
Cloning Voronoi Diagrams via

Retroactive Data Structures

Matthew T. Dickerson1, David Eppstein2, and Michael T. Goodrich2

1 Dept. of Math and Computer Sci., Middlebury College, Middlebury, Vermont, USA
2 Computer Science Department, University of California, Irvine, USA

Abstract. We address the problem of replicating a Voronoi diagram
V (S) of a planar point set S by making proximity queries:
1. the exact location of the nearest site(s) in S
2. the distance to and label(s) of the nearest site(s) in S
3. a unique label for every nearest site in S.

In addition to showing the limits of nearest-neighbor database security,
our methods also provide one of the first natural algorithmic applications
of retroactive data structures.

1 Introduction

In the algorithmic data-cloning framework [13], a data querier, Bob, is allowed
certain types of queries to a data set S that belongs to a data owner, Alice.
Once Alice has determined the kinds of queries that she will allow, she must
correctly answer every valid query from Bob. The information security question,
then, is to determine how many queries and how much processing time is needed
for Bob to clone the entire data set. We define a full cloning of S to mean that
Bob can answer any validly-formed query as accurately as Alice could. In an
ε-approximate cloning of S, Bob can answer any validly-formed query to within
an accuracy of ε > 0.

In this paper, we are interested in data sets consisting of a set S of n points
in the plane, where n and the contents of S are initially unknown. We study the
risks to S when Alice supports planar nearest-neighbor queries on S. We assume
that all the sites in S are inside a known bounding box, B, which, without
loss of generality, can be assumed to be a square with sides normalized to have
length 1. Since planar nearest-neighbor queries define a Voronoi diagram in the
plane (e.g., see [7]), we can view Bob’s goal in this instance of the algorithmic
data-cloning framework as that of trying to determine the Voronoi diagram of S
inside the bounding box B. We consider three types of responses (in decreasing
order of information content):

1. the exact location of the nearest site(s) to p in S
2. the distance and label(s) of the nearest site(s) to p in S
3. a unique label identifying each nearest site to p in S.

With all three cases, we want to know how difficult it is to compute the Voronoi
diagram, or an approximation of it, from a set of queries.

M. de Berg and U. Meyer (Eds.): ESA 2010, Part I, LNCS 6346, pp. 362–373, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Cloning Voronoi Diagrams via Retroactive Data Structures 363

Related work. Motivated by the problem of having a robot discover the shape
of an object by touching it [6], there is considerable amount of related work
in the computational geometry literature on discovering polygonal and polyhe-
dral shapes from probing (e.g., see [1,2,4,9,10,14,19,18]). We refer the interested
reader to the survey and book chapter by Skiena [17,20], and simply mention
that, with the notable exception of work by Dobkin et al. [9], this prior work
is primarily directed at discovering obstacles in a two-dimensional environment
using various kinds of contact probes. Translated into this context, their method
results in a scheme that would use 7n − 5 queries to clone a Voronoi diagram,
with a time overhead that is Θ(n2).

In the framework of retroactive data structures [3,8,12], each update operation
o to a data structure D, such as an insertion or deletion of an element, comes
with a unique numerical value, to, specifying a time value at which the operation
o is assumed to take place. The order in which operations are presented to the
data structure is not assumed to be the same as the order of these time values.
Just like update operations, query operations also come with time values; a
query with time value t should return a correct response with respect to a data
structure on which all operations with to < t have been performed. Thus, an
update operation, o, having a time value, to, will affect any subsequent queries
having time values greater than or equal to to. In a partially retroactive data
structure the time for a query must be at least as large as the maximum to seen
so far, whereas in a fully retroactive data structures there is no restriction on the
time values for queries. Demaine et al. [8] show how a general comparison-based
ordered dictionary (with successor and predecessor queries) of n elements (which
may not belong to a total order, but which can always be compared when they are
in D for the same time value) can be made fully retroactive in O(n log n) space
and O(log2 n) query time and amortized O(log2 n) update time in the pointer
machine model. Blelloch [3] and Giora and Kaplan [12] improve these bounds,
for numerical (totally ordered) items, showing how to achieve a fully retroactive
ordered dictionary in O(n) space and O(log n) query and update times in the
RAM model. These latter results do not apply to the general comparison-based
partially-ordered setting, however.

Our Results. Given a set S of n points in the plane, with an API that sup-
ports nearest-neighbor queries, we show how queries of Type 1 and Type 2
allow an exact cloning of the Voronoi diagram, V (S), of S with O(n) queries
and O(n log2 n) processing time. Our algorithms are based on non-trivial mod-
ifications of the sweep-line algorithm of Fortune [11] (see also [7]) so that it
can construct a Voronoi diagram correctly in O(n log2 n) time while tolerating
unbounded amounts of backtracking. We efficiently accommodate this unpre-
dictable backtracking through the use of a fully retroactive data structure for
general comparison-based dictionaries. In particular, our method is based on our
showing that the dynamic point location method of Cheng and Janardan [5] can
be adapted into a method for achieving a general comparison-based fully retroac-
tive ordered dictionary with O(n) space, O(log n) amortized update times, and
O(log2 n) query times. We also provide lower bounds that show that, even with

364 M.T. Dickerson, D. Eppstein, and M.T. Goodrich

an adaptation of the Dobkin et al. [9] approach optimized for nearest-neighbor
searches, there is a sequence of query responses that requires Ω(n2) overhead
for their approach applied to these types of exact queries. Nevertheless, we show
that it is possible to clone V (S) using only 3n queries. We prove that queries
of Type 3 can never exactly clone V (S), however, nor even determine with cer-
tainty the value of n = |S|. Nevertheless, we show that with n log(1

ε) queries we
can construct an ε-approximate cloning of V (S) that will support approximate
nearest neighbor queries guaranteeing a response that is a site within (additive)
ε > 0 distance of the exact nearest neighbor of the query point.

2 A Fully-Retroactive Ordered Dictionary

In this section, we develop a fully retroactive ordered dictionary data structure
using O(n) space, O(log n) amortized update time, and O(log2 n) query time,
based on a dynamic point location method of Cheng and Janardan [5]. The
main idea is to construct an interval tree, B, over the intervals between the
insertion and deletion times of each item in the dictionary, and to maintain B
as a BB[α]-tree [16].

Each item x is stored at the unique node v in B such that x’s insertion
time is associated with v’s left subtree and x’s deletion time is associated with
v’s right subtree. We store x in two priority search trees [15], L(v) and R(v),
associated with node v. These two priority search trees are both ordered by the
dictionary ordering of the items stored in them; all such items are active at the
time value that separates v’s left and right subtrees, so they are all comparable
to each other. The priority search trees differ, however, in how they prioritize
their items. As with priority search trees more generally, each node in L(v) and
R(v) stores two items, one that is used as a search key and another that has the
minimum or maximum priority within its subtree. In L(v), the insertion time of
an item is used as a priority, and a node in L(v) stores the item that has the
minimum insertion time among all items within the subtree of descendants of
that node. In R(v), the deletion time of an item is used as a priority, and a node
in R(v) stores the item that has the maximum deletion time within its subtree.

An insertion of an item x in D is done by finding the appropriate node v of
the interval tree and inserting x into L(v) and R(v), and a deletion is likewise
done by deletions in L(v) and R(v). Updates that cause a major imbalance in
the interval tree structure are processed by rebalancing, which implies, by the
properties of BB[α]-trees [16], that updates run in O(log n) amortized time.

Queries are done by searching the interval tree for the nodes with the property
that the retroactive time specified as part of the query could be contained within
one of the time intervals associated with that node. For each matching interval
tree node v, we perform a search in either L(v) or R(v) depending on the relation
between the query time and the time that separates the left and right children of
v. The search method of Cheng and Janardan [5] allows us to find the successor
of the query value, among the nodes stored in L(v) or R(v) with time intervals
that contain the query time, in time O(log n). The result of the overall query is

Cloning Voronoi Diagrams via Retroactive Data Structures 365

then formulated by comparing the results found at each interval tree node and
choosing the one that is closest to the query value. Thus, the query takes O(log n)
time to identify the interval tree nodes associated with the query time, O(log2 n)
to query each of logarithmically many priority search trees, and O(log n) time
to combine the results, for a total of O(log2 n) time.

Theorem 1. One can maintain a fully-retroactive general comparison-based dic-
tionary on n elements, using O(n) space, so that updates run in O(log n) amor-
tized time and predecessor and successor queries run in O(log2 n) time.

3 Exact Query Probes

We begin our study of Voronoi diagram cloning with the strongest sort of
queries—Type 1. Given a query point p, a Type-1 query returns the site q in S
nearest to p, that is, it returns the geometric location of q, p’s nearest-neighbor
in S. In the event that p has more than one nearest neighbors in S, all nearest
neighbors are returned. We show that only O(n) queries and O(n log2 n) pro-
cessing time is needed to completely clone V (S)—which, as implied, also means
we explicitly have determined both S and n.

Overview of Our Algorithm. Our algorithm is adapted from the plane sweep
Voronoi diagram algorithm of Fortune [11], with a significant modification to
allow for unbounded and unpredictable amounts of backtracking. The funda-
mental difference is that the Fortune algorithm begins with the set of sites, S,
completely known; in our case, the only thing we know at the start is a bounding
box containing S. Using the formulation of de Berg et al. [7], Fortune’s algorithm
uses an event queue to controls a sweep line that moves in order of decreasing
y coordinates, with a so-called “beach line”—an x-monotone curve made up of
parabolic segments following above the sweep line. The plane above the beach
line is partitioned into cells according to the final Voronoi diagram of S. There
are two types of events, caused when the sweep line crosses point sites in S and
Voronoi vertices in V (S); the latter points are determined as the algorithm pro-
gresses. In our version, we need to find both the sites and the Voronoi vertices as
the plane sweep advances. And because not all sites are known in advance, we
will need to verify tentative Voronoi vertex events as we sweep across them, at
times backtracking our sweep line when our queries reveal new sites that invali-
date tentative Voronoi vertices and introduce new events that are actually above
our sweep line. We will show that each query discovers a feature in the Voronoi
diagram, that the number of times we backtrack is bounded by the number of
these features, and these facts imply that the number of queries and updates we
perform in a retroactive dictionary used to implement our sweep-line algorithm
is O(n). In fact, we will prove that the number of probes is at most 4n.

We begin with an overview of our algorithm. The algorithm begins by finding
all the Voronoi regions and edges that intersect the top edge of the bounding box,
B. If there are k such regions (and thus k − 1 edges), this can be accomplished
in O(n) time with 2k− 1 queries. This step initializes our event queue with k of
the point sites in S.

366 M.T. Dickerson, D. Eppstein, and M.T. Goodrich

The algorithm then proceeds much as the Fortune algorithm, but with the
following two important changes. Whenever we reach a point site event for some
site q ∈ S (i.e., when q is removed from the event queue), we do a nearest-
neighbor query on the point of the beach line directly above q—that is, the
point with the same x-coordinate as q and a y coordinate on the beach line that
exists for the time value when the sweep line hits q. The position of this query
point can be determined by using a retroactive dictionary queried with respect
to the components of the beach line for the time value (in the plane sweep)
associated with the point q. (See Fig. 1.) Querying this point will either confirm
a Voronoi edge known to be part of the final Voronoi diagram (in which case we
proceed with the sweep) or it will discover a new site r in S (in which case the
sweep line restores point q to the event queue and backtracks to r).

The second type of event is a tentative Voronoi vertex event. We do a nearest-
neighbor query at the point believed to be a Voronoi vertex, which either confirms
the vertex and all of its adjacent Voronoi edges above it, or it discovers a new
site in S. This new site must be above the sweep line: at the time that Fortune’s
algorithm processes a Voronoi vertex event its sweep line must be as far from
the Voronoi vertex as the three sites generating the vertex, so undiscovered sites
below the sweep line cannot be nearest neighbors to the tentative vertex. If the
algorithm discovers a new site above the sweep line, then again we backtrack
and process that new site. In either case the Voronoi vertex is removed from
the event queue—either added to the Voronoi diagram being constructed as a
validated vertex, or ignored as a false vertex.

Correctness and Complexity. Both the correctness and the analysis of this
algorithm make use of the following important observation. Though the algorithm
backtracks at certain “false” events—or tentative events that are proven false—it
never completely removes any Voronoi components that have been confirmed by
probes. Voronoi edges can only be added in two ways: the addition of a new site
that creates one new edge, or the addition of a Voronoi vertex that terminates two
edges and creates one new edge. In both cases, the edge is verified as an actual edge
using a query before it is added to the Voronoi diagram being constructed, thus
the diagram never contains edges that could later be falsified. (See Fig. 2.)

site event sweep line

beach line

Fig. 1. Illustrating the sweep-line algorithm for constructing a Voronoi diagram

Cloning Voronoi Diagrams via Retroactive Data Structures 367

The insertion of a new site begins a new edge directly above it, where the
parabola of the site being added to the tree T—a degenerate line-segment
parabola at the instant it is added—intersects the existing parabola above it,
thus replacing one leaf in the tree with three. But before this site is inserted
with its edge, the edge is tested with a query into the existing Voronoi diagram.
The other time an edge may be added is at a Voronoi vertex where two existing
edges meet and a third new one is created. But all tentative Voronoi vertices are
also verified by queries before they become circle events.

There are a few key observations that will lead to the analysis of the algo-
rithm’s run time and total number of queries. First, the sweep line will only
backtrack when a new site in S is discovered, and so there are at most n back-
tracks. Second, every time we have a tentative Voronoi vertex that turns out
to be unverified—that is, an event that turns out not to be part of the final
diagram—we have also discovered a new site in S, and thus we have at most
O(n) phony events that are processed. It follows that the run time of the al-
gorithm is asymptotically equivalent to the original Fortune algorithm, modulo
the time needed for our retroactive data structure queries. Furthermore, after
our initialization stage, every nearest-neighbor query either finds a site, verifies
a site by looking at the Voronoi edge above it, or verifies a Voronoi vertex. The
initialization, as noted, requires 2k−1 queries if there are k sites initially discov-
ered. Queries discover n−k more sites, verify n sites, and find at most 2n−2−k
Voronoi vertices, for a total of 4n − 3 which is less than 4n queries.

The algorithm requires the same run time as the original Fortune plane sweep
except for the processing of the tentative Voronoi vertices that prove to be phony,
and all the backtracking (which is implemented using our retroactive dictionary).
As noted, there are O(n) of these backtracking steps, since these can only occur
once for each previously undetected site in S. So the overall number of updates
and queries in our sweep-line-with-backtracking algorithm is O(n); hence, the
running time of our algorithm is O(n log2 n). Thus, we have the following.

Theorem 2. Given a set S of n points in R2, we can construct a copy of V (S)
using at most 4n Type-1 queries and O(n log2 n) time.

overextended sweep line
newly discovered point

verified Voronoi
diagram features

backtracked
sweep line

backtracked beach line has
 unchanged sequence of
 parabolic arcs
 above new points

Fig. 2. Backtracking the sweep-line

368 M.T. Dickerson, D. Eppstein, and M.T. Goodrich

An Alternate Algorithm Using More Time and Fewer Queries. This
second algorithm follows an incremental construction paradigm, based on the
general approach of Dobkin et al. [9] for discovering a 3-dimensional convex
polyhedron using finger probes. The alternative algorithm begins by querying
each of the four corners of the bounding box. There are three cases to consider:
these probes may discover one, two, or more than two sites in S. If we discover
more than two sites, then we construct the Voronoi diagram of all 3 or 4 of
the sites discovered by these four queries, but we mark each Voronoi vertex as
tentative and put it into a queue. The algorithm then proceeds as follows until
the queue is empty. Remove a tentative Voronoi vertex from the queue, and
query it. If the query reveals that it is a Voronoi vertex—that is, it has the three
expected nearest neighbors—then we confirm the vertex and continue. If it is
not a Voronoi vertex, then it must be closer to some previously undiscovered site
in S, that will be returned by the query. We add that site to our list of known
sites and update the Voronoi diagram in worst case O(n) time using incremental
insertion. When the queue is empty, we have a complete Voronoi diagram. Every
probe except possibly one of the four corner probes discovered either a new site
in S or confirmed a Voronoi vertex, and so the total number of queries is at
most n + (2n− 5) + 1 < 3n. If the four corner queries discovered only two sites,
then we compute the Voronoi edge that would be shared by these two sites if
they were the only two sites in S, and we query both intersections of this edge
with the bounding box. If we confirm both edges, then n = 2 and we are done.
We have used 3n = 6 queries. If at least one of these two additional queries
discovers another site, then we have at least three known sites and we proceed
as with the previous case. Every query except at most three of the initial queries
either confirmed a Voronoi vertex or discovered a new point site, and so the total
number of queries is at most n + (2n− 5) + 3 < 3n. All four corners will belong
to the same Voronoi region if and only if there is only one site in the bounding
box, in which case 4 queries was sufficient.

Theorem 3. Given a set S of n points in R2, we can construct a copy of V (S)
using at most 3n + 1 Type-1 queries and Θ(n2) time.

Proof. We have already established the quadratic upper bound. For the sake
of a lower bound, imagine that we have a set S′ of n/2 points on the bottom
boundary of B, all within distance δ of the point (0, 0), for a small parameter δ
with 0 < δ ≤ 1/2n. These points, by themselves, construct a Voronoi diagram
with parallel edges. Suppose further that there is a single point, p0 = (δ, 1 − δ),
near the top boundary of B. The Voronoi region for p0 intersects the Voronoi
region of every point in S′. The above algorithm therefore, after discovering the
boundary points in S′, would next query a vertex on the Voronoi diagram V (S′)
of B, which will discover p0. Next it will probe at vertex that is equi-distant to
p0 and a point in S′. Suppose that this probe discovers a point p1 = (δ, 1/2).
This point is closer to every point in S′ than p0; hence, updating the Voronoi
diagram to go from V (S′ ∪ {p0}) to V (S′ ∪ {p0, p1}) takes Ω(n) time. Now,
suppose querying a tentative vertex of V (S′∪{p0, p1}), which will be equi-distant
from p1 and a point in S′, discovers a point p2 = (δ, 1/22). Again, updating the

Cloning Voronoi Diagrams via Retroactive Data Structures 369

Voronoi diagram takes Ω(n) time. Suppose, therefore, that we continue in this
way, with each newly-discovered point pi = (δ, 1/2i) requiring that we spend
Ω(n) time to update the current Voronoi diagram. After discovering pn/2−1, the
n-th point in the set S = S′ ∪ {p0, p1, . . . , pn/2−1}, we will have spent Ω(n2)
time in total to discover the Voronoi diagram V (S). ��

4 Distance Query Probes

We next consider our Voronoi diagram cloning algorithm for the case when we
use use only distance query probes—probes that return the distance to and label
of the nearest site(s). We begin by describing how we can find those sites whose
Voronoi regions (and thus also edges) intersect the top boundary of the bounding
box where the sweep-line begins. We will speak of a probe circle as the set of
possible locations of a site returned by a probe p: it is the circle of radius d
centered at p, where d is the distance returned to the nearest site.

Initializing the Sweep Line. We begin the initialization process by probing
at the two top corners of the bounding box. If both probes return the same site
p, then by convexity of Voronoi regions the entire top edge of the box belongs to
the Voronoi region V (p). Furthermore, both probes also return a distance d to
the site p, and so p must fall on an intersection of two circles of radius d centered
at the two corner probe locations. Since one of these intersections is above the
bounding box, the remaining intersection gives the exact location of p.

Assume that the two corner probes pl and pr on the left and right respectively
return different sites ql and qR respectively. We know the distance pl to ql and
pR to qR, but we don’t know the exact locations of the two sites, nor do we
know if there are any other sites with regions intersecting the bounding box.
The segment between these two probes is therefore not fully classified. We will
describe a recursive procedure for classification.

Let L be an unclassified segment, with the probes pl and pr on the left and
right sides of the segments respectively returning different sites ql and qr. First,
we probe the midpoint pm of L. The probe returns either one of the two known
sites, or a new site qm. If it returns a new site, then we divide L into two segments
that are both unclassified, but which have classified endpoints ql, qm, and qr,
and we recursively classify them.

Suppose query pm returns one of the already known sites. If this probe returns
qr, then we can immediately compute the exact location of qr from the two probes
pr and pm, since only one of the intersections of the probe circles is inside the
bounding box. We also have classified the segment Lr between probes pr and pm

as being fully inside the Voronoi region of pr. The other half of the segment, Ll,
however, is not classified; we only know the Voronoi regions of its endpoints are
the regions of qr and ql. Here it would be tempting to again probe the midpoint
of the segment Ll; however that could lead to an unbounded number of probes as
we repeatedly divide the segment in half because the midpoint of the remaining
unclassified segment Ll could still belong to qr and so we would gain no new
information about ql. What we do instead is use the known location of qr, which

370 M.T. Dickerson, D. Eppstein, and M.T. Goodrich

must be outside the probe circle at pl, to find a probe location pl2 close enough to
pl that it is guaranteed not to gives us qr. This is possible since the perpendicular
bisector between qr (which is a known point) and any point on the probe circle
from pl—which is the set of candidate locations for ql—must fall between pm

and pl on a finite segment computable in O(1) time, and thus anything between
that range and pl is closer to ql than to qr.

So this new probe pl2 returns either ql or a new site. If it returns a new
site, then we divide the unclassified segment into two unclassified segments and
recursively classify them. If this new probe gives us ql then we now know the
exact location of ql from two probes. From the exact locations of qr and ql, we can
compute and probe where their Voronoi edge ought to cross the bounding box,
either confirming that Voronoi edge—which means that the entire edge is now
classified—or we discover a new site. If the probe gives us a new site, then again
we divide the unclassified segment into two unclassified segments and recursively
classify them.

Lemma 1. The initialization stage for the sweep line requires O(k) time and
3k− 1 probes where k is the number of sites whose Voronoi regions intersect the
top of the bounding box.

Proof. Note that every probe either identifies a previously undiscovered site (k
probes), provides a second probe with more information on an already discovered
site enabling the exact location of this site to be computed (k probes), or confirms
a Voronoi edge (k−1 probes for k regions). So the total number of probes in this
section is 3k − 1 where k is the number of sites whose Voronoi regions intersect
the top of the bounding box. Each probe is processed in O(1) time. ��

Processing the Sweep Line. The previous subsection explains how to ini-
tialize the sweep line. The algorithm making use of distance-only queries now
proceeds as with the exact query probe version of the previous section, except
that a slightly different approach requiring more probes will be needed to process
tentative site events.

As with the algorithm of the previous section, there are two types of tentative
events: a tentative Voronoi vertex for three known sites, and a tentative Voronoi
edge that falls directly above a known site and is determined by one other known
site. Both of these events need to be verified by probe–that is, we need to deter-
mine if these events are actually real, or whether there is some other site closer
to the events. In both cases, we use a probe p where the tentative Voronoi feature
should be. If that problem returns the correct three or two site labels (at the
correct distance), then the verification is complete, and we proceed as with the
algorithm of the previous section.

However, these probes may discover a new site q; in this case, they give only
the distance to that site and not its actually location. We need two more probes
that return the same site in order to discover its exact location—but these probes
may instead return yet other new sites. We now describe how to choose the
locations of these probes so that no work is wasted, and each probe either verifies

Cloning Voronoi Diagrams via Retroactive Data Structures 371

a Voronoi vertex, verifies a Voronoi edge above a known site, or is one of three
probes that exactly locates a site.

Let p1 be a probe during the sweep line, that attempts to verify a Voronoi
vertex or edge, and instead discovers a new site q1 that was not previously known.
Let d = d(p1, q1) be the distance returned from probe p1 to its site q1, and let e
be the distance from p1 to the nearest previously known sites—that is, the two or
three sites whose tentative Voronoi vertex or edge it was seeking to verify. Since
probe p1 returned q1, we know that d < e. Let p2 be any probe location such that
d(p1, p2) < e−d

2 . By the triangle inequality, we know d(p2, q1) < d + e−d
2 = e+d

2 ,
while d(p2, r) > e − e−d

2 = e+d
2 , where r is any of the two or three previously

known closest sites to p1. It follows immediately that probe p2 cannot return
any previously known site except q1 which was first discovered by probe p1. We
can choose any probe location meeting this restriction, d(p1, p2) < e−d

2 , which
is computable in O(1) time.

So there are two possibilities with probe p2: either it returns site q1 again, or
it returns a new site q2. If p2 returns q1, we now have two probes returning that
site, and distances to that site, so its location is one of at most two intersections
between the two probe circles. We can now probe either one of those two inter-
sections, and from the result we determine the exact location of q1 because the
probe either returns q1 at distance 0, or it returns some other site, or it returns
q1 at a distance > 0.

If p2 returns a new site q2, then we now have two sites that have been dis-
covered, but whose exact locations are not known. We can discover the exact
location using the recursive method of the previous subsection, treating the
segment p1p2 as an unclassified segment, probing its midpoint, and continuing.
However, once we have received a site as the result of two probes, we still require
a third probe to exactly locate it since both intersections of the first two probe
circles might be inside the bounding box.

Lemma 2. Processing the remaining events (after the initialization) for the
sweep line requires at most 6n − 3k − 5 probes where k is the number of sites
whose Voronoi regions intersect the top of the bounding box.

Proof. There are n − k sites to be discovered, n sites that need to have an edge
verified above them, and at most 2n− 5 Voronoi vertices in the Voronoi diagram
of n sites. Every probe accomplishes one of five things: it verifies a Voronoi vertex
(2n−5 probes), verifies a Voronoi edge directly above a site (n probes), or is one of
exactly three probes used to discover and then exactly locate a new site (3(n− k)
probes.) The total number of probes required is therefore at most 6n−3k−5. ��
Theorem 4. Given a set S of n points in R2, we can construct a copy of V (S)
using at most 6n− 6 Type-2 queries and O(n log2 n) time.

5 Label-Only Query Probes

Using queries of the third type, it is impossible to exactly clone V (S) or even to de-
termine with certainty the value of n = |S|. However even with this minimal query

372 M.T. Dickerson, D. Eppstein, and M.T. Goodrich

information, we construct an approximate Voronoi diagram V (S′) which, without
explicitly storing the locations of the sites in S, will still support later arbitrary ap-
proximate proximity queries to V (S). We now show that an approximate Voronoi
diagram can be constructed to answer nearest-neighbor queries, with a probing
process that uses O(N log(1/ε)) queries and O(N(log N + log(1/ε))) time, where
N ≤ n is the number of discovered sites in S. (Any two sites separated by at
least ε will be distinguished and discovered.) The main idea of the algorithm is to
build an approximation to the Voronoi cell of each known site, using O(log(1/ε))
queries per feature of the cell. This sequence of queries either finds a sufficiently
accurate approximation for the location of that feature or discovers the existence
of another site label. We begin by querying each corner of our bounding box to
find the label of the site in whose region that corner belongs. For any side of the
box whose corners are in different Voronoi regions, we do a binary search to find,
within a distance of ε2, the edge of the Voronoi region for each different site. This
may discover new Voronoi regions. For each new region discovered, we also do a bi-
nary search to discover its edges to within ε2. Each binary search requires O(log 1

ε)
queries and time. The result is an ordered list of Voronoi edges crossing each side
of the bounding box.

A second similar search a distance of 2ε from each side of the bounding box
will find the same Voronoi edges—or will discover a new Voronoi region, indicat-
ing that the Voronoi edge has ended. For those Voronoi edges that have not ended
within 2ε, we compute an approximation of the line containing the Voronoi edge—
that is, the perpendicular bisector of the two sites whose labels we know. An argu-
ment using similar triangles shows that our approximation of this edge is accurate
enough that we can determine to within a distance of < ε where this edge crosses
the far boundary. We do a doubling search of queries out along each discovered
Voronoi edge, and then a binary search back once we have moved past the end of
the edge, to find where it ends. Thus, three binary searches of O(log(1

ε)) queries
and time each suffice to discover complete approximations of each Voronoi edge
intersecting the bounding box, including an approximate location of the Voronoi
vertex terminating these edges. In the worst case, our approximation is within ε.
A constant number of queries in the vicinity of each Voronoi vertex will discover
the other edge or edges coming out of the Vertex. We repeat this process for each
new Voronoi edge as it is discovered, until every Voronoi edge has both ends ter-
minated at Voronoi vertices, at which time the approximate Voronoi diagram is
complete.

Theorem 5. Given a set S of n points in R2, we can construct a planar subdivi-
sion, V ′, using O(N log 1

ε) Type-3 queries and O(N(log N + log 1
ε)) time, where

N < n is the number of discovered sites in S, such that any two sites separated by
at least ε will be distinguished and discovered and each point on the 1-dimensional
skeleton of V is within distance ε of a point on the 1-dimensional skeleton of the
Voronoi diagram, V (S), of S.

Cloning Voronoi Diagrams via Retroactive Data Structures 373

References

1. Alevizos, P.D., Boissonnat, J.-D., Yvinec, M.: Non-convex contour reconstruction.
J. Symbolic Comput. 10, 225–252 (1990)

2. Aoki, Y., Imai, H., Imai, K., Rappaport, D.: Probing a set of hyperplanes by lines
and related problems. In: Dehne, F., Sack, J.-R., Santoro, N. (eds.) WADS 1993.
LNCS, vol. 709, pp. 72–82. Springer, Heidelberg (1993)

3. Blelloch, G.E.: Space-efficient dynamic orthogonal point location, segment inter-
section, and range reporting. In: SODA 2008: Proceedings of the nineteenth annual
ACM-SIAM symposium on Discrete algorithms, pp. 894–903. Society for Industrial
and Applied Mathematics, Philadelphia (2008)

4. Boissonnat, J.-D., Yvinec, M.: Probing a scene of non-convex polyhedra. Algorith-
mica 8, 321–342 (1992)

5. Cheng, S.W., Janardan, R.: New results on dynamic planar point location. SIAM
J. Comput. 21, 972–999 (1992)

6. Cole, R., Yap, C.K.: Shape from probing. J. Algorithms 8(1), 19–38 (1987)
7. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Ge-

ometry: Algorithms and Applications. Springer, Berlin (1997)
8. Demaine, E.D., Iacono, J., Langerman, S.: Retroactive data structures. ACM Trans.

Algorithms 3(2), 13 (2007)
9. Dobkin, D.P., Edelsbrunner, H., Yap, C.K.: Probing convex polytopes. In: Proc.

18th Annu. ACM Sympos. Theory Comput., pp. 424–432 (1986)
10. Edelsbrunner, H., Skiena, S.S.: Probing convex polygons with x-rays. SIAM J. Com-

put. 17, 870–882 (1988)
11. Fortune, S.J.: A sweepline algorithm for Voronoi diagrams. Algorithmica 2, 153–174

(1987)
12. Giora, Y., Kaplan, H.: Optimal dynamic vertical ray shooting in rectilinear planar

subdivisions. ACM Trans. Algorithms 5(3), 1–51 (2009)
13. Goodrich, M.T.: The mastermind attack on genomic data. In: IEEE Symposium on

Security and Privacy. IEEE Press, Los Alamitos (2009) (to appear)
14. Joseph, E., Skiena, S.S.: Model-based probing strategies for convex polygons. Com-

put. Geom. Theory Appl. 2, 209–221 (1992)
15. McCreight, E.M.: Priority search trees. SIAM J. Comput. 14(2), 257–276 (1985)
16. Mehlhorn, K.: Data Structures and Algorithms 3: Multi-dimensional Searching and

Computational Geometry. EATCS Monographs on Theoretical Computer Science,
vol. 3. Springer, Heidelberg (1984)

17. Skiena, S.S.: Problems in geometric probing. Algorithmica 4, 599–605 (1989)
18. Skiena, S.S.: Probing convex polygons with half-planes. J. Algorithms 12, 359–374

(1991)
19. Skiena, S.S.: Interactive reconstruction via geometric probing. Proc. IEEE 80(9),

1364–1383 (1992)
20. Skiena, S.S.: Geometric reconstruction problems. In: Goodman, J.E., O’Rourke, J.

(eds.) Handbook of Discrete and Computational Geometry, ch. 26, pp. 481–490.
CRC Press LLC, Boca Raton (1997)

	Cloning Voronoi Diagrams via Retroactive Data Structures
	Introduction
	A Fully-Retroactive Ordered Dictionary
	Exact Query Probes
	Distance Query Probes
	Label-Only Query Probes
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

