Strel, 19
Stretching, 16
Striatum, 61
Strike artifact, 100, 101
Stroke, 126, 366

volume, 88
Structel, 19
Structure(al)

approach, 26
data, 373, 443, 478
display, 441, 452
element, 19, 108, 115
feature, 485
imaging, 363, 367
matrix, 185
MRI, 403, 413

Study, 430
setting, 325

Suavity, 204
Subdivision surface, 391
Subjectivity, 363
Sub-millimeter resolution, 57, 70
Subnetwork, 416
Subregion, 416
Subsampling, 15
Substantia nigra, 61, 65–67
Subtraction, 21
Sub-voxel decomposition, 385
Sum-min, 276
Sum-product, 276
Sun spot, 308
Super-conduction, 63

coil, 65
wire, 63

Super-resolution, 366, 368
Supervised classification, 38
Supplement, 428
Support vector machine, 284
Sup-reconstruction, 114, 119, 120
Surface, 3, 290

distances, 500
extraction, 524
fairing, 386
generation, 542
mesh, 542
microscopy, 312
model, 242, 389
reconstruction, 22, 23
registration, 243
rendering, 275, 380, 389
smoothing, 388

Surface-based registration, 141
Surface-based rendering, 22, 36
Surface-based shading, 24
Surface-based visualization, 24
Surgery planning, 273
Surrogate endpoint, 361
SVD, 140
SVM, 334, 341, 476
Symbolic description, 3
Symmetry, 170, 206
Synaptic bouton, 35, 43
Synovial joint, 364
Syntactic classification, 38
Synthetic phantom, 412

Tailored acquisition, 405
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Taubin filter, 389
Taxonomy, 280
Taylor series expansion, 242
TBM, 147
TCL, 522
Tcl/Tk, 523
TCP, 47
TCP/IP, 434
Technical variability, 370
TEE, 96
Teem library, 532
Tegmental area, 61
Tele-consultation, 323
Tele-dermatology, 326
Tele-medicine, 2
Tele-radiology, 548
Template, 18
Temporal

compounding, 547
information, 230
resolution, 98, 99, 362
subtraction, 558

Temporomandibular joint, 16
Tensor, 405

contraction, 181, 182
field, 413, 529, 542
model, 407
scale, 266
tractography, 410
visualization, 524

Terminals, 260
Testing, 216
Texel, 26
Texton, 26, 163, 173
Text retrieval, 480
Texture, 199, 203, 298, 474, 525

analysis, 338, 339
anisotropy, 173
classification, 337
clutter, 244
definition, 157
description, 158
element, 26
level, 3
matching, 298
measure, 31
model, 300
prior, 284
visualization, 524

Texture-based feature, 26

TF, 393

Thalamus, 413
Therapy, 22

planning, 389, 390, 395, 547
Thin-plate

model, 144

spline, 136, 293, 294, 523
Third moment, 171, 204

Thomson effect, 7
Threshold-based segmentation, 380

Threshold(ing), 27, 229, 230, 315

decomposition, 115, 119, 120
sets, 115

TIFF, 46

Time
compensation, 84

motion diagram, 13
Tissue

density, 83

elasticity, 82, 83
segmentation, 416

T-junction, 188

TM diagram, 12
TMG, 126

TM-mode sonography, 13
7.0 T MRI, 66

Toolbox, 536

Toolkit, 521, 543
Top-down, 31

Top-hat

concept, 113
filter, 110, 117

transform, 117
Topic development

axes, 482

Top-level, 321
Topographic surface, 33

Topology, 291
scene, 253

view, 253

Top-point, 177, 190
Top-view surface, 115

Toshiba Medical Systems, 102

Total body mapping, 309
TPS implant, 32

Tracking system, 528
Tract-based studies, 417
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Tractography, 404, 408, 409, 411, 412,
416, 418, 548

Trained classification, 38
Training, 216, 395

data, 36, 298
sample, 280
set, 296

Transducer, 11–13, 82, 83, 91, 97, 99,
331

Transfer
function, 383, 384
syntax, 435

Transform, 523
affine, 286
axis-symmetric, 286
B-spline, 286
diffeomorphic, 139
rigid, 286
similarity, 286

Transformation model, 132
affine, 133
non-rigid, 134
projective, 134
rigid, 133

Transitivity
error, 509
property, 502

Translation, 394
Translational research, 563
Transmission, 2

ratio, 11
Transmitter coil, 63
Transparency, 227, 381, 384

modulation, 382
Transparent shading, 22
Transporter-enriched nuclei, 61
Transport theory, 382
Treatment

follow-up, 102
planning, 22

TREC, 483, 506
TRECgenomics, 483
Triangle

mesh, 387
surface, 385

Triangular inequality, 206
Triangulated mesh, 280
Triangulation, 22, 290, 380
Trigonometric basis function, 135

Trilinear interpolation, 382, 383, 390
Tungsten, 6
T1-weighted MRI, 64, 229
T2-weighted MRI, 64, 66, 229, 273
Two-level rendering, 383
Two-tensor

method, 410
model, 417

Two-way beam, 100

UCLA, 56, 534
UID, 450, 481
UK, 550
Ultra high-resolution MRI, 75
Umbilical point, 185
Umbrella, 387

operator, 386
region, 386

Under-segmentation, 32, 498, 504
Uniformity, 204
Unimodal registration, 21
United Kingdom, 528
United States, 57, 81, 308, 331, 333,

335, 352, 362, 397, 459, 487, 499,
532, 534, 536–538, 541, 542, 550,
554

University of Iowa, 509
Unix, 449
Unsharp masking, 556
Unsupervised

classification, 38
clustering, 231

Untrained classification, 38
U of U, 532, 534
UPF, 539
Upper airway, 275
US, 547
Usability, 552, 563
USB, 437
USC, 465
Use case, 450
User-driven model, 552
User interaction, 102, 552

Validation, 145, 412, 464
protocol, 132

Valmet software, 506
Value

domain, 19
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range, 14, 21, 25
Vanderbilt database, 508
Variance, 204
Vascular

catheter, 562
disease, 554
stenosis, 555
structure, 389
tree, 389

VBM, 147
VD, 504
Vector

field, 407, 542
space, 206
visualization, 524

Vectorized language, 536
Velocity vector, 242
Vena cava, 87
Vendor-driven model, 552
Venn diagram, 504
Ventricular hypertrophy, 246
Verification database, 325
Vertex

computation, 385
connectivity, 290

Vessel, 554
architecture, 331
centerline, 390
diameter, 390, 391
lumen, 554
tree segmentation, 538

Vesselness, 185
filter, 393

Video endoscopy, 395, 397
Viewing plane, 24
Virtual

camera, 396
colonoscopy, 397, 547
endoscopy, 395, 396

Visage imaging, 542
Visiana Ltd, 37
Visible

Human, 24
light image, 442
woman, 273

VisTrails, 534
Visual

appearance, 280
cortex, 66, 190

feature, 484
programming, 531
query, 482
smoothing, 387
word, 475

Visualization, 2, 12, 22, 36, 101, 290,
379, 408, 524, 526, 527, 532, 533,
535–539

mode, 13
technique, 389

VL, 536
VME, 528
VOI, 432
VOI LUT, 440
VOLCANO, 511
Volume

cell, 380
growing, 32
mesh, 542
rendering, 22, 24, 101, 274, 380, 382,

389, 398, 532, 562
segmentation, 532
visualization, 524, 541

Volume-to-volume registration, 294
Volumetric

imaging, 92, 101
overlap, 500

VolView, 524, 541
Voxel, 8, 22

neighborhood, 411
Voxel-based approach, 374
Voxel-based registration, 141
Voxel-based similarity, 141
Voxel-based studies, 417
Voxel–Man, 24
VPE, 531, 533, 534
VR, 429, 542
VSD, 87
VSG, 526
VTK, 523, 527–530, 533–535, 539
vtkINRIA3D, 529

Wall
motion, 89
thickening, 89

Walsh function, 166, 167
Washington University, 56, 532
Water, 28

parting, 34
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Water-based gel, 12
Watershed

from markers, 124
lines, 34, 122
over-segmentation, 123
segmentation, 524
transform, 33, 122, 542

Wavelet, 72, 166, 191, 298
basis function, 135
coefficient, 337
transform, 25, 199

W3C, 461
Web-based interface, 485
Web service, 534, 552
White matter, 31, 200, 228–230, 234,

273, 413
Whole-body MRI, 45, 55
Williams index, 505
Windowing, 556
Windows, 449
Worklist server, 529
WS, 252, 262
WSDL, 450
WxWidgets, 539

XA, 432

XA/XRF, 440
XIP

Platform, 532

Reference Host, 532
XML, 450, 452
X-ray, 4

absorption, 20
beam, 558
fluoroscopy, 97

image, 233
mammography, 335
photon, 557

XRF, 432

Young’s modulus, 138
YUV, 315

Zernike feature, 209

Zernike moment, 204, 208
Zero crossing, 189, 190
ZIB, 542

Zooming, 394
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