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To Verena — the beauty and the beauty of images






Preface

YATBIP: Yet another textbook on biomedical image processing? — Hopefully
not. ..

Based on the tutorial SC086 — Fundamentals of Medical Image Processing
regularly offered at the International SPTE Symposium on Medical Imaging,
the Springer-Verlag Series Editor of Biological and Medical Physics, Medical
Engineering invited me in January 2009 to compile this book. Actually, the
idea of providing a “suitable” textbook — comprehensive but short, up-to-date
but essential, and detailed but illustrative — for novices like experts, and at
reasonable costs, is not new. For years, the lack of any such textbook in image
processing covering all of the special needs in biology and medicine is evident.
In any teaching lecture, tutorial as well as graduate class. I'm always asked
by the students to suggest literature but cannot answer satisfyingly, simply
because there isn’t a “suitable” textbook yet.

So we aimed at compiling a high-quality collection of chapters, written
for scientists, researchers, lectures and graduate students as well, covering
the recent advantages in the broad field of biomedical imaging and image
processing in an exemplary way. In February 2009, several fruitful discussions
with colleagues at SPIE Medical Imaging convinced me to face the challenge,
and I started recruiting author teams for contributions. Finally, 47 authors
from 11 nations all over the world collaborated — all of them leading experts in
their field. Intensive efforts were made to direct all authors towards a similar
style of presentation and equal degree of technical details. Beside some written
guidelines, the overview chapter was provided to the authors as an example
before they started writing. All authors first provided a short outline and
a detailed table of content, which were distributed between all contributors
together with a strictly enforced time line. In October 2009, submission of
chapters started, and each manuscript was edited carefully. Editor requests
have been processed by the authors improving completeness and clarity of
presentation, and finally in June 2010, the manuscript was submitted to the
publisher.



VIII  Preface

Fig. 1. Eierlegende Wollmilchsau. Every morning,
this special animal provides a cooked egg with chilled
fresh milk. Its wool is used for high-quality clothes
and the meat for excellent dining. It is the first
all-in-one approach documented in history

(Courtesy of: http://neulehrer.wordpress.com/)

As a result, this book has appeared as uniform monograph with an
overview chapter contributed by the editor, followed by some twenty chap-
ters focusing on particular parts selected from biomedical imaging and image
processing. Each chapter gives an introduction and overview of recent trends
in its field and provides particular case examples, usually taken from the
author’s own research.

Primarily addressing engineers and system developers in computer sci-
ences, the book covers the entire processing pipeline of biomedical imaging.
In particular, the following parts are included, with about three chapters in
each of it:

Image formation

Image enhancement

Feature extraction and selection
Segmentation

Classification and measurements
Image data visualization

Image management and integration

e I e

Evaluation and customizing

Many people might object me at this point, because we clearly aimed at
reaching the unreachable. In Germany, we have the common phrase “eier-
legende Wollmilchsau”, a metaphor that directly translates to “egg-providing
wool-milk-pig” describing the union of all benefits (Fig. 1).

You as the reader shall judge our success realizing this all-in-one approach:
YATBIP or eierlegende Wollmilchsau? Any feedback is deeply welcome and
should be directed personally to me as the editor.

Facing now the final manuscript, I want to thank Claus Ascheron for
encouraging me to initiate this project, and all contributers for timely deliver-
ing their high-quality material and appropriately responding to the editorial
remarks and suggestions. Jens Hoffmann was assisting me in I¥TgX program-
ming and Max Jung helped in text and image conversion and optimization.

Also, I want to mention Peter Jentsch and Dirk Bartz, who have passed
away during the very last iterations of the manuscript, which leaves me behind
speechless. We have included the obituaries in the next pages.

Aachen, December 2010 Thomas M. Deserno, né Lehmann



Obituaries

Prof. Dr. Peter Jensch died unexpectedly during
the period of the proof-reading of this book chapter on
April 15, 2010 after a fulfilling life. Peter Jensch was
the initiator of the DICOM research activities at the
OFFIS - Institute for Information Technology, Olden-
burg, Germany, in the early 1990s and was pushing this
topic forward for the rest of his life. The most popu-
lar result of this engagement is the well-known Open
Source DICOM toolkit DCMTK that is hosted and
maintained by OFFIS since 1993. Against this back-
ground, all members of the DICOM team at OFFIS
would like to thank Peter Jensch for establishing this extraordinary project
and for being such a likeable, energetic boss, mentor, and colleague to us.
Without him, OFFIS would not be the popular name in the world of DICOM
it is today and we all would not have such encouraging opportunities and
research projects we still enjoy. As Chap. 17 of this book is the last publica-
tion Peter Jensch participated in and since the content of this chapter is the
very topic that strongly influenced his work, we like to use this opportunity
to express our sincere gratitude to Peter Jensch.

Oldenburg, June 2010 Michael Onken
Marco FEichelberg
Jorg Riesmeier



X Obituaries

Prof. Dr. Dirk Bartz died unexpectedly on March
28, 2010 while attending the thirtieth Vattenfall Berlin
Half Marathon. Running half-marathon in Berlin was
one of his favorite activities.

During his academic career, Dirk strongly supported
the idea of building a German Interest Group on Medi-
cal Visualization and actively took part the whole time
giving advice to many students; particularly supporting
female researchers was an important issue. Further-
more, Dirk organized many tutorials at Visualization,
Eurographics, and Computer-Assisted Radiology and Surgery (CARS).

In 2005, T was very glad that Dirk joined the effort of writing a textbook
on “Visualization in Medicine”. For an 18 month period, we communicated
daily on the various aspects of the book. It was enlightening and a pleasure
to discuss with Dirk all the time. He was always perfectly reliable and good-
humored even in situations where he had a very high workload.

In the end of 2006, Dirk became appointed as Full Professor for Computer-
Assisted Surgery at the International Center for Computer-Assisted Surgery
(ICCAS), Leipzig, Germany, and started to build a new research group. He
focused on visualization techniques, such as illustrative rendering, percep-
tual studies (from Dirk I learned the term “psychophysical studies”), and
applications in neurosurgery and Ear, Nose and Throat (ENT) surgery.

Dirk belonged to the core team which tried to establish a new workshop
series “Visual Computing in Biology and Medicine”. It was quite natural that
Dirk would host the second event, scheduled to take place in July in Leipzig.
Until the very last days of his life, he discussed strategies for this workshop.

Dirk was only 42 years old, leaving behind Heidi, his wife, and his two little
sons.

Magedeburg, June 2010 Berhard Preim



Contents

1 Fundamentals of Biomedical Image Processing

Thomas M. DeSerno. .. ... ..ot 1
1.1 Introduction ...... ... e 1
1.1.1  Steps of Image Processing ........ ... ... ... i, 2
1.1.2  Remarks on Terminology ......... ... ... 3
1.1.3  Biomedical Image Processing ........... ... .. ... .... 4
1.2 Medical Image Formation .......... ... ... ... 4
1.2.1  Basic Physics ... b)
1.2.2  Imaging Modalities .. ...... .. .. . .. ., 6
1.2.3  Digitalization ........ ... . 13
1.3 Image Enhancement ......... .. .. .. i 16
1.3.1  Histogram Transforms .......... ... .. ... .. ... ... 16
1.3.2  Convolution ......... ..o, 18
1.3.3  Mathematical Morphology ......... ... ... .. ... .... 18
1.3.4  Calibration .. ..... ... 19
1.3.5  Registration ......... .. . . 20
1.4 Image Data Visualization........... ... .. .. .. . i .. 22
1.4.1  Marching Cube Algorithm ........... ... ... .. ... .... 23
1.4.2  Surface Rendering . ....... ... i, 23
1.4.3  Volume Rendering......... ... ... .. .o .. 23
1.5 Visual Feature Extraction ............ .. ... ... . ... 25
1.5.1 DataLevel ... .. 25
1.5.2 Pixel Level .. ... o 25
1.5.3 Edge Level .. ... 25
1.5.4  Texture Level . ... ... i 26
1.5.5 Region Level. ... ... .o i 26
1.6 Segmentation ........ ... 27
1.6.1  Pixel-Based Segmentation .............. ... .. ... .... 27
1.6.2  Edge-Based Segmentation .............. ... .. ... .... 30

1.6.3  Region-Based Segmentation .......................... 31



XII Contents
1.6.4  Over- and Under-Segmentation ....................... 32
1.6.5 Model-Based Segmentation ............. ... .. ... .... 34
1.7 Classification . .......... .t e 37
1.7.1  Statistic Classifiers ....... ... ... ... 39
1.7.2  Syntactic Classifiers ......... ... ... 39
1.7.3  Computational Intelligence-Based Classifiers ............ 40
1.8 Quantitative Measurements and Interpretation ................. 41
1.8.1 Partial Volume Effect ............ ... ... ... ... ...... 42
1.8.2  Euclidean Paradigm ........... .. .. . ..o .. 42
1.8.3  Scene Analysis .. ...t 42
1.8.4  Examples ... 43
1.9 Image Management ............. .. .. ... .. .. . .. 45
1.9.1  Archiving ..o 45
1.9.2  Communication . ...........oouuiiineuniunninnennenn.. 45
1.9.3 Retrieval ... .. 47
1.10  Conclusion and Outlook ...........c i 48
References . ... e 49

Part I Image Formation

2 Fusion of PET and MRI for Hybrid Imaging
Zang-Hee Cho, Young-Don Son, Young-Bo Kim,

and Seung-Schik Yoo .. ... .. 55
2.1 Introduction ........ ... 59
2.2 Positron Emission Tomography.......... .. .. . ... . .. ... 57
2.2.1  Basic Principles . .. ... 57
2.2.2  Image Reconstruction......... ... .. .. ... .. .. ... ... 59
2.2.3  Signal Optimization ....... ... .. .. .. . .. 59
2.2.4  High-Resolution Research Tomograph.................. 60
2.3 Magnetic Resonance Imaging ......... ... .. .. . ... . .. ... 62
2.3.1  Basic Principles . .. ... . . 62
2.3.2  Image Reconstruction......... ... ... ... . . .. 63
2.3.3  Signal Optimization ....... ... .. .. .. . .. 64
2.3.4  High-Field MRI ........ ... i, 65
2.4 Hybrid PET Fusion System . ............c.o ... 67
241 PET/CT Systems ..., 68
2.4.2  PET/MRI Systems . .......uuuuuniiiiennn. 68
2.4.3  High-Resolution Fusion ........... ... ... .. .. ...... 70
244  PET/MRI Fusion Algorithm.......................... 72
2.5 ConclusionsS. . ..ottt 76

References .. ... 76



Contents  XIII
3 Cardiac 4D Ultrasound Imaging
Jan DRho0ge . . ..o e 81
3.1 The Role of Ultrasound in Clinical Cardiology ................. 81
3.2 Principles of Ultrasound Image Formation ..................... 82
3.2.1  The Pulse-Echo Measurement . ........................ 82
3.2.2  Gray Scale Encoding. ......... ... .. . o i, 83
3.2.3 Gray Scale Imaging........... ... .. . i 85
3.2.4  Phased Array Transducer Technology .................. 85
3.3 Limitations of 2D Cardiac Ultrasound......................... 86
3.3.1  Complex Anatomy (Congenital Heart Disease) .......... 87
3.3.2  Geometric Assumptions to Assess Volumes ............. 88
3.3.3  Out-of-Plane Motion and Foreshortening ............... 89
3.4 Approaches Towards 3D Cardiac Ultrasound ................... 89
3.4.1  Freehand 3D Ultrasound ........... .. . ... . iou.. 90
3.4.2  Prospective Gating ..., 90
3.4.3  Retrospective Gating .......... ... .. i, 91
3.4.4  Two-Dimensional Arrays .........covviiiininenno... 92
3.5 Validation of 3D Cardiac Ultrasound Methodologies ............ 95
3.6  Emerging Technologies ........ .. .. .. 96
3.6.1  Transesophageal 3D Imaging............ ... .. ... ... 96
3.6.2  True Real-Time Volumetric Imaging ................... 97
3.7  Remaining Challenges in 4D Cardiac Ultrasound ............... 98
3.7 1 Resolution. ... .......iuii 98
3.7.2  Image Quality ....... ... .. 99
3.7.3  Data Visualization and Interaction .................... 101
3.7.4  Segmentation/Automated Analysis .................... 101
References ... ..o 102
Part II Image Enhancement
4 Morphological Image Processing Applied in Biomedicine
Roberto A. Lotufo, Leticia Rittner, Romaric Audigier,
Rubens C. Machado, and André V. Sadde........................... 107
4.1 Introduction ......... .. 107
4.2 Binary Morphology .. ... 108
4.2.1  Erosion and Dilation.......... .. . .. . . . . 108
4.2.2  Opening and Closing ............coiiiiiiinineo.. 110
4.2.3  Morphological Reconstruction from Markers ............ 111
4.2.4  Reconstruction from Opening . ........... ... ..., 112
4.3 Gray-Scale Operations .......... ..., 114
4.3.1  Erosion and Dilation.......... ... ... ... . 115
4.3.2  Opening and Closing ............ciiiiiiiiino.. 116
4.3.3  Component Filters and Morphological Reconstruction. ... 119
4.3.4  Regional Maxima ......... .. ... i, 121



XIV  Contents
4.4 Watershed Segmentation ......... ... .. ... . o .. 122
4.4.1  Classical Watershed Transform........................ 122
4.4.2  Filtering the Minima ......... ... .. .. ... .. o .. 123
4.4.3  Watershed from Markers .......... ... ... .. ... ... ... 124
4.4.4  Inner and Outer Markers....... ... ... ... .. co... 125
4.5 Segmentation of Diffusion MRI....... ... .. .. ... .. ... . ... 126
4.6 ConCluSIONS . ..ottt e 128
References . ... e 128
5 Medical Image Registration
Daniel Rueckert and Julia A. Schnabel. ......... ... .. ... .. .. 131
5.1  Introduction ........ .. ... 131
5.2 Transformation Model ..... ... ... ... ... . i 132
5.2.1  Rigid Transformation ......... ... .. .. ... .. ... ... 133
5.2.2  Affine Transformation.............. ..., 133
5.2.3  Projective Transformation ............... ... ... ...... 134
5.2.4  Non-Rigid Transformation: Parametric Models .......... 134
5.2.5  Non-Rigid Transformation: Non-Parametric Models. . .. .. 138
5.3  Registration Basis . ....... ... .. 139
5.3.1  Feature-Based Registration ........... ... .. .. ... ... 140
5.3.2  Voxel-Based Registration ............. .. ... .. ... ... 141
5.4 Optimization . .......... i 144
5.5  Validation of Registration ........ ... ... ... . i ... 144
5.6 Application ... ... ... 146
5.6.1  Intra-Subject Registration............ ... .. .. ... ... 146
5.6.2  Inter-Subject Registration ............ ... .. .. ... ... 147
5.7 Summary and Conclusions. .. ...... ... .. oo 149
References ... ..o 150

Part III Feature Extraction and Selection

6 Texture in Biomedical Images

Maria Petrot ... ... 157
6.1 Introduction ......... ... ... .. 157
6.2  Characterizing the Texture of Swatches ................. ... ... 158
6.2.1  From Grammars to Markov Random Fields............. 158
6.2.2  From Markov Random Fields to Fractals ............... 159
6.2.3  From Markov Random Fields to Gibbs Distributions. .. .. 159
6.2.4  Co-occurrence Matrices ..............ciiiiiia... 160
6.2.5  Generalized Co-occurrence Matrices ................... 161
6.2.6  Orientation Histograms ........ ... ... ... ... ... ... .. 162
6.2.7  TeXtons . ..ot 163
6.2.8  Features from the Discrete Fourier Transform ........... 163
6.3  Simultaneous Texture Segmentation

and Recognition ... ... ... .. i 165



Contents XV

6.3.1  From Spatio-Frequency to Spatio-Structural Space. . ... .. 166
6.3.2  Statistical Spatio-Structural Space............... ... ... 168
6.3.3  Monogenic Signal ......... ... . i 169
6.3.4  From Monogenic Signal Back to Gabor Functions ....... 170

6.3.5  Beyond Spatial Patterns into Gray Value Distributions. .. 171
6.4  Examples of the Use of Texture Features

in Biomedical Applications ......... ... .. ... ... . . ... 172
6.4.1  Mammography ..... ... 172
6.4.2 BrainImageData .......... ... . .. i 173
6.5  Discussion and Conclusions .. ... ... 174
References ... ..o 175
7 Multi-Scale and Multi-Orientation Medical Image Analysis
Bart M. ter Haar Romeny . ....... ..., 177
7.1 Introduction ........ ... 177
7.2 The Necessity of Scale ....... ... i 178
7.2.1  The Optimal Aperture Function....................... 178
7.2.2  Derivatives of Sampled, Discrete Data, Such as Images ... 180
7.3 Differential Invariants .. ......... . i 181
7.3.1  Gauge Coordinates ..............iuuiiniiinnena.. 181
7.3.2  Invariants from Tensor Contraction .................... 182
7.4  Second Order Image Structure and Features ................... 183
7.4.1  Isophote Curvature . ...........c.o i, 183
7.4.2  Flowline Curvature . .......... ... oo, 184
743 COTNETS « ottt ettt e et e e e 184
7.4.4  Principal Curvatures........... .. ... ... .. .. 185
7.4.5 The Shape Index ...... ...t 186
7.5  Third Order Image Structure: T-Junctions..................... 187
7.6  Adaptive Blurring and Geometry-Driven Diffusion.............. 187
7.7 Edge Focusing .......... i 189
7.8  Orientation Analysis . ...... ...t 190
7.9 Applications .. ... .. 192
7.9.1  Catheter Detection ......... ... i, 192
7.9.2  Endocard Contour Detection ......................... 193
7.9.3  Denoising of Crossing Lines......... ... ... .. .. ..., 193
7.10  Conclusion . ...t e e 194
References . ... 195

8 Feature Extraction and Selection for Decision Making
Agma J.M. Traina, Caetano Traina Jr., André G.R. Balan,
Marcela X. Ribeiro, Pedro H. Bugatti, Carolina Y.V. Watanabe,

and Paulo M. Azevedo-Marques .. ..., 197
8.1 Imtroduction .......... ... . 197
8.2 Image Representation ......... ... .. .. ... .. .. .. . ... 198

8.2.1  Medical Image Segmentation and Feature Extraction ....199
8.2.2  Color Features .......oouiiiiii i, 201



XVI  Contents
8.2.3  Texture Features ......... ... ... 203
8.2.4  Shape Features....... ... ... . i 204
8.3  Image Features and Distance Functions ....................... 205
8.3.1  Similarity Search and Metric Spaces ................... 206
8.3.2  Distance Functions ......... .. .. . .. . . i 206
8.3.3  Case Study: Evaluating Distance Functions
for Separating Data ......... ... .. .. .. ... 208
8.4  Feature Selection ........ ... i 210
8.4.1  Curse of Dimensionality ........ ... ..o i, 211
8.4.2  Traditional Algorithm for Feature Selection............. 211
8.4.3  Combined Feature Selection and Discretization.......... 213
8.5 Association Rule Mining ......... ... ... . i 215
8.5.1  Definition ........ .. 215
8.5.2  Case Study: Improving Computer-Aided Diagnosis
by Association Rule Mining. ............... ... ... .... 215
8.6  Conclusions. .. ....ouuii i 220
References .. ... ... 221
Part IV Segmentation
9 Parametric and Non-Parametric Clustering
for Segmentation
Hayit Greenspan and Tanveer Syeda-Mahmood . ................... ... 227
9.1 Introduction ......... ... i 227
9.2  Image Modeling and Segmentation ........................... 229
9.2.1 Image Modeling ........ ..o, 230
9.2.2  Segmentation ..............iiiiiiiiii i, 230
9.2.3 State of the Art ... ... 231
9.3  Probabilistic Modeling of Feature Space ....................... 231
9.3.1  Gaussian Mixture Models ............ ... .. ... ... .. 232
9.3.2  Expectation Maximization................ ... ... .... 232
9.3.3  Visualization ........ ... ... .. . . 233
9.4  Using GMMs for Brain Tissue and Lesion Segmentation ......... 234
9.4.1  Application Domain ........... .. .. . i, 234
9.4.2  Spatial Constraints ...........c.. .. 234
9.4.3  Modeling Spatial Constraints Through GMM ........... 235
9.4.4  Tissue Segmentation .......... ..., 238
9.4.5  Lesion Segmentation.......... ... .. . i, 238
9.5  Non-Parametric Clustering Approaches to Segmentation......... 240
9.5.1  Description of the Feature Space ...................... 241
9.5.2  Clustering Intensity, Geometry, and Motion............. 243
9.6  Using Non-Parametric Clustering for Cardiac Ultrasound . ....... 245
9.6.1  Application Domain ........... ... ..., 245
9.6.2  Cardiac Motion Estimation ........................... 246
9.6.3  Segmentation of Meaningful Regions . .................. 246



Contents XVII

0.7 DISCUSSION « v v v vttt ettt et e e e e 248
References . ... e 248

10 Region-Based Segmentation: Fuzzy Connectedness,
Graph Cut and Related Algorithms

Krzysztof Chris Ciesielski and Jayaram K. Udupa .. .................. 251
10.1  Introduction and Overview ............ ..o, 251
10.1.1 Digital Image Scene ......... ... ... 252
10.1.2 Topological and Graph-Theoretical Scene
Representations ....... ... ... i 253
10.1.3 Digital Image . . ... 253
10.1.4 Delineated Objects .. ....coviuiiinini .. 254
10.2  Threshold-Indicated Fuzzy Connected Objects ................. 254
10.2.1 Absolute Fuzzy Connectedness Objects ................ 255
10.2.2 Robustness of Objects .......... ..., 256
10.2.3  Algorithm for Delineating Objects .. ................... 256
10.3  Optimization in Foreground-Background Case.................. 257
10.3.1 Relative Fuzzy Connectedness ........................ 258
10.3.2  Algorithm for Delineating Objects . .................... 259
10.3.3 Graph Cut Delineation............... ... ..., 259
10.4  Segmentation of Multiple Objects .......... ... .. ... .. .. .... 262
10.4.1 Relative Fuzzy Connectedness ........................ 262
10.4.2 Tterative Relative Fuzzy Connectedness ................ 263
10.4.3  Algorithm for Iterative Relative Fuzzy Connectedness . . .. 265
10.4.4 Variants of IRFC . ... ... ... ... . 266
10.5 Scale-Based and Vectorial Fuzzy Connectedness ................ 266
10.6  Affinity Functions in Fuzzy Connectedness..................... 267
10.6.1 Equivalent Affinities ......... ... .. . i 267
10.6.2 Essential Parameters in Affinity Functions.............. 269
10.7  Other Delineation Algorithms ....... ... .. .. .. ... .. ... 270
10.7.1 Generalized Graph Cut ........... ... ... ... .. ... .... 270
10.7.2  Level Set vs. Generalized Graph Cut................... 271
10.8 Medical Image Examples ........ ... .. i i, 273
10.9 Concluding Remarks ....... ... i 276
References .. ... ... 276
11 Model-Based Segmentation
Tobias Heimann and Hervé Delingette .. ..... ... .. .. oo, 279
11,1 Introduction . ... ... 279
11.2  Deformable Simplex Meshes ........ ... ... ... 281
11.2.1 Internal Forces on Simplex Meshes .................... 282
11.2.2 TImage Forces ........ .., 283
11.2.3  Globally Constrained Deformation..................... 285
11.2.4 3D+t Deformable Simplex Meshes..................... 286
11.2.5 Advanced Segmentation Strategies..................... 288

11.2.6 Geometric Representations
for Model-Based Segmentation ........................ 290



XVIII Contents

11.3 Statistical Models of Shape and Appearance ................... 291
11.3.1 Shape Representation ............. ... ... ... .. ... .... 292
11.3.2 Point Correspondence. . ............oouuiuneieneenen .. 292
11.3.3 Construction of Statistical Shape Models ............... 295
11.3.4 Modeling Object Appearance .............. ..o, 297
11.3.5 Local Search Algorithms ............. . ... . ... . .... 298

11.4  Conclusion . ... 300

References ... ... ..o 301

Part V Classification and Measurements

12 Melanoma Diagnosis

Alexander HOTSCh ... ..o 307
12.1  The Cutaneous Melanoma . . ..........uouiiniinnneen. . 307
12.1.1 Medical Basics .. .o vnn 307
12.1.2  Relevance of Early Diagnosis .............. ... ... .... 309
12.2  State of the Art in CM Diagnosis.............cooviiiiii... 309
12.2.1 Diagnostic Algorithms .......... ... .. ... . ... 309
12.2.2 Imaging Techniques .......... ... .. .. . ... 311
12.2.3 Diagnostic Accuracies .. .........couiiiiiiiiini... 313
12.3  Dermoscopy Image Analysis ......... ... o i 314
12.3.1 Image Analysis Approaches............c..iiiiiia.. 314
12.3.2  Segmentation of Skin Lesions .............. ... ... .... 315
12.3.3 Feature Extraction .......... .. .. .. . .. L. 316
12.3.4 Feature Visualization ........... .. .. . .. .. . .. ... 317
12.3.5 Classification Methods . ........... ... ... ... .. .. .... 319
12.4  Commercial Systems . ... ... 322
12.4.1 System Design Principles........ ... ... ... ... 322
12.4.2 Tmage Capture Devices. . ........couiiiiiii ... 323
12.4.3 Dermoscopy Computer Systems . ............c..oooo... 324
12.5 Evaluation Issues . ........ ... 324
12.5.1 Case Databases ......... ... i, 325
12.5.2 Evaluation Methods ......... ... .. .. ... .. .. ... ..., 325
12,6 ConcluSion ... ...o.i 325
References ... ..o 326
13 CADx Mammography
Lena Costaridot .. ......oo e 329
13.1  Introduction . ...........oiuiu i e e 329
13.2  Basic Terms and Definitions ............ ... ... .. .. .. ....... 330
13.2.1 Breast Imaging Modalities......... .. .. .. .. ... ... 330
13.2.2  Mammographic Lesions ........... .. . .. .. ... ... 331
13.2.3 CADe Schemes. . ..ot 332

13.2.4 CADx Architectures ... ... ... 333



Contents  XIX

13.3  CADx Schemes in X-ray Mammography ....................... 335
13.3.1 Morphology Analysis of MC Clusters .................. 335
13.3.2 Texture Analysis of MC Clusters ...................... 338
13.3.3 Morphology and Texture Analysis of Masses ............ 339

13.4 CADx Schemes in Breast Ultrasound ......................... 341

13.5 CADx Schemes in Breast MRI . ...... ... ... .. ... .. ... ... 344

13.6  Application Examples......... . ... 346
13.6.1 Segmentation Accuracy on MC Cluster Content ......... 346
13.6.2 Heterogeneity of Enhancement Kinetics in DCE-MRI .. .. 349

13.7  Discussion and Conclusions . ........... ... . 351

References ... ... 353

14 Quantitative Medical Image Analysis
for Clinical Development of Therapeutics

Mostafa Analoui .. ... 359
14.1 Introduction ...... ... 3959
14.2  Key Issues in Drug Research and Clinical Development.......... 361
14.2.1 Biological Marker ......... .. .. . .. . i ., 361
14.2.2 TImaging Modality ........ ... ... i 362
14.3  Quantitative Image Analysis . ........ ... .. i i 363
14.3.1  Assessment of Osteoarthritis .......................... 364
14.3.2  Assessment of Carotid Atherosclerosis.................. 365
14.3.3  Assessment of Cancer ........... . ... 367
14.4 Managing Variability in Imaging Biomarkers ................... 369
14.4.1 Technical Validation ............. .. ... ... 370
14.4.2 Standard Operation Procedures ....................... 371
14.4.3 Regulatory Issues ....... .. ..., 372
14.5  Future Directions. ........ ..., 373
References ... ..o 374

Part VI Image Data Visualization

15 Visualization and Exploration
of Segmented Anatomic Structures

Dirk Bartz and Bernhard Preim ........ ... .. 379
15.1 Introduction ...... ... 379
15.2  Indirect and Direct Volume Rendering ........................ 380
15.2.1 Indirect Volume Rendering ............. .. .. .. ... .... 380
15.2.2  Rendering of Multiple Objects ....... ... ... .. ... .... 380
15.2.3 Direct Volume Rendering............ ... ... .. ....... 382
15.2.4 Rendering of Segmented Data.............. ... ... .... 383
15.2.5 DISCUSSION .« v v e 384
15.3  Generation of Smooth and Accurate Surface Models ............ 386
15.3.1 Mesh Smoothing with Fairing .............. .. ... .... 386

15.3.2 Improving Mesh Quality ........ ... .. ... .. ... ... 388



XX Contents

15.4  Visualization of Vascular Structures .......................... 389
15.4.1 Surface-based Vessel Visualization ..................... 390
15.4.2 Model-based Surface Visualization
of Vascular Structures .......... ... ... ... .. ... 390
15.4.3 Volume Rendering of Vascular Structures............... 392
15.5  Virtual Endoscopy .. ......oouuiiin i 394
15.5.1 Graphical Representation ............................ 395
15.5.2 Interaction Model ......... ... ... ... . i 396
15.5.3 User Interface. .. ... 396
15.5.4  Case Study: Virtual Colonoscopy ...........coooouoo... 397
156 ConcluSionS . .« .. v vttt 397
References . ... 398
16 Processing and Visualization of Diffusion MRI
James G. Malcolm, Yogesh Rathi, and Carl-Fredrik Westin............ 403
16.1 Introduction ...... ... e 403
16.2 Modeling . .. ..ot e 404
16.2.1 Imaging the Tissue .. ... .. .. ... ... 404
16.2.2 Parametric Models .......... .. i 405
16.2.3 Non-parametric Models ........... ... ... ... .. .. .... 405
16.2.4 Regularization ........ .. .. . i 407
16.2.5 Characterizing Tissue ... .......oiiiiniiiiii .. 407
16.3  Tractography .. ... ..o e 408
16.3.1 Deterministic Tractography .......... ... ... ... ... .... 408
16.3.2 Probabilistic Tractography .......... ... ... ... ... ..., 409
16.3.3 Global Tractography ......... ... ... o i, 411
16.3.4 Validation ......... ... 412
16.4  Applications .. ... ...t 413
16.4.1 Volume Segmentation ........... ..., 413
16.4.2 Fiber Clustering ........ ..o iiiiiiniiiiiininenn.. 414
16.4.3 Connectivity . ......ooouiini i 416
16.4.4 Tissue Analysis . ...t 417
16.5  SUMMATY . ¢ .ottt e e 418
References ... ... 419
Part VII Image Management and Integration
17 Digital Imaging and Communications in Medicine
Michael Onken, Marco Fichelberg, Jorg Riesmeier, and Peter Jensch . ..427
17.1 DICOM BasiCs -« v v vttt et e et e e e e e e e e e e e 427
17.1.1 Introduction and Overview .......... ... ... oo, 428
17.1.2  Information Objects . ..., 428
17.1.3 Display Pipeline.......... .. o i 430
17.1.4 Network and Media Services ............. ..., 433
17.1.5 Conformance ............ouuuiiiinenernnennn.. 437



Contents
17.2  Advanced DICOM Services . ... ....ouuueiuuene e
17.2.1 Advanced Image Display Services .....................
17.2.2 DICOM Structured Reporting .......... ... .. ... ....
17.2.3 Application Hosting ......... ... ...
17.3  Conclusions and Outlook ........ ..o i,
References . ... ...

18 PACS-Based Computer-Aided Detection and Diagnosis
H.K. (Bernie) Huang, Brent J. Liu, Anh HongTu Le,

and Jorge Documet. . ... ...
18.1 Introduction ...... ...
18.2  The Need for CAD-PACS Integration ............. ... ...,
18.2.1 Approaches of CAD-PACS Integration .................
18.2.2 CAD Software ..........oiuiini i
18.3 DICOM Standard and THE Workflow Profiles ..................
18.3.1 DICOM Structured Reporting ............. ... .......
18.3.2 THE Profiles . ... ... i
184 The CAD-PACS ™" TOOIKIt « ...ttt
18.4. 1 COnCEPt « v v vttt
18.4.2 Structure, Components, and Editions ..................
18.5  Example of CAD-PACS Integration...........................
18.5.1 The Digital Hand Atlas ......... ... i,
18.5.2 CAD Evaluation in a Laboratory Setting ...............
18.5.3 CAD Evaluation in a Clinical Environment .............
18.5.4 CAD-PACS Integration Using DICOM-SR..............
18.6  ConclusSion ... ..ottt
References ... ..o

19 Content-Based Medical Image Retrieval

Henning Muiller and Thomas M. Deserno ...........c.cuuiiiienen..
19.1 Introduction ...... ... e
19.1.1 Motivation and History ......... ... .. .. oL,
19.1.2  Query-by-Example(s) Paradigm . ......................
19.2  General Image Retrieval . ... .. ..o i i
19.2.1 Classification vs. Retrieval .......... ... ... .. ... ....
19.2.2  System Components and Computation .................
19.2.3 Features and Signatures.............c..coivininaa...
19.2.4 Distance and Similarity Measures .....................
19.3  Medical Image Retrieval ........ ... .. i
19.3.1 Application Fields ... ... ... .. i
19.3.2 Typesof Images. ..o
19.3.3 Image Preprocessing . ......... ...,
19.3.4 Visual and Non-Visual Image Features .................
19.3.5 Database Architectures ........... .. ... .. ... .. ... ...,
19.3.6  User Interfaces and Interaction........................

19.3.7 Interfacing with Clinical Information Systems...........



XXII Contents

19.4 Evaluation............ .. 481
19.4.1 Available Databases .............. ... .. ... 481
19.4.2 Tasks and User Models. ...............oiiiiii... 481
19.4.3 Ground Truth and Gold Standards .................... 482
19.4.4 Benchmarks and Events........... .. ... .. ... .... 483

19.5 Examples for Medical CBIR Systems ......................... 483
19.5.1 Medical Gnu Image Finding Tool ...................... 484
19.5.2 Image Retrieval in Medical Applications................ 484

19.6  Discussion and Conclusions . ........... ..., 487
19.6.1 Strengths and Weaknesses of Current Systems .......... 488
19.6.2 Gaps of Medical CBIR Systems ....................... 488
19.6.3 Future Developments ......... ... ... ... ... .. ... .... 488

References . ... 490

Part VIII Evaluation and Customizing

20 Systematic Evaluations and Ground Truth

Jayashree Kalpathy-Cramer and Henning Mdiller ..................... 497
20.1 Introduction ........ ...t 497
20.2 Components for Successful Evaluation Campaigns .............. 498
20.2.1 Applications and Realistic Tasks ...................... 498
20.2.2  Collections of Images and Ground Truth ............... 499
20.2.3 Application-Specific Metrics ....... ... .. o i 500
20.2.4 Organizational Resources and Participants.............. 501
20.3 Evaluation Metrics and Ground Truth ....... ... .. ... ... ... 502
20.3.1 Registration ........ .. .. . 502
20.3.2 Segmentation ............ooiiiiii i 503
20.3.3 Retrieval .. ... e 506
20.4 Examples of Successful Evaluation Campaigns ................. 508
20.4.1 Registration ........ ... 508
20.4.2 Segmentation ............ooiiiiiii i 509
20.4.3 Annotation, Classification and Detection ............... 511
20.4.4 Information Retrieval ......... ... ... ... ... ........ 512
20.4.5 Image Retrieval ..... .. .. .. .. . i 512
20.5 Lessons Learned. ... ... ... 517
20.6  ConclusionS. .. ...vvu it 517
References . ... i 518

21 Toolkits and Software for Developing

Biomedical Image Processing

and Analysis Applications

Tvo Wolf . .o 521
21.1 Introduction ........ ... e 521
21,2 ToOLKIES « o vttt e e e 522



Contents XXIII

21.2.1 The NA-MIC Kit ..o e 522
21.2.2 Insight Segmentation and Registration Toolkit .......... 523
21.2.3 The Visualization Toolkit ............ ... .. ... ... ... 524
21.2.4 Open Inventor ............iiiiiiniiiiiininna., 525
21.2.5 Medical Imaging Interaction Toolkit ............. ... ... 526
21.2.6 The Image-Guided Surgery Toolkit .................... 527
21.2.7 The Multimod Application Framework ................. 528
21.2.8 vtkINRIA3D ... 529
21.2.9 OFFIS DICOM ToolKit .. ...covvniiniii i, 529
21.2.10 Grassroots DICOM Library........ ..o, 530
21.2.11 The Common Toolkit ......... ... oo, 530
21.2.12 Simulation Open Framework Architecture .............. 530
21.3 Development Environments ... ......... .. ... ... 531
21.3. 1 SCIRUN .« vv et e 532
21.3.2 OpenXIP. ..o 532
21.3.3 DeVIDE ... . 533
21.3.4 VisTrails .. ..o 534
21.3.5 LONI Pipeline .. ... ... . i 534
21.3.6 MeVisLab . ... . 535
21.3.7 MATLAB® ... 535
21.3.8 Interactive Data Language .............. ... .. ... ... 536
21.4  Extensible Software....... .. .. .. . 537
21.4.1 3D SHCer ..ottt 537
21.4.2 MITK ExtApp and MITK 3M3 ....................... 538
21.4.3 Graphical Interface for Medical Image Analysis
and Simulation......... .. ... ... i 539
21.4.4  OSIriX .o 539
21.4.5 ParaVIiew .. ...t e 539
21.4.6 ImageJand Fiji ... i 540
21.4.7 MIPAV o 541
21.4.8 VOIVIeW. ..o 541
21.4.9 Analyze ... ..o 541
21,410 AMITA « ottt e 542
21.5 Conclusion and Discussion . ..............ooiiiiiinn.. 543
References .. ... ... 543
22 Image Processing and the Performance Gap
Steven C. Horii and Murray H. Loew . ....... ... .. i, 545
22.1 Introduction ........ ... 545
22.2  Examples of Clinically Useful Image Processing ................ 546
22.2.1 Windowing and Image Display ........................ 546
22.2.2 Contrast and Edge Enhancememt ..................... 546
22.2.3 Noise Reduction and Color Coding .................... 547
22.2.4 Registration and Segmentation........................ 547

22.2.5 Image Compression and Management .................. 548



XXIV Contents

22.3 Why are there Gaps? ........ .. i 549
22.3.1 The Conservative Radiologist ............ ... .. ... ... 549
22.3.2 The Busy Radiologist: Digital vs. Analog Workflow . ..... 549
22.3.3 The Wary Radiologist: Malpractice Concerns ........... 550
22.3.4 The Skeptical Radiologist:

Evidence-Based Requirements ........................ 551
22.3.5 Tails, Dogs, and Gaps. .. .......c.ooiiiiiiin.. 552

22.4  The Goals of Image Processing
for Medical Imaging ........ ... ... i, 553
22.4.1 Automation of Tasks ....... ... .. .. i, 553
22.4.2 Improvement of Observer Performance ................. 555

22.5 Closing the Gap .. ...oooi i e 561
22.5.1 Education ............. i 561
22.5.2 Research ...... ... 562

22,6 Conclusion . .........oeuiiiin 563

References ... ..o 563



List of Contributors

Mostafa Analoui
Healthcare and Life Sciences
The Livingston Group

New York, NY, USA

analoui@yahoo.com

Romaric Audigier
Laboratoire Vision et Ingénierie
des Contenus, CEA-LIST
romaric.audigier@cea.fr

Paulo M. Azevedo-Marques
Medical School of Ribeirao Preto
University of Sao Paulo

Sao Paulo, Brazil
pmarquesQ@fmrp.usp.br

André G.R. Balan

Computer Science, Mathematics
and Cognition Center

Federal University of ABC

Sao Paulo, Brazil
agrbalan@icmc.usp.br

Dirk Bartz’

Innovation Center for Computer
Assisted Surgery (ICCAS)
University of Leipzig

Leipzig, Germany

Pedro H. Bugatti

Computer Science Department
University of Sao Paulo

Sao Paulo, Brazil
pbugatti@icmc.usp.br

Zang-Hee Cho

Neuroscience Research Institute
Gachon University of Medicine
and Science, Seoul, Korea
zcho@gachon.ac.kr

Krzysztof Chris Ciesielski
Department of Mathematics
West Virginia University
Morgantown, WV, USA

and

Department of Radiology
University of Pennsylvania
Philadelphia, PA, USA
kcies@math.wvu.edu

Lena Costaridou
Department of Medical Physics
University of Patras

Patras, Greece
costarid@upatras.gr

Hervé Delingette

Asclepios Team, INRIA
Sophia-Antipolis, France
herve.delingette@inria.fr



XXVI  List of Contributors

Thomas M. Deserno
Department of Medical Informatics
RWTH Aachen University

Aachen, Germany
desernoQieee.org

Jan D’hooge

Department of Cardiovascular
Diseases, Katholieke Universiteit
Leuven, Leuven, Belgium
jan.dhooge@uz.kuleuven.ac.be

Jorge Documet

Image Processing and Informatics
Lab, University of Southern
California, Los Angeles, CA, USA
documet@usc.edu

Marco Eichelberg

OFFIS Institute for Information
Technology, Oldenburg, Germany
eichelberg@offis.de

Hayit Greenspan
Department of Biomedical
Enginering, Tel-Aviv University
Tel-Aviv, Israel
hayit@eng.tau.ac.il

Bart M. ter Haar Romeny
Department of Biomedical
Engineering, Eindhoven
University of Technology
Eindhoven, The Netherlands
b.m.terhaarromeny@tue.nl

Tobias Heimann
French Research Institute
of Computer Science and Automatic

Control, INRTA
Sophia Antipolis Cedex, France

and

German Cancer Research Center
Heidelberg, Germany
t.heimann@dkfz.de

Steven C. Horii

Department of Radiology
University of Pennsylvania
Philadelphia PA, USA
steve.horii@uphs.upenn.edu

Alexander Horsch
Department of Medical Statistics
and Epidemiology, Technische
Universitdat Miinchen

Munich, Germany

and

Computer Science Department
University of Tromsg

Tromsg, Norway
alexander.horsch@tum.de

H.K. (Bernie) Huang

Image Processing and Informatics
Lab, University of Southern
California, Los Angeles, CA, USA
hkhuang@aol.com

Peter Jenschf
OFFIS Institute for Information
Technology, Oldenburg, Germany

Jayashree Kalpathy-Cramer
Department of Medical Informatics
and Clinical Epidemiology

Oregon Health & Science University
Portland, OR, USA
kalpathy@ohsu.edu

Young-Bo Kim

Neuroscience Research Institute
Gachon University of Medicine
and Science, Seoul, Korea
neurokim@gachon.ac.kr

Anh HongTu Le

Image Processing and Informatics
Lab, University of Southern
California, Los Angeles, CA, USA

anhhle@usc.edu



Brent J. Liu

Image Processing and Informatics
Lab, University of Southern
California, Los Angeles, CA, USA
brentliu@usc.edu

Murray H. Loew

Biomedical Engineering Program
Department of Electrical

and Computer Engineering

The George Washington University
Washington, DC, USA
loew@gwu.edu

Roberto A. Lotufo

School of Electrical and Computer
Engineering, State University

of Campinas (UNICAMP)
Campinas, Brazil
lotufo@unicamp.br

Rubens C. Machado

Center for Information Technology
Renato Archer (CTI), Ministry
of Science and Technology (MCT)
Campinas, Brazil
rubens.machado@cti.gov.br

James G. Malcolm

Department of Psychiatry, Brigham
and Women’s Hospital, Harvard
Medical School, Boston, MA, USA
malcolm@bwh.harvard.edu

Henning Miiller
University of Applied Sciences
Western Switzerland (HES-SO)
Sierre, Switzerland

and
University and Hospitals of Geneva

Geneva, Switzerland
henning.mueller@hevs.ch

Michael Onken
OFFIS Institute for Information
Technology, Oldenburg, Germany
onken@offis.de

List of Contributors XXVII

Maria Petrou

Informatics and Telematics Institute
Centre for Research

and Technology Hellas (CERTH)
Thessaloniki, Greece
petrou@iti.gr

Bernhard Preim

Department of Simulation and
Graphics, University of Magdeburg
Magdeburg, Germany
preim@isg.cs.uni-magdeburg.de

Yogesh Rathi

Department of Psychiatry, Brigham
and Women’s Hospital

Harvard Medical School

Boston, MA, USA
yogesh@bwh.harvard.edu

Marcela X. Ribeiro
Computer Science Department
University of Sao Paulo

Sao Paulo, Brazil
mxavier@icmc.usp.br

Jorg Riesmeier
ICSMED AG, Oldenburg, Germany

riesmeier@icsmed.de

Leticia Rittner

School of Electrical and Computer
Engineering, State University

of Campinas (UNICAMP)
Campinas, Brazil
lrittner@dca.fee.unicamp.br

Daniel Rueckert

Department of Computing, Imperial
College London, London, UK
d.rueckert@imperial.ac.uk

André V. Saiude

Department of Computer Science
Federal University of Lavras
Lavras, Minas Gerais, Brazil
saude@dcc.ufla.br



XXVIII List of Contributors

Julia A. Schnabel

Institute of Biomedical Engineering
Department of Engineering
Science, University of Oxford
Oxford, UK
julia.schnabel@eng.ox.ac.uk

Young-Don Son

Neuroscience Research Institute
Gachon University of Medicine
and Science, Seoul, Korea
ydson@gachon.ac.kr

Tanveer Syeda-Mahmood
IBM Almaden Research Center
San Jose, CA, USA
stf@almaden.ibm.com

Agma J.M. Traina
Computer Science Department
University of Sao Paulo

Sao Paulo, Brazil
agma@icmc.usp.br

Caetano Traina

Computer Science Department
University of Sao Paulo

Sao Paulo, Brazil
caetano@Qicmc.usp.br

Jayaram K. Udupa
Department of Radiology
University of Pennsylvania
Philadelphia, PA, USA
jay@mail.med.upenn.edu

Carolina Y.V. Watanabe
Computer Science Department
University of Sao Paulo

Sao Paulo, Brazil
carolina@icmc.usp.br

Carl-Fredrik Westin
Department of Radiology
Brigham and Women’s Hospital
Harvard Medical School
Boston, MA, USA

westin@bwh.harvard.edu

Ivo Wolf

Department of Medical Informatics
Mannheim University of Applied
Science, Mannheim, Germany
i.wolf@hs-mannheim.de

Seung-Schik Yoo
Department of Radiology
Brigham and Women’s Hospital
Harvard Medical School
Boston, MA, USA
yoo@bwh.harvard.edu



Acronyms

1D

2D

3D

4D
AAM
AAPM
ABCD
ACE
ACR
ACSE
ADNI
AE
AFC
AHA
AIF
AJAX
AJCC
ALM
AMN
ANN
AOM
APD
API
ASCF
ASD
ASF
ASM
AVD

One-Dimensional

Two-Dimensional

Three-Dimensional

Four-Dimensional

Active Appearance Model

American Association of Physicists in Medicine
Asymmetry, Border, Color, and Differential structures
Associative Classifier Engine

American College of Radiology

Association Control Service Element
Alzheimer’s Disease Neuroimaging Initiative
Application Entity

Absolute Fuzzy Connectedness

American Heart Association

Arterial Input Function

Asynchronous Javascript XML

American Joint Committee on Cancer
Acral Lentiginous Melanoma

Atypical Melanocytic Nevi

Artificial Neural Network

Area Overlap Measure

Avalanche Photodiode

Application Programming Interface
Alternating Sequential Component Filter
Atrial Septal Defect

Alternating Sequential Filter

Active Shape Model

Absolute Volumetric Difference



XXX Acronyms

BAA
BDWG
BI-RADS
BIR
BSD
BSPS
CAD
CADe
CADx
CARS
CART
CAS

CASH
CAT
CAVE
CBIR
CBVIR
CcC
CCD
CGMM
CI
CICE
CIE
CIMT
CISTIB

CIT
CLEF
CM
CMY
CNMD
CNR
CNS
CPU
CR
CRT
CS
CSF
CSI
CSPS
CcT
CTA
CTC

Bone Age Assessment

Biomarker Definitions Working Group
Breast Imaging Reporting and Data System
Biomedical Imaging Resource

Berkeley Software Distribution

Blending Softcopy Presentation States
Computer-Aided Diagnosis
Computer-Assisted Detection
Computer-Assisted Diagnostics
Computer-Assisted Radiology and Surgery
Classification And Regression Tree

Chinese Academy of Sciences; Computer-Assised
Surgery

Color, Architecture, Symmetry, Homogeneity
Computer-Aided Therapy

Cave Automatic Virtual Environment
Content-Based Image Retrieval
Content-Based Visual Information Retrieval
Cranio Caudal

Charge-Coupled Device

Constrained GMM

Computational Intelligence; Confidence Interval
Cumulative Inverse Consistency Error
Commission Internationale de L'Eclairage
Carotid Intima-Media Thickness

Center for Computational Image

and Simulation Technologies in Biomedicine
Center for Information Technology

Cross Language Evaluation Forum
Cutaneous Melanoma

Cyan, Magenta, Yellow

Consensus Net Meeting on Dermoscopy
Contrast to Noise Ratio

Central Nervous System

Central Processing Unit

Computed Radiography

Cathode Ray Tube

Conformance Statement

Cereborspinal Fluid

Chemical Shift Imaging

Color Softcopy Presentation State
Computed Tomography

CT Angiography

CT Colonography



CTE
CTK
CTR
CVvP
DAG
DBM
DBT
DCE
DCE-MRI

DCMR
DCMTK
DDSM
DES
DeVIDE

DFT
DICOM
DICOM SR
DIMSE
DKFZ
dMRI
DNA
DOF
DP
DPV
DR
DSA
DSI
DTI
DTM
DVD
DWT
ECG
EEG
ELM
EM

EN
ENT
EPI
EXACT
F-FP-CIT

Acronyms XXXI

Cumulative Transitive Error

Common Toolkit

Cardio-Thoracic Ratio

Closest Vessel Projection

Directed Acyclic Graph
Deformation-Based Morphometry
Digital Breast Tomosynthesis
Dynamic Contrast-Enhanced

Dynamic Contrast-Enhanced Magnetic
Resonance Imaging

DICOM Content Mapping Resource
OFFIS DICOM ToolKit

Digital Database for Screening Mammography
Density Emitter Model

Delft Visualisation and Image Processing Of
Development Environment

Discrete Fourier Transform

Digital Imaging and Communications in Medicine
DICOM Structured Reporting
DICOM Message Service Element
Deutsches Krebsforschungszentrum
Diffusion Magnetic Resonance Imaging
Deoxyribonucleic Acid

Degree Of Freedom

Detection Performed

Dermatoscopic Point Value

Digital Radiography

Digital Subtraction Angiography
Diffusion Spectrum Imaging

Diffusion Tensor Imaging

Decision Tree Method

Digital Versatile Disc

Discrete Wavelet Transform
Electrocardiography
Electroencephalography
Epi-Luminescence Microscopy
Expectation Maximization

European Norm

Ear, Nose, and Throat

Echo Planar Imaging

Extraction of Airways from CT
8FluoroPropyl-Carbomethoxylodophenyl-norTropane



XXXII Acronyms

FA

FB

FC
FDA
FDG
FDI
FEM
FFD
FFDM
FID
Fiji
FISH
FLT
fMRI
FND
FOV
FPD
FROC
FSC
FSR
FSU
FWHM
GA
GC
GDCM
GG
GIF
GIFT
GIMIAS

GLCM
GMM
GMP
GNU
GPA
GPU
GSPS
GTC
GUI
HARAG
HARDI
HD
HIPAA

Fractional Anisotropy

Filtered Backprojection

Fuzzy Connectedness

Food and Drug Administration
BF_Fludeoxygloucose

Fédération Dentaire Internationale

Finite Element Model

Free-Form Deformation

Full-Field Digital Mammography

Free Induction Decay

Fiji Is Just ImageJ

Fluorescent In-Situ Hybridization
BF_L-Thymidine

Functional MRI

False Negative Dice

Field-Of-View

False Positive Dice

Free-Response Receiver Operating Characteristic
File Set Creator

File Set Reader

File Set Updater

Full Width Half Maximum

Genetic Algorithms

Graph Cut

Grassroots DICOM Library

Generalized Graph

Graphics Interchange Format

GNU Image Finding Tool

Graphical Interface for Medical Image Analysis
and Simulation

Gray-Level Co-occurrence Matrices
Gaussian Mixture Model

Good Manufacturing Practice

GNU’s Not Unix

Generalized Procrustes Analysis

Graphics Processing Unit

Grayscale Softcopy Presentation State
Generalized Tanimoto Coefficient
Graphical User Interface

Hierarchical Attributed Region Adjacency Graph
High Angular Resolution Diffusion Imaging
Hausdorff Distance

Health Insurance Portability and Accountability Act



HIS

HL7
HRRT
HSV
HU
IBSR
ICA
I1CC
ICCAS
(0}
ID
IDEA
IDL
IFT
IGS
IGSTK
IGT
IHE
IHS
10D
1P

IR
IRB
IRFC
IRMA
ISO
ITK
JPEG
JSW
k-NN
KIN
KLT
LA
LAC
LCD
LDA
LGPL
LIDC
LMM
LoG
LONI
LRA
LS
LSA

Acronyms

Hospital Information System; Hue, Intensity,
Saturation

Health Level Seven

High-Resolution Research Tomograph
Hue-Saturation-Value

Hounsfield Unit

Internet Brain Segmentations Repository
Independent Component Analysis
International Color Consortium

XXXIIT

International Center for Computer-Assisted Surgery

Iterative Closest Point
Identifier

Image Diagnosis Enhancement Through Associations

Interactive Data Language

Image Foresting Transform
Image-Guided Surgery

Image-Guided Surgery Toolkit
Image-Guided Therapy

Integrating the Healthcare Enterprise
Intensity, Hue, Saturation

Information Object Definition

Internet Protocol

Information Retrieval

Institutional Review Board

Iterative Relative Fuzzy Connectedness
Image Retrieval in Medical Applications
International Organization for Standardization
Insight Segmentation and Registration Toolkit
Joint Photographic Experts Group
Joint Space Width

k-Nearest Neighbor

Key Image Note

Karhunen-Loeéve Transform

Left Atrium

Los Angeles County Hospital

Liquid Crystal Display

Linear Discriminant Analysis

Lesser General Public License

Lung Image Database Consortium
Lentigo Maligna Melanoma

Laplacian Of Gaussian

Laboratory Of Neuro Imaging

Logistic Regression Analysis

Level Set

Lenticulostriate Arterie
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LSO

LUT

LV

MAF
MAP
MATLAB
MC

MDL
MedGIFT
MEDICOM
MeSH
MHD

MI
MICCAI

MIP
MIPAV
MIT
MITK
ML

MLO
MOD
MP
MPM
MPPS
MPU
MRA
MRF
MRI
MRM
MRML

MRS
MRSI
MS
MSW
MTF
MV
NA-MIC
NASA
NCBC
NCC

Lutetium Oxyorthosilicate

Look-Up Table

Left Ventricle

Multimod Application Framework
Maximization A Posterior; Mean Average Precision
MATrix LABoratory

Micro-Calcification

Minimum Description Length

Medical GIFT

Medical Image Communication

Medical Subject Headings

Manhattan Distance

Mutual Information

Medical Image Computing and Computer Assisted
Intervention

Maximum Intensity Projection

Medical Image Processing, Analysis, and Visualization
Massachusetts Institute of Technology

Medical Imaging Interaction Toolkit

Maximum Likelihood;

MeVis Image Processing Library

Medio-Lateral Oblique

Magneto Optical Disk

Morphological Processing

Maximization of the Posterior Marginals
Modality Performed Procedure Step
Multi-Level Partition of Unity

Magnetic Resonance Angiography

Markov Random Field

Magnetic Resonance Imaging

Magnetic Resonance Mammography

Medical Reality Markup Language;

Multimedia Retrieval Markup Language
Magnetic Resonance Spectroscopy

Magnetic Resonance Spectroscopy Imaging
Multiple Sclerosis

Multi-Scale Watershed

Modulation Transfer Function

Mitral Valve

National Alliance for Medical Image Computing
National Aeronautics and Space Administration
National Centers for Biomedical Computing
Normalized Cross Correlation
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NHLBI
NIH
NIREP
NLM
NM
NMF
NMI
NMR
NN
NNT
NRRD
NURBS
OA
OAI
oCT
ODF
OFFIS
001
OSA
OSGi
OSI
OTS
PA
PACS
PCA
PCS
PCSP
PD
PDE
PDM
PET
PK
PMT
POC
POM
ppm
pQCT
PSF
PSL

Acronyms

National Cancer Institute

National Electrical Manufacturers Association
National Heart Lung and Blood Institute
National Institutes of Health

Non-Rigid Image Registration Evaluation Project
National Library of Medicine

Nodular Melanoma

Non-Negative Matrix Factorization
Normalised Mutual Information

Nuclear Magnetic Resonance

Nearest Neighbor

Number Needed to Treat

Nearly Raw Raster Data

Non-Uniform Rational B-Spline

Osteo arthritis

Osteo arthritis Initiative

Optical Coherence Tomography
Orientation Distribution Function
Institute for Information Technology
Object Of Interest; Organ Of Interest
Obstructive Sleep Apnea

Open Services Gateway Initiative

Open System Interconnection
Off-The-Shelf

Postero-Anterior

Picture Archiving and Communication System
Principal Component Analysis

Profile Connection Space

Pseudo-Color Softcopy Presentation States
Pharmacodynamic

Partial Differential Equation

Point Distribution Model

Positron Emission Tomography
Pharmacokinetic

Photo-Multiplier Tube

Proof Of Concept

Proof Of Mechanism

Parts Per Million

Peripheral Quantitative Computed Tomography
Point Spread Function

Pigmented Skin Lesion

XXXV
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PSP Photostimulable Phosphor

PWF Post-Processing Work Flow

Q/R Query/Retrieve

QBE Query By Example, Query By Image Example

QBI Q-Ball Imaging

QBIC Query By Image Content

QDE Quantum Detection Efficiency

RA Right Atrium

rCMRGlc Regional Cerebral Metabolic Rate of Glucose

RF Radio Frequency

RFC Relative Fuzzy Connectedness

RGB Red, Green, and Blue

RIRE Retrospective Image Registration Evaluation

RIS Radiology Information System

RNA Ribonucleic Acid

ROC Receiver Operating Characteristic

ROI Region Of Interest

RPC Rich Client Platform

RREP Retrospective Registration Evaluation Project

RSNA Radiological Society of North America

RV Random Variable, Right Ventricle

SCP Service Class Provider

SCU Service Class User

SD Standard Deviation

SE Standard Error

SER Signal Enhancement Ratio

SFM Screen-Film Mammography

SGLD Spatial Gray Level Dependence

SIF Single Image Finding

SIFT Shift-Invariant Feature Transform

SIM Scaling Index Method

SINR Simple Image and Numeric Report

SiPM Silicon Photomultiplier

SMART System for the Mechanical Analysis and Retrieval
of Text

SNR Signal-to-Noise Ratio

SOFA Simulation Open Framework Architecture

SOP Service Object Pair; Standard Operating Procedure

SOR Successive Over-Relaxation

SPECT Single Photon Emission Computed Tomography

SR Structured Reporting; Super Resolution

SRN Square Root of the Norm of Coefficients

SSD Sum of Squared Differences
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STAPLE
SVD
SVM
TBM
TCL
TCP
TEE
TIFF
TMG
TREC
UofU
UCLA
UID
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UPF
UsSs
USB
Usc
VBM
VD
VL
VME
VOI
VOLCANO
VPE
VR
VSD
VSsSG
VTK
W3C
WS
WSDL
XA
XIP
XRF
ZIB

Acronyms XXXVII

Statistical Shape Model, Superficial Spreading

Melanoma

Simultaneous Truth and Performance Level Estimation

Singular Value Decomposition
Support Vector Machine
Tensor-Based Morphometry

Tool Command Language
Transmission Control Protocol
Transesophageal Echocardiography
Tagged Image File Format

Tensorial Morphological Gradient
Text Retrieval Conference

University of Utah

University of California at Los Angeles
Unique Identifier

United Kingdom

Universitat Pompeu Fabra
Ultrasonography, Ultrasound, United States
Universal Serial Bus

University of Southern California
Voxel-Based Morphometry
Volumetric Difference

Virtual Machine

Virtual Medical Entities

Volume Of Interest; Value Of Interest
VOLume Change Analysis of NOdules
Visual Programming Environment
Value Representation; Virtual Reality
Ventricular Septum Defect
Visualization Sciences Group
Visualization Toolkit

World Wide Web Consortium
Watershed

Web Service Description Language
X-ray Angiography

eXtensible Imaging Platform

X-ray Radio-Fluoroscopy

Zuse Institute Berlin
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Fundamentals of Biomedical Image Processing

Thomas M. Deserno

Summary. This chapter gives an introduction to the methods of biomedical image
processing. After some fundamental preliminary remarks to the terminology used,
medical imaging modalities are introduced (Sect.1.2). Sections 1.3 and 1.4 deal
with low-level image processing and visualization, respectively, as far as neces-
sary to understand the following chapters. Subsequently, the core steps of image
analysis, namely: feature extraction, segmentation, classification, quantitative mea-
surements, and interpretation are presented in separate sections. On account of
its high relevance, the focus is on segmentation of biomedical images. Special seg-
mentation methods and techniques have been developed in the medical application
domain. Section 1.9 provides a brief summary of image communication. The elec-
tronic transmission and exchange of medical images will become more important in
future for multimedia applications such as electronic patient records in health telem-
atics and integrated care. Section 1.10 completes this chapter with an overview of
past, present, and future challenges to biomedical image processing.

1.1 Introduction

By the increasing use of direct digital imaging systems for medical diagnostics,
digital image processing becomes more and more important in health care. In
addition to originally digital methods, such as Computed Tomography (CT)
or Magnetic Resonance Imaging (MRI), initially analogue imaging modalities
such as endoscopy or radiography are nowadays equipped with digital sensors.
Digital images are composed of individual pixels (this acronym is formed from
the words “picture” and “element”), to which discrete brightness or color val-
ues are assigned. They can be efficiently processed, objectively evaluated, and
made available at many places at the same time by means of appropriate
communication networks and protocols, such as Picture Archiving and Com-
munication Systems (PACS) and the Digital Imaging and Communications
in Medicine (DICOM) protocol, respectively. Based on digital imaging tech-
niques, the entire spectrum of digital image processing is now applicable in
medicine.

T.M. Deserno (ed.), Biomedical Image Processing, Biological and Medical Physics,
Biomedical Engineering, DOI: 10.1007/978-3-642-15816-2_1,
(© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1.1. Modules of image
processing. In general, image
processing covers four main
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1.1.1 Steps of Image Processing

The commonly used term “biomedical image processing” means the provision
of digital image processing for biomedical sciences. In general, digital image
processing covers four major areas (Fig.1.1):

1.

Image formation includes all the steps from capturing the image to forming
a digital image matrix.

. Image visualization refers to all types of manipulation of this matrix,

resulting in an optimized output of the image.

Image analysis includes all the steps of processing, which are used for
quantitative measurements as well as abstract interpretations of biomedical
images. These steps require a priori knowledge on the nature and content of
the images, which must be integrated into the algorithms on a high level of
abstraction. Thus, the process of image analysis is very specific, and devel-
oped algorithms can be transferred rarely directly into other application
domains.

Image management sums up all techniques that provide the efficient
storage, communication, transmission, archiving, and access (retrieval) of
image data. Thus, the methods of telemedicine are also a part of the image
management.

In contrast to image analysis, which is often also referred to as high-level
image processing, low-level processing denotes manual or automatic tech-
niques, which can be realized without a priori knowledge on the specific
content of images. This type of algorithms has similar effects regardless of
the content of the images. For example, histogram stretching of a radio-
graph improves the contrast as it does on any holiday photograph. Therefore,
low-level processing methods are usually available with programs for image
enhancement.
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symbolic description

scene dental status
object teeth, implants
region hard & soft tissue
texture spongiosa
edge local contrast
pixel local intensity
raw data panoramic x-ray

iconic description

Fig. 1.2. Levels of abstraction. The general terms (left) are exemplified for a
panoramic radiograph of upper and lower jaws (right). At the pyramid’s top,
the dental status corresponds to an abstract scene analysis, which only contains
standardized information (existence and condition) on the tooth positions

1.1.2 Remarks on Terminology

The complexity of an algorithm, the difficulty of its implementation, or the
computation time required for image processing plays a secondary role for the
distinction between low-level and high-level processing methods. Rather, the
degree of abstraction of the a priori knowledge is important for this meaning.
Although the following definitions are not standardized in the literature, they
are used consistently within this book (Fig.1.2):

e The raw data level records an image as a whole. Therefore, the totality of
all raw data pixels is regarded on this level.
The pizel level refers to discrete individual pixels.
The edge level represents the One-dimensional (1D) structures, which are
composed of at least two neighbored pixels.

e The texture level refers to Two-Dimensional (2D) or Three-Dimensional
(3D) structures. On this level however, the delineation of the area’s contour
(in three dimensions: the surface of the volume) may be unknown.

e The region level describes 2D or 3D structures with a well-defined bound-
ary or surface.

e The object level associates textures or regions with a certain meaning or
name, i.e., semantics is introduces on this level.

e The scene level considers the ensemble of image objects in spatial and/or
temporal terms. If 3D structures are imaged over the time, also Four-
Dimensional (4D) data is acquired.

From an iconic (concrete) to a symbolic (abstract) description of images, infor-
mation is gradually reduced. Methods of low-level image processing operate
on the raw data as well as on pixel, edge, or texture levels, and thus at a min-
imally level of abstraction. Methods of high-level image processing include
the texture, region, object, and scene levels. The required abstraction can be
achieved by increased modeling of a priori knowledge.
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1.1.3 Biomedical Image Processing

With these definitions, a particular problem in high-level processing of bio-
medical images is inherently apparent: resulting from its complex nature, it
is difficult to formulate medical a priori knowledge such that it can be inte-
grated directly and easily into automatic algorithms of image processing. In
the literature, this is referred to as the semantic gap, which means the dis-
crepancy between the cognitive interpretation of a diagnostic image by the
physician (high level) and the simple structure of discrete pixels, which is
used in computer programs to represent an image (low level). In the medical
domain, there are three main aspects hindering bridging this gap:

1. Heterogeneity of images: Medical images display living tissue, organs, or
body parts. Even if captured with the same modality and following a stan-
dardized acquisition protocol, shape, size, and internal structures of these
objects may vary remarkably not only from patient to patient (inter-subject
variation) but also among different views of a patient and similar views
of the same patients at different times (intra-subject variation). In other
words, biological structures are subject to both inter- and intra-individual
alterability. Thus, universal formulation of a priori knowledge is impossible.

2. Unknown delineation of objects: Frequently, biological structures cannot be
separated from the background because the diagnostically or therapeuti-
cally relevant object is represented by the entire image. Even if definable
objects are observed in biomedical images, their segmentation is problem-
atic because the shape or borderline itself is represented fuzzily or only
partly. Hence, medically related items often can be abstracted at most on
the texture level.

3. Robustness of algorithms: In addition to these inherent properties of med-
ical images, which complicate their high-level processing, special require-
ments of reliability and robustness of medical procedures and, when applied
in routine, image processing algorithms are also demanded in the medi-
cal area. As a rule, automatic analysis of images in medicine should not
provide wrong measurements. That means that images, which cannot be
processed correctly, must be automatically classified as such, rejected and
withdrawn from further processing. Consequently, all images that have not
been rejected must be evaluated correctly. Furthermore, the number of
rejected images is not allowed to become large, since most medical imag-
ing procedures are harmful and cannot be repeated just because of image
processing errors.

1.2 Medical Image Formation
Since the discovery of X-rays by Wilhelm Conrad Rontgen in 1895, medical

images have become a major component of diagnostics, treatment planning
and procedures, and follow-up studies. Furthermore, medical images are used
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x-ray axial CT fluoroscopy ultrasound

Fig. 1.3. Medical imaging modalities. The body region (here: cervical vertebra)
appears completely different when altering the imaging modality

Name Symbol Mass Charge Table 1.1. Atomic particles. The given
Proton P lu +1le values for mass and charge are only
Neutron n lu Oe rough estimates. The atomic mass unit
Alpha particle Auo o H2e 1y = 1660538782 - 1077 kg.

Electron BJF Ou —le The elementary charge

Positron p Ou  Hle o 1602176487 - 10 C

Photon ~ Ou Oe ’

for education, documentation, and research describing morphology as well as
physical and biological functions in 1D, 2D, 3D, and even 4D image data (e.g.,
cardiac MRI, where up to eight volumes are acquired during a single heart
cycle). Today, a large variety of imaging modalities have been established,
which are based on transmission, reflection or refraction of light, radiation,
temperature, sound, or spin. Figure 1.3 emphasizes the differences in image
characteristic with respect to the imaging modality. Obviously, an algorithm
for delineation of an individual vertebra shape that works with one imaging
modality will not be applicable directly to another modality.

1.2.1 Basic Physics

To understand the different nature of medical images and imaging modalities,
we need to recall some basic physics of matter. Roughly, all matter is build
from atoms, where a nucleus composed of protons and neutrons is surrounded
by a electron shell. Table 1.1 lists charge and mass of nuclear particles.

The number of protons determines the element number. In the equilibrium
state, the number of electrons equals the number of protons and there is no
external Coulomb field. However, the positions of the particles are not con-
stant. In particular, the electrons orbit the nucleus. According to the Maxwell
laws, accelerated (continuously changing its direction) charge induces electro-
magnetic radiation: the electron would lose energy gradually spiraling inwards
and collapsing into the nucleus.

Within the Bohr model of the atom, there are certain shells where an elec-
tron can orbit its nucleus without releasing electromagnetic radiation. These
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Fig. 1.4. Bohr model of the atom. The shells where
an electron can orbit the nucleus without releasing
electromagnetic radiation are numbered, and there is
a maximal number of electrons for each shell.
Sometimes, the shells are also referred to by letters k,
l, m, etc. The difference of energy between shells is
released as radiation when an electron changes its
position

shells are numbered n (Fig. 1.4) and allow for 2 - n? electrons. The energy
of an electron E, = (—13.6 eV)# depends on the orbit number n, where
inner shells are energetically preferred and ionizing needs higher energy if an
electron of an inner shell is removed. The unit Electron Volt (eV) refers to the
kinetic energy of an electron after passing the acceleration voltage of 1.0 V.

1.2.2 Imaging Modalities

From the plenty of medical imaging modalities, we will focus on X-ray imaging,
CT, MRI, and ultrasound. However, optical modalities such as endoscopy,
microscopy, or photography are not less important.

X-Ray Imaging

According to the Bohr model, X-radiation — the term was initially introduced
by Rontgen — can be generated, for instance, if an electron from a higher shell
jumps over into a free position of an inner shell (Fig. 1.4). The discrete differ-
ence of energy AF is released as a photon (v particle). AE is characteristic
to the numbers of shells and the element.

Technically, free positions in inner shells are produced from shooting elec-
trons to the atom. Figure 1.5 schematically shows an X-ray tube. The high
voltage between cathode and anode accelerates the electrons that are released
from a filament. Passing the acceleration voltage, these electrons are loaded
with kinetic energy. Hitting the target material, usually tungsten for skeletal
imaging and molybdenum for mammography, two types of interactions may
occur, i.e., the accelerated electron interacts with the:

e Nucleus, where the electron is slowed down by the Coulomb field of the
protons, and a photon is released with an energy equal to the loss of kinetic
energy of the electron (Bremsstrahlung).

e Shell, where the characteristic radiation is released as described above.

When X-radiation passes through matter, e.g., the human body we would
like to image, the X-ray photons again may interact with the nucleus or the
shell resulting in:
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Fig. 1.5. X-ray tube. The vacuum tube (A) houses cathode (B) and anode (C). A
current heats up the filament, releasing electrons (D), which are accelerated towards
the anode. Interacting with either the nucleus or the shell of the target material,
Bremsstrahlung and characteristic radiation are released (E), respectively

e Absorption: The photon is completely vanished giving all its energy to
the absorbing material. This effect is harmful and causes damage to living
cells, but it is required to obtain a contrasted image.

e Scattering: A secondary photon is produced, that might be coherent
(Thomson effect) or incoherent (Compton effect). Both effects lower the
Signal to Noise Ratio (SNR), since the secondary photon usually travels
in another direction and contributes to the image at a wrong location, and
scatter rasters from lead are used to filter the scattered radiation.

The absorption coefficient u uniquely describes the material, and is mapped
to the gray scale for image display. In plain radiography, high-attenuating
material (e.g., bone) is displayed in white (see Fig. 1.3a) while in fluoroscopy,
the scale is inverted (see Fig.1.3d), and the high-absorbing contrast agent is
displayed in black.

However, the absorption sums up along the path through the matter. In
particular, the absorption is described by an exponential function. In a first
approximation, the intensity I of radiation depends on the thickness d of
the imaged material I = Ipe *¢. However, a human body is not made from
constant material u ~ p(d), and furthermore, the absorption depends on
the photon’s energy p ~ p(F). Since X-radiation cannot be obtained mono-
energetic (Bremsstrahlung), the absorption equation yields

I= /IO(E)e_ JuGB)dzqp (1.1)

The dependence of the absorption on the energy of the photon is obvi-
ous. Photons with low energy are more likely absorbed or scattered than
high-energetic photons. Consequently, the spectrum of X-radiation, which is
released from the X-ray tube, hardens when passing matter. This effect is
called beam hardening.

Computed Tomography (CT)

X-ray imaging produces summation images, where all attenuation coefficients
along the path are integrated. From a single image, one cannot determine the
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order of overlapping objects. This is different with CT, where the absorption
is determined in 3D for each volume element (voxel). For imaging, a volume
is acquired slice by slice, and each slice is reconstructed from several measures
in different angulation.

Although back projection or filtered back projection in k-space (spatial
frequency domain after Fourier transform) are nowadays used for image recon-
struction, we will explain the principle based on the arithmetic reconstruction
technique, which in fact was applied to the first CT machines. Suppose a slice
being divided into four pixels, and two parallel rays passing it in two differ-
ent directions (Fig. 1.6). This results in four independent equation (Fig. 1.6B)
allowing to compute the four absorption coefficients y;; (Fig. 1.6E). To obtain
more rows and columns, the number of parallel rays and the number of
angles must be increased accordingly. Today, fan beam gantries are build
(Fig. 1.7), enabling continuous rotation of the imaging fan and continuous
longitudinal movement of the patient (spiral CT). Further speedup of acqui-
sition is obtained from scanners, where up to 64 lines of X-ray receptors are
mounted. From 1972, the acquisition time per slice has decreased about 10°
(Table 1.2).

Fig. 1.6. Arithmetic CT i}
reconstruction. Two parallel X-rays =( 2|2 10 1|10 <:E: 01
pass the slice in 90° and the measures = 2|2 ]10° 100 [1000] 2|3
are recorded. (A) logarithm allowing 102 10% P10 ()
assignment of absorption coefficients @logw(.) ﬁ
u; (B) four linear equations are iy =0
obtained; (C) iterative solution; 111 i) 1 Z;::Z;;S yp=1
(D) assignment; (E) inverse logarithm o e [yt =2 II> top=3
2 Hat+iipp =4 Hopy=2
Fig. 1.7. CT gantry. Detaching the e .

detector \
<y

housing from the CT exposes the
X-ray tube and the detector fan
(http://wikepedia.org)
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Year Resolution Gray scales Thickness Time Table 1.2. CT slice
1974 80 x 80 64 (6 bit) 10 mm 300 s parameters. Today, a 64 line
1984 256 x 256 256 (8 bit) 5 mm 10s  scanner rotates about three

1994 512x512 512 (9bit) 08mm 055  time s second yielding up to
2004 1024 x 1024 1024 (10bit) 0.4 mm 00055 199 dices per second

Fig. 1.8. Precession [1]. A spinning
proton in a magnetic field (left) moves
like a gyroscope in the mass
gravitation field of the earth (right).
According to the Larmor theorem, the
precession frequency is determined by
the strength of the external magnetic
field

Magnetic Resonance Imaging (MRI)

Almost simultaneously to CT, MRI has been introduced to medicine. It is
based on electromagnetic effects of the nucleus. Since the human body consists
of about 70 % water, we focus on hydrogen. Its nucleus is composed of only
one proton. As mentioned before, the particles forming the nucleus are contin-
uously moving. For hydrogen, this movement is a self rotation (spin), which
has a magnetic moment. As shown in Fig. 1.8, the magnetic moment is aligned
to an outer magnetic field, and precession v is started.

To understand MRI, we need to regard a probation of tissue, which is
composed of billions of hydrogen atoms. In other words, we move from a
microscopic to a macroscopic view, where the spins sum up to a macroscopic
magnetic moment M. Suppose the external magnetic field B, is directed along
the z-axis, the magnetic moments can align parallel or anti-parallel, where
the latter occurs slightly minor (six less in a million). Therefore, M, > 0. In
addition, all precession is dephased (M, = 0).

The next component of MRI is a so called Radio Frequency (RF) impulse.
Such an impulse can excite the system of spinning protons if the electromag-
netic frequency equals the precession frequency. Depending on the amplitude
and time of excitement, M can be arbitrarily directed. In Fig. 1.9b, for exam-
ple, M has been turned into the (x,y)-plane; the corresponding RF impulse
is referred to as 90° impulse.

RF excitement is followed by exponential relaxation, where the system is
restoring its equilibrium state. The stored energy is released as signal (i.e., the
Free Induction Decay (FID) when measured in Fourier domain), which can
be detected and transformed to an image. However, the relaxation process is
complex, since two independent effects superimpose:
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X

Fig. 1.9. Ezcitement and relazation [1]. Without excitement, M = M. (a); a 90°
RF impulse turns M = Mg, (b); dephasing (spin—spin relaxation) starts first,
continuously decreasing M, (c,d); spin-spin relaxation completed (e); dealign-
ment (spin-lattice relaxation) starts, steadily increasing M. (f,g); relaxation
completed (h)

e spin—spin relaxation with relaxation time T3 affects the phase of the spins.
For water-based and fat-based tissues, 75 is in the 40 — 200 ms and 10 —
100 ms range, respectively.

e spin-lattice relaxation with relaxation time 77 affects the parallel vs. anti-
parallel alignment of spins. For water-based and fat-based tissues, T} is in
the 0.4 — 1.2s and 0.10 — 0.15s range, respectively.

Therefore, spin—spin relaxation is almost completed before spin—lattice
relaxation is detectable. Relaxation is visualized in Fig. 1.9. After 90° impulse,
M = My, and M, = 0. Note that M, rotates with precession frequency v
in the (z,y)-plane. When Th-relaxation is completed (Fig. 1.9¢), M,, = 0 and
M, = 0. The Ti-relaxation is visualized in Fig. 1.9f-h. In Fig. 1.9h, the spins
gave back the energy they obtained from the RF pulse to the surrounding
lattice.

To obtain a high-quality relaxation signal, spin-echo sequences are applied,
where different RF impulses are induced, and readout of 77 and T5 is per-
formed in between. Therefore, spin-echo sequences are characterized by the:

e ccho time Tg determining half of the delay between a 90° and a 180° RF
impulse, and the
e repetition time Tr denoting the rate of re-applying a 90°/180° sequence.

Figure 1.10 emphasizes the differences in contrast and appearance depend-
ing on the echo sequence. In particular, a My-, T1-, or To-weighted MRI is
obtained if (Tg < T and T > T1), (Tg < Ty and Tr = T1), or (Tg = Th
and Tg > T1), respectively.

However, the theory we discovered so far does not allow us to obtain
such images because we do not have any spatial alignment with the signal
yet. This is obtained using gradient fields, which are superimposed to the



1 Fundamentals of Biomedical Image Processing 11

M, weighted T, weighted T, weighted

Fig. 1.10. Forming MRI with spin-echo sequences. (Courtesy: Tony Stocker, FZ
Jiilich)

constant external field B. For instance, let us superimpose a gradient field in
a-direction: B = By+ Bg(x), Bg(x1) < Ba(z2) Va1 < z3. Now, the Larmor
frequency of precession v ~ v(x) is slightly shifted along the x-axis. Since the
induced RF impulse covers all frequencies, excitement results in the entire
probation, and from the frequency of the FID signal, the according slice can
be located. Another gradient, for instance in y-direction, allows for addressing
a line rather than a plane. As we have seen with CT reconstruction, capturing
signals from different lines through the volume finally allows voxel assignment.
Advantageous to CT, gradient fields in MRI can be generated with gradient
coils, where the current is adopted, and no mechanical rotation is required.
In fact, steering the gradient fields produces the noise of MRI devices, since
strong currents need to be turned on and off quickly.

Ultrasound

In contrast to CT and MRI, ultrasound is a medical imaging modality that
is based on reflection of sound waves. Depending on the transducer, 1D to
4D data is obtained. We start from the 1D case (signal), where a longitudinal
sound wave is traveling through the tissue of the human body. At transi-
tions between different matter (e.g., muscle and fat), the sound wave is partly
reflected and transmitted (refracted if the surface is not hit perpendicular).
In other words, the echo runtime indicates the distance between transducer
and tissue border while the echo strength is related to material properties.
More precisely, these sound-relevant properties of matter are described by the
speed of sound cs and the density p, yielding the acoustic impedance Z = ¢, p.
Interfacing two materials Z; = Zy and Zs = Zy + AZ, the reflection ratio r
and transmission ratio ¢ are given by
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Table 1.3. Speed of sound in ~ Material cs; inm/s  pinkg/m>  Z in kg/m?s

matter. The acoustic Bone 3,600 1.70-103 6.12 - 10°
impedance Z = c,p computes ~ Marrow 1,700 0.97 - 103 1.65 - 10°
. 3 6
from density p and speed of :\3/:°°d| i:gg 18‘2‘ : 183 12; : 186
. uscle , . . . .
zgu})rl;idcs;;eiil Efalzlfrirsofrefer Water 1,540 0.99 - 103 1.53-10°
37 }; dp Fat 1,400 0.97 - 103 1.36 - 10°
centigrade Air 340 1.20 4.08 - 102

right ventricle transducer

left ventricle left atrium |

|A mode Bmode| TM diagram

Fig. 1.11. Ultrasound visualization modes [2]. A section through the heart is drawn
schematically (left). From a simple sampling line, reflections of sound may be plot-
ted (i) according to their amplitude (A-mode), (ii) coded as dots with a gray scale
mapped to the amplitude (B-mode), which supports 2D images if a array of Piezo-
electric crystals is applied, and (iii) in their position over the time, to visualize
motion (TM diagram)

- /&_Zg—zl_ AZ and f=1—r~ 1,if AZ <« Zy
- IA_ZQ+Z1_ZZ()+AZ o - 0,if AZ > Z,

(1.2)
where Iy and Ir denote the intensity of the initial and reflected wave, respec-
tively. As we can see from Table 1.3, ¢ = 0 from air to water and soft tissue to
bone, while ¢t ~ 1 within the soft tissue. Therefore, a sonographic view behind
bony structures or through organs filled with air is almost impossible. Fur-
thermore, water-based gel must be used for air-free coupling the transducer
to the human body.

Furthermore, the sound intensity is attenuated from expansion. The atten-
uation increases linear with the sound frequency but spatial resolution requires
high frequency. Therefore, typical diagnostic scanners operate in the frequency
range of 2 — 18 MHz trading-off spatial resolution and imaging depth.

Technically, a piezoelectric crystal is used to convert an electrical signal
into a mechanical movement, and the deformation of the crystal is coupled
into the body. Then, the same transducer is used to detect the echos. There
are several options to form an image from this pulse-echo signal (Fig.1.11):

e A-mode: In amplitude mode, the echo intensity is plotted on the screen as
a function of depth;
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Fig. 1.12. B-mode sector scan [2]. An
array of transducers is used to scan a
sector. In B-mode, reflections at tissue

N borders are displayed within a
Sanseee fan-shaped aperture, which is typically
":"."'-‘4:: for medical ultrasound. Turning the
,-.’.:’:"m':.-.---% transducer array perpendicularly
“3:_-3;;::- - allows for imaging cone-shaped
Treeesast volumes

e B-mode: In brightness mode, the echo intensity is coded with gray scales.
This allows composing an array of transducers simultaneously scanning
a plane through the body (Fig.1.12). Parallel and sector scanners are
available;

e TM-mode: Time motion diagrams visualize movements of sound-reflecting
tissue borders. This mode offers functional rather than morphological
inspection;

e M-mode: In motion mode, a sequence of rapidly acquired B-mode scans
is displayed as moving picture. This is the most common mode in clinical
ultrasound;

e D-mode: The doppler mode makes use of the doppler effect (i.e., a shift in
frequency that occurs if the source of sound, the receptor, or the reflector
is moved) in measuring and visualizing blood flow. Several visualization
modes are used:

—  Color Doppler: The velocity information is presented as a color-coded
overlay on top of a B-mode image;

—  Continuous Doppler: Doppler information is sampled along a line
through the body, and all velocities detected at each point in time
are presented (on a time line);

— PW Doppler: Pulsed-wave Doppler information is sampled from only a
small sample volume (defined in the 2D B-mode image), and presented
on a time line;

—  Duplez: Color and (usually) PW Doppler are simultaneously displayed.

1.2.3 Digitalization

Digital image processing implies a discrete nature of the images. Regardless
whether a film-based radiograph is digitized secondarily with a scanner, or
the device primarily delivers a digital pixel (voxel) matrix, digitization effects
alter the image. Digitization applies to both the definition (sampling) and the
value range (quantization).
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6 bit 3bit 2 bit difference ROI from (d

Fig. 1.13. Quantization. A lateral chest radiograph is shown with 6 bit, 3 bit, and
2 bit, which equals 64, 8, and 4 different gray scales in panel (a), (b), and (c), respec-
tively. Disregarding saturation effects occurring within bone and air, the difference
between 8 bit and 7 bit representation results in white noise (d,e). Panel (d) shows
the histogram-optimized difference image, and (e) a centered Region of Interest
(ROI) of 100 x 100 pixel

Quantization

Quantization refers to the digitization of the value range. We need to deter-
mine the maximal number of gray scales for every image. Usually, 8 bit and
24 bit are chosen for gray scale and full color images, respectively, allowing 256
different values in each band. In medicine, radiography or CT usually delivers
12bit = 4,096 different values. If we assume a continuous brightness, quan-
tization always worsen the image quality. The alteration can be modeled as
additive noise, and the SNR of our digital image is improved by an increased
number of gray scales.

Quantization noise is visualized in Fig.1.13. With printing, we do not see
any differences between 8 bit, 7 bit, or 6 bit quantization. If the number of gray
scales becomes small, artefacts are apparent (Fig.1.13b,c). Subtracting the
7 bit representation from the original 8 bit image illustrates the quantization
noise (Fig. 1.13d,e).

Sampling

Sampling refers to the digitization of the definition range. According to the
linear system theory, an analogue signal can be unambiguously represented
with a discrete set of samples if the sampling rate exceeds two times the high-
est frequency occurring in the image (Nyquist theorem). Shannon’s popular
version of the sampling theorem states [3]:

If a function z(t) contains no frequencies higher than f, Hz, it is com-
pletely determined by giving its ordinates at a series of points spaced

_ 1
t= s seconds apart.

Once the sampling theorem is satisfied, we cannot improve the image qual-
ity adding more pixels, which is contrarily to the effects of quantization. In
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Fig. 1.14. Sampling. Artefacts from sub-sampling are visible if the printer resolution
is smaller than the pixel scale. In panel (b), the first partial pixel effects should be

e

Fig. 1.15. Moiré pattern. This pattern is obtained from radiographing a lead grid.
The spatial resolution of the entire X-ray imaging chain, disregarding whether it
ends analogously or digitally, is measured by the distance from the center to that
radius where individual lines can be differentiated. Furthermore, a four leaf clover
can be seen in the center although it is neither with the lead lamella nor the squared
pixel grid

spatial discretization, increasing the number of samples beyond the Nyquist
rate only increases the file size of raw data, but not the information coded
in it.

Figure 1.14 emphasizes the loss of information that results from applying
an insufficient number of pixels for image acquisition. For instance, the spon-
gious structure of the jaw bone disappears (Fig. 1.14c—¢). Furthermore, gray
scales are obtained misleadingly indicating a different material. For instance
at the border of the implants, pixel values with p of bone are obtained. In
CT imaging, this partial pixel effect is also known as partial volume effect,
see Sect. 1.8.1.

Similar to insufficient quantization, subsampling suppresses information
in the digital image representation. In contrast to quantization, information
is falsely added to an image if the sampling theorem is not fulfilled. Partial
effects are one example. More important are aliasing effects. In 2D imaging,
Moiré patterns are obtained whenever a regular structure mismatches the grid
(Fig. 1.15).
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1.3 Image Enhancement

Low-level methods of imaging processing, i.e., procedures and algorithms
that are performed without a priori knowledge about the specific content
of an image, are mostly applied to pre- or post-processing of medical images
(Fig. 1.1). Therefore, the basic methods of histogram transforms, convolu-
tion and (morphological) filtering are mostly disregarded unless required
for further understanding of this text (see the list of related textbooks on
page 49). As a special preprocessing method for medical images, techniques
for calibration and registration are briefly introduced.

1.3.1 Histogram Transforms

Point operations (pixel transforms) are based on the histogram of the image.
Modifying the pixel values, all pixels are transformed independently from
their positions in the image and their immediate neighborhood. Therefore,
these type of transform is also referred to as point operation.

Histogram

The histogram shows the frequency distribution of pixel values (e.g., gray
scales) disregarding the certain positions where the gray scales occur in the
image. Simple pixel transforms can be defined using a histogram. For example,
through the stretching of gray scales, the contrast of an image is improved
(Fig. 1.16). After determining the histogram, upper and lower bounds are

a b

h(g)

T
0 50 100 150 200 255

Fig. 1.16. Histogram stretching. A ROl is taken in the area of the temporomandibu-
lar joint from an intra-oral radiograph (a). Resulting from under-exposure, the
spongy bone structure is displayed quite poorly. The associated histogram (b) is
only narrow occupied (red). By stretching the histogram, the columns are linearly
pulled apart (blue) and the contrast of the transformed radiograph is increased (c)
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Old New pixel value Old  New pixel value Table 1.4. Look-up table for
Gray Red Green Blue|| Gray Red Green Blue pseudo coloring. For each value
0 0 0 0 in the range of the input
1 1 0 2 246 254 244 239 image, the lookup table holds a
2 2 0 3 247255 245 243 value from the range of the
3 3 0 > 248 255 245 244 output image. The color
4 4 1 7 249 255 246 246 .
5 5 1 9 050 955 247 248 palette shown here is used for
6 5 2 12 || 251 255 249 250 pseudo coloring keeping the
7 5 2 14 250 9255 251 252 original brightness progression
8 5 3 16 || 253 255 251 253 of the input image [4]
9 5 4 18 254 255 253 254

255 255 255 255

AT (N

Fig. 1.17. Pseudo coloring [4]. X-ray image of a pelvic bone metastasis after radio-
therapy (a); pseudo-colored image of (a) using the corner colors of the RGB cube
(b), colors of constant brightness (c), and colors with continuous brightness pro-
gression obtained from a spiral around the gray diagonal of the RGB cube (d). The
arrow indicates local contrast enhancement

located, and a linear transform is applied that maps the lower bound to zero
and the upper bound to the maximal gray scale (i.e., 255 for 8 bit images).
If the histogram of the initial image does not contain all possible gray scales,
the gray scale distance between neighbored pixels is enlarged, which results
in an enhanced contrast.

Look-Up Table (LUT)

Technically, computation of histogram transforms is based on a Look-Up Table
(LUT). For all pixel values, the lookup table contains a new value, which can
also originate from another range of values. The example in Table 1.4 assigns
each gray scale with a triple for Red, Green, and Blue (RGB). This transform
is called pseudo coloring, and it is frequently used in the biomedical domain
to enhance local contrast (Fig. 1.17). Computer graphic boards may limit the
number of gray scales to 256 (8 bit), but offer 256% = 16,777,216 colors. Special
algorithms are recommended for the pseudo coloring in the medical context.
In other words, pseudo coloring allows presentation of data, where the range
of values exceeds the length of the RGB cube’s edges without reducing the
information as it would result from windowing.
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Fig. 1.18. Convolution templates. The sliding average (a) and the binomial low-
pass filter (b) cause a smoothing of the image. The binomial high-pass filter (c),
however, increases contrast and edges, but also the noise in the image. The templates
(a) to (c) must be normalized to make sure that the range domain of values is not
exceeded. The contrast filter (d) is based on integer pixel values. The convolution
with (d) is therefore easy to calculate. The anisotropic templates (e) and (f) belong
to the family of Sobel operators. Eight Sobel masks can be generated by rotation
and mirroring for direction-selective edge filtering (see Fig. 1.24)

1.3.2 Convolution

In contrast to point operations (histogram transforms), the considered pixels
are combined with the values of their neighborhood when discrete filtering
is applied. The underlying mathematical operation, i.e., convolution, can be
characterized with the help of so-called templates (Fig.1.18). A template is
a mostly small, squared mask of usually odd lateral length. This template is
mirrored along two axes (hence, the name “convolution” is commonly used)
and positioned in one corner of the input image. The image pixels under the
mask are named kernel'. Each pair of corresponding pixel values of template
and kernel are multiplied and then summed up. The result is registered at the
position of the mask’s center pixel in the output image. Then, the template is
shifted row by row and column by column to the next positions on the input
image, until all the positions have been visited, and thus, the output image
has been calculated completely.

The pixel values of the template determine the effect of the filter. If only
positive values are used in the template, basically a (weighted) averaging is
calculated in the local neighborhood of each pixel (Fig. 1.18a,b). The resulting
image is smoothed and appears with reduced noise. However, the sharpness
of edges is also reduced. If the template is composed of positive and nega-
tive coefficients, the contrast in the image is intensified, and the edges are
highlighted (Fig. 1.18¢c—f). Anisotropic (i.e., not rotationally symmetric) tem-
plates also have a preferred direction (Fig.1.18e,f). Hereby, the contrasts can
be direction-selectively strengthened.

1.3.3 Mathematical Morphology

Another approach to filtering is adapted from the mathematical morphology.
Although morphologic operators can also be defined for gray scale images,

! In the literature, “mask”, “kernel”, and “template” frequently are used as syno-
nyms.
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Fig. 1.19. Binary
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morphologic filtering is principally performed on binary input images, i.e.,
each pixel is assigned either TRUE or FALSE. According to a general convention,
the white pixels in the binary image indicate relevant segments and the black
pixels indicate the background. For printing, however, this assignment may be
inverted. The binary template, which is also referred to as structural element
(structuring element, structel, strel), is associated to the binary image using
logical operations, in particular:

erosion (based on logical AND of structel and binary image),

dilation or dilatation (based on logical OR of structel and binary image),
opening (erosion followed by dilatation using the same structel),

closing (dilation followed by erosion using the same structel), and
skeleton (e.g., by erosion with various structels).

As it can be seen in Fig. 1.19, the erosion reduces the size of a segment, and
the dilation leads to its enlargement. The opening removes small details on
the outline of segments or the background, without affecting the total size of
relevant regions. The closing is able to remove holes in the interior of a region
and smooth its contour. Here, the size of the segment is roughly maintained,
too. The skeleton is a path with thickness of one pixel, which is located in the
middle of the segment.

Binary morphology is applied frequently in medical image processing, for
instance to clean up shapes after pixel-based segmentation (see Sect.1.6.1).
Gray scale morphology is simply a generalization from 1bit (binary) images
to images with multiple bits per pixel, where MIN and MAX operations replace
the AND and OR operations of binary morphology, respectively.

1.3.4 Calibration

If the physician intents to take quantitative measurements from an image, a
careful calibration of the imaging modality is required. Both, geometry (spatial
domain) and brightness or color intensity (value domain) must be adapted
to the modality. Calibration is device-specific but disregards the biological
content captured, and thus, it is part of low-level processing methods. While
reading a radiograph, calibration is made unconsciously by the radiologist.



20 T.M. Deserno

a b

Fig. 1.20. Geometric distortion and brightness variation [5]. By endoscopic exam-
inations, barrel distortions are often generated, which must be corrected before the
image can be analyzed quantitatively. In addition, the boundary areas in the video
appear darker and blurred. Image (a) is generated with a rigid laryngoscope, which is
used for the examination of the larynx. Image (b) is taken with a flexible endoscope
for nasal laryngoscopy. Both endoscopes are used in clinical routine. Microscopy and
other optical methods may produce similar artifacts

However, it must be explicitly implemented for computerized image analysis
and measurements.

Geometric aberrations (distortions) have the consequence, that relevant
structures of the same size are displayed depending on the position within the
image. In the biomedical sciences, the positioning of the imaging device must
not affect any measurements. For example in endoscopy, resulting from the
optical devices in use, so called barrel distortions are originated (Fig.1.20).
Even in simple planar radiography, the objects, which are far away from the
image plane, appear larger than those, which are located close to the imaging
device. This must be kept in mind whenever geometric measurements in digital
X-rays are taken and displayed to the physicians: point distances in digital
images can be converted into length measurements only if a fixed scale is
assumed, which is often not fulfilled.

In the same way, the absolute assignment of the pixel values to physical
measurements usually is problematic. For example in X-ray imaging, the linear
correspondence of brightness values to the accumulated absorption coefficient
of the imaged structure is possible, if an aluminum (step) wedge with known
X-ray absorption properties is placed beside the object. In digital video record-
ing, white balancing must be performed such that the color values corresponds
with reality. However, different illumination of the same scene may still alter
the captured colors.

1.3.5 Registration

Often, an absolute calibration of examination procedures is not possible or
only limitedly feasible. Then, registration can be used to achieve an approx-
imation of two or more images such that at least a change in measured
dimensions can be quantified. For example, an acute inflammation turns tissue
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Fig. 1.21. Unimodal Registration. In dental implantology, reference and follow-up
images are taken at various points of time. Geometric registration with subsequent
contrast adjustment enables pixel-by-pixel subtraction. In the subtraction image,
bone destruction is clearly emphasized and can be segmented easily on the pixel
level of features (red)

into a reddish color. Under treatment, the absolute redness of the tissue is less
interesting than its relative change as compared to the findings of previous
recordings.

Unimodal Registration

This term refers to the relative calibration of images that have been acquired
with the same modality. For instance, images that have been taken from the
same patient but at different points of time are adjusted in order to quantify
the course of the disease. As in the field of calibration, we differ between
geometric registration and color or contrast adjustment, if the registration is
performed in the spatial domain or the value range, respectively. Figure 1.21
illustrates the diagnostic potential of registration in dental implantology. After
registration, the appraisal of the status of peri-implant bone is significantly
simplified by the subtraction of recall and follow-up recordings.

Multi-Modal Registration

The images to be compared are captured with different modalities. For exam-
ple, a 3D rigid registration is illustrated as the movement of the hat on the
head. Especially in neurology, these methods have a crucial meaning. Since
tumor resection in the brain must be executed very carefully, in order to avoid
damage of neighbored brain areas, functional and morphological brain images
are registered to plan the procedure. While morphology can be adequately
represented in MRI or CT data, function of brain areas is frequently local-
ized using Positron Emission Tomography (PET) or Single Photon Emission
Computed Tomography (SPECT). Thus, multi-modal registration of func-
tional and morphological data provides valuable additional information for
diagnosis and therapy (Fig. 1.22).
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Fig. 1.22. Multi-modal registration
and fusion [6]. 1. Row: T1-weighted
MRI of a 66 year old subject with
right parietal glioblastoma; 2. Row:
Corresponding PET layers after
multi-modal registration; 3. Row:
Fusion of registered layers to support
intervention planning; 4. Row: The
fusion of MRI with PET of the
sensorimotor-activated cortex area
proves that the relevant area is out of
focus

Table 1.5. Taxonomy of 8D visualization methods. Triangulation for surface-based
rendering is described in textbooks on computer graphics. The marching cube
approach is described in the text. As a simple example of surface-based direct vol-
ume rendering methods, depth shading visualizes the length of rays passing through
the volume until they hit the surface. Integral shading codes the sum of voxel values
along the ray as gray scale. It is therefore frequently used to obtain radiograph-like
images based on CT data

Concept Surface-oriented method Volume-oriented method
Surface reconstruction Triangulation Cuberille approach
and rendering Marching cube
Direct volume rendering Depth shading Integral shading
Depth gradient shading Transparent shading
Gray gradient shading Maximum projection

1.4 Image Data Visualization

Under the concept of image visualization, we had summarized all the trans-
forms which serve the optimized output of the image. In medicine, this includes
particularly the realistic visualization of 3D data. Such techniques have found
broad applications in medical research, diagnostics, treatment planning and
therapy. In contrast to problems from the general area of computer graph-
ics, the displayed objects in medical applications are not given implicitly
by formal, mathematical expressions, but as an explicit set of voxel. Con-
sequently, specific methods have been established for medical visualization.
These methods are based either on a surface reconstruction or on a direct
volume visualization, and lighting and shading are also regarded (Table 1.5).
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1.4.1 Marching Cube Algorithm

The marching cube algorithm was specifically developed for surface recon-
struction from medical volumes. Here, the voxel is no longer interpreted as a
cube of finite edge length but as a point. It is equivalent to a point grid for
visualizing volumes. In this volume, a cube is considered with four corners
in each of the two adjacent layers. Utilizing symmetry, the complex prob-
lem of surface production is reduced to only 15 different topologies, which
can be calculated most efficiently since the polygon descriptions that belong
to the basic topologies can be stored in a lookup table. Similar to the pro-
cess of spatial convolution, the cube is positioned successively at all points
in the volume dataset (marching). After completion of the marching cube
algorithm, a segmented volume is transformed into a triangulated surface.
However, the surface is build from a very large number of triangles, which
may be reduced significantly by heuristic procedures without any discernible
loss of quality. Reducing the number of elements to be visualized supports
real-time visualization of the volume.

1.4.2 Surface Rendering

To generate photo-realistic presentations of the volume surface, the lighting
is simulated analog to natural scenes. According to the lighting model by
Phong, ambient light is created through overlapping of multiple reflections,
diffuse scattering on non-shiny surfaces, and direct mirroring on shiny surfaces.
While the intensity of the ambient light remains constant in the scene for all
surface segments, the intensities of diffuse and speckle reflections depend on
the orientation and characteristics of surfaces as well as their distances and
directions to the light source and the observing point of viewing.

Without shading, one can recognize the initial triangles. This is a nasty
artifact in computer graphics. Therefore, various strategies for shading have
been developed to improve significantly the visual impression. For instance,
the Gouraud shading results in smooth blunt surfaces, and the Phong shading
also provides realistic reflections. In newer applications, transparencies are
also modeled to glance at encapsulated objects. Moreover, textures or other
bitmaps on the surfaces can be projected to reach a more realistic impression
of the scene.

1.4.3 Volume Rendering

Direct volume visualization is abstained from preliminary calculation of the
object surface. The visualization is based directly on the voxel data and,
therefore, possible without any segmentation. This strategy allows visualiza-
tion of medical 3D and 4D data by radiologists for interactive localization
of pathological areas. The volume is processed either along the data layers
(back-to-front or front-to-back) or along an imaginary light ray. Based on
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the observer position, rays will be pursued through the volume (ray-tracing).
Hereby, the recursive follow-up of secondarily reflected rays is also possible
(ray-casting). Although quite realistic visualizations can be provided to the
observer, problems arising from the discrete nature of pixel topology (see
above) have led to a multitude of algorithmic variants.

In general, parameters are extracted from voxel intensity along the rays
and applied as gray or color value at the corresponding position in the view-
ing plane. This procedure is also referred to as shading. By the methods
of the surface-based shading, light source and image plane are placed on
the same side of the object, while the volume-oriented procedures radio-
graph the entire object according to X-ray imaging, i.e., the object is located
between light sources and the observation (Table 1.5). Combining direct vol-
ume with surface-based approaches, amazingly realistic scenes can be created
(Fig. 1.23).

Fig. 1.23. 3D-visualization with Vozel-Man [7]. This 3D model of the internal
organs is based on the Visible Human data. The Voxel-Man 3D-Navigator provides
unprecedented details and numerous interactive possibilities (left). Direct volume
rendering and surface-based visualization of segmented objects are combined with
integral shading (right)
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1.5 Visual Feature Extraction

In Fig. 1.1, feature extraction is defined as the first stage of intelligent (high
level) image analysis. It is followed by segmentation and classification, which
often do not occur in the image itself, i.e., the data or pixel level, but are
performed on higher abstraction levels (Fig. 1.2). Therefore, the task of fea-
ture extraction is to emphasize image information on the particular level,
where subsequent algorithms operate. Consequently, information provided on
other levels must be suppressed. Thus, a data reduction to obtain the char-
acteristic properties is executed. The schema in Fig. 1.1 is greatly simplified
because many connections between the modules were left out on behalf of
readability. So for example, cascades of feature extraction and segmentation
at various levels of abstraction can be realized gradually, before classification
is eventually performed at a high level of abstraction. Just before classifica-
tion, a step of feature extraction that is based on the region level is often
performed as well.

1.5.1 Data Level

Data-based features depend on the joint information of all pixels. Therefore,
all transforms manipulating the whole matrix of an image at once can be
regarded for data feature extraction. The most famous example of a data
feature transform is the Fourier transform, which describes a 2D image in
terms of frequencies, according to their amplitude and phase. Furthermore,
the Hough, wavelet or Karhunen-Loéve transforms provide possibilities of data
feature extraction (see list of textbooks on image processing on page 49). These
methods are not in the focus of research in biomedical image processing. In
fact, these procedures are rather adapted from technical areas into medical
applications.

1.5.2 Pixel Level

Since pixel-based features depend on the values of individual pixels, all point
operations that have been defined in Sect.1.3 can be regarded as feature
extraction on the pixel level. Another example was already presented in
Fig. 1.21, namely, the arithmetic combination of two images. The subtraction
of reference and recall images after appropriate registration in both spatial
and value ranges enforce local changes in the images as characteristic pixels.

1.5.3 Edge Level

Edge-based features are defined as local contrast, i.e., a strong difference of
(gray scale or color) values of adjacent pixels. Thus, the discrete convolu-
tion introduced in Sect. 1.3 can be used with appropriate templates for edge
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Fig. 1.24. FEdge extraction using the
Sobel operator. The X-ray image
(center) was convolved with the eight
direction-selective Sobel templates.
The strong contrasts on the edges of
metallic implants are further
strengthened by binarization of the
edge images. An isotropic edge image
is obtained if, e.g., the maximum at
each pixel position is chosen from the
eight direction-selective sub-images

extraction. All masks for high-pass filtering amplify edges in an image. The
templates of the so called Sobel operator (Fig. 1.18) are particularly suited for
edge extraction. Figure 1.24 exemplarily presents the result of the orientation-
selective Sobel masks when applied to a dental radiograph. The edges of
the metallic implants are clearly highlighted. An isotropic Sobel-based edge
image is achieved, e.g., by a linear or maximum combination of the eight
sub-images.

1.5.4 Texture Level

Textural features have been used in medicine for a long time. In textbooks
on pathology one can read many metaphors to describe texture, such as a
cobblestone-shaped mucosal relief, onion-like stratification of subintima, or
honeycomb-structured lung tissue. As intuitive as these metaphors are for
people, as difficult is their computational texture processing, and a variety of
procedures and approaches have been developed.

Texture analysis attempts to quantify objectively the homogeneity in a
heterogeneous but at least subjectively periodic structure (see the spongious
bone structure in Fig. 1.18¢ as an example). In general, we can distinguish:

e structural approaches that are based on texture primitives (textone, tex-
ture element, texel) and their rules of combinations and

e statistical approaches that describe texture by a set of empirical parame-
ters.

1.5.5 Region Level

Regional features are used primarily for object classification and identification.
They are normally calculated for each segment after the segmentation process.
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The most important parameters to be mentioned here are:

e [ocalization-descriptive measurements such as size, position, and orienta-
tion of the major axis and

e delineation-descriptive measures such as shape, convexity, and length of
the border.

Since the degree of abstraction on the region level is rather high as com-
pared to the previous levels, a priori knowledge has already been largely
integrated into the image processing chain. Therefore, universal examples can-
not be specified. In fact, the definition of regional feature extraction is strongly
dependent on the respective application (see Sects. 1.5.5 and 1.6.3).

1.6 Segmentation

Segmentation generally means dividing an image into connected regions. With
this definition, the production of regions is emphasized as the pre-stage of
classification. Other definitions accentuate the various diagnostically or ther-
apeutically relevant image areas and, thus, focus the most common application
of medical imaging, namely, the discrimination between healthy anatomical
structures and pathological tissue. By definition, the result of segmentation
is always on the regional level of abstraction (cf., Fig.1.2). Depending on the
level of feature extraction as an input to the segmentation, we can method-
ically classify pixel-, edge-, and texture- or region-oriented procedures. In
addition, there are hybrid approaches, which result from combination of single
procedures.

1.6.1 Pixel-Based Segmentation

Pixel-based procedures of segmentation only consider the gray scale or color
value of current pixels disregarding its surroundings. It should be noted that
pixel-based approaches are not segmentation procedures in the strict sense
of our definition. Since each pixel is considered only isolated from its neigh-
borhood, it cannot be ensured that actually only connected segments are
obtained. For this reason, post-processing is required, e.g., by morphologic
filtering (see Sect.1.3.3). Most pixel-based procedures use thresholds in the
histogram of an image and employ more or less complex methods to determine
this threshold. Furthermore, statistical methods for pixel clustering are used.

Static Thresholding

If the assignment of pixel intensities is well known and constant for a certain
type of tissue, static thresholds are applicable. A static threshold is indepen-
dent of the individual instance in a set of similar images. For example, bone or
soft tissue windows in the CT can be realized (Fig. 1.25) with static thresholds
on the Hounsfield Unit (HU).
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Fig. 1.25. Static thresholding [5].
Pixel-based segmentation in CT relies
on Hounsfield Units (HU), which
allow the definition of windows for
different types of tissue: bone

[200. ..3,000], water [—200...200],
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Adaptive Thresholding

Globally adaptive thresholds result from analyzing each individual image
entirely. They are exclusively used in this image. The well-known method
of Otsu is based on a simple object vs. background model. The threshold
in the histogram is determined such that the two resulting classes minimize
the intra-class variance of gray scale values, while the inter-class variance is
maximized. For example in skeletal radiography, bone, soft tissue and back-
ground can be seen, but the actual mean gray scale of this tissue classes may
vary with respect to illumination and exposure parameters. By adopting the
threshold to the image, the Otsu segmentation is able to balance this variation
in imaging.

Using locally adaptive thresholds, the threshold is computed not only for
each image individually, but also for each region within an image. In the
extreme case, an individual threshold is determined for every pixel posi-
tion (i.e., pixel-adaptive). This is particularly necessary if the simple object
to background assumption is globally invalid because of continuous bright-
ness gradients. For example, due to the irregularity of optical illumination,
the background in microscopy imaging of cell cultures (Fig. 1.26a) runs from
light shades of gray (top right) to dark shades of gray (bottom left), where
also the gray scale values of the cells are located. A global threshold deter-
mined with the dynamic procedure of Otsu (Fig.1.26b) does not separate
the cells from backgrounds, although the global threshold had been deter-
mined image-individually. The locally adaptive segmentation (Fig. 1.26¢) leads
to a significantly improved result, but isolated block artifacts appear. These
artifacts can be avoided only by pixel-adaptive thresholding (Fig. 1.26d).

Clustering

Pixel clustering is another way of pixel-based segmentation. This statistical
method is particularly suitable if more than one value is assigned to each pixel
and regarded in the segmentation process (e.g., color images). Figure 1.27
illustrates the iso-data clustering algorithm (also referred to as k-means clus-
tering) in a simple 2D case. All pixel values are registered as data points in
the 2D feature space. Initialized by the number of segments to be obtained,
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Fig. 1.26. Dynamic thresholding in microscopy [8]. The microscopy of a cell culture
(a) was segmented using a global threshold (b), locally adaptive (c) and pixel-
adaptive (d). According to morphological post-processing for noise reduction and a
connected components analysis, the final segmentation is shown in (e)
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Fig. 1.27. Iso-data pizel clustering. The iterative iso-data algorithm for pixel clus-
tering is exemplified in a 2D feature space. The number of clusters is given a priori.
After arbitrary initialization, the data points are assigned to the nearest cluster
center. Then, the positions of the centers are recalculated and the assignment is
updated until the process finally converges. The final location of cluster centers is
not affected by their initial position. This may only have impact to the number of
iterations

the initial cluster centers are arbitrarily placed by the algorithm. Then, the
following two steps are repeated iteratively until the process converges:

1. Each data point is aligned to the closest cluster center.
2. Based on the current assignment, the cluster centers are recalculated.

It can be proven mathematically that the resulting cluster centers are
independent of initial positions, which may only impact the number of itera-
tions and hence, the calculation time. However, either a fixed distance metrics
(e.g., Euclidean (geometric) distance) or a data-adaptive metrics (e.g., Maha-
lanobis distance) must be selected, which certainly impacts the clustering
result. Also, the predefined number of cluster centers is an important param-
eter. If the application domain does not allow to determine the number of
segments a priori, pixel clustering can be performed for a different number
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of centers and the residual error of the computed model can be analyzed to
determine the appropriate number of centers.

Post-Processing

Segments obtained from pixel-based analysis usually are incoherent and highly
noisy (see Fig. 1.25 or Fig. 1.26b). Therefore, post-processing is required. Noisy
structures can be effectively reduced with methods of mathematical morphol-
ogy. While a morphologic opening removes spread parts from the segments,
holes are closed by morphologic closing (see Sect. 1.3.3). The connected com-
ponents algorithm provides each separated segment with a unique reference
number. In the segmentation of the cell image (Fig. 1.26a); clustering provides
a rough cluster of “cells”, which is separated from the “background”, although
many individual cells are shown separately in Panel 1.26(d). After morpholog-
ical post-processing and connected components analysis, cells are separated
and colored (labeled) differently according to their segment number. Now,
they can be further processed as independent objects (Fig. 1.26e).

1.6.2 Edge-Based Segmentation

This type of segmentation is based on the abstract level of edges and tries
to capture the objects due to their closed outline in the image. Hence, edge-
based segmentation procedures are only used for such problems, where objects
are represented as clearly defined boundaries. As described in Sect. 1.1.3, this
occurs rather seldom when biological tissue is imaged. One of these special
cases is a metallic implant, which is displayed in a radiograph.

In general, the image processing chain for edge-based segmentation is com-
posed of edge extraction and edge completion. Edge extraction is usually
obtained by edge-based feature extraction, as described in Sect. 1.5.3, such as
generated with the Sobel filter (see Fig.1.24). The next steps of processing
are binarization, to obtain only edge pixels and non-edge pixels, morphologi-
cal filtering to reduce noise and artifacts, and, finally, a skeleton of the edge
is computed. Tracing and closing of binary contours are the main tasks of
the edge-based segmentation. Almost exclusively, heuristic methods are used.
For example, one can search along differently directed rays to find connecting
pieces of a contour. This procedure aims at bridging local gaps on the edge
profile.

Livewire Segmentation

In practice, edge-based segmentation is often realized semi-automatically. By
the interactive livewire segmentation, the user clicks onto or near by the edge
of the Object of Interest (OOI), and the computer determines the exact edge
location based on local gradients. Then, the computer calculates a cost func-
tion, which again is based on local gradients. For all paths (wire) to the current
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position of the cursor, the path with the lowest cost is displayed in real time
(live) as the cursor is moved manually. Therefore, the metaphor “livewire”
is commonly used to refer to this interactive method of segmentation. If the
cursor moves far from the object, the contour is lost but if the cursor is placed
near to the contour again, the cost function ensures that the wire snaps back
to the desired object. Finally, the user must provide only a few support-
ing points by hand and can directly verify the correctness of segmentation
(Fig. 1.28). Application of such procedures can be found at computer-assisted
(semi-automatic) segmentations in layers of CT data, e.g., to produce a model
for surgical intervention planning. Guided by the cost function, the segmen-
tation result (delineation) is independent of the user placing the supporting
point (localization).

1.6.3 Region-Based Segmentation

As an advantage of region-based segmentation, only connected segments are
produced, and morphological post-processing is avoided. There are agglom-
erative (bottom-up) and divisive (top-down) approaches. All approaches are
based on a certain distance or similarity measure to guide the assignment
of neighbored pixels or regions. Here, plenty of methods are used. Easiest,
one can compare the mean gray value but complex texture measures (see
Sect. 1.5.4) are often used, too.

Fig. 1.28. Edge-based interactive livewire segmentation [9]. The user marks a start-
ing point with the cursor (yellow) on the border between white and gray matter (a).
The connection to the current cursor position is denoted with red, cf. (b) to (e).
Depending on the cursor position, the contour can also jump between very different
courses (d, e). So, the user can interactively place an appropriate fix point. The
fixed curve segment is shown in blue, cf. (e) to (g). In this example, only five points
are manually marked to achieve a complete segmentation (h)
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Agglomerative Algorithm

Region growing, in 3D also referred to as volume growing, is a well known
example of an agglomerative procedure. Starting from seed points, which may
be placed either automatically or manually, neighbored pixels are iteratively
associated to the growing areas if the distance measure is below a certain
threshold. This process is iterated until no more merges can be carried out.
From this qualitative description, the variety and sensitivity of the parame-
ters of such procedures are already clear. Special influence on the result of
agglomerative segmentation has:

the number and position of seed points,

the order in which the pixels or voxels are iteratively processed,
the distance or similarity measure applied, and

the threshold used to guide merging.

Therefore, agglomerative algorithms for segmentation often are affected
by small shifts or rotations of the input image. For instance, if z- and y-axis
of the image matrix are transposed, the result of segmentation is different
regarding size and shape of OOI, which is an unwanted effect in medical
image processing.

Divisive Algorithm

The divisive approach somehow inverts the agglomerative strategy. By split-
ting, the regions are iteratively subdivided until they are considered suf-
ficiently homogeneous in terms of the chosen similarity measure. As an
advantage, seed points are not required anymore, because the first split is
performed throughout the whole image. As a drawback, the dividing lines are
usually drawn horizontally or vertically, and this arbitrary separation may
separate the image objects. Therefore, split is unusually performed as a self
standing segmentation procedure, but rather combined with a subsequent
merging step (split and merge). Another drawback of divisive segmentation
procedures is the resulting wedge-formed boundary of objects, which may
require post-processing such as contour smoothing.

1.6.4 Over- and Under-Segmentation

A fundamental problem of pixel- and region-based segmentation is the dual-
ism between over- and under-segmentation. For a definition of these terms,
we rely on the general model of the image processing chain (see Fig.1.1).
Here, segmentation is regarded as a pre-stage for classification, in which the
extracted image segments are assigned to their semantic meaning. This can
take the form of automatically assigning concrete terms for the segments (for
example, the organ “heart” or the object “TPS implant screws” or, more
abstract, a “defect” or an “artifact”).
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In any case, the segment should be related directly to an object, if an
automatic classification is desired. In this context, under-segmentation occurs
if resulting segments are composed from parts of several objects. Analogously,
over-segmentation is obtained if a particular object is disintegrated into several
segments or parts of segments. The big problem with segmentation of medical
images is that over- and under-segmentation usually occur simultaneously.

Hierarchical Algorithm

Hierarchical procedures are one of the concepts to deal with the dualism
between over- and under segmentation. Starting on a lower resolution of the
image, where it is represented with a small number of pixles only, the chance
of splitting objects into more than one segment is decreased. Then, the exact
outline of each segment is reconstructed on higher resolutions, where more
details are contained (Fig. 1.29).

Hybrid Algorithm

In the practice of medical image processing, hybrid approaches of segmenta-
tion have come to the greatest importance. Here, one is trying to combine the
advantages of individual (usually edge- and region-based) algorithms without
maintaining their disadvantages.

For example, the watershed transform extends an agglomerative, regional
segmentation procedure with edge-based aspects of segmentation. Indeed, it
is based on the very intuitive analogy of the image with a topographic sur-
face: the gray levels of the pixels correspond to the altitude of the relief. In

Fig. 1.29. Hierarchical region merging. The skeletal radiograph of the hand (a)
has been segmented at various levels of resolution, cf. (b) to (d). The initial step
is obtained with the watershed transform (see Sect.1.6.4). Depending on the size
of the objects, they can be localized in the appropriate level (e), approximated by
ellipses (f), or visualized as nodes in a graph (g)
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hydrology, a catchment basin relative to a body of water (e.g., a river or an
ocean) is defined as a region where water from rain drains downhill into this
reference body, whereas the watershed lines (also known as water parting or
divide) separate different drainage basins. Similarly, a catchment basin sur-
rounded with watershed lines can be defined for every regional minimum in the
image. In general, the image gradient is taken as the topographic surface, so
as the catchment basins to correspond to connected and homogeneous regions
(structures of interest), and watershed lines to lie on higher gradient values.

The so-called classical watershed transform takes into account all regional
minima of the image to compute a primitive catchment basin for each one.
As natural images contain many regional minima, in general, too many basins
are created. The image is over-segmented (see, for example, Fig. 1.29b). How-
ever, over-segmentation can be reduced by filtering the image and, therefore,
decreasing the number of minima.

On the other hand, when applied to segmentation of medical images, the
watershed transform especially has the following advantages:

e From the region-based idea of the flooding process, contiguous segments
are determined inherently.

e From the edge-based approach of the watersheds, the objects are exactly
delineated.

e The problem of under-segmentation is avoided, since the merging of smaller
pools is prevented by the watersheds.

1.6.5 Model-Based Segmentation

State of the art methods for model- or knowledge-based segmentation involve
active contour models and deformable templates as well as active shape and
active appearance models.

Active Contour Model

Active contour models apply edge-based segmentation considering region-
based aspects and an object-based model of a priori knowledge. In the medical
application domain, so called snake and balloon approaches are applied for
segmentation of 2D and 3D image data and the tracing of contours in 2D
image and 3D image sequences, i.e., 3D and 4D data, respectively. The con-
tour of the objects, which is usually closely modeled, is presented by individual
nodes, which are — in the simplest case — piecewise connected with straight
lines forming a closed polygon. For the nodes, a scalar quality measure (e.g.,
energy) is calculated and optimized in the local environment of the nodes.
Alternatively, adjusted forces are determined that directly move the nodes.
The iterative segmentation process completes at minimal energy or if an opti-
mum balance of forces was found. Thus, the potential of this approach is kept
in the choice of capable quality criteria (e.g., energy) or forces.
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Snake

In 1988, Kass et al. have introduced classical snake approach [10]. It models
an internal and an external quality criterion, both as undirected energy. The
internal energy results from a predefined elasticity and stiffness of the contour,
which is high in places of strong bends or on buckling. The external energy
is calculated from an edge-filtered image. The external energy is small, if the
contour runs along edges. The idea behind this approach is an edge-based
segmentation combined with the a priori knowledge that biological objects
rarely have sharp-bending boundaries. With an optimal weighting of energy
terms, the contour course is primarily determined by the information of edges
in the image. However, if the object’s contour is partially covered or incom-
pletely captured, the internal energy ensures an appropriate interpolation of
the region’s shape.

So simple this approach has been formulated verbally, so difficult it is
to implement. During the iteration, the number of nodes must be constantly
adjusted to the current size of the contour. Furthermore, crossovers and entan-
glements of the moving contour must be avoided. The classical snake approach
also requires an already precisely positioned starting contour, which often
must be defined interactively. Then, the two steps of segmentation, i.e., local-
ization and delineation are performed again by man and machine, respectively.
This concept was also applied in the first publications of this segmentation
method. For a contour tracking of moving objects in image sequences, the
segmentation of image at time t serves as initial contour of iteration in image
t + 1. After a single initialization for the image ¢t = 0, the procedure runs
automatically. Hence, fluoroscopy and endoscopy are suitable modalities for
the application of the snake approach to track the shape of moving objects.

Balloon

Balloons are based on forces rather than energies. Besides the internal and
external force, an inner pressure or suction is modeled, which lets the contour
continuously expand or shrink. Figure 1.30 shows the inflation movement of
a balloon to segment the cell membrane, which is visualized by the synaptic
boutons of contacting dendrites in a microscopy of a motoneuron. Although
segmentation is done without an accurate initial contour, in the course of
iteration the balloon nestles onto the real contour of cell membrane. Another
advantage of the balloon model is that this concept is directly transferable
into higher dimensions (Fig. 1.31).

Other Variants

In recent developments of active contour models, it is attempted to incor-
porate further a priori knowledge, e.g., in the form of anatomical models.
Prototypes of the expected object shapes are integrated into the algorithm:
In each iteration, the distance of the current object shape to a suitable selected
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Fig. 1.30. Balloon segmentation of motoneuron cell membrane [11]. The frames
show the balloon at different iterations. By touching the cell membrane, the strong
image forces prevent further movement of the active contour. In this application, the
internal forces correspond physically to a membrane. This is clearly recognizable at
the “adhesion border” of the balloons reaching the dendrites (bottom left)

Fig. 1.31. Segmentation with a 3D balloon model [12]. The CT of a spine (left)
was segmented with a 3D balloon. In the surface-based rendering after automatic
segmentation, the prolapse is clearly visible (right). The visualization is based on
Phong shading (see Sect. 1.4.2)

prototype is modeled as an additional force on the node. With those exten-
sions, a “break out” of the active contour model is prevented also for long
passages of the local object boundary without sufficient edge information.

The complex and time-consuming parameterization of an active contour
model for a specific application can be based on manual and also automatic
reference segmentations. For the latter approach, different combinations of
parameters are determined and the segmentation is performed for all cases.
All resulting segmented contours are compared with the appropriate reference
contour, a priori defined as the ground truth of the training data. Then, that
set of parameters with the best approximation of the reference contour is
selected automatically.

Active Shape Model

In the biomedical sciences, OOIs such as bones or organs often have a sim-
ilar form or projected shape that may vary between individuals or different
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points of time. Therefore, a probabilistic model may be applied to explain the
shape variation. Segmenting an image imposes constraints using this model
as a prior. Usually, such a task involves:

1. registration of the training examples to a common pose,
2. probabilistic representation of the variation of the registered samples, and
3. statistical inference between the model and the image.

Introduced by Cootes et al. in 1995, active shapes aim at matching the model
to a new image [13]: for probabilistic representation (Step 2), the shapes are
constrained by the Point Distribution Model (PDM) allowing variation only in
ways that have been seen in the training set of labeled examples. For statistical
inference (Step 3), a local neighborhood in the image around each model
point is analyzed for a better position. Alternating, the model parameters are
updated to best match to these newly determined positions, until convergence
is reached.

Similar to active contour models, each training shape is represented by a
set of points, where each point corresponds to a certain landmark. To form a
feature vector x;, all landmark coordinates are concatenated. A mean shape &
and its covariance matrix S from N training sets is obtained by

1 Nl | Nl
7= — ) — Vs — )T
T=y ; x; and S N ;(x, z)(z; — ) (1.3)

The Principle Component Analysis (PCA) is applied for dimension reduc-
tion computing normalized eigenvectors and eigenvalues of S across all train-
ing shapes. The base @ of eigenvectors ¢ represents the principle modes of
variation, and the eigenvalues A indicate the variance per mode. The prior
model is generated from the ¢ largest eigenvalues. Now, any shape z may be
approximated by x ~ ¥ + ®v, where the weighting vector v is determined
minimizing a distance measure in the image, e.g., the Mahalanobis distance.

Figure 1.32 shows an application of the active shape method for bone
age assessment. The BoneXpert® method? robustly detects carpal bones and
phalanges as well as epiphysis using active shapes.

1.7 Classification

According to the general processing chain (see Fig.1.1), the task of the clas-
sification step is to assign all connected regions, which are obtained from the
segmentation, to particularly specified classes of objects. Usually, region-based
features that sufficiently abstract the characteristics of the objects are used to
guide the classification process. In this case, another feature extraction step
is performed between segmentation and classification, which is not visualized

2 Visiana Ltd, Holte, Denmark, http://www.bonexpert.com
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Fig. 1.32. Active shape segmentation of hand
radiopraph. BoneXpert® detects relevant bones and
measures distances, geometry and sizes to compute
skeletal maturity. Although in this example the first
metacarpal bone is misaligned, the automatically
suggested bone age, which is computed over several
regions, lies within the range of human inter-observer
variation

in Fig.1.1. These features must be sufficiently discriminative and suitably
adopted to the application, since they fundamentally impact the resulting
quality of the classifier.

For all types of classifiers, we can differ supervised (trained), unsupervised
(untrained) and learning classification. For example, pixel clustering, which
has been already introduced for pixel-based segmentation, is an unsupervised
classification process (see Fig.1.27). As a goal, individual objects are divided
into similar groups. If the classification is used for identification of objects, the
general principles or an exemplary reference must be available, from which the
ground truth of classification can be created. The features of these samples are
then used for parameterization and optimization of the classifier. Through this
training, the performance of the classifier can be drastically improved. How-
ever, supervised object classification is always problematic, if the patterns
that are classified differ remarkably from the trained patterns. In such cases,
the training set does not sufficiently reflect the real world. A learning classifier
has advantages here, because it changes its parameterization with each per-
formed classification, even after the training phase. In the following, however,
we assume a suitable set of features that are sufficiently characteristic and
large set of samples.

The classification itself reverts mostly to known numerical (statistical) and
non-numerical (syntactic) procedures as well as the newer approaches of Com-
putational Intelligence (CI), such as neural networks, evolutionary algorithms,
and fuzzy logic. In general, the individual features, which can be determined
by different procedures, are summarized either to numerical feature vectors
(also referred to as signature) or abstract strings of symbols. For example, a
closed contour object can be described by its Fourier-descriptors as a feature
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vector, or by means of basic line items such as “straight”, “convex”, and
“concave” forming a symbol chain.

1.7.1 Statistic Classifiers

Statistical classification regards object identification as a problem of the sta-
tistical decision theory. Parametric procedures for classification are based on
the assumption of distribution functions for the feature specifications of the
objects, and the parameters of the distribution functions are determined from
the sample. Non-parametric methods, however, waive such model assump-
tions, which are sometimes unobtainable in biomedical image processing. A
common example of such a non-parametric statistical object classifier is the
Nearest Neighbor (NN) classifier. All features span the feature space, and each
sample is represented by a point in this feature space. Based on the signature
of a segment, which has not been included in the training and now is assigned
to its nearest neighbor in feature space, the segment is classified to the asso-
ciated class of the assigned feature vector. The k-Nearest Neighbor (k-NN)
classifier assigns the majority class from the k nearest neighbors in feature
space (usually, k = 3 or kK = 5). An example of the k-NN classifier is given in
Fig. 1.33.

1.7.2 Syntactic Classifiers

In symbol chains, it is neither useful nor possible to define distance measure-
ments or metrics and to evaluate the similarity between two symbol chains,
such as used for feature vectors. An exception of this statement is given with
the Levenshtein distance, which is defined as the smallest number of modi-
fications such as exchange, erase, or insert, required to transform a symbol
chain into another.

The syntactic classification is therefore based on grammars, which can
possibly generate an infinite amount of symbol chains with finite symbol
formalism. A syntactic classifier can be understood as a knowledge-based
classification system (expert system), because the classification is based on a
formal heuristic, symbolic representation of expert knowledge, which is trans-
ferred into image processing systems by means of facts and rules. If the expert
system is able to create new rules, a learning classifier is also realizable as a
knowledge-based system.

It should be noted that the terms “expert system” or “expert knowl-
edge”, however, are not standardized in the literature. Therefore, “primitive”
image processing systems, which use simple heuristics as implemented distinc-
tion of cases to classification or object identification, are also referred to as
“knowledge-based”.



40 T.M. Deserno

pranemark

e o v
*

o oo :;'

° v
., Y TPS

»
»
»
> e

4
4 Frialit

feature space

Fig. 1.33. Identification of dental fixtures [14]. An implant is shown in the intra-
oral radiograph of the lower jaw (a). For feature extraction, the image is binarized
with a local adaptive threshold (b). The morphological filtering (erosion) separates
individual areas (c) and eliminates interference. In this example, three regions were
segmented (d). Further processing is shown for the blue segment. After its fade-
out, the gap of morphological erosion is compensated by a subsequent dilation (e),
and the result is subtracted from the intermediate image (b). Any coordinate of blue
segment from (d) identifies the corresponding region, which can be extracted now (g)
and aligned into a normal position using the Karhunen-Loeve transform. Geometric
dimensions are determined as region-based features and stored in a feature vector
(signature). As part of the training, the reference measures of different implant types
have been recorded in the feature space. The classification in the feature space is
done with the statistical &~-NN classifier (i), which identifies the blue segment reliably
as Branemark implant screw (j)

1.7.3 Computational Intelligence-Based Classifiers

As part of the artificial intelligence, the methods of CI include neural net-
works, evolutionary algorithms and fuzzy logic. These methods have their
examples in biological information processing. Although they usually require
high computational power, they are frequently used in biomedical image pro-
cessing for classification and object identification. Thereby, all the procedures
have a mathematical-based, complex background.

Neural Network

Artificial neural networks simulate the information processing in the human
brain. They consist of many simply constructed basic elements (i.e., neu-
rons), which are arranged and linked in several layers. Each neuron calculates
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the weighted sum of its input excitations, which is mapped over a nonlinear
function (i.e., characteristic curve) to the output. The number of layers, the
number of neurons per layer, the network’s topology, and the characteristic
curve of the neurons are predefined within the network dimensioning step.
On the one hand, heuristics are usually applied rather than methodological
derivations. On the other hand, the individual weights of the excitements are
identified numerically during the training of the network. Then, the network
remains unchanged and can be used as a classifier.

Evolutionary Algorithm

Evolutionary algorithms are based on the constant repetition of a cycle of
mutation and selection following the Darwinian paradigm of the survival of the
fittest. Genetic algorithms work on a number of individuals (the population).
The crossing of two randomly selected individuals and afterwards the mutation
changes the population. A fitness function evaluates the population in terms of
their goodness to problem solution. Although the selections are equipped with
a random component, fit individuals are frequently selected for reproduction.
Evolutionary algorithms can solve complex optimization problems amazingly
well, but for object classification, they are less successfully used than other
methods.

Fuzzy Algorithm

The idea of fuzzy logic is to extend the binary (TRUE or FALSE) computer
model with some uncertainty or blur, which exists in the real world, too.
Many of our sensory impressions are qualitative and imprecise and, therefore,
unsuitable for accurate measurements. For example, a pixel is perceived as
“dark”, “bright” or even “very bright”, but not as a pixels with the gray
scale value “231”. Fuzzy quantities are based mathematically on the fuzzy
set theory, in which the belonging of an element to a set of elements is not
restricted to the absolute states TRUE (1) or FALSE (0), but continuously
defined within the entire interval [0..1].

Beside classification, applications of fuzzy logic in biomedical image pro-
cessing can be found also for pre-processing (e.g., contrast enhancement),
feature extraction (e.g., edge extraction, skeleton), and segmentation.

1.8 Quantitative Measurements and Interpretation

While the visual appraisal by experts is qualitative and sometimes subject to
strong inter- as well as intra-individual fluctuations, in principle, a suitable
computer-aided analysis of biomedical images can deliver objective and repro-
ducible results. First of all, this requires a precise calibration of the imaging
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modality. Furthermore, partial (volume) effects of the imaging system and
particularities of the discrete pixel topology must be taken into account and
handled accordingly to ensure reliable and reproducible measurements.

Quantitative measurement is focused on automatic detection of objects as
well as their properties. Image interpretation steps further towards analyzing
the order of individual objects in space and/or time. It may be understood in
the sense of analyzing an abstract scene that corresponds to the ambiguous
goal of developing a “visual sense for machines”, which is as universal and
powerful as that of humans.

1.8.1 Partial Volume Effect

The digitalization of the local area or volume of a pixel or voxel, respectively,
always yields an averaging of the measured value in the appropriate field.
For example in CT, a voxel containing different tissue is assigned a certain
Hounsfield value that results from the proportional mean of the individual
Hounsfield values of the covered tissue classes. Thus, a voxel containing only
bone and air preserves the Hounsfield value of soft tissue and, thus, may dis-
tort quantitative measurements. In general, this partial (volume) effect occurs
in all modalities and must be accounted appropriately for any automatic
measurement (see Fig. 1.14).

1.8.2 Euclidean Paradigm

The common paradigms of the Euclidean geometry do not apply in the dis-
crete pixel domain. For example, the discrete representations of two straight
lines may not join in a common pixel although the lines are crossing. Fur-
thermore, different neighborhood concepts of discrete pixel’s topology have
remarkable impact on the result of automatic image measurements. In partic-
ular, the areas identified in region growing may be significantly larger if the
8-neighborhood is applied, i.e., if eight adjacent pixels are analyzed instead of
the four direct neighbors (4-neighborhood).

1.8.3 Scene Analysis

The fundamental step of image interpretation is to generate a spatial or tem-
poral scene description on the most abstract level (symbolic image description,
see Fig.1.2). A suitable form of representation is the attributed relational
graph (semantic web), which can be analyzed at different hierarchy levels (see
Fig. 1.29, right). Therefore, the considered grid matrix of pixels (iconic image
description, see Fig. 1.2) so far is inappropriate for image interpretation.
The primitives of the graph (node) and their relationships (edges) must
be abstracted from the segmented and identified objects or object parts in
the image. So far, only a few algorithms can execute this level of abstrac-
tion. Examples for the abstraction of primitives are given by the numerous
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approaches to shape reconstruction: Shape-from-shading, -texture, -contour,
-stereo, etc. Examples for the abstraction of relationships can be found at the
depth reconstruction by trigonometric analysis of the projective perspective.
Recently, considerable progress has been achieved in symbolic image analysis
in the fields of industrial image processing and robotics. Because of the special
peculiarities of the biomedical imagery (see Sect.1.1.3) the transfer of these
approaches into health care applications and medical image processing is only
sparingly succeeded so far.

1.8.4 Examples

We will now discuss some examples for image measurements. For instance
in Fig. 1.33, geometrical features are used for the automatic classification of
implant systems. The feature measures are extracted on the abstract level of
regions. Frequently, further measures are extracted after object identification,
which use the information of the certain object detected, i.e., they operate
on the level of objects. In Fig. 1.33i, we can use the knowledge that the blue
segment corresponds to a Branemark implant to parameterize a special mor-
phological filter that is adapted to the geometry of Branemark implants and
count the number of windings of the screw.

Another example of object-based image measurements is given in Fig. 1.34.
The result of balloon segmentation of a cell membrane (see Fig.1.30) is
labeled automatically with local confidence values based on model assump-
tions (Fig.1.34a). These values indicate the contour segment belonging to
a cell membrane and thus a classification via fuzzy logic (see Sect.1.7.3).
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Fig. 1.34. Quantification of synaptic boutons on a cell membrane [15]. The cell
membrane was segmented with a balloon (see Fig.1.28). Analyzing the impact of
internal vs. external forces at a certain vertex, local confidences can be determined
to fuzzily classify the affiliation of the contour section to the actual cell membrane
(a). The cell contour is extracted, linearized, normalized, and binarized before the
occupation of the cell membrane with synaptic boutons of different sizes is analyzed
by morphological filtering (b). The confidence values are considered for averaging
the occupation measure along the cell membrane (c)
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Fig. 1.35. Scheme of automatic image interpretation. The panoramic radiograph
contains all relevant information of a dental chart. The symbolic description of
the scene is obtained with a semantic network. Despite its already considerable
complexity, the shown part of the network represents only the marked ROL. In the
dental chart, information is coded differently. The teeth are named in accordance
with the key of the Fédération Dentaire Internationale (FDI): the leading digit
denotes the quadrant clockwise, the second digit refers to the number of the tooth,
counting from inside to outside. Existing teeth are represented by templates, in

which dental fillings, crowns and bridges are recorded. The green circle at tooth 37
(say: three, seven) indicates a carious process

To increase robustness and reliability of measurements, the confidence values
are accounted for an averaging of quantitative measures along the contour,
which are extracted, linearized, normalized, and morphologically analyzed
(Fig. 1.34b), such that finally a reliable distribution statistics of connecting
boutons according to their size is obtained (Fig. 1.34c).

Figure 1.35 displays exemplarily the automatic extraction of a dental chart
based on image processing of a panoramic radiograph. It clearly shows the
immense difficulties, which have to be faced by the automatic interpretation of
biomedical images. Initially, the segmentation and identification of all relevant
image objects and object parts must succeed, so that the semantic network
can be built. This includes the instances (“tooth 17, “tooth 27, etc.) of the
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previously identified objects (e.g., “teeth”, “crown”, “filling”). The interpre-
tation of the scene based on the network must be carried out in a further, not
less difficult step of processing. Thus, all teeth must be named according to
their position and shape. Then, crowns, bridges, fillings, and carious processes
can be registered in the dental chart. However, the automation of this process,
which can be accomplished by dentist in a few minutes, is not yet possible
automatically with sufficient robustness.

1.9 Image Management

Introductorily, we have summed with the term “image management” all image
manipulation techniques, which serve the effective archiving (short and long
term), transmission (communication) and the access (retrieval) of data (see
Fig. 1.1). For all three points, the specifics in medical applications and health
care environments have led to specific solutions, which are briefly introduced
in the following sections.

1.9.1 Archiving

Already in the seventies, the invention of CT and its integration with clin-
ical routine has involved the installation of the first Picture Archiving and
Communication System (PACS), which main task is the archiving of image
data. The core problem of archiving medical images is the immensely large
volume of data. A simple radiography with 40 x 40cm (e.g., a chest X-ray)
with a resolution of five line pairs per millimeter and 10bit = 1,024 gray
levels per pixel already requires a storage capacity of more than 10 MB. Dig-
ital mammography, which is captured with high resolution on both breasts
in two views results in about 250 MB of raw data for each examination. Ten
years ago, radiography, CT, and MRI accumulated in a university hospital
to already about 2TB of image data each year (Table 1.6). This estimate
can easily increase tenfold with the resolution-increased novel modalities such
as spiral CT and whole-body MRI. For instance in Germany, according to
relevant legislations, the data must be kept at least for 30 years. Therefore,
efficient storage, retrieval, and communication of medical images have required
effective compression techniques and high speed networks. Due to noise in
biomedical images, lossless compression usually has a limited effect of com-
pression rates of two or three. Only in recent years, feasible hybrid storage
concepts have become available. Storage of and access to medical image data
is still of high relevance.

1.9.2 Communication

With increasing digitization of diagnostic imaging, the motto for medical infor-
mation systems, i.e., to provide “the right information at the right time and
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Table 1.6. Volume of medical image data [5]. The data is taken from the Annual
Report 1999 of the University Hospital of RWTH Aachen University, Aachen, Ger-
many (about 1,500 beds). The data is based on the Departments of (i) Diagnostic
Radiology, (ii) Neuroradiology, (iii) Nuclear Medicine, and (iv) Dentistry, Oral and
Maxillofacial Surgery for a total of 47,199 inpatient and 116,181 outpatient images.
Services (such as ultrasound, endoscopic or photographic) from other departments
were excluded. For modalities of nuclear medicine, 20 slices per study are assumed.
For comparison, the total number of analyses performed in the central laboratory
of the Institute for Clinical Chemistry and Pathobiochemistry was estimated with
an average of 10 measured values per analysis with highest precision of 64 bit. But
still, the annual image data volume is about 10,000 times larger

Modality Resolution Range [bit] Size per Units in Total per
Spatial [pixel] image [MB] year 1999 year [GB]
Chest radiography 4000 x 4000 10 10.73 74,056 775.91
Skeleton radiography 2000 x 2000 10 4.77 82,911 386.09
CcT 512 x 512 12 0.38 816,706 299.09
MRI 512 x 512 12 0.38 540,066 197.78
Other radiography 1000 x 1000 10 1.19 69,011 80.34
Panoramic and skull 2000 x 1000 10 2.38 7,599 17.69
Ultrasound 256 x 256 6 0.05 229,528 10.11
Dental radiography 600 x 400 8 0.23 7,542 1.69
PET 128 x 128 12 0.02 65,640 1.50
SPECT 128 x 128 12 0.02 34,720 0.79
by 1,770.99
For comparison
Laboratory tests 1 x 10 64 0.00 4,898,387 0.36

the right place,” is projected to the field of medical image processing. Hence,
image communication is the core of today’s PACS. Image data is not only
transferred electronically within a department of radiology or the hospital,
but also between widely separated institutions. For this task, simple bitmap
formats such as the Tagged Image File Format (TTFF) or the Graphics Inter-
change Format (GIF) are inadequate, because beside the images, which might
have been captured in different dimensions, medical meta information on
patients (e.g., Identifier (ID), name, date of birth, ...), the modality (e.g.,
device, parameters, . ..) and organization (e.g., investigation, study, ...) must
also be transferred in a standardized way.

Since 1995, the communication is based on the Digital Imaging and Com-
munications in Medicine (DICOM) standard. In its current version, DICOM
includes:

e structural information about the contents of the data (“object classes”),
e commands on what should happen to the data (“service classes”), and
e protocols for data transmission.

DICOM is based on the client-server paradigm and allows the coupling of
PACS in Radiology Information System (RIS) or Hospital Information Sys-
tems (HIS). DICOM incorporates existing standards for communication: the
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International Organization for Standardization (ISO) Open System Inter-
connection (OSI) model, the Transmission Control Protocol (TCP) Internet
Protocol (IP), and the Health Level 7 (HL7) standard. Full DICOM com-
pliance for imaging devices and image processing applications is achieved
with only a few supported object or service classes, since other DICOM
objects, which are not relevant for the current device, simply are handed over
to the next system in the DICOM network. The synchronization between
the client and server is regularized by conformance claims, which are also
specified as part of the DICOM standard. However, the details of imple-
mentation of individual services are not specified in the standard, and so
in practice, vendor-specific DICOM dialects have been developed, which can
lead to incompatibilities when building PACS. In recent years, the Inte-
grating the Healthcare Enterprises (IHE) initiative became important. THE
aims at guiding the use of DICOM and other standards such that complete
inter-operability is achieved.

1.9.3 Retrieval

In today’s DICOM archives, images can be retrieved systematically, only if
the patient name with date of birth or the internal system ID is known.
Still, the retrieval is based on alphanumerical attributes, which are stored
along the image data. It is obvious that diagnostic performance of PACS
is magnified significantly if images would be directly available from similar
content of a given example image. To provide the Query by Example (QBE)
paradigm is a major task of future systems for Contend-Based Image Retrieval
(CBIR). Again, this field of biomedical research requires conceptually different
strategies as it is demanded in commercial CBIR systems for other application
areas, because of the diverse and complex structure of diagnostic information
that is captured in biomedical images.

Figure 1.36 shows the system architecture of the Image Retrieval in Med-
ical Applications (IRMA) framework?®. This architecture reflects the chain of
processing that we have discussed in this chapter, i.e., registration, feature
extraction, segmentation, classification of image objects towards the tip of
the pyramid (see Fig.1.2), which is the symbolic interpretation respective
scene analysis. In IRMA; the image information that is relevant for retrieval
is gradually condensed and abstracted. The image bitmap is symbolically
represented by a semantic network (hierarchical tree structure). The nodes
contain characteristic information to the represented areas (segments) of the
image. Its topology describes the spatial and/or temporal condition of each
object. With this technology, radiologists and doctors are supported similarly
in patient care, research, and teaching.

3 http://irma-project.org
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Fig. 1.36. System architecture of the IRMA framework [16]. The processing steps
in IRMA are shown in the middle column. Categorization is based on global fea-
tures and classifies images in terms of imaging modality, view direction, anatomic
region, and body system. According to its category, the image geometry and con-
trast are registered to a reference. The abstraction relies on local features, which
are selected specifically to context and query. The retrieval itself is performed effi-
ciently on abstracted and thus information-reduced levels. This architecture follows
the paradigm of image analysis (cf. Fig. 1.1). The in-between-representations as pre-
sented on the left describe the image increasingly abstract. The levels of abstraction
(cf. Fig. 1.20) are named on the right side

1.10 Conclusion and Outlook

The past, present, and future paradigms of medical image processing are
composed in Fig. 1.37. Initially (until approx. 1985), the pragmatic issues of
image generation, processing, presentation, and archiving stood in the focus
of research in biomedical image processing, because available computers at
that time had by far not the necessary capacity to hold and modify large
image data in memory. The former computation speed of image processing
allowed only offline calculations. Until today, the automatic interpretation of
biomedical images still is a major goal. Segmentation, classification, and mea-
surements of biomedical images is continuously improved and validated more
accurately, since validation is based on larger studies with high volumes of
data. Hence, we focused this chapter on image analysis and the processing
steps associated with it.

The future development is seen in the increasing integration of algorithms
and applications in the medical routine. Procedures in support of diagnosis,
treatment planning, and therapy must be easily usable for physicians and,
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therefore, further standardized in order to ensure the necessary interoperabil-
ity for a clinical use.

References

Related Textbooks

Bankman IN (ed). Handbook of Medical Image Processing and Analysis. 2nd ed.
New York: Academic Press; 2008. ISBN: 0-123-73904-7

Beolchi L, Kuhn MH (ed). Medical Imaging: Analysis of Multimodality 2D /3D
Images. IOS Press; 1995. ISBN: 9-051-99210-6

Beutel J, Kundel HL, van Metter RL (eds). Handbook of Medical Imaging. Vol. 1:
Physics and Psychophysics. Bellingham: SPIE Press; 2000. ISBN 0-819-43621-6
Bryan RN (ed). Introduction to the Science of Medical Imaging. Cambridge:
Cambridge University Press; 2010. ISBN: 978-0-521-74762-2

Dougherty D. Digital Image Processing for Medical Applications. Cambridge:
Cambridge University Press; 2009. ISBN: 0-521-86085-7

Dougherty ER (ed). Digital Image Processing Methods. New York: CRC Press;
1994. ISBN: 978-0-824-78927-5

Guy C, Ffytche D. Introduction to the Principles of Medical Imaging. London:
Imperial College Press; 2005. ISBN: 1-860-94502-3

Jan J. Medical Image Processing, Reconstruction and Restoration: Concepts and
Methods. Boca Raton: CRC Press; 2005. ISBN: 0-824-75849-8

Kim Y, Horii SC (eds). Handbook of Medical Imaging. Vol. 3: Display and PACS.
Bellingham: SPIE Press; 2000. ISBN: 0-819-43623-2

Meyer-Baese A. Pattern Recognition in Medical Imaging. San Diego: Academic
Press; 2003. ISBN: 0-124-93290-8

Preim B, Bartz D. Visualization in Medicine. Theory, Algorithms, and Applica-
tions. Amserdam: Morgan Kaufmann; 2007. ISBN: 978-0-123-70596-9



50

T.M. Deserno

Rangayyan RM. Biomedical Image Analysis. New York: CRC Press; 2005. ISBN:
0-849-39695-6

Sonka L, Fitzpatrik JM (eds). Handbook of Medical Imaging. Vol. 2: Medical
Image Processing and Analysis. Bellingham: SPIE Press; 2000. ISBN: 0-819-
43622-4

Suetens P. Fundamentals of Medical Imaging. Cambridge: Cambridge University
Press; 2002. ISBN: 0-521-80362-4

Tavares JM, Jorge RMN (eds). Advances in Computational Vision and Medical
Image Processing: Methods and Applications. Berlin: Springer; 2008. ISBN: 1-
402-09085-4

Umbaugh SE. Computer Imaging: Digital Image Analysis and Processing. Boca
Raton: CRC Press; 2005. ISBN: 0-849-32919-1

Citations

1.

10.

11.

12.

13.

14.

Lehmann TM, Oberschelp W, Pelikan E, et al. Bildverarbeitung fiir die Medizin:
grundlagen, Methoden, Anwendungen. Springer, Heidelberg; 1997.

. Morneburg H, editor. Bildgebende Systeme fiir die medizinische Diagnostik. 3rd

ed. German: Siemens AG, Berlin & Publicis MCD Verlag, Erlangen; 1995.
Shannon CE. Communication in the presence of noise. Proc Inst Radio Eng.
1949;37(1):10-21; reprinted in Proc IEEE 1998;86(2):447-57.

. Lehmann TM, Kaser A, Repges R. A simple parametric equation for pseudo-

coloring grey scale images keeping their original brightness progression. Image
Vis Comput. 1997;15(3):251-7.

Lehmann TM, Hiltner J, Handels H. Medizinische Bildverarbeitung. Chapter
10 In: Lehmann TM, editor. Handbuch der Medizinischen Informatik. Hanser,
Munich; 2005.

Wagenknecht G, Kaiser HJ, Biill U. Multimodale Integration, Korrelation
und Fusion von Morphologie und Funktion: Methodik und erste klinische
Anwendungen. Rofo. 1999;170(1):417-6.

. Pommert A, Hohne KH, Pflesser B, et al. Ein realistisches dreidimensionales

Modell der inneren Organe auf der Basis des Visible Human. Munich: Hanser;
2005. p. 72-76.

Metzler V, Bienert H, Lehmann TM, et al. A novel method for geometrical shape
analysis applied to biocompatibility evaluation. ASATIO J. 1999;45(4):264-1.
Konig S, Hesser J.  Live-wires using path-graphs.  Methods Inf Med.
2004;43(4):371-5.

Kass M, Witkin A, Terzopoulos D. Snakes: active contour models. Int J Comput
Vis. 1988;1(5):321-31.

Metzler V, Bredno J, Lehmann TM, et al. A deformable membrane for the
segmentation of cytological samples. Proc SPIE. 1998;3338:1246-7.

Bredno J. Hoherdimensionale Modelle zur Quantifizierung biologischer Struk-
turen. in German: PhD Thesis, RWTH Aachen University, Aachen, Germany;
2001.

Cootes TF, Taylor CJ, Cooper DH, et al. Active shape models: their training
and application. Comput Vis Image Underst. 1995;61(1):38-59.

Lehmann TM, Schmitt W, Horn H, et al. IDEFIX: Identification of dental
fixtures in intraoral X-rays. Proc SPIE. 1996;2710:584—5.



15.

16.

17.

1 Fundamentals of Biomedical Image Processing 51

Lehmann TM, Bredno J, Metzler V, et al. Computer-assisted quantification of
axosomatic boutons at the cell membrane of motoneurons. IEEE Trans Biomed
Eng. 2001;48(6):706-7.

Lehmann TM, Giild MO, Thies C, et al. Content-based image retrieval in
medical applications. Methods Inf Med. 2004;43(4):354—61.

Lehmann TM, Meinzer HP, Tolxdorff T. Advances in biomedical image analysis:
past, present and future challenges. Methods Inf Med. 2004;43(4):308-14.



Part 1

Image Formation



2

Fusion of PET and MRI for Hybrid Imaging

Zang-Hee Cho, Young-Don Son, Young-Bo Kim, and Seung-Schik Yoo

Summary. Recently, the development of the fusion PET-MRI system has been
actively studied to meet the increasing demand for integrated molecular and anatom-
ical imaging. MRI can provide detailed anatomical information on the brain, such
as the locations of gray and white matter, blood vessels, axonal tracts with high res-
olution, while PET can measure molecular and genetic information, such as glucose
metabolism, neurotransmitter-neuroreceptor binding and affinity, protein—protein
interactions, and gene trafficking among biological tissues. State-of-the-art MRI sys-
tems, such as the 7.0 T whole-body MRI, now can visualize super-fine structures
including neuronal bundles in the pons, fine blood vessels (such as lenticulostri-
ate arteries) without invasive contrast agents, in vivo hippocampal substructures,
and substantia nigra with excellent image contrast. High-resolution PET, known as
High-Resolution Research Tomograph (HRRT), is a brain-dedicated system capable
of imaging minute changes of chemicals, such as neurotransmitters and —receptors,
with high spatial resolution and sensitivity. The synergistic power of the two, i.e.,
ultra high-resolution anatomical information offered by a 7.0 T MRI system com-
bined with the high-sensitivity molecular information offered by HRRT-PET, will
significantly elevate the level of our current understanding of the human brain, one
of the most delicate, complex, and mysterious biological organs. This chapter intro-
duces MRI, PET, and PET-MRI fusion system, and its algorithms are discussed in
detail.

2.1 Introduction

Among the modern medical imaging technologies, Positron Emission Tomog-
raphy (PET) and Magnetic Resonance Imaging (MRI) are considered to be the
most powerful diagnostic inventions. In the 1940s, modern medical imaging
technology began with advancements in nuclear medicine. In the early 1970s,
by combining the diagnostic properties of X-rays with computer technology,
scientists were able to construct 3D images of the human body in vivo for
the first time, prompting the birth of the Computed Tomography (CT). The
emergence of CT was an important event that motivated scientists to invent
PET and MRI. These imaging tools were not based on simple modifications

T.M. Deserno (ed.), Biomedical Image Processing, Biological and Medical Physics,
Biomedical Engineering, DOI: 10.1007/978-3-642-15816-2_2,
(© Springer-Verlag Berlin Heidelberg 2011
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of existing techniques or devices. Instead, they are the new medical imaging
modalities that were the result of the combined effort of numerous scientific
disciplines such as physics, mathematics, chemistry, computer science, biology,
medicine, and pharmacology.

Initially, PET was based on somewhat primitive form of positron imaging
device created in 1953 by Gordon Brownell et al. Massachusetts Institute of
Technology (MIT) and then newly born concept of the CT. The first modern
PET device was developed by two groups of scientist. One was at Univer-
sity of California at Los Angeles (UCLA) in the mid 1970s by Cho et al [1]
and the other was by Ter-Pogossian & Phelps at Washington university, St.
Louis [2]. Subsequently, a new detector material, Bismuth-Germanate (BGO)
was introduced for use in high-resolution imaging [3]. Today, most commer-
cial PET scanners have adopted the ring-type detector system, based on
the use of BGO or Cerium-doped Lutetium Oxyorthosilicate (LSO) scintil-
lators [4]. These PET systems now have spatial resolutions of 56 mm at
FWHM (Fig.2.1).

The development of MRI was based on Nuclear Magnetic Resonance
(NMR), explored in 1940s by Felix Bloch at Stanford University and Edward
Mills Purcell at Harvard University. The first principles of MRI were proposed
in 1973 by Paul Lauterbur, and necessary image reconstruction algorithm
were developed in the mid 1970s by Richard Ernst. For their achievements,
Ernst received 1990 the Nobel Prize in Chemistry, and in 2003, Lauterbur
and Mansfield won Nobel Prize in Physiology or Medicine. Much of the MRIs
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rapid success can be attributed to its non-invasiveness and tissue discrimina-
tion capability in the brain. Continuous hardware and software advancements
have followed, and new MRI scanners boast sub-millimeter resolution with
excellent contrast. The strength of the magnetic field used in the device is
described with a unit of Tesla (T) or Gauss G. 1 T is equal to 10,000 G.
Although currently available MRI in the market for humans use is up to 8 T,
only 4 T is permitted for clinical use by the Food and Drug Administration
(FDA) of the United States.

The invention of PET and MRI changed the scene of modern medicine
and was perhaps one of the greatest achievements in medicine and the biol-
ogy. This chapter provides a brief introduction of the basic principles of MRI
and PET, followed by an overview of state-of-the-art PET and MRI systems.
Subsequently, we described the complementary use of these two devices and
technical aspects related to the new PET/MRI fusion system, which has been
recently developed, and potential applications are discussed.

2.2 Positron Emission Tomography

2.2.1 Basic Principles

PET is an imaging system that detects two annihilation photons or gamma
rays originating from the tracer compounds labeled with positron-emitting
radionuclides, which are injected or administered into the subject. Many
proton-rich radioisotopes may decay via positron 31-decay, in which a proton
in the nucleus decays to a neutron by emission of a positron and a neutrino.
The decay product has one atomic number less than the parent. Examples
of radionuclides which undergo decay via positron emission are shown in
Table 2.1 [5].

Positron-emitting radionuclides possess an important physical property
that makes PET a unique high-resolution molecular imaging device. That is
the directionality or collinearity of two simultaneously emitted photons by
the annihilation process. When the emitted positron collides with a nearby
electron, they annihilate and produce two annihilation photons of 511 keV.
The two annihilation photons, which are identical to two gamma photons
with 511 keV of energy, then travel in nearly exact opposite directions of

Isotope Half life Positron energy  Positron range  Table 2.1. Radionuclides and
(min)  maximum (MeV) in water (mm)  their physical properties. The

Hc 20.30 0.96 11 positron range is given at
13N 9.97 1.19 1.4 FWHM

150 2.03 1.70 1.5

18F 109.80 0.64 1.0

68Ga 67.80 1.89 1.7

82Rb 1.26 3.15 1.7
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each other. This near collinearity of the two annihilation photons allows to
identify the location of the annihilation event or the existence of positron
emitters through the detection of two photons by detectors poised exactly on
opposite sides of the event, which are contacted by the photons at nearly the
same time. This simultaneity also plays an important role for the coincident
detection.

A set of detectors converts the high-energy photons into electrical signals
that are subsequently processed by signal processing electronics. For detec-
tion of these two annihilation 511 keV photons, two scintillation detectors
are coupled to an individual Photo-Multiplier Tube (PMT), pulse timer and
amplitude analyzer. The detectors of current PET systems are made of inor-
ganic materials called scintillation detectors. Scintillators convert the incident
gamma quantum into a large number of light photons. The scintillator must
be made of a highly dense material with high atomic number to maximize
the gamma photon absorption. In the early development of PET and up to
the late 1970s, Nal(T1) was a commonly used for scintillation detectors. Cur-
rently, most modern PET use BGO [3]. While BGO has larger absorption
power, LSO has a faster response time and more light output. The light, visi-
ble photons, from these scintillators are converted to electrical signals by the
PMT or equivalent device. The PMT multiplies the weak signals from the
scintillation detectors to electrically detectable signals with both pulse timing
and amplitude. Although PMT is the most widely used light photon amplifier,
more recently semiconductor type PMTs, such as an Avalanche Photodiode
(APD) and the Silicon Photomultiplier (SiPM) have been developed and are
in use. A semiconductor type PMT has the advantage over conventional PMTs
due to its non-magnetic properties, which supports use in MRI environments,
but it has several disadvantages in rigidity and stability (Fig.2.2).

The amplified electrical signals from PMTs, as electrical pulses, are ana-
lyzed to determine when the signal occurred and whether the signal is above
a certain threshold. When the valid PET signal is generated by annihila-
tion photons of 511 keV that pass the energy threshold, time information is
recorded and used for coincident time analysis. The detected pulses are then

photon (y)
# of protons > # of electrons 512 keV
L 2 ]
electron (B7)

Erpton

L ] 9 " + .
neutron positron (B ) positron (B+) - 180°

* a
photon (y)

electron (B7) 512 keV

Fig. 2.2. Positron generation and annihilation. Left: positron emission from a
radionuclide; Right: positron annihilation, which generates two annihilation photons
or gamma photons
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fed to a coincidence module, which examine whether two pulses are truly due
to the annihilation process. The smaller the difference between the two pulses,
the closer the detection stems from the true annihilation event. Modern elec-
tronics, however, can measure time with a resolution of 10~% s or larger. As a
result, the event is registered as coincidence only if a pair of detectors (oppo-
site to each other) detects the signal simultaneously within a certain time
window. The coincident time window used is in the range of 10 ns.

2.2.2 Image Reconstruction

In a typical PET scan, 10°-10° events (decays) are detected depending on
the radioactivity injected and the time of measurement. Coincidence events
are saved as the special data set called sinogram. The sinogram is the line-
integral projection data obtained from a large number of detectors at different
views surrounding the entire object. The sinogram data is used to reconstruct
an image through mathematical algorithms such as analytical or iterative
reconstruction methods. Analytical methods calculate the radionuclide tracer
distribution directly from the measured sinogram data. Backprojection and
Filtering (BF) or Filtered Backprojection (FB) are typical algorithms used
for analytical methods. They require less computational burden than statisti-
cal methods such as the Expectation Maximization (EM) algorithm. Analytic
approaches, however, often suffer from an artifact known as the streak arti-
fact, which arises from the physical gaps existing between the detectors. In
contrast, iterative methods like EM reconstruct the image in an iterative fash-
ion using the measured sinogram. Iterative methods, therefore, are often more
robust to noise, such as streak artifacts, and can provide better Signal to Noise
Ratio (SNR) at a given spatial image resolution. Although iterative methods
require much more computational burden, due to the recent improvement of
computing technologies and algorithms, EM algorithm is now widely used as
the main stream method of PET image reconstruction.

2.2.3 Signal Optimization

In addition to the basic image reconstruction, it is important to note that there
are several physical phenomena, such attenuation, scattering, and random
coincidences, which are necessary to correct when more quantitatively accu-
rate PET images are required. Interactions within the body with incident pho-
tons, which result in scattering and attenuation, are known as scatter and coin-
cidence events, respectively, and require correction. The scattered coincidence
events and attenuation corrections are two major problems together with
accidentally-occurring coincidence events. In addition, the efficiency of each
detector may vary between each detector and influence the measured data.
Therefore, various correction techniques have been developed to correct the
effect of attenuation, scatters, and random events. Only when these corrections
schemes are completely incorporated into the main reconstruction algorithm,
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PET can quantitatively image various radio-labeled ligands binding to specific
receptors, transporters, and enzymes. This quantitatively calibrated molecular
imaging is one of the strengths of PET imaging. For example, the interac-
tion and distribution of the dopamine transporters or receptors in the brain
can be measured using a PET with ¥ FluoroPropyl-Carbomethoxylodophenyl-
norTropane (F-FP-CIT) or 1*C-Raclopride (Figs. 2.3, 2.4).

2.2.4 High-Resolution Research Tomograph

One of the most advanced PET scanners is the High-Resolution Research
Tomograph (HRRT), which has been introduced by Siemens. HRRT-PET is
designed to obtain the highest spatial resolution and the highest sensitiv-
ity known in human brain PET imaging [6]. In contrast to the commercial
PET, which usually has a system diameter of more than 80 cm to accom-
modate the whole body, the system diameter of HRRT-PET is only 46.7 cm,
which is only suitable for a human brain scan. This small system diameter
improved each detector’s solid angle and, therefore, the sensitivity. In addi-
tion, the HRRT-PET has a longer axial Field-of-View (FOV) of 25.2 c¢m, as
compared with the conventional PET, which has only 17 cm of axial FOV.
The shorter system diameter and the longer axial FOV provide a dramatically
improved detection efficiency, and thereby enhance the overall system sensitiv-
ity. With this increased sensitivity, HRRT-PET provides a considerably high
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Fig. 2.5. Detector configuration of HRRT-PET. The HRRT-PET detector system
consists of eight heads (left). Each head has 13 x 9 detector blocks build with two
layers of 8 x 8 detectors. This results in a total of 119,808 scintillation detector
crystals with dimension of 2.3 x 2.3 x 10 mm?. These small detector crystals are
packed in the form of a mosaic panel (right)

spatial resolution together with the small detector size, which has dimensions
of 2.3 mm X 2.3 mm for width and height, respectively (Fig.2.5).

This high spatial resolution combined with enhanced sensitivity [7, 8]
makes the HRRT-PET the most advanced PET scanner for human brain stud-
ies [9]. Simultaneously, the improved spatial resolution reduces partial-volume
effects, thereby improving quantification of metabolic rates in the brain such as
the regional Cerebral Metabolic Rate of Glucose (rCMRGlc) [10]. In addition,
transmission images are also obtained, supporting a more accurate attenuation
and scatter correction.

These improvements in performance by the brain optimized configuration
of the HRRT provided better imaging and allowed us to image smaller Region
of Interest (ROI) than the previously available. In addition to PET’s ability
to measure and visualize metabolism, the distribution of neuroreceptors and
neurotransporter in the brain can be measured. Also, HRRT-PET now allows
the ability to measure the specific distribution of different ligands in various
neurodegenerative disorders [10]. According to recent report, many small brain
structures can be studied due to the availability of HRRT-PET [10,11]. These
structures include:

1. The dopamine transporter-enriched nuclei in the midbrain where the
dopaminergic cell bodies are located [12].

2. The substantia nigra, from which dopaminergic neurons projecting to the
dorsal striatum.

3. The ventral tegmental area, from where neurons project to the limbic
regions and the cerebral cortex [13].
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PET/CT HRRT- PET

Fig. 2.6. Resolution of HRRT-PET. A section of the brain is captured with cur-
rently available PET scanner (left) and the HRRT-PET (right), which shows much
more details and higher resolution

Other small regions such as the ventral striatum are actively pursued in
search of potential ROIs for HRRT-PET research. Even arterial blood sam-
pling in the human brain using the HRRT-PET is being studied by several
groups [9,13].

The previously mentioned features made HRRT-PET have the one of
the highest sensitivities and spatial resolutions among any currently avail-
able PET scanners. In Fig. 2.6, two comparative 18F-Fludeoxygloucose (FDG)
PET images emphasize the clear advantage of HRRT-PET over a conventional
PET. In these images, the cortical gyri are seen much clearer with HRRT-PET
than with PET/CT, suggesting that the HRRT can more accurately localize
the molecular interactions in the brain than any other PET system available
today.

2.3 Magnetic Resonance Imaging

2.3.1 Basic Principles

The main components of the MRI system are the main magnet, the Radio
Frequency (RF) system, the gradient coil, the shim system, and the com-
puter. The main magnet generates a strong magnetic field, which determines
the imaging power of MRI. Permanent magnets and resistive magnets can
be used to produce the external magnetic field; however, they are unable to
produce high magnetic fields and are only used for the low field MRI. Today,
the main magnetic field is commonly produced by a superconducting magnet
maintained at a very low temperature. The superconducting electromagnet
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consists of a coil that has been made super-conductive by a cooling system,
which often consists of liquid helium surrounded by liquid nitrogen. By cool-
ing, the superconductor becomes resistance free, which means large amounts
of current can flow through the coil to produce high magnetic fields.

Once the coil becomes a superconducting magnet, it is capable of pro-
ducing strong and stable magnetic fields suitable for MRI applications. The
superconducting wire is usually made of Niobium-Titanium (NbTi), a rigid
material that is simple to handle. Once a magnet is constructed with the
strong magnetic field, one can insert an object which has spins of nuclei such
as water protons. The spins in the object then will be aligned either parallel
or anti-parallel to the main magnetic field. A slightly larger fraction of these
protons will be oriented in the anti-parallel form and lead to a net magnetiza-
tion. In a given magnetic field, all the spins precess with the specific frequency
known as the Larmor frequency, which is specific to the strength of the mag-
netic field. If an external magnetic field or energy oscillating at the Larmor
frequency is applied to the spins, the spins absorb the applied energy and are
excited to the high energy status due to the magnetic resonance absorption
phenomena.

The external energy is usually delivered by RF coils, which transmit RF
energy to the object with a specific resonance frequency, often within a certain
bandwidth that has a center frequency equivalent to the Larmor frequency.
The precessing spins with the corresponding frequency at the non-excited or
resting states are then flipped to a higher excited state where they last for a
certain time depending on the relaxation properties of the object. The excited
spins will return to the steady state and give off energy in the form of an
electromagnetic signal or radiation, which is referred to as the Free Induction
Decay (FID) signal. During the spin flips, the large numbers of small electrical
dipoles, which are proportional to the resonant proton density, induce current
on the RF coils that are surrounding the object. The simplest form of an RF
system is composed of a transmitter coil and receiver coil. The RF system
is an antenna which is sending excitatory RF pulses to the object or brain
and also receiving the signals generated from the object. RF coils are one
of the key components that determine the SNR of images. The development
of specific purpose RF coils, therefore, is one of the central themes of MRI
research.

2.3.2 Image Reconstruction

Each signal received by the antenna or RF coil contains information of the
total sum of the object signals, but they are not encoded to produce an image
yet. Formation of MRI requires the magnetic gradients to encode spatial
information to the object. The gradient system has various functions such
as slice selection, spatial encoding, spoiling, rewinding, echo production, and
pre-saturation, among others. Among them, slice selection and spatial encod-
ing are the most essential functions of the gradients system to spatially localize
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the magnetic resonance signal. There are three gradient coils located within
the bore of the magnet, which are wrapped along three orthogonal axes. The
gradient is called according to the axis along which they act when switched
on. For example, G, is assigned for the horizontal axis of the magnet bore
and alters the field along the z-axis.

These magnetic gradients are referred to as slice-selection gradient (G.),
phase-encoding gradient (G,), and frequency-encoding frequency-encoding
gradient or readout gradient (G), respectively. Slice selection gradients are
usually applied at the RF excitation period so that only spins within a slice
corresponding to the specific RF bandwidth are excited. Frequency-encoding
or phase-encoding gradients are typically applied during or before data acqui-
sition. This encoding scheme encodes spatial information into the RF signal.
The received signal is in the spatial frequency domain, what is called k-space,
equivalent to the 2D or 3D Fourier transform of the object.

2.3.3 Signal Optimization

The raw field produced by a superconducting magnet is approximately 1,000
parts per million (ppm) or worse, thus the magnetic field has to be corrected or
shimmed. The shim system is used to correct field inhomogeneity and optimize
for each imaging session. Field homogeneity is measured by examining an
FID signal in the absence of field gradients. Shimming is important for a
number of imaging applications. Most modern MRI techniques such as Echo
Planar Imaging (EPI) and Chemical Shift Imaging (CSI) require homogeneous
magnetic fields to be less than 3.5 ppm over the imaging volume. Usually this
is accomplished by a combination of current loops (active or dynamic shim)
and ferromagnetic material (passive or fixed shim). Gradient coils are used to
provide a first-order shim. Since the introduction of a patient also distorts the
magnetic field, often an active shim correction is made before scanning.

The signals that are detected via the RF coils are recorded in the computer
system, and an image is reconstructed using a mathematical algorithm, such
as the Fourier transform. The complexity of modern MRI arises mainly due
to the many physical parameters involved such as spin relaxations of different
kinds, for example spin-lattice and spin-spin relaxation times (T1 and T2),
respectively. Most of the conventional imaging utilizes these magnetic prop-
erties, such as T1, T2, and susceptibility. In simple terms, the T1 value is the
recovery time of the flipped spins and determines the interactions between
spins and its surrounding lattice (tissue). The T2 value is the dephasing time
of the in-phased spins due to spin-to-spin interaction, and the susceptibility
is a spin dephasing factor due to surrounding magnetic fields. These magnetic
properties can be weighted in the image by adjusting the pulse sequence and
related imaging parameters.

In summary, MRI is a multi-purpose medical imaging instrument utilizing
those intrinsic parameters mentioned and offers exquisite spatial resolution
often more than an order of magnitude better than PET (Fig.2.7). MRI,
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however, lacks molecular specificity, although a number of new techniques
are being developed in combination with spectroscopic techniques or, more
recently, with nano-particles.

2.3.4 High-Field MRI

The magnetic resonance signal is commonly proportional to the volume of
data acquired and magnetic field strength. Therefore, high-field MRI sys-
tems provide an image with a higher SNR. In higher magnetic fields, it
is possible to decrease the volume or voxel without sacrificing the SNR. It
means that a high-field MRI system makes it possible to obtain higher spa-
tial resolution and sensitivity than low-field MRI. Structural, metabolic, and
functional assessments of an intact, living brain can be made using high-field
MRI systems.

The 7.0 T MRI system, which uses an ultra-high field magnet, currently
exists for human imaging with the high performance gradient coil set and
RF coils. It provides us with many exquisite high-resolution images with
an extremely high SNR. Recently, many ultra high-resolution images were
obtained from 7.0 T MRI (Figs. 2.8, 2.9). Many fine structures, which were
once thought impossible to image using MRI, were observed in the brain in
vivo. The structures include the substantia nigra, red nucleus, and cerebral
peduncle or crus cerebri in the midbrain. As demonstrated in Fig.2.8a, the
red nucleus and substantia nigra are clearly visible. In addition, the image
of the cerebral peduncle surrounding the substantia nigra shows not only
the fine vascular structures but also the fibers, suggesting that the details
of ultra-fine high-resolution images can be of great help in identification of
various neurological disorders and in the planning of surgical operations in a
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corticospinal tract

Fig. 2.8. High-field MRI image ezamples. The brain images are obtained from the
7.0 T MRI. In contrast to previous MRI systems, details of brain substructures can
now be observed

totally non-invasive manner. The line of gennari in the visual cortex (Fig. 2.8b)
and the perforating arteries and the corticospinal tracts in the pontine area
(Fig. 2.8¢) are also visualized in the 7.0 T MRI. Note the details of the thala-
mic area and the structures of the deep gray and white matter areas, like the
anterior commissure, the mammillary body, and the red nucleus.

The substantia nigra is an important region in the area of Parkinson’s
disease research. Figure 2.9a and b are images of the central midbrain areas
obtained from the same subject using 1.5 T and 7.0 T, respectively. As seen,
7.0 T MRI images are far superior and clearer than 1.5 T, particularly, in the
boundary between the substantia nigra and surrounding tissues in 7.0 T MRI.
Since the substantia nigra is believed to include iron, it is darker than other
regions due to T2-related signal reduction. Likewise, the structure of the hip-
pocampus and the parahippocampal regions, major ROI in the Alzheimer’s
studies, were clearly visualized by T2-weighted imaging in vivo by using 7.0 T
MRI (not shown here). 7.0 T MRI began to show possible visualization of
micro-vascular structures, such as the Lenticulostriate Arterie (LSA) in the
human brain, which would be extremely useful for clinical purposes. Recently,
we have reported regarding the advancements in micro-vascular imaging,
such as the in vivo visualization of LSAs, which was once thought to be
impossible [14].
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Fig. 2.9. High- and low-field MRI. Resolution in 1.5 T images (left) is lower as
compared to 7.0 T (right), as it can be seen in the substantia nigra (top) and
hippocampal region (bottom)

2.4 Hybrid PET Fusion System

PET is one of the most widely used imaging tools in both clinical areas as
well as neuroscience research, especially for its ability to perform non-invasive,
in vivo imaging of biochemical changes. PET can show how well tissues are
working by the consumption of the amount of nutrients, neurotransmitter
bindings, and blood flow within the tissue. In addition, there have been many
new developments in radiopharmaceutical ligands and probes. PET uses var-
ious radioactive pharmaceuticals as tracers, which make it possible to detect
molecular changes down to the pico-molar range. It has allowed us to look at
in vivo physiology as well as the molecular chemistry of living humans non-
invasively and has opened up modern quantitative molecular neuroscience.
PET applications also expanded to the study of amino acid metabolism
([Methyl-11C]-L-Methionine) and gene proliferation '8F-L-Thymidine (FLT).
PET has changed classical nuclear imaging concepts and has led to an
entirely new domain of molecular imaging. Various radionuclide tracers of
PET are listed in Table 2.2. Depending on the radionuclides and their labeled
compounds, various PET imaging techniques are available [15-22].

Although PET provides direct information about tracer uptake into the
cell for specific tissues, the spatial resolution of PET is poor in comparison to
CT or MRI. As of today, 2.5 mm FWHM is the best spatial resolution that
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Table 2.2. Radionuclide tracers for PET [23]. The generation of the nuclides ' C,
13N, 150, 18F, and '?*I requires a cyclotron

Hemodynamic parameters Ho 150, 1°0-butanol, 11CO, 13NH3

Hypoxia or angiogenesis I8FMSIO, %4Cu-ATSM, 8F-Galacto-RGD

Substrate metabolism 18F_FDG, 1509, 11 C-acetate

Protein synthesis 11C-Methionine, 11 C-leucine, 1! C-tyrosine

DNA synthesis 18E_FLT, 11C—thymidine, 18F_fluorouracil

Drugs 11C-Cocaine, 3N-cisplatin, 8F-fluorouracil

Receptor affinity 18F_FESP, 8F-FP-Gluc-TOCA,®F-FES

Gene expression I8F_.FHBG, 8F-Penciclovir, 18I-FIAU

Antibodies 124|_.CEA mimibody, 64Cu-DOTA Her2/neu minibody

PET can have [24]. This resolution is still relatively poor for the localization
of many delicate organs in the brain, such as the sub-regions in hippocampus.

In order to overcome its limitations, combining PET images with other
high-resolution morphological imaging modalities such as radiography, CT
and MRI has been studied [25-27]. Combining two or more imaging modalities
is probably the best solution, especially in the field of neurological imaging.

In the past, to combine two different modalities, software registration has
been used, and it works well in some studies where resolution requirement is
relatively low.

2.4.1 PET/CT Systems

PET/CT is the first successful product in this series of research. Although
it was the simple overlay of two images based on a mechanically calibrated
shuttle bed or table, high-resolution anatomical images from CT partially
aided the PET image, which has poor spatial resolution. The hybrid PET/CT
imaging system can provide the functional image of PET with the superior
anatomical delineation of CT. For example, PET/CT provides better distinc-
tion between cancerous tissue and healthy tissue in the diagnosis of cancer
and the planning of radiation therapy.

2.4.2 PET/MRI Systems

On the other hand, magnetic resonance has much greater soft tissue contrast
than CT, making it especially useful in neurological, musculoskeletal, cardio-
vascular, and oncological imaging. Unlike CT, it uses no ionizing radiation.
Instead, it uses a powerful magnetic field to align the magnetization of hydro-
gen atoms in the body and provides excellent tissue contrasts in both brain
and body imaging.

MRI has many advantages, such as its nonhazardous nature, high-resol-
ution capability, potential for chemically specified imaging, capability of
obtaining cross-sectional images in any desired directions, ability to use a
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large variety of high tissue contrasts, diffusion imaging capabilities, flow-
related imaging capabilities, and ability to perform functional MRI [28]. MRI
is, therefore, preferred to CT in the new fusion imaging system.

In contrast to PET/CT, which provides the simple combination of func-
tional and anatomical images, PET/MRI could provide the complex com-
bination of various functional information, such as PET, functional MRI
(fMRI) or Magnetic Resonance Spectroscopy (MRS), and detailed morpho-
logical information through using soft tissue contrasts, for example. Thus, the
PET/MRI system allows us to complement quantitative biological functional
information from PET, such as metabolisms and binding potentials, with
the high-resolution morphological information or other functional information
from MRI. When PET/MRI fusion images are available, perhaps unique bio-
chemical and molecular information with high resolution will be obtained from
our body, especially where high-resolution imaging is of utmost importance,
such as the brain.

Fusion Concepts

A major obstacle in developing a fusion PET/MRI system is that conventional
PET uses PMTs for detector components. Because PMTs are very vulnerable
to magnetic fields, especially in ultra high-field MRI such as 7.0 T, the unac-
ceptably large stray magnetic fields from MRI practically prohibit any close
positioning of the PET to the MRI.

In order to alleviate this problem, two types of approaches have been
suggested [29-40]:

1. Fiber optics is used to relay the scintillation light from detection crystals to
the PET modules, which would be located outside the magnetic field of the
MRI. Since the scintillation crystals and optic fibers are not sensitive to the
magnetic field, this arrangement would be suited for the PET/MRI combi-
nation. Fiber optics, however, attenuate the optical signals and, therefore,
degrade the overall sensitivity and spatial resolution.

2. APD and a semiconductor-type PMT in the PET/MRI fusion system is
used. APDs can replace PMTs since they are insensitive to magnetic fields.
Although APDs have been used successfully on small scale PET scanners
for animal use, APD-based PET appears to suffer from long term stability.

Extensive research is still ongoing and some progress have been be achieved.
In 2008, Judenhofer et al. developed an APD-based PET and MRI hybrid
imaging system for animal use [41]. In three-dimensional (3D) animal PET,
the APD-based and magnetically compatible scanner can be inserted into an
animal 7.0 T MRI system to simultaneously acquire functional and morpho-
logical PET /MRI images from living mice. With this PET/MRI system, they
have found a tumor hidden in tissue through using high-resolution magnetic
resonance data and simultaneously determined whether it is malignant by
functional PET data.
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A PET/MRI hybrid system for humans using this APD-based PET inser-
tion is being developed by Siemens, Inc. and the Max Plank Institute in
Germany. This human PET/MRI consists of an APD based PET-insert and
a low field MRI (3.0 T MRI) system. Other companies and institutions are
also developing integrated PET/MRI systems using a 3 T or 1.5 T MRI [36—
39]. The major obstacle of this integrated PET/MRI system appears to be
the stability of APD circuitry due to interference with the magnetic fields and
radiofrequency waves from the MRI unit. It has been reported that there is
significant variation of the timing resolution of the APDs, thereby increasing
the coincidence timing window up to 40 ns, compared to less than 10 ns in
most of the current PET systems [36].

2.4.3 High-Resolution Fusion

In order to avoid these interferences and to fully utilize the molecular imag-
ing capability of PET and the anatomical imaging capability of UHF-MRI
such as 7.0 T in human imaging, each scanner can be operated separately and
connected using a high precision mechanical shuttle bed. This configuration
shares many characteristics with the current PET/CT configuration [42,43].
In this manner, one can conveniently avoid any possible artifacts due to the
magnetic field interference incurred with PET-inserts or magnetic field influ-
encing the PET operation. The major drawback of this approach is that image
acquisition is performed sequentially rather than simultaneously.

In 2007, Cho et al. [23] developed this kind of PET/MRI hybrid system
using shuttle bed system. One of the major differences of the system with
others is the coupling of two high-end systems, i.e., HRRT-PET and 7.0 T
MRI, was achieved without any compromise. For molecular imaging, HRRT-
PET is used and provides a spatial resolution of 2.5 mm FWHM, the highest
resolution among the human PET systems, and 7.0 T MRI system for the
highest resolution anatomical imaging. These two devices together will provide
the highest sensitivity and resolution molecular information, further aided by
sub-millimeter resolution 7.0 T MRI imaging.

The conceptual design of the new fusion PET/MRI is shown in Fig. 2.10.
PET and MRI are installed as closely as possible. The two are connected by
a shuttle system composed of a bed and its guided rails. Proper magnetic and
RF shielding was designed both in the PET side as well as shuttle bed to avoid
interference of strong magnetic fields of the 7.0 T MRI. The shuttle system is
designed to fulfill the mechanical precision of less than 0.05 mm and is able to
operate under a high magnetic field, such as 7.0 T. This precision is sufficient
to meet the spatial resolution of the 7.0 T MRI so that HRRT-PET images are
precisely guided into the desired neuroanatomical region(s). The major advan-
tage of this type PET/MRI system is that it allows the exploitation of the
best qualities of the two systems, i.e., the available resolution and sensitivity of
HRRT-PET and UHF 7.0 T MRI without any compromise and interference.



2 Fusion of PET and MRI for Hybrid Imaging 71

Fig. 2.10. PET/MRI fusion system. The system combines by two separate high-end
imaging devices (top), the HRRT-PET (left) and the 7.0 T MRI (right) by means
of a high-precision shuttle railway system (bottom)

iy

Fig. 2.11. PET/MRI fusion image example. The functional HRRT-PET image
(left) and the high-resolution 7.0 T MRI image (middle) are overlaid (right)
providing full diagnostic information

Critical issues for the success of this approach are the design and development
of precision mechanics including the shuttle and railway, proper magnetic
shield, and image fusion algorithm. The calibration method is also one of the
important components of this system to correctly align the image coordinates
of both imaging systems.
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2.4.4 PET/MRI Fusion Algorithm

Two approaches are under development to integrate anatomical and molecular
information. One is the image visualization approach and the other is the
image restoration approach.

Image Visualization Approach

Most of the functional or molecular images, by themselves, cannot easily
localize their signal origin. Overlaying the molecular information onto the
structural image greatly improves the ability to characterize the desired
anatomical location in the brain or organs [25-27,44-46]. Advancement in
image fusion methods allow for blending of higher spatial information of
anatomical images with the higher spectral information of functional or molec-
ular images (Fig.2.11). These methods are classified into two categories by the
fusion domain:

e Principal Component Analysis (PCA) [47], the Brovey method, and the
Hue Intensity Saturation (HIS) method [48] are fused in the spatial
domain.

e Discrete Wavelet Transform (DWT) and “A-trous” wavelet methods are
fused in the transform domain [49, 50].

There are several ways to represent the color information depending on the
color models: Red, Green, Blue (RGB), Cyan, Magenta, Yellow (CMY), and
Intensity, Hue, Saturation (IHS). In some cases, the color transform between
color models, such as RGB and IHS, is useful to combine the information from
the multiple sensors.

OIHS =M - CRGB or CRGB =M-1- OIHS (2.1)
where
R I
Crgp= |G|, Cms=|n (2.2)
B (%)
and
111 1-% L
3 3 3
M= || Mo 1-h Y (2.3)
vi vz 0 1 V2 0

Hue and saturation information is obtained from the intermediate variables
v1 and vy as following

H = tan™* (Z—j) and S =/v?+v3 (2.4)

The IHS model separates the image information [ into the spatial information,
such as intensity, and spectral information, such as hue H and saturation S.
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The most common method of image fusion using HIS model is to substitute
the whole or partial information of intensity channel from the lower resolution
11, to the higher resolution Ig.

Brovey’s method simply modifies the brightness information by multiply-
ing the intensity ratio of the higher resolution and the lower resolution.

Iy

T (2.5)

Chap =7 Cragp  where =

The PCA technique transforms the inter-correlated variables to the uncor-
related variables.

PC1 ©11 P12 P13
Cpca =P - Crg  where Cpca = | PO2 |, &= |1 @22 023 | (2.6)
PC3 ©31 P32 P33

The hue and saturation is obtained in a similar way as the HIS method.

H = tan —1 (PC?)) and S =+/PC2%2+ PC3? (2.7)

PC2

The primary component PC'1y of the higher resolution image replaces the
one PC1y, of the lower resolution in the image fusion algorithm. The PCA
fusion has the advantage of minimally distorting the spectral characteristics.

The wavelet transform method can be applied to the image fusion based
on the multi-resolution analysis approach.

CraB = RrcB + [Wras]n (2.8)
where .
R, 25:1 Wh.k
Rrep = | Gr |, (WraBln = | 21 Waoik (2.9)
B, ZZ:1 Wa.k

The Crgp image is composed of a multi-resolution wavelet plane, [Wgrags]x,
and the residual multi-spectral images, Rrgp. Rrap and [Wrag], contain the
lower and higher spatial frequency of the image, respectively. For the image
fusion, replacing wavelet coefficients [Wrag|n, 1. of the lower resolution image
to the ones [WrgB]n,m of the higher resolution image.

Image Restoration Approach

Most of the functional or molecular images have lower resolution than anatom-
ical images. For example, the intrinsic resolution of PET images is substan-
tially poorer than MRI images. The intrinsic resolution of the PET system is
determined mainly by the scintillation detector or crystal size and is approx-
imately half of the detector width. The actual measured resolution is worse
than the intrinsic resolution due to other image blurring factors, such as the
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source size, the positron range, the traveling distance, the penetration effect
due to the adjacent detectors, and the angular jitters due to variations in the
angles of the annihilation photons. These blurring factors can be mathemati-
cally modeled as the spatially invariant system. Among the blurring factors,
the source size and the positron range are source-dependent and spatially
invariant factors, while the others are spatially variant.

For simplicity, PET system can be assumed to be the spatially invariant
system and the system blurring can be defined as a Point Spread Function
(PSF). Once the exact PSF of the system is properly estimated, it can be
used for an image deblurring operation or deconvolution. The PET image
deblurring operation can be performed using a number of parameters that are
extractable from neurochemical and molecular information, as well as image
resolution information obtainable from MRI. For example, it is well-known
that glucose utilization within cells takes place in the gray matter rather
than in the white matter or in the Cerebrospinal Fluid (CSF). To execute
the PET/MRI image fusion process, an appropriate segmentation of MRI
images is essential to separate the corresponding tissues (gray matter) from
the others such as white matter and CSF [51]. From an actual image processing
point of view, it is equivalent to deconvolution of the measured PET sinogram
with a Gaussian PSF derived from the MRI data to enhance the resolution
of the PET image [51-53]. It is often accomplished in an iterative fashion
(Fig.2.12). The resolution of molecular image of PET, which is usually much
poorer than that of MRI, can be enhanced by combining the high-resolution
image of MRI with additional information such as neurochemical or molecu-
lar a priori information, such as the potential neurophysiological location of

~ PET Data PSF MR Data
(Sinogram) (Image)
Deblurring Anatomical
(oS Information

Deblurred Data
(Sinogram) L

l

Fusion Image

Fig. 2.12. [terative fusion algorithm. The anatomical information of MRI data is
utilized iteratively to confine the blurred PET image

Reference
« (Sinogram)
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receptor distribution for a particular ligand. In this fusion scheme, the seg-
mented anatomical information from the MRI image is important and must
be strongly correlated to the molecular information from the PET image.

Mismatched a priori information may cause over- or under-estimation of
the PSF and the resultant fusion image may be biased. In order to utilize
the anatomical image as a priori information, the contrast of the target tis-
sue is also important. For instance, we know that the neuronal activities are
generally confined to the gray matter rather than white matter, and segmen-
tation of gray matter provides important morphological structures that can
be registered with cortical activity (confined to the gray matter) as detected
by FDG PET.

A preliminary human study was conducted to validate the usefulness of
our fusion algorithm. A human brain image obtained by PET/MRI and the
fusion algorithm is shown in Fig.2.13, demonstrating that PET images can
indeed be confined and localized with help of MRI, especially with an ultra
high-resolution MRI such as the 7.0 T system.

Segmented Gray Matter FDG PET Image

Fig. 2.13. High-resolution PET/MRI fusion image of human brain. The source
images are obtained with the author’s new PET/MRI fusion system. The spatial
resolution of the PET is improved via the deblurring process based on the anatomical
information of the MRI. The image data is processed in the sinogram domain
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2.5 Conclusions

PET and MRI have been the most promising diagnostic tools among medical
imaging tools, especially in the area of neuroscience. PET delivers information
on molecular activities of human brain in vivo including enzymes and receptor
distributions with resolutions down to 2.5 mm FWHM. On the other front,
the MRI can obtain images with sub-millimeter resolution (down to 250 pm)
and allows us to visualize the entire brain including the brain stem areas
as well as other cortical and sub-cortical areas. For advanced and accurate
diagnosis, these two systems are combined to overcome their limitations.

Although a few problems still remain, the current PET/MRI fusion sys-
tem produces the highest quality images of molecular activities of the human
brain in vivo and provides unprecedented molecular activity matched high-
resolution images, which represent highly correlated molecular information to
anatomically well established organs. This new PET/MRI fusion system, for
the first time, began to provide anatomically well-defined molecular activities
in the brain hitherto unavailable by any other imaging devices. This molecular
fusion imaging system would be an important and essential tool for studying
cognitive neurosciences and neurological diseases, such as the Parkinson’s and
Alzheimer’s diseases. A mathematical image processing strategy that inte-
grates anatomical and molecular information together is a still unfinished
challenge in the field of medical image processing. We hope that the tech-
nology will provide novel and unique information to clinicians and research
scientists in the field of neuroscience.
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Cardiac 4D Ultrasound Imaging

Jan D’hooge

Summary. Volumetric cardiac ultrasound imaging has steadily evolved over the
last 20 years from an electrocardiography (ECC) gated imaging technique to a true
real-time imaging modality. Although the clinical use of echocardiography is still to a
large extent based on conventional 2D ultrasound imaging it can be anticipated that
the further developments in image quality, data visualization and interaction and
image quantification of three-dimensional cardiac ultrasound will gradually make
volumetric ultrasound the modality of choice. In this chapter, an overview is given
of the technological developments that allow for volumetric imaging of the beating
heart by ultrasound.

3.1 The Role of Ultrasound in Clinical Cardiology

Ultrasound (US) imaging is the modality of choice when diagnosing heart
disease. This is due to fact that it is non-invasive; does not show adverse
biological effects; has an excellent temporal resolution; is portable (and can
thus be applied bed-side) and is relatively cheap when compared to other
imaging modalities. As such, US imaging has become an indispensable tool
for daily management of cardiac patients.

Historically, cardiac ultrasound started with acquiring a single image line
as a function of time, which is referred to as motion mode (M-mode). It allowed
studying basic morphological properties of the heart such as estimating the
dimension of the left ventricular cavity or the segmental wall thickness. In
addition, the motion of the heart during the cardiac cycle could be monitored
which can give information on cardiac performance. However, as the field-
of-view of this imaging approach remained very limited, correct navigation
through the heart and interpretation of the recordings was difficult.

Hereto, two-dimensional (2D) ultrasound imaging (brightness mode
(B-mode)) was introduced by mechanically moving (i.e., tilting), the trans-
ducer between subsequent line acquisitions. This mechanical motion of the
transducer was replaced by electronic beam steering in the late sixties when
phased array transducer technology was introduced. As such, cross-sectional

T.M. Deserno (ed.), Biomedical Image Processing, Biological and Medical Physics,
Biomedical Engineering, DOI: 10.1007/978-3-642-15816-2_3,
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images of the heart could be produced in real-time at typical frame rates of
about 30 Hz. Although continuous improvements in image quality and image
resolution were obtained in the following decades, imaging a 2D cross-section
of a complex 3D organ such as the heart continued to have intrinsic pitfalls.
As such, three-dimensional (3D) US imaging of the heart has been a topic of
research for several decades.

3.2 Principles of Ultrasound Image Formation

The fundamental principle of echocardiography is relatively simple: an US
pulse is transmitted into the tissue and the reflections that occur while the
wave propagates (due to local inhomogeneities in mass density or regional
elasticity) are detected by the same transducer as a function of time. As the
velocity of sound in tissue is known, the time at which a reflection is detected
and the distance at which this reflection took place are linearly related. As
such, the reflected signal can be used to reconstruct a single line in the ultra-
sound image giving information on the tissue reflectivity (i.e., its acoustic
properties) as a function of depth. In order to generate a 2D or 3D image, the
above measurement is repeated by transmitting ultrasound in different direc-
tions either by mechanically translating /tilting the transducer or by electronic
beam steering.

3.2.1 The Pulse-Echo Measurement

The basic measurement of an ultrasound device can shortly be summarized
as follows:

1. A short electric pulse is applied to a piezoelectric crystal. This electric field
re-orients the (polar) molecules of the crystal and results in a change of its
shape. The crystal will thus deform.

2. The sudden deformation of the piezoelectric crystal induces a local com-
pression of the tissue with which the crystal is in contact (Fig. 3.1a).

3. This local compression will propagate away from the piezoelectric crystal
(Fig.3.1b). This compression wave (i.e., the acoustic wave) travels at a
speed of approximately 1,530 m/s in soft tissue through the interaction of
tissue elasticity and inertia. Indeed, a local compression is counteracted
upon by the tissue elasticity which results in a return to equilibrium. How-
ever, due to inertia, this return to equilibrium is too large resulting in
a local rarefaction (i.e., de-compression), which in turn is counteracted
upon by tissue elasticity. After a few iterations, depending on the tis-
sue characteristics and of the initial compression, equilibrium is reached
since each iteration is accompanied by damping, i.e., attenuation. The rate
of compression/decompression determines the frequency of the wave and
is typically 2.5-8 MHz for diagnostic ultrasound imaging. As these fre-
quencies cannot be perceived by the human ear, these waves are said to
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Fig. 3.1. Generation and propagation of sound waves. Left: Local tissue compression
due to deformation of the piezoelectric crystal; Right: The generated compression
propagates away from the transducer

be ultra-sonic. Typically, the higher the ultrasound frequency, the more
attenuation and therefore — for a given amplitude — less penetration.

4. Inhomogeneities in tissue density or tissue elasticity will result in a dis-
turbance of the propagating wave. They will cause part of the energy in
the wave to be scattered, i.e., re-transmitted in all possible directions. The
part of the scattered energy re-transmitted back into the direction of origin
of the wave is called backscatter. At interfaces between different types of
tissue (i.e., blood and cardiac muscle), part of the acoustic wave is reflected
(i.e., specular reflections). Both specular and backscatter reflected waves
propagate back towards the piezoelectric crystal.

5. When the reflected (compression) waves impinge upon the piezoelectric
crystal, the crystal deforms which results in the generation of an elec-
tric signal. The amplitude of this electric signal is proportional to the
amount of compression of the crystal, i.e., the amplitude of the reflected
or backscattered wave. This electric signal is called Radio Frequency (RF)
signal (Fig.3.2).

For diagnostic frequencies used in cardiac ultrasound, the above pulse-echo
measurement typically takes about 250 ps.

3.2.2 Gray Scale Encoding

A single pulse-echo measurement results in a single line in the US image. The
RF signal is further processed:

1. Envelope detection: The high frequency information of the RF signal is
removed by detecting the envelope of the signal (Fig.3.3). This is most
commonly done by using the Hilbert transform.

2. Grayscale encoding: As a function of time, the signal is sub-divided in
small intervals (i.e., pixels). Each pixel is attributed a number defined by
the local amplitude of the signal. Usually, these gray scales range between
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Fig. 3.2. Radio frequency 20
signal. Reflected waves (i.e.,
the echos) are detected using
the same transducer resulting 10 1
in a signal in the
radio-frequency range (a few
MHz) as a function of time.
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reflections are received
within this time interval
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Fig. 3.3. Ultrasound demodulation. The RF signal is demodulated in order to detect

its envelope (left). This envelope signal (bold) is color encoded based on the local
signal amplitude (right)

0 (black) and 255 (white). By definition, bright pixels thus correspond to
high amplitude reflections (Fig. 3.3).

3. Attenuation correction: As wave amplitude decreases with propagation dis-
tance due to attenuation, reflections from deeper structures are intrinsically
smaller in amplitude and would thus show less bright. Identical struc-
tures should have the same gray value however and, consequently, the
same reflection amplitudes. To compensate for this effect, the attenua-
tion is estimated and compensated for. Since time and depth are linearly
related in echocardiography, attenuation correction is often called time or
depth gain compensation. Sliders on the ultrasound scanner allow for a
manual correction of this automatic compensation in case it fails to correct
appropriately.
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Fig. 3.4. Cross-sectional ultrasound
image of the heart. The four cardiac
chambers Left Ventricle (LV), Right
Ventricle (RV), Left Atrium (LA),
and Right Atrium (RA) are
visualized dark — as blood is little
reflective — together with the leaflets
of the Mitral Valve (MV) and the
cardiac muscle, which appear as gray
region around the dark cavities

4. Logarithmic compression: In order to increase the contrast in the dark
regions of the image (as the RF signal typically has a large dynamic range),
gray values in the image are re-distributed according to a logarithmic curve.

3.2.3 Gray Scale Imaging

In order to obtain an ultrasound image, the gray scale encoding procedure is
repeated. For B-mode imaging, the transducer is either translated or tilted
within a plane (conventional 2D imaging) or in space (3D imaging) between
two subsequent pulse-echo experiments. In this way, a cross-sectional image
can be constructed (Fig.3.4).

Typically, a 2D cardiac image consists of 120 lines spread over an angle
of 90°. The construction of a single image thus takes about 120 x 250 us
equaling (approximately) 30 ms. Per second, about 33 images can therefore
be produced which is sufficient to look at motion (e.g., standard television
displays only 25 frames per second). However, a straight forward extension of
this approach to 3D will result in a frame rate below 1 Hz which is unaccept-
able for cardiac applications. Therefore, cardiac volumetric imaging requires
other approaches.

3.2.4 Phased Array Transducer Technology

Rather than mechanically moving or tilting the transducer, modern US devices
make use of electronic beam steering. Hereto, an array of piezoelectric crys-
tals is used. By introducing time delays between the excitation of different
crystals in the array, the US wave can be send in a particular direction with-
out mechanical motion of the transducer (Fig. 3.5a). Similarly, the ultrasound
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Fig. 3.5. Phased array transducer. An array of crystals can be used to steer (left)
and/or focus (right) the ultrasound beam electronically by introducing time delays
between the activation of individual elements in the array
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Fig. 3.6. Receive focusing. By applying the appropriate time delays on the received
RF signals of the individual array elements, the receive “beam” can be steered and
focused in a similar way as the transmit beam as reflections arriving from the chosen
direction/position will constructively interfere

wave can be focused in a specific point by making sure that the contributions
of the individual elements arrive simultaneously in this point (Fig. 3.5b).

The detected RF signal for a particular transmitted (directed, focused)
pulse is then simply the sum of the RF signals received by the individ-
ual elements. These individual contributions can be filtered, amplified and
time-delayed separately before summing. This process is referred to as beam
forming and is a very crucial aspect for obtaining high-quality images. For
example, by introducing the proper time delays between the contributions of
the individual crystals prior to summation, beam focusing can also be achieved
during receive. As the sound velocity in tissue is known, the depth from which
reflections can be expected at a certain moment after transmit can be esti-
mated. As such, the focus point can dynamically be moved during reception
by dynamically changing the time delays upon reception. This approach is
referred to as dynamic (receive) focusing which has a significant impact on
image quality (Fig.3.6).

3.3 Limitations of 2D Cardiac Ultrasound

Despite of the fact that significant advances in 2D ultrasound image resolution
(both spatially and temporally) and quality, i.e., Signal to Noise Ratio (SNR),
Contrast to Noise Ratio (CNR) have been made over the years, 2D imaging
to visualize a moving 3D structure such as the heart has intrinsic pitfalls.



3 Cardiac 4D Ultrasound Imaging 87

From lungs Fig. 3.7. Scheme of the heart and big vessels.
The heart can be seen as a four compartment
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3.3.1 Complex Anatomy (Congenital Heart Disease)

The heart can roughly be seen as a four compartment box in which two atria
sit on top of two ventricles (Fig. 3.7).

The right atrium pumps de-oxygenated blood coming from the peripheral
organs (through the inferior and superior vena cava) to the right ventricle
that — in turn — propels the blood through the lungs into the left atrium.
The — now oxygenated — blood then passes through the mitral valve into the
left ventricle in order to be pumped into the aorta and to the rest of the body.
The different chambers are separated by valves in order to avoid retrograde
flow to occur and therefore make sure that pumping function is efficient.

Although most cardiac patients do indeed have a normal cardiac anatomy,
a significant amount of patients are born with cardiac malformations, i.e.,
congenital heart diseases. In such patients, cardiac anatomy and morphology
deviates from normality. Moreover, some of the big vessels (e.g., aorta, pul-
monary artery) may be inappropriately connected to the cardiac chambers.
For example, a connection may exists between the left and right ventricles
due to a defect in the inter-ventricular or inter-atrial septum, i.e., Ventric-
ular Septum Defect (VSD) or Atrial Septal Defect (ASD), respectively. In
some patients, the ventricular septum is totally absent (i.e., uni-ventricular
hearts). Others have the aorta implanted on the right ventricle while the pul-
monary artery is implanted on the left ventricle (i.e., malposition of the big
vessels). The abnormal anatomy of these hearts can have a significant impact
on both the function and the morphology of each of the cardiac chambers.
As such, the congenital heart is typically very complex in shape and struc-
ture. Reconstructing and understanding the exact 3D anatomy of such a heart
needs expert training as this reconstruction needs to be done in the operator’s
mind by navigating through a number of 2D cross-sections. Even for highly
skilled experts, this remains challenging.
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3.3.2 Geometric Assumptions to Assess Volumes

An important clinical parameter for a patient’s prognosis is the volume of
the cardiac chambers. As such, the assessment of the left ventricular volume
is part of all routine clinical echo examinations. However, as conventional
ultrasound equipment only allows measuring distances (M-mode, B-mode) or
areas (B-mode), assumptions have to be made on the geometry of the left
ventricle in order to assess its volume.

Different models of different complexities have been proposed. Most often
the assumption is made that the left ventricle can be modeled as an ellipsoid
of revolution. Measuring its long and short axis dimensions (on a 2D US
image) is then sufficient to estimate its volume (Fig.3.8). Moreover, if the
additional assumption is made that the long-to-short axis ratio of this ellipsoid
is known, a single measurement of the diameter of the left ventricular cavity
on an M-mode image is sufficient to estimate the entire volume. Although this
method relies strongly on the geometrical assumptions made, this approach is
the most commonly used clinical method for assessing left ventricular volume.
By making this measurement both at end-diastole and at end-systole (end
of the ejection period of the ventricle) the amount of blood ejected by the
ventricle into the aorta during one cardiac cycle (i.e., the stroke volume), and
the ejection fraction, i.e., the stroke volume normalized to the end-diastolic
volume, can also be estimated.

Although a normal left ventricle roughly resembles half an ellipsoid of
revolution the diseased ventricle does not necessarily. For example, after
myocardial infarction, an aneurysm can form resulting in regional bulging
of the myocardial wall. Similarly, during pulmonary hypertension the septum
will bulge into the left ventricular cavity due to the high blood pressure in
the right ventricle. Obviously, in such cases, the boundary conditions to be
able to use the geometric model do not hold and the estimated volumes can
be seriously biased.

Similarly, the shape of the other cardiac chambers (right ventricle, left
and right atrium) is much more complex (even in the normal heart) and good
geometrical models are not available. As such, a correct and reliable estimation
of their volume using US imaging remains challenging.

Fig. 3.8. FEllipsoid model for volume estimation. Assuming that the left ventricle
can be modeled as an ellipsoid of revolution, its volume can be calculated based on
the long and short axis dimensions of this ellipsoid. Those can be assessed by 2D
ultrasound
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Fig. 3.9. Principle of foreshortening.
Myocardial inwards motion and
thickening during the cardiac cycle
(left) are visually scored in daily
clinical practice in order to assess
regional myocardial function. However,
out-of-plane motion of the heart (right)
can result in oblique cross-sections that
can easily be misread as inward motion
or wall thickening (especially near the

highly curved apex). This effect is
referred to as foreshortening

——

3.3.3 Out-of-Plane Motion and Foreshortening

Coronary artery disease is a major cardiovascular problem in the Western
world. Echocardiography is typically used to evaluate the impact of the coro-
nary narrowing on segmental function of the cardiac muscle (as the narrowing
will result in a hypo-perfusion of the distal myocardium which will as such
not be able to contract normally). For that, the heart is visualized (some-
times while stressing the heart pharmaceutically) in order to detect regions
of abnormal wall thickening and motion.

Although cardiac US does indeed allow visualization of segmental wall
motion and deformation, a common pitfall is the problem of foreshortening
due to out-of-plane motion of the heart during the cardiac cycle. As a result,
the image plane might cut correctly through the heart at end-diastole (i.e.,
along the long axis of the left ventricle) while the end-systolic cross-section
cuts in a parallel (anatomical) plane. As such, segmental wall motion and
thickening may appear normal while they are in fact abnormal (Fig.3.9). It
remains a major difficulty for stress echocardiography and its interpretation.

3.4 Approaches Towards 3D Cardiac Ultrasound

Given the intrinsic difficulties with 2D ultrasound to study a complex 3D
organ such as the heart, volumetric ultrasound imaging would offer obvious
advantages. However, as mentioned above, a straight forward implementation
of the typical 2D imaging concepts for a 3D ultrasound system would result
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in a frame rate below 1 Hz. This is clearly unacceptable given that a com-
plete cardiac cycle typically takes less than a second. Several approaches have
therefore been proposed to solve this problem.

3.4.1 Freehand 3D Ultrasound

The most straight forward way of acquiring volumetric US cardiac data at
an acceptable temporal resolution is by merging different 2D US acquisitions
taken over subsequent cardiac cycles into one 3D volumetric data set. By
tracking the position and orientation of the transducer by an electromagnetic
tracking device while moving it freely manually, the 3D +t volume can be
filled with data points [1].

Obviously such an approach is cumbersome and time consuming. More-
over, it can have problems with motion artifacts as a result of patient motion
and breathing and the 3D + t volume will typically be sampled in an irregular
manner. Finally, the tracking devices have limited accuracy which will result
in misalignment of the collected 2D data in 3D space.

3.4.2 Prospective Gating

In order to make the volumetric acquisition process more reproducible and to
fill the 3D 4+t space more homogeneously, the motion of the transducer can
be guided by an external device that rotates the transducer by a certain angle
at every heart beat (prospective gating). In this way, a full volume data set
can be constructed as a fan of US images through ECG gating as illustrated
in Fig. 3.10. Here, the ECG signal is used to synchronize data acquisition over
several heart beats.

Although fully applicable, this approach has several disadvantages. Firs-
tly — as in any gating technique — acquisition time is significantly prolonged. It
is directly proportional to the number of image planes and inversely propor-
tional to the heart rate. Given that a rotation of 180° is sufficient to cover the
entire volume (as the 2D ultrasound sector image is symmetric), a 2° rotation

Fig. 3.10. Rotating transducer. Rotating the 2D
ultrasound image allows filling 3D space in a regular
way. In order to obtain a sufficiently high frame rate
2D image data need to be merged over several heart
beats
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step will require 90 2D acquisitions, i.e., heart beats. This corresponds to a
typical acquisition time of 1-1.5min. Secondly, as acquisition time becomes
significant, this approach is sensitive to motion and respiratory artifacts that
will result in a spatial misalignment of the image planes within the 3D vol-
ume. Finally, this approach can only be applied in patients in sinus rhythm.
Any heart rate variability, which is physiologic and, therefore, always present
(even in a healthy individual) will result in a temporal misalignment of some
of the image data.

Obviously, this 3D imaging approach requires an off-line reconstruction of
the volumetric image. This implies that no volumetric feedback can be given to
the operator which makes the acquisition of high quality data sets more cum-
bersome. Indeed, during rotation of the 2D image plane, drop-outs (e.g., due
to rib artefacts) can occur which may require to re-start the acquisition pro-
cess after re-positioning the transducer on the patient’s chest. Although such
problems could be avoided by taking proper scouting images, this scouting
again prolongs the acquisition process.

Despite these potential pitfalls, this approach has been introduced and
validated in several clinical studies (e.g., [2]).

3.4.3 Retrospective Gating

In order to avoid some of the problems met with ECG-gating, a fast-rotating
array transducer has been proposed [3]. In this approach, the transducer
rotates very quickly around its axis (approx. 400-500 rpm) so that it makes
several revolutions (approx. 8) per heart beat. Obviously, one cannot use
a conventional ultrasound transducer as the electrical cable connecting the
transducer to the ultrasound system would quickly wind up and break. Djao
et al. have proposed to use a slip-ring system whereby the piezoelectric ele-
ments of the array transducer remain connected to their electrodes in a sliding
manner [3].

The major advantage of this system over the approach described in
the previous sections is that volumetric data becomes available in real-time
(16 vols./s) and can thus be shown to the operator as visual feedback in order
to optimize the volumetric data acquisition. Moreover, ECG gating is not
strictly required as the volume can simply be updated continuously at a rate
of 16 vols./s. However, if volumetric data at higher temporal or spatial reso-
lution are required, (retrospective) ECG-gating — with its associated pitfalls —
remains a must.

The major disadvantage of this approach is that a dedicated array trans-
ducer is needed. Although the slip-ring principle has been proven to work
well, the mechanical interconnection comes at the expense of noise. Moreover,
volumetric image reconstruction becomes quiet challenging. Indeed, given the
high rotation speed of the transducer and given that a 2D image is con-
structed by acquiring subsequent image lines (Sect. 3.3) the image planes are
curved (Fig.3.11). In addition, spatial sampling becomes rather irregular and
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Fig. 3.11. Prospective and retrospective gating. Although prospective ECG gating
results in equidistant image plane (left) retrospective gating combined with a fast
rotating array results in curved image planes (right). The latter makes reconstruction
of the volumetric data more challenging

is dependent on the heart rate to rotation rate ratio. Reconstruction of 3D vol-
ume data from this irregular sampled space is not trivial but several methods
to do so have been presented [4].

3.4.4 Two-Dimensional Arrays

The concept of a phased array transducer can be extended towards volumetric
imaging. Indeed, if a 2D matrix of piezoelectric elements can be constructed,
the US beam can be steered electronically both in plane (as for the 1D
array transducer, cf. Sect.3.4) and out-of-plane (as required for 3D imag-
ing). Although this is theoretically feasible, its practical implementation is
not straight forward due to the large number of elements required in a 2D
phased array transducer. Indeed, a regular 1D phased array transducer typ-
ically consists of 64 up to 128 elements. As such, a full 2D array transducer
will contain 64 x 64 = 4,096 elements up to 128 x 128 = 16,384 elements.
Each of these elements needs to be electrically isolated from its neighbors and
needs wiring. As the footprint of the transducer needs to be limited in size
for cardiac applications (approx. 1.5 x 1 cm; it has to fit in between ribs) this
becomes very challenging in terms of dicing the piezoelectric materials and
wiring/cabling.

Sparse 2D Array Transducers

Because of the wiring issues, the first 2D array transducers had only a lim-
ited amount of active elements (about 512). As such, they are referred to as
“sparse 2D array transducers”. Although these transducers can be used for
volumetric imaging, the major challenge lies in finding the optimal configura-
tion of the active elements, i.e., which elements should be used in transmitting
and receiving in order to obtain the optimal volumetric image quality. Sev-
eral element distributions have been investigated and compared in numerous
publications [5, 6].

Although the 2D (sparse) phased-array transducer can avoid mechanical
rotation or motion of the transducer, it does not solve the problem of acqui-
sition rates as a line-per-line acquisition of a 3D volume of US data at a
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spatial resolution comparable to what is used in conventional 2D imaging
would require about 1 s. This is unacceptable for cardiac applications.

The simplest solution to this problem is reducing the field-of-view and/or
the spatial resolution of the volumetric data set. For example, lowering the
opening angle from 90° x 90° to 40° x40° and reducing the line density to 1 per
2 degrees instead of 1 per degree would result in a volume rate of about 10 Hz.
Obviously, this increased temporal resolution then comes at the expense of
spatial resolution and/or the field-of-view.

Parallel Beam Forming

As an alternative solution, parallel beam forming has been proposed [7]. In
this technique, multiple image lines are constructed for each transmit pulse.
As electronic beam steering implies that time delays have to be introduced
between different elements in the array, the same is done during receive (i.e.,
for the received beam, see Sect.3.4). Indeed, for a certain US transmit, all
crystals in the array receive an echo RF signal. Before summing these signals —
to obtain a single RF signal (and then after reconstruction a single image
line) — they are time-delayed in order to steer and focus the received beam in
the same direction as the transmitted beam. In this way, the transmit-receive
(i.e., two-way) beam profile is optimal.

In parallel beam forming, the RF signals from the individual elements will
be summed by introducing time delays to direct the receive beam a bit to the
side of the original transmit beam. Using the same RF signals, this summation
will also be done by time delaying for a receive beam oriented a bit to the
other side (Fig. 3.12). As such, two image lines can be constructed for a single
ultrasound transmit. This implies that an US image can be constructed twice
as fast.
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Fig. 3.12. Conventional and parallel beam forming. The reflections were originating
from a reflector (black dot). In conventional beam forming (top) time delays are
applied in order to focus the receive beam in the same direction as the transmit
beam. In parallel beam forming (bottom) the same RF signals (blue) are time delayed
in order to focus the receive beam slightly to the left and right. As such, they are
not longer perfectly aligned after time delaying (green and red)
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Parallel beam forming was initially introduced for conventional 2D imag-
ing in order to increase the temporal resolution of these systems further. In
this way, current high-end systems have default frame rates of approximately
70 Hz. The flip-side of the medal is that the beam former of such systems needs
to be doubled. As this is an expensive part of an US device, this has a signif-
icant impact on its cost. The same principle can be used to have quadruple
receive beams (by including 4 beam formers in the system) or more. As such,
the first true volumetric ultrasound device, developed at Duke University, had
16 parallel receive lines which allowed real-time 3D scanning at acceptable vol-
ume rates [8,9]. The first commercial real-time 3D ultrasound system using
2D phased array technology was available at the end of the 1990’s and was
produced by Volumetrics Medical Imaging (Durham, North Carolina). The
system was based on technology developed in the ultrasound research group
at Duke University and was later acquired by Philips Medical Systems.

Second Generation 2D Array Transducers

Although the design of the sparse 2D arrays has been optimized for image
quality, intrinsically, image quality would be better when more elements of
the 2D array could be used. Indeed, the more elements that are used for
transmit /receive, the better the US beam characteristics for imaging. As such,
a need remained to improve the 2D array transducer technology in order to
allow more transmit/receive elements (and thus improve image quality).

An important step forward was made by Philips Medical Systems (Best,
the Netherlands) by putting part of the beam former of the imaging system
in the housing of the US transducer. In such a system, certain elements of the
2D transducer array form a sub-group of elements that are beam formed (i.e.,
time delayed, amplitude weighted and potentially filtered) both in transmit
and in receive in the transducers handle. Subsequently, these pre-beam formed
signals are transferred to the US system where they are combined (i.e., beam
formed) into a single RF signal. The beam forming process thus becomes a
two-step procedure in which signals from certain elements are combined inside
the transducer handle while combining these pre-beam formed signals is done
inside the US system. As such, the number of cables going to the transducer
from the US scanner can be limited while many more elements in the trans-
ducer can effectively be used for imaging (Fig.3.13). Clearly, optimizing the
design of such a 2D transducer setup is not obvious as there are a lot of degrees
of freedom (e.g., which elements to combine in groups, how to pre-beam form
the groups of elements, how to beam form the remaining signals).

The pre-beam forming concept combined with parallel beam forming
allows current state-of-the-art real-time volumetric scanners to produce nar-
row volumes (approx. 25° x 90°) at a frame rate of 25 Hz with acceptable
image resolution. In order to increase the field-of-view to a full volume of
90° x 90°, data needs to be collected over multiple cardiac cycles (typically
four) and merged into a single full-volume.
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Fig. 3.13. Pre-beam forming. In the first generation of 2D array transducers each
element was linked directly to the US scanner for beam forming (left). In the second
generation of 2D arrays, part of the beam forming is done inside the transducer
handle which reduces the number of cables going to the system significantly (right).
This in turn allows to use more elements in the array for a given number of channels

Aortic Valve Aortic Valve

Mitral Valve Mitral Valve

Fig. 3.14. Volumetric ultrasound using state-of-the-art clinical equipment. Looking
from the apex of the heart towards the atria, one clearly sees both aortic and mitral
valves throughout the cardiac cycle. Left: aortic valve opened; mitral valve closed;
Right: aortic valve closed; mitral valve opened

Today, all major vendors of cardiac US equipment have a 3D system com-
mercially available that allows full-volume imaging (i.e., 90° x 90°) at frame
rates of about 25 Hz by gating over four to six cardiac cycles. True real-time
volumetric scanning typically requires a reduction of the field-of-view however.
An example of a volumetric data set acquired using this (gated) real-time 3D
technology is given in Fig. 3.14.

3.5 Validation of 3D Cardiac Ultrasound Methodologies

The validation of 3D ultrasound systems for the assessment of cardiac chamber
volumes can be done:

e In-vitro: Typically, latex balloons of known volume are scanned using
3D ultrasound (and sometimes using an alternative imaging technique as
reference).

e In-vivo: Most often, another medical imaging modality is used as reference
(e.g., Cardiac CT, Cardiac MRI).
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e Fz-vivo: In the special case of heart transplantation, the pre-transplan-
tation (myocardial) volume measured by 3D ultrasound in-vivo has been
compared to post-transplantation volumes measurements [10].

Both in-vitro and in-vivo validations of the free-hand and real-time 3D
approaches for all cardiac chambers (left and right ventricle and left and right
atrium) have been presented in numerous publications, e.g., [11-16]. Although
volumes measured by 3D ultrasound typically show a bias with respect to
cardiac MRI as it systematically measures smaller (cavity) volumes, all studies
show excellent corrections with this reference technique. The underestimation
of LV cavity volume has been attributed to the fact that the spatial resolution
of the 3D systems remains limited making it hard to distinguish trabeculae
from myocardium. It can be expected, however, that this bias will gradually
disappear with the further improvements of volumetric US systems.

3.6 Emerging Technologies

3.6.1 Transesophageal 3D Imaging

In Transesophageal Echocardiography (TEE), an US transducer is inserted
into the oesophagus through the mouth of the patient in order to be able
to approach the heart more closely. This in turn allows using US waves
of higher frequency (as less penetration of the US wave is required) which
improves image resolution. TEE has become a well-established clinical tech-
nique (Fig. 3.15).

Although ECG-gated TEE imaging does allow reconstructing 3D vol-
umes [17], a potentially more favourable approach has more recently been
introduced by Philips Healthcare (Best, the Netherlands). Indeed, Philips
Healthcare was able to build a transesophageal 2D matrix array transducer
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Fig. 3.15. Transesophageal echocardiography. Left: mitral valve; Right: device
inserted into the heart in order to close an atrial septum defect. (Courtesy: Philips
Healthcare)
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that allows volumetric transesophageal imaging [18]. Given that the probe
needs to be swallowed by a patient, its size has to be limited and additional
safety precautions need to be taken which implies that building such a probe
is a true technological achievement. Numerous articles published in the last
two years show that this new imaging approach is very promising and seems
to be particularly useful in the operation theatre for monitoring and guiding
of interventions [19]. For some interventions, this new real-time volumetric
imaging technique may replace other guiding techniques completely (most
often X-ray fluoroscopy) as it does not bring radiation hazard to the patient
and/or operator and is relatively cheap and easy to use.

3.6.2 True Real-Time Volumetric Imaging

Full volume (i.e., 90° x 90°) 3D imaging still requires merging data acquired
over four to six heart beats. As such, this is not true real-time volumet-
ric imaging yet and so-called “stitching artifact” (i.e., the registration errors
between the sub-volumes) can occur and need to be accounted for in the
volume reconstruction [20].

Very recently, Siemens Medical Solutions (Mountain View, CA) introduced
their newest US system that combines 2D array technology (including trans-
ducer pre-beam forming) with a system embedding 64 parallel beam formers.
In this way, their system is able to provide full volume data sets (90° x 90°)
in real-time at a frame rate of approximately 50 Hz. As such, this system
allows true real-time volumetric imaging (Fig.3.16). Another true real-time
3D system was also recently introduced by GE Health Care.

However, obtaining good image quality for such a highly parallelized sys-
tem remains challenging. The above mentioned system thus remains to be
validated both in-vitro and in-vivo.

Fig. 3.16. Real-time full
volume imaging. The new
system architecture
introduced by Siemens
Medical Solutions allows true
full volume imaging in
real-time at acceptable frame
rates (Courtesy: Shane
Williams, Siemens Medical
Solutions)
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3.7 Remaining Challenges in 4D Cardiac Ultrasound

3.7.1 Resolution

Although spatial and temporal resolution of 3D ultrasound systems have
steadily improved over the last few years by the introduction of parallel beam
forming and pre-beam forming, both spatial and temporal resolution remain
inferior to what is currently available in 2D ultrasound. The increased field-
of-view of the volumetric systems thus comes at the expense of both spatial
and temporal resolution of the US data set. As such, 3D systems have not
yet replaced conventional 2D systems in clinical routine but are rather used
in specialized centers as an add-on to 2D echocardiography.

Temporal Resolution

Temporal resolution of the US data set is mostly restricted by the speed
of sound. Indeed, as an US wave propagates at finite speed (approximately
1,530 m/s) through soft tissue, a pulse-echo experiment for imaging up to
15 cm intrinsically takes about 200 ps. Per second, a maximum of about 5,000
pulse-echo measurements can thus be made; this limit is set by physics. These
5,000 measurements need to fill up space-time as much as possible. It thus
remains a challenge to find the optimal balance between line density (i.e.,
spatial resolution), the temporal resolution (i.e., number of scans per second)
and the field of view.

Spatial Resolution

Clearly, adding an additional spatial dimension in volumetric imaging will
intrinsically result in a reduction in sampling in the other dimensions. Parallel
beam forming has increased the amount of information available in four-
dimensional (4D) space-time significantly. However, parallelization not only
comes at an economical cost but also at the cost of image quality. As such,
massive parallelization (i.e., reconstructing a full volume for a single transmit)
may be theoretically possible but would come at the expense of image qual-
ity unless adapted reconstruction algorithms are developed. In this context,
a complete different imaging paradigm for US image formation has been pro-
posed, which would theoretically allow producing volume data at acceptable
spatial resolution at a frame rate of 5 kHz [21].

Spatial resolution of the volumetric US data set is mostly determined
by the number of 2D array elements that can effectively be used and by
aperture size (i.e., the active area of the transducer). Indeed, both system
characteristics are essential for proper steering and focusing of the US beam.
For example, when using few transducer elements for an US transmit, not
only the total amount of energy in the US wave will be reduced (and thus
the signal-to-noise ratio of the resulting image will decrease) but also part of
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the US energy will “leak” into other directions (referred to as “side lobes”
or “grating lobes”). These will reduce the SNR further and can result in
significant image artifacts [22]. The technological improvements in wiring and
cabling in combination with more advanced and optimized pre-beam forming
techniques will play an important role in this context.

In order to allow for larger US transducers (to improve focusing and there-
fore image quality), the introduction of silicon-based US transducers is likely
an important step forward as they allow building conformable arrays [23].
These transducer systems can — in theory — be positioned as a flexible path
on top of the patient’s chest in order to increase the active area of the
transducer. Beam steering and focusing with these transducers becomes how-
ever non-trivial and requires specialized image reconstruction algorithms [24].
Nevertheless, one can anticipate that these conformal arrays will play an
important role in future volumetric US systems.

3.7.2 Image Quality

The current approach towards increasing the field-of-view of the US system
without compromising line density and/or temporal resolution dramatically is
the implementation of parallel beam forming . Although parallel beam forming
does indeed allow reconstructing multiple image lines for a single US transmit,
it meets several drawbacks.

Amplitude Reduction and Inhomogeneity

The sensitivity of the US system is determined by its two-way beam pro-
file, i.e., the product of the transmit and the receive beam characteristics
(Fig.3.17). In conventional 2D imaging, the transmit focus and receive focus
are identical which results in a maximal narrowing of the US two-way
beam profile and therefore an optimal image resolution (for a given trans-
ducer/system setup). However, for parallel beam forming the receive beams
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will be positioned around the transmit beam focal point. As such, the ampli-
tude of a reflected signal will be reduced (with respect to conventional
imaging) which has a direct (negative) impact on the SNR of the reconstructed
image. Moreover, when more than two lines are reconstructed in parallel (e.g.,
four), the sensitivity of the two inner beams and the two outer beams is dif-
ferent. After image reconstruction, this would result in two brighter and two
darker lines respectively (i.e., strike artifacts) unless this amplitude difference
is corrected for.

Although this correction can indeed be done, it requires an accurate knowl-
edge of the transmit beam profile characteristics. Unfortunately, this beam
profile not only depends on geometrical parameters of the transducer design
but also on the properties of the tissue that is being imaged. As such, this is
not a trivial task. In any case, the SNR of these image lines remains lower.

Beam Broadening

As a possible solution to the above mentioned amplitude inhomogeneity prob-
lem, the transmit beam can be broadened. Indeed, by broadening the transmit
beam, the spatial variations in transmit beam amplitude are reduced. As a
result, the two-way beam profiles become more homogeneous. This principle
is used in current volumetric US scanners in order to reduce the inhomogene-
ity in sensitivity between image lines as much as possible. However, a broader
transmit beam intrinsically results in a broader two-way beam profile and
therefore in an imaging system with decreased spatial resolution.

Beam Distortion

A straight forward implementation of parallel beam forming would position
the receive beam centrally around the transmit beam. However, this implies
that the two-way beam profiles are “pulled” towards the transmit beam so
that the effective angle between parallel beam formed lines and other ones
is different. This effect is called beam warping and results in strike artifacts
in the reconstructed images (Fig.3.18). A simple theoretical solution to this
problem is steering the receive beams further out so that the effective two-way
beam profiles are regularly sampled. However, as the width of the US beam
is spatially variant (and dependent on the medium in which the US wave is
traveling), this may require dynamic beam steering (i.e., reconstructing curved
receive beams rather than straight beams) [25]. Similarly, steering the receive
beams away from the focus point will results in an asymmetric two-way beam
profile with mirrored asymmetry for parallel beam formed lines. This effect is
referred to as “beam skewing” and, again, results in typical image artifacts.
These problems show that a straight forward implementation of parallel
beam forming intrinsically is associated with a reduction in image resolution
and contrast. The higher the degree of parallelization, the more difficult the
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Fig. 3.18. Beam warping.
Conventional 2D ultrasound
image of an US phantom
containing three cystic
regions (left). In a straight
forward implementation of
parallel beam forming,
beam warping results in
strike artifacts (right)

associated image artifacts and the more ingenious solutions need to be devel-
oped. As such, further research is required in order to optimally use massive
parallel beam forming for volumetric US imaging at preserved image quality
and resolution.

3.7.3 Data Visualization and Interaction

A major difficulty with volumetric imaging (independent of the imaging
modality used) is data visualization and interaction. Indeed, standard moni-
tors remain two dimensional which implies that volume rendering techniques
are essential for display. Unfortunately, some of these rendering techniques
neutralize the volume information of the object making navigation and image
interpretation difficult.

Although experiments have been carried out with stereoscopic vision of
cardiac volumetric data through colored/polarized glasses or 3D screens [26],
volume rendering using a depth-encoding color maps remains the current
standard (Fig. 3.15). Similarly, holograms have been used to visualize the 3D
cardiac data sets but only in a research setting [27].

As for data visualization, data interaction is typically not straight for-
ward in a volume data set most importantly due to the lack of a good depth
perception. Novel data visualization and interaction tools will thus become
important for the further introduction of volumetric US in clinical cardiology
(Fig. 3.19).

3.7.4 Segmentation/Automated Analysis

The visual presentation of the volumetric US data can give useful informa-
tion about the heart anatomy. In particular, cardiac surgeons gain valuable
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Fig. 3.19. 3D visualization. New data interaction tools will be important for the fur-
ther introduction of volumetric US imaging in clinical cardiology (Courtesy: Personal
Space Technologies, Amsterdam)

information on valve leaflets and shape prior to surgery for valve reconstruc-
tion or replacement [19]. Nevertheless, quantification of chamber volumes and
the myocardial volume (i.e., mass) is important for prognosis, diagnosis and
treatment follow-up. Obviously, this requires segmentation of the relevant
structures in the US volume data set.

To date, myocardial segmentation is most often done manually or involves
at least a significant amount of manual user interaction. As such, analysis
times can be significant making the clinical application of these methods less
practical and decreasing reproducibility. Hereto, several approaches towards
automated segmentation are developed [28,29]. They will be important to
move volumetric echocardiography to the clinical routine. Toshiba Medical
Systems recently combined such an automated segmentation tool with 3D
motion estimation algorithms which allows obtaining functional information
of the heart with minimal user interaction [30].
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Morphological Image Processing Applied
in Biomedicine

Roberto A. Lotufo, Leticia Rittner, Romaric Audigier, Rubens C. Machado,
and André V. Saide

Summary. This chapter presents the main concepts of morphological image pro-
cessing. Mathematical morphology has application in diverse areas of image pro-
cessing such as filtering, segmentation and pattern recognition, applied both to
binary and gray-scale images. Section 4.2 addresses the basic binary morphologi-
cal operations: erosion, dilation, opening and closing. We also present applications
of the primary operators, paying particular attention to morphological reconstruc-
tion because of its importance and since it is still not widely known. In Sect. 4.3,
the same concepts are extended to gray-scale images. Section 4.4 is devoted to
watershed-based segmentation. There are many variants of the watershed transform.
We introduce the watershed principles with real-world applications. The key to suc-
cessful segmentation is the design of the marker to eliminate the over-segmentation
problem. Finally, Sect. 4.5 presents the multi-scale watershed to segment brain struc-
tures from diffusion tensor imaging, a relatively recent imaging modality that is
based on magnetic resonance.

4.1 Introduction

There are several applications of Morphological Processing (MP) in diverse
areas of biomedical image processing. Noise reduction, smoothing, and other
types of filtering, segmentation, classification, and pattern recognition are
applied to both binary and gray-scale images. As one of the advantages of
MP, it is well suited for discrete image processing and its operators can be
implemented in digital computers with complete fidelity to their mathematical
definitions. Another advantage of MP is its inherent building block concept,
where any operator can be created by the composition of a few primitive
operators.

This text introduces and highlights the most used concepts applied to real
situations in biomedical imaging, with explanations based on a morpholog-
ical intuition of the reader, whenever possible. However, although the lack
of full details, the text is as coherent as possible to the mathematical the-
ory and the motivated reader is invited to investigate the many texts, where

T.M. Deserno (ed.), Biomedical Image Processing, Biological and Medical Physics,
Biomedical Engineering, DOI: 10.1007/978-3-642-15816-2_4,
(© Springer-Verlag Berlin Heidelberg 2011
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these details and formalisms are treated in depth [1,2]. In this chapter, only
the main mathematical equations are given. Source codes of implementations
of these equations are available on the toolbox IA870 in the Adessowiki'
project [3]. Other text with example applications from image microscopy using
this toolbox is also available [4].

Morphological image processing is based on probing an image with a
structuring element and either filtering or quantifying the image according
to the manner in which the structuring element fits (or does not fit) within
the image. By marking the locations at which the structuring element fits
within the image, we derive structural information concerning the image. This
information depends on both the size and shape of the structuring element.
Although this concept is rather simple, the majority of operations presented
in this chapter is based on it: erosion, dilation, opening, closing, morphological
reconstruction, etc., applied both for binary and gray-scale images.

In this chapter, only symmetric structuring elements will be used. When
the structuring element is asymmetric, care must be taken as some properties
are valid for a reflected structuring element. Four structuring elements types
will be used in the illustrations and demonstrations throughout this chapter:

e cross: the elementary cross is a 3 x 3 structuring element with the central
pixel and its four direct neighbors (4-neighborhood).

e boz: the elementary box is a 3 x 3 structuring element with all nine pixels,
the central and its eight neighbors (8-neighborhood).

e disk: the disk of a given radius is a structuring element with all pixels that
are inside the given radius.

e [ine: the linear structuring element can be composed for a given length
and orientation.

4.2 Binary Morphology

4.2.1 Erosion and Dilation

The basic fitting operation of mathematical morphology is erosion of an image
by a structuring element. The erosion is computed by scanning the image with
the structuring element. When the structuring element fits completely inside
the image, the scanning position is marked. The erosion consists of all scanning
locations where the structuring element fits inside the image. The erosion of
set A by set B is denoted by A © B and defined by

AeB={z:B, C A}, (4.1)

where C denotes the subset relation and B, = {b+x : b € B} the translation
of set B by a point x.

! http://www.adessowiki.org
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Fig. 4.1. Erosion and
dilation. Left: input image
in black and gray and
erosion in black (region
where the center of the
robot can move); Right:
input image in black and
dilation in black and gray

A binary image is formed by foreground and background pixels. In mor-
phology, for every operator that changes the foreground, there is a dual
operator that changes the background. The dual operator for the erosion is
the dilation. Since dilation involves a fitting into the complement of an image,
it represents a filtering on the outside, whereas erosion represents a filtering
on the inside (Fig.4.1). For intuitive understanding, the structuring element
can be seen as a moving robot.

Formally, the dilation of set A by B, denoted by A @ B, is defined by

~—

A®B=(A°CB)° (4.2)

where A° denotes the set-theoretic complement of A and B = {—b: b € B}
is the reflection of B, i.e., a 180°-rotation of B about the origin. Foreground
is generally associated to white color while background is associated to black
color. But note that in impression works, the inverse convention is sometimes
used.

Another alternative equivalent way to compute the dilation is by
“stamping” the structuring element on the location given by every foreground
pixel in the image. Formally, the dilation can also be defined by

A®B= ] B (4.3)
a€A

Dilation has the expected expanding effect, filling in small intrusions into
the image (Fig. 4.1, right) and erosion has a shrinking effect, eliminating small
extrusions (Fig. 4.1, left).

As dilation by a disk expands an image and erosion by a disk shrinks an
image, both can be used for finding boundaries for binary images. The three
possibilities are:

1. External boundary: dilation minus the image.
2. Internal boundary: the image minus the erosion.
3. Combined boundary: dilation minus erosion.

The latter straddles the actual Euclidean boundary and is known as the mor-
phological gradient, which is often used as a practical way of displaying the
boundary of the segmented objects.
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4.2.2 Opening and Closing

Besides the two primary operations of erosion and dilation, there are two
important operations that play key roles in morphological image processing,
these being opening and its dual, closing.

The opening of an image A by a structuring element B, denoted by Ao B,
is the union of all the structuring elements that fit inside the image (Fig. 4.2,
left):

AoB=|J{B.:B. C A} or (4.4)
AoB=(ASB)&B.

It can also be defined as an erosion followed by a dilation (4.5) and has its
dual version called closing (Fig. 4.2, right), which is defined by

AeB = (A° B)° or (4.6)
AeB=(A® B)s B. (4.7)
Note that whereas the position of the origin relative to the structuring

element has a role in both erosion and dilation, it plays no role in opening
and closing. However, opening and closing have two important properties [5]:

1. Once an image has been opened (closed), successive openings (closings)
using the same structuring element produce no further effects.

2. An opened image is contained in the original image which, in turn, is
contained in the closed image (Fig.4.2).

As a consequence of this property, we could consider the subtraction of the
opening from the input image, called opening top-hat, and the subtraction of
the image from its closing, called closing top-hat, respectively, defined by

AéB=A—-(AoB) and (4.8)
ASB = (AeB) — A. (4.9)

Fig. 4.2. Opening and
closing. Left: input image in
black and gray and opening
in black (region where the
robot can move); Right:
input image in black and
closing in black and gray
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Opening top-hat and closing top-hat correspond to the gray parts of
Fig. 4.2 left and right, respectively.

As a filter, opening can clean the boundary of an object by eliminating
small extrusions; however, it does this in a much finer manner than erosion, the
net effect being that the opened image is a much better replica of the original
than the eroded image (compare left parts of Figs.4.2 and 4.1). Analogous
remarks apply to the closing, the difference being the filling of small intrusions
(compare right parts of Figs. 4.2 and 4.1).

When there is both union and subtractive noise, one strategy is to open to
eliminate union noise in the background and then close to fill subtractive noise
in the foreground. The open-close strategy fails when large noise components
need to be eliminated but a direct attempt to do so will destroy too much
of the original image. In this case, one strategy is to employ an Alternating
Sequential Filter (ASF). Open-close (or close-open) filters are performed iter-
atively, beginning with a very small structuring element and then proceeding
with ever-increasing structuring elements.

The close-open filter is given by

ASFy 5(S) = (((SeB)oB)e2B)o2B)...enB)onB (4.10)
and the open-close filter by
ASFy 5(S) = ((((SoB)eB)o2B)e2B)...onB)enB, (4.11)

where nB = B + B+ .... + B (n times).

4.2.3 Morphological Reconstruction from Markers

One of the most important operations in morphological image processing is
reconstruction from markers, the basic idea being to mark some image compo-
nents and then reconstruct that portion of the image consisting of the marked
components.

Given a neighborhood relationship, a region (collection of pixels) is said
to be connected if any two pixels in the region can be linked by a sequence
of neighbor pixels also in the region. 4-neighborhood and 8-neighborhood are
usual neighborhoods that include vertically and horizontally adjacent pixels
and, only for the latter one, diagonally adjacent pixels.

Every binary image A can be expressed as the union of connected regions.
If each of these regions is maximally connected, which means that it is not a
proper subset of a larger connected region within the image, then the regions
are called connected components of the image. The union of all connected
components C}, recovers the input image A and the intersection of any two
connected components is empty.

To find all the connected components of an image, one can iteratively find
any pixel of the image, use it to reconstruct its connected component, remove
the component from the image, and iteratively repeat the same extraction
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Fig. 4.3. Reconstruction from ‘ ‘ ' | ‘

markers. Left: input image,

Middle: marker image; Right: ‘ .‘

reconstructed image . ‘ . | ‘
L [ | O

until no more pixels are found in the image. This operation is called labeling
(cf. panel (c) in Fig. 4.5). The labeling decomposes an image into its connected
components. The result of the labeling is usually stored in a numeric image
with each pixel value associated to its connected component number.

The morphological reconstruction of an image A from a marker M
(a subset of A) is denoted by A A M and defined as the union of all con-
nected components of image A that intersect marker M. This filter is also
called component filter:

Aa M= J{Ck:Cn M #0}. (4.12)

In addition to the input image and the marker, the reconstruction opera-
tion also requires a connectivity. The marker informs which component of the
input image will be extracted, and the connectivity can be specified, in some
software packages, by a structuring element, usually the elementary cross for
4-neighborhood or the elementary box to specify 8-neighborhood.

An example of reconstruction from markers, based on 8-connectivity, is
shown in Fig.4.3. The input image is a collection of grains. The markers are
made of a central vertical line intersecting the grains. The reconstruction from
the markers extracts the three central components from the original image.

There are typically three ways to design the marker placement for the
component filter:

1. A-priori selection,
2. Selection from the opening, or
3. Selection by means of some rather complex operation.

The edge-off operation, particularly useful to remove objects touching
the image frame, combines reconstruction and top-hat concepts. The objects
touching the frame are selected by reconstructing the image from its frame as
an a priori marker. The objects not connected to the image frame are selected
by subtracting the input image from the reconstructed image.

4.2.4 Reconstruction from Opening

With marker selection by opening, the marker is found by opening the input
image by a structuring element. The result of the reconstruction detects all
connected components where the structuring element fits.

Using the same mechanism of the reconstruction from opening to detect
objects with particular geometric features, more complex techniques can be
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designed to find the markers from combined operators. At the last step, the
reconstruction reveals the objects that exhibit those features.

The following biomedical application (Fig.4.4) detects overlapping chro-
mosomes. To identify overlapping chromosomes (Fig. 4.4, panel (b)) only the
shapes (connected components) are chosen that all the four linear structur-
ing elements can fit. This is achieved by intersecting the four reconstructions
from opening using four linear structuring elements: vertical, horizontal, 45°,
and —45°, as visualized in Fig. 4.4 on panels (¢), (d), (e), and (f), respectively.

The top-hat concept can be applied to reconstruction by opening pro-
ducing the reconstruction from opening top-hat (i.e., the image minus its
reconstruction). In this case, the operator reveals the objects that do not
exhibit a fitting criterion. For instance, to detect thin objects, one can use a
disk of diameter larger than the thickest of the thin objects.

Another common criterion for selection of connected component is its area.
This is achieved by the area opening which removes all connected component
C; with area less than a specified value a:

Ao (a)g = U{C“ area(C;) > a}. (4.13)

The next demonstration targets cytogenetic images of meta-phase human
cells. This is a classification application of area opening. The task is to prepro-
cess the image by segmenting the chromosomes from the nuclei, stain debris
and the background. Figure 4.5 shows the input image (a), the thresholded
(b), the labeling (c) identifying the connected components, and the result (d)
with the components classified by area. The components with area less than

Fig. 4.4. Detecting overlapping chromosomes. (a) Input image; (b) intersection (in
gray) of four reconstruction from openings; (¢) opening (in gray) by horizontal line
and its reconstruction; (d) opening (in gray) by vertical line and its reconstruction;
(e) opening (in gray) by 45°-line and its reconstruction; and (f) opening (in gray)
by —45°-line and its reconstruction
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labeled (gray-scaled) classified by area

Fig. 4.5. Chromosome spreads and area opening. Residues are coded in white (area
less than 100), chromosomes in light gray (area between 100 and 10,000), and nuclei
in dark gray (area larger than 10,000)

Fig. 4.6. Representation

of a gray-scale image. Left: .
gray-scale mapping, zero is

bright and 255 is dark; -
Middle: top-view shading .
surface; Right: surface

mesh plot

100 pixels are background noise, the ones with area larger than 10,000 pixels
are nuclei (dark gray) and the rest are the chromosomes (light gray).

So as not to be restricted to openings, analogous dual concepts can be
developed to form sup-reconstruction from closing, sup-reconstruction from
closing top-hat and area closing.

4.3 Gray-Scale Operations

It is useful to look at a gray-scale image as a surface. Figure 4.6 shows a
gray-scale image made of three Gaussian-shape peaks of different heights and
variances. The image is depicted in three different graphical representations:
(a) the inverted print, where the pixel values are mapped in a gray scale: low
values are bright and high values are dark gray tones; (b) a top-view shading
surface; and (c) a mesh plot of the surface.
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A gray-scale image can also be seen as the cardboard landscape model,
i.e., a stack of flat pieces of cardboard. Thus, the threshold decomposition of
a gray-scale image f is the collection of all the threshold sets X;(f) obtained
at each gray level t:

Xi(f) ={z: f(z) = t}. (4.14)
The image can be characterized uniquely by its threshold decomposition
collection and can be recovered from its threshold sets by stack reconstruction:

f(z) = max{t:z € Xi(f)}. (4.15)

In all gray-scale operations presented hereafter, we will use flat structur-
ing elements, i.e., structuring elements that have no gray-scale variation, the
same used in the binary case. Although they are the same structuring ele-
ments, we will use the term flat structuring elements not to confuse with
their gray-scale versions. This restriction has many simplifications in the def-
inition, characterization and use of the gray-scale operators as an extension
from the binary operators. Care must be taken however, when the reader uses
a gray-scale structuring element, as the erosion (dilation) is not a moving min-
imum (moving maximum) filter, the threshold decomposition property does
not hold for the primitive operators nor for gray-scale morphological recon-
struction. Moreover, as we said before, only symmetric structuring element
will be used.

4.3.1 Erosion and Dilation

Gray-scale erosion (dilation) of an image f by a flat structuring element D is
equivalent to a moving minimum (moving maximum) filter over the window
defined by the structuring element. Thus, erosion f & D and dilation f & D
in this case are simply special cases of order-statistic filters:

(f© D)(z) =min{f(z):z € D;} and (4.16)
(f® D)(z) =max{f(z):z € D, }. (4.17)

An example of gray-scale erosion by a disk on a gray-scale image is shown
in Fig.4.7. The two images on the left, input and eroded, are represented in
gray-scale shades and the two on the right are the same images represented
by their top-view surfaces. Note how well the term “erosion” applies to this
illustr