

Lecture Notes in Computer Science 6346
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK

Josef Kittler, UK

Alfred Kobsa, USA

John C. Mitchell, USA

Oscar Nierstrasz, Switzerland

Bernhard Steffen, Germany

Demetri Terzopoulos, USA

Gerhard Weikum, Germany

Takeo Kanade, USA

Jon M. Kleinberg, USA

Friedemann Mattern, Switzerland

Moni Naor, Israel

C. Pandu Rangan, India

Madhu Sudan, USA

Doug Tygar, USA

Advanced Research in Computing and Software Science

Subline of Lectures Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, University of Freiburg, Germany

Benjamin C. Pierce, University of Pennsylvania, USA

Bernhard Steffen, University of Dortmund, Germany

Madhu Sudan, Microsoft Research, Cambridge, MA, USA

Deng Xiaotie, City University of Hong Kong

Jeannette M. Wing, Carnegie Mellon University, Pittsburgh, PA, USA

Mark de Berg Ulrich Meyer (Eds.)

Algorithms –
ESA 2010

18th Annual European Symposium
Liverpool, UK, September 6-8, 2010
Proceedings, Part I

13

Volume Editors

Mark de Berg
Department of Mathematics
and Computing Science
TU Eindhoven
Eindhoven, The Netherlands
E-mail: mdberg@win.tue.nl

Ulrich Meyer
Institute for Computer Science
Goethe University
Frankfurt/Main, Germany
E-mail: umeyer@cs.uni-frankfurt.de

Library of Congress Control Number: 2010933821

CR Subject Classification (1998): F.2, I.3.5, C.2, E.1, G.2, D.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-15774-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-15774-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180 5 4 3 2 1 0

Preface

This volume contains the 69 papers presented at the 16th Annual European
Symposium on Algorithms (ESA 2010), held in Liverpool during September
6–8, 2010, including three papers by the distinguished invited speakers Artur
Czumaj, Herbert Edelsbrunner, and Paolo Ferragina. ESA 2010 was organized
as a part of ALGO 2010, which also included the 10th Workshop on Algorithms
in Bioinformatics (WABI), the 8th Workshop on Approximation and Online
Algorithms (WAOA), and the 10th Workshop on Algorithmic Approaches for
Transportation Modeling, Optimization, and Systems (ATMOS).

The European Symposium on Algorithms covers research in the design, use,
and analysis of efficient algorithms and data structures. As in previous years, the
symposium had two tracks: the Design and Analysis Track and the Engineering
and Applications Track, each with its own Program Committee. In total 245
papers adhering to the submission guidelines were submitted. Each paper was
reviewed by three or four referees. Based on the reviews and the often extensive
electronic discussions following them, the committees selected 66 papers in total:
56 (out of 206) to the Design and Analysis Track and 10 (out of 39) to the
Engineering and Applications track. We believe that these papers together made
up a strong and varied program, showing the depth and breadth of current
algorithms research.

Three papers deserve special mentioning: the papers “When LP Is the Cure for
Your Matching Woes: Improved Bounds for Stochastic Matchings” by N. Bansal,
A. Gupta, J. Li, J. Mestre, V. Nagarajan and A. Rudra and “Feasibility Anal-
ysis of Sporadic Real-Time Multiprocessor Task Systems” by V. Bonifaci and
A. Marchetti-Spaccamela, which won the award for the best paper, and the
paper “Shortest Paths in Planar Graphs with Real Lengths in O(n log2 n/ log log n)
Time” by S. Mozes and C. Wulff-Nilsen, which won the award for the best stu-
dent paper. We congratulate the authors on this succes.

ESA 2010 was sponsored by the European Association of Theoretical Com-
puter Science, the International Society of Computational Geometry, the
London Mathematical Society, Springer, and the University of Liverpool. Be-
sides the sponsors, we also wish to thank the people from the EasyChair Con-
ference System; using their wonderful system saved us an enormous amount of
work during the whole process. Finally, we thank all authors who submitted
their work to ESA 2010, all Program Committee members for their hard work,
and all reviewers who helped the Program Committees in evaluating the sub-
mitted papers, and we hope the readers will find the papers in these proceedings
instructive and enjoyable.

July 2010 Mark de Berg
Ulrich Meyer

Organization

Program Committee

Design and Analysis Track

Mark de Berg (Chair) TU Eindhoven, The Netherlands
Hans Bodlaender Utrecht University, The Netherlands
Peter Bro Miltersen Aarhus University, Denmark
Sergio Cabello University of Ljubljana, Slovenia
Kenneth L. Clarkson IBM Almaden, USA
Khaled Elbassioni MPI Saarbrücken, Germany
Leah Epstein University of Haifa, Israel
Leszek Gąsieniec University of Liverpool, UK
Roberto Grossi Università di Pisa, Italy
Michael Kaufmann Universität Tübingen, Germany
Samir Khuller University of Maryland, USA
Mikko Koivisto University of Helsinki, Finland
Sylvain Lazard INRIA Nancy Grand Est, France
Mohammad Mahdian Yahoo! Research, USA
S. Muthu Muthukrishnan Rutgers University & Google, USA
Petra Mutzel TU Dortmund, Germany
Leen Stougie VU and CWI Amsterdam,

The Netherlands
Yusu Wang Ohio State University,
Christos Zaroliagis CTI and University of Patras, Greece

Engineering and Applications Track

András Benczúr Hungarian Academy of Sciences, Hungary
Gerth Brodal Aarhus University, Denmark
Peter Eades University of Sydney, Australia
Lars Engebretsen Google Zürich, Switzerland
Andrew Goldberg Microsoft Research, USA
Gunnar Klau CWI Amsterdam, The Netherlands
Kishore Kothapalli IIIT Hyderabad, India
Stefano Leonardi La Sapienza University, Rome, Italy
Ulrich Meyer (Chair) Goethe University Frankfurt, Germany
Marina Papatriantafilou Chalmers University, Sweden
Sylvain Pion INRIA Sophia Antipolis - Méditerranée,

France
Anita Schöbel University of Göttingen, Germany
Laura Toma Bowdoin College, USA
Prudence Wong University of Liverpool, UK
Norbert Zeh Dalhousie University, Canada

VIII Organization

Organizing Committee

The Organizing Committee from the University of Liverpool consisted of:

Andrew Collins
Leszek Gąsieniec (Chair)
Russell Martin
Igor Potapov
Thelma Williams
Prudence Wong

Referees

Ittai Abraham
Louigi Addario-Berry
Isolde Adler
Deepak Ajwani
Marjan van den Akker
Saeed Alaei
Aris Anagnostopoulos
Spyros Angelopoulos
Elliot Anshelevich
Sunil Arya
Dominique Attali
Evripidis Bampis
Nikhil Bansal
Jérémy Barbay
Andreas Beckmann
Anton Belov
Oren Ben-Zwi
Sergey Bereg
Hoda Bidkhori
Philip Bille
Vincenzo Bonifaci
Ilaria Bordino
Prosenjit Bose
David Bremner
Patrick Briest
Andrej Brodnik
Costas Busch
Sebastian Böcker
Saverio Caminiti
Stefan Canzar
Alberto Caprara
Ioannis Caragiannis
Manuel Caroli

Daniel Cederman
Ho-Leung Chan
T-H. Hubert Chan
Timothy Chan
Frédéric Chazal
Jianer Chen
Ning Chen
Siu-Wing Cheng
Otfried Cheong
Flavio Chierichetti
Giorgos Christodoulou
Ferdinando Cicalese
Raphael Clifford
David Cohen-Steiner
Éric Colin de Verdière
Atlas F. Cook IV
José R. Correa
Ovidiu Daescu
Peter Damaschke
Atish Das Sarma
Pooya Davoodi
Pedro M. M. de Castro
Daniel Delling
Camil Demetrescu
Tamal Dey
Yuanan Diao
Martin Dietzfelbinger
Thomas C. van Dijk
Shahar Dobzinski
Benjamin Doerr
Vida Dujmovic
Laurent Dupont
Steph Durocher

Christoph Dürr
Alon Efrat
Edith Elkind
Amr Elmasry
David Eppstein
Funda Ergun
Thomas Erlebach
Claus Ernst
William Evans
Hazel Everett
Angelo Fanelli
Mohammad Farshi
Sandor Fekete
Henning Fernau
Paolo Ferragina
Irene Finocchi
Johannes Fischer
Rudolf Fleischer
Fedor Fomin
Dimitris Fotakis
Nikolaos Fountoulakis
Kimmo Fredriksson
Tom Friedetzky
Zachary Friggstad
Zhang Fu
Stanley Fung
Stefan Funke
Hal Gabow
Bernd Gärtner
Frantisek Galcik
Iftah Gamzu
Jie Gao
William Gasarch

Organization IX

Georgios Georgiadis
Loukas Georgiadis
Arpita Ghosh
Panos Giannopoulus
Matt Gibson
Anders Gidenstam
Joan Glaunes
Marc Glisse
Michael Gnewuch
Xavier Goaoc
Peter Gottschling
Vineet Goyal
Fabrizio Grandoni
Alexander Grigoriev
Gaël Guennebaud
Jiong Guo
Carsten Gutwenger
Nima Haghpanah
M.T. Hajiaghayi
Olaf Hall-Holt
K. Arnsfelt Hansen
T. Dueholm Hansen
Sariel Har-Peled
David Hartvigsen
Rafael Hassin
Pinar Heggernes
Danny Hermelin
John Hershberger
Martin Hoefer
Wing Kai Hon
Han Hoogeveen
Chien-Chung Huang
Thore Husfeldt
Falk Hüffner
Csanád Imreh
Kazuo Iwama
Satoru Iwata
Bart Jansen
Bin Jiang
Satyen Kale
Marcin Kaminski
Sanjiv Kapoor
Chinmay Karande
Petteri Kaski
Matthew Katz

Steven Kelk
David Kempe
Elena Kleiman
Karsten Klein
Christian Knauer
Stavros Kolliopoulos
Spyros Kontogiannis
Amos Korman
Guy Kortsarz
Nitish Korula
Adrian Kosowski
Annamária Kovács
Richard Kralovic
Dieter Kratsch
Stefan Kratsch
Stephan Kreutzer
Nils Kriege
Sven Krumke
Piyush Kumar
Juha Kärkkäinen
Stefan Langerman
Kasper Dalgaard Larsen
Francis Lazarus
Lap-Kei Lee
Joshua Letchford
Asaf Levin
Joshua Levine
Maarten Löffler
Jian Li
Christian Liebchen
Daniel Lokshtanov
Zvi Lotker
Anna Lubiw
Tamas Lukovszki
Meena Mahajan
Kazuhisa Makino
Johann Makowsky
David Malec
Azarakhsh Malekian
Sven Mallach
David Manlove
Bodo Manthey
A. Marchetti-Spaccamela
Vangelis Markakis
Russell Martin

Dániel Marx
Nicole Megow
Julian Mestre
Aranyak Mehta
Pauli Miettinen
Matus Mihalak
Matthias Mnich
Bojan Mohar
Ankur Moitra
Pat Morin
Gabriel Moruz
David Mount
M. Müller-Hannemann
Tobias Muller
Wolfgang Mulzer
Veli Mäkinen
Thomas Mølhave
Seffi Naor
Giri Narasimhan
Hariharan Narayanan
Gonzalo Navarro
Hamid Nazerzadeh
Frank Neumann
Alantha Newman
Ilan Newman
Hung Ngo
Kim Thang Nguyen
Rolf Niedermeier
Nicolas Nisse
Marc Noy
Krzysztof Onak
Jim Orlin
Rasmus Pagh
K. Panagiotou
Gyula Pap
Gregor Pardella
Kunsoo Park
Britta Peis
Rudi Pendavingh
Michal Penn
Xavier Pennec
Marko Petkovšek
Jeff Phillips
Greg Plaxton
Valentin Polishchuk

X Organization

Matthias Poloczek
Laura Poplawski-Ma
Marc Pouget
E. Pountourakis
Kirk Pruhs
Geppo Pucci
Yuri Rabinov
Luis Rademacher
Tomasz Radzik
Harald Räcke
Arash Rafiey
Balaji Raghavachari
S. Raghavan
M. Sohel Rahman
Rajmohan Rajaraman
Rajiv Raman
Jörg Rambau
Pasi Rastas
Imran Rauf
Dror Rawitz
Saurabh Ray
Peter Reiter
Liam Roditty
Dana Ron
Johan M. M. van Rooij
Adi Rosén
Günter Rote
Thomas Rothvoß
Kunihiko Sadakane
Barna Saha
Saket Saurabh
Rahul Savani
Francesco Scarcello
Guido Schäfer
Elad Michael Schiller

Florian Schoppmann
Anna Schulze
Celine Scornavacca
Danny Segev
C. Seshadhri
Jiří Sgall
Hadas Shachnai
Rahul Shah
Mordechai Shalom
Jessica Sherette
Junghwan Shin
Somnath Sikdar
Rodrigo Silveira
Amitabh Sinha
René Sitters
Alexander Skopalik
Michiel Smid
Andreas Spillner
Yannis Stamatiou
Ulrike Stege
David Steurer
Håkan Sundell
Wing-Kin Sung
Rob van Stee
Jukka Suomela
Zoya Svitkina
Tami Tamir
Siamak Tazari
Orestis Telelis
Kavitha Telikepalli
Dimitrios Thilikos
Mikkel Thorup
Hans Raj Tiwary
Kostas Tsichlas
Elias Tsigaridas

Andy Twigg
George Tzoumas
Steve Uhlig
Takeaki Uno
Jan Vahrenhold
Gabriel Valiente
Sergei Vassilvitskii
Gert Vegter
Marinus Veldhorst
S. Venkatasubramanian
Angelina Vidali
Yngve Villanger
Niko Välimäki
Uli Wagner
Tomasz Walen
Haitao Wang
Lei Wang
Volker Weichert
Oren Weimann
Renato Werneck
Matthias Westermann
Christopher Whidden
Peter Widmayer
Ryan Williams
Gerhard J. Woeginger
Nicola Wolpert
Hoi-Ming Wong
Lirong Xia
Qiqi Yan
Neal Young
Mariette Yvinec
Bernd Zey
Lintao Zhang
Yong Zhang
Binhai Zhu

Table of Contents – Part I

Invited Talk

The Robustness of Level Sets . 1
Paul Bendich, Herbert Edelsbrunner, Dmitriy Morozov, and
Amit Patel

Session 1a

Solving an Avionics Real-Time Scheduling Problem by Advanced
IP-Methods . 11

Friedrich Eisenbrand, Karthikeyan Kesavan, Raju S. Mattikalli,
Martin Niemeier, Arnold W. Nordsieck, Martin Skutella,
José Verschae, and Andreas Wiese

Non-clairvoyant Speed Scaling for Weighted Flow Time 23
Sze-Hang Chan, Tak-Wah Lam, and Lap-Kei Lee

A Robust PTAS for Machine Covering and Packing 36
Martin Skutella and José Verschae

Session 1b

Balancing Degree, Diameter and Weight in Euclidean Spanners 48
Shay Solomon and Michael Elkin

Testing Euclidean Spanners . 60
Frank Hellweg, Melanie Schmidt, and Christian Sohler

Fast Approximation in Subspaces by Doubling Metric Decomposition . . . 72
Marek Cygan, Lukasz Kowalik, Marcin Mucha,
Marcin Pilipczuk, and Piotr Sankowski

f -Sensitivity Distance Oracles and Routing Schemes 84
Shiri Chechik, Michael Langberg, David Peleg, and Liam Roditty

Session 2a

Fast Minor Testing in Planar Graphs . 97
Isolde Adler, Frederic Dorn, Fedor V. Fomin, Ignasi Sau, and
Dimitrios M. Thilikos

On the Number of Spanning Trees a Planar Graph Can Have 110
Kevin Buchin and André Schulz

XII Table of Contents – Part I

Contractions of Planar Graphs in Polynomial Time 122
Marcin Kamiński, Daniël Paulusma, and Dimitrios M. Thilikos

Session 2b

Communication Complexity of Quasirandom Rumor Spreading 134
Petra Berenbrink, Robert Elsässer, and Thomas Sauerwald

A Complete Characterization of Group-Strategyproof Mechanisms of
Cost-Sharing . 146

Emmanouil Pountourakis and Angelina Vidali

Contribution Games in Social Networks . 158
Elliot Anshelevich and Martin Hoefer

Session 3a

Improved Bounds for Online Stochastic Matching . 170
Bahman Bahmani and Michael Kapralov

Online Stochastic Packing Applied to Display Ad Allocation 182
Jon Feldman, Monika Henzinger, Nitish Korula,
Vahab S. Mirrokni, and Cliff Stein

Caching Is Hard – Even in the Fault Model . 195
Marek Chrobak, Gerhard J. Woeginger, Kazuhisa Makino, and
Haifeng Xu

Session 3b

Superselectors: Efficient Constructions and Applications 207
Ferdinando Cicalese and Ugo Vaccaro

Estimating the Average of a Lipschitz-Continuous Function from One
Sample . 219

Abhimanyu Das and David Kempe

Streaming Graph Computations with a Helpful Advisor 231
Graham Cormode, Michael Mitzenmacher, and Justin Thaler

Session 4a

Algorithms for Dominating Set in Disk Graphs: Breaking the log n
Barrier . 243

Matt Gibson and Imran A. Pirwani

Minimum Vertex Cover in Rectangle Graphs . 255
Reuven Bar-Yehuda, Danny Hermelin, and Dror Rawitz

Table of Contents – Part I XIII

Feedback Vertex Sets in Tournaments . 267
Serge Gaspers and Matthias Mnich

Session 4b

n-Level Graph Partitioning . 278
Vitaly Osipov and Peter Sanders

Fast Routing in Very Large Public Transportation Networks Using
Transfer Patterns . 290

Hannah Bast, Erik Carlsson, Arno Eigenwillig, Robert Geisberger,
Chris Harrelson, Veselin Raychev, and Fabien Viger

Finding the Diameter in Real-World Graphs: Experimentally Turning
a Lower Bound into an Upper Bound . 302

Pierluigi Crescenzi, Roberto Grossi, Claudio Imbrenda,
Leonardo Lanzi, and Andrea Marino

Session 5a

Budgeted Red-Blue Median and Its Generalizations 314
MohammadTaghi Hajiaghayi, Rohit Khandekar, and Guy Kortsarz

All Ternary Permutation Constraint Satisfaction Problems
Parameterized above Average Have Kernels with Quadratic Numbers
of Variables . 326

Gregory Gutin, Leo van Iersel, Matthias Mnich, and Anders Yeo

Strong Formulations for the Multi-module PESP and a Quadratic
Algorithm for Graphical Diophantine Equation Systems 338

Laura Galli and Sebastian Stiller

Robust Algorithms for Sorting Railway Cars . 350
Christina Büsing and Jens Maue

Session 5b

Cloning Voronoi Diagrams via Retroactive Data Structures 362
Matthew T. Dickerson, David Eppstein, and Michael T. Goodrich

A Unified Approach to Approximate Proximity Searching 374
Sunil Arya, Guilherme D. da Fonseca, and David M. Mount

Spatio-temporal Range Searching over Compressed Kinetic Sensor
Data . 386

Sorelle A. Friedler and David M. Mount

XIV Table of Contents – Part I

Constructing the Exact Voronoi Diagram of Arbitrary Lines in
Three-Dimensional Space: with Fast Point-Location 398

Michael Hemmer, Ophir Setter, and Dan Halperin

Invited Talk

Local Graph Exploration and Fast Property Testing 410
Artur Czumaj

Session 6a

A Fully Compressed Algorithm for Computing the Edit Distance of
Run-Length Encoded Strings . 415

Kuan-Yu Chen and Kun-Mao Chao

Fast Prefix Search in Little Space, with Applications 427
Djamal Belazzougui, Paolo Boldi, Rasmus Pagh, and
Sebastiano Vigna

On the Huffman and Alphabetic Tree Problem with General Cost
Functions . 439

Hiroshi Fujiwara and Tobias Jacobs

Medium-Space Algorithms for Inverse BWT . 451
Juha Kärkkäinen and Simon J. Puglisi

Session 6b

Median Trajectories . 463
Kevin Buchin, Maike Buchin, Marc van Kreveld, Maarten Löffler,
Rodrigo I. Silveira, Carola Wenk, and Lionov Wiratma

Optimal Cover of Points by Disks in a Simple Polygon 475
Haim Kaplan, Matthew J. Katz, Gila Morgenstern, and Micha Sharir

Stability of ε-Kernels . 487
Pankaj K. Agarwal, Jeff M. Phillips, and Hai Yu

The Geodesic Diameter of Polygonal Domains . 500
Sang Won Bae, Matias Korman, and Yoshio Okamoto

Session 7a

Polyhedral and Algorithmic Properties of Quantified Linear
Programs . 512

Ulf Lorenz, Alexander Martin, and Jan Wolf

Table of Contents – Part I XV

Approximating Parameterized Convex Optimization Problems 524
Joachim Giesen, Martin Jaggi, and Sören Laue

Approximation Schemes for Multi-Budgeted Independence Systems 536
Fabrizio Grandoni and Rico Zenklusen

Session 7b

Algorithmic Meta-theorems for Restrictions of Treewidth 549
Michael Lampis

Determining Edge Expansion and Other Connectivity Measures of
Graphs of Bounded Genus . 561

Viresh Patel

Constructing the R* Consensus Tree of Two Trees in Subcubic Time . . . 573
Jesper Jansson and Wing-Kin Sung

Author Index . 585

Table of Contents – Part II

Invited Talk

Data Structures: Time, I/Os, Entropy, Joules! . 1
Paolo Ferragina

Session 8a

Weighted Congestion Games: Price of Anarchy, Universal Worst-Case
Examples, and Tightness . 17

Kshipra Bhawalkar, Martin Gairing, and Tim Roughgarden

Computing Pure Nash and Strong Equilibria in Bottleneck Congestion
Games . 29

Tobias Harks, Martin Hoefer, Max Klimm, and Alexander Skopalik

Combinatorial Auctions with Verification Are Tractable 39
Piotr Krysta and Carmine Ventre

How to Allocate Goods in an Online Market? . 51
Yossi Azar, Niv Buchbinder, and Kamal Jain

Session 8b

Fréchet Distance of Surfaces: Some Simple Hard Cases 63
Kevin Buchin, Maike Buchin, and André Schulz

Geometric Algorithms for Private-Cache Chip Multiprocessors 75
Deepak Ajwani, Nodari Sitchinava, and Norbert Zeh

Volume in General Metric Spaces . 87
Ittai Abraham, Yair Bartal, Ofer Neiman, and Leonard J. Schulman

Shortest Cut Graph of a Surface with Prescribed Vertex Set 100
Éric Colin de Verdière

Session 9a

Induced Matchings in Subcubic Planar Graphs . 112
Ross J. Kang, Matthias Mnich, and Tobias Müller

Robust Matchings and Matroid Intersections . 123
Ryo Fujita, Yusuke Kobayashi, and Kazuhisa Makino

XVIII Table of Contents – Part II

A 25/17-Approximation Algorithm for the Stable Marriage Problem
with One-Sided Ties . 135

Kazuo Iwama, Shuichi Miyazaki, and Hiroki Yanagisawa

Strongly Stable Assignment . 147
Ning Chen and Arpita Ghosh

Session 9b

Data Structures for Storing Small Sets in the Bitprobe Model 159
Jaikumar Radhakrishnan, Smit Shah, and Saswata Shannigrahi

On Space Efficient Two Dimensional Range Minimum Data
Structures . 171

Gerth Stølting Brodal, Pooya Davoodi, and S. Srinivasa Rao

Pairing Heaps with Costless Meld . 183
Amr Elmasry

Top-k Ranked Document Search in General Text Databases 194
J. Shane Culpepper, Gonzalo Navarro, Simon J. Puglisi, and
Andrew Turpin

Best-Paper Session

Shortest Paths in Planar Graphs with Real Lengths in
O(n log2 n/ log log n) Time . 206

Shay Mozes and Christian Wulff-Nilsen

When LP Is the Cure for Your Matching Woes: Improved Bounds for
Stochastic Matchings . 218

Nikhil Bansal, Anupam Gupta, Jian Li, Julián Mestre,
Viswanath Nagarajan, and Atri Rudra

Feasibility Analysis of Sporadic Real-Time Multiprocessor Task
Systems . 230

Vincenzo Bonifaci and Alberto Marchetti-Spaccamela

Author Index . 243

The Robustness of Level Sets�

Paul Bendich1,2,3, Herbert Edelsbrunner1,2,3,5, Dmitriy Morozov4, and Amit Patel1,2

1 IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria
2 Dept. Comput. Sci., Duke Univ., Durham, North Carolina
3 Dept. Mathematics, Duke Univ. Durham, North Carolina

4 Depts. Comput. Sci. and Math., Stanford Univ., Stanford, California
5 Geomagic, Research Triangle Park, North Carolina

Abstract. We define the robustness of a level set homology class of a function
f : X → R as the magnitude of a perturbation necessary to kill the class. Casting
this notion into a group theoretic framework, we compute the robustness for each
class, using a connection to extended persistent homology. The special case X =
R3 has ramifications in medical imaging and scientific visualization.

Keywords: Topological spaces, continuous functions, level sets, perturbations,
homology, extended persistence, well groups, well diagrams, robustness.

1 Introduction

The work reported in this paper has two motivations, one theoretical and the other prac-
tical. The former is the recent introduction of well groups in the study of mappings
between topological spaces. Assuming a metric space of perturbations, we have such a
group for each subspace A ⊆ Y, each bound r ≥ 0 on the magnitude of the perturba-
tion, and each dimension p. These groups extend the boolean concept of transversality
to a real-valued measure we refer to as robustness. Using this measure, we can quantify
the robustness of a fixed point of a mapping [8] and prove the stability of the apparent
contour of a mapping from an orientable 2-manifold to R2 [7]. In this paper, we con-
tribute to the general understanding of well groups by studying the real-valued case.
Specifically,

I. we characterize the well group of f : X → R when the space A is a single point;
II. we give an algorithm relating the well diagram of f and A with the extended per-

sistence diagram of f .

In the full version of this paper, we extend these results to the case when A is a finite
union of points and intervals. Applications of this theoretical work can be found in
scientific visualization, where data in the form of real-valued functions is common. To
mention one example, the magnetic resonance image of a person’s brain results in a

� This research is partially supported by the Defense Advanced Research Projects Agency
(DARPA), under grants HR0011-05-1-0057 and HR0011-09-0065, as well as the National
Science Foundation (NSF), under grant DBI-0820624.

M. de Berg and U. Meyer (Eds.): ESA 2010, Part I, LNCS 6346, pp. 1–10, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 P. Bendich et al.

3-dimensional array of intensity values, best viewed as a function from the unit cube to
the real numbers. Generically, the preimage of a value a ∈ R is a 2-manifold, referred
to as a contour or an isosurface [10,12]. We contribute to the state of the art by

III. explaining how the homology of an isosurface can be read off the extended persis-
tence diagram of the function;

IV. describing how the robustness of features in isosurfaces can be read off the same
diagram.

We believe that these results warrant the development of extended persistence diagrams
as a new interface tool to efficiently select interesting collections of isosurfaces. We
view this tool as complementary to the contour spectra described in [1], which plot
continuously varying quantities, such as area and volume, across the sequence of level
sets. The most novel aspect of this new tool is the robustness information, which is
readily available through subregions of the diagram.

Outline. In Section 2, we review necessary background on persistence diagrams and
well groups. In Section 3, we present our main result: the characterization of the well
groups. In Section 4, we explain the relationship between the points in the persis-
tence diagram and the homology of level sets, extending it to robust homology in
Section 5. Finally, Section 6 concludes the paper with a brief discussion of further re-
search directions.

2 Background

This section begins with a review of persistence and persistence diagrams. Then we give
a description of the 1-parameter family of well groups, and conclude with an example
that illustrates the given definitions.

Persistence. The persistence of homology classes along a filtration of a topological
space can be defined in a quite general context [5]. For this paper, we need only a
particular type of filtration, one defined by the sublevel sets of a tame function. Given a
real-valued function f on a compact topological space X, we consider the filtration of
X via the sublevel sets Xr(f) = f−1(−∞, r], for all real values r. Whenever r ≤ s,
the inclusion Xr(f) ↪→ Xs(f) induces maps on the homology groups Hp(Xr(f)) →
Hp(Xs(f)), for each dimension p. Here we will use Z/2Z coefficients. Often we will
suppress the dimension from our notation, writing H(Xr(f)) =

⊕
p Hp(Xr(f)); in this

case, a map H(Xr(f)) → H(Xs(f)) will of course decompose into maps on each factor.
A real value r is called a homological regular value of f if there exists an ε > 0 such
that the inclusion Xr−δ(f) ↪→ Xr+δ(f) induces an isomorphism between homology
groups for all δ < ε. If r is not a homological regular value, then it is a homological
critical value.

We say that f is tame if it has finitely many homological critical values and if the
homology groups of each sublevel set have finite rank. Assuming that f is tame, we enu-
merate its homological critical values r1 < r2 < . . . < rn. Choosing n+1 homological
regular values si such that s0 < r1 < s1 < . . . < rn < sn, we put Xi = Xsi(f). We

The Robustness of Level Sets 3

have X0 = ∅ and Xn = X, by compactness. The inclusions Xi ↪→ Xj induce maps
fi,j : H(Xi)→ H(Xj) for 0 ≤ i ≤ j ≤ n and give the following filtration:

0 = H(X0)→ H(X1) → . . .→ H(Xn) = H(X). (1)

Given a class α ∈ H(Xi), we say that α is born at Xi if α 	∈ im fi−1,i. A class α born
at Xi is said to die entering Xj if fi,j(α) ∈ im fi−1,j but fi,j−1(α) 	∈ im fi−1,j−1. We
remark that if a class α is born at Xi, then every class in the coset [α] = α+im fi−1,i is
born at the same time. Of course, whenever such an α dies entering Xj , the entire coset
[α] also dies with it.

Extended persistence. Note that the filtration in (1) begins with the zero group but ends
with a potentially nonzero group. Hence, it is possible to have classes that are born
but never die. We call these essential classes, as they represent the actual homology
of the space X. To measure the persistence of the essential classes, we follow [4] and
extend (1) using relative homology groups. More precisely, we consider for each i the
superlevel set Xi = f−1[sn−i,∞). For i ≤ j, the inclusion Xi ↪→ Xj induces a
map on relative homology H(X, Xi) → H(X, Xj). We have X0 = ∅ and Xn = X by
compactness. These maps therefore lead to the extended filtration:

0 = H(X0)→ H(X1)→ . . .→ H(Xn) = H(X)
= H(X, X0)→ H(X, X1) . . .→ H(X, Xn) = 0. (2)

We extend the notions of birth and death in the obvious way. Since this filtration begins
and ends with the zero group, all classes eventually die.

The information contained within the extended filtration (2) can be compactly rep-
resented by persistence diagrams Dgmp(f), one for each dimension p in homology;
see Figure 1. Each such diagram is a multiset of points in the plane: it contains one
point (ri, rj) for each coset of classes that is born at Xi or (X, Xn−i+1), and dies en-
tering Xj or (X, Xn−j+1). In some circumstances, it is convenient to add the points
on the diagonal to the diagram, but in this paper, we will refrain from doing so. The
persistence diagram contains three important subdiagrams, corresponding to three dif-
ferent combinations of birth and death location. The ordinary subdiagram, Ordp(f),
represents classes that are born and die during the first half of (2). The relative sub-
diagram, Relp(f), represents classes that are born and die during the second half. Fi-
nally, the extended subdiagram, Extp(f), represents classes that are born during the
first half and die during the second half of the extended filtration. Note that points
in Ordp(f) all lie above the main diagonal while points in Relp(f) all lie below. On
the other hand, Extp(f) may contain points on either side of the main diagonal. By
Dgm(f), we mean the points of all diagrams in all dimensions, overlaid as one multiset
of points.

Note that the number of points in Extp(f) is precisely the rank of the p-th homology
group of X. A similar formula holds for the sublevel set Xr(f). Using levelset zigzag
modules introduced in [3], we will see that this way of reading the rank of homology
groups can be extended to level sets and, more generally, to sets of the form f−1[a, b].

4 P. Bendich et al.

Well groups. Given a continuous function f : X → R and a value a ∈ R, we review
the definition of the well groups Up(a, r) for each radius r ≥ 0 and each dimension p.
Since a will be fixed, we usually drop it from the notation and simply write U(r), by
which we mean the direct sum of groups Up(a, r), over all homology dimensions p. We
will need the assumption that f−1(a) has homology groups of finite rank.

To begin, we define the radius function fa : X → R by mapping each point x
to fa(x) = |f(x) − a|. Using this real-valued function, we filter X via sublevel sets:
Xr(fa) = f−1

a [0, r]. For r ≤ s, there is a map fr,s : H(Xr(fa)) → H(Xs(fa)). By
an r-perturbation h of f , we mean a function h : X → R such that ‖h− f‖∞ =
supx∈X |h(x) − f(x)| ≤ r. The preimage of a under any such h will obviously be a
subset of Xr(fa), and hence there is a map on homology, jh : H(h−1(a))→ H(Xr(fa)).
Given a class α ∈ H(Xr(fa)), we say that α is supported by h if α ∈ im jh. Equiva-
lently, h−1(a) carries a chain representative of α. The well group U(r) ⊆ H(Xr(fa)) is
then defined to consist of the classes that are supported by all r-perturbations of f :

U(r) =
⋂

‖h−f‖∞≤r

im jh.

For r ≤ s, the map fr,s restricts to U(r) → H(Xs(fa)). On the other hand, H(Xs(fa))
contains U(s) as a subgroup. It can be shown that U(s) ⊆ fr,s(U(r)) whenever r ≤ s;
see [8]. In other words, the rank of the well group can only decrease as the radius
increases.

We call a value of r at which the rank of the well group decreases a terminal critical
value. The well diagram of f and a is then the multiset of terminal critical values of
fa, taking a value k times if the rank of the well group drops by k at the value. Here
we note that well groups can be defined in a more general context [8], given a mapping
f : X → Y, a subspace A ⊆ Y, and a metric space of perturbations. In this general
setting, the relationship between the terminal critical values and the homological critical
values of fa is not completely understood. However, for Y = R and A = {a}, we will
see shortly that the former is a subset of the latter.

Example. Consider the torus X, as shown in Figure 1, along with the vertical height
function f and a value a ∈ R. The preimage of a, f−1(a) = f−1

a (0), consists of two
disjoint circles on the torus; hence there are two components and two independent 1-
cycles, all belonging to the well group. For small values of r, Xr(fa) consists of two
disjoint cylinders. The homology has yet to change; furthermore, although the proof
will come later, all classes still belong to the well group.

Now consider the value of r shown in Figure 1. For this r, the sublevel set Xr(fa)
consists of two pair-of-pants glued together along two common circles. We note that
H0(Xr(fa)) has dropped in rank by one, while the rank of H1(Xr(fa)) has grown to
three. In contrast, the rank of U1(r) is less than or equal to one. Indeed, the function
h : X → R, defined by h = f − r, is an r-perturbation of f and its level set at a,
h−1(a) = f−1(a + r), is a single closed curve. Since the rank of the first homology
group of that curve is one, and since the rank of im jh can be no bigger than this rank,
the well group U1(r) can also have rank at most one. That it does in fact have rank
exactly one will follow from our results in the next section.

The Robustness of Level Sets 5

a− r

a

a + r

1

2

1

0

Fig. 1. Left: the torus and the preimage of the interval [a − r, a + r]. Right: the persistence dia-
gram of the vertical height function. Each point is labeled by the dimension of the corresponding
homology class.

3 Characterization

In this section, we characterize the well groups. We begin with a consequence of the
exactness of the Mayer-Vietoris sequence, see eg. [11], which will provide the main
technical ingredient of our proof.

Mayer-Vietoris sequence. For convenience, we establish the following notational con-
vention, wherein we reuse the same letter in different fonts. If X ⊆ Y are topological
spaces, then inclusion induces a map x : H(X) → H(Y) on homology groups and we
write X = im x for the image of this map. Note that X is always a subgroup of H(Y),
namely the subgroup of homology classes that have a chain representative carried by X.
Note also that the rank of X can never exceed the rank of H(X). Suppose that W ⊆ X
are two subspaces of Y. Then, from the chain of maps H(W) → H(X) → H(Y), we
see that W must be a subgroup of X. The following lemma is a direct consequence of
the exactness of the Mayer-Vietoris sequence. However, we will use it often so it seems
reasonable to state it formally.

1 (Mayer-Vietoris Lemma) Suppose that we can write a topological space Y as Y =
C ∪ D, with E = C ∩ D. If a class α ∈ H(Y) belongs to C as well as to D, then α also
belongs to E.

PROOF. Following our convention, we use the notation c : H(C) → H(Y) for the map
on homology induced by the inclusion of C in Y. Similarly, we write d : H(D)→ H(Y)
and e : H(E) → H(Y), as well as ec : H(E) → H(C) and ed : H(E) → H(D). Note
that C = im c, D = im d, and E = im e. Consider now the relevant portion of the
Mayer-Vietoris sequence for the union Y = C ∪ D:

H(E) H(C)⊕ H(D) H(Y).��
(ec,ed)

��
c−d

6 P. Bendich et al.

By assumption, α ∈ C, so there exists some αc ∈ H(C) such that c(αc) = α. Similarly,
there exists an αd ∈ H(D) such that d(αd) = α. This implies that the pair (αc, αd)
belongs to the kernel of c−d, and thus also, by exactness of the sequence, belongs to the
image of (ec, ed). Hence there exists αe ∈ H(E) with ec(αe) = αc and ed(αe) = αd.
In particular, since e = c ◦ ec, we have e(αe) = α, and therefore α ∈ E as claimed.

In the typical application of the Mayer-Vietoris Lemma, we will construct subspaces
B0 ⊆ C and B1 ⊆ D such that α ∈ B0 ∩ B1. From the remark above, we know that
B0 ⊆ C and B1 ⊆ D. The lemma then applies and we can conclude that α ∈ E, as
before.

One-point case. We now suppose that we have a topological space X and a function
f : X → R, and we find the well groups U(a, r) = U(r). Recall that Xr(fa) =
f−1

a [0, r] = f−1[a − r, a + r]. To state the formula, we distinguish two particular
subspaces of Xr(fa), namely the top level set, B0,r = f−1(a+ r), and the bottom level
set, B1,r = f−1(a − r). Using the convention from before, we write B0,r and B1,r for
the images of H(B0,r) and H(B1,r) in H(Xr(fa)).

2 (One-Point Formula) U(r) = B0,r ∩ B1,r, for every r ≥ 0.

PROOF. We simplify notation by fixing r and dropping it from our notation. We prove
equality by proving the two inclusions in turn. To show U ⊆ B0 ∩ B1, consider a class
α ∈ U. We define h0 = f−r and h1 = f +r and note that they are r-perturbations of f ,
with h−1

0 (a) = B0 and h−1
1 (a) = B1. By definition of the well group, α is supported by

every r-perturbation of f , and therefore by h0 and by h1. It follows that α ∈ B0 ∩ B1.
To show B0 ∩ B1 ⊆ U, we consider a class α ∈ B0 ∩ B1 and let h be an arbitrary r-

perturbation of f . To finish the proof, we just need to show that α is supported by h. We
define C = {x ∈ Xr(fa) | h(x) ≥ a} and D = {x ∈ Xr(fa) | h(x) ≤ a}. Note that
C ∪ D = Xr(fa) while C ∩ D = h−1(a). Furthermore, the inequality ‖h− f‖∞ ≤ r
implies that B0 ⊆ C and B1 ⊆ D. By the Mayer-Vietoris Lemma, α is supported by
h−1(a), as required.

We note that the One-Point Formula implies that the well group for a Morse function
f can change only at critical values of the function fa. In other words, terminal critical
values are, in this simple context, just ordinary critical values. Indeed, if [r, s] is an
interval that contains no critical values of fa, then there is a deformation retraction
Xs(fa) → Xr(fa) providing an isomorphism H(Xr(fa)) → H(Xs(fa)). Furthermore,
this retraction maps B0,s onto B0,r, in such a way that that the images of H(B0,r) and
H(B0,s) in H(Xs(fa)) are identical. Similarly, the images of H(B1,r) and H(B1,s) in
H(Xs(fa)) are identical. Hence the well groups U(r) and U(s) are isomorphic.

4 Combinatorics of Homology

We note that the groups relevant to the One-Point Formula are all groups of a very
particular type. Namely, each is the image, under a map induced by inclusion, of the
homology of a level set of f . In this section, we describe a relationship between the

The Robustness of Level Sets 7

points in the extended persistence diagram of f and the homology groups of any level
set. More generally, we show how the homology of the preimage of any interval can be
read from the extended persistence diagram. We also give a similar relationship for the
image induced by the inclusion of a smaller interval into a bigger one.

Common basis. The main idea here, stated intuitively, is that each point in the per-
sistence diagram corresponds to a unique basis vector of an abstract vector space in
such a way that the points in certain subregions of the diagram give crucial informa-
tion. Slightly more precisely, we choose a persistence module basis B for the extended
filtration (2), one which results from transforming a basis of the levelset zigzag module
in the way described by the Pyramid Basis Theorem; for complete precision, we refer
the reader to the full version of this paper. Following [6] and [3], we note that these
basis vectors correspond bijectively to the points in the extended persistence diagram.
We then define an abstract vector space V = 〈B〉. By V , we will mean the collection
of those particular vector subspaces of V that have a basis consisting of vectors chosen
from B; in other words, V = {〈B′〉 | B′ ⊆ B}.

Now suppose that we have a pair of real numbers a ≤ b and consider the homology
of f−1[a, b], the interlevel set defined by [a, b]. For convenience, we assume that a and
b are different from all coordinates of points in Dgm(f). We will demonstrate shortly
that a basis for H(f−1[a, b]) can be read directly off the extended persistence diagram.
To formulate this claim, we define two multisets of points:

Lp[a, b] = {(x, y) ∈ Ordp(f) | x < b, y > b} � {(x, y) ∈ Extp(f) | x < b, y > a},
Rp[a, b] = {(x, y) ∈ Extp(f) | x > b, y < a} � {(x, y) ∈ Relp(f) | x > a, y < a},

for every dimension p; see Figure 2. It will be convenient to glue the domains of the
three subdiagrams and draw the result as a right-angled triangle, as in Figure 3. In this

Ord Ext Rel

dim dim dim

dim

dim

dim

dim−1 dim−1dim
−1

b

a a

b b

a

Fig. 2. From left to right: the shaded regions in the ordinary, extended, and relative subdiagrams
in which the points correspond to the basis of the homology of the interlevel set defined by [a, b]

triangle, the birth and death axes go from −∞ up to +∞ and then continue on back
to −∞. In other words, we flip the extended subdiagram upside down and glue its
(formerly) upper side to the upper side of the ordinary subdiagram. Similarly, we rotate
the relative subdiagram by 180 degrees and glue its (formerly) right side to the right
side of the extended subdiagram. After gluing the three domains, we rotate the design
by−45 degrees so the triangle rests on its longest side, consisting of the diagonals in the

8 P. Bendich et al.

ordinary and relative subdiagrams. The diagonal of the extended subdiagram is now the
vertical symmetry axis passing through the middle of the triangle. We note that there is a
straightforward translation of this triangular design to the representation of persistence
advocated in [2]. Namely, draw a symmetric right-angled triangle downward from each
point in the multiset and call the horizontal lower edge the corresponding bar. The
barcode is the multiset of bars, one for each point in the diagram.

Reading homology. The purpose of the multisets Lp[a, b] andRp[a, b] is to offer a con-
venient way to read the homology of a level set or an interlevel set from the persistence
diagram. We make this statement precise in the following lemma, which is a corollary
of the Pyramid Basis Theorem given in the full version of this paper.

3 (Interlevel Set Lemma) For each dimension p and each pair of real numbers a ≤ b,
there exists an isomorphism taking Hp(f−1[a, b]) onto the vector space G ∈ V spanned
by the basis vectors corresponding to the points in Lp[a, b] ∪ Rp+1[a, b]

Recall that the points in Extp(f) determine the homology of X. This is a special case
of the lemma. To get f−1[a, b] = X, we choose a smaller than the minimum function
value and b larger than the maximum function value. Hence, Lp[a, b] = Extp(f) and
Rp[a, b] = ∅ for all dimensions p, as required. Of course the homology of a level set
f−1(a) can also be read off via the Interlevel Set Lemma; one simply sets a = b and
makes the necessary adaptations to the formula.

Now suppose we have a pair of nested intervals [a, b] ⊆ [c, d]. By the Interlevel
Set Lemma, there are isomorphisms that take the homology groups H(f−1[a, b]) and
H(f−1[c, d]) onto groups G,G′ ∈ V , respectively. The inclusion of the smaller into the
larger interval induces a map on homology, which composes with the isomorphisms
obtained from the Interlevel Set Lemma to give g : G → G′. Since the two groups are
members of V , there is a natural map from G to G′, namely the one that restricts to the
identity on the span of their shared vectors and is zero otherwise. Not surprisingly, g is
exactly that map. We give the proof of this result in the full version of this paper.

4 (Interval Mapping Lemma) Let [a, b] ⊆ [c, d] and let G,G′ be the corresponding
groups in V . Then the image of the map g : G → G′ is in V , with basis B(im g) in
bijection with the multiset (Lp[a, b] ∩ Lp[c, d]) ∪ (Rp+1[a, b] ∩ Rp+1[c, d]).

5 Combinatorics of Robustness

This section gives a procedure for reading the well diagrams from the persistence dia-
gram for f . The homology of X0(fa) = f−1(a) can be read off the persistence diagram
of f , as stated in the Interlevel Set Lemma. Specifically, Hp(X0(fa)) is isomorphic to
the vector space whose basis corresponds to Lp[a, a] ∪ Rp+1[a, a]. Similarly, the ho-
mology of Xr(fa) = f−1[a − r, a + r] can be read off the same diagram. By the
One-Point Formula, the well group for r is the intersection of the images of the homol-
ogy maps induced by the inclusions of f−1(a − r) and f−1(a + r) in Xr(fa). By the
Interval Mapping Lemma, this intersection corresponds to a pair of rectangles within
the region of X0(fa); see Figure 3.

The Robustness of Level Sets 9

Dea
th

Death Birth

Birt
h

−∞ −∞∞

−∞

∞ a

a a

∞

Fig. 3. The triangle design of the extended persistence diagram. The shaded region gives the basis
of H(f−1(a)), while the dark shaded region gives the basis of U(a, r).

A point contributes to the well group until r reaches a value at which the pair of
rectangles no longer contains the point. For a point (x, y) ∈ Lp[a, a], this value of r
is min{a − x, y − a}, and for (x, y) ∈ Rp+1[a, a], this value is min{x − a, a − y}.
The well diagram is the multiset of the values we get from the points in the persistence
diagram.

6 Discussion

The main contribution of this paper is a characterization of the well groups of
real-valued functions and a recipe for deriving their well diagrams from the extended
persistence diagram of the function. These results have ramifications in scientific vi-
sualization, in particular in the selection and display of isosurfaces. We conclude this
paper by formulating two directions for further research.

The general problem of well group computation remains wide open. One way to
think about this is the following. If we have a mapping f : X → Y from an m-
dimensional topological space X to an n-dimensional topological space Y, and a sub-
manifold A ⊆ Y of dimension k, we call the computation of the well groups a variant
of the (m,n, k) problem. The full version of this paper provides a complete solution
for (m, 1, 0) and (m, 1, 1), when Y = R. In [7], the authors give an algorithm for
(2, 2, 0), when X is an orientable 2-manifold and Y = R2. Their algorithm extends to
(m,n, n−m). Everything else is as yet unsolved.

The use of well diagrams to provide local measures of robustness for isosurfaces is a
promising research direction in scientific visualization. From the extended persistence
diagram drawn as in Figure 3, we obtain a compact representation of all homology
groups and the robustness of their classes. Can this rich representation of information be
effectively used to design transfer functions [9,13] for highlighting important features
in 3-dimensional data sets?

10 P. Bendich et al.

References

1. Bajaj, C.L., Pascucci, V., Schikore, D.R.: The contour spectrum. In: Proc. 8th IEEE Conf.
Visualization, pp. 167–173 (1997)

2. Carlsson, G., Collins, A., Guibas, L.J., Zomorodian, Z.: Persistence barcodes for shapes.
Internat. J. Shape Modeling 11, 149–187 (2005)

3. Carlsson, G., de Silva, V., Morozov, D.: Zigzag persistent homology and real-valued func-
tions. In: Proc. 25th Ann. Sympos. Comput. Geom., pp. 247–256 (2009)

4. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Extending persistence using Poincaré and
Lefschetz duality. Found. Comput. Math. 9, 79–103 (2009)

5. Edelsbrunner, H., Harer, J.: Persistent homology — a survey. In: Goodman, J.E., Pach, J.,
Pollack, R. (eds.) Surveys on Discrete and Computational Geometry. Twenty Years Later.
Contemporary Mathematics, vol. 453, pp. 257–282. Amer. Math. Soc., Providence (2008)

6. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification.
Discrete Comput. Geom. 28, 511–533 (2002)

7. Edelsbrunner, H., Morozov, D., Patel, A.: The stability of the apparent contour of an ori-
entable 2-manifold. In: Pascucci, V., Tierny, J. (eds.) Topological Methods in Data Analysis
and Visualization: Theory, Algorithms, and Applications. Springer, Heidelberg (to appear)

8. Edelsbrunner, H., Morozov, D., Patel, A.: Quantifying transversality by measuring the ro-
bustness of intersections. Dept. Comput. Sci., Duke Univ., Durham, North Carolina (2009)
(Manuscript)

9. Fang, S., Biddlecome, T., Tuceryan, M.: Image-based transfer function design for data explo-
ration in volume visualization. In: Proc. 9th IEEE Conf. Visualization, pp. 319–326 (1998)

10. van Krefeld, M., van Oostrum, R., Bajaj, C.L., Pascucci, V., Schikore, D.R.: Contour trees
and small seed sets for isosurface traversal. In: Proc. 13th Ann. Sympos. Comput. Geom.,
pp. 212–220 (1997)

11. Munkres, J.R.: Elements of Algebraic Topology. Perseus, Cambridge (1984)
12. Newman, T.S., Yi., H.: A survey of the marching cube algorithm. Computers and Graph-

ics 30, 854–879 (2006)
13. Wittenbrink, C.M., Malzbender, T., Goss, M.E.: Opacity-weighted color interpolation for

volume sampling. In: Proc. IEEE Proc. Volume Visualization, pp. 135–142 (1998)

Solving an Avionics Real-Time Scheduling
Problem by Advanced IP-Methods�

Friedrich Eisenbrand1, Karthikeyan Kesavan2, Raju S. Mattikalli2,
Martin Niemeier1, Arnold W. Nordsieck2, Martin Skutella3,

José Verschae3, and Andreas Wiese3

1 EPFL, Lausanne, Switzerland
2 Boeing, USA

3 TU Berlin, Germany

Abstract. We report on the solution of a real-time scheduling problem
that arises in the design of software-based operation control of aircraft.
A set of tasks has to be distributed on a minimum number of machines
and offsets of the tasks have to be computed. The tasks emit jobs pe-
riodically starting at their offset and then need to be executed on the
machines without any delay. Also, further constraints in terms of mem-
ory usage and redundancy requirements have to be met. Approaches
based on standard integer programming formulations fail to solve our
real-world instances. By exploiting structural insights of the problem we
obtain an IP-formulation and primal heuristics that together solve the
real-world instances to optimality and outperform text-book approaches
by several orders of magnitude. Our methods lead, for the first time, to
an industry strength tool to optimally schedule aircraft sized problems.

1 Introduction

Modern aircraft computing systems are employing new architectures that pro-
vide significant weight and cost advantages over previous architectures. They
include computing, network, and I/O modules that are highly configurable.
However these architectures present integration complexities which require auto-
mated methods to achieve configuration design centering. One such complexity is
the allocation and scheduling of applications on processors. Due to the hard real-
time nature of the airplane systems, a static cyclic execution schedule is required.
For allocation purposes, applications are characterized by performance, memory,
I/O, operational availability, functional separation, and functional grouping re-
quirements. The processors are characterized by performance as implemented
in a schedule, limited memory capabilities, and limited I/O capabilities via the
network. A significant challenge associated with solving this problem in the con-
text of a commercial aircraft is that of scale – it requires careful consideration
of problem formulation and solution efficiency.
� This work was partially supported by Berlin Mathematical School, by DFG research

center Matheon in Berlin, by DFG Focus Program 1307 within the project “Algo-
rithm Engineering for Real-time Scheduling and Routing”, and by the Swiss National
Science Foundation.

M. de Berg and U. Meyer (Eds.): ESA 2010, Part I, LNCS 6346, pp. 11–22, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

12 F. Eisenbrand et al.

We report on integer programming approaches for this problem. It turns out
that textbook formulations, like the time-indexed formulation, are not well suited
to tackle the problems of complexity arising in real-world applications. By ex-
ploiting structural insights of the problem we provide an integer programming
model and primal heuristics that outperform the textbook approach significantly.
By restricting to a relevant subclass of instances and exploiting a bin-tree struc-
ture [EHN+10], we obtain a model that is tailored to this subclass and outper-
forms the other formulations drastically. The latter formulation is able to handle
industrial size instances of the scheduling problem. Even for real-world instances
not belonging to the subclass, one can still use the formulation as a heuristic
using a rounding technique. For our real-world instance, this heuristic finally
provides optimal solutions.

1.1 Problem Definition

Our problem is a variant of the periodic maintenance problem (PMP) [WL83].
First, we describe a simplified version called the basic PMP. It is the core of
the real problem that Boeing is challenged with, the extended PMP, which we
describe afterwards.

In the basic PMP we are given a set of tasks T = {τ1, . . . , τn} where each task
τi = (ci, pi) is characterized by its execution time ci ∈ N and period pi ∈ N. The
goal is to assign the tasks to identical machines and to compute offsets ai ∈ N0.
A task τi generates one job with execution time ci at every time unit ai+pi ·k for
all k ∈ N0. Each job needs to be processed immediately and non-preemptively
after its generation on the task’s machine. A collision occurs if two jobs are
simultaneously active on the same machine. A schedule is feasible if no collision
occurs. In the sequel, we denote by Q = {q1, ..., qk} the set of all period lengths
arising in the respective instance. We assume that q1 < . . . < qk. An important
special case, in particular in real-world instances, is the case of harmonic periods.
In this case for each pair of tasks τi, τi′ we have that either pi|pi′ or pi′ |pi.

In the extended PMP, machines have additional resource limitations in terms
of memory of different types (RAM, ROM, etc.) and communication links that
need to be considered. Each task has a given requirement for each type of memory
and needs certain communication links to be open on its machine. Each machine
can handle only a limited number of links and a limited bandwidth used by them.
Like in the basic PMP, all machines are identical.

Moreover, due to system stability requirements certain tasks need to be as-
signed to different machines. Also, the machines have to be partitioned into two
cabinets (left and right). To this end, we are given sets of tasks which have to be
distributed evenly among the cabinets in order to design a fail-safe architecture.

1.2 Related Work

There is a large amount of literature on real-time scheduling; see, for exam-
ple, [BHR93, But04, Leu04] for surveys. The periodic maintenance problem was
introduced by Wei and Liu [WL83] in the context of single machine and unit

Solving an Avionics Real-Time Scheduling Problem by Advanced IP-Methods 13

execution times. Baruah et al. [BRTV90] and independently Korst et al.
[KALW91, KAL96] show that the periodic maintenance problem is NP-hard.
Moreover, minimizing the number of machines is hard to approximate within a
factor of n1−ε for any ε > 0 unless P = NP [EHN+10, Bha98].

The (basic) PMP generalizes Bin-Packing. For Bin-Packing, First-Fit with
decreasing item sizes is a 1.5-approximation algorithm [SL94] which is best pos-
sible unless P = NP . For the harmonic case of the PMP a First-Fit heuristic
achieves an approximation factor of 2 and it is NP -hard to approximate it
any better [EHN+10]. The general case cannot be approximated non-trivially if
P 	= NP [EHN+10].

From a computational point of view, there exists extensive literature on
heuristics as well as branch-and-bound and column generations methods for Bin-
Packing. In [MT90] polynomial time approximation algorithms as well as lower
bounds, and exact algorithms are studied. Lower bounds to the optimal solution
(which can be computed fast) are presented in [CPPT07]. Several approaches
have been proposed for solving the Bin-Packing problem with branch-and-price
techniques; see, e.g., [Van99, VBJN94, VdC99]. An algorithm called BISON is
proposed in [SKJ97], where branch-and-bound techniques and tabu search are
combined to design an exact hybrid algorithm. There is also a lot of literature
on heuristics for the Bin-Packing problem. For example, Gupta and Ho propose
a heuristic that greedily minimizes the slack of the machines. Fleszar and Hindi
[FH02] modify these ideas and combine them with variable neighborhood search
to design an hybrid algorithm. Moreover, Loh et al. [LGW08] propose a simple
local heuristic based in the concept of weighted annealing.

2 Structural Insights

We now review some properties of the (basic) PMP which we will exploit later
in our IP-formulations. First, we state a lemma which formulates an algebraic
condition for the collision of two tasks, shown by Korst et al.

Lemma 1 ([KALW91]). Let τi and τi′ be two tasks which are scheduled on
the same machine with offsets ai ∈ N0 and ai′ ∈ N0, respectively. They do not
collide if and only if

ci′ ≤ (ai − ai′) mod gcd (pi, pi′) ≤ gcd (pi, pi′)− ci.

We now restrict to the case of harmonic periods and describe some structural
properties of this case. First, we sketch the concept of bin-trees which was first
introduced in [EHN+10].

Assume we have a feasible schedule for an harmonic instance of tasks τi =
(ci, pi), i = 1, . . . , n on one machine, given by an offset ai for each task. Due to
a shifting argument we can show that there exists a feasible schedule in which
a task τi with pi = q1 has offset ai = 0. This task divides the hyperperiod
[0, qk) (after which the schedule repeats itself) into bins B� = [� · q1, (� + 1) · q1)
with � ∈ {0, . . . , qk/q1 − 1}. Using an exchange argument we can also show that

14 F. Eisenbrand et al.

0 qs 2 · qs 3 · qs 4 · qs 6 · qs5 · qs

Fig. 1. A schedule for a single machine and a schedule for the same tasks which is in
bin structure. The gray jobs belong to tasks with period length q1, the striped jobs to
tasks with period length q2 = 3 · q1, and the checkered jobs to tasks with period length
q3 = 6 · q1.

w.l.o.g. inside each bin the jobs are ordered by the period length of the tasks
which created them. Moreover, the jobs are executed consecutively and all idle
time is accumulated at the end of the bin. See [EHN+10] for formal proofs of
the assumptions made. Figure 1 shows an example schedule with the described
adjustments.

An important observation is the following: Consider two bins B� = [� · q1, (�+
1) · q1) and B�′ = [�′ · q1, (�′ + 1) · q1) such that � ≡ �′ mod qr/q1. As far as tasks
with period length up to qr are concerned, these bins look the same. Hence, the
whole structure can be represented as a tree. Each node in level � encodes the
tasks of period length up to q� that are scheduled in all its child nodes. We see
that if a task with period length qr executes a job in a bin B�, then it executes
its other jobs in bins B�′ with � ≡ �′ mod qr/q1.

From any feasible schedule with the structure described above, we can obtain
an assignment of tasks to the bins of a machine. We show in the following lemma
that the inverse is also true if no bin is overloaded. This allows us to model the
basic PMP in terms of assignments of tasks to bins.

Lemma 2. Let T be a set of tasks with period lengths q1 < . . . < qk. Assume that
for each task τi we are given a value �i ∈ {0, . . . , pi/q1 − 1} (assigning the jobs of
τi to bins B�′ with �i ≡ �′ mod pi/q1). For each bin B� with � ∈ {0, . . . , qk/q1− 1}
denote by T� ⊆ T the tasks τi with �i ≡ � mod pi/q1 (i.e., the tasks which run a
job in B�). If for each bin B� we have that

∑
τi∈T�

ci ≤ q1, then there is a schedule
for the tasks T on one machine. Moreover, this schedule can be found efficiently.

The proof for this lemma is omitted due to space limitations. To compute a sched-
ule from the assignment of tasks to bins, a greedy type algorithm can be used.

3 IP-Formulations

In what follows we describe several formulations for the basic PMP. First we con-
sider a time indexed formulation, where we have variables assigning tasks to time
slots on each machine. Then, we present a less naïve approach that exploits the
algebraic feasibility criterion of Lemma 1. We call this model the congruence-
formulation. It uses variables that indicate the offset of each task. We also describe
a third model, the bin-formulation, that is specifically designed for the important
case of harmonic periods. This last IP is based on Lemma 2. It uses the concept
of bins and directly assigns the tasks to the bins of the machines.

Solving an Avionics Real-Time Scheduling Problem by Advanced IP-Methods 15

At the end of this section we explain how to model the additional constraints of
the extended PMP. For sake of briefness, we define some global variables that are
be used by all formulations. To this end, let M be a set of m identical machines.
Since we are interested in minimizing the number of used machines, we assume
that m is a precomputed upper bound on the total number of needed machines.
For example, we can trivially takem = |T |. In all our formulations we use variables
uj ∈ {0, 1} that are equal to one if machine Mj ∈M is being used by some task.
With these variables, the objective function is always to minimize

∑
Mj∈M uj.

3.1 Time-Indexed-Formulation

Our first formulation is a naïve formulation that uses variables indicating whether
a task starts processing at a certain time slot. More precisely, we consider vari-
ables wi,j,t ∈ {0, 1} which have a value of one if machine Mj ∈ M starts pro-
cessing task τi ∈ T at time t, and zero otherwise. Linking these variables in a
straigt forward manner ensures that no two tasks on the same machine collide.
The total number of variables is in Θ(|M| · |T | ·qk) and the number of constrains
is in Θ(|T |2 · |M| · q2

k).

3.2 Congruence-Formulation

Now we describe our congruence-formulation for the basic PMP. Its main concept
is to introduce integer variables ai which model the offset for each task. In order
to check whether two tasks collide we derive linear constrains from the feasibility
criterion given in Lemma 1.

For each task τi we introduce a variable ai ∈ N which defines its offset.
Additionally, we consider variables xi,j ∈ {0, 1} that indicate, for each task τi ∈
T and machine Mj ∈ M, whether τi is assigned to Mj. To ensure that each task
is actually assigned to a machine, we introduce the constraint

∑
Mj∈M xi,j = 1

for each task τi ∈ T .
It remains to ensure that no two tasks τi, τi′ on the same machine collide.

Lemma 1 implies that it suffices to require that there is an integer si,i′ such that

ci′ ≤ ai − ai′ + si,i′ · gcd(pi, pi′) ≤ gcd(pi, pi′)− ci.

We want to enable the condition above only if two tasks τi and τi′ share a
machine. In order to achieve this we introduce variables vi,i′ such that vi,i′ = 1
if τi and τi′ are scheduled on the same machine. Hence, for each pair of tasks τi

and τi′ we introduce an integral variable si,i′ and the constraints

vi,i′ · ci′ ≤ ai − ai′ + si,i′ · gcd(pi, pi′),
gcd(pi, pi′)− ci · vi,i′ ≥ ai − ai′ + si,i′ · gcd(pi, pi′).

Note that if vi,i′ = 0 there is always an integral value for si,i′ such that these
constraints are satisfied (independently from the values for ai and ai′). For the
variables vi,i′ we add constraints of the form vi,i′ ≥ xi,j +xi′,j −1 to ensure that
they equal one if two tasks τi and τi′ are scheduled on the same machine.

In total, we have Θ(|T |2 + |T | · |M|) variables and Θ(|T |2 · |M|) constraints.
The size of the formulation is thus polynomial in the input size.

16 F. Eisenbrand et al.

3.3 Bin-Formulation

In this section we consider the case of harmonic period lengths. We make crucial
use of the bin-tree concept explained in Section 2 to obtain a strong IP. The
main idea is to define variables that model the assignment of tasks to bins on
each machine. Then, we add restrictions to ensure that no bin is overloaded. By
Lemma 2 this will imply a feasible schedule.

We first describe our model for the single machine case, where we only want
to determine whether a set of tasks can be processed on one machine without
collisions. In this case we already know the minimum period length of the tasks
assigned to the machine, and thus the size of the bins is known to be q1. We later
generalize the model to the problem of minimizing the number of used machines.

Consider the single machine feasibility problem. Recall that in this case all
bins have size q1. We introduce a variable zi,� ∈ {0, 1} that determines whether
task τi ∈ T is assigned to each bin B�, with � ∈ {0, . . . , pi/q1 − 1}. Notice that
we do not need to consider bins with � ≥ pi/q1, since for these bins the schedule
of τi is repeated periodically. First of all we require that all jobs are assigned to
some bin by requiring

∑pi/q1−1
�=0 zi,� = 1 for all τi ∈ T .

Now we ensure that no bin is overloaded. Notice that if τi is assigned to bin B�

then this task creates jobs in all bins B�′ so that �′ ≡ � mod p1/q1. Equivalently,
a job created by task τi is processed on bin B� if and only if zi,(� mod pi/q1) = 1.
Then, we can guarantee that a bin is not overloaded by imposing a knapsack
type constraint∑

τi∈T
ci · zi,(� mod pi/q1) ≤ q1 ∀� ∈ {0, . . . , qk/q1 − 1}.

In the multiple machine problem we have the extra difficulty that it is not
known a priori which is the smallest period length appearing on each machine.
Therefore, the size of the bins on a machine is not determined until all jobs are
assigned to the machine.

As before, we consider variables zi,j,� ∈ {0, 1} that indicates whether a task
τi ∈ T is assigned to machine Mj ∈M on bin B� for � ∈ {0, . . . , qk/q1 − 1}. We
consider here that bin B� has size q1. Note that in the case that machine Mj

processes no task with period length q1, we cannot really consider assignment
of jobs to bins of size q1, since some job may be partially assigned to more than
one bin. We then must “glue” bins of size q1 together to create new bins of size
q2 or larger. This can be describe mathematically by considering the sum of
several variables zi,j,�. If, for example, q2 = 2q1, then the variable describing
whether a tasks τi is assigned to machine Mj in the first bin of size q2 is equal
to zi,j,0 + zi,j,1.

We generalize the ideas just discussed by introducing dummy variables zr
i,j,� ∈

{0, 1} that are equal to one if τi is assigned to machine j on the �-th bin of size qr,
for � ∈ {0, . . . , qk/qr − 1}. Formally, the dummy variables are defined as follows

zr
i,j,� =

(�+1)·qr/q1−1∑
�′=�·qr/q1

zi,j,�′ ∀τi, ∀Mj , ∀r ∈ {1, . . . , k}, ∀� ∈ {0, . . . , qr/q1 − 1}.

Solving an Avionics Real-Time Scheduling Problem by Advanced IP-Methods 17

In the case that there is a task with period length qr, our assignment must
satisfy that no bin of size qr is overloaded. However, this should not be required
for machines that have no job with period length qr assigned to it. Therefore,
we introduce variables dj,r ∈ {0, 1} that equal one if there is a tasks with period
qr assigned to machine Mj .

dj,r ≥
pi/q1−1∑

�=0

zi,j,� ∀Mj ∈M, ∀r ∈ {1, . . . , k}, ∀τi : pi = qr

This yields the following inequalities for ensuring that no bin is overloaded.∑
τj∈T

ci · zr
i,j,t ≤ qr + (1− dj,r)qk ∀Mj ∈M, ∀� ∈ {0, . . . , qk

qr
− 1}, ∀r = 1, . . . , k

Finally, we must link the variables uj to the variables zi,j,�. This can be easily
done with analogous constraints as in the time-indexed-formulation. Also note
that the variables xi,j can be trivially introduced to our formulation. The bin-
formulation needs Θ

(
|T | · |M| · qk

q1

)
variables and constraints in total (note that

the dummy variables do not need to be added explicitely).

3.4 Extended Constraints

In order to handle the conditions additionally introduced in the extended PMP
we need to add more linear constraints. Due to space limitations we sketch them
only briefly. For the memory restrictions we introduce knapsack constraints that
model the limited memory on a machine. The constraints that some tasks have
to be scheduled on different machines are modeled in a straight-forward manner
by suitably linking the variables of the tasks. By introducing variables for the
communication links on each machine, we ensure that a machine opens all links
which are needed by its tasks. Further knapsack constraints ensure that the total
number of links and their total bandwidth does not exceed the resources on each
machine. For each available machine we pre-define whether it is in the left or in
the right cabinet. We introduce constraints which ensure that sets of tasks are
distributed evenly on the cabinets if required.

4 Computational Results

In this section we present our computational results. We solved all real-world in-
stances provided by Boeing within minutes, with all constraints of the extended
PMP and some additional constraints which we describe later. The most difficult
instance has 177 tasks and needs 16 machines. The period lengths are almost
harmonic (see details below). Instances of this size are far beyond of what the
time-indexed formulation and the congruence formulation can solve in a reason-
able amount of time. However, the special design of the bin-formulation allowed
to solve the instances within 15 minutes.

18 F. Eisenbrand et al.

For benchmarking purposes we first analyze how our different models perform
on random instances. Moreover, we study the quality of solutions obtained by a
First-Fit heuristic. The heuristic orders the tasks by period length and execution
time and greedily assigns them to the first machine where it can find a suitable
start offset. Note that for the basic PMP in the harmonic case this is already a
2-approximation algorithm [EHN+10]. In the non-harmonic case one can prove
with similar arguments as in [EHN+10] that the algorithm uses at most 2OPT +
k− 1 machines. Reflecting the theoretical results, our benchmarking shows that
First-Fit has a good performance in the basic PMP. However, as we will see, it
does not cope well with the additional constraints of the extended PMP.

Due to the novelty of our problem, there is no existing standard set of instances
for benchmarking. Therefore, we must rely on generating random instances. We
consider two ways of generating random instances: pure random instances and
random perturbations of real-world instances arising at Boeing. We will call
the latter instances the real-world perturbed (RWP) instances. There are four
different settings: for the basic PMP, we consider the non-harmonic case with
pure random instances, the harmonic case with pure random instances, and the
harmonic case with RWP instances. For the extended PMP we benchmark only
with RWP instances in the harmonic case.

All computations were done on a two-processor machine with Intel Xeon 2.66
GHz CPUs with 8 GB of RAM, running Linux. We used CPLEX release version
12.1.0.

We remark that additionally we introduce some cuts to the IP formulations. If
for two tasks, the sum of their execution times exceeds the greatest common di-
visor of their periods, Lemma 1 implies that they cannot be assigned to the same
machine. Thus we can add separation constraints for these tasks similar to those
used in the extended PMP model. Moreover, for any assignment of tasks to a pro-
cessor, the sum of their total required execution times during the hyperperiod may
not exceed the hyperperiod. This is expressed with knapsack type constraints. No-
tice that in all our IP-formulations we need an upper bound on the number of
machines. This was obtained by first running the First-Fit heuristic.

4.1 Non-harmonic Case

In the non-harmonic case we benchmark the following IP-formulations and algo-
rithms: the time-indexed-formulation (TIF), the congruence-formulation (CF),
and the First-Fit heuristic (FF). For each pure random instance we drew five
different period lengths from the set {2x · 3y · 50 | x ∈ {0, . . . , 4}, y ∈ {0, . . . , 3}}
uniformly at random. This is a typical number of period lengths in real-world
instances. For each task τi, its period length pi is chosen uniformly at random
from one of the five period lengths. (In our experiments we observed that larger
values for the number of period lengths in an instance result in instances which
are harder to solve; however, the relation of the running times between the three
IP-formulations remains the same.) Its execution time is drawn from an inverse
exponential distribution. This results in realistically small execution times in
comparison with the period length and hence mimics the real instances from

Solving an Avionics Real-Time Scheduling Problem by Advanced IP-Methods 19

Table 1. The table shows our computational results for the pure random instances in
the non-harmonic case

IP-formulations Heuristic
tasks CF TIF FF

10 0.11s 98% – 0% 2.99%
20 2.52s 92% – 0% 2.23%
30 277.41s 42% – 0% 1.92%

Boeing. We created 200 random instances each for the case of 10, 20, 30, 40, and
50 tasks. Whenever ten runs in a row did not finish before the timeout of 30
minutes or ran out of memory, we did not consider the respective formulation
any further (denoted by dashes in the table).

Table 1 shows our computational results. In all our tables, for each IP-
formulation the left column shows the average running times in seconds1. The
right column shows the percentage of instances that could be solved to opti-
mality within the time limit. For the First-Fit algorithm, we show the average
relative error (in %) of the solutions with respect to the optimal solution. The
running time of First-Fit is negligible.

Discussion. The First-Fit heuristic apparently performs very well, obtaining the
optimal solution most of the time regardless of the number of tasks. This is
somewhat surprising given that the problem is theoretically rather difficult (i.e.,
NP -hard to approximate within a factor of |T |1−ε), see [EHN+10]. However, the
instances created in that reduction are very special and not likely to arise in our
random draws. We notice that TIF is impractical even for small instances due to
the huge number of integer variables involved in the formulation. In comparison,
CF does much better and is able to solve most instances with up to 30 tasks in
reasonable time (less than 30 min.).

4.2 Harmonic Case

In the harmonic case we benchmark the following IP-formulations/algorithms:
the time-indexed-formulation (TIF), the congruence-formulation (CF), the bin-
formulation (BF) and the First-Fit heuristic (FF). In the harmonic case the pure
random instances were created by first generating a harmonic sequence of five
periods in the following way: We start with period length 50 and successively
generate the other periods by multiplying two, three, or six to the previous
period. The periods and execution times for the tasks are drawn as in the non-
harmonic case. The RWP instances were created by taking tasks uniformly at
random from a large harmonic Boeing-instance and perturbing execution time
and – for the extended PMP – the memory requirements randomly by up to 25
%. The other extended constraints remain unchanged.
1 We use the shifted geometric mean of running times ti calculated by(∏n

i=1(ti + 1)
)1/n − 1. We use the shift in order to decrease the strong influence

of the very easy instances in the mean values.

20 F. Eisenbrand et al.

Table 2. Computational results for the pure random instances in the harmonic case
(basic PMP)

IP-formulations
tasks BF CF TIF FF

10 0.28s (1×) 99% 0.25s (0.9×) 97% – 0% 0.00%
20 1.8s (1×) 100% 6.54s (3.6×) 90% – 0% 0.27%
30 8.2s (1×) 97% 369.39s (45.1×) 32% – 0% 0.06%
40 36.64s (1×) 80% – 0% – 0% 0.70%

Table 3. Computational results for the RWP instances (harmonic case) for the basic
PMP

IP-formulations Heuristic
tasks BF CF TIF FF

10 0.01s (1×) 100% 0.35s (33.1×) 100% 2.79(265.5×) 98% 0.00%
20 0.19s (1×) 99% 32.51s (174×) 66% 260.3(1393.4×) 50% 1.26%
30 0.45s (1×) 99% 487.04s (1072.5×) 3% – 0% 0.76%
40 1.17s (1×) 98% – 0% – 0% 1.36%
50 2.96s (1×) 98% – 0% – 0% 0.63%
60 7.25s (1×) 97% – 0% – 0% 0.85%
70 12.76s (1×) 95% – 0% – 0% 0.00%
80 28.47s (1×) 94% – 0% – 0% 0.09%
90 45.58s (1×) 89% – 0% – 0% 0.00%
100 113.89s (1×) 90% – 0% – 0% 0.00%
150 977.97s (1×) 74% – 0% – 0% 0.00%

For the pure random instance we consider the basic PMP only. When run-
ning the RWP instances we consider both the basic and the extended PMP.
Tables 2, 3, and 4 show our computational results for the harmonic case. For the
IP-formulations the value in parenthesis denotes the ratio between the respective
running time and the time needed by the bin-formulation.

Discussion. In the three settings of the harmonic case the bin-formulation clearly
outperforms the two other IP-formulations. While for small instances the con-
gruence formulation is still competitive, as the number of tasks increases the bin
formulation becomes superior. The time-indexed formulation failed to find an
optimal solution before the timeout even on small instances with ten tasks.

This shows that taking the bin structure into account in the bin-formulation
allows a significantly better running time in comparison with the other for-
mulations. In contrast to the congruence formulation no modulo-operation has
to be encoded in the IP-model (recall the conditions for a collision derived in
Lemma 1). Also, the number of variables is a lot smaller than in the time-indexed
formulation.

The First-Fit heuristic performs very well for the basic PMP and finds an
optimal solution for most instances. Even though theoretically First-Fit is only

Solving an Avionics Real-Time Scheduling Problem by Advanced IP-Methods 21

Table 4. Computational results for the RWP instances (harmonic case) for the
extended PMP

IP-formulations Heuristic
tasks BF CF TIF FF

10 0.09s (1×) 100% 0.2s (2.4×) 100% 5.03(58.7×) 100% 4.02%
20 2.16s (1×) 99% 19.96s (9.2×) 85% 29.19(13.5×) 15% 15.15%
30 19.8s (1×) 99% 119.22s (6×) 20% – 0% 27.81%
40 97.02s (1×) 93% – 0% – 0% 25.13%
50 401.75s (1×) 62% – 0% – 0% 28.40%
60 655.06s (1×) 30% – 0% – 0% 14.12%
70 644.54s (1×) 8% – 0% – 0% 33.33%

a 2-approximation algorithm, it performs much better in practice. However, for
real-world data we need to consider the extended PMP. In these instances First-
Fit mostly missed the optimum by a significant margin. Also, it cannot pro-
vide a certificate of optimality and hence, in real settings one has to resort to
IP-formulations. Nevertheless, First-Fit can be used as a fast heuristic which
computes an upper bound on the number of needed machines.

4.3 Original Boeing Instances

We solved each real-world instance from Boeing in less than 15 minutes to opti-
mality. The most challenging one consists of 177 tasks, and an optimal solution
uses 16 machines. The arising period lengths were 50, 100, 200, 400, 800, 1000,
and 2000. Note that this instance is not harmonic. Nonetheless, the number of
jobs having one of the problematic period lengths (that is, 1000 and 2000) were
very small (three and six respectively). We transform the instance to be har-
monic by taking the 3 tasks with period length 1000 and changing their periods
to 200, and changing the 6 tasks with period 2000 to have period length 400.
Note that a solution of the modified instance can be easily converted to a solu-
tion of the original instance. On the other hand, we could prove that the optimal
solution of the restrictive instance is also optimal for the original instance since
the separation constraints already contained a set of 16 tasks that had to be
assigned to different machines.

The instances from Boeing also have an additional extra constraint not yet
discussed: We are given subsets of tasks that must be processed on the same
machine. We call these the cohabitation constraints. Moreover, for a subset of
tasks, a predefined assignment of tasks to machines is already given as part of
the input. We have not considered these constraints in the previous experiments
for several reasons: For the RWP case it is not clear how to generate meaningful
random perturbations of these constrains. Also, the First-Fit algorithms some-
times fail to produce feasible schedules, even though the respective instance has
a solution. In particular combinations of cohabitation and cabinet constraints
often require a more sophisticated approach than pure greedy. Therefore, the IP
formulations are much more appropriate for the real world instances.

22 F. Eisenbrand et al.

References

[Bha98] Bhatia, R.: Approximation Algorithms for Scheduling Problems. PhD thesis,
University of Maryland (1998)

[BHR93] Baruah, S.K., Howell, R.R., Rosier, L.E.: Feasibility problems for recurring
tasks on one processor. In: Selected papers of the 15th International Sympo-
sium on Mathematical Foundations of Computer Science, pp. 3–20. Elsevier,
Amsterdam (1993)

[BRTV90] Baruah, S., Rousier, L., Tulchinsky, I., Varvel, D.: The complexity of pe-
riodic maintenance. In: Proceedings of the International Computer Sympo-
sium (1990)

[But04] Buttazzo, G.C.: Hard Real-time Computing Systems: Predictable Schedul-
ing Algorithms and Applications. Springer, Heidelberg (2004)

[CPPT07] Crainic, T.G., Perboli, G., Pezzuto, M., Tadei, R.: New bin packing fast
lower bounds. Computers & Operations Research 34, 3439–3457 (2007)

[EHN+10] Eisenbrand, F., Hähnle, N., Niemeier, M., Skutella, M., Verschae, J., Wiese,
A.: Scheduling periodic tasks in a hard real-time environment. In: Proceed-
ings of ICALP 2010. LNCS. Springer, Heidelberg (2010) (to appear)

[FH02] Fleszar, K., Hindi, K.S.: New heuristics for one-dimensional bin-packing.
Computers & Operations Research 29, 821–839 (2002)

[KAL96] Korst, J., Aarts, E., Lenstra, J.K.: Scheduling periodic tasks. INFORMS
Journal on Computing 8, 428–435 (1996)

[KALW91] Korst, J., Aarts, E., Lenstra, J.K., Wessels, J.: Periodic multiprocessor
scheduling. In: Aarts, E.H.L., Rem, M., van Leeuwen, J. (eds.) PARLE 1991.
LNCS, vol. 505, pp. 166–178. Springer, Heidelberg (1991)

[Leu04] Leung, J.Y.-T.: Handbook of Scheduling: Algorithms, Models and Perfor-
mance Analysis. Chapman & Hall/CRC, Boca Raton (2004)

[LGW08] Loh, K.-H., Golden, B., Wasil, E.: Solving the one-dimensional bin pack-
ing problem with a weight annealing heuristic. Computers & Operations
Research 35, 2283–2291 (2008)

[MT90] Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Im-
plementations, revised edn. John Wiley & Sons, Chichester (November 1990)

[SKJ97] Scholl, A., Klein, R., Jürgens, C.: BISON: a fast hybrid procedure for exactly
solving the one-dimensional bin packing problem. Computers & Operations
Research 24, 627–645 (1997)

[SL94] Simchi-Levi, D.: New worst-case results for the bin-packing problem. Naval
Research Logistics 41, 579–585 (1994)

[Van99] Vanderbeck, F.: Computational study of a column generation algorithm for
bin packing and cutting stock problems. Mathematical Programming 86,
565–594 (1999)

[VBJN94] Vance, P.H., Barnhart, C., Johnson, E.L., Nemhauser, G.L.: Solving binary
cutting stock problems by column generation and branch-and-bound. Com-
putational Optimization and Applications 3, 111–130 (1994)

[VdC99] Valério de Carvalho, J.M.: Exact solution of bin packing problems using col-
umn generation and branch and bound. Annals of Operations Research 86,
629–659 (1999)

[WL83] Wei, W.D., Liu, C.L.: On a periodic maintenance problem. Operations Re-
search Letters 2, 90–93 (1983)

Non-clairvoyant Speed Scaling

for Weighted Flow Time

Sze-Hang Chan1, Tak-Wah Lam1, and Lap-Kei Lee2

1 Department of Computer Science, University of Hong Kong, Hong Kong
2 Max-Planck-Institut für Informatik, 66123 Saarbrücken, Germany

Abstract. We study online job scheduling on a processor that can vary
its speed dynamically to manage its power. We attempt to extend the
recent success in analyzing total unweighted flow time plus energy to to-
tal weighted flow time plus energy. We first consider the non-clairvoyant
setting where the size of a job is only known when the job finishes. We
show an online algorithm WLAPS that is 8α2-competitive for weighted
flow time plus energy under the traditional power model, which assumes
the power P (s) to run the processor at speed s to be sα for some α > 1.
More interestingly, for any arbitrary power function P (s), WLAPS re-
mains competitive when given a more energy-efficient processor; pre-
cisely, WLAPS is 16(1 + 1

ε
)2-competitive when using a processor that,

given the power P (s), can run at speed (1+ ε)s for some ε > 0. Without
such speedup, no non-clairvoyant algorithm can be O(1)-competitive for
an arbitrary power function [8]. For the clairvoyant setting (where the
size of a job is known at release time), previous results on minimizing
weighted flow time plus energy rely on scaling the speed continuously
over time [5–7]. The analysis of WLAPS has inspired us to devise a
clairvoyant algorithm LLB which can transform any continuous speed
scaling algorithm to one that scales the speed at discrete times only. Un-
der an arbitrary power function, LLB can give an 4(1 + 1

ε
)-competitive

algorithm using a processor with (1 + ε)-speedup.

1 Introduction

To reduce energy usage, manufacturers like Intel and IBM are now producing
processors that can support dynamic speed scaling, which would allow operating
systems to manage the power by scaling the processor speed dynamically. The
theoretical study of speed scaling was initiated by Yao, Demers and Shenker [18].
They considered a model where a processor can vary the speed s dynamically,
and it consumes energy at the rate sα, where α > 1 is a constant (commonly
believed to be 2 or 3 [3, 16]). Running jobs slower is more energy-efficient, yet
it takes longer time. Taking speed scaling and energy usage into consideration
makes job scheduling more complicated than before. A scheduling algorithm
needs two components: a job selection policy to determine which job to run,
and a speed scaling policy to determine the speed to run the job. The challenge
arises from the conflicting objectives of optimizing some quality of service (QoS)
of the schedule and minimizing the energy usage.

M. de Berg and U. Meyer (Eds.): ESA 2010, Part I, LNCS 6346, pp. 23–35, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

24 S.-H. Chan, T.-W. Lam, and L.-K. Lee

Flow and energy. The past few years have witnessed several interesting
results on online scheduling for optimizing the tradeoff between energy usage
and flow time (e.g., [1, 5–8, 12–14]). The flow time (or simply the flow) of a job
is the time elapsed since the job is released until it is completed. Assuming jobs
are equally important, it is natural to find a schedule that minimizes the total
flow time (also known as minimizing the total/average response time). In general,
jobs have varying importance or weights, and it is more meaningful to minimize
the total weighted flow time. In the speed scaling model, minimizing total flow
time and energy usage are orthogonal objectives. To understand their tradeoff,
Albers and Fujiwara [1] initiated the study of minimizing a linear combination
of flow and energy. The intuition is that, from an economic viewpoint, users are
willing to pay a certain (say, ρ) units of energy to reduce one unit of flow time.
By changing the units of time and energy, one can further assume ρ = 1 and thus
wants to minimize flow plus energy, or in general, weighted flow plus energy.

Clairvoyant scheduling for flow plus energy. Most of the previous work
on minimizing flow plus energy focused on the online setting where the size of a
job is known at its release time. This is known as the clairvoyant setting. Bansal,
Pruhs and Stein [7] were the first to consider jobs with arbitrary weights, and
they give an online algorithm BPS that is O((α

ln α)2)-competitive for minimizing
weighted flow plus energy. Very recently, Bansal, Chan and Pruhs [6] improved
the analysis of BPS, which implies that BPS is O(α

lnα)-competitive.
The BPS algorithm scales the speed as a function of the fraction of unfinished

work and thus it keeps changing the speed continuously over time. Practically
speaking, it is more desirable to change the speed only at discrete times (say,
at job arrival or completion). Focusing on jobs with unit-weight, Lam et al. [14]
showed a competitive discrete-time-scaling algorithm called AJC (Active Job
Count), which scales the speed as a function of the number of active jobs. When
coupled with the job selection policy SRPT (shortest remaining processing time),
it is O(α

log α)-competitive for (unweighted) flow plus energy. Recently, Bansal,
Chan and Pruhs [6] gave a tighter analysis of AJC, showing that the competitive
ratio is at most 3 (when α = 3, the O(α

log α) bound in [14] is equal to 3.25). More
importantly, they extend the analysis to a more general model where the speed-
to-power function can be an arbitrary function. This makes the results of speed
scaling more robust than before. Andrew et al. [2] have further improved the
ratio to 2. Extending the work of [2, 6, 14] to jobs with arbitrary weights is
non-trivial. It is natural to generalize AJC to AJW (active job weight), which
scales the speed according to the total weight of active jobs. However, even
assuming the power function in the form sα, it has been open whether AJW
(plus a job selection policy like HDF) or any discrete-time-scaling algorithm
can be competitive for minimizing weighted flow plus energy, let alone for an
arbitrary power function.

Non-clairvoyant scheduling for flow plus energy. All of the above re-
sults assume clairvoyance. In the non-clairvoyant setting, the size of a job is
only known when the job is completed. This is a natural assumption from
the viewpoint of operating systems. Non-clairvoyant flow time scheduling (on

Non-clairvoyant Speed Scaling for Weighted Flow Time 25

a fixed-speed processor) has been an interesting problem itself (e.g., [11, 15]).
Chan et al. [8] were the first to study non-clairvoyant speed scaling. They focused
on unit-weight jobs and considered an algorithm LAPS (Latest Arrival Processor
Sharing) which scales the speed as AJC and selects some most recently released
jobs to share the processor. LAPS is O(α3)-competitive for (unweighted) flow
plus energy. Furthermore, it is shown that no algorithm can be O(1)-competitive
for an arbitrary power function. Recently, Chan et al. [9] improved the compet-
itive ratio of LAPS to O(α2

log α). For weighted flow plus energy, Chan et al. [10]
showed that a round robin policy plus AJW is O(3α)-competitive. Note that all
these results assume that the power function is in the form sα.

Our contribution. The main result of this paper is about a new non-
clairvoyant algorithm called WLAPS for minimizing weighted flow plus energy.
WLAPS attempts to generalize LAPS [8, 9] to jobs with arbitrary weights.
WLAPS uses the speed scaling policy AJW, i.e., the speed is a function of
the total weight of active jobs. Like LAPS, WLAPS gives priority to some most
recently released jobs. But WLAPS does not schedule a constant fraction of ac-
tive jobs; instead it ensures that the jobs selected have a total weight equal to a
constant fraction of the total weight of all active jobs, and they share the pro-
cessor according to their job weights. Furthermore, as job weights are arbitrary,
they may not make up exactly the required fraction. Thus, we sometimes need
to modify the weight of some job to avoid under- or over-scheduling.

Using a slightly complicated potential analysis, we show that for a power func-
tion in the form sα, WLAPS is 8α2-competitive for weighted flow plus energy.
We also analyze WLAPS with an arbitrary power function P (s). In view of the
lower bound result in [8], we consider giving WLAPS a more energy-efficient
processor which, when given the power P (s), can run at speed (1 + ε)s for some
ε > 0. We call such a processor a (1 + ε)-speedup processor.1 We prove that
WLAPS is 16(1 + 1

ε)2-competitive when given a (1 + ε)-speedup processor. The
main difficulty here is how to lower bound the optimal offline algorithm.

Table 1. Results on non-clairvoyant speed scaling for minimizing flow plus energy

Unit-weight jobs Arbitrary-weight jobs

Traditional power
O(α2

logα
)-competitive [9] 8α2-competitive (new)

function (sα)

Arbitrary unbounded competitive ratio [8] 16(1 + 1
ε
)2-competitive (new)

power function (if no speedup) with (1 + ε)-speedup

Implication to clairvoyant speed scaling. Since the clairvoyant setting
is a special case of the non-clairvoyant setting, WLAPS also gives us the first
clairvoyant discrete-time-scaling result on weighted flow plus energy, and it is
1 Note that speed-up processors here are not related to processes (or jobs) with ar-
bitrary speed-up curves in [9]; the former refers to more energy-efficient processors,
and the latter is job characteristics, specifying the degrees of parallelizability (i.e.,
the rate of processing a job as a function of the number of processors assigned to it).

26 S.-H. Chan, T.-W. Lam, and L.-K. Lee

valid for an arbitrary power function. In fact, we can further improve the ratios.
In the analysis of WLAPS, when we attempt to lower bound the performance of
the optimal offline algorithm, we have devised a novel clairvoyant algorithm LLB
(latest lag behind) which can transform any (online/offline) algorithm into one
that scales the speed according to AJW, and the cost (weighted flow plus energy)
at most doubles. Therefore, we can effectively transform the BPS algorithm
[6, 7] to a discrete-time-scaling algorithm using the AJW policy that is O(α

ln α)-
competitive for a power function in the form sα, and 4(1+ 1

ε)-competitive for an
arbitrary power function using a processor with (1 + ε)-speedup for any ε > 0.

Bounded maximum speed. All the above-mentioned results are based on
an assumption in [18] that the processor does not have a limit on the speed.
Such an unbounded speed model is a convenient model to work with. Among
others, it allows an online algorithm to catch up arbitrarily fast and recover from
any over-conservative decision on speed. However, this is not a practical model.
Recently, there has been a growing interest in algorithms that scale the speed
between 0 and a given maximum speed T . Though not straightforward, most
unbounded-speed algorithms have been shown to work in the bounded speed
model when the power function is in the form sα.

For unit-weight jobs, the clairvoyant results on AJC by Lam et al. [14], Bansal
et al. [6], and Andrew et al. [2] all remain valid when the maximum speed T is
bounded. For the clairvoyant-weighted setting and the non-clairvoyant setting,
the lower bound results on (fixed-speed) flow time scheduling [4, 15] imply that
no online algorithm can be constant competitive (in terms of α) for weighted flow
plus energy when T is bounded (if there is no resource augmentation). On the
other hand, it has been shown that the algorithms BPS and LAPS when capped
at maximum speed (1 + δ)T for some δ > 0, remains competitive as in the
unbounded speed model [5, 10]. Note that relaxing the maximum speed is a less
demanding form of resource augmentation than using a more efficient processor
allowing speedup, and it is only applicable in the bounded speed model.

In this paper we also extend the results of WLAPS for weighted flow plus
energy to the bounded speed model. For the traditional power function, WLAPS
is max(8α2, 8(1+ 1

δ)2)-competitive when using a processor with maximum speed
(1 + δ)T for any δ > 0. For an arbitrary power function, WLAPS remains
16(1+ 1

ε)2-competitive when using a processor with (1+ε)-speedup for any ε > 0.
Note that if we only allow relaxing the maximum speed, no O(1)-competitive
algorithm exists due to the lower bound result in the unbounded speed model [8].
Like [2, 6], our analysis exploits potential function. Yet, our analysis involves a
technique of taking the maximum speed T into the design of potential functions.

2 Definitions and Notations

We study job scheduling on a single processor. Jobs with varying sizes arrive
over time online; we have no information about a job before it arrives. For
any job j, we use r(j), w(j) and p(j) to denote its release time, weight and size

Non-clairvoyant Speed Scaling for Weighted Flow Time 27

(work requirement), respectively. In the clairvoyant model, p(j) is known at time
r(j). In the non-clairvoyant model, p(j) is only known when the job is completed.
The processor can vary its speed between 0 and a maximum speed T (where T
is some fixed constant or ∞). When running at speed s, the processor processes
s units of work per unit time and consumes energy at the rate P (s). Preemption
is allowed; a job can be preempted and later resumed at the point of preemption
without any penalty. We consider the following two models of power function.

Traditional power model. In this model, we assume that the power function
is P (s) = sα for some α > 1. Furthermore, we distinguish the two settings:
bounded speed means that the speed s cannot exceed a fixed maximum speed T ;
and unbounded speed otherwise (i.e., T =∞).

Arbitrary power model. In this model, we consider a power function P such
that P (0) = 0, and P is defined, strictly increasing, strictly convex, continuous
and differentiable at all speeds in [0, T]; if there is no maximum speed T , the
speed range is [0,∞) and for any speed x, there exists x′ such that P (x)/x <
P (s)/s for all s > x′ (otherwise the optimal speed scaling policy is to always
run at the infinite speed and an optimal schedule is not well-defined). As shown
in [6], it is possible to use any arbitrary power function to emulate such a power
function P with an arbitrarily small increase in the competitive ratio. Thus, we
focus on a power function P satisfying the above assumptions. We use Q to
denote P−1. Note that Q is strictly increasing and concave. E.g., if P (s) = sα,
then Q(x) = x1/α.

Flow and energy. Consider any job set I and some schedule S of I. At any
time t, for any job j, we let q(j, t) be the remaining work of j at t. A job j is
an active job if it has been released but not yet completed, i.e., r(j) ≤ t and
q(j, t) > 0. The flow of a job j is the time elapsed since j arrives and until
it is completed, and the weighted flow F (j) of j is w(j) times its flow. The
total weighted flow is F =

∑
j∈I F (j), which is equivalent to F =

∫∞
0 w(t)dt,

where w(t) is the total weight of active jobs at time t. The energy usage is
E =

∫∞
0 P (s(t))dt, where s(t) is the processor speed at time t. The objective is

to minimize the total weighted flow plus energy usage, denoted by G = F + E.
Overview of analysis. Throughout the paper, we often need to compare

an algorithm ALG with another algorithm O (e.g., the optimal offline algorithm
OPT). We will exploit amortization and potential functions. Let Ga(t) and Go(t)
denote the weighted flow plus energy incurred up to time t by ALG and O,
respectively. We will drop the parameter t when it is clear that t is the current
time. To show that ALG incurs at most c times the weighted flow plus energy of
O, it suffices to define a potential function Φ(t) such that the following conditions
hold: (i) Boundary condition: Φ = 0 before any job is released and after all jobs
are completed; (ii) Discrete-event condition: Φ is a continuous function except
at some discrete times (e.g., when a job arrives, or when a job is completed by
ALG or O), and Φ does not increase at such times; (iii) Running condition: at
any other time, dGa(t)

dt + γ dΦ(t)
dt ≤ c · dGo(t)

dt , where γ is a positive constant. The
correctness of the analysis follows from integrating these conditions over time.

28 S.-H. Chan, T.-W. Lam, and L.-K. Lee

3 Non-clairvoyant Speed Scaling

This section considers a non-clairvoyant algorithm WLAPS for minimizing
weighted flow plus energy. In Section 3.1, we show that under the traditional
power model, WLAPS is 8α2-competitive if the maximum speed T is unbounded;
if T is bounded, WLAPS is max(8α2, 8(1 + 1

ε)2)-competitive when using a pro-
cessor with maximum speed relaxed to (1 + ε)T for any ε > 0. In Section 3.2,
we consider the arbitrary power model. Note that even in the unbounded speed
setting, no O(1)-competitive algorithm exists [8]. Nevertheless, we show that
WLAPS is 16(1 + 1

ε)2-competitive when using a (1 + ε)-speedup processor for
any ε > 0. This result holds no matter whether T is unbounded or bounded.

We now define the algorithm WLAPS. At any time t, we use na(t) and wa(t)
to denote respectively the number and total weight of active jobs. The active
jobs at time t are referred to as j1, j2, . . . , jna(t), which are arranged in ascending
order of their release times (ties are broken by job ids).

WLAPS. Let 0 < β ≤ 1 be any real. Consider any time t. Let τ be the
biggest integer such that the total weight of jobs jτ , jτ+1, . . . , jna(t) is at
least βwa(t). Define w′(jτ), the adjusted weight of jτ , to be βwa(t) −
[w(jτ+1)+ · · ·+w(jna(t))]. WLAPS processes jτ , jτ+1, . . . , jna(t) by split-
ting the processor speed in proportional to the adjusted weight of jτ and
the (original) weights of jτ+1, . . . , jna(t).

WLAPS basically follows the speed scaling policy AJW, which sets the
speed to Q(wa(t)). E.g., if P (s) = sα, then Q(wa(t)) = wa(t)1/α. In
Sections 3.1 and 3.2, we will further refine the policy due to the presence
of maximum speed and/or the need of speed-up.

For convenience, at time t, we define w′(ji) for jobs ji 	= jτ as follows: let w′(ji) =
w(ji) if WLAPS is processing ji at time t, and let w′(ji) = 0 otherwise. Note that∑na(t)

i=1 w′(ji) = βwa(t). Intuitively, w′(ji)/βwa(t) is the fraction of processor
speed received by ji at time t. Specifically, job ji runs at speed w′(ji)

βwa(t)sa(t).
Framework of analysis. To analyze WLAPS, we exploit amortization and

potential functions to compare WLAPS with some offline algorithm OFF. As
mentioned in Section 2, we need a potential function Φ(t) that satisfies the
boundary, discrete-event and running conditions. Below we define a general form
of Φ(t) that works for the traditional and arbitrary power models.

Potential function Φ(t). Consider any time t. Recall that na(t) and wa(t)
are respectively the number and total weight of active jobs in WLAPS. We define
no(t) and wo(t) similarly for OFF. We will drop the parameter t when t is clearly
the current time. Define the coefficient of ji, denoted ci, to be

∑i
k=1 w(jk). Note

that cna = wa. For any job j, let qa(j, t) and qo(j, t) be the remaining work of job j
in WLAPS and OFF, respectively. For each ji, let xi = max{qa(ji, t)−qo(ji, t), 0}
which is the amount of work of ji in WLAPS that is lagging behind OFF. We
say a job ji is lagging if xi > 0. Based on the notion of lagging, we define

Φ(t) =
∑na(t)

i=1
f(ci) · xi ,

Non-clairvoyant Speed Scaling for Weighted Flow Time 29

where f(x) is some non-decreasing function of x (to be defined differently in the
traditional and arbitrary power model).

We can check the boundary and discrete-event conditions without the detailed
definition of f(x). The boundary condition clearly holds due to the definition of
Φ. Next, we check the discrete-event condition. When a job j arrives, j must be
non-lagging and the coefficients of all existing jobs of WLAPS remain the same,
so Φ does not change. When OFF completes a job, Φ does not change. When
WLAPS completes a job, since f(x) is non-decreasing and the coefficient of any
other job either stays the same or decreases, Φ does not increase.

To show the running condition, we need to consider the two power models
separately and have a different definition of the function f . Here we can only
discuss some useful properties of Φ common to both power models. Consider any
time t when Φ does not have discrete change. Let sa and so be the current speeds
of WLAPS and OFF, respectively. Among the jobs that WLAPS is processing at
time t (i.e., jτ , jτ+1, . . . , jna), our analysis will focus on those that are also lagging
jobs. Denote the set of such lagging jobs as L. Note that

∑
i|ji∈L w′(ji) ≤ βwa.

We further define another real number φ such that
∑

i|ji∈L w′(ji) = φwa. Note
that φ ≤ β. WLAPS is processing non-lagging jobs with total weight at least
(β − φ)wa, and these jobs are also active jobs for OPT. Thus, wo ≥ (β − φ)wa.

To bound the rate of change of Φ, we consider how Φ changes in an infinitesi-
mal amount of time (from t to t + dt), first due to WLAPS only (Lemma 1 (i)),
and then due to OFF (Lemma 1 (ii)). We denote the rate of change of Φ due to
WLAPS and OFF by dΦa

dt and dΦo
dt , respectively. Note that dΦ

dt = dΦa
dt + dΦo

dt .

Lemma 1. (i) dΦa
dt ≤ −

φ
β · f((1− β)wa)sa. (ii) dΦo

dt ≤ f(wa) · so.

Proof. We first prove (i). It is trivial when sa = 0; it remains to consider sa > 0.
By the definition of Φ, the execution of WLAPS can only decrease the potential.
We will show that the rate of decrease is at least φ

β ·f((1−β)wa)sa, or equivalently,
the rate of change is at most −φ

β · f((1− β)wa)sa.
If we only consider the change due to WLAPS, for any ji ∈ L (WLAPS is

processing ji and ji is lagging), its lagging size xi is changing at the rate of
−w′(ji)

βwa
sa. For other jobs ji /∈ L, xi does not change. Note that as f(x) is non-

decreasing, we have r · f(c) ≥
∫ c

c−r
f(x)dx for any constant c ≥ r. Thus,

dΦa
dt

=
∑

i|ji∈L

(f(ci) · −w′(ji)

βwa
sa) = − sa

βwa

∑
i|ji∈L

f(ci)w
′(ji) ≤ − sa

βwa

∑
i|ji∈L

∫ ci

ci−w′(ji)
f(x) dx.

We view
∑

i|ji∈L

∫ ci

ci−w′(ji)
f(x)dx as the sum of integrations of some non-

overlapping ranges. Since f(x) is non-decreasing, the integration over a spe-
cific range must be at least the integration over a range of the same size and
with smaller end-points, i.e.,

∫ c

c−r
f(x)dx ≥

∫ c′

c′−r
f(x)dx for r ≤ c′ ≤ c. By the

definition of coefficients, every job in L has a coefficient at least that of jτ (i.e.,
cτ). Furthermore, the total length of the integration ranges is

∑
i|ji∈L w′(ji). By

30 S.-H. Chan, T.-W. Lam, and L.-K. Lee

“moving” the ranges towards the minimum possible endpoints starting from
cτ − w′(jτ), we have

∑
i|ji∈L

∫ ci

ci−w′(ji)
f(x)dx ≥

∫ cτ−w′(jτ)+
∑

i|ji∈L w′(ji)

cτ−w′(jτ)
f(x)dx ; and

dΦa
dt ≤ −

sa

βwa

∫ cτ−w′(jτ)+
∑

i|ji∈L w′(ji)

cτ−w′(jτ)
f(x)dx = − sa

βwa

∫ wa−βwa+φwa

wa−βwa

f(x)dx.

Since f(x) is non-decreasing, we have

dΦa
dt ≤−

sa
βwa

∫ (1−β+φ)wa

(1−β)wa

f(x)dx ≤ − sa
βwa

(φwa·f((1−β)wa))=−φ
β ·f((1−β)wa)sa .

For (ii), to upper bound dΦo
dt , the worst case is that OFF is processing the job

jna with the largest coefficient cna =
∑na

k=1 w(jk) = wa, so dΦo
dt ≤ f(wa) · so. ��

In Sections 3.1 and 3.2, we will consider the two power models separately, and
show the refinement of AJW and the definition of f that are sufficient to prove
the running condition for each model.

3.1 Traditional Power Model

We consider the traditional power model, which assumes that the power function
P (s) = sα for some α > 1. If the maximum speed T is unbounded, WLAPS
follows exactly AJW and sets its speed at time t as sa(t) = wa(t)1/α. If T is
bounded, we let WLAPS use a processor with maximum speed (1 + ε)T for any
ε > 0, and set sa(t) = min(wa(t)1/α, (1 + ε)T).

Our main result is the following theorem.

Theorem 1. Consider minimizing weighted flow plus energy. (i) If the maxi-
mum speed T is unbounded, WLAPS is 8α2-competitive. (ii) If T is bounded,
WLAPS is max(8α2, 8(1 + 1

ε)2)-competitive, using a processor with maximum
speed (1 + ε)T .

Unbounded maximum speed. To prove Theorem 1 (i), we set the offline
algorithm OFF as the optimal offline algorithm OPT for minimizing weighted
flow plus energy, and let f(x) = x1−1/α, which is clearly an non-decreasing
function of x. Then the theorem follows from the running condition below.

Lemma 2. Assume that β = 1
2α and γ = 2

β . At any time when Φ does not have
discrete change, dGa

dt + γ dΦ
dt ≤ 8α2 · dGo

dt .

Proof. Note that dGa
dt = wa +sα

a = 2wa, and dGo
dt = wo +sα

o ≥ (β−φ)wa +sα
o . By

Lemma 1 (i), dΦa
dt ≤ −φ

β · f((1 − β)wa)sa. Since sa = w
1/α
a and f(x) = x1−1/α,

we have f(x)sa ≥ x for any 0 ≤ x ≤ wa. Thus, dΦa
dt ≤ −φ

β · f((1 − β)wa)sa ≤
−φ

β (1−β)wa. On the other hand, by Lemma 1 (ii), dΦo
dt ≤ f(wa) ·so = w

1−1/α
a so.

Non-clairvoyant Speed Scaling for Weighted Flow Time 31

We apply the Young’s Inequality [17]2, by setting p = α, q = α
α−1 , x = so and

y = w
1−1/α
a . Then dΦo

dt ≤ w
1−1/α
a so ≤ (1− 1

α)wa + 1
αsα

o = (1− 2β)wa + 1
αsα

o .
Note that γ = 2

β and φ ≤ β. Then
dGa
dt + γ dΦ

dt ≤ 2wa + 2
β (1− 2β)wa + 2

βαsα
o − 2φ

β2 (1 − β)wa

= ((2
β −

2φ
β2) + (−2 + 2φ

β))wa + 2
βαsα

o

≤ 2
β2 (β − φ)wa + 2

βαsα
o ≤ 2

β2 wo + 2
βαsα

o ≤ 8α2 · dGo
dt . ��

Bounded maximum speed. To prove Theorem 1 (ii), we let OFF be the
optimal offline algorithm OPT that uses a processor with maximum speed T ,
and let f(x) = x/ min(x1/α, (1 + ε)T). Again, f(x) is a non-decreasing function
of x. We prove the running condition below.

Lemma 3. Assume that β = min(1
2α , ε

2ε+2) and γ = 2
β . At any time when Φ

does not have discrete change, dGa
dt + γ dΦ

dt ≤ max(8α2, 8(1 + 1
ε)2) · dGo

dt .

Proof. We first show that dΦo
dt ≤ (1−2β)wa+ 1

αsα
o . By Lemma 1 (ii), dΦo

dt ≤ f(wa)·
so. If w

1/α
a ≤ (1 + ε)T , we have f(wa) = w

1−1/α
a and hence dΦo

dt ≤ w
1−1/α
a so.

We can show that dΦo
dt ≤ (1 − 2β)wa + 1

αsα
o in the same way as in Lemma 2.

If w
1/α
a > (1 + ε)T , we have f(wa) = wa

(1+ε)T . We use the fact that so ≤ T and
1

1+ε = 1− ε
1+ε to conclude that dΦo

dt ≤ (1− ε
1+ε)

wa
T so ≤ (1− ε

1+ε)wa ≤ (1−2β)wa.

Note that dGa
dt = wa+(min(w1/α

a , (1+ε)T))α ≤ 2wa. Using the same argument
as in Lemma 2, the lemma follows. ��

3.2 Arbitrary Power Model

Consider an arbitrary power function P (s). Recall that Q denotes the inverse of
P . Let T be the maximum speed; if it does not exist, let T = ∞. We consider
WLAPS being given a (1 + ε)-speedup processor for any ε > 0, and define the
speed of WLAPS at time t as sa(t) = (1 + ε) ·min(Q(wa(t)), T). By definition,
the power required by WLAPS is P (min(Q(wa(t)), T)).

We compare WLAPS with offline algorithms using a processor without
speedup. Let OPT be an optimal offline algorithm. And let OFF be an op-
timal algorithm among all offline algorithms that scale its speed as so(t) =
min(Q(wo(t)), T), where wo(t) is the total weight of active jobs at time t. Our
main result is the following theorem.

Theorem 2. For any ε > 0, when β = ε
2ε+2 , WLAPS with a (1 + ε)-speedup

processor is 8(1 + 1
ε)2-competitive for weighted flow plus energy against OFF.

In Section 4, we will show an offline algorithm which scales its speed as so(t) =
min(Q(wo(t)), T), and of which the total weighted flow plus energy incurred is at
most two times of that of OPT (Corollary 2 (i)). Thus, OFF is a 2-approximation
of OPT.
2 Young’s Inequality: For positive reals p, q, x, y where 1

p
+ 1

q
= 1, xy ≤ 1

p
xp + 1

q
yq.

32 S.-H. Chan, T.-W. Lam, and L.-K. Lee

Corollary 1. For any ε > 0, when β = ε
2ε+2 , WLAPS with a (1 + ε)-speedup

processor is 16(1 + 1
ε)2-competitive for weighted flow plus energy.

To prove Theorem 2, we set f(x) = x
min(Q(x),T) ,which is non-decreasing.3 Then

the theorem follows from the running condition below.

Lemma 4. Assume that β = ε
2ε+2 , and γ = 2

β(1+ε) . At any time when Φ does
not have discrete change, dGa

dt + γ dΦ
dt ≤ 8(1 + 1

ε)2 · dGo
dt .

Proof. Note that dGa
dt = wa + P (min(Q(wa), T)) ≤ wa + P (Q(wa)) = 2wa and

dGo
dt ≥ wo ≥ (β−φ)wa. By Lemma 1 (i), dΦa

dt ≤ −
φ
β · f((1−β)wa)sa. Recall that

sa = (1 + ε)min(Q(wa), T). By the definition of f(x), we have f(x)sa ≥ (1 + ε)x
for any 0 ≤ x ≤ wa. Thus, dΦa

dt ≤ −φ
β · f((1 − β)wa)sa ≤ −φ

β (1 + ε)(1 −
β)wa. On the other hand, by Lemma 1 (ii), dΦo

dt ≤ f(wa) · so = wa
min(Q(wa),T) ·

min(Q(wo), T). If wa ≥ wo, since Q is increasing, Q(wa) ≥ Q(wo) and hence
dΦo
dt ≤ wa. Otherwise, wa < wo. Since f(x) is non-decreasing, f(wa) ≤ f(wo) =

wo
min(Q(wo),T) = wo

so
, so dΦo

dt ≤ f(wa) · so ≤ wo. Therefore, dΦo
dt ≤ max(wa, wo) and

hence dΦ
dt ≤ max(wa, wo)− φ

β (1 + ε)(1− β)wa.
Recall that γ = 2

β(1+ε) , and note that 1
1+ε = 1− 2β and φ ≤ β ≤ 1. Then

dGa
dt + γ dΦ

dt ≤ 2wa + 2(1−2β)
β max(wa, wo)− 2φ

β2 (1 − β)wa

≤ (2
β + (−2 + 2φ

β))max(wa, wo)− 2φ
β2 wa ≤ 2

β2 (β max(wa, wo)− φwa)

≤ 2
β2 max((β − φ)wa, βwo) ≤ 2

β2 wo ≤ 8(1 + 1
ε)2 · dGo

dt . ��

4 Clairvoyant Transformation to AJW

This section considers clairvoyant speed scaling using AJW under an arbitrary
power function P (s). Given any (online/offline) algorithm B that is using a
(1 + ε)-speedup processor for ε ≥ 0 (if ε = 0, there is no speedup), we give
a clairvoyant algorithm LLB (latest lag behind) which simulates B and gives
another schedule using the speed scaling policy AJW. We use LLB(B) to denote
the resulting algorithm. LLB(B), when using a (1 + ε)-speedup processor as B,
incurs at most twice the weighted flow plus energy of B (Theorem 3).

If we consider B to be an optimal offline algorithm OPT, we obtain a 2-
approximate offline algorithm that scales the speed using AJW (Corollary 2 (i)).
This offline result is needed in Section 3.2. For the online setting, recall that
BPS is a competitive clairvoyant algorithm, and it scales the speed continuously
over time. Using LLB, we effectively transform BPS to use discrete-time speed
3 Since P is strictly increasing, Q is strictly increasing. Let ρ be a real such that

Q(ρ) = T . For any x ≥ ρ, Q(x) ≥ Q(ρ) = T and f(x) = x
min(Q(x),T)

= x
T
which is

non-decreasing. For x ∈ [0, ρ], f(x) = x
Q(x)

. Note that P is strictly convex and Q is

concave. For any λ ∈ [0, 1] and x, y ∈ [0, ρ], (1−λ)Q(x)+λQ(y) ≤ Q((1−λ)x+λy).
Setting x = 0 gives λQ(y) ≤ Q(λy) and hence f(λy) = λy

Q(λy)
≤ y

Q(y)
= f(y).

Non-clairvoyant Speed Scaling for Weighted Flow Time 33

scaling. Based on [6], one can show that for any ε > 0, BPS when using a
(1+ε)-speedup processor is 2(1+ 1

ε)-competitive. Thus, LLB(BPS) with a (1+ε)-
speedup processor is 4(1+ 1

ε)-competitive (Corollary 2 (ii)). Note that LLB(BPS)
has a better performance than WLAPS, yet the former only works clairvoyantly.

Algorithm LLB(B). Let T denote the maximum speed allowed by the power
function P (s) (if it is unbounded, then T = ∞). Consider any time t. Let na(t)
and wa(t) be respectively the number and total weight of active jobs in LLB. For
any job j, let qa(j, t) and qo(j, t) be the remaining work of j at t in LLB and B,
respectively. For each ji, let xi = qa(ji, t)−qo(ji, t) be the difference in remaining
work of LLB and B, and let yi be the latest time that xi ≤ 0. We say a job ji

is lagging if xi > 0. We denote the active jobs in LLB as j1, j2, . . . , jna(t), which
are arranged in increasing order of the time when they have become lagging;
i.e., y1 ≤ y2 ≤ · · · ≤ yna(t) (ties are broken by job ids). Furthermore, let � be
the number of lagging jobs. Notice that for i = 1 to �, xi > 0 and yi < t; and
for i = � + 1 to na, xi ≤ 0 and yi = t. Assume B is running at speed so at time
t. LLB sets its speed sa = (1 + ε) · min(Q(wa(t)), T), and it targets the job ja

defined to be j� if � > 0, and jna otherwise.

– If B is processing a job jb with xb = 0, then LLB runs jb with speed
min(sa, so) and runs ja with the remaining speed sa −min(sa, so).

– Otherwise, (i.e. B is processing a job jb with xb 	= 0 or a job that is not
active for LLB), it runs ja with speed sa.

Our main result is Theorem 3 below, which implies Corollary 2.

Theorem 3. Let B be an (online/offline) algorithm using a (1+ε)-speedup pro-
cessor where ε ≥ 0. Under an arbitrary power function, LLB(B) with a (1 + ε)-
speedup processor incurs at most two times the total weighted flow plus energy
of B.

Corollary 2. Consider minimizing weighted flow plus energy. Let w(t) be the
total weight of active jobs at time t and let T be the maximum speed.

(i) Let OPT be the optimal offline algorithm without using any speedup. LLB
(OPT) is a 2-approximate (offline) algorithm that scales the speed at any
time t as min(Q(w(t)), T).

(ii) For any ε > 0, LLB(BPS) using a (1 + ε)-speedup processor is a 4(1 + 1
ε)-

competitive online algorithm that scales the speed at any time t as (1 + ε) ·
min(Q(w(t)), T).

Before proving Theorem 3, we have the following observation. Both LLB and B
are using a (1 + ε)-speedup processor (note that when ε = 0, the processor has
no speedup). Such a processor, when given power P (s), runs at speed (1+ε)s. In
other words, the power function of a (1+ε)-speedup processor is P̄ (s) = P (s

1+ε).
We let T̄ = (1+ε)T which is the maximum speed of the (1+ε)-speedup processor.
Like P , the power function P̄ satisfies that P̄ (0) = 0, and P̄ is defined, strictly
increasing, strictly convex, continuous and differentiable at all speeds in [0, T̄];
if T̄ = ∞, the speed range is [0,∞). We let Q̄ denote the inverse of P̄ . At any

34 S.-H. Chan, T.-W. Lam, and L.-K. Lee

time t, the speed of LLB is sa(t) = (1+ε)·min(Q(wa(t)), T) = min(Q̄(wa(t)), T̄).
Thus, it suffices to analyze LLB based on the power function P̄ .

To show Theorem 3, we again exploit amortization and potential functions
as shown in Section 2. We derive a potential function Φ that satisfies the three
required conditions. Consider any time t. Recall that the active jobs in LLB are
denoted as j1, j2, . . . , jna(t). Define the coefficient ci of ji to be

∑i
k=1 w(jk). The

potential function Φ(t) is defined as follows.

Φ(t) =
∑na(t)

i=1
f(ci) ·max(xi, 0) where f(x) = P̄ ′(Q̄(x)).

Note that P̄ ′ is the first derivative of P̄ . Since P̄ is convex, P̄ ′ is non-increasing,
which together with that Q̄(x) is non-decreasing, implies that P̄ ′(Q̄(x)) is also
non-decreasing. Therefore, f(x) is a non-decreasing function of x.

We can show that such potential function Φ satisfies the boundary and discrete-
event conditions. More interestingly, by the definition of LLB, we can show that
at any time, Q̄(c�) ≤ T̄ , where c� is the coefficient of job j� and also the total
weight of lagging jobs in LLB. This allows us to prove the running condition
that at any time when Φ does not have discrete change, dGa

dt + 2dΦ
dt ≤ 2dGo

dt . The
detailed proof is given in the full version of the paper. Then Theorem 3 follows.

References

1. Albers, S., Fujiwara, H.: Energy-efficient algorithms for flow time minimization.
ACM Transactions on Algorithms 3(4), 49 (2007)

2. Andrew, L., Wierman, A., Tang, A.: Optimal speed scaling under arbitrary
power functions. ACM SIGMETRICS Performance Evaluation Review 37(2), 39–
41 (2009)

3. Brooks, D.M., Bose, P., Schuster, S.E., Jacobson, H., Kudva, P.N., Buyukto-
sunoglu, A., Wellman, J.D., Zyuban, V., Gupta, M., Cook, P.W.: Power-aware
microarchitecture: Design and modeling challenges for next-generation micropro-
cessors. IEEE Micro 20(6), 26–44 (2000)

4. Bansal, N., Chan, H.L.: Weighted flow time does not admit O(1)-competitive al-
gorithms. In: Proc. SODA, pp. 1238–1244 (2009)

5. Bansal, N., Chan, H.L., Lam, T.W., Lee, L.K.: Scheduling for speed bounded
processors. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125,
pp. 409–420. Springer, Heidelberg (2008)

6. Bansal, N., Chan, H.L., Pruhs, K.: Speed scaling with an arbitrary power function.
In: Proc. SODA, pp. 693–701 (2009)

7. Bansal, N., Pruhs, K., Stein, C.: Speed scaling for weighted flow time. SIAM Jour-
nal on Computing 39(4), 1294–1308 (2009)

8. Chan, H.L., Edmonds, J., Lam, T.W., Lee, L.K., Marchetti-Spaccamela, A., Pruhs,
K.: Nonclairvoyant speed scaling for flow and energy. In: Proc. STACS, pp. 255–264
(2009)

9. Chan, H.L., Edmonds, J., Pruhs, K.: Speed scaling of processes with arbitrary
speedup curves on a multiprocessor. In: Proc. SPAA, pp. 1–10 (2009)

10. Chan, S.H., Lam, T.W., Lee, L.K., Ting, H.F., Zhang, P.: Non-clairvoyant schedul-
ing for weighted flow time and energy on speed bounded processors. In: Proc.
CATS, pp. 3–10 (2010)

Non-clairvoyant Speed Scaling for Weighted Flow Time 35

11. Kalyanasundaram, B., Pruhs, K.: Minimizing flow time nonclairvoyantly. Journal
of the ACM 50(4), 551–567 (2003)

12. Lam, T.W., Lee, L.K., Ting, H.F., To, I., Wong, P.: Sleep with guilt and work faster
to minimize flow plus energy. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y.,
Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 665–676.
Springer, Heidelberg (2009)

13. Lam, T.W., Lee, L.K., To, I., Wong, P.: Competitive non-migratory scheduling for
flow time and energy. In: Proc. SPAA, pp. 256–264 (2008)

14. Lam, T.W., Lee, L.K., To, I., Wong, P.: Speed scaling functions for flow time
scheduling based on active job count. In: Halperin, D., Mehlhorn, K. (eds.)
ESA 2008. LNCS, vol. 5193, pp. 647–659. Springer, Heidelberg (2008)

15. Motwani, R., Phillips, S., Torng, E.: Nonclairvoyant scheduling. Theoretical Com-
puter Science 130(1), 17–47 (1994)

16. Mudge, T.: Power: A first-class architectural design constraint. IEEE Com-
puter 34(4), 52–58 (2001)

17. Steele, J.M.: The Cauchy-Schwarz master class: An introduction to the art of
mathematical inequalities, p. 136. Cambridge University Press, Cambridge (2004)

18. Yao, F., Demers, A., Shenker, S.: A scheduling model for reduced CPU energy. In:
Proc. FOCS, pp. 374–382 (1995)

A Robust PTAS for Machine Covering and

Packing�

Martin Skutella and José Verschae

Institute of Mathematics, TU Berlin, Germany
{skutella,verschae}@math.tu-berlin.de

Abstract. Minimizing the makespan or maximizing the minimum ma-
chine load are two of the most important and fundamental parallel ma-
chine scheduling problems. In an online scenario, jobs are consecutively
added and/or deleted and the goal is to always maintain a (close to)
optimal assignment of jobs to machines. The reassignment of a job in-
duces a cost proportional to its size and the total cost for reassigning
jobs must preferably be bounded by a constant r times the total size of
added or deleted jobs. Our main result is that, for any ε > 0, one can
always maintain a (1 + ε)-competitive solution for some constant reas-
signment factor r(ε). For the minimum makespan problem this is the
first improvement of the (2 + ε)-competitive algorithm with constant re-
assignment factor published in 1996 by Andrews, Goemans, and Zhang.

1 Introduction

We consider two basic scheduling problems where n jobs need to be assigned to
m identical parallel machines. Each job j has a processing time pj ≥ 0 and the
load of a machine is the total processing time of jobs assigned to it. The machine
covering problem asks for an assignment of jobs to machines that maximizes the
minimum machine load. In the minimum makespan problem (or machine packing
problem), we wish to find a schedule minimizing the maximum machine load.

Both problems are well known to be strongly NP-hard and both allow for a
polynomial-time approximation scheme (PTAS); see, e. g., [2,9,16]. They have
also been studied extensively in the online setting where jobs arrive one by one
and must immediately be assigned to a machine at their arrival; see, e. g., [1,13].
The best known online algorithm for the minimum makespan problem is a
1.9201-competitive algorithm [8]. The best lower bound on the competitive ratio
of any deterministic online algorithm currently known is 1.88 [10]. For random-
ized online algorithms there is a lower bound of e/(e− 1) ≈ 1.58; see [6,12].

The online variant of the machine covering problem turns out to be less
tractable and there is no online algorithm with constant competitive ratio. The
best possible deterministic algorithm greedily assigns jobs to the least loaded ma-
chine, and has competitive ratio 1/m; see [16]. In [5] an upper bound of O(1/

√
m)

is shown for the competitive ratio of any randomized online algorithm, and there
is an almost matching Ω̃(1/

√
m)-competitive algorithm.

� Supported by Berlin Mathematical School and by DFG research center Matheon.

M. de Berg and U. Meyer (Eds.): ESA 2010, Part I, LNCS 6346, pp. 36–47, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Robust PTAS for Machine Covering and Packing 37

There is also a large amount of literature on online load balancing problems
where jobs are allowed to arrive or depart the system; see, e. g., [4]. Most authors
consider a relaxed notion of competitive ratio, where the solution is not compare
against the current offline optimum but the largest objective value seen so far.

Proportional reassignment cost. We study a relaxed online scenario known
as online load balancing with proportional reassignment cost. In this setting, jobs
may arrive or depart at any time, and when a new job enters the system it must
immediately be assigned to a machine. Again, the objective is either to minimize
the makespan or to maximize the minimum machine load. Furthermore, upon
arrival or departure of a job, one is allowed to reassign other jobs by paying an
associated cost: reassigning job j incurs a cost of c·pj for some given constant c >
0. By scaling we can assume that c = 1.

The cost due to reassignments is controlled by the reassignment factor which
is defined as follows. Let J be the set of jobs that have so far appeared in
the system, and let JL ⊆ J be the set of jobs that have left the system. We
define the reassignment factor r of an algorithm as the worst case ratio between∑

j∈J pj +
∑

j∈JL
pj and the total cost due to reassignments. Alternatively, we

can interpret this framework in the following way: given a parameter r > 0,
the arrival or departure of a job j adds an amount of r · pj to the total budget
available to spend on reassignments. We call r · pj the reassignment potential
induced by job j.

Note that r = 0 means that no reassignment is allowed, and thus we are
in the classical online setting. On the other hand, r = ∞ implies that we are
allowed to reassign all jobs at each arrival/departure, and thus we fall back to
the offline case. We are interested in developing α-competitive algorithms where
the migration factor r is bounded by a constant. Furthermore, we study the
trade-off between α and r. Arguably, the best that we can hope for under this
framework is a robust PTAS (also known as dynamic PTAS), that is, a family
of polynomial-time (1 + ε)-competitive algorithms with constant reassignment
factor r = r(ε), for all ε > 0.

For the minimum makespan problem with proportional reassignment cost,
Westbrook [15] gives a 6-competitive algorithm with reassignment factor 1 (ac-
cording to our definition1). Andrews, Goemans, and Zhang [3] improve upon this
result, obtaining a 3.5981-competitive algorithm with reassignment factor 1. Fur-
thermore, they give a (2 + ε)-competitive algorithm with constant reassignment
factor r(ε) ∈ O(1/ε).

Related work. Sanders, Sivadasan, and Skutella [11] consider a somewhat
tighter online model, known as the bounded migration framework. This model
can be interpreted as the reassignment model with the following modification:
after the arrival or departure of a job j, its reassignment potential r · pj must be

1 Our definition differs slightly from the one given in [15]: they do not consider the
departure of jobs to add any reassignment potential, and the first assignment of a
job also induces cost in their case. However, the concept of constant reassignment
factors is the same in both models.

38 M. Skutella and J. Verschae

immediately spent or is otherwise lost. In the bounded migration scenario, the
value r is called the migration factor of the algorithm, and is a measure of the
robustness of the constructed solutions.

Sanders et al. study the bounded migration model for the special case when
jobs are not allowed to depart. For the minimum makespan problem, they give
a 3/2-competitive algorithm with migration factor 4/3. Moreover, using well
known rounding techniques, they formulate the problem as an integer linear pro-
gramming (ILP) feasibility problem in constant dimension. Combining this with
an ILP sensitivity analysis result, they obtain a robust PTAS for the bounded
migration model with job arrivals only. An important consequence of their anal-
ysis is that no special structure of the solutions is needed to achieve robustness.
More precisely, it is possible to take an arbitrary (1 + ε)-approximate solution
and, at the arrival of a new job, turn it into a (1+ε)-approximate solution to the
augmented instance while keeping the migration factor constant. This feature
prevents their technique from working in the job departure case.

The machine covering problem is also considered by Sanders et al. [11]. They
describe an interesting application of the online version of this problem in the
context of storage area networks and describe a 2-competitive algorithm with
migration factor 1. Moreover, they give a counterexample showing that it is not
possible to start with an arbitrary (1/2 + ε)-approximate solution, and then
maintain the approximation guarantee while keeping the migration factor con-
stant. This implies that the ideas developed in [11] for the minimum makespan
problem cannot be applied directly to derive a robust PTAS for the machine
covering problem. Based on ideas in [11], Epstein and Levin [7] develop a robust
APTAS for the Bin-Packing problem.

Our Contribution. We develop a general framework for obtaining robust
PTASes in the reassignment model. Our results can be considered from various
different angles and have interesting interpretations in several different contexts:

(i) We make a significant contribution to the understanding of two fundamen-
tal online scheduling problems on identical parallel machines that are also
relevant building blocks for many more complex real-world problems.

(ii) We advance the understanding of robustness of parallel machine schedules
under job arrival and departure, and give valuable insights related to the
sensitivity analysis of parallel machine schedules.

(iii) We achieve the best possible performance bound for machine balancing
with proportional reassignment costs, improving upon earlier work by West-
brook [15] and Andrews, Goemans, and Zhang [3].

Our techniques for deriving the robust PTAS take the ideas in [2] and [11]
one step further. We first prove that it is not possible to start with an arbitrary
(1− ε)-approximate solution and, at the arrival of a new job, maintain the com-
petitive ratio with constant migration factor. One of our main contributions is
to overcome this limitation by giving extra structure to the constructed solu-
tions. Roughly speaking, we do this by asking for solutions such that the sorted
vector of machine load values is lexicographically optimal. It turns out that a
solution with this property is not only optimal but also robust. In the analysis

A Robust PTAS for Machine Covering and Packing 39

p1 p2 p3

p5 p6

p7 p4

p5 p2 p3

p6 p1 p4

p7

Fig. 1. Left: Unique optimal solution to original instance. Right: Unique optimal solu-
tion to instance with new jobs.

we formulate a rounded scheduling problem as an ILP in constant dimension,
exploit the structure of the coefficient matrix, and apply sensitivity analysis for
ILPs to derive the result.

To keep the presentation short and clear, we mainly focus on the machine
covering problem in this extended abstract and present a robust PTAS for the
general case of jobs leaving and entering the system. An easy adaptation of
the techniques here presented yields a robust PTAS for the minimum makespan
problem, improving upon the (2 + ε)-competitive algorithm with constant reas-
signment factor by Andrews, Goemans, and Zhang [3]. Moreover, all our tech-
niques can be extended to a very broad class of problems, where the objective
functions solely depend on the load of each machine. Further details on these
topics, as well as the complete proofs of our results can be found in [14].

2 A Lower Bound on the Best Approximation with
Constant Migration Factor

We start by showing that it is not possible to maintain near-optimal solutions
to the machine covering problem with constant migration factor in the model of
Sanders et al. [11], if arriving jobs are arbitrarily small.

Lemma 1. For any ε > 0, there is no (19/20+ ε)-competitive algorithm for the
machine covering problem with constant migration factor, even for the special
case without job departures.

The proof of the lemma is based on an instance consisting of 3 machines and
7 jobs depicted in Figure 1. Details can be found in [14]. The proof of the lemma
can be found in [14].

As mentioned before, this lemma justifies the use of the reassignment cost
model instead of the bounded migration framework. Moreover, we see in the
proof of the lemma that the limitation of the bounded migration model is caused
by arbitrarily small jobs, whose reassignment potential do not allow any other
job to be migrated. Nonetheless, in the reassignment model we can deal with
small jobs by accumulating them as follows.

Let OPT denote the value of an optimum solution for the current set of jobs. If a
new job j with pj < ε ·OPT arrives, we do not schedule it immediately2. Instead,
2 In order to still satisfy the strict requirements of the considered online scheduling

problem, we can assume that job j is temporarily assigned to an arbitrary machine,
say machine 1. Notice that this causes an increase of the reassignment factor by at
most 1.

40 M. Skutella and J. Verschae

we accumulate several small jobs, until their total processing time surpasses ε ·
OPT . We can then incorporate them as one larger job with processing time at
least ε ·OPT . This can only decrease the value of the solution by a 1− ε factor.

The situation for the departure of small jobs is slightly more complicated.
We ignore the fact that certain small jobs are gone as long as the following
property holds: There is no machine which has lost jobs of total processing time
at least ε ·OPT . Under this condition, the objective function is affected by less
than a factor 1+ε. If, on the other hand, there is such a machine, we can treat the
set of jobs that have left the machine as one single job of size at least ε ·OPT and
act accordingly. Notice that the property above has to be checked dynamically
after each reassignment of jobs caused by newly arriving or departing jobs.

Assumption 1. W.l.o.g., all arriving/departing jobs are bigger than ε ·OPT .

3 A Stable Estimate of the Optimum Value

In this section we describe an upper bound on the optimum solution value of the
machine covering problem, also introduced in [2]. However, for it to be useful
for the robust PTAS, we need to show that this upper bound is stable. That is,
at the arrival/departure of a new job, its value must not change by more than a
constant factor.

Let I = (J,M) be an instance of our problem, where J is a set of n jobs
and M a set of m machines. Given a subset of jobs L, we denote by p(L) the
total processing time of jobs in L, i. e., p(L) :=

∑
j∈L pj . Instance I satisfies

property (∗) if pj ≤ p(J)/m, for all j ∈ J . The most natural upper bound to use
for our problem is the average load p(J)/m. Under condition (∗), the average
load is always within a factor 2 of OPT ; see [2,14].

Lemma 2. If instance I satisfies (∗), then p(J)
2m ≤ OPT ≤ p(J)

m .

Now we show how to transform arbitrary instances to instances satisfying (∗)
without changing the optimal solution value. If pj > p(J)/m ≥ OPT , then we
can assume that j is being processed on a machine of its own. Thus, removing j
plus its corresponding machine does not change the optimal solution value, but it
does reduce the average load. We can iterate this idea until no job is strictly larger
than the average load. We call this procedure Algorithm Stable-Average.
Also, we call L the set of jobs and w the number of machines of the corresponding
remaining instance. More importantly, we define A to be the average load of this
instance, i. e., A := p(L)/w. We call value A the stable average of instance I.
Also, we obtain that solving the instance with job set L and w identical machines
is equivalent to solving I. Thus Lemma 2 yields:

Lemma 3. The upper bound A computed by the algorithm above satisfies OPT ≤
A ≤ 2 ·OPT .

It is easy to see that, in general, the factor by which the upper bound changes
at the arrival/departure of a job is not bounded (consider two machines and two

A Robust PTAS for Machine Covering and Packing 41

jobs of sizes 1 and K � 1, respectively; then one job of size K − 1 arrives).
However, we can show that if A is increased by more than a factor 2, then the
instance was trivial to solve in the first place. To this end, we show that if the
value A is increased by more than a factor of 2, then a significant amount of
jobs must have arrived to the system. The proof of the next lemma is omitted.

Lemma 4. Consider two arbitrary instances I = (J,M) and I′ = (J ′,M).
Let A, L and w (resp. A′, L′ and w′) be the returned values when applying
Algorithm Stable-Average to I (resp. I ′). If A′ > 2A, then |J�J ′| > w/2
(here � denotes the symmetric difference between the two sets).

Moreover, we say that an instance is trivial if Algorithm Stable-Average re-
turns w = 1. In this case, the optimal solution to the instance can be constructed
by processing the m − 1 largest jobs each on a machine of their own, and the
remaining jobs on the remaining machine. Moreover, the optimal value OPT
equals A. With this definition, we obtain the following easy consequence of
Lemma 4.

Corollary 1. Assume that I is nontrivial and that instance I′ is obtained from
I by adding one job. Then, it must hold that A ≤ A′ ≤ 2 · A.

4 The Structure of Robust Solutions

In the following, we show a sufficient condition to guarantee that we can achieve
near optimal solutions when jobs arrive or depart. For clarity, we first consider a
static case: Given an instance I, we construct a (1−O(ε))-approximate solution
having enough structure so that at the arrival or departure of a job larger than
ε ·OPT , we can maintain the approximation guarantee using constant migration
factor. Note that since we are using constant migration factor, we only use the
reassignment potential induced by the arriving or departing job. Nonetheless,
we do not take care of maintaining the structure so that this procedure can be
iterated when further jobs arrive (or depart). We deal with this more complicated
scenario in Section 5.

We concentrate on the case of a newly arriving job. But the presented ideas
and techniques can be easily adapted to the case of a departing job. Let I =
(J,M) be an arbitrary instance with optimal value OPT . If there is no possible
confusion, we will also use OPT to refer to some optimal schedule for I. We call
I ′ = (J ′,M) the instance with the additional arriving job pj∗ , and OPT ′ the
new optimal value.

Lemma 5. Assume that I is trivial. Then, starting from an optimal solution,
one can construct a (1− ε)-approximate solution to I ′ by using migration factor
at most 2/ε.

The proof of the lemma can be found in [14]. We devote the rest of this section
to the case of nontrivial instances.

42 M. Skutella and J. Verschae

4.1 Compact Description of a Schedule

As usual in PTASes, we first simplify our instance by rounding. In this section
we briefly show how to do this for our problem. The techniques are similar to
the ones found, e. g., in [2,11,16]. Nonetheless, we must be careful to ensure that
the resulting compact description of schedules is also compatible with schedules
containing any new job that may arrive.

It is a well known fact that by only loosing a 1/(1 + ε) factor in the objective
function, we can round down all processing times to the nearest power of 1 + ε.
Thus, in the rest of this paper we assume that, for every job j, it holds that
pj = (1 + ε)k for some k ∈ Z. Moreover, we need to compute an upper bound,
ub, which is within a constant factor γ > 1 of the optimal value: OPT ≤ ub ≤
γ ·OPT . Throughout this section we use ub = A, so that γ = 2. For the general
case in Section 5, however, we have to choose this upper bound more carefully.

In what follows, we round our instance such that the number of different
processing times is constant. To this end, let σ,Σ ≥ 1 be two constant parameters
that will be chosen appropriately later. Our rounding ensures that all processing
times belong to the interval [ε · ub/σ,Σ · ub]. The value σ will be chosen big
enough so that every job that is smaller than ε·ub/σ is also smaller than ε·OPT .
On the other hand, since Σ ≥ 1, every job that is larger than Σ ·ub is also larger
than OPT , and thus should be processed on a machine of its own. Moreover, since
we are assuming that I is nontrivial, Corollary 1 implies that ub

′ := A′ ≤ 2 ·ub.
We can therefore choose Σ ≥ 2 to ensure that a job that is larger than Σ · ub

is also larger than OPT ′, and thus can also be processed on a machine of its
own in optimal solutions to I ′. This will help to simultaneously round I and I ′,
yielding the same approximation guarantee for both instances. More importantly,
we note that since the lower and upper bounds are within a constant factor,
the rounded instances only have O(log1+ε(1/ε)) = O(1/ε log(1/ε)) different job
sizes. Consider the index set

I(ub) :=
{
i ∈ Z : ε · ub/σ ≤ (1 + ε)i ≤ Σ · ub

}
= {�, . . . , u} .

The new rounded instance derived from I is described by defining a vector
N = (ni)i∈I , whose entry ni denotes the number of jobs of size (1 + ε)i. More
precisely, vector N is defined as follows. For each i = � + 1, . . . , u− 1, we let

ni :=
∣∣{j ∈ J : pj = (1 + ε)i

}∣∣ , (1)

i. e., ni is the number of jobs of size (1 + ε)i in the original instance. We call
these jobs big with respect to ub. Bigger jobs are rounded down to (1+ε)u, i. e.,
we set

nu := |{j ∈ J : pj ≥ (1 + ε)u}| . (2)

We call these jobs huge with respect to ub. Finally, jobs that are smaller than
or equal to (1 + ε)� are said to be small with respect to ub. We replace them by
jobs of size (1 + ε)�, i. e., we set

n� :=
⌊

1
(1+ε)�

∑
j:pj≤(1+ε)�

pj

⌋
. (3)

A Robust PTAS for Machine Covering and Packing 43

By definition (3), the total processing time of small jobs in N and I is roughly
equal. By slightly abusing notation, in what follows we also use the symbol N
to refer to the scheduling instance defined by the vector N . The next lemma is
also used in [2]. We omit the proof.

Lemma 6. The value of an optimal solution to N is within a 1 − O(ε) factor
of OPT .

Notice that a solution to the rounded instance can be turned into a schedule
for the original instance I by simply removing all jobs of size (1 + ε)� from
the schedule of N , and then applying a list scheduling algorithm to process the
original small jobs. By the same argument as in the proof of Lemma 6, this only
costs a factor 1 − O(ε) in the objective function. We can thus restrict to work
with instance N . To describe a schedule for N in a compact way, we consider
the following definition.

Definition 1. For a given schedule, a machine obeys configuration k : I(ub) →
N0, if k(i) equals the number of jobs of size (1 + ε)i assigned to that ma-
chine, for all i ∈ I(ub). The load of configuration k is defined as load(k) :=∑

i∈I(ub) k(i)(1 + ε)i.

Let us now consider set K := {k : I(ub) → N0 : k(i) ≤ σΣ/ε + 1 for all i ∈ I}.
Notice that |K| ≤ (σΣ/ε + 1)|I(ub)| ∈ 2O(1

ε log2 1
ε). The next lemma assures that

these are all necessary configurations that we need to consider.

Lemma 7. There is an optimal solution to N with all machine configurations
in K.

The proof is given in [14]. Note that the number of jobs per machine in an
optimal solution can be upper bounded by σ/ε + 1. Thus, the set K contains
more configurations than are really needed. Nonetheless, the overestimation of
the number of jobs is necessary so that, when a new job arrives and the upper
bound increases (by at most a factor of 2), the set K still contains all necessary
configurations.

The optimal schedule for N found in Lemma 7 can be described by a vector
(xk)k∈K , where xk denotes the number of machines that obey configuration k.
We can see that vector x satisfies the following set of constrains:∑

k∈K
xk = m,

∑
k∈K

k(i) · xk = ni for all i ∈ I(ub) (4)

and xk ∈ Z≥0 for all k ∈ K. We denote by A = A(K, I) the matrix defining the
set of equations (4); the corresponding right-hand-side is denoted by b(N,m).
Also, D =

{
x ∈ ZK

≥0 : A · x = b(N,m)
}

denotes the set of non-negative integral
solutions to (4).

4.2 Constructing Stable Solutions

In the following we present the main structural contribution of this paper: We
show how to obtain a robust optimal solution to N such that, upon arrival (or
departure) of a new job of size at least ε ·OPT , we need to migrate jobs of total

44 M. Skutella and J. Verschae

processing time at most f(ε) ·OPT in order to maintain optimality. This implies
that the migration factor needed for this case is upper bounded by f(ε)/ε.

Let us order and relabel the set of configurations K = {k1, . . . , k|K|} in non-
decreasing order of their load, i. e., load(k1) ≤ load(k2) ≤ . . . ≤ load

(
k|K|

)
.

Definition 2. Let x, x′ ∈ D. We say that x′ is lexicographically smaller than x,
denoted x′ ≺lex x, if xk = x′

k for all k ∈ {k1, . . . , kq}, and x′
kq+1

< xkq+1 , for
some q.

By definition, ≺lex defines a total order on the solution set D. Thus there exists
a unique lexicographically minimum vector in x∗ ∈ D. We show that x∗ has the
proper structure needed for our purposes. Note that, in particular, it maximizes
the minimum machine load. Moreover, x∗ can be computed in polynomial time
by solving a sequence of ILPs in constant dimension as follows: for q = 1, . . . , |K|,
set

x∗
kq

:= min
{
xkq : x ∈ D and xkr = x∗

kr
for all r = 1, . . . , q − 1

}
.

Alternatively, we can find x∗ by solving a single ILP in constant dimension, i. e.,
by minimizing a carefully chosen linear function over D. Let λ := (m + 1)−1,
and define cq := λq for q = 1, . . . , |K|. The following ILP is denoted by [LEX]:

min
{ |K|∑

q=1

cq · xkq : A · x = b(N,m) and xk ∈ Z≥0 for all k ∈ K

}
.

The proof of the following lemma can be found in [14].

Lemma 8. Let z be an optimal solution to [LEX]. Then, z is the lexicographi-
cally minimal solution in D.

Let S be the schedule corresponding to z. We next show that S is robust. The
new job j∗ can be incorporated into the ILP by only slightly changing the right-
hand-side of [LEX]. Indeed, as discussed before, we can assume that pj∗ is a
power of (1 + ε) and is larger than ε · OPT ≥ ε · ub/σ (by choosing σ ≥ γ).
Then, we can round the new instance I′ by defining a vector N ′ = (n′

i)i∈I as
follows: for i = �, . . . , u− 1 let

n′
i =

{
ni + 1 if pj∗ = (1 + ε)i,

ni otherwise,
and n′

u =

{
nu + 1 if pj∗ ≥ (1 + ε)u,

nu otherwise.

In other words, if pj∗ > Σub ≥ 2ub ≥ ub
′ ≥ OPT ′ then job j∗ is processed

on a machine of its own. Therefore we can assume that its size is just (1 + ε)u.
Also, note that all jobs whose size was rounded down to (1 + ε)u in the original
instance I are still larger than Σ ·ub ≥ ub

′, and thus get a machine of their own
in OPT ′. Moreover, jobs that are smaller than ε · ub/σ are also smaller than ε ·
OPT ′. Thus, using the same argument as in Lemma 6, solving instance N ′ yields
a (1− O(ε))-approximate solution to I ′. Also, analogously to Lemmas 7 and 8,

A Robust PTAS for Machine Covering and Packing 45

we can solve this instance by optimizing the following modification of [LEX],
which we call [LEX]’:

min
{ |K|∑

q=1

cq · xkq : Ax = b(N ′,m) and xk ∈ Z≥0 for all k ∈ K

}
.

Let z′ be an optimum solution to [LEX]’. Notice that [LEX] and [LEX]’ only
differ in one entry of the right-hand-side vector by one. Thus, by a result from
sensitivity analysis of ILPs, the optimum solutions z and z′ are relatively close.
This yields the next theorem, whose detailed proof is given in [14].
Theorem 1. There exists a static robust PTAS if the arriving job is larger
than ε ·OPT .

Running time. By the proof of Theorem 1, given z, we can compute z′ by
exhaustive search through all vectors whose components differ from z by at
most 2O(1

ε log2 1
ε). Thus, the running time needed to compute the desired solution

to I ′ is 22O(1
ε

log2 1
ε
)
.

Job departure. The approach presented in this section also works for the job
departure case. Indeed, if instance I ′ contains one job less than I, we can assume
that I ′ is nontrivial (otherwise see Lemma 5). Therefore ub

′ ≥ ub/2, and thus
choosing σ ≥ 2γ implies that I(ub) contains all job sizes between ε · OPT ′

and OPT ′. Thus, rounding instance I ′ within this range decreases the optimum
value by at most a factor (1 − O(ε)). Again, the right hand sides of [LEX] and
[LEX]’ differ in only one entry and thus the migration factor needed to construct
the solution given by [LEX]’ is at most 2O(1

ε log2 1
ε).

5 Maintaining Robust Solutions Dynamically

In the previous section we showed how to construct a robust (1−ε)-approximate
solution, so that we can maintain the approximation guarantee at the arrival
(departure) of an arbitrary new big job and keep the migration factor bounded.
Nonetheless, we cannot further iterate this method when more jobs arrive or
depart since the optimum values of the new instances may become arbitrarily
large (small), and thus the range I(ub) is not large enough to guarantee the ap-
proximation ratios of the rounded instances. On the other hand, we cannot make
the index set I(ub) larger so as to simultaneously round all possible instances
and maintain the number of job sizes constant.

We deal with this difficulty by dynamically adjusting the set I(ub). In doing
so, we must be extremely careful not to destroy the structure of the constructed
solutions and maintain the reassignment cost bounded. Whenever the set I(ub) is
shifted to the right (left), we must regroup small jobs into larger (smaller) groups.
Therefore, I(ub) should be shifted only if we can guarantee that there is enough
reassignment potential accumulated to regroup all small jobs and simultaneously
maintain the structure of optimal solutions. Let I be the instance after the t-th
job arrival/departure. For t = 1, 2, . . . , we run the following algorithm on the
current instance I.

46 M. Skutella and J. Verschae

Robust PTAS

1. Run Algorithm Stable-Average on I to compute A and w.
2. If variable A0 is undefined or A 	∈ [A0/2, 2A0], then set I0 := I and A0 := A.
3. Set ub := 2A0 and define sets I(ub), K, and the ILP [LEX] as in Section 4.

Compute the optimum solution z to [LEX] and the corresponding schedule S.

Notice that throughout the algorithm, OPT ≤ A ≤ 2A0 = ub, and thus ub

is indeed an upper bound on OPT . Moreover, OPT ≥ A/2 ≥ A0/4 = ub/8,
and thus ub is within a factor 8 of OPT (i. e., γ = 8 with the notation of
Section 4). By the discussion in Section 4.2, an appropriate choice of values σ
and Σ guarantees that all constructed solutions are (1 − O(ε))-approximate. It
remains to show that the needed reassignment factor is bounded by a constant.

For the analysis we partition the iterations of the algorithm into blocks. Each
block B consists of a consecutive sequence of iterations where the value of A0 is
kept constant. Thus, for each instance I occurring in B, its stable average A be-
longs to the interval [A0/2, 2A0]. Consider two consecutive instances I and I ′ that
belong to the same block. We add a symbol prime to denote the variables corre-
sponding to I ′ (e. g., A′ is the stable average of I ′). Since I and I ′ belong to the
same block B, it holds that ub = 2A0 = ub

′, and thus the sets I(ub) and K
coincide with I(ub

′) and K ′, respectively. Therefore, as already discussed in Sec-
tion 4.2, the ILPs [LEX] and [LEX]’ only differ in one entry of their right-hand-side
vectors and the same reasoning as in Theorem 1 yields the following lemma.

Lemma 9. If two consecutive instances I and I ′ belong to the same block of
iterations, then the migration factor used to obtained S′ from S is at most
2O(1

ε log2 1
ε).

It remains to consider the case that instance I and the next instance I′ belong
to different blocks. For this, we assume that I ′ contains one more job than I and
that A′ > 2A0. We can deal with the case A′ < A0/2 in an analogous way. By
Lemma 5 we can assume that I is nontrivial. Assume that I belongs to block B,
and consider the value of A0 corresponding to this block. It holds that A0 ≤
A ≤ 2A0. Also, since I is nontrivial, Corollary 1 ensures that A ≤ A′ ≤ 2A, and
therefore ub ≤ ub

′ ≤ 4ub.
In order to compare solutions z ∈ NK

0 and z′ ∈ NK′
0 , we need to interpret them

in a common euclidean space containing them. Notice that huge jobs of I have
processing time larger than Σ · ub ≥ ub

′ (assuming Σ ≥ 4). These jobs get a
machine of their own in solutions OPT , OPT ′, S, and S′; thus, we do not need to
consider them. We can therefore assume that all jobs of I and I′ have processing
time at most Σ · ub. In particular, the entries of vector N ′ = (n′

i)i∈I(ub
′) are

zero if (1 + ε)i > Σ · ub. We can thus interpret N ′ as a vector in NI(ub)
0 by

setting to zero the entries n′
i with (1 + ε)i < ε · ub

′/σ. With this simplification,
all feasible solutions to [LEX]’ corresponds to solutions to [LEX] where the right
hand side has been modified according to N ′. Thus, z′ can be regarded as an
optimal solution to this modified version of [LEX].

We bound the difference between N and N ′, which allows us to bound the
difference between z and z′. This will imply the result on the reassignment factor.

A Robust PTAS for Machine Covering and Packing 47

Lemma 10. Let q be the number of jobs that have arrived in block B, including the
job that made the algorithm change to the next block. Then, ‖N −N ′‖1 ∈ O(q/ε).

The proof of the lemma can be found in [14]. Applying Lemma 10 and the same
proof technique as in Theorem 1, we obtain the following lemma.

Lemma 11. The reassignment potential used to construct S′ is at most q ·A0 ·
2O(1

ε log2 1
ε).

Theorem 2. For the machine covering problem with jobs arriving and departing
online, there exists a (1 − ε)-competitive polynomial algorithm with constant
reassignment factor at most 2O(1

ε log2 1
ε).

References

1. Albers, S.: Online algorithms: a survey. Mathematical Programming 97, 3–26
(2003)

2. Alon, N., Azar, Y., Woeginger, G.J., Yadid, T.: Approximation schemes for schedul-
ing on parallel machines. Journal of Scheduling 1, 55–66 (1998)

3. Andrews, M., Goemans, M., Zhang, L.: Improved bounds for on-line load balancing.
Algorithmica 23, 278–301 (1999)

4. Azar, Y.: On-line load balancing. In: Fiat, A., Woeginger, G.J. (eds.) Dagstuhl
Seminar 1996. LNCS, vol. 1442, pp. 178–195. Springer, Heidelberg (1998)

5. Azar, Y., Epstein, L.: On-line machine covering. Journal of Scheduling 1, 67–77
(1998)

6. Chen, B., van Vliet, A., Woeginger, G.J.: Lower bounds for randomized online
scheduling. Information Processing Letters 51, 219–222 (1994)

7. Epstein, L., Levin, A.: A robust APTAS for the classical bin packing problem.
Mathematical Programming 119, 33–49 (2009)

8. Fleischer, R., Wahl, M.: Online scheduling revisited. Journal of Scheduling 3, 343–
353 (2000)

9. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for schedul-
ing problems theoretical and practical results. Journal of the ACM 34, 144–162
(1987)

10. Rudin III, J.F., Chandrasekaran, R.: Improved bounds for the online scheduling
problem. SIAM Journal on Computing 32, 717–735 (2003)

11. Sanders, P., Sivadasan, N., Skutella, M.: Online scheduling with bounded migra-
tion. Mathematics of Operations Research 34, 481–498 (2009)

12. Sgall, J.: A lower bound for randomized on-line multiprocessor scheduling. Infor-
mation Processing Letters 63, 51–55 (1997)

13. Sgall, J.: On-line scheduling — a survey. In: Fiat, A., Woeginger, G.J. (eds.)
Dagstuhl Seminar 1996. LNCS, vol. 1442, pp. 196–231. Springer, Heidelberg (1998)

14. Skutella, M., Verschae, J.: A robust PTAS for machine covering and packing. Tech-
nical Report 011-2010, Technische Universität Berlin (2010), http://www.math.

tu-berlin.de/coga/publications/techreports/2010/Report-011-2010.xhtml

15. Westbrook, J.: Load balancing for response time. Journal of Algorithms 35, 1–16
(2000)

16. Woeginger, G.J.: A polynomial-time approximation scheme for maximizing the
minimum machine completion time. Operations Research Letters 20, 149–154
(1997)

http://www.math.tu-berlin.de/coga/publications/techreports/2010/Report-011-2010.xhtml
http://www.math.tu-berlin.de/coga/publications/techreports/2010/Report-011-2010.xhtml

Balancing Degree, Diameter and Weight

in Euclidean Spanners

Shay Solomon� and Michael Elkin��

Department of Computer Science, Ben-Gurion University of the Negev,
P.O.B. 653, Beer-Sheva 84105, Israel
{shayso,elkinm}@cs.bgu.ac.il

Abstract. In a seminal STOC’95 paper, Arya et al. [4] devised a con-
struction that for any set S of n points in Rd and any ε > 0, provides
a (1 + ε)-spanner with diameter O(log n), weight O(log2 n)w(MST (S)),
and constant maximum degree. Another construction of [4] provides a
(1 + ε)-spanner with O(n) edges and diameter α(n), where α stands for
the inverse-Ackermann function. Das and Narasimhan [12] devised a con-
struction with constant maximum degree and weight O(w(MST (S))),
but whose diameter may be arbitrarily large. In another construction by
Arya et al. [4] there is diameter O(log n) and weight O(log n)w(MST (S)),
but it may have arbitrarily large maximum degree. These constructions
fail to address situations in which we are prepared to compromise on one
of the parameters, but cannot afford it to be arbitrarily large.

In this paper we devise a novel unified construction that trades be-
tween maximum degree, diameter and weight gracefully. For a positive in-
teger k, our construction provides a (1+ε)-spanner with maximum degree
O(k), diameter O(logk n + α(k)), weight O(k logk n log n)w(MST (S)),
and O(n) edges. For k = O(1) this gives rise to maximum degree O(1),
diameter O(log n) and weight O(log2 n)w(MST (S)), which is one of the
aforementioned results of [4]. For k = n1/α(n) this gives rise to diam-
eter O(α(n)), weight O(n1/α(n)(log n)α(n))w(MST (S)) and maximum
degree O(n1/α(n)). In the corresponding result from [4] the spanner has
the same number of edges and diameter, but its weight and degree may
be arbitrarily large. Our construction also provides a similar tradeoff in
the complementary range of parameters, i.e., when the weight should be
smaller than log2 n, but the diameter is allowed to grow beyond log n.

1 Introduction

Euclidean Spanners. Consider the weighted complete graph S = (S,
(
S
2

)
) in-

duced by a set S of n points in Rd, d ≥ 2. The weight of an edge (x, y) ∈
(
S
2

)
, for

a pair of distinct points x, y ∈ S, is defined to be the Euclidean distance ‖x− y‖
between x and y. Let G = (S,E) be a spanning subgraph of S, with E ⊆

(
S
2

)
,

� This research has been supported by the Clore Fellowship grant No. 81265410.
�� This research has been supported by the BSF grant No. 2008430. Both authors are

partially supported by the Lynn and William Frankel Center for Computer Science.

M. de Berg and U. Meyer (Eds.): ESA 2010, Part I, LNCS 6346, pp. 48–59, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Balancing Degree, Diameter and Weight in Euclidean Spanners 49

and assume that exactly as in S, for any edge e = (x, y) ∈ E, its weight w(e)
in G is defined to be ‖x − y‖. For a parameter ε > 0, the spanning subgraph
G is called a (1 + ε)-spanner for the point set S if for every pair x, y ∈ S of
points, the distance distG(x, y) between x and y in G is at most (1 + ε)‖x− y‖.
Euclidean spanners were introduced more than twenty years ago by Chew [11].
Since then they evolved into an important subarea of Computational Geometry
[19,3,12,4,13,5,23,15,1,7,14]. (See also the recent book by Narasimhan and Smid
on Euclidean spanners [21], and the references therein.) Also, Euclidean spanners
have numerous applications in geometric approximation algorithms [23,16,17],
geometric distance oracles [16,17], Network Design [18,20] and in other areas.

In many of these applications one is required to construct a (1 + ε)-spanner
G = (S,E) that satisfies a number of useful properties. First, the spanner should
contain O(n) (or nearly O(n)) edges. Second, its weight w(G) =

∑
e∈E w(e)

should not be much greater than the weight w(MST (S)) of the minimum span-
ning tree MST (S) of S. Third, its diameter Λ = Λ(G) should be small, i.e., for
every pair of points x, y ∈ S there should exist a path P in G that contains at
most Λ edges and has weight w(P) =

∑
e∈E(P) w(e) ≤ (1 + ε)‖x − y‖. Fourth,

its maximum degree (henceforth, degree) Δ(G) should be small.
In a seminal STOC’95 paper, Arya et al. [4] devised a construction of (1 +

ε)-spanners with lightness1 O(log2 n), diameter O(log n) and constant degree.
They also devised a construction of (1 + ε)-spanners with O(n) (respectively,
O(n log∗ n)) edges and diameter O(α(n)) (resp., at most O(1)). However, in the
latter construction the resulting spanners may have arbitrarily large (i.e., at least
Ω(n)) lightness and degree. There are also a few other known constructions of
(1+ ε)-spanners. Das and Narasimhan [12] devised a construction with constant
degree and lightness, but the diameter may be arbitrarily large. (See also [15]
for a faster implementation of a spanner construction with constant degree and
lightness.) There is also another construction by Arya et al. [4] that guarantees
that both the diameter and the lightness are O(log n), but the degree may be
arbitrarily large. While these constructions address some important practical
scenarios, they certainly do not address all of them. In particular, they fail
to address situations in which we are prepared to compromise on one of the
parameters, but cannot afford this parameter to be arbitrarily large.

In this paper we devise a novel unified construction that trades between de-
gree, diameter and weight gracefully. For a positive integer k, our construction
provides a (1+ε)-spanner with degree O(k), diameter O(logk n+α(k)), lightness
O(k logk n log n), and O(n) edges. Also, we can improve the bound on the diam-
eter from O(logk n+α(k)) to O(logk n), at the expense of increasing the number
of edges from O(n) to O(n log∗ n). Note that for k = O(1) our tradeoff gives
rise to degree O(1), diameter O(log n) and lightness O(log2 n), which is one of
the aforementioned results of [4]. Also, for k = n1/α(n) it gives rise to a spanner
with degree O(n1/α(n)), diameter O(α(n)) and lightness O(n1/α(n)(log n)α(n)).

1 For convenience, we will henceforth refer to the normalized notion of weight Ψ(G) =
w(G)

w(MST (S))
, which we call lightness.

50 S. Solomon and M. Elkin

In the corresponding result from [4] the spanner has the same number of edges
and diameter, but its lightness and degree may be arbitrarily large.

In addition, we can achieve lightness o(log2 n) at the expense of increasing the
diameter. Specifically, for a parameter k the second variant of our construction
provides a (1+ ε)-spanner with degree O(1), diameter O(k logk n), and lightness
O(logk n logn). For example, for k = logδ n, for an arbitrarily small constant
δ > 0, we get a (1 + ε)-spanner with degree O(1), diameter O(log1+δ n) and
lightness O(log2 n

log log n).
Our unified construction can be implemented in O(n log n) time in the alge-

braic computation-tree model2. This matches the state-of-the-art running time
of the aforementioned constructions [4,15].

Note that in any construction of spanners with degree O(k), the diameter
is Ω(logk n). Also, Chan and Gupta [7] showed that any (1 + ε)-spanner with
O(n) edges must have diameter Ω(α(n)). Consequently, our upper bound of
O(logk n + α(k)) on the diameter is tight under the constraints that the degree
is O(k) and the number of edges is O(n). If we allow O(n log∗ n) edges in the
spanner, than our bound on the diameter is reduced to O(logk n), which is again
tight under the constraint that the degree is O(k).

In addition, Dinitz et al. [14] showed that for any construction of spanners,
if the diameter is at most O(logk n), then the lightness is at least Ω(k logk n)
and vice versa, if the lightness is at most O(logk n), the diameter is at least
Ω(k logk n). This lower bound implies that the bound on lightness in both our
tradeoffs cannot possibly be improved by more than a factor of log n. The same
slack of log n is present in the result of [4] that guarantees lightness O(log2 n),
diameter O(log n) and constant degree.

Euclidean Spanners for Random Point Sets. For random point sets in the
d-dimensional unit cube (henceforth, unit cube), we “shave” a factor of log n
from the lightness bound in both our tradeoffs, and show that the first (respec-
tively, second) variant of our construction achieves maximum degree O(k) (resp.,
O(1)), diameter O(logk n + α(k)) (resp., O(k logk n)) and lightness that is with
high probability (henceforth, w.h.p.) O(k logk n) (resp., O(logk n)). Note that for
k = O(1) both these tradeoffs give rise to degree O(1), diameter O(log n) and
lightness (w.h.p.) O(log n). In addition to these tradeoffs, we can get a (1 + ε)-
spanner with diameter O(log n) and lightness (w.h.p.) O(1).

Spanners for Doubling Metrics. Spanners for doubling metrics3 have re-
ceived much attention in recent years (see, e.g., [8,7]). In particular, Chan et al.
[8] showed that for any doubling metric (X, δ) there exists a (1+ε)-spanner with
constant maximum degree. In addition, Chan and Gupta [7] devised a construc-
tion of (1 + ε)-spanners for doubling metrics that achieves the optimal tradeoff

2 See, e.g., Chapter 3 of [21] for the definition of the algebraic computation-tree model.
3 The doubling dimension of a metric (X, δ) is the smallest value ζ such that every

ball B in the metric can be covered by at most 2ζ balls of half the radius of B. The
metric (X, δ) is called doubling if its doubling dimension ζ is constant.

Balancing Degree, Diameter and Weight in Euclidean Spanners 51

between the number of edges and the diameter. We present a single construction
of O(1)-spanners for doubling metrics that achieves the optimal tradeoff between
the degree, the diameter and the number of edges in the entire range of param-
eters. Specifically, for a parameter k, our construction provides an O(1)-spanner
with maximum degree O(k), diameter O(logk n + α(k)) and O(n) edges. Also,
we can improve the bound on the diameter from O(logk n + α(k)) to O(logk n),
at the expense of increasing the number of edges from O(n) to O(n log∗ n). More
generally, we can achieve the same optimal tradeoff between the number of edges
and the diameter as the spanners of [7] do, while also having the optimal maxi-
mum degree. The drawback is, however, that the stretch of our spanners is O(1)
rather than 1 + ε.

Spanners for Tree Metrics. We denote by ϑn the metric induced by n points
v1, v2, . . . , vn lying on the x-axis with coordinates 1, 2, . . . , n, respectively. In
a classical STOC’82 paper [26], Yao showed that there exists a 1-spanner4

G = (V,E) for ϑn with O(n) edges and diameter O(α(n)), and that this is
tight. Chazelle [9] extended the result of [26] to arbitrary tree metrics. (See
also [2,6,25].) The problem is also closely related to the well-studied problem of
computing partial-sums [24,26,10,22].

In all constructions [26,9,2,6,25] of 1-spanners for tree metrics, the degree and
lightness of the resulting spanner may be arbitrarily large. Moreover, the con-
straint that the diameter is O(α(n)) implies that the degree must be nΩ(1/α(n)).
A similar lower bound on lightness follows from the result of [14].

En route to our tradeoffs for Euclidean spanners, we have extended the re-
sults of [26,9,2,6,25] and devised a construction that achieves the optimal (up
to constant factors) tradeoff between all involved parameters. Specifically, con-
sider an n-vertex tree T of degree Δ(T), and let k be a positive integer. Our
construction provides a 1-spanner for the metric MT induced by T with O(n)
edges, degree O(k+Δ(T)), diameter O(logk n+α(k)), and lightness O(k logk n).
We can also get a spanner with O(n log∗ n) edges, diameter O(logk n), and the
same degree and lightness as above. For the complementary range of diameter,
another variant of our construction provides a 1-spanner with O(n) edges, de-
gree O(Δ(T)), diameter O(k logk n) and lightness O(logk n). As was mentioned
above, both these tradeoffs are optimal up to constant factors.

We show that this general tradeoff between various parameters of 1-spanners
for tree metrics is useful for deriving new results (and improving existing results)
in the context of Euclidean spanners and spanners for doubling metrics. We
anticipate that this tradeoff will be found useful in the context of partial sums
problems, and for other applications.

Structure of the Paper. In Sect. 2 we describe our construction of 1-spanners
for tree metrics. Therein we start (Sect. 2.1) with outlining our basic scheme.
We proceed (Sect. 2.2) with describing our 1-dimensional construction. In Sect.

4 The graph G is said to be a 1-spanner of ϑn if for every pair of distinct vertices
vi, vj ∈ V , the distance between them in G is equal to their distance ‖i − j‖ in ϑn.
Yao stated this problem in terms of partial sums.

52 S. Solomon and M. Elkin

2.3 we extend this construction to general tree metrics. In Sect. 3 we derive our
results for Euclidean spanners and spanners for doubling metrics. Due to space
constraints, we leave all issues of running time as well as some proofs out of this
extended abstract.
Preliminaries. Let G be a spanning subgraph of a metric space M = (V, dist).
The stretch between two vertices u, v ∈ V is defined as distG(u,v)

dist(u,v) . We say that
G is a t-spanner for M if the maximum stretch taken over all pairs of points in
V is at most t. Let T be an arbitrary tree, and denote by V (T) the vertex set of
T . For any two vertices u, v in T , their (weighted) distance in T is denoted by
distT (u, v). The tree metric MT induced by T is defined as MT = (V (T), distT).
The size of T , denoted |T |, is the number of vertices in T . Finally, for a positive
integer n, we denote the set {1, 2, . . . , n} by [n].

2 1-Spanners for Tree Metrics

2.1 The Basic Scheme

Consider an arbitrary n-vertex (weighted) rooted tree (T, rt), and let MT be
the tree metric induced by T . Clearly, T is both a 1-spanner and an MST of
MT , but its diameter may be huge. We would like to reduce the diameter of this
1-spanner by adding to it some edges. On the other hand, the number of edges
of the resulting spanner should still be linear in n. Moreover, the lightness and
the maximum degree of the resulting spanner should also be reasonably small.

Let H be a spanning subgraph of MT . The monotone distance between any
two points u and v in H is defined as the minimum number of hops in a 1-spanner
path in H connecting them. Two points in MT are called comparable if one is
an ancestor of the other in the underlying tree T . The monotone diameter (re-
spectively, comparable monotone diameter) of H , denoted Λ(H) (resp., Λ̄(H)),
is defined as the maximum monotone distance in H between any two points
(resp., any two comparable points) in MT . Observe that if any two comparable
points are connected via a 1-spanner path that consists of at most h hops, then
any two arbitrary points are connected via a 1-spanner path that consists of at
most 2h hops. Consequently, Λ̄(H) ≤ Λ(H) ≤ 2Λ̄(H). We henceforth restrict
attention to comparable monotone diameter in the sequel.

Let k be a fixed parameter. The first ingredient of the algorithm is to select
a set of O(k) cut-vertices whose removal from T partitions it into a collection of
subtrees of size O(n/k) each. As will become clear in the sequel, we also require
this set to satisfy several additional properties. Having selected the cut-vertices,
the next step of the algorithm is to connect the cut-vertices via O(k) edges, so
that the monotone distance between any pair of comparable cut-vertices will be
small. (This phase does not involve a recursive call of the algorithm.) Finally,
the algorithm calls itself recursively for each of the subtrees.

We insert all edges of the original tree T into our final spanner H . These edges
connect between cut-vertices and subtrees in the spanner. We remark that the
spanner contains no other edges that connect between cut-vertices and subtrees,
or between different subtrees.

Balancing Degree, Diameter and Weight in Euclidean Spanners 53

2.2 1-Dimensional Spaces

In this section we devise an optimal construction of 1-spanners for ϑn. (See Sect.
1 for its definition.) Our argument extends easily to any 1-dimensional space.

Denote by Pn the path (v1, v2), (v2, v3), . . . , (vn−1, vn) that induces the metric
ϑn. We remark that the edges of Pn belong to all spanners that we construct.

Selecting the Cut-Vertices. The task of selecting the cut-vertices in the 1-
dimensional case is trivial. (We assume for simplicity that n is an integer power
of k.) In addition to the two endpoints v1 and vn of the path, we select the k−1
points r1, r2, . . . , rk−1 to be cut-vertices, where for each i ∈ [k− 1], ri = vi(n/k).
Indeed, by removing the k+1 cut-vertices r0 = v1, r1, . . . , rk−1, rk = vn from the
path (along with their incident edges), we are left with k intervals I1, I2, . . . , Ik

of length at most n/k each. The two endpoints v1 and vn of the path are called
the sentinels, and they play a special role in the construction.

1-Spanners with Low Diameter. In this section we devise a construction
Hk(n) of 1-spanners for ϑn with comparable monotone diameter Λ̄(n)= Λ̄(Hk(n))
in the range Ω(α(n)) = Λ̄(n) = O(log n).

First, the algorithm connects the k + 1 cut-vertices r0 = v1, r1, . . . , rk−1, rk =
vn via one of the aforementioned constructions of 1-spanners from [26,9,2,6,25]
(henceforth, list-spanner). In other words, O(k) edges are added between cut-
vertices to guarantee that the monotone distance between any two cut-vertices
will be at most O(α(k)). Then the algorithm connects each of the two sentinels
to all other k cut-vertices. Finally, the algorithm calls itself recursively for each of
the intervals I1, I2, . . . , Ik. At the bottom level of the recursion, i.e., when n ≤ k,
the algorithm uses the list-spanner to connect all points, and also connects each
of the two sentinels v1 and vn to all the other n− 1 points.

Denote by E(n) the number of edges in Hk(n), excluding edges of Pn. Clearly,
E(n) satisfies the recurrence E(n) ≤ O(k) + kE(n/k), with the base condition
E(n) = O(n), for n ≤ k, yielding E(n) = O(n). Denote by Δ(n) the maximum
degree of a vertex in Hk(n), excluding edges of Pn. Clearly, Δ(n) satisfies the
recurrence Δ(n) ≤ max{k,Δ(n/k)}, with the base condition Δ(n) ≤ n− 1, for
n ≤ k, yielding Δ(n) ≤ k. Including edges of Pn, the number of edges increases
by n− 1 units, and the maximum degree increases by at most two units.

To bound the weight w(n) = w(Hk(n)) of Hk(n), first note that at most O(k)
edges are added between cut-vertices. Each of these edges has weight at most
n − 1. The total weight of all edges within an interval Ii is at most w(n/k).
Observe also that w(Pn) = n − 1. Hence w(n) satisfies the recurrence w(n) ≤
O(nk) + kw(n/k), with the base condition w(n) = O(n2), for n ≤ k. It follows
that w(n) = O(nk logk n) = O(k logk n)w(MST (ϑn)).

Next, we show that the comparable monotone diameter Λ̄(n) of Hk(n) is
O(logk n + α(k)). The monotone radius R(n) of Hk(n) is defined as the maxi-
mum monotone distance in Hk(n) between one of the sentinels (either v1 or vn)
and some other point in ϑn. Let vj be a point in ϑn, and let i be the index such
that i(n/k) ≤ j < (i + 1)(n/k). Then the 1-spanner path Π in Hk(n) connect-
ing the sentinel v1 and the point vj will start with the two edges (v1, vi(n/k)),

54 S. Solomon and M. Elkin

(vi(n/k), vi(n/k)+1). The point vi(n/k)+1 is a sentinel of the ith interval Ii, and so
the path Π will continue recursively from vi(n/k)+1 to vj . Hence, the monotone
radius R(n) satisfies the recurrence R(n) ≤ 2 + R(n/k), with the base condition
R(n) = 1, for n ≤ k, yielding R(n) = O(logk n). Finally, it is easy to verify that
Λ̄(n) satisfies the recurrence Λ̄(n) ≤ max{Λ̄(n/k), O(α(k))+2R(n/k)}, with the
base condition Λ̄(n) = O(α(n)), for n ≤ k. Hence Λ̄(n) = O(logk n + α(k)).

Theorem 1. For any n-point 1-dimensional space and a parameter k, there
exists a 1-spanner with O(n) edges, maximum degree at most k + 2, diameter
O(logk n + α(k)) and lightness O(k logk n).

1-Spanners with High Diameter. In this section we devise a construc-
tion H ′

k(n) of 1-spanners for ϑn with comparable monotone diameter Λ̄′(n) =
Λ̄(H ′

k(n)) in the range Λ̄′(n) = Ω(log n).
The algorithm connects the k + 1 cut-vertices r0 = v1, r1, . . . , rk−1, rk = vn

via a path of length k, i.e., it adds the edges (r0, r1), (r1, r2), . . . , (rk−1, rk)
into the spanner. In addition, it calls itself recursively for each of the inter-
vals I1, I2, . . . , Ik. At the bottom level of the recursion, i.e., when n ≤ k, the
algorithm adds no additional edges to the spanner.

We denote by Δ′(n) the maximum degree of a vertex in H ′
k(n), excluding edges

of Pn. Clearly, Δ′(n) satisfies the recurrence Δ′(n) ≤ max{2, Δ′(n/k)}, with the
base condition Δ′(n) = 0, for n ≤ k, yielding Δ′(n) ≤ 2. Including edges of
Pn, the maximum degree increases by at most two units, and so Δ(H ′

k(n)) ≤ 4.
Consequently, the number of edges in H ′

k(n) is no greater than 2n. To bound
the weight w′(n) = w(H ′

k(n)) of H ′
k(n), first note that the path connecting all

k+1 cut-vertices has weight n−1. Observe also that w(Pn) = n−1. Thus w′(n)
satisfies the recurrence w′(n) ≤ 2(n − 1) + kw′(n/k), with the base condition
w′(n) ≤ n−1, for n ≤ k, yielding w′(n) = O(n logk n) = O(logk n)w(MST (ϑn)).

Note that the monotone radius R′(n) of H ′
k(n) satisfies the recurrence R′(n) ≤

k + R′(n/k), with the base condition R′(n) ≤ n− 1, for n ≤ k. Hence, R′(n) =
O(k logk n). It is easy to verify that the comparable monotone diameter Λ̄′(n) =
Λ̄(H ′

k(n)) of H ′
k(n) satisfies the recurrence Λ̄′(n) ≤ max{Λ̄′(n/k), k+2R′(n/k)},

with the base condition Λ̄′(n) ≤ n− 1, for n ≤ k, and so Λ̄′(n) = O(k logk n).
Finally, we remark that the spanner H ′

k(n) is a planar graph.

Theorem 2. For any n-point 1-dimensional space and a parameter k, there
exists a 1-spanner with maximum degree 4, diameter O(k logk n) and lightness
O(logk n). Moreover, this 1-spanner is a planar graph.

2.3 General Tree Metrics

In this section we extend the constructions of Sect. 2.2 to general tree metrics.

Selecting the Cut-Vertices. In this section we present a procedure for se-
lecting, given a tree T , a subset of O(k) vertices whose removal from the tree
partitions it into subtrees of size O(|T |/k) each. This subset will also satisfy
several additional special properties.

Balancing Degree, Diameter and Weight in Euclidean Spanners 55

Let (T, rt) be a rooted tree. For an inner vertex v in T with ch(v) children,
we denote its children by c1(v), c2(v), . . . , cch(v)(v). Suppose without loss of gen-
erality that the size of the subtree Tc1(v) of v is no smaller than the size of any
other subtree of v, i.e., |Tc1(v)| ≥ |Tc2(v)|, |Tc3(v)|, . . . , |Tcch(v)(v)|. We say that
the vertex c1(v) is the left-most child of v. Also, an edge in T is called left-
most if it connects a vertex v in T and its left-most child c1(v). We denote by
P (v) = (v, c1(v), . . . , l(v)) the path of left-most edges leading down from v to
the left-most vertex l(v) in the subtree Tv of T rooted at v. A vertex v in T is
called d-balanced, for d ≥ 1, or simply balanced if d is clear from the context, if
|Tc1(v)| ≤ |T | − d. The first balanced vertex along P (v) is denoted by B(v).

Next, we present the Procedure CV that accepts as input a rooted tree (T, rt)
and a parameter d, and returns as output a subset of V (T). If |T | < 2d, the
procedure returns the empty set ∅. Otherwise, for each child ci(b) of the first
balanced vertex b = B(rt) along P (rt), i ∈ [ch(b)], the procedure recursively
constructs the subset Ci = CV ((Tci(b), ci(b)), d), and then returns

⋃ch(b)
i=1 Ci∪{b}.

Let (T, rt) be an n-vertex rooted tree, and let d be a fixed parameter. Next,
we analyze the properties of the set C = CV ((T, rt), d) of cut-vertices.

For a tree τ , the root rt(τ) of τ and its left-most vertex l(τ) are called the
sentinels of τ . Similarly to the 1-dimensional case, we add the two sentinels rt(T)
and l(T) of the original tree T to the set C of cut-vertices. From now on we refer
to the appended set C̃ = C ∪ {rt(T), l(T)} as the set of cut-vertices. Observe
that the subset C̃ induces a tree Q̃ = Q(T, C̃) over C̃ in the natural way: a
vertex v ∈ C̃ is defined to be a child of its closest ancestor in T that belongs to
C̃. We denote by T \ C̃ the forest obtained from T by removing all vertices in
C̃, along with the edges that are incident to them.

Proposition 1. 1) For n ≥ 2d, |C̃| ≤ (n/d) + 1. 2) The size of any subtree in
T \C̃ is smaller than 2d. 3) Q̃ = Q(T, C̃) is a spanning tree of C̃ rooted at rt(T),
with Δ(Q̃) ≤ Δ(T). 4) For any subtree T ′ in T \ C̃, only the two sentinels of
T ′ are incident to a vertex in C̃. Also, rt(T ′) is incident only to its parent in T
and l(T ′) is incident only to its left-most child in T , unless it is a leaf in T .

Intuitively, part (4) of this proposition shows that the Procedure CV “slices”
the tree in a “path-like” fashion analogous to the partition of ϑn into intervals.

1-Spanners with Low Diameter. Consider an n-vertex (weighted) tree T ,
and let MT be the tree metric induced by T . In this section we devise a con-
struction Hk(n) of 1-spanners for MT with comparable monotone diameter
Λ̄(n) = Λ̄(Hk(n)) in the range Ω(α(n)) = Λ̄(n) = O(log n). Both in this con-
struction and in the one with high diameter presented in the sequel, all edges of
the original tree T are added to the spanner.

Let k be a fixed parameter such that 4 ≤ k ≤ n/2 − 1, and set d = n/k.
(We have n ≥ 2k + 2 and d > 2.) To select the set C̃ of cut-vertices, we invoke
the procedure CV on the input (T, rt) and d. Set C = CV ((T, rt), d) and C̃ =
C ∪ {rt(T), l(T)}. Denote the subtrees in the forest T \ C̃ by T1, T2, . . . , Tp. By
Proposition 1, |C̃| ≤ k + 1, and each subtree Ti in T \ C̃ has size less than 2n/k.

56 S. Solomon and M. Elkin

To connect the set C̃ of cut-vertices, the algorithm first constructs the tree
Q̃ = Q(T, C̃). Note that Q̃ inherits the tree structure of T , i.e., for any two
points u and v in C̃, u is an ancestor of v in Q̃ iff it is its ancestor in T . Conse-
quently, any 1-spanner path in Q̃ between two arbitrary comparable5 points is
also a 1-spanner path for them in the original tree T . The algorithm proceeds
by building a 1-spanner for Q̃ via one of the aforementioned generalized con-
structions from [9,2,25] (henceforth, tree-spanner). In other words, O(k) edges
between cut-vertices are added to the spanner Hk(n) to guarantee that the
monotone distance in the spanner between any two comparable cut-vertices is
O(α(k)). Then the algorithm adds to the spanner Hk(n) edges that connect
each of the two sentinels to all other cut-vertices. (In fact, the leaf l(T) needs
not be connected to all cut-vertices, but rather only to those which are its ances-
tors in T .) Finally, the algorithm calls itself recursively for each of the subtrees
T1, T2, . . . , Tp. At the bottom level of the recursion, i.e., when n < 2k + 2, the
algorithm uses the tree-spanner to connect all points, and, in addition, it adds
to the spanner edges that connect each of the two sentinels rt(T) and l(T) to all
the other n− 1 points.

The properties of the spanner Hk(n) are summarized in the next theorem.

Theorem 3. For any tree metric MT and a parameter k, there exists a 1-
spanner Hk(n) with O(n) edges, maximum degree at most Δ(T) + 2k, diameter
O(logk n + α(k)) and lightness O(k logk n).

We remark that the maximum degree Δ(H) of the spannerH = Hk(n) cannot be
in general smaller than the maximum degree Δ(T) of the original tree. Indeed,
consider a unit weight star T with edge set {(rt, v1), (rt, v2), . . . , (rt, vn−1)}.
Obviously, any spanner H for MT with Δ(H) < n − 1 distorts the distance
between the root rt and some other vertex.

1-Spanners with High Diameter. The next theorem gives our construction
of 1-spanners for MT with comparable monotone diameter in the range Ω(log n).

Theorem 4. For any tree metric MT and a parameter k, there exists a 1-
spanner with O(n) edges, maximum degree at most 2Δ(T), diameter O(k logk n)
and lightness O(logk n). Moreover, this 1-spanner is a planar graph.

3 Euclidean Spanners

In this section we demonstrate that our 1-spanners for tree metrics can be used
for constructing Euclidean spanners and spanners for doubling metrics.

We start with employing the Dumbbell Theorem of [4] in conjunction with
our 1-spanners for tree metrics to construct Euclidean spanners.

Theorem 5. (“Dumbbell Theorem”, Theorem 2 in [4]) Given a set S of n points
in Rd and a parameter ε > 0, a forest D consisting of O(1) rooted binary trees of
size O(n) can be built in O(n log n) time, having the following properties: 1) For
5 This may not hold true for two points that are not comparable, as their least common

ancestor may not belong to Q̃.

Balancing Degree, Diameter and Weight in Euclidean Spanners 57

each tree in D, there is a 1-1 correspondence between the leaves of this tree and
the points of S. 2) Each internal vertex in the tree has a unique representative
point, which can be selected arbitrarily from the points in any of its descendant
leaves. 3) Given any two points u, v ∈ S, there is a tree in D, so that the path
formed by walking from representative to representative along the unique path in
that tree between these vertices, is a (1 + ε)-spanner path for u and v.

For each dumbbell tree in D, we use the following representative assignment from
[4]. Leaf labels are propagated up the tree. An internal vertex chooses to itself
one of the propagated labels and propagates the other one up the tree. Each
label is used at most twice, once at a leaf and once at an internal vertex. Any
label assignment induces a weight function over the edges of the dumbbell tree
in the obvious way. (The weight of an edge is set to be the Euclidean distance
between the representatives corresponding to the two endpoints of that edge.)
Arya et al. [4] proved that the lightness of dumbbell trees is always O(log n),
regardless of which representative assignment is chosen for the internal vertices.

Next, we describe our construction of Euclidean spanners with diameter in
the range Ω(α(n)) = Λ = O(log n). For each dumbbell tree DTi ∈ D, denote by
Mi the O(n)-point tree metric induced by DTi. To obtain our construction of
(1 + ε)-spanners with low diameter, we set k = n1/Λ, and build the 1-spanner
construction Hi = Hi

k(O(n)) of Theorem 3 for each of the tree metrics Mi. Then
we translate each Hi to be a spanning subgraph Ĥi of S in the obvious way. Let
Ek(n) be the Euclidean spanner obtained from the union of all the graphs Ĥi.

It is easy to see that the number of edges in Ek(n) is O(n).
Next, we show that Λ(Ek(n)) = O(logk n+α(k)). By the Dumbbell Theorem,

for any pair of points u, v ∈ S, there exists a dumbbell tree DTi, so that the
unique path Pu,v between u and v in DTi is a (1 + ε)-spanner path. Theorem 3
implies that there is a 1-spanner path P in Hi between u and v that consists of
O(logk n+α(k)) hops. By the triangle inequality, the weight of the corresponding
translated path P̂ in Ĥi is no greater than the weight of Pu,v. Hence, P̂ is a
(1 + ε)-spanner path for u and v that consists of O(logk n + α(k)) hops.

We proceed by showing that Δ(Ek(n)) = O(k). Since each dumbbell tree DTi

is binary, theorem 3 implies that Δ(Hi) = O(k). Recall that each label is used
at most twice in DTi, and so Δ(Ĥi) ≤ 2Δ(Hi) = O(k). The union of O(1) such
graphs will also have maximum degree O(k).

Finally, we argue that the lightness Ψ(Ek(n)) of Ek(n) is O(k logk n log n).
Consider a dumbbell tree DTi. Recall that the lightness of all dumbbell trees
is O(log n), and so w(DTi) = O(log n)w(MST (S)). By Theorem 3, the weight
w(Hi) of Hi is at most O(k logk n)w(DTi). By the triangle inequality, the weight
of each edge in Ĥi is no greater than the corresponding weight in Hi, implying
that w(Ĥi) ≤ w(Hi) = O(k logk n log n)w(MST (S)). The union of O(1) such
graphs will also have weight O(k logk n log n)w(MST (S)).

To obtain our construction of Euclidean spanners in the range Λ = Ω(log n),
we use our 1-spanners for tree metrics from Theorem 4 instead of Theorem 3.

Corollary 1. For any set S of n points in Rd, any ε > 0 and a parameter k,
there exists a (1 + ε)-spanner with O(n) edges, maximum degree O(k), diameter

58 S. Solomon and M. Elkin

O(logk n + α(k)) and lightness O(k logk n log n). There also exists a (1 + ε)-
spanner with degree O(1), diameter O(k logk n) and lightness O(logk n logn).

We show that the lightness of well-separated pair constructions for random point
sets in the unit cube is (w.h.p.) O(1). Also, the lightness of well-separated pair
constructions provides an asymptotic upper bound on the lightness of dumbbell
trees. We derive the following result as a corollary.

Corollary 2. For any set S of n points that are chosen independently and uni-
formly at random from the unit cube, any ε > 0 and a parameter k, there exists
a (1 + ε)-spanner with O(n) edges, maximum degree O(k), diameter O(logk n +
α(k)) and lightness (w.h.p.) O(k logk n). There also exists a (1+ ε)-spanner with
maximum degree O(1), diameter O(k logk n) and lightness (w.h.p.) O(logk n).

Chan et al. [8] showed that for any doubling metric (X, δ) there exists a (1 + ε)-
spanner with constant maximum degree. On the way to this result they proved
the following lemma, which we employ in conjunction with our 1-spanners for
tree metrics to construct our spanners for doubling metrics.

Lemma 1 (Lemma 3.1 in [8]). For any doubling metric (X, δ), there exists
a collection T of m = O(1) spanning trees for (X, δ), T = {τ1, τ2, . . . , τm}, that
satisfies the following two properties: 1) For each index i ∈ [m], the maximum
degree Δ(τi) of the tree τi is constant, i.e., Δ(τi) = O(1). 2) For each pair of
points x, y ∈ X there exists an index i ∈ [m] such that distτi(x, y) = O(1)δ(x, y).

To obtain our spanners for doubling metrics we start with constructing the
collection T = {τ1, τ2, . . . , τm} of spanning trees with properties listed in Lemma
1. Next, we apply Theorem 3 with some parameter k to construct a 1-spanner
Zi = Zi

k(n) for the tree metric induced by the ith tree τi in T , for each i ∈ [m].
Our spanner Z is set to be the union of all the 1-spanners Zi, i.e., Z =

⋃m
i=1 Zi.

We summarize the properties of the resulting spanner Z in the next statement.

Corollary 3. For any n-point doubling metric (X, δ) and a parameter k, there is
an O(1)-spanner Z with O(n) edges, degree O(k) and diameter O(logk n+α(k)).

Acknowledgments. We are grateful to Sunil Arya, David Mount and Michiel
Smid for helpful discussions.

References

1. Agarwal, P.K., Wang, Y., Yin, P.: Lower bound for sparse Euclidean spanners. In:
Proc. of 16th SODA, pp. 670–671 (2005)

2. Alon, N., Schieber, B.: Optimal preprocessing for answering on-line product
queries. Manuscript (1987)

3. Althöfer, I., Das, G., Dobkin, D.P., Joseph, D., Soares, J.: On sparse spanners of
weighted graphs. Discrete & Computational Geometry 9, 81–100 (1993)

4. Arya, S., Das, G., Mount, D.M., Salowe, J.S., Smid, M.H.M.: Euclidean spanners:
short, thin, and lanky. In: Proc. of 27th STOC, pp. 489–498 (1995)

Balancing Degree, Diameter and Weight in Euclidean Spanners 59

5. Arya, S., Smid, M.H.M.: Efficient construction of a bounded degree spanner with
low weight. Algorithmica 17(1), 33–54 (1997)

6. Bodlaender, H.L., Tel, G., Santoro, N.: Trade-offs in non-reversing diameter. Nord.
J. Comput. 1(1), 111–134 (1994)

7. Chan, H.T.-H., Gupta, A.: Small hop-diameter sparse spanners for doubling met-
rics. In: Proc. of 17th SODA, pp. 70–78 (2006)

8. Chan, H.T.-H., Gupta, A., Maggs, B.M., Zhou, S.: On hierarchical routing in dou-
bling metrics. In: Proc. of 16th SODA, pp. 762–771 (2005)

9. Chazelle, B.: Computing on a free tree via complexity-preserving mappings. Algo-
rithmica 2, 337–361 (1987)

10. Chazelle, B., Rosenberg, B.: The complexity of computing partial sums off-line.
Int. J. Comput. Geom. Appl. 1, 33–45 (1991)

11. Chew, L.P.: There is a planar graph almost as good as the complete graph. In:
Proc. of 2nd SOCG, pp. 169–177 (1986)

12. Das, G., Narasimhan, G.: A fast algorithm for constructing sparse Euclidean span-
ners. In: Proc. of 10th SOCG, pp. 132–139 (1994)

13. Das, G., Narasimhan, G., Salowe, J.S.: A new way to weigh malnourished Euclidean
graphs. In: Proc. of 6th SODA, pp. 215–222 (1995)

14. Dinitz, Y., Elkin, M., Solomon, S.: Shallow-low-light trees, and tight lower bounds
for Euclidean spanners. In: Proc. of 49th FOCS, pp. 519–528 (2008)

15. Gudmundsson, J., Levcopoulos, C., Narasimhan, G.: Fast greedy algorithms for
constructing sparse geometric spanners. SIAM J. Comput. 31(5), 1479–1500 (2002)

16. Gudmundsson, J., Levcopoulos, C., Narasimhan, G., Smid, M.H.M.: Approximate
distance oracles for geometric graphs. In: Proc. of 13th SODA, pp. 828–837 (2002)

17. Gudmundsson, J., Levcopoulos, C., Narasimhan, G., Smid, M.H.M.: Approximate
distance oracles for geometric spanners. ACM Transactions on Algorithms 4(1)
(2008)

18. Hassin, Y., Peleg, D.: Sparse communication networks and efficient routing in the
plane. In: Proc. of 19th PODC, pp. 41–50 (2000)

19. Keil, J.M., Gutwin, C.A.: Classes of graphs which approximate the complete Eu-
clidean graph. Discrete & Computational Geometry 7, 13–28 (1992)

20. Mansour, Y., Peleg, D.: An approximation algorithm for min-cost network design.
DIMACS Series in Discr. Math and TCS 53, 97–106 (2000)

21. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University
Press, Cambridge (2007)

22. Pǎtraşcu, M., Demaine, E.D.: Tight bounds for the partial-sums problem. In: Proc.
of 15th SODA, pp. 20–29 (2004)

23. Rao, S., Smith, W.D.: Approximating geometrical graphs via “spanners” and
“banyans”. In: Proc. of 30th STOC, pp. 540–550 (1998)

24. Tarjan, R.E.: Applications of path compression on balanced trees. J. ACM 26(4),
690–715 (1979)

25. Thorup, M.: Parallel shortcutting of rooted trees. J. Algorithms 23(1), 139–159
(1997)

26. Yao, A.C.: Space-time tradeoff for answering range queries. In: Proc. of 14th STOC,
pp. 128–136 (1982)

Testing Euclidean Spanners

Frank Hellweg, Melanie Schmidt, and Christian Sohler�

Department of Computer Science, Technische Universität Dortmund

Abstract. We develop a property testing algorithm with query complex-
ity Õ(δ−5dε−5D log6 Δ

√
n) that tests whether a directed geometric graph

G = (P, E) with maximum degree D and vertex set P ⊆ {1, . . . , Δ}d (for
constant d) is a Euclidean (1 + δ)-spanner. Such a property testing al-
gorithm accepts every (1 + δ)-spanner and rejects with high constant
probability every graph that is ε-far from this property, i. e., every graph
that differs in more than ε|P | edges from every (1 + δ)-spanner.

1 Introduction

Property testing is the computational task of deciding whether a given object
has a predetermined property Π or is far away from every object with property
Π . Thus, property testing can be viewed as a relaxation of a standard decision
problem. The main goal of property testing is to develop randomized algorithms
that perform this relaxed decision task by only looking at a small part of the
input object, i.e. we want to develop algorithms whose running time is sublin-
ear in the object’s description size. Property testing has been introduced by
Rubinfeld and Sudan [34] and the study of combinatorial properties has been
initiated by Goldreich, Goldwasser, and Ron [26]. Since then, property testing
algorithms have been developed for properties of functions [25,24,10], properties
of distributions [8,7], algebraic properties [11,34,29], graph and hypergraph prop-
erties [26,3,16,9], and geometric properties which we continue to study in this
paper. Previous work on geometric property testing includes testing algorithms
for convexity of polygons [21], convexity [33], geometric properties of point sets
(for example convex position), the Euclidean minimum spanning tree [18,17,19],
and clusterability of point sets [1,17]. The area of sublinear time algorithms is
closely related to property testing; geometric properties studied in this field in-
clude polyhedron intersection and point location in planar convex subdivisions
with bounded face size [13] and approximation algorithms for the weight of the
Euclidean minimum spanning tree [15] and metric minimum spanning trees [20].

Euclidean spanners. In this paper, we consider Euclidean spanners. A weighted
directed geometric graph G = (P,E) is a directed graph whose vertex set is a set
of points in the Euclidean space Rd and whose edge weights (lengths) are given
by the Euclidean distance of the vertices. Throughout this paper, we will assume
that d is constant. A geometric graph is called a (Euclidean) (1+δ)-spanner, if for
� Research partly supported by DFG grant SO 514/3-1.

M. de Berg and U. Meyer (Eds.): ESA 2010, Part I, LNCS 6346, pp. 60–71, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Testing Euclidean Spanners 61

every pair of vertices p and q the shortest path distance dG(p, q) in G is at most
(1+δ)·‖p−q‖2. Euclidean spanners are a fundamental geometric graph structure
as they can be used to approximately solve many geometric proximity problems.
Many different constructions of Euclidean spanners are known. For constant δ,
Euclidian (1 + δ)-spanners with a linear number of edges can for example be
constructed by using so-called Θ-graphs [14,28] or structures based on the well-
separated pair decomposition [12,31]. Techniques to construct spanners with
bounded degree are also known [5]. For more details we refer to the book [31].
We investigate the question whether a given graph is a Euclidean spanner. The
related question of computing the stretch factor (1 + δ) of a given graph has
recently been studied in [4,22,30]. Additionally, Ahn et al. [2] discuss the problem
to find an edge whose removal leads to the smallest possible increase in the stretch
factor, and Farshi et al. [23] consider the question which edge should be added to
receive the best decrease in the stretch factor (both articles consider very special
cases only).

Our contribution We develop a property testing algorithm that distinguishes
spanners from geometric graphs that are very different from being a spanner.
The distance of a given graph to a spanner is measured by the amount of edges
that have to be inserted to establish the spanner property, and graphs with a high
distance to every spanner are called ε-far (where ‘high’ is defined depending on
the parameter ε). A property tester is a sublinear randomized algorithm that has
to reject every ε-far graph with high probability. We develop a property tester
with one-sided error, i. e., every spanner is always accepted (where in the general
case, this must only happen with high probability). The analysis of our algorithm
assumes that the vertices of the input graph lie on a d-dimensional discrete
grid {1, . . . , Δ}d. The query complexity and running time of our algorithm is
Õ(δ−5dε−5D log6 Δ

√
n), so it depends logarithmically on the range of possible

coordinates. It is open whether this influence or the exponential dependence on
the dimension can be avoided.

2 Preliminaries

Let G = (P,E) be a directed geometric graph with point set P := {p1, . . . , pn} ⊆
Rd, d constant, and edge set E ⊆ P × P . We will assume that the algorithm is
given the number of vertices n, but it does not know the positions of the points
in P . It may query the position of the i-th vertex in O(1) time for any index i,
1 ≤ i ≤ n. The graph structure is stored in the adjacency list model for general
(sparse) graphs proposed in [32]. In this model, it is possible to query the degree
deg(pi) of the i-th vertex in O(1) time by specifying the index i, 1 ≤ i ≤ n and
one can obtain the j-th edge incident to the i-th vertex in O(1) time for any
1 ≤ i ≤ n and 1 ≤ j ≤ deg(i). The maximum degree of a vertex in G is denoted
by D. The query complexity of a property testing algorithm is the number of
queries of coordinates, degrees and neighbors that it needs to accomplish its
task.

62 F. Hellweg, M. Schmidt, and C. Sohler

We use [p, q〉 to denote a directed edge from p to q and denote the shortest
path distance from p to q by dG(p, q), i. e., dG(p, p) = 0, dG(p, q) = ‖p−q‖2 for all
p, q ∈ P with [p, q〉 ∈ E and dG(p, q) := minpaths Q from p to q

∑
[p′,q′〉∈Q dG(p′, q′)

for all other pairs of points. A directed geometric graph is a (1 + δ)-spanner if
it provides a (1 + δ-approximation of the Euclidean distances between all pairs
of points as stated in the following definition. Note that we restrict to (1 + δ)-
spanners with 0 < δ < 1.

Definition 1. Let 0 < δ < 1 be given. A directed geometric graph G is called a
(1+δ)-spanner, if dG(p, q) ≤ (1+δ)||q−p||2 for all pairs of points [p, q〉 ∈ P ×P
with p 	= q.

The definition of property testers depends on the definition of ε-farness. We
define that a graph is ε-far from being a spanner if one has to add, delete or
modify more than εn edges of the graph to get a spanner. This is slightly different
from the definition in [32] where ε|E| is used instead of εn.

Definition 2. Let G = (P,E) be a directed geometric graph and let 0 < ε < 1
and 0 < δ < 1 be given. G is ε-far from a directed geometric graph G′ = (P,E′)
if |E\E′∪E′\E| > εn. G is ε-far from having the property to be a (1+δ)-spanner
if it is ε-far from every (1 + δ)-spanner.

We say that an algorithm A is a property tester with one-sided error for the
property of being a (1 + δ)-spanner if it returns

– true with a probability of 1 if G is a (1 + δ)-spanner
– false with probability at least 2/3 if G is ε-far from being a (1 + δ)-spanner

when given input |V |, ε and δ and access to a directed geometric graph G =
(P,E) as described above.

3 The Algorithm

Our algorithm for testing geometric spanners depends on two parameters s and
s′ that are specified at the end of this paragraph. It has access to a directed
geometric graph in the way described above. First, the algorithm samples a set
of s vertices q1, . . . , qs uniformly at random. Then it independently performs
a shortest path computation starting at each vertex qi. Dijkstra’s algorithm is
used until s′ vertices have been reached (in the current iteration). We denote
this traversal as Dijkstra traversal. After all Dijkstra traversals are finished, the
algorithm checks whether a certificate that the graph is not a spanner was found.
Let Wi be the maximum graph distance reached during the Dijkstra traversal
started at qi. Then we know that all points within graph distance Wi were
reached. Thus, if a point lying within distance Wi/(1+ δ) of qi was sampled but
not reached, then the graph is rejected because in order to satisfy the spanner
property for such a point, there has to be a path that is completely included in
the searched part of the graph. Thus, the graph cannot be a spanner. If no such
point is found for any qi then the graph is accepted. We consider two versions

Testing Euclidean Spanners 63

of our algorithm. For the analysis in Section 4 we set s′ := Õ(δ−2dε−1), for the
general case discussed in Section 5 we set s′ := Õ(δ−4dε−3 log6 Δ), where the
points are assumed to come from the discrete d-dimensional space {1, . . . , Δ}d.
In both cases, the parameter s is set such that s := Õ(δ−dε−2√n).

The maximum degree of a vertex in the graph influences the running time
and query complexity of the Dijkstra traversals, because to perform such a com-
putation one needs to collect information about all neighbors of the already
searched vertices. If the maximum degree is constant, this is, of course, possible
in constant time for each vertex.

UniformTester(n,G, δ, ε)
Sample s points q1, . . . , qs from P without replacement
for i← 1 to s

Perform a Dijkstra traversal in G from qi until
s′ nodes have been visited

Let R be the set of vertices visited and let W = maxq∈R dG(qi, q)
forall sample points qj such that ‖qi − qj‖2 < 1

1+δ ·W
if qj /∈ R or dG(qi, qj) ≥ (1 + δ)‖qi − qj‖2

return false
return true

Note that this algorithm only tests small neighborhoods of certain points. At
first glance it seems unlikely that the spanner property can be tested by local
investigations. Consider a path whose vertices are placed on the boundary of
an ellipsoid. Then δ can be chosen in a way such that the spanner property
is satisfied for all pairs of points except the one with highest distance. This
means that the violation cannot be found by sampling only parts of the path.
Surprisingly, when distinguishing spanners and graphs that are ε-far from being
a spanner, the situation is different: A graph that locally satisfies the spanner
property can be transformed into a spanner by adding only a few edges. We
show that a geometric graph cannot be ε-far from being a spanner if it does only
contain ‘global’ violations of the spanner property.

4 Testing Graphs with Uniformly Spread Vertices

In this section we show that for input graphs of a certain kind the algorithm
UniformTester is a property tester with one-sided error, i. e., it accepts every
spanner with probability one and rejects every graph far from being a spanner
with high probability. The first property holds as the algorithm only rejects a
graph if it has found a pair of points that violates the spanner property, so it
remains to show the high rejection probability. The special case that we assume
is that the points of G are uniformly spread over the plane in the following
sense.

64 F. Hellweg, M. Schmidt, and C. Sohler

Definition 3. Let G be a directed geometric graph with n points and let nu be
a value depending on n (and 1/δ and 1/ε). We say that G is uniformly nu-
distributed on grid H if there exists a d-dimensional grid H with a width of
S = d

√
n/nu cells in each dimension such that every cell of H contains O(nu)

points of G and such that H completely contains G. We denote the cells of H as
base cells and their side length by w0.

Now let G be a uniformly nu-distributed graph on grid H . We say that a pair
of points (p, q) is a violating pair if dG(p, q) > (1 + δ)||p − q||2. If G does not
contain a violating pair, then it is a spanner, and if G is ε-far from being a
spanner, there have to be at least εn violating pairs (otherwise adding less than
εn edges would establish the spanner property). For our algorithm, we need that
(some of) these violating pairs can be found by exploring small neighborhoods
of certain points. For this purpose we show that if the spanner property holds
for all ‘close’ pairs of points in G, then it can be established for distant pairs
of points by inserting no more than εn/2 edges into G. This means that if G is
ε-far from being a spanner, there have to be at least εn/2 ‘close’ pairs of points
violating the spanner property. To realize this, we use exponential grids that
are constructed in a similar manner as in [27] where they are used to compute
coresets for clustering problems. The basic idea behind this is to connect clouds
of points with a small number of edges which is somewhat similar to the use of
well-seperated pair decompositions for spanner constructions [12,31]. However,
our focus lies on connecting ’distant’ points with few edges and not on computing
a complete spanner.

For our exponential grid it is convenient to triple the side length of the boxes,
so we wish to deal with powers of three and for simplicity assume that the side
length S is a power of three.

Definition 4. Let G be a uniformly nu-distributed graph on grid H and let c
be a cell of H. We set iδ := min{i | 3i ≥ (8

√
d/δ), i ∈ N} and define Bc,i for

i ≥ 0 as the cube that is centered at the center of c and has side length 3i+iδ ·w0.
Let p ∈ P . We denote the cell of H containing p by c(p). Then we define the
geometric neighborhood Γ (p) of p as set of all points that are contained in the
area inside Bc(p),0. A point q ∈ P is a neighbor of p if q ∈ Γ (p). Additionally we
define the extended geometric neighborhood Γ e(p) of p as the set of all points
that are contained in the area inside Bc(p),1 (note that Γ (p) ⊆ Γ e(p)).

To construct the exponential grid Hc around c, we define wi = 3i−1 ·w0, cover
Bc,i for i ≥ 1 with [(3i+iδ · w0)/3i−1 · w0]d = (3iδ+1)d cubes of side length wi

and include a cube into Hc if it is not contained in a smaller box Bc,j, j < i but
has a non-empty intersection with H (i. e., we cut off cubes that lie aside of G).
Note that Hc does not contain cells lying within Bc,0.

Observe that the number of cells of H that lie in Γ (p) is at most (3iδ)d <
(3 · 8

√
d/δ)d = O(1/δd) for all c in H (it may be less if c lies close to the margin

of H). Likewise, the number of cells of H that lie in Γ e(p) is O(1/δd). For the
number of cubes in all exponential grids we state the following. Due to space

Testing Euclidean Spanners 65

limitations, the proof of this statement and of the other statements in this section
are omitted.

Observation 1. The value nu can be chosen such that nu = O(δ−dε−1 log δn)
and such that for every nu-distributed graph on grid H the total number of cubes
in all exponential grids Hc for all c ∈ H is less than εn/2.

Now we use the structure defined by H to insert εn/2 edges into G that ensure
that any two points p, q ∈ P with q /∈ Γ (p) are connected by a path of length
dG′(p, q) ≤ (1 + δ)||p − q||2 if this is already true for all pairs consisting of a
point and one of its neighbors. This works because the exponential grid grows
in such a manner that an arbitrary connection between a cell c and a cell in
the exponential grid Hc always suffices to establish the spanner property for all
points in these cells, if applied recursively.

Lemma 1. Let G be a uniformly nu-distributed graph on grid H which satisfies
dG(p, q) ≤ (1+δ)||p−q||2 for all pairs consisting of a point p ∈ P and a neighbor
q ∈ Γ (p) of p. Then G is εn/2-close to being a spanner.

Lemma 1 implies that our algorithm only has to test whether there are at least
εn/2 violating pairs consisting of a point p ∈ P and a neighbor q ∈ Γ (p) of p.
The next Lemma gives an upper bound on the number of points that have to
be explored for a given p to find all neighbors q′ of p such that p and q′ do not
form a violating pair, i. e., for all neighbors q of p that are not found during such
a search, p and q form a violating pair. This is basically due to the definition of
the neighborhoods.

Lemma 2. Let G be a uniformly nu-distributed graph on grid H and let p ∈ P be
a point. It suffices to explore O(δ−dnu) points of G to find all neighbors q ∈ Γ (p)
with dG(p, q) ≤ (1 + δ)||p− q||2.

Lemma 2 states how many points in the neighborhood have to be explored for
each sampled point to test whether a point belongs to a sampled violating pair.
Finally we have to ensure that the algorithm samples enough points to get both
points of at least one violating pair with high probability.

Lemma 3. Let G = (P,E) be a directed geometric graph. Assume that it holds
that every point p ∈ P has at most ρ neighbors and that every point q ∈ P
is neighbor of at most ρ points. Let there be εn/2 pairs of a point p and a
neighbor q ∈ Γ (p) such that p and q form a violating pair. Then there is an
s = O(ρ · √n · ε−1) such that the probability that s points sampled uniformly at
random contain both points of one of these violating pairs is at least 5/6.

The proof of Lemma 3 is a standard analysis similar to the birthday problem.
Now we combine the statements to get the main result of this section. Insert-

ing the value of nu given in Observation 1 into Lemma 2 shows that exploring
O
(
δ−d · 1

ε · log(δn) · δ−d
)

= Õ(δ−2dε−1) points suffices to ensure that the algo-
rithm only rejects if it has indeed found a violating pair. By Lemma 3 we gain
that sampling O(δ−dε−2 log δn

√
n) = Õ(δ−dε−2√n) points is sufficient to find

66 F. Hellweg, M. Schmidt, and C. Sohler

both points of a violating pair with high probability. Combining both facts we
get that algorithm UniformTester is a property tester as defined in Section 2
and that it has a query complexity of Õ

(
δ−3dε−3D

√
n
)
. When implemented

using adequate data structures, the query complexity and running time of the
algorithm only differs by logarithmic factors.

Theorem 1. The algorithm UniformTester is a property tester for the prop-
erty of being a (1 + δ)-spanner under the assumption that the input graphs are
uniformly nu-distributed on grid H with nu = O(δ−dε−1 log δn) chosen as in
Observation 1. It has a query complexity and running time of Õ

(
δ−3dε−3D

√
n
)
.

5 Testing Graphs with Vertices Placed on a Discrete
Grid

From now on, we assume that the vertices of G are coming from the discrete d-
dimensional space {1, . . . , Δ}d. We show that under this assumption after adapt-
ing the number of vertices to explore for each sampled point the above algorithm
is a property tester for the property of G being a (1 + δ)-spanner with a query
complexity of Õ(δ−5dε−5D log6 Δ

√
n). As above, we state that the algorithm

only rejects the input if it finds a witness not satisfying the (1 + δ)-spanner
property. This ensures that an input graph cannot be rejected if it is a (1 + δ)-
spanner. Thus, it remains to show that for all input graphs that are ε-far from
being (1 + δ)-spanners we find such a witness with high probability. The proof
idea is based on the previous proof, but in this case instead of a grid, H will be
defined as a (d-dimensional) quadtree partitioning, satisfying that no leaf cell of
the quadtree exceeds a certain number of vertices; i. e., we build the quadtree by
starting with a bounding box including all points and partitioning each box into
2d subboxes, if it contains more than s points for some s ∈ O

(
poly(log Δ, 1

ε ,
1
δ)
)

recursively.
Similar to the uniform case, we construct an exponential grid around every

leaf box c of H and insert an edge from c to every cell of its exponential grid.
By bounding the depth of H , we can bound the number of leaf boxes in H
and thus show that the number of edges we insert in this way does not exceed
εn/4. The difference to the uniform case is that the neighborhood of a leaf box
c may contain many smaller leaf boxes and thus arbitrarily many points of P .
A neighborhood whose number of points exceeds a certain amount cannot be
completely explored by our algorithm; this means, that for the proof we have
to ensure that one can fix any violation of the spanner property occuring in
such neighbourhoods by inserting at most εn/4 edges in total. We show that
there are only few such neighborhoods, which implies that we can establish the
(1 + δ)-spanner property for these cells by inserting few edges.

We define the exponential grid around a leaf box of H similarly to Section 4:

Definition 5. Let G = (P,E) be a directed geometric graph whose points come
from the d-dimensional grid T ={1, . . . , Δ}d and let H be a d-dimensional
quadtree of the points of G, satisfying that no leaf box of H contains more than

Testing Euclidean Spanners 67

s = (3iδ)d·2d+3·log2 2Δ
ε log 2 = O(log2 Δ

δdε) points of G. For p ∈ P , we denote the leaf box
of H that contains p by c(p). Let c be a leaf box of H. We define w(c) as the
side length of c and Bc,i for i ≥ 0 as the cube that is centered at the center of c
and has side length 3i+iδ ·w(c). We call the points that are contained in the area
inside Bc,0 its geometric neighborhood Γ (c) ⊆ P and for two points p, q ∈ P we
call p geometric neighbor of q if p lies in the geometric neighborhood of q.

Define wi(c) = 3i−1 ·w(c), i > 0. To construct the exponential grid Hc around
c, cover Bc,i for i ≥ 1 with [(3i+iδ · w(c))/3i ·w(c)]d = (3iδ)d cubes of side length
wi(c) and include a cube into Hc if it is not contained in a smaller box Bc,j , j < i
but it is contained in H.

Note that since δ < 1, the extended neighborhood Γ̂ (c) := Bc,1 ∩ P of c contains
all points which can be part of a path from a point p ∈ c to a point q ∈ Γ (c)
having a length of at most (1 + δ)||p− q||2.
Definition 6. We call a leaf box c ∈ H samplable if Γ̂ (c) contains at most
k := 2d+3·3d(2iδ+1)s log2 Δ

ε = O(log4 Δ
δ3dε2

) cells c1, . . . ck with w(ci) < w(c).

We start the analysis by bounding the total number of cells in the exponential
grids around the leaf boxes by εn

4 . The depth of the quadtree defining H is
bounded by log Δ, since the grid T has a side length of Δ and the smallest
possible box has one of d

√
s. Since a box must contain at least s + 1 vertices to

be split into subboxes, the overall number of leaf boxes is at most 2dn log Δ
s . This

leads to the following Lemma:

Lemma 4. The following statements hold:

– The number of cells in all exponential grids around leaf boxes of H does not
exceed εn/8.

– There are at most εn
8·3diδ s2 cells that are not samplable.

Proof. The first statement follows by bounding the maximum number of cells
in each of the exponential grids and multiplying with the above bound on the
number of quadtree leaf boxes. For the second statement consider an arbitrary
leaf box c. What is the number of larger leaf boxes c′ such that c is contained
in Γ̂ (c′)? For each possible size of c′ – there are at most log Δ possible sizes –
due to the number of equal-sized boxes contained in an extended neighbourhood
there are at most (3iδ+1)d log Δ such leaf boxes. Since there are at most 2dn log Δ

s

leaf boxes, the total number of is-contained -relations is at most 2d·3d(iδ+1)n log2 Δ
s .

Thus, there are at most

2d · 3d(iδ+1)n log2 Δ

sk
=

εn

8 · 3diδs2

cells that are not samplable. ��

Lemma 5. Let G be ε-far from being a (1 + δ)-spanner. Then there are at least
εn/2 violating pairs of points in the geometric neighborhoods of samplable leaf
boxes of H.

68 F. Hellweg, M. Schmidt, and C. Sohler

Proof. Assume that there are less than εn/2 violating points in the geometric
neighborhoods of samplable leaf boxes of H . Then we can insert edges into G as
follows:

– Insert edges from every leaf box c ∈ H to all cells of its exponential grid and
vice versa; let E1 be the set of these edges. Due to Lemma 4 it holds that
|E1| < εn/4.

– For every leaf box c ∈ H that is not samplable, insert edges [p, q〉 and [q, p〉
for all p ∈ c, q ∈ Γ (c)\({p}∪Xc), where Xc = {ĉ ∈ H : ĉ∩Γ (c) 	= ∅∧w(ĉ) <
w(c)}, i. e., excluding those points of Γ (c) that lie in leaf boxes of H that
are smaller than c. Let E2 be the set of these edges. Due to Lemma 4 there
are at most εn

8·3diδ s2 leaf boxes that we treat in this way. Since we insert at
most 2 · 3diδs2 edges for each of them, we insert in total at most εn/4 edges.

– Insert edges between all violating pairs of nodes in geometric neighborhoods
of leaf boxes c ∈ H that are samplable; let E3 be the set of these edges. Due
to our assumption, |E3| ≤ εn/2.

Let G′ = (P,E ∪E1 ∪E2 ∪E3) be the resulting graph. We have inserted at most
εn edges into G to obtain G′.

Claim. G′ is a (1 + δ)-spanner.

Proof. Let p, q ∈ P be arbitrary points. We show dG′(p, q) ≤ (1 + δ)||p − q||2
by induction over π = ||p − q||2 (note that since all points of G′ lie on a Δd-
grid, the number of possible distances is finite). At first let ||p − q||2 = m :=
minp′,q′∈P ||p′ − q′||2. Since this is the smallest possible distance, it holds p ∈
Γ (c(q)) and q ∈ Γ (c(p)). We consider the following cases:

1. c(p) is samplable. Since the insertion of E3 ensures that there are no violating
pairs of points inside Γ (c(p)), we have dG′(p, q) ≤ (1 + δ)||p− q||2.

2. c(p) is not samplable and w(c(p)) ≤ w(c(q)). Since [p, q〉 ∈ E2, it holds
dG′(p, q) ≤ (1 + δ)||p− q||2.

3. c(p) is not samplable and w(c(p)) > w(c(q)). We consider two subcases:
(a) c(q) is samplable. Thus, the insertion of E3 ensures that there are no

violating pairs of points inside Γ (c(p)), ensuring that dG′(p, q) ≤ (1 +
δ)||p− q||2.

(b) c(q) is not samplable. In this case, it holds [p, q〉 ∈ E2 and therefore
dG′(p, q) ≤ (1 + δ)||p− q||2.

For the inductive step let ||p − q||2 = π; the induction hypothesis is that
dG′(p′, q′) ≤ (1 + δ)||p′ − q′||2 holds for all p′, q′ ∈ P such that ||p′ − q′||2 < π.
We consider the following cases:

1. p ∈ Γ (c(q)) and q ∈ Γ (c(p)). This case follows analogously to the case
||p− q||2 = m.

2. p /∈ Γ (c(q)), but q ∈ Γ (c(p)).
(a) c(p) is samplable. In this case the insertion of E3 ensures that dG′(p, q) ≤

(1 + δ)||p− q||2.

Testing Euclidean Spanners 69

(b) c(p) is not samplable. If w(c(p)) ≤ w(c(q)), then [p, q〉 ∈ E2. If w(c(p)) >
w(c(q)), then p lies in a cell c ∈ Hc(q) since it is not contained in Γ (c(q)).
Therefore E1 contains an edge [r1, r2〉, where r1 ∈ c(q) and r2 ∈ c. Due
to the construction of Hc(q), it holds ||r2 − p||2 < ||p − q||2 = π and
||r1 − q||2 < ||p − q||2 = π. Thus, by applying the induction hypothesis
we get dG′(r2, p) ≤ (1 + δ)||r2 − p||2 and dG′(r1, q) ≤ (1 + δ)||r1 − q||2.
Then dG′(p, q) ≤ (1 + δ)||p− q||2 can be proved as in Lemma 1.

3. q /∈ Γ (c(p)). This case is analogous to the case that w(c(p)) < w(c(q)) in
2(b) except that we consider Hc(p) instead of Hc(q). ��

We finish the proof of Lemma 5 by stating that Claim 5 is a contradiction to
the assumption that G is ε-far from being a (1 + δ)-spanner. ��

Now reconsider our Algorithm. The largest number of points that can be con-
tained in the extended neighborhood of some samplable leaf box c ∈ H is
(k + (3iδ+1)d)s = Õ(δ−4dε−3 log6 Δ). By setting the number of vertices to ex-
plore by a Dijkstra traversal to this number, we can ensure that the extended
geometric neighborhood of any sample point pi is completely explored, if c(pi) is
samplable. Since there are at least εn/2 violating pairs of points in such neigh-
borhoods, we can apply Lemma 3 and state the following theorem.

Theorem 2. Let G = (P,E) be a geometric graph with P ⊆ {1, . . . , Δ}d. Then
there is a property testing algorithm with query complexity and running time
Õ(δ−5dε−5D log6 Δ

√
n) that accepts G, if G is a (1 + δ)-spanner and rejects G

with probability at least 2/3, if G is ε-far from being a (1 + δ)-spanner.

6 A Lower Bound for Testing Spanners

We give a sketch of the proof of a lower bound of Ω(n
1
3) for the number of

queries of property testing algorithms with one-sided error. Our main idea is
that it is not possible to distinguish between a line of 2k subsequent points
and two coinciding lines of k subsequent points with only one-sided error and
o(n

1
3) queries. By permutating the vertices, one can define two classes of graphs

such that a tester with one-sided error cannot decide to which of the classes a
randomly chosen graph belongs. But all graphs of the first type are 1-spanners,
and all graphs of the second type are not spanners (regardless of the stretch
factor) as the two lines are not connected at all. They are also ε-far from being a
spanner as there are k pairs of points with zero distance that have to be connected
individually. The following Theorem states the result. Its proof is similiar to the
proof of Theorem 4.2 in [6].

Theorem 3. Any property tester for the property of being a (1+δ)-spanner with
one-sided error has a query complexity of Ω(n

1
3).

Note that the construction can be modified such that there are no coinciding
points by randomly moving the positions of the points to the left or to the right
for the first type of graphs and moving one point of each pair of coinciding points
to the left and the other to the right for the second type of graphs.

70 F. Hellweg, M. Schmidt, and C. Sohler

Acknowledgements

We thank Petra Berenbrink, Oded Goldreich and Ilan Newman for helpful dis-
cussions, anonymous referees for helpful comments and Mohammad Ali Abam
for pointing out reference [30].

References

1. Alon, N., Dar, S., Parnas, M., Ron, D.: Testing of Clustering. SIAM Journal on
Discrete Mathematics 16(3), 393–417 (2003)

2. Ahn, H.-K., Farshi, M., Knauer, C., Smid, M., Wang, Y.: Dilation-Optimal
Edge Deletion in Polygonal Cycles. In: Algorthims and Computation, pp. 88–99.
Springer, Heidelberg (2007)

3. Alon, N., Fischer, E., Newman, I., Shapira, A.: A combinatorial characterization
of the testable graph properties: it’s all about regularity. SIAM Journal on Com-
puting 39(1), 143–167 (2009)

4. Agarwal, P.K., Klein, R., Knauer, C., Langerman, S., Morin, P., Sharir, M., Soss,
M.: Computing the Detour and Spanning Ratio of Paths, Trees, and Cycles in 2D
and 3D. Discr. & Computational Geometry 39(1-3), 17–37 (2007)

5. Arya, S., Das, G., Mount, M., Salowe, J.S., Smid, M.: Euclidean spanners: short,
thin, and lanky. In: Proceedings of the 27th Annnual ACM Symposium on the
Theory of Computing (STOC), pp. 489–498 (1995)

6. Ben-Zwi, O., Lachish, O., Newman, I.: Lower bounds for testing Euclidean Mini-
mum Spanning Trees. Information Processing Letters 102(6), 219–225 (2007)

7. Batu, T., Fortnow, L., Fischer, E., Kumar, R., Rubinfeld, R., White, P.: Testing
Random Variables for Independence and Identity. In: Proceedings of the 42nd IEEE
Symposium on Foundations of Computer Science (FOCS), pp. 442–451 (2001)

8. Batu, T., Fortnow, L., Rubinfeld, R., Smith, W., White, P.: Testing that distribu-
tions are close. In: Proceedings of the 41st IEEE Symposium on Foundations of
Computer Science (FOCS), pp. 259–269 (2000)

9. Benjamini, I., Schramm, O., Shapira, A.: Every minor-closed property of sparse
graphs is testable. In: Proceedings of the 40th Annnual ACM Symposium on the
Theory of Computing (STOC), pp. 393–402 (2008)

10. Blais, E.: Testing juntas nearly optimally. In: Proceedings of the 41st Annnual
ACM Symposium on the Theory of Computing (STOC), pp. 151–158 (2009)

11. Blum, M., Luby, M., Rubinfeld, R.: Self-Testing/Correcting with Applications to
Numerical Problems. In: Proceedings of the 22nd Annnual ACM Symposium on
the Theory of Computing (STOC), pp. 73–83 (1990)

12. Callahan, P.B., Kosaraju, S.R.: Faster algorithms for some geometric graph prob-
lems in higher dimensions. In: Proceedings of the 4th Annnual ACM-SIAM Sym-
posium on Discr. Algorithms (SODA), pp. 291–300 (1993)

13. Chazelle, B., Liu, D., Magen, A.: Sublinear Geometric Algorithms. SIAM Journalon
Computing 35(3), 627–646 (2006)

14. Clarkson, K.L.: Approximating algorithms for shortest path motion planning. In:
Proceedings of the 19th Annnual ACM Symposium on the Theory of Computing
(STOC), pp. 56–65 (1987)

15. C̃zumaj, A., Ẽrgün, F., F̃ortnow, L., M̃agen, A., Ñewman, I., R̃ubinfeld, R., S̃ohler,
C.: Approximating the Weight of the Minimum Spanning Tree in Sublinear Time.
SIAM Journal on Comp. 35(1), 91–109 (2005)

Testing Euclidean Spanners 71

16. Czumaj, A., Shapira, A., Sohler, C.: Testing hereditary properties of nonexpanding
bounded-degree graphs. SIAM Journal on Computing 38(6), 2499–2510 (2009)

17. Czumaj, A., Sohler, C.: Property Testing with Geometric Queries. In: Meyer auf
der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 266–277. Springer, Heidelberg
(2001)

18. Czumaj, A., Sohler, C., Ziegler, M.: Property Testing in Computational Geom-
etry. In: Paterson, M. (ed.) ESA 2000. LNCS, vol. 1879, pp. 155–166. Springer,
Heidelberg (2000)

19. Czumaj, A., Sohler, C.: Testing Euclidean minimum spanning trees in the plane.
ACM Transactions on Alg. 4(3) (2008)

20. Czumaj, A., Sohler, C.: Estimating the Weight of Metric Minimum Spanning Trees
in Sublinear Time. SIAM Journal on Computing 39(3), 904–922 (2009)

21. Ergun, F., Kannan, S., Kumar, R., Rubinfeld, R., Viswanathan, M.: Spot-Checkers.
J. of Computer and System Sciences 60(3), 717–751 (2000)

22. Eppstein, D., Wortman, K.A.: Minimum dilation stars. Computational Geometry:
Theory and Applications 37(1), 27–37 (2007)

23. Farshi, M., Giannopoulos, P., Gudmundsson, J.: Finding the best shortcut in a ge-
ometric network. In: Proceedings of the 21th Annnual ACM Symposium on Com-
putational Geometry, pp. 327–335 (2005)

24. Fischer, E., Lehman, E., Newman, I., Raskhodnikova, S., Rubinfeld, R., Samorod-
nitsky, A.: Monotonicity testing over general poset domains. In: Proceedings of
the 34th Annnual ACM Symposium on the Theory of Computing (STOC), pp.
474–483 (2002)

25. Goldreich, O., Goldwasser, S., Lehman, E., Ron, D., Samorodnitsky, A.: Testing
Monotonicity. Combinatorica 20(3), 301–337 (2000)

26. Goldreich, O., Goldwasser, S., Ron, D.: Property Testing and its Connection to
Learning and Approximation. J. of the ACM 45(4), 653–750 (1998)

27. Har-Peled, S., Mazumdar, S.: On Coresets for k-Means and k-Median Clustering.
In: Proceedings of the 36th Annnual ACM Symposium on the Theory of Computing
(STOC), pp. 291–300 (2004)

28. Keil, M.: Approximating the complete Euclidean graph. In: Karlsson, R., Lingas,
A. (eds.) SWAT 1988. LNCS, vol. 318, pp. 208–213. Springer, Heidelberg (1988)

29. Kaufman, T., Sudan, M.: Algebraic property testing: the role of invariance. In:
Proceedings of the 40th Annnual ACM Symposium on the Theory of Computing
(STOC), pp. 403–412 (2008)

30. Narasimhan, G., Smid, M.: Approximating the Stretch Factor of Euclidean Graphs.
SIAM Journal on Computing, 978–989 (2000)

31. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University
Press, Cambridge (2007)

32. Ron, D., Parnas, M.: Testing the Diameter of Graphs. Random Structures & Al-
gorithms 20(2), 165–183 (2002)

33. Rademacher, L., Vempala, S.: Testing Geometric Convexity. In: Proceedings of
the 24th Foundations of Software Technology and Theoretical Computer Science
(FSTTCS), pp. 469–480 (2004)

34. Rubinfeld, R., Sudan, M.: Robust Characterizations of Polynomials with Applica-
tions to Program Testing. SIAM Journal on Computing 25(2), 252–271 (1996)

Fast Approximation in Subspaces by Doubling

Metric Decomposition�

Marek Cygan1, Lukasz Kowalik1, Marcin Mucha1,
Marcin Pilipczuk1, and Piotr Sankowski1,2

1 Institute of Informatics, University of Warsaw, Poland
2 Dipartimento di Informatica e Sistemistica, Sapienza - University of Rome, Italy

{cygan,kowalik,mucha,malcin,sank}@mimuw.edu.pl

Abstract. In this paper we propose and study a new complexity model
for approximation algorithms. The main motivation are practical prob-
lems over large data sets that need to be solved many times for different
scenarios, e.g., many multicast trees that need to be constructed for dif-
ferent groups of users. In our model we allow a preprocessing phase, when
some information of the input graph G = (V, E) is stored in a limited size
data structure. Next, the data structure enables processing queries of the
form “solve problem A for an input S ⊆ V ”. We consider problems like
Steiner Forest, Facility Location, k-Median, k-Center and TSP

in the case when the graph induces a doubling metric. Our main results
are data structures of near-linear size that are able to answer queries in
time close to linear in |S|. This improves over typical worst case reuniting
time of approximation algorithms in the classical setting which is Ω(|E|)
independently of the query size. In most cases, our approximation guar-
antees are arbitrarily close to those in the classical setting. Additionally,
we present the first fully dynamic algorithm for the Steiner tree problem.

1 Introduction

Motivation. The complexity and size of the existing communication networks has
grown extremely in the recent times. It is now hard to imagine that a group of
users willing to communicate sets up a minimum cost communication network
or a multicast tree according to an approximate solution to Steiner Tree

problem. Instead we are forced to use heuristics that are computationally more
efficient but may deliver suboptimal results [16,13]. It is easy to imagine other
problems that in principle can be solved with constant approximation factors
using state of art algorithms, but due to immense size of the data it is impossible
in timely manner. However, in many applications the network is fixed and we
need to solve the problem many times for different groups of users.

Here, we propose a completely new approach that exploits this fact to over-
come the obstacles stemming from huge data sizes. It is able to efficiently deliver

� This work was partially supported by the Polish Ministry of Science grant N206
355636.

M. de Berg and U. Meyer (Eds.): ESA 2010, Part I, LNCS 6346, pp. 72–83, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Fast Approximation in Subspaces by Doubling Metric Decomposition 73

results that have good approximation guarantee thanks to the following two as-
sumptions. We assume that the network can be preprocessed beforehand and
that the group of users that communicates is substantially smaller than the size
of the network. The preprocessing step is independent of the group of users and
hence afterwards we can, for example, efficiently compute a Steiner tree for any
set of users.

More formally, in the Steiner Tree problem the algorithm is given a weighted
graph G = (V,E) on n vertices and is allowed some preprocessing. The results
of the preprocessing step need to be stored in limited memory. Afterwards, the
set S ⊆ V of terminals is defined and the algorithm should generate as fast as
possible a Steiner tree for S, i.e., a tree in G of low weight which contains all
vertices in S. Given the query set S of k vertices we should compute the Steiner
tree T in time depending only (or, mostly) on k.

The trivial approach to this problem is to compute the metric closure G∗ of
G and then answer each query by solving the Steiner Tree problem on G∗[S].
This approach delivers results with constant approximation ratio, but requires
O(n2) space of the data structure and Õ(k2) query time. Hence it is far from
being practical. In this work we aim at solutions that substantially improve
both of these bounds; more formally the data structure space should be close to
O(n), while the query time should be close to O(k). Since in a typical situation
probably k = O(log n), so even a O(k log n) query time is not considered fast
enough, as then k log n = θ(k2). Note that the O(n) bound on the structure size
is very restrictive: in a way, this bound is sublinear in the sense that we are
allowed neither to store the whole distance matrix, nor (if G is dense) all the
edges of G. This models a situation when during the preprocessing one can use
vast resources (e.g., a huge cluster of servers), but the resources are not granted
forever and when the system processes the queries the available space is much
smaller.

New Model. In our model, computations are divided into two stages: the pre-
processing stage and the query stage. In the preprocessing stage, the input is a
weighted graph G = (V,E) and we should compute our data structure in polyno-
mial time and space. Apart from the graph G some additional, problem-specific
information may be also provided. In the query stage the algorithm is given the
data structure computed in the preprocessing stage, but not G itself, and a set
S of points of V (the query — possibly a set of pairs of points from V , or a
weighted set of points from V , etc.) and computes a solution for the set S. The
definition of “the solution for the set S” depends on the specific problem. In this
work we consider so-called metric problems, so G corresponds to a metric space
(V, d) where d can be represented as the full distance matrix M . One should
keep in mind that the function d cannot be quickly computed (e.g. in constant
time) without the Ω(n2) size matrix M . In particular, we assume that there is
no distance oracle available in the query stage.

Hence, there are three key parameters of an algorithm within our model: the
size of the data structure, the query time and the approximation ratio. Less
important, but not irrelevant is the preprocessing time. Let us note that though

74 M. Cygan et al.

our model is inspired by large datasets, in this work we ignore streaming effects,
external memory issues etc.

Above we have formulated the Steiner Tree problem in our model, now we
describe the remaining problems. In Steiner Forest problem the algorithm
is allowed to preprocess a weighted graph G = (V,E), whereas the query is
composed of the set S ⊆ V × V of pairs. The algorithm should generate the
Steiner forest for S, i.e., a subgraph H of G of small weight such that each pair
in S is connected in H . In Facility Location problem the algorithm is given
in the preprocessing phase a weighted graph with facility opening costs in the
nodes. We consider two variants of this problem in our model. In the variant with
unrestricted facilities, the query is a set S ⊆ V of clients for which we should
open facilities. The goal is to open a subset F ⊆ V of facilities, and connect each
city to an open facility so that the sum of the total opening and connection costs
is minimized. In the other variant, one with restricted facilities, the facilities that
can be opened are given as a part of query (together with their opening costs).

Our Results. In this paper we restrict our attention to doubling metric spaces
which include growth-restricted metric spaces and constant dimensional Eu-
clidean spaces. In other words we assume that the graph G induces a doubling
metric and the algorithms are given the distance matrix G∗ as an input or com-
pute it at the beginning of the preprocessing phase. This restriction is often
assumed in the routing setting [9,5] and hence it is a natural question to see
how it can impact the multicast problems. Using this assumption we show that
solutions with nearly optimal bounds are possible. The main result of the paper
is the data structure that requires O(n log n) memory and can find a constant
ratio approximate Steiner tree over a given set of size k in O(k(log k+log log n))
time. Moreover, we show data structures with essentially the same complexities
for solving Steiner Forest, both versions of Facility Location, k-Median

and TSP. The query bound is optimal, up to log k and log log n factors, as no
algorithm can answer queries in time less than linear in k as it needs to read the
input. For the exact approximation ratios of our algorithms refer to Section 3.2.

All of these results are based on a new hierarchical data structure for rep-
resenting a doubling metric that approximates original distances with (1 + ε)-
multiplicative factor. The concept of a hierarchical data structure for represent-
ing a doubling metric is not novel – it originates from the work of Clarkson [6]
and was then used in a number of papers, in particular our data structure is
based on the one due to Jia et al. [10]. Our main technical contribution here
is adapting and extending this data structure so that for any subset S ⊂ V a
substructure corresponding to S can be retrieved in O(k(log k+log log n)) using
only the information in the data structure, without a distance oracle. The sub-
structure is then transformed to a pseudo-spanner described above. Note that
our complexity bounds do not depend on the stretch of the metrics, unlike in
many previous works (e.g. [11]). Another original concept in our work is an ap-
plication of spanners (or, more precisely, pseudo-spanners) to improve working
time of approximation algorithms for metric problems. As a result, the query
times for the metric problems we consider are O(k(polylogk + log log n)).

Fast Approximation in Subspaces by Doubling Metric Decomposition 75

Astonishingly, our hierarchical data structure can be used to obtain dynamic
algorithms for the Steiner tree problem. This problem attracted consider-
able attention [2,4,8,3] in the recent years. However, due to the hardness of the
problem none of these papers has given any improvement in the running time
over the static algorithms. Here, we give first fully dynamic algorithm for the
problem in the case of doubling metric. Our algorithm is given a static graph
and then maintains information about the Steiner tree built on a given set X of
nodes. It supports insertion of vertices in O(log5 k+log log n) time, and deletion
in O(log5 k) time, where k = |X |.

Related Work. The problems considered in this paper are related to several
algorithmic topics studied extensively in recent years. Many researchers tried
to answer the question whether problems in huge networks can be solved more
efficiently than by processing the whole input. Nevertheless, the model proposed
in this paper has never been considered before. Moreover, we believe that within
the proposed framework it is possible to achieve complexities that are close to
being practical. We present such results only in the case of doubling metric, but
hope that the further study will extend these results to a more general setting.
Our results are related to the following concepts:

– Universal Algorithms — this model does not allow any processing in the
query time, we allow it and get much better approximation ratios,

– Spanners and Approximate Distance Oracles — although a spanner of a
subspace of a doubling metric can be constructed in O(k log k)-time, the
construction algorithm requires a distance oracle (i.e. the full Θ(n2)-size
distance matrix).

– Sublinear Approximation Algorithms — here we cannot preprocess the data,
allowing it we can get much better approximation ratios,

– Dynamic Spanning Trees — most existing results are only applicable to
dynamic MST and not dynamic Steiner tree, and the ones concerning the
latter work in different models than ours.

2 Space Partition Tree

In this section we extend the techniques developed by Jia et al. [10]. Several
statements as well as the overall construction are similar to those given by Jia et
al. However, our approach is tuned to better suit our needs, in particular to allow
for a fast subtree extraction and a spanner construction – techniques introduced
in Sections 2 and 3 that are crucial for efficient approximation algorithms.

Let (V, d) be a finite doubling metric space with |V | = n and a doubling
constant λ, i.e., for every r > 0, every ball of radius 2r can be covered with
at most λ balls of radius r. By stretch we denote the stretch of the metric d,
that is, the largest distance in V divided by the smallest distance. We use space
partition schemes for doubling metrics to create a partition tree. In the next two
subsections, we show that this tree can be stored in O(n log n) space, and that
a subtree induced by any subset S ⊂ V can be extracted efficiently.

76 M. Cygan et al.

Let us first briefly introduce the notion of a space partition tree, that is used
in the remainder of this paper. Precise definitions and proofs are omitted due to
space limitations and will be included in the full version of the paper.

The basic idea is to construct a sequence S0, S1, . . . , SM of partitions of V .
We require that S0 = {{v} : v ∈ V }, and SM = {V }, and in general the
diameters of the sets in Sk are growing exponentially in k. We also maintain
the neighbourhood structure for each Sk, i.e., we know which sets in Sk are
close to each other (this is explained in more detail later on). Notice that the
partitions together with the neighbourhood structure are enough to approximate
the distance between any two points x, y — one only needs to find the smallest
k, such that the sets in Sk containing x and y are close to each other (or are the
same set).

There are two natural parameters in this sort of scheme. One of them is how
fast the diameters of the sets grow, this is controlled by τ ∈ R, τ ≥ 1 in our
constructions. The faster the set diameters grow, the smaller the number of
partitions is. The second parameter is how distant can the sets in a partition
be to be still considered neighbours, this is controlled by a nonnegative integer
η in our constructions. The smaller this parameter is, the smaller the number
of neighbours is. Manipulating these parameters allows us to decrease the space
required to store the partitions, and consequently also the running time of our
algorithms. However, this also comes at a price of lower quality approximation.

In what follows, each Sk is a subpartition of Sk+1 for k = 0, . . . ,M − 1. That
is, the elements of these partitions form a tree, denoted by T, with S0 being the
set of leaves and SM being the root. We say that S ∈ Sj is a child of S∗ ∈ Sj+1
in T if S ⊂ S∗.

Let r0 be smaller than the minimal distance between points in V and let
rj = τ jr0. We show that Sk-s and T satisfying the following properties can be
constructed in polynomial time:

(1) Exponential growth: Every S ∈ Sj is contained in a ball of radius
rjτ2−η/(τ − 1).

(2) Small neighbourhoods: For every S ∈ Sj , the union
⋃
{Brj (v) : v ∈ S}

crosses at most λ3+η sets S′ from the partition Sj — we say that S knows
these S′. We also extend this notation and say that if S knows S′, then
every v ∈ S knows S′.

(3) Small degrees: For every S∗ ∈ Sj+1 all children of S∗ know each other
and, consequently, there are at most λη+3 children of S∗.

(4) Distance approximation: If v, v∗ ∈ V are different points such that v ∈
S1 ∈ Sj , v ∈ S2 ∈ Sj+1 and v∗ ∈ S∗

1 ∈ Sj , v∗ ∈ S∗
2 ∈ Sj+1 and S2 knows S∗

2
but S1 does not know S∗

1 , then

rj ≤ d(v, v∗) <
(
1 +

4τ2−η

τ − 1

)
τrj ;

For any ε > 0, the τ and η constants can be adjusted so that the last
condition becomes rj ≤ d(v, v∗) ≤ (1 + ε)rj .

Fast Approximation in Subspaces by Doubling Metric Decomposition 77

Remark 1. We note that not all values of τ and η make sense for our construc-
tion. We omit these additional constraints here.

2.1 Compressed Tree T̂ and Additional Information at Nodes

Let us now show how to efficiently compute and store the tree T. Recall that
the leaves of T are one point sets and, while going up in the tree, these sets join
into bigger sets. Note that if S is an inner node of T and it has only one child
S′ then both nodes S and S′ represent the same set. Nodes S and S′ can differ
only by their sets of acquaintances, i.e. the sets of nodes known to them. If these
sets are equal, there is some sort of redundancy in T. To reduce the space usage
we store only a compressed version of the tree T.

Let us introduce some useful notation. For a node v of T let set(v) denote
the set corresponding to v and let level(v) denote the level of v, where leaves
are at level zero. Let Sa, Sb be a pair of sets that know each other at level jab

and do not know each other at level jab−1. Then the triple (Sa, Sb, jab) is called
a meeting of Sa and Sb at level jab.

Definition 2 (Compressed tree). The compressed version of T, denoted T̂,
is obtained from T by replacing all maximal paths such that all inner nodes have
exactly one child by a single edge. For each node v of T̂ we store level(v) (the
lowest level of set(v) in T) and a list of all meetings of set(v), sorted by level.

Obviously T̂ has at most 2n − 1 nodes since it has exactly n leaves and each
inner node has at least two children but we also have to ensure that the total
number of meetings is reasonable.

Note that the sets at nodes of T̂ are pairwise distinct. To simplify the pre-
sentation we will identify nodes and the corresponding sets. Consider a meeting
m = (Sa, Sb, jab). Let pa (resp. pb) denote the parent of Sa (resp. Sb) in T̂. We
say that Sa is responsible for the meeting m when level(pa) ≤ level(pb) (when
level(pa) = level(pb), both Sa and Sb are responsible for the meeting m).
Note that if Sa is responsible for a meeting (Sa, Sb, jab), then Sa knows Sb at
level level(pa) − 1. From this and Property 2 of the partition tree we get the
following.

Lemma 3. Each set in T̂ is responsible for at most λ3+η meetings.

Corollary 4. There are ≤ (2n− 1)λ3+η meetings stored in the compressed tree
T̂, i.e. T̂ takes O(n) space.

Lemma 5. One can augment the tree T̂ with additional information of size
O(nλ3+η), so that for any pair of nodes x, y of T̂ one can decide if x and y know
each other, and if that is the case the level of the meeting is returned. The query
takes O(η log λ) time.

Proof. For each node v in T̂ we store all the meetings it is responsible for, using
a dictionary D(m) — the searches take O(log(λ3+η)) = O(η log λ) time. To
process the query it suffices to check if there is an appropriate meeting in D(x)
or in D(y). ��

78 M. Cygan et al.

In order to give a fast subtree extraction algorithm, we need to define the follow-
ing operation meet. Let u, v ∈ T̂ be two given nodes. Let v(j) denote the node
in T on the path from v to the root at level j, similarly define u(j). The value of
meet(u, v) is the lowest level, such that v(j) and u(j) know each other. Such level
always exists, because in the end all nodes merge into root and nodes know each
other at one level before they are merged (see Property 3 of the partition tree).
A technical proof of the following lemma is omitted due to space limitations.

Lemma 6. The tree T̂ can be augmented so that the meet operation can be
performed in O(η log λ log log n) time. The augmented T tree can be stored in
O(λ3+ηn logn) space and computed in polynomial time.

2.2 Fast Subtree Extraction

For any subset S ⊆ V we are going to define an S-subtree of T̂, denoted T̂(S).
Intuitively, this is the subtree of T̂ induced by the leaves corresponding to S.
Additionally we store all the meetings in T̂ between the nodes corresponding to
the nodes of T̂(S).

More precisely, the set of nodes of T̂(S) is defined as {A∩S : A ⊆ V and A is
a node of T̂}. A node Q of T̂(S) is an ancestor of a node R of T̂(S) iff R ⊆ Q. This
defines the edges of T̂(S). Moreover, for two nodes A, B of T̂ such that both A

and B intersect S, if A knows B at level j, we say that A∩S knows B∩S in T̂(S)
at level j. A triple (Q,R, jQR), where jQR is a minimal level such that Q knows
R at level jQR, is called a meeting. The level of a node Q of T̂(S) is the lowest
level of a node A of T̂ such that Q = A∩ S. Together with each node Q of T̂(S)
we store its level and a list of all its meetings (Q,R, jQR). A node Q is responsible
for a meeting (Q,R, l) when level(parent(Q)) ≤ level(parent(R)).

Remark 7. The subtree T̂(S) is not necessarily equal to any compressed tree for
the metric space (S, d|S2).

In this subsection we describe how to extract T̂(S) from T̂ efficiently. The ex-
traction runs in two phases. In the first phase we find the nodes and edges of
T̂(S) and in the second phase we find the meetings.

Finding the Nodes and Edges of T̂(S). We construct the extracted tree in
a bottom-up fashion. Note that we can not simply go up the tree from the leaves
corresponding to S because we could visit a lot of nodes of T̂ which are not the
nodes of T̂(S). The key observation is that if A and B are nodes of T̂, such that
A ∩ S and B ∩ S are nodes of T̂(S) and C is the lowest common ancestor of A

and B, then C ∩ S is a node of T̂(S) and it has level level(C). Due to space
limitations we onle state that nodes and edges of T̂(S) can be found in O(k log k)
time.

Finding the Meetings in T̂(S). We generate meetings in a top-down fashion.
We consider the nodes of T̂(S) in groups. Each group corresponds to a single

Fast Approximation in Subspaces by Doubling Metric Decomposition 79

level. Now assume we consider a group of nodes u1, . . . , ut at some level �. Let
v1, . . . , vt′ be the set of children of all nodes ui in T̂(S). For each node vi,
i = 1, . . . , t′ we are going to find all the meetings it is responsible for. Any such
meeting (vi, x, j) is of one of two types:

1. parent(x) ∈ {u1, . . . , ut}, possibly parent(x) = parent(vi), or
2. parent(x) 	∈ {u1, . . . , ut}, i.e. level(parent(x)) > �.

level(ui)

Fig. 1. Extracting meetings. The figure contains a part of tree T̂. Nodes corresponding
to the nodes of T̂(S) are surrounded by dashed circles. The currently processed group
of nodes (ui, i = 1, . . . , k) are filled with black. Nodes from the set L are filled with
gray. The nodes below the gray nodes are the the nodes vj , i.e. the children of nodes
ui in T̂(S).

The meetings of the first kind are generated as follows. Consider the following
set of nodes of T̂ (drawn as grey disks in Figure 1).

L = {x : x is the first node on the path in T̂ from origin(ui) to origin(vj),
for some i = 1, . . . , t, j = 1, . . . , t′}

We mark all the nodes of L. Next, we identify all pairs of nodes of L that
know each other. By Lemma 3 there are at most λ3+ηt′ = O(t′) such pairs and
these pairs can be easily found by scanning, for each x ∈ L, all the meetings
x is responsible for and such that the node x meets is in L. In this way we
identify all pairs of children (vi, vj) such that vi knows vj , namely if x, y ∈ L

and x knows y in T̂, then x ∩ S knows y ∩ S in T̂(S). Then, if vi knows vj , the
level of their meeting can be found in O(τ log λ log log n) time using operation
meet(origin(vi), origin(vj)) from Lemma 6. Hence, finding the meetings of
the first type takes O(λ3+η log λ τt′ log log n) time for one group of nodes, and
O(λ3+η log λ τk log log n) time in total.

Finding the meetings of the second type is easier. Consider any second
type meeting (vi, w, l). Let uj be the parent of vi. Then there is a meeting
(uj , w, level(uj)) stored in uj. Hence it suffices to consider, for each uj all its

80 M. Cygan et al.

meetings at level level(uj). For every such meeting (uj , w, level(uj)), and for
every child vi of uj we can apply meet(origin(vi), origin(w)) from Lemma 6 to
find the meeting of vi and w. For the time complexity, note that by Property 2
of the partition tree, a node uj meets λ3+η = O(1) nodes at level level(uj).
Since we can store the lists of meetings sorted by levels, we can extract all
those meetings in O(λ3+η) time. For each meeting we iterate over the children
of uj (Property 3 of the partition tree) and apply Lemma 6. This results in
O(λ3+η log λ τ log log n) time per a child, hence O(λ3+η log λ τk log log n) time
in total.

After extracting all the meetings, we sort them by levels in O(k log k) time.
We can claim now the following theorem.

Theorem 8. For a given set S ⊆ V (|S| = k) we can extract the S-subtree of
the compressed tree T̂ in time O(λ3+η log λ τk(log k + log log n)) = O(k(log k +
log log n)).

3 Pseudospanner Construction and Applications in
Approximation

In this section we use the subtree extraction procedure described in the previous
section, to construct for any set S ⊆ V , a graph that is essentially a small con-
stant stretch spanner for S. We then use it to give fast approximations algorithms
for several problems.

3.1 Pseudospanner Construction

Definition 9. Let G = (V,EG) be an undirected connected graph with a weight
function wG : EG → R+. A graph H = (V,EH), EH ⊆ EG with a weight function
wH : EH → R+ is an f -pseudospanner for G if for every pair of vertices u, v ∈ V
we have dG(u, v) ≤ dH(u, v) ≤ f · dG(u, v), where dG and dH are shortest path
metrics induced by wG and wH . The number f in this definition is called the
stretch of the pseudospanner. A pseudospanner for a metric space is simply a
pseudospanner for the complete weighted graph induced by the metric space.

Remark 10. Note the subtle difference between the above definition and the clas-
sical spanner definition. A pseudospanner H is a subgraph of G in terms of vertex
sets and edge sets but it does not inherit the weight function wG. We cannot
construct spanners in the usual sense without maintaining the entire distance
matrix, which would require prohibitive quadratic space. However, pseudospan-
ners constructed below become classical spanners when provided the original
weight function.

Also note, that it immediately follows from the definition of a pseudospanner
that for all uv ∈ EH we have wG(u, v) ≤ wH(u, v).

In the remainder of this section we let (V, d) be a metric space of size n, where
d is doubling with doubling constant λ. We also use T̂ to denote the hierarchical

Fast Approximation in Subspaces by Doubling Metric Decomposition 81

tree data structure corresponding to (V, d), and η and τ denote the parameters
of T̂. For any S ⊂ V , we use T̂(S) to denote the subtree of T̂ corresponding to
S, as described in the previous section. Finally, we define a constant C(η, τ) =(

1 +
(

τ
τ−1

)2
23−η

)
τrj .

Theorem 11. Given T̂ and set S ⊆ V , where |S| = k, one can construct a
C(η, τ)-pseudospanner for S in time O(k(log k + log log n)). This spanner has
size O(k).

Remark 12. Similarly to Property 4 of the partition tree, we can argue that the
above theorem gives a (1 + ε)-pseudospanner for any ε > 0. Here, we need to
take τ = 1 + ε

3 and η = O(1
ε3).

Remark 13. It is of course possible to store the whole distance matrix of V
and construct a spanner for any given subspace S using standard algorithms.
However, this approach has a prohibitive Θ(n2) space complexity.

3.2 Applications in Approximation

Results of the previous subsection immediately give several interesting approxi-
mation algorithms. In all the corollaries below we assume the tree T̂ is already
constructed.

Corollary 14 (Steiner Forest). Given a set of points S ⊆ V , |S| = k, together
with a set of requirements R consisting of pairs of elements of S, a Steiner forest
with total edge-length at most 2C(η, τ)OPT=(2 + ε)OPT, for any ε > 0 can be
constructed in time O(k(log2 k + log log n)).

Proof. We use the O(m log2 n) algorithm of Cole et al. [7] (where m is the number
of edges) on the pseudospanner guaranteed by Theorem 11. This algorithm can
give a guarantee 2 + ε for an arbitrarily small ε. ��

Similarly by using the MST approximation for TSP we get

Corollary 15 (TSP). Given a set of points S ⊆ V , |S| = k, a Hamiltonian
cycle for S of total length at most 2C(η, τ)OPT=(2 + ε)OPT for any ε > 0 can
be constructed in time O(k(log k + log log n)).

Currently, the best approximation algorithm for the facility location problem is
the 1.52-approximation of Mahdian, Ye and Zhang [12]. A fast implementation
using Thorup’s ideas [14] runs in deterministic O(m log m) time, where m =
|F | · |C|, and if the input is given as a weighted graph of n vertices and m
edges, in Õ(n + m) time, with high probability (i.e. with probability ≥ 1 −
1/nω(1)). In an earlier work, Thorup [15] considers also the k-center and k-
median problems in the graph model. When the input is given as a weighted
graph of n vertices and m edges, his algorithms run in Õ(n + m) time, w.h.p.
and have approximation guarantees of 2 for the k-center problem and 12 + o(1)
for the k-median problem. By using this latter algorithm with our fast spanner
extraction we get the following corollary.

82 M. Cygan et al.

Corollary 16 (Facility Location with restricted facilities). Given two sets
of points C ⊆ V (cities) and F ⊆ V (facilities) together with opening cost fi

for each facility i ∈ F , for any ε > 0, a (1.52 + ε)-approximate solution to the
facility location problem can be constructed in time O((|C| + |F |)(logO(1)(|C| +
|F |) + log log |V |)), w.h.p.

The application of our results to the variant of Facility Location with unre-
stricted facilities is not so immediate. We were able to obtain the following.

Theorem 17 (Facility Location with unrestricted facilities). Assume
that for each point of n-point V there is assigned an opening cost f(x). Given a
set of k points C ⊆ V , for any ε > 0, a (3.04 + ε)-approximate solution to the
facility location problem with cities’ set C and facilities’ set V can be constructed
in time O(k log k(logO(1) k + log log n)), w.h.p.

Our approach there is a reduction to the variant with restricted facilities. The
general, rough idea is the following: during the preprocessing phase, for every
point x ∈ V we compute a small set F (x) of facilities that seem a good choice for
x, and when processing a query for a set of cities C, we just apply Corollary 16
to cities’ set C and facilities’ set

⋃
c∈C F (c).

Corollary 18 (k-center and k-median). Given a set of points C ⊆ V and a
number r ∈ N, for any ε > 0, one can construct:

(i) a (2 + ε)-approximate solution to the r-center problem, or
(ii) a (12 + ε)-approximate solution to the r-median problem

in time O(|C|(log |C|+ log log |V |)), w.h.p.

4 Dynamic Minimum Spanning Tree and Steiner Tree

In this section we give one last application of our hierarchical data structure. It
has a different flavour from the other applications presented in this paper since
it is not based on constructing a spanner, but uses the data structure directly.
We solve the Dynamic Minimum Spanning Tree / Steiner Tree (DMST/DST)
problem, where we need to maintain a spanning/Steiner tree of a subspace X ⊆
V throughout a sequence of vertex additions and removals to/from X .

The quality of our algorithm is measured by the total cost of the tree produced
relative to the optimum tree, and time required to add/delete vertices. Let |V | =
n, |X | = k. Our goal is to give an algorithm that maintains a constant factor
approximation of the optimum tree, while updates are polylogarithmic in k, and
do not depend (or depend only slightly) on n. It is clear that it is enough to find
such an algorithm for DMST. Due to space limitations we only formulate the
results.

Theorem 19. Given the compressed tree T̂(V), we can maintain an O(1)-
approximate Minimum Spanning Tree for a subset X subject to insertions and
deletions of vertices. The insert operation works in O(log5 k+log log n) time and
the delete operation works in O(log5 k) time, k = |X |. Both times are expected
and amortized.

Fast Approximation in Subspaces by Doubling Metric Decomposition 83

References

1. Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Gonnet, G.H.,
Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg
(2000)

2. Bilò, D., Böckenhauer, H.-J., Hromkovič, J., Královič, R., Mömke, T., Wid-
mayer, P., Zych, A.: Reoptimization of steiner trees. In: Gudmundsson, J. (ed.)
SWAT 2008. LNCS, vol. 5124, pp. 258–269. Springer, Heidelberg (2008)

3. Böckenhauer, H.-J., Hromkovič, J., Královič, R., Mömke, T., Rossmanith, P.: Reop-
timization of steiner trees: Changing the terminal set. Theor. Comput. Sci. 410(36),
3428–3435 (2009)

4. Böckenhauer, H.-J., Hromkovič, J., Mömke, T., Widmayer, P.: On the hardness of
reoptimization. In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat,
P., Bieliková, M. (eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 50–65. Springer,
Heidelberg (2008)

5. Chan, H.T.-H., Gupta, A., Maggs, B.M., Zhou, S.: On hierarchical routing in dou-
bling metrics. In: Proc. SODA 2005, pp. 762–771 (2005)

6. Clarkson, K.L.: Nearest neighbor queries in metric spaces. Discrete & Computa-
tional Geometry 22(1), 63–93 (1999)

7. Cole, R., Hariharan, R., Lewenstein, M., Porat, E.: A faster implementation of the
Goemans-Williamson clustering algorithm. In: Proc. SODA 2001, pp. 17–25 (2001)

8. Escoffier, B., Milanic, M., Paschos, V.T.: Simple and fast reoptimizations for the
Steiner tree problem. Algorithmic Operations Research 4(2), 86–94 (2009)

9. Har-Peled, S., Mendel, M.: Fast construction of nets in low dimensional metrics,
and their applications. In: Proc. SCG 2005, pp. 150–158 (2005)

10. Jia, L., Lin, G., Noubir, G., Rajaraman, R., Sundaram, R.: Universal aproximations
for TSP, Steiner Tree and Set Cover. In: STOC 2005, pp. 1234–5415 (2005)

11. Krauthgamer, R., Lee, J.R.: Navigating nets: simple algorithms for proximity
search. In: Proc. SODA 2004, pp. 798–807 (2004)

12. Mahdian, M., Ye, Y., Zhang, J.: Approximation algorithms for metric facility lo-
cation problems. SIAM Journal on Computing 36(2), 411–432 (2006)

13. Salama, H.F., Reeves, D.S., Viniotis, Y., Sheu, T.-L.: Evaluation of multicast rout-
ing algorithms for real-time communication on high-speed networks. In: Proceed-
ings of the IFIP Sixth International Conference on High Performance Networking
VI, pp. 27–42 (1995)

14. Thorup, M.: Quick and good facility location. In: Proc. SODA 2003, pp. 178–185
(2003)

15. Thorup, M.: Quick k-median, k-center, and facility location for sparse graphs.
SIAM Journal on Computing 34(2), 405–432 (2005)

16. Winter, P.: Steiner problem in networks: A survey. Networks 17(2), 129–167 (1987)

f-Sensitivity Distance Oracles and Routing

Schemes

Shiri Chechik1, Michael Langberg2, David Peleg1,�, and Liam Roditty3

1 Department of Computer Science, The Weizmann Institute, Rehovot, Israel
{shiri.chechik,david.peleg}@weizmann.ac.il

2 Computer Science Division, Open University of Israel, Raanana, Israel
mikel@openu.ac.il

3 Department of Computer Science, Bar-Ilan University, Ramat-Gan, Israel
liamr@macs.biu.ac.il

Abstract. An f-sensitivity distance oracle for a weighted undirected
graph G(V, E) is a data structure capable of answering restricted dis-
tance queries between vertex pairs, i.e., calculating distances on a sub-
graph avoiding some forbidden edges. This paper presents an efficiently
constructible f -sensitivity distance oracle that given a triplet (s, t, F),
where s and t are vertices and F is a set of forbidden edges such that
|F | ≤ f , returns an estimate of the distance between s and t in G(V, E \
F). For an integer parameter k ≥ 1, the size of the data structure is
O(fkn1+1/k log (nW)), where W is the heaviest edge in G, the stretch
(approximation ratio) of the returned distance is (8k−2)(f +1), and the
query time is O(|F | · log2 n · log log n · log log d), where d is the distance
between s and t in G(V, E \ F).

The paper also considers f -sensitive compact routing schemes, namely,
routing schemes that avoid a given set of forbidden (or failed) edges. It
presents a scheme capable of withstanding up to two edge failures. Given
a message M destined to t at a source vertex s, in the presence of a
forbidden edge set F of size |F | ≤ 2 (unknown to s), our scheme routes
M from s to t in a distributed manner, over a path of length at most O(k)
times the length of the optimal path (avoiding F). The total amount of
information stored in vertices of G is O(kn1+1/k log (nW) log n).

1 Introduction

The problems: This paper considers succinct data structures capable of sup-
porting efficient responses to distance sensitivity queries on an undirected graph
G(V,E) with edge weights ω. A distance sensitivity query (s, t, e) requires find-
ing, for a given pair of vertices s and t in V and a forbidden edge e ∈ E, the dis-
tance (namely, the length of the shortest path) between u and v in G(V,E \{e}).
An f -sensitivity distance oracle is a generalized version of the distance sensitiv-
ity data structure, in which instead of a single forbidden edge e, the query may

� Supported in part by a France-Israel cooperation grant (“Mutli-Computing” project)
from the Israel Ministry of Science.

M. de Berg and U. Meyer (Eds.): ESA 2010, Part I, LNCS 6346, pp. 84–96, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

f -Sensitivity Distance Oracles and Routing Schemes 85

include a set F of size at most f of forbidden edges. In response to a query (s, t, F),
the data structure has to return the distance between s and t in G(V,E \ F).

For certain natural applications in communication networks, one may be in-
terested in more than just the distance between s and t in G(V,E \ F). In
particular, an f -sensitivity routing protocol is a distributed algorithm that, for
any set of forbidden (or failed) edges F , enables the vertex s to route a message
to t along a shortest or near-shortest path in G(V,E \F) in an efficient manner
(and without knowing F in advance). In addition to route efficiency, it is desir-
able to optimize also the amount of memory stored in the routing tables of the
nodes, possibly at the cost of lower route efficiency, giving rise to the problem
of designing f -sensitivity (or fault-tolerant) compact routing schemes.

The current paper addresses the design of f -sensitivity distance oracles and
f -sensitivity compact routing schemes in a relaxed setting in which approximate
answers are acceptable. The main results of the paper are summarized by the
following theorems. Throughout, our underlying undirected graph G has edge
weights ω ∈ [1,W], m = |E| and n = |V |. For two vertices s and t in G, denote
by dist(s, t, G \ F) the distance between s and t in G(V,E \ F).

Theorem 1. Let f, k ≥ 1 be integer parameters. Let F ⊂ E be a set of forbidden
edges, where |F | ≤ f . For a pair of vertices s, t ∈ V let d = dist(s, t, G\F). There
exists a polynomial-time constructible data structure Sens Or(G,ω, f, k) of size
O(fkn1+1/k log (nW)), that returns in time O(|F | log2 n · log log n · log log d) a
distance estimate d̃ satisfying d ≤ d̃ ≤ (8k − 2)(f + 1) · d.

Theorem 2. There exists a 2-sensitive compact routing scheme that given a
message M at a source vertex s and a destination t, in the presence of a forbidden
edge set F of size at most 2 (unknown to s), routes M from s to t in a distributed
manner over a path of length at most O(k · dist(s, t, G \ F)). The total amount
of information stored in the vertices of G is O(kn1+1/k log (nW) log n).

Related work: In [15], Demetrescu et al. showed that it is possible to preprocess
a directed weighted graph in time Õ(mn2) to produce a data structure of size
O(n2 log n) capable of answering 1-sensitivity distance queries (with a forbidden
edge or vertex) in O(1) time. In two recent papers [8,9], Karger and Bernstein
improved the preprocessing time for 1-sensitivity queries to O(n2√m) and then
Õ(mn), with unchanged size and query time.

In [17], Duan and Pettie presented an algorithm for 2-sensitivity queries (with
2 forbidden edges or vertices), based on a polynomial time constructible data
structure of size O(n2 log3 n) that is capable of answering 2-sensitivity queries in
O(log n) time. The authors of [17] comment that their techniques do not seem
to extend beyond forbidden sets of size 2, and that even a solution to the 3-
sensitivity problem involving a data structure of size Õ(n2) does not seem in
reach. In contrast, the current paper dodges the barrier of [17] and handles for-
bidden sets F of size greater than 2 by adopting the natural approach of consider-
ing approximate distances instead of exact ones. This approach is used for many
“shortest paths” problems. The most notable examples are in efficient compu-

86 S. Chechik et al.

tation of approximate “all pairs” distances [5,25,19,1,16], spanners [30,31,11,6],
distance oracles [39,32,7] and compact routing schemes [38,31].

In the approximate setting, when no forbidden edges are considered, distance
oracles were introduced by Thorup and Zwick [39]. They have shown that it is
possible to preprocess a weighted undirected graph G(V,E) into a data structure
of size O(n1+1/k) that is capable of answering distance queries in O(k) time,
where the stretch (multiplicative approximation factor) of the returned distances
is at most 2k − 1. Thus, by considering approximate distances instead of exact
ones, our f -sensitivity distance oracle not only solves a more general sensitivity
problem but also does it with considerably lower space requirements. In fact, for
constant values of k that are significantly larger than the fault parameter f , the
stretch of our f -sensitivity distance oracle is the same as in the distance oracles
of [39], while its size remains comparable to that of [39].

Very recently, and independently of our work, Khanna and Baswana [26] pre-
sented an approximate distance oracle construction for unweighted graphs with
a single vertex failure. More precisely, they have shown how to construct a data
structure of size O(kn1+1/k/ε4) that answers an approximate distance query in
time O(k) and stretch (2k − 1)(1 + ε) under a single vertex failure. They have
also shown how to find the corresponding approximate shortest path in optimal
time. We stress that in this work we consider multiple edge faults. Our proof
techniques differ significantly from those of [26]. The case of distance oracles
that support multiple vertex faults remains open. In [10] we have presented a
fault tolerant spanner that supports also vertex failures.

The f -sensitivity distance oracle is closely related to the fundamental problem
of dynamic maintenance of all pairs of shortest paths with worst case update
time. Demetrescu and Italiano [14], in a major breakthrough, obtained an algo-
rithm with Õ(n2) amortized update time and O(1) query time. Their algorithm
was slightly improved by Thorup [36]. In the restricted case of unweighted undi-
rected graphs, Roditty and Zwick [34] showed that for any fixed ε, δ > 0 and
every t ≤ m1/2−δ, there exists a fully dynamic algorithm with an expected amor-
tized update time of Õ(mn/t) and worst-case query time of O(t). The stretch of
the returned distances is at most 1+ε. Thorup [37] presented the only non-trivial
algorithm with a worst case update time. The cost of each update is O(n2.75).

A large gap between the worst case and amortized update times exists also
for the problem of dynamic connectivity of undirected graphs, where the best
worst case update time is O(

√
n) [20] and the best amortized update time is

O(log2 n) [24]. Pǎtraşcu and Thorup [28] considered a restricted model in which
all the deleted edges are first deleted in a batch, and queries are answered next.
They present a linear size data structure constructible in polynomial time that
supports queries in O(f log2 n log log n) worst-case time after a batch of f dele-
tions. Similarly, our result implies that one can preprocess an undirected graph
into a data structure that supports a batch of f deletions followed by a distance
query in O(f · log2 n · log log n · log log d) time.

The design of compact routing schemes has also been studied extensively,
focusing on the tradeoffs between the size of the routing tables and the stretch

f -Sensitivity Distance Oracles and Routing Schemes 87

of the resulting routes. For a general overview of this area see [23,29]. Following a
sequence of improvements [31,2,4,13,18], the best currently known tradeoffs are
due to Thorup and Zwick [38], who present a general routing scheme that uses
Õ(n1/k) space at each vertex with a stretch factor of 2k−1 (using handshaking).
Corresponding lower bounds were established in [31,21,22,39].

Fault-tolerant label-based distance oracles and routing schemes for graphs
of bounded clique-width are presented in [12]. For an n-vertex graph of tree-
width or clique-width k, the constructed labels are of size O(k2 log2 n). We are
unaware of previous results in the literature concerning fault tolerant compact
routing schemes for general graphs.

Proof techniques: Our results on both f -sensitivity distance oracles and f -
sensitivity routing schemes are based at their core on a well known tree cover
paradigm used implicitly in [4] and further developed in [3,11,33] (see [29]). In
this paradigm, given an undirected graph G one constructs a succinct collection
of trees that cover the graph G multiple times, once for every different scale of
distances. The resulting collection of trees has several properties. Primarily, their
union acts as a spanner, and thus preserves distances of the original graph up to
a multiplicative factor. More important for our constructions, the collection of
trees preserves local neighborhoods in an approximate manner as well. Namely,
for every vertex v and every distance ρ there is a tree T in the tree cover that
includes the entire ρ-neighborhood Bρ(v) of v, i.e., all vertices of distance ρ from
v. Moreover, the path in T between v and any neighbor u in Bρ(v) is of length
proportional to ρ. This last property lends itself naturally to our setting.

For distance oracles, given two vertices s and t, one needs to find the smallest
scale factor ρ such that both s and t are in the tree including Bρ(s). This is
done by constructing a connectivity oracle for each tree T , which enables to
answer whether s and t are indeed connected in T . For routing schemes, for
small values of ρ and upwards, the scheme attempts to route from s to t in the
tree containing Bρ(s); eventually once ρ is approximately the distance between
s and t, the routing will succeed. The challenge addressed in this paper is to
adapt these ideas to the f -sensitivity setting.

Our construction of f -sensitivity distance oracles enhances the tree cover
paradigm in two respects. First, in order to answer queries that involves for-
bidden edges, one must preprocess each tree into an appropriate connectivity
oracle, namely, one that takes forbidden edges into account. To this end, we use
a slight variation to the f -sensitivity connectivity oracle proposed recently by
Pǎtraşcu and Thorup [28]. However, this alone does not suffice, as the oracle of
[28] requires space which is linear in the number of edges in the graph, whereas
we are interested in a data structure that is as small as possible. To reduce the
size of the oracle of [28] we use the notion of connectivity preserver as will be
explained later. Combining these elements with a few additional new ideas leads
to the new data structure proposed here.

We now turn to provide a high-level description of our construction of f -
sensitivity routing schemes. The challenge at this point lies in identifying addi-
tional suitable information to be stored at the vertices of the tree cover that will

88 S. Chechik et al.

allow successful routing between a given vertex s and its destination t even if a
forbidden edge is encountered. The case of a single forbidden edge is relatively
simple. Each edge e in each tree T of the tree cover, if declared as forbidden,
disconnects the tree into two connected components. Hence to route from one
component to the other, all we need to do is store at the endpoints of e informa-
tion concerning an alternate recovery edge (if such exists) that connects between
the components. However, it is not hard to verify that this will not suffice once
two or more edges may be forbidden. For example, an edge acting as backup for
the first forbidden edge may indeed be itself forbidden. A naive solution to this
point would involve storing for each edge in T several backup edges, one for any
other edge in T . However, this will increase our storage significantly.

Very roughly speaking, to overcome this we associate with each edge of T a
constant number of backup edges that are chosen carefully to satisfy certain con-
ditions. Then, via case analysis, we show that these backup edges allow successful
routing in the presence of two edge faults (that are not known in advance). The
properties required of the selected backup edges are dictated by the structure of
our case analysis. Our current techniques do not seem to extend to the general
case of routing in the presence of f faults for f ≥ 3.

Due to space limitations, some of our proofs are omitted.

2 f -Sensitivity Distance Oracle

Let G(V,E) be an undirected graph with edge weights ω. We assume throughout
that ω(e) ∈ [1,W] for every edge e. For an edge set F and two vertices s, t ∈ V ,
let dist(s, t, G \F) be the distance between s and t in G \F (= G(V,E \F)). In
this section we describe the f -sensitivity distance oracle and prove Theorem 1.

Construction overview: Our construction is based on a novel combination of
three ingredients. The first ingredient is a tree cover for the given graph G. The
tree cover we use is the skeletal representation of undirected graphs presented in
[29,3,11]. The second ingredient is the connectivity oracle recently presented in
[28]. Finally, the third is a simple construction of a sparse subgraph that preserves
connectivity with up to f failures. We start by describing the ingredients that we
use. We then present our data structure, which is constructed using a suitable
combination of the above three ingredients.

Tree covers: Let G(V,E) be an undirected graph with edge weights ω, and let
ρ, k be two integers. Let Bρ(v) = {u ∈ V | dist(u, v,G) ≤ ρ} be the ball of
vertices of distance ρ from v. A tree cover TC(G,ω, ρ, k) is a collection of rooted
trees T = {T1, . . . , T�} in G, with root r(T) for every v ∈ T , such that:
(i) For every v ∈ V there exists a tree T ∈ T such that Bρ(v) ⊆ T .
(ii) For every T ∈ T and every v ∈ T , dist(v, r(T), T) ≤ (2k − 1) · ρ.
(iii) For every v ∈ V , the number of trees in T that contain v is O(k · n1/k).

Proposition 1 ([3,11,29]). For any ρ and k, one can construct TC(ρ, k) in
time Õ(mn1/k).

Connectivity oracles: Our second primitive is Conn Or(G,ω), a connectivity
oracle that given a set F ⊂ E of forbidden edges and a pair ofnodes s and t can

f -Sensitivity Distance Oracles and Routing Schemes 89

answer efficiently whether s and t are connected in G \F . The properties of the
connectivity oracle of [28] are summarized in the following proposition. We use
a slight variation of that construction, discussed after the proposition.

Proposition 2 ([28]). There exists a polynomial time constructible data struc-
ture Conn Or(G,ω) of size O(m), that given a set of forbidden edges F ⊂ E
of size f and two vertices s, t ∈ V , replies in time O(f log2 n log log n) whether
s and t are connected in G \ F .

Using the data structure presented in [28] as is allows us to answer only a single
query. That is, in the process of answering a query (s, t, F) the connectivity data
structure undergoes certain changes, which prevent us from using it to answer a
new query (s′, t′, F ′), asking whether s′ and t′ are connected in G\F ′. However,
this is a simple technical limitation, caused by the change of the connectivity
data structure, and it can be overcome by employing a rollback mechanism that
after each query (s, t, F) rewinds the changes made to the connectivity data
structure until it returns to its original form. This rewinding operation will take
time proportional to the query time of the data structure on (s, t, F), and does
not effect the original query time stated in [28]. It is now possible to query the
structure again using a different set of forbidden edges.

Fault tolerant connectivity preserver: Notice that the size of the data structure
Conn Or is O(m). This is necessary in [28] as the size of the forbidden edge set
is not known in advance. However, this is not the case in the sensitivity problem,
where the size of the forbidden edge set is known in advance. Hence we would
like to get a data structure whose size is independent of the number of edges in
the graph. To this end, we need to use a sparse representation of the graph G,
that has the same connectivity as G itself for any set of f forbidden edges. This
is exactly what our last ingredient is used for. We use an edge fault tolerant
connectivity preserver H = Conn Pres(G,ω, f), i.e., a subgraph of G(V,E)
such that s and t are connected in H \F iff they are connected in G\F for every
two vertices s, t ∈ V and any subset F ⊆ E of size at most f . Our fault tolerant
connectivity preserver has the following properties.

Proposition 3. Let G(V,E) be an undirected graph. There exists a subgraph
H = Conn Pres(G,ω, f) of G of size O(fn) such that for every subset F ⊆ E,
|F | ≤ f and every two vertices s, t ∈ V , s and t are connected in H \ F iff they
are connected in G \ F . The subgraph H can be built in time O(fm).

It was shown in [35,27] how to construct fault-tolerant connectivity preservers
with the desired properties. A closely related problem is the k-edge witness
problem studied in [40]. The k-edge witness problem is to preprocess a given
graph G so that given a set of k edges S and two nodes u and v, it possible
to answer in a short time whether S is a separator of u and v in G. Roughly
speaking, a fault-tolerant connectivity preserver can be constructed by iteratively
identifying a spanning forest for G, adding its edges to H , and then removing
its edges from G.

90 S. Chechik et al.

As the algorithm collects f + 1 spanning forests, each of at most n− 1 edges,
the total number of edges in the resulting subgraph is O(fn). We also show:

Lemma 1. For every subset F ⊆ E, where |F | ≤ f , and every two nodes s, t ∈
V , if s and t are connected in G′ = (V,E \ F) then they are also connected in
the subgraph H ′ = (V,EPR \ F).

Our construction: We now describe our construction of Sens Or(G,ω, f,K),
where K = (8k − 2)(f + 1) for integers k and f .

Our construction involves log (nW) iterations, where W is the weight of the
heaviest edge in G (hence the diameter of G is at most nW). Each iteration deals
with a certain scale of distances in the graph G. More specifically, iteration
i addresses distances that are at most 2i in G. Each iteration builds a set of
connectivity oracles. Each such oracle will allow to answer connectivity queries
on a certain subgraph of G. As we will see shortly, the subgraph for each oracle
is specified in two stages, the first defines the vertex set, and the second defines
the edge set. We now present our construction for iteration i.

Let Hi be the set of heavy edges in G (of weight ω(e) > 2i). Let Gi be
G \ Hi. It is easy to see that any two vertices that are connected in G by a
shortest path of length at most 2i are still connected in Gi by the same path.
For reasons that will become clear shortly, we use the graphs Gi as a base for our
construction in iteration i. We start by defining the vertex set of our connectivity
oracles. Namely, let TCi = TC(Gi, ω, 2i, k). For each tree T ∈ TCi we build a
connectivity oracle on the vertices V (T) of T . This completes our first stage.

For the second stage, define the edges to be considered in the connectivity
oracle corresponding to T ∈ TCi. Let Gi|T be the subgraph of Gi induced on the
vertices of T . Constructing the connectivity oracle on the edges of Gi|T actually
suffices for our construction. However, as the connectivity oracle uses space that
is linear in the number of edges, it is too costly to use it directly on Gi|T . Thus
to save space, we consider a sparse representation of Gi|T that still satisfies
our needs. This sparse representation is exactly the fault tolerant connectivity
preserver discussed above. Namely, let Conn PresT = Conn Pres(Gi|T , ω, f)
be a fault tolerant connectivity preserver for Gi|T . The subgraph Conn PresT

is what we use for the connectivity oracle that corresponds to T .
Our data structure includes a connectivity oracle Conn Or(Conn PresT , ω),

or simply Conn OrT , for each T ∈ TCi. In addition, for each v ∈ V we compute
and store a pointer to the tree Ti(v) ∈ TCi containing B2i(v). This completes
our construction for iteration i.

Lemma 2. The structure Sens Or(G,ω, f,K) is of size O(fkn1+1/k log (nW)).

Answering queries: Given a query (s, t, F) to our data structure, the oracle
operates as follows. For each i from 1 to log(nW), it checks if s is connected to t
in the induced graph Gi|Ti(s) after the set F of forbidden edges is excluded from
it. This is done by querying the connectivity oracle Conn OrTi(s) of Ti(s) with
(s, t, F). If s and t are connected, the oracle returns the value K·2i−1, otherwise
it proceeds to the next i value. If no such i exists, it returns ∞.

f -Sensitivity Distance Oracles and Routing Schemes 91

Theorem 1 now follows by the lemmas below.

Lemma 3 (Correctness). The f -sensitivity distance query algorithm returns
an estimate that is within a multiplicative factor of K from dist(s, t, G \ F).

Lemma 4. The f -sensitivity distance query (s, t, F) can be implemented to re-
turn a distance estimate in time O(|F | · log2 n · log log n · log log d), where d is
the distance between s and t in G \ F .

3 2-Sensitive Compact Routing Schemes

In this section we present an f -sensitive routing scheme for the case of two
forbidden edges (i.e., f = 2) and prove Theorem 2. Let s, t ∈ V and assume
that a message is to be routed from s to t. Loosely speaking, the routing process
we suggest is similar in nature to the f -sensitivity query process described in
Section 2. That is, our routing scheme involves at most �log (nW)� iterations. In
each iteration i, an attempt is made to route the message from s to t in the graph
Gi|Ti(t) \ F using the tree Ti(t) augmented with some additional information to
be specified below. (Note that in each iteration i, the routing attempt is made on
the tree Ti(t) instead of Ti(s); the reason for this will be made clearer later on.)
If the routing is unsuccessful, the scheme proceeds to the next iteration. The
routing process ends either when the message reaches its destination or after a
failure in the final iteration.

Let P be a shortest path between s and t in G \ F , and let i = �log |P |�. As
argued before, P is included in Gi|Ti(t)\F . To prove that our routing scheme suc-
ceeds, it suffices to prove that it finds a path of length proportional to |P | when
the routing is done on the augmented tree Ti(t). Throughout this section, any
standard tree routing operation is preformed by using the tree routing scheme
of Thorup and Zwick [38]. That scheme uses (1 + o(1)) log2 n-bit label for each
node. These labels are the only information required for their routing scheme
and no other data is stored. In addition, the routing decision at each node takes
only constant time.

Note that the routing scheme of [38] may assign a node t different label LT (t)
for each tree T ∈ TCi it belongs to. In order to enable a node s to route a
message to a node t over some tree T , it should be familiar with the label LT (t).
Naively, for each node t we could concatenate all labels assigned to t in all trees
T ∈ TCi it participates in, and use the concatenated string as the new label of t.
However, this could lead to prohibitively large labels. Therefore, for each node t,
we concatenate only the labels given to t for the trees Ti(t) for 1 ≤ i ≤ log (nW)
(and some indication on which tree is Ti(t)). Therefore, the attempts to route
from s to t are made over the trees Ti(t) instead of Ti(s). The size of each node
label is O(log (nW) · log n). In addition, for every tree T and every node v ∈ T ,
v stores the original label LT (v). Each such label is of size O(log n), therefore,
we get an additional O(log n) factor on the amount of information stored in the
vertices. Now consider iteration i where the node s tries to route a message to
t over Ti(t). Then s first checks if it belongs to Ti(t); if not, then it proceeds to
the next iteration, and so on.

92 S. Chechik et al.

We now turn to describe our 2-sensitivity routing scheme. Let T ∈ TCi,
where i ∈ {1, . . . , �log nW �}. Each edge e = (u, v) ∈ T , if declared as forbidden,
disconnects the tree into two connected components. Let Tu(e) (respectively,
Tv(e)) be the component that contains u (resp., v). As the route may need to
cross from one component to the other, our data structure needs to store at each
such edge e some additional information that will allow this task. Specifically, a
recovery edge of e is any edge e′ of G that connects Tu(e) and Tv(e). We define
for each edge e in T a recovery edge rec(e). For the sake of the analysis, and
to slightly simplify the routing phase, assume that the edges of the graph are
sorted in some order 〈e1, . . . , em〉, and for every edge e, rec(e) is chosen to be a
recovery edge ei of e such that i is minimal. We say that ei < ej when i < j.

In order to handle two failures, we need to store additional information (i.e.,
additional recovery edges) in the routing tables of vertices in T . We show that
the total number of recovery edges needed is O(|T |).

Consider the recovery edge rec(e) = (u′, v′) of the edge e. The edge rec(e)
connects the subtrees Tu(e) and Tv(e) where u′ ∈ Tu(e) and v′ ∈ Tv(e). Denote
by P (u, u′) (respectively, P (v, v′)) the path connecting u and u′ (respectively, v
and v′) in the tree Tu(e) (respectively, Tv(e)), and denote the entire alternative
path for e = (u, v) by P (e) = P (u, u′) · (u′, v′) · P (v′, v).

Throughout this section, assume the two failed edges are e1 = (u1, v1) and
e2 = (u2, v2). Clearly, if both e1 and e2 are not in T then we can just route on
T . Hence, we only have to consider the case when T contains the failed edges.

We first consider the case that only one of the failed edges is in T . Assume,
w.l.o.g., that e1 ∈ T and that e2 /∈ T . Notice that T ∪ {rec(e1)} \ {e1, e2} is
composed of two connected components only when rec(e1) = e2. To overcome
this it suffices to store for each edge e ∈ T an additional recovery edge. Then,
in the scenario described above, where rec(e1) = e2 and T ∪ {rec(e1)} \ {e1, e2}
is not connected, we simply use the additional recovery edge of e1 and we are
guaranteed not to encounter additional faulty edges along the rest of the route.
Note that if there is only one edge that can serve as a recovery edge for e1
and this edge is faulty, then it is not possible to route from s to t on Gi|T \
{e1, e2}. To summarize this case, for each edge e we store two recovery edges (if
exist).

We now consider the case that both e1, e2 ∈ T . Let rec(e1) = (u′
1, v

′
1) and

rec(e2) = (u′
2, v

′
2). If the edge e2 is not on the alternative path P (e1) = P (u1, u

′
1)·

P (u′
1, v

′
1)·P (v′1, v1) of e1 and s and t are connected in Gi|T \{e1, e2} then rec(e1)

and rec(e2) suffice to route from s to t. The reason is that it is always possible
to bypass e1 using its alternative path P (e1). Therefore, the routing from s to
t never gets stuck when reaching e1. When the edge e2 is encountered on the
routing path it is bypassed using P (e2) = P (u2, u

′
2) · P (u′

2, v
′
2) · P (v′2, v2). If the

edge e1 is on P (e2), it is bypassed (again) using P (e1), which does not contain
e2. This situation is depicted in Figure 1. The situation that e1 is not on P (e2)
is symmetric. Therefore, it is only left to consider the situation in which both e1
is in P (e2) and e2 is in P (e1).

f -Sensitivity Distance Oracles and Routing Schemes 93

(a)

e

1
e

2
e

P(e)
1

P(e)2P(e)1

rec(e)
1

rec(e)
2

1
e

2e

s t

ts

rec(e)1

rec(e)
2

(b)

1

Fig. 1. (a) A schematic description of an s− t route where the failed edge e1 is encoun-
tered twice. (b) The resulting route on the tree. Note that the alternate path P (e1)
does not always have to be followed blindly; rather, it can be ”shortcut” whenever the
necessary information is readily available.

This implies that rec(e1) = rec(e2). To see this, notice that since P (e2)
contains e1 the recovery edge rec(e2) is also a recovery edge for e1, and sim-
ilarly rec(e1) is also a recovery edge for e2. Since we have chosen the recovery
edges to be minimal with respect to a given ordering, it must be the case that
rec(e1) = rec(e2). Now since e1 is in P (e2), e2 is in P (e1) and rec(e1) = rec(e2)
it must be that P (e1)∪{e1} = P (e2)∪{e2}. To deal with this case, we store for
e1 (and similarly, for each edge e ∈ T) two additional recovery edges recu1(e1)
and recv1(e1). The purpose of recu1 (e1) (recv1 (e1)) is to handle an edge fault on
P (u1, u

′
1) (P (v1, v

′
1)). We choose recu1 (e1) such that it will allow to bypass as

many edges on P (u1, u
′
1) as possible. More specifically, consider the path from

u1 to any other recovery edge that differs from rec(e1). This path has some com-
mon prefix with P (u1, u

′
1) (which is possibly empty). For recu1(e1), we choose

the recovery edge of e1 that minimizes the length of this common prefix, that
is, if recu1(e1) = (û, v̂) then the common prefix of P (u1, u

′
1) and P (u1, û) is

the minimal possible. The recovery edge recv1(e1) is defined analogously with
respect to P (v1, v

′
1).

We now describe how it is possible to route from s to t when e1 is in P (e2), e2
is in P (e1) and rec(e1) = rec(e2) = e′ = (u′, v′) using the additional information.
The message first encounters the edge e1 = (u1, v1) on its route. If the recovery
edge rec(e1) does not exist than t cannot be reached using T . If rec(e1) = (u′, v′)
exists then the message is routed towards u′ on P (u1, u

′). It uses (u′, v′) and
continues to route from v′ toward t on P (v′, v1). Notice that at some stage
along the path P (u1, u

′) · (u′, v′) · P (v′, v1), the edge e2 is encountered. Since
rec(e1) = rec(e2) = e′ it is not possible to bypass e2 using rec(e2). There are
two possible cases to consider here. The first is when the edge e2 is on the path
P (u1, u

′) and the second is when the edge e2 is on the path P (v1, v
′). Notice

that it is possible to distinguish between the two cases when e2 is encountered
simply by checking whether the edge rec(e1) was already traversed.

Consider the first case, where e2 is on P (u1, u
′) and assume that v2 is the

endpoint of e2 that is connected to u1. There are three subtrees in T \ {e1, e2}.
Let T1 be the subtree containing u1 and v2. Let T2 be the subtree containing u2

94 S. Chechik et al.

and u′ and let T3 be the subtree containing v′ and v1. Note that if t ∈ T , then it
must be that t ∈ T3, as the routing scheme on T tries to send the message from
s to t using e1 = (u1, v1) which implies that t is not in the subtree T1∪T2∪{e2}
that contains u1. Moreover, as we assume that we first encounter e1 on the path
from s to t in T , it holds that s is in T1.

We first try to use the edge recu1(e1). Recall that this edge was chosen such
that the path leading to it from u1 has the minimal possible common prefix with
P (u1, u

′). Therefore, if there is a recovery edge r̃ = (ũ, ṽ) with endpoint ũ in
T1 and ṽ in T3, then clearly recu1(e1) = (u′′, v′′) must be such an edge. To see
this, assume towards contradiction, that the path P (u1, u

′′) contains the edge e2.
Note that the path P (u1, ũ) contains fewer edges in common with P (u1, u

′) than
the path P (u1, u

′′), in contradiction to the minimality of P (u1, u
′′). Therefore,

if the subtree T1 contains an edge leading to T3, using the edge recu1 (e1) we can
reach to the subtree T3 containing t.

The more involved subcase is when for every recovery edge r̃ = (ũ, ṽ) of e1, the
path P (u1, ũ) contains the edge e2, or in other words, there is no edge connecting
the subtree T1 with the subtree T3 (except the faulty edge e1). In this case, our
only “chance” to reach t on the tree T is by passing through the trees T1, T2
and finally T3 in this order. Notice that to connect between T2 and T3 we can
use the edge rec(e1). Using ideas similar to those presented above, we show that
it is possible to reach T2 from T1, and thus the additional information that we
have saved will allow us to reach t. The details, as well as the analysis of the
second case, in which the edge e2 is on the path P (v1, v

′), are omitted.

Lemma 5. The resulting routing scheme has maximum stretch O(k).

All in all, for each edge e = (u, v) ∈ T , both endpoints u and v store three
additional edges, rec(e), recu(e) and recv(e). Theorem 2 follows.

Acknowledgement. We are grateful to Seth Pettie for his helpful comments.

References

1. Aingworth, D., Chekuri, C., Indyk, P., Motwani, R.: Fast estimation of diameter
and shortest paths (without matrix multiplication). SIAM J. Comput. 28(4), 1167–
1181 (1999)

2. Awerbuch, B., Bar-Noy, A., Linial, N., Peleg, D.: Improved routing strategies with
succinct tables. J. Algorithms, 307–341 (1990)

3. Awerbuch, B., Kutten, S., Peleg, D.: On buffer-economical store-and-forward dead-
lock prevention. In: INFOCOM, pp. 410–414 (1991)

4. Awerbuch, B., Peleg, D.: Sparse partitions. In: 31st FOCS, pp. 503–513 (1990)
5. Baswana, S., Kavitha, T.: Faster algorithms for approximate distance oracles and

all-pairs small stretch paths. In: FOCS, pp. 591–602 (2006)
6. Baswana, S., Sen, S.: A simple linear time algorithm for computing sparse spanners

in weighted graphs. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J.
(eds.) ICALP 2003. LNCS, vol. 2719, pp. 384–396. Springer, Heidelberg (2003)

7. Baswana, S., Sen, S.: Approximate distance oracles for unweighted graphs in ex-
pected O(n2) time. ACM Trans. Algorithms 2(4), 557–577 (2006)

f -Sensitivity Distance Oracles and Routing Schemes 95

8. Bernstein, A., Karger, D.: Improved distance sensitivity oracles via random sam-
pling. In: 19th SODA, pp. 34–43 (2008)

9. Bernstein, A., Karger, D.: A nearly optimal oracle for avoiding failed vertices and
edges. In: 41st STOC, pp. 101–110 (2009)

10. Chechik, S., Langberg, M., Peleg, D., Roditty, L.: Fault-tolerant spanners for gen-
eral graphs. In: 41st STOC, pp. 435–444 (2009)

11. Cohen, E.: Fast algorithms for constructing t-spanners and paths with stretch t.
In: FOCS, pp. 648–658 (1993)

12. Courcelle, B., Twigg, A.: Compact forbidden-set routing. In: STACS, pp. 37–48
(2007)

13. Cowen, L.J.: Compact routing with minimum stretch. J. Alg. 38, 170–183 (2001)
14. Demetrescu, C., Italiano, G.F.: Experimental analysis of dynamic all pairs shortest

path algorithms. In: 15th SODA 2004, pp. 362–371 (2004)
15. Demetrescu, C., Thorup, M., Chowdhury, R., Ramachandran, V.: Oracles for dis-

tances avoiding a failed node or link. SIAM J. Comput. 37(5), 1299–1318 (2008)
16. Dor, D., Halperin, S., Zwick, U.: All-pairs almost shortest paths. SIAM J. Com-

put. 29(5), 1740–1759 (2000)
17. Duan, R., Pettie, S.: Dual-failure distance and connectivity oracles. In: SODA

(2009)
18. Eilam, T., Gavoille, C., Peleg, D.: Compact routing schemes with low stretch factor.

J. Algorithms 46, 97–114 (2003)
19. Elkin, M.: Computing almost shortest paths. ACM Trans. Alg. 1, 283–323 (2005)
20. Eppstein, D., Galil, Z., Italiano, G.F., Nissenzweig, N.: Sparsification – A technique

for speeding up dynamic graph algorithms. J. ACM 44 (1997)
21. Fraigniaud, P., Gavoille, C.: Memory requirement for universal routing schemes.

In: 14th PODC, pp. 223–230 (1995)
22. Gavoille, C., Gengler, M.: Space-efficiency for routing schemes of stretch factor

three. J. Parallel Distrib. Comput. 61, 679–687 (2001)
23. Gavoille, C., Peleg, D.: Compact and localized distributed data structures. Dis-

tributed Computing 16, 111–120 (2003)
24. Holm, J., de Lichtenberg, K., Thorup, M.: Poly-logarithmic deterministic fully-

dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and bicon-
nectivity. J. ACM 48(4), 723–760 (2001)

25. Kavitha, T.: Faster algorithms for all-pairs small stretch distances in weighted
graphs. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp.
328–339. Springer, Heidelberg (2007)

26. Khanna, N., Baswana, S.: Approximate shortest paths oracle handling single vertex
failure. In: STACS (2010)

27. Nagamochi, H., Ibaraki, T.: Linear time algorithms for finding a sparse k-connected
spanning subgraph of a k-connected graph. Algorithmica 7, 583–596 (1992)

28. Pǎtraşcu, M., Thorup, M.: Planning for fast connectivity updates. In: 48th FOCS,
pp. 263–271 (2007)

29. Peleg, D.: Distributed computing: a locality-sensitive approach. In: SIAM (2000)
30. Peleg, D., Ullman, J.D.: An optimal synchronizer for the hypercube. SIAM J.

Computing 18(4), 740–747 (1989)
31. Peleg, D., Upfal, E.: A trade-off between space and efficiency for routing tables. J.

ACM 36(3), 510–530 (1989)
32. Roditty, L., Thorup, M., Zwick, U.: Deterministic constructions of approximate dis-

tance oracles and spanners. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi,
C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 261–272. Springer, Heidel-
berg (2005)

96 S. Chechik et al.

33. Roditty, L., Thorup, M., Zwick, U.: Roundtrip spanners and roundtrip routing in
directed graphs. ACM Trans. Algorithms 4(3), 1–17 (2008)

34. Roditty, L., Zwick, U.: A fully dynamic reachability algorithm for directed graphs
with an almost linear update time. In: 36th STOC, pp. 184–191 (2004)

35. Thurimella, R.: Techniques for the design of parallel graph algorithms. Ph.D. The-
sis. Univ. Texas, Austin (1989)

36. Thorup, M.: Fully-dynamic all-pairs shortest paths: Faster and allowing negative
cycles. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp.
384–396. Springer, Heidelberg (2004)

37. Thorup, M.: Worst-case update times for fully-dynamic all-pairs shortest paths.
In: 37th STOC, pp. 112–119 (2005)

38. Thorup, M., Zwick, U.: Compact routing schemes. In: SPAA, pp. 1–10 (2001)
39. Thorup, M., Zwick, U.: Approximate distance oracles. J. ACM 52, 1–24 (2005)
40. Twigg, A.: Compact forbidden-set routing. Ph.D. Thesis. Univ. Cambridge (2006)

Fast Minor Testing in Planar Graphs

Isolde Adler1, Frederic Dorn2, Fedor V. Fomin2,
Ignasi Sau3, and Dimitrios M. Thilikos4,�

1 Institut für Informatik, Goethe-Universität, Frankfurt, Germany
iadler@informatik.uni-frankfurt.de

2 Department of Informatics, University of Bergen, Norway
{frederic.dorn,fedor.fomin}@ii.uib.no

3 Department of Computer Science, Technion, Haifa, Israel
ignasi@cs.technion.ac.il

4 Department of Mathematics, National and Kapodistrian
University of Athens, Greece

sedthilk@math.uoa.gr

Abstract. Minor containment is a fundamental problem in Algorithmic
Graph Theory, as numerous graph algorithms use it as a subroutine. A
model of a graph H in a graph G is a set of disjoint connected subgraphs
of G indexed by the vertices of H , such that if {u, v} is an edge of H , then
there is an edge of G between components Cu and Cv. Graph H is a minor
of G if G contains a model of H as a subgraph. We give an algorithm that,
given a planar n-vertex graph G and an h-vertex graph H , either finds
in time 2O(h) ·n+O(n2 · log n) a model of H in G, or correctly concludes
that G does not contain H as a minor. Our algorithm is the first single-
exponential algorithm for this problem and improves all previous minor
testing algorithms in planar graphs. Our technique is based on a novel
approach called partially embedded dynamic programming.

Keywords: graph minors, planar graphs, branchwidth, parameterized
complexity, dynamic programming.

1 Introduction

For two input graphs G and H , the Minor Containment problem is to decide
whether H is a minor of G. This is a classical NP-complete problem [16], and
remains NP-complete even when both graphs G and H are planar, as it is a
generalization of the Hamiltonian Cycle problem. When H is fixed, by the
celebrated result of Robertson and Seymour [26], there is an algorithm to decide
if H is a minor of an input graph G that runs in time f(h) · n3, where n is the
number of vertices of G, h is the number of vertices in H , and f is some recursive
function. One of the significant algorithmic implications of this result is that,
combined with the Graph Minor Theorem of Robertson and Seymour [28], it
shows the polynomial-time solvability of many graph problems, some of which
� Supported by the project “Kapodistrias” (AΠ 02839/ 28.07.2008) of the National

and Kapodistrian University of Athens (project code: 70/ 4/8757.)

M. de Berg and U. Meyer (Eds.): ESA 2010, Part I, LNCS 6346, pp. 97–109, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

98 I. Adler et al.

were previously not even known to be decidable [15]. However, these algorithmic
results are highly non-practical. This triggered an ongoing quest in the Theory
of Algorithms since then for making Graph Minors constructive and for making
its algorithmic proofs practical for a wide range of applications (e.g., [8,20]).

Unfortunately, in the minor testing algorithm of Robertson and Seymour [26],
the function f(h) has an immense exponential growth, which makes the algo-
rithm absolutely impractical even for very simple patterns (see [21] for recent
theoretical improvements of this function). There were several attempts to im-
prove the running time of the algorithm of Robertson and Seymour. One di-
rection of such improvements is decreasing the degree of the polynomial in n.
For example, Reed and Li gave a linear time algorithm solving K5-minor con-
tainment [25]. The second direction of improvements is towards reducing the
exponential dependency in the function f(h), which is a natural direction of
study for Parameterized Complexity [14]. A significant step in this direction was
done by Hicks [19], who provided in graphs of branchwidth k and m edges an
O(3k2 ·(h+k−1)!·m) time algorithm, following the algorithm sketched by Robert-
son and Seymour [26]. Recently, this was improved to O(2(2k+1) log k ·h2k ·22h2 ·m)
on general graphs, and in planar, and more generally, in graphs of bounded genus,
to 2O(k) · h2k · 2O(h) · n [1].

In this paper we focus on the case where the input graph G is planar.

Planar H-Minor Containment

Input: A planar graph G.
Objective: Either find a model M of H in G, or conclude that G does

not contain such a model.

By arguments inspired by Bidimensionality Theory [5], it can be shown that
the 2O(k) · h2k · 2O(h) · n time algorithm from [1], combined with the grid minor
Theorem of Robertson, Thomas, and Seymour [27], can be used to solve Planar

H-Minor Containment in time 2O(h log h) ·n+O(n2 · logn). This directly sets
up the challenge of designing a single-exponential (on the size h of the pattern
H) algorithm for this problem. Over the last four decades, many different algo-
rithmic techniques in planar graphs were developed for different type of problems
and algorithms, including approximation [4,7], exact [12,22], and parameterized
algorithms [3,6,13]. However, it seems that none of these approaches can be used
to speed up the algorithm for Planar H-Minor Containment.

Our results and key ideas. Our main result is the following theorem.

Theorem 1. Given a planar graph G on n vertices and a graph H on h vertices,
we can solve Planar H-Minor Containment in time 2O(h) ·n+O(n2 · log n).

That is, we prove that when G is planar the behavior of the function f(h) can be
made single-exponential, improving over all previous results for this problem [1,
26, 19]. In addition, we can enumerate and count the number of models within
the same time bounds. Let us remark that by our theorem, Planar H-Minor

Fast Minor Testing in Planar Graphs 99

Containment is solvable in polynomial time when the size of the pattern H is
O(log n), substantially improving the existing algorithms for small patterns [10].

In order to prove Theorem 1, we introduce a novel approach of dynamic pro-
gramming in planar graphs of bounded branchwidth, namely partially embedded
dynamic programming. This approach is extremely helpful in computing graph
minors but we believe that this technique can be used in many related problems
including Planar Disjoint Paths. Our technique is inspired by the technique
of embedded dynamic programming introduced in [11] for solving Planar Sub-

graph Isomorphism for a pattern of size h and an input graph of size n in time
2O(h) · n. There, one controls the partial solutions by the ways the separators of
G can be routed through the pattern. The difference (and difficulty) concerning
Planar H-Minor Containment is that we look for a model M of size O(n)
out of 2O(n) possible non-isomorphic models of H in G. In partially embedded
dynamic programming, we look for potential models of H in G with a magni-
fying glass only at a given separator S of G. That is, we consider a collection
A of graphs A arising from ‘inflating’ a part of H , namely the part interacting
with S. Thus, each A behaves like a subgraph of G inside the intersection with
S, and outside that intersection A behaves like a minor of G; this is why we call
our dynamic programming technique ‘partially embedded’.

After giving some preliminaries in Section 2, we first show in Section 3 how
Planar H-Minor Containment can be solved in polynomial time for input
graphs of large branchwidth (in comparison to the pattern size). If the branch-
width is small, we compute the collection A in Section 3.1 and give the partially
embedded dynamic programming approach in Section 3.2.

2 Preliminaries

Graphs and graph minors. We use standard graph terminology, see for in-
stance [9]. All graphs considered in this article are simple and undirected. Given
a graph G, we denote by V (G) and E(G) the vertex set and the edge set of G,
respectively. A graph H is a subgraph of a graph G, H ⊆ G, if V (H) ⊆ V (G)
and E(H) ⊆ E(G). We define graph operation contracting edge e = {x, y} ∈ G
by removing e, including x and y, and making a new vertex ve adjacent to the
former neighbors of x and y (excluding x and y).

Graph H is a minor of graph G (denoted by H G), if H can be obtained
from a subgraph of G by a (possibly empty) sequence of edge contractions. In
this case we also say that G is a major of H . Graph H is a contraction minor
of graph G (denoted by H c G), if H can be obtained from G by a (possibly
empty) sequence of edge contractions.

A model of H in G [26] is a mapping φ, that assigns to every edge e ∈ E(H)
an edge φ(e) ∈ E(G), and to every vertex v ∈ V (H) a non-empty connected
subgraph φ(v) ⊆ G, such that

(i) the graphs {φ(v) | v ∈ V (H)} are mutually vertex-disjoint and the edges
{φ(e) | e ∈ E(H)} are pairwise distinct; and

(ii) for e = {u, v} ∈ E(H), φ(e) connects φ(u) with φ(v).

100 I. Adler et al.

Thus, H is isomorphic to a minor of G if and only if there exists a model of H
in G.

With slight abuse of notation, the subgraph M ⊆ G defined by the union of
{φ(v) | v ∈ V (H)} and {φ(e) | e ∈ E(H)} is also called a model of H in G. The
edge set of a model M is partitioned into c-edges (contraction edges) and m-edges
(minor edges), which are the edges of {φ(v) | v ∈ V (H)} and {φ(e) | e ∈ E(H)},
respectively.

Branchwidth. A branch decomposition (T, μ) of a graph G consists of an un-
rooted ternary tree T (i.e., all internal vertices are of degree three) and a bijection
μ : L → E(G) from the set L of leaves of T to the edge set of G. We define
for every edge e of T the middle set mid(e) ⊆ V (G) as follows: Let T1 and T2
be the two connected components of T \ {e}. Then let Gi be the graph induced
by the edge set {μ(f) : f ∈ L ∩ V (Ti)} for i ∈ {1, 2}. The middle set is the
intersection of the vertex sets of G1 and G2, i.e., mid(e) = V (G1)∩V (G2). The
width of (T, μ) is the maximum order of the middle sets over all edges of T , i.e.,
width(T, μ) := max{|mid(e)| : e ∈ E(T)}. The branchwidth of G is defined as
bw(G) := min{width(T, μ) | (T, μ) branch decomposition of G}. Note that for
each e ∈ E(T), mid(e) is a separator of G, unless mid(e) = ∅.
Remark 1. For every two edges e, f ∈ E(T) with e∩ f 	= ∅, we have |mid(e)∪
mid(f)| ≤ 1.5 · width(T, μ).

Intuitively, a graph G has small branchwidth if G is close to being a tree. The
fundamental grid minor Theorem says that, roughly, a graph has either small
branchwidth, or it contains a large grid as a minor. We use the variant for planar
graphs.

Proposition 1 ([27,18]). Given a planar graph G on n vertices with bw(G) ≥
k, a model of the (!k/3" × !k/3")-grid in G can be found in time O(n2 · log n).

On the other hand, every planar graph is minor of a large enough grid.

Proposition 2 ([27]). If H is a planar graph with |V (H)|+ 2|E(H)| ≤ �, then
H is isomorphic to a minor of the (2�× 2�)-grid.

Planar graphs and equivalent drawings. Let Σ be the unit sphere. A planar
drawing, or simply drawing, of a graph G with vertex set V (G) and edge set E(G)
maps vertices to points in the sphere, and edges to simple curves between their
end-vertices, such that edges do not cross, except in common end-vertices. A
plane graph is a graph G together with a planar drawing. A planar graph is a
graph that admits a planar drawing. The set of faces F (G) of a plane graph G
is defined as the union of the connected regions of Σ \G. A subgraph of a plane
graph G, induced by the vertices and edges incident to a face f ∈ F (G), is called
a bound of f (for further reading, see e.g. [9]). Consider any two drawings G1 and
G2 of a planar graph G. A homeomorphism of G1 onto G2 is a homeomorphism
of Σ onto itself which maps vertices, edges, and faces of G1 onto vertices, edges,
and faces of G2, respectively. We call two planar drawings equivalent, if there is
a homeomorphism from one onto the other.

Fast Minor Testing in Planar Graphs 101

Proposition 3 (e.g. [24]). The number of non-equivalent drawings of a planar
n-vertex graph is 2O(n) . A set of all such drawings can be computed in time
2O(n).

Proposition 4 ([31]). The number of non-isomorphic edge-maximal planar n-
vertex graphs is 2O(n).

Nooses and combinatorial nooses. A noose of a Σ-plane graph G is a simple
closed curve in Σ that meets G only in vertices. From the Jordan Curve Theorem
(e.g. [23]), it follows that nooses separate Σ into two regions.

Let V (N) = N ∩ V (G) be the vertices and F (N) be the faces intersected by
a noose N . The length of N is |V (N)|, the number of vertices in V (N). The
clockwise order in which N meets the vertices of V (N) is a cyclic permutation
π on the set V (N).

A combinatorial noose NC = [v0, f0, v1, f1, . . . , f�−1, v�] in a plane graph G is an
alternating sequence of vertices and faces of G, such that

• fi is a face incident to both vi, vi+1 for all i < �;
• v0 = v� and the vertices v1, . . . , v� are mutually distinct; and
• if fi = fj for any i 	= j and i, j = 0, . . . , � − 1, then the vertices vi, vi+1, vj ,

and vj+1 do not appear in the order (vi, vj , vi+1, vj+1) on the bound of face
fi = fj .

The length of a combinatorial noose [v0, f0, v1, f1, . . . , f�−1, v�] is �.

Remark 2. The order in which a noose N intersects the faces F (N) and the
vertices V (N) of a plane graph G gives a unique alternating face-vertex sequence
of F (N)∪V (N) which is a combinatorial noose NC . Conversely, for every com-
binatorial noose NC there exists a noose N with face-vertex sequence NC.

We will refer to combinatorial nooses simply as nooses if it is clear from the
context.

Proposition 5 ([11]). Every plane graph on n vertices has 2O(n) combinatorial
nooses.

Sphere cut decompositions. For a plane graph G, we define a sphere cut
decomposition (or sc-decomposition) 〈T, μ, π〉 as a branch decomposition, which
for every edge e of T has a noose Ne that divides Σ into two regions Δ1 and Δ2
such that Gi ⊆ Δi∪Ne, where Gi is the graph induced by the edge set {μ(f) : f ∈
L∩V (Ti)} for i ∈ {1, 2} and T1∪̇T2 = T \{e}. Thus Ne meets G only in V (Ne) =
mid(e) and its length is |mid(e)|. The vertices of mid(e) = V (G1)∩ V (G2) are
ordered according to a cyclic permutation π = (πe)e∈E(T) on mid(e).

Theorem 2 ([13, 30]). Let G be a planar graph of branchwidth at most k
without vertices of degree one embedded on a sphere. Then there exists a sc-
decomposition of G of width at most k.

102 I. Adler et al.

3 Minor Testing in Planar Graphs

For solving Planar H-Minor Containment in single-exponential time 2O(h) ·
n +O(n2 · log n), we introduce in this section the method of partially embedded
dynamic programming. We present Algorithm 1 as a roadmap on how we proceed
in proving our main Theorem 1.

Algorithm 1. The main routine for Planar H-Minor Containment.

Input : A planar graph G.
Output : A model M of H in G, if it exists.
Compute sc-decomposition 〈T, μ, π〉 of G of width bw(G).
if bw(G) > c · h for some constant c then Compute M
else for every plane graph A � H produced by pre-proc(H) do

Run partially embedded dynamic programming on 〈T, μ, π〉 to try to find a
model M of A in G.

We divide Algorithm 1 into three parts, presented in the following sections.
From the next proposition we can find a model of H in G in the case of G

having large branchwidth.

Proposition 6. [�]1 Let G and H be planar graphs with |V (G)| = n, |V (H)| =
h. There exists a small constant c such that if bw(G) > c · h, then G contains a
model of H, which can be found in time O(n2 · log n + h4).

Otherwise, let us assume that bw(G) ≤ c · h. In this case, pre-proc(H) (basi-
cally) computes a list of all plane majors A of H up to a fixed size linear in h.
This ‘preprocessing step’ is presented in Section 3.1. In the sequel, we will only
be interested in a graph A of our list, if A is a minor of G obtained from H by
‘uncontracting’ some part, such that on a given subset S ⊆ V (G), our graph
A looks like a subgraph of G. Finally, in Section 3.2, we proceed by partially
embedded dynamic programming bottom-up along a sphere cut decomposition
of G. Here we make use of the fact that every middle set S yields a separating
noose in an embedding of G. If H has a model M ⊆ G that intersects S, then
the noose comes from a noose in M , which in turn is present in some major A
of H of our list. We use this fact to restrict the number of candidates we need
to consider.

3.1 Preprocessing

If the branchwidth of G is at most c · h, then we compute a sphere cut decom-
position of width O(h) in time O(n2) by using the algorithm of [17], and we
continue with dynamic programming.

In the first step we do preprocessing. Namely, we compute for H a list of
auxiliary graphs A with H A M and |V (A)| = O(h), such that A is a

1 The parts marked with [] can be found in a longer version of our paper [2].

Fast Minor Testing in Planar Graphs 103

candidate for a model M in G. To be precise, we compute a collection A of
2-edge-colored plane graphs, each consisting of

• a planar graph A with |V (A)| ≤ h+1.5 ·bw(G), such that H is a contraction
minor of A;

• a bipartition of the edge set E(A) into m-edges and c-edges such that con-
tracting the c-edges of Am,c creates a graph isomorphic to H ; and

• a drawing Φ of Am,c.

The simple routine pre-proc [�] takes as input H and outputs the collection A
of 2-edge-colored plane graphs 〈Am,c, Φ〉.

When doing dynamic programming in Section 3.2, instead of finding a model
M of H in G, we restrict ourselves to finding such a collection A consisting of
minors of M which represent both H and M in each dynamic programming step.

Lemma 1. [�] For every planar graph H on h vertices and every constant d,
the cardinality of the collection A of non-isomorphic 2-edge-colored plane graphs
on d · h vertices containing a minor isomorphic to H is 2O(h). Furthermore, we
can compute A in time 2O(h).

Using Lemma 1, we get the following corollary.

Corollary 1. Algorithm pre-proc [�] is correct and runs in time 2O(bw(G)+h).

3.2 Partially Embedded Dynamic Programming

From now on, we will refer to a 2-edge-colored plane graph 〈Am,c, Φ〉 ∈ A simply
as A. In this section we present our technique of partially embedded dynamic
programming, using it to solve Planar H-Minor Containment in the case of
the input graph G having bounded branchwidth. Before proceeding to a formal
description of the dynamic programming, we provide the basic intuition behind
our algorithm. Towards this, let us consider graphs A ∈ A satisfying H c A
and A G.

We define subgraphs past,present, and future of A with V (A) = V (past)∪
V (present) ∪ V (future) and E(A) = E(past)∪̇E(present)∪̇E(future),
such that

• present ⊆ G, (i.e., we can obtain A as a minor of G with present being
subgraph of G); and

• E(past) ⊆ E(H), (i.e., we can obtain H as a contraction minor of A without
contracting edges in past).2

Intuitively speaking, in partially embedded dynamic programming, we look for
potential models M of H with a magnifying glass only in the separators of the
sc-decomposition of G. By decontracting H at the separators, we obtain the

2 Here, we slightly abuse notation by assuming that edge sets in different graphs are
actually the same, instead of introducing bijective mappings. Note that we make no
assumption about the edges in future.

104 I. Adler et al.

part present, which yields a subgraph of G for which we are enabled to apply
embedded dynamic programming. For memorizing the rest of the potential model
M , we contract all necessary edges to past in the processed graph and (almost)
all edges to future in the graph remainder. The picture will be made clearer
in the sequel.

Given a sc-decomposition of G, we proceed with dynamic programming: Ev-
ery edge e of the sc-decomposition defines a separator mid(e) ⊆ V (G) and an
associated noose Ne, which separates the graph Gsub ⊆ G processed so far from
G\Gsub. At every edge e of the sc-decomposition, we check for every graph A of
A all the ways in which the graph Gsub can be obtained as a major of Asub ⊆ A
with Asub = (V (past) ∪ V (present), E(past) ∪ E(present)), where mid(e)
determines V (present). The noose Ne comes from a noose in A, and this is
controlled by the ways in which Ne can be routed through the vertices of A. The
number of solutions we get—the valid partial solutions—is bounded by the num-
ber of combinatorial nooses in A onto which we can map Ne. When updating the
valid partial solutions at two incident edges of the sc-decomposition, we unite
present and past of two solutions and set the graph remainder to future. In
a post-processing step, we contract part of present, namely those edges with
at most one endpoint in the newly obtained separator of the sc-decomposition;
this part becomes past. We then decontract some edges of future for the next
updating step. This concludes the informal description of the algorithm.

In the remaining part of this section, we will precisely describe and analyze
the dynamic programming routine with which we achieve the following result:

Lemma 2. For a plane graph G with a given sc-decomposition 〈T, μ, π〉 of G
of width bw(G) and a planar graph H on h vertices, we can decide in time
2O(bw(G)+h) · n whether G contains a model M of H.

Dynamic programming. We root the sc-decomposition 〈T, μ, π〉 at some node
r ∈ V (T). For each edge e ∈ T , let Le be the set of leaves of the subtree rooted
at e. The subgraph Ge of G is induced by the edge set {μ(v) | v ∈ Le}. The
vertices of mid(e) form a combinatorial noose N that separates Ge from the
residual graph.

Let A be a given plane graph in A. If A is a minor of G, then there exists a
plane model M of A in G. Furthermore, for above noose N the intersection M∩N
forms a noose in both model M and A. One basic point of partially embedded
dynamic programming is to check how the vertices of the combinatorial noose
N are mapped to faces and vertices of A. For a combinatorial noose NA in A,
we can map N to NA bounding (clockwise) a unique subgraph Asub of A.

In each step of the algorithm, we compute the solutions for a sub-problem in
Ge, where each solution consists of three parts, namely
• a plane 2-edge-colored graph A ∈ A;
• a combinatorial noose NA in A; and
• a mapping γ from combinatorial noose N to NA (defined below).
NA has the properties that a) it bounds (clockwise) a subgraph Asub ⊆ A and
b) no vertex in V (Asub) \ V (NA) is incident to a c-edge. The subgraph Asub is

Fast Minor Testing in Planar Graphs 105

representing the part of model M already computed, whereas the residual graph
of A represents the part of M which still has to be verified. For every middle
set, we store this information in an array of triples 〈A,NA, γ〉.

We define now valid mappings between combinatorial nooses and describe
how partial solutions are stored in the dynamic programming. Then, we give the
different DP-steps and finally verify the approach.

Valid partial solutions. For middle set mid(e) of the rooted sc-decomposition
〈T, μ, π〉 of plane graph G, N = Ne is the associated combinatorial noose in G
with face-vertex sequence of F (N)∪V (N) separating Ge from the residual graph.
Let N denote the set of all combinatorial nooses of A whose length is at most
the length of N and which bound (clockwise) a subgraph Asub ⊆ A such that
no vertex in V (Asub) \ V (NA) is an end-vertex of a c-edge. We now map N
to nooses NA ∈ N, preserving the order. More precisely, we map vertices of N
to both vertices and faces of A. Therefore, we consider partitions of V (N) =
V1(N)∪̇V2(N) where vertices in V1(N) are mapped to vertices of V (A) and
vertices in V2(N) to faces of F (A).

We define a mapping γ : V (N) ∪ F (N) → V (A) ∪ F (A) relating N to the
combinatorial nooses in N. For every NA ∈ N on faces and vertices of set
F (NA) ∪ V (NA) and for every partition V1(N)∪̇V2(N) of V (N), mapping γ
is valid [�] if
a) γ restricted to V1(N) is a bijection to V (NA);
b) every v ∈ V2(N) and f ∈ F (N) satisfy γ(v) ∈ F (NA) and γ(f) ∈ F (NA);
c) for every vi ∈ V (N) and subsequence [fi−1, vi, fi] of N : if vi ∈ V2(N), then

face γ(vi) is equal to both γ(fi−1) and γ(fi), and if vi ∈ V1(N), then vertex
γ(vi) is incident to both γ(fi−1) and γ(fi); and

d) Asub is a minor of Ge with respect to a)− c).

We assign an array Ψe to each mid(e) consisting of triples, where each triple
〈A,NA, γ〉 represents a minor candidate A together with a valid mapping γ from
a combinatorial noose N corresponding to mid(e) to a combinatorial noose
NA ∈ N. The vertices and faces of N are oriented clockwise around the drawing
of Ge. Without loss of generality, we assume for every 〈A,NA, γ〉 the orientation
of NA to be clockwise around the drawing of subgraph Asub of A.

Step 0: Initializing the leaves. For every parent edge e of a leaf v of T ,
we initialize for every A ∈ A the valid mappings from the combinatorial noose
bounding the edge μ(v) of G to every combinatorial noose of length at most two
in A (clockwise bounding at most one edge of A).

Step 1a): Update process. We update the arrays of the middle sets bottom-
up in post-order manner from the leaves of T to root r. During this updating
process it is guaranteed that the ‘local’ solutions for each minor associated with
a middle set of the sc-decomposition are combined into a ‘global’ solution for
the overall graph G.

In each dynamic programming step, we compare the arrays of two middle sets
mid(e) and mid(f) in order to create a new array assigned to the middle set

106 I. Adler et al.

mid(g), where e, f , and g have a vertex of T in common. From [13] we know that
the combinatorial noose Ng is formed by the symmetric difference of the combi-
natorial nooses Ne, Nf and that Gg = Ge ∪ Gf . In other words, we are ensured
that if two solutions on Ge and Gf bounded by Ne and Nf fit together, then they
form a new solution on Gg bounded by Ng. We now determine when two solutions
represented as tuples in the arrays Ψe and Ψf fit together. We update two triples
〈A1, N1

A, γ1〉 ∈ Ψe and 〈A2, N2
A, γ2〉 ∈ Ψf to a new triple in Ψg if

• A1 = A2 =: A ∈ A and every edge of A with no endpoint in V (N1
A)∪ V (N2

A)
is an m-edge;

• for every x ∈ (V (Ne) ∪ F (Ne)) ∩ (V (Nf) ∪ F (Nf)), we have γ1(x) = γ2(x);
and

• for the subgraph A1
sub of A separated by N1

A and the subgraph A2
sub of A sep-

arated by N2
A, we have that E(A1

sub)∩E(A2
sub) = ∅ and V (A1

sub)∩V (A2
sub) ⊆

{γ(v) | v ∈ V (Ne) ∩ V (Nf)}.
That is, we only update solutions with the same graph A and with the two nooses
N1

A and N2
A bounding (clockwise) two edge-disjoint parts of A and intersecting

in a consecutive subsequence of both N1
A and N2

A. If the two solutions on Ne

and Nf fit together, we get a valid mapping γ3 : Ng → N3
A to a noose N3

A of A
as follows:
• for every x ∈ (V (Ne) ∪ F (Ne)) ∩ (V (Nf) ∪ F (Nf)) ∩ (V (Ng) ∪ F (Ng),) we

have γ1(x) = γ2(x) = γ3(x);
• for every y ∈ (V (Ne) ∪ F (Ne)) \ (V (Nf) ∪ F (Nf)) we have γ1(y) = γ3(y);

and
• for every z ∈ (V (Nf) ∪ F (Nf)) \ (V (Ne) ∪ F (Ne)) we have γ2(z) = γ3(z).
We have that γ3 is a valid mapping from Ng to the combinatorial noose N3

A that
bounds subgraph A3

sub = A1
sub ∪A2

sub.

Step 1b): Post-processing. Before adding a triple 〈A,N3
A, γ3〉 to array Ψg,

we need to manipulate A so that a) it does not grow too big and b) it is suitable
for future update operations. In A restricted to subgraph A3

sub, we contract all
c-edges with at least one end-vertex not in N3

A in order to fulfill a). Concerning
b), for every B ∈ A we check for all its nooses NB with |V (NB)| = |V (N3

A)| if
there is a bijection β from N3

A to NB such that the following holds. If in a copy
of B we contract those c-edges which i) are in the subgraph counter-clockwise
bounded by NB and ii) have at least one end-vertex not in NB, then we obtain
a 2-edge-colored graph isomorphic to A. We define δ = γ3 ◦ β and we replace
〈A,N3

A, γ3〉 in array Ψg by those triples 〈B,NB, δ〉 which validate properties i)
and ii).

Step 2: Termination. If, at some step, we have a solution where the entire
minor H is formed, we terminate the algorithm accepting. That is the case, if
for some triple we have that H Asub A and Asub is bounded by NA. We
output model M of H in G represented by this A by reconstructing a solution
top-down in 〈T, μ, π〉. If at root r no A ∈ A has been computed, we reject.

Fast Minor Testing in Planar Graphs 107

We omit here the correctness proof and the running time of the algorithm and
refer to the long version of this paper [2]. This completes the proof of Lemma 2.

Proof of Theorem 1. We put everything together by verifying Algorithm 1. We
produce in time O(n2 · log n) a sc-decomposition of input graph G [17]. Next,
either we can immediately compute a minor model of G in time O(n2 · log n+h4)
(Proposition 6) or we run our 2-step-algorithm: we produce all majors of the
minor pattern (Lemma 1) with Algorithm pre-proc [�] in time 2O(h), and run
partially embedded dynamic programming in time 2O(h) · n (Lemma 2). ��

4 Conclusions and Further Research

In this paper we showed that Planar H-Minor Containment is solvable in
time 2O(h) · n + O(n2 · log n) for a host graph on n vertices and a pattern H
on h vertices. That is, we showed that the problem can be solved in single-
exponential time in h, significantly improving all previously known algorithms.
Similar to [11], we can enumerate and count the number of models within the
same time bounds.

Let us discuss some interesting avenues for further research concerning minor
containment problems. First, it seems possible to solve in single-exponential time
other variants of planar minor containment using our approach, like looking for
a contraction minor, an induced minor, or a topological minor, as it has been
recently done in [1] for general host graphs using completely different techniques.
Also, it would be interesting to count the number of non-isomorphic models faster
than just by enumerating models and removing isomorphic duplicates.

An important question is if, up to some assumption from complexity theory,
the running time of our algorithm is tight. In other words, is there a 2o(h) ·
nO(1) algorithm (i.e., a subexponential algorithm) solving Planar H-Minor

Containment or the existence of such an algorithm would imply the failure
of, say, the Exponential Time Hypothesis? A first step could be to study the
existence of subexponential algorithms when the pattern is restricted to be a k-
outerplanar graph for some constant k, or any other subclass of planar graphs.

Conversely, single-exponential algorithms may exist for host graphs more gen-
eral than planar graphs. The natural candidates are host graphs embeddable
in an arbitrary surface. One possible approach could be to use the framework
recently introduced in [29] to perform dynamic programming for graphs on sur-
faces. The main ingredient of this framework is a new type of branch decompo-
sition of graphs on surfaces, called surface cut decomposition, which plays the
role of sphere cut decompositions for planar graphs.

References

1. Adler, I., Dorn, F., Fomin, F.V., Sau, I., Thilikos, D.M.: Faster Parameterized Algo-
rithms for Minor Containment. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139,
pp. 322–333. Springer, Heidelberg (2010)

108 I. Adler et al.

2. Adler, I., Dorn, F., Fomin, F.V., Sau, I., Thilikos, D.M.: Fast Minor Testing in Pla-
nar Graphs (2010), http://users.uoa.gr/~sedthilk/papers/fastminorch.pdf

3. Alber, J., Bodlaender, H.L., Fernau, H., Kloks, T., Niedermeier, R.: Fixed pa-
rameter algorithms for dominating set and related problems on planar graphs.
Algorithmica 33, 461–493 (2002)

4. Baker, B.S.: Approximation algorithms for NP-complete problems on planar
graphs. Journal of the ACM 41, 153–180 (1994)

5. Demaine, E.D., Fomin, F.V., Hajiaghayi, M.T., Thilikos, D.M.: Subexponential
parameterized algorithms on graphs of bounded genus and H-minor-free graphs.
Journal of the ACM 52(6), 866–893 (2005)

6. Demaine, E.D., Hajiaghayi, M.: Bidimensionality. In: Kao, M.-Y. (ed.) Encyclope-
dia of Algorithms. Springer, Heidelberg (2008)

7. Demaine, E.D., Hajiaghayi, M.T.: Bidimensionality: new connections between FPT
algorithms and PTASs. In: Proc. of the 16th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 590–601 (2005)

8. Demaine, E.D., Hajiaghayi, M.T., Kawarabayashi, K.i.: Algorithmic Graph Minor
Theory: Decomposition, Approximation, and Coloring. In: Proc. of the 46th An-
nual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 637–646
(2005)

9. Diestel, R.: Graph Theory, vol. 173. Springer, Heidelberg (2005)
10. Dinneen, M., Xiong, L.: The Feasibility and Use of a Minor Containment Algo-

rithm. Computer Science Technical Reports 171, University of Auckland (2000)
11. Dorn, F.: Planar Subgraph Isomorphism Revisited. In: Proc. of the 27th Inter-

national Symposium on Theoretical Aspects of Computer Science (STACS), pp.
263–274 (2010)

12. Dorn, F., Fomin, F.V., Thilikos, D.M.: Subexponential parameterized algorithms.
Computer Science Review 2(1), 29–39 (2008)

13. Dorn, F., Penninkx, E., Bodlaender, H.L., Fomin, F.V.: Efficient exact algorithms
on planar graphs: Exploiting sphere cut decompositions. Algorithmica (2009) (to
appear)

14. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999)

15. Fellows, M.R., Langston, M.A.: On search, decision and the efficiency of
polynomial-time algorithms. J. Comp. Syst. Sc. 49, 769–779 (1994)

16. Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, New York (1979)

17. Gu, Q.-P., Tamaki, H.: Constant-factor approximations of branch-decomposition
and largest grid minor of planar graphs in O(n1+ε) time. In: Dong, Y., Du, D.-Z.,
Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 984–993. Springer, Heidelberg
(2009)

18. Gu, Q.P., Tamaki, H.: Improved bound on the planar branchwidth with respect
to the largest grid minor size. Technical Report SFU-CMPT-TR 2009-17, Simon
Fraiser University (2009)

19. Hicks, I.V.: Branch decompositions and minor containment. Networks 43(1), 1–9
(2004)

20. Kawarabayashi, K.i., Reed, B.A.: Hadwiger’s conjecture is decidable. In: Proc. of
the 41st Annual ACM Symposium on Theory of Computing (STOC), pp. 445–454
(2009)

21. Kawarabayashi, K.i., Wollan, P.: A shorter proof of the Graph Minor Algorithm -
The Unique Linkage Theorem. In: Proc. of the 42st Annual ACM Symposium on
Theory of Computing, STOC (to appear, 2010)

http://users.uoa.gr/~sedthilk/papers/fastminorch.pdf

Fast Minor Testing in Planar Graphs 109

22. Lipton, R.J., Tarjan, R.E.: Applications of a planar separator theorem. SIAM J.
Comput. 9, 615–627 (1980)

23. Mohar, B., Thomassen, C.: Graphs on surfaces. John Hopkins University Press
(2001)

24. Osthus, D., Prömel, H.J., Taraz, A.: On random planar graphs, the number of
planar graphs and their triangulations. J. Comb. Theory, Ser. B 88(1), 119–134
(2003)

25. Reed, B.A., Li, Z.: Optimization and Recognition for K5-minor Free Graphs in
Linear Time. In: Proc. of the 8th Latin American Symposium on Theoretical In-
formatics (LATIN), pp. 206–215 (2008)

26. Robertson, N., Seymour, P.: Graph Minors. XIII. The Disjoint Paths Problem. J.
Comb. Theory, Ser. B 63(1), 65–110 (1995)

27. Robertson, N., Seymour, P., Thomas, R.: Quickly excluding a planar graph. J.
Comb. Theory, Ser. B 62(2), 323–348 (1994)

28. Robertson, N., Seymour, P.D.: Graph Minors. XX. Wagner’s Conjecture. J. Comb.
Theory, Ser. B 92(2), 325–357 (2004)

29. Rué, J., Sau, I., Thilikos, D.M.: Dynamic Programming for Graphs on Surfaces.
In: Proc. of the 37th International Colloquium on Automata, Languages and Pro-
gramming, ICALP (to appear, 2010),
http://hal.archives-ouvertes.fr/inria-00443582

30. Seymour, P.D., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14(2),
217–241 (1994)

31. Tutte, W.T.: A census of planar triangulations. Canadian Journal of Mathemat-
ics 14, 21–38 (1962)

http://hal.archives-ouvertes.fr/inria-00443582

On the Number of Spanning Trees a Planar

Graph Can Have

Kevin Buchin1,� and André Schulz2,��

1 Department of Mathematics and Computer Science,
Technical University of Eindhoven

k.a.buchin@tue.nl
2 Institut für Mathematsche Logik und Grundlagenforschung, Universität Münster

andre.schulz@uni-muenster.de

Abstract. We prove that any planar graph on n vertices has less than
O(5.2852n) spanning trees. Under the restriction that the planar graph is
3-connected and contains no triangle and no quadrilateral the number of
its spanning trees is less than O(2.7156n). As a consequence of the latter
the grid size needed to realize a 3d polytope with integer coordinates
can be bounded by O(147.7n). Our observations imply improved upper
bounds for related quantities: the number of cycle-free graphs in a planar
graph is bounded by O(6.4884n), the number of plane spanning trees on
a set of n points in the plane is bounded by O(158.6n), and the number
of plane cycle-free graphs on a set of n points in the plane is bounded
by O(194.7n).

1 Introduction

The number of spanning trees of a connected graph, also considered as the
complexity of the graph, is an important graph invariant. Its importance largely
stems from Kirchhoff’s seminal matrix tree theorem: The number of spanning
trees equals the absolute value of any cofactor of the Laplacian matrix of the
graph. Furthermore, this number is the order of the Jacobian group of the graph,
also known as critical group, or as sandpile model in theoretical physics [2,3].
This group can be represented as a chip firing game on the graph; in this context
the number of spanning trees counts the number of the stable and recurrent
configurations [4].

Our motivation to study the number of spanning trees of planar graphs comes
from an application of Kirchhoff’s matrix tree theorem. Instead of computing
the number of spanning trees with Kirchhoff’s theorem one can use bounds on
the number of spanning trees to obtain bounds for the cofactors of the Laplacian
matrix. These cofactors appear in various settings. For example, Tutte’s famous
spring embedding is computed by solving a linear system that is based on the

� Supported by the Netherlands Organisation for Scientific Research (NWO) under
project no. 639.022.707.

�� Supported by the German Research Foundation (DFG) under grant SCHU 2458/1-1.

M. de Berg and U. Meyer (Eds.): ESA 2010, Part I, LNCS 6346, pp. 110–121, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

On the Number of Spanning Trees a Planar Graph Can Have 111

Laplacian matrix [19,20]. As a consequence of Cramer’s rule the cofactor of
the Laplacian matrix is the denominator of all coordinates in the embedding.
Therefore, by multiplying with the number of spanning trees, we can scale to
an integer embedding. This idea finds applications in the grid embedding of 3d
polytopes [13,14]. Before we describe this application in more detail, we introduce
some notation.

Let Gn be the set of all planar graphs with n vertices. For a graph G ∈ Gn

we denote the number of its (labeled) spanning trees with t(G). For every Gn let
T (n) be the maximal number of spanning trees a graph in this class can have,
that is T (n) = maxG∈Gn{t(G)}. We study the growth rate of the function T (n).
Since it seems intractable to obtain an exact formula for T (n), we aim at finding
a value α such that T (n) ≤ αn for n large enough. Notice that the graph that
realizes the maximum T (n) has to be a triangulation. Hence, it suffices to look
at the subclass of all planar triangulations with n vertices instead of considering
all graphs in Gn.

Furthermore, we are interested in the maximal number of spanning trees for
planar graphs with special facial structure. In particular, we want to bound

T4(n)= max
G∈Gn

{t(G)|G is 3-connected and contains no triangle},

T5(n)= max
G∈Gn

{t(G)|G is 3-connected and contains no triangle or quadrilateral}.

Notice that if a graph is planar and 3-connected its facial structure is uniquely
determined [21]. Let αn

4 be an upper bound on T4(n) and αn
5 be an upper bound

on T5(n). We refer to the problem of bounding α as the general problem, and to
the problems of bounding α4 and α5 as restricted problems.

For embedding 3d polytopes the necessary grid size (ignoring polynomial fac-
tors) can be expressed in terms of α, α4 and α5. In this scenario we are dealing
with 3-connected planar graphs since G is the graph of a 3d polytope [17]. If the
graph G contains a triangle the grid size is in O(α2n), if G contains a quadri-
lateral the grid size is in O(α4

3n). Due to Euler’s formula every (3-connected)
planar graph contains a pentagon – in this case the grid size in O(α5

5n). As a
consequence better bounds on α, α4 and α5 directly imply a better bound on
the grid size needed to realize a polytope with integer coordinates.

Richter-Gebert used a bound on T (n) to bound the size of the grid embedding
of a 3d polytope [14]. By applying Hadamard’s inequality he showed that the
cofactors of the Laplacian matrix of a planar graph are less than 6.5n. This
bound can by easily improved to 6n by noticing that the Laplacian matrix is
positive semi-definite, which allows the application of the stronger version of
Hadamard’s inequality [9, page 477]. Both bounds do not rely on the planarity
of G, but on the fact that the sum of the vertex degrees of G is below 6n. Ribó
and Rote improved Richter-Gebert’s analysis and showed that 5.0295n ≤ T (n) ≤
5.3̄n [12,15]. The lower bound is realized on a wrapped up triangular grid and
was obtained by the transfer-matrix method. For the upper bound they count
the number of the spanning trees on the dual graph. This number coincides with
the number of spanning trees in the original planar graph. Since the number

112 K. Buchin and A. Schulz

of spanning trees is maximized by a triangulation, the dual graph is 3-regular.
Applying a result of McKay [11], which bounds the number of spanning trees
on k-regular graphs, yields the bound of 5.3̄n. Interestingly, this bound is not
directly related to the planarity of the graph. Therefore, Ribó and Rote tried
to improve the bound using the outgoing edge approach. The approach involves
choosing a partial orientation of the graph and estimating the probability of a
cycle. To handle dependencies between cycles, Ribó and Rote tried (1) selecting
an independent subset of cycles, and (2) using Suen’s inequality [18]. However,
they could only prove an upper bound of 5.5202n for T (n), and they showed
that their approach is not suitable to break the bound of 5.3̄n. For the restricted
problems they obtained the bounds T4(n) ≤ 3.529n and T5(n) ≤ 2.847n.

Bounds for the number of spanning trees of general graphs are often expressed
in terms of the vertex degree sequence of the graph. However, the main difficulty
in obtaining good values for α lies in the fact that we do not know the degree
sequence of the graph in advance. Therefore, these bounds are not directly ap-
plicable. If we would assume that almost every vertex degree is 6, which is true
for the best known lower bound example presented in [12], the bound of Grone
and Merris [8] gives an upper bound for T (n) of (n/(n − 1))n−16n−1/n, whose
asymptotic growth equals the growth rate obtained by Hadamard’s inequality.
To apply the more involved bound of Lyons [10] one has to know the proba-
bilities that a simple random walk returns to its start vertex after k steps (for
every start vertex). Even under the assumption that every vertex has degree
6, it is difficult to express the return probabilities in terms of k to obtain an
improvement over 6n.

Spanning trees are not the only interesting substructures that can be counted
in planar graphs. Aichholzer et al. [1] list the known upper bounds for other sub-
graphs contained in a triangulation: Hamiltonian cycles, cycles, perfect match-
ings, connected graphs and so on. The bounds for Hamiltonian cycles and cycles
have been recently improved [5].

Overview. In Section 2 we bound the number of spanning trees by the num-
ber of outdegree-one graphs, i.e., the number of directed graphs obtained by
picking for each vertex one outgoing edge. Cycle-free outdegree-one graphs corre-
spond to spanning trees. Therefore we next bound the probability that a random
outdegree-one graph has a cycle. For this we analyze the dependencies between
cycles. In contrast to Ribó and Rote who showed how to avoid the dependencies
in the analysis, we instead make use of the dependencies. Since our method might
also find application in analyzing similar dependency structures, we phrase our
probabilistic lemma in a more general setting in Section 2.1. More specifically,
we develop a framework to analyze a series of events for which dependent events
are mutually exclusive. In Section 2.2 we apply this framework to bound the
probability of the occurrence of a cycle. From this we derive in Sections 2.3
and 2.4 a linear program whose objective function bounds (the logarithm of)
the number of spanning trees. This linear program has infinitely many variables,
and we instead consider the dual program with infinitely many constraints.

On the Number of Spanning Trees a Planar Graph Can Have 113

Results. We improve the upper bounds for the number of spanning trees of
planar graphs by showing: α ≤ 5.2852, α4 ≤ 3.4162, and α5 ≤ 2.7156. As a
consequence the grid size needed to realize a 3d polytope with integer coordinates
can now be bounded by O(147.7n) instead of O(188n). For grid embeddings of
simplicial 3d polytopes our results yield a small improvement to O(27.94n) over
the old bound of O(28.4̄n).

The maximal number of cycle-free graphs in a triangulation is another inter-
esting quantity. Aichholzer et al. [1] obtained an upper bound of 6.75n for this
number. We show in this paper that the improved bound for T (n) yields an
improved upper bound of O(6.4948n).

Multiplying α with the number of maximal number of triangulations a point
set can have, gives an upper bound for the number of plane spanning trees
on a point set. Using 30n as an upper bound for the number of triangulations
of a point set (obtained by Sharir and Sheffer [16]) yields an upper bound of
O(158.6n) for the number of plane spanning trees on a point set. By the same con-
struction the number of plane cycle-free graphs can be improved to O(194.7n).
To our knowledge both bounds are the currently best known bounds.

2 Refined Outgoing Edge Approach

Our results are obtained by the outgoing edge approach and its refinements.
For this we consider each edge vw of G as a pair of directed arcs v → w and
w → v. Let v1 be a designated vertex of G, and let v2, . . . vn be the remaining
vertices. A directed graph is called outdegree-one, if v1 has no outgoing edge,
and every remaining vertex is incident to exactly one outgoing edge. A spanning
tree can be oriented as outdegree-one graphs by directing its edges towards v1.
This interpretation associates every spanning tree with exactly one outdegree-
one graph. As a consequence the number of outdegree-one graphs contained in
G exceeds t(G).

We can obtain all outdegree-one graphs by selecting for every vertex (except
v1) an edge as its outgoing edge. Let S be such a selection. We denote with di

the degree of the vertex vi. For every vertex vi we have di choices how to select
its outgoing edge. This gives us in total

∏n
i=2 di different outdegree-one graphs

in G. Due to Euler’s formula the average vertex degree is less than 6, and hence
we have less than 6n outdegree-one graphs of G by the geometric-arithmetic
mean inequality. Thus, the outgoing edge approach gives the same bound as the
strong Hadamard inequality by a very simple argument.

Outdegree-one graphs without cycles are exactly the (oriented) spanning trees
of G. To improve the bound of 6n we try to remove all graphs with cycles from
our counting scheme. Let us now consider a random selection S that picks the
outgoing edge for every vertex uniformly at random. This implies that also the
selected outdegree-one graph will be picked uniformly at random. Let Pnc be the
probability that the random graph selected by S contains no cycle. The exact
number of spanning trees for any (not necessary planar) graph G is given by
t(G) = (

∏n
i=2 di) Pnc.

114 K. Buchin and A. Schulz

2.1 The Dependencies of Cycles in a Random Outdegree-One
Graph

Assume that the t cycles contained in G are enumerated in some order. Notice
that in an outdegree-one graph every cycle has to be directed. We consider the
two orientations of a cycle with more than two vertices as one cycle. Let Ci be
the event that the i-th cycle occurs and let Cc

i be the event that the i-th cycle
does not occur in a random outdegree-one graph. For events Ci, Cj we denote
that they are dependent by Ci ↔ Cj and that they are independent by Ci 	↔ Cj .
We say that cycles are dependent (independent) if the corresponding events are
dependent (independent).

Two cycles are independent if and only if they do not share a vertex. In turn,
cycles that share a vertex are not only dependent but mutually exclusive, i.e.,
they cannot occur both in an outdegree-one graph, since this would result in a
vertex with two outgoing edges. This gives us the following two properties of
the events Ci. We say events E1, . . . , El have mutually exclusive dependencies if
Ei ↔ Ej implies Pr[Ei ∩ Ej] = 0. We say that events E1, . . . , El have union-
closed independencies if Ei 	↔ Ei1 , . . . , Ei 	↔ Eik

implies Ei 	↔ (Ei1 ∪ . . .∪Eik
).

It is easy to see that the events Ci have mutually exclusive dependencies and
union-closed independencies.

Lemma 1. If events E1, . . . , El have mutually exclusive dependencies and union-
closed independencies then for 1 < k < l

Pr[
l⋂

j=k

Ec
j |

k−1⋂
i=1

Ec
i] ≤

l∏
j=k

⎛⎜⎜⎜⎜⎝1− Pr[Ej]∏
1≤i<k:
Ei↔Ej

Pr[Ec
i]
√ ∏

k≤i≤l:
Ei↔Ej

Pr[Ec
i]

⎞⎟⎟⎟⎟⎠ .

The proof of the lemma can be found in the full version of the paper.

2.2 Bounding the Probability of the Appearance of Cycles

Before estimating the probability Pnc in terms of the vertex degrees, we intro-
duce some notation. A cycle of length k is called a k-cycle. The k-extension of
a cycle is the union of a cycle with all its dependent k-cycles. We say that the
degree of a cycle is the ordered sequence of the degrees of its vertices. Let Cabc a
3 cycle spanned by va, vb, vc, and let the degree of Cabc be (da, db, dc) = (i, j, k).
We denote the degrees of the vertices adjacent to va that are not part of Cabc by
the sequence A. In the same fashion we denote the degrees of the vertices around
vb by B and the around vc by C. The ordering in A,B,C respects the counter
clockwise ordering of the vertices around va, vb, vc in a planar embedding. Since
G is planar and 3-connected the ordering of the sequences is uniquely determined
up to a global reflection [21]. Notice that a vertex might occur in two different
sequences. We call the tuple (i, j, k, A,B,C), the signature of the 2-extension

On the Number of Spanning Trees a Planar Graph Can Have 115

i = 5

j = 6

a1 = b5

a2

a3

a4

b1

b2

b3b4

i = 5

j = 6

a1 = c5

a2

a3 = b1

b2

b3

k = 7b4 = c1

c2 c3 c4

(5, 6, (a1, . . . a4), (b1, . . . b5)) (5, 6, 7, (a1, . . . a3), (b1, . . . b4), (c1, . . . c5))

Fig. 1. Convention for naming the signatures of 2-extensions of 2-cycles (on the left)
and 3-cycles (on the right)

of Cabc. Similarly, we define the signature of a 2-extension of a 2-cycle Cab by
the tuple (i, j, A,B). The naming convention is depicted in Figure 1.

We can express Pnc as Pr[
⋂t

j=1 Cc
i]. Our goal is to apply Lemma 1 to bound

this probability. As a first step we discuss how to express the number of spanning
trees t(G) in the case that the different signatures of G are known. Instead of
t(G) we bound its logarithm, i.e.,

log t(G) =
n∑

i=2

log di + log Pr[
t⋂

j=1

Cc
i]. (1)

The probability that an event Ci occurs can be expressed in terms of vertex
degrees. In particular,

Pr[Ci] = 1/(dadb) the i-th cycle is a 2-cycle on the vertices vavb,
Pr[Cj] = 2/

∏
a : va∈Z da the j-th cycle is at least a 3-cycle on the set Z.

The way we proceed depends on whether we are addressing the general prob-
lem (i.e., we want to bound α) or one of the restricted problems (i.e., we want
to bound α4 or α5). In the latter case we limit our analysis to 2-cycles only. In
the general case we consider all cycles of length 2 and cycles of length 3 that are
triangles in G.

We start with the general problem. Assume that all cycles C are enumerated
such that the first t3 cycles are the triangles in G, and the last t2 cycles are the
2-cycles of G. In total we consider t := t2 + t3 cycles. All remaining cycles are
ignored. Discarding the larger cycles gives an upper bound on Pnc and is there-
fore applicable. We apply Lemma 1 with k = 1 and l = t3 to bound Pr[

⋂t3
j=1 Cc

j],
which is the probability that no 3-cycle occurs. To take also the 2-cycles into
account we consider the probability that no 2-cycle occurs under the condition
that no triangle occurred as 3-cycle, which is Pr[

⋂t
j=t3+1 Cc

j |
⋂t3

j=1 Cc
j]. Notice

116 K. Buchin and A. Schulz

that this probability has the form stated in Lemma 1 for l = t and k = t3 + 1.
Thus, we can bound log Pr[

⋂t
j=1 Cc

j] from above by

t3∑
j=1

log

(
1− Pr[Cj]√ ∏

1≤i≤t3:
Ci↔Cj

Pr[Cc
i]

)
+

t∑
j=t3+1

log

(
1− Pr[Cj]∏

1≤i<t3+1:
Ci↔Cj

Pr[Cc
i]
√ ∏

t3<i≤t:
Ci↔Cj

Pr[Cc
i]

)
.

(2)
Equation (2) is a sum over cycles. Each summand in this sum depends only on the
signature of the 2-extension of such cycle. Hence, we can group the summands in
(2) with identical signatures. We denote the number of 2-extensions of 2-cycles
with signature (i, j, A,B) by the variable fij(A,B). Similarly, the number of 2-
extensions of 3-cycles with signature (i, j, k, A,B,C) is denoted by fijk(A,B,C).
In order to simplify matters, we refer to fij(A,B) and fijk(A,B,C) simply as
fij and fijk, or as f variables.

For better readability we introduce the following notations (X is used as a
placeholder for A,B, or C, and x as a placeholder for a, b, or c):

P2(r,X) :=
∏

1≤p≤r−1

(
1− 1

rxp

)
, P3(r,X) :=

∏
1≤p≤r−2

(
1− 2

rxpxp+1

)
,

Pij(A,B) := 1− 1

ijP3(i, A)P3(j, B)
(
1− 2

ija1

)(
1− 2

ijb1

)√
P2(i, A)P2(j, B)

,

Pijk(A,B,C) := 1− 2

ijk

√
P3(i, A)P3(j, B)P3(k, C)

(
1− 2

ika1

)(
1− 2

ijb1

)(
1− 2

jkc1

) .

We rephrase (2) as

log Pr[
t⋂

j=1

Cc
j] ≤

∑
i,j,k,A,B,C

fijk(A,B,C) log Pijk(A,B,C) +
∑

i,j,A,B

fij(A,B) log Pij(A,B).

(3)

The sums in the last expression (and following similar sums) range over all
feasible signatures. Let us now consider the restricted problems. Both restricted
problems are easier to analyze than the general problem, since we consider only
2-cycles. To bound Pr[

⋂t2
j=1 Cc

j] we apply Lemma 1 with k = 1 and l = t2.
Following the presentation of the general problem we define

P̂ij(A,B) := 1− 1
ij
√

P2(i, A)P2(j, B)
,

and obtain for the restricted problems

log Pr[
t2⋂

j=1

Cc
j] ≤

∑
i,j,A,B

fij(A,B) log P̂ij(A,B). (4)

On the Number of Spanning Trees a Planar Graph Can Have 117

2.3 A Charging Scheme for the Vertex Degrees

If we insert the bounds (3) or (4) into equation (1) we obtain an upper bound for
t(G) in terms of the signatures of G. However, we would like to express the first
part of equation (1), which is D :=

∑n
i=1 log di, also in terms of the f variables.

For convenience we include log d1 in the sum for D, which is applicable since we
are looking for an upper bound.

Let us first discuss the general problem. We split D into four parts: Di := μiD
for i = 1, . . . , 4, with

∑4
i=1 μi = 1. The parameters μi will be fixed later. We

express D1 and D2 by the fij variables and D3 and D4 by the fijk variables.
Every vertex va contributes μ1 log da to D1. On the other hand, every vertex va

is part of da 2-cycles. We charge the total amount of μ1 log da uniformly to these
2-cycles. Thus, every 2-cycle incident to va gets μ1 log da/da from va. In a similar
fashion we charge D2 to the 2-extension of 2-cycles. Let vavb be an edge in G and
let vr 	= vb be a vertex adjacent to va. Distributing μ2 log dr uniformly, assigns
every 2-extension with “endpoint” vr the fraction of μ2 log dr/(dr(da − 1)) from
vr. For D3 and D4 we argue analogously. We can therefore express D by

D1 =μ1

∑
i,j,A,B

fij(A,B)
(log i

i
+

log j

j

)
,

D2 =μ2

∑
i,j,A,B

fij(A,B)
(∑

ar∈A

log ar

ar(i− 1)
+
∑

br∈B

log br

br(j − 1)

)
,

D3 =μ3

∑
i,j,k,A,B,C

fijk(A,B,C)
(log i

i
+

log j

j
+

log k

k

)
,

D4 =μ4

∑
i,j,k,A,B,C

fijk(A,B,C)
(∑

ar∈A

log ar

ar(i− 1)
+
∑

br∈B

log br

br(j − 1)
+
∑

cr∈C

log cr

cr(k − 1)

)
.

(5)

We can now express log Pnc as sum over all signatures. This sum can be subdi-
vided into one part that contains the fij variables and one part that contains
the fijk variables. The part that considers the 2-cycles is given by

D1 + D2 +
∑

i,j,A,B

fij(A,B) log Pij(A,B), (G2)

and the part that considers the 3-cycles is given by

D3 + D4 +
∑

i,j,k,A,B,C

fijk(A,B,C) log Pijk(A,B,C). (G3)

For the restricted problems we only have 2-cycles. Using bound (4) and setting
μ3 = μ4 = 0, we can bound the number of spanning trees by

D1 + D2 +
∑

i,j,A,B

fij(A,B) log P̂ij(A,B). (R2)

118 K. Buchin and A. Schulz

2.4 Finding Constraints

In this section we construct necessary conditions for the f variables that have
to hold for planar graphs with n vertices. We reuse the ideas from the charging
scheme in Section 2.3. Instead of giving every vertex log di to distribute, we
assign to every vertex an amount of 1. This gives us a total of n units. Following
the construction of the equations of (5) we obtain∑

i,j,A,B

fij(A,B)
(1

i
+

1
j

)
= n, (A2)

∑
i,j,k,A,B,C

fijk(A,B,C)
(1

i
+

1
j

+
1
k

)
= n, (A3)

∑
i,j,A,B

fij(A,B)
(∑

ar∈A

1
ar(i− 1)

+
∑

br∈B

1
br(j − 1)

)
= n, (B2)

∑
i,j,k,A,B,C

fijk(A,B,C)
(∑

ar∈A

1
ar(i− 1)

+
∑

br∈B

1
br(j − 1)

+
∑
cr∈C

1
cr(k − 1)

)
= n. (B3)

Another set of constraints is given by the number of 2-cycles and 3-cycles a
planar graph can have, which is related to the number of edges and faces of
G. Every 2-cycle is counted by some fij variable, hence the sum over all fij

equals the number of edges, which we name m. Since we consider only 3-cycles
of triangles, the sum of the fijk variables equals the number of triangles, which
for a planar graph is at most 2n. We obtain∑

i,j,A,B

fij(A,B) ≤ m, (C2)

∑
i,j,k,A,B,C

fijk(A,B,C) ≤ 2n. (C3)

For the general case we have m ≤ 3n, for the restricted case where quadrilaterals
are allowed we have m ≤ 2n, and for the remaining case we have m ≤ 5n/3. All
these bounds can be obtained by a simple double counting argument using Eu-
ler’s formula. As trivial condition we restrict the f variables to be non-negative.

The constraints so far might be fulfilled by a signatures that does not come
from a planar graph. In particular, the degree sequence of the graph induced by
the cycles might be unrelated to the degree sequence of the graph induced by
the 2-extensions. To overcome this ambiguity we consider the number of edges
with vertex degree i at one vertex and degree j at the other. Let this number be
nij . Clearly, we have that nij =

∑
A,B fij(A,B), where the sum ranges about all

feasible sequences A,B. On the other hand, nij can be counted by its appearances
in the 2-extensions of 2-cycles. Every edge with degree (i, j) will show up in
(i−1)+(j−1) 2-extensions. Let χi(X) denote the number of appearances of i in
the sequence X . We can express ((i−1)+(j−1))nij as

∑
k,A,B fik(A,B)χj(A)+∑

k,A,B fkj(A,B)χi(B). This leads us to a new constraint of the form

On the Number of Spanning Trees a Planar Graph Can Have 119

(i + j − 2)
∑
A,B

fij(A,B) =
∑

k,A,B

fik(A,B)χj(A) +
∑

k,A,B

fkj(A,B)χi(B). (Eij)

In the case where the smallest face of the graph is a pentagon, we were able
to improve the solution of the linear program by adding the constraint (E33).
Other constraints of the form (Eij) gave no improvement.

The solutions for the linear programs are included in the full version of this
paper. We conclude with the main theorem.

Theorem 1. Let G be a planar graph with n vertices. The number of spanning
trees of G is at most O(5.28515n). If G is 3-connected and contains no triangle,
then the number of its spanning trees is bounded by O(3.41619n). If G is 3-
connected and contains no triangle and no quadrilateral, then the number of its
spanning trees is bounded by O(2.71567n).

3 Further Bounds and Future Work

The results of Theorem 1 improve several related upper bounds. Using the ob-
servations by Ribó et al. [13] we obtain the following bounds for grid embeddings
of 3d polytopes.

Corollary 1. Let G be the graph of a 3-polytope P with n vertices. P admits a
realization as combinatorial equivalent polytope with integer coordinates and

1. no coordinate larger than O(147.7n),
2. no coordinate larger than O(39.9n), if G contains a quadrilateral,
3. no coordinate larger than O(28.4n), if G contains a triangle.

The number F (n) of cycle-free graphs in a planar graph with n vertices is
bounded by the number of selections of at most n− 1 edges from the graphs [1].
Thus, F (n) ≤

∑n−1
k=0

(3n−6
k

)
. For 0 ≤ q ≤ 1/2 we have that

∑�qm�
i=0

(
m
qm

)
< 2H(q)m,

where H(q) := − log(q)q − log(1 − q)(1−q) is the binary entropy (see for exam-
ple [7, page 427]). This shows that, F (n) < 6.75n by setting m = 3n and q = 1/3.

We give a better bound based on the bound for the number of spanning trees.
We first bound the number F (n, k) of forests in Gn with k edges. On one hand,
the above argument yields an upper bound of F (n, k) ≤ f1(k) :=

(3n−6
k

)
. On the

other hand, every forest with k edges can be constructed by selecting k edges
from a spanning tree of Gn. This gives as alternative bound F (n, k) ≤ f2(k) =:(
n−1

k

)
T (n). Now, the number of cycle-free graphs is bounded by

F (n) =
n−1∑
k=0

F (n, k) ≤ n max
0≤k<n

F (n, k) ≤ n max
0≤q<1

min(f1(qn), f2(qn)).

We use
(

n
qn

)
≤ 2nH(q) as upper bound for the binomial coefficients (see for

example [6, page 1097]) to obtain

f1(qn) < f̂1(qn) := 23nH(q/3) and f2(qn) < f̂2(qn) := T (n)2nH(q).

120 K. Buchin and A. Schulz

The computed maximal value for the minimum of f̂1 and f̂2 is realized at qn =
0.94741 n. This yields a bound of n ·6.4948n for the number of cycle-free graphs.
For the computation of these values we used numerical methods. Observe that
f̂1(qn) realizes 6.4948n at a larger value q than f̂2(qn). The correctness of the
numerical computations follows from the monotonicity of f̂1 and f̂2 in (n/2, n].
For the number of plane spanning trees and cycle-free graphs on a planar point
set, we obtain improved upper bounds by multiplying our bounds with the bound
of O(30n) on the maximum number of triangulations on a planar point set [16].

Theorem 2. The number of cycle-free graphs in a planar graph with n vertices
is bounded by n ·6.4948n. The number of plane spanning trees on n planar points
is in O(158.6n), the number of cycle-free graphs in O(194.7n).

We expect better bounds for the number of cycle-free graphs in a planar graph
from a more direct application of the outgoing edge approach. By adding a new
vertex that is linked to a subset of the other vertices, every cycle-free graph can
be turned into a spanning tree of the augmented graph. Without excluding any
cycles we get a bound of 7n. Under the assumption that almost every vertex
has degree 6, the refined outgoing edge method would yield a bound of 6.5027n

when excluding 2-cycles and of 6.4244 when excluding 2 and 3-cycles. So far we
were not able to check all constraints of the corresponding linear programs.

We finish our presentation with a discussion on how one could improve our
results further. Since we consider only 2-cycles and 3-cycles from triangles, one
would obtain a better bound for Pnc by taking also larger cycles into account.
We do not expect to win anything by considering 3-cycles that are not triangles,
because in the lower bound example (the wrapped up triangular grid) all 3-
cycles are triangles. The analysis using larger cycles is more complicated and
needs an extensive case distinction. Furthermore, we expect that there would be
too many cases left for the brute force check. From our perspective, the following
refinement seems tractable: Beside the 2-cycles, and 3-cycles on triangles, we also
analyze 4-cycles that belong to two triangles sharing an edge (the diagonal).
The 4-cycles can be analyzed by extending the events Ci for the 2-cycles to
the following event: the i-th 2-cycle occurs, or the corresponding 4-cycle, whose
diagonal is associated with the i-th cycle occurs. Assuming that the solution of
the corresponding linear program is given by having almost every vertex degree
6, this would lead to α = 5.25603. Since the resulting linear program is more
complicated, the verification of the dual solutions is tedious.

Notice that Lemma 1 uses two enumerations of the events Ci to avoid the
influence of the ordering. An elaborated enumeration scheme of the events Ci

might give better bounds. Furthermore, we could consider “extension of exten-
sions” to analyze larger locally connected pieces of the graph at once. This results
in a powerful but very complicated incarnation of the outgoing edge approach.

The reader might think, that additional constraints in the linear programs
might improve the outcome of our analysis. However, we expect that the solutions
of the dual programs give the correct distribution of signatures. In particular, the
solutions the dual programs match the candidates for the lower bound examples
that were presented in [12].

On the Number of Spanning Trees a Planar Graph Can Have 121

Acknowledgements. We thank Günter Rote for suggesting this problem to us
and for many inspiring and fruitful discussions on this subject.

References

1. Aichholzer, O., Hackl, T., Huemer, C., Hurtado, F., Krasser, H., Vogtenhuber, B.:
On the number of plane geometric graphs. Graph. Comb. 23(1), 67–84 (2007)

2. Bacher, R., de la Harpe, P., Nagnibeda, T.: The lattice of integral flows and the
lattice of integral cuts on a finite graph. Bull. Soc. Math. de France 125, 167–198
(1997)

3. Biggs, N.: Algebraic potential theory on graphs. Bull. London Math. Soc. 29, 641–
682 (1997)

4. Biggs, N.: Chip-firing and the critical group of a graph. J. Algebraic Combin. 9,
25–46 (1999)

5. Buchin, K., Knauer, C., Kriegel, K., Schulz, A., Seidel, R.: On the number of cycles
in planar graphs. In: Lin, G. (ed.) COCOON 2007. LNCS, vol. 4598, pp. 97–107.
Springer, Heidelberg (2007)

6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. MIT Press, Cambridge (2001)

7. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg
(2006)

8. Grone, R., Merris, R.: A bound for the complexity of a simple graph. Discrete
Mathematics 69(1), 97–99 (1988)

9. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cam-
bridge (1985)

10. Lyons, R.: Asymptotic enumeration of spanning trees. Combinatorics, Probability
& Computing 14(4), 491–522 (2005)

11. McKay, B.D.: Spanning trees in regular graphs. Euro. J. Combinatorics 4, 149–160
(1983)

12. Ribó Mor, A.: Realization and Counting Problems for Planar Structures: Trees and
Linkages, Polytopes and Polyominoes. PhD thesis, Freie Universität Berlin (2006)

13. Ribó Mor, A., Rote, G., Schulz, A.: Embedding 3-polytopes on a small grid. In:
Erickson, J. (ed.) Symposium on Computational Geometry, pp. 112–118. ACM,
New York (2007)

14. Richter-Gebert, J.: Realization Spaces of Polytopes. Lecture Notes in Mathematics,
vol. 1643. Springer, Heidelberg (1996)

15. Rote, G.: The number of spanning trees in a planar graph. In: Oberwolfach Reports,
vol. 2, European Mathematical Society, Publishing House (2005)

16. Sharir, M., Sheffer, A.: Counting triangulations of planar point sets (2010)
(manuscript)

17. Steinitz, E.: Encyclopädie der mathematischen Wissenschaften. In: Polyeder und
Raumteilungen, pp. 1–139 (1922)

18. Suen, S.: A correlation inequality and a poisson limit theorem for nonoverlapping
balanced subgraphs of a random graph. Random Struct. Algorithms 1(2), 231–242
(1990)

19. Tutte, W.T.: Convex representations of graphs. Proceedings London Mathematical
Society 10(38), 304–320 (1960)

20. Tutte, W.T.: How to draw a graph. Proceedings London Mathematical Soci-
ety 13(52), 743–768 (1963)

21. Whitney, H.: A set of topological invariants for graphs. Amer. J. Math. 55, 235–321
(1933)

Contractions of Planar Graphs

in Polynomial Time�

Marcin Kamiński1,��, Daniël Paulusma2, and Dimitrios M. Thilikos3,���

1 Département d’Informatique
Université Libre de Bruxelles
Marcin.Kaminski@ulb.ac.be

2 Department of Computer Science
University of Durham

Daniel.Paulusma@durham.ac.uk
3 Department of Mathematics

National and Kapodistrian University of Athens
sedthilk@math.uoa.gr

Abstract. We prove that for every graph H , there exists a polyno-
mial-time algorithm deciding if a planar graph can be contracted to H .
We introduce contractions and topological minors of embedded (plane)
graphs and show that a plane graph H is an embedded contraction of
a plane graph G, if and only if, the dual of H is an embedded topolog-
ical minor of the dual of G. We show how to reduce finding embedded
topological minors in plane graphs to solving an instance of the disjoint
paths problem. Finally, we extend the result to graphs embeddable in an
arbitrary surface.

Keywords: planar graph, dual graph, contraction, topological minor.

1 Introduction

An edge contraction of an edge e in a graph is the graph obtained by removing
e, identifying its two endpoints, and eliminating parallel edges that may appear.
Some basic properties of contractions are collected in [21]. Formally, for an edge
e with endpoints u and w, the contraction of e, denoted by G/e, is the graph
with vertex set V (G/e) = V (G) \ {u,w} ∪ {vuw} and edge set

E(G/e) = E \ { {x, y} ∈ E : x ∈ {u,w}, y ∈ V }
∪ { {vuw, x} : {x, u} ∈ E ∨ {x,w} ∈ E }.

A graph H is a contraction of a graph G (or G is contractible to H) if H can
be obtained from G by a sequence of edge contractions.

� This research was done while the two last authors were visiting the Département
d’Informatique Université Libre de Bruxelles in January 2010.

�� Chargé de Recherches du FRS-FNRS.
��� Supported by the project “Kapodistrias” (AΠ 02839/28.07.2008) of the National

and Kapodistrian University of Athens.

M. de Berg and U. Meyer (Eds.): ESA 2010, Part I, LNCS 6346, pp. 122–133, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Contractions of Planar Graphs in Polynomial Time 123

1.1 Previous Work

The problem of checking whether a graph is a contraction of another has already
attracted some attention. In this subsection we briefly survey known results.

Stars and triangle-free patterns. Perhaps the first systematic study of contrac-
tions was undertaken by Brouwer and Veldman [2]. Here are two main theorems
from that paper.

Theorem 1 (Theorem 3 in [2]). A graph G is contractible to K1,m if and
only if G is connected and contains an independent set S of m vertices such that
G− S is connected.

In particular, a graph is contractible to P3 if and only if it is connected and
is neither a cycle nor a complete graph. The theorem also allows to detect, in
polynomial time, if a graph is contractible to K1,m. It suffices to enumerate over
all sets S with m independent vertices and check if the graph G−S is connected.
This gives an |V (G)|O(m) algorithm, which is polynomial for every fixed m.

Theorem 2 (Theorem 9 in [2]). If H is a connected triangle-free graph other
than a star, then contractibility to H is NP-complete.

Hence, checking if a graph is contractible to P4 or C4 is NP-complete. More
generally, it is NP-complete for every bipartite graph with at least one connected
component that is not a star.

Patterns up to 5 vertices. The research direction initiated by Brouwer and Veld-
man was continued by Levin, Paulusma, and Woeginger [10], [11]. Here is the
main result established in these two papers.

Theorem 3 (Theorem 3 in [10]). Let H be a connected graph on at most 5
vertices. If H has a dominating vertex, then contractibility to H can be decided
in polynomial time. If H does not have a dominating vertex, then contractibility
to H is NP-complete.

However, the existence of a dominating vertex in the pattern H is not enough to
ensure that contractibility to H can be decided in polynomial time. A pattern
on 69 vertices for which contractibility to H is NP-complete was exhibited in [9].

When the pattern is part of input. Looking at contractions to fixed pattern
graphs is justified by the following theorems proved by Matoušek and Thomas
in [14].

Theorem 4 (Theorem 4.1 in [14]). The problem of deciding, given two input
graphs G and H, whether G is contractible to H is NP-complete even if we impose
one of the following restrictions on G and H:

(i) H and G are trees of bounded diameter,
(ii) H and G are trees all whose vertices but one have degree at most 5.

124 M. Kamiński, D. Paulusma, and D.M. Thilikos

Theorem 5 (Theorem 4.3 in [14]). For every fixed k, the problem of deciding,
given two input graphs G and H, whether G is contractible to H is NP-complete
even if we restrict G to partial k-trees and H to k-connected graphs.

The authors also proved a positive result.

Theorem 6 (Theorem 5.14 in [14]). For every fixed Δ, k, there exists an
O(|V (H)|k+1 · |V (G)|) algorithm to decide, given two input graphs G and H,
whether G is contractible to H, when the maximum degree of H is at most Δ
and G is a partial k-tree.

Cyclicity. The cyclicity of a graph G is defined as the largest integer k for which
G is contractible to a cycle on k vertices. Exact values for some graphs and lower
and upper bounds for some classes of graphs are given by Hammack in [8]. He also
presented a polynomial-time algorithm for computing cyclicity of a planar graph.

Non-recursive classes closed under taking of contractions. Another type of con-
tainment relation close to contractions – induced minors – was studied by Ma-
toušek, Nešetřil, and Thomas in [12]. A graph is an induced minor of another
if the first is a contraction of an induced subgraph of the latter. The authors of
[12] prove (Theorem 1.8) that there exists a class closed under taking of induced
minors which is non-recursive (i.e. there is no algorithm to test the membership
in this class). Clearly, a class of graphs closed under taking of induced minors is
also closed under taking of contractions (and induced subgraphs) so we restate
their result in the following way.

Theorem 7 (Theorem 1.18 in [12]). There exists a non-recursive class of
graphs closed under taking of contractions (and induced subgraphs).

Wagner’s Conjecture for contractions. The statement usually referred to as Wag-
ner’s Conjecture (although Klaus Wagner insisted he had never posed it, as ex-
plained in [4], p.355) is that for any infinite sequence G0, G1, . . . of graphs, there
is a pair i, j such that i < j and Gi is a minor of Gj . The proof of Wagner’s Con-
jecture is one of the highlights of the Graph Minors project [20].

A contraction version of Wagner’s Conjecture was considered by Demaine,
Hajiaghayi, and Kawarabayashi in [3]. They disproved this version showing the
following.

Theorem 8 (Theorem 31 in [3]). There is an infinite sequence G0, G1, . . . of
connected graphs such that, for every pair i, j (i 	= j), Gi is not a contraction
of Gj .

However, the authors also proved that the conjecture holds when the graphs
in the sequence are required to be trees, or triangulated planar graphs, or 2-
connected embedded outerplanar graphs.

1.2 Our Contribution

A graph is a minor of another if the first is a contraction of a subgraph of
the latter. Graph Minors is a celebrated project by Robertson and Seymour

Contractions of Planar Graphs in Polynomial Time 125

that is considered to be an important part of modern Graph Theory. One of
the algorithmic consequences of Graph Minors is that, for every graph H , there
exists a cubic-time algorithm deciding whether the input graph contains H as
a minor [18]; and another, for every class of graphs closed under taking minors,
there exists a cubic-time algorithm deciding whether the input graph belongs to
this class [20].

While graph minors are well-studied both from combinatorial and algorithmic
point of view, relatively little is known about graph contractions which are rather
close to graph minors. Algorithmically, they are much less tractable compared
to minors. As mentioned in the previous subsection, there are graphs for which
it is NP-complete to decide if the input graph is contractible to them; and there
are non-recursive classes of graphs, that are closed under taking of contractions,
where is there is no algorithm deciding whether an input graph belongs to this
class.

In this work we show, for a large class of inputs – graphs embeddable on
surfaces, how to decide in polynomial time if a fixed graph is a contraction of the
input. We focus on the case of planar graphs – graphs embeddable in the plane
(or, equivalently, on the sphere). All the essential ingredients of the solution
are already present when the input is constrained to be planar. In Section 5
we show how to extend the algorithm from graphs embeddable in the plane to
graphs embeddable in an arbitrary surface.

The key idea is to introduce embedded versions of contractions and topological
minors for plane graphs. Those embedded containment relations differ from usual
contractions and topological minors in respecting the embedding. We show that
a plane graph H is an embedded contraction of a plane graph G, if the dual of
H is an embedded topological minor of the dual of G.

To use this duality algorithmically, we need to show that embedded topological
minors can also be found in polynomial time. This is done by reducing the
problem of finding an embedded topological minor to solving an instance of the
disjoint path problem that, in turn, can be solved in cubic time due to the main
algorithmic result of Graph Minors [19].

2 Definitions

Basics. We consider both simple graphs and multigraphs. We do not allow any
of them to have loops. When there is no ambiguity, we say “a graph” and mean
a simple graph or multigraph. We say “a multigraph” when we want to stress
that multiple edges are allowed and “a simple graph” if they are not allowed. For
a (multi)graph G, let V (G) be its vertex set and E(G) its edge (multi)set. Plane
graphs are always assumed to be drawn on the unit sphere and their edges are
arbitrary polygonal arcs (not necessarily straight line segments). For notation
not defined here, we refer the reader to the monograph [4].

The dual of a plane graph G will be denoted by G∗. Notice that there is a
one-to-one correspondence between the edges of G and the edges of G∗. We keep
the convention that e∗ is the edge of G∗ corresponding to edge e of G.

126 M. Kamiński, D. Paulusma, and D.M. Thilikos

A graph H is a subdivision of a graph G, when H can be obtained from G by
subdividing its edges (i.e., replacing edges by paths). A graph H is a topological
minor of a graph G if H is a subdivision of a subgraph of G. Vertices of degree
≥ 3 in a subdivision are called branch vertices.

In this paper we consider the algorithmic problem of contracting an input
graph G to a fixed graph H . Below we will assume that both H and G are
connected. This can be done without loss of generality. If G and H are not
connected, we consider contracting different connected components of G to dif-
ferent connected components of H . Since H is fixed, this will only contribute to
a constant (in |V (G)|) factor in the computational complexity of the algorithm.

Embeddings. In this work, we only need to distinguish between essentially dif-
ferent embeddings of a planar graph. This motivates the following definition.

Two plane graphs G and H are combinatorially equivalent (G % H) if there
exists a homeomorphism of the unit sphere (in which they are embedded) which
transforms one into the other. The relation of being combinatorially equivalent
is reflexive, symmetric and transitive, and thus an equivalence relation. Let G be
the class of all plane graphs isomorphic to a planar graph G and let us consider
the quotient set G/ %. The equivalence classes (i.e., the elements of the quotient
set) can be thought of as embeddings. In fact, we will work with embeddings but
for simplicity, we will pick a plane graph representative for each embedding.

Homotopic edges and thin graphs. Two edges of a plane graph are homotopic
edges if they together bound a 2-face. Following [1], a thin graph is a plane
multigraph without homotopic pairs of edges. In other words, if there are two
parallel edges e, f between a pair of vertices in a thin graph, each of the two
open regions defined by the union of e and f must contain at least one vertex.
It turns out that thin plane multigraphs cannot have more edges than simple
plane graphs.

Lemma 1 (Lemma 5 in [1]). If G is a thin graph, then |E(G)| ≤ 3|V (G)|−6.

Embedded containment relations. An embedded contraction of an edge e of a
plane graph G is a plane graph G′ that is obtained by homeomorphically map-
ping the endpoints of e in G to a single vertex without any edge crossings and
recursively removing one of two homotopic edges, if a graph has such a pair.
Notice that there are many embedded contractions of an edge of a plane graph
G but they are all combinatorially equivalent.

An embedded dissolution of a vertex v of degree 2 in a plane graph G is an
embedded contraction of one of the two edges v is incident with in G.

Let G and H be two plane graphs. We say that H is an embedded contraction
of G (H ≤ec G), if H is combinatorially equivalent to a graph that can be
obtained from G by a series of embedded contractions. We say that H is an
embedded topological minor of G (H ≤etm G), if H is combinatorially equivalent
to a graph that can be obtained from G by a series of vertex and edge deletions,
and embedded dissolution of vertices of degree 2.

Contractions of Planar Graphs in Polynomial Time 127

3 Contractions vs. Topological Minors

Lemma 2. Let H and G be two thin graphs and H∗, G∗ their respective duals.

H ≤ec G ⇐⇒ H∗ ≤etm G∗

Proof. Let G be a thin graph and e an edge of G. Let G/e be an embedded
contraction of e in G. Notice that G/e

∗ is isomorphic to a plane graph obtained
from G∗ by deleting e∗ and recursively applying embedded dissolutions of vertices
of degree 2. (Homotopic faces in a plane graph correspond to vertices of degree 2
in its dual.) Let us also note that G/e is a plane graph with no homotopic edges.

If H can be obtained from G by a series of embedded contractions, then H∗

can be obtained from G∗ by a series of edge deletions and embedded dissolutions
of vertices of degree 2. Hence, if H is an embedded contraction of G, then H∗ is
an embedded topological minor of G∗. This proves the forward implication.

For the backward implication, suppose that H∗ is an embedded topological
minor of G∗; that is H∗ can be obtained from G∗ by a sequence of vertex
deletions, edge deletions, and embedded dissolutions of vertices of degree 2.

Let us notice that removing a vertex v in a thin plane graph can be simulated
by removing all but two edges incident to v, then applying an embedded disso-
lution to v and removing the new edge. (No vertices of degree 1 will be created
since the graph was thin and can be made thin after recursively applying embed-
ded dissolution to vertices of degree 2.) Hence, a sequence of vertex deletions,
edge deletions, and embedded dissolutions of vertices of degree 2 can be replaced
by a sequence of edge deletions and embedded dissolutions of vertices of degree
2. The sequence can be rearranged and split into groups – every group consists
of an edge removal and appropriate embedded dissolutions of vertices of degree
2. (When a graph has no homotopic edges, all vertices of its dual are of degree
≥ 3.)

Each group of operations in a plane graph corresponds to an embedded edge
contraction in its dual. The sequence of operations that transform G∗ into H∗

corresponds to a sequence of embedded edge contractions that brings G into H .
Hence, the backward implication. ��

A simple planar graph H is a pattern of a planar multigraph H ′, if V (H) =
V (H ′) and two vertices are adjacent in H if and only if they are adjacent in H ′.
In other words, a pattern of the multigraph is the graph obtained by replacing
multiple with single edges. Let C(H) be a maximal set of thin plane multigraphs
whose pattern is H such that they are all combinatorially different.

Lemma 3. For every planar graph H, the set C(H) is finite.

Proof. Combinatorially different embeddings of a planar multigraph H are de-
termined by cyclic orders of neighbors on vertices. There might be infinitely
many embeddings of a planar multigraph. However, we are confined to thin
plane graphs only and each will have at most 3|V (H)| − 6 edges by Lemma 1.
Hence, the number of possible different cyclic orderings is finite. ��

128 M. Kamiński, D. Paulusma, and D.M. Thilikos

Theorem 9. Let H and G be simple planar graphs and G̃ a plane graph iso-
morphic to G. Then,

H <c G ⇐⇒ ∃ H̃ ∈ C(H) such that H̃ <ec G̃.

Proof. For the backward implication, let H be the pattern of some H̃ ∈ C(H).
(H is a simple graph.) Let us notice that if H̃ is combinatorially equivalent to an
embedded contraction of G̃, then G̃ (and its abstract graph G) are isomorphic
to a contraction of H .

For the forward implication, let us assume that H <c G. There exists a
sequence of edge contractions that brings G into H . Let us apply the same se-
quence as a sequence of embedded contractions to G̃ and call the resulting graph
T̃ . From the definition of embedded contraction, T̃ is thin. Notice that its pattern
is H . From the choice of C(H), there exists H̃ ∈ C(H) that is combinatorially
equivalent to T̃ . ��

A direct consequence of Lemma 2 and Theorem 9 is the following corollary.

Corollary 1. Let H and G be planar graphs and G̃ a plane graph isomorphic
to G. Then,

H <c G ⇐⇒ ∃ H̃ ∈ C(H) such that H̃∗ <etm G̃∗.

4 Embedded Topological Minors and the Algorithm

In this section, we reduce the problem of finding an embedded topological minor
to the the problem of finding a collection of disjoint paths in a graph. Here is a
result from Graph Minors we will need later.

Theorem 10 ([19]). There exists an algorithm that given a graph G and k pairs
(s1, t1), . . . , (sk, tk) of vertices of G decides whether there are k vertex-disjoint
paths P1, . . . , Pk in G such that Pi joins si and ti, for all i = 1, . . . , k, and if so,
finds them. The algorithm runs in time O(|V (G)|3).

This result can be used to determine whether a graph H is a topological minor
of the input graph. The idea is to choose a set of |V (H)| branch vertices in G
and turn it into an instance of disjoint paths problem with |E(H)| paths, each
edge of H should correspond to one path. The disjoint path algorithm from
Theorem 10 needs to be run for every choice of branch vertices. The running
time of the algorithm deciding whether a graph H is a topological minor of the
input graph G is then O(|V (G)||V (H)|). Note that the running time is indeed
polynomial as we assume H to be a fixed graph. Whether there is an algorithm
for this problem that runs in time f(|V (H)|)·|V (G)|O(1) is one of the major open
problems in the theory of parameterized complexity, even when G is assumed to
be planar. The reduction from embedded topological minors to disjoint paths is
more complicated since we have to take into account the cyclic order of paths
incident with the vertex. Below we show how this can be done.

Contractions of Planar Graphs in Polynomial Time 129

Theorem 11. For every plane graph H, there exists a polynomial-time algo-
rithm that given a plane graph G decides if H is an embedded topological minor
of G, and if so, finds the subgraph which is a subdivision of H.

Proof. A k-star is a connected bipartite graph whose one part has one vertex
(the center) and the other part has k vertices (the leaves). A star is a graph
that is a k-star for some k. A labelled star is a subgraph of G that is a star and
whose center is labelled with a vertex from V (H) and whose leaves are labelled
with different edges from E(H) that are incident with v in H . A labelled star Q
is said to be compatible with v ∈ V (H) if it is a deg(v)-star, its center is labelled
with v, and the cyclic ordering of the labels on the leaves of Q is the same as
the cyclic ordering of the edges incident with v in H .

Let us fix an ordering v1, . . . , v|V (H)| of V (H) and an ordering e1, . . . , e|E(H)|
of E(H). A branching is a |V (H)|-tuple (Qvi : i = 1, . . . , |V (H)|) such that Qvi

for i = 1, . . . , |V (H)| is a labelled star compatible with vi. A good branching is
one in which no two centers of stars coincide. Let Q be the set of all different
good branchings. Notice that |Q| is bounded by |V (G)|O(|V (H)|).

For a branching fromQ we define an instance of the disjoint path problem. We
start with |E(H)| pairs of terminals and later will be possibly removing some.
For every j = 1, . . . , |E(H)|, let {sj, tj} is the two vertices of G that are labelled
with ej in the branching. We then remove from the set of pairs such {sj , tj} that
sj and tj are adjacent. We then remove all centers of stars from G.

Claim. H is an embedded topological minor of G if and only if there exists a
branching from Q that defines a feasible disjoint path instance.

4If H is an embedded topological minor of G, then the branching is given by the
set of stars centered at the branch vertices of H whose edges incident with the
center are those that belong to the model of H in G.

If there is a branching in Q that defines a feasible disjoint path instance, then
the union of the disjoint paths and the stars in the branching give a model of
an embedded topological minor of H in G.

Now we are ready to present an algorithm that for a fixed graph H decides if
a plane graph G contains H as an embedded topological minor of G. First the
algorithm constructs the set Q. Then, for every branching from Q the algorithm
constructs an instance of the disjoint paths problem and tests its feasibility.

The correctness of the algorithm is a direct consequence of the Claim. To see
that the running time of the algorithm is polynomial in |V (G)|, notice that – as
mentioned before – the cardinality of Q is bounded by |V (G)|O(|V (H)|); building
an instance of the disjoint paths problem out of a branching can be done in
polynomial time; and testing feasibility of those instances can also be done in
polynomial time by Theorem 10. ��
Theorem 12. For every graph H, there exists a polynomial-time algorithm that
given a planar graph G decides whether H is a contraction of G, and if so finds
a series of contractions transforming G into H.

Proof. We can assume that both G and H are connected; otherwise, we con-
sider contractions of different connected components of G to different connected

130 M. Kamiński, D. Paulusma, and D.M. Thilikos

components of H . We can also assume that H is planar since G can never be
contracted to a non-planar graph.

First we embed G in the plane using the linear-time algorithm from [15]. Let
G̃ be this plane graph isomorphic to G and G̃∗ its dual. For every graph H from
C(H), test if H̃∗ is an embedded topological minor of G̃∗, using the algorithm
from Theorem 11.

The correctness of the algorithm follows from Corollary 1 and Lemma 3. The
fact that the algorithm runs in polynomial time follows from Lemma 3 and
Theorem 11. ��

5 Bounded Genus Graphs

In this section, we show how to extend our result from Theorem 12 to graphs
on surfaces other then the plane. For terminology and notions related to graphs
on surfaces, we refer the reader to the standard monograph [13].

Thin graphs on surfaces. We fix a surface Σ of Euler genus g and consider
graphs embeddable in this surface. First, we notice that it is possible to extend
the definition of thin graphs to graphs embedded in other surfaces. A thin graph
is a multigraph embeddable in Σ without homotopic pairs of edges. Then, we
observe that the proof of Lemma 1 in [1] uses the Euler’s formula only. Since
all faces of a thin graph are incident with at least 3 edges, one can derive the
following counterpart of Lemma 1 for graphs of genus g.

Lemma 4. If G is a thin graph embeddable on a surface of Euler genus g, then

|E(G)| ≤ 3 · (|V (G)| + g)− 6.

It is not difficult to see that this leads to the following equivalent of Lemma 3.

Lemma 5. For every graph H embeddable on a surface of Euler genus g, the
set C(H) is finite.

Containment relations on surfaces. The same definitions of embedded contrac-
tions and embedded topological minors that we provided for the plane stay valid
for graphs embeddable in Σ. The main reason is that surfaces are locally home-
omorphic to the plane and our definitions are also local. Also the dual graph of
a graph embedded in Σ is well defined. It is easy to check that the proofs of
Lemma 2 and Theorem 9 hold in case of any surface, not only the plane. A direct
consequence of this is that Corollary 1 has a version for surfaces of higher genus.

Corollary 2. Let H and G be graphs embeddable on a surface of Euler genus g
and G̃ a graph embedded on a surface of genus g and isomorphic to G. Then,

H <c G ⇐⇒ ∃ H̃ ∈ C(H) such that H̃∗ <etm G̃∗.

Algorithm. It is also possible to adapt the proof of Theorem 11 to graphs em-
bedded in Σ. Combining these together, we can prove the following theorem.

Contractions of Planar Graphs in Polynomial Time 131

Theorem 13. For every integer g ≥ 0 and a graph H, there exists a polynomial-
time algorithm that given a graph embeddable on a surface of Euler genus g
decides whether H is a contraction of G, and if so finds a series of contractions
transforming G into H.

6 Discussion

We conclude with a number of remarks and a conjecture.

Solution via dual. We prove our result by investigating what operation in the
dual graph G∗ corresponds to contractions in G. We want to mention that the
same approach proved to be successful in studying maximum cuts in planar
graphs. A maximum cut of a graph is its maximum bipartite subgraph. Orlova
and Dorfman [17] and independently Hadlock [7] noticed that a (maximum)
bipartite subgraph in G is an (maximum) Eulerian subgraph in G∗. Maximum
Eulerian subgraphs can be found in polynomial time, therefore they proved that
the maximum cut problem can be solved in polynomial-time in planar graphs.

Non-recursive classes of planar graphs. We prove in this paper that for every
graph H , there exists an algorithm that given a planar input graph G decides
whether H is a contraction of G. To complement this result we would like to
note that there are classes of planar graphs closed under taking of contractions
that are non-recursive. A closer look at the proof of Theorem 7 in [12] reveals
that the graphs in the non-recursive class from the theorem are in fact planar
(and even have no K−

5 minor). We state it more formally.

Corollary 3. There exists a non-recursive class of planar graphs closed under
taking contractions.

Cyclicity in bounded genus graphs. Cycles have a unique embedding into the
plane (up to combinatorial equivalence) and the dual of a cycle on k vertices
is the multigraph with two vertices and k parallel edges. Therefore computing
cyclicity of a plane graph is equivalent to solving the maximum flow problem in
the dual for every pair of vertices (as the source and sink).

Hammack, also using the maximum flow problem, showed how to compute
cyclicity of a planar graph [8]. Our result for bounded genus graphs allow to
extend this result to graphs embeddable in an arbitrary suface.

Complexity of topological minor checking. The total running time of our algo-
rithm is O(|V (G)||V (H)|). (We will focus on planar graphs but the discussion
also holds for classes of graphs of bounded genus.) The computational com-
plexity heavily depends on the complexity of computing topological minors.
As mentioned before, the best algorithm for deciding whether a fixed graph
H is a topological minor of the input graph G runs in time O(|V (G)||V (H)|).
If we consider the problem from the parameterized complexity point of view,
that is asking for an f(|V (H)|) · |V (G)|O(1) step algorithm (i.e. classify it in

132 M. Kamiński, D. Paulusma, and D.M. Thilikos

the complexity class FPT when parameterized by the size of H), this is not sat-
isfying. (We refer to [5,16,6] for more information on parameterized complexity.)

Whether topological minor checking belongs to the class FPT is not known
even when the input graph is restricted to be planar. It is conceivable that an
FPT algorithm for this problem would also give an FPT algorithm for embed-
ded topological minor, and consequently, for contractions in surface embeddable
graphs.

However, we believe that the existence of such an algorithm is rather unlikely
and the problem is W[1]-hard. (W-hardness is a technical notion in the theory
of parameterized complexity that makes is rather impossible that a problem
belongs in FPT.) We state this as a conjecture.

Conjecture. For a graph H, the problem of deciding whether H is a topological
minor of a (planar) input graph G is W[1]-hard, when parameterized by |V (H)|.

Acknowledgements

We thank Samuel Fiorini for his kind support and Gwenaël Joret for stimu-
lating discussions. We also gratefully acknowledge support from the Actions de
Recherche Concertées (ARC) fund of the Communauté française de Belgique.

References

1. Alber, J., Fellows, M.R., Niedermeier, R.: Polynomial-time data reduction for dom-
inating set. J. ACM 51(3), 363–384 (2004)

2. Brouwer, A.E., Veldman, H.J.: Contractibility and NP-completeness. Journal of
Graph Theory 11(1), 71–79 (1987)

3. Demaine, E.D., Hajiaghayi, M., Kawarabayashi, K.-i.: Algorithmic graph minor
theory: Improved grid minor bounds and Wagner’s contraction. Algorithmica 54(2),
142–180 (2009)

4. Diestel, R.: Graph Theory, Electronic edn. Springer, Heidelberg (2005)
5. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg

(1999)
6. Flum, J., Grohe, M.: Parameterized complexity theory. In: Texts in Theoretical

Computer Science. An EATCS Series. Springer, Berlin (2006)
7. Hadlock, F.: Finding a maximum cut of a planar graph in polynomial time. SIAM

J. Comput. 4(3), 221–225 (1975)
8. Hammack, R.: Cyclicity of graphs. J. Graph Theory 32(2), 160–170 (1999)
9. van ’t Hof, P., Kamiński, M., Paulusma, D., Szeider, S., Thilikos, D.M.: On con-

tracting graphs to fixed pattern graphs. In: van Leeuwen, J., Muscholl, A., Peleg,
D., Pokorný, J., Rumpe, B. (eds.) SOFSEM 2010. LNCS, vol. 5901, pp. 503–514.
Springer, Heidelberg (2010)

10. Levin, A., Paulusma, D., Woeginger, G.J.: The computational complexity of graph
contractions I: Polynomially solvable and NP-complete cases. Networks 51(3),
178–189 (2008)

11. Levin, A., Paulusma, D., Woeginger, G.J.: The computational complexity of graph
contractions II: Two tough polynomially solvable cases. Networks 52(1), 32–56
(2008)

Contractions of Planar Graphs in Polynomial Time 133

12. Matoušek, J., Nešetřil, J., Thomas, R.: On polynomial-time decidability of induced-
minor-closed classes. Comment. Math. Univ. Carolin. 29(4), 703–710 (1988)

13. Mohar, B., Thomassen, C.: Graphs on Surfaces. The Johns Hopkins University
Press, Baltimore (2001)

14. Matousek, J., Thomas, R.: On the complexity of finding iso- and other morphisms
for partial k-trees. Discrete Mathematics 108(1-3), 343–364 (1992)

15. Mohar, B.: A linear time algorithm for embedding graphs in an arbitrary surface.
SIAM J. Discrete Math. 12(1), 6–26 (1999)

16. Niedermeier, R.: Invitation to fixed-parameter algorithms. Oxford Lecture Series in
Mathematics and its Applications, vol. 31. Oxford University Press, Oxford (2006)

17. Orlova, G., Dorfman, Y.: Finding the maximum cut in a graph. Tekhnicheskaya
Kibernetika (Engineering Cybernetics) 10, 502–506 (1972)

18. Robertson, N., Seymour, P.D.: Graph minors XII. Distance on a surface. J. Comb.
Theory, Ser. B 64(2), 240–272 (1995)

19. Robertson, N., Seymour, P.D.: Graph minors XIII. The disjoint paths problem. J.
Comb. Theory, Ser. B 63(1), 65–110 (1995)

20. Robertson, N., Seymour, P.D.: Graph minors XX. Wagner’s conjecture. J. Comb.
Theory, Ser. B 92(2), 325–357 (2004)

21. Wolle, T., Bodlaender, H.L.: A note on edge contraction. Technical Report UU-CS-
2004-028, Department of Information and Computing Sciences, Utrecht University
(2004)

Communication Complexity of

Quasirandom Rumor Spreading�

Petra Berenbrink1, Robert Elsässer2, and Thomas Sauerwald1

1 Simon Fraser University, Burnaby, Canada
{petra,tsauerwa}@cs.sfu.ca

2 University of Freiburg, Germany
elsa@informatik.uni-freiburg.de

Abstract. We consider rumor spreading on random graphs and hyper-
cubes in the quasirandom phone call model. In this model, every node
has a list of neighbors whose order is specified by an adversary. In step
i every node opens a channel to its ith neighbor (modulo degree) on
that list, beginning from a randomly chosen starting position. Then, the
channels can be used for bi-directional communication in that step. The
goal is to spread a message efficiently to all nodes of the graph.

We show three results. For random graphs (with sufficiently many
edges) we present an address-oblivious algorithm with runtime O(log n)
that uses at most O(n log log n) message transmissions. For hypercubes
of dimension log n we present an address-oblivious algorithm with run-
time O(log n) that uses at most O(n(log log n)2) message transmissions.
For hypercubes we also show a lower bound of Ω(n log n/ log log n) on
the total number of message transmissions required by any O(log n)
time address-oblivious algorithm in the standard random phone call
model. Together with a result of [8], our results imply that for random
graphs and hypercubes the communication complexity of the quasiran-
dom phone call model is significantly smaller than that of the standard
phone call model. This seems to be surprising given the small amount of
randomness used in our model.

1 Introduction

In this paper we consider rumor spreading (a.k.a. randomized broadcast) in ran-
dom graphs and hypercubes. This problem is motivated by overlay topologies in
peer to peer (P2P) systems, in which each node possesses a list of neighboring
peers. Our goal is to develop time-efficient rumor spreading algorithms which
produce a minimal number of message transmissions and use a small amount
of randomness. Since P2P networks are decentralized platforms for sharing data
and computing resources, it is very important to provide efficient, simple, and
robust rumor spreading algorithms for P2P overlays. Minimization of the num-
ber of transmission (communication complexity) is important for applications
� The second author was partially supported by the German Research Foundation

(DFG) under contract EL 399/2-1.

M. de Berg and U. Meyer (Eds.): ESA 2010, Part I, LNCS 6346, pp. 134–145, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Communication Complexity of Quasirandom Rumor Spreading 135

such as the maintenance of replicated databases in which often huge amounts of
broadcasts are necessary to deal with frequent updates in the system.

We assume the quasirandom phone call model, a variant of the standard phone
call model. Let us first introduce the standard phone call model (also known as
random phone call model, see [5]). In this model, each node v may perform per-
form the following actions in every step: 1) create a new rumor to be spread,
2) establish a communication channel between itself and one randomly chosen
neighbor, 3) transmit a message over incident channels (opened by v or by some
neighbor of v) and 4) close the channel opened in the current step. Note that
open channels can be used for bi-directional communications. Calling nodes (i.e.,
the nodes that opened the channels) can send their messages to their neighbors.
These are called push transmissions. Called nodes can also perform so called pull
transmissions, i.e., they send the message to the calling nodes. These transmis-
sions are simply called pull transmissions. In the phone call model (both stan-
dard and quasirandom) it is assumed that nodes can combine several rumors to
one larger message. Nodes can send messages over all their open channels in one
time step.

The major challenge for rumor spreading algorithms in the phone call model
is to decide whether or not a node should forward the rumor over an open
communication channel. An algorithm is called address-oblivious (see [15]) if
the decision of node v to send a rumor over an open channel (v, w) or (w, v)
does not depend on w. However, this decision can depend on the communication
partners chosen in earlier rounds or on decisions made so far. Hence, according
to such an algorithm a node has to decide whether to use a channel without
knowing if the rumor is already known by the neighbor in question. If there
are only very few rumors in the network, then many communication channels
may be established without ever being used for transmissions. Thus, the phone
call model is especially of interest in situations where rumors are frequently
generated. Then, the cost of establishing communication channels amortizes over
all message transmissions.

In the case of the quasirandom phone call model it is assumed that every node
has a cyclic list of all its neighbors, whose order is specified by an adversary. At
the beginning, each node v chooses a random position in the list, independently
of the other nodes. Assume that 1 � � � d is the random choice of node v,
where d is the degree of v. Then v communicates in step i with the neighbor
(i + �)mod d + 1 from the list. To create the list we assume that the adversary
has total knowledge about the topology of the network, but cannot foresee any
node’s random choice w.r.t. the position selected at the beginning (cf. [6]).

In this paper we show three results. For random graphs (with sufficiently
many edges) we present an algorithm with runtime O(log n) that uses at most
O(n log log n) message transmissions. For log n-dimensional hypercubes we de-
vise an algorithm with runtime O(log n) that uses at most O(n·(log log n)2) mes-
sage transmissions. Both algorithms are oblivious and complete rumor spreading
in the quasirandom phone call model with probability 1 − n−Ω(1). For hyper-
cubes we show a lower bound of Ω(n log n/ log log n) on the number of message

136 P. Berenbrink, R. Elsässer, and T. Sauerwald

transmissions required by any O(log n) time oblivious algorithm in the standard
phone call model. In [8] Elsässer shows a similar lower bound for oblivious rumor
spreading algorithms on random graphs in the standard phone call model. Hence
our results imply that for random graphs and hypercubes the communication
complexity of the quasirandom phone call model is substantially smaller than
of the standard phone call model. This seems to be surprising given the small
amount of randomness used in our model.

1.1 Related Work

Due to space constraints, we consider only results which focus on the analytical
study of push and push & pull algorithms.

Runtime. Most rumor spreading studies analyze the runtime of the push algo-
rithm in the standard phone call model for different graph classes. For complete
graphs of size n, Pittel [17] shows that (with probability 1− o(1)) it is possible
to spread a rumor in time log2(n) + ln(n) + f(n), where f(n) is a slow growing
function, improving a result of Frieze and Grimmett [12]. In [11], Feige et al. de-
termine asymptotically optimal upper bounds for the runtime on G(n, p) graphs
(i.e., traditional Erdös-Rényi random graphs [10]), bounded degree graphs, and
hypercubes, which all hold w.h.p.1. Recently, Fountoulakis et al. [13] prove a
tighter bound for the runtime on sufficiently dense G(n, p) graphs, similar to the
result of [17] for complete graphs. Very recently, Chierichetti et al. [4] show that
the runtime of the combined push& pull model is O(Φ−1 · log n · polylog(Φ−1))
w.h.p. for any graph G, where Φ denotes the conductance of G.

In [6], Doerr et al. analyze the so called quasirandom rumor spreading. They
show that for hypercubes and G(n, p) graphs O(log n) steps suffice to inform
every node, w.h.p. These bounds are similar to the ones in the standard phone
call model (push model). The results of [6] are extended to further graph classes
with good expansion properties in [7]. Note that in [6, 7] the authors mainly con-
centrate on the runtime efficiency, and the best known algorithms there require
Θ(n log n) message transmissions in hypercubes and G(n, p) graphs.

Number of Message Transmissions. Karp et al. [15] note that in complete net-
works the pull approach is inferior to the push approach until roughly n/2 nodes
receive the rumor. Then the pull approach becomes superior. They present a
push & pull algorithm, together with a termination mechanism, which bounds
the number of total transmissions to O(n log log n) (w.h.p.), and show that this
result is asymptotically optimal.

For sparser graphs and the standard phone call model it is not possible to get
an oblivious algorithm that uses O(n log log n) message transmissions, together
with a runtime of O(log n). In [8] Elsässer considers random G(n, p) graphs and
shows a lower bound of Ω(n log n/ log(pn)) message transmissions for oblivious
rumor spreading algorithms with a runtime of O(log n). For p > log2 n/n he

1 W.h.p. or “with high probability” means with probability at least 1 − n−c for some
constant c > 0.

Communication Complexity of Quasirandom Rumor Spreading 137

develops an oblivious algorithm that spreads a rumor in time O(log n) using
O(n · (log log n + log n/ log(pn))) transmissions, w.h.p.

In [9] the authors consider a simple modification of the standard phone call
model, called Random[4], where every node is allowed to open a channel to
four different randomly chosen neighbors in every time step. For G(n, p) graphs
with p > log2 n/n, they show that this modification results in a reduction of
the number of message transmissions down to O(n log log n). Similar results are
shown for random d-regular graphs in [1].

The authors of [2] present an extension of Random[4] which they call Rr

model. In their model each node has a randomly ordered cyclic list with all its
neighbors. In step i, the node opens a communication channel to the ith neighbor
in its list. The Rr model is the same as the quasirandom model except that the
adversarial order is replaced by the random order. The authors present an obliv-
ious algorithm for graphs with very good edge and node expansion properties
which has a runtime O(log n) and which uses O(n

√
log n) message transmis-

sions, w.h.p. The authors establish a lower bound of Ω(n
√

log n/ log d) on the
number of message transmissions for oblivious rumor spreading algorithms (as-
suming a runntime of O(log n)), showing that their upper bound is tight up
to a

√
log log n factor if d is polylogarithmic in n. Since on these graphs all

time efficient algorithms known so far may lead to a communication overhead of
Θ(n log n/ log log n), this result shows that avoiding the re-opening of previously
used channels makes it possible to reduce the number of message transmissions
per node by almost a quadratic factor.

The algorithms of [2, 8, 9, 15] spread the rumor using push transmissions until
a constant fraction of the nodes receives the rumor (we call these nodes informed
in the following). Then the algorithms spread the rumor via pull transmissions
until every node is informed. To save on communications, the algorithms of
[1, 2, 8, 9] only allow each node v a certain number of transmissions which
depends on the age the rumor had at the time v received it for the first time.

1.2 Model

In this paper we consider random graphs G(n, p) = (V,E) and hypercubes Hd of
dimension d. A random graph G(n, p) consists of n nodes. The probability that
any pair of nodes is connected is p. For simplicity, we assume (log2 n)/n � p �
2o(

√
log n)/n in this extended abstract, although our results can be generalized to

a larger regime of p. The expected number of edges for G(n, p) is pn · (n−1). Let
d(v) be the degree of node v and N(v) be the set of neighbors in V . For S ⊂ V ,
let N(S) be the set of neighbors of nodes in S. Let α be the node expansion
value of G(n, p). Then α = minS∈V,|S|�n/4 N(S)/|S|. It is known that for our
choice of p, α is a constant close to 1 w.h.p. ([3]).

The d-dimensional hypercube Hd consists of n = 2d many nodes. A binary
string of length 2 is assigned to every node and two nodes are connected if their
binary strings differ in exactly one bit. Hence, the degree of any node of Hd is d.
Note that hypercubes have much smaller expansion than random graphs.

138 P. Berenbrink, R. Elsässer, and T. Sauerwald

We assume that every node has an estimation of n which is accurate to within
a constant factor. We also assume that all nodes have access to a global clock,
and that they work synchronously. As communication model we assume a variant
of the phone call model. In the standard phone call model (see [5]) in each step t
every node can create an arbitrary amount of rumors to be spread. To measure
the communication cost we only count the number of message transmissions,
i.e., opening a channel is not counted. Following [1, 2, 8, 15], we assume here
that new pieces of information are generated frequently in the network, and
then the cost of establishing communication channels amortizes over all message
transmissions. However, we only concentrate on the distribution and lifetime of
a single rumor.

The quasirandom variant of the phone call model considered in this paper was
introduced in [6]. In the quasirandom phone call model every node v has a list
L̃v = L̃v[0], L̃v[1], . . . L̃v[d(v)−1] of length d(v) with all its neighbors. The order
of that list is arbitrary, i.e., it may be determined by an adversary. For spreading
the rumor, every node v chooses a random position iv in the list, independently
of the other nodes. For its j-th communication v will open a channel to node
Lv[(iv + j − 1)mod d(v)]. We define Lv = Lv[0], Lv[1], . . . , Lv[d(v)] as the list
beginning at neighbor iv.

Nodes that received the rumor will be called informed. By It (Ht) we denote
the set of informed (uninformed) nodes in step t. Furthermore, let I+

t be the set
of nodes that reveive the rumor for the first time in step t. These nodes will also
be called newly informed nodes.

1.3 Our Contribution

In this paper we show the following results. For random graphs we present an
oblivious algorithm (in the quasirandom model) that spreads a rumor in time
O(log n) using O(n log log n) message transmissions, w.h.p. Compared to [6],
we reduce the number of message transmissions by a factor of log n/ log log n.
Moreover, our upper bound in the quasirandom model is significantly smaller
than the lower bound for the standard phone call model (cf. [8]).

For the hypercube we show a result that is slightly weaker than our re-
sult for random graphs. We present an oblivious algorithm (which is similar
to the algorithm for random graphs) that spreads a rumor in time O(log n)
using O(n · (log log n)2) message transmissions, w.h.p. We also show that in
the standard phone call model, any oblivious algorithm with runtime O(log n)
requires Ω(n log n/ log log n) message transmissions. The communication com-
plexity of this problem has not been analyzed before, neither in the standard
nor in the quasirandom phone call model. Therefore the best known algorithms
require O(log n) time, but produce Ω(n log n) message transmissions. In com-
parison to that, we reduce the number of message transmissions by a factor
of log n/(log log n)2. Again, our algorithm outperforms the lower bound on the
communication complexity in the standard phone call model.

Communication Complexity of Quasirandom Rumor Spreading 139

Our two results demonstrate that on two important networks, rumor spread-
ing can be done much more efficiently in the quasirandom phone model than in
the standard phone call model. From a higher level, the results provide evidence
that avoiding previously chosen communication partners is more important than
choosing all communication partners independently and uniformly at random.

2 Random Graphs

In this section we present an algorithm with runtime O(log n) and communi-
cation complexity O(n log log n) for random graphs. Note that all the results
presented in this section can be generalized to expanders in which the girth is
large (Ω(log log n)). The details are omitted in this extended abstract.

2.1 Our Algorithm

We assume that the rumor we want to spread is generated at time 0, i.e., at
time t the age of the rumor equals t. The algorithm describes the behavior of
the nodes w.r.t. one specific rumor. Each node is, depending on the age of the
rumor, in one of the following phases:

In the following algorithm, ρ is a sufficiently large constant.

Phase 0: [age � �ρ log n�] The node which generates the rumor performs push
in each step of this phase. No other node transmits the rumor in this phase.

Phase 1: [�ρ log n� + 1 � age � 2 · �ρ(log n + 320)�] Nodes that received the
rumor in Phase 0 use the first 320 steps of this phase to perform push in each of
these steps. If a node receives a rumor for the first time in step t ∈ {�ρ logn�+
1, . . . , 2 · �ρ log n�}, then the node perform push in the exactly 320 next steps.

Phase 2: [2�ρ(log n+320)�+1 � age � 2 · �ρ logn+ρ log log n�] Every informed
node performs push in every step of this phase.

Phase 3: [2�ρ log n + ρ log log n� + 1 � age � 3 · �ρ logn�] Every node which
becomes informed in this phase performs pull, i.e., it sends the message over
all incoming channels. All other informed nodes perform pull over all incoming
channels with a probability of 1/ logn.

Phase 4: [3�ρ logn� + 1 � age � 3 · �ρ logn + ρ log log n�] All informed nodes
perform pull transmissions.

It is easy to see that at the end of Phase 0, exactly ρ log n+1 nodes are informed
(Observation 1). In Phase 1 we inform half of the nodes (see Lemma 1). At the
end of Phase 2 we have n · (1−2 log log n/ logn) informed nodes, w.h.p. (Lemma
2). Phase 3 and Phase 4 are analyzed in Lemma 3. There we show that w.h.p.
at the end of Phase 4 all nodes are informed.

140 P. Berenbrink, R. Elsässer, and T. Sauerwald

2.2 Analysis of the Algorithm

For a graph G(n, p) and our choice of p the degree of each node is np · (1± o(1)),
with probability 1 − n−3. For simplicity we ignore the 1 ± o(1) factor in our
analysis and assume d = pn.

Theorem 1. Assume that G = G(n, p) with (log2 n)/n � p � 2o(
√

log n)/n.
The algorithm above spreads a rumor in G in time O(log n) using O(n log log n)
message transmissions, w.h.p.

In the rest of this section we will prove the above theorem. The proof is split
into several lemmata. It is easy to see that in Phase 0 the node that gener-
ated the rumor informs ρ log n different neighbors, which results in the following
observation.

Observation 1. At the end of Phase 0 there are ρ log n informed nodes.

Now we concentrate on Phase 1 and show the following lemma.

Lemma 1. With probability 1−n−2, at least n/2 nodes are informed at the end
of Phase 1.

Proof. Assuming that the nodes all have a degree d we show that

1. After the first ρ · (log n)/2 steps at least 6n/d nodes are informed, where
ρ > 8.

2. After ρ · ((log n)/2 − 320) additional steps we have at least n/40 informed
nodes.

3. After the last 320 · ρ steps we have n/2 informed nodes for ρ large enough.

Part 1). This follows from Claim A.1 of [2].

Part 2). In this case the number of informed nodes lies in the range [6n/d, n/40].
We show inductively that with a very high probability the number of informed
nodes grows by a factor of 2.1 every 160 steps. To do so we divide the time into
� = (ρ · ((log n)/2 − 320)/160 subphases. For 0 � i � �, subphase τi starts in
step ρ · (log n)/2 + 160i+ 1 and ends in step ρ · (log n)/2 + 160(i+ 1). Let I+

τi
be

the newly informed nodes in Subphase τi, and Iτi are the informed nodes at the
beginning of Subphase τi. Note that all nodes in I+

τi
perform a push transmissions

in Subphase τi+1.
We show by induction that for 0 � i � � we have |I+

τi
| � 2.1 · |Iτi |, which then

implies that |I+
τi
| � |Iτi+1 |/2.

Fix a subphase τi+1. One can show that there are n/6 uninformed nodes
at the beginning of the subphase such that, with probability 1 − εn, all of
these nodes have at least |I+

τi
| · d/(2n) neighbors in the set of nodes I+

τi
. (Due

to space limitations, we do not prove this claim.) Hence, such an uninformed
node remains uninformed in the time interval τi+1 with probability at most
(1−160/d)|I

+
τi
|·d/(2n). This holds since the first positions are chosen independently

Communication Complexity of Quasirandom Rumor Spreading 141

and uniformly at random, and a neighbor misses a specific node in 160 steps
with probability 1− 160/d. Thus,

E
[
|I+

τi+1
|
]

�
(

1−
(

1− 160
d

)|I+
τi

|·d/(2n)
)
· n

6

�
(

1−
(

1
e

)80|I+
τi

|/n
)
· n

6
�
(

1−
(

1
e

)40·|Iτi+1 |/n
)
· n

6

�
(

1−
(

1− 1
n/(40 · |Iτi+1 |) + 1

))
· n
6

> 2.2 · |Iτi+1 |

Here, the third equation uses the induction hyphothesis. Using Azuma-Hoeffding
([16]) we obtain with probability 1− o(n−3) that |I+

τi+1
| � 2.1 · |Iτi+1 |.

Part 3). Now the number of informed nodes lies in the range [n/40, n/2]. We
divide the time into � = 2ρ subphases. For 0 � i � �, subphase τi starts in step
ρ · (log n/2 − 320) + 160i + 1 and ends in step ρ · (log n/2 − 320) + 160(i + 1).
Our goal is to show inductively that for all but the last phase |I+

τi
| � 2.1 · |Iτi |.

In the last phase we inform enough nodes so that half of the nodes are informed
at the end of this phase.

Similar to Part 2) we fix a subphase τi+1 and define Hτi+1 as the number of
uninformed nodes at the beginning of Subphase τi+1 One can show that |Hτi+1 |/2
of the uninformed nodes have at least |I+

τi
|d/(2n) neighbors in the set of nodes

I+
τi

, with probability 1− εn (again, we omit the prrof of this claim due to space
limitations). Such an uninformed node remains uninformed in τi+1 with proba-
bility at most (1− 160/d)|I

+
τi
|d/(2n). Thus,

E
[
|I+

τi+1
|
]

�
(

1−
(

1− 160
d

)|I+
τi

|d/(2n)
)
·
|Hτi+1 |

2

�
(

1−
(

1
e

)80|I+
τi

|/n
)
·
|Hτi+1 |

2
�
(

1−
(

1
e

)40|Iτi+1 |/n
)
·
|Hτi+1 |

2
.

The remainder of the proof is a case analysis depending on |Iτi+1 |. If n/40 �
|Iτi+1 | � n/10, then(

1−
(

1
e

)40|Iτi+1 |/n
)
·
|Hτi+1 |

2
�
(

1−
(

1
e

))
· 9n

20
� 2.2 · n

10
.

Using the method of bounded independent differences [16] one can show that
with probability 1 − o(n−3) it holds that |I+

τi+1
| � 2.1 · |I(τi+1)|. For n/10 <

|Iτi+1 | � n/6(
1−
(

1
e

)40|Iτi+1 |/n
)
·
|Hτi+1 |

2
�
(

1−
(

1
e

)4
)
· 5n

12
� 2.2 · n

6
.

142 P. Berenbrink, R. Elsässer, and T. Sauerwald

Then, with probability 1− o(n−3) we have |I+
τi+1

| � 2.1 · |Iτi+1 | [16].
For |Iτi+1 | � n/6 we get

|Iτi+1 |+
(

1−
(

1
e

)40|Iτi+1 |/n
)
·
|Hτi+1 |

2

� |Iτi+1 |+
(

1−
(

1
e

)40/6
)
·
(

n− |Iτi+1 |
2

)
� 41n

80
.

Again, we obtain with probability 1− o(n−3) that |Iτi+2 | > n/2. ��

Lemma 2. Assume ρ � 30. With probability 1 − n−2, there are at most (n ·
2 log log n/ log n) uninformed nodes at the end of Phase 2.

Proof. Note that in this phase every informed node performs a push transmis-
sion in every step. Let T be a random variable defined as the time step in which
|IT | > n/2 for the first time (this happens w.h.p. in Phase 1). Let τ be the time
interval [T − 160, T]. For the sake of this proof we assume that only the nodes
of I+

τ perform push transmissions in this phase. Due to Lemma 1, |I+
τ | > n/5.

One can show that, with probability 1− εn (ε > 0 is a constant) there are at
most n · log log n/ logn nodes in HT which have fewer than d/10 neighbors in I+

τ .
After ρ log log n additional steps each of the other (uninformed) nodes remains
uninformed with probability at least(

1− ρ log log n

d

)d/10

� e−ρ log log n/10 < log−3 n,

for ρ � 30. Thus, if there are at most n · log log n/ logn nodes in HT which have
fewer than d/10 neighbors in I+

τ , the expected number of new informed nodes
in Phase 2 is at least (

|HT | −
n log log n

log n

)
· (1− log−3 n).

Then, using [16] one can show that with probability at least 1−n−2, the number
of newly informed nodes in this phase is at least(

|HT | −
2n log log n

log n

)
.

Hence with probability at least 1 − n−2, the number of uninformed nodes after
this phase is at most n · 2 log log n/ log n. ��

Finally, we concentrate on Phases 3 and 4.

Lemma 3. Assume ρ � 30. With probability 1− n−2 all nodes are informed at
the end of Phase 4.

Communication Complexity of Quasirandom Rumor Spreading 143

Proof. For a node u and time interval τ = [t, t′], let Lu(τ) be the set of nodes
chosen by u in steps τ = t, t + 1, . . . , t′. Define t2 = 3ρ · (log n + log log n) as
the end of Phase 4, t1 = 3 · ρ log n as the beginning of Phase 4, and t0 =
2ρ(log n + log log n) as the beginning of Phase 3.

First we consider Phase 4 and divide the time interval [t1 + 1, t2] into k′ =
(t2 − t1)/320 subintervals of length 320. For any 0 � i � k′ − 1 we define

τ̃i = [t2 − 320i, t2 − 320 · (i + 1) + 1].

For a node v, let

U0(v) = Lv[τ̃0] and Ui(v) = ∪w∈Ui−1Lw[τ̃i].

We can visualize ∪i�k′−1Ui(v) as tree of depth k′−1 rooted in v. The level i nodes
are the nodes in Ui(v). Then, one can show that |Uk′−1(v) ∩ Ht0 | = Ω(log3 n)
with probability 1− o(n−3).

In the following we consider two cases. In the first case, we assume that
∪i�k′−1Ui(v) ∩ It0 	= ∅ for some node v. Then v is informed in Phase 4 since all
informed nodes perform pull transmissions in that phase. In the second case,
let Uk′−1(v)∩It0 = ∅. For this case we show that in Phase 4 v will be the root of
a communication tree consisting of nodes which are still all uninformed in step
t0. Then we will show that w.h.p. at least one of the leaves of the tree will be
informed in Phase 3. The rumor will be propagated to v via the path between v
and the informed leaf.

Now we need some additional definitions. We divide the time interval [t0+1, t1]
into k′′ = (t1 − t0)/160 rounds of length 160. For any 0 � i � k′′ − 1

τ̃ ′
i = [t1 − 160i, t1 − 160 · (i + 1) + 1].

For 0 � i � ρ log n, let

ŨH
−1(v) = Uk′−1(v)

ŨH
i (v) = ∪w∈ŨH

i−1(v)Lw[τ̃ ′
i] ∩Ht0

Ũ I
i (v) = ∪w∈ŨH

i−1(v)Lw[τ̃ ′
i] ∩ It0 .

A node w̃i ∈ Ũ I
i (v) is connected to a node w̃−1 ∈ ŨH

−1(v) by a path P =
(w̃i, . . . , w̃0, w̃−1), where w̃i−1, . . . , w̃0, w̃−1 ∈ Ht0 , and w̃j+1 ∈ Lw̃j(τ̃ ′

j+1). Now
define

ŨH
0→i(v) = ∪i

j=0Ũ
H
j (v) and Ũ I

0→i(v) = ∪i
j=0Ũ

I
j (v).

Since |ŨH
−1(v)| = Ω(log3 n), we can apply the same techniques as in Lemma 1

and obtain that
|ŨH

i (v) ∪ Ũ I
i (v)| � 2.1 · |ŨH

i−1(v)|

for any i � 1 as long as |Ũ I
i−1(v)| = O(log2 n) and |ŨH

i (v)| < n/40. However,
since |Ht0 | � 2n log log n/ log n, there exists some i < k′′ such that |Ũ I

0→i(v)| >

144 P. Berenbrink, R. Elsässer, and T. Sauerwald

ρ log2 n. Then, we can argue that every node u ∈ Ũ I
0→i(v) performs pull trans-

missions with probability 1/ logn. Since for every u a path (u, w̃s, . . . , w̃0, . . . , v)
with s < k′′ exists, which consists of nodes of Ht0 , all the nodes on this path
will perform pull transmisions. Hence, there is a node u ∈ Lw̃s(τ̃ ′

s+1) which
transmits the rumor at the right time, with probability

1−
(

1− 1
log n

)ρ log2 n

= 1− o(n−3),

if ρ is large enough. ��
Let us now prove Theorem 1. The correctness (every node gets informed w.h.p.)
follows from the lemmata above. It remains to analyze the total number of
message transmissions. In Phase 0, the algorithm uses O(log n) message trans-
missions. In Phases 1, 2 and 4, the algorithm uses O(n log log n) message trans-
missions. By Lemma 2, we know that after Phase 2 at mostO(n log log n/(logn))
uninformed nodes remain. These nodes generate at most O(n log log n) message
transmissions in Phase 3. Using a Chernoff bound, we can show that the nodes
that are informed at the end of Phase 2 use at most O(n) message transmissions.
Hence the total number of message transmissions is O(n log log n). ��

3 Hypercubes

In this section we first present a lower bound on the communication complexity
for rumor spreading on hypercubes in the standard phone call model and then
an upper bound (which is much smaller) in the quasirandom phone call model.

Theorem 2. Let G = (V,E) be a d-dimensional hypercube with n = 2d nodes.
Any algorithm in the standard phone call model with runtime O(log n) requires
Ω(n log n/ log log n) message transmissions, with probability at least 1− n−ω(1).

The proof of Theorem 2 is omitted due to space limitations.

3.1 Our Algorithm

In this section we present our upper bound on the communication complexity
for rumor spreading in the quasirandom phone call model. In the algorithm
below, the total number of message transmissions is O(n(log log n)2), which can
be shown as in the proof of Theorem 1 above.

Phase 1: [1 � age � �ρ log n�] If a node receives a rumor for the first time in
step t ∈ {�ρ logn� + 1, . . . , 2 · �ρ logn�}, then the node performs push in the
exactly C log log n next steps.

Phase 2: [�ρ log n�+1 � age � 2 ·�ρ log n�] Every node which becomes informed
in this phase performs pull over each incoming channel. All other informed
nodes perform pull with a probability of 1/ logn over each incoming channel.

Phase 3: [2�ρ logn�+ 1 � age � 2 · �ρ log n + ρ(log log n)2�] All informed nodes
perform pull transmissions in every step of this phase.

Communication Complexity of Quasirandom Rumor Spreading 145

3.2 Analysis of the Algorithm

Theorem 3. Assume that Hd is a hypercube of dimension log n. The algorithm
above spreads a rumor in Hd in time O(log n) using O(n(log log n)2) message
transmissions, w.h.p.

The proof of Theorem 3 is omitted due to space limitations. The analysis is
similar to the one for random graphs. However, the lack of strong expansion
properties makes it more difficult and one has to resort to the special structure
and the symmetries of hypercubes.

References

[1] Berenbrink, P., Elsässer, R., Friedetzky, T.: Efficient Randomised Broadcasting in
Random Regular Networks with Applications in Peer-to-Peer Systems. In: Proc.
of PODC 2008, pp. 155–164 (2008)

[2] Berenbrink, P., Elsässer, R., Sauerwald, T.: Randomised Broadcasting: Memory
vs. Randomness. In: Proc. of LATIN 2010 (to appear, 2010)

[3] Bollobás, B.: Random Graphs. Academic Press, London (1985)
[4] Chierichetti, F., Lattanzi, S., Panconesi, A.: Almost Tight Bounds for Rumour

Spreading with Conductance. In: Proc. of STOC 2010 (to appear, 2010)
[5] Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis,

H., Swinehart, D., Terry, D.: Epidemic algorithms for replicated database main-
tenance. In: Proc. of PODC 1987, pp. 1–12 (1987)

[6] Doerr, B., Friedrich, T., Sauerwald, T.: Quasirandom Rumor Spreading. In: Proc.
of SODA 2008, pp. 773–781 (2008)

[7] Doerr, B., Friedrich, T., Sauerwald, T.: Quasirandom rumor spreading: expanders,
push vs. pull, and robustness. In: Proc. of ICALP 2009, pp. 366–377 (2009)

[8] Elsässer, R.: On the communication complexity of randomized broadcasting in
random-like graphs. In: Proc. of SPAA 2006, pp. 148–157 (2006)

[9] Elsässer, R., Sauerwald, T.: The power of memory in randomized broadcasting.
In: Proc. of SODA 2008, pp. 218–227 (2008)

[10] Erdős, P., Rényi, A.: On random graphs I. Publ. Math. Debrecen 6, 290–297 (1959)
[11] Feige, U., Peleg, D., Raghavan, P., Upfal, E.: Randomized broadcast in networks.

Random Structures and Algorithms 1(4), 447–460 (1990)
[12] Frieze, A.M., Grimmett, G.R.: The shortest-path problem for graphs with random

arc-lengths. Discrete Applied Mathematics 10, 57–77 (1985)
[13] Fountoulakis, N., Huber, A., Panagiotou, K.: Reliable broadcasting in random

networks and the effect of density. In: Proc. of INFOCOM 2010 (to appear, 2010)
[14] Hagerup, T., Rüb, C.: A guided tour of Chernoff bounds. Information Processing

Letters 36(6), 305–308 (1990)
[15] Karp, R., Schindelhauer, C., Shenker, S., Vöcking, B.: Randomized rumor spread-

ing. In: Proc. of FOCS 2000, pp. 565–574 (2000)
[16] McDiarmid, C.: On the method of bounded differences. In: Surveys in Combina-

torics. London Math. Soc. Lectures Notes, vol. 141, pp. 148–188. Cambridge Univ.
Press, Cambridge (1989)

[17] Pittel, B.: On spreading rumor. SIAM Journal on Applied Mathematics 47(1),
213–223 (1987)

A Complete Characterization of

Group-Strategyproof Mechanisms of
Cost-Sharing�

Emmanouil Pountourakis1,�� and Angelina Vidali2,���

1 Department of EECS, Northwestern University, Evanston IL, USA
manolis@u.northwestern.edu

2 Max-Planck-Institut für Informatik, Saarbrücken, Germany
angelina@mpi-inf.mpg.de

Abstract. We study the problem of designing group-strategyproof cost-
sharing mechanisms. The players report their bids for getting serviced
and the mechanism decides a set of players that are going to be ser-
viced and how much each one of them is going to pay. We determine
three conditions: Fence Monotonicity, Stability of the allocation and Va-
lidity of the tie-breaking rule that are necessary and sufficient for group-
strategyproofness, regardless of the cost function. Consequently, Fence
Monotonicity characterizes group-strategyproof cost-sharing schemes clos-
ing an important open problem. Finally, we use our results to prove
that there exist families of cost functions, where any group-strategyproof
mechanism has arbitrarily poor budget balance.

1 Introduction

Algorithmic Mechanism Design [1] is a field of Game Theory, that tries to con-
struct algorithms for allocating resources that give to the players incentives to
report their true interest in receiving a good, a service, or in participating in a
given collective activity. The pivotal constraint when designing a mechanism for
any problem is that it is truthful. Truthfulness also known as strategyproofness
requires that no player can strictly improve her utility by lying. In many settings
this single requirement for an algorithm to be truthful restricts the repertoire of
possible algorithms dramatically [2–5].

In settings, where truthfulness does not impose such severe limitations, like
for example in Cost-sharing problems, it is desirable to construct mechanisms
that are also resistant to manipulation by groups of players. A group of players
forms a successful coalition when the utility of each player in the group does
not decrease and the utility of at least one player strictly increases. Group-
strategyproofness naturally generalizes truthfulness by requiring that no group

� Supported in part by IST-2009-215270.
�� This work was done while the author was studying at the University of Athens.

��� Supported by a research scholarship from the Alexander von Humbolt Foundation.

M. de Berg and U. Meyer (Eds.): ESA 2010, Part I, LNCS 6346, pp. 146–157, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Complete Characterization of Group-Strategyproof Mechanisms 147

of players can form a successful coalition by lying, when the values of the other
players are fixed.

In this paper we study the following problem: A set of n customers/players are
interested in receiving a service. Players report their valuation of the service and
the mechanism decides the players that are going to be serviced and the price that
each one of them will pay, i.e., we consider direct revelation mechanisms. We want
to characterize all possible mechanisms that satisfy group-strategyproofness via
identifying necessary and sufficient conditions for the payment functions that
give rise to these mechanisms.

We provide a complete characterization of group-strategyproof mechanisms
closing an open question posed in [6], [7, Chapter 15]. Immorlica et. al. [6] iden-
tified the property of semi-cross-montonicity, a local property that should be
satisfied by the payment part (cost-sharing scheme) of every group-strategyproof
mechanism. We introduce a generalization of semi-cross-monotonicity, Fence
Monotonicity, which still refers only to the payment part of the mechanism,
and is not only necessary but also sufficient for group-strategyproofness. Given
any payment rule that satisfies Fence Monotonicity, we show that every alloca-
tion that satisfies Stability and Validity of the tie-breaking rule, yields a group-
strategyproof mechanism. Our characterization of group-strategyproofness is
regardless of the cost function and without any additional constraints (like fixed
tie-breaking rules [6,8]).

Our results provide a new, as general as it can be, framework for designing
group-strategyproof mechanisms. Thus, it opens new perspectives to the study
of the very important problem of Cost-Sharing, the study of which was initiated
by Moulin [9], where we additionally have a cost function C such that for each
subset of players S the cost for providing service to all the players in S is C(S).
However, the strength of our results is that they apply to any cost function,
since throughout our proof we do not make any assumptions at all about this cost
function. We believe that our work here can be the starting point for constructing
new interesting classes of mechanisms for specific cost-sharing problems.

As our characterization is the first characterization of group-strategyproofness,
it is interesting to make a parallelization between the many known characteriza-
tions of strategyproofness [2–5,10,11] and our characterization of group-
strategyproofness, not however, in the technical level, but in order to determine
the quality and usefulness of our characterization. Fence Monotonicity, is a con-
dition rather similar to Cycle Monotonicity [10], in the sense that both are condi-
tions that should be satisfied by all possible restrictions of the output space of the
mechanism. A great virtue for a characterization of a mechanism that uses money
is to be able to separate the payment from the allocation part. Cycle Monotonic-
ity is a necessary property for the allocation. If it is satisfied, we know a way to
define truthful payments [10]. Fence Monotonicity refers only to the payments of
a mechanism and if it is satisfied, Stability and Validity of the tie-breaking rule
can be used to determine a group-strategyproof allocation. Managing to separate
the payments from the allocation and avoiding to add any additional restrictions
in the characterization we propose are undoubtedly its great virtues.

148 E. Pountourakis and A. Vidali

We believe that Fence Monotonicity, can also be a starting point in the
quest for alternative characterizations, as Cycle monotonicity has done so far
[2–5,11]. Unfortunately, even though Fence Monotonicity is succinct in its de-
scription, it is much more complicated than Cycle Monotonicity. Nonetheless,
group-strategyproofness is a notion much more complicated than strategyproof-
ness and we believe that Fence Monotonicity is not only important and un-
avoidable but also useful. We demonstrate the latter by proving the first of its
kind very simple lower bound on the budget balance of any group-strategyproof
mechanism.

Our results and related work. The design of group-strategyproof mecha-
nisms for cost-sharing was first discussed by Moulin and Shenker [9,12]. Moulin [9]
defined a condition on the payments called cross-monotonicity, which states that
the payment of a serviced player should not increase as the set of serviced players
grows. Any mechanism with payments satisfying cross-monotonicity can be eas-
ily turned to a simple mechanism called after Moulin. A Moulin mechanism first
checks if it can provide service to all players, so that each one has non-negative
utility and if not, it gradually diminishes the set of players that are candidates
to be serviced, by throwing away at each step a player that cannot pay to get
serviced (and who because of cross-monotonicity still cannot pay if the set of
candidates becomes smaller). In fact, if the cost function is sub-modular and
1-budget balanced, then the only possible group-strategyproof mechanisms are
Moulin mechanisms [12]. The great majority of cost-sharing mechanisms pro-
posed are Moulin mechanisms.

Nevertheless, recent results showed that for several important cost-sharing
games Moulin mechanisms can only achieve a very bad budget balance fac-
tor [6,13,14]. Some alternative, very interesting, and much more complicated
in their description mechanisms that are group-strategyproof but not Moulin
have been proposed [6,15], however, these do not exhaust the class of group-
strategyproof mechanisms. In this work we introduce Fencing Mechanisms, a
new general framework for designing group-strategyproof mechanisms, that gen-
eralizes Moulin mechanisms [9].

Recently, Mehta et. al. [16] proposed the notion of weak group-strategyproof-
ness, that relaxes group-strategyproofness. It regards a formation of a coalition,
as successful, when each player who participates in the coalition strictly in-
creases her personal utility. They also introduce acyclic mechanisms, a general
framework for designing weakly group-strategyproof mechanisms, however, the
question of determining all possible weakly group-strategyproof mechanisms is
an important question that remains open. Another alternative notion was pro-
posed by Bleischwitz et. al. in [17].

The problem we solve here, i.e., finding a complete characterization of the
cost-sharing schemes that give rise to a group-strategyproof mechanism was a
major open problem posed in [6],[7, Chapter 15]. Many interesting results arose
in the attempt to find such a characterization [8,15]. In contrast to previous
characterization attempts that characterized mechanisms satisfying some addi-
tional boundary constraints [6,8], our characterization is complete and succinct.

A Complete Characterization of Group-Strategyproof Mechanisms 149

The only previously known complete characterization was for the case of two
players [8,15]. It remains open how our characterization can help for construct-
ing new efficient mechanisms for specific cost-sharing problems. We believe that
it can significantly enrich the repertoire of mechanisms with good budget balance
guarantees for specific problems.

In the notion of group-strategyproofness it is important to understand that
ties play a very important role. This is in contrast to strategyproofness, where
ties can be in most cases broken arbitrarily (see for example [18]). An intuitive
way to understand this is that a mechanism designer of a group-strategyproof
mechanism expects a player to tell a lie in order to help the other players increase
their utility, even when she would not gain any profit for herself. This player
is at a tie but decides strategically if she should lie or not. Consequently, a
characterization that assumes a priori a tie-breaking rule, and hence, greatly
restricts the repertoire of possible mechanisms [6,19] might be useful for specific
problems and easier in its statement, but can never capture the very notion
group-strategyproofness.

Our proofs are involved and based on set-theoretic arguments and the re-
peated use of induction. The main difficulty of our work was to identify some
necessary and sufficient conditions for group-strategyproof payments that are
also succinct to describe and add to our understanding of the notion of group-
strategyproofness. In proving the necessity of Fence Monotonicity, we first have
to prove lemmas that also reveal interesting properties of the allocation part
of the mechanism. A novel tool that we introduce is the harm relation that
generalizes the notion of negative elements defined in [6]. Proving that Fencing
Mechanisms, i.e., mechanisms with payments satisfying Fence Monotonicity, and
allocation satisfying Stability and Validity of the tie-breaking rule, are group-
strategyproof turns out to be rather complicated. Due to space limitations, the
full details of our proofs are omitted and we refer the reader to the full version
of the paper. It is likely that our techniques can be extended for characterizing
weakly group-strategyproof mechanisms.

2 Defining the Model

The Mechanism. Suppose that A = {1, 2, . . . , n} is a set of players interested
in receiving a service. Each of the players has a private type vi, which is her
valuation for receiving the service.

A cost sharing mechanism (O, p) consists of a pair of functions, O : Rn → 2A

that associates with each bid vector b the set of serviced players and p : Rn → Rn

that associates with each bid vector b a vector p(b) = (p1(b), . . . , pn(b)), where
the i-th coordinate is the payment of player i. Assuming quasi-linear utilities,
each player wants to maximize the quantity viai− pi(b) where ai = 1 if i ∈ O(b)
and ai = 0 if i /∈ O(b).

As it is common in the literature and in order to avoid absurd mechanisms, we
concentrate on mechanisms that satisfy the following very simple conditions [6,
9,12]: Voluntary Participation (VP): A player that is not serviced is not charged

150 E. Pountourakis and A. Vidali

(i /∈ O(b) ⇒ pi(b) = 0) and a serviced player is never charged more than her bid
(i ∈ O(b) ⇒ pi(b) ≤ bi). No Positive Transfer (NPT): The payment of each player
i is non-negative (pi(b) ≥ 0 for all i). Consumer Sovereignty (CS): For each player
i there exists a value b∗i ∈ R such that if she bids b∗i , then it is guaranteed that
player i will receive the service no matter what the other players bid.1

In accordance with [6,9] we will concentrate on mechanisms, where the players
are additionally able to deny receiving service, no matter what the other players
bid. To ensure this we just assume that players can report negative bids. Then
VP and NPT imply that if a player announces a negative amount, she will not
receive the service. Even though negative bids may not seem realistic, they can
model the denial of revealing any information to the mechanism. To put things
simply, if a player i bids −1, then she does not receive service and if she bids b∗i ,
then she receives service, no matter what the other players bid.

We are interested in mechanisms that are group-strategyproof (GSP). A mech
anism is GSP if for every two valuation vectors v, v′ and every coalition of players
S ⊆ A, satisfying vi = v′i for all i /∈ S, one of the following is true: (a) There is
some i ∈ S, such that via

′
i − pi(v′) < viai − pi(v) or (b) for all i ∈ S, it holds

that via
′
i − pi(v′) = viai − pi(v).

The cost function, cost sharing scheme, and budget balance. The cost
of providing service is given by a cost function C : 2A → R+ ∪ {0}, where C(S)
specifies the cost of providing service to all players in S.

A cost-sharing scheme is a function ξ : A×2A → R+∪{0} such that for every
S ⊂ A and every i /∈ S, we have ξ(i, S) = 0. Immorlica et. al. [6] showed that
in any GSP mechanism of our setting the payment of a player depends only on
the allocation produced by the mechanism for a particular bid vector and not
directly on the bids of the players. As a consequence, the payments of any GSP
mechanism are given by a cost-sharing scheme ξ, i.e., pi(b) = ξ(i, O(b)).

A desirable property cost-sharing schemes with respect to some cost function
is budget balance. We say that a cost-sharing scheme ξ is α-budget balanced,
where 0 ≤ α ≤ 1, if for S ⊆ A it holds that α · C(S) ≤

∑
i∈S ξ(i, S) ≤ C(S).

Correspondingly, we say that a mechanism is α-budget balanced if its cost shar-
ing scheme is α-budget balanced. We chose to define the cost function last in
order to stress that our results are completely independent of the cost func-
tion and any budget-balance assumption, thus they apply to any cost-sharing
problem.

An important and well-studied property of cost-sharing schemes is cross-
monotonicity, which is sufficient for group-strategyproofness [9]. A cost-sharing
scheme is cross-monotonic if ξ(i, S) ≥ ξ(i, T) for every S ⊂ T ⊆ A and every
player i ∈ S. This means that the payment of a player cannot increase as the
number of players that receive service increases.

In the attempt to provide a characterization of GSP mechanisms Immorlica et.
al. [6] provided a partial characterization and identified semi-cross-monotonicity,

1 From VP it holds that b∗i ≥ maxb∈Rn pi(b). It is easy to verify that strategyproofness
implies that any value greater than b∗i satisfies CS for player i. Thus, when we refer
to this crucial value, we will w.l.o.g. assume that this inequality is strict.

A Complete Characterization of Group-Strategyproof Mechanisms 151

an important condition that should be satisfied by the cost-sharing scheme of any
GSP mechanism. A cost sharing scheme ξ is semi-cross-monotonic if for every
S ⊆ A, and every player i ∈ S, either for all j ∈ S \ {i}, ξ(j, S \ {i}) ≤ ξ(j, S)
or for all j ∈ S \ {i}, ξ(j, S \ {i}) ≥ ξ(j, S).

As we later show in Proposition 1 (i), semi-cross-monotonicity can be almost
directly derived by Fence Monotonicity, the property we introduce in this work.

3 Our Characterization

3.1 Fence Monotonicity, and Fencing Mechanisms

Fence Monotonicity, considers each time a restriction of the mechanism that
can only output as the serviced set, subsets of U that contain all players in L.
To be more formal, consider all possible subsets of the players L,U such that
L ⊆ U ⊆ A. Given a pair L ⊆ U , Fence Monotonicity, considers only sets
of players S with L ⊆ S ⊆ U . Each Fence Monotonicity, condition should be
satisfied in any such restriction of the mechanism.

We denote by ξ∗(i, L, U) the minimum payment of player i for getting serviced
when the output of the mechanism is restricted by L and U , i.e., ξ∗(i, L, U) :=
min{L⊆S⊆U,i∈S} ξ(i, S).

Definition 1 (Fence Monotonicity). We will say that a cost-sharing scheme
satisfies Fence Monotonicity, if for every L ⊆ U ⊆ A, it satisfies the following
three conditions:

(a) There exists at least one set S with L ⊆ S ⊆ U , such that for all i ∈ S, we
have ξ(i, S) = ξ∗(i, L, U).

(b) For each player i ∈ U \ L there exists at least one set Si with i ∈ Si and
L ⊆ Si ⊆ U , such that for all j ∈ Si \ L, we have ξ(j, Si) = ξ∗(j, L, U).
(Since i ∈ Si \ L, it holds that ξ(i, Si) = ξ∗(i, L, U).)

(c) If for some C ⊂ U there is a player j ∈ C with ξ(j, C) < ξ∗(j, L, U) (obvi-
ously L � C), then there exists at least one set T 	= ∅ with T ⊆ L \ C, such
that for all i ∈ T , ξ(i, C ∪ T) = ξ∗(i, L, U).

An alternative way of expressing conditions (a) and (b) of Fence Monotonicity,
at some L,U is the following: We say that a player i is serviced optimally in
some set S) i if she is serviced with her minimum possible payment in this
restriction, i.e., ξ∗(i, L, U) = ξ(i, S). A set S is optimal if all of its players are
serviced optimally. Condition (a) requires the existence of an optimal set. Next,
consider the weaker notion of a semi-optimal set S, where at least the players
in S \ L are serviced optimally. Condition (b) implies that each agent i ∈ U \ L
belongs to some semi-optimal set. Notice that two players may not belong to a
common semi-optimal set.

Condition (c) is the most important and involved condition and cannot be
expressed using the notions above. It compares the minimum possible payment
of a player in this restriction of the mechanism with her payment when the
outcome can be any subset of U , i.e., it should not necessarily contain the players

152 E. Pountourakis and A. Vidali

in L. Assume that player j is better off when the outcome is some set C, where
L 	⊆ C, i.e., loosely speaking some of the players in L \ C “harm” player j by
their presence in the outcome. Then condition (c) requires the existence of some
non-empty set T with T ⊆ L\C, such that each player in T is indifferent between
her payment in C ∪ T and her minimum payment in the original restriction.

Observe that if ξ is cross-monotonic, then the set U is optimal (and conse-
quently semi-optimal). Hence, conditions (a) and (b) are always satisfied. More-
over, condition (c) is trivially satisfied, as for every C ⊂ U , it holds that for all
i ∈ C, ξ(i, C) ≤ ξ(i, U) = ξ∗(i, L, U). As a result, cross-monotonicity implies
Fence Monotonicity.

Proposition 1. Let ξ be a cost sharing scheme
(i) If it satisfies condition (a) of Fence Monotonicity, for all L,U with |U\L| =

1, then it satisfies semi-cross-monotonicity.
(ii) If it satisfies conditions (b) of Fence Monotonicity, for all L,U with |U \

L| = 2 and (c) of Fence Monotonicity, for all L,U with |U \ L| = 1, then
it satisfies the following property: For all S ⊆ A and all distinct i, j ∈ S, if
ξ(j, S \ {i}) < ξ(j, S) then ξ(i, S \ {j}) = ξ(i, S).

Proposition 1 shows exactly how one can derive the two necessary conditions for
group-strategyproofness, which were identified by Immorlica et. al. [6]: Part (i)
of this Proposition shows how we can derive semi-cross-monotonicity and part
(ii) how we can derive the condition identified in Remark B.1 from [6](Remark
B.1 is a special case of part (ii), namely they showed that if ξ(i, S \{j}) ≤ ξ(i, S)
and ξ(j, S \ {i}) ≤ ξ(j, S), then at most one equality can be strict). The two
conditions they identified are obtained if apply Fence Monotonicity, for cases
when U \L contains either one or two players, i.e., when we restrict the outcome
space to only two or four different possible outcomes.

Theorem 1. A cost sharing scheme gives rise to a GSP mechanism if and only
if it satisfies Fence Monotonicity.

If you are given a cost sharing scheme that satisfies Fence Monotonicity, it is not
straightforward how to construct a GSP mechanism. Fence Monotonicity, can
yield a GSP mechanism if and only if it is coupled with an allocation rule that
satisfies two properties, which we refer to as Stability and Validity of the tie-
breaking rule respectively. We call the underlying mechanisms of this framework
Fencing mechanisms.

The mechanisms we design can be put in the following general framework:
Given a bid vector as input, we search for a certain pair of sets L,U , where L ⊆
U ⊆ A that meets the criteria of Stability we define below and then we choose
one of the allocations in this restriction according to a valid tie-breaking rule.
If the search for the stable pair is exhaustive, then the resulting algorithm runs
in exponential time. Given an arbitrary cost sharing scheme that satisfies Fence
Monotonicity, we do not know of any polynomial time algorithm for computing
the stable pair at every input. However, if we restrict our attention to payments
that satisfy stronger conditions like, for example, cross-monotonicity we can
come up with a polynomial-time algorithm for finding a stable pair.

A Complete Characterization of Group-Strategyproof Mechanisms 153

Definition 2 (Stability). A pair L,U is stable at b if the following conditions
are true: 1. For all i ∈ L, bi > ξ∗(i, L, U), 2. for all i ∈ U \ L, bi = ξ∗(i, L, U),
and 3. for all R ⊆ A \ U , there is some i ∈ R, such that bi < ξ∗(i, L, U ∪R).

The first Stability condition ensures that each player in L can be serviced with
strictly positive utility. The second Stability condition implies that every player
in U \ L can be serviced in at least one outcome but with zero utility. The last
property requires that if we enlarge U , then at least one of the newly added
players cannot pay in any possible outcome.

After identifying a stable pair these mechanisms output a set S, where L ⊆
S ⊆ U given by a tie-breaking function. The mapping σ : 2A × 2A × Rn → 2A

is a valid tie-breaking rule for ξ, if for all L ⊆ U ⊆ A, the set S = σ(L,U, b)
satisfies L ⊆ S ⊆ U and for all i ∈ S, ξ(i, S) = ξ∗(i, L, U).

The dependence on the bid vector allows the mechanism of our framework
to change its tie-breaking rule between two bid vectors that share a common
stable pair. Obviously, condition (a) of Fence Monotonicity, guarantees that a
valid tie-breaking rule always exists.

Definition 3. We will say that a mechanism (O, ξ) is a Fencing Mechanism if
and only if

1. ξ satisfies Fence Monotonicity, and
2. for any bid vector b, O(b) = σ(L,U, b), where L,U is a stable pair at b and

σ is a valid tie-breaking rule.

It is easy to verify that every Fencing Mechanism satisfies VP from Stability and
valid tie-breaking. Moreover, it satisfies CS, because if a player bids higher than
any of her payments, then again by Stability she belongs to the set L and gets
serviced.2

Theorem 2. A mechanism is GSP if and only if it is a Fencing Mechanism.

3.2 Every GSP Mechanism Is a Fencing Mechanism

Necessity of Fence Monotonicity. Here, we prove that the cost-sharing
scheme of any GSP mechanism satisfies Fence Monotonicity. Let (O, ξ) be an
arbitrary GSP mechanism and consider some U ⊆ A. We show that for every
L ⊆ U , ξ satisfies each one of the Fence Monotonicity, conditions using induction
on |U \ L|. We first define the notion of a harm relation and we prove that it is
a strict partial order.

Lemma 1. If U ⊆ U1 and L1 ⊆ L, then for all i ∈ U , ξ∗(i, L, U) ≥ ξ∗(i, L1, U1).

2 Assume that ξ is cross-monotonic and let S be the output of Moulin mechanism
for some bid vector b. Then, the pair L, U , where L = {i ∈ S | bi > ξ(i, S)} and
U = S, is the unique stable pair at b. Moreover, the tie breaking rule σ(L,U, b) = U
is always valid. Therefore, Moulin mechanisms can be viewed as a special case of
Fencing mechanisms.

154 E. Pountourakis and A. Vidali

Proposition 2 (Harm relation). Fix two sets L ⊆ U and suppose that i, j ∈
U . We say that i harms j, if ξ∗(j, L, U) < ξ∗(j, L ∪ {i}, U). If i does not harm
j, then ξ∗(j, L, U) = ξ∗(j, L ∪ {i}, U) (we get this equality applying Lemma 1).

(i) The harm relation satisfies anti-symmetry and transitivity and conse-
quently it is a strict partial order and the induced sub-graph G[U \L] is a directed
acyclic graph.

(ii) For every i ∈ L, one of the following holds: either every j ∈ U \ L harms
i or there exists some sink k of the subgraph G[U \ L] that does not harm i.

(iii) For every i ∈ U \ L, one of the following holds: either i is a sink of the
sub-graph G[U \ L] or there exists some a sink k of the sub-graph G[U \ L] that
is harmed by i.

We continue by revealing several important allocation properties of GSP mech-
anisms and use them to prove the induction step for each property of Fence
Monotonicity.

Conditions (a) and (b) of Fence Monotonicity. For the proof of conditions
(a) and (b) we consider bid vectors where all the players in L have bidden b∗i , all
players in A \ U have bidden −1, and the players in U \ L have bidden exactly
ξ∗(i, L, U) (with the minor exception of one or two players for condition (b)).

Lemma 2. At the bid vector b, where for all i ∈ L, bi = b∗i , for all i ∈ U \ L,
bi = ξ∗(i, L, U), and for all i /∈ U , bi = −1, it holds that L ⊆ O(b) ⊆ U and for
all i ∈ O(b), ξ(i, O(b)) = ξ∗(i, L, U).

Setting S = O(b), condition (a) of Fence Monotonicity, is satisfied at L,U .

Lemma 3. Let b be the bid vector as defined in Lemma 2.

(i) Consider any sink k of G[U \ L]. At any bid vector bk, where bk
k >

ξ∗(k, L, U) and the rest of the players bid according to b, it holds that L ⊆
O(bk) ⊆ U , k ∈ O(bk), and for all j ∈ O(bk) \ L, ξ(j, O(bk)) = ξ∗(j, L, U) .

(ii) Consider any player i that harms a sink k of G[U \L]. At any bid vector
bi, where bi

i > ξ∗(i, L, U), ξ∗(k, L, U) < bi
k < ξ∗(k, L ∪ {i}, U), and the rest of

the players bid according to b, it holds that L ⊆ O(bi) ⊆ U , k /∈ O(bi), i ∈ O(bi),
and for all j ∈ O(bi) \ L, ξ(j, O(bi)) = ξ∗(j, L, U).

Thus, condition (b) at L,U for any sink k is satisfied by setting Sk = O(bk). By
Proposition 2 (ii), every non-sink i harms a sink k, hence, condition (b) is also
satisfied for i at L,U by setting Si = O(bi).

Condition (c) of Fence Monotonicity. To show that the cost-sharing scheme
satisfies the third property of Fence Monotonicity, at L,U , we need the induc-
tion hypothesis only for showing (as we have already done) that condition (a)
of Fence Monotonicity, is satisfied at this pair and specifically only the alloca-
tion properties of Lemma 2. Now we consider inputs for which we do not get
anymore directly from CS, that the players in L surely receive service. The idea
is to gradually generalize the bid vectors and characterize the allocation of the

A Complete Characterization of Group-Strategyproof Mechanisms 155

Table 1. Allocation properties of GSP mechanisms. Every family of inputs we consider
is a subset of the previous one. Last property sheds light on an important property of
the allocation of (non-Moulin) GSP mechanisms. It reveals the following fact: If the
bids of all players in a set L ⊆ U have surpassed their respective minimum payments
at L, U , (and the players in A\U do not want to participate), then a GSP mechanism
never excludes a subset of L from the outcome in favor of another serviced player,
who would pay less if they were not present in the outcome, Loosely speaking the
players in L rule out any outcome C ⊂ U such that there is some j ∈ C such that
ξ(j, C) < ξ∗(j, L, U).

L U \ L /∈ U allocation of a GSP mechanism

b∗i ξ∗(i, L, U) −1 ∀i ∈ O(b), ξ(i, O(b)) = ξ∗(i, L, U) & L ⊆ O(b) ⊆ U

> ξ∗(i, L, U) ξ∗(i, L, U) −1 ∀i ∈ O(b), ξ(i, O(b)) = ξ∗(i, L, U) & L ⊆ O(b) ⊆ U

> ξ∗(i, L, U) ∈ R −1 ∀i ∈ O(b), ξ(i, O(b)) ≥ ξ∗(i, L, U)

mechanism. The following table contains allocation properties that any GSP
mechanism satisfies.

Using the last property in Table 1, it is easy to show that any GSP mechanism
satisfies condition (c) of Fence Monotonicity. Let ε > 0 be a small quantity
satisfying that for all S′, S ⊆ U and i ∈ S ∩S′, ξ(i, S′)− ξ(i, S) > 0 ⇒ ξ(i, S′)−
ξ(i, S) > ε.

Lemma 4. Consider any C ⊂ U such that there is some j ∈ C with ξ(j, C) <
ξ∗(j, L, U). At the bid vector bc, where for all i ∈ C, bc

i = b∗i , for all i ∈ L \ C,
bc
i = ξ∗(i, L, U)+ε, and for all i /∈ C∪L, bc

i = −1, it holds that C ⊂ O(bc) ⊆ L∪C
and for all i ∈ O(bc) \ C, ξ(i, O(bc)) = ξ∗(i, L, U).

Setting T = O(bc) \ C we can conclude that every GSP mechanism satisfies
condition (c) of Fence Monotonicity.

Necessity of Stability and Valid tie-breaking. Next, we show that the allo-
cation of every GSP mechanism satisfies Stability and uses a Valid tie-breaking
rule. Since its cost-sharing scheme must satisfy Fence Monotonicity, we can prove
the following generalization of the second allocation property in Table 1.

Lemma 5. Let L ⊆ U ⊆ A. For every bid vector b such that L,U is stable, it
holds that L ⊆ O(b) ⊆ U and for all i ∈ O(b), ξ(i, O(b)) = ξ∗(i, L, U).

Lemma 5 implies that an allocation should satisfy Stability and Validity of the
tie-breaking rule, whenever a stable pair exists. Lemma 8 guarantees the exis-
tence of a unique stable pair at every input, which completes our proof.

3.3 The Classes of GSP and Fencing Mechanisms Coincide

We complete our characterization by proving that Fencing Mechanisms are GSP.

Lemma 6. For every bid vector b and set L with L ⊆ A, there exists a unique
set U with U ⊇ L, such that for all i ∈ U \ L we have bi ≥ ξ∗(i, L, U) and
any other set with the same property is a subset of U . Moreover, the pair L,U
satisfies condition 3. of Stability.

156 E. Pountourakis and A. Vidali

The next two Lemmas prove our statement.

Lemma 7. For the inputs where there exists a stable pair it, it is unique and
every Fencing Mechanism is GSP.

Lemma 8. For every bid vector b there exists a unique stable pair. Consequently,
Fencing Mechanisms are meaningful and GSP.

There is a specific reason behind this orderings. We prove Lemma 8 by induction,
thus, for showing the induction step we deal with bid vectors where a stable
pair exists. Applying Lemma 7 at these inputs turns out to simplify our proof
substantially.

4 Conclusion and Future Directions

We demonstrate the use of our characterization by showing that even in the case
of three players GSP mechanisms fail in having a constant budget balance.

Theorem 3. There are cost function families where GSP mechanism has arbi-
trarily poor budget balance ratio.

We believe that the most interesting future directions are the following: How
can our characterization be applied for obtaining cost-sharing mechanisms with
better budget-balance guarantees or lower bounds for specific problems? Does
there exist a polynomial-time algorithm for finding the allocation of a cost-
sharing scheme that satisfies Fence Monotonicity, or maybe can we show that
the problem of finding a stable pair is computationally hard? A natural question
that arises in this context is if it is computationally more efficient to find the
appropriate outcome than identifying the stable pair.

Theorem 4. Suppose that we are given the outcome of a GSP mechanism at b.
Given polynomial access to ξ∗(i, L, U) for all L ⊆ U ⊆ A and all i ∈ U , we can
identify the stable pair in polynomial time.

Aknowledgements. We would like to thank Elias Koutsoupias for suggesting
the problem, as well as for many very helpful insights and discussions. We would
also like to thank Janina Brenner, Nicole Immorlica, Evangelos Markakis, Tim
Roughgarden, and Florian Schoppmann for helpful discussions and some pointers
in the bibliography.

References

1. Nisan, N., Ronen, A.: Algorithmic mechanism design (extended abstract). In: Pro-
ceedings of the 31st annual ACM symposium on Theory of computing (STOC
1999), pp. 129–140. ACM, New York (1999)

2. Roberts, K.: The characterization of implementable choice rules. In: Laffont, J.J.
(ed.) Aggregation and Revelation of Preferences. Papers presented at the first Eu-
ropean Summer Workshop of the Econometric Society, pp. 321–348. North-Holland,
Amsterdam (1979)

A Complete Characterization of Group-Strategyproof Mechanisms 157

3. Lavi, R., Mu’alem, A., Nisan, N.: Towards a characterization of truthful combinato-
rial auctions. In: Proceedings of the 44th Annual IEEE Symposium on Foundations
of Computer Science (FOCS 2003), Washington, DC, USA, p. 574. IEEE Computer
Society, Los Alamitos (2003)

4. Dobzinski, S., Sundararajan, M.: On characterizations of truthful mechanisms for
combinatorial auctions and scheduling. In: Proceedings of the 9th ACM conference
on Electronic commerce (EC 2008), pp. 38–47. ACM, New York (2008)

5. Christodoulou, G., Koutsoupias, E., Vidali, A.: A characterization of 2-player
mechanisms for scheduling. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS,
vol. 5193, pp. 297–307. Springer, Heidelberg (2008)

6. Immorlica, N., Mahdian, M., Mirrokni, V.S.: Limitations of cross-monotonic cost-
sharing schemes. ACM Trans. Algorithms 4, 1–25 (2008)

7. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.: Algorithmic Game Theory.
Cambridge University Press, Cambridge (2007)

8. Juarez, R.: Group-strategy proof cost sharing. Working paper (2008)
9. Moulin, H.: Incremental cost sharing: Characterization by coalition strategy-

proofness. In: Social Choice and Welfare, pp. 279–320 (1999)
10. Rochet, J.C.: A necessary and sufficient condition for rationalizability in a quasi-

linear context. Journal of Mathematical Economics 16, 191–200 (1987)
11. Saks, M., Yu, L.: Weak monotonicity suffices for truthfulness on convex domains.

In: Proceedings of the 6th ACM conference on Electronic commerce (EC 2005),
pp. 286–293. ACM, New York (2005)

12. Moulin, H., Shenker, S.: Strategyproof sharing of submodular costs: budget balance
versus efficiency. Economic Theory 18, 511–533 (2001)

13. Brenner, J.A., Schäfer, G.: Cost sharing methods for makespan and completion
time scheduling. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393,
pp. 670–681. Springer, Heidelberg (2007)

14. Roughgarden, T., Sundararajan, M.: New trade-offs in cost-sharing mechanisms.
In: Proceedings of the 38th annual ACM symposium on Theory of computing
(STOC 2006), pp. 79–88. ACM, New York (2006)

15. Penna, P., Ventre, C.: The algorithmic structure of group strategyproof budget-
balanced cost-sharing mechanisms. In: Durand, B., Thomas, W. (eds.) STACS
2006. LNCS, vol. 3884, pp. 337–348. Springer, Heidelberg (2006)

16. Mehta, A., Roughgarden, T., Sundararajan, M.: Beyond moulin mechanisms. In:
Proceedings of the 8th ACM conference on Electronic commerce (EC 2007), pp.
1–10. ACM, New York (2007)

17. Bleischwitz, Y., Monien, B., Schoppmann, F.: To be or not to be (served). In: Deng,
X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp. 515–528. Springer,
Heidelberg (2007)

18. Nisan, N., Ronen, A.: Algorithmic mechanism design. Games and Economic Be-
havior 35, 166–196 (2001)

19. Juarez, R.: Prior-free cost sharing design: group strategyproofness and the worst
absolute loss. Social Computing and Behavioral Modeling, 1–7 (2009)

Contribution Games in Social Networks�

Elliot Anshelevich1 and Martin Hoefer2

1 Dept. of Computer Science, Rensselaer Polytechnic Institute, Troy, NY
2 Dept. of Computer Science, RWTH Aachen University, Germany

mhoefer@cs.rwth-aachen.de

Abstract. We consider network contribution games, where each agent
in a social network has a budget of effort that he can contribute to
different collaborative projects. Depending on the contribution of the
involved agents a project will be successful to a different degree, and
to measure the success we use a reward function for each project. Every
agent is trying to maximize the reward from all projects that it is involved
in. We consider pairwise equilibria of this game and characterize the
existence, computational complexity, and quality of equilibrium based
on the types of reward functions involved. For example, when all reward
functions are concave, we prove that the price of anarchy is at most
2. For convex functions the same only holds under some special but
very natural conditions. A special focus of the paper are minimum effort
games, where the success of a project depends only on the minimum
effort of any of the participants. Finally, we briefly discuss additional
aspects like approximate equilibria and convergence of dynamics.

1 Introduction

Understanding the degree to which rational agents will participate in and con-
tribute to joint projects is critical in many areas of society. With the advent
of the Internet and the consideration of rationality in the design of multi-agent
and peer-to-peer systems, these aspects are becoming of interest to computer
scientists and subject to analytical computer science research. Not surprisingly,
the study of contribution incentives has been an area of vital research interest in
economics and related areas with seminal contributions to the topic over the last
decades. A prominent example from experimental economics is the minimum ef-
fort coordination game [24], in which a number of participants contribute to a
joint project, and the outcome depends solely on the minimum contribution of
any agent. While the Nash equilibria in this game exhibit a quite simple struc-
ture, behavior in laboratory experiments led to sometimes surprising patterns
see, e.g., [15,11] for recent examples. On the analytical side this game was stud-
ied, for instance, with respect to logit-response dynamics and stochastic potential
in [4].

� This work was supported in part by NSF CCF-0914782, by DFG through UMIC
Research Center at RWTH Aachen University, and by DFG grant Ho 3831/3-1.

M. de Berg and U. Meyer (Eds.): ESA 2010, Part I, LNCS 6346, pp. 158–169, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Contribution Games in Social Networks 159

In this paper we propose and study a simple framework of network contribu-
tion games for contribution, collaboration, and coordination of actors embedded
in social networks. The game contains the minimum effort coordination game
as a special case and is closely related to many other games from the economics
literature. In such a game each player is a vertex in a graph, and the edges repre-
sent bilateral projects that he can engage in. Each player has a budget of effort
that he can contribute to different edges. Budgets and contributions are non-
negative numbers, and we use them as an abstraction for the different ways and
degrees by which actors can contribute to a bilateral project, e.g., by allocating
time, money, and personal energy to maintaining a friendship, a relationship, or
a collaboration, the development of a new product, or the installation or stan-
dardization of a new technology – to name a few. Depending on the contribution
of the involved actors a project will exhibit different levels of success, and to
measure the success we use a reward function for each project. Finally, each
player strives to maximize the total success of all projects he is involved in.

A major issue that we address in our games is the impact of collaboration.
An incentive for collaboration evolves naturally when agents are embedded in
social networks and involved in joint projects. We are interested in the way
that a limited collaboration between agents influences properties of equilibria in
contribution games like existence, computational complexity, the convergence of
natural dynamics, as well as measures of inefficiency. In particular, in addition
to unilateral strategy changes we will allow pairs of players to change their
strategies in a coordinated manner. States that are resilient against such bilateral
deviations are termed 2-strong [3] or pairwise equilibria [20].

Network Contribution Games. We consider network contribution games as
models for the contribution to relationships and projects in social networks. In
our games we are given a simple and undirected graph G = (V,E) with n nodes
and m edges. Every node v ∈ V is a player, and every edge e ∈ E represents a
project (collaboration, relationship, etc.). A player v has a given budget Bv ≥ 0
of the total amount of effort that it is able to apply to all of its projects (i.e.,
edges incident to v). Budgets are called uniform if Bu = Bv for any u, v ∈ V .
In this case, unless stated otherwise, we assume that Bv = 1 for all v ∈ V and
scale reward functions accordingly.

We denote by Ev the set of edges incident to v. A strategy for player v is
a function sv : Ev → R≥0 that satisfies

∑
e=(v,u) sv(e) ≤ Bv and specifies the

amount of effort sv(e) that v puts into his project e ∈ Ev. A state of the game
is simply a vector s = (s1, . . . , sn). The success of a project e is measured by
a reward function fe : R2

≥0 → R, for which fe(x, y) ≥ 0 and non-decreasing
in x, y ≥ 0. The utility or welfare of a player v is simply the total success of
all its projects, i.e., wv(s) =

∑
e=(v,u) fe(sv(e), su(e)), so both endpoints benefit

equally from their relationship. In addition, we will assume that reward functions
fe are symmetric, so fe(x, y) = fe(y, x) for all x, y ≥ 0, and for ease of presen-
tation we will assume they are continuous and differentiable, although most of
our results can be obtained without these assumptions.

160 E. Anshelevich and M. Hoefer

We are interested in the existence and computational complexity of stable
states, their performance in terms of social welfare, and the convergence of nat-
ural dynamics to equilibrium. The central concept of stability in strategic games
is the (pure) Nash equilibrium, which is resilient against unilateral deviations,
i.e., a state s such that wv(sv, s−v) ≥ wv(s′v, s−v) for each v ∈ V and all pos-
sible strategies s′v. For the social welfare w(s) of a state s we use the natural
utilitarian approach and define w(s) =

∑
v∈V wv(s). A social optimum s∗ is a

state with w(s∗) ≥ w(s) for every possible state s of the game.
In games such as ours, it makes sense to consider bilateral deviations, as well

as unilateral ones. Nash equilibria have shortcomings in this context, for instance
for a pair of adjacent nodes who would – although being unilaterally unable to
increase their utility – benefit from cooperating and increasing the effort on their
mutual project. The prediction of Nash equilibrium that such a state is stable is
quite unreasonable. In fact, it is easy to show that when considering pure Nash
equilibria, the function Φ(s) = w(s)/2 is an exact potential function for our
games. Hence, s∗ is an optimal Nash equilibrium, the price of stability is 1, and
iterative better response dynamics converge to an equilibrium. Additionally, for
many natural reward functions fe, the price of anarchy remains unbounded.1

Following the reasoning in, e.g., [20, 19], we instead consider pairwise equi-
libria and focus on the more interesting case of bilateral deviations. An im-
proving bilateral deviation in a state s is a pair of strategies (s′u, s′v) such that
wv(s′u, s′v, s−u,v) > wv(s) and wu(s′u, s′v, s−u,v) > wu(s). A pairwise equilibrium
is a Nash equilibrium, for which there are no improving bilateral deviations.
Notice that we are actually using a stronger notion of pairwise stability than
described in [19], since any pair of players can change their strategies in an arbi-
trary manner, instead of changing their contributions on just a single edge. Our
notion of pairwise equilibrium is exactly the notion of 2-strong equilibrium [3].

We evaluate the performance of stable states using prices of anarchy and
stability, respectively. The price of anarchy (stability) for our game is the worst-
case ratio of w(s∗)/w(s) for the worst (best) pairwise equilibrium s. The prices
for a class of games (e.g., with convex or concave reward functions) are simply
the worst-case ratios of any game in the class.

An obvious extension to our model is the case of general contribution games,
in which projects are arbitrary subsets of players, and setwise equilibria, where
no set of players involved in a project can all profit from a joint deviation. Some
of our results (as detailed below) directly extend to this case. For instance, the
price of anarchy often depends on k, the size of the largest project. However,
apart from some preliminary results specified below, a general study of this and
various other interesting aspects remains as an open problem.

Our Results. We study the properties of pairwise equilibrium in network con-
tribution games. Consider the effort sv(e) expended by player v on an edge
e = (u, v). The fact that fe is monotonic nondecreasing tells us that wv in-
creases in sv(e). Depending on the application being considered, however, the

1 Consider, for instance, a path of length 3 with {e1, e2, e3} and fe1(x, y) = fe3(x, y) =
min(x, y) and fe2(x, y) = M · min(x, y), for some large number M .

Contribution Games in Social Networks 161

Table 1. Summary of some of our results. For the cases where equilibrium always
exists, we can also give algorithms to compute it and convergence results. All of our
PoA upper bounds are tight. (*) If ∀e, fe(x, 0) = 0, NP-hard otherwise. (**) When
∂2f

∂x∂y
≥ 0 (see Section 2) (***) If budgets are uniform, NP-hard otherwise.

Reward Functions Existence Price of Anarchy

General convex Yes (*) 2 (**)

General concave Not always 2

ce · (x + y) Decision in P 1

Minimum effort convex Yes (***) 2 (***)

Minimum effort concave Yes 2

Maximum effort Yes 2

Approximate Equilibrium OPT is a 2-apx. Equilibrium

utility could possess the property of “diminishing returns”, or on the contrary,
could increase at a faster rate as v puts more effort on e. In other words, for a
fixed effort amount su(e), fe as a function of sv(e) could be concave or convex,
and we will distinguish the treatment of the framework based on these properties.

In Section 2 we consider the case of convex reward functions. For a large class
of convex functions we can show a tight bound for the price of anarchy of 2.
However, for games in this class pairwise equilibria might not exist. In fact, we
show that it is NP-hard to decide their existence, even when the edges have
reward functions of either the form fe(x, y) = ce · (xy) or fe(x, y) = ce · (x + y)
for constants ce > 0. If, however, all functions are of the form fe(x, y) = ce ·
(xy), then existence and polynomial time computability is guaranteed. We show
this existence result for a substantially larger class of functions that may not
even be convex, although it includes the class of all convex functions fe with
fe(x, 0) = 0. As an interesting special case, we prove that if all functions are
fe(x, y) = ce · (x + y), it is possible to determine efficiently if pairwise equilibria
exist and to compute them in polynomial time when they exist.

In Section 2.2 we consider pairwise equilibria for concave reward functions.
In this case, pairwise equilibria may also not exist, for example in the triangle
graph with uniform budgets and reward functions fe(x, y) =

√
xy. Nevertheless,

when they exist we can show tight bounds of 2 on prices of anarchy and stability.
Section 3 treats different special cases of particular interest. First we study

the important case of minimum effort games with reward functions fe(x, y) =
he(min(x, y)). If functions he are convex, pairwise equilibria do not necessarily
exist, and it is NP-hard to decide the existence for a given game. Perhaps sur-
prisingly, if budgets are uniform, i.e., if Bv = Bu for all u, v ∈ V , then pairwise
equilibria exist for all convex functions he, and the prices of anarchy and stabil-
ity are exactly 2. If functions he are concave, we can always guarantee existence.
Our bounds for concave functions in Section 2.2 imply tight bounds on the prices
of anarchy and stability of 2.

Section 4 treats additional aspects of pairwise equilibria. Here we briefly men-
tion our results on maximum effort games, for which we can show existence of

162 E. Anshelevich and M. Hoefer

pairwise equilibria and tight bounds on prices of anarchy and stability. In ad-
dition, we treat approximate equilibria and show that a social optimum s∗ is
always a 2-approximate equilibrium. In addition, we mention our results regard-
ing convergence of dynamics to pairwise equilibria when they exist.

Due to lack of space, most of our proofs are deferred to the full version of the
paper. [6]

Related Work. The model most related to ours is the co-author model [20,
19]. The motivation is very similar to ours, although there are many important
differences. For example, in the usual co-author model, the nodes cannot choose
how to split their effort between their projects, only which projects to participate
in. Moreover, we consider general reward functions, and our notion of pairwise
stability is stronger than in [20,19].

In [9], Bramoullé and Kranton consider an extremely general model of net-
work games designed to model public goods. Nevertheless, our game is not a
special case of this model, since in [9] the strategy of a node is simply a level of
effort it contributes, not how much effort it contributes to each project. There
are many extensions to this model, e.g., Corbo et al. [12] consider similar mod-
els in the context of peer-to-peer networks. Their work closely connects to the
seminal paper on contribution games by Ballester et al. [8], which has prompted
numerous similar follow-up studies.

The literature on games played in networks is too much to survey here: we
will address only the most relevant lines of research. In the last few years, there
have been several fascinating papers on network bargaining games (e.g., [22,10]),
and in general on games played in networks where every edge represents a two-
player game (e.g., [13,18]). All these games either require that every node plays
the same strategy on all neighboring edges, or leaves the node free to play any
strategy on any edge. While every edge in our game can be considered to be
a (very simple) two-player game, the strategies (i.e., contributions) that a node
puts on every edge are neither the same nor arbitrarily different: specifically they
are constrained by a budget on the total effort that a node can contribute to all
neighboring edges in total. To the best of our knowledge, such games have not
been studied before (except as part of the works mentioned below).

Our game bears some resemblance to network formation games where play-
ers attempt to maximize different forms of “centrality” [16,21,23], although our
utility functions and equilibrium structure are extremely different. Minimum ef-
fort coordination games as proposed by van Huyck et al. [24] represent a special
case of our general model. They are a vital research topic in experimental eco-
nomics, see the papers mentioned above and [14] for a recent survey. We study a
generalized and networked variant in Section 3. A slightly different adjustment
to networks has recently appeared in [2]. Our work complements this body of
work with provable guarantees on the efficiency of equilibria and the convergence
times of dynamics.

Some of the special cases we consider bear a resemblance to stable match-
ing [17], and in fact correlated variants of stable matching can be considered an
“integral” version of our game. Our results generalize existence and convergence

Contribution Games in Social Networks 163

results for correlated stable matching (as, e.g., in [1]), and our price of anarchy
results greatly generalize the results of [5].

It is worth mentioning the connection of our reward functions with the “Com-
binatorial Agency” framework (see, e.g., [7]). In this framework, many people
work together on one project, and the success of this project depends in a com-
plex (usually probabilistic) manner on whether the people involved choose a
high level of effort. It is an interesting open problem to extend our results to the
case in which every project of a game is an instance of the combinatorial agency
problem.

2 Polynomials, Convex, and Concave Reward Functions

In this section we initially consider a class of reward functions that guarantee a
good price of anarchy. The class will be denoted by C and contains all convex
functions for which all mixed second partial derivatives are non-negative. We
start by introducing the notions of coordinate-convex and coordinate-concave
functions.

Definition 1. A function f : Rn → R is coordinate-convex if for all of its ar-
guments xi, we have that ∂2f

∂x2
i
≥ 0; coordinate-concave if for all of its arguments

xi, we have that ∂2f
∂x2

i
≤ 0.

Note that every convex function is coordinate-convex, and similarly every con-
cave function is coordinate-concave. However, coordinate-convexity/concavity is
necessary but not sufficient for convexity/concavity. For instance, the function
log(1 + xy) is coordinate-concave, but not concave – indeed, it is convex as long
as x = y ∈ [0, 1].

Definition 2. Define a symmetric nondecreasing function f : R≥0×R≥0 → R≥0

to be in class C iff f is coordinate-convex and ∂2f
∂x∂y ≥ 0.

The class C is of particular interest to us, because we can show the following
result. It can be extended to general contribution games and setwise equilibria,
where the price of anarchy is equal to k.

Theorem 1. The price of anarchy in network contribution games is at most 2
when all reward functions belong to class C.

A large class of functions that belong to C are based on polynomials. Consider
a polynomial p(x, y) in two variables with non-negative coefficients that is sym-
metric (i.e., p(x, y) = p(y, x)) and non-negative for x, y ≥ 0. For every such
p we consider all possible extensions to a function f(x, y) = h(p(x, y)) with
h : R≥0 → R≥0 being nondecreasing and convex. We call the union of all these
extensions the class P . Clearly, every p(x, y) ∈ P since h(x) = x is convex. In
particular, P contains a large variety of functions such as xy, (x + y)2, ex+y,
x3 + y3 + 2xy, etc. It is simple to observe that P ⊂ C, and thus the price of
anarchy result for C will hold for every game with arbitrary functions from P .

164 E. Anshelevich and M. Hoefer

2.1 Existence and Complexity of Pairwise Equilibria

While Theorem 1 shows that the price of anarchy is 2, this result says nothing
about the existence and complexity of computing pairwise equilibria. In fact,
even for simple games with reward functions fe(x, y) = ce · (x + y) and small
constants ce, pairwise equilibria can be absent.

Example 1. In our example there is a triangle graph with nodes u1, u2, and u3,
edges e1 = (u1, u2), e2 = (u2, u3), and e3 = (u3, u1), and uniform budgets. Edge
ei has reward function fi with f1(x, y) = f2(x, y) = 3(x + y), and f3(x, y) =
2(x+ y). A pairwise equilibrium must not allow profitable unilateral deviations.
Thus, s1(e1) = s3(e2) = 1. Player 2 can assign his budget arbitrarily. This
yields w1(s) = 3 + 3s2(e1) and w3(s) = 3 + 3s2(e2). Changing to a state s′

where u1 and u3 bilaterally deviate by moving all their budget to e3 yields
w1(s′) = 3s2(e1) + 4 > w1(s) and w3(s′) = 3s2(e2) + 4 > w3(s). Hence, no
pairwise equilibrium exists.

Although there are games without pairwise equilibria, there is a large class of
functions slightly orthogonal to C for which we can show existence and an efficient
algorithm for computation. Note that the existence result can be extended to
general contribution games and setwise equilibria.

Theorem 2. A pairwise equilibrium always exists and can be computed effi-
ciently when all reward functions fe are coordinate-convex and fe(x, 0) = 0 for
all e ∈ E and x ≥ 0.

Theorem 2 establishes existence and efficient computation of equilibria for many
functions from class C, as well as other ones that do not belong to it. In particular,
it shows existence for all convex functions fe that are 0-valued when one of
its arguments is 0, as well as for many non-convex ones, such as the weighted
product function fe(x, y) = ce · (xy). In general, however, we can show that
deciding existence for pairwise equilibria for a given game is NP-hard, even
for very simple reward functions from C such as fe(x, y) = ce · (x + y) and
f(x, y) = ce · (xy) with constants ce > 0.

Theorem 3. It is NP-hard to decide if a network contribution game admits a
pairwise equilibrium even if all functions are either fe(x, y) = ce · (x + y) or
fe(x, y) = ce · (xy).

Finally, let us focus on an interesting special case. The hardness in the previous
theorem comes from the interplay of reward functions xy that tend to a clustering
of effort and x+ y that create cycles. We observed above that if all functions are
ce · (xy), then equilibria exist and can be computed in polynomial time. Here we
show that for the case that fe(x, y) = ce · (x + y) for all e ∈ E, we can decide
efficiently if a pairwise equilibrium exists. Furthermore, if an equilibrium exists,
we can compute it in polynomial time.

Theorem 4. There is an efficient algorithm to decide the existence of a pairwise
equilibrium, and to compute one if one exists, when all reward functions are of
the form fe(x, y) = ce · (x + y) for arbitrary constants ce > 0. Moreover, the
price of anarchy is 1 in this case.

Contribution Games in Social Networks 165

2.2 Concave Reward Functions

In this section we consider the case when reward functions fe(x, y) are concave. In
the introduction we observed that a pairwise equilibrium may not exist. However,
when it does exist we obtain the following general result.

Theorem 5. The price of anarchy in network contribution games is at most 2
when all reward functions are coordinate-concave.

3 Minimum Effort Games

In this section we consider the interesting case (studied for example in [24,
4, 15, 11]) when all reward functions are of the form fe(x, y) = he(min(x, y)).
In other words, the reward of an edge depends only on the minimum effort
of its two endpoints. In our treatment we again distinguish between the case
of increasing marginal returns (convex functions he) and diminishing marginal
returns (concave functions he). Note that in this case bilateral deviations are
in many ways essential to make the game meaningful, as there are an infinite
number of Nash equilibria. In addition, we can assume w.l.o.g. that in every
pairwise equilibrium s there is a unique value se for each e = (u, v) ∈ E such
that sv(e) = su(e) = se. The same can be assumed for optima s∗.

3.1 Convex Functions in Minimum Effort Games

In this section we consider reward functions fe(x, y) = he(min(x, y)) with convex
functions he(x). This case bears some similarities with our treatment of the class
C in Section 2. In fact, we can show existence of pairwise equilibria in games with
uniform budgets. We call an equilibrium s integral if se ∈ {0, 1} for all e ∈ E.
Note that all results in this section can be extended to general contribution
games and setwise equilibria. The price of anarchy then becomes k.

Theorem 6. A pairwise equilibrium always exists in games with uniform bud-
gets and fe(x, y) = he(min(x, y)) when all he are convex. If all he are strictly
convex, then all pairwise equilibria are integral.

Theorem 7. The price of anarchy in network contribution games is at most 2
when all reward functions fe(x, y) = he(min(x, y)) with convex he, and budgets
are uniform.

For the case of arbitrary budgets and convex functions, however, we can again
find a game without a pairwise equilibrium.

Example 2. Consider a path of length 4. We denote the vertices along this path
by u, v, w, z. All players have budget 2, except for player z that has budget 1.
The profit functions are hu,v(x) = 2x2, hv,w(x) = 5x, and hw,z(x) = 6x. Observe
that this game allows no pairwise equilibrium: If 2 ≥ sv,w > 1, then player w
has an incentive to increase the effort toward z. If 1 ≥ sv,w > 0, then player v
has an incentive to increase effort toward u. If sv,w = 0, v and w can jointly
increase their profits by contributing 2 on (v, w).

166 E. Anshelevich and M. Hoefer

Using this example we can construct games in which deciding existence of pair-
wise equilibria is hard. We remark that the following theorem can be extended
to show hardness also for games with uniform budgets in which functions are
either concave or convex.

Theorem 8. It is NP-hard to decide if a network contribution game admits a
pairwise equilibrium if budgets are arbitrary and all functions are fe(x, y) =
he(min(x, y)) with convex he.

3.2 Concave Functions in Minimum Effort Games

In this section we consider the case of diminishing returns, i.e., when all he

are concave functions. Note that in this case the function fe = he(min(x, y)) is
coordinate-concave. Therefore, the results from Section 2.2 show that the price
of anarchy is at most 2. However, for general coordinate-concave functions it is
not possible to establish the existence of pairwise equilibria, which we do for
concave he below. In fact, if the functions he are strictly concave, we can show
that the equilibrium is unique. Below we sketch most parts of the proof, which
requires very different techniques than most of our other arguments.

Theorem 9. A pairwise equilibrium always exists in games with fe(x, y) =
he(min(x, y)) when all he are continuous, piecewise differentiable, and concave,
and we can compute it efficiently. Moreover, if all he are strictly concave, then
this equilibrium is unique.

Proof. (sketch) We create a pairwise equilibrium in an iterative manner. For any
solution and set of nodes S, define BRv(S) as the set of best responses for node
v if it can control the strategies of nodes S. We begin by computing BRv(V)
independently for each player v (V is the set of all nodes). In particular, this
simulates that v is the player that always creates the minimum of every edge,
and we pick sv such that it maximizes

∑
e=(u,v) he(sv(e)). This is a concave max-

imization problem (or equivalently a convex minimization problem), which can
be solved by standard methods in polynomial time. Let h+

e (x) be the derivative
of he(x) in the positive direction, and h−

e (x) be the derivative of he(x) in the
negative direction. We have the property that for sv calculated as above, for
every edge e with sv(e) > 0 it holds that h−

e (sv(e)) ≥ h+
e′(sv(e′)) for every edge

e′ incident to v. Define h′
v as the minimum value of h−

e (sv(e)) for all edges e
incident to v with sv(e) > 0.

Our algorithm proceeds as follows. At the start all players are asleep; we will
call edges with both endpoints asleep sleeping edges, and all other edges awake
edges. Let Si denote the set of sleeping players in iteration i, and Si the set of
awake players; in the beginning S1 = V . In each iteration i, we pick one player to
wake up, and fix its contributions on all of its adjacent edges. In particular, we
choose a node v ∈ Si with the currently highest derivative value h′

v (see below
for tie-breaking rule). We set v’s contribution to an edge e = (u, v) to sv(e),
where sv ∈ BRv(Si). Define BRv(Si) as the set of best responses in BRv(Si)
for which sv(e) = su(e) for all awake edges e = (u, v). For sv ∈ BRv(Si) player

Contribution Games in Social Networks 167

v exactly matches the contributions of the awake nodes Si on all awake edges
between v and Si. It is possible to show that BRv(Si) is non-empty, and our
algorithm sets the contributions of v to sv ∈ BRv(Si). Moreover, we set the
contribution of other sleeping players u ∈ Si to be su(e) = sv(e) on the sleeping
edges, so we assume u fully matches v’s contribution on edge e. u will not change
its contributions on these edges when it is woken up, and v receives exactly the
reward of BRv(Si). Now that node v is awake, we compute BRu(Si − {v}) for
all sleeping u, as well as new values h′

u and iterate. Values h′
u in later iterations

refer to the minimum derivative values on all the sleeping edges neighboring u.
We still need a tie-breaking rule for choosing a node to wake up when there

are several nodes with equal h′
v. Let sv ∈ BRv(Si) that we compute. For every

edge e = (u, v) with h′
u = h′

v, we want to pick u with su(e) ≤ sv(e). We claim
that there is a node u such that this is true w.r.t. all its neighbors. Suppose a
node u has two edges e = (u, v) and e′ = (u,w) with h′

u = h′
v = h′

w and su(e) >
sv(e) but su(e′) < sw(e′). It can be shown that the functions on (u, v) and
(u,w) are linear in this range. This implies that h+

e′(su(e′)) = h−
e (su(e)) because

h−
e (su(e)) = h′

u = h′
w = h−

e′(sw(e′)) ≤ h+
e′(su(e′)), because he′ is concave. Hence,

u can move some amount of effort from e to e′ and still form a best response.
Continuing in this manner implies that there is u ∈ Si with su ∈ BRu(Si) such
that su(e) ≤ sv(e) for all neighbors v, i.e., our tie-breaking is possible.

We first show that our algorithm forms a feasible solution, i.e., that the budget
constraints are never violated. When node v is woken up and sets its sv(e) on a
newly awake edge e = (u, v), the other sleeping player u must have enough avail-
able budget to match sv(e). In su ∈ BRu(Si−1) that our algorithm computes, let
Bu be the available budget of node u, that is, Bu = Bu −

∑
e=(u,w),w∈Si

sw(e).
It is the maximum amount that u could assign to e.

For contradiction, assume that sv(e) > Bu. Then it must be that h−
e (su(e)) ≥

h−
e (Bu) ≥ h−

e (sv(e)), since he is concave. By definition of h′
v, we know that

h−
e (sv(e)) ≥ h′

v, and so h−
e (su(e)) ≥ h′

v. Now let e′ = (u,w) be the edge that
achieves the value h′

u, i.e., h−
e′(su(e)) = h′

u. If h−
e′(su(e)) < h′

v, then h−
e′(su(e)) <

h−
e (Bu) ≤ h+

e (su(e)), so su cannot be a best response, since u could earn more
reward by switching some amount of effort from e′ to e. Therefore, we know
that h′

u ≥ h′
v. If this is a strict inequality, then we have a contradiction, since u

would have been woken up before v. Therefore, it must be that h′
u = h′

v. But this
contradicts our tie-breaking rule – we would choose u before v because it puts
less effort onto edge e in our choice from BRu(Si−1) than v does in BRv(Si−1).
Therefore, our algorithm creates a feasible solution.

Re-number the nodes v1, v2, . . . , vn in the order that we wake them. We need
to prove that the algorithm computes a pairwise equilibrium. We can show that
all the contributions in the final solution are symmetric, and that node vi gets
exactly the reward BRvi(Si) in the final solution.

To prove that the above algorithm computes a pairwise equilibrium, we show
by induction on i that node vi will never have incentive to deviate, either uni-
laterally or bilaterally. This is clearly true for v1, since it obtains the maximum
possible reward that it could have in any solution, which proves the base case.

168 E. Anshelevich and M. Hoefer

We now assume that this is true for all nodes earlier than vi, and prove it for vi

as well. It is clear that vi would not deviate unilaterally, since it is getting the
reward of BRvi(Si). This is at least as good as any best response when it cannot
control the strategies of any nodes except itself. By the inductive hypothesis, vi

would not deviate bilaterally with a node vj such that j < i. vi would also not
deviate bilaterally with a node vj such that j > i, since when forming BRvi(Si)
node vi can set the strategy of node vj . So in BRvi(Si) node vi achieves a reward
better than any deviation possible with nodes from Si. This completes the proof
that our algorithm always finds a pairwise equilibrium.

A complete proof and a proof of uniqueness for strictly concave functions
appears in the full version [6] of the paper. ��

4 Additional Aspects

We showed above several classes of functions for which pairwise equilibrium ex-
ists and the price of anarchy is small. Another class that has this property are
maximum effort games, in which fe(x, y) = he(max(x, y)) for arbitrary increas-
ing he. In the full version we show that in this case a pairwise equilibrium always
exists, the price of stability is 1, and the price of anarchy is 2.

If we consider approximate equilibria, the following theorem says that an opti-
mal and near-stable state always exists. An α-approximate equilibrium is a state
where players may gain utility by deviating (either unilaterally or bilaterally) by
no more than a factor of α.

Theorem 10. In network contribution games a social optimum s∗ is a 2-approxi-
mate equilibrium for any class of nonnegative reward functions.

Our results on convergence are deferred to the full version. We can show that:
(1) for general convex functions, natural game dynamics converge to a pairwise
equilibrium (when one exists) in polynomial time; (2) for minimum effort games
with convex functions, such convergence may not occur; and (3) for minimum
effort games with concave functions, natural dynamics converge to a pairwise
equilibrium (when one exists), but the convergence time may be unbounded.

5 Conclusions

In this paper we propose and study simple models of contribution games, in
which agents can invest a fixed budget into different projects. An important issue
is to extend our results for network contribution games to general contribution
games, where a project may consist of more than two participants, i.e., the graph
of projects is actually a hypergraph.

It is also worthwhile to explore cases in which a player has a function char-
acterizing “payments” for the total effort that he invests in all projects. Such
“price” functions are often assumed to be linear or convex (e.g., in [9,24]).

Contribution Games in Social Networks 169

References
1. Ackermann, H., Goldberg, P., Mirrokni, V., Röglin, H., Vöcking, B.: Uncoordinated

two-sided matching markets. In: Proc. 9th EC, pp. 256–263 (2008)
2. Alós-Ferrer, C., Weidenholzer, S.: Imitation in minimum effort network games

(2010) (unpublished manuscript)
3. Andelman, N., Feldman, M., Mansour, Y.: Strong price of anarchy. Games Econ.

Behav. 65(2), 289–317 (2009)
4. Anderson, S., Goeree, J., Holt, C.: Minimum-effort coordination games: Stochastic

potential and logit equilibrium. Games Econ. Behav. 34(2), 177–199 (2001)
5. Anshelevich, E., Das, S., Naamad, Y.: Anarchy, stability, and utopia: Creating

better matchings. In: Proc. 2nd SAGT, pp. 159–170 (2009)
6. Anshelevich, E., Hoefer, M.: Contribution Games in Social Networks. arXiv

preprint 1004.1854
7. Babaioff,M.,Feldman,M.,Nisan,N.:Combinatorial agency. In:EC2006, p. 28 (2006)
8. Ballester, C., Calvó-Armengol, A., Zenou, Y.: Who’s who in networks. Wanted:

The key player. Econometrica 74(5), 1403–1417 (2006)
9. Bramoullé, Y., Kranton, R.: Public goods in networks. J. Econ. Theory 135(1),

478–494 (2007)
10. Chakraborty, T., Kearns, M., Khanna, S.: Network bargaining: Algorithms and

structural results. In: Proc. 10th EC, pp. 159–168 (2009)
11. Chaudhuri, A., Schotter, A., Sopher, B.: Talking ourselves to efficiency: Coordina-

tion in inter-generational minimum effort games with private, almost common and
common knowledge of advice. The Economic Journal 119(534), 91–122 (2008)

12. Corbo, J., Calvó-Armengol, A., Parkes, D.: The importance of network topology
in local contribution games. In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS,
vol. 4858, pp. 388–395. Springer, Heidelberg (2007)

13. Daskalakis, C., Papadimitriou, C.: On a network generalization of the Minmax theo-
rem. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas,
W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 423–434. Springer, Heidelberg (2009)

14. Devetag, G., Ortmann, A.: When and why? A critical survey on coordination failure
in the laboratory. Experimental Economics 10(3), 331–344 (2007)

15. Dufwenberg, M., Gneezy, U.: Gender and coordination. In: Rapoport, A., Zwick, R.
(eds.)ExperimentalBusinessResearch, vol. 3, pp. 253–262.Kluwer,Dordrecht (2005)

16. Fabrikant, A., Luthera, A., Maneva, E., Papadimitriou, C., Shenker, S.: On a net-
work creation game. In: Proc. 22nd PODC, pp. 347–351 (2003)

17. Gusfield, D., Irving, R.: The Stable Marriage Problem: Structure and Algorithms.
MIT Press, Cambridge (1989)

18. Hoefer, M., Suri, S.: Dynamics in network interaction games. In: Keidar, I. (ed.)
DISC 2009. LNCS, vol. 5805, pp. 294–308. Springer, Heidelberg (2009)

19. Jackson, M.: Social and Economic Networks. Princeton University Press, Princeton
(2008)

20. Jackson, M., Wolinsky, A.: A strategic model of social and economic networks. J.
Econ. Theory 71(1), 44–74 (1996)

21. Kleinberg, J., Suri, S., Tardos, É., Wexler, T.: Strategic network formation with
structural holes. In: Proc. 9th EC 2008, pp. 284–293 (2008)

22. Kleinberg, J., Tardos, É.: Balanced outcomes in social exchange networks. In: Proc.
40th STOC 2008, pp. 295–304 (2008)

23. Laoutaris, N., Poplawski, L., Rajaraman, R., Sundaram, R., Teng, S.-H.: Bounded
budget connection (BBC) games or how to make friends and influence people, on
a budget. In: Proc. 27th PODC 2008, pp. 165–174 (2008)

24. van Huyck, J., Battalio, R., Beil, R.: Tacit coordination games, strategic uncer-
tainty and coordination failure. Amer. Econ. Rev. 80(1), 234–248 (1990)

Improved Bounds for Online Stochastic

Matching

Bahman Bahmani� and Michael Kapralov�

Stanford University
{bahman,kapralov}@stanford.edu

Abstract. We study the online stochastic matching problem in a form
motivated by Internet display advertisement. Recently, Feldman et al.
gave an algorithm that achieves 0.6702 competitive ratio, thus breaking
through the 1−1/e barrier. One of the questions left open in their work is
to obtain a better competitive ratio by generalizing their two suggested
matchings (TSM) algorithm to d-suggested matchings (d-SM).

We show that the best competitive ratio that can be obtained with the
static analysis used in the d-SM algorithm is upper bounded by 0.76, even
for the special case of d-regular graphs, thus suggesting that a dynamic
analysis may be needed to improve the competitive ratio significantly.
We make the first step in this direction by showing that the RANDOM
algorithm, which assigns an impression to a randomly chosen eligible
advertiser, achieves 1 − e−ddd/d! = 1 − O(1/

√
d) competitive ratio for

d-regular graphs, which converges to 1 as d increases. On the hardness
side, we improve the upper bound of 0.989 on the competitive ratio of
any online algorithm obtained by Feldman et al. to 1 − 1/(e + e2) ≈
0.902. Finally, we show how to modify the TSM algorithm to obtain an
improved 0.699 approximation for general bipartite graphs.

1 Introduction

Bipartite matching problems are among the central problems in combinatorial
optimization with numerous applications. In this paper, we study a variant of
the online bipartite matching problem motivated by applications in Internet
advertising.

We are given a graph G = (A, I, E), where A is a set of advertisers, I is the
set of impression types and E is the set of edges between them. For a ∈ A, i ∈ I
the presence of an edge (a, i) indicates that advertiser a is bidding for impression
type i. Advertisers are fixed and known in advance, while impressions of different
types come online, and the task of the algorithm is to assign each impression
to an advertiser as soon as the impression arrives or discard the impression.
The objective is to maximize the number of matched impressions, subject to
each advertiser being assigned at most one impression and each impression be-
ing assigned to at most one advertiser, i.e. subject to the allocation forming a
matching.
� Research supported by a Stanford Graduate Fellowship.

M. de Berg and U. Meyer (Eds.): ESA 2010, Part I, LNCS 6346, pp. 170–181, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Improved Bounds for Online Stochastic Matching 171

If nothing is known about the graph G in advance and edges incident to
impression types are revealed online, then we are in the online adversarial setting,
for which an algorithm achieving the optimal approximation ratio of 1− 1/e
was given in [1]. A less restrictive model is the random order model, which has
received a significant amount of attention recently. This model assumes that
impression types and the graph G are unknown but appear in the random order.
Even the greedy algorithm has a competitive ratio of 1−1/e in this model [2]. It
is also known that no deterministic algorithm can achieve approximation ratio
better than 0.75 and no randomized algorithm better than 0.83 [2]. However, the
adversarial model or random order model may be too restrictive for applications,
where statistics about frequencies of various impression types may be known. In
the iid model, which we consider in this paper, we assume that impressions are
drawn from a known distribution D on the set of impression types for which the
edges to advertisers are known in advance. The 1−1/e bound of [1] was the best
known approximation for the stochastic online model, until recently Feldman et
al. gave an algorithm that achieves 0.6702 competitive ratio.They also showed
that no algorithm can achieve a competitive ratio better than 0.989. Their main
algorithmic technique is a novel application of the power of two choices consisting
of carefully computing two edge-disjoint (near)-matchings offline to guide the
online allocation. One of the questions left open by Feldman et al. is to obtain
a better competitive ratio by generalizing the two suggested matchings (TSM)
idea to d-suggested matchings (d-SM).

1.1 Our Results and Techniques

In this paper we give improved upper and lower bounds for three questions
related to the stochastic matching problem.

First, we show that the static analysis inherent in the d-suggested matchings
algorithm of [3] cannot achieve an competitive ratio better than 0.76, suggesting
that a dynamic analysis of the allocation process would be needed to achieve a
higher competitive ratio, even for the special case of d-regular graphs. We make
a first step in that direction by proving.

Theorem 1. For any ε > 0 as the size of the d-regular expected graph G =
(A, I, E) goes to ∞, with high probability the algorithm RANDOM has a com-
petitive ratio at least as large as 1− e−ddd/d!− ε.

The analysis is based on a linear program that lower bounds the evolution of the
allocation process as new impressions arrive. Interestingly, this bound coincides
with the static bounds of 1− 1/e and 1− 2/e2 for d = 1, 2, but is strictly better
than the static bound for any d > 2.

The proof of Theorem 1 proceeds by showing that RANDOM obtains a match-
ing of size at least (1−e−ddd/d!−ε)n whp. It is interesting to note that this bound
is tight, i.e. there exists a family of d-regular graphs for which the expected size
of the matching constructed by RANDOM is (1− e−ddd/d!)n + o(n).

On the upper bound side, we prove

172 B. Bahmani and M. Kapralov

Theorem 2. The expected competitive ratio of any algorithm for online stochas-
tic matching is bounded above by 1−1/e+1/e2

1+1/e ≈ 0.901.

This improves upon the 0.9898 hardness result obtained in [3].
Finally, we show that the 1−2/e2

4/3−2/3e ≈ 0.67 approximation for general bipartite
graphs obtained in [3] can be slightly improved without going beyond subgraphs
of degree 2:

Theorem 3. There exists an algorithm that for any ε > 0 one has competitive
ratio at least 0.699− ε with high probability.

It is interesting to point out that the worst case competitive ratio is achieved
in Theorem 3 in the regime when a bound on the performance of any online
algorithm similar to Theorem 2 holds. In particular, a slightly better bound can
be proved if one compares the performance of the algorithm to be best possible
performance of an online algorithm. However, we do not pursue this direction
here.

1.2 Other Related Work

The related online decision problem, the ad allocation problem, which is moti-
vated by sponsored search auctions, has been studied extensively in the litera-
ture. In this problem, every edge (a, i) ∈ E has a weight that corresponds to
the bid of advertiser a for impression i, and each advertiser has a budget. Now
in addition to forming a matching, the allocation of impressions to advertisers
now has to satisfy budget constraints, and the objective is to maximize the to-
tal value of bids for the assigned impression. The offline version of the problem
in NP-hard ([4]) and several approximation algorithms have been designed ([2],
[5]). Approximation algorithms have also been designed for the online setting
([6], [2], [7], [8]), typically achieving 1 − 1/e approximation under the assump-
tion that bids are small compared to budgets. An 1 − ε approximation for any
ε > 0 has recently been obtained by [9] in the random permutation model under
the assumption that the optimum is significantly larger than the maximum bid.

1.3 Preliminaries

We start with a formal definition of the problem. We are given a bipartite graph
G = (A, I, E) of advertisers A and impression types I, together with an integer
number of impressions of type i that we expect to see. We denote this number
by ei and define n :=

∑
i∈I ei. We assume that at each step an impression of

type i arrives with probability ei/n and denote this distribution by D. Then, n
i.i.d. draws i ∼ D, of impression types arrive, and as soon as an impression i
arrives, we should either assign it to an advertiser a such that (i, a) ∈ E, or not
assign i at all. Each advertiser a ∈ A may be assigned at most once. Our goal is
to maximize the number of assigned impressions.

Improved Bounds for Online Stochastic Matching 173

More formally, If D(i) is the set of arrivals of the impression type i, the
realization graph Ĝ is defined as Ĝ = (A, Î, Ê), where Î = ∪i∈ID(i) and Ê =
{(a, i′)| i′ ∈ D(i) and (a, i) ∈ E}. Then, we would like to design an algorithm
ALG, which having access to G,D and n finds a matching, in an online fashion,
in Ĝ, such that with high probability ALG(Ĝ)/OPT (Ĝ) ≥ α for some α, where
OPT (Ĝ) is the size of the maximum matching in Ĝ.

It is shown in [3] that one can assume without loss of generality that D is the
uniform distribution (indeed, it is sufficient to duplicate impression types in I
an appropriate number of times to achieve that). Hence, in the rest of this paper
we will make this assumption, and thus also have that n = |I|.

1.4 d-Suggested Matchings Algorithm

A family of algorithms for the introduced problem, namely d-Suggested Matching
(d-SM), was presented in [3]. The d-SM algorithm works by finding d edge-
disjoint (near) matchings in the expected graph, G, and then use these matchings
to guide the online assignments of impressions.

More precisely, the algorithm finds (e.g. by using max flows in a boosted
graph) d edge-disjoint near-matchings M1,M2, . . . ,Md, and then for the jth

arrival of the impression type i, the algorithm tries to match the impression
to the advertiser a connected to i in Mj . If a is already matched, then the
impression is not assigned at all.

It is proved in [3] that the 1-SM algorithm achieves 1−1/e = 0.63 competitive
ratio, and that two near-matchings can be carefully chosen so that 2-SM (aka
TSM) achieves 1−2/e2

4/3−2/3e ≈ 0.67 competitive ratio for general bipartite graphs.
But, the problem of finding a decomposition of general bipartite graphs into d
edge-disjoint near-matchings to achieve a better competitive ratio is left open.
This problem is trivial for d-regular graphs, which can be decomposed into a
union of d edges-disjoint perfect matchings. However, we show that the d-SM
algorithm cannot achieve a competitive ratio better than 0.76 for any d, thus
suggesting that a dynamic analysis is needed to improve the current competitive
ratio significantly. We make a first step towards such dynamic analysis by proving
that the RANDOM algorithm achieves a competitive ratio of 1 − e−ddd/d! =
1−O(1/

√
d) on d-regular graphs.

1.5 Organization

In section 2 we prove an upper bound on the performance of the d-SM algorithm
and analyze the performance of RANDOM algorithm on d-regular graphs. Sec-
tion 3 contains the improved hardness result, and section 4 presents an improved
version of the TSM algorithm.

2 Dynamic Analysis for Regular Graphs

In this section we first upper bound the performance of the d-SM algorithm for
any d and then analyze the RANDOM algorithm for allocation on regular graphs,
showing that it achieves a competitive ratio of 1− e−ddd/d! on d-regular graphs.

174 B. Bahmani and M. Kapralov

2.1 Upper-Bounding the Performance of d-SM

In this section, we give an upper-bound on the performance of any d-SM algo-
rithm (for any value of d). In particular, we show that (with |I| = n) no d-SM
algorithm can produce a matching of a larger size than 0.76n, even on regular
graphs:

Theorem 4. No d-SM algorithm (for any value of d) can achieve a larger
matching size than 0.76n, even in expectation on regular graphs.

The proof of this theorem is deferred to the full version of the paper. The bot-
tleneck in the performance of the d-SM algorithm is that it is inherently a static
algorithm. That is after it calculates the offline matchings, it doesn’t consider
the dynamics of the arrival sequence. In particular, near the end of the sequence,
many of the advertisers are already matched, so when an impression arrives and
checks its corresponding advertiser, there is a good chance that advertiser is al-
ready matched and the impression is thrown away. However, there may be other
advertisers connected to this impression that are not yet matched and could be
used for this impression but don’t get utilized. In the next section, we present
a simple dynamic algorithm that can get a much better competitive ratio for
regular graphs.

2.2 The Random Algorithm

As in the previous section, G = (A, I, E) is assumed to be a d-regular bipartite
graph with |I| = n. The algorithm simply assigns each arriving impression to an
unmatched connected advertiser chosen uniformly at random.

In this section, we analyze the performance of this algorithm and show that
it achieves a significantly better competitive ratio than d-SM on regular graphs.

We give a few definitions first.

Definition 1. – We denote the tth arriving impression by it. Whenever we
refer to time t, we mean the time just before the arrival of it.

– Au(t) is the set of unmatched advertisers at time t.
– St is all the state information at time t, i.e. the sequence of all impressions

that have arrived by time t as well as the sequence of all assignments made
by the algorithm up to time t.

– The set of impressions of remaining degree k at time t is denoted by Ik(t).
In other words,

Ik(t) = {i| |N(i) ∩Au(t)| = k} ∀ 0 ≤ k ≤ d

where N(i) is the neighborhood of impression i.
– The fraction of impressions of remaining degree k at time t:

Rk(t) =
|Ik(t)|

n

Improved Bounds for Online Stochastic Matching 175

– For any i ∈ I, a ∈ A, and 1 ≤ t ≤ n:

P (i, a, t) = Pr[i gets matched to a at time t | it = i, St]

– for any i ∈ I,

P (i, t) = Pr[the remaining degree of i changes at time t | St]

– For 1 ≤ k ≤ d,

Pk(t) =E[fraction of impression types whose remaining degree

changes from k to k − 1 at time t| St]

– We denote the expectations of the random variables defined above by corre-
sponding lower-case letters. That is,

rk(t) = E[Rk(t)], p(i, a, t) = E[P (i, a, t)],
p(i, t) = E[P (i, t)], pk(t) = E[Pk(t)]

where all expectations are with respect to the randomness in St.
– We denote the matching constructed by the algorithm up to time t by Mt

and the final matching (i.e. after the arrival of in) by M .

Fact 5. The following are clear:

P (i, t) =
∑

a∈N(i)∩Au(t)

∑
j∈N(a)

P (j, a, t)/n

Pk(t) =
1
n

∑
i∈Ik(t)

P (i, t)

We would like to analyze |M |, the size of the final matching constructed by the
algorithm. We start with a lemma, which is proved in the full version of the
paper.

Lemma 1. |M | is sharply concentrated around E[|M |].
So, we only need to analyze the expectations (or in other words, only E[|M |]).
We have the following lemmas, proved in the full version of the paper:

Lemma 2

E[|M |] =
n∑

t=1

(1− r0(t))

Lemma 3

rk(t + 1)− rk(t) = pk+1(t)− pk(t) ∀ 1 ≤ k < d

r0(t + 1)− r0(t) = p1(t)

rd(0) = 1,
d∑

k=0

rk(t) = 1, rk(t) ≥ 0

176 B. Bahmani and M. Kapralov

The next lemma is essential in our analysis. But, before presenting it, we notice
that since the algorithm picks a connected unmatched advertiser uniformly at
random at each time, we have:

P (i, a, t) =
1{a ∈ N(i) ∩Au(t)}
|N(i) ∩Au(t)|

This fact is used in the proof of the lemma, which is given in the full version of
the paper:

Lemma 4
k∑

k′=1

pk′(t) ≤ d

n

k∑
k′=1

rk′ (t)

From the previous two lemmas, we get that to lower-bound E[|M |], we can solve
the following LP:

maximize
∑n

t=1 r0(t)
s.t. r0(t + 1)− r0(t) = p1(t) 1 ≤ t ≤ n− 1

rk(t + 1)− rk(t) = pk+1(t)− pk(t) ∀ 1 ≤ k < d, 1 ≤ t ≤ n− 1
rd(t + 1)− rd(t) = −pd(t) 1 ≤ t ≤ n− 1

rd(1) = 1, rk(1) = 0 ∀ 0 ≤ k < d∑k
k′=1 pk′(t) ≤ d

n

∑k
k′=1 rk′(t) ∀ 1 ≤ k ≤ d, 1 ≤ t ≤ n

We present the solution to the above LP. To simplify the presentation of the
solution, we introduce the following notation:

Definition 2. For any non-negative integers k, t:

θ(k, t) =
(

d

n

)k (
1− d

n

)t−k−1 (
t− 1

k

)
By the properties of the binomial coefficients, we have θ(k, t) = 0 for any

k > t− 1, and also
∑t−1

k=0 θ(k, t) = 1.
Now, the following proposition, proven in the full version of the paper, gives

the LP solution:

Proposition 1. The solution to the above LP is as follows:

rd−k(t) = θ(k, t) ∀ 0 ≤ k < d, 1 ≤ t ≤ n

r0(t) = 1−
d∑

j=1

rj(t) ∀ 1 ≤ t ≤ n

pj(t) =
d

n
rj(t) ∀ 1 ≤ j ≤ d, 1 ≤ t ≤ n

Improved Bounds for Online Stochastic Matching 177

From the above proposition, we get that the performance of the algorithm is
bounded as follows:

E[|M |]
n

≥ 1
n

d−1∑
k=0

n∑
t=1

(
d

n

)k (
1− d

n

)t−1−k (
t− 1

k

)
It can be seen that as n→∞, the above summation converges to:

d−1∑
k=0

∫ 1

0
e−dx(dx)j/j!dx = 1− e−ddd/d!

This and the sharp concentration of |M | give the following result:

Theorem 6. For any ε > 0 as the size of the d-regular expected graph G =
(A, I, E) converges to ∞, with high probability the algorithm RANDOM achieves
a competitive ratio at least as large as 1− e−ddd/d!− ε.

It remains to note that the bound on the size of the matching is tight: it is
achieved for a family of graphs Gn that consist of a disjoint union of n/d copies
of Kd,d.

Comparing this lower bound on the performance of RANDOM (which con-
verges to 1 as 1− 1/

√
d when d →∞) with the constant (0.76) upper bound on

the performance of d-SM, we conclude that the RANDOM algorithm achieves a
significantly better competitive ratio than d-SM on regular graphs.

3 Hardness

Feldman et al. [3] prove that no online algorithm for the stochastic matching
problem can achieve a better competitive ratio than 0.99. In this section, we
prove that in fact no online algorithm can achieve a better competitive ratio
than 0.902:

Theorem 7. The expected competitive ratio of any algorithm for online stochas-
tic matching is bounded above by 1−1/e+1/e2

1+1/e ≈ 0.901062.

Proof. We exhibit an instance G = (A, I, E) of the problem for which no online
algorithm yields a matching of expected size larger than
1−1/e+1/e2

1+1/e |I|, even though a matching of size (1− ε)|I| exists with high proba-
bility. Let G = (I1 ∪ I2, A1 ∪A2, E) be defined as follows:

1. |I1| = |A2| = n, |A1| = |I2| = n/e.
2. There is a perfect matching M between I1 and A2.
3. There is a complete graph between I2 and A2, and between I1 and A1.

We first show that with high probability there exists a matching of size (1 +
1/e− ε)n in the realization graph. By the balls and bins analysis, there will be
(1 − 1/e)n distinct arrivals in I1. Route the first arrivals in I1 to A2 and the

178 B. Bahmani and M. Kapralov

rest to A1 (this is possible since there is a complete graph between I1 and A1,
and |A1| = |I1|/e). This leaves |A2|/e advertisers in A2 unmatched. These are
matched to impressions from I2. Hence, a matching of size (1 + 1/e− ε)n exists
with high probability.

Consider an advertiser a ∈ A2 that is matched by ALG to an impression in
I2. Fix a time t ∈ [1, (1 + 1/e)n] (recall that time t corresponds to the moment
just before the arrival of the tth impression). We call advertiser a good if M(a)
has not arrived and bad otherwise (where M(a) is the impression connected to a
by an edge in M). Denote the number of good advertisers at time t by Xt, and
the number of good advertisers at the end of the sequence by X = X(1+1/e)n+1.
Note that the size of the final matching constructed by ALG is upper bounded
by n/e + (1− 1/e)n + X .

At time t an impression i ∈ I1 arrives with probability 1/(1 + 1/e) and it is
a unique arrival incident on a good advertiser with probability Xt/n. Hence, we
have:

E[Xt+1 −Xt|Xt] ≤
1/e

1 + 1/e
− 1

1 + 1/e
Xt/n,X1 = 0,

which implies that

E[Xt] ≤ (n/e)

(
1−
(

1− 1
(1 + 1/e)n

)t−1
)

This yields that E[X] ≤ (n/e)(1 − e−1), and hence, in expectation, at most
1
e (1 − e−1)n of the advertisers that are matched to I2 are good at the end of
the sequence. This concludes that the expected size of the matching constructed
by ALG can not be larger than n/e + (1 − 1/e)n + 1/e(1− 1/e)n = (1 + 1/e−
1/e2)n, and hence ALG’s competitive ratio can not be better than 1+1/e−1/e2

1+1/e ≈
0.901062, which finishes the proof. ��

4 Improved Competitive Ratio for General Graphs

In this section we present an algorithm for the online stochastic matching prob-
lem in general graphs that yields an 0.699-approximation to the offline optimum.

We start by giving an outline of the algorithm of [3]. In the offline phase,
the TSM algorithm constructs a boosted flow graph Gf , where each a ∈ A is
connected to a source s by an edge with capacity 2, each i ∈ I is connected to
a sink t by an edge with capacity 2 and each edge of G is directed from A to I
and assigned capacity 1. One then finds an integral maxflow in Gf . Denote the
edges that carry flow by Ef . The flow edges form a union of paths and cycles,
which are colored blue and red in an alternating fashion (with some extra care
taken for various types of paths). The online algorithm proceeds as follows: (1)
assigns the first arrival along the blue edge if it is still available, and discards
otherwise, (2) assigns the second arrival to the red edge if it is still available,
discards otherwise.

Improved Bounds for Online Stochastic Matching 179

It was shown in [3] that this algorithm yields an (1− 2/e2)/(4/3− 2/(3e)) ≈
0.67029 approximation, which is tight for their algorithm. In what follows we
show how to modify the flow graph constructed by the TSM algorithm to obtain
an approximation ratio of 0.699 against the optimal offline algorithm.

Our algorithm works on the flow graph constructed by the algorithm of [3].
As in [3], denote the reachability min-cut corresponding to the max-flow in the
boosted flow graph Gf by (AS ∪ IS , AT ∪ IT), where AS ∪ IS is the source side
of the cut and AT ∪ IT is the sink side, and denote the set of edges crossing the
cut by Eδ. It was shown in [3] that the min-cut can always be chosen so that
the edges in Eδ form a matching, and we make that assumption on Eδ.

The intuition behind the algorithm is as follows. Recall that the analysis of the
TSM algorithm uses the reachability cut (AS ∪ IS , AT ∪ IT) in the boosted flow
graph to bound the optimum in Ĝ. The key insight is that this bound on OPT
can sometimes be improved by using a different cut in Ĝ. In order to exploit this
fact, however, we first modify the flow graph obtained in the TSM algorithm as
described in Algorithm 1 below. Intuitively, the modification is based on the fact
that the value of the flow in the boosted graph Gf does not translate directly
into the performance of TSM on the subgraph given by Ef . In particular, the
performance of the algorithm improves if the flow obtained via the max-flow
computation in Gf is rerouted so that it is more evenly spread among vertices
in AS and IT . This can be done using two max-flow computations. The two
min-cuts obtained from these computations are then used to define a subgraph
H of G for which we can bound OPT more carefully. The cut that we use to
bound OPT (Ĥ) then depends on the structure of the new set of flow edges that
was obtained.

Denote by GS the subgraph induced by vertices of AS ∪ IS in G and by GT

the subgraph induced by vertices of AT ∪ IT in G. For k = 0, 1, 2 define

Ak
S = {a ∈ AS : a carries k units of flow in Ef}
Ik
T = {i ∈ IT : i carries k units of flow in Ef}.

Algorithm 1
Input: G = (A, I, E), the set of edges Ef carrying max-flow in Gf . The min-cut

(AS ∪ IS , AT ∪ IT).
Output: E∗ - a modified set of paths and cycles in G.
1. Orient edges of GS from AS to IS , orient flow edges from IS to AS .
2. Connect vertices in A0

S to a source by edges of capacity 1, vertices in A2
S to

a sink by edges of capacity 1, assign capacity 1 to edges of G.
3. Find max-flow in GS . Denote the set of edges carrying flow by ES

f .
4. Orient edges of GT from IT to AT , orient flow edges from AT to IT .
5. Connect vertices in I0

T to a source by edges of capacity 1, vertices I2
T to a

sink by edges of capacity 1, assign capacity 1 to edges of G.
6. Find max-flow in GT . Denote the set of edges carrying flow by ET

f .
7. Set E∗ := Eδ ∪ ET

f ∪ ES
f .

8. Decompose E∗ into a disjoint union of paths and cycles. Color the edges of the
paths and cycles as follows (the same as in [3], given here for completeness):

180 B. Bahmani and M. Kapralov

– Color cycles alternately blue and red;
– Color odd length paths alternately blue and red, with more blue than

red;
– For even paths that start and end in I, color the first two edges blue,

then alternate red and blue.
– For even paths that start and end in A, alternate blue and red.

9. (TSM) At runtime, assign the first arrival along the blue edge if it is still
available, discard otherwise. Assign the second arrival to the red edge if it is
still available, discard otherwise.

We now analyze the performance of Algorithm 1. We start with some defini-
tions. Denote by the Pδ and Cδ the set of paths and cycles respectively in E∗

that contain edges from Eδ. Note that since there are no flow edges between IS

and AT , paths and cycles in the flow graph are either contained in one of GS

and GT or contain an edge of Eδ. Here and in what follows we will sometimes
view the set of paths and cycles Pδ ∪ Cδ as a set of vertices.

Orient edges of GS and GT as described above (note that edges from Eδ are
not oriented since reachability is defined only within GS and GT). Denote by P∗

S

the set of paths in E∗∩E(GS) that are reachable from AS ∩(Pδ∪Cδ) using edge
orientation in GS and by P∗

T the set of paths in E∗ ∩E(GT) that are reachable
from IT ∩ (Pδ ∪ Cδ) using edge orientation in GT . Also, define P∗ := P∗

S ∪ P∗
T .

Let H be the subgraph induced by Pδ ∪ Cδ ∪ P∗. Define ÃT := AT \ V (H),
ĨT := IT \ V (H), ĨS := IS \ V (H), ÃS := AS \ V (H).

All proofs from this section have been deferred to the full version of the paper.
The following lemmas are important for our analysis:

Lemma 5. There are no edges between ĨT and A \ ÃT , and no edges between
ÃS and I \ ĨS

Lemma 6. For any ε > 0 one has

ALG(Ĝ) ≥(1 − 2/e2)|ÃT |+ (1− 2/e2)|ĨS |+ ALG(Ĥ)− ε

OPT (Ĝ) ≤|ÃT |+ |ĨS |+ OPT (Ĥ) + ε

with high probability.

We now proceed to prove that Algorithm 1 gives a 0.699-approximation to the
best offline solution. In light of Lemma 6 and the fact that 0.699 < 1 − 2/e2 it
suffices to prove this guarantee for the graph H .

Lemma 7. For any ε > 0 one has ALG(Ĥ)/OPT (Ĥ) ≥ 0.699− ε whp.

We can now prove Theorem 3:

Proof of Theorem 3: It follows from Lemma 7 and Lemma 6 that for any
ε > 0 Algorithm 1 achieves a competitive ratio of at least 0.699− ε. ��

Remark 1. It can be seen from the proof of Lemma 7 that the worst case per-
formance of Algorithm 1 occurs when (1 − 1/e)|Eδ| = |A′

S | − |I ′S |, i.e. in the

Improved Bounds for Online Stochastic Matching 181

regime in which a bound similar to Theorem 2 on the performance of any on-
line algorithm holds. It is in fact possible to get a slightly better bound if one
compares the performance of Algorithm 1 against the best possible performance
of an online algorithm, but we do not present that analysis here for the sake of
clarity. It can also be noted that the original analysis of the TSM algorithm is
tight even when compared against the performance of the best possible online
algorithm.

References

1. Karp, R., Vazirani, U., Vazirani, V.: An optimal algorithm for online bipartite
matching. In: STOC (1990)

2. Goel, G., Mehta, A.: Online budgeted matching in random input models with
applications to adwords. In: SODA (2008)

3. Feldman, J., Mehta, A., Mirrokni, V., Muthukrishnan, S.: Online stochastic match-
ing: Beating 1 − 1/e. In: FOCS (2009)

4. Azar, Y., Birnbaum, B., Karlin, A., Mathieu, C., Nguyen, C.: Improved approxi-
mation algorithms for budgeted allocations. In: Aceto, L., Damg̊ard, I., Goldberg,
L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part
I. LNCS, vol. 5125, pp. 186–197. Springer, Heidelberg (2008)

5. Srinivasan, A.: Budgeted allocations in the full-information setting. In: Goel, A.,
Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.) APPROX and RANDOM 2008.
LNCS, vol. 5171, pp. 247–253. Springer, Heidelberg (2008)

6. Mehta, A., Saberi, A., Vazirani, U., Vazirani, V.: Adwords and generalized online
matching. In: FOCS (2005)

7. Buchbinder, N., Jain, K., Naor, J.: Online primal-dual algorithms for maximiz-
ing ad-auctions. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS,
vol. 4698, pp. 253–264. Springer, Heidelberg (2007)

8. Kalyanasundaram, B., Pruhs, K.R.: An optimal deterministic algorithm for online
b -matching. Theoretical Computer Science (2000)

9. Devanur, N., Hayes, T.: The adwords problem: online keyword matching with bud-
geted bidders under random permutations. In: EC (2009)

10. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press,
Cambridge (1995)

Online Stochastic Packing Applied to

Display Ad Allocation

Jon Feldman1, Monika Henzinger2, Nitish Korula3,
Vahab S. Mirrokni1, and Cliff Stein4

1 Google Research, 76 9th Ave, New York, NY 10011, U.S.A.
{jonfeld,mirrokni,cstein}@google.com

2 University of Vienna, Austria
monika.henzinger@univie.ac.at

3 University of Illinois at Urbana-Champaign
nkorula2@illinois.edu

4 Google Research and Columbia University, New York, NY

Abstract. Inspired by online ad allocation, we study online stochas-
tic packing integer programs from theoretical and practical standpoints.
We first present a near-optimal online algorithm for a general class of
packing integer programs which model various online resource allocation
problems including online variants of routing, ad allocations, generalized
assignment, and combinatorial auctions. As our main theoretical result,
we prove that a simple dual training-based algorithm achieves a (1−o(1))-
approximation guarantee in the random order stochastic model. This is a
significant improvement over logarithmic or constant-factor approxima-
tions for the adversarial variants of the same problems (e.g. factor 1− 1

e

for online ad allocation, and log(m) for online routing). We then focus on
the online display ad allocation problem and study the efficiency and fair-
ness of various training-based and online allocation algorithms on data
sets collected from real-life display ad allocation system. Our experimen-
tal evaluation confirms the effectiveness of training-based algorithms on
real data sets, and also indicates an intrinsic trade-off between fairness
and efficiency.

1 Introduction

Online stochastic optimization is a central problem in operations research with
many applications in dynamic resource allocation. In these settings, given a set
of resources, demands for the resources arrive online, with associated values;
given a general prior about the demands, one has to decide whether and how
to satisfy (i.e., allocate the desired resources to) a demand when it arrives. The
goal is to find a valid assignment with maximum total value. Such problems
appear in many areas including online routing [7,3], online combinatorial auc-
tions [9], online ad allocation problems [25,10,12], and online dynamic pricing
and inventory management problems. For example, in routing problems, we are
given a network with capacity constraints over edges; customers arrive online
and bid for a subset of edges (typically a path) in the network, and the goal

M. de Berg and U. Meyer (Eds.): ESA 2010, Part I, LNCS 6346, pp. 182–194, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Online Stochastic Packing Applied to Display Ad Allocation 183

is to assign paths to new customers so as to maximize the total social welfare.
Similarly, in online combinatorial auctions, bidders arrive online and may bid
on a subset of resources; the auctioneer should decide whether to sell those re-
sources to the bidder. In the display ads problem, when users visit a website, the
website publisher has to choose ads to show them so as to maximize the value
of the displayed ads. In this paper, we study these online stochastic resource
allocation problems from theoretical and practical standpoints. Our theoretical
results apply to a general set of problems including all those discussed above.
Our practical results apply to the problem of display ads and give additional
validation of our theoretical models and results.

More specifically, we consider the following general class of packing integer
programs (PIP): Let J be a set of m resources; each resource j ∈ J has a
capacity cj . The set of resources and their capacities are known in advance. Let
I be a set of n agents that arrive one by one online, each with a set of options
Oi. Each option o ∈ Oi of agent i has an associated value wio ≥ 0 and requires
aioj ≥ 0 units of each resource j. The set of options and the values wio and
aioj arrive together with agent i. When an agent arrives, the algorithm has to
immediately decide whether to assign the agent and if so, which option to choose.
The goal is to find a maximum-value allocation that does not allocate more of
any resource than is available.

In the adversarial or worst-case setting, no online algorithm can achieve any
non-trivial competitive ratio; consider the simple case of one resource with ca-
pacity one and two agents. For each agent there are just two options, namely to
get the resource or not to get it. If an agent gets the resource, he uses its whole
capacity. The first agent has value 100 for getting the resource and value 0 for
not getting the resource. If he is assigned the resource, then the value of the
second agent for getting the resource is 10000, otherwise it is 1. In both cases
the algorithm achieves less than 1/100th of the value of the optimal solution.
This example can easily be generalized to show that even randomized algorithms
cannot achieve non-trivial competitive ratios, even if there is a single resource:

Theorem 1. There is no o(log n/ log log n)-approximation for the online PIP.

Since in the adversarial setting the lack of prior information about the arrival rate
of different types of agents implies strong impossibility results, it is natural to
consider stochastic settings for online allocation problems, where we may have
some prior information about the arrival rate of different types of agents. In
particular, we consider the random-order stochastic model, in which the agents,
their options and associated values may be chosen by an adversary, but the order
in which agents arrive is random. We present a training-based online algorithm
for the general class of packing integer programs described above and prove that
in the random-order stochastic model, it achieves an approximation ratio of 1−ε,
where ε is a function of the parameters of the integer program1; more precisely, ε

1 In this context, an “α-approximation” means that with high probability under the
randomness in the stochastic model, the algorithm achieves at least an α fraction of
the value (efficiency) of the offline optimal solution for the actual instance.

184 J. Feldman et al.

measures how large a fraction of any resource can be demanded by a single agent,
or how much a single agent’s value contributes to the total objective. Thus, as
agents become infinitesimally small, we obtain nearly optimal solutions. This
result also implies the same result in the i.i.d. model2.

Our dual-based algorithm for the stochastic PIP problem observes the first
ε fraction of the input and then solves an LP on this instance. (This requires
knowing the number of agents in advance, at least approximately; Theorem 1
can be generalized to show that this is unavoidable for any sub-logarithmic
approximation.) For each resource, the corresponding dual variable extracted
from this LP serves as a (posted) price per unit of the resource for the remaining
agents. The algorithm allocates to each remaining agent the option maximizing
his utility, defined as the difference between the value of an option and the price
he must pay to obtain the necessary resources. We prove that this algorithm
provides a 1 − ε approximation for the large class of natural packing problems
we consider, provided that no individual option for any agent consumes too much
of any resource or provides too large a fraction of the total value. Specifically we
show the following result. Recall that n and m denote the number of agents and
resources respectively; q denotes maxi |Oi| and OPT the value of an optimal
off-line solution to the PIP problem.

Theorem 2. The Dual-Based algorithm is (1−O(ε))-competitive for the online
stochastic PIP problem with high probability, as long as:
(1) maxi,o

{
wio

OPT

}
≤ ε

(m+1)(ln n+ln q) and (2) maxi,o,j

{
aioj

cj

}
≤ ε3

(m+1)(ln n+ln q) .

Applications: Theorem 2 has many applications; we elaborate on several, in-
cluding routing problems, online combinatorial auctions, the display ad problem,
and the adword allocation problem. For each of these problems, we improve on
the known results for the online version. In each, we will comment on the inter-
pretation of the two conditions of Theorem 2 in that application. Note that in
condition (2), one might wish the dependence of ε on the input parameters to be
linear; this does not seem possible in general. However, for specific applications,
one may be able to exploit the structure of the LP to prove tighter bounds; we
omit details from this extended abstract. Our experimental results show that in
practice, one may be able to use ε much smaller than required by the theorem;
in particular, for the DA problem, we sample only 1% of the input and obtain a
competitive ratio of ≈ 0.89.

In the online routing problem, we are initially given a network with capacity
constraints over the m edges. When a customer i ∈ I arrives online, she wishes
to send di units of flow between some vertices si and ti, and derives wi units of
value from sending such flow. Thus, the set of options Oi for customer i is the
set of all si−ti paths in the network. The algorithm must pick a set of customers
I∗ ⊆ I, and satisfy their demands by allocating a path to each of them while
respecting the capacity constraints on each edge; the goal is to maximize the
2 In the i.i.d model each agent arrives independently and identically drawn from a fixed

but unknown probability distribution over the set of possible types of agents [17].
Our random-order stochastic model captures the i.i.d model.

Online Stochastic Packing Applied to Display Ad Allocation 185

total value of satisfied customers. For this problem, the dual variables learned
from the sample yield a price for each edge; each customer is allocated the
minimum-cost si − ti path if its cost is no more than wi. In road networks,
for instance, these dual variables can be interpreted as the tolls to be charged
to prevent congestion. Theorem 2 applies when the contributions of individual
agents/vehicles to the total objective or to road congestion are small. As one such
example, consider congestion pricing for Manhattan: over a million vehicles enter
or leave the island daily, and each of the 12 bridges and tunnels has an annual
average daily traffic of over 50,000; using extremely conservative estimates of
bridge capacity, we obtain ε ≈ 0.15. Online routing problems have been studied
extensively in the adversarial model when demands can be large, and there
are (poly)-logarithmic lower and upper bounds even for special cases [3,7]. Our
approach gives a (1 − o(1))-approximation for the described stochastic variants
of these problems when the demands of individual agents are small.

In the combinatorial auction problem, we are initally given a set J of m goods,
with cj units for each good j ∈ J . Agents arrive online, and the options for agent
i may include different bundles of goods he values differently; option o ∈ Oi pro-
vides wio units of value, and requires aioj units of good j. We wish to find a
valid allocation maximizing social welfare. Here, the dual variables learned from
the sample yield a price per unit of each good; each agent picks the option that
maximizes his utility. Here Theorem 2 applies as long as no individual agent
controls a large fraction of the market, and as long as the set of options for any
single agent is at most exponential in the number of resources. These conditions
often hold, as in cases when bidders are single-minded or the number of bundles
they are interested in is polynomial in n, or if their options correspond to using
different subsets of the resources. We also observe that the posted prices result
in a take-it-or-leave it auction, and thus a truthful online allocation mechanism.
Revenue maximization in online auctions using sequence item pricing has been
explored recently in the literature [5,9]. [9] achieves constant-factor approxima-
tions for these problems in more general models than we consider.

In the Display Ads Allocation (DA) problem [12], there is a set J of m ad-
vertisers who have contracted with a web publisher for their ads to be shown
to visitors to the website. When a visitor is shown an ad, this is called an “im-
pression”. The contract an advertiser j buys specifies an integer upper bound on
the number n(j) of impressions that he is willing to pay for. A set I of visitors
arrives online; visitor i has value wij ≥ 0 for advertiser j. Each visitor can be
assigned to at most one advertiser, i.e., there are m options for an impression,
and each option o has aioj = 1 for advertiser j. The goal is to maximize the
value of all the assigned impressions. The dual variables learned from the sam-
ple yield a discount factor βj for each advertiser j; the algorithm is to assign
an impression to advertiser j that maximizes wij −βj . Contracts for advertisers
may involve hundreds of thousands of impressions, so the contribution of any
one impression/agent is small. As publishers vary greatly in the amount of web
traffic they receive, it is relatively meaningless to define a “typical” instance;
however, a publisher with 30 million impressions, and 20 advertisers who have

186 J. Feldman et al.

each signed contracts for at least 500, 000 impressions, satisfies the hypotheses of
Theorem 2 with ε ≈ 0.089. The adversarial online DA problem was considered in
[12], which showed that the problem was inapproximable without exploiting free
disposal; using this property (that advertisers are at worst indifferent to receiving
more impressions than required by their contract), a simple greedy algorithm is
1
2 -competitive, which is optimal. When the demand of each advertiser is large,
a (1 − 1

e)-competitive algorithm exists [12], and this is the best possible. For
the unweighted (max-cardinality) version of this problem in the i.i.d. model, a
0.67-competitive algorithm has been recently developed [13]; this improves the
known 1− 1

e -approximation algorithm for online stochastic matching [19].
The AdWords (AW) problem [25,10] is related to the DA problem; here we

allocate impressions resulting from search queries. Advertiser j has a budget b(j)
instead of a bound n(j) on the number of impressions. Assigning impression i
to advertiser j consumes wij units of j’s budget instead of 1 of the n(j) slots,
as in the DA problem. Several approximation algorithms have been designed for
the offline AW problem [8,26,4]. For the online setting, if every weight is very
small compared to the corresponding budget, there exist (1 − 1

e)-competitive
online algorithms [25,6,18,2], and this factor is tight. In order to go beyond the
competitive ratio of 1 − 1

e in the adversarial model, stochastic online settings
have been studied, such as the random order and i.i.d models [18]. Devanur
and Hayes [10] described a dual-based (1− ε)-approximation algorithm for this
problem in the random order model, with the assumption that OPT is larger
than O(m2

ε3) times each wij , where m is the number of advertisers; Theorem 2
can be viewed as generalizing this result to a much larger class of problems.

Experimental Validation: For the applications described above, stochastic
models are reasonable as the algorithm often has an idea of what agents to ex-
pect. For example, in the Display Ad Allocation problem, agents correspond to
users visiting the website of a publisher who has sold contracts to advertisers.
As the publisher most likely sees similar user traffic patterns from day to day, he
has an idea of the available ad inventory based on historical data. In Section 3,
we perform preliminary experiments on real instances of the DA problem, using
actual display ad data for a set of anonymous publishers. As with any real appli-
cation, there are additional features of the problem, and in the one we considered,
both fairness and efficiency were important metrics. Hence, we also evaluated
our algorithms for fairness (see Section 3 for a brief discussion); we compared our
training-based algorithm with algorithms from [12] designed for the adversarial
setting, as well as hybrid algorithms combining the two approaches. Our experi-
mental results validate Theorem 2 for this application, as they show that on this
real data set, even sampling 1% of the input (i.e. choosing ε = 0.01) suffices to
obtain efficiency of ≈ 89%, significantly better than the pure online algorithms
from [12], which are in turn much better than a simple greedy approach.

Other Related Work: Our proof technique is similar to that of [10] for the
AW problem; it is based on their observation that dual variables satisfy the
complementary slackness conditions of the first ε fraction of impressions and
approximately satisfy these conditions on the entire set. A key difference is that

Online Stochastic Packing Applied to Display Ad Allocation 187

in the AW problem, the coefficients for variable xij in the linear program are the
same in both the constraint and the objective function. That is, the contribution
an impression makes to an advertiser’s value is identical to the amount of budget
it consumes; in contrast, these coefficients are unrelated in the general class of
packing problems that we study. Further, the structure of the LP considered by
[10] is highly restricted, with each variable appearing in precisely two constraints.
Thus, our paper provides a simple proof of a more general result than [10], and
we experimentally validate these results for the DA problem.

The random-order model has been considered for several problems, often
called secretary problems. Without additional assumptions (as in Theorem 2),
constant-competitive (but no better) algorithms can be obtained for problems
such as online Knapsack, or finding maximum weight independent sets in classes
of matroids. (See [5] for a survey.) Specifically for the DA problem, the results
of [21] imply that the random-order model permits a 1/8-competitive algorithm
even without using the free disposal property or the conditions of Theorem 2.

There have been recent results regarding ad allocation strategies in display
advertising in hybrid settings with both contract-based advertisers and spot
market advertisers [15,14]. Our results in this paper may be interpreted as a
class of representative bidding strategies that can be used on behalf of contract-
based advertisers competing with the spot market bidders [15].

Results similar to ours were recently posted in a working paper[1]. The de-
pendence of ε on the input parameters is almost identical; however, the authors
of [1] also observe that if one is willing to “reprice” the resources after every ε
fraction of the input, the cubic dependence of ε can be reduced to quadratic.
Also recently, Vee et al. [27] showed that for assignment-type problems (includ-
ing the DA and AW problems, but not other problems considered in this paper),
if one knows the distribution from which inputs are drawn, a similar dual-based
algorithm can be used to obtain online allocations that are nearly optimal for
certain “well-conditioned” convex objectives. The results from both these pa-
pers were obtained independently of ours, and posted publicly subsequent to the
submission of an earlier version of this paper, which included our main result.

2 A Dual-Based Algorithm

In this section, we present the dual-based algorithm for the online stochastic
packing problem and prove that, under our (practically-motivated) assumptions,
it achieves an approximation factor of 1 − ε. Recall that there is a set I of
“agents”; agent i ∈ I has a set of mutually exclusive options Oi, and we use an
indicator variable xio to denote whether agent i selects alternative o ∈ Oi. Each
option for an agent may have a different “size” in each constraint; we use aioj

to denote the size in constraint j of option o for agent i.
Recall that wio is the value from selecting option o for agent i, and cj is the

“capacity” of constraint j. That is, our goal is to maximize wT x while pick-
ing at most one option for each agent, and subject to Ax ≤ c. Subsequently, we
normalize A, c such that c is the all-1’s vector, and write the (normalized) primal

188 J. Feldman et al.

linear program below. We also use the dual linear program, which introduces a
variable βj for each constraint j.

Primal-LP

max
∑

i

∑
o∈Oi

wioxio∑
o∈Oi

xio ≤ 1 (∀ i)

∑
i,o

aiojxio ≤ 1 (∀ j)

xio ≥ 0 (∀ i, o)

Dual-LP

min
∑

j

βj +
∑

i

zi

zi +
∑

j

βjaioj ≥ wio (∀i, o)

βj , zi ≥ 0 (∀i, j)

Let n be the total number of agents, q = maxi |Oi| be the maximum number of
options for any agent, and m be the number of constraints. We say that the gain
from option o ∈ Oi is wio −

∑
j β∗

j aioj . The Dual-Based Algorithm proceeds as
follows:

1. Let S denote the first εn agents in the sequence. For the purposes of analysis,
these agents are not selected. (Our implementations may assign these agents
according to some online algorithm.)

2. Solve the Dual-LP on the agents in S, with the objective function containing
the term εβj instead of βj for each j ∈ [m]. (This is equivalent to reducing
the capacity of a constraint from 1 to ε; we refer to this as a reduced instance.)
Let β∗

j denote the value of the dual variable for constraint j in this optimal
solution.

3. For each subsequent agent i, if there is an option o with non-negative gain,
select the option3 o of maximum gain, and set zi = gain(o).

We will refer to a variant of this algorithm in Section 3 as the DualBase algorithm.
The intuition behind this algorithm is simple; the dual variables β∗

j can be
thought of as specifying a value/size ratio necessary for an option to be selected.
An optimal choice for each βj gives an optimal solution to the packing problem;
this fact is proven implicitly in the next section, where we further show that with
high probability, the optimal choice β∗

j on the sample S leads to a near-optimal
solution on the entire instance.4 In the following, let wmax = maxi,o{wio}, and
let amax = maxi,o,j{aioj}.
3 Assume for simplicity that there are no ties, and so there is a unique such option.

This can be effectively achieved by adding a random perturbation to the weights;
we omit details from this extended abstract.

4 Technically, the solution returned may violate some constraints by a small factor,
but it easy to modify the algorithm to avoid this; see the discussion after Lemma 2.

Online Stochastic Packing Applied to Display Ad Allocation 189

2.1 Proof Sketch

We now sketch a proof of Theorem 2, showing that the above training-based al-
gorithm is a (1−O(ε))-approximation. (Proofs of some claims are omitted.) Let
I∗ ⊆ I denote the set of agents i with some option o having non-negative gain,
and let O∗ denote the set of pairs {(i, o) | i ∈ I∗, o = arg maxo∈O(i) gain(o)}. We
abuse notation by writing i ∈ O∗ if there exists o ∈ O(i) such that (i, o) ∈ O∗.
We use O∗(S) to denote O∗ ∩ S; note that O∗ − O∗(S) represents the options
selected by the algorithm (for the purposes of analysis, we do not select any
options for agents in S).

Given any vector β∗, we obtain a feasible solution to Dual-LP by selecting
for each item in I∗, the option o such that (i, o) ∈ O∗ and setting zi = gain(o);
for each item i 	∈ I∗, we set zi = 0.

Definition 1. Let W =
∑

(i,o)∈O∗ wio be the total weight of selected options,
and let W (S) =

∑
(i,o)∈O∗(S) wio. Let C(j) =

∑
(i,o)∈O∗ aioj and C(j, S) =∑

(i,o)∈O∗(S) aioj.

For any fixed vector β∗, O∗ and hence W and each C(j) are independent of
the choice of the sample S; the expected value of W (S) is εW , and that of
C(j, S) is εC(j).5 For fixed β∗, we can conclude that the the values of W (S)
and C(j, S) will be close to their expectations with high probability. However,
the β∗ computed by the algorithm is itself a function of S; the main idea of the
proof (similar to that of [10] on the special case of the AW problem) is that
one can still show that if β∗ satisfies the complementary slackness conditions on
the first εn agents (being an optimal solution), w.h.p. it approximately satisfies
these conditions on the entire set. Two main differences from the proof of [10]
are that the structure of our LP is unrestricted, and that the weight and demand
coefficients of a given option may be completely unrelated; dealing with these
requires additional care, and a weaker dependence of ε on the input parameters.

Definition 2. For a sample S and j ∈ [m], let rj(S) = |C(j, S) − εC(j)|, and
let t(S) = |W (S)− εW |. When the context is clear, we will abbreviate rj(S) by
rj and t(S) by t.
1. The sample S is rj-bad if:

rj ≥ (m + 1)(lnn + ln q)amax +
√

C(j) ·
(
2
√

ε(m + 1)(lnn + ln q)amax

)
.

2. The sample S is t-bad if:
t ≥ (m + 1)(lnn + ln q)wmax +

√
W ·

(
2
√

ε(m + 1)(lnn + ln q)wmax

)
.

Lemma 1. Pr [S is rj-bad] ≤ 1
m·(nq)m+1 for each j, and Pr [S is t-bad]≤ 1

(nq)m+1 .

We argue below that if S is not t-bad or rj-bad for any j, we obtain a good
solution. We use the following simple proposition:
5 Though β∗ depends on S, many distinct samples S may lead to the same vector β∗.

Also, we take expectations over all choices of S, not just those leading to the given
β∗. We will later use the union bound over all possible vectors β∗.

190 J. Feldman et al.

Proposition 1. Let j ∈ [m] be a constraint such that C(j, S) = ε. If S is not
rj-bad, we have 1− 2ε ≤ C(j) ≤ 1 + 3(ε + ε2).

Lemma 2. If the sample S is not t-bad or rj-bad for any constraint j, the value
of the options selected by the algorithm is (1−O(ε))OPT.

Note that the options selected by the algorithm, as described above, may not
be feasible even if S is not rj-bad; Proposition 1 only implies that C(j) ≤
1 + 3(ε + ε2). Thus, we might violate some constraints by a small amount.
This is easily fixed: simply decrease the capacities of all constraints by a factor
of 1 + O(ε). This reduces the value of the optimal solution by no more than
the same factor; though our algorithm might violate the reduced capacity of
constraint j by a factor of 1 + O(ε), we respect the original capacity when S is
not rj -bad. Thus, when S is not t-bad or rj -bad for any j, we obtain a feasible
solution with value (1−O(ε))OPT.

Finally, Lemma 1 implies that for any fixed β∗, the probability that a random
sample S of agents is bad is less than 2

(nq)m+1 . The following lemma shows that
there are at most (nq)m distinct choices for β∗; as a result, the sample is good
for any β∗ with high probability. Therefore, with high probability, our algorithm
returns a feasible solution with value at least (1−O(ε))OPT, proving Theorem 2.

Lemma 3. There are fewer than (nq)m distinct solutions β∗ that are returned
by the algorithm after step 2.

3 Experimental Evaluation: Efficiency and Fairness

We now present experimental results in the Display Ad setting, evaluating our
algorithm and comparing its performance, in terms of efficiency and fairness,to
other online algorithms and also to “ideal” solutions computed offline.

Our data set consists of a uniform sample of a set of impressions and a set of
advertisers for six different publishers (A-F) from one week in September 2009.
The number of arriving impressions varies from 200k to 1,500k impressions. The
number of advertisers per publisher varies from 100 to 2,600 advertisers. Each
impression is tagged with its set of eligible advertisers and an edge weight for
each eligible advertiser capturing the “targeting quality” for this advertiser. We
compare the algorithms both in terms of the social efficiency and the fairness of
their solutions.
Fairness in Ad Allocation. Besides efficiency, fairness plays an important role
in measuring the performance of an ad allocation. An allocation that achieves
large total value while delivering very few impressions to some advertisers is
undesirable; advertisers whose contracts are unfulfilled must typically be paid a
penalty, and the publisher may have trouble retaining such advertisers.

Different notions of fairness in resource allocation have been explored ex-
tensively in the literature [20,22,16,23]; perhaps the most common of these is
max-min fairness. Such a metric is not appropriate in the DA setting, where
the contract of one advertiser may specify many fewer impressions than that of
others, and thus the total value he obtains should be lower.

Online Stochastic Packing Applied to Display Ad Allocation 191

For a detailed discussion of fairness metrics, see the full version of our paper at
http://arxiv.org/abs/1001.5076 [11]. Briefly, given an allocation x, we define
its value vector v(x) such that the jth component is the total value obtained by
advertiser j. We roughly define the fairness metric as the l1 distance between the
value vector of x and that of an (appropriately normalized) ideal allocation x∗.
In the full version [11], we consider various candidate ideal allocations; the one
we focus on (fractionally) allocates an impression by dividing it equally among
all advertisers who are interested in it; advertisers are interested in as many of
the impressions they value highly as needed to satisfy their contracts.
The Algorithms. We examine (a) 3 pure online algorithms, (b) 2 training-
based online algorithms, and (c) 2 offline algorithms.

(a) The pure online algorithms are GREEDY, PD AVG, and PD EXP, that are
developed and analyzed in a previous paper [12], and achieve worst-case compet-
itive ratios of 1

2 , 1
2 , and 1− 1

e . These algorithms are primal-dual algorithms that
proceed as follows: we compute a discounting factor βa based on the set of impres-
sions already assigned to advertiser a, and then upon arrival of a new impression
i, we assign this impression i to an advertiser a maximizing wia−βa. The differ-
ence between these algorithms is in computing βa: Let w1, w2, . . .wn(a) be the
weights of impressions currently assigned to advertiser a, sorted in non-increasing
order. In GREEDY, PD AVG, and PD EXP, we set βa = w1a, βa =

∑
1≤j≤n(a) wj

n(a) ,

and βa = 1
n(a)·((1+1/n(a))n(a)−1)

∑n(a)
j=1 wj

(
1 + 1

n(a)

)j−1
, respectively.

(b) The training-based online algorithms are the dual-based algorithm
DualBase from Section 2 and a HYBRID algorithm in which we set βa for each
advertiser a to be a convex combination of the DualBase and PD AVG algorithms,
i.e., we start using βa from DualBase, and then slowly move to using βa from
PD AVG. (The hybrid algorithm is inspired by ideas from [24].) To train and
test them we used for each data set a random sample of 1% of the impressions
for training and the remaining 99% for testing. This proxies the random order
model, where a sample from the beginning part of the sequence is equivalent to
a sample of the whole data.

(c) The offline algorithms are the fair algorithm FAIR using equal sharing
described above, and the optimum efficient offline algorithm LP WEIGHT.

Experimental Results. The normalized efficiency and normalized fairness of
each of the algorithms are summarized in Table 1. Regarding efficiency it shows
that (1) the training-based algorithms perform very similarly (except for one
publisher) and outperform the pure online algorithms (5-12% improvement), (2)
of the pure online algorithms, both PD AVG and PD EXP outperform GREEDY,
even though both PD AVG and GREEDY are 1/2-competitive in the worst case,
(3) PD EXP shows only a 5% overall improvement over PD AVG, even though
the worst-case competitive analysis of PD EXP is much better than PD AVG.
Since the value of fairness depends on the values assigned to advertisers and
different publishers have different advertisers, we normalized the fairness values
for each publisher so that the least fair algorithm achieves a score of 100 and the
best achieves a score of 0. Normalizing allows us to compute the average over

192 J. Feldman et al.

Table 1. Normalized efficiency and fairness of different algorithms for different pub-
lishers and averaged over all publishers. All numbers are normalized between 0 and 100
such that the efficiency of OPT =LP WEIGHT is 100 and 0 is the most fair solution.

Normalized Efficiency Normalized Fairness

Publishers A B C D E F Avg A B C D E F Avg

LP WEIGHT 100 100 100 100 100 100 100 34.6 47.7 98.8 100 70.3 90.1 73.6
FAIR 88.2 98.4 73.6 42.3 74.6 53.3 71.7 0 0 0 0 0 0 0

DualBase 85 93 85.7 74 91.8 93.5 87.2 69.5 62.5 96.7 43.1 87.9 88.6 74.7
HYBRID 85 93.8 95.2 73.8 92.7 93.5 89 69.4 63.1 100 41.9 83.7 88.6 74.5

PD AVG 72 93.2 75.3 65.3 71.7 89.5 77.8 73 72 82.7 31.7 91.9 85.3 72.8
PD EXP 72.6 89.7 73.9 90.8 72.6 96.3 82.6 69.7 59.5 86.1 71 88.8 100 79.2
GREEDY 64 90.5 69.7 53.6 55 86.2 69.8 100 100 98.6 45 100 100 90.6

different publishers. The results in the table indicate that GREEDY is the least
fair algorithm and the remaining algorithms perform roughly the same, though
their performance differs over different publishers. For a more detailed analysis
of the results see the appendix.

4 Concluding Remarks

This paper motivates many open problems to explore: (i) Can we achieve an al-
gorithm that is simultaneously good both in the worst case and in stochastic set-
tings? Such an algorithm would be of use when the actual distribution of agents
is different from the one predicted/learnt from a sample; in the display ad set-
ting, this occurs when there is a sudden spike in traffic to a website, perhaps in
response to a breaking news event, or links from an extremely high-traffic source.
(ii) Can we design an online allocation algorithm that provably achieves approxi-
mate efficiency and approximate fairness (for some an appropriate notion of fair-
ness) at the same time? (iii) Can we prove that in certain settings that appear in
practice, the PD AVG algorithm achieves an improved approximation factor (i.e.,
better than 1

2)? (iv) Can we extend the online stochastic algorithm studied in this
paper to other stochastic process models such as Markov-based stochastic models?
Answering these questions is an interesting subject of future research.

Acknowledgments. This paper is a followup of our previous work with S.
Muthukrishnan and Martin Pál, and some of the results and discussions in this
paper are inspired by our initial discussions with them. We thank Martin and
Muthu for their contributing insights toward this paper. We also thank the
Google display ad team, and especially Scott Benson for helping us with data
sets used in this paper.

References

1. Agrawal, S., Wang, Z., Ye, Y.: A dynamic near-optimal algorithm for online linear
programming, Working paper posted at http://www.stanford.edu/~yyye/

2. Alaei, S., Malekian, A.: Maximizing sequence-submodular functions (2009)
(manuscript)

http://www.stanford.edu/~yyye/

Online Stochastic Packing Applied to Display Ad Allocation 193

3. Awerbuch, B., Azar, Y., Plotkin, S.: Throughput-competitive on-line routing. In:
FOCS, vol. 34, pp. 32–40 (1993)

4. Azar, Y., Birnbaum, B., Karlin, A., Mathieu, C., Nguyen, C.: Improved Approxi-
mation Algorithms for Budgeted Allocations. In: Aceto, L., Damg̊ard, I., Goldberg,
L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part
I. LNCS, vol. 5125, pp. 186–197. Springer, Heidelberg (2008)

5. Babaioff, M., Immorlica, N., Kempe, D., Kleinberg, R.: Online auctions and gen-
eralized secretary problems. SIGecom Exchanges 7(2) (2008)

6. Buchbinder, N., Jain, K., Naor, J.: Online Primal-Dual Algorithms for Maximizing
Ad-Auctions Revenue. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007.
LNCS, vol. 4698, p. 253. Springer, Heidelberg (2007)

7. Buchbinder, N., Naor, J.: Improved bounds for online routing and packing via a
primal-dual approach. In: FOCS, pp. 293–304 (2006)

8. Chakrabarty, D., Goel, G.: On the approximability of budgeted allocations and
improved lower bounds for submodular welfare maximization and GAP. In: Proc.
FOCS, pp. 687–696 (2008)

9. Chawla, S., Hartline, J.D., Malec, D., Sivan, B.: Sequential posted pricing and
multi-parameter mechanism design. In: Proc. of ACM STOC, pp. 311–320 (2010)

10. Devanur, N., Hayes, T.: The adwords problem: Online keyword matching with
budgeted bidders under random permutations. In: ACM EC (2009)

11. Feldman, J., Henzinger, M., Korula, N., Mirrokni, V.S., Stein, C.: Online stochastic
ad allocation: Efficiency and fairness, http://arxiv.org/abs/1001.5076

12. Feldman, J., Korula, N., Mirrokni, V., Muthukrishnan, S., Pal, M.: Online ad
assignment with free disposal. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929,
pp. 374–385. Springer, Heidelberg (2009)

13. Feldman, J., Mehta, A., Mirrokni, V., Muthukrishnan, S.: Online stochastic match-
ing: Beating 1 - 1/e. In: FOCS (2009)

14. Ghosh, A., McAfee, P., Papineni, K., Vassilvitskii, S.: Bidding for representa-
tive allocations for display advertising. In: Leonardi, S. (ed.) WINE 2009. LNCS,
vol. 5929, pp. 208–219. Springer, Heidelberg (2009)

15. Ghosh, A., Rubinstein, B.I.P., Vassilvitskii, S., Zinkevich, M.: Adaptive bidding
for display advertising. In: WWW, pp. 251–260 (2009)

16. Goel, A., Meyerson, A., Plotkin, S.A.: Combining fairness with throughput: online
routing with multiple objectives. In: STOC, pp. 670–679 (2000)

17. Goel, G., Mehta, A.: Adwords auctions with decreasing valuation bids. In: Deng,
X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp. 335–340. Springer,
Heidelberg (2007)

18. Goel, G., Mehta, A.: Online budgeted matching in random input models with
applications to adwords. In: SODA, pp. 982–991 (2008)

19. Karp, R., Vazirani, U., Vazirani, V.: An optimal algorithm for online bipartite
matching. In: Proc. STOC (1990)

20. Kleinberg, J.M., Rabani, Y., Tardos, É.: Fairness in routing and load balancing. J.
Comput. Syst. Sci. 63(1), 2–20 (2001)

21. Korula, N., Pal, M.: Algorithms for secretary problems on graphs and hypergraphs.
In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W.
(eds.) ICALP 2009. LNCS, vol. 5556, pp. 508–520. Springer, Heidelberg (2009)

22. Kumar, A., Kleinberg, J.M.: Fairness measures for resource allocation. SIAM J.
Comput. 36(3), 657–680 (2006)

23. Lipton, R., Markakis, E., Mossel, E., Saberi, A.: On approximately fair allocations
of indivisible goods. In: ACM EC (2004)

http://arxiv.org/abs/1001.5076

194 J. Feldman et al.

24. Mahdian, M., Nazerzadeh, H., Saberi, A.: Allocating online advertisement space
with unreliable estimates. In: ACM EC, pp. 288–294 (2007)

25. Mehta, A., Saberi, A., Vazirani, U., Vazirani, V.: Adwords and generalized online
matching. In: FOCS (2005)

26. Srinivasan, A.: Budgeted Allocations in the Full-Information Setting. In: Goel, A.,
Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.) APPROX and RANDOM 2008.
LNCS, vol. 5171, pp. 247–253. Springer, Heidelberg (2008)

27. Vee, E., Vassilvitskii, S., Shanmugasundaram, J.: Optimal online assignment with
forecasts. In: Proc. of ACM EC, pp. 109–118 (2010)

Caching Is Hard – Even in the Fault Model

Marek Chrobak1, Gerhard J. Woeginger2, Kazuhisa Makino3, and Haifeng Xu4

1 Department of Computer Science, University of California, Riverside, USA
2 Department of Mathematics and Computer Science, TU Eindhoven, Netherlands
3 Department of Mathematical Informatics, Graduate School of Information and

Technology, University of Tokyo, Japan
4 Department of Mathematics, Zhejiang University, Hangzhou, China

Abstract. We prove strong NP-completeness for the four variants of
caching with multi-size pages. These four variants are obtained by choos-
ing either the fault cost or the bit cost model, and by combining it with
either a forced or an optional caching policy. This resolves two questions
in the area of paging and caching that were open since the 1990s.

1 Introduction

The Caching Problem deals with page replacement policies in two-level memory
systems consisting of a small, fast cache and a large but slow main memory. This
is a classical and well-studied problem in the area of on-line algorithms (see, for
example, [4]), but in this paper we will be solely interested in its off-line version.

Formally, a caching instance specifies a sequence R of requests for memory
pages. The pages in R are requested one by one, and for each page p we are
given its size size(p) and its faulting cost cost(p). The cache, whose size C is
also specified in the instance, can store a subset of memory pages whose total
size does not exceed C. When the requested page p is in the cache, the request
is served at no cost. When the requested page p is not in the cache, a page fault
of cost cost(p) occurs. In response to a fault, p may be fetched into the cache.
(Without loss of generality, we assume that pages are fetched only in response
to faults.) In order to make room for p, other pages may have to be evicted from
the cache. The objective is to decide which pages one should retain in the cache
at each step so as to minimize the overall page fault cost.

There are two basic policies that determine how a page fault is resolved:

Forced: The faulted page p must be loaded and stored in the cache, where it
occupies size(p) bits.

Optional: The faulted page p can either be loaded for later use into the cache
(where it occupies size(p) bits), or it can be left outside the cache. In the
latter case, the next request to p will necessarily cause a fault.

We stress that the forced policy is the standard in the literature, and all results
mentioned later-on in this section assume the forced policy. The optional policy
was introduced by Irani [8] in the context of web caching.

M. de Berg and U. Meyer (Eds.): ESA 2010, Part I, LNCS 6346, pp. 195–206, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

196 M. Chrobak et al.

The literature contains four fundamental models of caching, defined by im-
posing different assumptions on page sizes and fault costs (this classification can
be found in the work of Albers, Arora & Khanna [1]).

Bit model: For each page p we have cost(p) = size(p). The fault cost is
proportional to the time it takes to bring the page into the cache. This
model goes back to Irani [8].

Cost model: For each page p we have size(p) = 1. (This model is also known
as the weighted caching problem.) All pages have more or less the same size,
but they may have varying fault costs. This model goes (at least) back to
Chrobak, Karloff, Payne & Vishwanathan [5].

Fault model: For each page p we have cost(p) = 1. The setup cost for a fault
is huge, and hence the exact page sizes have no real influence on the fault
cost. This model was introduced by Irani [8].

General model: For each page cost and size can be arbitrary. This model was
introduced by Young [9].

What positive results are known about off-line caching? The simplest variant
combines the properties of bit, cost, and fault model, and only considers pages of
unit size and unit cost; it can be solved to optimality by Belady’s rule [3]: “Always
evict the cached page whose next request is furthest in the future”. Caching in
the cost model can be solved in polynomial time using network flow methods;
see Chrobak & al. [5]. Albers & al. [1] derived the first off-line approximation
results for the bit, fault, and general model. The strongest currently known
approximation result for the general model is a polynomial time 4-approximation
algorithm by Bar-Noy, Bar-Yehuda, Freund, Naor & Schieber [2].

What negative results are known about off-line caching? In 1997, Fiat [6]
constructed a reduction from the Partition problem to caching in the bit model,
which implies weak NP-completeness for the bit model as well as for the general
model. In 1999 Albers & al. [1] wrote in their concluding remark: “The hardness
results for caching problems are very inconclusive. The NP-hardness result for
the bit model uses a reduction from Partition, which has pseudo-polynomial
algorithms. Thus a similar algorithm may well exist for the bit model. We do
not know whether computing the optimum in the fault model is NP-hard.” In
fact, this quote provides an exact summary of the current state of knowledge
(just before our paper), and the open questions about the complexity of these
problems have been formulated repeatedly in the caching literature since 1999.
The only other relevant work we are aware of is that of Brehob et al [10], who
proved NP-hardness of caching in non-standard cache architectures.

Contribution of this paper. We establish that caching in the fault model and
caching in the bit model are strongly NP-complete, under the forced as well
as under the optional policy. Note that for the bit model, our result excludes
the possibility of a pseudo-polynomial algorithm (unless P = NP). These results
finally settle the complexity status of all the caching variants discussed above.

The paper is organized as follows. In Section 2 we introduce two interval
packing problems that play the central role in the paper and we show that strong

Caching Is Hard – Even in the Fault Model 197

NP-completeness of interval packing problems implies strong NP-completeness of
caching. The rest of the paper contains our main technical contribution: Section 3
discusses the used gadgets and how they interact. Section 4 proves intractability
of an intermediate auxiliary problem, and Sections 5 and 6 finally contain the
hardness proofs for interval packing.

2 Caching Versus Interval Packing

This section introduces an auxiliary weighted interval packing problem where
we wish to choose a maximum number of given weighted intervals, subject to
the constraint that for any point the total weight of the covering intervals does
not exceed a given threshold.

We now give a more formal definition. Suppose we are given a set of N intervals
(si, ti), i = 0, . . . , N − 1. We will identify these intervals by their indices, that is
“interval i” will refer to (si, ti). For a subset S ⊆ {0, 1, . . . , n− 1} of intervals,
we define its weight in the natural way as w(S) =

∑
i∈S wi. Also, for any real

number γ, we define cutγ(S) = {i : si < γ < ti} to be the so-called cut of S at
γ, that is, the intervals which contain γ.

The weighted interval packing problem is to choose a maximum-cardinality
subset of intervals that satisfies w(cutγ(S)) ≤ W for all γ. The decision version
of this problem, denoted IntvPack-Card, is formulated as follows.

Problem: IntvPack-Card

Instance: A set of N open intervals (si, ti) for i = 0, . . . , N − 1, where
each interval i has weight wi ≥ 0. Positive integers W and �.
Question: Is there a subset S of � intervals that satisfies w(cutγ(S)) ≤W
for all real numbers γ?

In the following variation of IntvPack-Card, the objective changes from find-
ing a subset of large cardinality to finding a subset of large weight.

Problem: IntvPack-Weight

Instance: A set of N open intervals (si, ti) for i = 0, . . . , N − 1, where
each interval i has weight wi ≥ 0. Positive integers W and L.
Question: Is there a subset S of the intervals with w(S) ≥ L that satisfies
w(cutγ(S)) ≤W for all real numbers γ?

We will prove in Theorems 4 and 5 that IntvPack-Card and
IntvPack-Weight are strongly NP-complete.

Now let us draw the connection between interval packing and caching prob-
lems. Here is a generic decision version of the caching variants that will be proved
to be intractable:

Problem: Caching

Instance: A set of pages p1, . . . , pk with sizes size(p1), . . . , size(pk). A
request sequence r1, . . . , rm ∈ {p1, . . . , pk}. A cache size C, and a cost
bound F .

198 M. Chrobak et al.

Question: Is there a replacement policy that serves r1, . . . , rm with a
cache of size C and incurs a total fault cost at most F?

The four caching variants that arise from combining the generic decision prob-
lem with the fault/bit model under an optional/forced caching policy are re-
spectively denoted as Caching(fault,optional), Caching(fault,forced),
Caching(bit,optional), and Caching(bit,forced).

2.1 Hardness for Optional Policies

Our first reduction is from IntvPack-Card to Caching(fault,optional).
In a preprocessing step we perturb the IntvPack-Card instance such that the
endpoints of the N intervals become pairwise distinct and coincide with the
integer points 1, 2, . . . , 2N . This can be done while preserving the intersection
patterns of the intervals.

Now let us construct an instance of Caching(fault,optional). For every
interval (si, ti) we introduce a corresponding page pi with size(pi) = wi. The
request sequence R consists of 2N requests. Every page pi is requested exactly
twice, once at position si and once at position ti of the request sequence. The
cache size is W , and the bound on the number of page faults is F = 2N − �.

(i) Suppose the IntvPack-Card instance has a solution set S. Then while
serving the page requests, we only load pages pi with i ∈ S into the cache, and
we evict them right away after they have been requested for the second time. The
cut condition guarantees that at every point in time the cache can accommodate
all loaded pages. Since every page pi with i ∈ S faults once and every page pi

with i /∈ S faults twice, this yields a total of at most 2N − � page faults. (ii)
Next, suppose that the caching instance has a solution with at most F = 2N − �
page faults. Every page pi must fault when it is requested the first time at si.
Let S contain all intervals i for which pi does not fault when it is requested the
second time; this implies |S| ≥ �. Since the pages pi with i ∈ S occupy space in
the cache from request si till request ti, the cache size W ensures that all cuts
have weight bounded by W .

All in all, this yields that the IntvPack-Card instance has a solu-
tion if and only if the Caching(fault,optional) instance has a solu-
tion. In an almost identical fashion, we can reduce IntvPack-Weight to
Caching(bit,optional). The only difference is that this time we define the
bound on the total fault cost as F = 2

∑N−1
i=0 wi − L. All remaining arguments

go through as before. With Theorems 4 and 5, this yields the following.

Theorem 1. The decision problems Caching(fault,optional) and
Caching(bit,optional) are strongly NP-complete. ��

2.2 Hardness for Forced Policies

Our next reduction will be from Caching(fault,optional) to
Caching(fault,forced), and it is very simple. Take an instance of

Caching Is Hard – Even in the Fault Model 199

Caching(fault,optional), keep all the old pages, and create two new
pages p∗ and p∗∗ with size(p∗) = size(p∗∗) = C + 1. The new cache size
is Cf = 2C + 1. The new request sequence Rf has length 3m, and it re-
sults from the old request sequence R by replacing every request rj by the
three consecutive requests rj , p

∗, p∗∗. The new bound on the number of page
faults is set to F f = F + 2m. Then Rf , Cf , F f specify an instance of
Caching(fault,forced).

(i) Suppose the Caching(fault,optional) instance has a solution with cost
F . In the cache of size Cf = 2C + 1, we reserve a segment of length C for
handling the old pages. We serve request sequence Rf by mimicking the serving
of sequence R: Whenever the policy for R loads an old page into the cache, we
load the same old page into the reserved segment of the cache. The unreserved
segment of length C +1 is used for loading the other old pages (which the policy
for R does not load) and the new pages p∗ and p∗∗. Then we only incur 2m
additional faults for the 2m requests to p∗ and p∗∗, and sequence Rf is served
at a cost of F + 2m. (ii) Next suppose that the Caching(fault,forced)

instance has a solution with cost F + 2m. Since the pages p∗ and p∗∗ do not fit
simultaneously into the cache, this solution must fault on every request to p∗

and p∗∗. The old pages are served at a total fault cost of at most F , and this
induces a solution under the optional policy of cost at most F .

In the bit model, our reduction from Caching(bit,optional) to
Caching(bit,forced) is similar: Create a new instance by using new pages
p∗ and p∗∗, a new cache size 2C + 1, and a new request sequence with 3m re-
quests. However, the new bound on the cost of page faults this time is set to
F + 2m (C + 1). Other than this, the proof remains essentially the same.

Theorem 2. The decision problems Caching(fault,forced) and
Caching(bit,forced) are strongly NP-complete. ��

3 Setting Up the NP-completeness Proof

The hardness proof for IntvPack-Card is by reduction from the well-known
NP-complete VertexCover problem; see Garey & Johnson [7]. An instance of
VertexCover consists of an undirected graph G = (V,E) with n = |V | vertices
and m = |E| edges, and an integer k, 0 ≤ k ≤ n. The objective is to determine
if G has a vertex cover of cardinality k.

We will present a reduction that maps an instance G, k of VertexCover into
a corresponding instance of IntvPack-Card. Our construction can be viewed
as consisting of two somewhat independent gadgets: one gadget is responsible
for choosing a k-element vertex set – a candidate cover of G, while the other one
verifies whether this chosen set is indeed a correct cover.

We describe the reduction in several stages. In this section we introduce the
main ideas behind the cover-choosing gadget. Section 4 gives a construction for
a variant of interval packing with more complicated constraints on cut weights.
Finally, in Sections 5 and 6 we will show how to wrap-up this construction and
derive hardness of IntvPack-Card and IntvPack-Weight.

200 M. Chrobak et al.

The set dominance relation. For two sets X,Y ⊆ {0, . . . , n− 1} such that |X | =
|Y | = k, we write X Y if there is a 1-1 mapping (matching) f : X → Y
such that f(x) ≥ x for all x ∈ X . We will also say that Y dominates X .
We will write X ≺ Y if X Y and X 	= Y . It is easy to show (and well-
known) that Y dominates X if and only if |X |≤x ≥ |Y |≤x for all x, where
|Z|≤x = |{z ∈ Z : z ≤ x}|. The dominance relation is clearly transitive. Further,
it satisfies the following important property:

Lemma 1. Suppose that Z0 ≺ Z1 ≺ · · · ≺ Zr. Then r ≤ k(n− k).

Proof. let φi =
∑

z∈Zi
z. We have φ0 ≥

(
k
2

)
, φr ≤

(
n
2

)
−
(
n−k

2

)
, so φr − φ0 ≤

k(n− k). Since φi+1 > φi for all i, the lemma follows.

Cover chooser. Let P = k(n − k) + 1 and B = mP + 1. We now consider the
instance of IntvPack-Card with bounds W = k and � = kB, and with N = nB
intervals, each of length n: (sb,z , tb,z) = (bn + z, bn+ z + n), for b = 0, . . . , B− 1
and z = 0, . . . , n− 1. All intervals have weight 1. (See Figure 1 for illustration.)
The intervals are grouped into B bundles and all bundles, except for the last
one, are grouped into P phases, as follows:

– Bundle b, 0 ≤ b ≤ B−1, consists of the intervals (sb,z, tb,z), z = 0, . . . , n−1.
– Phase p, 0 ≤ p ≤ P − 1, consists of the m bundles numbered pm, pm +

1, . . . , pm + m− 1.

The last bundle B − 1 does not belong to any phase.

Fig. 1. A cover chooser for n = 8. The picture shows only a portion of the instance,
with bundles colored with alternating colors. Central slots are shaded.

For an integer σ, 0 ≤ σ ≤ nB + n, the unit interval (σ, σ + 1) is called a slot.
For each bundle b, the slot (λb, λ

′
b) = (sb,n−1, tb,0) = (bn+n−1, bn+n) is called

the central slot of this bundle.
Consider some solution S of IntvPack-Card. Since all intervals in bundle

b overlap its central slot, S contains at most k intervals from each bundle. On
the other hand, S contains at least � = kB intervals, so it must contain contain
exactly k intervals from each bundle. Denote by Sb the set of k intervals from
bundle b that are in S. We will identify the intervals in Sb by their index with
respect to the bundle, that is Sb contains those z for which (sb,z, tb,z) is in S.

Lemma 2. There is a phase p, 0 ≤ p ≤ P − 1 for which Smp = Smp+1 = · · · =
Smp+m−1.

Caching Is Hard – Even in the Fault Model 201

Fig. 2. An illustration of the bundle dominance in the proof of Lemma 2. The instance
is for n = 8. Here we have five consecutive sets Sb = {0, 1, 3, 4}, Sb+1 = {0, 2, 3, 4},
Sb+2 = {0, 3, 5, 6}, Sb+3 = {1, 3, 5, 7}, Sb+4 = {2, 5, 6, 7}.

Proof. We start with the following claim: (∗) Sb Sb+1 for b = 0, . . . , B − 2.
We prove this claim by contradiction. Suppose that Sb 	 Sb+1 for some b.
Then choose any x for which |Sb|≤x < |Sb+1|≤x. Let X = {z ∈ Sb : z > x} and
Y = {z ∈ Sb+1 : z ≤ x}. Then |X ∪ Y | > k and each interval in X ∪ Y contains
the slot I = (bn + x + n, bn + x + n + 1). (More precisely, if z ∈ X then I is
contained in (sb,z, tb,z), and if z ∈ Y then I is contained in (sb+1,z, tb+1,z).) This
contradicts the feasibility of S.

Call a phase good if it satisfies the lemma and bad otherwise. Each bad phase
must contain a bundle b for which Sb ≺ Sb+1. By Lemma 1, the number of bad
phases is at most P −1, so, by the pigeon-hole principle, there must exist a good
phase, and the lemma follows.

The intuition is this: The sets Sb will correspond to a vertex cover and transitions
between consecutive bundles will be used to verify the correctness of this cover.
Each phase has m such transitions, each one corresponding to one edge and
verifying if this edge is covered. In order for this to work, all edges must be
verified against the same set Sb. Lemma 2 above guarantees that there will be
some phase in which all the sets Sb will indeed be the same.

4 An Extension of Interval Packing

We now extend IntvPack-Card as follows: in addition to W , � and the set of
intervals (si, ti), i = 0, . . . , N − 1, we are also given a set Γ of pairs (α, β) of
numbers. We want to decide whether there is a subset S of at least � intervals
that satisfies the following two conditions:

(i) w(cutγ(S)) ≤W for all γ (as before), and
(ii) min {w(cutα(S)), w(cutβ(S))} ≤W − 1 for each (α, β) ∈ Γ .

Intuitively, each pair (α, β) ∈ Γ represents a “bottleneck pair”, where the weight
bound is lower by 1, but only one of these tighter bounds needs to be met, not
necessarily both. We will refer to this version as ExtIntvPack.

Our goal in this section is to establish NP-completeness of ExtIntvPack. We
transform the given instance G = (V,E), k of VertexCover into an instance of
ExtIntvPack. As in the previous section, let P = k(n−k)+1 and B = mP +1.
The instance of IntvPack-Card will have bounds W = k, � = kB, and will
contain N = nB unit-weight intervals

(sb,z, tb,z) = (bn + z, bn + z + n− δb,z),

202 M. Chrobak et al.

for b = 0, . . . , B−1 and z = 0, . . . , n−1, where each δb,z ∈
{
0, 1

2

}
is determined as

follows. For the last bundle B−1, we let all δB−1,z = 0. Let b ≤ B−2. Each such
b is associated with one edge, with all bundles in each phase associated with dif-
ferent edges. Assume that the edges of G are numbered, say E = {e0, . . . , em−1}.
If b = mp + a, for some phase p, then we say that b is associated with edge ea.
If ea = (u, v), then we set tb,z = 1

2 for z ∈ {u, v} and tb,z = 0 for z /∈ {u, v}.
Next we need to define Γ . We let Γ = {(αb, βb)}b=0,...,B−2, where each pair

(αb, βb) is defined as follows: If ea = (u, v) is the edge associated with b, then
αb = tb,u + 1

4 = bn + u + n− 1
4 and βb = tb,v + 1

4 = bn + v + n− 1
4 .

Theorem 3. Problem ExtIntvPack is strongly NP-complete.

Proof. Let I be the instance of ExtIntvPack constructed above. It is sufficient
to prove the following claim: (∗) G has a vertex cover of size k if and only if I
has a solution.

(⇒) Suppose that U is a vertex cover of G of cardinality k. We will specify
the solution S by the sets Sb of intervals selected from each bundle b. We simply
let Sb = U for each b. Since we choose the same k intervals from each bundle,
we have w(cutγ(S)) ≤ k for all reals γ; thus condition (i) is satisfied. To verify
(ii), consider any (αb, βb) ∈ Γ , for a bundle b associated with an edge ea =
(u, v). Since U is a vertex cover, we either have u ∈ U or v ∈ U . Without
loss of generality, assume u ∈ U (the other case is symmetric). Then, by the
construction of the intervals in I, we have tb,u < αb < sb+1,u, which means that
the intervals in S corresponding to u do not intersect αb; thus w(cutαb

(S)) ≤
k − 1, proving that condition (ii) holds.

(⇐) Now, suppose that I has a solution S. As before, letting each Sb be the
set of intervals from bundle b that are in S, we must have |Sb| = k for all b.
By Lemma 2, there is a phase p for which Spm = Spm+1 = · · · = Spm+m−1.
(Note that, even though we adjusted some end-points of the intervals, Lemma 2
still holds, since we decreased these endpoints only by 1

2 .) We take U = Spm,
and we claim that U is a vertex cover. Indeed, let ea = (u, v) ∈ E be any
edge and take the bundle b = pm + a in phase p associated with edge ea. By
condition (ii) in the definition of ExtIntvPack, we have w(cutαb

(S)) ≤ k−1 or
w(cutβb

(S)) ≤ k−1. Without loss of generality, assume that w(cutαb
(S)) ≤ k−1

(the other case is symmetric). All intervals {z ∈ Sb : z > u} from bundle b and all
intervals {z ∈ Sb+1 : z < u} from bundle b+1 intersect αb. Since Sb = Sb+1 = U ,
this means that u ∈ U , for otherwise this would give us k intervals intersecting
αb, violating the bottleneck bound at αb. This holds for all edges ea; therefore
we can conclude that U is indeed a vertex cover of G of size k.

5 Strong NP-Completeness of IntvPack-Card

We now show how to “implement” the construction from the previous section us-
ing IntvPack-Card. Again, let G = (V,E), k be an instance of VertexCover.
To streamline the argument, we assume that k ≤ n− 2 and that vertices 0 and
n− 1 of G are isolated, so that, without loss of generality, they will not belong

Caching Is Hard – Even in the Fault Model 203

to any vertex cover. We transform G, k into an instance J of IntvPack-Card.
J will contain the same intervals as I from the previous section, plus some ad-
ditional ones. However, we change the bounds W and �, and we add many more
small intervals that will be used to enforce the bound of k on the number of
intervals chosen from each bundle and to simulate the bottleneck pairs.

We choose first some large even constant D, say D = 2n5. The bounds in the
instance of IntvPack-Card will be W = 2k + 1 and � = kB + BD + n(B −
1)D. We include in J the same nB unit-weight intervals as in I: namely all
(sb,z, tb,z) = (bn + z, bn+ z + n− δb,z), for b = 0, . . . , B− 1 and z = 0, . . . , n− 1,
where each δb,z ∈

{
0, 1

2

}
is determined as before, that is, δb,z = 1

2 for intervals z
that correspond to the endpoints of the edge associated with b (see the previous
section). We will refer to these intervals as bundle intervals.

Now we add to J new intervals called obstacles. Most of them will have length
1/D and weight k+1, but a few of them (two per bundle) will have length 1/2D
and weight k + 2.

The first category of obstacle intervals is called plain obstacles. For each bundle
b, we introduce D disjoint obstacles that fill its central slot (λb, λ

′
b), namely

intervals (λb + g/D, λb + (g + 1)/D), for g = 0, . . . , D − 1. All these intervals
have weight k + 1. We have BD plain obstacles in the central slots.

More plain obstacles are introduced between central slots of any two consec-
utive bundles. For each bundle b ≤ B − 2 we proceed as follows. Let ea = (u, v)
be the edge associated with b, where u < v. We fill intervals (λ′

b, tb,u) and
(sb+1,v, λb+1) with plain obstacles. These obstacles are (λ′

b+g/D, λ′
b+(g+1)/D),

for g = 0, . . . , D(u − 1
2) − 1, and (sb+1,v + g/D, sb+1,v + (g + 1)/D), for

g = 0, . . . , D(n− v)− 1.
Now, we introduce two groups of obstacles in the interval (tb,u, sb+1,v). The

intervals in the first group are called α-obstacles and those in the other group
β-obstacles. We have D(v−u+ 1

2) obstacles of each of these two types. The first α-
obstacle is called the α-bottleneck, and it is the interval (tb,u+1/4D, tb,u+3/4D),
with weight k + 2. The remaining α-obstacles are (tb,u + 3/4D + g/D, tb,u +
3/4D + (g + 1)/D), for g = 0, . . . , D(v − u + 1

2) − 2 and they all have weight
k + 1. Analogously, the β-obstacles (other than the last one) are (tb,u + 1/4D +
g/D, tb,u+1/4D+(g+1)/D), for g = 0, . . . , D(v−u+ 1

2)−2, all with weight k+1.
The last β-obstacle, called the β-bottleneck, is (sb+1,v − 3/4D, sb+1,v − 1/4D),
and it has weight k + 2. (See Figure 3, for illustration.)

Note that between λ′
b and λb+1 we have D(u− 1

2) + D(n− v) plain obstacles,
D(v − u + 1

2) α-obstacles, and D(v − u + 1
2) β-obstacles.

Lemma 3. (a) Any solution of instance J has at most BD+n(B−1)D obstacle
intervals. (b) If some solution of instance J has exactly BD+n(B−1)D obstacle
intervals then, for any bundle b ≤ B − 1, it must contain either the α-bottleneck
or the β-bottleneck between λ′

b and λb+1.

Proof. (a) Consider a bundle b ≤ B − 1, and let (u, v) be the edge associated
with b, where u < v. We claim that any solution contains at most D(v − u + 1

2)
obstacles between tb,u and sb+1,v. This can be justified as follows: Order all the
obstacles in this range in order of increasing left endpoints, starting with the

204 M. Chrobak et al.

. . .

. . .

.

tb,u sb+1,v

1/D

sb+1,u tb,v

plain
obstacles

-obstacles

-obstacles

Fig. 3. Three types of obstacle intervals. The heights of the rectangles represent the
weights, k + 1 or k + 2.

α-bottleneck (and ending with the β-bottleneck). This will give us a sequence of
2D(v− u + 1

2) intervals where each one (except the last one) intersects the next
one. No two intersecting obstacles can be in the solution, because of the weight
constraint. Therefore at most half of the obstacles in this sequence can be in the
solution – proving our claim.

There are D(u− 1
2) + D(n− v) plain obstacles between λ′

b and λb+1. By the
previous paragraph, any solution can contain at most D(v − u + 1

2) α- or β-
obstacles in this range, for the total of nD obstacles. Multiplying it by B − 1
bundles and adding BD plain obstacles in central slots, we obtain (a).

(b) Consider a bundle b ≤ B−1 whose associated edge is (u, v), for u < v. It is
sufficient to show that if a solution contains D(v−u + 1

2) obstacles between tb,u

and sb+1,v then it must contain at least one of the two bottlenecks in this range.
Suppose, towards contradiction, that it does not. Order these obstacles from
left to right, as in (a). Without the two bottlenecks, the ordering will contain
2D(v − u + 1

2)− 2 obstacles, and the solution can contain at most half of them,
that is at most D(v − u + 1

2)− 1 intervals – a contradiction.

Theorem 4. Problem IntvPack-Card is strongly NP-complete.

Proof. Let J be the instance of IntvPack-Card constructed above. It is suffi-
cient to prove the following claim: (∗) G has a vertex cover of size k if and only
if J has a solution. The proof mimics the proof of Theorem 3, “simulating” the
constraints from that proof using obstacle intervals.

(⇒) Suppose that U is a vertex cover of G of cardinality k. We define a solution
S of J . The bundle intervals in S are specified by the sets Sb of intervals selected
from each bundle b. Here, we simply let Sb = U for each b. This will give us kB
intervals. Since we choose the same k intervals from each bundle, these bundle
intervals will have weight at most k at each cut point. Next, we add to S all BD
plain obstacles in central slots. Finally, for each bundle b ≤ B − 1, we proceed
as follows: We add to S all plain obstacles between λ′

b and λb+1. If ea = (u, v),
where u < v, is the edge associated with b, then either u ∈ U or v ∈ U . If u ∈ U

Caching Is Hard – Even in the Fault Model 205

then we add to S all α-obstacles between λ′
b and λb+1; otherwise we add to S

all β-obstacles in this range. The total number of obstacles between λ′
b and λb

will be nD, so, overall, we will have |S| = kB + BD + n(B − 1)D = �.
It remains to verify the bound on weight. Consider any γ. This γ is intersected

by at most one obstacle and at most k bundle intervals. If this obstacle is not
an α- or β-bottleneck, then its weight is k + 1, so w(cutγ(S)) ≤ k + (k + 1) =
W . Suppose that this obstacle is the α-obstacle (the case of the β-obstacle is
symmetric) between λ′

b and λb+1, where b is associated with an edge ea = (u, v),
for u < v. By the definition of S, since we included the α-bottleneck in S, we
must have u ∈ U . Further, by the definition of the α-bottleneck for b, we also
have tb,u < γ < sb+1,v – in other words, γ is not contained in any bundle interval
corresponding to u. Thus at most k − 1 bundle intervals intersect γ, implying
that w(cutγ(S)) ≤ k − 1 + (k + 2) = W .

(⇐) Now suppose that S is a solution for J . For any slot (σ, σ + 1), its
sub-intervals (σ, σ + 1

2) and (σ + 1
2 , σ + 1) will be called half-slots.

First, we argue that, for each half-slot between λ0 and λ′
B−1, S must contain at

least one obstacle that intersects this half-slot. Indeed, we have 2(λ′
B−1 − λ0) =

2[(n(B − 1) + n) − (n − 1)] = 2nB − 2n + 2 such half-slots, and each half-
slot can contribute at most D/2 obstacles to S; because obstacles have weight
k + 1 > W/2. If we had a half-slot that has no obstacle in S, the total number
of intervals in S (even if we include, generously, all bundle intervals) would be
at most (2nB − 2n + 2) ·D/2 + nB = nBD − nD + D + nB < �.

By the previous paragraph, S has at least one obstacle interval in each half-
slot. This implies that S contains at most k intervals from each bundle. Thus,
applying Lemma 3, we obtain the following:

(a) S has at most k intervals from each of the B bundles,
(b) S has at most D plain obstacles in each of the B central slots,
(c) S has at most nD obstacles (of type plain, α or β) in each of the B − 1

intervals between two consecutive central slots.

Since � = kB +BD +n(B− 1)D, S must contain the exact numbers of intervals
given above in each of the categories (a), (b) and (c).

The first important consequence of the observation above is that S contains
exactly k intervals from each bundle. Thus we can represent S, yet again, by
the sets Sb of intervals from each bundle b, and we will have |Sb| = k for all k.
Further, since, as we showed earlier, each half-slot contains an obstacle (actually,
many of them), we will also have Sb Sb+1 for b = 0, . . . , B − 1. By Lemma 2,
there will be a phase p where Spm = Spm+1 = · · · = Spm+m−1.

As before, we claim that U = Spm is a vertex cover. Recall that S contains
BD+n(B−1)D obstacle intervals. By Lemma 3, the only way this is possible is
when S contains at least one bottleneck in each range between λ′

b and λb+1, for
each bundle b = 0, . . . , B−1. Let ea = (u, v) ∈ E, where u < v, be any edge and
take the bundle b = pm + a in phase p associated with edge ea. Without loss of
generality, suppose that S contains the α-bottleneck between λ′

b and λb+1, that
is the interval (tb,u + 3/4D + g/D, tb,u + 3/4D + (g + 1)/D). Taking any γ from
this interval, this γ must be intersected by at most k−1 bundle intervals, which

206 M. Chrobak et al.

is possible only if u ∈ Sb = U . In other words, ea is covered by U . Since this
holds for any edge ea, we can conclude that U is a vertex cover of G.

6 Strong NP-Completeness of IntvPack-Weight

The idea is this: Change the size of the obstacles to p(n), for some large polyno-
mial p(). As before, the bottlenecks are 1 unit higher, p(n) + 1. Now let’s take
W = p(n) + k and L = kB + M , where M is the total weight of plain obstacles
plus the total weight of all alpha-obstacles. Since p(n) is large, any solution must
take the maximum number of obstacles, which gives us the same constraint as
before, and the rest of the argument remains the same.

Theorem 5. Problem IntvPack-Weight is strongly NP-complete. ��

Acknowledgements

This project was carried out, in part, at the workshop on ‘Adaptive, output-
sensitive, on-line, and parameterized algorithms’, Schloss Dagstuhl, Germany,
April 19-24, 2009. M. Chrobak has been supported by the NSF Grant CCF-
0729071. G. Woeginger has been supported by the Netherlands Organisation for
Scientific Research (NWO), grant 639.033.403, and by BSIK grant 03018.

References

1. Albers, S., Arora, S., Khanna, S.: Page replacement for general caching problems.
In: Proc. 10th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA 1999),
pp. 31–40 (1999)

2. Bar-Noy, A., Bar-Yehuda, R., Freund, A., Naor, J., Schieber, B.: A unified approach
to approximating resource allocation and scheduling. Journal of the ACM 48, 1069–
1090 (2000)

3. Belady, L.A.: A study of replacement algorithms for virtual-storage computer. IBM
Systems Journal 5, 78–101 (1966)

4. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press, Cambridge (1998)

5. Chrobak, M., Karloff, H.J., Payne, T.H., Vishwanathan, S.: New results on server
problems. SIAM Journal on Discrete Mathematics 4, 172–181 (1991)

6. Fiat, A.: Unpublished manuscript (1997)
7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory

of NP-Completeness. Freeman, San Francisco (1979)
8. Irani, S.: Page replacement with multi-size pages and applications to web caching.

Algorithmica 33, 384–409 (1997)
9. Young, N.E.: On-line file caching. Algorithmica 33, 371–383 (1998)

10. Brehob, M., Wagner, S., Torng, E., Enbody, R.: Optimal replacement is NP-hard
for non-standard caches. IEEE Trans. Computers 53, 73–76 (2004)

Superselectors: Efficient Constructions and

Applications

Ferdinando Cicalese and Ugo Vaccaro

Department of Computer Science and Applications “R.M. Capocelli”
University of Salerno, via Ponte don Melillo, 84084 Fisciano, Italy

Abstract. We introduce a new combinatorial structure: superselectors.
We show that superselectors subsume several important combinatorial
structures used in the past few years to solve problems in group testing,
compressed sensing, multi-channel conflict resolution and data security.
We prove close upper and lower bounds on the size of superselectors and
we provide efficient algorithms for their constructions. Albeit our bounds
are very general, when they are instantiated on the combinatorial struc-
tures that are particular cases of superselectors (e.g., (p, k, n)-selectors
[15], (d, �)-list-disjunct matrices [25], MUTk(r)-families [28], FUT (k, α)-
families [2], etc.) they match the best known bounds in terms of size
of the structures (the relevant parameter in the applications). For ap-
propriate values of parameters, our results also provide the first efficient
deterministic algorithms for the construction of such structures.

1 Introduction

It is often the case where understanding and solving a problem means discov-
ering the combinatorics at the heart of the problem. Equally time and again
it happens that the crucial step towards the economical solution of problems
arising in different areas hinges on the efficient construction of a same combi-
natorial object. An interesting example is that of superimposed codes [26] (also
known as cover-free familes [20], strongly selective families [10], disjunct matrices
[16], ...). Superimposed codes represent the main tool for the efficient solution of
several problems arising in compressed sensing [11], cryptography and data secu-
rity [27], computational biology [3], multi-access communication [36], database
theory [26], pattern matching [24,34,32], distributed colouring [29], and circuit
complexity [4], among the others. Due to their importance, a lot of efforts has
been devoted to the design of fast algorithms for the construction of superim-
posed codes of short length. In this line of research a main result is the paper
by Porat and Rotschild [33] who presented a very efficient polynomial time al-
gorithm for that purpose. More recently, Indyk et al. [25] showed that optimal
nonadaptive group testing procedure (i.e, superimposed codes) can be efficiently
constructed and decoded.

In the past few years it has also become apparent that combinatorial structures
strictly related to superimposed codes lie at the heart of an even more vast series
of problems. As quick examples, the selectors introduced in [9] were instrumental

M. de Berg and U. Meyer (Eds.): ESA 2010, Part I, LNCS 6346, pp. 207–218, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

208 F. Cicalese and U. Vaccaro

to obtain fast broadcasting algorithms in radio networks, the (p, k, n)-selectors
of [15] were the basic tool for the first two-stage group testing algorithm with
an information theoretic optimal number of tests, the (d, �)- disjunct matrices
of [25] were a crucial building block for the efficiently decodable non-adaptive
group testing procedures mentioned above.

It is the purpose of this paper to introduce superselectors, a new combinatorial
object that encompasses and unifies all of the combinatorial structures mentioned
above (and more). We provide efficient methods for their constructions and apply
their properties to the solutions of old and new problems for which constructive
solutions have not been shown so far. In particular, superselectors extend at
the same time superimposed codes and several different generalizations of theirs
proposed in the literature.

When appropriately instantiated, our superselectors asymptotically match the
best known constructions of (p, k, n)-selectors [15], (d, �)-list-disjunct matrices
[25], monotone encodings and (k, α)-FUT families [31,2], MUTk(r)-families for
multiaccess channel [28,1]. In some cases, e.g., for (p, k, n)-selectors and (d, �)-
list-disjunct matrices, we also improve on the multiplicative constant in the O
notation. We show that optimal size superselectors (and hence all the above
structures) can be easily constructed in time polynomial in n, the main dimen-
sion of the structure, though exponential in the second parameter p. This might
be satisfying in those applications, e.g., computational biology, where p, n. A
major open question is whether it is possible to deterministically obtain optimal
size superselectors (or even selectors) in time subexponential in p. However, in
cases when p is constant we note that our results provide the first known poly-
nomial construction of optimal size (p, k, n)-selectors (and related structures).

It should be also noticed that selectors, and similar combinatorial structures,
generally have to be computed only once, since they can be successively used in
different contexts without the need to recompute them from scratch. Therefore,
it seems to make sense (and in absence of better alternatives) to have onerous
algorithms that output structures of optimal size, (the crucial parameter that
will affect the complexity of algorithms that uses selectors and the like structures
in different scenarios) than more efficient construction algorithms that produce
structures of suboptimal size. This brings us to another question. Most of the
structures mentioned above, and subsumed by our superselectors, can also be
obtained via expander graphs, or equivalently, randomness extractors. However,
to the best of our knowledge, the best known explicit expander-based construc-
tions give only suboptimal (w.r.t. to the size) selector-like structures. Table 1
summarizes how our results compare to the state of the art. The bounds are re-
ported as they were given in the original papers, thus producing a slight level of
difformity. However, if with this choice we might be requiring the reader to put
a little bit of effort in the comparisons, we are not risking mistranslations of the
bounds from one notation into another. The main aim of the data in the table is
to show that the generalization provided by the superselectors in no case implies
a loss in terms of optimality of the structure size. In addition, the number of

Superselectors: Efficient Constructions and Applications 209

Table 1. Bounds attained via super-selectors against best known bounds

Structure Lower Bounds on the Size Our Upper Bounds on the Size ,Old Upper Bounds on the Size,
construction time construction time

(p, k, n)-sel.
Ω

(
p2

p−k+1
log(n/p)

log p
p−k+1+O(1)

)
[7,15] 2p2

p−k+1
log n

p
(1 + o(1)) p2

p−k+1
polylog(n), time: poly(n) [7]

time: O(np+1 log n) ep2

p−k+1
log n

p
+ ep(2p−1)

p−k+1
, time: EXP (n) [15]

(d, �)-list
d log

(
n

e(d+�−1)

)
if d < 2� O

(
2d log n

2d

)
, d < � O

(
2(d+�) log n+log (d+�

d)
�

d+� (
d

d+�)
d/�

)
,

d2

4� log ed2
4�

log
n−2�− d

2
ed2 if d ≥ 2� [15] O

(
(d+�)2

�
log n

d+�

)
, d ≥ � time: poly

((
d+�

d

)
, nd+�, 2d+�,

(d
d+�)

− d
�

�
d+�

)
[25]

time: O(nd+min{�,d}+1 log n)

MUTk(p) Ω
(
max{k2, p} log n

p

)
[28] O((p + k2) log n

p
) O((p + k2) log n

p
), non-constructive [1]

time: O(np+1 log n)

(p, α)-FUT p
(1−α) log

p
1−α

log n [2] p
(1−α)

log n
p

p
(1−α)

log n
p
, non-constructive [2]

time: O(np+1 log n)

p-cover free

(
p2

2 log p
log n

p

)
(1+o(1)) [17] ep2

log e
log n

p
(1+o(1)) p(p + 1) log e log n

p
, non-constructive [18,6]

time: O(np+1 log n)
Θ(p2 log n), time: Θ(pn log n) [33].

(p,v, n)-sel. maxj
j2

j−vj+1
log(n/j)

log j
j−vj+1+O(1)

maxj=1,...,p{min{ j2

log2 e
, 3pej

j−vj+1
} log n

j
}

applications of superselectors we shall present in Section 3 seems to suggest that
they represent a basic structure, likely to be useful in many contexts.

2 The (p, v, n)-super-selector

Given two vectors x,y ∈ {0, 1}n, we denote with x ⊕ y the Boolean sum of x
and y, i.e., their componentwise OR. Given an m× n binary matrix M and an
n-bit vector x, we denote by M -x the m-bit vector obtained by performing the
Boolean sum of the columns of M corresponding to the positions of the 1’s in
x. That is, if x has a 1 in positions, say 3, 7, 11, . . . , then M - x is obtained by
performing the ⊕ of the 3rd, 7th, 11th, . . . , column of M. Given a set S ⊆ [n],
we use M(S) to denote the submatrix induced by the columns with index in S.
Also we use aS to indicate the Boolean sum of the columns of M(S). Given two
n-bit vector x,y we say that x is covered by y if xi ≤ yi, for each i = 1, . . . , n.
Note that if x is not covered by y then it means that x has a 1 in a position in
which y has a 0.

We first recall the definition of (p, k, n)-selector, as given in [15]. A (p, k, n)-
selector is an m×n binary matrix such that for any subset S of p ≤ n columns,
the submatrix M(S) induced by S contains at least k ≤ p rows of the identity
matrix Ip. The parameter m is the size of the selector.

Definition 1. Fix integersn, p,with p ≤ n and an integer vector,v = (v1, . . . , vp),
such that vi ≤ i, for each i = 1, . . . , p. We say that an m× n binary matrix M
is a (p,v, n)-super-selector if M is a (i, vi, n)-selector for each i = 1, . . . , p.
We call m the size of the super-selector.

Our main result on super-selectors is summarized in the following theorem,
whose proof will be given in Sections 4.

210 F. Cicalese and U. Vaccaro

Theorem 1. A (p,v, n)-super-selector of size

m = O(max
j=1,...,p

kj log(n/j)), where kj = min
{

3pej
(j − vj + 1)

,
ej2

log2 e

}
can be constructed in time polynomial in n and exponential in k.

The “identification” capability of a super-selector are as follows.

Lemma 1. Let M be a (p,v, n)-super-selector, v = (v1, . . . , vp). Let S be
any set of x < vp columns of M. Let aS denote the Boolean sum of the columns
in S. Then, from aS it is possible to identify at least vx+y of the columns in S,
where y is the number of columns of M which are not in S but are covered by
aS . Moreover, y < min{j | x < vj} − x.

Proof. Let T = {b | b 	∈ S and b ⊕ aS = aS}, i.e., T is the set of columns not
in S but covered by aS . Then, y = |T |. We first prove the last statement.

Claim. y < min{j | vj > x} − x. Let j∗ be a value of j achieving the minimum.
The claim is a consequence of M being a (j∗, vj∗ , n)-selector. To see this, assume,
by contradiction, that |T | ≥ j∗ − x. Let T ′ ⊆ T and |T ′ ∪ S| = j∗. Then, there
are at least vj∗ > |S| columns in T ′ ∪ S with a 1 in a row where all the other
columns have a 0. Thus, there is at least one column of T ′ which has a 1 where
all the column of S have a 0. This contradicts the fact that all the columns of T
(and hence of T ′) are covered by aS .

Since x+y < j∗ ≤ p, and M is an (x+y, vx+y, n)-selector, among the columns
of S ∪ T there are at least vx+y which have a 1 where all the others have a 0.
Let W be such set of columns. By an argument analogous to the one used in the
claim we have that W ⊆ S and we can identify them. ��

Remark 1. Notice that if vi > vi−1, for each i = 2, . . . , p, then we have a situation
that, at a first look, might appear surprising: the larger is the number of spurious
elements, i.e., columns not in S but covered by aS , the more information we get
on S, i.e., the more are the columns of S that are identified.

Remark 2. The same argument used in the proof above shows that Lemma 1
also holds when aS is the component-wise arithmetic sum of the columns in S.

3 Applications of the super-selectors

Approximate Group Testing. In classical non-adaptive group testing [16], we
want to identify a subset P ⊆ [n], with |P | ≤ p, by using the minimum possible
set of tests T1, . . . , Tm, where for each i = 1, . . . ,m, we have Ti ⊆ [n]. The
outcome of test Ti is a bit which is 1 iff Ti ∩P 	= ∅. If we require that the whole
P is identified exactly, and non-adaptively, then it is known that Ω(p2

log p log n
p)

tests are necessary [16].
Cheraghchi [8], in the context of error-resilient group testing, Gilbert et al.

[22], in the context of sparse signal recovery, and Alon and Hod [2] considered

Superselectors: Efficient Constructions and Applications 211

the case when one is interested in identifying some approximate version of P. It
turns out [8] that at least p log n

p −p−e0−O(e1 log n−p−e0
e1

) tests are necessary if
one allows the identification algorithm to report a set P ′, such that |P ′ \P | ≤ e0
and |P \P ′| ≤ e1. In other words, the algorithm can report up to e0 false positives
and up to e1 false negatives.

Let M be an appropriate (p + e0,v, n)-super-selector, with the compo-
nents of vector v defined by vi = i −min{e0, e1} + 1. We can use M to attain
approximate identification in the above sense. Proceeding in a standard way,
map [n] to the indices of the columns of the super-selector and interpret the
rows of the super-selector as the indicator vectors of the tests. Now the vector
of the outcomes of the tests is the Boolean sum aP of those columns whose
index is in P. Let P ′ be the set of the indices of the columns covered by aP .
We have P ⊆ P ′ and by Lemma 1 also |P ′| ≤ |P |+ e0. Moreover, from Lemma
1 we also know that a set of positives P ′′ ⊆ P can be exactly identified, with
|P ′′| ≥ |P | − e1. Therefore, any set P ∗ with P ′′ ⊆ P ∗ ⊆ P ′ satisfies the bounds
on the false positives and false negatives.

Note that, for the interesting case of e0, e1 = Θ(p), the above group testing
strategy is best possible since it uses O(p log n

p) tests which matches the lower
bound of [8]. Cheraghchi [8] considers the case when some tests migh be erroneous
and only focuses on the case of zero false negatives. Alon and Hod [2] consider
the case of zero false positives and obtain O(p log(n/p)) tests procedures, which
are in fact optimal for this case. Gilbert et al. [22] allow both false positives
and false negatives but their procedures uses O(p log2 n) tests. Moreover, our
implementation guarantees the exact identification of at least p′−min{e0, e1}+1
positives, where p′ ≤ p is the actual number of positive elements.

Additive Group Testing. We now consider exact group testing with additive
tests. In this variant, the outcome of testing a subset Ti is the number of positives
contained in Ti, i.e., the integer |Ti ∩ P |.

It is known that Ω(p
log p log n

p) tests are necessary if we want to exactly identify
P using additive tests (see, e.g., [23] and references therein).

Proceeding analogously to the case of Approximate Group Testing, we can
reformulate the additive group testing problem as follows: given positive integers
n and p < n, minimize the number m of rows of an m × n 0-1 matrix M such
that any set P of up to p columns of M can be identified from their sum1aP .

Let M be an appropriate (2p,v, n)-super-selector, with the components of
vector v defined by vi = i, for i = 1, . . . ,

√
p and vi = � i

2�+ 1, for
√

p < i ≤ 2p.
We show that M provides a non-adaptive strategy for additive group testing
with O(p log(n/p)) tests.

If |P | <
√

p, using the fact that v|P |+1 = |P | + 1, Lemma 1 and Remark 2
imply that from aS we can identify the whole set P.

If, otherwise, |P | ≥ √p, by using the fact that v2|P | > |P |, by Lemma 1 and
Remark 2, from aP we can uniquely identify a subset R of P, such that |R| ≥ p/2
and confine the elements of P1 = P \ R into a set S1 such that |S1| ≤ p. In

1 Here sum is meant in the arithmetic way, i.e., z = x + y iff zi = xi + yi, for each i.

212 F. Cicalese and U. Vaccaro

particular S1 ∪ R is the set of all columns of M which are component-wise not
larger than aP .

Now, let aP1 = aP −
∑

i∈R ci, where ci denotes the ith column of M and the
additions and subtractions among vectors are meant component-wise. Clearly,
aP1 is the sum of P1, i.e., the columns that are still to be identified. Note also
that aP1 can be computed from aP and the set R of identified columns without
any additional test.

We have now a smaller instance of the same problem from which we started,
namely identifying the columns of P1, among the ones in M(S1 \R), from their
sum aP1 . Also notice that Lemma 1 still applies to the columns of M(S1 \ R).
Therefore, repeatedly using the above argument we can eventually identify the
whole set P. Again, no additional tests are required since we reinterpret, so to
speak, the tests outcomes in light of new acquired knowledge.

Finally, by Theorem 1 a super-selector M of size O(p log n
p) can be con-

structed in time O(np), which gives the desired result. We hasten to remark
that in [23] Grebinsky and Kucherov prove the existence of matrices M with an
optimal O(p

log p log n
p) number of rows for the Additive Group Testing described

above. However, it’s not clear whether their probabilistic construction can be
derandomized, and at which cost. We thought worthwhile to mention that our
combinatorial tool gives, for free, a solution to the Additive Group Testing prob-
lem using number of tests that differ from the optimal one for only a factor of
log p.

Monotone Encodings. Moran et al. posed the problem of efficiently construct-
ing (n, k)-monotone encodings of size r, (denoted by ME(n, k, r)), i.e., monotone
injective functions mapping subsets of [n], of size up to k, into 2[r] [31]. Monotone
encodings are relevant to the study of tamper-proof data structures and arise also
in the design of broadcast schemes in certain communication networks A simple
counting argument shows that ME(n, k, r) can only exist for r = Ω(k log n/k).
We can use our super-selector for obtaining ME(n, k,O(k log n/k)) in the
following way. Let M [t] denote the (t,v, n)-super-selector defined by the vec-
tor v whose ith component is vi = !i/2" + 1 for each i = 1, . . . , t. By Lemma
1, we have that for any S ⊆ [t/2], from aS we can identify at least |S|/2 of the
columns in M [t](S). Let Syes (resp. Sno be the subset of these columns which
we can (resp. cannot) identify from aS .

We can obtain our mapping in the following way. Given S0 ∈
([n]
≤k

)
, we map it

to the concatenation of the vectors a0a1, . . . , ..., alog k, where ai is the Boolean
sum of the columns of M [k/2i−1](Si), with Si = Sno

i−1.

The mapping is of size
∑log k

j=0
2k
2j log n2j

2k = O(k log n/k), therefore of opti-
mal size. Moreover, by observing that for each S ⊆ T we have aS ≤ aT and
Sno ⊆ T no, we also have that the mapping is monotone. By our Theorem 1 such
mapping can be deterministically computed in O(nk)-time.

Alon and Hod [2] defined (k, α)-FUT families in order to obtain
ME(n, k,O(k log n

k)) in a way analogous to the one we depicted above, i.e, by

Superselectors: Efficient Constructions and Applications 213

chaining (k
2t ,

1
2)-FUT families2 of cardinality n for t = 0, 1, . . . , log k. However,

for optimal, i.e., O(k log n/k)-size monotone encodings no explicit deterministic
construction has been provided so far [2,31].
Selector-based data compression. Let M be a (p + 1, 2p, n)-selector of size
m = O(p log(n/p)). Let x be a binary vector with ||x||0 ≤ p. Define the en-
coding of x as the vector y equal to the componentwise OR of columns of
M corresponding to the positions of the 1’s in x. Let xi1 , . . . , xid

, d ≤ p, be
all the components of x such that xi1 = . . . = xid

= 1. By Lemma 1, there
exist at most t other columns mj1 , . . . ,mjt of matrix M , t ≤ p, such that
y = mj1 ∨ . . . ∨mjt ∨mi1 ∨ . . . ∨mid

.
Now, think of an “encoder” that works as follows: for a given vector x it first

computes its encoding y, then it computes A = {i1, . . . , id}, B = {j1, . . . , jt},
and subsequently it computes an ordered list L from A∪B. Finally, the encoder
computes a binary vector z of length 2p such that zk = 1 if and only if the
k-th element of the ordered list L is an element of A. The encoding of x is now
the concatenated binary vector yz of length O(p log(n/p))+2p = O(p log(n/p)).
One can see that x can be (efficiently) recovered from yz and that the length of
the encoding yz of x is information theoretically optimal.

An extension of the above reasoning can be carried out also to a scenario
where x is generated by a probabilistic source, provided that Pr{||x||0 > p}
goes to zero as the length n of x grows.

The above encoding procedure has some features which might be of some in-
terest in the area of data compression. Specifically, it does not require construc-
tion of code dictionary, nor it is based on statistical analysis of the sequences to
be compressed. Moreover, the encoding/decoding procedure only involves sim-
ple operations on Boolean vectors (OR’s of them and checks for containments),
which leads to fast implementation. Furthermore, the above procedure provides
a faster alternative for optimal size enumerative encoding of low-weight binary
sequences. [12,35]. In particular, for binary vectors of Hamming weight at most
d, our encoding/decoding procedures require time O(nd log(n/d)), whereas the
procedures given in [35] require time O(n log2 n log log n) for the encoding, and
time O(n log3 n log log n) for the decoding.
Tracing many users (or finding many positives). In [28] the authors in-
troduced k-out-of-r Multi User Tracing families, aka MUTk(r). A family F of n
many subsets of [m] is MUTk(r) if given the union of � ≤ p of the sets in F , one
is able to identify at least k of them, or all if � < k. Such definition is motivated
by applications in multiple access channel communication and DNA computing
(see [28] and references quoted therein).

In [1] it was proved that MUTk(r) families exist for m = O((r + k2) log n
r),

determining the maximum possible rate log n
m for all k ≤

√
r up to a constant

factor. Somehow surprisingly, in all this range the rate is Θ(1
r), independently

of k. However, no constructive proof of such “optimal” rate families has been
provided so far.
2 In fact, via super-selectors, we can provide constructions of optimal size (k, α)-

FUT families, for any 1/2 < α < 1 − 1
k
.

214 F. Cicalese and U. Vaccaro

We can use our super-selectors to match such result: Let M be a (2r,v, n)-
super-selector where the vector v = (v1, . . . , v2r) is defined by: vi = i for
i = 1, . . . , k; vi = k, for i = k + 1, . . . , 2r − 1, and v2r = r + 1.

First, we notice that M is a (k, k, n)-selector, i.e., a (k−1)-superimposed code,
hence every union of up to k−1 columns is unique. Moreover, for any k ≤ � ≤ r,
by Lemma 1 we have that at least k columns out of � can be identified by their
Boolean sum. These two properties show that the sets whose indicator vectors
coincide with the columns of M, form an MUTk(r) family. Therefore, Theorem
1 applied to M provides the best known bound on the size of MUTk(r) families,
i.e., the O(max{r, k2} log n/r) of [1]. Our main theorem also explicitly shows
that the result of [1] can be attained by a constructive O(nk) strategy.

The (d, �)-list disjunct matrices. Indyk et al. [25] studied (d, �)-list disjunct
matrix which are m × n binary matrix such that the following holds: for any
disjoint subsets S, T of columns, such that |S| ≤ d and |T | ≥ �, there exists a
row where there is a 1 among the columns in T, while all the columns in S have
a 0. Such structure was also considered in [14,15,19,8].

One can easily verify that a (d+ �, d+1, n)-selector is also a (d, �)-list disjunct
matrix. As a consequence, our Lemma 3 (below) provides improved bounds on
construction of (d, �)-list disjunct matrices3 compared to the ones given in [25].

For any d ≥ �, by using (d + �, d + 1, n)-selector, we obtain (d, �)-list dis-
junct matrices of size O((d+�)2

� log n
�) for any constant d and �. This improves

on [25], particularly for d large compared to �. Also for � = Θ(d) and partic-
ularly for (d, d)-list disjunct matrices our bound compares favorably with the
O((d log n)1+o(1)) size bound given in [25] and the O(d1+o(1) log n)) size bound
given in [8]. Alternatively, for d < � one can see that a (2d, d + 1, n) selector
is also a (d, �)-list disjunct matrix. Such a selector can be constructed of size
O(d log n/d), in time n2d+o(1).

We remark that the above results on the size of (d, �)-list disjuct matrices via
selectors, are tight with respect to the lower bounds provided in [15, Theorem
2], as reported in Table 1.

4 Bounds on the Size of a (p, v, n)-super-selector

In this section we prove the bound on the size of a (p,v, n)-super-selector as
announced in Theorem 1. First we present an immediate lower bound following
from the ones of [7,15] on the size of (p, k, n)-selectors.

Theorem 2. The size of a (p,v, n)-super-selector has to be

Ω

(
max

j=1,...,p

j2

j − vj + 1
log(n/j)

log (j/(j − vj + 1)) + O(1)

)
.

3 Analogous bounds, in terms of size, are derivable from [15] via (p, k, n)-selectors.
However, their construction time is exponential in n.

Superselectors: Efficient Constructions and Applications 215

For the upper bound, we first give a proof based on the probabilistic method
and then derandomize it. We need the following two lemmas.

Lemma 2. There exists a (p,v, n)-super-selector of size

m = O

(
max

j=1,...,p

3pej
(j − vj + 1)

log(n/j)
)

.

Proof. Generate the m× n binary matrix M by choosing each entry randomly
and independently, with Pr(M [i, j] = 0) = (p− 1)/p = x. Fix an integer j ≤ p.

Fix S ∈
([n]

j

)
. For any subset R of j − vj + 1 rows of Ij let ER,S be the event

that the submatrix M(S) does not contain any of the (j− vj +1) rows of R. We
have

Pr(ER,S) =
(
1− (j − vj + 1)xj−1(1− x)

)m
(1)

Let R1, . . . , Rt, t =
(

j
j−vj+1

)
be all possible subsets of exactly j − vj + 1 rows

of the matrix Ij , and let NS be the event that, for some index i ∈ {1, . . . , t},
the sub-matrix M(S) does not contain any of the rows of the subset Ri. By the
union bound we have

Pr(NS) = Pr

(
t∨

i=1

ERi,S

)
≤
(

j

j − vj + 1

)(
1− (j − vj + 1)xj−1(1− x)

)m
(2)

One can see that NS coincides with the the event that the sub-matrix M(S)
contains strictly less than vj rows of Ij . To see this, it is enough to observe that
if M(S) contains less than vj rows of Ij it means that there is some i such that
M(S) does not contain any of the rows in Ri.

Let YM denote the event that the matrix M is a (p,v, n)-super-selector.
We can use again the union bound to estimate the probability of the negated
event YM . If M is not a (p,v, n)-super-selector then there exists an integer
j ∈ [p] such that for some S ∈

([n]
j

)
the event NS happens. Therefore,

Pr(YM) = Pr

⎛⎜⎝ p∨
j=1

∨
S∈([n]

j)
NS

⎞⎟⎠ ,

whence, we obtain:

Pr(YM) ≥ 1−
p∑

j=1

(
n

j

)(
j

j − vj + 1

)(
1− (j − vj + 1)xj−1(1− x)

)m
. (3)

By the probabilistic method, there exists a (p,v, n)-super-selector of size
m∗ = argminm≥1 Pr(YM) > 0. The rest of the proof will consist in showing that
m∗ satisfies the bound claimed.

Let us focus on the value cj such that the j-th summand in (3) satisfies the
following inequality(

n

j

)(
j

j − vj + 1

)(
1− (j − vj + 1)xj−1(1− x)

)cjj log n/j ≤ 1/p (4)

216 F. Cicalese and U. Vaccaro

We shall use the following two inequalities

(
1− (j − vj + 1)xj−1(1− x)

)cjj log(n/j) ≤
(

n

j

)− (j−vj+1)cj j

ep

(5)

(
n

j

)(
j

j − vj + 1

)
≤ nj2

j
2 e

3j
2 j−j (6)

By (5)-(6), we have that the left-hand-side of (4) can be upper bounded by

nj− cj(j−vj+1)j

pe 2
j
2 e

3j
2 j

−
(

j− cj(j−vj+1)j

pe

)
= nj− cj(j−vj+1)j

pe 2
j
2 e

3j
2 j−j+

cj(j−vj+1)j

pe ,
(7)

Therefore, if we take cj = 3pe
(j−vj+1) we have that (7) can be further upper

bounded with n−2je2jj2j which is not larger than 1/p for all n ≥ 20 and n >
p ≥ j > 0. Therefore, by taking

m = max
j=1,...,p

cj log(n/j) = max
j=1,...,p

3pej
(j − vj + 1)

log
n

j
(8)

we can have each of the summands in (3) smaller than 1/p, hence guaranteeing
Pr(YM) > 0. By definition m∗ ≤ m which concludes the proof. ��

The same analysis as above, tailored for a (p, k, n)-selector gives the following
bounds.

Lemma 3. For each 0 ≤ k < p < n, there exists a (p, k, n)-selector of size

m =

(
log2

e

e− 1 + k
p

)−1

p log
n

p
(1 + o(1)) ≤ 2p2

p− k + 1
log

n

p
(1 + o(1)) . (9)

Moreover, there exists a (p, p, n)-selector of size m =
ep2

log2 e
log(n/p) (1 + o(1)).

We can now combine the last two lemmas to obtain the main result of this section,
providing an almost tight upper bound on the size of a super-selector.

Theorem 3. There exists a (p,v, n)-super-selector of size

m = O(max
j=1,...,p

kj log(n/j)), where kj = min
{

3pej
(j − vj + 1)

,
ej2

log2 e

}
Proof. Fix k = max

{
j | 3pej

(j−vj+1) > ej2

log2 j

}
. Let M1 be a minimum size (k, k, n)-

selector. In particular this is a (k,< 1, 2, . . . , k >, n)-super-selector hence a
fortiori it is also a (k, (v1, . . . , vk), n)-super-selector.

Let M2 be a minimum size (p, (0, . . . , 0, vk+1, . . . , vp), n)-super-selector.
Let M be the binary matrix obtained by pasting together, one on top of the

other, M1 and M2. It is not hard to see that M is a (p,v, n)-super-selector.
By Lemmas 3 and 2, M satisfies the desired bound. The proof is complete. ��

Superselectors: Efficient Constructions and Applications 217

Remark 3. Note that, if there exists a constant α such that vj ≤ αj for each√
p < j ≤ p, then the size of the super-selector is O(p log n

p), matching the
information theoretic lower bound. Particular cases are given by instances where
for each j, we have vj = fj(j) for some function fj such that fj(j) = o(j).

Deterministic construction. By using the method of the conditional expec-
tations (see, e.g., [30]) we can derandomize the result of the previous section and
provide a deterministic construction of the (p,v, n)-super-selector of Theo-
rem 3 which is polynomial in n but exponential in the second parameter p. More
precisely we obtain the following result, whose proof is deferred to full version
of the paper.

Theorem 4. There exists a deterministic O
(
p3np+1 log n

)
construction of the

(p,v, n)-super-selector given by Theorem 3.

References

1. Alon, N., Asodi, V.: Tracing many users with almost no rate penalty. IEEE Trans.
on Information Theory 53(1), 437–439 (2007)

2. Alon, N., Hod, R.: Optimal Monotone Encodings. IEEE Trans. on Information
Theory 55(3), 1343–1353 (2009)

3. Balding, D.J., et al.: A comparative survey of non-adaptive pooling design. In:
Speed, T.P., Waterman, M.S. (eds.) Genetic mapping and DNA sequencing, IMA
Volumes in Mathematics and its Appl., pp. 133–154. Springer, Heidelberg (1996)

4. Chaudhuri, S., Radhakrishnan, J.: Deterministic restrictions in circuit complexity.
In: Proc. of 28th STOC, pp. 30–36 (1996)

5. Cheng, Y., Du, D.Z.: New Constructions of One- and Two-Stage Pooling Designs.
Journal of Computational Biology 15(2), 195–205 (2008)

6. Cheng, Y., Du, D.Z., Lin, G.: On the upper bounds of the minimum number of
rows of disjunct matrices. Optimization Letters 3, 297–302 (2009)

7. Chlebus, B.S., Kowalski, D.R.: Almost Optimal Explicit Selectors. In: Lískiewicz,
M., Reischuk, R. (eds.) FCT 2005. LNCS, vol. 3623, pp. 270–280. Springer, Hei-
delberg (2005)

8. Cheraghchi, M.: Noise-resilient group testing: Limitations and constructions. In:
Proc. of FCT 2009 (2009)

9. Chrobak, M., Gasieniec, L., Rytter, W.: Fast Broadcasting and Gossiping in Radio
Networks. In: FOCS 2000, pp. 575–581 (2000)

10. Clementi, A.E.F., Monti, A., Silvestri, R.: Selective families, superimposed codes,
and broadcasting on unknown radio networks. In: Proc. of Symp. on Discrete Al-
gorithms (SODA 2001), pp. 709–718 (2001)

11. Cormode, G., Muthukrishnan, S.: Combinatorial Algorithms for Compressed Sens-
ing. In: Flocchini, P., G ↪asieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp.
280–294. Springer, Heidelberg (2006)

12. Cover, T.: Enumerative source encoding. IEEE Trans. Inf. Th. 19, 73–77 (1973)
13. Damaschke, P.: Adaptive versus Nonadaptive Attribute-Efficient Learning. In:

STOC 1998, pp. 590–596 (1998)
14. De Bonis, A., Vaccaro, U.: Constructions of generalized superimposed codes with

applications to group testing and conflict resolution in multiple access channels.
Theoretical Computer Science 306, 223–243 (2003)

218 F. Cicalese and U. Vaccaro

15. De Bonis, A., Gasieniec, L., Vaccaro, U.: Optimal Two-Stage Algorithms for Group
Testing Problems. SIAM J. on Comp. 34(5), 1253–1270 (2005)

16. Du, D.Z., Hwang, F.K.: Pooling Design and Nonadaptive Group Testing. World
Scientific, Singapore (2006)

17. D’yachkov, A.G., Rykov, V.V.: Bounds of the length of disjunct codes. Problems
Control Inform. Theory 11, 7–13 (1982)

18. D’yachkov, A.G., Rykov, V.V., Rashad, A.M.: Superimposed distance codes. Prob-
lems Control Inform. Theory 18, 237–250 (1989)

19. Eppstein,D.,Goodrich,M.T.,Hirschberg,D.S.: ImprovedCombinatorialGroupTest-
ingAlgorithmsforReal-WorldProblemSizes.SIAMJ.onComp.36,1360–1375(2007)

20. Erdös, P., Frankl, P., Füredi, Z.: Families of finite sets in which no set is covered
by the union of r others. Israel J. of Math. 51, 75–89 (1985)

21. Ganguly, S.: Data stream algorithms via expander graph. In: Hong, S.-H., Nag-
amochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 52–63. Springer,
Heidelberg (2008)

22. Gilbert, A.C., Iwen, M.A., Strauss, M.J.: Group Testing and Sparse Signal Recovery.
In: 42nd Asilomar Conf. on Signals, Systems, and Computers, pp. 1059–1063 (2008)

23. Grebinsky, V., Kucherov, G.: Optimal Reconstruction of Graphs under the Additive
Model. Algorithmica 28(1), 104–124 (2000)

24. Indyk, P.: Deterministic superimposed coding with application to pattern match-
ing. In: Proc. of 39th FOCS 1997, pp. 127–136 (1997)

25. Indyk, P., Ngo, H.Q., Rudra, A.: Efficiently Decodable Non-adaptive Group Test-
ing. In: Proc. of 20th SODA, pp. 1126–1142 (2010)

26. Kautz, W.H., Singleton, R.R.: Nonrandom binary superimposed codes. IEEE
Trans. on Inform. Theory 10, 363–377 (1964)

27. Kumar, R., Rajagopalan, S., Sahai, A.: Coding constructions for blacklisting prob-
lems without computational assumptions. In: Wiener, M. (ed.) CRYPTO 1999.
LNCS, vol. 1666, pp. 609–623. Springer, Heidelberg (1999)

28. Laczay, B., Ruszinkó, M.: Multiple User Tracing Codes. In: Proc. of ISIT 2006, pp.
1900–1904 (2006)

29. Linial, N.: Locality in distributed graph algorithms. SIAM J. on Computing 21,
311–312 (1992); Discrete Mathematics 162, 311-312 (1996)

30. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, Cambridge (2005)

31. Moran, T., Naor, M., Segev, G.: Deterministic history-independent strategies for
storing information on write-once memories. In: Arge, L., Cachin, C., Jurdziński,
T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 303–315. Springer, Hei-
delberg (2007)

32. Porat, B., Porat, E.: Exact and Approximate Pattern Matching in the Streaming
Model. In: Proc. 50th FOCS, pp. 315–323 (2009)

33. Porat, E., Rothschild, A.: Explicit non-adaptive combinatorial group testing
schemes. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdót-
tir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 748–759.
Springer, Heidelberg (2008)

34. Clifford, R., Efremenko, K., Porat, E., Rothschild, A.: k-Mismatch with Don’t
Cares. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698,
pp. 151–162. Springer, Heidelberg (2007)

35. Ryabko, B.: Fast Enumerative Source Conding. In: Proc. of 1995 IEEE Intern.
Symp. on Inf. Th., p. 395 (1995)

36. Wolf, J.: Born again group testing: Multiaccess Communications. IEEE Trans.
Information Theory 31, 185–191 (1985)

Estimating the Average of a

Lipschitz-Continuous Function from One Sample

Abhimanyu Das and David Kempe

University of Southern California
{abhimand,dkempe}@usc.edu

Abstract. We study the problem of estimating the average of a Lips-
chitz continuous function f defined over a metric space, by querying f at
only a single point. More specifically, we explore the role of randomness
in drawing this sample. Our goal is to find a distribution minimizing
the expected estimation error against an adversarially chosen Lipschitz
continuous function. Our work falls into the broad class of estimating ag-
gregate statistics of a function from a small number of carefully chosen
samples. The general problem has a wide range of practical applications
in areas such as sensor networks, social sciences and numerical analysis.
However, traditional work in numerical analysis has focused on asymp-
totic bounds, whereas we are interested in the best algorithm. For arbi-
trary discrete metric spaces of bounded doubling dimension, we obtain a
PTAS for this problem. In the special case when the points lie on a line,
the running time improves to an FPTAS. For Lipschitz-continuous func-

tions over [0, 1], we calculate the precise achievable error as 1−
√

3
2

, which
improves upon the 1

4
which is best possible for deterministic algorithms.

1 Introduction

One of the fundamental problems in data-driven sciences is to estimate some
aggregate statistic of a real-valued function f , by sampling f in few places.
Frequently, obtaining samples incurs a cost in terms of computation, energy
or time. Thus, researchers face an inherent tradeoff between the accuracy of
estimating the aggregate statistic and the number of samples required. With
samples a scarce resource, it becomes an important problem to determine where
to sample f , and how to post-process the samples.

Naturally, there are many mathematical formulations of this estimation prob-
lem, depending on the aggregate statistic that we wish to estimate (such as the
average, median or maximum value), the error objective that we wish to min-
imize (such as worst-case absolute error, average-case squared error, etc.), and
on the conditions imposed on the function. In this paper, we study algorithms
optimizing a worst-case error objective, i.e., we assume that f is chosen adversar-
ially. Motivated by the applications described below, we use Lipschitz-continuity
to impose a “smoothness” condition on f . (Note that without any smoothness
conditions on f , we cannot hope to approximate any aggregate function in an
adversarial setting without learning all function values.) That is, we assume that

M. de Berg and U. Meyer (Eds.): ESA 2010, Part I, LNCS 6346, pp. 219–230, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

220 A. Das and D. Kempe

the domain of f is a metric space, and that f is Lipschitz-continuous over its
domain. Thus, nearby points are guaranteed to have similar function values.

Here, we focus on perhaps the simplest aggregation function: the average f .
Despite its simplicity, it has many applications. For example, in sensor networks
covering a geographical area, the average of a natural phenomenon (such as
temperature or humidity) is frequently one of the most interesting quantities.
Here, nearby locations tend to yield similar measurements. Since energy is a
scarce resource, it is desirable to sample only a few of the sensors. Another
application is in numerical analysis, where one of the fundamental problems is
numerical integration of a function. If the domain is continuous, this corresponds
precisely to computing the average. If the function to be integrated is costly to
evaluate, then again, it is desirable to sample a small number of points.

If f is to be evaluated at k points, chosen deterministically and non-adaptively,
then previous work [4] shows that the optimum sampling locations for estimating
the average of f form a k-median of the metric space. However, the problem
becomes significantly more complex when the algorithm gets to randomize its
choice of sampling locations. In fact, even the seemingly trivial case of k = 1
turns out to be highly non-trivial, and is the focus of this paper. Addressing
this case is an important step toward the ultimate goal of understanding the
tradeoffs between the number of samples and the estimation error.

Formally, we thus study the following question: Given a metric space M,
a randomized sampling algorithm is described by (1) a method for sampling
a location x ∈ M from a distribution p; (2) a function g for predicting the
average f of the function f over M, using the sample (x, f(x)). The expected
estimation error is then E(p, g, f) =

∑
x∈M px · |g(x, f(x)) − f |. (The sum is

replaced by an integral, and p by a density, if M is continuous.) The worst-
case error is Ê(p, g) = supf∈L E(p, g, f), where L is the set of all 1-Lipschitz
continuous functions defined on M. Our goal is to find a randomized sampling
algorithm (i.e., a distribution p and function g, computable in polynomial time)
that (approximately) minimizes Ê(p, g).

In this paper, we provide a PTAS for minimizing Ê(p, g), for any discrete
metric space M with constant doubling dimension. (This includes constant-
dimensional Euclidean metric spaces.) For discrete metric spaces M embedded
on a line, we improve this result to an FPTAS. Both of these algorithms are based
on a linear program with infinitely many constraints, for which an approximate
separation oracle is obtained.

We next study the perhaps simplest variant of this problem, in which the
metric space is the interval [0, 1]. While the worst-case error of any deterministic
algorithm is obviously 1

4 in this case, we show that for a randomized algorithm,
the bound improves to 1−

√
3

2 . We prove this by providing an explicit distribu-
tion, and obtaining a matching lower bound using Yao’s Minimax Principle. Our
result can also be interpreted as showing how “close” a collection of Lipschitz-
continuous functions on [0, 1] can be.

Due to space constraints for this version, several discussions and proofs are
relegated to a full version, which will be available on the authors’ web sites.

Estimating the Average of a Lipschitz-Continuous Function 221

1.1 Related Work

Estimating the integral of a smooth function f using its values at a discrete set
of points is one of the core problems in numerical analysis. The tradeoffs between
the number of samples needed and the estimation error bounds have been inves-
tigated in detail under the name of Information Based Complexity (IBC) [10,11].
More generally, IBC studies the problem of computing approximations to an op-
erator S(f) on functions f from a set F (with certain “smoothness” properties)
using a finite set of samples N(f) = [L1(f), L2(f), . . . , Ln(f)]. The Li are func-
tionals. For a given algorithm U , its error is E(U) = supf∈F ‖S(f)− U(f)‖. The
goal in IBC is to find an ε-approximation U (i.e., ensuring that E(U) ≤ ε) with
least information cost c(U) = n.

One of the common problems in IBC is multivariate integration of real-valued
functions with a smoothness parameter r over d-dimensional unit balls. For
such problems, Bakhvalov [2] designed a randomized algorithm providing an
ε-approximation with cost Θ(1

n2d/(d+2r)). Bakhvalov [2], and later, Novak [9] also
show that this cost is asymptotically optimal. The papers by Novak [9] and
Mathe [7] show that if r = 0, then simple Monte-Carlo integration algorithms
(which sample from the uniform distribution) have an asymptotically optimal
cost of 1

ε2 . In [12,13], Wozniakowski studied the average case complexity of linear
multivariate IBC problems, and proved conditions under which the problems are
tractable, i.e., have cost polynomial in 1

ε and d.
In [3], Baran et al. study the IBC problem for univariate integration of

Lipschitz continuous functions, in an adaptive setting. That is, the sampling
strategy can change adaptively based on the previously sampled values. They
provide a deterministic and a randomized ε-approximation algorithm, which use
O(log(1

ε·OPT) ·OPT) and O(OPT4/3 +OPT · log(1
ε)) samples, respectively. Here,

OPT is the optimal number of samples for the problem instance. They prove
that their algorithms are asymptotically optimal.

There are two main differences between the results in IBC and our work:
first, IBC treats the target approximation as given and minimizes the number
of samples. Our goal is to minimize the expected worst-case error with a fixed
number of samples (one). More importantly, results in IBC are traditionally
asymptotic, ignoring constants. For a single sample, this would trivialize the
problem: it is implicit in our proofs that sampling at the metric space’s median
is a constant-factor approximation to the best randomized algorithm.

The deterministic version of our problem was studied previously in [4]. There,
it was shown that the best sampling locations for reading k values non-adaptively
are the optimal k-median of the metric space. Thus, the algorithm of Arya et
al. [1] gives a polynomial-time (3 + ε)-approximation algorithm.

2 Preliminaries

We are interested in real-valued Lipschitz-continuous functions over metric spaces
of constant doubling dimension (e.g., [6]). Let (M, d) be a compact metric
space with distances d(x, y) between pairs of points. W.l.o.g., we assume that

222 A. Das and D. Kempe

maxx,y∈M d(x, y) = 1. We require (M, d) to have constant doubling dimension
β, i.e., for every δ, each ball of diameter δ can be covered by at most cβ balls of
diameter δ/c, for any c ≥ 2.

A function f is Lipschitz continuous (with constant 1) if for all x, y, we have
|f(x)−f(y)| ≤ d(x, y). Let L be the set of all such Lipschitz-continuous functions
f , i.e., L = {f | |f(x) − f(y)| ≤ d(x, y) for all x, y}. We also define Lc = {f ∈
L | |

∫
x
f(x)dx| ≤ c}. Notice that Lc is a compact set.

We wish to predict the average f =
∫

x
f(x)dx of all the function values. When

M is finite of size n, then the average is of course f = 1
n ·
∑

x f(x) instead. The
algorithm first gets to choose a single point x according to a (polynomial-time
computable) density function p; it then learns the value f(x), and may post-
process it with a prediction function g(x, f(x)) to produce its estimate of the
average f . The goal is to minimize the expected estimation error of the average,
under the assumption that f is chosen adversarially from L with knowledge of
the algorithm, but not its random choices. Formally, the goal is to minimize
Ê(p, g) = supf∈L(

∫
x px · |f − g(x, f(x))|dx). If M is finite, then p will be a

probability distribution instead of a density, and the error now can be written
as Ê(p, g) = supf∈L(

∑
x px · |f − g(x, f(x))|).

Formally, we consider an algorithm to be the pair (p, g) of the distribution
and prediction function. Let A denote the set of all such pairs, and D the set
of all deterministic algorithms, i.e., algorithms for which p has all its density
on a single point. Our analysis will make heavy use of Yao’s Minimax Principle
[8]. To state it, we define L to be the set of all probability distributions over L.
We also define the estimation error Δ(f,A) =

∫
x px · |f − g(x, f(x))|dx, where A

corresponds to the pair (p, g).

Theorem 1 (Yao’s Minimax Principle [8])

supq∈L infA∈D Ef∼q [Δ(f,A)] = infA∈A supf∈L Δ(f,A).

The next theorem shows that without loss of generality, we can focus on algo-
rithms whose post-processing is just to output the observed value, i.e., algorithms
(p, id) with id(x, y) = y, for all x, y.

Theorem 2. Let A∗ = (p∗, g∗) be the optimum randomized algorithm. Then, for
every ε > 0, there is a randomized algorithm A = (p, id) with Ê(A) ≤ Ê(A∗)+ε.

3 Discrete Metric Spaces

In this section, we focus on finite metric spaces, consisting of n points. Thus,
instead of integrals and densities, we will be considering sums and probability
distributions. The result from Theorem 2 holds in this case as well; hence w.l.o.g.,
we assume that all algorithms simply output the value they observe. The problem
of finding the best probability distribution for a single sample can be expressed
as a linear program, with variables px for the sampling probabilities at each of
the n points x, and a variable Z for the estimation error.

Estimating the Average of a Lipschitz-Continuous Function 223

Minimize Z
subject to (i)

∑
x px = 1

(ii)
∑

x px · |f − f(x)| ≤ Z for all f ∈ L
(iii) 0 ≤ px ≤ 1 for all points x

(1)

Since this LP (which we refer to as the “exact LP”) has infinitely many con-
straints, our approach is to replace the set L in the second constraint with a set
Qδ. We will choose Qδ carefully to ensure that it “approximates” L well, and
such that the resulting LP (which we refer to as the “discretized LP”) can be
solved efficiently.

To define the notion of approximation formally, let o be a 1-median of the
metric space, i.e., a point minimizing

∑
x d(o, x). Let m = 1

n

∑
x d(o, x) be the

average distance of all points from o. Since w.l.o.g. maxx,y∈M d(x, y) = 1, at
least one point has distance at least 1

2 from o, and thus m ≥ 1
2n . The median

value m forms a lower bound for randomized algorithms in the following sense.

Lemma 1. The worst-case expected error for any randomized algorithm is at
least 1

4·6β ·m, where β is the doubling dimension of the metric space.

Proof. Consider any randomized algorithm with probability distribution p.
Let R = {x | m

2 ≤ d(x, o) ≤ 3m
2 } be the ring of points at distance between m

2
and 3m

2 from o. We distinguish two cases:

1. If
∑

x∈R px ≤ 1
2 , consider the Lipschitz-continuous function f(x) = d(x, o).

Then, f = m. With probability at least 1
2 , the algorithm samples a point

outside R, and thus outputs a value outside the interval [m
2 , 3m

2], which incurs
error at least m

2 . Thus, the expected error is at least m
4 .

2. If
∑

x∈R px > 1
2 , then consider a collection of balls B1, . . . , Bk of diameter

m
2 covering all points in R. Because R is contained in a ball of diameter
3m, the doubling constraint implies that k ≤ 6β balls are sufficient. At least
one of these balls — say, B1 — has

∑
x∈B px ≥ 1

2k . Fix an arbitrary point
y ∈ B1, and define the Lipschitz-continuous function f as f(x) = d(x, y).
Because o was a 1-median, we get that f ≥ m. With probability at least 1

2k ,
the algorithm will choose a point inside B1 and output a value of at most m

2 ,
thus incurring an error of at least m

2 . Hence, the expected error is at least
1
2k ·

m
2 ≥

1
4·6β ·m.

We now formalize our notion for a set of functions Qδ to be a good approximation.

Definition 1 (δ-approximating function classes). For any sampling distri-
bution p, let EL(p) = maxf∈L Δ(f,p) and EQ(p) = maxf∈Qδ

Δ(f,p) be the
maximum error of sampling according to p against a worst-case function from
L and Qδ, respectively, where Δ(f,p) =

∑
x px · |f − f(x)|. The class Qδ δ-

approximates L if

1. For each f ∈ L, there is a function f ′ ∈ Qδ such that for all distributions p,
we have |Δ(f ′,p)−Δ(f,p)| ≤ δ

2 · EL(p).

224 A. Das and D. Kempe

2. For each f ∈ Qδ, there is a function f ′ ∈ L such that for all distributions p,
we have |Δ(f ′,p)−Δ(f,p)| ≤ δ

2 · EL(p).

Theorem 3. Assume that for every δ, Qδ is a class of functions δ-approximating
L, such that the following problem can be solved in polynomial time (for fixed δ):
Given p, find a function f ∈ Qδ maximizing Δ(f,p).

Then, solving the discretized LP gives a PTAS for the problem of finding a
sampling distribution that minimizes the worst-case expected error.

Proof. First, an algorithm to find a function f maximizing
∑

x px · |f − f(x)|
gives a separation oracle for the discretized LP. Thus, using the Ellipsoid Method
(e.g., [5]), an optimal solution to the discretized LP can be found in polynomial
time, for any fixed δ.

Let p, q be optimal solutions to the exact and discretized LPs, respectively.
Let f1 ∈ L maximize

∑
x qx · |f − f(x)| over f ∈ L, and f2 ∈ Qδ maximize∑

x px · |f − f(x)| over f ∈ Qδ. Thus, Δ(f1,q) = EL(q) and Δ(f2,p) = EQ(p).
Now, applying Definition 1 to f1 ∈ L gives us a function f ′

1 ∈ Qδ such
that |Δ(f ′

1,q) − EL(q)| ≤ δ
2EL(q). Since EQ(q) ≥ Δ(f ′

1,q), we obtain that
EQ(q) ≥ EL(q)(1 − δ

2).
Similarly, applying Definition 1 to f2 ∈ Qδ, gives us a function f ′

2 ∈ L with
|Δ(f ′

2,p)−EQ(p)| ≤ δ
2EL(p). Since EL(p) ≥ Δ(f ′

2,p), we obtain that EL(p) ≥
EQ(p) − δ

2EL(p), or EL(p) ≥ EQ(p)
1+ δ

2
. Also, by optimality of q in Qδ, EQ(q) ≤

EQ(p). Thus, EL(q) ≤ EQ(q)
1− δ

2
≤ EQ(p)

1− δ
2
≤ EL(p)(1+ δ

2)
1− δ

2
≤ EL(p)(1 + 2δ).

3.1 A PTAS for Arbitrary Metric Spaces

We first observe that since the error for any translation of a function f is the
same as for f , we can assume w.l.o.g. that f(o) = 0 for all functions f considered
in this section. Thus, we implicitly restrict L to functions with f(o) = 0.

We next describe a set Qδ of functions which δ-approximate L. Roughly, we
will discretize function values to different multiples of γ, and consider distance
scales that are different multiples of γ. We later set γ = δ

48·6β+6 . We show in

Lemma 2 that Qδ has size nlog(2/γ)(2/γ)β

= nO(1) for constant δ; this immediately
implies that the discretized LP can be solved in time O(poly(n) ·nlog(2/γ)(2/γ)β

)
(using exhaustive search for the separation oracle), and we obtain a PTAS for
finding the optimum distribution.

We let k = log2
1

2m , and define a sequence of k rings of exponentially decreas-
ing diameter around o, dividing the space into k+1 regions R1, . . . , Rk+1. Specif-
ically, we let Rk+1 = {x | d(x, o) ≤ 2m}, and Ri = {x | 2−i < d(x, o) ≤ 2−(i−1)}
for i = 1, . . . , k. Since m ≥ 1

2n , we have that k ≤ log n.
Since the metric space has doubling dimension β, each region Ri can be cov-

ered with at most (2/γ)β balls of diameter 2γ · 2−i. Let Bi,j denote the jth

ball from the cover of Ri. W.l.o.g., each Bi,j is non-empty and contained in Ri

(otherwise, consider its intersection with Ri instead). We call Bi,j the jth grid

Estimating the Average of a Lipschitz-Continuous Function 225

ball for region i. Thus, the grid balls cover all points, and there are at most
(2/γ)β · log n grid balls.

For each grid ball Bi,j , let oi,j ∈ Bi,j be an arbitrary, but fixed, representative
of Bi,j . The exception is that for the grid ball containing o, o must be chosen as
the representative. We now define the class Qδ of functions f as follows:

1. For each i, j, f(oi,j) is a multiple of γ · 2−i.
2. For all (i, j), (i′, j′), the function values satisfy the relaxed Lipschitz-condition
|f(oi,j)− f(oi′,j′)| ≤ d(oi,j , oi′,j′) + γ · (2−i + 2−i′).

3. All points in Bi,j have the same function value, i.e., f(x) = f(oi,j) for all
x ∈ Bi,j .

Lemma 2. The size of Qδ is at most nlog(2/γ)(2/γ)β

.

We need to prove that Qδ approximates L well, by verifying that for each function
f ∈ L, there is a “close” function in Qδ, and vice versa. We first show that for any
function satisfying the relaxed Lipschitz condition, we can change the function
values slightly and obtain a Lipschitz continuous function. In Lemma 4, we then
apply this result specifically to functions in Qδ. Finally, in Lemma 5 (whose proof
is deferred to the full version, due to space constraints), we show the converse
approximation direction.

Lemma 3. For each x ∈ M, let sx be some non-negative number. Assume that
f satisfies the “relaxed Lipschitz condition” |f(x) − f(y)| ≤ d(x, y) + sx + sy

for all x, y. Then, there is a Lipschitz continuous function f ′ ∈ L such that
|f(x)− f ′(x)| ≤ sx for all x.

Proof. We describe an algorithm which runs in iterations �, and sets the value
of one point x per iteration. S� denotes the set of x such that f ′(x) has been set.
We maintain the following two invariants after the �th iteration: 1) f ′ satisfies
the Lipschitz condition for all pairs of points in S�, and |f ′(x) − f(x)| ≤ sx

for all x ∈ S�, and 2) For every function f ′′ satisfying the previous condition,
f ′(x) ≤ f ′′(x) for all x ∈ S�.

Initially, this clearly holds for S0 = ∅. And clearly, if it holds after iteration
n, the function f ′ satisfies the claim of the lemma.

In iteration �, for each x /∈ S�−1, let tx = maxy∈S�−1(f
′(y)−d(x, y)). We show

below that for all x, we have tx ≤ f(x)+sx. Let x /∈ S�−1 be a point maximizing
max(f(x) − sx, tx), and set f ′(x) = max(f(x) − sx, tx). It is easy to verify that
this definition satisfies both parts of the invariant.

It remains to show that tx ≤ f(x) + sx for all points x /∈ S�−1. Assume
that tx > f(x) + sx for some point x. Let x1 be the point in S�−1 for which
tx = f ′(x1) − d(x, x1). By definition, f ′(x1) = f(x1) − sx1 or there is an x2
such that f ′(x1) = tx1 = f ′(x2) − d(x1, x2). Thus, we obtain a chain x1, . . . , xr

with f ′(xi) = f ′(xi+1) − d(xi, xi+1) for all i < r, and f ′(xr) = f(xr) − sxr .
Rearranging as f ′(xi+1)−f ′(xi) = d(xi, xi+1), and adding all these equalities for
i = 1, . . . , r gives us that f(xr)−f ′(x1) = sxr +

∑r−1
i=1 d(xi, xi+1). By assumption,

we have f ′(x1) − d(x, x1) = tx > f(x) + sx. Substituting the previous equality,

226 A. Das and D. Kempe

rearranging, and applying the triangle inequality gives us that f(xr)− f(x1) >

sx + sxr + d(x, x1) +
∑r−1

i=1 d(xi, xi+1) ≥ sx + sxr + d(x, xr), which contradicts
the relaxed Lipschitz condition for the pair x1, xr.

Lemma 4. Let f ∈ Qδ. There exists an f ′ ∈ L such that for all distributions
p, we have |Δ(f,p)−Δ(f ′,p)| ≤ δ

2 · EL(p).

Proof. Because f is in Qδ, it must satisfy the relaxed Lipschitz condition
|f(oi,j) − f(oi′,j′)| ≤ d(oi,j , oi′,j′) + γ · (2−i + 2−i′) for all (i, j), (i′, j′). Thus,
applying Lemma 3 with soi,j = γ · 2−i gives us function values f ′(oi,j) for all
i, j, satisfying the Lipschitz condition, as well as f ′(oi,j)− f(oi,j) ≤ γ · 2−i. For
any other point x, let Lmax(x, f) = mini,j(f ′(oi,j) + d(x, oi,j)) and Lmin(x, f) =
maxi,j(f ′(oi,j) − d(x, oi,j)), and set f ′(x) = 1

2 · (Lmax(x, f) + Lmin(x, f)). It is
easy to see that Lmin(x, f) ≤ Lmax(x, f) for all x, and that this definition gives
a Lipschitz continuous function f ′. For a point x ∈ Bi,j , triangle inequality,
the above construction, and the fact that Bi,j has diameter 2γ · 2−i imply that
|f ′(x) − f(x)| ≤ |f ′(x) − f ′(oi,j)| + |f ′(oi,j) − f(oi,j)| + |f(oi,j) − f(x)| ≤ 2γ ·
2−i + γ · 2−i + 0 = 3γ · 2−i.

For each point x, let ι(x) be the index of the region i such that x ∈ Ri.
Now, using the triangle inequality and Lemma 1, we can bound |f ′ − f | ≤
1
n ·
∑

x |f ′(x)−f(x)| ≤ 1
n ·
∑

x 3γ ·2−ι(x) ≤ 1
n ·(
∑

x/∈Rk+1
3γ ·d(x, o)+

∑
x∈Rk+1

3γ ·
m) ≤ 1

n · (3γnm + 3γnm) ≤ 24 · 6β · γ · EL(p).
Similarly, we can bound

∑
x px · |f ′(x) − f(x)| ≤ 3γ · (

∑
x/∈Rk+1

px · d(x, o) +∑
x∈Rk+1

pxm) ≤ 3γ · (m +
∑

x/∈Rk+1
px · d(x, o)).

Let f ′′ be defined as f ′′(x) = d(x, o). Clearly, f ′′ ∈ L, f ′′ = m, and the
estimation error for p when the input is f ′′ is Δ(f ′′,p) =

∑
x px · |f ′′(x)−m| ≥∑

x/∈Rk+1
px · |d(x, o) −m| ≥ (

∑
x/∈Rk+1

px · d(x, o)) −m.
Combining these observations, and using Lemma 1 and the fact that

Δ(f ′′,p) ≤ EL(p), we get
∑

x px · |f ′(x) − f(x)| ≤ 6γ · m + 3γΔ(f ′′,p) ≤
(8 · 6β + 1) · 3γ ·EL(p).

Now, by using that |Δ(f,p) − Δ(f ′,p)| ≤ |f ′ − f | +
∑

x px · |f ′(x) − f(x)|,
and setting γ = δ

48·6β+6 , we obtain the desired bound.

Lemma 5. Let f ∈ L. There exists an f ′ ∈ Qδ such that for all distributions
p, we have |Δ(f,p)−Δ(f ′,p)| ≤ δ

2 · EL(p).

If the metric consists of a discrete point set on the line, then the PTAS can be
improved to an FPTAS, as discussed in the full version of the paper.

4 Sampling in the Interval [0, 1]

In this section, we focus on what is probably the most basic version of the
problem: the metric space is the interval [0, 1]. It is easy to see (and follows from
a more general result in [4]) that the best deterministic algorithm samples the
function at 1

2 and outputs the value read. The worst-case error of this algorithm
is 1

4 . We prove that randomization can lead to the following improvement.

Estimating the Average of a Lipschitz-Continuous Function 227

Theorem 4. An optimal distribution that minimizes the worst-case expected
estimation error is to sample uniformly from the interval [2−

√
3,
√

3− 1]. This
sampling gives a worst-case error of 1−

√
3

2 ≈ 0.134.

In this section, we restrict our analysis w.l.o.g. to functions f ∈ L0, i.e., we
assume that

∫ 1
0 f(x)dx = 0. Then, the expected error of a distribution p against

input f is Δ(f,p) =
∫ 1
0 px|f(x)|dx. We say that f is a worst-case function for p

if it maximizes Δ(f,p); because L0 is compact, this notion is well-defined.
The key part of the proof of Theorem 4 is to characterize worst-case functions

for distributions p that are uniform over an interval [c, 1− c] for some c ≤ 1
2 .

Theorem 5. If p is uniform over [c, 1− c], then there exists a worst-case func-
tion for p of the form f(x) = 1

2 + b2 − b− |b− x|, for a parameter b.

All of Section 4.1 is devoted to the proof of Theorem 5. Here, we show how to
use Theorem 5 to prove the upper bound from Theorem 4.

Let c = 2−
√

3, so that the algorithm samples uniformly from [c, 1− c]. Using
Theorem 5, there exists a worst-case function for this distribution of the form
f(x) = 1

2 + b2 − b− |b− x|. We distinguish two cases:

1. If b ≤ c, then Δ(f,p) = 1
1−2c ·

∫ 1−c

c |12 + b2 − b− |b− x||dx = 1
1−2c · (

1
2 (b2 +

1
2 − c)2 + 1

2 (1 − c− b2)2) = 1
1−2c · (b4 + (1

2 − c)2).
2. If b ≥ c, then Δ(f,p) = 1

1−2c ·
∫ 1−c

c |12 + b2− b− |b−x||dx = 1
1−2c · (2bf(b)+

2cb+f(b)2−c−b2) = 1
1−2c(b

4−b2+2cb+ 1
4−c) = 1

1−2c (b4−(b−c)2+(1
2−c)2).

The first formula is increasing in b, and thus maximized at b = c; at b = c, the
value equals that of the second formula, so the maximization must happen for
b ≥ c. A derivative test shows that it is maximized for b =

√
3−1
2 , giving an error

of 1−
√

3
2 .

Next, we prove optimality of the uniform distribution over [2 −
√

3,
√

3 − 1],
by providing a lower bound on all randomized sampling distributions. Again,
by Theorem 2, we focus only on algorithms which output the value f(x) after
sampling at x, by incurring an error ε > 0 that can be made arbitrarily small. Our
proof is based on Yao’s Minimax principle: we explicitly prescribe a distribution
q over L0 such that for any deterministic algorithm using the identity function,
the expected estimation error is at least 1−

√
3

2 . Since a deterministic algorithm is
characterized completely by its sampling location x, this is equivalent to showing
that Ef∼q [|f(x)|] ≥ 1−

√
3

2 for all x.
We let b =

√
3−1
2 , and define two functions f, f ′ as f(x) = 1

2 + b2 − b− |x− b|
and f ′(x) = f(1 − x). The distribution q is then simply to choose each of f
and f ′ with probability 1

2 . Fix a sampling location x; by symmetry, we can
restrict ourselves to x ≤ 1

2 . Because f = f ′ = 0, the expected estimation error
is 1

2 (|f(x)| + |f ′(x)|) = 1
2 (| 12 + b2 − b − |x − b|| + |12 + b2 − b − |1 − x − b||) =⎧⎨⎩

1
2 − b, if x ≤ b
1
2 − x, if b ≤ x ≤ 1

2 − b2

b2, if 1
2 − b2 ≤ x ≤ 1

2 .

228 A. Das and D. Kempe

This function is non-increasing in x, and thus minimized at x = 1
2 , where its

value is b2 = 1−
√

3
2 . Thus, even at the best sampling location x = 1

2 , the error
cannot be less than 1−

√
3

2 . This completes the proof of Theorem 4.

The proof of Theorem 4 has an interesting alternative interpretation. For a
(finite) multiset S ⊂ L0 of Lipschitz continuous functions f with

∫
x
f(x)dx = 0,

we say that S is δ-close if there exist x, y such that 1
n ·
∑

f∈S |f(x) − y| ≤ δ.
In other words, the average distance of the functions from a carefully chosen
reference point is at most δ. Then, the proof of Theorem 4 implies:

Theorem 6. Every set S ⊆ L0 is (1−
√

3
2)-close, and this is tight.

4.1 Characterization of Worst-Case Functions

We begin with the following lemma which guarantees that there exists a worst
case function f with a finite number of points x such that f(x) = 0.

Lemma 6. W.l.o.g., there are a finite number of points x such that f(x) = 0.

We focus on points x ∈ (c, 1 − c) with f(x) = 0. Let c ≤ z1 ≤ . . . ≤ zk ≤ 1 − c
be all such points. For ease of notation, we write z0 = c and zk+1 = 1 − c. By
continuity, f(x) has the same sign for all x ∈ (zi, zi+1), for i = 0, . . . , k. Next,
we show that w.l.o.g., f is as large as possible over areas of the same sign.

Lemma 7. Assume w.l.o.g. that f(x) ≥ 0 for all x ∈ [zi, zj], with j > i. Then,
w.l.o.g., f maximizes the area over [zi, zj] subject to the Lipschitz constraint and
the function values at zi and zj. More formally, w.l.o.g., f satisfies,

1. If 1 ≤ i < j ≤ k, then f(x) = min(x− zi, zj − x) for all x ∈ [zi, zj].
2. If i = 0, then f(x) = min(f(c) + (x − c), z1 − x) for all x ∈ [c, z1], and if

i = k, then f(x) = min(f(1− c) + (1− c)− x, x− zk) for all x ∈ [zk, 1− c].

Proof. We prove the first part here; the second is analogous and proved in the
full version. Define a function f ′ as f ′(x) = min(x − zi, zj − x) for x ∈ [zi, zj],
and f ′(x) = f(x) otherwise. Let f ′′ = f ′− f ′, so that f ′′ is renormalized to have
integral 0. Since f ′(x) ≥ f(x) for all x, and f = 0, we have that f ′ ≥ 0. Then∫ 1−c

c
|f ′′(x)| − |f(x)|dx

=
∫ zj

zi
|f ′′(x)| − |f(x)|dx +

∫ zi

c
|f(x) − f ′| − |f(x)|dx +

∫ 1−c

zj
|f(x) − f ′| − |f(x)|dx

≥
∫ zj

zi
(|f ′(x) − f ′| − |f ′(x)|) + (|f ′(x)| − |f(x)|)dx − (1 − 2c − (zj − zi))f ′

≥
∫ zj

zi
|f ′(x)| − |f(x)|dx −

∫ zj

zi
f ′dx − (1 − 2c − (zj − zi))f ′

=
∫ zj

zi
f ′(x) − f(x)dx − (1 − 2c)f ′ = 2c · f ′ ≥ 0.

Thus, the estimation error of f ′′ is at least as large as the one for f , so w.l.o.g.,
f satisfies the statement of the lemma.

Lemma 8. W.l.o.g., there are at most two points x ∈ (c, 1− c) where f(x) = 0.

Proof. Assume that f(z1) = f(z2) = f(z3) = 0. Mirror the function on the
interval [z1, z3], i.e., define f ′(x) = f(z3 − x) if x ∈ [z1, z3], and f ′(x) = f(x)

Estimating the Average of a Lipschitz-Continuous Function 229

otherwise. Clearly, f ′ is Lipschitz continuous and has the same average and same
expected estimation error as f . However, the signs of f ′ on the intervals [c, z1]
and [z1, z1 +z3−z2] are now the same; similarly for the intervals [z1 +z3−z2, z3]
and [z3, 1− c]. Thus, applying Lemma 7, we can further reduce the number of x
with f(x) = 0, without decreasing the estimation error.

Hence, the worst-case function f must have at most two points z ∈ (c, 1 − c)
with f(z) = 0. We distinguish three cases accordingly:

1. If there is no point z ∈ (c, 1− c) with f(z) = 0, then f(c) and f(1− c) have
the same signs. Then, the expected error is maximized when

∫ c

0 f(x)dx and∫ 1
1−c f(x)dx are as positive as possible, subject to the Lipschitz condition and

the constraint that
∫ 1
0 f(x)dx = 0. Otherwise, we could increase the value

of
∫ c

0 f(x)dx and
∫ 1
1−c f(x)dx, and then lower the function to restore the

integral to 0. By doing this, the expected estimation error cannot decrease.
Thus, by Lemma 7, f is of the form f(x) = |x − b| + f(b), where b =
argminx∈(c,1−c) f(x).

2. If there is exactly one point z ∈ (c, 1 − c) with f(z) = 0, then f(c) and
f(1− c) have opposite signs. W.l.o.g., assume that f(c) > 0 > f(1− c) and
that z ≤ 1

2 (otherwise, we consider f ′(x) = f(1− x) instead). The expected
error is maximized when f(c) is as large as possible, and

∫ 1−c

z f(x)dx is as
negative as possible, subject to the Lipschitz condition and the constraint
that

∫ 1
0 f(x)dx = 0. Since z ≤ 1

2 and the integral of the function f ′(x) =
z − x is thus negative, by starting from f ′, then raising the function in the
interval [1− c, 1] and, if necessary, increasing f ′(1− c), it is always possible
to ensure that f(x) = z − x for all x ∈ [0, z]. Then,

∫ 1−c

z f(x)dx is as
negative as possible if f(x) = −(x − z) for x ≤ b (for some value b), and
f(x) = −(b − z) + (x − b) = z + x − 2b for x ≥ b. Thus, f overall is of the
form f(x) = |x− b| − (b− z).

3. If there are two points z1 < z2 ∈ (c, 1 − c) with f(z1) = f(z2) = 0, then
again, it can be shown that w.l.o.g f(x) = |x− z1+z2

2 | − z2−z1
2 . Due to space

constraints, the formal proof is deferred to the full version of the paper.

In all three cases, we have thus shown that w.l.o.g., f(x) = |x− b| − t, for some
values b, t. Finally, the normalization

∫ 1
0 f(x)dx = 0 implies that t = 1

2 + b2 − b,
completing the proof of Theorem 5.

5 Future Work

Our work is a first step toward obtaining optimal (as opposed to asymptotically
optimal) randomized algorithms for choosing k sample locations to estimate an
aggregate quantity of a function f . The most obvious extension is to extend
our results to the case of estimating the average using k samples. It would be
interesting whether approximation guarantees for the k-median problem (the
deterministic counterpart) can be exceeded using a randomized strategy.

230 A. Das and D. Kempe

Also, our precise characterization of the optimal sampling distribution for
functions on the [0, 1] interval should be extended to higher-dimensional contin-
uous metric spaces. Another natural direction is to consider other aggregation
goals, such as predicting the function’s maximum, minimum, or median. For
predicting the maximum from k deterministic samples, a 2-approximation algo-
rithm was given in [4], which is is best possible unless P=NP. However, it is not
clear if equally good approximations can be achieved for the randomized case.
For the median, even the deterministic case is open.

On a technical note, it would be interesting whether finding the best sampling
distribution for the single sample case is NP-hard. While we presented a PTAS
in this paper, no hardness result is currently known.

Acknowledgments. We would like to thank David Eppstein, Bobby Kleinberg,
Alex Slivkins and several anonymous referees for helpful feedback.

References

1. Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Lo-
cal search heuristics for k-median and facility location problems. In: Proc. ACM
Symposium on Theory of Computing (2001)

2. Bakhvalov, N.S.: On approximate calculation of integrals. Vestnik MGU, Ser. Mat.
Mekh. Astron. Fiz. Khim 4, 3–18 (1959)

3. Baran, I., Demaine, E., Katz, D.: Optimally adaptive integration of univariate
lipschitz functions. Algorithmica 50(2), 255–278 (2008)

4. Das, A., Kempe, D.: Sensor selection for minimizing worst-case prediction error. In:
Proc. ACM/IEEE International Conference on Information Processing in Sensor
Networks (2008)

5. Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences
in combinatorial optimization. Combinatorica 1, 169–197 (1981)

6. Gupta, A., Krauthgamer, R., Lee, J.R.: Bounded geometries, fractals, and low-
distortion embeddings. In: Proc. IEEE Symposium on Foundations of Computer
Science (2003)

7. Mathe, P.: The optimal error of monte carlo integration. Journal of Complex-
ity 11(4), 394–415 (1995)

8. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press,
Cambridge (1990)

9. Novak, E.: Stochastic properties of quadrature formulas. Numer. Math. 53(5), 609–
620 (1988)

10. Traub, J.F., Wasilkowski, G.W., Woźniakowski, H.: Information-Based Complexity.
Academic Press, New York (1988)

11. Traub, J.F., Werschulz, A.G.: Complexity and Information. Cambridge University
Press, Cambridge (1998)

12. Wozniakowski, H.: Average case complexity of linear multivariate problems part 1:
Theory. Journal of Complexity 8(4), 337–372 (1992)

13. Wozniakowski, H.: Average case complexity of linear multivariate problems part 2:
Applications. Journal of Complexity 8(4), 373–392 (1992)

Streaming Graph Computations with a Helpful

Advisor

Graham Cormode1, Michael Mitzenmacher2,�, and Justin Thaler2,��

1 AT & T Labs – Research
graham@research.att.com

2 Harvard University, School of Engineering and Applied Sciences
{michaelm,jthaler}@seas.harvard.edu

Abstract. Motivated by the trend to outsource work to commercial
cloud computing services, we consider a variation of the streaming
paradigm where a streaming algorithm can be assisted by a powerful
helper that can provide annotations to the data stream. We extend
previous work on such annotation models by considering a number of
graph streaming problems. Without annotations, streaming algorithms
for graph problems generally require significant memory; we show that
for many standard problems, including all graph problems that can be
expressed with totally unimodular integer programming formulations,
only constant memory is needed for single-pass algorithms given linear-
sized annotations. We also obtain a protocol achieving optimal tradeoffs
between annotation length and memory usage for matrix-vector multipli-
cation; this result contributes to a trend of recent research on numerical
linear algebra in streaming models.

1 Introduction

The recent explosion in the number and scale of real-world structured data sets
including the web, social networks, and other relational data has created a press-
ing need to efficiently process and analyze massive graphs. This has sparked the
study of graph algorithms that meet the constraints of the standard streaming
model: restricted memory and the ability to make only one pass (or few passes)
over adversarially ordered data. However, many results for graph streams have
been negative, as many foundational problems require either substantial working
memory or a prohibitive number of passes over the data [1]. Apparently most
graph algorithms fundamentally require flexibility in the way they query edges,
and therefore the combination of adversarial order and limited memory makes
many problems intractable.

To circumvent these negative results, variants and relaxations of the standard
graph streaming model have been proposed, including the Semi-Streaming [2],
� This work was supported in part by NSF grants CCF-0915922 and CNS-0721491,

and in part by grants from Yahoo! Research, Google, and Cisco, Inc.
�� Supported by the Department of Defense (DoD) through the National Defense Sci-

ence & Engineering Graduate Fellowship (NDSEG) Program.

M. de Berg and U. Meyer (Eds.): ESA 2010, Part I, LNCS 6346, pp. 231–242, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

232 G. Cormode, M. Mitzenmacher, and J. Thaler

W-Stream [3], Sort-Stream [4], Random-Order [1], and Best-Order [5] models.
In Semi-Streaming, memory requirements are relaxed, allowing space propor-
tional to the number of vertices in the stream but not the number of edges.
The W-Stream model allows the algorithm to write temporary streams to aid
in computation. And, as their names suggest, the Sort-Stream, Random-Order,
and Best-Order models relax the assumption of adversarially ordered input. The
Best-Order model, for example, allows the input stream to be re-ordered arbi-
trarily to minimize the space required for the computation.

In this paper, our starting point is a relaxation of the standard model, closest
to that put forth by Chakrabarti et al. [6], called the annotation model. Motivated
by recent work on outsourcing of database processing, as well as commercial
cloud computing services such as Amazon EC2, the annotation model allows
access to a powerful advisor, or helper who observes the stream concurrently
with the algorithm. Importantly, in many of our motivating applications, the
helper is not a trusted entity: the commercial stream processing service may have
executed a buggy algorithm, experienced a hardware fault or communication
error, or may even be deliberately deceptive [5,6]. As a result, we require our
protocols to be sound : our verifier must detect any lies or deviations from the
prescribed protocol with high probability.

The most general form of the annotation model allows the helper to provide
additional annotations in the data stream at any point to assist the verifier, and
one of the cost measures is the total length of the annotation. In this paper,
however, we focus on the case where the helper’s annotation arrives as a single
message after both the helper and verifier have seen the stream. The helper’s
message is also processed as a stream, since it may be large; it often (but not
always) includes a re-ordering of the stream into a convenient form, as well as
additional information to guide the verifier. This is therefore stronger than the
Best-Order model, which only allows the input to be reordered and no more;
but it is weaker than the more general online model, because in our model the
annotation appears only after the input stream has finished.

We argue that this model is of interest for several reasons. First, it requires
minimal coordination between helper and verifier, since it is not necessary to
ensure that annotation and stream data are synchronized. Second, it captures the
case when the verifier uploads data to the cloud as it is collected, and later poses
questions over the data to the helper. Under this paradigm, the annotation must
come after the stream is observed. Third, we know of no non-trivial problems
which separate the general online and our “at-the-end” versions of the model,
and most prior results are effectively in this model.

Besides being practically motivated by outsourced computations, annotation
models are closely related to Merlin-Arthur proofs with space-bounded verifiers,
and studying what can (and cannot) be accomplished in these models is of
independent interest.

Relationship to Other Work. Annotation models were first explicitly stud-
ied by Chakrabarti et al. in [6], and focused primarily on protocols for canoni-
cal problems in numerical streams, such as Selection, Frequency Moments, and

Streaming Graph Computations with a Helpful Advisor 233

Frequent Items. The authors also provided protocols for some graph problems:
counting triangles, connectedness, and bipartite perfect matching. The Best-
Order Stream Model was put forth by Das Sarma et al. in [5]. They present proto-
cols requiring logarithmic or polylogarithmic space (in bits) for several problems,
including perfect matching and connectivity. Historical antecedents for this work
are due to Lipton [7], who used fingerprinting methods to verify polynomial-time
computations in logarithmic space. Recent work verifies shortest-path computa-
tions using cryptographic primitives, using polynomial space for the verifier [8].

Our Contributions. We identify two qualitatively different approaches to pro-
ducing protocols for problems on graphs with n nodes and m edges. In the
first, the helper directly proves matching upper and lower bounds on a quan-
tity. Usually, proving one of the two bounds is trivial: the helper provides a
feasible solution to the problem. But proving optimality of the feasible solution
can be more difficult, requiring the use of structural properties of the problem.
In the second, we simulate the execution of a non-streaming algorithm, using
the helper to maintain the algorithm’s internal data structures to control the
amount of memory used by the verifier. The helper must provide the contents
of the data structures so as to limit the amount of annotation required.

Using the first approach (Section 3), we show that only constant space and
annotation linear in the input size m is needed to determine whether a directed
graph is a DAG and to compute the size of a maximum matching. We describe
this as an (m, 1) protocol, where the first entry refers to the annotation size
(which we also call the hcost) and the second to the memory required for the
verifier (which we also call the vcost). Our maximum matching result signif-
icantly extends the bipartite perfect matching protocol of [6], and is tight for
dense graphs, in the sense that there is a lower bound on the product of hcost and
vcost of hcost · vcost = Ω(n2) bits for this problem. Second, we define a stream-
ing version of the linear programming problem, and provide an (m, 1) protocol.
By exploiting duality, we hence obtain (m, 1) protocols for many graph problems
with totally unimodular integer programming formulations, including shortest
s-t path, max-flow, min-cut, and minimum-weight bipartite perfect matching.
We also show all are tight by proving lower bounds of hcost · vcost = Ω(n2)
bits for all four problems. A more involved protocol obtains optimal tradeoffs
between annotation cost and working memory for dense LPs and matrix-vector
multiplication; this complements recent results on approximate linear algebra in
streaming models (see e.g. [9,10]).

For the second approach (Section 4), we make use of the idea of “memory
checking” due to Blum et al. [11], which allows a small-space verifier to outsource
data storage to an untrusted server. We present a general simulation theorem
based on this checker, and obtain as corollaries tight protocols for a variety of
canonical graph problems. In particular, we give an (m, 1) protocol for verifying
a minimum spanning tree, an (m + n logn, 1) protocol for single-source shortest
paths, and an (n3, 1) protocol for all-pairs shortest paths. We provide a lower
bound of hcost · vcost = Ω(n2) bits for the latter two problems, and an identical
lower bound for MST when the edge weights can be given incrementally. While

234 G. Cormode, M. Mitzenmacher, and J. Thaler

powerful, this technique has its limitations: there does not seem to be any generic
way to obtain the same kind of tradeoffs observed above. Further, there are
some instances where direct application of memory checking does not achieve
the best bounds for a problem. We demonstrate this by presenting an (n2 log n, 1)
protocol to find the diameter of a graph; this protocol leverages the ability to use
randomized methods to check computations more efficiently than via generating
or checking a deterministic witness. In this case, we rely on techniques to verify
matrix-multiplication in quadratic time, and show that this is tight via a nearly
matching lower bound for diameter of hcost · vcost = Ω(n2).

In contrast to problems on numerical streams, where it is often trivial to obtain
(m, 1) protocols by replaying the stream in sorted order, achieving linear-sized
annotations with logarithmic space is challenging for many graph problems. Sim-
ply providing the solution (e.g. a matching or spanning tree) is insufficient, since
we have the additional burden of demonstrating that this solution is optimal.
A consequence is that we are able to provide solutions to several problems for
which no solution is known in the best-order model (even though one can reorder
the stream in the best-order model so that “solution” edges arrive first).

All omitted proofs may be found online at [12].

2 Model and Definitions

Consider a data stream A = 〈a1, a2, . . . , am〉 with each ai in some universe U .
Consider a probabilistic verifier V who observes A and a deterministic helper H
who also observes A and can send a message h to V after A has been observed
by both parties. This message, also referred to as an annotation, should itself
be interpreted as a data stream that is parsed by V , which may permit V to
use space sublinear in the size of the annotation itself. That is, H provides an
annotation h(A) = (h1(A), h2(A), . . . h�(A)).

We study randomized streaming protocols for computing functions f(A)→ Z.
Specifically, assume V has access to a private random stringR and at most w(m)
machine words of working memory, and that V has one-way access to the input
A · h , where · represents concatenation. Denote the output of protocol P on
input A, given helper h and random string R, by out(P ,A,R, h). We allow V
to output ⊥ if V is not convinced that the annotation is valid. We say that h
is valid for A with respect to P if PrR(out(P ,A,R, h) = f(A)) = 1, and we
say that h is δ-invalid for A with respect to P if PrR(out(P ,A,R, h) 	=⊥) ≤ δ.
We say that h is a valid helper if h is valid for all A. We say that P is a valid
protocol for f if

1. There exists at least one valid helper h with respect to P and
2. For all helpers h ′ and all streams A, either h ′ is valid for A or h ′ is 1

3 -invalid
for A.

Conceptually, P is a valid protocol for f if for each stream A there is at least one
way to convince V of the true value of f(A), and V rejects all other annotations
as invalid (this differs slightly from [6] to allow for multiple h ’s that can convince
V). The constant 1

3 can be any constant less than 1
2 .

Streaming Graph Computations with a Helpful Advisor 235

Let h be a valid helper chosen to minimize the length of h(A) for all A. We
define the help cost hcost(P) to be the maximum length of h over all A of length
m, and the verification cost vcost(P) = w(m), the amount of working memory
used by the protocol P . All costs are expressed in machine words of size Θ(log m)
bits, i.e. we assume any quantity polynomial in the input size can be stored in a
constant number of words; in contrast, lower bounds are expressed in bits. We
say that P is an (h, v) protocol for f if P is valid and hcost(A) = O(h + 1),
vcost(A) = O(v + 1). While both hcost and vcost are natural costs for such
protocols, we often aim to achieve a vcost of O(1) and then minimize hcost. In
other cases, we show that hcost can be decreased by increasing vcost, and study
the tradeoff between these two quantities.

In some cases, f is not a function of A alone; instead it depends on A and h.
In such cases, V should simply accept if convinced that the annotation has the
correct properties, and output ⊥ otherwise.

In this paper we primarily consider graph streams, which are streams whose
elements are edges of a graph G. More formally, consider a stream A =
〈e1, e2, . . . , em〉 with each ei ∈ [n] × [n]. Such a stream defines a (multi)graph
G = (V,E) where V = {v1, ..., vn} and E is the (multi)set of edges that naturally
corresponds to A. We use the notation {i : m(i)} for the multiset in which i ap-
pears with multiplicity m(i). Finally, we will sometimes consider graph streams
with directed or weighted edges; in the latter case each edge ei ∈ [n]× [n]×Z+.

2.1 Fingerprints

Our protocols make careful use of fingerprints, permutation-invariant hashes
that can be efficiently computed in a streaming fashion. They determine in
small space (with high probability) whether two streams have identical frequency
distributions. They are the workhorse of algorithms proposed in earlier work on
streaming models with an untrusted helper [5,6,7,13]. We sometimes also need
the fingerprint function to be linear.

Definition 1 (Fingerprints). A fingerprint of a multiset M = {i : m(i)},
where each i ∈ [q] for some known upper bound q, is defined as a computa-
tion over the finite field with p elements, Fp, as fp,α(M) =

∑q
i=1 m(i)αi, with

α chosen uniformly at random from Fp. We typically write f(M), leaving p, α
implicit.

Some properties of f are immediate: it is linear in M , and can easily be computed
incrementally as elements of [q] are observed in a stream one by one. The main
property of f is that Pr[f(M) = f(M ′)|M 	= M ′] ≤ q/p over the random choice
of α (due to standard properties of polynomials over a field). Therefore, if p
is sufficiently large, say, polynomial in q and in an (assumed) upper bound on
the multiplicities m(i), then this event happens with only polynomially small
probability. For cases when the domain of the multisets is not [q], we either
establish a bijection to [q] for an appropriate value of q, or use a hash function
to map the domain onto a large enough [q] such that there are no collisions with
high probability (whp). In all cases, p is chosen to be O(1) words.

236 G. Cormode, M. Mitzenmacher, and J. Thaler

A common subroutine of many of our protocols forces H to provide a “label”
l(u) for each node upfront, and then replay the edges in E, with each edge (u, v)
annotated with l(u) and l(v) so that each instance of each node v appears with
the same label l(v).

Definition 2. We say a list of edges E′ is label-augmented if (a) E′ is preceded
by a sorted list of all nodes v ∈ V , each with a value l(v) and deg(v), where l(v)
is the label of v and deg(v) is claimed to be the degree of v; and (b) each edge
e=(u, v) in E′ is annotated with a pair of symbols l(e, u) and l(e, v). We say a
list of label-augmented edges E′ is valid if for all edges e=(u, v), l(e, u)=l(u) and
l(e, v)=l(v); and E′=E, where E is the set of edges observed in the stream A.

Lemma 1 (Consistent Labels). There is a valid (m, 1) protocol that accepts
any valid list of label-augmented edges.

Proof. V uses the annotation from Definition 2 (a) to make a fingerprint of
the multiset S1 := {(u, l(u)) : deg(u)}. V also maintains a fingerprint f1 of all
(u, l(e, u)) pairs seen while observing the edges of L. If f1 = f(S1) then (whp)
each node u must be presented with label l(e, u) = l(u) every time it is reported
in an edge e (and moreover u must be reported in exactly deg(u) edges), else the
multiset of observed (node, label) pairs would not match S1. Finally, V ensures
that E′ = E by checking that f(E) = f(E′). ��

3 Directly Proving Matching Upper and Lower Bounds

3.1 Warmup: Topological Ordering and DAGs

A (directed) graph G is a DAG if and only if G has a topological ordering, which
is an ordering of V as v1, . . . vn such that for every edge (vi, vj) we have i < j
[14, Section 3.6]. Hence, if G is a DAG, H can prove it by providing a topological
ordering. If G is not a DAG, H can provide a directed cycle as witness.

Theorem 1. There is a valid (m, 1) protocol to determine if a graph is a DAG.

Proof. If G is not a DAG, H provides a directed cycle C as (v1, v2), (v2, v3) . . .
(vk, v1). To ensure C ⊆ E, H then provides E \ C, allowing V to check that
f(C ∪ (E \ C)) = f(E).

If G is a DAG, let v1, . . . vn be a topological ordering of G. We require H to
replay the edges of G, with edge (vi, vj) annotated with the ranks of vi and vj

i.e. i and j. We ensure H provides consistent ranks via the Consistent Labels
protocol of Lemma 1, with the ranks as “labels”. If any edge (vi, vj) is presented
with j > i, V rejects immediately. ��

3.2 Maximum Matching

We give an (m, 1) protocol for maximum matching which leverages the combina-
torial structure of the problem. Previously, matching was only studied in the bi-
partite case, where an (m, 1) protocol and a lower bound of hcost · vcost = Ω(n2)

Streaming Graph Computations with a Helpful Advisor 237

bits for dense graphs were shown [6, Theorem 11]. The same lower bound applies
to the more general problem of maximum matching, so our protocol is tight up
to logarithmic factors.

The protocol shows matching upper and lower bounds on the size of the
maximum matching. Any feasible matching presents a lower bound. For the
upper bound we appeal to the Tutte-Berge formula [15, Chapter 24]: the size
of a maximum matching of a graph G = (V,E) is equal to 1

2 minVS⊆V (|VS | −
occ(G−VS)+ |V |), where G−VS is the subgraph of G obtained by deleting the
vertices of VS and all edges incident to them, and occ(G− VS) is the number of
components in the graph G − VS that have an odd number of vertices. So for
any set of nodes VS , 1

2 (|VS |−occ(G−VS)+ |V |) is an upper bound on the size of
the maximum matching, and there exists some VS for which this quantity equals
the size of a maximum matching M . Conceptually, providing both VS and M ,
H proves that the maximum matching size is M . Additionally, H has to provide
a proof of the value of occ(G− VS) to V . We omit the proof.

Theorem 2. There is a valid (m, 1) protocol for maximum matching. Moreover,
any protocol for max-matching requires hcost · vcost = Ω(n2) bits.

3.3 Linear Programming and TUM Integer Programs

We present protocols to solve linear programming problems in our model lever-
aging the theory of LP duality. This leads to non-trivial schemes for a variety of
graph problems.

Definition 3. Given a data stream A containing entries of vectors b ∈ Rb,
c ∈ Rc, and non-zero entries of a b × c matrix A in some arbitrary order,
possibly interleaved. Each item in the stream indicates the index of the object it
pertains to. The LP streaming problem on A is to determine the value of the
linear program min{cT x | Ax ≤ b}.

We present our protocol as if each entry of each object appears at most once
(if an entry does not appear, it is assumed to be zero). When this is not the
case, the final value for that entry is interpreted as the sum of all corresponding
values in the stream.

Theorem 3. There is a valid (|A|, 1) protocol for the LP streaming problem,
where |A| is the number of non-zero entries in the constraint matrix A of A.

Proof. The protocol shows an upper bound by providing a primal-feasible so-
lution x, and a lower bound by providing a dual-feasible solution y. When the
value of both solutions match, V is convinced that x is optimal.

From the stream, V fingerprints the sets SA = {(i, j, Ai,j)}, SB = {(i,bi)}
and SC = {(i, cj)}. Then H provides all pairs of values cj ,xj , 1 ≤ j ≤ c, with
each xj additionally annotated with |A·j |, the number of non-zero entries in
column j of A. This allows V to fingerprint the multiset SX = {(j,xj) : |A·j |}
and calculate the solution cost

∑b
j=1 cjxj .

238 G. Cormode, M. Mitzenmacher, and J. Thaler

To prove feasibility, for each row i of A, Ai·, H sends bi, then (the non-zero
entries of) Ai· so that Aij is annotated with xj . This allows the ith constraint
to be checked in constant space. V fingerprints the values given by H for A,
b, and c, and compares them to those for the stream. A single fingerprint of
the multiset of values presented for x over all rows is compared to f(SX). V is
convinced x is feasible if all constraints are met and all fingerprint tests pass.

Correctness follows by observing that the agreement with f(A) guarantees
(whp) that each entry of A is presented correctly and no value is omitted. Since
H presents each entry of b and c once, in index order, the fingerprints f(SB) and
f(SC) ensure that these values are presented correctly. The claimed |A·j | values
must be correct: if not, then the fingerprints of either SX or SA will not match
the multisets provided by H. f(SX) also ensures that each time xj is presented,
the same value is given (similar to Lemma 1).

To prove that x is primal-optimal, it suffices to show a feasible solution y to
the dual AT so that cT x = bT y. Essentially we repeat the above protocol on the
dual, and check that the claimed values are again consistent with the fingerprints
of SA, SB, SC . ��

For any graph problem that can be formulated as a linear program in which each
entry of A, b, and c can be derived as a linear function of the nodes and edges,
we may view each edge in a graph stream A as providing an update to values of
one or more entries of A, b, and c. Therefore, we immediately obtain a protocol
for problems of this form via Theorem 3. More generally, we obtain protocols for
problems formulated as totally unimodular integer programs (TUM IPs), since
optimality of a feasible solution is shown by a matching feasible solution of the
dual of its LP relaxation [16].

Corollary 1. There is a valid (|A|, 1) protocol for any graph problem that can
be formulated as a linear program or TUM IP in which each entry of A, b, and
c is a linear function of the nodes and edges of graph.

This follows immediately from Theorem 3 and the subsequent discussion: note
by the linearity of the fingerprinting, H presents only the (aggregated) values of
SA, SB and SC , not information from the unaggregated graph stream.

Corollary 2. Shortest s− t path, max-flow, min-cut, and minimum weight bi-
partite perfect matching (MWBPM) all have valid (m, 1) protocols. For all four
problems, a lower bound of hcost · vcost = Ω(n2) bits holds for dense graphs.

Proof. The upper bound follows from the previous corollary because all the
problems listed possess formulations as TUM IPs and moreover the constraint
matrix in each case has O(m+n) non-zero entries. For example, for max-flow, x
gives the flow on each edge, and the weight of each edge in the stream contributes
(linearly) to constraints on the capacity of that edge, and the flow through
incident nodes. We omit a proof of the lower bounds. ��

Conceptually, the above protocols for solving the LP streaming problem are
straightforward: H provides a primal solution, potentially repeating it once for

Streaming Graph Computations with a Helpful Advisor 239

each row of A to prove feasibility, and repeats the protocol for the dual. There
are efficient protocols for the problems listed in the corollary since the constraint
matrices of their IP formulations are sparse. For dense constraint matrices, how-
ever, the bottleneck is proving feasibility. We observe that computing Ax reduces
to computing b inner-product computations of vectors of dimension c. There are
(cα, c1−α) protocols to verify such inner-products [6]. But we can further improve
on this since one of the vectors is held constant in each of the tests. This reduces
the space needed by V to run these checks in parallel; moreover, we prove a lower
bound of hcost · vcost = Ω(min(c, b)2) bits, and so obtain an optimal tradeoff for
square matrices, up to logarithmic factors. We omit the proof for space reasons.

Theorem 4. Given a b× c matrix A and a c dimensional vector x, the product
Ax can be verified with a valid (bcα, c1−α) protocol. Moreover, any such protocol
requires hcost · vcost = Ω(min(c, b)2) bits for dense matrices.

Corollary 3. For c≥b there is a valid (c1+α, c1−α) protocol for the LP streaming
problem.

Proof. This follows by using the protocol of Theorem 4 to verify Ax ≤ b and
AT y ≥ c within the protocol of Theorem 3. The cost is (bcα + cbα, c1−α + b1−α),
so if c ≥ b, this is dominated by (c1+α, c1−α). ��

Our protocol for linear programming relied on only two properties: strong du-
ality, and the ability to compute the value of a solution x and check feasibility
via matrix-vector multiplication. Such properties also hold for more general con-
vex optimization problems, such as quadratic programming and a large class of
second-order cone programs. Thus, similar results apply for these mathematical
programs, motivated by applications in which weak peripheral devices or sensors
perform error correction on signals. We defer full details from this presentation.

Theorem 4 also implies the existence of protocols for graph problems where
both hcost and vcost are sublinear in the size of the input (for dense graphs).
These include:
− An (n1+α, n1−α) protocol for verifying that λ is an eigenvalue of the adjacency
matrix A or the Laplacian L of G: H provides the corresponding eigenvector x,
and V can use the protocol of Theorem 4 to verify that Ax = λx or Lx = λx.
− An (n1+α, n1−α) protocol for the problem of determining the effective resis-
tance between designated nodes s and t, where the edge weights are resistances.
The problem reduces to solving an n× n system of linear equations [17].

4 Simulating Non-streaming Algorithms

Next, we give protocols by appealing to known non-streaming algorithms for
graph problems. At a high level, we can imagine the helper running an algorithm
on the graph, and presenting a “transcript” of operations carried out by the
algorithm as the proof to V that the final result is correct. Equivalently, we
can imagine that V runs the algorithm, but since the data structures are large,
they are stored by H, who provides the contents of memory needed for each step.

240 G. Cormode, M. Mitzenmacher, and J. Thaler

There may be many choices of the algorithm to simulate and the implementation
details: our aim is to choose ones that result in smaller annotations.

Our main technical tool is the off-line memory checker of Blum et al. [11],
which we use to efficiently verify a sequence of accesses to a large memory.
Consider a memory transcript of a sequence of read and write operations to
this memory (initialized to all zeros). Such a transcript is valid if each read of
address i returns the last value written to that address. The protocol of Blum
et al. requires each read to be accompanied by the timestamp of the last write
to that address; and to treat each operation (read or write) as a read of the
old value followed by the write of a new value. Then it suffices to ensure that
a fingerprint of all write operations (augmented with timestamps) matches a
fingerprint of all read operations (using the provided timestamps), along with
some simple local checks on timestamps. Consequently, any valid (timestamp-
augmented) transcript is accepted by V , while any invalid transcript is rejected
by V with high probability. We use this memory checker to obtain the following
general simulation result.

Theorem 5. Suppose P is a graph problem possessing a non-randomized algo-
rithm M in the random-access memory model that, when given G = (V,E) in
adjacency list or adjacency matrix form, outputs P (G) in time t(m,n), where
m = |E| and n = |V |. Then there is an (m + t(m,n), 1) protocol for P .

Proof (sketch). H first repeats (the non-zero locations of) a valid adjacency list
or matrix representation G, as writes to the memory (which is checked by V); V
uses fingerprints to ensure the edges included in the representation precisely cor-
respond to those that appeared in the stream, and can use local checks to ensure
the representation is otherwise valid. This requires O(m) annotation and effec-
tively initializes memory for the subsequent simulation. Thereafter, H provides
a valid augmented transcript T ′ of the read and write operations performed by
algorithmM; V rejects if T ′ is invalid, or if any read or write operation executed
in T ′ does not agree with the prescribed action of M. As only one read or write
operation is performed by M in each timestep, the length of T ′ is O(t(m,n)),
resulting in an (m + t(m,n), 1) protocol for P . ��

Although Theorem 5 only allows the simulation of deterministic algorithms, H
can non-deterministically “guess” an optimal solution S and prove optimality by
invoking Theorem 5 on a (deterministic) algorithm that merely checks whether
S is optimal. Unsurprisingly, it is often the case that the best-known algorithms
for verifying optimality are more efficient than those finding a solution from
scratch (see e.g. the MST protocol below), and this gives the simulation theorem
considerable power.

Theorem 6. There is a valid (m, 1) protocol to find a minimum cost spanning
tree; a valid (m + n logn, 1) protocol to verify single-source shortest paths; and
a valid (n3, 1) protocol to verify all-pairs shortest paths.

Proof. We first prove the bound for MST. Given a spanning tree T , there exists a
linear-time algorithmM for verifying that T is minimum (see e.g. [18]). Let M′

Streaming Graph Computations with a Helpful Advisor 241

be the linear-time algorithm that, given G and a subset of edges T in adjacency
matrix form, first checks that T is a spanning tree by ensuring |T |=n−1 and
T is connected (using e.g. breadth-first search), and then executes M to ensure
T is minimum. We obtain an (m, 1) protocol for MST by having H provide a
minimum spanning tree T and using Theorem 5 to simulate M′. The upper
bound for single-source shortest paths follows from Theorem 5 and the fact that
there exist implementations of Djikstra’s algorithm requiring time O(m+n log n).
The upper bound for all-pairs shortest paths also follows from Theorem 5 and
the fact that the Floyd-Warshall algorithm runs in time O(n3). ��

We now provide near-matching lower bounds for all three problems. Proofs are
omitted for space reasons.

Theorem 7. Any protocol for verifying single-source or all pairs shortest paths
requires hcost · vcost = Ω(n2) bits. Additionally, if edge weights may be specified
incrementally, then an identical lower bound holds for MST.

Diameter. The diameter of G can be verified via our all-pairs shortest path
protocol, but the next protocol improves over the memory checking approach.

Theorem 8. There is a valid (n2 log n, 1) protocol for computing graph diame-
ter. Furthermore, any protocol for diameter requires hcost · vcost = Ω(n2) bits.

Proof. [6, Theorem 5.2] gives an (n2 log l, 1) protocol for verifying that Al = B
for a matrix A presented in a data stream and for any positive integer l. Note
that if A is the adjacency matrix of G; then (I + A)l

ij 	= 0 if and only if there is
a path of length at most l from i to j. Therefore, the diameter of G is equal to
the unique l > 0 such that (I + A)l

ij 	= 0 for all (i, j), while (I + A)l−1
ij = 0 for

some (i, j). Our protocol requires H to send l to V , and then run the protocol
of [6, Theorem 5.2] twice to verify l is as claimed. Since the diameter is at most
n− 1, this gives an (n2 log n, 1) protocol. We omit the proof of the lower bound.

5 Conclusion and Future Directions

In this paper, we showed that a host of graph problems possess streaming pro-
tocols requiring only constant space and linear-sized annotations. For many ap-
plications of the annotation model, the priority is to minimize vcost, and these
protocols achieve this goal. However, these results are qualitatively different from
those involving numerical streams in the earlier work [6]: for the canonical prob-
lems of heavy hitters, frequency moments, and selection, it is trivial to achieve
an (m, 1) protocol by having H replay the stream in sorted (“best”) order. The
contribution of [6] is in presenting protocols obtaining optimal tradeoffs between
hcost and vcost in which both quantities are sublinear in the size of the input.
There are good reasons to seek these tradeoffs. For example, consider a verifier
with access to a few MBs or GBs of working memory. If an (m, 1) protocol re-
quires only a few KBs of space, it would be desirable to use more of the available
memory to significantly reduce the running time of the verification protocol.

242 G. Cormode, M. Mitzenmacher, and J. Thaler

In contrast to [6], it is non-trivial to obtain (m, 1) protocols for the graph prob-
lems we consider, and we obtain tradeoffs involving sublinear values of hcost and
vcost for some problems with an algebraic flavor (e.g. matrix-vector multiplica-
tion, computing effective resistances, and eigenvalues of the Laplacian). We thus
leave as an open question whether it is possible to obtain such tradeoffs for a
wider class of graph problems, and in particular if the use of memory checking
can be adapted to provide tradeoffs.

A final open problem is to ensure that the work of H is scalable. In motivating
settings such as Cloud computing environments, the data is very large, and H
may represent a distributed cluster of machines. It is a challenge to show that
these protocols can be executed in a model such as the MapReduce framework.

Acknowledgements. We thank Moni Naor for suggesting the use of memory
checking.

References

1. McGregor, A.: Graph mining on streams. In: Encyc. of Database Systems. Springer,
Heidelberg (2009)

2. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: On graph problems
in a semi-streaming model. Theor. Comput. Sci. 348(2), 207–216 (2005)

3. Demetrescu, C., Finocchi, I., Ribichini, A.: Trading off space for passes in graph
streaming problems. In: SODA 2006, pp. 714–723 (2006)

4. Aggarwal, G., Datar, M., Rajagopalan, S., Ruhl, M.: On the streaming model
augmented with a sorting primitive. In: FOCS 2004, pp. 540–549 (2004)

5. Das Sarma, A., Lipton, R.J., Nanongkai, D.: Best-order streaming model. In: The-
ory and Applications of Models of Computation, pp. 178–191 (2009)

6. Chakrabarti, A., Cormode, G., Mcgregor, A.: Annotations in data streams. In:
ICALP 2009, pp. 222–234 (2009)

7. Lipton, R.J.: Efficient checking of computations. In: Choffrut, C., Lengauer, T.
(eds.) STACS 1990. LNCS, vol. 415, pp. 207–215. Springer, Heidelberg (1990)

8. Yiu, M., Lin, Y., Mouratidis, K.: Efficient verification of shortest path search via
authenticated hints. In: ICDE (2010)

9. Clarkson, K.L., Woodruff, D.P.: Numerical linear algebra in the streaming model.
In: STOC 2009, pp. 205–214 (2009)

10. Sarlos, T.: Improved approximation algorithms for large matrices via random pro-
jections. In: IEEE FOCS 2006 (2006)

11. Blum, M., Evans, W., Gemmell, P., Kannan, S., Naor, M.: Checking the correctness
of memories, pp. 90–99 (1995)

12. Cormode, G., Mitzenmacher, M., Thaler, J.: Streaming graph computations with
a helpful advisor. CoRR, vol. abs/1004.2899 (2010)

13. Lipton, R.J.: Fingerprinting sets. Princeton University, Tech. Rep. Cs-tr-212-89
(1989)

14. Kleinberg, J., Tardos, E.: Algorithm Design (2005)
15. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency (2003)
16. Schrijver, A.: Theory of linear and integer programming (1986)
17. Bollobas, B.: Modern Graph Theory. Springer, Heidelberg (1998)
18. King, V.: A simpler minimum spanning tree verification algorithm. Algorith-

mica 18(2), 263–270 (1997)

Algorithms for Dominating Set in Disk Graphs:

Breaking the log n Barrier�

(Extended Abstract)��

Matt Gibson1 and Imran A. Pirwani2

1 Dept. of Electrical & Computer Engineering, University of Iowa,
Iowa City, IA 52242, USA

mrgibson@engineering.uiowa.edu
2 Dept. of Computing Science, University of Alberta Edmonton,

Alberta T6G 2E8, Canada
imran.pirwani@gmail.com

Abstract. We consider the problem of finding a lowest cost dominating
set in a given disk graph containing n disks. The problem has been
extensively studied on subclasses of disk graphs, yet the best known
approximation for disk graphs has remained O(log n) – a bound that is
asymptotically no better than the general case. We improve the status
quo in two ways: for the unweighted case, we show how to obtain a PTAS
using the framework recently proposed (independently) by Mustafa and
Ray [16] and by Chan and Har-Peled [4]; for the weighted case where
each input disk has an associated rational weight with the objective of
finding a minimum cost dominating set, we give a randomized algorithm
that obtains a dominating set whose weight is within a factor 2O(log∗ n)

of a minimum cost solution, with high probability – the technique follows
the framework proposed recently by Varadarajan [19].

1 Introduction

For a set D of n disks in the Euclidean plane, define an intersection graph,
G = (V,E), thus: V = D; {u, v} ∈ E ⇔ disk (u) ∩ disk (v) 	= ∅. G is called a
disk graph; it is a unit disk graph when the disk radii are identical.

Given a graph the minimum dominating set (MDS) problem is to find a small-
est subset D′ ⊆ V such that every vertex is either in D′ or is adjacent to a vertex
in D′. On general graphs, the problem is (1−ε) lnn hard to approximate for any
ε > 0 under standard complexity theoretic assumptions [10,5], while a greedy
algorithm yields an O(log n) approximation [20].

Nevertheless, better approximations are possible for restricted domains. For
example, the problem admits a polynomial-time approximation scheme (PTAS)

� Work of the first author was supported by NSF grants CCF 0915543 and CCF
0830402. Work of the second author was supported by Alberta Ingenuity.

�� Several details are left out due to space constraints. For the full version of the paper,
please see [11].

M. de Berg and U. Meyer (Eds.): ESA 2010, Part I, LNCS 6346, pp. 243–254, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

244 M. Gibson and I.A. Pirwani

for unit disk graphs and growth-bounded graphs [12,17]. The problem is NP-hard
on these domains [6]. However, for the disk graph case, o(log n) approximations
have remained elusive – perhaps, in part, because known techniques for unit
disk graphs and solutions to other problems on disk graphs have either relied on
packing properties [12,17,8,3], or when packing property does not hold, as in the
minimum weighted dominating set on unit disk graphs, the fact that disk radii are
uniform [1,18]. Erlebach and van Leeuwen recently studied the dominating set
problem on fat objects, e.g., disk graphs, [9]. They note that existing techniques
for disk graphs do not seem sufficient to solve MDS [9]; they also give an O(1)-
approximation for fat objects of bounded ply. Recently, Kammer and Tholey [14]
give an O(1)-approximation algorithm for MDS when the input is a disk graph
with some special properties as well as for intersection graphs with r-regular
polygons and other fat objects.

In their recent break-through papers, Chan and Har-Peled [4], and Mustafa
and Ray [16] independently showed how a simple local search algorithm on cer-
tain geometric graphs yields a PTAS for some problems; Chan and Har-Peled
[4] show local search yields a PTAS for maximum independent set problem on
admissible objects, while Mustafa and Ray [16] show local search yields a PTAS
for the minimum hitting set problem given a collection of points and half-spaces
in R3, and also for points and admissible regions in R2. They both use the planar
separator theorem to relate the cost of the local search solution with the optimum
solution. In the framework, at the crux lies the analysis of a certain graph whose
vertices are objects found by local search and ones that belong to an optimum
solution, and whose edges (which are only between the two kinds of vertices)
satisfy a property relating the two solutions. They show that there exists such a
graph which is also planar. Mustafa and Ray [16] refer to the existence of such
a planar graph as the locality condition.

Results: Our first result is a PTAS for the minimum dominating set problem
for disk graphs via a local search algorithm, as in [4,16]. Our analysis also uses
the framework introduced by these two papers. Our main new contribution is
to show the existence of a planar graph satisfying the locality condition. This
graph turns out to be the dual of a weighted Voronoi diagram in the plane.

The minimum dominating set problem for disk graphs can be reduced to the
problem of hitting half-spaces in R4 with the smallest number of a given set
of points. That is, given the set D of disks that form the input to the MDS
problem, we can easily compute a map π from D to a set of points in R4, and
a map h from D to a set of half-spaces in R4, with the following property: Two
disks d1 and d2 from D intersect if and only if π(d1) lies in h(d2). Thus we can
efficiently reduce the MDS problem for disks to a hitting set problem for points
and half-spaces in R4. While there is a PTAS for the hitting set problem in R3,
as shown by [16], there is none known for R4. It is not hard to see that a local
search such as the one in [16] does not yield a PTAS in R4.

Rather than reduce to a hitting set problem, we are able to establish the
locality condition by staying in the plane itself. In fact, the graph for the locality
condition is the dual of the weighted Voronoi diagram of the centers of the disks

Algorithms for Dominating Set in Disk Graphs: Breaking the log n Barrier 245

in the local search solution and the optimal solution, where the weights are the
radii of the disk. This can be seen as generalizing the situation considered by
[16] for the hitting set problem with points and disks in the plane. In that case,
the graph for the locality condition is the Delaunay triangulation, which is the
dual of the unweighted Voronoi diagram.

For the case when the disks are weighted, we give the first o(log n) approxi-
mation algorithm; we give a 2O(log∗ n) approximation algorithm1. This result is
based on the framework recently introduced by Varadarajan for the weighted
geometric set cover problem [19]. Our contribution here is to observe that the
framework is applicable to our dominating set problem as well; the weighted
Voronoi diagram is the key to this result also.

We assume that the inputs for both problems satisfy non-degeneracy assump-
tions – no three disk centers on a line and no four disks tangent to a circle. This
is without loss of generality, as these conditions can be enforced by simple per-
turbations. In Section 2, we present our PTAS for the unweighted dominating
set problem, and in Section 3 our algorithm for weighted dominating set.

2 The Unweighted Case: PTAS via Local Search

In this section, we give our PTAS for minimum dominating set for disk graphs.
Here, we are given a disk graph with a set D of n disks in the Euclidean plane,
and we are interested in computing a minimum cardinality dominating set of
the disk graph. The algorithm is given in Section 2.1 and the analysis of the
approximation ratio is given in Section 2.2.

2.1 The Algorithm

Local Search. Call a subset of disks, B ⊆ D, b-locally optimal if one cannot
obtain a smaller dominating set by removing a subset X ⊆ B of size at most b
from B and replacing that with a subset of size at most |X |−1 from D\B. Our
algorithm will compute a b-locally optimal set of disks for b = c

ε2 where c > 0
is a large enough constant. Our algorithm begins with an arbitrary feasible set
of disks and proceeds by making small local exchanges of size b = O(1

ε2), for a
given ε > 0. We stop when no further local improvements are possible.

Suppose that the solution returned is B. Finally, for reasons apparent in the
analysis, we check to see if for any disk u ∈ B there is a disk v ∈ D such that u
is completely contained in v ∈ D \ B. If such a disk exists, then simply replace
u with the largest such disk v. We return this as our final solution and call it
B. Our replacement step ensures that there is no disk in B that is properly
contained in some other disk in D.

2.2 Approximation Ratio

We will show that our algorithm is a PTAS, thus proving the following theorem:
1 log∗ n is the fewest number of iterated “logarithms” applied to n to yield a constant.

246 M. Gibson and I.A. Pirwani

Theorem 1. For any ε > 0, there exists a polynomial time algorithm for the
minimum dominating set problem on disk graphs that returns a solution whose
cost is at most (1 + ε)OPT where OPT is the cost of an optimal solution.

Let R be the disks in an optimal solution; we may assume no disk in R is properly
contained in any other disk in D. Thus, no disk in R ∪B is properly contained
in any other disk of R ∪ B. Note that by the definition of PTAS, we need to
show that |B| ≤ (1 + ε) · |R|. We will refer to R as the set of red disks and B as
the set of blue disks. Without loss of generality, we will assume that R∩B = ∅,
i.e. there is no disk that is both red and blue. For a disk u ∈ D, we say a disk
v ∈ R ∪B is a dominator of u if u and v intersect. Similarly, we also say that v
dominates u.

We must show the existence of an appropriate planar graph which relates
the disks in R with the disks in B. Here, we state the locality condition as per
Mustafa and Ray [16]:

Lemma 1 (Locality Condition). There exists a planar graph with vertex set
R ∪ B, such that for every d ∈ D, there is a disk u from amongst the red
dominators of d and a disk v amongst the blue dominators of d such that {u, v}
is an edge in the graph.

Section 2.3 is devoted to a proof of Lemma 1. In this extended abstract, we skip
the argument (from [4,16]) that has now become standard which uses the lemma
to show that |B| < (1 + ε)|R|; we also skip the running time analysis.

2.3 Establishing the Locality Condition

This section is devoted to the proof of Lemma 1, that is, the construction of an
appropriate planar graph which satisfies the locality condition.

Weighted Voronoi Diagram. We will be using a generalization of Voronoi dia-
grams called a weighted Voronoi Diagram (WVD). Instead of defining cells with
respect to a set of points, we will be defining cells with respect to red and blue
disks. In order to do this generalization for disks, we must define the distance
between a point in the plane and a disk.

Let u be a disk and let x be a point in the plane. We define wvd(x, u) =
d(x, cu) − ru where cu is the center of u, ru is the radius of u, and d(x, cu) is
the Euclidean distance between x and cu. Intuitively, for a point x, wvd(x, u)
is the Euclidean distance from x to the boundary of u; the distance to a disk is
negative for points that are strictly inside the disk. Alternatively, if x 	∈ u, then
wvd(x, u) is the amount we would need to increase the radius of u so that x lies
on the boundary of u; if x ∈ u, then wvd(x, u) is the negative of the amount we
would need to decrease the radius of u so that x lies on the boundary of u. See
Figure 1 for an illustration.

For a disk u in any collection of disks, let cell(u) be the set of points x in the
plane such that wvd(x, u) ≤ wvd(x, v), u 	= v. The cells of all the disks in the col-
lection induce a decomposition of the plane, and this is the WVD. This is just the

Algorithms for Dominating Set in Disk Graphs: Breaking the log n Barrier 247

2

u

x

wvd(x, u) = 2

1

u

x

wvd(x, u) = −1

(a) (b)

Fig. 1. An illustration for the distances used in our WVD. (a) wvd(x, u) when x is
not in u. (b) wvd(x, u) when x is in u.

standard weighted Voronoi diagram of the centers of the disks, where the weight
of the center of a disk is simply the radius of the disk [2].

Consider the WVD of the disks in R ∪ B. First, we will show that for every
u ∈ R ∪B, u has a non-empty cell in the WVD. That is, there is some point in
the plane that is closer to u than it is to any other red or blue disk.

Lemma 2. In the weighted Voronoi diagram of the union of red and blue disks,
the cell of every disk u is nonempty. Moreover, cu (the center of u) belongs only
to cell(u).

Proof. We will show that cu is only in cell(u). Suppose for the sake of con-
tradiction that cu ∈ cell(v) such that u 	= v. This means that wvd(cu, v) ≤
wvd(cu, u) = d(cu, cu) − ru = −ru. So, −ru ≥ wvd(cu, v) = d(cu, cv) − rv ⇒
rv ≥ d(cu, cv)+ ru. This implies that u is contained in v, and since the two disks
are not the same, the containment is proper. But this is a contradiction, since
no disk in R ∪B contains another such disk. ��

The Graph. Any cell in the WVD of R ∪ B is star-shaped with respect to the
center of the corresponding disk. That is, for every point y ∈ cell(u), the segment
cuy is contained within cell(u).

The graph for the locality condition is simply the dual of the WVD of R∪B.
That is, for each cell in the WVD there is a vertex, and there is an edge between
two vertices if and only if their corresponding cells share a boundary in the
diagram (that is, if and only if there is a point in the plane equidistant from
the two disks). The graph is planar – exploiting the fact that the cells are star-
shaped, the edges can easily be drawn so that no two edges intersect [2].

Corollary 1. The dual of the power diagram of R ∪B is a planar graph.

Because every red and blue disk has a nonempty cell in the WVD, every such
disk will also have a corresponding vertex in our planar graph. We are now ready
to show that for each d ∈ D, there is a disk u from amongst the red dominators

248 M. Gibson and I.A. Pirwani

of d and a disk v amongst the blue dominators of d such that cell(u) and cell(v)
share a boundary in the WVD. This would then imply that their corresponding
vertices in the graph share an edge, completing the proof of Lemma 1. For
simplicity, if there is an edge connecting the vertex corresponding to cell(u) and
the vertex corresponding to cell(v), then we will simply say there is an edge
connecting u and v.

Lemma 3. In the dual graph of the weighted Voronoi diagram for R ∪ B, for
an arbitrary input disk u ∈ D, there is an edge between some red dominator of
u and some blue dominator of u.

Proof. Consider the WVD of R ∪ B. Without loss of generality, assume cu ∈
cell(r) for some r ∈ R. Now, r must be a dominator of u, because r is the
closest disk in R∪B to cu. If r does not dominate u, u is not dominated by any
disk in R∪B which contradicts the fact that both R and B are dominating sets.

Let b denote a closest blue disk to cu, that is wvd(cu, b) ≤ wvd(cu, b′) for
all other blue disks b′. Note that b must dominate u, because if it did not, then
no blue disks would dominate u. This would contradict the fact that B is a
dominating set. Also, note that for any disk d ∈ D such that wvd(cu, d) ≤
wvd(cu, b), d must intersect with u.

If wvd(cu, b) = wvd(cu, r), we are done, since then there is an edge in the
dual graph incident on r and b. So, let us assume that wvd(cu, b) > wvd(cu, r).

We will walk from cu to cb along the straight line segment cucb. The proof
strategy is that during this walk, we will be crossing red cells and at some point
before reaching cb we will enter a blue cell, in particular, cell(b). We must have
entered this cell from a red cell cell(r′) which shares a boundary with cell(b),
and thus {r′, b} is an edge in our planar graph. Moreover, we will argue that r′

necessarily dominates u, completing the proof.
As seen in the proof of Lemma 2, cb ∈ cell(b), and thus we will enter cell(b)

at some point in time along our walk from cu to cb. Let x be the point at which
we first enter cell(b). Then x is on the boundary of cell(b) and cell(r′) for some
r′ ∈ R ∪B. If r′ = r, we are done. Otherwise, we have

wvd(cu, r′) < d(cu, x) + wvd(x, r′) = d(cu, x) + wvd(x, b) = wvd(cu, b).

(Here the strictness of the first inequality comes from our non-degeneracy as-
sumption which implies that cr′ cannot lie on the line through cu and cb.) Now,
it must be the case that r′ ∈ R because wvd(cu, r′) < wvd(cu, b) and b is the
closest blue disk to cu. This also implies that r′ must dominate u. See Figure 2
for an illustration.

Therefore cell(b) and cell(r′) share a boundary implying that the edge {b, r′}
is in our graph. Moreover, b is blue, r′ is red, and both dominate u, which
completes the proof. ��

Together, Corollary 1 and Lemma 3 prove Lemma 1.

Algorithms for Dominating Set in Disk Graphs: Breaking the log n Barrier 249

x cucb

cr′

cr

ru

Fig. 2. Proof of Lemma 3. The dotted disk is u with center cu and radius ru. The two
red disks r and r′ are shown as dashed disks with centers cr and cr′ , respectively. The
only blue disk b is shown as a solid disk with center cb.

3 The Weighted Dominating Set Case

In this section, we study a classical generalization of the dominating set problem.
Each disk u now has an associated rational weight, wu. The goal is to find a
dominating set D having the lowest cost, that is, wt (D) =

∑
u∈D wu be as

small as possible. We will prove the following theorem:

Theorem 2. Given a disk graph, G = (V,E) of n weighted disks D in the plane,
there is a randomizedalgorithm that produces adominating setV ′ ⊆ V , andwt (V ′) ≤
2O(log∗ n)·opt, w.h.p., where opt denotes the cost of an optimal solution.

The high-level structure of the algorithm is as follows: we first solve a natural
linear programming relaxation, followed by a randomized rounding step; this
step allows us to ignore the weights of the disks in the sampling (pruning) stage.
In the rounding step, we make several copies of the disks to ensure that two
properties hold. First, every disk in D is covered by at least n of the copies.
Second, the weight of the copies is O(n · λ∗), where λ∗ is the objective function
value of an optimal LP solution. Following this step, we recursively apply a
randomized pruning step where we remove some of the copies according to the
algorithm given in the proof of Theorem 3 while ensuring that the remaining
copies are a dominating set of D. The main goal of the pruning step is to remove
some of the copies while approximately preserving the ratio of the cost of the
remaining copies to the “depth” of the disks in D with respect to the remaining
copies. We recursively apply the pruning step until the disks in D are covered
by only a constant number of the remaining copies; the depth of our recursion is
Θ(log∗ n). We can then show that the expected weight of our final dominating
set is at worst 2O(log∗ n) · λ∗.

First, we define some terms that are used in the remaining part of the section.
Given a disk v and a set of disks S, we say that v is L-covered by S if there are

250 M. Gibson and I.A. Pirwani

exactly L disks in S each of which intersects v. In other words, neighborhood of
v in S has size L. We will make use of the following lemma, which is our main
contribution to the weighted case:

Lemma 4. Let S be a set of m disks, and 1 ≤ L ≤ m an integer. Let Q
be another (possibly infinite) set of disks. There are O(m·L2) disks of Q that
intersect distinct subsets of S each of size at most L.

Proof. We first define a few concepts that we use in the proof. We focus on
subsets S′ ⊆ S of size at most L and disks of Q whose neighborhood is precisely
one of these subsets; let us denote this subset of Q by Q′. For a set S′ ⊆ S of size
at most L, and a pair of disks u, v ∈ Q′, we say that u and v are related if they
both intersect every disk in S′ and no other disk of S\S′, i.e. u∩S = v∩S = S′. So
we have an equivalence relation on Q′ where each equivalence class corresponds
to a set S′ ⊆ S. We wish to bound the number of these equivalence classes. Let
these subsets of S be {S1, S2, . . . , St}, and correspondingly, t equivalence classes
{Q1, Q2, . . . , Qt}, where each disk in Qi intersects every disk in Si, and no other
disk of S \ Si. Consider any set Qi and an arbitrary disk v ∈ Qi. By scaling
and/or translating v we can obtain a disk v′ with the following property: v′ has
the same neighborhood as all the disks in Qi and is sharing a single point with
three, two, or one disk in Si and is intersecting all the other disks in more than
one point; for the cases when v′ is touching a single disk in Si, or two disks in Si,
we continue to translate and scale v′ so that it touches two disks outside of Si, or
one disk outside of Si, respectively. Without loss of generality, we assume that
S has four special disks whose borders form the North, South, East, and West
boundary, respectively, of the region that contains the input disks. We call these
special disks N,S,E,W , respectively. Such a transformed disk, v′, that touches
exactly three disks is referred to as vi. We say that a disk d is canonical with
respect to a set of disks D′ if there are three distinct disks in D′ such that d
intersects the three disks at only one point each. Note that each vi is a canonical
disk with respect to the set S. We say that a canonical disk v is κ-canonical with
respect to a set of disks D′ if at most κ disks from D′ intersect the interior of v.
Therefore, each of the canonical disks vi that we defined are L-canonical disks.
It is easy to see that t is within a constant factor of the number of L-canonical
disks with respect to S. For each vi, the set of disks that shares exactly one
point with it is called the defining set of vi and every disk of Si that shares
more than one point with vi is said to be in the conflict set of vi. Note that
the defining set of vi has at least one disk from Si, but at most two remaining
disks can be from outside Si. We will upper bound the number of L-canonical
disks with respect to S (and hence upper bound t) by choosing a random sample
S′ ⊆ S and calculating the expected number of 0-canonical disks with respect
to S′. This technique dates back to that of Clarkson [7].

Let us choose a random subset S′ ⊆ S using k independent trials in which we
pick each disk from S with uniform probability, while we add N,S,E,W in S′

with probability 1. Now, for a fixed vi to be a 0-canonical disk in S′, its defining
set must have been picked in S′, and its conflict set must not be in S′. The
probability of this event is at least

Algorithms for Dominating Set in Disk Graphs: Breaking the log n Barrier 251

(
k

m

)3

·
(

1− L

m

)k

Thus, the expected number of disks among v1, . . . , vt (L-canonical disks for the
sets) that are 0-canonical disks for S′ is at least

t·
(

k

m

)3

·
(

1− L

m

)k

We will show that the maximum number of 0-canonical disks for S′ is O(k).

Claim. For a set S′ of disks of size k, the maximum number of 0-canonical disks
induced is O(k).

Proof. We will bound the number of 0-canonical disks by the number of Voronoi
vertices of a weighted Voronoi diagram with k sites in which the sites are repre-
sented by the k centers of disks in S′, and the weight of each site is the radius
of the corresponding disk. Every Voronoi vertex is equidistant from the disks of
the regions sharing that vertex. So each Voronoi vertex in the Voronoi diagram
corresponds to the center of a disk that touches the boundary of exactly three
disks of S′ (disks corresponding to the three regions defining that vertex) and
does not intersect any other disk of S′. Since the number of Voronoi vertices
of a Voronoi diagram having k sites is bounded linearly in k, the number of of
canonical disks that touch three disks of S′ are thus bounded linearly in k as
well. This leads to the final bound of O(k) on the maximum number of canonical
disks that S′ admits. ��

According to the claim, the maximum number of 0-canonical disks for S′ is O(k).
So,

t·
(

k

m

)3

·
(

1− L

m

)k

≤ c1k,

for some constant c1 > 0. Choosing k = 2m
L yields t ≤ c′mL2. ��

We prove the following variant of a theorem of Varadarajan in [19].

Theorem 3. Given a disk graph G = (V,E) and set of n weighted disks D ⊆ V
in the plane s.t. D dominates V , there is a randomized algorithm that produces
a subset D′ ⊆ D, such that for any disk v ∈ V , if v is L-covered in D, then v is
at least log L-covered in D′ and Pr [d ∈ D′] ≤ c·log L

L .

Proof. We only describe a randomized process that selects a subset, D′ of disks
such that any disk v ∈ V that is covered by D in the range [L, 2L], v is at
least log L-covered in D′. Let Nm = D, and let Cm denote the set of equivalence
classes of disks in V such that each class intersects at most 2L disks of D. Note
that since the disks in one equivalence class of V have the same neighborhood
in D, if we obtain a set D′ that at least log L-covers one disk in that class,
then all the disks in that class are also at least log L-covered. Therefore, we

252 M. Gibson and I.A. Pirwani

can assume we have one representative disk from each class and our goal is to
at least log L-cover these disks. We use this fact crucially in our analysis. By
Lemma 4, |Cm| ≤ c′·nmL2, nm = |Nm|. So, there is a disk dm that covers at
most 2c′L2 classes of Cm. Find such a disk dm ∈ Nm, and recursively compute
a sequence for Nm−1 = Nm \ {dm}, and append the sequence to dm. That is, in
the arrangement of Nm−1 we consider the classes Cm−1 whose coverage in Nm−1
is at most 2L. The recursion stops when there are fewer than L disks remaining,
at which point, we compute an arbitrary sequence of the remaining set of disks.

Let σ be the reverse of this sequence, that is, σ = (d1, d2, . . . , dm). When
considering disk dj , we make an instant decision about including it in our cover
or not. Call a disk dj ∈ Nj forced if for some disk v ∈ Cj , not including dj will not
log L-cover v, whose coverage in Nm is in [L, 2L]. Otherwise, if dj is not forced,
we add it to D′ with probability c·log L

L . We will upper bound the probability of
dj being forced – we will show that it is at most O(1/L).

Observe that if a disk dj is forced because of v, then all the disks dj′ (with
j′ ≥ j) that cover v are also forced, and the number of such disks is at most
log L − 1 (otherwise dj won’t be forced). So it is sufficient to upper bound the
probability of a disk di being the first disk forced because of v. Let us denote
this event by Ei(v). Since from among the disks that cover v at most the last
log L disks can be forced, the probability of one of these log L disks being forced
is at most log L times the probability that one of the disks before it is the “first”
forced disk because of v. We use Ei to denote the event that di is the first disk
forced because of some disk that it covers. We omit the proof of the following
claim from this extended abstract.
Claim.

Pr [Ei(v)] ≤ 1
L4

Note that any disk di′ that occurs before di in σ if di′ is forced for a disk v′ that
is not covered by di, which forces a disk dk which occurs after di in σ and that
dk also covers v, then that event has no bearing on the event of di being a first
forced disk for v. So, to upper bound the probability that some dj is a forced
disk for a fixed disk v, we sum over all valid indices i < j with di being the first
forced disk because of v, and obviously there are at most log L of them,

Pr
[some dj is

forced by
disk v

]
≤
∑

i

1
L4 ≤

1
L3 .

Since there are at most 2c′L2 classes of Cj having coverage in the range [L, 2L]
that are covered by dj , dj can be a forced addition for any one of the at most
2c′L2 representative disks. So,

Pr
[

dj is forced
for some
disk v∈Cj

]
≤ 2c′

L
.

The probabilistic algorithm finds a dominating set D′ ⊆ D where the probability
of a given disk being in D′ is at most c·log L

L and each disk v ∈ V that is covered
in the range [L, 2L] by D, is at least log L-covered in D′. We repeat the process

Algorithms for Dominating Set in Disk Graphs: Breaking the log n Barrier 253

for points that are between 2L and 4L deep, and so on. Note that the probability
of a disk being in D′ is still the same. ��

3.1 Proof of Theorem 2

Let the input instance be a disk graph based on a set of disks D. For any disk
d ∈ D, let N [d] denote the set of neighbors of d in the graph, inclusive. Consider
the following natural LP relaxation for the weighted dominating set problem:

(LP) min
∑
d∈D

wdxd

subject to, ∑
d′:d′∈N [d]

xd′ ≥ 1, ∀d ∈ D

xd ≥ 0, ∀d ∈ D

After solving the LP relaxation, we create a set D0 of disks as follows. For each
disk d such that xd ≥ 1

2n , we add ! xd

1/(2n)" copies of d to D0. Each copy of d

inherits its original cost. For each disk d with xd < 1
2n , we don’t add any copy to

D0. It is easily verified that wt (D0) ≤ 2n ·λ∗, where λ∗ is the objective function
value of the optimal LP solution. Furthermore, we have that each disk d ∈ D is
n-covered by D0.

In the next phase, our algorithm will recursively apply Theorem 3 to obtain
a successively sparse dominating set. For the ith application of the theorem, we
set Li = log Li−1, for i = 2, 3, . . . , t to obtain a set Di ⊆ Di−1. For the first
application, we set L1 = n. Details of the approximation ratio are omitted from
this extended abstract.

4 Concluding Remarks and Open Questions

Given the negative result of Marx [15] which shows that even for the simple case
of unweighted unit disk graph, an EPTAS for the problem would contradict the
exponential time hypothesis [13]2, it is unlikely that the dependence of 1/ε as
an exponent of n on the running time for the PTAS can be improved to, say,
f(1/ε)·nO(1). However, the running time of the local search PTAS is nO(1/ε2).
Can this be improved to nO(1/ε)? In our work, we have made no attempt to
improve the running time.

For the weighted case, we are only able to show a constant integrality gap
for the lower bound despite numerous attempts. Thus, we believe that the right
upper bound for the approximation factor is O(1).
Acknowledgments. We thank Sariel Har-Peled and Kasturi Varadarajan for sug-
gesting the use of weighted Voronoi diagrams for the unweighted case, and we
thank Kasturi Varadarajan for pointing out the connection between weighted
set cover and weighted dominating set. We also thank Mohammad Salavatipour
for his support and many valuable discussions.

2 Marx [15] actually shows something stronger.

254 M. Gibson and I.A. Pirwani

References

1. Ambühl, C., Erlebach, T., Mihalák, M., Nunkesser, M.: Constant-factor approxi-
mation for minimum-weight (connected) dominating sets in unit disk graphs. In:
Dı́az, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) APPROX 2006 and RANDOM
2006. LNCS, vol. 4110, pp. 3–14. Springer, Heidelberg (2006)

2. Aurenhammer, F.: Voronoi diagrams—a survey of a fundamental geometric data
structure. ACM Comput. Surv. 23(3), 345–405 (1991)

3. Chan, T.M.: Polynomial-time approximation schemes for packing and piercing fat
objects. J. Algorithms 46(2), 178–189 (2003)

4. Chan, T.M., Har-Peled, S.: Approximation algorithms for maximum independent
set of pseudo-disks. In: SoCG 2009, pp. 333–340 (2009)

5. Chleb́ık, M., Chleb́ıková, J.: Approximation hardness of dominating set problems.
In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 192–203. Springer,
Heidelberg (2004)

6. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Discrete Mathemat-
ics 86(1-3), 165–177 (1990)

7. Clarkson, K.L.: Applications of random sampling in computational geometry, II.
In: Symposium on Computational Geometry, pp. 1–11 (1988)

8. Erlebach, T., Jansen, K., Seidel, E.: Polynomial-time approximation schemes for
geometric intersection graphs. SIAM J. Comput. 34(6), 1302–1323 (2005)

9. Erlebach, T., van Leeuwen, E.J.: Domination in geometric intersection graphs. In:
Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS,
vol. 4957, pp. 747–758. Springer, Heidelberg (2008)

10. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45(4), 634–652
(1998)

11. Gibson, M., Pirwani, I.A.: Approximation algorithms for dominating set in disk
graphs. CoRR abs/1004.3320 (2010)

12. Hunt III, H.B., Marathe, M.V., Radhakrishnan, V., Ravi, S.S., Rosenkrantz, D.J.,
Stearns, R.E.: Nc-approximation schemes for np- and pspace-hard problems for
geometric graphs. J. Algorithms 26(2), 238–274 (1998)

13. Impagliazzo, R., Paturi, R.: On the complexity of k-sat. J. Comput. Syst. Sci. 62(2),
367–375 (2001)

14. Kammer, F., Tholey, T.: Approximation algorithms for intersection graphs. To
appear in APPROX-RANDOM (2010)

15. Marx, D.: On the optimality of planar and geometric approximation schemes. In:
FOCS, pp. 338–348 (2007)

16. Mustafa, N.H., Ray, S.: PTAS for geometric hitting set problems via local search.
In: SoCG, pp. 17–22 (2009)

17. Nieberg, T., Hurink, J., Kern, W.: Approximation schemes for wireless networks.
ACM Transactions on Algorithms 4(4), 1–17 (2008)

18. Pandit, S., Pemmaraju, S., Varadarajan, K.: Approximation algorithms for domatic
partition. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) Approximation, Ran-
domization, and Combinatorial Optimization. Algorithms and Techniques. LNCS,
vol. 5687, pp. 312–325. Springer, Heidelberg (2009)

19. Varadarajan, K.: Weighted geometric set cover via quasi-uniform sampling. In:
STOC 2010, pp. 641–648 (2010)

20. Vazirani, V.V.: Approximation Algorithms. Springer, New York (2001)

Minimum Vertex Cover in Rectangle Graphs

Reuven Bar-Yehuda1, Danny Hermelin2, and Dror Rawitz3

1 Department of Computer Science, Technion IIT, Haifa 32000, Israel
reuven@cs.technion.ac.il

2 Max-Planck-Institut für Informatik, Saarbrücken, Germany
hermelin@mpi-inf.mpg.de

3 School of Electrical Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel
rawitz@eng.tau.ac.il

Abstract. We consider the Minimum Vertex Cover problem in in-
tersection graphs of axis-parallel rectangles on the plane. We present
two algorithms: The first is an EPTAS for non-crossing rectangle fam-
ilies, rectangle families R where R1 \ R2 is connected for every pair of
rectangles R1, R2 ∈ R. This algorithm extends to intersection graphs
of pseudo-disks. The second algorithm achieves a factor of (1.5 + ε) in
general rectangle families, for any fixed ε > 0, and works also for the
weighted variant of the problem. Both algorithms exploit the plane prop-
erties of axis-parallel rectangles.

1 Introduction

In this paper we are concerned with the Minimum Rectangle Vertex Cover

problem: Given a set R = {R1, . . . , Rn} of (weighted) axis-parallel rectangles in
the plane, find a minimum size (weight) subset of rectangles in R whose re-
moval leaves the remaining rectangles in R pairwise disjoint, i.e. no pair of
remaining rectangles share a common point. This problem is a special case of
the classical Minimum Vertex Cover problem, which asks to find a mini-
mum weight subset of vertices in a given graph, whose removal leaves the graph
without edges. When the input graph is a rectangle graph, an intersection graph
of axis parallel rectangles in the plane, and the rectangle representation of the
input graph is given alongside the input, Minimum Vertex Cover becomes
Minimum Rectangle Vertex Cover.

Minimum Vertex Cover is one of the most extensively studied combinato-
rial problems in computer science, a study dating back to König’s classical early
1930s result [1], and probably even prior to that. Karp proved that the prob-
lem is NP-complete in his famous list of fundamental NP-complete problems [2],
while Garey and Johnson extensively used Minimum Vertex Cover as an in-
termediate problem in many of their early NP-completeness reductions [3]. Since
then, Minimum Vertex Cover played a pivoting role in the development of
both approximation algorithms [4,5], and the theory of parameterized complex-
ity [6], the two main disciplines for coping with the widespread phenomena of
NP-hardness.

M. de Berg and U. Meyer (Eds.): ESA 2010, Part I, LNCS 6346, pp. 255–266, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

256 R. Bar-Yehuda, D. Hermelin, and D. Rawitz

From the perspective of approximation algorithms, Minimum Vertex

Cover has many polynomial-time algorithms achieving an approximation ratio
of 2 [7,8,9,10], the first of these given in Nemhauser and Trotter’s fundamen-
tal paper [10]. Moreover, the problem is known to be approximable in within
2− lg lg n

2 lg n [11,12], within 2− ln ln n
ln n (1−o(1)) [13] and even within 2−Θ(1√

log n
) [14].

On the other hand, it is also known that Minimum Vertex Cover is inap-
proximable within a factor of 1.36, unless P=NP [15]. There are however many
natural special-case graph classes for which one can improve on this barrier. For
instance, in the class of interval graphs, which can be thought of as one dimen-
sional analogs of rectangle graphs, Minimum Vertex Cover is polynomial-time
solvable [16]. In planar graphs, the problem is known to admit a polynomial-time
approximation scheme (PTAS) [17,18,19], and even an efficient PTAS (EPTAS)
due to Baker’s seminal framework for NP-hard planar graph problems [20].

The dual problem of Minimum Rectangle Vertex Cover is the Maxi-

mum Rectangle Independent Set problem: Given a family of axis-parallel
rectangles in the plane, find a maximum size (or weight) subset of pairwise
disjoint rectangles. This problem has been extensively studied in the computa-
tional geometry community, and has several applications in data mining [21,22],
automated label placement [23,24,25], and in network resource allocation with
advance reservation for line topologies [21,26], which also apply to Minimum

Vertex Cover in rectangle graphs (see below). Fowler et al. [27] showed
that Maximum Independent Set in rectangle graphs is NP-hard, implying
the NP-hardness of Minimum Vertex Cover in rectangle graphs. Asano [28]
showed that Maximum Independent Set and Minimum Vertex Cover re-
main NP-hard even in intersection graphs of unit squares. There have been
several O(lg n) approximation algorithms independently suggested for this prob-
lem [23,29,30,22]. Lewin-Eitan et al. [26] devised a 4q-approximation algorithm
for the problem, where q is the size of the maximum clique in the input graph.
Recently, Chalermsook and Chuzhoy [21] were able to break the lg n approxi-
mation barrier by devising a sophisticated O(lg lg n) randomized approximation
algorithm. A simpler O(lg n/ lg lg n)-approximation algorithm was given in [31].
There are also many special cases in which Maximum Rectangle Indepen-

dent Set admits a polynomial-approximation scheme (PTAS) [23,29,32,33].
In contrast to the vast amount of research devoted to Maximum Rectangle

Independent Set there has been surprisingly very little focus on the Mini-

mum Rectangle Vertex Cover problem. Nevertheless, some of the results for
Maximum Rectangle Independent Set carry through to Minimum Rect-

angle Vertex Cover. For instance, the result of Fowler et al. [27] implies
that Minimum Rectangle Vertex Cover is NP-hard. Also, by applying
the Nemhauser and Trotter Theorem (see Section 2) as a preprocessing step,
any PTAS for Maximum Rectangle Independent Set can be converted
into a PTAS for Minimum Rectangle Vertex Cover. Thus, the results
in [23] imply that Minimum Rectangle Vertex Cover has a PTAS when
all rectangles have equal height, while [32] gives a PTAS when all rectangles are
squares. Erlebach et al. [33] gave an explicit PTAS for Minimum Rectangle

Minimum Vertex Cover in Rectangle Graphs 257

Vertex Cover in bounded aspect-ratio rectangle families (without using the
Nemhauser and Trotter procedure), and an EPTAS for Minimum Rectangle

Vertex Cover in unit squares and squares is implied by [34] and [35], respec-
tively. Finally, we mention the work by Chan and Har-Peled [31] who devised a
PTAS for Maximum Independent Set in families of pseudo-disks, which are
families of regions on the plane such that the boundaries of every pair of regions
intersect at most twice. This result implies a PTAS for Minimum Rectangle

Vertex Cover in non-crossing rectangle families.

Related work. Minimum Vertex Cover and its dual counterpart Maximum

Independent Set have been previously studied in many geometric intersection
graphs other than rectangle graphs. Gavril [16] gave a polynomial-time algorithm
for both of these problem in chordal graphs, intersection graphs of subgraphs
of a tree. Apostolico et al. [36] gave a polynomial-time algorithm for these two
problems in intersection graphs of chords on a circle, which were later improved
by Cenek and Stuart [37], while Golumbic and Hammer [38] gave a polynomial-
time algorithm for intersection graphs of arcs on a circle which was later improved
in [39]. A good survey of many generalizations of these results can be found
in [40,41]. Hochbaum and Maass, and later Chleb́ık and Chleb́ıková, considered
intersection graphs of d-dimensional boxes in Rd [42,43], while Erlebach et al. [33]
considered intersection graphs of general fat objects in the plane. In [44,45],
approximation algorithms were suggested for Maximum Independent Set and
Minimum Vertex Cover in the class of multiple-interval graphs.

Applications and motivation. Automated label placement is a central prob-
lem in geographic information systems which has been extensively studied in
various settings [23,24,25]. The basic problem is to place labels around points in
a geographic maps, where the labels are often assumed to be rectangles [23] which
are allowed to be positioned at specific places adjacent to their corresponding
points in the map. The usual criterion for a legal placement is that all rectangles
are pairwise disjoint. Subject to this constraint, a natural optimization criteria
is to minimize the number of labels to be removed so as the remaining labels
form a legal placement. This is exactly Minimum Rectangle Vertex Cover.

Minimum Rectangle Vertex Cover can also be used to model shared-
resource scheduling scenarios where requests are given in advance to the system.
Consider the typical critical-section scheduling problem occurring in all modern
operating system: A set of programs request access to a shared resource in mem-
ory for read/write purposes. The goal of the operating system is to serve as many
requests as possible, so long as no two programs access the same memory entries
simultaneously, to avoid obvious data-consistency hazards. In a simplified vari-
ant of this problem, one can assume that all programs have a single request to
fixed array of registers in memory, and this request occurs during a fixed interval
of their running time. If these requests are known beforehand, the problem of
minimizing the number of programs not to be served can naturally be modeled
as Minimum Rectangle Vertex Cover by using the x-axis to measure the
shared memory array, and the y-axis to measure program execution-time.

258 R. Bar-Yehuda, D. Hermelin, and D. Rawitz

Results and techniques. In this paper we present two approximation algo-
rithms for the Minimum Rectangle Vertex Cover problem. For a pair of
rectangles R1 and R2 in our input set of rectangles R, we say that R1 and
R2 cross if they intersect, but neither rectangle contains a corner of the other
rectangle. This is equivalent to requiring that R1 \ R2 is connected for every
R1, R2 ∈ R. (We assume w.l.o.g. that the rectangles are in general position.)
We say that R is non-crossing if there is no pair of crossing rectangles in R.
Our first algorithm is an EPTAS for Minimum Rectangle Vertex Cover in
non-crossing rectangle families:

Theorem 1. Given any ε > 0, Minimum Rectangle Vertex Cover in non-
crossing rectangle families can be approximated within (1+ε) in 2poly(1/ε)·poly(n)
time.

We mention that Minimum Rectangle Vertex Cover in non-crossing rect-
angle families is NP-hard according to [28]. Theorem 1 generalizes the PTAS
result of Agarwal et al. [23] and Chan [32] for squares and equal height rectan-
gles, and it also handles several families of rectangles which cannot be handled by
the PTAS of Erlebach et al. [33]. In terms of time complexity, our algorithm dra-
matically improves on all these algorithms, and also on the algorithm of Chan
and Har-Peled [31], since all there algorithms have running-times of the form
npoly(1/ε). Furthermore, our algorithm easily extends to intersection graphs of
pseudo-disks, which is the class of graphs considered in [31].

The novelty behind the algorithm in Theorem 1 lies in its usage of the ar-
rangement graph [46] of the input set of rectangles R. This graph is defined by
considering all intersection points occurring on boundary of rectangles as ver-
tices, and the boundary curves connecting them as edges. By its definition, the
arrangement graph of a rectangle family is planar and 4-regular, and thus has
a very convenient structure. However, there is no immediate way to translate
approximate vertex-covers in the arrangement graph AR of R, to vertex covers
in the corresponding rectangle graph GR. Nevertheless, we show that we can
translate tree-decompositions in AR to tree-decompositions in GR of roughly
the same width, and this allows with some technical effort to simulate Baker’s
algorithm [20]. We believe that the arrangement graph can be a useful tool in
other intersection-graph problems.

The second algorithm we present in this paper applies to general rectangle
families and can handle also weights. This algorithm exploits the observation
that the rectangles of a triangle-free rectangle graph can be partitioned into two
classes, where no pair of rectangles cross in each class. This, in combination with
Theorem 1 and the fact that we can clean all triangles from our input graph at
cost of a 1.5 factor to the approximation guarantee, gives us Theorem 2 below
for the unweighted case. For the weighted case, we use the additional observation
that triangle-free non-crossing rectangle graphs are planar, and so we can use
Baker’s algorithm [20] directly.

Theorem 2. Given any ε > 0, Minimum Rectangle Vertex Cover can be
approximated within a factor of 1.5 + ε in 2poly(1/ε) · poly(n) time.

Minimum Vertex Cover in Rectangle Graphs 259

R1
R2

(a) Containment.

R1
R2

R1

R2

(b) Corner.

R2

R1

(c) Crossing.

Fig. 1. Possible intersections between two rectangles R1 and R2

Overview. The remainder of the paper is organized as follows. Section 2 con-
tains notation and terminology and a short explanation about the Nemhauser-
Trotter reduction [10]. Our EPTAS for Minimum Rectangle Vertex Cover

in non-crossing rectangle families is given in Section 3, and our (1.5 + ε)-
approximation algorithm for Minimum Rectangle Vertex Cover is given
in Section 4. Several proofs are omitted due to space limitations.

2 Preliminaries

We denote our input set of axis-parallel rectangles in the plane by R =
{R1, . . . , Rn}. We assume that each rectangle R is specified by two intervals
R = (X,Y), where X is the projection of R on the x-axis, and Y is the pro-
jection of R on the y-axis. We assume w.l.o.g. that R is in general position,
i.e. that all intervals in the specification of R have different endpoints. The
boundary of a rectangle R is the set of all points with minimum and maximum
x-coordinate values, and minimum and maximum y-coordinate values. Two rect-
angles R1 = (X1, Y1) and R2 = (X2, Y2) intersect, denoted R1 ∩R2 	= ∅, if they
share a common point, i.e. if X1∩X2 	= ∅ and Y1∩Y2 	= ∅. Two non-intersecting
rectangles are said to be disjoint. There are three possible types of intersections
between two rectangles R1 and R2:

1. Containment intersection: R1 contains R2. In this case R1 contains all cor-
ners of R2, and the boundaries of R1 and R2 do not intersect (Fig. 1a).

2. Corner intersection: R1 contains one or two corners of R2. In this case the
boundaries of R1 and R2 intersect exactly twice (Fig. 1b).

3. Crossing intersection: the intersection of R1 and R2 does not involve any cor-
ners. In this case, the boundaries of R1 and R2 intersect four times (Fig. 1c).

Given a graph G, we use V (G) and E(G) to denote its vertex set and edge
set, respectively. For a given vertex-subset V ⊆ V (G), we let G[V] denote the
subgraph of G induced by V , i.e. the subgraph with vertex-set V and edge-set
{{u, v} ∈ E(G) : u, v ∈ V }. We write G − V to denote the induced subgraph
G[V (G) \ V]. We will also be considering vertex-weighted graphs, i.e. graphs G
equipped with a weight-function w : V (G) → Q. A vertex cover of G is a subset
of vertices C ⊆ V (G) such that {u, v} ∩ C 	= ∅ for any edge {u, v} ∈ E(G). For
a non-negative real α ∈ R≥0, an α-approximate vertex cover of G is a vertex

260 R. Bar-Yehuda, D. Hermelin, and D. Rawitz

cover C with |C| ≤ α · opt (or w(C) ≤ α · opt in the weighted case), where
opt is the size (weight) of a minimum vertex cover of G. The intersection graph
GR corresponding to our input set of rectangles R is the graph with vertex-set
V (GR) = R, and edge-set E(GR) = {{R1, R2} : R1 ∩R2 	= ∅}.

We will be using an important tool due to Nemhauser and Trotter [10] that
allows us to focus on graphs whose entire vertex-set already constitutes a good
approximate vertex-cover:

Theorem 3 (Nemhauser&Trotter [10]). There is a polynomial-time algo-
rithm that given a vertex-weighted graph G, computes a vertex set V ⊆ V (G) such
that: (i) V is a 2-approximate vertex-cover of G[V], and (ii) any α-approximate
vertex cover of G[V] can be converted in polynomial-time to an α-approximate
vertex cover of G.

Finally, we will be using the notion of treewidth and tree-decomposition of
graphs, introduced in the form below by Robertson and Seymour [47].

Definition 1 (Treewidth [47]). A tree decomposition of a graph G is a pair
(T ,X), where X ⊆ 2V (G) is a family of vertex subsets of G, and T is a tree
over X , satisfying the following conditions: (i)

⋃
X∈X G[X] = G, and (ii) Xv =

{X ∈ X : v ∈ X} is connected in T for all v ∈ V (G). The width of T is
maxX∈X |X | − 1. The treewidth of G, denoted tw(G), is the minimum width
over all tree decompositions of G.

3 An EPTAS for Non-crossing Rectangle Graphs

In this section we present an EPTAS for Minimum Rectangle Vertex Cover

in unweighted non-crossing rectangle families. This algorithm extends to inter-
section graphs of pseudo-disks.

Let R denote our input set of unweighted non-crossing rectangles. The first
step of our algorithm is to clean R from containment intersections and pairwise
intersecting subsets of size greater than some constant q ≥ 2 to be chosen later.
This can be done using standard techniques, and allows us to gain substantial
structure at a small cost to the approximation factor of our algorithm.

Lemma 1. Suppose that Minimum Rectangle Vertex Cover in corner-
intersecting rectangle families with no q + 1 pairwise intersecting rectangles can
be approximated within a factor of α. Then Minimum Rectangle Vertex

Cover in non-crossing rectangle families can be approximated within a factor
of max{α, 1 + 1/q} in polynomial-time.

Due to Lemma 1, we can henceforth assume that R contains only corner inter-
sections, and that the maximum clique in GR is of size at most q. We also apply
the Nemhauser&Trotter algorithm (Theorem 3) on GR after applying Lemma 1,
and so we assume that R is a 2-approximate vertex cover of GR.

The main idea of algorithm is as follows. We will construct the so-called
arrangement graph AR of R which is build by considering all intersection points

Minimum Vertex Cover in Rectangle Graphs 261

(a) Rectangle Set. (b) The joints. (c) Resulting arrangement graph.

Fig. 2. A set R of corner intersecting rectangles and its arrangement graph AR

occurring on boundaries of rectangles as vertices, and the boundary curves con-
necting them as edges. By this construction, AR is a planar graph, and as such,
it has very specific structure. The most tempting approach is to use Baker’s EP-
TAS for Minimum Vertex Cover in planar graphs on AR, and to convert the
(1 + ε)-approximate vertex-cover of AR to a (1 + ε′)-approximate vertex-cover
of GR. Unfortunately, this attempt fails, since the natural transformation from
vertices of AR to rectangles of GR produces the entire set of rectanglesR on any
vertex-cover of AR. We therefore take an alternative route. The basic idea is to
mimic Baker’s algorithm by using the observation that tree-decompositions of
AR correspond to tree-decompositions of GR of roughly the same width. Thus,
instead of applying Baker’s algorithm on AR as a black-box, we can simulate its
steps directly on GR. Using then an extension of Baker’s analysis, we can show
that this approach indeed gives us our the desired (1 + ε) approximation factor.

3.1 The Arrangement Graph

In this section we present several properties of arrangement graphs [46] of rect-
angle families. An intersection of two rectangle boundaries is called a joint. The
arrangement graph AR of a rectangle family R is the multi-graph that is defined
as follows: The vertex set of AR is the set of joints. The edge set of AR consists
of the rectangle boundary fragments, namely {u, v} is an edge in AR if and only
if u and v are two joints located on the boundary of some rectangle such that
no other joint is located on the boundary between them. It is not difficult to see
that the arrangement graph defined as above is in fact planar and 4-regular (see
example in Fig. 2).

For a given subset of joints J ⊆ V (AR), the set of rectangles that is induced
by J is defined by R(J) = {R ∈ R : ∃j ∈ J s.t. j is on the boundary of R}.
The following lemma is immediate from the fact that R is in general position.

Lemma 2. |R(J)| ≤ 2|J | for any set of joints J ⊆ V (AR).

The following lemma states that the number of joints is AR is linear in |R|.
Lemma 3. |V (AR)| ≤ 4q · |R|.

3.2 Baker’s Algorithm

Our algorithm for Minimum Rectangle Vertex Cover in non-crossing
rectangle families simulates Baker’s classical algorithm for Minimum Vertex

262 R. Bar-Yehuda, D. Hermelin, and D. Rawitz

Cover in planar graphs [20] on the arrangement graph AR of R. The main
idea behind Baker’s approach is the observation that given a planar graph G
and any positive integer k, one can partition the vertex-set of G into k classes
such that deleting each the vertices in class results in subgraph of treewidth at
most 3k (see Lemma 4 below). Combining this observation along with the well-
known algorithm for Minimum Vertex Cover in bounded treewidth graphs
(see e.g. [48]), gives an EPTAS for Minimum Vertex Cover in planar graphs.

Lemma 4 (Baker [20]). Given a planar graph G and an integer k, one can
partition in polynomial-time V (G) into k subsets V1, . . . , Vk such that tw(G −
Vi) ≤ 3k for all i, 1 ≤ i ≤ k.

In order to properly simulate Baker’s approach onMinimumRectangleVertex

Cover wewill needa slightlymore general framework. Inparticular, ouralgorithm
will not necessarilyproduce a partition of the vertex-set ofGR. Also, our algorithm
will produce vertex-sets whose deletion results in a subgraph of GR with treewidth
slightlymore than3k. Nevertheless, it isnot difficult to show that a slight relaxation
of these two requirements does not alter Baker’s analysis too much:

Lemma 5. Let G be a graph with n vertices, and let c1 and c2 be two fixed
positive integers. Suppose that there is a polynomial-time algorithm that, given
G and a positive integer k, produces vertex-sets U1, . . . , Uk with the following
properties: (1)

⋃
i Ui = V (G); (2)

∑
i |Ui| ≤ c1 · n; and (3) tw(G − Ui) ≤ c2 · k

for every i. Then one can compute a vertex cover of G within a factor of (1 + ε)
in 2poly(1/ε) · poly(n) time, for any given ε > 0.

3.3 Our Algorithm

We are now in position to describe our EPTAS. The key lemma we need is
Lemma 6 below that allows us to convert tree-decompositions of AR to a tree-
decompositions of GR of approximately the same width.

Lemma 6. tw(GR) ≤ 2 · tw(AR) + 1.

Proof. Let (T ,X) is a tree-decomposition of AR whose width it tw(AR). Now
let X ′ = {R(X) : X ∈ X}, and let T ′ be a tree over X ′ with an edge
{R(X1),R(X2)} for every edge {X1, X2} in T . We show that (T ′,X ′) is a tree-
decomposition of GR, namely that (T ′,X ′) satisfies all requirements of Defini-
tion 1. First, observe that any rectangle has at least two corresponding joints
since we assume there are no isolated rectangles in R. Furthermore, if two rect-
angles intersect, then there is a joint j ∈ V (AR) that corresponds to both these
rectangles. Hence, for every edge {R1, R2} ∈ E(GR), there is at least one node
in X ′ which contains both R1 and R2. Thus,

⋃
X∈X ′ GR[X] = GR.

Now suppose there is some rectangle R which is contained in two nodes R(X1)
and R(X2) of T ′. Then R has two joints j1 and j2 with j1 ∈ X1 and j2 ∈ X2. By
construction, there is a path j1, i1, . . . , ir, j2 connecting j1 to j2 in AR, where
i1, . . . , ir are all joints of R. Since (T ,X) is a proper tree decomposition of AR, it

Minimum Vertex Cover in Rectangle Graphs 263

follows that there is a path X1, Y1, . . . , Yr′ , X2 connecting X1 and X2 in T , with
Yi ∩ {j1, i1, . . . , ir, j2} 	= ∅ for each i, 1 ≤ i ≤ s. Thus, each node in the path
R(X1),R(Y1), . . . ,R(Ys),R(X2) connecting R(X1) and R(X2) in T ′ contains
R, and since R, R(X1), and R(X2) were chosen arbitrarily, this shows that for
each R ∈ R: {R(X) ∈ X ′ : R ∈ X} is connected in T ′. Thus, both requirements
of Definition 1 are fulfilled by (T ′,X ′).

Finally, observe that due to Lemma 2, maxX′∈X ′ |X ′| ≤ 2 maxX∈X |X |. It
follows that the width of (T ′,X ′) is at most 2tw(AR) + 1, and we are done. ��

Our algorithm consists of the following steps:

1. Set q = �1/ε� and k = �8q/ε� =
⌈
8/ε2

⌉
.

2. Apply Lemma 1 so that R does not have any containment intersections and
no pairwise intersecting subsets of rectangles of size greater than q.

3. Apply the Nemhauser&Trotter Theorem on GR, and let R′ ⊆ R denote the
resulting subset of rectangles.

4. Construct the arrangement graph AR′ corresponding to R′, and partition
AR′ into k subsets V1, . . . , Vk using Lemma 4.

5. Use Lemma 5 on GR′ with Ui = R′(Vi), for every i.

Observe that the arrangement graph of R′ \Ui is a subgraph of AR′−Vi. Hence,
according to Lemmas 2, 3 and 6 above, U1, . . . , Uk satisfy the three conditions of
Lemma 5. Thus the above algorithm outputs a (1+ ε)-approximate vertex-cover
of GR in 2poly(1/ε) · poly(n) time. This proves Theorem 1.

Finally, we mention that our EPTAS can be modified to deal with intersection
graphs of pseudo-disks. Specifically, in Step 2, instead of removing cliques, we
remove point cliques, namely subsets of pseudo-disks Q such that

⋂
R∈Q R 	= ∅.

This is sufficient, since the number of joints in the arrangement graph AD of a
set D of pseudo-disks, where no point is contained in more than q pseudo-disks,
is O(q · |D|) [49].

4 General Rectangle Graphs

In this section we present an algorithm for Minimum Rectangle Vertex

Cover in general rectangle families. Our algorithm achieves an approximation
factor of 1.5 + ε, for any given ε > 0, in time 2poly(1/ε) · poly(n), and works also
for the weighted variant of the problem.

We begin with the unweighted case, and with the following lemma which relies
on an observation already made by Lewin-Eytan et al. [26]. A rectangle family
is said to be triangle-free if there are no three pairwise intersecting rectangles in
the family.

Lemma 7. Any triangle-free rectangle family can be partitioned into two non-
crossing subsets in polynomial time.

Observe that Lemma 7 is already enough, along with the results in Section 3, to
obtain our desired 1.5 + ε approximation factor. The algorithm proceeds in the
following six steps, given a rectangle family R and ε > 0:

264 R. Bar-Yehuda, D. Hermelin, and D. Rawitz

1. Apply Lemma 1 to obtain a triangle-free rectangle family R′ ⊆ R.
2. Apply the Nemhauser&Trotter algorithm to obtain a subset R′′ ⊆ R′ which

is a 2-approximate vertex-cover of GR′′ .
3. Use Lemma 7 to obtain a partitioning {R1,R2} of R′′, where both R1 and
R2 are non-crossing.

4. Compute an ε-approximate vertex-cover C1 of GR1 and an ε-approximate
vertex-cover C2 of GR2 using the EPTAS of Section 3.

5. Use the best of the two vertex-covers R1 ∪ C2 and R2 ∪ C1 for GR′′ , along
with the Nemhauser&Trotter Theorem to compute a vertex-cover of GR′ .

6. Add the removed rectangles as required by Lemma 1 to obtain a vertex-cover
for GR.

The fact that this algorithm outputs a vertex-cover which is a factor of 1.5 + ε
off the optimum follows from a similar analysis used in Lemma 5. Clearly, both
R1 ∪ C2 and R2 ∪ C1 are vertex covers for GR′′ . Furthermore, letting opt,
opt1, and opt2 denote the size of the minimum vertex-covers of GR′′ , GR1 ,
and GR2 respectively, we get: |R1 ∪C2|+ |R2 ∪C1| ≤ |R|+ (1 + ε)opt1 + (1 +
ε)opt2 ≤ 2opt+ (1 + ε)opt = (3 + ε)opt. Thus, the minimum of both R1 ∪C2
and R2 ∪ C1 gives a (1.5 + ε)-approximate vertex-cover for GR′′ . Applying the
Nemhauser&Trotter Theorem along with Lemma 1 shows that the algorithm
above outputs a (1.5 + ε)-approximate vertex-cover for GR.

For the weighted variant of the problem, we observe that all steps of the
algorithm above, apart from Step 4, can be applied also in the weighted case.
For the first step we use a weighted version of Lemma 1, which can be obtained
by a standard application of the local-ratio technique [11] (see e.g. [45]). All
other steps have immediate weighted counterparts. To replace Step 4, we use
the following observation that the intersection graph of any triangle-free non-
crossing rectangle family is planar:

Lemma 8. If R is triangle-free and non-crossing, then GR is planar.

Thus, according to Lemma 8 above, we can apply Baker’s algorithm for Min-

imum Vertex Cover in planar graphs instead of our EPTAS in step 4 of
the algorithm above. Indeed, Baker’s algorithm can also handle weights. Thus,
by the same analysis given above, we get a 1.5 + ε for the weighted variant of
Minimum Rectangle Vertex Cover. We mention also that Lemma 8 above
can also be used to obtain a 1.5-approximation algorithm for the weighted variant
of Minimum Rectangle Vertex Cover in non-crossing rectangle families.

Acknowledgment. We thank Micha Sharir for helpful discussions.

References

1. Kőnig, D.: Gráfok és mátrixok. Matematikai és Fizikai Lapok 38, 116–119 (1931)
2. Karp, R.: Reducibility among combinatorial problems. In: Complexity of Computer

Computation, pp. 85–103 (1972)
3. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of

NP-Completeness. Freeman, New York (1979)

Minimum Vertex Cover in Rectangle Graphs 265

4. Hochbaum, D.: Approximation Algorithms for NP-hard Problems. PWS Publishing
Company (1997)

5. Vazirani, V.: Approximation Algorithms. Springer (2003)
6. Downey, R., Fellows, M.: Parameterized Complexity. Springer, Heidelberg (1999)
7. Bar-Yehuda, R., Even, S.: A linear time approximation algorithm for the weighted

vertex cover problem. J. Algorithm 2, 198–203 (1981)
8. Clarkson, K.: A modification of the greedy algorithm for vertex cover. Inform.

Process. Lett. 16, 23–25 (1983)
9. Hochbaum, D.: Approximation algorithms for the set covering and vertex cover

problems. SIAM J. Comput. 11(3), 555–556 (1982)
10. Nemhauser, G.L., Trotter, L.E.: Vertex packings: structural properties and algo-

rithms. Mathematical Programming 8, 232–248 (1975)
11. Bar-Yehuda, R., Even, S.: A local-ratio theorem for approximating the weighted

vertex cover problem. Annals of Discrete Mathematics 25, 27–46 (1985)
12. Monien, B., Speckenmeyer, E.: Ramsey numbers and an approximation algorithm

for the vertex cover problem. Acta Informatica 22(1), 115–123 (1985)
13. Halperin, E.: Improved approximation algorithms for the vertex cover problem in

graphs and hypergraphs. SIAM J. Comput. 31(5), 1608–1623 (2002)
14. Karakostas, G.: A better approximation ratio for the vertex cover problem.

In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.)
ICALP 2005. LNCS, vol. 3580, pp. 1043–1050. Springer, Heidelberg (2005)

15. Dinur, I., Safra, S.: The importance of being biased. In: 34th annual ACM Sym-
posium on Theory of Computing, pp. 33–42 (2002)

16. Gavril, F.: Algorithms for minimum coloring, maximum clique, minimum covering
by cliques, and maximum independent set of a chordal graph. SIAM J. Com-
put. 1(2), 180–187 (1972)

17. Lipton, R., Tarjan, R.: Applications of a planar separator theorem. SIAM J. Com-
put. 9(3), 615–627 (1980)

18. Bar-Yehuda, R., Even, S.: On approximating a vertex cover for planar graphs. In:
14th Annual ACM STOC, pp. 303–309 (1982)

19. Chiba, N., Nishizeki, T., Saito, N.: Applications of the Lipton and Tarjan’s planar
separator theorem. Journal of information processing 4(4), 203–207 (1981)

20. Baker, B.: Approximation algorithms for NP-complete problems on planar graphs.
J. ACM 41(1), 153–180 (1994)

21. Chalermsook, P., Chuzhoy, J.: Maximum independent set of rectangles. In: 20th
Annual ACM-SIAM SODA, pp. 892–901 (2009)

22. Khanna, S., Muthukrishnan, S., Paterson, M.: On approximating rectangle tiling
and packing. In: 9th annual ACM-SIAM SODA, 384–393 (1998)

23. Agarwal, P.K., van Kreveld, M.J., Suri, S.: Label placement by maximum indepen-
dent set in rectangles. Comput. Geom. 11(3-4), 209–218 (1998)

24. Doerschler, J., Freeman, H.: A rule-based system for dense-map name placement.
Communications of the ACM 35(1), 68–79 (1992)

25. Freeman, H.: Computer name placement. In: Geographical Information Systems:
Principles and Applications, pp. 445–456 (1991)

26. Lewin-Eytan, L., Naor, J., Orda, A.: Admission control in networks with advance
reservations. Algorithmica 40(4), 293–304 (2004)

27. Fowler, R., Paterson, M., Tanimoto, S.: Optimal packing and covering in the plane
are NP-complete. Inform. Process. Lett. 12(3), 133–137 (1981)

28. Asano, T.: Difficulty of the maximum independent set problem on intersection
graphs of geometric objects. In: 6th ICTAG (1991)

266 R. Bar-Yehuda, D. Hermelin, and D. Rawitz

29. Berman, P., DasGupta, B., Muthukrishnan, S., Ramaswami, S.: Efficient approxi-
mation algorithms for tiling and packing problems with rectangles. J. Algorithm 41
(2001)

30. Chan, T.: A note on maximum independent sets in rectangle intersection graphs.
Inform. Process. Lett. 89(1), 19–23 (2004)

31. Chan, T.M., Har-Peled, S.: Approximation algorithms for maximum independent
set of pseudo-disks. In: 25th annual ACM SOCG, pp. 333–340 (2009)

32. Chan, T.M.: Polynomial-time approximation schemes for packing and piercing fat
objects. J. Algorithm 46 (2003)

33. Erlebach, T., Jansen, K., Seidel, E.: Polynomial-time approximation schemes for
geometric intersection graphs. SIAM J. Comput. 34 (2005)

34. Marx, D.: Efficient approximation schemes for geometric problems? In: 13th annual
European Symposium on Algorithms, pp. 448–459 (2005)

35. van Leeuwen, E.J.: Better approximation schemes for disk graphs. In: 10th Scan-
dinavian Workshop on Algorithm Theory, pp. 316–327 (2006)

36. Apostolico, A., Atallah, M., Hambrusch, S.: New clique and independent set algo-
rithms for circle graphs. Discrete Appl. Math. 36(1), 1–24 (1992)

37. Cenek, E., Stewart, L.: Maximum independent set and maximum clique algorithms
for overlap graphs. Discrete Appl. Math. 131(1), 77–91 (2003)

38. Golumbic, M., Hammer, P.: Stability in circular arc graphs. J. Algorithm 9(3),
314–320 (1988)

39. Hsu, W.L., Tsai, K.H.: Linear time algorithms on circular-arc graphs. Inform.
Process. Lett. 40(3), 123–129 (1991)

40. Golumbic, M.: Algorithmic graph theory and perfect graphs. Academic Press, New
York (1980)

41. Golumbic, M., Trenk, A.: Tolerance Graphs. Cambridge University Press, Cam-
bridge (1985)

42. Chleb́ık, M., Chleb́ıková, J.: Approximation hardness of optimization problems in
intersection graphs of d-dimensional boxes. In: 16th Annual ACM-SIAM SODA
2005, pp. 267–276 (2005)

43. Hochbaum, D., Maass, W.: Approximation schemes for covering and packing prob-
lems in image processing and VLSI. J. ACM 32(1), 130–136 (1985)

44. Bar-Yehuda, R., Halldórsson, M.M., Naor, J., Shachnai, H., Shapira, I.: Scheduling
split intervals. SIAM J. Comput. 36(1), 1–15 (2006)

45. Butman, A., Hermelin, D., Lewenstein, M., Rawitz, D.: Optimization problems in
multiple-interval graphs. In: 18th annual ACM-SIAM SODA, pp. 268–277 (2007)

46. Agarwal, P.K., Sharir, M.: Arrangements and their applications. In: Handbook of
Computational Geometry, pp. 49–119 (1998)

47. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width.
J. Algorithm 7, 309–322 (1986)

48. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press, Oxford (2006)

49. Sharir, M., Agarwal, P.K.: Davenport-Schinzel Sequences and Their Geometric
Applications. Cambridge University Press, Cambridge (1995)

Feedback Vertex Sets in Tournaments�

Serge Gaspers1 and Matthias Mnich2

1 CMM, Universidad de Chile, Santiago de Chile
sgaspers@dim.uchile.cl

2 Technische Universiteit Eindhoven, Eindhoven, The Netherlands
m.mnich@tue.nl

Abstract. We study combinatorial and algorithmic questions around
minimal feedback vertex sets in tournament graphs.

On the combinatorial side, we derive strong upper and lower bounds
on the maximum number of minimal feedback vertex sets in an n-vertex
tournament. We prove that every tournament on n vertices has at most
1.6740n minimal feedback vertex sets and that there is an infinite family
of tournaments, all having at least 1.5448n minimal feedback vertex sets.
This improves and extends the bounds of Moon (1971).

On the algorithmic side, we design the first polynomial space algo-
rithm that enumerates the minimal feedback vertex sets of a tournament
with polynomial delay. The combination of our results yields the fastest
known algorithm for finding a minimum size feedback vertex set in a
tournament.

1 Introduction

A tournament T = (V,A) is a directed graph with exactly one arc between every
pair of vertices. A feedback vertex set (FVS) of T is a subset of its vertices whose
deletion makes T acyclic. A minimal FVS of T is a FVS of T that is minimal
with respect to vertex-inclusion. The complement of a minimal FVS F induces
a maximal acyclic subtournament whose unique vertex of in-degree zero is a
“Banks winner” [1]: identifying the vertices of T with candidates in a voting
scheme and arcs indicating preference of one candidate over another, the Banks
winner of T [V \F] is the candidate collectively preferred to every other candidate
in V \ F . Banks winners play an important role in social choice theory.

Extremal Combinatorics. We denote the number of minimal FVSs in a tourna-
ment T by f(T), and the maximum f(T) over all n-vertex tournaments by M(n).
The letter “M” was chosen in honor of Moon who in 1971 proved [19] that

1.4757n ≤M(n) ≤ 1.7170n

for large n. Our combinatorial main result are the stronger bounds

1.5448n ≤M(n) ≤ 1.6740n .

� Part of this research has been supported by the Netherlands Organisation for Sci-
entific Research (NWO), grant 639.033.403.

M. de Berg and U. Meyer (Eds.): ESA 2010, Part I, LNCS 6346, pp. 267–277, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

268 S. Gaspers and M. Mnich

To prove our new lower bound on M(n), we construct an infinite family of
tournaments all having 21n/7 > 1.5448n minimal FVSs. To prove our new upper
bound on M(n), we bound the maximum of a convex function bounding M(n)
from above, and otherwise rely on case distinctions and recurrence relations.

For general directed graphs, no non-trivial upper bounds on the number of
minimal FVSs are known. For undirected graphs, Fomin et al. [8] show that
any undirected graph on n vertices contains at most 1.8638n minimal FVSs,
and that infinitely many graphs have 105n/10 > 1.5926n minimal FVSs. Lower
bounds of roughly log n on the size of a maximum-size acyclic subtournament
have been obtained by Reid and Parker [24] and Neumann-Lara [21]. Other
bounds on minimal or maximal sets with respect to vertex-inclusion have been
obtained for dominating sets [9], bicliques [12], separators [10], potential max-
imal cliques [11], bipartite graphs [4], r-regular subgraphs [14], and, of course,
independent sets [18,20]. The increased interest in exponential time algorithms
over the last few years has given new importance to such bounds, as the enumer-
ation of the corresponding objects may be used in exponential time algorithms
to solve various problems; see, for example [2,3,6,11,17,22].

Enumeration. An algorithm by Schwikowski and Speckenmeyer [25] lists the
minimal FVSs of a tournament T with polynomial delay, by traversing a hy-
pergraph whose vertices are bijectively mapped to minimal FVSs of T . Unfor-
tunately the Schwikowski-Speckenmeyer-algorithm may use exponential space,
and it is not known whether the minimal FVS problem allows a polynomial delay
enumeration algorithm with polynomially bounded space complexity in general
graphs. Our algorithmic main result provides such an enumeration algorithm for
the family of tournaments. Our algorithm is inspired from that by Tsukiyama et
al. for the (conceptually simpler) enumeration of maximal independent sets [26].
It is based on iterative compression, a technique for parameterized [23] and exact
algorithms [7]. We thereby positively answer Fomin et al.’s [7] question if the
technique could be applied to other algorithmic areas.

Exact Algorithms. In the third [29] in a series [27,28,29] of very influential surveys
on exact exponential time algorithms, Woeginger observes that Moon’s upper
bound on M(n) provides an upper bound on the overall running time of the enu-
meration algorithm of Schwikowski and Speckenmeyer. He explicitly asks for a
faster algorithm finding a feedback vertex set of a tournament of minimum size.
Our new bound yields a time complexity of O(1.6740n). Unlike upper bound
proofs on other [4,8,9,10,11,12,14,18,20] minimal or maximal sets with respect
to vertex inclusion, for minimal FVSs in tournaments no known (non trivial)
proof readily translates into a polynomial-space branching algorithm. Due to its
space complexity, which differs from its time complexity by only a polynomial
factor, the Schwikowski-Speckenmeyer-algorithm has only limited practicability
[29]. With our new enumeration algorithm, we achieve however a polynomial-
space O(1.6740n)-time algorithm to find a minimum sized feedback vertex set in
tournaments, and to even enumerate all minimal ones. Dom et al. [5] indepen-
dently answered Woeginger’s question by constructing an iterative–compression

Feedback Vertex Sets in Tournaments 269

algorithm solving only the optimization version of the problem. However, the
running time of their algorithm grows at least with 1.708n and hence their re-
sult is inherently weaker than ours.

Organization of the paper. Preliminaries are provided in Section 2. Section 3
proves the lower bound on M(n), and Section 4 gives the upper bound. We
conclude with the polynomial-space polynomial-delay enumeration algorithm in
Section 5. The main result of the paper is formulated in Corollary 4.

2 Preliminaries

Let T = (V,A) be a tournament. For a vertex subset V ′ ⊆ V , the tournament
T [V ′] induced by V ′ is called a subtournament of T . For each vertex v ∈ V , its in-
neighborhood and out-neighborhood are defined as N−(v) = {u ∈ V | (u, v) ∈ A}
and N+(v) = {u ∈ V | (v, u) ∈ A}, respectively. If there is an arc (u, v) ∈ A
then we say that u beats v and write u → v. A tournament T is strong if there
exists a directed path between any two vertices. A non-strong tournament T has
a unique factorization T = S1 + . . . + Sr into strong subtournaments S1, . . . , Sr,
where every vertex u ∈ V (Sk) beats all vertices v ∈ V (S�), for 1 ≤ k < � ≤ r.
For n ∈ N let Tn denote the set of tournaments with n vertices and let T ∗

n denote
the set of strong tournaments on n vertices.

The score of a vertex v ∈ V is the size of its out-neighborhood, and denoted by
sv(T) or sv for short. Consider a labeling 1, . . . , n of the vertices of T such that
their scores are non-decreasing, and associate with T the score sequence s(T) =
(s1, . . . , sn). If T is strong then s(T) satisfies the Landau inequalities [15,16]:

k∑
v=1

sv ≥
(

k

2

)
+ 1 for all k = 1, . . . , n− 1, and (1)

n∑
v=1

sv =
(

n

2

)
. (2)

For every non-decreasing sequence s of positive integers satisfying conditions
(1)–(2), there exists a tournament whose score sequence is s [16].

Let L be a set of non-zero elements from the ring Zn of integers modulo n such
that for all i ∈ Zn exactly one of +i and −i belongs to L. The tournament TL =
(VL, AL) with VL = {1, . . . , n} and AL = {(i, j) ∈ VL×VL | (j − i) mod n ∈ L}
is the circular n-tournament induced by L. A triangle is a tournament of order 3.
The cyclic triangle is denoted C3.

A FVS F of a tournament T = (V,A) is a subset of vertices, such that
T [V \ F] has no directed cycle. It is minimal if it does not contain a FVS of
T as a proper subset. Let F(T) be the collection of minimal FVSs of T ; its
cardinality is denoted by f(T). A minimum FVS is a FVS with a minimum
number of vertices.

Acyclic tournaments are sometimes called transitive; the (up to isomorphism
unique) transitive tournament on n vertices is denoted TTn. Let τ be the unique

270 S. Gaspers and M. Mnich

topological order of the vertices of TTn such that τ(u) < τ(v) if and only if u
beats v. For such an order τ and integer i ∈ {1, . . . , n} the subsequence of the
first i values of τ is denoted τi(V (TTn)) = (τ−1(1), . . . , τ−1(i)); call τ1(V (TTn))
the source of TTn. For a minimal FVS F of a tournament T the subtournament
T [V \ F] is a maximal transitive subtournament of T and V \ F is a maximal
transitive vertex set.

3 Lower Bound on the Maximum Number of Minimal
FVSs

We prove a lower bound of 21n/7 > 1.5448n on the maximum number of minimal
FVSs of tournaments with n vertices.

Formally, we will bound from below the values of the function M(n) mapping
integers n to maxT∈Tn f(T). By convention, set M(0) = 1. Note that M is
monotonically non-decreasing on its domain: given any tournament T ∈ Tn and
any vertex v ∈ V (T), for every minimal FVS F ∈ F(T [V (T) \ {v}]) either
F ∈ F(T) or F ∪{v} ∈ F(T). As T and v are arbitrarily it follows that M(n) ≥
M(n− 1).

We will now show that there is an infinite family of tournaments on n = 7k
vertices, for any k ∈ N, with 21n/7 > 1.5448n minimal FVSs, improving upon
Moon’s [19] bound of 1.4757n. Let us use the following observation.

Observation 1 ([19]). If T = S1 + . . . + Sr is the factorization of a tourna-
ment T into strong subtournaments S1, . . . , Sr, then f(T) = f(S1) · . . . · f(Sr).

Let ST7 denote the Paley digraph of order 7, i.e. the circular 7-tournament
induced by the set L = {1, 2, 4} of quadratic residues modulo 7. All maximal
transitive subtournaments of ST7 are transitive triangles, of which there are
exactly 21, as each vertex is the source of 3 distinct transitive triangles. Thus,
all minimal FVSs for ST7 are minimum FVSs. We remark that ST7 is the unique
7-vertex tournament without any TT4 as subtournament [24].

Lemma 1. There exists an infinite family of tournaments with 21n/7 minimal
FVSs.

Proof. Let k ∈ N and form the tournament T0 = ST7 + . . . + ST7 from k copies
of ST7 ∈ T ∗

7 . Then T0 ∈ Tn for n = 7k, and the number of minimal FVSs in T0
is f(T0) = f(ST7)k = 21k = 21n/7. ��

4 Upper Bound on the Maximum Number of Minimal
FVSs

We give an upper bound of βn, where β = 1.6740, on the maximum number
of minimal FVSs in any tournament T ∈ Tn, for any positive integer n. This
improves the bound of 1.7170n by Moon [19]. Instead of minimal FVSs we count

Feedback Vertex Sets in Tournaments 271

maximal transitive subtournaments, and with respect to Observation 1 we count
the maximal transitive subtournaments of strong tournaments.

We start with three properties of maximal transitive subtournaments. First,
for a strong tournament T = (V,A) with score sequence s = (s1, . . . , sn) the
following holds: if TTk = (V ′, A′) is a maximal transitive subtournament of T
with τ1(V ′) = (t) then T [V ′ \ {t}] is a maximal transitive subtournament of
T [N+(t)]. Hence f(T) ≤

∑n
v=1 M(sv), where sv ≤ n − 2 for all v ∈ V . This

allows us to effectively bound f(T) via a recurrence relation.
Second, there cannot be too many vertices with large score.

Lemma 2. For n ≥ 8 and k ∈ {0, 1, 2}, any strong tournament T ∈ T ∗
n has at

most 2(k + 1) vertices of score at least n− 2− k.

Proof. Fix some strong tournament T ∈ T ∗
n and k ∈ {0, 1, 2}. Suppose for

contradiction that T contains 2k +3 vertices with score at least n− 2− k. Then
the Landau inequalities (1) and (2) imply the contradiction

2
(

n

2

)
= 2

⎛⎝n−(2k+3)∑
v=1

sv +
n∑

v=n−(2k+2)

sv

⎞⎠
≥ 2
((

n− (2k + 3)
2

)
+ 1 + (2k + 3)(n− 2− k)

)
= n2 − n + 2.

��

For n ≤ 7, we can explicitly list the strong n-vertex tournaments for which the
Lemma fails: the cyclic triangle for k = 0, the tournaments RT5, ST6 for k = 1
and ST7 for k = 2. RT5 is the regular tournament of order 5 and ST6 is the
tournament obtained by arbitrarily removing some vertex from ST7 (defined in
the previous section) and all incident arcs.

Third, let T ′ be a tournament obtained from a tournament T by reversing all
arcs of T . Then, f(T) = f(T ′), whereas the score sv(T) of each vertex v turns
into sv(T ′) = n − 1 − sv(T). This implies that analyzing score sequences with
maximum score sn ≥ n − 1 − c for some constant c is symmetric to analyzing
score sequences with minimum score s1 ≤ c.

Our proof that any tournament on n vertices has at most βn maximal transi-
tive subtournaments consists of several parts. We start by proving the bound
for tournaments with few vertices. The inductive part of the proof first consid-
ers tournaments with large maximum score (and symmetrically small minimum
score), and then all other tournaments.

We begin the proof by considering tournaments with up to 10 vertices. For
n ≤ 4 exact values for M(n) were known before [19]. For n = 5, . . . , 9 we obtained
exact values for M(n) with the help of a computer. For these values the extremal
tournaments obey the following structure: pick a strong tournament T ′ ∈ T ∗

n−2
and construct the strong tournament pq(T ′) ∈ T ∗

n by attaching two vertices to
T ′ as in Fig. 1; namely add vertices p and q to T ′, and arcs q → p, and p → t,
t→ q for each vertex t in T ′. Then f(pq(T ′)) = 2f(T ′) + 1.

272 S. Gaspers and M. Mnich

p q

T ′

Fig. 1. A tournament pq(T ′) ∈ T ∗
n with f(pq(T ′)) = 2f(T ′) + 1

For n = 5, there are exactly two non-isomorphic strong tournaments QT5 ∼=
pq(C3), RT5 ∈ T ∗

5 . For these, f(QT5) = f(RT5) = M(5) = 2 · 3 + 1 = 7. For
n = 6, ST6 is the unique tournament from T6 with f(ST6) = M(6) = 12 minimal
FVSs. For n = 7 the previous section showed f(ST7) = 21, and in fact ST7 is
the unique 7-vertex tournament with M(7) = 21 minimal FVSs. For n ∈ {8, 9},
STn

∼= pq(STn−2); then f(STn) = M(n). Table 1 summarizes that for n ≤ 9,
M(n) ≤ βn.

Table 1. Extremal tournaments of up to 9 vertices

n M(n) M(n)1/n ≈ T ∈ Tn : f(T) = M(n)

1 1 1.00000 T ∈ T1

2 1 1.00000 T ∈ T2

3 3 1.44225 T ∈ T3 \ {TT3}
4 3 1.31607 T ∈ T4 \ {TT4}
5 7 1.47577 QT5

∼= pq(C3), RT5

6 12 1.51309 ST6
∼= ST7 − {1}

7 21 1.54486 ST7

8 25 1.49535 ST8
∼= pq(ST6)

9 43 1.51879 ST9
∼= pq(ST7)

Next, we bound M(10) by means of M(n) for n ≤ 9. Let W be a maximal
transitive vertex set of T ∈ T ∗

10. Then either v∗ ∈ W or v∗ /∈ W , where v∗ is
a vertex with score s10. There are at most M(s10) ≤ M(9) maximal transitive
vertex sets W such that v∗ ∈ W and at most M(9) such sets W for which v∗ /∈ W .
As (2M(9))1/10 = 861/10 < 1.5612, the proof follows for all tournaments with at
most 10 vertices.

For the rest of this section we consider tournaments with n ≥ 11 vertices. Let
T = (V,A) be a strong tournament on n ≥ 11 vertices; we will show that
f(T) ≤ βn. The proof considers four main cases and several subcases with
respect to the minimum and maximum score of the tournament. Due to space
constraints, we only give an outline of the proof; the full proof is given in [13].

The idea of the proof is as follows. By W we denote a maximal transitive
vertex set of T . If there is a vertex v in T of large score at least n − 3, then
either v is the source of W or only few other vertices can be the source of
W . We can then look at the subtournament induced by these few vertices, and
branch on their inclusion with respect to W . In this way, we fix the first few ele-
ments of the acyclic ordering of W . Moreover, there cannot be too many vertices

Feedback Vertex Sets in Tournaments 273

of large score by Lemma 2. Suppose that in one branch, τk(W) = (a1, a2, . . . , ak)
and for some i ∈ {1, . . . , k}, |N+(ai) \W | ≥ c, then we can upper bound the
number of such maximal transitive vertex sets W by M(ai − (k − i) − c). The
case when some vertex v in T has small score at most 2 is symmetric.

The tightest case of our proof is the following: sn = n− 3, sb1 = n− 3, sb2 =
n − 4, where b1 → b2 are the two in-neighbors of n, and N−(b1) 	= N−(b2) \
{b1}. Denote c1 → c2 the in-neighbors of b1 and d1 → d2 the in-neighbors of
b2. We count the different maximal transitive vertex sets W depending on the
membership or non-membership of b1, b2, and n in W .

(1) If b1, b2 /∈ W , then n ∈ W by maximality of W and τ1(W) = (n) as no
vertex in W beats n. There are at most M(sn) = M(n− 3) such W .

(2) If b1, n /∈ W and b2 ∈ W , then some in-neighbor of b2 is in W , otherwise
W were not maximal as W ∪ {n} would be a transitive vertex set. There are
at most M(sb2 − 1) = M(n − 5) possibilities for τ2(W) = (d2, b2), at most
M(sd1−2) ≤M(n−5) for τ2(W) = (d1, b2), and at most M(sd1−2) ≤M(n−5)
for τ3(W) = (d1, d2, b2).

(3) If b1 /∈ W and b2, n ∈W , then τ2(W) = (b2, n). There are at most M(sb2 −
1) = M(n− 5) such W .

(4) If n /∈ W and b1 ∈ W , then we consider two subcases. If N−(b1) ∩W 	= ∅,
then some in-neighbor of b1 is the source of W . There are at most M(sc2 − 1) ≤
M(n− 4) possibilities for τ2(W) = (c2, b1), at most M(sc1 − 2) ≤M(n− 5) for
τ3(W) = (c1, c2, b1), and at most M(sc1 − 2) ≤ M(n − 5) for τ2(W) = (c1, b1).
Otherwise, no in-neighbor of b1 is in W , and thus, τ1(W) = (b1). Moreover,
b2 ∈ W and some in-neighbor of b2 is the source of T [W \ {b1}], otherwise n
could be added. This leaves us with a total of at most 3M(sb1 − 4) = 3M(n− 7)
possibilities for which τ4(W) = (b1, d1, d2, b2), τ3(W) = (b1, d2, b2), or τ3(W) =
(b1, d1, b2).

(5) If b2 /∈ W and b1, n ∈W , then τ2(W) = (b1, n). There are at most M(sb1 −
2) = M(n− 5) such W .

(6) If b1, b2, n ∈W , then τ3(W) = (b1, b2, n). As at least one out-neighbor of b2
is an in-neighbor of b1, there are at most M(sb2 − 2) = M(n− 6) such W .

Altogether, in this case,

f(T) ≤M(n− 3) + 3M(n− 5) + M(n− 5) + (M(n− 4) + 2M(n− 5)
+ 3M(n− 7)) + M(n− 5) + M(n− 6)

≤ 3βn−7 + βn−6 + 7βn−5 + βn−4 + βn−3 ,

which is at most βn because β ≥ 1.6740.
Now suppose that every vertex in T has score at least three and at most n−4.

In that case we define a linear function Gn mapping feasible score sequences s =
(s1, . . . , sn) to

∑n
v=1 βsv for β = 1.6740. We then define special score sequences

274 S. Gaspers and M. Mnich

σ(n) and show that these sequences maximize Gn, based on the strict convexity
of Gn. For example,

σ(17) = (3, 3, 3, 3, 3, 3, 4, 7, 8, 9, 12, 13, 13, 13, 13, 13, 13) .

The proof is completed by bounding f(n) in terms of G(σ(n)).
All cases taken together imply the following upper bound on the number of

maximal transitive subtournaments.

Theorem 1. Any strong tournament T ∈ T ∗
n has at most 1.6740n maximal

transitive subtournaments.

Moon [19] already observed that the following limit exists.

Corollary 2. It holds 1.5448 ≤ limn→∞(M(n))1/n ≤ 1.6740.

We conjecture that the Paley digraph of order 7, ST7, plays the same role for
FVSs in tournaments as triangles play for independent sets in graphs, i.e. that
the tournaments T maximizing (f(T))1/|V (T)| are exactly those whose factors
are copies of ST7.

5 Polynomial-Delay Enumeration in Polynomial Space

In this section, we give a polynomial-space algorithm for the enumeration of the
minimal FVSs in a tournament with polynomial delay.

Let T = (V,A) be a tournament with V = {v1, . . . , vn}, and for each i =
1, . . . , n let Ti = T [{v1, . . . , vi}]. For a vertex set X , we write χX(i) = 1 if vi ∈ X
and χX(i) = 0 otherwise. Let < denote the total order on V induced by the labels
of the vertices. For vertex sets X,Y ⊆ V , say that X is lexicographically smaller
than Y and write X ≺ Y if for the minimum index i for which χX(i) 	= χY (i) it
holds that vi ∈ X . Because X and Y are totally ordered by the restriction of <
to X and Y , respectively, ≺ is also a total order and each collection of subsets
of V has a unique lexicographically smallest element.

The algorithm enumerates the maximal acyclic vertex sets of T . It performs
a depth-first search in a tree T with the maximal acyclic vertex sets of T as
leaves, whose forward and backward edges are constructed “on the fly”. The
depth of T is |V |, and we refer to the vertices of T as nodes. The algorithm
only needs to keep in memory the path from the root to the current node in
the tree and all the children of the nodes on this path. Each node at level j is
labeled by a maximal acyclic vertex set J of Tj . As for its children, there are
two cases. In case J ∪ {vj+1} is acyclic then J ’s only child is J ∪ {vj+1}. In case
J ∪ {vj+1} is not acyclic then J has at least one and at most !j/2"+ 1 children.
Let LJ = (v1, v2, . . . , v|J|) be a labeling of the vertices in J such that (vr, vs) ∈ A
for all 1 ≤ r < s ≤ j; we view LJ as a sequence of vertices. The children of J are
as follows. The first child J0 is a copy of J , and is always present. The potential
other children are, for 1 ≤ z ≤ |J |+ 1,

Jz = {vi ∈ J | i < z ∧ vi → vj+1} ∪ {vj+1} ∪ {vi ∈ J | i ≥ z ∧ vj+1 → vi}

Feedback Vertex Sets in Tournaments 275

where set Jz is a potential child of J only if Jz is a maximal acyclic vertex
set in Tj+1 (the maximality of Jz can clearly be checked in polynomial time).
Note how we try to insert vj+1 at every possible position in J . However, only at
most !j/2" + 1 positions make sense for vj+1: before v1 if vj+1 → v1, between
vi and vi+1 if vi → vj+1 → vi+1, where 1 ≤ i ≤ |J | − 1, and after v|J| if
v|J| → vj+1; all other positions do not give maximal acyclic vertex sets and
should not be generated in an actual implementation. Note that Jz may be a
potential child of several sets on the same level in T . Of all these sets, Jz is made
the child only of the lexicographically smallest such set. To determine whether J
is the lexicographically smallest such set, we compute by a greedy algorithm the
lexicographically smallest maximal acyclic vertex set H = H(Jz) of Tj which
contains Jz\{vj+1} as a subset. That is, we iteratively build the set H by setting

H0 = Jz \ {vj+1},

Hi =

{
Hi−1 ∪ {vi}, if Hi−1 ∪ {vi} is acyclic,
Hi−1, otherwise,

i = 1, . . . , j,

H = Hj .

Then we make Jz a child of the node labeled J only if H = J . This completes
the description of the algorithm.

To show that the algorithm is correct, we prove that for every maximal acyclic
vertex set W of T there is exactly one leaf in T labeled with W . By construction
of the algorithm, it suffices to show that at least one leaf is labeled by W . The
proof is by induction on the number n = |V | of vertices in T . For n = 1 the claim
clearly holds, so suppose that n > 1 and that the claim is true for all tournaments
with fewer vertices. Then from the induction hypothesis we can conclude that
for the induced subtournament T ′ := Tn−1 there is a tree T ′ constructed by the
above algorithm and a bijection f ′ from the maximal acyclic vertex sets of T ′

to the leaves of T ′.
Let W be a maximal acyclic vertex set of T . If vn /∈ W then W is an acyclic

vertex set of T ′ as removing a vertex from a digraph does not introduce cycles.
In fact, W is a maximal acyclic vertex set of T ′: for any vertex v� ∈ V \ (W ∪
{vn}), T ′[W ∪ {v�}] has a cycle as W is a maximal acyclic vertex set for T and
T ′[W ∪ {v�}] = T [W ∪ {v�}]. Hence there exists a leaf f ′(W) in T ′ labeled by
W . Since W ∪ {vn} is not acyclic, by maximality of W for T , the algorithm
constructs the child W 0 of f ′(W) labeled by W , and that child will be a leaf in
the final tree constructed by the algorithm.

If vn ∈W , then let W ′ = W \{vn}. So, W ′ is an acyclic vertex set of T ′. In case
W ′ is maximal for T ′, there is a leaf f ′(W ′) in T ′ that is labeled by W ′. Since
W ′ ∪ {vn} is acyclic, the algorithm will create a single child of f ′(W ′) labeled
by W ′ ∪ {vn} = W , and that child will be a leaf in the final tree constructed by
the algorithm. In case W ′ is not maximal for T ′, let N be the lexicographically
smallest extension of W ′ to a maximal acyclic vertex set of T ′. Hence there
exists a leaf f ′(N) in the tree T ′ labeled by N . Observe that the sequence LW ′

276 S. Gaspers and M. Mnich

is a subsequence of LN , and that N ∪ {vn} is not acyclic. Hence the algorithm
creates children N1, N2, . . ., one of which will be labeled by W .

To see that the algorithm runs with polynomial delay, note that the children
and parent of a given node in T can all be computed in polynomial time. It
follows that T can be traversed in a depth-first manner with polynomial delay
per step of the traversal, and thus the leaves of T can be output with only a
polynomial delay.

We show that the algorithm requires only polynomial space. We already ob-
served that each node in T at level j has at most !j/2"+ 1 children. For each
node we store the maximal acyclic vertex set by which it is labeled. Because we
are traversing T in a depth-first-search manner, in each step of the algorithm
we only need to save data of O(n2) nodes: those of the O(n) nodes on the path
from the root to the currently active node labeled by J , and the O(n) children
for each node on this path.

Theorem 3. The described algorithm enumerates all FVSs of a tournament
with polynomial delay and uses polynomial space.

Corollary 4. In a tournament with n vertices a minimum directed feedback
vertex set can be found in O(1.6740n) time and polynomial space.

Acknowledgments. We thank Gerhard J. Woeginger for help with the presen-
tation of the results.

References

1. Banks, J.S.: Sophisticated voting outcomes and agenda control. Soc. Choice Wel-
fare 1(4), 295–306 (1985)

2. Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion–exclusion.
SIAM J. Comput. 39(2), 546–563 (2009)

3. Byskov, J.M.: Enumerating maximal independent sets with applications to graph
colouring. Oper. Res. Lett. 32(6), 547–556 (2004)

4. Byskov, J.M., Madsen, B.A., Skjernaa, B.: On the number of maximal bipartite
subgraphs of a graph. J. Graph Theory 48(2), 127–132 (2005)

5. Dom, M., Guo, J., Hüffner, F., Niedermeier, R., Truss, A.: Fixed-parameter
tractability results for feedback set problems in tournaments. J. Discrete Algo-
rithms 8(1), 320–331 (2010)

6. Eppstein, D.: Small maximal independent sets and faster exact graph coloring. J.
Graph. Algorithms Appl. 7(2), 131–140 (2003)

7. Fomin, F.V., Gaspers, S., Kratsch, D., Liedloff, M., Saurabh, S.: Iterative compres-
sion and exact algorithms. Theor. Comput. Sci. 411(7-9), 1045–1053 (2010)

8. Fomin, F.V., Gaspers, S., Pyatkin, A.V., Razgon, I.: On the minimum feedback
vertex set problem: exact and enumeration algorithms. Algorithmica 52(2), 293–
307 (2008)

9. Fomin, F.V., Grandoni, F., Pyatkin, A.V., Stepanov, A.A.: Combinatorial bounds
via measure and conquer: Bounding minimal dominating sets and applications.
ACM Trans. Algorithms 5(1), 1–17 (2008)

Feedback Vertex Sets in Tournaments 277

10. Fomin, F.V., Villanger, Y.: Treewidth computation and extremal combinatorics.
In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 210–221. Springer,
Heidelberg (2008)

11. Fomin, F.V., Villanger, Y.: Finding induced subgraphs via minimal triangulations.
In: Proc. of STACS 2010, LIPIcs. Schloss Dagstuhl - Leibniz Center of Informatics
(2010)

12. Gaspers, S., Kratsch, D., Liedloff, M.: On independent sets and bicliques in graphs.
In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG 2008.
LNCS, vol. 5344, pp. 171–182. Springer, Heidelberg (2008)

13. Gaspers, S., Mnich, M.: On feedback vertex sets in tournaments. arXiv Technical
Report (May 2009), http://arxiv.org/abs/0905.0567

14. Gupta, S., Raman, V., Saurabh, S.: Fast exponential algorithms for maxi-
mum r-regular induced subgraph problems. In: Arun-Kumar, S., Garg, N. (eds.)
FSTTCS 2006. LNCS, vol. 4337, pp. 139–151. Springer, Heidelberg (2006)

15. Harary, F., Moser, L.: The theory of round robin tournaments. Amer. Math.
Monthly 73(3), 231–246 (1966)

16. Landau, H.G.: On dominance relations and the structure of animal societies. III.
The condition for a score structure. Bull. Math. Biophys. 15, 143–148 (1953)

17. Lawler, E.L.: A note on the complexity of the chromatic number problem. Infor-
mation Processing Letters 5(3), 66–67 (1976)

18. Miller, R.E., Muller, D.E.: A problem of maximum consistent subsets. IBM Re-
search Report RC-240, J. T. Watson Research Center, Yorktown Heights, NY
(1960)

19. Moon, J.W.: On maximal transitive subtournaments. Proc. Edinburgh Math.
Soc. 17(4), 345–349 (1971)

20. Moon, J.W., Moser, L.: On cliques in graphs. Israel J. Math. 3, 23–28 (1965)
21. Neumann-Lara, V.: A short proof of a theorem of Reid and Parker on tournaments.

Graphs Combin. 10, 363–366 (1994)
22. Raman, V., Saurabh, S., Sikdar, S.: Efficient exact algorithms through enumerating

maximal independent sets and other techniques. Theor. Comput. Syst. 41(3), 563–
587 (2007)

23. Reed, B.A., Smith, K., Vetta, A.: Finding odd cycle transversals. Oper. Res.
Lett. 32(4), 299–301 (2004)

24. Reid, K.B., Parker, E.T.: Disproof of a conjecture of Erdős and Moser on tourna-
ments. J. Combin. Theory 9(3), 225–238 (1970)

25. Schwikowski, B., Speckenmeyer, E.: On enumerating all minimal solutions of feed-
back problems. Discrete Appl. Math. 117, 253–265 (2002)

26. Tsukiyama, S., Ide, M., Ariyoshi, H., Shirakawa, I.: A new algorithm for generating
all the maximal independent sets. SIAM J. Comput. 6(3), 505–517 (1977)

27. Woeginger, G.J.: Exact algorithms for NP-hard problems: A survey. In: Combina-
torial Optimization - Eureka, you shrink!, vol. 2570, pp. 185–207. Springer, Berlin
(2003)

28. Woeginger, G.J.: Space and time complexity of exact algorithms: Some open prob-
lems. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS,
vol. 3162, pp. 281–290. Springer, Heidelberg (2004)

29. Woeginger, G.J.: Open problems around exact algorithms. Discrete Appl.
Math. 156(3), 397–405 (2008)

http://arxiv.org/abs/0905.0567

n-Level Graph Partitioning�

Vitaly Osipov and Peter Sanders

Karlsruher Institut für Technologie
{osipov,sanders}@kit.edu

Abstract. We present a multi-level graph partitioning algorithm based
on the extreme idea to contract only a single edge on each level of the
hierarchy. This obviates the need for a matching algorithm and promises
very good partitioning quality since there are very few changes between
two levels. Using an efficient data structure and new flexible ways to
break local search improvements early, we obtain an algorithm that scales
to large inputs and produces the best known partitioning results for
many inputs. For example, in Walshaw’s well known benchmark tables
we achieve 155 improvements dominating the entries for large graphs.

1 Introduction

Many important applications of computer science involve processing large graphs,
e.g., stemming from finite element methods, digital circuit design, route plan-
ning, social networks, etc. Very often these graphs need to be partitioned or
clustered such that there are few edges between the blocks (pieces).

A successful heuristic for partitioning large graphs is the multilevel graph par-
titioning approach (MGP) depicted in Figure 1 where the graph is recursively
contracted to a smaller graph with the same basic structure. After applying an
initial partitioning algorithm to this small graph, the contraction is undone and,
at each level, a local refinement method improves the partition induced by the
coarser level. Section 2 explains the method in more detail. Most systems instan-
tiate MGP in a very similar way: Maximal matchings are contracted between
two levels that try to include as many heavy edges as possible. Local refinement
uses a linear time variant of local search. MGP has two crucial advantages over
most other approaches to graph partitioning: We get near linear execution time
since the graph shrinks geometrically and we get good partitioning quality since
a good solution on some level yields a good initial solution on the next finer
level, i.e., local search needs little work to further improve the solution.

Our central idea is to get even better partitions by making subsequent levels
as similar as possible – we (un)contract only a single edge between two levels.
We call this n-GP since we have (almost) n levels of hierarchy. More details are
described in Section 3. n-GP has the additional advantage that there is no longer
a need for an algorithm finding heavy matchings. This is remarkable insofar
as a considerable amount of work on approximate maximum weight matching

� Partially supported by DFG grant SA 933/3-2.

M. de Berg and U. Meyer (Eds.): ESA 2010, Part I, LNCS 6346, pp. 278–289, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

n-Level Graph Partitioning 279

input
graph

match

... ...
local improvement

partitioning

initial
uncontractcontract

output
partitioncontraction phase

re
fin

em
en

t p
ha

se

Fig. 1. Multilevel graph partitioning

was motivated by the MGP application [24,5,22,18]. Still, at first glance, n-GP
seems to have substantial disadvantages also. Firstly, storing each level explicitly
would lead to quadratic space consumption. We avoid this by using a dynamic
graph data structure with little space overhead. Secondly, choosing maximal
matchings instead of just a single edge for contraction has the side effect that
the graph is contracted everywhere, leading to a more uniform distribution of
node weights. We solve this problem by explicitly factoring node weights into the
edge rating function prioritizing the edges to be contracted. Already in [13,14]
edge ratings have proven to lead to better results for graph partitioning. Perhaps
the most serious problem is that the most common approach to local search is
to let it run for a number of steps proportional to the current number of nodes.
In the context of n-GP this could lead to a quadratic overall number of local
search steps. Therefore, we develop a new, more adaptive stopping criteria for
the local search that drastically accelerates n-GP without significantly reducing
partitioning quality.

We have implemented n-GP in the graph partitioner KaSPar (Karlsruhe Se-
quential Partitioner). Experiments reported in Section 5 indicate that KaSPar
scales well to large networks, computes the best known partitions for many in-
stances of a “standard benchmark” and needs time comparable to system that
previously computed the best results for large networks. Section 6 summarizes
the results and discusses future directions.

More Related Work

There has been a huge amount of research on graph partitioning so that we
refer to introductory and overview papers such as [7,8,26,30] for more material.
Well-known software packages based on MGP are Chaco [12], DiBaP [19], Jostle
[29,30], Metis [16,17], Party [23,25], and Scotch [20,21].

KaSPar was developed partly in parallel with KaPPa (Karlsruhe Parallel Par-
titioner) [14]. KaPPa is a “classical” matching based MGP algorithm designed
for scalable parallel execution and its local search only considers independent
pairs of blocks at a time. Still, for k = 2, its interesting to compare KaSPar and
KaPPa since KaPPa achieves the previously best partitioning results for many

280 V. Osipov and P. Sanders

large graphs, since both systems use a similar edge ratings, and since running
times for a two processor parallel code and a sequential code could be expected
to be roughly comparable.

There is a long tradition of n-level algorithms in geometric data structures
based on randomized incremental construction (e.g, [11,1]). Our motivation for
studying n-level are contraction hierarchies [10], a preprocessing technique for
route planning that is at the same time simpler and an order of magnitude more
efficient than previous techniques using a small number of levels.

2 Preliminaries

Consider an undirected graph G = (V, E, c, ω) with edge weights ω : E → R>0,
node weights c : V → R≥0, n = |V |, and m = |E|. We extend c and ω to sets, i.e.,
c(V ′):=

∑
v∈V ′ c(v) and ω(E′):=

∑
e∈E′ ω(e). Γ (v):= {u : {v, u} ∈ E} denotes

the neighbors of v.
We are looking for blocks of nodes V1,. . . ,Vk that partition V , i.e., V1 ∪ · · · ∪

Vk = V and Vi ∩ Vj = ∅ for i 	= j. The balancing constraint demands that
∀i ∈ 1..k : c(Vi) ≤ Lmax:= (1 + ε)c(V)/k + maxv∈V c(v) for some parameter ε.
The last term in this equation arises because each node is atomic and therefore
a deviation of the heaviest node has to be allowed. The objective is to minimize
the total cut

∑
i<j w(Eij) where Eij := {{u, v} ∈ E : u ∈ Vi, v ∈ Vj}. By default,

our initial inputs will have unit edge and node weights. However, even those will
be translated into weighted problems in the course of the algorithm.

Contracting an edge {u, v} means replacing the nodes u and v by a new
node x connected to the former neighbors of u and v. We set c(x) = c(u) +
c(v). If replacing edges of the form {u, w} , {v, w} would generate two parallel
edges {x, w}, we insert a single edge with ω({x, w}) = ω({u, w}) + ω({v, w}).
Uncontracting an edge e undoes its contraction. Partitions computed for the
contracted graph are extrapolated to the uncontracted graph in the obvious
way, i.e., u and v are put into the same block as x.

Local Search is done by moving single nodes between blocks. The gain gB(v)
of moving node v to block B is the decrease in total cut size caused by this move.
For example, if v has 5 incident edges of unit weight, two of which are inside v’s
block and three of which lead to block B then gB(v) = 3− 2 = 1.

3 n-Level Graph Partitioning

Figure 2 gives a high-level recursive summary of n-GP. The base case is some
other partitioner used when the graph is sufficiently small. In KaSPar, con-
traction is stopped when either only 20k nodes remain, no further nodes are
eligible for contraction, or there are less edges than nodes left. The latter hap-
pens when the graph consists of many independent components. As observed in
[14] Scotch [20] produces better initial partitions than Metis, and therefore we
also use it in KaSPar .

n-Level Graph Partitioning 281

Function n-GP(G, k, ε)
if G is small then return initialPartition(G, k, ε)
pick the edge e = {u, v} with the highest rating
contract e; P := n-GP(G, k, ε); uncontract e
activate(u); activate(v); localSearch()
return P

Fig. 2. n-GP

The edges to be contracted are chosen according to an edge rating function.
KaSPar adopts the rating function

expansion∗({u, v}):= ω({u, v})
c(u)c(v)

which fared best in [14]. Additionally, in order to avoid unbalanced inputs to the
initial partitioner, KaSPar never allows a node v to participate in a contraction
if the weight of v exceeds 1.5n/(20k). Selecting contracted edges can be imple-
mented efficiently by keeping the contractable nodes in a priority queue sorted
by the rating of their most highly rated incident edge.

In order to make contraction and uncontraction efficient, we use a “semidy-
namic” graph data structure: When contracting an edge {u, v}, we mark both
u and v as deleted, introduce a new node w, and redirect the edges incident to
u and v to w. The advantage of this implementation is that edges adjacent to a
node are still stored in adjacency arrays which are more efficient than linked lists
needed for a full fledged dynamic graph data structure. A disadvantages of our
approach is a certain space overhead. However, it is relatively easy to show that
this space overhead is bounded by a logarithmic factor even if we contract edges
in some random fashion (see [4]). In Section 5 we will demonstrate experimen-
tally that the overhead is actually often a small constant factor. Indeed, this is
not very surprising since the edge rating function is not random, but designed to
keep the contracted graph sparse. Overall, with respect to asymptotic memory
overhead, n-GP is no worse than methods with a logarithmic number of levels.

3.1 Local Search Strategy

Our local search strategy is similar to the FM-algorithm [6] that is also used
in many other MGP systems. We now outline our variant and then discuss
differences.

Originally, all nodes are unmarked. Only unmarked nodes are allowed to be
activated or moved from one block to another. Activating a node v ∈ B′ means
that for blocks {B 	= B′ : ∃ {v, u} ∈ E ∧ u ∈ B} we compute the gain

gB(v) =
∑

{ω({v, u}) : {v, u} ∈ E, v ∈ B}−
∑

{ω({v, u}) : {v, u} ∈ E, v ∈ B′}

of moving v to block B for blocks where v can be moved. Note that gains are
allowed to be negative. Node v is then inserted into the priority queue PB using

282 V. Osipov and P. Sanders

gB(v) as the priority. We call a queue PB eligible if the highest gain node in
PB can be moved to block B without violating the balance constraint for block
B. Local search repeatedly looks for the highest gain node v in any eligible
priority queue PB and moves v to block B. When this happens, node v becomes
nonactive and marked, the unmarked neighbors of v get activated and the gains
of the active neighbors are updated. The local search is stopped if either no
eligible nonempty queues remain, or one of the stopping criteria described below
applies. After the local search stops, it is rolled back to the lowest cut state
reached during the search (which is the starting state if no improvement was
achieved). Subsequently all previously marked nodes are unmarked. The local
search is repeated until no improvement is achieved.

The main difference to the usual FM-algorithm is that our routine performs a
highly localized search starting just at the uncontracted edge. Indeed, our local
search does nothing if none of the uncontracted nodes is a border node, i.e., has
a neighbor in another block. Other FM-algorithms initialize the search with all
border nodes. In n-GP the local search may find an improvement quickly after
moving a small number of nodes. However, in order to exploit this case, we need
a way to stop the search much earlier than previous algorithms which limit the
number of steps to a constant fraction of the current number of nodes |V |.

Stopping Using a Random Walk Model. It makes sense to make a stopping rule
more adaptive by making it dependent on the past history of the search, e.g., on
the difference between the current cut and the best cut achieved before.

We model the gain values in each step as identically distributed, independent
random variables whose expectation μ and Variance σ2 is obtained from the pre-
viously observed p steps. In the full paper we show how from these assumptions
we can (heuristically) derive that it is unlikely that the local search will produce
a better cut if

pμ2 > ασ2 + β (1)

where α and β are tuning parameters and μ is the average gain since the last
improvement. For the variance σ2, we can also use the variance observed through-
out the current local search. Parameter β is a base value that avoids stopping
just after a small constant number of steps that happen to have small variance.
Currently we set it to ln n.

4 Trial Trees

It is a standard technique in optimization heuristics to improve results by re-
peating various parts of the algorithm. We generalize several approaches used in
MGP by adapting an idea initially used in a fast randomized min-cut algorithm
[15]: After reducing the number of nodes by a factor c, we perform two inde-
pendent trials using different random seeds for tie breaking during contraction,
initial partitioning, and local search. Among these trials the one with the smaller
cut is used for continuing upwards. This way, we perform independent trials at
many levels of contraction controlled by a single tuning parameter c. As long as
c > 2, the total number of contraction steps performed stays O(n).

n-Level Graph Partitioning 283

Table 1. Basic properties of the graphs from our benchmark set. The large instances
are split into five groups: geometric graphs, FEM graphs, street networks, sparse ma-
trices, and social networks. Within their groups, the graphs are sorted by size.

Medium sized instances

graph n m

rgg17 217 1 457 506
rgg18 218 3 094 566
Delaunay17 217 786 352
Delaunay18 218 1 572 792

bcsstk29 13 992 605 496
4elt 15 606 91 756
fesphere 16 386 98 304
cti 16 840 96 464
memplus 17 758 108 384
cs4 33 499 87 716
pwt 36 519 289 588
bcsstk32 44 609 1 970 092
body 45 087 327 468
t60k 60 005 178 880
wing 62 032 243 088
finan512 74 752 522 240
ferotor 99 617 662 431

bel 463 514 1 183 764
nld 893 041 2 279 080

af shell9 504 855 17 084 020

Large instances

graph n m

rgg20 220 13 783 240
Delaunay20 220 12 582 744

fetooth 78 136 905 182
598a 110 971 1 483 868
ocean 143 437 819 186
144 144 649 2 148 786
wave 156 317 2 118 662
m14b 214 765 3 358 036
auto 448 695 6 629 222

deu 4 378 446 10 967 174
eur 18 029 721 44 435 372

af shell10 1 508 065 51 164 260

Social networks

coAuthorCiteseer 227 320 1 628268
coAutorhDBLP 299 067 1 955 352
cnr2000 325 557 3 216 152
citationCiteseer 434 102 32 073 440
coPaperDBLP 540 486 30 491 458

5 Experiments

Implementation. We implemented KaSPar in C++ using gcc-4.3.2. We use pri-
ority queues based on paring heaps [28] available in the policy-based elementary
data structures library (pb ds) for implementing contraction and refinement pro-
cedures. In the following experimental study we compared KaSPar to Scotch 5.1,
kMetis 4.0 and the same version of KaPPa as in [14].

System. We performed our experiments on a single core of an Intel Xeon Quad-
core Processor featuring 2x4 MB of L2 cache and clocked at 2.667 GHz of a
2 processor Intel Xeon X5355 node with 16 GB of RAM running Suse Linux
Enterprise 10.

Instances. We report results on two suites of instances summarized in Table 1.
rggX is a random geometric graph with 2X nodes that represent random points
in the unit square and edges connect nodes whose Euclidean distance is be-
low 0.55

√
ln n/n. This threshold was chosen in order to ensure that the graph

is almost connected. DelaunayX is the Delaunay triangulation of 2X random
points in the unit square. Graphs bcsstk29..ferotor and fetooth..auto come from
Chris Walshaw’s benchmark archive [27]. Graphs bel, nld, deu and eur are undi-
rected versions of the road networks of Belgium, the Netherlands, Germany, and

284 V. Osipov and P. Sanders

Western Europe respectively, used in [3]. Instances af shell9 and af shell10 come
from the Florida Sparse Matrix Collection [2]. coAuthorsDBLP, coPapersDBLP,
citationCiteseer, coAuthorsCiteseer and cnr2000 are examples of social networks
taken from [9]. All node and edge weights are one.

For the number of partitions k we choose the values used in [27]: 2, 4, 8, 16,
32, 64. Our default value for the allowed imbalance is 3 % since this is one of
the values used in [27] and the default value in Metis.

When not otherwise mentioned, we perform 10 repetitions for the small net-
works and 5 repetitions for the other. We report the arithmetic average of com-
puted cut size, running time and the best cut found. When further averaging over
multiple instances, we use the geometric mean in order to give every instance
the same influence on the final figure.

Configuring the Algorithm. We use two sets of parameter settings fast and strong.
These methods only differ in the constant factor α in the local search stopping
rule, see Equation (1), in the contraction factor c for the trial tree (Section 4),
and in the number of initial partitioning attempts a performed at the coarsest
level of contraction:

strategy α c a
fast 1 8 25/ log2 k
strong 4 2.5 100/ log2 k

Note that this are considerably less parameters compared to KaPPa. In par-
ticular, there is no need for selecting a matching algorithm, an edge coloring
algorithm, or global and local iterations for refinement.

Scalability. Figure 3 shows the number of edges touched during contraction
(KaSPar strong, small and large instances) relative to the input size. We see
that this scales linearly with the number of input edges and with a fairly small

 1

 2

 3

 4

 5

104 105 106 107 108

m
em

or
y

ov
er

he
ad

m

Fig. 3. Number of edges created during contraction

n-Level Graph Partitioning 285

 0.1

 1

 10

 100

 1000

104 105 106 107

lo
ca

l s
ea

rc
h

st
ep

s
/ n

n

k=64
k=32
k=16
k=8
k=4
k=2

Fig. 4. Total number of local search steps. The nearly straight lines represent series
for the graphs rgg15..rgg24 and Delaunay15..Delaunay24 for different k.

constant factor between 2 and 3. Interestingly, the number of local search steps
during local improvement (Figure 4) decreases with increasing input size. This
can be explained by the sublinear number of border vertices that we have in
graphs that have small cuts and by small average search space sizes for the local
search. Indeed, experiments shown in the full paper indicate that the average
length of local searches grows only logarithmically with n. All this translates into
fairly complicated running time behavior. Still, experiments discussed in the full
paper warrant the conclusion that running time scales “near linearly” with the
input size.The term in the running time depending on k grows sublinearly with
the input size so that for very large graphs the number of blocks does not matter
much.

Does the Random Walk Model Work? We have compared KaSPar fast with a
variant where the stopping rule is disabled (i.e., α = ∞). For the small instances
this yields about 1 % better cut sizes at the cost of an order of magnitude larger
running time. This is a small improvement both compared to the improvement
KaSPar achieves over other systems and compared to just repeating KaSPar fast
10 times (see Table 2).

Do Trial trees help? We use the following evaluation: We run KaSPar strong
and measure its elapsed time. Then for different values of initial partitionings
a we repeat KaSPar strong without trial trees(c = 0), until the sum of the
run times of all repetitions exceeds the run time of KaSPar strong. Than for
different values a we compare the best edge cut achieved during repeated runs
to the one produced by KaSPar strong. Finally, we average the obtained results
over 5 repetitions of this procedure. If we then compare the computed parti-
tions, we usually get almost identical results (a fraction of a percent difference).
However, most of the time trial trees are a bit better and for road networks we

286 V. Osipov and P. Sanders

get considerable improvements. For example, for the European network we get
an improvement of 10 % on average over all k.

Comparison with other Systems. Table 2 summarizes the results by computing
geometric means over 10 runs for the small instances and over 5 runs for the
large instances and social networks. We exclude the European road network for
k = 2 because KaPPa runs out of memory in that case. Detailed per instance
results can be found in the full paper. KaPPa strong produces 5.9 % larger cuts
than KasPar strong for small instances (average value) and 8.1 % larger cuts for
the large instances. This comparison might seem a bit unfair because KaPPa
is about five times faster. However, KaPPa is using k processors in parallel.
Indeed, for k = 2 KaSPar strong needs only about twice as much time. Also
note that KaPPa strong needs about twice as much time as KaSPar fast while
still producing 6 % larger cuts despite running in parallel. The case k = 2 is also
interesting because here KaPPa and KaSPar are most similar – parallelism does
not play a big role (2 processors) and both local search strategies work only on
two blocks at all time. Therefore 6 % improvement of KaSPar over KaPPa we
can attribute mostly to the larger number of levels.

Scotch and kMetis are much faster than KaSPar but also produce consider-
ably larger cuts – e.g., 32 % larger for large instances (kMetis, average). For the
European road network (not in the table, see above), the difference in cut size
even exceeds a factor of two. Such gaps usually cannot be breached by just run-
ning the faster solver a larger number of times. For example, for large instances,
Scotch is only a factor around 4 faster than KaSPar fast, yet its best cut values
obtained from 5 runs are still 12.7 % larger than the average values of KaSPar
fast.

For social networks all systems have problems. KaSPar lags further behind
in terms of speed but extends its lead with respect to the cut size. We mostly
attribute the larger run time to the larger cut sizes relative to the number of
nodes which greatly increase the number of local searches necessary. A further
effect may be that the time for a local search step is proportional to the number
of partitions adjacent to the nodes participating in the local search. For “well
behaved” graphs this is mostly two, but for social networks which get denser on
the coarser levels this value can get larger.

The Walshaw Benchmark [27] considers 34 graphs using k ∈ {2, 4, 8, 16, 32, 64}
and balance parameter ε ∈ {0, 0.01, 0.03, 0.05} giving a total of 816 table entries.
Only cut sizes count – running time is not reported. We tried all combinations
except the case ε = 0 which KaSPar cannot handle yet. We ran KaSPar strong
with a time limit of one hour and report the best result obtained in the full
paper. KaSPar improved 155 values in the benchmark table: 42 for 1%, 49 for
3% and 64 for 5% allowed imbalance. Moreover, it reproduced equally sized
cuts in 83 cases. If we count only results for graphs having over 44k nodes and
ε > 0, KaSPar improved 131 and reproduced 27 cuts, thus summing up to 63%
of large graph table slots. We should note, that 51 of the new improvements
are over partitioners different from KaPPa. Most of the improvements lie in the
lower triangular part of the table, meaning that KaSPar is particularly good for

n-Level Graph Partitioning 287

Table 2. Geometric means (times, cut values) over all instances

code small graphs large graphs social networks
best avg. t[s] best avg. t[s] best avg. t[s]

KaSPar strong 2 675 2 729 7.37 12 450 12 584 87.12 - - -
KaSPar fast 2 717 2 809 1.43 12 655 12 842 14.43 93657 99062 297.34
KaSPar fast, α = ∞ 2 697 2 780 23.21 - - - - - -

KaPPa strong 2 807 2 890 2.10 13 323 13 600 28.16 117701 123613 78.00
KaPPa fast 2 819 2 910 1.29 13 442 13 727 16.67 117927 126914 46.40

kMetis 3 097 3 348 0.07 15 540 16 656 0.71 117959 134803 1.42
Scotch 2 926 3 065 0.48 14 475 15 074 3.83 168764 168764 17.69

Large Instances

k KaSPar strong KaPPa strong

best avg. t[s] best avg. t[s]

2 2 842 2 873 36.89 2 977 3 054 15.03
4 5 642 5 707 60.66 6 190 6 384 30.31
8 10 464 10 580 75.92 11 375 11 652 37.86

16 17 345 17 567 102.52 18678 19 061 39.13
32 27 416 27 707 137.08 29 156 29 562 31.35
64 41 284 41 570 170.54 43 237 43 644 22.36

either large graphs, or smaller graphs with small k. On the other hand, for small
graphs, large k, and ε = 1% KaSPar was often not able to obtain a feasible
solution. A primary reason for this seems to be that initial partitioning yields
highly infeasible solutions that KaSPar is not able to to improve considerably
during refinement. This is not astonishing, since Scotch targets ε = 3% and does
not even guarantee that.

6 Conclusion

n-GP is a graph partitioning approach that scales to large inputs and currently
computes the best known partitions for many large graphs, at least when a
certain imbalance is allowed. It is in some sense simpler than previous methods
since no matching algorithm is needed. Although our current implementation
of KaSPar is a considerable constant factor slower than the fastest available
MGP partitioners, we see potential for further tuning. In particular, thanks
to our adaptive stopping rule, KaSPar needs to do very little local search, in
particular for large graphs and small k. Thus it suffices to tune the relatively
simple contraction routine to obtain significant improvements. On the other
hand, the adaptive stopping rule might also turn out to be useful for matching
based MGP algorithms.

A lot of opportunities remain to further improve KaSPar. In particular, we
did not yet attempt to handle the case ε = 0 since this may require different
local search strategies. We also want to try other initial partitioning algorithms
and ways to integrate n-GP into other metaheuristics like evolutionary search.

288 V. Osipov and P. Sanders

We expect that n-GP could be generalized for other objective functions, for
hypergraphs, and for graph clustering. More generally, the success of n-GP also
suggests to look for more applications of the n-level paradigm.

An apparent drawback of n-GP is that it looks inherently sequential. However,
we could probably obtain a good parallel algorithm by contracting small sets
of highly rated, independent edges in parallel. Since this obviates the need for
parallel matching algorithms, a parallelization of n-GP might be fast and simple.

Acknowledgements. We would like to thank Christian Schulz for supplying data
for KaPPa, Scotch and Metis.

References

1. Birn, M., Holtgrewe, M., Sanders, P., Singler, J.: Simple and fast nearest neighbor
search. In: 11th Workshop on Algorithm Engineering and Experiments (2010)

2. Davis, T.: The University of Florida Sparse Matrix Collection (2008),
http://www.cise.ufl.edu/research/sparse/matrices

3. Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering route planning
algorithms. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics of Large
and Complex Networks. LNCS, vol. 5515, pp. 117–139. Springer, Heidelberg (2009)

4. Dementiev, R., Sanders, P., Schultes, D., Sibeyn, J.: Engineering an external mem-
ory minimum spanning tree algorithm. In: IFIP TCS, Toulouse (2004)

5. Drake, D., Hougardy, S.: Improved linear time approximation algorithms for
weighted matchings. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.)
RANDOM 2003 and APPROX 2003. LNCS, vol. 2764, pp. 14–23. Springer, Hei-
delberg (2003)

6. Fiduccia, C.M., Mattheyses, R.M.: A Linear-Time Heuristic for Improving Network
Partitions. In: 19th Conf. on Design Automation, pp. 175–181 (1982)

7. Fjallstrom, P.: Algorithms for graph partitioning: A survey. Linkoping Electronic
Articles in Computer and Information Science 3(10) (1998)

8. Karypis, V.K.G.: A fast and high quality multilevel scheme for partitioning irreg-
ular graphs. SIAM Journal on Scientific Computing 20(1), 359–392 (1998)

9. Geisberger, R., Sanders, P., Schultes, D.: Better approximation of betweenness
centrality. In: 10th Workshop on Algorithm Engineering and Experimentation,
San Francisco, pp. 90–108. SIAM, Philadelphia (2008)

10. Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction hierarchies:
Faster and simpler hierarchical routing in road networks. In: McGeoch, C.C. (ed.)
WEA 2008. LNCS, vol. 5038, pp. 319–333. Springer, Heidelberg (2008)

11. Guibas, L.J., Knuth, D.E., Sharir, M.: Randomized incremental construction of
Delaunay and Voronoi diagrams. Algorithmica 7(4), 381–413 (1992)

12. Hendrickson, B.: Chaco: Software for partitioning graphs,
http://www.sandia.gov/~bahendr/chaco.html

13. Holtgrewe, M.: A scalable coarsening phase for a multi-level partitioning algorithm.
Diploma thesis, Universität Karlsruhe (2009)

14. Holtgrewe, M., Sanders, P., Schulz, C.: Engineering a scalable high quality graph
partitioner. In: 24th IEEE International Parallel and Distributed Processing Sym-
posium (to appear, 2010), arXiv:0910.2004

15. Karger, D.R., Stein, C.: A new approach to the minimum cut problem. J.
ACM 43(4), 601–640 (1996)

http://www.cise.ufl.edu/research/sparse/matrices
http://www.sandia.gov/~bahendr/chaco.html

n-Level Graph Partitioning 289

16. Karypis, G., Kumar, V.: MeTis: Unstructured Graph Partitioning and Sparse Ma-
trix Ordering System, Version 4.0, http://www.cs.umn.edu/~metis

17. Karypis, G., Kumar, V.: MeTiS, A Software Package for Partitioning Unstructured
Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse
Matrices, Version 4.0 (1998)

18. Maue, J., Sanders, P.: Engineering algorithms for approximate weighted matching.
In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 242–255. Springer,
Heidelberg (2007)

19. Meyerhenke, H., Monien, B., Sauerwald, T.: A new diffusion-based multilevel al-
gorithm for computing graph partitions. Journal of Parallel and Distributed Com-
puting 69(9), 750–761 (2009)

20. Pellegrini, F.: SCOTCH: Static Mapping, Graph, Mesh and Hypergraph Partition-
ing, and Parallel and Sequential Sparse Matrix Ordering Package (2007),
http://www.labri.fr/perso/pelegrin/scotch/

21. Pellegrini, F.: SCOTCH 5.1 User’s guide. Technical report, Laboratoire Bordelais
de Recherche en Informatique, Bordeaux, France (2008)

22. Pettie, S., Sanders, P.: A simpler linear time 2/3 − ε approximation for maximum
weight matching. Information Processing Letters 91(6), 271–276 (2004)

23. Preis, R.: PARTY Partitioning Library (1996),
http://www2.cs.uni-paderborn.de/cs/robsy/party.html

24. Preis, R.: Linear time 1/2-approximation algorithm for maximum weighted match-
ing in general graphs. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563,
pp. 259–269. Springer, Heidelberg (1999)

25. Preis, R., Diekmann, R.: The PARTY Partitioning Library, User Guide. Technical
report, University of Paderborn, Germany, Tr-rsfb-96-02 (1996)

26. Schloegel, K., Karypis, G., Kumar, V.: Graph partitioning for high performance
scientific simulations. Technical Report 00-018, University of Minnesota (2000)

27. Soperm, A.J., Walshaw, C., Cross, M.: A combined evolutionary search and mul-
tilevel optimisation approach to graph partitioning. J. Global Optimization 29(2),
225–241 (2004),
http://staffweb.cms.gre.ac.uk/~c.walshaw/partition/

28. Tavory, A., Dreizin, V., Kosnik, B.: Policy-based data structures. IBM Haifa and
Redhat (2004), http://gcc.gnu.org/onlinedocs/libstdc++/ext/pb_ds/

29. Walshaw, C.: JOSTLE –graph partitioning software (2005),
http://staffweb.cms.gre.ac.uk/~wc06/jostle/

30. Walshaw, C., Cross, M.: JOSTLE: Parallel Multilevel Graph-Partitioning Software
– An Overview. In: Magoules, F. (ed.) Mesh Partitioning Techniques and Domain
Decomposition Techniques, pp. 27–58. Civil-Comp Ltd. (2007) (invited chapter)

http://www.cs.umn.edu/~metis
http://www.labri.fr/perso/pelegrin/scotch/
http://www2.cs.uni-paderborn.de/cs/robsy/party.html
http://staffweb.cms.gre.ac.uk/~c.walshaw/partition/
http://gcc.gnu.org/onlinedocs/libstdc++/ext/pb_ds/
http://staffweb.cms.gre.ac.uk/~wc06/jostle/

Fast Routing in

Very Large Public Transportation Networks
Using Transfer Patterns

Hannah Bast1,2, Erik Carlsson2, Arno Eigenwillig2, Robert Geisberger3,2,
Chris Harrelson2, Veselin Raychev2, and Fabien Viger2

1 Albert-Ludwigs-Universität Freiburg, 79110 Freiburg, Germany
2 Google, Brandschenkestrasse 110, 8002 Zürich, Switzerland

3 Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany

Abstract. We show how to route on very large public transportation
networks (up to half a billion arcs) with average query times of a few mil-
liseconds. We take into account many realistic features like: traffic days,
walking between stations, queries between geographic locations instead
of a source and a target station, and multi-criteria cost functions. Our al-
gorithm is based on two key observations: (1) many shortest paths share
the same transfer pattern, i.e., the sequence of stations where a change
of vehicle occurs; (2) direct connections without change of vehicle can
be looked up quickly. We precompute the respective data; in practice,
this can be done in time linear in the network size, at the expense of a
small fraction of non-optimal results. We have accelerated public trans-
portation routing on Google Maps with a system based on our ideas. We
report experimental results for three data sets of various kinds and sizes.

1 Introduction

In recent years, several algorithms have been developed that, after a precompu-
tation, find shortest paths on the road network of a whole continent in a few mi-
croseconds, which is a million times faster than Dijkstra’s algorithm. However,
none of the tricks behind these algorithms yields similar speed-ups for public trans-
portation networks of comparable sizes, especially when they are realisticallymod-
eled and show poor structure, like bus-only networks in big metropolitan areas. In
this paper we present a new algorithm for routing on public transportation net-
works that is fast even when the network is realistically modeled, very large and
poorly structured. These are the challenges faced by public transportation rout-
ing on Google Maps (http://www.google.com/transit), and our algorithm has
successfully addressed them. It is based on the following new idea.

Think of the query A@t→ B, with source station A = Freiburg, target station
B = Zürich, and departure time t = 10:00. Without assuming anything about
the nature of the network and without any precomputation, we would have to
do a Dijkstra-like search and explore many nodes to compute an optimal path.
Now let us assume that we are given the following additional information: each

M. de Berg and U. Meyer (Eds.): ESA 2010, Part I, LNCS 6346, pp. 290–301, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.google.com/transit

Fast Routing in Very Large Public Transportation Networks 291

and every optimal path from Freiburg to Zürich, no matter on which day and at
which time of the day, either is a direct connection (with no transfer in between)
or it is a trip with exactly one transfer at Basel. We call Freiburg – Zürich
and Freiburg – Basel – Zürich the optimal transfer patterns between Freiburg
and Zürich (for each optimal path, take the source station, the sequence of
transfers, and the target station). Note how little information the set of optimal
transfer patterns for this station pair is. Additionally, let us assume that we have
timetable information for each station that allows us to very quickly determine
the next direct connection from a given station to some other station.

With this information, it becomes very easy to answer the query A@t→ B for
an arbitrary given time t. Say t = 10:00. Find the next direct connection from
Freiburg to Zürich after t. Say it leaves Freiburg at 12:55 and arrives in Zürich
at 14:52. (There are only few direct trains between these two stations over the
day.) Also find the next direct connection from Freiburg to Basel after t. Say
it leaves Freiburg at 10:02 and arrives in Basel at 10:47. Then find the next
direct connection from Basel to Zürich after 10:47. Say it leaves Basel at 11:07
and arrives in Zürich at 12:00. In our cost model (see Section 3) these two
connections are incomparable (one is faster, and the other has less transfers),
and thus we would report both. Since the two given transfer patterns were the
only optimal ones, we can be sure to have found all optimal connections. And
we needed only three direct-connection queries to compute them.

Conceptually, our whole scheme goes as follows. The set of all optimal transfer
patterns between all station pairs is too large to precompute and store. We
therefore precompute a set of parts of transfer patterns such that all optimal
transfer patterns can be combined from these parts. For our three datasets, we
can precompute such parts in 20–40 core hours per 1 million departure/arrival
events and store them in 10–50 MB per 1000 stations. From these parts, also
non-optimal transfer patterns can be combined, but this only means additional
work at query time; it will not let us miss any optimal connections. Think of
storing parts of transfer patterns, to be recombined at query time, as a lossy
compression of the set of all optimal transfer patterns. We also precompute a
data structure for fast direct-connection queries, which, for our three datasets,
needs 3–10 MB per 1 000 stations and has a query time of 2–10 μs.

Having this information precomputed, we then proceed as follows for a given
query A@t → B. From the precomputed parts, we compute all combinations
that yield a transfer pattern between A and B. We overlay all these patterns to
form what we call the query graph. Finding the optimal connection(s) amounts
to a shortest-path computation on the query graph with source A and target
B, where each arc evaluation is a direct-connection query. The query graph for
our simple example from above has three nodes (A = Freiburg, B = Zürich, and
C = Basel) and three arcs (A → B, A → C, C → B). Due to the non-optimal
transfer patterns that come from the recombination of the precomputed parts,
our actual query graphs typically have several hundreds of arcs. However, since
direct-connection queries can be computed in about 10 μs, this will still give us
query times on the order of a few milliseconds, and by the way our approach
works, these times are independent of the size of the network.

292 H. Bast et al.

2 Related Work

The most successful “tricks of the trade” for fast routing on transportation
networks can be summarized under the following five headings: bidirectional
search, exploiting hierarchy, graph contraction, goal direction, and distance tables.
The recent overview article [2] describes each of these and provides evidence and
explanations why they give excellent speed-ups on road networks, but fail to do
so on public transportation networks, especially such with poor structure. Two
recent surveys on fast routing on road networks and on public transportation
networks, respectively, are [5] and [10].

A fully realistic model like ours was recently considered in [6] and [3]. However,
the network considered in those papers is relatively small (about 8900 stations)
and very well-structured (German trains, almost no local transport). Also, there
are only very few walking arcs, as walking between stations is rarely an issue for
pure train networks. Reported query times are about one second for [6] and a
few hundred milliseconds for [3]. The title of the latter paper aptly states that
obtaining speed-ups for routing on public transportation networks in a realistic
model “is harder than expected”.

The best query times so far, of around 1 ms, were achieved in [4] and [7].
However, their model does support neither walking between stations, nor traffic
days, nor multi-criteria costs, and, especially for the latter, it looks unlikely that
their algorithms can be suitably extended. These two papers considered a graph
of the European long-distance trains, and also two local networks (Berlin and
Frankfurt), of size about 10 000 stations each.

Our algorithm is the first to yield fast query times (on the order of a few
milliseconds) on a fully realistic model for public transportation networks also
with poor structure (like bus-only networks) and of sizes more than an order of
magnitude larger than what was considered so far.

3 Problem Formalization

A timetable describes the available trips of vehicles (buses, trains, ferries etc.)
along sequences of stations (bus stops, train stations, ports etc.), including the
times of day at which they depart and arrive. For routing, it is represented as a
graph, see [11] for a comparison of various graph models. We use a time-expanded
graph with three kinds of nodes, each carries a time and belongs to a station. For
every elementary connection from station A to the next station B on the same
trip, we put a departure node Ad@t1 at A with the departure time t1, an arrival
node Ba@t2 at B with the arrival time t2 and an arc Ad@t1 → Ba@t2 to model
riding this vehicle from A to B. If the vehicle continues from B at time t3, we
put an arc Ba@t2 → Bd@t3 that represents staying on the vehicle at B. This is
possible no matter how small the difference t3 − t2 is.

Transfers at B shall be possible only to departures after a minimum transfer
duration ΔtB . For each departure node Bd@t we put a transfer node Bt@t at
the same time and an arc Bt@t → Bd@t between them. Also, we put an arc
Bt@t→ Bt@t′ to the transfer node at B that comes next in the ascending order

Fast Routing in Very Large Public Transportation Networks 293

of departure times (with ties broken arbitrarily); these arcs form the waiting
chain at B. Now, to allow a transfer after having reached Ba@t2, we put an arc
to the first transfer node Bt@t with t ≥ t2 + ΔtB. This gives the opportunity to
transfer to that and all later departures from B.

For exposition, we regard the graph as fully time-expanded, meaning times
increase unbounded from time 0 (midnight of day 0). In practice, we exploit the
periodicity of timetables by using times modulo 24 hours and bit masks to indi-
cate a trip’s traffic days. Also, we allow additional transfers by walking to nearby
stations. See Section 6 for details. In our implementation, the resulting graphs
can be stored in about 35MB of memory per 1 million elementary connections.

Our scheme supports a fairly general class of multi-criteria cost functions and
optimality notions. In our implementation, a cost is a pair (d, p) of non-negative
duration and penalty. Duration of an arc is the difference in time between its
endpoints. Penalty applies mostly to transfers: each station B defines a fixed
penalty score for transferring, and that is the penalty component of the cost of
arcs Ba@t → Bt@t′. The arcs from departure to arrival nodes may be given
a small penalty score for using that elementary connection. Other arcs, in par-
ticular waiting arcs, have penalty zero. The cost of a path in the graph is the
component-wise sum of the costs of the arcs.

We say cost (d1, p1) dominates or is better than cost (d2, p2) in the Pareto
sense if d1 ≤ d2 and p1 ≤ p2 and one of the inequalities is strict. Each finite
set of costs has a unique subset of (Pareto-)optimal costs that are pairwise non-
dominating but dominate any other cost in the set (in the Pareto sense).

Definition 1. Consider a station-to-station query A@t → B. Take the first
transfer node At@t′ with t′ ≥ t. For this query, we extend the graph by a source
node S with an arc of duration t′ − t and penalty 0 that leads to At@t′ and by a
target node T with incoming arcs of zero cost from all arrival nodes of B.

The paths from S to T are the feasible connections for the query. If the cost of
a feasible connection is not dominated by any other, we call them optimal cost
and optimal connection, respectively, for the query.

The query’s result is an optimal set of connections, that is, a set of optimal
connections containing exactly one for each optimal cost.

Note that the waiting chain at A makes paths from S through all departure nodes
after time t feasible. We exclude multiple connections for the same optimal cost.
They do occur (even for a single-criterion cost function) but add little value.1

4 Basic Algorithm

In this section we present a first simple algorithm that illustrates the key ideas.
It has very fast query times but a quadratic precomputation complexity.
1 Connections of equal cost, relative to query time t, arrive at the same time. It is

preferable to choose one that departs as late as possible from A; we will return to
that in Section 6. Those that depart latest often differ in trivial ways (e.g., using
this or that tram between two train stations), so returning just one is fine.

294 H. Bast et al.

4.1 Fast Direct-Connection Queries

Definition 2. For a direct-connection query A@t→ B, the feasible connections
are defined as in Definition 1, except that only connections without transfers are
permitted. The result of the query are the optimal costs in this restricted set.

The following data structure answers direct-connection queries in about 10 μs.
1. Precompute all trips (maximal paths in the graph without transfer nodes)

and group them into lines L1, L2, . . . such that all trips on a line share the same
sequence of stations, do not overtake each other (FIFO property, like the train
routes in [11]), and have the same penalty score between any two stations.

The trips of a line are sorted by time and stored in a 2D array like this:
line L17 S154 S097 S987 S111 . . .

trip 1 8:15 8:22 8:23 8:27 8:29 8:38 8:39 . . .
trip 2 9:14 9:21 9:22 9:28 9:28 9:37 9:38 . . .
. .

2. For each station, precompute the sorted list of lines incident to it and its
position(s) on each line. For example:

S097: (L8, 4) (L17, 2) (L34, 5) (L87, 17) . . .
S111: (L9, 1) (L13, 5) (L17, 4) (L55, 16) . . .

3. To answer a direct-connection query A@t→ B, intersect the incidence lists
of A and B. For each occurrence of A before B on a line, read off the cost of the
earliest feasible trip, then choose the optimal costs among all these.
In our example, the query S097@9:03 → S111 finds positions 2 and 4 on L17
and the trip that reaches S111 at 9:37.

Lemma 1. A query A@t → B to the direct-connection data structure returns
all optimal costs of direct connections.

Proof. The straightforward proof can be found in the extended version [1].

4.2 Transfer patterns precomputation

Definition 3. For any path, consider the subsequence of nodes formed by the
first node, each arrival node whose successor is a transfer node, and the last
node. The sequence of stations of these nodes is the transfer pattern of the path.

An optimal set of transfer patterns for a pair (A, B) of stations is a set S
of transfer patterns such that for all queries A@t → B there is an optimal
set of connections whose transfer patterns are contained in S, and such that
each element in S is the transfer pattern of an optimal connection for a query
A@t→ B at some time t.

For every source station A, we compute optimal sets of transfer patterns to
all stations B reachable from it and store them in one DAG for A. This DAG
has three different types of nodes: one root node labeled A, for each reach-
able station B a target node labeled B, and for each transfer pattern prefix

Fast Routing in Very Large Public Transportation Networks 295

A B C D

DC

E

Fig. 1. DAG for the transfer patterns ‘AE’, ‘ABE’, ‘ABC’, ‘ABDE‘ and ‘ABCDE’. The
root node is the diamond, prefix nodes are circles and target stations are rectangles.
There are potentially several prefix nodes with the same label: In our example, ‘D’
occurs twice, the top one representing the prefix ‘ABD’ and the bottom one ‘ABCD’.

AC1 . . . Ci, occurring in at least one transfer pattern AC1 . . . Ci . . . B, a prefix
node labeled Ci. They are connected in the natural way such that precisely the
transfer patterns we want to store are represented by a path from their target
stations to the root node, labeled in reverse order; Figure 1 shows an example.
We use the following algorithm transfer patterns(A).

1. Run a multi-criteria variant of Dijkstra’s algorithm [9,13,8] starting from
labels of cost zero at all transfer nodes of station A.

2. For every station B, choose optimal connections with the arrival chain
algorithm: For all distinct arrival times t1 < t2 < . . . at B, select a dominant
subset in the set of labels consisting of (i) those settled at the arrival node(s) at
time ti and (ii) those selected for time ti−1, with duration increased by ti− ti−1;
ties to be broken in preference of (ii).

3. Trace back the paths of all labels selected in Step 2. Create the DAG of
transfer patterns of these paths by traversing them from the source A.

Lemma 2. If c is an optimal cost for the query A@t0 → B, transfer patterns(A)
computes the transfer pattern of a feasible connection for the query that realizes
cost c.

Proof. Let c = (d, p). The label set for time t0 + d keeps a label with penalty p
that departs at or after t0. This needs that duration and penalty are optimized
independently (i.e., Pareto-style). For details, see the extended version [1].

Running transfer patterns(A) for all stations A is easy to parallelize by splitting
the set of source stations A between machines, but even so, the total running
time remains an issue. We can estimate it as follows. Let s be the number of
stations, let n be the average number of nodes per station (< 569 for all our
graphs, with the optimizations of Section 6), and let 	 be the average number
of settled labels per node and per run of transfer patterns(A) (< 16 in all our
experiments, in the setting of Sections 6 and 7). Then the total number of labels
settled by transfer patterns(A) for all stations A is L = 	 · n · s2.

Steps 1–3 have running time essentially linear in L, with logarithmic factors
for maintaining various sets. (For Step 1, this includes the priority queue of
Dijkstra’s algorithm. The bounded out-degree of our graphs bounds the number
of unsettled labels linearly in L.) Since L is quadratic in s, this precomputation is

296 H. Bast et al.

infeasible in practice for large networks, despite parallelization. We will address
this issue in Sections 5 and 7.

4.3 Query Graph Construction and Evaluation

For a query A@t→ B, we build the query graph as follows, independent of t:
1. Fetch the precomputed transfer patterns DAG for station A.
2. Search target node B in the DAG. Assume it has 	 successor nodes with

labels C1, . . . , C�. Add the arcs (C1, B), . . . , (C�, B) to the query graph.
3. Recursively perform Step 2 for each successor node with a label Ci 	= A.

Figure 2 shows the query graph from A to E built from the DAG in Figure 1.

A EB C D

Fig. 2. Query graph A→ E from transfer patterns ‘AE’, ‘ABE’, ‘ABDE’ and ‘ABCDE’.

Lemma 3. For each transfer pattern AC1 . . . CkB in the DAG there exists the
path 〈A, C1, . . . , Ck, B〉 in the constructed query graph.

Proof. The straightforward proof can be found in the extended version [1].

Given the query graph, evaluating the query is simply a matter of a time-
dependent multi-criteria Dijkstra search [6] on that graph. Labels in the queue
are tuples of station and cost (time and penalty). Relaxing an arc C → D for a
label with time t amounts to a direct-connection query C@t→ D.

By storing parent pointers from each label to its predecessor on the shortest
path, we eventually obtain, for an optimal label at the target station, the se-
quence of transfers on an optimal path from the source to the target, as well as
the times at which we arrive at each of these transfers. More details on the opti-
mal paths can be provided by augmenting the direct-connection data structure.

Theorem 1. For a given query A@t → B, the described search on the query
graph from A to B returns the set of optimal costs and for each such cost a
corresponding path.

Proof. We precomputed transfer patterns for each optimal cost of the query
(Lemma 2) and the paths connecting these transfer stations are in our query
graph (Lemma 3). From the correctly answered direct-connection queries (Lem-
ma 1), the time-dependent Dijkstra algorithm on the query graph computes all
optimal costs including matching paths.

5 Hub Stations

The preprocessing described in Section 4.2 uses quadratic time and produces a
result of quadratic size. To reduce this, we do these expensive global searches only
from a suitably preselected set of hubs and compute transfer patterns from hubs
to all other stations.2 For all non-hub stations, we do local searches computing
2 Computing transfer patterns only to other hubs is not faster.

Fast Routing in Very Large Public Transportation Networks 297

only those transfer patterns without hubs or their parts up to the first hub. More
precisely, let AC1 . . . CkB be a transfer pattern from a non-hub A that we would
have stored in Section 4.2. If any of the Ci is a hub, we do not store this pattern
any more. The hub Ci with minimal i is called an access station of A. We still
store transfer patterns A . . . Ci and Ci . . . B into and out of the access station.
This shrinks transfer patterns enough to allow query processing entirely from
main memory on a single machine, even for large networks (see Section 8).3

Selecting the hubs. We create a time-independent graph by overlaying the nodes
and arcs of each line (as computed in Section 4.1), using the minimum of arc
costs. Then, we perform cost-limited Dijkstra searches from a random sample of
source stations. The stations being on the largest number of shortest paths are
chosen as hubs.4

Transfer patterns computation. The global search remains as described in Sec-
tion 4.2. The local search additionally marks labels stemming from labels at
transfer nodes of hubs as inactive, and stops as soon as all unsettled labels are
inactive [12]. Inactive labels are ignored when the transfer patterns are read off.5

Query graph. Processing a query A@t→ B looks up the set X of access stations
of A and constructs the query graph from the transfer patterns between the
station pairs {(A, B)} ∪ ({A} × X) ∪ (X × {B}). The evaluation of the query
graph remains unchanged.

Lemma 4. If c is an optimal cost for the query A@t0 → B, then the query
graph from A to B contains the transfer pattern of a feasible connection for the
query that realizes cost c.

Proof. If no suitable transfer pattern A . . .B was computed, then A is a non-hub
with an access station X such that a suitable transfer pattern has been computed
in two parts A . . . X and X . . .B, as we show in the extended version [1]. This
needs that duration and penalty are optimized independently (i.e., Pareto-style).

6 Further Refinements

Above, we simplified the presentation of our algorithm. Our actual implementa-
tion includes the following refinements.

Location-to-location. Our implementation answers location-to-location queries.
In the model from Definition 1, the source and target node now stand for the
source and target locations, and they are connected to a selection of source and

3 The number of global searches could be reduced further by introducing several levels
of hubs, but in our implementation the total cost for the global searches is below the
total cost for the local searches already with one level of hubs; see Section 8.

4 We experimented with a variety of hub selection strategies, but they showed only
little difference with respect to preprocessing time and query graph sizes, and so we
stuck with the simplest strategy.

5 Before that, inactive labels are needed to dominate non-optimal paths around hubs.

298 H. Bast et al.

target stations nearby with arcs that take the walking cost into consideration.
The query graph is built from transfer patterns for all pairs of source and target
stations. This feature is of high practical value for dense metropolitan networks.

Walking arcs for transfers. Likewise, transfers by walking from stations to
nearby stations are very important in metropolitan networks. We add arcs from
arrival nodes to transfer nodes of useful nearby stations whose costs reflect the
additional walking. This results in about twice more arcs in the graph and dupli-
cates certain entities in the algorithm: transfer patterns now alternate between
riding a vehicle and walking, the query graph requires two nodes per station,
and two global searches from each hub are necessary, as the hub can either be
the arrival or departure station of a transfer.

More compact graph model. In the precomputation, we optimize the representa-
tion of the graph from Section 3 in two ways. Departure nodes are removed and
their predecessors (transfer node and maybe arrival node) are linked directly to
their successor (the next arrival node), cf. [11, §8.1.2]. To exploit the periodicity
of timetables, we roll up the graph modulo one day, that is, we label nodes with
times modulo 24 hours and use bit masks to indicate each trip’s traffic days.

Query graph search. After we have determined the earliest arrival time at the
target station, we execute a backward search to find the optimal connection
that departs latest, see footnote 1 on page 293. Furthermore, we apply the A*
heuristic to goal-direct the searches, using minimal costs between station pairs
(computed along with the direct-connection data structure) as lower bounds.

7 Heuristic Optimizations

The system described so far gives exact results, that is, for each query we get
an optimal connection for every optimal cost. However, despite the use of hubs
(Section 5), the precomputation is not significantly faster than the quadratic
precomputation described in Section 4. The reason is that, although the results
of the local searches (the local transfer patterns) are reasonably small, almost
every local search has a local path of very large cost and hence has to visit
a large portion of the whole network before it can stop. Indeed, this 15 hours
to the nearby village problem is at the core of what makes routing in public
transportation networks so hard [2].

The good news is that with our transfer patterns approach we don’t have
this problem at query time but only in the precomputation. Note here that
our approach is unique in that it precomputes information for all queries, not
just for queries where source and target are sufficiently “far apart”. The bad
news is that, despite intensive thought, we did not find a solution that is both
fast and exact. We eventually resorted to the following simple but approximate
solution: limit the local searches to at most two transfers, that is, using at most
three vehicles. We call this the 3-legs heuristic, and as we will see in Section 8,
it indeed makes the local searches reasonably fast. Theoretically, we may now
miss some optimal transfer patterns, but we found this to play no role in the

Fast Routing in Very Large Public Transportation Networks 299

practical use of our algorithm. For example, on our CH graph (Section 8), on
10 000 random queries the 3-leg heuristic gave only three non-optimal results,
and all three of these were only a few percent off the optimum. We remark that
errors in the input data are a much bigger issue in practice. More details on the
quality of our approximation are given in the extended version [1].

Having accepted a small fraction of non-optimal results, we also developed
and apply various other heuristics, which may lead to a non-optimal solution
at query time, but whose measured effect in practice is again tolerable. The
following heuristics in combination speed up our query times by a factor of 3–5.
1. In local searches, mark labels as inactive that travel through hubs without
transfer beyond a distance threshold. (Requires fixup in query graph building.)
2. Do only one global search per hub, starting at transfer and arrival nodes.
3. Optimize duration relaxed by penalty [10], thus discarding Pareto-optimal
trips whose improvement in penalty is small in relation to the longer duration.
4. Drop rare transfer patterns if optima on other patterns are almost as good.

In precomputation time, these additional heuristics (esp. reducing the number
of labels with 3.) save roughly another factor of 2. Unlike the 3-leg heuristic, they
are not essential for the feasibility of our approach.

8 Experiments

The experimental results we provide in this section are for a fully-fledged C++
implementation, with all the refinements from Section 6 and all the tricks from
Section 7 included. For precomputation, our experiments were run on a compute
cluster of Opteron and Xeon-based 64-bit servers. Queries were answered by a
single machine of the cluster, with all data in main memory.

Graphs. We ran our experiments on three different graphs: the train + local
transport network of most of Switzerland (CH), the complete transport network
of the larger New York area (NY), and the train + local transport network of
much of North America (NA). Table 1 summarizes the different sizes and types.

Table 1. The three public transportation graphs from our experiments

name #stations #nodes #arcs space type
CH 20.6 K 3.5 M 11.9 M 64 MB trains + local, well-structured
NY 29.4 K 16.7 M 79.8 M 301 MB mostly local, poor structure
NA 338.1 K 113.2 M 449.1 M 2 038 MB trains + local, poor structure

Direct-connection queries. Table 2 shows that the preprocessing time for the
direct-connection data structure is negligible compared to the transfer patterns
precomputation time. The space requirement is from 3 MB per 1000 stations for
CH to 10 MB per 1000 stations for NY and NA. A query takes from 2 μs for CH
to around 10 μs for NY and NA. Note that the larger direct-connection query
time for NY and NA is a yardstick for their poor structure (not for their size).

300 H. Bast et al.

Table 2. Direct-connection data structure: construction time and size. The query time
range is from getting the fastest to all Pareto-optimal connections.

name precomp. time output size query time
CH < 1 min 68 MB 2 μs
NY 4 min 335 MB 5–9 μs
NA 49 min 3 399 MB 9–14 μs

Transfer patterns precomputation. Our precomputation time (Table 3) is 20–
40 (CPU core) hours per 1 million nodes and the resulting (parts of) transfer
patterns can be stored in 10–50 MB per 1000 stations. Again, these ratios depend
mostly on the structure of the network (best for CH, worst for NY and NA),
and not on its size.

Table 3. Transfer patterns precomputation times and results

name precomp. time output size #TP/station pair
local global local global local global

CH (w/o hubs) – 635 h – 18 562 MB – 11.0
CH (w/ hubs) 562 h 24 h 229 MB 590 MB 2.6 25.8
CH (heuristic) 57 h 4 h 60 MB 154 MB 2.0 6.8
NY (heuristic) 724 h 64 h 787 MB 786 MB 3.7 16.4
NA (heuristic) 2 632 h 571 h 6 849 MB 7 151 MB 3.4 10.5

Query graph construction and evaluation. Table 4 shows that, on average, query
graph construction and evaluation take 5 μs and 15 μs per arc, respectively. The
typical number of arcs in a query graph for a station-to-station query (1:1)
is below 1000 and the typical query time is below 10 ms. Location-to-location
queries with 50 source and 50 target stations (50:50) take about 50 ms.

Table 4. Average query graph construction time, size, and evaluation time. The third
column also provides the median, 90%-ile and 99%-ile. Column ‘D’ is the domination,
either Pareto or Single-criterion (sum of duration and penalty).

name constr. #arcs (50/mean/90/99) D eval. #arc ev.
CH w/o hubs 1:1 < 1 ms 32 34 56 86 P < 1 ms 89
CH w/ hubs 1:1 1 ms 189 264 569 1286 P 3 ms 540
CH heuristic 1:1 < 1 ms 80 102 184 560 P < 1 ms 194
NY heuristic 1:1 2 ms 433 741 1 917 3 597 P 6 ms 721
NY heuristic 1:1 2 ms 433 741 1 917 3 597 S 3 ms 248
NY heuristic 50:50 32 ms 3 214 6 060 15 878 35 382 S 18 ms 1 413
NA heuristic 1:1 2 ms 261 536 1 277 3 934 P 10 ms 705
NA heuristic 1:1 2 ms 261 536 1 277 3 934 S 5 ms 321
NA heuristic 50:50 22 ms 2 005 3 484 7 240 25 775 S 21 ms 1 596

Fast Routing in Very Large Public Transportation Networks 301

9 Conclusions

We believe that the transfer patterns idea has great potential, and we have shown
some of its potential in this paper. Obvious directions for future research are:
(1) get exact local searches with a feasible precomputation time; (2) make the
precomputation faster; (3) reduce the size of the query graphs; (4) speed up the
(already very fast) direct-connection queries. Transfer patterns are, by their very
nature, also well-suited for so-called profile queries (compute all paths from A
to B over a large time window). We want to explore this potential further.

Acknowledgements. The authors acknowledge inspiring conversations with
Alex Hall as well as helpful comments by Alex Gontmakher and an anonymous
reviewer of the conference submission.

References

1. Extended version of this paper, http://ad.informatik.uni-freiburg.de/papers
2. Bast, H.: Car or public transport – two worlds. In: Albers, S., Alt, H., Näher, S.

(eds.) Efficient Algorithms. LNCS, vol. 5760, pp. 355–367. Springer, Heidelberg
(2009)

3. Berger, A., Delling, D., Gebhardt, A., Müller-Hannemann, M.: Accelerating time-
dependent multi-criteria timetable information is harder than expected. In: AT-
MOS 2009. Dagstuhl Seminar Proceedings (2009)

4. Delling, D.: Time-dependent SHARC-routing. In: Halperin, D., Mehlhorn, K. (eds.)
ESA 2008. LNCS, vol. 5193, pp. 332–343. Springer, Heidelberg (2008)

5. Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering route planning
algorithms. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics of Large
and Complex Networks. LNCS, vol. 5515, pp. 117–139. Springer, Heidelberg (2009)

6. Disser, Y., Müller-Hannemann, M., Schnee, M.: Multi-criteria shortest paths in
time-dependent train networks. In: McGeoch, C.C. (ed.) WEA 2008. LNCS,
vol. 5038, pp. 347–361. Springer, Heidelberg (2008)

7. Geisberger, R.: Contraction of timetable networks with realistic transfers. In: Festa,
P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 71–82. Springer, Heidelberg (2010)

8. Loui, R.P.: Optimal paths in graphs with stochastic or multidimensional weights.
Commun. ACM 26, 670–676 (1983)

9. Möhring, R.H.: Verteilte Verbindungssuche im öffentlichen Personenverkehr:
Graphentheoretische Modelle und Algorithmen. In: Horster, P. (ed.) Angewandte
Mathematik – insbesondere Informatik, pp. 192–220. Vieweg (1999)

10. Müller-Hannemann, M., Schulz, F., Wagner, D., Zaroliagis, C.: Timetable informa-
tion: Models and algorithms. In: Geraets, F., Kroon, L.G., Schoebel, A., Wagner,
D., Zaroliagis, C.D. (eds.) Railway Optimization 2004. LNCS, vol. 4359, pp. 67–90.
Springer, Heidelberg (2007)

11. Pyrga, E., Schulz, F., Wagner, D., Zaroliagis, C.D.: Efficient models for timetable
information in public transportation systems. J. Exp. Algorithmics 12 (2007)

12. Schultes, D., Sanders, P.: Dynamic highway-node routing. In: Demetrescu, C. (ed.)
WEA 2007. LNCS, vol. 4525, pp. 66–79. Springer, Heidelberg (2007)

13. Theune, D.: Robuste und effiziente Methoden zur Lösung von Wegproblemen.
Teubner (1995)

http://ad.informatik.uni-freiburg.de/papers

Finding the Diameter in Real-World Graphs

Experimentally Turning a Lower Bound into an Upper
Bound

Pierluigi Crescenzi1, Roberto Grossi2, Claudio Imbrenda2,
Leonardo Lanzi1, and Andrea Marino1

1 Dipartimento di Sistemi e Informatica, Università di Firenze
2 Dipartimento di Informatica, Università di Pisa

Abstract. The diameter of an unweighted graph is the maximum pair-
wise distance among its connected vertices. It is one of the main measures
in real-world graphs and complex networks. The double sweep is a sim-
ple method to find a lower bound for the diameter. It chooses a random
vertex and performs two breadth-first searches (BFSes), returning the
maximum length among the shortest paths thus found. We propose an
algorithm called fringe, which uses few BFSes to find a matching upper
bound for almost all the graphs in our dataset of 44 real-world graphs.
In the few graphs it cannot, we perform an exhaustive search of the di-
ameter using a cluster of machines for a total of 40 cores. In all cases,
the diameter is surprisingly equal to the lower bound found after very
few executions of the double sweep method. The lesson learned is that
the latter can be used to find the diameter of real-world graphs in many
more cases than expected, and our fringe algorithm can quickly validate
this finding for most of them.

1 Introduction

The diameter D of an unweighted undirected graph G = (V, E) is the maxi-
mum pairwise distance D = maxu,v∈V d(u, v) between connected vertices, where
d(u, v) denotes the number of edges found along the shortest path from u to v
(or vice versa). We assume that G is connected, otherwise we consider its largest
connected component to define its diameter. A large body of experimental study
on real-world graphs and complex (e.g. social) networks (see, for example, [4])
uses the diameter of the underlying graph as one of the relevant measures to
analyze, along with the degree distribution, the size evolution, the local density,
the clustering coefficient, and so on.

The textbook algorithm to compute the diameter requires n breadth-first
searches (BFSes), each taking O(n + m) time, where n = |V | is the number of
vertices and m = |E| is the number of edges in G. This method is too expensive
since there might be many graphs to process, with most of them having large
size. This situation is well known and several approaches have been proposed
(see, for example, [16] and the introduction of [12]). These algorithms require
Ω(n2/polylog (n)) time (and, sometimes, Ω(n2/polylog (n)) space).

M. de Berg and U. Meyer (Eds.): ESA 2010, Part I, LNCS 6346, pp. 302–313, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Finding the Diameter in Real-World Graphs 303

A useful practical alternative is to execute a suitable small number of BFSes
to empirically establish some lower and upper bounds, denoted as L and U
respectively, such that L ≤ D ≤ U holds. This is not merely an arbitrary
heuristics, since we obtain the actual value of D for the input graph G when
L = U . For this reason, we call it a self-checking heuristics: although there is
no guarantee of success for every feasible input, a self-checking heuristics allows
the user to certificate that the output is the desired one, namely, the diameter
in our case. The drawback that there is no guarantee of success is compensated
by the following advantages:

(a) The self-checking heuristics requires few BFSes in practice, and thus its
complexity is linear [12].

(b) An empirical upper bound is possible, whereas probabilistic or average-
case practical approaches can provide just a lower bound [7] since the diameter
is a worst-case measure.

(c) Large graphs can be analyzed, since BFS has a good external-memory
implementation [14] and works on graphs stored in compressed format [3].
What if the self-checking heuristics terminates returning two values L and U
such that L < U holds? The requirement is that this case should be quite rare,
so that one can resort to one of the costly algorithms that are always guaranteed
to find the diameter.

The double sweep is a simple method described in [12,6] that is very effective
in finding a lower bound for the diameter: choose a random vertex r, run a BFS
at r, and find a vertex a at maximum distance from r; then, run a BFS at a and
find a vertex b at maximum distance from a; return the length of the shortest
path from a to b.

Let ecc(u) = maxv �=u d(u, v) be eccentricity of u ∈ V ; equivalently, ecc(u)
is the height of the BFS-tree rooted at u. Hence, the double sweep method
computes ecc(a). It is iterated over a small number of experiments, so that it
returns L as the maximum ecc(a) over the vertices a that are identified by each
iteration. A good heuristics is to mark the already identified as, so that they are
always chosen to be distinct one from the other.

Some authors noted that the above method empirically finds the diameter for
some classes of graphs (see, for instance, [8]). In this paper, we also show that
the value found by double sweep is always better than the lower bound provided
with the graphs available in [10]. Note that there are cases in which double sweep
can badly fail as shown in Section 4. However, having more than one iteration
seems to help in practice.

To our knowledge, the best upper bound for a self-checking heuristics is de-
scribed in [12]. It can be very close to L, but it rarely matches: in this paper,
we will see that in the case of 44 networks, it matches only 12 times. We will
discuss more about these methods in Section 4.

Our results. In this paper, we introduce a simple but powerful algorithm, called
fringe, that experimentally provides a matching upper bound U (i.e. U = L)
in many cases. The idea behind our self-checking heuristics is that of using the
double sweep as a starting point that identifies the three vertices r, a and b. Not

304 P. Crescenzi et al.

only we use its value L as a lower bound, but we then consider the vertex u that
is halfway along the shortest path connecting a and b to find an upper bound U .
We use u as if it were the “center” of the graph G (whatever “center” means).
Clearly, there are situations in which u is far away from the real center of G, and
we provide a refinement of the above idea to deal with these situations. We refer
the reader to the notion of fringe introduced in Section 2, where the description
of our algorithm is given.

What is interesting is that using a dataset of 44 real-world graphs described in
Section 3, our experiments in Section 4 show that the fringe algorithm provably
finds a matching upper bound in all graphs except few of them (just 5 in number).
For the latter graphs, the upper bounds are tighter or no worse than the best
known in the literature. We measure the performance of the methods by counting
how many BFSes are executed, which is a realistic indicator of the running time.

Even more interesting, we ran long-term experiments with five 24GB-RAM
machines for a total of 40 cores, to compute (using the textbook algorithm)
the diameter for the few graphs for which the fringe algorithm did not find a
matching upper bound. To our surprise, the diameter of these graphs is D = L
in all cases, where L is the lower bound found by the double sweep [12,6].

The lesson learned in our large-scale experiments is the following. Run the
double sweep method to have an educated guess of what is the diameter of a
large graph. Use our fringe algorithm to validate this fact. In the few cases in
which L < U , run any Ω(n2/polylog (n))-time algorithm with guaranteed result.

Our study indicates two further lines of research. The former is related to the
weighted graphs, and seeks for simple practical methods to find (nearly) tight
lower and upper bounds for the weighted diameter, in which the distance d(·, ·)
takes into account the edge weights. The latter poses the question of finding a
theoretical o(n2/polylog (n))-time algorithm that can check if a given value D
is the diameter of the input graph G. Note that we only require the algorithm
to produce a binary answer. This is enough, since we can employ it for D =
L, L + 1, . . . , U since L and U are usually quite close each other.

2 The Fringe Algorithm

Here we describe our fringe method to improve the upper bound U and possibly
match the lower bound L obtained by the double sweep method of [12,6]. The
full code that combines the latter two methods, improving either L or U (or
both) whenever possible, is reported in diameter.algoritmica.org.

We consider an unweighted undirected graph G = (V, E). We also assume
that G is connected (if not, G denotes its largest connected component). For
any vertex u ∈ V , let Tu denote an unordered BFS-tree obtained by starting the
BFS traversal of G from u. We recall that the eccentricity ecc(u) is the height
of Tu, and that 2 · ecc(u) ≥ diam(G).

We also denote the diameter of a subgraph G′ ⊆ G by diam(G′), where
G′ = (V ′, E′), V ′ ⊆ V , and E′ ⊆ E. If V ′ = V and G′ is connected, G′ satisfies
the property that diam(G′) ≥ diam(G) since the edges in E \ E′ are not taken
into account. We will use this fact for G′ ≡ Tu, namely, diam(Tu) ≥ diam(G).

Finding the Diameter in Real-World Graphs 305

We define the fringe of u, denoted F (u), as the set of vertices v ∈ V such
that d(u, v) = ecc(u). We observe that these vertices correspond to the leaves
of Tu having maximum depth. This notion is central to our algorithm since we
are interested in vertices u of real-word graphs for which |F (u)| is not so large.
Let B(u) = maxz∈F (u) ecc(z). We now define the upper bound U(u) computed
by the fringe algorithm starting from a certain node u.

U(u) =

⎧⎨⎩
2 · ecc(u)− 1 if |F (u)| > 1 and B(u) = 2 · ecc(u)− 1
2 · ecc(u)− 2 if |F (u)| > 1 and B(u) < 2 · ecc(u)− 1
diam(Tu) otherwise

(1)

Lemma 1. U(u) ≥ D, where D is the diameter of G.

Proof. Since D ≡ diam(G), it is always upper bounded by diam(Tu). The default
case is therefore U(u) = diam(Tu). We now consider some cases explicitly, and
see if they can improve over the default case. If the fringe F (u) contains just one
vertex, that vertex belongs to diam(Tu), and the default case holds. Hence, we
assume that F (u) contains more than one vertex, and consider B(u).

When B(u) = 2 · ecc(u), we actually have D = B(u): There must exist two
vertices in F (u) that (a) are among the leaves of Tu, and (b) have the root of
Tu as their lowest common ancestor, and (c) are hit by the double sweep at u,
which finds that L = 2 · ecc(u). Since B(u) = diam(Tu) here, the default case
covers this situation.

When B(u) = 2 · ecc(u) − 1, we also find D = B(u): In this case, we have
d(x, y) ≤ 2 · ecc(u) − 1 for any two distinct vertices x, y such that x ∈ F (u)
or y ∈ F (u) (possibly both). Suppose by contradiction that D ≥ 2 · ecc(u).
This implies that there must exist two distinct vertices x′, y′ ∈ V \ F (u) such
that d(x′, y′) ≥ 2 · ecc(u). But since they are both not in the fringe of u, their
connecting path inside Tu is of length at most 2·ecc(u)−2, thus contradicting the
fact that their distance d(x′, y′) is longer. Also, the double sweep at u finds that
L = 2 · ecc(u)−1, so it cannot be D < 2 · ecc(u)−1. Hence, we set U(u) = B(u).

When B(u) < 2 ·ecc(u)−1, we can set U(u) = 2 ·ecc(u)−2 since the diameter
can be equal or smaller. The argument is analogous to the previous case: Suppose
by contradiction that D ≥ 2 · ecc(u)− 1. This implies that there must exist two
distinct vertices x′, y′ ∈ V \ F (u) such that d(x′, y′) ≥ 2 · ecc(u)− 1. But this is
a contradiction since d(x′, y′) ≤ 2 · ecc(u)− 2.

We have the ingredients of the fringe algorithm for finding an upper bound U :

1. Let r, a, and b be the vertices identified by double sweep (using two BFSes).
2. Find the vertex u that is halfway along the path connecting a and b inside

the BFS-tree Ta (with ties broken arbitrarily).
3. Compute the BFS-tree Tu and its eccentricity ecc(u).
4. If |F (u)| > 1, find the BFS-tree Tz for each z ∈ F (u), and compute B(u):

– If B(u) = 2 · ecc(u)− 1, return 2 · ecc(u)− 1.
– If B(u) < 2 · ecc(u)− 1, return 2 · ecc(u)− 2.

5. Return the diameter diam(Tu).

306 P. Crescenzi et al.

Theorem 1. The fringe algorithm correctly computes an upper bound for the
diameter of the input graph G, using at most |F (u)|+ 3 breadth-first searches.

The proof of Theorem 1 immediately follows from Lemma 1 and by inspection of
the fringe algorithm. We can use a slack parameter Fmax in practice: if |F (u)| >
Fmax, we skip all the |F (u)| BFSes and simply return diam(Tu). Since we iterate
the algorithm over several choices of r, a, b, u, this guarantees that we never
exceed Fmax + 3 BFSes per iteration. Additionally, we avoid calculating U(u)
when 2 · ecc(u) − 2 is not an improvement over the best upper bound found in
previous iterations. We refer the reader to the full code in our website.

3 The Datasets

We chose our set of real-word graphs, so as to cover the largest taxonomy as
possibile. The list of graphs, their features, and their source are reported in
Table 1 (Note that some graphs have been made undirected, even though they
were originally directed.) Here, we simply list them: a detailed description of
each graph can be found in our website (diameter.algoritmica.org).

Social networks. In on-line social networks, nodes represent people
and edges represent interactions between people: Epinions social network
(soc-Epinions1), LiveJournal social network (soc-LiveJournal1), Slashdot
social network, November 2008 (soc-Slashdot0811), Wikipedia vote network
(wiki-Vote), Slashdot social network, February 2009 (soc-Slashdot0902).

Communication networks. In communication networks, nodes represent peo-
ple and edges represent communication among them: Enron email network
(email-Enron), EU email communication network (email-EuAll), Wikipedia
Talk network (wiki-Talk).

Citation networks. In this kind of network, nodes represent papers and
edges represent citations: Patent citation network (cit-Patents), CiteSeer
(CiteSeer), Hep-th Citation Graph(hep-th-citations-MAX).

Collaboration networks. In the collaboration networks, nodes represent peo-
ple and edges represent collaborations: Astro Physics collaboration network
(ca-AstroPh), Condense Matter collaboration network (ca-CondMat), General
Relativity and Quantum Cosmology collaboration network (ca-GrQc), High En-
ergy Physics - Phenomenology collaboration network (ca-HepPh), High Energy
Physics - Theory collaboration network (ca-HepTh), Actor collaboration network
(IMDB), DBLP co-author network (dblp20080824-MAX), free software develop-
ment collaboration network (advogato).

Web graphs. In Web graphs, nodes represent webpages and edges are hy-
perlinks: (web) (uk-2005) [5], and [2] (arabic-2005), (cnr-2000),(eu-2005),
(in-2004), (indochina-2004), (it-2004), (sk-2005).

Product co-purchasing networks. In these cases, nodes represent products and
edges link commonly co-purchased products: Amazon product co-purchasing net-
work, March 02 2003 (amazon0302), Amazon product co-purchasing network,

Finding the Diameter in Real-World Graphs 307

Table 1. The data set (the fifth and the sixth column refer to the largest connected
component)

Network Acronym Nodes Edges Nodes l.c.c. Edges l.c.c. Source

advogato ADVO 7418 96074 5272 91806 [13]
amazon0302 AMA1 262111 1799582 262111 1799582 [10]
amazon0312 AMA2 400727 4699736 400727 4699736 [10]
Amazon0505 AMA3 410236 4878872 410236 4878872 [10]
arabic-2005 ARAB 22743881 1107806146 22634275 1104463734 [2]
as-skitter ASSK 1696415 22190596 1694616 22188418 [10]
ca-AstroPh CAAS 18771 396100 17903 393944 [10]
ca-CondMat CACO 23133 186878 21363 182572 [10]
ca-GrQc CAGR 5241 28968 4158 26844 [10]
ca-HepPh CAH1 12006 236978 11204 235238 [10]
ca-HepTh CAH2 9875 51946 8638 49612 [10]
cit-HepPh CIT1 34546 841840 34401 841654 [10]
cit-HepTh CIT2 27770 704646 27400 704116 [10]
cit-Patents CITP 3774768 33037894 3764117 33023480 [10]
citeseer CITE 259217 1064080 220997 1010654 [11]
cnr-2000 CNR2 325557 5477938 325557 5477938 [2]
dblp20080824-MAX DBLP 511163 3742140 511163 3742140 [15]
dip20090126-MAX DIP2 19928 82404 19928 82404 [15]
email-Enron EMA1 36691 367660 33695 361620 [10]
email-EuAll EMA2 265214 731138 224832 681588 [10]
eu-2005 EU20 862664 32276936 862664 32276936 [2]
HC-BIOGRID HCBI 4039 20642 4039 20642 [15]
hep-th-citations-MAX HEPT 27400 704042 27400 704042 [15]
imdb IMDB 908830 75177226 880455 74989272 [9]
in-2004 IN20 1353703 26252344 1353703 26252344 [2]
indochina-2004 INDO 7414758 301969638 7320539 298109708 [2]
it-2004 IT20 41290577 2054949790 41290577 2054949790 [2]
itdk0304-rlinks-undirected ITDK 192244 1218132 190914 1215220 [15]
p2p-Gnutella31 P2PG 62586 295782 62561 295754 [10]
p2p P2P 5380578 284076802 5380491 284076702 [5]
roadNet-CA ROA1 1965206 5533214 1957027 5520776 [10]
roadNet-PA ROA2 1088092 3083796 1087562 3083028 [10]
roadNet-TX ROA3 1379917 3843320 1351137 3758402 [10]
sk-2005 SK20 50634118 3620101486 50634118 3620101486 [2]
soc-Epinions1 SOCE 75879 811478 75877 811476 [10]
soc-LiveJournal1 SOCL 4847571 86739236 4843953 86725498 [10]
soc-sign-epinions SOC1 131827 1423564 119130 1409144 [10]
soc-sign-Slashdot090221 SOC2 82140 1000960 82140 1000960 [10]
soc-Slashdot0811 SOC3 77360 1092972 77360 1092972 [10]
soc-Slashdot0902 SOC4 82168 1165064 82168 1165064 [10]
trust TRUS 49288 762434 49288 762434 [13]
web WEB 39454463 1566054250 39252879 1562879784 [5]
wiki-Talk WIK1 2394385 9319128 2388953 9313362 [10]
wiki-Vote WIK2 7115 201522 7066 201470 [10]

308 P. Crescenzi et al.

March 12 2003 (amazon0312), Amazon product co-purchasing net, May 05 2003
(amazon0505).

Internet peer-to-peer networks. In peer-to-peer networks, nodes represent com-
puters and edges represent communication among them: Gnutella peer-to-peer
network, August 31 2002 (p2p-Gnutella31), [5](p2p).

Road networks. In this case, intersections and endpoints are represented by
nodes and the roads connecting these intersections or road endpoints are repre-
sented by undirected edges: California road network (roadNet-CA), network of
Pennsylvania (roadNet-PA).

Autonomous systems graphs. These are graphs of the Internet:
Autonomous systems by Skitter (as-Skitter), Router topology
(itdk0304-rlinks-undirected).

Signed networks. These are networks with positive and negative
edges such as friend/foe, trust/distrust, and so on: Epinions social
network (soc-sign-epinions), Slashdot social network, February 2009
(soc-sign-Slashdot090221).

Biological networks. These graphs refer to databases of physical and ge-
netic and biological interactions: (HC-BIOGRID), Database of Interacting Proteins
(dip20090126-MAX).

4 Experiments

In this section we describe both the experimental setting and the obtained re-
sults. All the code, the data set and the logs of the experiments are available at
diameter.algoritmica.org. The data set is distributed according to a unique
format, which is the same adopted by [12]: to this aim, we have implemented
several conversion utilities that are also available at the previously specified
URL.

Setting. We used 5 machines with 8 cores each (Intel Xeon CPU X5570 at
2.93GHz), where each core has 8 MB shared cache with a 24 GB shared memory.
The operating system is CentOS 5.3 with a Linux kernel version 2.6.18 and gcc
version 4.1.2. This huge computational power was mainly aimed at allowing us
to run the textbook algorithms for computing the diameter when our fringe
algorithm does not provide a tight upper bound.

Upper bound computation methods. We compared an implementation of our
fringe algorithm, called fub, with three methods for computing upper bounds
on the diameter. The first two methods, called rtub and hdtub respectively,
are taken from [12]. In particular, rtub selects a random node r and returns
the diameter of Tr, while hdtub chooses r as one of the nodes with the highest
degree. The third method, called mtub, is a simplification of fub, in which we
simply returns the diameter of Tu.

Finding the Diameter in Real-World Graphs 309

Experiment description. For each of the 44 networks described in Section 3 and
for each of the above four upper bound computation methods, we have performed
10 experiments. Each experiment consisted of 10 executions of the algorithm at
hand: for each execution, Fmax is set to 50000 (in other words, no practical
bound is set to the number of BFSes to be performed).

Results. The results of our experiments are summarized in Table 2, where each
row corresponds to one network. The first column indicates the acronym of
the network, while the second column shows the corresponding diameter D.
The third and the fourth columns indicate the lower bound L computed by the
double sweep method and the number XL of its executions returning L as output.
Moreover, we report the value SL which has been computed as follows. For any
i with 1 ≤ i ≤ XL, let si be the minimum number of breadth-first searches
required by the i-th experiment returning L as output for the first time: SL

is equal to
∑XL

i=1 si/XL.1 In other words, SL indicates how quickly the double
sweep algorithm converges to its best lower bound.

For each of the four upper bound algorithms, we report in the table the
best upper bound U and the number XU of executions returning U as output.
Moreover, we report the value SU which has been computed analogously to SL.
Namely, for any i with 1 ≤ i ≤ XU , let si be the minimum number of breadth-
first searches required by the i-th experiment returning U as output for the first
time: SU is equal to

∑XU

i=1 si/XU . In other words, SU indicates how quickly the
algorithm converges to its best upper bound. Finally, in the case of the fub
method, we also report B, which is the maximum size |F (u)| of the fringe: by
Theorem 1, the value B + 3 indicates the maximum number of breadth-first
searches that are required by a single execution of the algorithm.

In the table, for each row we highlight the best upper bound computed by
any of the four methods for the corresponding network.

Discussion. The first impressive observation is that the two columns D and L
are identical, that is, the value returned by the double sweep method is actually
an upper bound too. By looking at columns XL and SL, moreover, we can
observe that this bound is frequently and quickly achieved. Indeed, almost for
every network the tight bound is computed at every experiment (that is, 10
times) and most of the times (that is, 31 times) two breadth-first searches are
sufficient to compute this bound. In any case, at most 15 breadth-first searches
are required (in the case of a road network).

The second important observation is that, in almost all networks, the tightness
of L can be experimentally proved in a very efficient way by using our fringe
algorithm. Indeed, by looking at columns U , XU , and SU corresponding to fub,
we can observe that (1) only 7 values of U are not highlighted (that is, fub almost
always computes the best upper bound), (2) the empirical probability of fub
returning the best upper bound is high (on the average 0.93), and (3) the number
SL of breadth-first searches required by fub in order to prove the tightness of
1 Notice that since, for each experiment, we perform 10 executions of the double sweep

algorithm, then 2 ≤ SL ≤ 20.

310 P. Crescenzi et al.

Table 2. Summary of experimental results (in the case of the starred upper bound
values, by performing a slightly greater number of executions, we have been able to
compute either a tight upper bound (in the case of CAH2 and of DBLP) or an almost
tight upper bound (12 in the case of P2PG)))

dslb fub mtub hdtub rtub

D L XL SL U XU SU B U XU SU U XU SU U XU SU

ADVO 9 9 10 2 9 10 6 9 9 10 6 9 10 4 9 2 24
AMA1 38 38 10 2 38 10 3 7 38 10 4 38 10 12 38 2 8
AMA2 20 20 10 2 20 10 18 9 22 10 12 21 10 4 21 2 30
AMA3 22 22 10 2 22 10 3 11 22 10 4 22 10 4 22 3 21
ARAB 47 47 10 2 47 10 9 6 48 10 4 51 10 8 50 2 14
ASSK 31 31 10 12 31 10 5 3 32 10 4 34 10 28 34 5 33
CAAS 14 14 10 2 14 10 11 4 15 10 9 15 10 12 16 2 28
CACO 15 15 10 2 15 7 31 9 16 8 30 17 10 4 17 2 26
CAGR 17 17 10 2 17 10 23 15 18 10 18 19 10 4 18 2 10
CAH1 13 13 10 2 13 10 50 63 14 10 16 15 10 4 15 3 25
CAH2 18 18 10 2 20∗ 10 4 2 20 10 4 20 10 16 20 2 30
CIT1 14 14 10 5 14 10 13 3 15 10 8 15 10 20 16 9 14
CIT2 15 15 10 2 15 10 20 8 16 10 17 16 10 20 16 1 24
CITP 26 26 10 2 28 10 12 4 30 10 4 29 10 8 31 1 40
CITE 52 52 10 2 52 10 3 11 52 10 4 54 10 4 52 2 16
CNR2 34 34 10 2 34 9 11 3 34 9 19 39 10 4 35 10 10
DBLP 22 22 10 2 24∗ 2 27 25 24 1 21 24 10 8 25 4 13
DIP2 30 30 10 8 30 10 9 3 30 10 27 33 10 12 31 1 16
EMA1 13 13 10 2 13 10 12 9 13 10 18 13 10 24 13 1 32
EMA2 14 14 10 2 14 10 3 48 14 10 4 15 10 4 15 7 9
EU20 21 21 10 2 21 10 14 15 22 10 4 25 10 4 23 3 6
HCBI 23 23 10 4 23 7 26 3 23 6 28 23 10 32 23 1 28
HEPT 15 15 10 2 15 10 19 4 16 10 11 16 10 20 17 2 28
IMDB 14 14 10 2 14 10 17 18 15 8 25 16 10 4 16 3 29
IN20 43 43 10 2 43 10 5 11 44 10 4 44 10 8 43 1 8
INDO 43 43 10 2 43 8 39 21 44 10 20 44 10 8 45 4 14
IT20 45 45 10 2 45 10 30 15 46 10 6 47 10 4 46 3 29
ITDK 26 26 10 2 26 10 7 5 28 10 4 29 10 4 28 4 17
P2PG 11 11 10 3 14∗ 10 14 132 15 9 20 14 10 12 15 6 19
P2P 9 9 10 4 9 8 1125 1266 10 7 22 10 10 4 11 6 28
ROA1 865 865 9 15 987 9 8 2 987 9 12 1047 10 16 988 1 32
ROA2 794 794 8 12 803 8 22 5 803 6 13 873 10 32 832 1 36
ROA3 1064 1064 10 8 1079 3 18 9 1079 1 16 1166 10 24 1128 1 24
SK20 40 40 10 5 40 10 18 18 41 10 21 41 10 4 41 7 12
SOCE 15 15 10 4 15 10 19 11 16 10 9 16 10 4 16 8 17
SOCL 20 20 10 2 20 10 7 12 20 10 8 20 10 28 22 7 19
SOC1 16 16 10 2 16 10 3 5 16 10 4 16 10 8 17 8 11
SOC2 13 13 10 2 13 10 7 17 13 10 4 13 10 20 14 7 18
SOC3 12 12 10 6 12 10 13 13 13 10 6 12 10 20 13 2 32
SOC4 13 13 10 3 13 10 7 17 14 10 4 13 10 20 14 6 18
TRUS 14 14 10 2 14 10 3 2 14 10 4 15 10 4 15 8 19
WEB 32 32 10 2 32 10 52 63 34 10 4 38 10 4 34 6 20
WIK1 11 11 10 2 11 10 9 10 12 10 4 12 10 8 12 10 12
WIK2 7 7 10 2 7 10 64 134 8 10 8 8 10 4 8 4 22

Finding the Diameter in Real-World Graphs 311

x1 · · ·
xp

y

Fig. 1. A bad network (k = 4) for the double sweep algorithm (left) and for the fringe
algorithm (right)

L is incredibly low with respect to the number of vertices in the network (apart
from the p2p network in which case the number of searches is 1125). It is also
worth observing that in the case of 22 networks, our algorithm is the only one
able to compute the tight upper bound.

Note that, as one could expect, the maximum size of the fringe is most of
the times greater than the average number of performed breadth-first searches:
however, it is worth noting that this value is quite small with respect to the
number of vertices in the network.

As we already said, our fringe algorithm fails to prove the tightness of the
lower bound only in 7 cases. In the case of the ca-HepTh, however, if we execute
the algorithm 20 times (instead of 10), the correct upper bound is computed and
the tightness of the lower bound can be proved. The same holds in the case of
the dblp20080824-MAX network. In the case of the p2p-Gnutella31 network, by
running the algorithm 200 times, we have been able to lower the upper bound
down to 12: however, this bound is not tight. In the case of the cit-Patents
network and of the three road networks, finally, we have not been able to obtain
better results, even by increasing the number of algorithm executions.

One might object that in some cases the number of breadth-first searches per-
formed by our fringe algorithm is higher than the number of searches performed
by other algorithms. For instance, in the case of the ca-HepPh network, the value
SU corresponding to fub is 50, while the value corresponding to rtub is 25. We
then executed this latter algorithm with a much greater number of breadth-first
searches (that is, 400). In this case, the bound returned by rtub improved to 14,
but it did not reach the lower bound 13 (which is tight).

We have also tried to modify our algorithm by introducing a different selection
of the vertex u, that is, by choosing as u the highest degree vertex. It turns out,
however, that this modification almost always returns bounds which are higher
than the bounds obtained by fub.

Finally, going back to the impressive performance of the double sweep algo-
rithm, we would like to point out that it is not difficult to design a network

312 P. Crescenzi et al.

for which the behavior of this algorithm is not very good (see the left part of
Figure 1). To this aim consider a unitary grid with k rows and 1+3k/2 columns.
Each vertex of the grid is connected to all vertices whose Euclidean distance is
at most

√
2. Moreover, there are p additional vertices x1, x2, . . . , xp which are

connected to the neighbors of the middle point of the upper row of the grid and
one additional vertex y which is connected to the middle point of the lower row
of the grid. If p is sufficiently large with respect to k, then the dslb algorithm
will choose one of these points as the vertex r. As a consequence, the vertex y
will be chosen as the vertex a of the algorithm. The breadth-first search starting
from y will have height equal to k + 1: this will be the value reported by the
algorithm. It is easy to see that the diameter of the network is instead 3k/2.

Note that, in the case of the graph shown in the left part of Figure 1 with
p = 100000, the fringe algorithm, for every experiment, computes an upper
bound which is equal to the diameter of the graph (that, is 6) by executing (as
expected) 7 BFSes on the average. However, it is easy to find combinations of
the values of p and k for which the computed upper bound is not equal to the
diameter: for instance, if k = 8 and p = 100000, the best answer we obtained was
15. In the case of the fringe algorithm (and of the other upper bound methods),
moreover, we can define a family of graphs for which the probability of computing
the correct value is 0: these graphs have the property that no BFS tree has the
diameter equal to the diameter of the graph (an example of such graphs is shown
in the right part of Figure 1 [1]). Note that in the case of these latter graphs the
lower bound computed by the double sweep method is tight with probability 1,
since the height of each BFS tree is equal to the diameter of the graph.

5 Conclusion

In this paper, we have proposed an algorithm which uses few BFSes to find an
upper bound which matches, for almost all the graphs in our dataset, the lower
bound computed by the double sweep method to find a lower bound for the
diameter. By using this algorithm and, in few cases, the textbook algorithm we
have been able to prove that, in all networks, the diameter is equal to the lower
bound found by the double sweep algorithm. The lesson learned is that this
latter method can be used to find the diameter of real-world graphs in many
more cases than expected, and our fringe algorithm can quickly validate this
finding for most of them.

It is an interesting open question to understand why, in the case of some real-
world graphs, the fringe method fails to validate the lower bound computed by
the double sweep algorithm: to this aim, it might be useful to investigate the
similarities between these real-world graphs and the synthetic graphs introduced
at the end of the previous section. It would also be interesting to explore the
behavior of both the double sweep and the fringe algorithms when applied to
synthetic networks produced by well-known models, such as the Erdös-Rényi or
the preferential attachment models.

Finally, as already specified in the introduction, our study indicates two fur-
ther lines of research: the former is related to the weighted graphs, while the

Finding the Diameter in Real-World Graphs 313

latter is related to the question of finding a theoretical o(n2/polylog (n))-time
algorithm that can check if a given value D is the diameter of the input graph G.

Acknowledgments. The first author would like to thank Michel Habib for
introducing him to the double sweep algorithm. We all wish to thank Maurizio
Davini for his effort to provide us with powerful machines to run the experiments.
We are grateful to Andrea Clementi, Francesco Pasquale, and Riccardo Silvestri
for suggesting us the counter-example for the double sweep algorithm. Finally,
we thank the anonymous referees for their comments.

References

1. Alegre, I., Fiol, M., Yebra, J.: Some large graphs with given degree and diameter.
J. Graph Theory 10, 219–224 (1986)

2. Boldi, P., Vigna, S.: Webgraph (2001), http://webgraph.dsi.unimi.it/
3. Boldi, P., Vigna, S.: The WebGraph framework I: Compression techniques. In:

Proc. of the 13th International World Wide Web Conference, pp. 595–601 (2004)
4. Brandes, U., Erlebach, T.: Network Analysis: Methodological Foundations.

Springer, Heidelberg (2005)
5. Complexnetworks Team: Complex networks and real-world graphs (2008),

http://complexnetworks.fr/

6. Corneil, D.G., Dragan, F.E., Habib, M., Paul, C.: Diameter determination on re-
stricted graph families. Discrete Appl. Math. 113(2-3), 143–166 (2001)

7. Faloutsos, C.: Graph mining: Patterns, generators and tools. In: Combinatorial
Pattern Matching, p. 274 (2009)

8. Handler, G.: Minimax location of a facility in an undirected tree graph. Trans-
portation Science 7(287–293) (1973)

9. IMDB: The internet movie database (1990), http://www.imdb.com/
10. Leskovec, J.: Stanford Network Analysis Package (SNAP) Website (2009),

http://snap.stanford.edu

11. Library, S.L.D.: Citeseer Website (1997),
http://citeseer.ist.psu.edu/citeseer.html

12. Magnien, C., Latapy, M., Habib, M.: Fast computation of empirically tight bounds
for the diameter of massive graphs. J. Exp. Algorithmics 13 (2009)

13. Massa, P., Souren, K.: Trustlet Website (2007), http://www.trustlet.org
14. Mehlhorn, K., Meyer, U.: External-memory breadth-first search with sublinear i/o.

In: Proceedings of the 10th Annual European Symposium on Algorithms, pp. 723–
735 (2002)

15. Sommer, C.: Christian sommer’s homepage (2009),
http://www.sommer.jp/graphs/

16. Zwick, U.: Exact and approximate distances in graphs - a survey. In: Meyer auf
der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 33–48. Springer, Heidelberg
(2001)

http://webgraph.dsi.unimi.it/
http://complexnetworks.fr/
http://www.imdb.com/
http://snap.stanford.edu
http://citeseer.ist.psu.edu/citeseer.html
http://www.trustlet.org
http://www.sommer.jp/graphs/

Budgeted Red-Blue Median and Its

Generalizations�

MohammadTaghi Hajiaghayi1, Rohit Khandekar2, and Guy Kortsarz3,��

1 AT&T Labs–Research & University of Maryland
hajiagha@research.att.com

2 IBM T.J. Watson research center
rohitk@us.ibm.com

3 Rutgers University–Camden
guyk@camden.rutgers.edu

Abstract. In a Content Distribution Network application, we have a
set of servers and a set of clients to be connected to the servers. Often
there are a few server types and a hard budget constraint on the number
of deployed servers of each type. The simplest goal here is to deploy a
set of servers subject to these budget constraints in order to minimize
the sum of client connection costs. These connection costs often satisfy
metricity, since they are typically proportional to the distance between
a client and a server within a single autonomous system. A special case
of the problem where there is only one server type is the well-studied
k-median problem.

In this paper, we consider the problem with two server types and call it
the budgeted red-blue median problem. We show, somewhat surprisingly,
that running a single-swap local search for each server type simultane-
ously, yields a constant factor approximation for this case. Its analysis
is however quite non-trivial compared to that of the k-median problem
(Arya et al., 2004; Gupta and Tangwongsan, 2008).

Later we show that the same algorithm yields a constant approxi-
mation for the prize-collecting version of the budgeted red-blue median
problem where each client can potentially be served with an alternative
cost via a different vendor. In the process, we also improve the approxi-
mation factor for the prize-collecting k-median problem from 4 (Charikar
et al., 2001) to 3+ε, which matches the current best approximation factor
for the k-median problem.

1 Introduction

Consider the following problem called the budgeted red-blue median problem. The
input is a set of facilities F and a set of clients C in a metric space. The distance
between two points in this metric space i, j ∈ F ∪ C is denoted by d(i, j). The

� Part of this work was done while the authors were meeting at DIMACS. We would
like to thank DIMACS for hospitality.

�� Research partially supported by NSF grant 0819959.

M. de Berg and U. Meyer (Eds.): ESA 2010, Part I, LNCS 6346, pp. 314–325, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Budgeted Red-Blue Median and Its Generalizations 315

facilities are partitioned into two sets: red facilities R and blue facilities B. The
input also includes two integers kr, kb > 0. Given a subset of open facilities, a
client j gets served by the nearest open facility. The goal of the problem is to open
a subset of red facilities R ⊆ R and a subset of blue facilities B ⊆ B such that

– |R| ≤ kr and |B| ≤ kb,
– the total connection cost cost(R, B) :=

∑
j∈C d(j, R ∪B) is minimized.

Here d(j, S) = mini∈S d(j, i) denotes the shortest distance from j to any point in
S. A special case in which all facilities have the same color is the well-studied k-
median problem. In content distribution network applications and several other
applications in telecommunication networks and clustering, it is vital to obtain
solutions for these problems without violating any budget (see e.g., [5,3]).

Another related and well-motivated problem is the weighted W -median prob-
lem in which given a non-negative opening cost wi for each facility i, we want to
open a set of facilities whose opening cost is within our budget W and minimize
the total connection cost. This budget constraint is a Knapsack constraint and
thus for general opening costs, we do not hope to get any approximation algo-
rithm if we insist not to violate our budget W . Indeed as in Knapsack, if we are
allowed to violate the budget within a factor 1+ ε, we can obtain a constant fac-
tor approximation algorithm using the filtering method of Lin and Vitter [21]. In
addition, for polynomially bounded opening costs (for which Knapsack is solv-
able), we can solve the problem on trees without violating budget W . Using
probabilistic embeddings of general metrics into tree metrics [4,11]), this imme-
diately results in an O(log n) approximation algorithm for weighted W -median
in general metrics without violating budget W when opening costs are polyno-
mially bounded. When there are only two different facility opening costs, one
can guess the number of facilities of each type in the optimum solution. Thus
this special case can be reduced to the budgeted red-blue median problem.

Last but not least, in several of the above applications, each client can be
satisfied with an alternative cost often via a different vendor. Indeed, this cost is
called the penalty of this client that we pay in case it is not connected to one of
our deployed servers. More formally, in all problem formulations above we can
assume that each client j ∈ C has a penalty pj ∈ Q+. The client pays the service
cost, i.e., its distance to the nearest open facility, if it is at most its penalty pj ;
otherwise the client remains unserved and pays the penalty pj . The goal then is
to minimize the sum of connection costs and paid penalties.

1.1 Related Results

Aforementioned the most special case of our problems in this paper is the
well-known k-median problem. The first constant factor approximation for the
k-median problem was given by Charikar et al. [7], which was subsequently
improved by Jain-Vazirani [17], Charikar-Guha [6], and Arya et al. [3]. The lat-
ter presents the current best approximation factor of 3 + ε for k-median via
a local search heuristic. Their analysis was recently simplified by Gupta and

316 M. Hajiaghayi, R. Khandekar, and G. Kortsarz

Tangwongsan [14]. The problem cannot be approximated within a factor strictly
less than 1 + 2/e, unless NP ⊆ DTIME[nO(log log n)] [16]. It is known that the
integrality gap of the natural LP relaxation of the problem is at most 3, but
currently there is no algorithm that achieves a 3-approximation in polynomial
time [1]. An extension of k-median to the case in which we can open at most
k facilities, but also have to pay their facility opening cost was studied by [10],
who gave a 5-approximation. The k-median problem with penalties was also
considered; the current best approximation factor for prize-collecting k-median
is 4 due to Charikar et al. [8]. The problem in which the underlying metric is
Euclidean, although NP-hard [23], admits a PTAS due to the results of Arora,
Raghavan, and Rao [2], and then Kolliopoulos and Rao [18] (who provided an
almost-linear time algorithm).

The Lagrangian relaxation approach was used by Jain and Vazirani [17] for
the k-median problem. When we apply this approach to the budgeted red-blue
median problem, we can get two solutions whose convex combination has cost
at most a constant factor times the optimum cost. These two solutions have k1

r

(resp. k2
r) red and k1

b (resp. k2
b) blue facilities where k1

r +k1
b = k2

r +k2
b = kr +kb.

It may happen, for example, that k1
r > kr and k2

b > kb, i.e., the bound on
red facilities is violated in the first solution and the bound on blue facilities is
violated in the second solution. Unlike the case for the k-median, both of these
solutions may be infeasible. Therefore, it seems very hard to combine them to
get a solution that has no violation while having cost within a constant factor
of the optimum cost. The observation that the Lagrangian relaxation approach
fails for the budgeted red-blue median problem was also shared and verified by
Jain [15].

Local search based approaches. From a practical point of view, a simple combi-
natorial algorithm is much more desirable than the one that requires to solve a
linear programming relaxation. To this end, our main approach in this paper is
to extend the local search technique which is a popular heuristic for hard com-
binatorial optimization problems. A relatively few instances of approximation
guarantees via local search are known. Korupolu, Plaxton, and Rajaraman [19]
gave the first approximation guarantees of this type for the facility location
and k-median problems based on a simple local search heuristic proposed by
Kuehn and Hamburger [20]. For the k-median problem, however, they violate
the constraint on the number of open facilities by a factor 1 + ε. Later Arya et
al. [3] could approximate the problem without violating this constraint. The local
search later has been used for other facility location type problems [22,25,9,24]
and recently even for maximum generalized assignment [13] and maximizing
submodular functions [12].

1.2 Our Results

The main result of this paper is a constant factor approximation algorithm for
the budgeted red-blue median problem via novel analysis of a natural local search
algorithm. More formally, we analyze the following local search algorithm.

Budgeted Red-Blue Median and Its Generalizations 317

1. Let R ⊂ R and B ⊂ B be arbitrary subsets with |R| = kr and |B| = kb.
2. While there exist r ∈ R, r′ ∈ R and b ∈ B, b′ ∈ B such that cost(R −

r + r′, B− b+ b′) < cost(R, B) do: R ← R− r + r′ and B ← B− b+ b′.
3. Output R and B.

Here S − s1 + s2 denotes (S \ {s1}) ∪ {s2}. Since r and r′ (or b and b′) may
be identical, our algorithm outputs a locally optimum solution w.r.t. three local
operations: (1) delete a red facility and add a red facility, (2) delete a blue facility
and add blue facility, and (3) delete a red and a blue facilities and add a red and
a blue facilities. In Section 2, we prove the following theorem.

Theorem 1. The above local search algorithm yields a constant approximation
to the budgeted red-blue median problem.

In fact, it is somewhat surprising that this natural local search algorithm even
works. We point out why in the next section by explaining the main challenges in
the analysis. We omit the standard details regarding how to make this algorithm
run in polynomial time. In Section 3, we show how the local search analysis can
be extended to the prize-collecting version. More specifically, we improve the
current best approximation factor 4 of the LP-rounding algorithm for prize-
collecting k-median due to Charikar et al. [8] as follows.

Theorem 2. The multi-swap local search algorithm of Arya et al. [3] yields
(3 + ε)-approximation for the prize-collecting k-median problem.

Last but not least, we show how we can combine the techniques for the budgeted
red-blue median problem and prize-collecting variants to obtain the most general
theorem of this paper.

Theorem 3. There is a local search algorithm that yields a constant approxi-
mation for the prize-collecting budgeted red-blue median problem.

The proof of this theorem is omitted from this extended abstract due to lack of
space.

1.3 An Overview of Our Techniques

The budgeted red-blue median problem. Let us first understand why the standard
local search analysis of k-median [3,14] does not extend easily to the budgeted
red-blue median problem. In the k-median analysis, we consider several test
swaps for the locally optimum solution S. Each of these swaps includes deleting
a facility from S and adding a facility from the optimum solution O and rerouting
the clients. These swaps are chosen carefully to bound the cost of S. In case of the
budgeted red-blue median problem, however, this choice may conflict with the
budget constraints on the number of red and blue facilities allowed. For example,
after deleting, say, a red facility, to keep the cost bounded, one may need to add
a blue facility to serve the clients previously served by the dropped red facility.

318 M. Hajiaghayi, R. Khandekar, and G. Kortsarz

This happens, for example, when there is no other red facility close-by. In such
a case, we are forced to delete another blue facility and possibly add another
red facility in order to balance the number of red and blue facilities. As a result,
bounding the cost of the solution after the swap becomes much trickier.

Our analysis begins by partitioning the solutions S and O into blocks (see
Section 2.1) with some useful structural properties. Intuitively speaking, a block
is a subset of S∪O for which the test swaps can be analyzed “independently” of
other blocks, even when a test swap involves rerouting clients served by facilities
from multiple blocks. These blocks are defined based on the distances and the
colors of the facilities. For example, let si ∈ S be the closest facility in S for
exactly one facility oi ∈ O for i = 1, 2. If si has the same color as oi, then {si, oi}
defines a block. On the other hand if {s1, s2, o1, o2} has two red and two blue
facilities, this set defines a block. In general, a block contains an equal number
of red facilities and an equal number of blue facilities from the two solutions
S and O such that for any facility o ∈ O in a block, the closest facility to it
in S is also in the same block. A typical block also satisfies a key property: it
contains a large number of facilities in S that are not the closest facilities in S
to any facility in O. It turns out that such facilities, called very good facilities,
are compatible to be swapped with any facility in O [14] and their abundance is
crucial to the overall analysis. We use a careful counting argument to show that
a partitioning into blocks satisfying these properties exists.

In Section 2.2, we describe the test swaps for any single block. If si and oi

described above have the same color, we can consider the swap: add oi and delete
si. However, if s = si is the closest one to several facilities {o1, . . . , ol} in the
optimum solution, then deleting s may be bad for our solution. The previous
k-median analyses, therefore, avoided swaps in which s is deleted.

Unfortunately, it turns out that we do not have a luxury of avoiding such
swaps. Consider, for example, the case where kr = 1 and s is the only red
facility in S. Suppose that o is the unique red facility in O. To bound the cost of
clients served by o in solution O, we need to consider a test swap in which o is
added. Note however that if o is added, s must be deleted to satisfy the budget
kr = 1. Our analysis considers a test swap in which we delete s and open the
facility oi ∈ {o1, . . . , ol} that is closest to s. If s and oi are of different colors, we
combine this swap with another carefully chosen red-blue swap to balance the
number of red and blue facilities. The cost after such a swap may potentially
be significantly higher than that of the optimum solution. To “cancel” this high
cost, we consider several other test swaps in which facilities {o1, . . . , ol} are added
one-by-one. Using the properties of a block mentioned above, we show how to
bound the overall cost for all the swaps considered.

In our opinion, these new swaps and a method to bound their costs is the main
technical contribution of our paper. We encourage the reader to read the expo-
sition in paragraphs titled ‘Intuition’ and ‘Example in Figure 2’ in Section 2.3
for further intuition behind our approach.

The prize-collecting version. We show that the multi-swap local search algorithm
of the k-median problem [3] yields (3 + ε)-approximation for the prize-collecting

Budgeted Red-Blue Median and Its Generalizations 319

k-median problem. The proof is based on the techniques of Arya et al. [3] or
Gupta and Tangwongsan [14] applied to the clients that do not pay penalty in
either solution S or O. The other clients contribute the same amount to either
solutions and thus are easy to handle. Essentially the same line of argument
holds for the prize-collecting version of budgeted red-blue problem.

2 Proof of Theorem 1

We begin with some notation and preliminaries. We call the local search oper-
ations in our algorithm as valid swaps. Let O = R∗ ∪ B∗ denote the optimum
solution where R∗ ⊂ R and B∗ ⊂ B and let S = R ∪ B denote the locally
optimum (also called local) solution. For a facility o ∈ O, let N∗(o) denote the
clients that are served by o in solution O, i.e., these clients have o as the closest
facility among facilities in O. Similarly, for s ∈ S, let N(s) denote the clients
that are served by s in solution S. For A ⊂ O, let N∗(A) = ∪o∈AN∗(o) and
for A ⊂ S, let N(A) = ∪s∈AN(s). For a client j ∈ C, let Oj = d(j, O) and
Sj = d(j, S) be its contribution to the optimum and local solutions respectively.

Definition 1 (functions η and μ). Define a function η : O → S as follows.
For o ∈ O, let η(o) be the facility in S that it closest to o, where ties are broken
arbitrarily. Thus we have d(o, η(o)) = d(o, S).

For a facility s ∈ S with η−1(s) 	= ∅, define μ(s) to be the facility in η−1(s)
that it closest to s where ties are broken arbitrarily, i.e., we have d(s, μ(s)) =
d(s, η−1(s)).

See Figure 2 for an example. Note that if o ∈ O∩S, then we have η(o) = o. The
definition of function η is motivated by the paper of Gupta and Tangwongsan [14]
who offer a simplified proof of the k-median local search algorithm of Arya et
al. [3].

Definition 2 (very good, good, and bad facilities). We call a facility s ∈ S
very good, if η−1(s) = ∅; good, if η−1(s) 	= ∅ and no facility in η−1(s) has the
same color as s; and bad, if some facility in η−1(s) has the same color as s.

2.1 The Blocks

We now present a procedure (see Figure 1) to partition the set R∗ into R∗
1, . . . , R

∗
t ,

the set B∗ into B∗
1 , . . . , B∗

t , the set R into R1, . . . , Rt, and the set B into
B1, . . . , Bt for some integer t. The parts R∗

i , B
∗
i , Ri, Bi are said to form block-i

for i = 1, . . . , t. Note that this procedure is used only for the sake of analysis. It
shows how to first compute block-1 and then recursively compute block-i for
i = 2, . . . , t.

Lemma 1. The partitions of R∗, B∗, R, and B computed in Figure 1 satisfy
the following properties.

320 M. Hajiaghayi, R. Khandekar, and G. Kortsarz

Compute block-1, i.e., R∗
1, B∗

1 , R1, and B1:

1. Start with R∗
1 = B∗

1 = R1 = B1 = ∅.
2. If there is a bad facility r ∈ R such that |η−1(r)| = 1, then let R1 = {r},

B1 = ∅, R∗
1 = η−1(r), B∗

1 = ∅, and stop. If there is a bad facility b ∈ B such
that |η−1(b)| = 1, then let R1 = ∅, B1 = {b}, R∗

1 = ∅, B∗
1 = η−1(b), and stop.

3. If there are good facilities r ∈ R and b ∈ B such that |η−1(r)| = |η−1(b)| = 1,
then let R1 = {r}, B1 = {b}, R∗

1 = η−1(b), B∗
1 = η−1(r), and stop.

4. If there is no bad facility in S, let R∗
1 = R∗, B∗

1 = B∗, R1 = R, B1 = B, and
stop. Otherwise let s ∈ S be a bad facility such that |η−1(s)| is maximum.

5. Add s to either R1 or B1 according to whether it is a red or a blue facility.
Add facilities in η−1(s) to R∗

1 and B∗
1 according to their color. If |R∗

1 | = |R1|
and |B∗

1 | = |B1|, then stop.
6. If |R∗

1 | > |R1|, then add |R∗
1 | − |R1| very good or good red facilities to R1.

While doing so, give a preference to very good red facilities. For each facility
s thus added to R1, add facilities in η−1(s) to B∗

1 .
7. If on the other hand |B∗

1 | > |B1|, then add |B∗
1 |−|B1| very good or good blue

facilities to B1. While doing so, give a preference to very good blue facilities.
For each facility s thus added to B1, add facilities in η−1(s) to R∗

1.
8. Repeat steps 6 and 7 until we have |R∗

1 | = |R1| and |B∗
1 | = |B1|, and then

stop.

Recurse on R∗ \ R∗
1 , B∗ \ B∗

1 , R \ R1, and B \ B1 to compute block-i for i ≥ 2.

Fig. 1. A procedure to compute partitions of R∗, B∗, R, and B

1. |R∗
i | = |Ri| and |B∗

i | = |Bi| for all i = 1, . . . , t.
2. For each o ∈ R∗

i ∪B∗
i , we have η(o) ∈ Ri ∪Bi for i = 1, . . . , t.

3. For i = 1, . . . , t, at most one facility in Ri∪Bi is bad. We call such a facility
leader.

4. For i = 1, . . . , t, if there is a leader in Ri ∪Bi, we have
(a) either all facilities in Ri, except the leader, are very good,
(b) or all facilities in Bi, except the leader, are very good.

The proof of this lemma is omitted due to lack of space.

2.2 The Swaps

Since S = R∪B is a local solution, any swap of a red facility and a blue facility
does not decrease the cost of the solution, i.e., cost(R− r− + r+, B− b−+ b+) ≥
cost(R, B). We use swap(r−, r+ | b−, b+) to denote this swap. When r− = r+,
we also use swap(b−, b+) to denote this swap. Similarly, when b− = b+, we also
use swap(r−, r+) to denote this swap. We now consider several inequalities of
this type and add them to get the desired result. For each such swap considered
below, we upper bound cost(R− r− + r+, B − b− + b+)− cost(R, B) by giving
a feasible assignment of clients to facilities.

Recall the definition of valid swaps; we call a swap valid if it does not change
the number of red and blue facilities in the solution.

Budgeted Red-Blue Median and Its Generalizations 321

Fig. 2. On the left is an example of block-1: the facilities R∗
1 , B∗

1 ⊂ O are shown at
the top while R1, B1 ⊂ S are shown at the bottom. We draw an edge between each
o ∈ R∗

1∪B∗
1 and η(o) ∈ R1∪B1. A single bad facility in R1∪B1, called leader, is r5. The

facilities r1, . . . , r4, b3 are very good while the facilities b1, b2 are good. Here case 4(a)
holds. On the right is an example of functions η and μ. We have μ(r5) = b∗1 ∈ η−1(r5).

Lemma 2. 1. Let s ∈ R1 (resp. s ∈ B1) be a very good facility and o ∈ R∗
1

(resp. o ∈ B∗
1) be any facility. Then∑

j∈N∗(o)

(Oj − Sj) +
∑

j∈N(s)\N∗(o)

2Oj ≥ 0. (1)

2. Let s ∈ R1 (resp. s ∈ B1) be either good or bad facility such that o = μ(s) ∈
R∗

1 (resp. o ∈ B∗
1). Then∑

j∈N∗(o)

(Oj−Sj)+
∑

j∈N(s)∩N∗(η−1(s)\{o})
(Oj +Sj)+

∑
j∈N(s)\N∗(η−1(s))

2Oj ≥ 0.

(2)
3. Let s1 ∈ R1 ∪B1 be either good or bad facility, s2 ∈ R1 ∪B1 be a very good

facility, and o2 ∈ R∗
1 ∪B∗

1 be any facility such that deleting s1, s2 and adding
o1 = μ(s1), o2 is a valid swap. Then∑
j∈N∗(o1)
∪N∗(o2)

(Oj − Sj) +
∑

j∈[N(s1)∪N(s2)]∩
[N∗(η−1(s1)\{o1,o2})]

(3Oj + Sj) +
∑

j∈[N(s1)∪N(s2)]\
[N∗(η−1(s1)∪{o2})]

2Oj ≥ 0.

(3)
4. Let s1, s2 ∈ R1 ∪B1 be either good or bad facilities such that deleting s1, s2

and adding o1 = μ(s1), o2 = μ(s2) is a valid swap. Then∑
j∈N∗(o1)
∪N∗(o2)

(Oj − Sj) +
∑

j∈[N(s1)∪N(s2)]∩
[N∗(η−1(s1)\{o1})∪N∗(η−1(s2)\{o2})]

(3Oj + Sj) +
∑

j∈[N(s1)∪N(s2)]\
[N∗(η−1(s1))∪N∗(η−1(s2))]

2Oj ≥ 0. (4)

Proof. For a client j, let s(j) denote the facility that serves j in solution S and
let o(j) denote the facility that serves j in solution O.

For item 1, consider swap(s, o). We reroute clients as follows. A client j ∈
N∗(o) is rerouted to o and thus the increase in its service cost is Oj − Sj .
A client j ∈ N(s) \N∗(o) is rerouted to η(o(j)). Note that η(o(j)) 	= s since s

322 M. Hajiaghayi, R. Khandekar, and G. Kortsarz

is very good. The increase in its service cost is thus d(j, η(o(j))) − Sj ≤ Oj +
d(o(j), η(o(j))) − Sj ≤ Oj + d(o(j), s(j)) − Sj ≤ Oj + Oj + Sj − Sj = 2Oj .
This sequence of inequalities follows from repeated use of triangle inequality.
The clients not in N∗(o) ∪N(s) are not rerouted. This proves item 1.

For item 2, consider swap(s, o). A client j ∈ N∗(o) is rerouted to o and thus
the increase in its service cost is Oj−Sj . Consider a client j ∈ N(s)\N∗(η−1(s)).
Since o(j) 	∈ η−1(s), we have η(o(j)) 	= s. Such a client is therefore rerouted to
η(o(j)) and thus the increase in its service cost is d(j, η(o(j))) − Sj ≤ 2Oj as
shown in item 1. A client j ∈ N(s) ∩N∗(η−1(s) \ {o}) is rerouted to o and thus
the increase in its service cost is d(j, o) − Sj ≤ d(j, s(j)) + d(s(j), o) − Sj ≤
Sj + d(s(j), o(j)) − Sj ≤ Oj + Sj. Here d(s(j), o) ≤ d(s(j), o(j)) follows from
o(j) ∈ η−1(s), o = μ(s), and the definition of μ. The clients not in N∗(o)∪N(s)
are not rerouted. This proves item 2.

The proofs of items 3 and 4 are very similar. Therefore we prove item 4 and
omit the proof of item 3. For item 4, consider the swap: delete s1, s2 and add
o1, o2. In this swap, we reroute the clients as follows. A client j ∈ N∗(o1) is
rerouted to o1 and a client j ∈ N∗(o2) is rerouted to o2. Clearly the increase in
service cost of clients j ∈ N∗(o1) ∪N∗(o2) is Oj − Sj .

Now consider a client j ∈ [N(s1)∪N(s2)]\ [N∗(o1)∪N∗(o2)]. Assume without
loss of generality that j ∈ N(s1); a similar argument also holds for the case
j ∈ N(s2). Let o(j) be the facility that serves j in O. If η(o(j)) = s1, then j is
rerouted to o1 and the increase in service cost is d(j, o1)− d(j, s1) ≤ d(s1, o1) ≤
d(s1, o(j)) ≤ Sj + Oj . This sequence of inequalities follows from repeated use
of triangle inequality and from the fact o1 = μ(s1). If η(o(j)) = s2, then it
is rerouted to o2 and the increase in service cost is d(j, o2) − Sj ≤ d(j, o(j)) +
d(o(j), s2)+d(s2, o2)−Sj ≤ d(j, o(j))+d(o(j), s2)+d(s2, o(j))−Sj ≤ d(j, o(j))+
d(o(j), s1) + d(s1, o(j))− Sj ≤ Oj + 2(Oj + Sj)− Sj = 3Oj + Sj . This sequence
of inequalities follows from repeated use of triangle inequality and from the fact
o2 = μ(s2) and η(o(j)) = s2. Now consider the case that η(o(j)) is neither s1 or
s2. Let s(j) denote the facility that serves j in S. We reroute j to η(o(j)) and the
increase in service cost is thus d(j, η(o(j))) − Sj ≤ Oj + d(o(j), η(o(j))) − Sj ≤
Oj + d(o(j), s(j)) − Sj ≤ Oj + Oj + Sj − Sj = 2Oj . This proves item 4.

2.3 Putting Together

Intuition. Note that inequality (1) has “−Sj” terms for some clients and “+Oj”
terms for some clients. The analysis of Arya et al. [3] or Gupta and Tang-
wongsan [14] is based on adding several inequalities of this type so that the
“−Sj” term is included for each client j once and “+Oj” term is included for
each client j at most 5 times. Thus overall, they get −

∑
j Sj +5

∑
j Oj ≥ 0. This

directly gives a 5-approximation. Unfortunately, such an analysis does not work
in our setting. We also have to add several inequalities (2)-(4), thus incurring
“+Sj” terms for some clients. We then use inequality (1) repeatedly to “can-
cel” the “+Sj” terms in order to prove a constant approximation. All the swaps

Budgeted Red-Blue Median and Its Generalizations 323

to be considered are contained in a block. For block-i, we prove the following
inequality:

∑
j∈N∗(R∗

i ∪B∗
i)

Sj ≤ O(1) ·

⎡⎣ ∑
j∈N∗(R∗

i ∪B∗
i)

Oj +
∑

j∈N(Ri∪Bi)

Oj

⎤⎦ . (5)

Adding these inequalities over all the blocks, we get a constant approximation:

cost(S) =
t∑

i=1

∑
j∈N∗(R∗

i ∪B∗
i)

Sj ≤ O(1) ·
t∑

i=1

⎡⎣ ∑
j∈N∗(R∗

i ∪B∗
i)

Oj +
∑

j∈N(Ri∪Bi)

Oj

⎤⎦
≤ O(1) · 2 · cost(O).

The proof of inequality (5) is omitted due to lack of space. However here we
illustrate how to prove it using the example in Figure 2.

We start with some notation. If R1 has at least one good or very good facility,
we fix a function g : R∗

1 → R1 such that each facility in g(R∗
1) is either good

or very good and |g−1(r)| ≤ 2 for all r ∈ R1. It is easy to see that such a
function exists. Similarly, if B1 has at least one good or very good facility, we fix
a function g : B∗

1 → B1 such that each facility in g(B∗
1) is either good or very

good and |g−1(b)| ≤ 2 for all b ∈ B1.

Example in Figure 2. To convey our intuition, we prove inequality (5) for the
example of block-1 in Figure 2. For concreteness, assume that the function μ is
given by r5 1→ b∗1, b1 1→ r∗4 , b2 1→ r∗5 . Also assume that g is given by r∗1 1→ r1, r

∗
2 1→

r2, r
∗
3 1→ r3, r

∗
4 1→ r4, r

∗
5 1→ r4, b

∗
1 1→ b1, b

∗
2 1→ b2, b

∗
3 1→ b3. To obtain “−Sj” terms

for clients in N∗(B∗
1), we consider the following swaps and the corresponding

inequalities:

– swap(g(μ(g(b∗1))), μ(g(b∗1)) | g(b∗1), b∗1) which is same as swap(r4, r
∗
4 | b1, b

∗
1)

(consider inequality (3)),
– swap(g(μ(g(b∗2))), μ(g(b∗2)) | g(b∗2), b∗2) which is same as swap(r4, r

∗
5 | b2, b

∗
2)

(consider inequality (3)),
– swap(g(b∗3), b

∗
3) which is same as swap(b3, b

∗
3) (consider inequality (1)).

If we add these three inequalities, we get∑
j∈N∗({r∗

4 ,b∗1,r∗
5 ,b∗2 ,b∗3})
(Oj−Sj)+

∑
j∈N∗(r∗

3)

(3Oj+Sj)+
∑

j∈N({b3,r4,b1})
2Oj+

∑
j∈N({r4,b2})

2Oj ≥ 0. (6)

We next consider the following the following swaps and the corresponding in-
equalities:

– swap(g(r∗1), r∗1) which is same as swap(r1, r
∗
1) (consider inequality (1)),

– swap(g(r∗2), r∗2) which is same as swap(r2, r
∗
2) (consider inequality (1)),

– swap(g(r∗3), r∗3) which is same as swap(r3, r
∗
3) (consider inequality (1)). We

in fact multiply this inequality by factor 2 in order to cancel the “+Sj” term
in the second term of (6) above.

324 M. Hajiaghayi, R. Khandekar, and G. Kortsarz

Adding these three inequalities, we get∑
j∈N∗({r∗

1 ,r∗
2})
(Oj − Sj) + 2

∑
j∈N∗(r∗

3)

(Oj − Sj) +
∑

j∈N({r1,r2})
2Oj + 2

∑
j∈N(r3)

2Oj ≥ 0. (7)

Adding (6) and (7), we get our desired inequality∑
j∈N∗(R∗

1∪B∗
1)

Sj ≤ 5
∑

j∈N∗(R∗
1∪B∗

1)

Oj + 4
∑

j∈N(R1∪B1)

Oj .

3 Proof of Theorem 2

In this section, we outline the proof of Theorem 2. We consider the multi-swap
local search algorithm of Arya et al. [3]: start with any k facilities in the solution
S and output a local optimum solution w.r.t. the following q-swap operation:
delete q facilities from S and add q facilities in F \ S to S. We use a notation
similar to the previous section. In addition, let P ⊆ C denote the set of clients
that pay penalty in the locally optimum solution S and let P ∗ ⊆ C denote the
set of clients that pay penalty in the optimum solution O. We prove the following
theorem which implies that S is a (3 + 2/q)-approximation.

Theorem 4∑
j �∈P

Sj +
∑
j∈P

pj ≤
(

3 +
2
q

) ∑
j �∈P∗

Oj +
(

1 +
1
q

) ∑
j∈P∗

pj.

Note that even if the multiplier of
∑

j∈P∗ pj on the right is (1 + 1/q) instead of
1, one may use the above result, as a subroutine, in the algorithm for the robust
k-median problem [8]. This is a version of the k-median problem in which at
most l clients may be left unserved. We obtain a solution which has number of
outliers at most l(1 + ε)(1 + γ) and has cost at most (3 + ε)(1 + 1/γ) for any
fixed ε, γ > 0. We omit further details from here.

The proof of Theorem 4 is omitted due to lack of space.

References

1. Archer, A., Rajagopalan, R., Shmoys, D.B.: Lagrangian relaxation for the k-median
problem: New insights and continuity properties. In: Di Battista, G., Zwick, U.
(eds.) ESA 2003. LNCS, vol. 2832, pp. 31–42. Springer, Heidelberg (2003)

2. Arora, S., Raghavan, P., Rao, S.: Approximation schemes for Euclidean k-medians
and related problems. In: STOC 1998 (1998)

3. Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Lo-
cal search heuristics for k-median and facility location problems. SIAM J. Com-
put. 33(3), 544–562 (2004)

4. Bartal, Y.: On approximating arbitrary metrices by tree metrics. In: STOC 1998
(1998)

Budgeted Red-Blue Median and Its Generalizations 325

5. Bateni, M., Hajiaghayi, M.: Assignment problem in content distribution networks:
unsplittable hard-capacitated facility location. In: SODA 2009 (2009)

6. Charikar, M., Guha, S.: Improved combinatorial algorithms for facility location
problems. SIAM J. Comput. 34(4), 803–824 (2005)

7. Charikar, M., Guha, S., Tardos, É., Shmoys, D.: A constant-factor approximation
algorithm for the k-median problem. J. Comp. Sys. Sci. 65(1), 129–149 (2002)

8. Charikar, M., Khuller, S., Mount, D.M., Narasimhan, G.: Algorithms for facility
location problems with outliers. In: SODA 2001 (2001)

9. Chudak, F.A., Williamson, D.P.: Improved approximation algorithms for capaci-
tated facility location problems. Math. Program. 102(2), 207–222 (2005)

10. Devanur, N.R., Garg, N., Khandekar, R., Pandit, V., Rohit, K., Vinayaka, P.,
Saberi, A., Vazirani, V.V.: Price of anarchy, locality gap, and a network service
provider game. In: Deng, X., Ye, Y. (eds.) WINE 2005. LNCS, vol. 3828, pp. 1046–
1055. Springer, Heidelberg (2005)

11. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary
metrics by tree metrics. J. Comput. System Sci. 69(3), 485–497 (2004)

12. Feige, U., Mirrokni, V.S., Vondrak, J.: Maximizing non-monotone submodular
functions. In: FOCS 2007 (2007)

13. Fleischer, L., Goemans, M.X., Mirrokni, V.S., Sviridenko, M.: Tight approximation
algorithms for maximum general assignment problems. In: SODA 2006 (2006)

14. Gupta, A., Tangwongsan, K.: Simpler analyses of local search algorithms for facility
location. ArXiv e-prints, arXiv:0809.2554 (2008)

15. Jain, K.: Private communication (2009)
16. Jain, K., Mahdian, M., Saberi, A.: A new greedy approach for facility location

problems. In: STOC 2002 (2002)
17. Jain, K., Vazirani, V.V.: Approximation algorithms for metric facility location

and k-median problems using the primal-dual schema and Lagrangian relaxation.
Journal of the ACM 48(2), 274–296 (2001)

18. Kolliopoulos, S.G., Rao, S.: A nearly linear-time approximation scheme for the
Euclidean k-median problem. SIAM J. Comput. 37(3), 757–782 (2007)

19. Korupolu, M.R., Plaxton, C.G., Rajaraman, R.: Analysis of a local search heuristic
for facility location problems. Journal of Algorithms 37(1), 146–188 (2000)

20. Kuehn, A., Hamburger, M.: A heuristic program for locating warehouses. Manage-
ment Science 9, 643–666 (1963)

21. Lin, J.-H., Vitter, J.S.: Approximation algorithms for geometric median problems.
Inf. Process. Lett. 44(5), 245–249 (1992)

22. Mahdian, M., Pál, M.: Universal facility location. In: Di Battista, G., Zwick, U.
(eds.) ESA 2003. LNCS, vol. 2832, pp. 409–421. Springer, Heidelberg (2003)

23. Megiddo, N., Supowit, K.J.: On the complexity of some common geometric location
problems. SIAM J. Comput. 13(1), 182–196 (1984)

24. Pál, M., Tardos, É., Wexler, T.: Facility location with nonuniform hard capacities.
In: FOCS 2001 (2001)

25. Zhang, J., Chen, B., Ye, Y.: A multi-exchange local search algorithm for the
capacitated facility location problem. In: Bienstock, D., Nemhauser, G.L. (eds.)
IPCO 2004. LNCS, vol. 3064, pp. 219–233. Springer, Heidelberg (2004)

All Ternary Permutation Constraint Satisfaction

Problems Parameterized above Average Have
Kernels with Quadratic Numbers of Variables�

Gregory Gutin1, Leo van Iersel2, Matthias Mnich3, and Anders Yeo1

1 Royal Holloway, University of London, United Kingdom
{gutin,anders}@cs.rhul.ac.uk

2 University of Canterbury, Christchurch, New Zealand
l.j.j.v.iersel@gmail.com

3 Technische Universiteit Eindhoven, Eindhoven, The Netherlands
m.mnich@tue.nl

Abstract. A ternary Permutation-CSP is specified by a subset Π of
the symmetric group S3. An instance of such a problem consists of a set
of variables V and a multiset of constraints, which are ordered triples
of distinct variables of V. The objective is to find a linear ordering α
of V that maximizes the number of triples whose rearrangement (under
α) follows a permutation in Π . We prove that all ternary Permutation-
CSPs parameterized above average have kernels with quadratic numbers
of variables.

1 Introduction

Parameterized complexity theory is a multivariate framework for a refined analy-
sis of hard (NP-hard) problems. A parameterized problem is a subset L ⊆ Σ∗×N
over a finite alphabet Σ. L is fixed-parameter tractable if the membership of an
instance (I, k) in Σ∗ ×N can be decided in time f(k) · |I|O(1) where f is a com-
putable function of the parameter k only [9,10,26]. (We would like f(k) to grow
as slowly as possible.)

Given a pair L, L′ of parameterized problems, a bikernelization from L to L′ is
a polynomial-time algorithm that maps an instance (x, k) to an instance (x′, k′)
(the bikernel) such that (i) (x, k) ∈ L if and only if (x′, k′) ∈ L′, (ii) k′ ≤ h(k),
and (iii) |x′| ≤ g(k) for some functions h and g. The function g(k) is called the
size of the bikernel. A kernelization of a parameterized problem L is simply a
bikernelization from L to itself, i.e., a kernel is a bikernel when L = L′.

The notion of a bikernelization was introduced by Alon et al. [1], who observed
that a decidable parameterized problem L is fixed-parameter tractable if and
only if it admits a bikernelization to a decidable parameterized problem L′. Not
every fixed-parameter tractable problem has a kernel of polynomial size unless
� Part of this research has been supported by the EPSRC, grant EP/E034985/1, the

Netherlands Organisation for Scientific Research (NWO), grant 639.033.403, and the
Allan Wilson Centre for Molecular Ecology and Evolution.

M. de Berg and U. Meyer (Eds.): ESA 2010, Part I, LNCS 6346, pp. 326–337, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

All Ternary Permutation Constraint Satisfaction Problems 327

coNP ⊆ NP/poly [2,3]; low degree polynomial size kernels are of main interest
due to applications [15].

For maximization problems whose lower bound on the solution value is a
monotonically increasing unbounded function of the instance size, the standard
parameterization by solution value is trivially fixed-parameter tractable. Maha-
jan and Raman [24] were the first to recognize both practical and theoretical im-
portance of parameterizing maximization problems differently: above tight lower
bounds. They considered Max Sat with the tight lower bound m/2, where m
is the number of clauses, and the problem is to decide whether we can satisfy at
least m/2 + k clauses, where k is the parameter. Mahajan and Raman proved
that this parameterization of Max Sat is fixed-parameter tractable by obtain-
ing a kernel with O(k) variables. Despite clear importance of parameterizations
above tight lower bounds, until recently only a few sporadic non-trivial results
on the topic were obtained [17,20,21,24,28].

Massive interest in parameterizations above tight lower bound came with the
paper of Mahajan et al. [25], who stated several questions on fixed-parameter
tractability of maximization problems parameterized above tight lower bounds,
some of which are still open. Several of those questions were answered by newly-
developed methods [1,7,8,18,19], using algebraic, probabilistic and harmonic
analysis tools. In particular, an advanced probabilistic approach allowed Gutin
et al. [18] to prove the existence of a quadratic kernel for the parameterized Be-

tweenness Above Average (Betweenness-AA) problem, thus, answering
an open question of Benny Chor [26].

Betweenness is just one representative of a rich family of ternary Permu-
tation Constant Satisfaction Problems (CSPs). A ternary Permutation-CSP is
specified by a subset Π of the symmetric group S3. An instance of such a problem
consists of a set of variables V and a multiset of constraints, which are ordered
triples of distinct variables of V. The objective is to find a linear ordering α of V
that maximizes the number of triples whose rearrangement (under α) follows a
permutation in Π . Important special cases are Betweenness [5,12,18,27] and
Circular Ordering [11,13], which find applications in circuit design and com-
putational biology [6,27], and in qualitative spatial reasoning [23], respectively.

In this paper, we prove that all ternary Permutation-CSPs have kernels with
quadratic numbers of variables, when parameterized above average (AA), which
is a tight lower bound. This result is obtained by first reducing all the problems
to just one, Linear Ordering-AA, then showing that Linear Ordering-

AA has a kernel with quadratic numbers of variables and constraints and, thus,
concluding that there is a bikernel with a quadratic number of variables from
each of the problems AA to Linear Ordering-AA. Using the last result,
we prove that there are bikernels with a quadratic number of variables from
all ternary Permutation-CSPs to most ternary Permutation-CSPs. This implies
the existence of kernels with a quadratic number of variables for most ternary
Permutation-CSPs. The remaining ternary Permutation-CSPs are proved to be
equivalent to Acyclic Subdigraph-AA (a binary Permutation-CSP defined in
Section 4) and since Acyclic Subdigraph-AA, as shown in [19], has a kernel

328 G. Gutin et al.

with a quadratic number of variables, the remaining ternary Permutation-CSPs
have a kernel with a quadratic number of variables.

The most difficult part of this set of arguments is the proof that Linear

Ordering-AA has a kernel with quadratic numbers of variables and constraints.
We can show that if we want to prove this in a similar way as for Betweenness-AA
(that is, eliminate all instances of Linear Ordering-AA whose optimal solution
coincides with the lower bound) we need an infinite number of reduction rules.
See [16] for further details. So, determining fixed-parameter tractability of Lin-

ear Ordering-AA turns out to be much harder than for Betweenness-AA.
Fortunately, we found a nontrivial way of reducing Linear Ordering-AA to a
combination of Betweenness-AA and Acyclic Subdigraph-AA. Using fur-
ther probabilistic and deterministic arguments for the mixed problem, we prove
that Linear Ordering-AA has a kernel with quadratic numbers of variables
and constraints.

The rest of the paper is organized as follows. In Section 2, we define and discuss
ternary Permutation-CSPs; we also reduce all nontrival ternary Permutation-
CSPs AA to Linear Ordering-AA. In Section 3, we describe probabilistic
and harmonic analysis tools used in the paper. In Section 4, we obtain some
results on Betweenness-AA and Acyclic Subdigraph-AA needed in the
following section, where we prove that Linear Ordering-AA has a quadratic
kernel. In Section 5, we also prove our main result, Theorem 4, that all ternary
Permutation-CSPs parameterized above average have kernels with a quadratic
number of variables. Due to the space limit, many proofs are omitted; they can
be found in [16].

2 Permutation CSPs Parameterized above Average

Let V be a set of n variables. A linear ordering of V is a bijection α : V →
[n], where [n] = {1, 2, . . . , n}. The symmetric group on three elements is S3 =
{(123), (132), (213), (231), (312), (321)}. A constraint set over V is a multiset C
of constraints, which are permutations of three distinct elements of V . For each
subset Π ⊆ S3 and a linear ordering α of V , a constraint (v1, v2, v3) ∈ C is
Π-satisfied by α if there is a permutation π ∈ Π such that α(vπ(1)) < α(vπ(2)) <
α(vπ(3)). If Π is fixed, we will simply say that (v1, v2, v3) ∈ C is satisfied by α.

For each subset Π ⊆ S3, the problem Π-CSP is to decide whether for a
given pair (V, C) of variables and constraints there is a linear ordering α of V
that Π-satisfies all constraints in C. A complete dichotomy of the Π-CSP prob-
lems with respect to their computational complexity was given by Guttmann
and Maucher [22]. For that, they reduced 2|S3| = 64 problems by two types of
symmetry. First, two problems differing just by a consistent renaming of the
elements of their permutations are of the same complexity. Second, two prob-
lems differing just by reversing their permutations are of the same complexity.
The symmetric reductions leave 13 problems Πi-CSP, i = 0, 1, . . . , 12, whose
time complexity is polynomial for Π11 = ∅ and Π12 = S3 and was otherwise
established by Guttmann and Maucher [22], see Table 1.

All Ternary Permutation Constraint Satisfaction Problems 329

Table 1. Ternary Permutation-CSPs (after symmetry considerations)

Complexity to
Π ⊆ S3 Common Problem Name Saisfy All Constraints

Π0 = {(123)} Linear Ordering polynomial

Π1 = {(123), (132)} polynomial

Π2 = {(123), (213), (231)} polynomial

Π3 = {(132), (231), (312), (321)} polynomial

Π4 = {(123), (231)} NP-complete

Π5 = {(123), (321)} Betweenness NP-complete

Π6 = {(123), (132), (231)} NP-complete

Π7 = {(123), (231), (312)} Circular Ordering NP-complete

Π8 = S3 \ {(123), (231)} NP-complete

Π9 = S3 \ {(123), (321)} Non-Betweenness NP-complete

Π10 = S3 \ {(123)} NP-complete

The maximization version of Πi-CSP is the problem Max-Πi-CSP of finding
a linear ordering α of V that Πi-satisfies a maximum number of constraints in
C. Clearly, for i = 4, . . . , 10 the problem Max-Πi-CSP is NP-hard. In [16] we
prove that Max-Πi-CSP is NP-hard also for i = 0, 1, 2, 3.

Now observe that given a variable set V and a constraint multiset C over V ,
for a random linear ordering α of V , the probability of a constraint in C being
Π-satisfied by α equals |Π|

6 . Hence, the expected number of satisfied constraints
from C is |Π|

6 |C|, and thus there is a linear ordering α of V satisfying at least |Π|
6 |C|

constraints (and this bound is tight). A derandomization argument leads to |Πi|
6 -

approximation algorithms for the problems Max-Πi-CSP [5]. No better constant
factor approximation is possible assuming the Unique Games Conjecture [5].

We study the parameterization of Max-Πi-CSP above tight lower bound:

Π-Above Average (Π-AA)

Input: A finite set V of variables, a multiset C of ordered triples of distinct
variables from V and an integer k ≥ 0.

Parameter: k.
Question: Is there a linear ordering α of V such that at least |Π|

6 |C| + k con-
straints of C are Π-satisfied by α?

For example, choose Π = {(123), (321)} for Betweenness-AA. Π0-AA is
called the Linear Ordering-AA problem.

Let Π be a subset of S3. Clearly, if Π is the empty set or equal to S3 then the
corresponding problem Π-AA can be solved in polynomial time. The following
simple result allows us to study the Π-AA problems using Π0-AA.

Proposition 1. Let Π be a subset of S3 such that Π /∈ {∅,S3}. There is a
polynomial time transformation f from Π-AA to Π0-AA such that an instance

330 G. Gutin et al.

(V, C, k) of Π-AA is a “yes”-instance if and only if (V, C0, k) = f(V, C, k) is a
“yes”-instance of Π0-AA.

Proof. From an instance (V, C, k) of Π-AA, construct an instance (V, C0, k) of Π0-
AA as follows. For each triple (v1, v2, v3) ∈ C, add |Π | triples (vπ(1), vπ(2), vπ(3)),
π ∈ Π , to C0.

Observe that a triple (v1, v2, v3) ∈ C is Π-satisfied if and only if exactly one of
the triples (vπ(1), vπ(2), vπ(3)), π ∈ Π , is Π0-satisfied. Thus, |Π|

6 |C|+k constraints
from C are Π-satisfied if and only if the same number of constraints from C0 are
Π0-satisfied. It remains to observe that |Π|

6 |C|+ k = 1
6 |C0|+ k as |C0| = |Π | · |C|.

��
For a variable set V , a constraint multiset C over V and a linear ordering α of
V , the α-deviation of (V, C) is the number dev(V, C, α) of constraints of C that
are Π-satisfied by α minus |Π|

6 |C|. The maximum deviation of (V, C), denoted
dev(V, C), is the maximum of dev(V, C, α) over all linear orderings α of V . Now
the problem Π-AA can be reformulated as the problem of deciding whether
dev(V, C) ≥ k.

3 Probabilistic and Harmonic Analysis Tools

We build on the probabilistic Strictly Above Expectation method by Gutin et
al. [19] to prove non-trivial lower bounds on the minimum fraction of satisfiable
constraints in instances belonging to a restricted subclass. For such an instance
with parameter k, we introduce a random variable X such that the instance is
a “yes”-instance if and only if X takes with positive probability a value greater
than or equal to k. If X happens to be a symmetric random variable with finite
second moment then P(X ≥

√
E[X2]) > 0; it hence suffices to prove E[X2] =

h(k) for some monotonically increasing unbounded function h. (Here, P(·) and
E[·] denote probability and expectation, respectively.) If X is not symmetric then
the following lemma can be used instead.

Lemma 1 (Alon et al. [1]). Let X be a real random variable and suppose
that its first, second and forth moments satisfy E[X] = 0, E[X2] = σ2 > 0 and
E[X4] ≤ cσ4, respectively, for some constant c. Then P(X > σ

2
√

c
) > 0.

We combine this result with the following result from harmonic analysis.

Lemma 2 (Hypercontractive Inequality [4,14]). Let f = f(x1, . . . , xn) be
a polynomial of degree r in n variables x1, . . . , xn with domain {−1, 1}. Define
a random variable X by choosing a vector (ε1, . . . , εn) ∈ {−1, 1}n uniformly at
random and setting X = f(ε1, . . . , εn). Then E[X4] ≤ 9rE[X2]2.

4 Facts on the Betweenness and Acyclic Subdigraph
Problems

Let u, v, w be variables. We denote a betweenness constraint “v is between u and
w” by (v, {u, w}), and call a 3-set S of betweenness constraints over {u, v, w}

All Ternary Permutation Constraint Satisfaction Problems 331

complete if S = {(u, {v, w}), (v, {u, w}), (w, {u, v})}. Since every linear order-
ing of {u, v, w} satisfies exactly one constraint in S, we obtain the following
reduction.

Lemma 3. Let (V,B) be an instance of Betweenness and let α be a linear
ordering of V . Let B′ be the set of constraints obtained from B by deleting all
complete subsets. Then dev(V,B, α) = dev(V,B′, α).

An instance of Betweenness without complete subsets of constraints is called
reduced.

Let (V,B) be an instance of Betweenness, with B = {B1, . . . , Bm}, and let
φ be a fixed function from V to {0, 1, 2, 3}. A linear ordering α of V is called
φ-compatible if for each pair u, v ∈ V with α(u) < α(v) it holds φ(u) ≤ φ(v). For
a random φ-compatible linear ordering π of V , define a binary random variable
yp that takes value one if and only if Bp ∈ B is satisfied by π (if Bp is falsified
by π, then yp = 0). Let Yp = E[yp]− 1/3 for each p ∈ [m], and let Y =

∑m
p=1 Yp.

Now let φ be a random function from V to {0, 1, 2, 3}. Then Y, Y1, . . . , Ym are
random variables. For a constraint Bp = (v, {u, w}), the distribution of Yp as
it is given in Table 2 implies that E[Yp] = 0. Thus, by linearity of expectation,
E[Y] = 0.

Table 2. Distribution of Yp for constraint Bp = (v, {u, w})

|{φ(u), φ(v), φ(w)}| Relation Value of Yp Prob.

1 φ(u) = φ(v) = φ(w) 0 1/16

2 φ(v) �= φ(u) = φ(w) −1/3 3/16

2 φ(v) ∈ {φ(u), φ(w)} 1/6 6/16

3 φ(v) is between φ(u) and φ(w) 2/3 2/16

3 φ(v) is not between φ(u) and φ(w) −1/3 4/16

The following lemma was proved by Gutin et al. [18] for Betweenness in
which B is a set, not a multiset, but a simple modification of its proof gives us
the following (see [16] for details):

Lemma 4. For a reduced instance (V,B) of Betweenness, E[Y 2] ≥ 11
768m.

In the Acyclic Subdigraph problem we are given a directed multigraph D =
(U, A), with parallel arcs allowed, and ask for a linear ordering π of V which
maximizes the number of satisfied arcs, where an arc (u, v) ∈ A is satisfied by
π if π(u) < π(v). If π is a uniformly-at-random linear ordering of V then the
probability of an arc of D being satisfied is 1/2. Thus, there is a linear ordering π
of V in which the number of satisfied arcs is at least |A|/2. We therefore define,
for a digraph D = (U, A) and a linear ordering π of U , the π-deviation of D
as the number of arcs satisfied by π minus |A|/2, and denote it by dev(V, A, π).
In the Acyclic Subdigraph-AA problem we are given a directed multigraph

332 G. Gutin et al.

D = (U, A) and asked to decide whether there is a linear ordering π of U with
π-deviation at least k, where k is a parameter.

As every linear ordering of U satisfies exactly one of two mutually opposite
arcs (u, v) and (v, u), we obtain the following reduction.

Lemma 5. Let D = (U, A) be a directed multigraph and let π be a linear or-
dering of V . Let A′ be the set of arcs obtained from A by deleting all pairs of
mutually opposite arcs. Then dev(V, A, π) = dev(V, A′, π).

A directed multigraph without mutually opposite arcs is called reduced.
Let D = (U, A) be a directed multigraph with A = {a1, . . . , am} as multiset

of arcs, and let φ be a fixed function from U to {0, 1, 2, 3}. For a random φ-
compatible linear ordering π of U , define a binary random variable xp that takes
value one if and only if ap is satisfied by π. Let Xp = E[xp]−1/2 for each p ∈ [m]
and let X =

∑m
p=1 Xp.

Now let φ be a random function from U to {0, 1, 2, 3}. Then X, X1, . . . , Xm

are random variables. For an arc (u, v), the distribution of Xp as it is given in
Table 3 implies that E[Xp] = 0. Thus, by linearity of expectation, E[X] = 0.

Table 3. Distribution of Xp for an arc (u, v)

Relation between φ(u) and φ(v) Value of Xp Prob.

φ(u) = φ(v) 0 1/4
φ(u) < φ(v) 1/2 3/8
φ(u) > φ(v) −1/2 3/8

We have the following analogue of Lemma 4 proved in [16].

Lemma 6. For reduced directed multigraphs D it holds that E[X2] ≥ 1
32m.

The following theorem was proved in [19].

Theorem 1. Acyclic Subdigraph-AA has a kernel with a quadratic number
of vertices and arcs.

5 Kernels for Π-AA Problems

We start from the following key construction of this paper. With an instance
(V, C) of Linear Ordering, we associate an instance (V,B) of Betweenness

and two instances (V, A′) and (V, A′′) of Acyclic Subdigraph as follows: If
Cp = (u, v, w) ∈ C, then Bp = (v, {u, w}) ∈ B, a′

p = (u, v) ∈ A′, and a′′
p =

(v, w) ∈ A′′. The following lemma is proved in [16].

Lemma 7. Let (V, C, k) be an instance of Linear Ordering-AA and let α be
a linear ordering of V . Then

dev(V, C, α) =
1
2

[dev(V, A′, α) + dev(V, A′′, α) + dev(V,B, α)] .

All Ternary Permutation Constraint Satisfaction Problems 333

Let (V, C, k) be an instance of Linear Ordering-AA, and let φ be a function
from V to {0, 1, 2, 3}. For a random φ-compatible linear ordering π of V , define
a binary random variable zp that takes value one if and only if Cp is satisfied by
π. Let Zp = E[zp]− 1/6 for each p ∈ [m], and let Z =

∑m
p=1 Zp.

Lemma 8. If Z ≥ k then (V, C, k) is a “yes”-instance of Linear Ordering-

AA.

Proof. By linearity of expectation, Z ≥ k implies E[
∑m

p=1 zp] ≥ m/6+k. Thus, if
Z ≥ k then there is a φ-compatible permutation π that satisfies at least m/6+k
constraints. ��

Fix a function φ : V → {0, 1, 2, 3} and assign variables Yp, X
′
p, X

′′
p , respec-

tively, to the three instances of Betweenness and Acyclic Subdigraph

above.

Lemma 9. For each p ∈ [m], we have Zp = 1
2

[
X ′

p + X ′′
p + Yp

]
.

Proof. Let Cp = (u, v, w) ∈ C. Table 4 shows the values of X ′
p, X

′′
p , Yp, Zp for

some relations between φ(u), φ(v) and φ(w). The values of X ′
p, X

′′
p and Yp can

be computed using Tables 2 and 3. In all cases of Table 4 it holds Zp = 1
2 (X ′

p +
X ′′

p + Yp). Thus, Zp = 1
2 [X ′

p + X ′′
p + Yp] for each possible relation between φ(u),

φ(v) and φ(w). ��

Let X =
∑m

p=1[X
′
p +X ′′

p], let Y =
∑m

p=1 Yp and let φ be a random function from
V to {0, 1, 2, 3}. Then X, X ′

1, . . . , X
′
m, X ′′

1 , . . . , X ′′
m, Y, Y1, . . . , Ym, Z, Z1, . . . , Zm

are random variables. From E[X ′] = E[X ′′] = E[Y] = 0 it follows that E[Z] = 0.

Table 4. Values of X ′
p, X ′′

p , Yp, Zp

Relation between φ(u), φ(v) and φ(w) X ′
p X ′′

p Yp Zp

φ(u) = φ(v) = φ(w) 0 0 0 0

φ(v) < φ(u) = φ(w) -1/2 1/2 -1/3 -1/6

φ(v) > φ(u) = φ(w) 1/2 -1/2 -1/3 -1/6

φ(v) = φ(u) < φ(w) 0 1/2 1/6 1/3

φ(v) = φ(u) > φ(w) 0 -1/2 1/6 -1/6

φ(u) < φ(v) = φ(w) 1/2 0 1/6 1/3

φ(u) > φ(v) = φ(w) -1/2 0 1/6 -1/6

φ(u) < φ(v) < φ(w) 1/2 1/2 2/3 5/6

φ(u) < φ(w) < φ(v) 1/2 -1/2 -1/3 -1/6

φ(v) < φ(u) < φ(w) -1/2 1/2 -1/3 -1/6

φ(v) < φ(w) < φ(u) -1/2 1/2 -1/3 -1/6

φ(w) < φ(u) < φ(v) 1/2 -1/2 -1/3 -1/6

φ(w) < φ(v) < φ(u) -1/2 -1/2 2/3 -1/6

334 G. Gutin et al.

We will be able to use Lemma 2 in the proof of Lemma 12 due to the following:

Lemma 10. The random variable Z can be expressed as a polynomial of degree
6 in independent uniformly distributed random variables with values −1 and 1.

Proof. Consider Cp = (u, v, w) ∈ C. Let εu
1 = −1 if φ(u) = 0 or 1 and εu

1 = 1,
otherwise. Let εu

2 = −1 if φ(u) = 0 or 2 and εu
2 = 1, otherwise. Similarly, we

can define εv
1, ε

v
2, ε

w
1 , εw

2 . Now εu
1εu

2 can be seen as a binary representation of a
number from the set {0, 1, 2, 3} and εu

1εu
2εv

1ε
v
2ε

w
1 εw

2 can be viewed as a binary
representation of a number from the set {0, 1, . . . , 63}, where −1 plays the role
of 0. Then we can write Zp as the polynomial

1
64

63∑
q=0

(−1)sqWq · (εu
1 + cuq

1)(εu
2 + cuq

2)(εv
1 + cvq

1)(εv
2 + cvq

2)(εw
1 + cwq

1)(εw
2 + cwq

2),

where cuq
1 cuq

2 cvq
1 cvq

2 cwq
1 cwq

2 is the binary representation of q, sq is the number of
digits equal −1 in this representation, and Wq equals the value of Zp for the
case when the binary representations of φ(u), φ(v) and φ(w) are cuq

1 cuq
2 , cvq

1 cvq
2

and cwq
1 cwq

2 , respectively. The actual values for Zp for each case are given in the
proof of Lemma 9. The above polynomial is of degree 6. It remains to recall that
Z =

∑m
p=1 Zp. ��

Let us consider the following natural transformation of our key construction
introduced in the beginning of this section. Let (V, C) be an instance of Lin-

ear Ordering and (V,B), (V, A′) and (V, A′′) be the associated instances of
Betweenness and Acyclic Subdigraph. Let b be the number of pairs of mu-
tually opposite arcs in the directed multigraph D = (V, A′∪A′′) that are deleted
by our reduction rule, and let r = 2(m − b). Let t be the number of complete
3-sets of constraints in B whose deletion from B eliminates all complete 3-sets
of constraints in B and let s = m− 3t.

Lemma 11. We have E[Z2] ≥ 11
3072 (r + s).

Proof. Let A = A′ ∪ A′′ = {a1, . . . , a2m} and D = (V, A). Fix a function
φ : V→{0, 1, 2, 3}. For a random φ-compatible linear ordering π of V , define
a binary random variable xi that takes value one if and only if ai is satisfied
by π. Analogously, define a binary random variable yi that takes value one if
and only if Bi is satisfied by π. Let Xi = E[xi] − 1/2 for all i = 1, . . . , 2m, let
Yj = E[yj]− 1/3 for all j = 1, . . . , m and let X =

∑2m
i=1 Xi, Y =

∑m
i=1 Yi. Recall

that b is the number of deleted pairs of mutually opposite arcs from D, and t is
the number of complete 3-sets deleted from B. Assume, without loss of generality,
that the remaining arcs are a1, . . . , ar and the remaining betweenness constraints
are B1, . . . , Bs. Then X =

∑2m
i=1 Xi =

∑r
i=1 Xi, Y =

∑m
i=1 Yi =

∑s
i=1 Yi and, by

All Ternary Permutation Constraint Satisfaction Problems 335

Lemma 9, Z = X + Y/2. Now let φ be a random function from V to {0, 1, 2, 3}.
We have the following:

E[Z2] = E[X2 + XY + Y 2/4] = E[X2] + E[Y 2]/4 + E

⎡⎣(r∑
i=1

Xi

)⎛⎝ s∑
j=1

Yj

⎞⎠⎤⎦
= E[X2] + E[Y 2]/4 +

r∑
i=1

s∑
j=1

E[XiYj].

We will show that E[XiYj] = 0 for any pair (i, j). Let φ′ : V→{0, 1, 2, 3}
be defined as φ′(x) = 3 − φ(x) for all x. Let Xi(φ) be the value of Xi when
considering φ-compatible orderings and define Xi(φ′), Yi(φ) and Yi(φ′) analo-
gously. From Table 2 we note that Yj(φ) = Yi(φ′), and from Table 3 we note
that Xj(φ) = −Xi(φ′). From E[XiYj] = 1

4|V |
∑

φ Xi(φ)Yj(φ) it follows that

2E[XiYj] = 2

⎡⎣ 1
4|V |

∑
φ

Xi(φ)Yj(φ)

⎤⎦ =
1

4|V |

∑
φ

[Xi(φ)Yj(φ)+Xi(φ′)Yj(φ′)] = 0.

Therefore, E[Z2] = E[X2] + E[Y 2]/4. It follows from Lemmas 4 and 6 that
E[X2] ≥ r/32 and E[Y 2] ≥ 11

768s. We conclude that E[Z2] ≥ 11
3072 (r + s). ��

Lemma 12. There is a constant c > 0 such that if r + s ≥ ck2, then (V, C, k)
is a “yes”-instance of Linear Ordering-AA.

Proof. By Lemmas 10 and 2, we have E[Z4] ≤ 96(E[Z2])2. As E[Z] = 0, it follows

from Lemma 1 that P

(
Z >

√
E[Z2]
2·93

)
> 0. By Lemma 11, E[Z2] ≥ 11

3072 (r + s).

Hence, P

(
Z >

√
11

3072 (r+s)
2·93

)
> 0. Therefore if r + s ≥ ck2, where c = 4 · 96 ·

3072/11, then by Lemma 8 (V, C, k) is a “yes”-instance of Linear Ordering-

AA. ��

After we have deleted mutually opposite arcs from D and complete 3-sets of
constraints from B we may assume, by Lemma 12, that D has an arc multiset
A = {a1, . . . , ar} left, with r = O(k2), and B now contains s = O(k2) constraints
B1, . . . , Bs. By Lemma 7, dev(V, C) = maxπ[(dev(V, A, π) + dev(V, B, π))/2],
where the maximum is taken over all linear orderings π of V .

We now create a new instance (V ′, C′, k) of Linear Ordering-AA as follows.
Let ω be a new variable not in V . For every ai = (ui, vi) add the constraints
(ω, ui, vi), (ui, ω, vi) and (ui, vi, ω) to C′. For every Bi = (ai, {bi, ci}) add the
constraints (bi, ai, ci) and (ci, ai, bi) to C′. Let V ′ be the set of variables that
appear in some constraint in C′. Then (V ′, C′) is an instance of Linear Or-

dering with O(k2) variables and constraints. Now the number of constraints
in C′ satisfied by any linear ordering α of V ′ equals the number of arcs in D
satisfied by α plus the number of constraints in B satisfied by α. As the average

336 G. Gutin et al.

number of constraints satisfied in (V ′, C′) equals (3r + 2s)/6 = r/2 + s/3, it
follows that dev(V, C) = maxπ[(dev(V, A, π) + dev(V,B, π))/2] = dev(V ′, C′)/2.
Hence, (V ′, C′, k) is a kernel of Linear Ordering-AA with O(k2) variables
and constraints. We have established the following theorem.

Theorem 2. Linear Ordering-AA has a kernel with O(k2) variables and
constraints.

Using Proposition 1 and Theorem 2 we prove the following in [16].

Theorem 3. There is a bikernel with O(k2) variables from Πi-AA to Πj-AA

for each pair (i, j) such that 0 ≤ i ≤ 10 and 0 ≤ j ≤ 10 but j 	∈ {2, 7}.

Using Theorems 1 and 3 we prove the following in [16].

Theorem 4. All ternary Permutation-CSPs parameterized above average have
kernels with O(k2) variables.

Acknowledgements. The authors thank Mark Jones for carefully reading the
paper and finding several minor mistakes that we have corrected.

References

1. Alon, N., Gutin, G., Kim, E.J., Szeider, S., Yeo, A.: Solving MAX-r-SAT above a
tight lower bound. Tech. Report arXiv:0907.4573,
http://arxiv.org/abs/0907.4573 ; A preliminary version was published in Proc.
SODA, pp. 511–517 (2010)

2. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems with-
out polynomial kernels. J. Comput. Syst. Sci. 75(8), 423–434 (2009)

3. Bodlaender, H.L., Thomassé, S., Yeo, A.: Kernel bounds for disjoint cycles and
disjoint paths. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp.
635–646. Springer, Heidelberg (2009)

4. Bonami, A.: Étude des coefficients de Fourier des fonctions de Lp(G). Ann. Inst.
Fourier 20(2), 335–402 (1970)

5. Charikar, M., Guruswami, V., Manokaran, R.: Every permutation CSP of arity 3
is approximation resistant. In: Proc. of CCC 2009, pp. 62–73 (2009)

6. Chor, B., Sudan, M.: A geometric approach to betweenness. SIAM J. Discrete
Mathematics 11(4), 511–523 (1998)

7. Crowston, R., Gutin, G., Jones, M.: Note on Max Lin-2 above average. Inform.
Proc. Lett. 110, 451–454 (2010)

8. Crowston, R., Gutin, G., Jones, M., Kim, E.J., Ruzsa, I.Z.: Systems of linear
equations over F2 and problems parameterized above average. To appear in Proc.
SWAT 2010 (2010)

9. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999)

10. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg
(2006)

11. Galil, Z., Megiddo, N.: Cyclic ordering is NP-complete. Theor. Comput. Sci. 5(2),
179–182 (1977)

http://arxiv.org/abs/0907.4573

All Ternary Permutation Constraint Satisfaction Problems 337

12. Goerdt, A.: On random betweenness constraints. In: Gȩbala, M. (ed.) FCT 2009.
LNCS, vol. 5699, pp. 157–168. Springer, Heidelberg (2009)

13. Goerdt, A.: On random ordering constraints. In: Frid, A., Morozov, A., Ry-
balchenko, A., Wagner, K.W. (eds.) CSR 2009. LNCS, vol. 5675, pp. 105–116.
Springer, Heidelberg (2009)

14. Gross, L.: Logarithmic Sobolev inequalities. Amer. J. Math. 97, 1061–1083 (1975)
15. Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization.

ACM SIGACT News 38, 31–45 (2007)
16. Gutin, G., van Iersel, L., Mnich, M., Yeo, A.: All Ternary Permutation Constraint

Satisfaction Problems Parameterized Above Average Have Kernels with Quadratic
Number of Variables. Technical Report arXiv:1004.1956v2 [cs.DS]

17. Gutin, G., Kim, E.J., Lampis, M., Mitsou, V.: Vertex Cover Problem Parameterized
Above and Below Tight Bounds. Theory Comput. Syst. (in press)

18. Gutin, G., Kim, E.J., Mnich, M., Yeo, A.: Betweenness Parameterized Above Tight
Lower Bound. J. Comput. Sys. Sci. (in press)

19. Gutin, G., Kim, E.J., Szeider, S., Yeo, A.: A probabilistic approach to problems
parameterized above or below tight bounds. J. Comput. Sys. Sci. (in press); A
preliminary version is in Proc. IWPEC 2009. LNCS. 5917, pp. 234–245 (2009)

20. Gutin, G., Rafiey, A., Szeider, S., Yeo, A.: The linear arrangement problem pa-
rameterized above guaranteed value. Theory Comput. Syst. 41, 521–538 (2007)

21. Gutin, G., Szeider, S., Yeo, A.: Fixed-parameter complexity of minimum profile
problems. Algorithmica 52(2), 133–152 (2008)

22. Guttmann, W., Maucher, M.: Variations on an ordering theme with constraints.
In: Navarro, G., Bertossi, L., Kohayakwa, Y. (eds.) Proc. 4th IFIP International
Conference on Theoretical Computer Science-TCS 2006, pp. 77–90. Springer, Hei-
delberg (2006)

23. Isli, A., Cohn, A.G.: A new approach to cyclic ordering of 2D orientations using
ternary relation algebras. Artificial Intelligence 122(1-2), 137–187 (2000)

24. Mahajan, M., Raman, V.: Parameterizing above guaranteed values: MaxSat and
MaxCut. J. Algorithms 31(2), 335–354 (1999)

25. Mahajan, M., Raman, V., Sikdar, S.: Parameterizing above or below guaranteed
values. J. Comput. Syst. Sci. 75(2), 137–153 (2009)

26. Niedermeier, R.: Invitation to fixed-parameter algorithms. Oxford Univ. Press,
Oxford (2006)

27. Opatrný, J.: Total ordering problem. SIAM J. Comput. 8(1), 111–114 (1979)
28. Villanger, Y., Heggernes, P., Paul, C., Telle, J.A.: Interval completion is fixed

parameter tractable. SIAM J. Comput. 38(5), 2007–2020 (2009)

Strong Formulations for the Multi-module PESP

and a Quadratic Algorithm
for Graphical Diophantine Equation Systems

Laura Galli1 and Sebastian Stiller2

1 DEIS, Alma Mater University of Bologna, Italy
2 Institut für Mathematik, Technische Universität Berlin, Germany

Abstract. The Periodic Event Scheduling Problem (PESP) is the
method of choice for real-world periodic timetabling in public transport.
Its MIP formulation has been studied intensely for the case of uniform
modules, i.e., when all events have the same period. In practice, multiple
periods are equally important. Yet, the powerful methods developed for
uniform modules generally fail for the multi-module case. We analyze
a certain type of Diophantine equation systems closely related to the
multi-module PESP. Thereby, we identify a structure, so-called sharp
trees, that allows to solve the system in O(n2) time if the modules form
a linear lattice. Based on this we develop the machinery to solve multi-
module PESPs on real-world scale. In our computational results the new
MIP-formulations considerably improve the solvability of multi-module
PESPs.

1 Introduction

The Periodic Event Scheduling Problem (PESP) is a combinatorial optimization
problem of great practical importance introduced by [16]. It is the model of
choice for periodic timetabling in public transport [13],[14], has been used for
periodic job shop [16] and traffic signal scheduling [7],[5], and has successfully
and repeatedly been applied in practice.

The task is to schedule periodic recurring events, e.g., the arrivals and depar-
tures of trains, such that between pairs of periodic events periodic constraints
are fulfilled. A periodic constraint between periodic events i and j means that
for every realization of i there is at least one realization of j with time difference
greater or equal some lower respectively less or equal some upper bound modulo
the period of the application. Such constraints can model for periodic timeta-
bles the headway constraints, the stopping times, or that passengers can quickly
transfer between trains of different lines. In fact, the high modeling power of
the PESP (cf. [8]) even allows to include rolling stock minimization and crew
scheduling into the timetabling. This facilitated the construction of the first
mathematically optimized railway timetable, namely for the Berlin underground
in 2005.

The PESP is most powerfully solved as a (mixed) integer linear program
((M)IP). Apart from their practical importance, the IPs arising from the PESP

M. de Berg and U. Meyer (Eds.): ESA 2010, Part I, LNCS 6346, pp. 338–349, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Strong Formulations for the Multi-module PESP 339

are of independent theoretical interest. Any such IP is naturally associated to a
digraph, whose nodes and arcs represent respectively periodic events and periodic
constraints among them. There are node variables πi for each node i and offset
variables ka for each arc a. Two constraints correspond to each arc a = (i, j):
	a ≤ πj − πi + kaP ≤ ua. Thus, for each arc the difference of the node variables
must be in the interval [a, ua] modulo a constant P . This constant is the period
of the application, e.g., the time that elapses until the next train of the same line
arrives. This special class of IPs has attracted a lot of research attention from
combinatorics and integer programming perspectives. It has been shown to be
NP-complete in [11,12], even MAXSNP-hard in [8], and to have an unbounded
Chvatal rank [9]. Nevertheless, research efforts exploiting the graph structure
have led to a rich understanding of these IPs. These insights facilitate methods
that are eventually capable to solve instances of considerable and practically
relevant size—e.g., the timetable optimization of a complete national railway
system. Some of these instances are challenging enough to be found in the MI-
PLIB. (These are the instances on which we base the computational validation
of our method.)

The strong methods for uniform-module PESP have three ingredients (cf. [10]):
first, if the instance is feasible, then for any tree there exist optimal solutions
that have offsets equal to zero on that tree; second, a strong MIP formulation
can be constructed using an integral cycle basis; and finally, a class of round-
ing cuts (the Odijk inequalities), also based on a well chosen set of cycles, can
further improve the strength of the model. All of this fails if the modules are
not uniform. In general, solutions need non-zero offsets on all arcs. In general,
an integral cycle basis does not give an equivalent formulation, and the Odijk
inequalities become arbitrarily loose for multiple modules. Yet multi-module PE-
SPs are justified and even desired from the applications perspective: A public
transport system is often comprised of bus, subway, and commuter lines with
different periods. Also traffic lights in the same urban area may have different
periods.

For solving PESPs a special class of linear Diophantine equation systems
(DES) naturally related to the PESP is important. Again, given a digraph one
associates variables π to the nodes and k to the arcs, and each arc represents
an equation of the form: πj − πi + kaPa = xa. Note, the coefficients of the node
variables are equal to 1. Setting the arc coefficients Pa = 1 would allow for a
trivial solution k ≡ x, π ≡ 0. In this sense the proposed class is the simplest
non-trivial class of DES one can associate to a digraph. Therefore, we call them
Graphical Diophantine Equation Systems (GDES). GDESs are not only similar
to PESPs, they also play a role in the state-of-the-art solving methods for PESPs.
In the special case, when all modules Pa are equal, the GDES can be solved in
linear time by a straight forward algorithm. For the general case so far one has
to resort to constructing the Hermite Normal Form (HNF) of the GDES matrix,
which can be done in (high) polynomial time [15].

In this work, starting from an analysis of and a new algorithm for GDES,
we develop a method capable of solving real-world multi-module PESPs. We

340 L. Galli and S. Stiller

test this on multi-period instances which we get by changing the periods in the
uniform PESP instances that can be found in the MIPLIB, namely, timtab1 and
timtab2. These MIPLIB instances are real-world railway timetabling instances.
Related work: A concise exposition of the PESP and the state-of-the-art theory
and solving methods can be found in [8]. In [12] a set of particularly useful
rounding cuts have been proposed for the first time. In [3] optimization over the
first Chvatal rank of the PESP has been studied.

Diophantine equations systems can be solved as any other linear equation
system, once they are presented by their Hermite Normal Form (HNF). There
is a standard polytime algorithm for constructing the HNF [15]. While further
research on the HNF focuses on algorithms that use less space, we are not aware
of a specific algorithm for GDES. The GDES are a special, and particularly
simple class of DES. Similar flavor the Mixing Set Problem defines a particularly
simple class of Diophantine inequalities that has been studied intensively [2],[1]
and also has practical applications. Another very important class of DES that
are closely related to GDES are the so-called unique games [6].

For practical instances which feature two different modules P | P ′ (e.g., a
system of trains of which some run every hour and others every two hours)
the state-of-the-art [8] approach is to use a PESP with uniform module P ′ and
double the events that have higher frequency. The duplications of such an event
have to be mutually fixed by additional constraints. This increases the size of
the PESP.
Our Contribution and Outline: In Section 2 we present the so-called sharp
tree structure and show that if that exists then the offsets can be chosen zero
on it. These trees exist and can be found in O(n2) time, if the modules are
nested, i.e., form a linear lattice with respect to division. In Section 3 we show
that the existence of a sharp tree allows for a cycle basis formulation, which is
equivalent to the original arc formulation and gives a stronger IP. Moreover, we
show that we can prune a multi-module PESP, such that the fundamental cycles
of a sharp tree give particularly good inequalities. The same algorithm that finds
a sharp tree in case of nested modules, also solves a GDES in time quadratic in
the number of nodes (cf. Section 2). We also show that without the existence of
a sharp tree similar approaches to strengthen the IP formulation or to quickly
solve a GDES do not extend in general. In the final section we report on twelve
instances derived from the afore mentioned MIPLIB timetabling problems.
Definitions and Basics: Firstly, we define the two main mathematical objects
under consideration.

Definition 1. A digraph G(V, A) together with a natural valued function on the
arc set, P : A → N, and an integer valued function on the arc set x : A → Z is
called a graphical representation of the following system of Diophantine equations
on variable vectors (π, k) ∈ Z|V |,|A|:

πj − πi + kaPa = xa ∀a(= (i, j)) ∈ A. (1)

A system for which a graphical representation exists is called a graphical Dio-
phantine equation system (GDES).

Strong Formulations for the Multi-module PESP 341

The results we derive also hold if x maps to the rationals and P can be negative,
but we can restrict w.l.o.g. (cf. [8]) to natural numbers for simplicity and also
for its significance in a practical context. From a GDES one can straight forward
construct its representation and this representation is unique up to isomorphism.
So we speak of the representation of a GDES.

Definition 2. Given a digraph G(V, A) together with two rational functions on
the arc set, 	 : A→ Q and u : A → Q, a third natural valued function on the arcs,
P : A → N, and a cost vector c ∈ Q|A|, the following mixed integer program is
called a classical formulation for the periodic event scheduling problem (PESP):

min
∑

(i,j)=a∈A

ca(πj − πi + kaPa) (2)

	a ≤ πj − πi + kaPa ≤ ua ∀a(= (i, j)) ∈ A (3)

π ∈ Q|V |, k ∈ Z|A|. (4)

In most applications the events, i.e., the nodes—not primarily the arcs—are
periodic. So the constraints should rather read: 	a ≤ (πj + kjPj)− (πi + kiPi) ≤
ua. It is easily checked that this is equivalent to the formulation above, when we
choose Pa = gcd{Pi, Pj}.

We will use subscripts for the arguments of the functions x, u, 	 and P in the
remainder. We abbreviate n :=| V | and m :=| A |. We will use V (G) and A(G)
to denote node and arc sets of a graph. Generally the values of P are called
periods or modules, those of x tensions, those of π potentials, an those of k
offsets. In the remainder we will assume w.l.o.g. the graphs to be connected. It
is easy to see, that if the image of u and l are in the integers there is always an
optimal solution with all π integral. So basically, the PESP is an IP, although it
is constantly referred to in the literature as a MIP.
We Summarize Some Basics on the PESP: Notice, the objective function
only refers to pairwise differences of potentials. This is partly due to the pertinent
applications, partly to the mathematical structure. The k variables model the
modulo operator. It would be strange to count them in a practical objective.
Moreover, for any feasible solution (π, k) and any q ∈ Q also (q +π, k) is feasible
and has the same objective value.

Assume all Pa are equal, and let x be the vector of arc differences of a solution
(π, k), i.e., x(i,j) = πj−πi +k(i,j)P . A vector x arising from a solution in this way
is called its tension. It is easily checked—and we will re-prove it as a by-product
of a more general theorem—that for any tree T there is a vector (π, k)′ with the
same tension x but k′

a = 0 for all a ∈ T . Note, that (π, k)′ is also a feasible solution
and has the same objective value as (π, k), because it has the same tension. This
gives rise to two important features of the PESP with uniform modules.

First, if we know the tension x, we can construct a feasible solution in a simple
way: Set πi = 0 for an arbitrary node i. Choose an arbitrary spanning tree T ,
and propagate π starting from i along T with respect to x. Propagation means,
that we solve the equality system πj −πi = xa for all a ∈ A(T) iteratively fixing
the node values as we traverse the tree.

342 L. Galli and S. Stiller

It is helpful to notice, that any arc a with ua − 	a ≥ P states a redundant
condition. Also, we can replace a directed arc by its antiparallel arc, simply by
multiplying both constraint by (−1).

The second important concept are cycle bases. A cycle basis is a basis for the
linear subspace spanned by the incidence vectors of cycles in the vector space Qm

spanned by the arc incidence vectors. Note that a cycle may have forward and
backward arcs. For the latter the incidence vector of the cycle has a (−1) entry.
A cycle basis is called integral, if all cycles are integer linear combination of the
elements of the basis. Given a spanning tree T in the graph, the fundamental
cycles C(a, T) of all non-tree arcs a /∈ A(T) form a cycle basis. A fundamental
cycle C(a, T) of a non-tree arc a with respect to a spanning tree T is composed
of the arc itself and the unique path in T connecting its endnodes. Such a basis
is called a fundamental cycle basis (sometimes also: strictly fundamental). Every
fundamental cycle basis is integral.

Finally, in the case of uniform modules, we can sum the constraints along
a cycle C, yielding a new, valid constraint. Replacing πj − πi by x(i,j) this
constraint reads:

∑
a∈C xa = kCP , where kC =

∑
a∈C ka, and we assume w.l.o.g.

all arcs to be directed in the orientation of the cycle. If a tension vector x
fulfills this cycle constraint for all cycles of an integral cycle basis, then it is the
tension of a solution (π, k). If in addition xa ∈ [a, ua], then it is the tension of
a feasible solution (π, k). In other words, for uniform modules an integral cycle
basis gives rise to an equivalent MIP formulation. This cycle basis formulation
has proven [10] significantly stronger than the original arc formulation.

For a cycle C we abbreviate gcd(C) := gcd{Pa : a ∈ C}.

2 Graphical Diophantine Equations Systems

Both, the Diophantine and the MIP results in this paper are based on Lemma 1
that guarantees the existence of well structured solutions under certain condi-
tions. To state these conditions we define the following.

Definition 3. Let G be a GDES and G the graph of its representation. A span-
ning tree T in G is called a sharp tree, if each of its fundamental cycles C(a, T)
has greatest common divisor equal to Pa, the module of the cycle’s non-tree arc
a ∈ A(G) \A(T).

Lemma 1. Let G be a GDES and T a sharp tree in the graph of its represen-
tation. If G has a solution, then there is a solution of G with ka = 0 for all
a ∈ T .

Proof. Reorder the matrix of the GDES such that the following holds: The new
matrix M starts with the n−1 rows corresponding to the arcs in T . Restricted to
the columns affecting the π variables, these rows form a lower triangular matrix
(the first column omitted). The columns affecting k form a diagonal matrix.

Index the nodes according to their column and arcs according to their rows
in M . For two nodes v and w denote by P(v, w, T) the unique path from v to w
in T .

Strong Formulations for the Multi-module PESP 343

Let (π, k)0 be some solution. We construct a solution (π, k)n−1 over n − 1
stages denoted (π, k)i, i ∈ {1 . . . n − 1}. For each i ∈ {1 . . . n − 1} successively
with increasing row index we take four steps:

1. Set ki
i = 0.

2. Re-establish the correctness of the i-th equation by changing the node value
πi corresponding to Mi,i, the right most non-zero entry in the first n − 1
columns, i.e., πi

i := πi−1
i + Mi,ik

0
i Pi. Let 	(i) be minimal with Mi,�(i) 	= 0,

i.e., the other node of arc i.
3. Propagate the new node value downwards along the tree. Formally: For all

remaining tree rows t ∈ {i + 1 . . . n − 1} successively with increasing row
index set πi

t := πi−1
t + Mi,ik

0
i Pi in case 	(i) /∈ P(i, t, T).

4. Re-establish correctness (in arbitrary order) for the equations of non-tree
arcs by adjusting their arc variables. Formally: For all j ∈ {n, . . . , m} let
1 ≤ r < s ≤ n − 1 be the nodes of arc j, i.e., Mj,r and Mj,s 	= 0. Set

ki
j := ki−1

j − Mj,r(πi
r−πi−1

r)+Mj,s(πi
s−πi−1

s)
Pj

.

(We were a bit sloppy dropping exceptional handling of first row and column,
and omitting when πi

j := πi−1
j and likewise for k.)

Obviously, each (π, k)i fulfills all equalities. Observe, we touch the arc variable
kt of any tree row only in stage t. Therefore, (π, k)i the solution of any stage
i ∈ {1 . . . n−1} has ki

t = 0 for all t ∈ {1 . . . i}. It remains to show for the non-tree
arcs j ∈ {n . . .m} that every ki

j is an integer, in particular, that

Pj |
[
Mj,r(πi

r − πi−1
r) + Mj,s(πi

s − πi−1
s)

]
.

For all nodes s we have πi
s − πi−1

s =| k0
i Pi |. Now, distinguish whether 	(i) ∈

P(r, s, T) or not. If 	(i) is in, so is i and the i-th arc is on the fundamental
cycle of j in T . Thus, Pj | Pi by condition of the lemma and we are done. In
case, 	(i) /∈ P(r, s, T) both nodes are changed by the same value. Therefore,
Mj,r(πi

r − πi−1
r) + Mj,s(πi

s − πi−1
s) = 0, which completes the proof. ��

To guarantee the existence of sharp trees we need the following property:

Definition 4. We say a GDES (or a PESP) has nested modules, if for each
pair of its modules Pa ≤ Pb we have Pa | Pb.

We will show that GDES with nested modules have sharp trees, whereas sharp
trees do not exist in general.
Nested Modules: The DENDI–algorithm (Diophantine Equations with
Nested DIvisors) (cf. [4] for pseudo-code) solves GDES with nested modules.
In addition it constructs a sharp tree. The algorithm considers the arcs in sub-
sequent levels 	 according to their module. On the first level, it constructs span-
ning trees in the connected components of arcs with maximal modules. Then it
shrinks these components to super-nodes and carries on with the next smaller
level of modules. This way DENDI–algorithm constructs a subgraph, actually
a tree, along which one can propagate the potentials π according to the ten-
sions. Finally, DENDI verifies whether the equations of the non-tree arcs can

344 L. Galli and S. Stiller

also be fulfilled for the chosen π. For the correctness of the algorithm we show
two lemmata.

Lemma 2. The subgraph T returned by the DENDI–algorithm is a sharp tree.

Proof. Obviously, T is a spanning tree. Consider a non-tree arc a and its module
Pa.Every other arc b in the fundamental cycle C(a, T) either belongs to the same
component as a on level 	 or to a tree of a component shrunk into a super-node
on an earlier level. In both cases P � ≤ Pb. The modules being nested, this implies
Pa | Pb, and thus T is sharp. ��

Thus, we have:

Theorem 1. A GDES with nested modules has a sharp tree.

Lemma 3. The DENDI–algorithm returns failure, iff the GDES is infeasible.
Moreover, the offset ka = 0 for all tree arcs a ∈ A(T).

Proof. The offsets vanish on the tree arcs by construction, and because of the
final test in DENDI–algorithm, (π, k) is a solution to the GDES, if they are
returned. By Lemma 2 T is sharp. Hence, by Lemma 1 the GDES has a solution
iff it has a solution with ka = 0 for all a ∈ A(T). If such a solution exists, it is fully
determined by the potential of one node i, propagated along the spanning tree
T . If π∗ is such a solution, then π∗ + z is also one for all z ∈ Z. In particular,
the π constructed in DENDI–algorithm is one. Thus, if the π constructed by
DENDI is infeasible, then the GDES is infeasible. ��

Observe that one can force any minimum spanning tree algorithm to return
the same tree as the (weighted) DENDI-algorithm by introducing the following
weights: The weight of an arc is (the sum of its original weight w and) a mul-
tiple of a large constant M(>

∑
w), where arcs with larger period get smaller

multiples of M . Therefore, we can substitute DENDI–algorithm by any MST
algorithm and conclude:

Theorem 2. The DENDI-algorithm is correct, and has a running time in O(n2),
where n is the dimension of the solution vector.

General Modules: Requiring nested modules may be suitable for the applica-
tion but constitutes a strong mathematical restriction. Still, the example on the
left of Figure 1(a) shows that we cannot hope for similar results in the general
case.

Example 1. In Figure 1(a) the numbers next to the arcs and nodes give the
modules of the arcs respectively the nodes. On the right, the arc modules result
as gcd of the node modules. Assume the tensions along the cycle sum up to 1.
This is feasible, because the gcd of all arcs is 1. Yet, a feasible solution must
have k 	= 0 on all arcs for the left graph, and either on the two vertical or the
two horizontal arcs for the right graph.

Strong Formulations for the Multi-module PESP 345

30

42

70

105

30 42

70105

15

6

14

10

(a) General modules
may prevent vanish-
ing offsets on any
spanning tree.

[1, 5]

[2, 5]

[1, 5]

[2, 4]

[1, 2]

(b) A sharp and a non-
sharp fundamental cycle
basis. Non-tree arcs are
dashed.

a7

a1

a2

a3

a4a5

a8

a9

a10

a6

(c) A sharp and a minimum
sharp cycle basis.

In general, a solution for any cycle C must have non-zero offsets k on a subset
S of C’s arcs, such that gcd(S) = gcd(C). As in the example this may require
all offsets to be non-zero.

Looking at GDESs from the perspective of the PESP and its applications,
the following objection is valid: In the application we are given periods for the
events, i.e., the nodes. The period (module) of an arc a = (i, j) arises in an
equivalent formulation as Pa = gcd{Pi, Pj}. Thus, the situation on the left of
Figure 1(a) cannot occur. Still, (cf. the example on the right in Figure 1(a)) node
modules can be such, that a solution must have non-zero offsets on a subset of
the arcs, that forms a maximal matching on any cycle.

3 Solving PESP with Multiple Modules

The methods for the PESP with uniform modules rest on a strong formulation
based on an integral cycle basis and on certain rounding cuts, that also stem from
cycles. We will show that in general an integral cycle basis for a multi-module
PESP does not give an equivalent formulation. Whereas, if a sharp tree exists,
we will show that, its fundamental cycle basis provides for the desired strong
formulation. In general, a multi-module PESP need not have a sharp tree. But
we have seen in the previous section that a sharp tree can be found in case of
nested modules.

The proper generalization of integral cycle bases for multi-module PESPs is
the following type of basis:

Definition 5. A fundamental cycle basis stemming from a sharp tree is called
a sharp cycle basis.

In particular, this means for each cycle C in a sharp basis, that the gcd(C) is
attained by the non-tree arc of C. Recall, that any fundamental cycle basis, and
thereby any sharp cycle basis is integral.

Lemma 4. Let B be a sharp cycle basis in a PESP model. For an arc vector x
the following three statements are equivalent:

1. The vector x is the arc tension of a node potential π.
2. The vector x fulfills the cycle equality for every cycle C, i.e., there is kC ∈ Z

such that
∑

a∈C xa = kC · gcd(C).
3. The vector x fulfills the cycle equality for every cycle C ∈ B.

346 L. Galli and S. Stiller

Proof. The inclusion 2 ⇒ 3 being trivial, we show 1⇒ 2 and 3⇒ 1.

1⇒2: According to (1) we have x(i,j) = πj−πi+k(i,j)P(i,j) for all arcs (i, j) ∈ A.
Summing along a cycle C (multiplying the equation of a with (−1) for
arcs a that lie in C contrary to its orientation) we get

∑
(i,j)∈C x(i,j) =

k(i,j)P(i,j).
3⇒1: Define a node potential π by setting πs = 0 for some node s and propagate

the x value along the sharp tree T . It remains to show that for every non-
tree arc (i, j) ∈ A \ T there is k(i,j) ∈ Z such that

πj − πi + x(i,j) = k(i,j)P(i,j). (5)

The fundamental cycle C := (P(i, j, T), (i, j)) is in B and P(i,j) = gcd(C),
and Equation (5) follows.

��

Together with Theorem 2 we get:

Theorem 3. Let G be a PESP in the arc formulation. If a sharp cycle basis
formulation for G exists, it is equivalent. If G has nested modules, then a sharp
cycle basis formulation exists and can be found in time in O(n2).

For multiple modules the cycle basis formulation is not equivalent to the arc
formulation even if the modules are nested. In the following example we show
that non-sharp trees do not guarantee an equivalent cycle basis formulation.

Example 2. Consider the graph on the left of Figure 1(b). Set the module Pa = 6
for all arcs except the diagonal one. For this set the module to 3. The interval
next to an arc shows its upper and lower bounds. As cost vector choose the unit
vector.

On the right of Figure 1(b) we show two fundamental cycle bases correspond-
ing to two different trees. The non-tree arcs of a fundamental cycle are drawn
dashed. On top, the cycle basis consists of two triangles. The corresponding tree
is not a sharp tree, because for both cycles the non-tree arc has module 6 and
the cycle’s gcd is 3. Again, the example cannot occur if the periods stem from
the nodes. Still, if one replaces the diagonal arc by two arcs of period 3 one can
choose the node periods accordingly.

Index the arcs clockwise starting left and put the diagonal arc last. Then the
optimal solution for this cycle basis formulation is x = (2, 2, 1, 2, 2), for which
DENDI–algorithm returns failure, i.e., it is not a tension of a feasible solution and
thus the cycle basis formulation is not equivalent to the original arc formulation.

Yet, if we consider the sharp tree consisting of the left, upper, and lower arc,
the corresponding cycle basis, shown at the bottom right of Figure 1(b), gives a
formulation which is equivalent to the arc formulation, as stated in Theorem 3.
In particular, the optimal solution we get is x = (3, 2, 3, 2, 1), for which DENDI–
algorithm is able to find a feasible set of potentials.

Algebraic Pruning: Assume again nested modules. Consider an arc a that is
in no cycle or only in cycles C with gcd(C) strictly smaller than Pa. Assume we

Strong Formulations for the Multi-module PESP 347

have a solution (x, k)∗ to a sharp cycle basis formulation of the PESP. The arc a
must lie in the sharp tree T of any such formulation. Therefore, recovering node
potentials from x∗ will result in a solution (π, k)′ with k′

aPa = kC(a,T) gcd(C).
Thus, the inequality of arc a is also fulfilled modulo gcd(C)—which is strictly
smaller than Pa. This observation allows to simplify a PESP with nested divisors:

Theorem 4. Given a PESP G with nested modules containing an arc a with
gcd(C) < Pa for all cycles C) a. The PESP G′, resulting from G by replacing
Pa by its largest divisor P ′

a 	= Pa, is equivalent to G.

One may repeatedly apply Theorem 4 to simplify the PESP in a pre-processing.
In case the considered arc is in no cycle, its module is ultimately set to 1,
which is equivalent to removing the arc. Any solution for the (after the removal)
disconnected graph can be amalgamated to a solution of the original PESP in
a linear time post-processing. As one can remove arcs, for which the difference
between upper and lower bound is greater or equal to the module, even reducing
to a non-trivial module can result in the arc being obsolete. This reduces the
dimension of the MIP and allow to assume the following property for the sharp
basis found by the DENDI:

Observation 1. W.l.o.g. for every arc a a sharp cycle basis contains a cycle
C, such that gcd(C) = Pa.

The basis of the DENDI–algorithm is sharp and thus has a tight cycle for each
arc. This will be exploited in the last section, where we seek to give a small set
of strong cuts derived from cycle inequalities.

Cuts and Sharp Trees: Solving a uniform-module PESP cycles are also
used to produce a special class of rounding cuts, the so-called Odijk inequalities:⌈∑

a+∈C 	a −
∑

a−∈C ua

P

⌉
≤ kC and

⌊∑
a+∈C ua −

∑
a−∈C 	a

P

⌋
≥ kC (6)

The key question is, for which cycles one should add the corresponding Odijk
inequalities to the MIP formulation. For the case of uniform modules there is
a well established heuristic reasoning: The right-hand side is rounded down (or
up) by a value between 0 and P − 1. If the total value of the right-hand side is
large in comparison to P the effect of rounding cannot be large.

Therefore, one is interested in shortest integral cycle bases. There is no poly-
nomial time algorithm known for this problem. Yet, there are many heuristics to
find short integral cycle bases. A standard approach is to construct a fundamen-
tal cycle basis from a minimum spanning tree (MST). Here the heuristic idea is,
that the non-tree arcs feature in exactly one cycle, whereas the minimized tree
arcs can occur in several cycles of the basis. Thus, the sum of all cycles will be
rather small, and the Odijk inequalities likely tight. For multiple modules the
rounding on a cycle C is between 0 and gcd(C). Assume the cycle C contains
an arc a with a significantly smaller module Pa than that of all other arcs in C.

348 L. Galli and S. Stiller

One can assume the difference between upper and lower bound on an arc to be
less than its module. But, the contribution to the right-hand side by each other
arc b ∈ C can be much larger than Pa, because Pb >> Pa. Thus, if an arc b is in
no cycle C with gcd(C) close to its own module Pb, the set of cuts will not have
a relevant effect on the number of choices for xb.

Theorem 4 allows to assume that every arc b ∈ A is in at least one cycle C
with gcd(C) = Pb. A sharp cycle basis for every arc b contains such a cycle C.
So, for multiple-modules PESPs we propose to choose cycle basis B such that
(1) B is a sharp cycle basis and (2) B arises from a sharp tree with minimal sum
of arc weights (with respect to (u−)) among all sharp trees. This can be found
by the weighted version of DENDI–algorithm.

4 Computational Results

We study twelve instances derived from timtab1 and timtab2, the MIPLIB
PESP instances1. These two MIPLIB instances are anonymized real-world
timetabling problems of a major European railway provider. We changed the
original periods of 60 on the nodes randomly to the nested periods 120, 60, 30, 15
and 5, giving lower probability to the small periods as they dominate in the tran-
sition from node to arc periods. After this transition, the bounds on the arcs
were adjusted relative to the change in period.

On these instances we compare the standard formulation to a sharp cycle
base formulation with the basis’ Odijk inequalities. For each we use CPLEX 10.0
with a timelimit (TL) of 2 hours on a 2.4Ghz processor. The sharp cycle basis
formulation is strikingly faster in detecting infeasibility and solves all except one
of the feasible instances with a better gap (cf. Table 1).

Table 1. multi-period miplib PESP statistics

Classical Sharp Tree + Odijks
instance status GAP% time (sec.) status GAP% time (sec.)

mpesp1 feasible 5.99 TL feasible 4.19 TL
mpesp2 feasible 6.13 TL feasible 5.73 TL
mpesp3 feasible 5.58 TL feasible 3.83 TL
mpesp4 feasible 2.94 TL feasible 2.50 TL
mpesp5 feasible 5.33 TL feasible 5.29 TL
mpesp6* feasible 9.81 TL feasible 10.26 TL
mpesp7 feasible 12.09 TL feasible 9.72 TL
mpesp8 feasible 12.87 TL feasible 9.71 TL
mpesp9 - - TL infeasible - 0
mpesp10 - - TL infeasible - 3431
mpesp11 infeasible - 6934 infeasible - 0
mpesp12 infeasible - 657 infeasible - 0

1 Elmar Swarat kindly provided us with the raw data of timtab.

Strong Formulations for the Multi-module PESP 349

Finally, note that nested periods in timetable optimization are also recom-
mendable in the light of quality of service: They yield that more passenger actu-
ally experience the optimized transfer time, because, e.g., for co-prime periods
every transfer time will be experienced by some passengers.

References

1. Conforti, M., Di Summa, M., Wolsey, L.: The mixing set with divisible capacities.
In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008. LNCS, vol. 5035, pp.
435–449. Springer, Heidelberg (2008)

2. Conforti, M., Zambelli, G.: The mixing set with divisible capacities: A simple
approach. Operations Research Letters 37, 379–383 (2009)

3. Fischetti, M., Lodi, A.: Optimizing over the first Chvatal closure. Mathematical
Programming 110(1), 3–20 (2006)

4. Galli, L., Stiller, S.: Strong Formulations for the Multi-module PESP and a
Quadratic Algorithm for Graphical Diophantine Equation Systems. COGA Tech-
nical Report 009–2010 (2010)

5. Hassin, R.: A flow algorithm for network synchronization. Operations Research 44,
570–579 (1996)

6. Khot, S.: On the power of unique 2-prover 1-round games. In: Proceedings of the
34th Annual ACM Symposium on Theory of Computing, pp. 767–775. ACM Press,
New York (2002)

7. Köhler, E., Möhring, R., Nökel, K., Wünsch, G.: Optimization of Signalized Traffic
Networks. In: Mathematics – Key Technology for the Future, pp. 179–180. Springer,
Heidelberg (2008)

8. Liebchen, C.: Periodic Timetable Optimization in Public Transport. Ph.D. thesis,
Technische Universität Berlin (2006)

9. Liebchen, C., Swarat, E.: The Second Chvatal Closure Can Yield Better Railway
Timetables. In: Proceedings of 8th Workshop on Algorithmic Approaches for Trans-
portation Modeling, Optimization, and Systems. Online Schloss Dagstuhl (2008)

10. Liebchen, C., Proksch, M., Wagner, F.H.: Performance of Algorithms for Periodic
Timetable Optimization. In: Computer-aided Systems in Public Transport, pp.
151–180. Springer, Heidelberg (2008)

11. Nachtigall, K.: Cutting planes for a polyhedron associated with a periodic network.
DLR Technical Report 112-96/17

12. Odijk, M.: Construction of periodic timetables, Part1: a cutting plane algorithm.
TU Delft Technical Report 94-61 (1994)

13. Odijk, M.: A constraint generation algorithm for the construction of periodic rail-
way timetables. Transportation Research B 30(6), 455–464 (1996)

14. Peeters, L.: Cyclic Railway Timetable Optimization. Ph.D. thesis, Erasmus Uni-
versity of Rotterdam (2003)

15. Schrijver, A.: Theory of Linear and Integer Programming. Wiley & Sons, Chichester
(1986)

16. Serafini, P., Ukovich, W.: A mathematical model for periodic scheduling problems.
SIAM Journal on Discrete Mathematics 2(4), 550–581 (1989)

Robust Algorithms for Sorting Railway Cars

Christina Büsing1 and Jens Maue2

1 Institut für Mathematik, Technische Universität Berlin, Germany
cbuesing@math.tu-berlin.de

2 Institute of Theoretical Computer Science, ETH Zürich, Switzerland
jens.maue@inf.ethz.ch

Abstract. We consider a sorting problem from railway optimization
called train classification: incoming trains are split up into their single
cars and reassembled to form new outgoing trains. Trains are subject
to delay, which may turn a prepared sorting schedule infeasible for the
disturbed situation. The classification methods applied today deal with
this issue by completely disregarding the input order of cars, which pro-
vides robustness against any amount of disturbance but also wastes the
potential contained in the a priori knowledge about the input.

We introduce a new method that provides a feasible sorting schedule
for the expected input and allows to flexibly insert additional sorting
steps if the schedule has become infeasible after revealing the disturbed
input. By excluding disruptions that almost never occur from our consid-
eration, we obtain a classification process that is quicker than the current
railway practice but still provides robustness against realistic delays. In
fact, our algorithm allows flexibly trading off fast classification against
high degrees of robustness depending on the respective need. We further
explore this flexibility in experiments on real-world traffic data, underlin-
ing our algorithm improves on the methods currently applied in practice.

1 Introduction

An essential process in railway optimization is train classification, which refers to
the rearrangement of cars to form new trains. With increasing world-wide freight
traffic, operating freight trains efficiently becomes more and more important,
and reducing the dwell time of cars in railway yards is one of the key factors to
improve freight service profitability.
General Classification Process. Exclusively for the purpose of train classifi-
cation, there are installations of railway tracks and switches called classification
yards (see Fig. 1). Such a yard features a hump track on which inbound trains ar-
rive and their cars are decoupled to be pushed over a sloping ramp called hump
at the end of the hump track. Hence, the cars accelerate by gravity and roll
through a tree of switches by which each car can be individually guided to some
classification track. This is called a roll-in operation. In a pull-out operation an
engine pulls all the cars on some classification track back to the hump track in
order to perform a further roll-in. A pair of pull-out and roll-in operations is
called a (sorting) step, and an initial roll-in followed by a sequence of h sorting

M. de Berg and U. Meyer (Eds.): ESA 2010, Part I, LNCS 6346, pp. 350–361, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Robust Algorithms for Sorting Railway Cars 351

steps is called a classification schedule of length h. The number of steps h essen-
tially determines the time required to conclude the sorting procedure. There are
	 inbound trains that, concatenated in the order they arrive at the yard, form
the inbound train sequence. Moreover, there are order specifications for the m
outbound trains, and a classification schedule is called feasible if its application
to the inbound train sequence yields the correctly ordered outbound trains, each
on a separate classification track.

Robust Train Classification. Often the inbound trains are subject to delay,
so we might be faced with an unexpected inbound order of trains. In our model
all disturbances, i.e. every combination of number of delayed trains and amount
of delay for each train, that are to be covered are given by a set of scenarios S. In
this set, each scenario S ∈ S defines a permutation of the inbound train sequence
called modified instance. A schedule for the original instance is called a first-
stage solution, and it may be infeasible for the modified instance corresponding
to some scenario. In response to disturbed input, we are prepared to insert up to
k additional sorting steps after the pth step of the first-stage solution, providing
a recovered solution. A first-stage solution for which, for every scenario S ∈ S,
there is a recovered solution that is feasible w.r.t. S is called recovery robust.
Given a sequence of 	 inbound trains, m order specifications of outbound trains,
and a set of scenarios S, the recovery-robust train classification problem is to
find a recovery robust, feasible first-stage solution of minimum length.

Related Work. There are many publications in the field of railway engineer-
ing that describe different train classification methods, e.g. [7,16,13,17,5]. These
methods are strictly robust, i.e. robust w.r.t. any set of scenarios, since they
apply a predefined classification schedule that is independent of the order of
railway cars entering the classification process. The method of geometric sort-
ing (see [7,16,13,17]) minimizes the number of sorting steps for a worst case (or
unknown) input order, which is proved in [11]. The still most-commonly used
method in practice is triangular sorting [7,16,13,17,5], which is optimal for re-
stricting the number of roll-ins per car to three for unknown input order [11].
However, neither method exploits the situation of a partially ordered input se-
quence, so they apply more sorting steps than necessary in general.

This issue was explored in [11], which develops a classification method that
minimizes the number of sorting steps based on complete knowledge of the in-
put data. Moreover, for the problem variant of classification tracks of bounded
length, [11] shows that minimizing the number of sorting steps is an NP-hard
problem. A 2-approximation for the same setting is derived in [12], several im-
provements of which are experimentally evaluated in [10] and compared to an
exact integer programming approach, which was earlier introduced in [15]. A
related algorithmic sorting problem is considered by Dahlhaus et al. [6]. Recent
overviews of train classification can be found in [9] and [8].

Since changes during the process of scheduling are time consuming, a cer-
tain amount of robustness is crucial for classification methods to work in prac-
tice. Providing strict robustness, however, wastes a lot of potential to disruption
scenarios that almost never occur in practice. As described above w.r.t. train

352 C. Büsing and J. Maue

classification, this dilemma is tackled by the concept of recoverable robust-
ness [14] by regarding realistic scenarios of delay and providing optimal robust
solutions w.r.t. a limited amount of recovery in case of disturbance. This concept
is applied to several railway-related optimization problems such as rolling stock
scheduling [1] or timetabling [3,4]. A first and—to the best of our knowledge—
only attempt to study this method for train classification is made by Cicerone
et. al [2] for a single inbound and outbound train. (Their results are summarized
in [3].) Besides the situations of strict robustness and complete recomputation
from scratch, which are more of theoretical interest, they consider a recovery
action that allows completely changing the classification instruction for one set
of cars that have the same instruction. The most relevant scenarios in [2] are
one additional car in the input and one car occurring at a different position
than expected. The latter corresponds to our problem setting for the special
case of trains consisting of single cars with a delay scenario of up to one train.
We generalize this setting to scenarios with more delays (mainly Sect. 4) and
the problem setting with complex trains. Besides, [2] deals with the scenario of
a single classification track becoming unavailable before the classification starts.
In this paper we focus on the most relevant reason for disruptions, which are
delayed trains.
Our Contribution. For the mentioned recovery action of adding up to k sort-
ing steps after an offset of p steps, we first introduce a generic algorithm in
Sect. 3. We prove that, for every constant k ≥ 1, finding a robust schedule of
minimum length is an NP-complete problem for general sets of scenarios. For the
practically relevant scenario of delaying up to j trains by an arbitrary amount
each, the problem can be solved in polynomial time (see Sect. 4). Furthermore,
we evaluate our new algorithm on real-world traffic data for various parameter
values k, p, and j. It turns out that, on the one hand, our algorithm yields very
short schedules while providing a fair degree of robustness. On the other hand, it
is capable of providing highly robust schedules that still improve on the current
classification practice, emphasizing the flexibility of our approach to modulate
between these conflicting objectives.

2 Encoding Classification Schedules

In addition to the concepts of Sect. 1, we introduce some futher notation required
for representing and deriving classification schedules.
Terminology and Notation. Corresponding to the notation of [11], we rep-
resent every car τ by a positive integer τ ∈ IN and a train T by a sequence of cars
T = (τ1, . . . , τk), where k is called the length of T . There are 	 inbound trains
T1, . . . , T�, whose concatenation we assume to be a permutation of (1, . . . , n), and
n is called the volume of cars. There are m outbound trains of respective length
ni, i = 1, . . . , m, and we assume the specification of the first outbound train is
(1, . . . , n1), the second (n1+1, . . . , n1+n2), etc. In contrast to the expected order
of inbound trains, there is no order implied for the outbound trains.

Robust Algorithms for Sorting Railway Cars 353

hump

hump
track

classification
tracks

7

1

5
3
2
4
6

5 6
2
3
7

1

4 15

6
2
3
7

4
72

3
6

15

4
7

2
3

6

4
7

0 0 1
0 1 2
0 1 3
1 0 4

9>>=
>>;

1st outbound train

0 0 5
0 1 6
1 1 7

9=
; 2nd outbound train

Fig. 1. Classification yard (left). Classification process for h=2, n=7, and m=2: initial
roll-in (2nd picture), first step (3rd), second step (4th); in both steps, the rightmost
occupied track is pulled out. Corresponding schedule encoding (right).

Regardless of which are their outbound trains, all cars are sorted simultane-
ously on the same set of classification tracks, called the sorting tracks. Their
lengths and available number are unrestricted, and the number actually used
corresponds to the number of sorting steps, where the track pulled in the kth
step is referred to by θk, k = 0, . . . , h − 1. The cars are finally collected on a
separate track for each outbound train, which are called destination tracks.
Schedule Representation. We will refer to the binary representation of a
decimal integer j ≥ 0 by [j]2. Given any bitstring b = bh−1 . . . b0 of length h, let
num(b) denote the integer number represented by b, i.e., num(b) =

∑h−1
i=0 2ibi.

For two bitstrings b1, b2 we define b1 < b2 iff num(b1) < num(b2). We represent
classification schedules of length h by assignments of cars to bitstrings of length
h [11]: bj = bj

h−1 . . . bj
0 encodes the journey of the jth car with bj

k = 1 iff it visits
θk pulled out in the kth step. After such a pull-out, the car is sent to θ� with
	 = min{i|k < i < h, bj

i = 1}; if bj
i = 0 for all i > k, it goes to the destination

track of its outbound train. The n bitstrings b1, . . . , bn form an (n×h)-matrix,
and b0, . . . , bh−1 denote its columns from “right” to “left”.

In order to derive a feasible schedule B of length h, two cars τ and τ+1 of the
same outgoing train must be assigned bitstrings bτ ≤ bτ+1. If these cars occur in
reversed order in the inbound sequence, we require bτ < bτ+1; then, the pair β =
(τ, τ+1) is called a break. If bτ and bτ+1 occur in different outbound trains, there
is no constraint between the two cars. As a result the length of a classification
schedule depends on the maximum number of breaks of all outbound trains [12].
Figure 1 shows an example classification process and the corresponding encoding
with four steps and tracks, where the rightmost track presents θ0 in the notation
above: cars 1 and 2 arrive in reversed order, so b1 < b2, whereas cars 2 and 3
arrive in correct order and have the same bitstring. Note that b7 > b6 is fine
though cars 6 and 7 arrive in correct order, and there is no constraint between
b4 and b5 since the fourth and fifth car belong to different outbound trains.

3 Recovery through Additional Sorting Steps

In this section we investigate the recovery strategy of inserting a limited number
of additional sorting steps to a first-stage schedule when a scenario occurs.

354 C. Büsing and J. Maue

Further Notation. A pair of consecutive cars β = (τ, τ +1) is called original
break if β is a break for the expected order of inbound trains. Given some S ∈ S,
we call β induced by S if β is a break in the modified instance corresponding to
S. If β is not an original break but induced by any S ∈ S, β is called a potential
break. W.l.o.g., we assume that every pair β = (τ, τ +1), τ ∈ {1, . . . , n − 1}, of
successive cars is either an original or a potential break: for any problem instance
with β not being a break, car τ+1 can be ignored while deriving a schedule and
assigned the same bitstring as τ in the final solution. For any first-stage solution
B, a break β = (τ, τ +1) is called unresolved w.r.t. S if β is induced by S and
bτ = bτ+1. For any scenario S ∈ S, XS denotes the set of potential breaks induced
by S. Note that this set XS is uniquely defined for every scenario S ∈ S, but there
may be different scenarios S 	= S′ with XS = XS′

. We will repeatedly regard
sets of potential breaks without considering the actual underlying scenario. In
particular, we will often describe sets of scenarios (e.g. as a parameter in problem
definitions) implicitly by providing the set of induced breaks of every scenario.
Let T1, . . . , T� be a sequence of 	 inbound trains with n cars, and let X be the set
of all original and potential breaks. For any pair of cars τ1, τ2, 1 ≤ τ1 < τ2 ≤ n,
we define X(τ1,τ2) as the set of all original and potential breaks occurring between
τ1 and τ2, i.e., X(τ1,τ2) = X ∩ {(τ1, τ1+1), (τ1+1, τ1+2), . . . (τ2 − 1, τ2)}.
Recovery Model. In many yards, there are certain classification tracks re-
served for the sorting procedure considered here, while other tracks are used
for different sorting activities. The inital roll-in to the reserved tracks is then
scattered over the day, and, when the last train arrives, the other activities are
stopped and the first pull-out performed. At this point a scenario is revealed for
which the original schedule may be infeasible. With the recovery action of insert-
ing up to k additional sorting steps to the first stage solution, we seek to obtain
a feasible schedule for the modified instance. Distributing the recovered solution,
i.e. the changed schedule, to all people involved in the operation takes some time
depending on the available communication channels. For these reasons, inserting
additional sorting steps is only allowed after an offset of p steps.

In terms of classification schedules, which present solutions to our optimiza-
tion problem, this means the following: given two parameters p ≥ 0 and k ≥ 0
and a first-stage solution schedule B of length h, B is to be recovered by in-
serting up to k additional columns with indices greater than p. This concept is
formalized in the following definition.

Definition 1. Let B = (bh−1, . . . , b0) and B′ = (b′h−1+j , . . . , b
′
0) be two classifi-

cation schedules for n cars of length h and h+j, j ≥ 0, respectively. Let further
p ≥ 0 and k ≥ 0. The schedule B′ is called a (p, k)-extension of B if j ≤ k,
bi = b′i for all 0 ≤ i < p and bi−j = b′i for all p+j−1 ≤ i ≤ h+j−1.

Note that in the definition above the additional columns are all added between
the (p−1)th and pth step of the original schedule. It can be shown easily that,
if inserting k columns at the ith position yields a feasible recovered schedule,
inserting these k columns at the (i−1)th position instead also yields a feasible
schedule. Hence, inserting at the “right-most” allowed position always presents

Robust Algorithms for Sorting Railway Cars 355

the most powerful recovery. The notion of (p, k)-extensions yields a natural con-
cept of recoverable robustness as stated in the following definition.

Definition 2. Let T1, . . . , T� be a sequence of 	 inbound trains and S a set of
scenarios with XS denoting the corresponding induced set of breaks for every
S ∈ S. A classification schedule B is called (p, k)-recovery robust if, for every
scenario S ∈ S, there is a (p, k)-extension of B that is feasible w.r.t. S.

Most likely, no delay occurs and the inbound trains arrive in the expected order,
in which case we usually do not want to apply any recovery for organizational
reasons. For our objective this means we look for feasible (p, k)-recovery robust
classification schedules of minimum length.

In order to specify when a given schedule is (p, k)-recovery robust for a given
set of scenarios, we introduce the notion of a block of a schedule. A block basically
is a maximal set of bitstrings representing integers between two powers of two.

Definition 3. Let B be a schedule of length h for an inbound train sequence of
n cars, and p ≥ 1. For any bitstring bj of B, bj

h−1...b
j
p is called the leading part

of bj, denoted by bj
>p, and bj

p−1 . . . bj
0 the trailing part of B, denoted by bj

<p. A
subset of λ consecutive bitstrings bj, . . . , bj+λ−1 of B is called a block of B if
their leading parts satisfy bj−1

>p < bj
>p, bj

>p = bj+x
>p for all 1 ≤ x ≤ λ − 1, and

bj+λ−1
>p < bj+λ

>p , while λ is called the size of the block. Furthermore, the jth car
of the inbound train sequence is called the head of the block.

The following lemma states the necessary and sufficient conditions for the ex-
istence of (p, k)-extensions. The recovery is performed independently for every
block, where unresolved breaks are successively fixed by raising the bitstring of
the second car of the break and all cars following it up to the end of the block.

Lemma 1. Let T1, . . . , T� be a sequence of 	 inbound trains, B a feasible classifi-
cation schedule, S a scenario, and p, k ≥ 0. Then, there exists a (p, k)-extension
of B that is feasible for S iff the number of unresolved breaks w.r.t. S does not
exceed 2k − 1 for any block of B.

General Algorithm. Applying the observations of the previous section, we
introduce a generic algorithm for computing (p, k)-recovery robust train classifi-
cation schedules. Basically, the algorithms successively grows the size of a block
to its maximum size. The maximum size of a block is determined by two factors:
First, a schedule B assigns at most 2p different bitstrings to the trailing part
of cars in the same block, i.e., at most 2p − 1 breaks can be resolved. Secondly,
the number of unresolved breaks in a block is limited by 2k − 1 potential breaks
induced by one scenario. We formalize the second condition in the following way.

Definition 4. Let T1, . . . , T� be a sequence of 	 inbound trains with a total of
n cars, τ1, τ2 ∈ {1, . . . , n} two cars, and k ≥ 0. Given a set of scenarios S,
a set of breaks X ′ ⊆ X(τ1,τ2) is called k-recoverable according to X(τ1,τ2) if
|X ′ ∩XS| ≤ 2k − 1 holds for all S ∈ S.

356 C. Büsing and J. Maue

Algorithm 1. k-recovery robust train classification

Data: number of cars n, set of original breaks Xorg, set of scenarios S, k, p ≥ 0
Result: k-recovery robust classification schedule B

Put i = 0, τi = 1, τmax = 0, X = X ′ = ∅1

while τi ≤ n do2

while τmax < τi + 2p + |X ′| and τi + 2p + |X ′| ≤ n do3

Set τmax = τi + 2p + |X ′|4

Set X = X(τi,τmax) ∩ (∪S∈SXS)5

Compute a maximum k-recoverable set of breaks X ′ ⊆ X6

end7

Set τmax = τi+1 = min(τi + 2p + |X ′|, n+1)8

Compute subschedule of length p for τi, . . . , τi+1 − 1 feasible w.r.t. X(τi,τi+1−1)\X ′
9

Set i = i+110

end11

Set h′ = �log2 i − 1	12

for j = 0, . . . , i − 1 do13

Set bτ
p+h′−1 . . . bτ

p = [j]2 for all τj ≤ τ ≤ τj+1 − 114

end15

return B16

Algorithm 1 determines the maximum size of a block by repeatedly solving
the problem of finding a maximum k-recoverable break set and thus constructs
an optimal (p, k)-recovery robust schedule.

Theorem 1. For any p ≥ 0 and k ≥ 0, Alg. 1 computes an optimal (p, k)-
recovery robust train classification schedule.

In Alg. 1 the step of computing a maximum k-recoverable break set in line 6 is
not specified. One way of solving this problem is integer programming. As we
will show in the following, there is in general no polynomial time algorithm to
solve this problem unless P = NP.
Computational Complexity. In this section we assume w.l.o.g. that we are
looking for a maximum k-recoverable break set for the cars 1, . . . , n, i.e., let S be
a set of scenarios, find a maximum k-recoverable break set X ′ of X = ∪S∈SXS .
By a reduction from the independent set problem, the decision version of this
problem is strongly NP-hard for k = 1. A different reduction from 2k

SAT leads
to the NP-completeness for any constant k ≥ 2.

Theorem 2. Let T1, . . . , T� be a sequence of 	 inbound trains, S a set of scenar-
ios, and K ≥ 0. For any constant k ≥ 1, it is strongly NP-complete to decide
whether there exists a k-recoverable break set of size K.

This theorem not only states that Alg. 1 will only run in polynomial time if
P = NP but also enable us to prove the NP-completeness of the (p, k)-recovery
robust classification problem.

Robust Algorithms for Sorting Railway Cars 357

Corollary 1. Let T1, . . . , T� be a sequence of 	 inbound trains, S a set of scenar-
ios, h, p ≥ 0, and k ≥ 1 const. Deciding whether there is a feasible (p, k)-recovery
robust classification schedule of length at most h is an NP-complete problem.

Infeasible Initial Solutions. In our model the first-stage solution is a feasible
classification schedule for the original order of trains. A special case of this setting
is to allow recovery even in case of no disturbance. In this case the original breaks
can be modeled by a scenario Sorg with XSorg = Xorg and no original breaks are
there, i.e., we assume that the cars arrive in perfect order.

4 Limited Number of Delayed Trains

As mentioned before, providing strict robustness wastes a lot of potential to
extreme scenarios that rarely occur. For this reason we introduce a simple yet
general class of scenarios in this section.
Scenario Model. Given some some parameter j, up to j trains are delayed
each by an arbitrary amount: let Θ = T1, . . . , T� be an inbound train sequence
and Θσ = Tσ−1(1), . . . , Tσ−1(�) be an order of trains induced by some permutation
σ : []→ []. Then, a sequence Θ̄ = Tσ̄−1(1), . . . , Tσ̄−1(�), where σ̄ is some permu-
tation, is called an (α, k)-delayed sequence of Θσ if σ(α) < k and the following
conditions hold: σ̄(x) = σ(x) if σ(x) < σ(α) or σ(x) > k, σ̄(x) = σ(x) − 1 for
σ(α) < σ(x) < k, and σ̄(α) = k. Less formally, train Tα is delayed from the
σ(α)th to the kth position. The set of scenarios Sj , 0 ≤ j ≤ 	, is now defined
to contain a scenario S (inducing some sequence ΘS) iff there is a sequence
Θ0, . . . , Θj of train sequences Θi such that Θ0 = Θ, Θi is an (αi, ki)-delayed se-
quence of Θi−1 for all i = 1, . . . , j, and Θj = ΘS . Every train Tαi will furthermore
be called to be delayed by S.
Dominating Set of Scenarios. We will see in Thrm. 3 that our considera-
tions can be restricted to the dominating subset S̄j ⊆ Sj of scenarios defined
as follows: a scenario S is a member of S̄j iff there is a sequence Θ0, . . . , Θj of
train sequences Θi such that Θ0 = Θ, Θi is an (αi,)-delayed sequence of Θi−1

for all i = 1, . . . , j, αi < αi−1 for all i = 1, . . . , j, and Θj = ΘS . In other words,
if two trains are delayed by S ∈ S̄j , they swap their relative order and arrive
later than all punctual trains. Note that for uniquely defining a scenario S ∈ S̄j

it suffices to list the j delayed trains since the order and amount of their delay
is determined by the definition of S̄j .

Theorem 3. Given any p, k, j ≥ 0, let B be a feasible (p, k)-recovery robust
schedule for S̄j. Then, B is a feasible (p, k)-recovery robust schedule for Sj.

Any potential break (τ, τ+1) can only be induced by S if the train containing τ is
delayed, but also the converse implication holds for S̄j as stated in the following
lemma.

Lemma 2. Let T1, . . . , T� be a sequence of inbound trains and S ∈ S̄j some
scenario. For any potential break β = (τ, τ +1) with τ ∈ Tx, x ∈ {1, . . . , 	},
β ∈ XS iff Tx is delayed by S.

358 C. Büsing and J. Maue

Algorithm 2. Max. k-Recoverable Set of Breaks for Sj with Unique Cars

Input: Parameters j, k ∈ N and sets of induced breaks X1, . . . , X�

Output: Maximum recoverable set of breaks

Descendingly sort X1, . . . , X� such that |Xi1 | ≥ |Xi2 | ≥ . . . ≥ |Xi� |1

Put α := max{it : |Xit | = |Xi1 |}2

while
Pj

t=1 |Xit | ≥ 2k do3

Remove an arbitrary break from Xiα4

Put α := max{it : |Xit | = |Xi1 |}5

end6

return
S�

i=1 Xi7

As an immediate consequence, the set of potential breaks XS of any scenario
S ∈ S̄j can be partitioned into disjoint subsets w.r.t. the respective delayed
train causing the break, a fact which is applied in the algorithm of the following
section. We will call the set Xi := {(τ, τ +1)|τ ∈ Ti, ∃y > i : τ +1 ∈ Ty} the set
of breaks induced by train Ti.
Maximum Recoverable Sets of Breaks. For S̄j a maximum recoverable set
of breaks is computed with Alg. 2: we repeatedly resolve potential breaks of the
train that induces the highest number of unresolved breaks until the worst case
scenario does not exceed the recovery capability given through the parameter k.
Correctness, optimality, and the running time of Alg. 2 are summarized in the
following theorem.

Theorem 4. Given a set of potential breaks X for some classification instance
with inbound trains T1, . . . , T�, a maximum k-recoverable set of breaks X ′ ⊆ X
w.r.t. S̄j can be computed in polynomial time.

As an immediate consequence of Thrm. 4, the problem of train classification
can be solved in polynomial time by combining Alg. 2 into Alg. 1. The resulting
algorithm is implemented in the following section and tested for a number of
real-world classification instances.
Experimental Evaluation. For the evaluation of the algorithm just described,
we took the five real-world instances used in [10], which unfortunately are the
only real-world instances available to us. They correspond to five days of traffic
in the Swiss classification yard Lausanne Triage, with volumes ranging from 310
to 486, numbers of inbound trains between 44 and 49, outbound trains between
24 and 27, and numbers of breaks between 24 and 28. In order to obtain unique
types of cars, we converted all cars of the same type between two consecutive
original breaks to distinct types ascending in the order the cars appear between
the breaks. The algorithm was implemented in C++, compiled with GNU g++-
4.4, and run on an 1.8 GHz Intel Core Duo CPU with 2 GB main memory.

Essentially, through adjusting the parameters p, k, and j, the algorithm al-
lows flexibly trading off shortest schedules against the other extreme of strict
robustness. Given some train classification instance, let h denote the length of

Robust Algorithms for Sorting Railway Cars 359

an optimal non-robust schedule and h̄ the length of an optimal strictly robust
schedule. The values h and h̄ present the lower and upper bounds for the length
resulting from any combination of j, k, and p. Yet, as explained in Sect. 1 (Re-
lated Work), h̄ may be exceeded by the geometric method, i.e. an optimal strictly
robust schedule disregarding presorted inbound trains, and even longer schedules
than this are obtained by triangular sorting.

Table 1. Optimal length values for Sj with (p, k)-extensions for the five traffic in-
stances: the values for the triangular and geometric method are given in the first and
second column, resp., h̄ and h in the third and fourth column, resp. Omitted entries
represent no meaningful choice of p.

k t g 0 0 1 2 3 4
p r e 0 0 0 1 2 3 4 0 1 2 3 4 0 1 2 3 1 2
j i o 1 0 1 2 1 2 1 2 1 2 1 2 3 4 1 2 3 4 1 2 3 4 2 3 4 3 4 7 8 5 6 7 8 3 4 5 6 7 8 4 5 6 7 8 ≥ 1 13 ≥ 14

inst-1 11 6 5 2 2 4 3 4 3 5 4 5 4 5 2 3 2 3 3 4 2 3 3 4 3 4 5 4 5 2 3 2 3 3 3 2 3 3 3 3 4 3 3 3 4 4 2 2 2
inst-2 8 5 5 3 3 4 3 4 3 4 3 5 5 3 3 3 3 3 3 3 3 3 4 3 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 3 3 3
inst-3 8 5 5 2 2 4 2 4 3 4 3 4 5 2 3 2 2 2 3 2 3 3 4 3 3 4 4 2 3 2 2 2 3 2 2 2 3 3 3 3 3 4 2 2 2
inst-4 10 6 5 2 2 4 2 4 3 4 3 5 5 2 3 2 2 2 3 2 3 3 4 3 3 4 5 2 2 2 2 2 3 2 2 2 3 3 3 3 3 4 2 2 3
inst-5 9 6 5 2 2 4 3 4 3 4 3 5 5 2 3 2 3 3 3 2 3 3 4 3 3 4 4 2 2 2 2 3 3 2 2 3 3 3 3 3 3 3 4 2 2 2

Table 1 summarizes the computed length of an optimal recovery robust sched-
ule according to the different parameters p, k and j. As lower and upper bounds
for those length inst-2 requires h= 3, while all other instances yield h= 2 and
h̄ = 5 for all instances. The geometric method requires h = 6 for three of the
instances, and the triangular method even between eight (int-2 and inst-3) and
eleven steps (inst-1), which shows that ignoring presorted input wastes a lot of
potential for improvement.

If only small amounts of recovery action (k = 1) are allowed, for j = 1 the
schedule length does not exceed h for inst-1 and inst-5 with p = 0, for inst-3
and inst-4 with p ≤ 1, and for inst-2 even for p ≤ 3, so yet for lowest degrees of
recovery we obtain some robustness without increasing the length beyond that
of an optimal non-robust schedule. Raising the degree of disturbance to j ≥ 2,
we still obtain a length h = 4 < h̄ if the value of p is increased to p = 1 for inst-1,
to p = 2 for inst-2, inst-4, and inst-5, and even to p = 3 for inst-3. These values
are significantly smaller than those for the strictly robust methods of geometric
or even triangular sorting.

The degree of robustness grows rapidly with increasing degrees of recovery,
and for k = 4 with p ≤ h—except for inst-4 with p = 2—we can allow any
number of delayed trains and still achieve the length h of an optimal robust
schedule. Between these extremes, Tab. 1 shows how far the value of p can be
raised for k = 2 and arbitrarily high amounts of delay j ≥ 4: most instances
allow p = 1 to obtain h = 3, and h = 4 can be achieved even for p = 4 for three
out of five instances. For k = 3, Fig. 2 (left) summarizes the values of inst-1: a
schedule of length 3 with a recovery action starting after the third sorting step
suffices to cope with a delay of up to six trains and p = 1 allows h ≤ 3 even
for any disturbance value j. Similarly, for a fixed value of p = 2, Fig. 2 (center)
shows the rapid growth of robustness: except for inst-2, k must be raised rather

360 C. Büsing and J. Maue

h=2

3

4

j=2 3 4 5 6 7 8

p=0
p=1
p=2
p=3

k=1

2

3

4

j=1 2 3 4 5 6

inst-1
inst-2

inst-3/4
inst-5 p=0

1

2

3

j=1 2 3 4 5

inst-1/5
inst-2

inst-3/4

Fig. 2. left: optimal schedule lengths h of inst-1 for k = 3; center: highest possible
values of k to achieve a length of h for p = 2; right: smallest possible values of p to
achieve a length of h for k = 2;

quickly between j = 1 and j = 3 to achieve a length of h, whereas the required
value of k does not exceed four for higher disturbances j ≥ 6. Conversely, Fig. 2
(right) fixes k = 2 and shows the maximum value of p that allows a length of
h: j = 1 still allows p = h for all instances, but, except for inst-2, this length h
cannot be achieved for any choice of p for high amounts of delay j ≥ 4. Hence,
higher values of k contribute much more to the potential of recovery than low
values of p. Summarizing, through adjusting the recovery parameters k and p,
our algorithm presents a tool to flexibly trade off between fast classification
and robust schedules and, even for high degrees of robustness, we achieve much
shorter schedules than the triangular method currently applied in practice.

5 Conclusion

We have developed a practically applicable algorithm for deriving robust train
classification schedules of minimum length. In contrast to [2], we regard multiple
inbound and outbound trains, which allows integrating the most relevant distur-
bance in form of delayed trains. We have introduced the natural recovery action
of (p, k)-extensions, for which we proved that the problem is NP-complete for
every constant k ≥ 1. Nevertheless, for the simple yet quite genral set of sce-
narios Sj , we have shown our generic algorithm of Sect. 3 can be implemented
in polynomial time by solving the subproblem of calculating a maximum recov-
erable set of breaks efficiently. The experimental study of Sect. 4 indicates that
the resulting algorithm improves on the current classification practice as it yields
shorter schedules and still allows high degrees of robustness. Its flexibility fur-
ther allows balancing between strictly robust and optimal non-robust schedules
and raises potential for increased traffic throughput in classification yards.
Future Work. Further practical restrictions, such as a limited number of clas-
sification tracks (see [15]), are desirable to be considered in the context of ro-
bustness. In a practical settings where the actual sorting is started (through
the first pull-out) before all inbound trains have arrived, the online version of
the problem becomes relevant. Moreover, the number of cars rolled in presents a

Robust Algorithms for Sorting Railway Cars 361

secondary objective, which can be additionally minimized for a minimum length.
Finally, making the order of inbound trains part of the optimization yields dif-
ferent robust optimization problems.

References

1. Cacchiani, V., Caprara, A., Galli, L., Kroon, L., Mároti, G.: Recoverable robustness
for railway rolling stock planning. In: ATMOS 2008, IBFI, Schloss Dagstuhl (2008)

2. Cicerone, S., D’Angelo, G., Di Stefano, G., Frigioni, D., Navarra, A.: Robust al-
gorithms and price of robustness in shunting problems. In: Liebchen, C., Ahuja,
R.K., Mesa, J.A. (eds.) ATMOS 2007. IBFI, pp. 175–190. Schloss Dagstuhl (2007)

3. Cicerone, S., D’Angelo, G., Di Stefano, G., Frigioni, D., Navarra, A., Schachtebeck,
M., Schöbel, A.: Recoverable robustness in shunting and timetabling. In: Ahuja,
R., Möhring, R., Zaroliagis, C. (eds.) Robust and Online Large-Scale Optimization.
LNCS, vol. 5868, pp. 28–60. Springer, Heidelberg (2009)

4. Cicerone, S., Di Stefano, G., Schachtebeck, M., Schöbel, A.: Dynamic algorithms
for recoverable robustness problems. In: ATMOS 2008. IBFI, Schloss Dagstuhl
(2008)

5. Daganzo, C.F., Dowling, R.G., Hall, R.W.: Railroad classification yard throughput:
The case of multistage triangular sorting. Transp. Res. 17A(2), 95–106 (1983)

6. Dahlhaus, E., Manne, F., Miller, M., Ryan, J.: Algorithms for combinatorial prob-
lems related to train marshalling. In: AWOCA 2000, pp. 7–16 (2000)

7. Flandorffer, H.: Vereinfachte Güterzugbildung. ETR RT 13, 114–118 (1953)
8. Gatto, M., Maue, J., Mihalak, M., Widmayer, P.: Shunting for dummies: An intro-

ductory algorithmic survey. In: Ahuja, R., Möhring, R., Zaroliagis, C. (eds.) Robust
and Online Large-Scale Optimization. LNCS, vol. 5868, pp. 310–337. Springer, Hei-
delberg (2009)

9. Hansmann, R.S., Zimmermann, U.T.: Optimal sorting of rolling stock at hump
yards. In: Mathematics - Key Technology for the Future: Joint Projects Between
Universities and Industry, pp. 189–203. Springer, Heidelberg (2007)

10. Hauser, A., Maue, J.: Experimental evaluation of approximation and heuristic al-
gorithms for sorting railway cars. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049,
pp. 154–165. Springer, Heidelberg (2010)

11. Jacob, R., Márton, P., Maue, J., Nunkesser, M.: Multistage methods for freight
train classification. In: Liebchen, C., Ahuja, R.K., Mesa, J.A. (eds.) ATMOS 2007,
pp. 158–174. IBFI, Schloss Dagstuhl (2007)

12. Jacob, R., Márton, P., Maue, J., Nunkesser, M.: Multistage methods for freight
train classification. Networks (2010) (to appear, 2010)

13. Krell, K.: Grundgedanken des Simultanverfahrens. ETR RT 22, 15–23 (1962)
14. Liebchen, C., Lübbecke, M.E., Möhring, R.H., Stiller, S.: The concept of recover-

able robustness, linear programming recovery, and railway applications. In: Ahuja,
R., Möhring, R., Zaroliagis, C. (eds.) Robust and Online Large-Scale Optimization.
LNCS, vol. 5868, pp. 1–27. Springer, Heidelberg (2009)

15. Márton, P., Maue, J., Nunkesser, M.: An improved classification procedure for the
hump yard Lausanne Triage. In: Clausen, J., Di Stefano, G. (eds.) ATMOS 2009.
IBFI, Schloss Dagstuhl (2009)

16. Pentinga, K.: Teaching simultaneous marshalling. Railway Gaz, 590–593 (1959)
17. Siddiqee, M.W.: Investigation of sorting and train formation schemes for a railroad

hump yard. In: Proc. of the 5th Int. Symposium on the Theory of Traffic Flow and
Transportation, pp. 377–387 (1972)

Cloning Voronoi Diagrams via

Retroactive Data Structures

Matthew T. Dickerson1, David Eppstein2, and Michael T. Goodrich2

1 Dept. of Math and Computer Sci., Middlebury College, Middlebury, Vermont, USA
2 Computer Science Department, University of California, Irvine, USA

Abstract. We address the problem of replicating a Voronoi diagram
V (S) of a planar point set S by making proximity queries:
1. the exact location of the nearest site(s) in S
2. the distance to and label(s) of the nearest site(s) in S
3. a unique label for every nearest site in S.

In addition to showing the limits of nearest-neighbor database security,
our methods also provide one of the first natural algorithmic applications
of retroactive data structures.

1 Introduction

In the algorithmic data-cloning framework [13], a data querier, Bob, is allowed
certain types of queries to a data set S that belongs to a data owner, Alice.
Once Alice has determined the kinds of queries that she will allow, she must
correctly answer every valid query from Bob. The information security question,
then, is to determine how many queries and how much processing time is needed
for Bob to clone the entire data set. We define a full cloning of S to mean that
Bob can answer any validly-formed query as accurately as Alice could. In an
ε-approximate cloning of S, Bob can answer any validly-formed query to within
an accuracy of ε > 0.

In this paper, we are interested in data sets consisting of a set S of n points
in the plane, where n and the contents of S are initially unknown. We study the
risks to S when Alice supports planar nearest-neighbor queries on S. We assume
that all the sites in S are inside a known bounding box, B, which, without
loss of generality, can be assumed to be a square with sides normalized to have
length 1. Since planar nearest-neighbor queries define a Voronoi diagram in the
plane (e.g., see [7]), we can view Bob’s goal in this instance of the algorithmic
data-cloning framework as that of trying to determine the Voronoi diagram of S
inside the bounding box B. We consider three types of responses (in decreasing
order of information content):

1. the exact location of the nearest site(s) to p in S
2. the distance and label(s) of the nearest site(s) to p in S
3. a unique label identifying each nearest site to p in S.

With all three cases, we want to know how difficult it is to compute the Voronoi
diagram, or an approximation of it, from a set of queries.

M. de Berg and U. Meyer (Eds.): ESA 2010, Part I, LNCS 6346, pp. 362–373, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Cloning Voronoi Diagrams via Retroactive Data Structures 363

Related work. Motivated by the problem of having a robot discover the shape
of an object by touching it [6], there is considerable amount of related work
in the computational geometry literature on discovering polygonal and polyhe-
dral shapes from probing (e.g., see [1,2,4,9,10,14,19,18]). We refer the interested
reader to the survey and book chapter by Skiena [17,20], and simply mention
that, with the notable exception of work by Dobkin et al. [9], this prior work
is primarily directed at discovering obstacles in a two-dimensional environment
using various kinds of contact probes. Translated into this context, their method
results in a scheme that would use 7n − 5 queries to clone a Voronoi diagram,
with a time overhead that is Θ(n2).

In the framework of retroactive data structures [3,8,12], each update operation
o to a data structure D, such as an insertion or deletion of an element, comes
with a unique numerical value, to, specifying a time value at which the operation
o is assumed to take place. The order in which operations are presented to the
data structure is not assumed to be the same as the order of these time values.
Just like update operations, query operations also come with time values; a
query with time value t should return a correct response with respect to a data
structure on which all operations with to < t have been performed. Thus, an
update operation, o, having a time value, to, will affect any subsequent queries
having time values greater than or equal to to. In a partially retroactive data
structure the time for a query must be at least as large as the maximum to seen
so far, whereas in a fully retroactive data structures there is no restriction on the
time values for queries. Demaine et al. [8] show how a general comparison-based
ordered dictionary (with successor and predecessor queries) of n elements (which
may not belong to a total order, but which can always be compared when they are
in D for the same time value) can be made fully retroactive in O(n log n) space
and O(log2 n) query time and amortized O(log2 n) update time in the pointer
machine model. Blelloch [3] and Giora and Kaplan [12] improve these bounds,
for numerical (totally ordered) items, showing how to achieve a fully retroactive
ordered dictionary in O(n) space and O(log n) query and update times in the
RAM model. These latter results do not apply to the general comparison-based
partially-ordered setting, however.

Our Results. Given a set S of n points in the plane, with an API that sup-
ports nearest-neighbor queries, we show how queries of Type 1 and Type 2
allow an exact cloning of the Voronoi diagram, V (S), of S with O(n) queries
and O(n log2 n) processing time. Our algorithms are based on non-trivial mod-
ifications of the sweep-line algorithm of Fortune [11] (see also [7]) so that it
can construct a Voronoi diagram correctly in O(n log2 n) time while tolerating
unbounded amounts of backtracking. We efficiently accommodate this unpre-
dictable backtracking through the use of a fully retroactive data structure for
general comparison-based dictionaries. In particular, our method is based on our
showing that the dynamic point location method of Cheng and Janardan [5] can
be adapted into a method for achieving a general comparison-based fully retroac-
tive ordered dictionary with O(n) space, O(log n) amortized update times, and
O(log2 n) query times. We also provide lower bounds that show that, even with

364 M.T. Dickerson, D. Eppstein, and M.T. Goodrich

an adaptation of the Dobkin et al. [9] approach optimized for nearest-neighbor
searches, there is a sequence of query responses that requires Ω(n2) overhead
for their approach applied to these types of exact queries. Nevertheless, we show
that it is possible to clone V (S) using only 3n queries. We prove that queries
of Type 3 can never exactly clone V (S), however, nor even determine with cer-
tainty the value of n = |S|. Nevertheless, we show that with n log(1

ε) queries we
can construct an ε-approximate cloning of V (S) that will support approximate
nearest neighbor queries guaranteeing a response that is a site within (additive)
ε > 0 distance of the exact nearest neighbor of the query point.

2 A Fully-Retroactive Ordered Dictionary

In this section, we develop a fully retroactive ordered dictionary data structure
using O(n) space, O(log n) amortized update time, and O(log2 n) query time,
based on a dynamic point location method of Cheng and Janardan [5]. The
main idea is to construct an interval tree, B, over the intervals between the
insertion and deletion times of each item in the dictionary, and to maintain B
as a BB[α]-tree [16].

Each item x is stored at the unique node v in B such that x’s insertion
time is associated with v’s left subtree and x’s deletion time is associated with
v’s right subtree. We store x in two priority search trees [15], L(v) and R(v),
associated with node v. These two priority search trees are both ordered by the
dictionary ordering of the items stored in them; all such items are active at the
time value that separates v’s left and right subtrees, so they are all comparable
to each other. The priority search trees differ, however, in how they prioritize
their items. As with priority search trees more generally, each node in L(v) and
R(v) stores two items, one that is used as a search key and another that has the
minimum or maximum priority within its subtree. In L(v), the insertion time of
an item is used as a priority, and a node in L(v) stores the item that has the
minimum insertion time among all items within the subtree of descendants of
that node. In R(v), the deletion time of an item is used as a priority, and a node
in R(v) stores the item that has the maximum deletion time within its subtree.

An insertion of an item x in D is done by finding the appropriate node v of
the interval tree and inserting x into L(v) and R(v), and a deletion is likewise
done by deletions in L(v) and R(v). Updates that cause a major imbalance in
the interval tree structure are processed by rebalancing, which implies, by the
properties of BB[α]-trees [16], that updates run in O(log n) amortized time.

Queries are done by searching the interval tree for the nodes with the property
that the retroactive time specified as part of the query could be contained within
one of the time intervals associated with that node. For each matching interval
tree node v, we perform a search in either L(v) or R(v) depending on the relation
between the query time and the time that separates the left and right children of
v. The search method of Cheng and Janardan [5] allows us to find the successor
of the query value, among the nodes stored in L(v) or R(v) with time intervals
that contain the query time, in time O(log n). The result of the overall query is

Cloning Voronoi Diagrams via Retroactive Data Structures 365

then formulated by comparing the results found at each interval tree node and
choosing the one that is closest to the query value. Thus, the query takes O(log n)
time to identify the interval tree nodes associated with the query time, O(log2 n)
to query each of logarithmically many priority search trees, and O(log n) time
to combine the results, for a total of O(log2 n) time.

Theorem 1. One can maintain a fully-retroactive general comparison-based dic-
tionary on n elements, using O(n) space, so that updates run in O(log n) amor-
tized time and predecessor and successor queries run in O(log2 n) time.

3 Exact Query Probes

We begin our study of Voronoi diagram cloning with the strongest sort of
queries—Type 1. Given a query point p, a Type-1 query returns the site q in S
nearest to p, that is, it returns the geometric location of q, p’s nearest-neighbor
in S. In the event that p has more than one nearest neighbors in S, all nearest
neighbors are returned. We show that only O(n) queries and O(n log2 n) pro-
cessing time is needed to completely clone V (S)—which, as implied, also means
we explicitly have determined both S and n.

Overview of Our Algorithm. Our algorithm is adapted from the plane sweep
Voronoi diagram algorithm of Fortune [11], with a significant modification to
allow for unbounded and unpredictable amounts of backtracking. The funda-
mental difference is that the Fortune algorithm begins with the set of sites, S,
completely known; in our case, the only thing we know at the start is a bounding
box containing S. Using the formulation of de Berg et al. [7], Fortune’s algorithm
uses an event queue to controls a sweep line that moves in order of decreasing
y coordinates, with a so-called “beach line”—an x-monotone curve made up of
parabolic segments following above the sweep line. The plane above the beach
line is partitioned into cells according to the final Voronoi diagram of S. There
are two types of events, caused when the sweep line crosses point sites in S and
Voronoi vertices in V (S); the latter points are determined as the algorithm pro-
gresses. In our version, we need to find both the sites and the Voronoi vertices as
the plane sweep advances. And because not all sites are known in advance, we
will need to verify tentative Voronoi vertex events as we sweep across them, at
times backtracking our sweep line when our queries reveal new sites that invali-
date tentative Voronoi vertices and introduce new events that are actually above
our sweep line. We will show that each query discovers a feature in the Voronoi
diagram, that the number of times we backtrack is bounded by the number of
these features, and these facts imply that the number of queries and updates we
perform in a retroactive dictionary used to implement our sweep-line algorithm
is O(n). In fact, we will prove that the number of probes is at most 4n.

We begin with an overview of our algorithm. The algorithm begins by finding
all the Voronoi regions and edges that intersect the top edge of the bounding box,
B. If there are k such regions (and thus k − 1 edges), this can be accomplished
in O(n) time with 2k− 1 queries. This step initializes our event queue with k of
the point sites in S.

366 M.T. Dickerson, D. Eppstein, and M.T. Goodrich

The algorithm then proceeds much as the Fortune algorithm, but with the
following two important changes. Whenever we reach a point site event for some
site q ∈ S (i.e., when q is removed from the event queue), we do a nearest-
neighbor query on the point of the beach line directly above q—that is, the
point with the same x-coordinate as q and a y coordinate on the beach line that
exists for the time value when the sweep line hits q. The position of this query
point can be determined by using a retroactive dictionary queried with respect
to the components of the beach line for the time value (in the plane sweep)
associated with the point q. (See Fig. 1.) Querying this point will either confirm
a Voronoi edge known to be part of the final Voronoi diagram (in which case we
proceed with the sweep) or it will discover a new site r in S (in which case the
sweep line restores point q to the event queue and backtracks to r).

The second type of event is a tentative Voronoi vertex event. We do a nearest-
neighbor query at the point believed to be a Voronoi vertex, which either confirms
the vertex and all of its adjacent Voronoi edges above it, or it discovers a new
site in S. This new site must be above the sweep line: at the time that Fortune’s
algorithm processes a Voronoi vertex event its sweep line must be as far from
the Voronoi vertex as the three sites generating the vertex, so undiscovered sites
below the sweep line cannot be nearest neighbors to the tentative vertex. If the
algorithm discovers a new site above the sweep line, then again we backtrack
and process that new site. In either case the Voronoi vertex is removed from
the event queue—either added to the Voronoi diagram being constructed as a
validated vertex, or ignored as a false vertex.

Correctness and Complexity. Both the correctness and the analysis of this
algorithm make use of the following important observation. Though the algorithm
backtracks at certain “false” events—or tentative events that are proven false—it
never completely removes any Voronoi components that have been confirmed by
probes. Voronoi edges can only be added in two ways: the addition of a new site
that creates one new edge, or the addition of a Voronoi vertex that terminates two
edges and creates one new edge. In both cases, the edge is verified as an actual edge
using a query before it is added to the Voronoi diagram being constructed, thus
the diagram never contains edges that could later be falsified. (See Fig. 2.)

site event sweep line

beach line

Fig. 1. Illustrating the sweep-line algorithm for constructing a Voronoi diagram

Cloning Voronoi Diagrams via Retroactive Data Structures 367

The insertion of a new site begins a new edge directly above it, where the
parabola of the site being added to the tree T—a degenerate line-segment
parabola at the instant it is added—intersects the existing parabola above it,
thus replacing one leaf in the tree with three. But before this site is inserted
with its edge, the edge is tested with a query into the existing Voronoi diagram.
The other time an edge may be added is at a Voronoi vertex where two existing
edges meet and a third new one is created. But all tentative Voronoi vertices are
also verified by queries before they become circle events.

There are a few key observations that will lead to the analysis of the algo-
rithm’s run time and total number of queries. First, the sweep line will only
backtrack when a new site in S is discovered, and so there are at most n back-
tracks. Second, every time we have a tentative Voronoi vertex that turns out
to be unverified—that is, an event that turns out not to be part of the final
diagram—we have also discovered a new site in S, and thus we have at most
O(n) phony events that are processed. It follows that the run time of the al-
gorithm is asymptotically equivalent to the original Fortune algorithm, modulo
the time needed for our retroactive data structure queries. Furthermore, after
our initialization stage, every nearest-neighbor query either finds a site, verifies
a site by looking at the Voronoi edge above it, or verifies a Voronoi vertex. The
initialization, as noted, requires 2k−1 queries if there are k sites initially discov-
ered. Queries discover n−k more sites, verify n sites, and find at most 2n−2−k
Voronoi vertices, for a total of 4n− 3 which is less than 4n queries.

The algorithm requires the same run time as the original Fortune plane sweep
except for the processing of the tentative Voronoi vertices that prove to be phony,
and all the backtracking (which is implemented using our retroactive dictionary).
As noted, there are O(n) of these backtracking steps, since these can only occur
once for each previously undetected site in S. So the overall number of updates
and queries in our sweep-line-with-backtracking algorithm is O(n); hence, the
running time of our algorithm is O(n log2 n). Thus, we have the following.

Theorem 2. Given a set S of n points in R2, we can construct a copy of V (S)
using at most 4n Type-1 queries and O(n log2 n) time.

overextended sweep line
newly discovered point

verified Voronoi
diagram features

backtracked
sweep line

backtracked beach line has
 unchanged sequence of
 parabolic arcs
 above new points

Fig. 2. Backtracking the sweep-line

368 M.T. Dickerson, D. Eppstein, and M.T. Goodrich

An Alternate Algorithm Using More Time and Fewer Queries. This
second algorithm follows an incremental construction paradigm, based on the
general approach of Dobkin et al. [9] for discovering a 3-dimensional convex
polyhedron using finger probes. The alternative algorithm begins by querying
each of the four corners of the bounding box. There are three cases to consider:
these probes may discover one, two, or more than two sites in S. If we discover
more than two sites, then we construct the Voronoi diagram of all 3 or 4 of
the sites discovered by these four queries, but we mark each Voronoi vertex as
tentative and put it into a queue. The algorithm then proceeds as follows until
the queue is empty. Remove a tentative Voronoi vertex from the queue, and
query it. If the query reveals that it is a Voronoi vertex—that is, it has the three
expected nearest neighbors—then we confirm the vertex and continue. If it is
not a Voronoi vertex, then it must be closer to some previously undiscovered site
in S, that will be returned by the query. We add that site to our list of known
sites and update the Voronoi diagram in worst case O(n) time using incremental
insertion. When the queue is empty, we have a complete Voronoi diagram. Every
probe except possibly one of the four corner probes discovered either a new site
in S or confirmed a Voronoi vertex, and so the total number of queries is at
most n + (2n− 5) + 1 < 3n. If the four corner queries discovered only two sites,
then we compute the Voronoi edge that would be shared by these two sites if
they were the only two sites in S, and we query both intersections of this edge
with the bounding box. If we confirm both edges, then n = 2 and we are done.
We have used 3n = 6 queries. If at least one of these two additional queries
discovers another site, then we have at least three known sites and we proceed
as with the previous case. Every query except at most three of the initial queries
either confirmed a Voronoi vertex or discovered a new point site, and so the total
number of queries is at most n + (2n− 5) + 3 < 3n. All four corners will belong
to the same Voronoi region if and only if there is only one site in the bounding
box, in which case 4 queries was sufficient.

Theorem 3. Given a set S of n points in R2, we can construct a copy of V (S)
using at most 3n + 1 Type-1 queries and Θ(n2) time.

Proof. We have already established the quadratic upper bound. For the sake
of a lower bound, imagine that we have a set S′ of n/2 points on the bottom
boundary of B, all within distance δ of the point (0, 0), for a small parameter δ
with 0 < δ ≤ 1/2n. These points, by themselves, construct a Voronoi diagram
with parallel edges. Suppose further that there is a single point, p0 = (δ, 1− δ),
near the top boundary of B. The Voronoi region for p0 intersects the Voronoi
region of every point in S′. The above algorithm therefore, after discovering the
boundary points in S′, would next query a vertex on the Voronoi diagram V (S′)
of B, which will discover p0. Next it will probe at vertex that is equi-distant to
p0 and a point in S′. Suppose that this probe discovers a point p1 = (δ, 1/2).
This point is closer to every point in S′ than p0; hence, updating the Voronoi
diagram to go from V (S′ ∪ {p0}) to V (S′ ∪ {p0, p1}) takes Ω(n) time. Now,
suppose querying a tentative vertex of V (S′∪{p0, p1}), which will be equi-distant
from p1 and a point in S′, discovers a point p2 = (δ, 1/22). Again, updating the

Cloning Voronoi Diagrams via Retroactive Data Structures 369

Voronoi diagram takes Ω(n) time. Suppose, therefore, that we continue in this
way, with each newly-discovered point pi = (δ, 1/2i) requiring that we spend
Ω(n) time to update the current Voronoi diagram. After discovering pn/2−1, the
n-th point in the set S = S′ ∪ {p0, p1, . . . , pn/2−1}, we will have spent Ω(n2)
time in total to discover the Voronoi diagram V (S). ��

4 Distance Query Probes

We next consider our Voronoi diagram cloning algorithm for the case when we
use use only distance query probes—probes that return the distance to and label
of the nearest site(s). We begin by describing how we can find those sites whose
Voronoi regions (and thus also edges) intersect the top boundary of the bounding
box where the sweep-line begins. We will speak of a probe circle as the set of
possible locations of a site returned by a probe p: it is the circle of radius d
centered at p, where d is the distance returned to the nearest site.

Initializing the Sweep Line. We begin the initialization process by probing
at the two top corners of the bounding box. If both probes return the same site
p, then by convexity of Voronoi regions the entire top edge of the box belongs to
the Voronoi region V (p). Furthermore, both probes also return a distance d to
the site p, and so p must fall on an intersection of two circles of radius d centered
at the two corner probe locations. Since one of these intersections is above the
bounding box, the remaining intersection gives the exact location of p.

Assume that the two corner probes pl and pr on the left and right respectively
return different sites ql and qR respectively. We know the distance pl to ql and
pR to qR, but we don’t know the exact locations of the two sites, nor do we
know if there are any other sites with regions intersecting the bounding box.
The segment between these two probes is therefore not fully classified. We will
describe a recursive procedure for classification.

Let L be an unclassified segment, with the probes pl and pr on the left and
right sides of the segments respectively returning different sites ql and qr. First,
we probe the midpoint pm of L. The probe returns either one of the two known
sites, or a new site qm. If it returns a new site, then we divide L into two segments
that are both unclassified, but which have classified endpoints ql, qm, and qr,
and we recursively classify them.

Suppose query pm returns one of the already known sites. If this probe returns
qr, then we can immediately compute the exact location of qr from the two probes
pr and pm, since only one of the intersections of the probe circles is inside the
bounding box. We also have classified the segment Lr between probes pr and pm

as being fully inside the Voronoi region of pr. The other half of the segment, Ll,
however, is not classified; we only know the Voronoi regions of its endpoints are
the regions of qr and ql. Here it would be tempting to again probe the midpoint
of the segment Ll; however that could lead to an unbounded number of probes as
we repeatedly divide the segment in half because the midpoint of the remaining
unclassified segment Ll could still belong to qr and so we would gain no new
information about ql. What we do instead is use the known location of qr, which

370 M.T. Dickerson, D. Eppstein, and M.T. Goodrich

must be outside the probe circle at pl, to find a probe location pl2 close enough to
pl that it is guaranteed not to gives us qr. This is possible since the perpendicular
bisector between qr (which is a known point) and any point on the probe circle
from pl—which is the set of candidate locations for ql—must fall between pm

and pl on a finite segment computable in O(1) time, and thus anything between
that range and pl is closer to ql than to qr.

So this new probe pl2 returns either ql or a new site. If it returns a new
site, then we divide the unclassified segment into two unclassified segments and
recursively classify them. If this new probe gives us ql then we now know the
exact location of ql from two probes. From the exact locations of qr and ql, we can
compute and probe where their Voronoi edge ought to cross the bounding box,
either confirming that Voronoi edge—which means that the entire edge is now
classified—or we discover a new site. If the probe gives us a new site, then again
we divide the unclassified segment into two unclassified segments and recursively
classify them.

Lemma 1. The initialization stage for the sweep line requires O(k) time and
3k− 1 probes where k is the number of sites whose Voronoi regions intersect the
top of the bounding box.

Proof. Note that every probe either identifies a previously undiscovered site (k
probes), provides a second probe with more information on an already discovered
site enabling the exact location of this site to be computed (k probes), or confirms
a Voronoi edge (k−1 probes for k regions). So the total number of probes in this
section is 3k − 1 where k is the number of sites whose Voronoi regions intersect
the top of the bounding box. Each probe is processed in O(1) time. ��

Processing the Sweep Line. The previous subsection explains how to ini-
tialize the sweep line. The algorithm making use of distance-only queries now
proceeds as with the exact query probe version of the previous section, except
that a slightly different approach requiring more probes will be needed to process
tentative site events.

As with the algorithm of the previous section, there are two types of tentative
events: a tentative Voronoi vertex for three known sites, and a tentative Voronoi
edge that falls directly above a known site and is determined by one other known
site. Both of these events need to be verified by probe–that is, we need to deter-
mine if these events are actually real, or whether there is some other site closer
to the events. In both cases, we use a probe p where the tentative Voronoi feature
should be. If that problem returns the correct three or two site labels (at the
correct distance), then the verification is complete, and we proceed as with the
algorithm of the previous section.

However, these probes may discover a new site q; in this case, they give only
the distance to that site and not its actually location. We need two more probes
that return the same site in order to discover its exact location—but these probes
may instead return yet other new sites. We now describe how to choose the
locations of these probes so that no work is wasted, and each probe either verifies

Cloning Voronoi Diagrams via Retroactive Data Structures 371

a Voronoi vertex, verifies a Voronoi edge above a known site, or is one of three
probes that exactly locates a site.

Let p1 be a probe during the sweep line, that attempts to verify a Voronoi
vertex or edge, and instead discovers a new site q1 that was not previously known.
Let d = d(p1, q1) be the distance returned from probe p1 to its site q1, and let e
be the distance from p1 to the nearest previously known sites—that is, the two or
three sites whose tentative Voronoi vertex or edge it was seeking to verify. Since
probe p1 returned q1, we know that d < e. Let p2 be any probe location such that
d(p1, p2) < e−d

2 . By the triangle inequality, we know d(p2, q1) < d + e−d
2 = e+d

2 ,
while d(p2, r) > e − e−d

2 = e+d
2 , where r is any of the two or three previously

known closest sites to p1. It follows immediately that probe p2 cannot return
any previously known site except q1 which was first discovered by probe p1. We
can choose any probe location meeting this restriction, d(p1, p2) < e−d

2 , which
is computable in O(1) time.

So there are two possibilities with probe p2: either it returns site q1 again, or
it returns a new site q2. If p2 returns q1, we now have two probes returning that
site, and distances to that site, so its location is one of at most two intersections
between the two probe circles. We can now probe either one of those two inter-
sections, and from the result we determine the exact location of q1 because the
probe either returns q1 at distance 0, or it returns some other site, or it returns
q1 at a distance > 0.

If p2 returns a new site q2, then we now have two sites that have been dis-
covered, but whose exact locations are not known. We can discover the exact
location using the recursive method of the previous subsection, treating the
segment p1p2 as an unclassified segment, probing its midpoint, and continuing.
However, once we have received a site as the result of two probes, we still require
a third probe to exactly locate it since both intersections of the first two probe
circles might be inside the bounding box.

Lemma 2. Processing the remaining events (after the initialization) for the
sweep line requires at most 6n − 3k − 5 probes where k is the number of sites
whose Voronoi regions intersect the top of the bounding box.

Proof. There are n − k sites to be discovered, n sites that need to have an edge
verified above them, and at most 2n− 5 Voronoi vertices in the Voronoi diagram
of n sites. Every probe accomplishes one of five things: it verifies a Voronoi vertex
(2n−5 probes), verifies a Voronoi edge directly above a site (n probes), or is one of
exactly three probes used to discover and then exactly locate a new site (3(n− k)
probes.) The total number of probes required is therefore at most 6n−3k−5. ��

Theorem 4. Given a set S of n points in R2, we can construct a copy of V (S)
using at most 6n− 6 Type-2 queries and O(n log2 n) time.

5 Label-Only Query Probes

Using queries of the third type, it is impossible to exactly clone V (S) or even to de-
termine with certainty the value of n = |S|. However even with this minimal query

372 M.T. Dickerson, D. Eppstein, and M.T. Goodrich

information, we construct an approximate Voronoi diagram V (S′) which, without
explicitly storing the locations of the sites in S, will still support later arbitrary ap-
proximate proximity queries to V (S). We now show that an approximate Voronoi
diagram can be constructed to answer nearest-neighbor queries, with a probing
process that uses O(N log(1/ε)) queries and O(N(log N + log(1/ε))) time, where
N ≤ n is the number of discovered sites in S. (Any two sites separated by at
least ε will be distinguished and discovered.) The main idea of the algorithm is to
build an approximation to the Voronoi cell of each known site, using O(log(1/ε))
queries per feature of the cell. This sequence of queries either finds a sufficiently
accurate approximation for the location of that feature or discovers the existence
of another site label. We begin by querying each corner of our bounding box to
find the label of the site in whose region that corner belongs. For any side of the
box whose corners are in different Voronoi regions, we do a binary search to find,
within a distance of ε2, the edge of the Voronoi region for each different site. This
may discover new Voronoi regions. For each new region discovered, we also do a bi-
nary search to discover its edges to within ε2. Each binary search requires O(log 1

ε)
queries and time. The result is an ordered list of Voronoi edges crossing each side
of the bounding box.

A second similar search a distance of 2ε from each side of the bounding box
will find the same Voronoi edges—or will discover a new Voronoi region, indicat-
ing that the Voronoi edge has ended. For those Voronoi edges that have not ended
within 2ε, we compute an approximation of the line containing the Voronoi edge—
that is, the perpendicular bisector of the two sites whose labels we know. An argu-
ment using similar triangles shows that our approximation of this edge is accurate
enough that we can determine to within a distance of < ε where this edge crosses
the far boundary. We do a doubling search of queries out along each discovered
Voronoi edge, and then a binary search back once we have moved past the end of
the edge, to find where it ends. Thus, three binary searches of O(log(1

ε)) queries
and time each suffice to discover complete approximations of each Voronoi edge
intersecting the bounding box, including an approximate location of the Voronoi
vertex terminating these edges. In the worst case, our approximation is within ε.
A constant number of queries in the vicinity of each Voronoi vertex will discover
the other edge or edges coming out of the Vertex. We repeat this process for each
new Voronoi edge as it is discovered, until every Voronoi edge has both ends ter-
minated at Voronoi vertices, at which time the approximate Voronoi diagram is
complete.

Theorem 5. Given a set S of n points in R2, we can construct a planar subdivi-
sion, V ′, using O(N log 1

ε) Type-3 queries and O(N(log N + log 1
ε)) time, where

N < n is the number of discovered sites in S, such that any two sites separated by
at least ε will be distinguished and discovered and each point on the 1-dimensional
skeleton of V is within distance ε of a point on the 1-dimensional skeleton of the
Voronoi diagram, V (S), of S.

Cloning Voronoi Diagrams via Retroactive Data Structures 373

References

1. Alevizos, P.D., Boissonnat, J.-D., Yvinec, M.: Non-convex contour reconstruction.
J. Symbolic Comput. 10, 225–252 (1990)

2. Aoki, Y., Imai, H., Imai, K., Rappaport, D.: Probing a set of hyperplanes by lines
and related problems. In: Dehne, F., Sack, J.-R., Santoro, N. (eds.) WADS 1993.
LNCS, vol. 709, pp. 72–82. Springer, Heidelberg (1993)

3. Blelloch, G.E.: Space-efficient dynamic orthogonal point location, segment inter-
section, and range reporting. In: SODA 2008: Proceedings of the nineteenth annual
ACM-SIAM symposium on Discrete algorithms, pp. 894–903. Society for Industrial
and Applied Mathematics, Philadelphia (2008)

4. Boissonnat, J.-D., Yvinec, M.: Probing a scene of non-convex polyhedra. Algorith-
mica 8, 321–342 (1992)

5. Cheng, S.W., Janardan, R.: New results on dynamic planar point location. SIAM
J. Comput. 21, 972–999 (1992)

6. Cole, R., Yap, C.K.: Shape from probing. J. Algorithms 8(1), 19–38 (1987)
7. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Ge-

ometry: Algorithms and Applications. Springer, Berlin (1997)
8. Demaine, E.D., Iacono, J., Langerman, S.: Retroactive data structures. ACM Trans.

Algorithms 3(2), 13 (2007)
9. Dobkin, D.P., Edelsbrunner, H., Yap, C.K.: Probing convex polytopes. In: Proc.

18th Annu. ACM Sympos. Theory Comput., pp. 424–432 (1986)
10. Edelsbrunner, H., Skiena, S.S.: Probing convex polygons with x-rays. SIAM J. Com-

put. 17, 870–882 (1988)
11. Fortune, S.J.: A sweepline algorithm for Voronoi diagrams. Algorithmica 2, 153–174

(1987)
12. Giora, Y., Kaplan, H.: Optimal dynamic vertical ray shooting in rectilinear planar

subdivisions. ACM Trans. Algorithms 5(3), 1–51 (2009)
13. Goodrich, M.T.: The mastermind attack on genomic data. In: IEEE Symposium on

Security and Privacy. IEEE Press, Los Alamitos (2009) (to appear)
14. Joseph, E., Skiena, S.S.: Model-based probing strategies for convex polygons. Com-

put. Geom. Theory Appl. 2, 209–221 (1992)
15. McCreight, E.M.: Priority search trees. SIAM J. Comput. 14(2), 257–276 (1985)
16. Mehlhorn, K.: Data Structures and Algorithms 3: Multi-dimensional Searching and

Computational Geometry. EATCS Monographs on Theoretical Computer Science,
vol. 3. Springer, Heidelberg (1984)

17. Skiena, S.S.: Problems in geometric probing. Algorithmica 4, 599–605 (1989)
18. Skiena, S.S.: Probing convex polygons with half-planes. J. Algorithms 12, 359–374

(1991)
19. Skiena, S.S.: Interactive reconstruction via geometric probing. Proc. IEEE 80(9),

1364–1383 (1992)
20. Skiena, S.S.: Geometric reconstruction problems. In: Goodman, J.E., O’Rourke, J.

(eds.) Handbook of Discrete and Computational Geometry, ch. 26, pp. 481–490.
CRC Press LLC, Boca Raton (1997)

A Unified Approach to Approximate Proximity

Searching

Sunil Arya1,�, Guilherme D. da Fonseca2,��, and David M. Mount3,���

1 Department of Computer Science,
The Hong Kong University of Science and Technology, Hong Kong

arya@cs.ust.hk
2 Universidade Federal do Estado do Rio de Janeiro (Unirio), Brazil

fonseca@uniriotec.br
3 Department of Computer Science and Institute for Advanced Computer Studies,

University of Maryland, College Park
mount@cs.umd.edu

Abstract. The inability to answer proximity queries efficiently for spaces
of dimension d > 2 has led to the study of approximation to proximity
problems. Several techniques have been proposed to address different
approximate proximity problems. In this paper, we present a new and
unified approach to proximity searching, which provides efficient solu-
tions for several problems: spherical range queries, idempotent spherical
range queries, spherical emptiness queries, and nearest neighbor queries.
In contrast to previous data structures, our approach is simple and easy
to analyze, providing a clear picture of how to exploit the particular char-
acteristics of each of these problems. As applications of our approach, we
provide simple and practical data structures that match the best previ-
ous results up to logarithmic factors, as well as advanced data structures
that improve over the best previous results for all aforementioned prox-
imity problems.

1 Introduction

The term proximity refers informally to the quality of being close to some point
or object. Proximity data structures arise from numerous applications in science
and engineering because it is a fundamental fact that nearby objects tend to
exert a greater influence and have greater relevance than more distant objects.
The inability to answer proximity queries efficiently for spaces of dimension
d > 2 has motivated study of approximate solutions to proximity problems. In
recent years, a number of different techniques have been proposed for solving
these problems. In order to obtain the best performance, the technical elements

� Research supported by the Research Grants Council of Hong Kong, China under
project number 610106.

�� Research supported by CNPq grant PDJ-151194/2007-6, FAPERJ grant E-
26/110.091/2010 and CNPq/FAPERJ grant E-26/110.552/2010.

��� Research supported by NSF grant CCR-0635099 and ONR grant N00014-08-1-1015.

M. de Berg and U. Meyer (Eds.): ESA 2010, Part I, LNCS 6346, pp. 374–385, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Unified Approach to Approximate Proximity Searching 375

of these solutions vary considerably, depending on the type of problem being
solved and the properties of the underlying entities. Each variant involves its
own particular construction and analysis. Consequently, it is difficult to obtain a
clear understanding of the basic mechanisms underlying these approaches. In this
paper, we present efficient solutions for several approximate proximity problems,
all within a simple and unified framework.

Abstractly, a proximity search problem involves preprocessing a multidimen-
sional point set into a data structure in order to efficiently answer queries based
on distances. Consider a set P of n points in d-dimensional Euclidean space, for
a constant d ≥ 2. In problems involving aggregation, it is useful to associate each
point p ∈ P with a weight, w(p), which is assumed to be drawn from some com-
mutative semigroup (S, +). For example, range queries involve computing the
semigroup sum of points lying within some region. In such cases, properties of
the semigroup may be exploited in order to obtain the most efficient solution. An
important semigroup property is idempotence, which means that x + x = x, for
all x ∈ S. (As an example, consider the integers under maximum or minimum.)

In this paper we consider the following fundamental proximity problems. In
each case, we are given a query point q and possibly a radius r. We present each
problem in its exact form, but each has a natural approximation version, given
an approximation parameter 0 < ε < 1. Points within distance r(1−ε) of q must
be considered and only points within distance r(1 + ε) may be considered.

– Spherical range queries: Given a query point q and a radius r, determine the
number of points of P (or more generally, the semigroup sum of the weights
of the points) lying within distance r from q. If the semigroup is idempotent,
this is called an idempotent spherical range query.

– Spherical emptiness queries: This can be viewed as a special case of an
idempotent range query in which the goal is to determine whether any point
of P lies within distance r of q.

– Nearest neighbor queries : Given a query point q determine the closest point
of P to q and its associated distance r.

Spherical emptiness queries and nearest neighbor queries are strongly related.
Given the nearest neighbor p of a query point q, we can determine whether
the ball of radius r centered at q is empty by comparing r and ‖pq‖. In the
approximate version, we can answer nearest neighbor queries by computing a
constant-factor approximation of the nearest neighbor and then performing a
binary search with O(log 1

ε) spherical emptiness queries [19]. In this paper, we
will present methods for answering approximate spherical emptiness queries, and
results for approximate nearest neighbor queries will follow as corollaries.

Prior results. Approximate nearest neighbor queries in spaces of fixed dimension
have been widely studied. Data structures with O(n) storage space and query
times no better than O(log n+1/εd−1) have been proposed by several authors [8,
9,11,15]. In subsequent papers, it was shown that query times could be reduced,
at the expense of greater space [10, 19, 13,23]. Although different tradeoffs were
achieved, in all cases the products of the ε terms in the storage and query times

376 S. Arya, G.D. da Fonseca, and D.M. Mount

are roughly O(1/εd−1). These space-time tradeoffs were improved in [3,2, 6]. It
was shown that O

(
log n+1/ε

d−1
2
)

query time could be achieved with essentially
O(n) storage, and generally it is possible to achieve space-time tradeoffs where
the product of the ε terms in the storage and the square of the query time is
roughly O(1/εd−1).

Early results on approximate range searching for general semigroups pro-
vided query times of O(log n+1/εd−1) with O(n) space [7]. Space-time tradeoffs
for idempotent spherical range searching were presented in [5]. It was shown
there that, given a tradeoff parameter γ ∈ [1, 1/ε], queries can be answered
in time O

(
log n + (log 1

ε)/(εγ)
d−1
2
)

with O(nγd/ε) storage. The tradeoff was
later extended to handle spherical range queries for arbitrary semigroups in
O(log(nγ) + 1/(εγ)d−1) time with O(nγd log 1

ε) storage [4]. An approach for ar-
bitrary semigroups that is more similar in spirit to ours is presented in [1], but
it is limited to query times in Ω

(
log n + 1/ε

d−1
2
)
, and it does not benefit from

the assumptions of idempotence or emptiness.
The best space-time tradeoffs for answering approximate nearest neighbor

queries are based on Approximate Voronoi Diagrams (or AVDs) [19, 6]. While
answering an approximate nearest neighbor query with an AVD consists of a sim-
ple point location in a quadtree, building and analyzing the AVDs require rela-
tively sophisticated machinery, including WSPDs, sampling, BBD-trees, separa-
tion properties, bisector sensitivity, and spatial amortization. To extend AVDs to
handle spherical range queries, several new tools were introduced [5,4]. The cells
of the AVD are divided into three different types, with different query-answering
mechanisms and analyses for each.

Our results. We present a new and unified approach to proximity searching.
We place all the aforementioned proximity queries within a unified framework,
providing a clear picture of how to exploit the peculiarities of each problem. We
do so without using most of the AVD machinery, thus obtaining data structures
that are easy both to implement and analyze. As applications of our approach,
we provide simple and practical data structures that match the best previous
tradeoffs up to logarithmic factors, as well as advanced data structures that
improve over the best previous results for all aforementioned proximity problems.

Our approach is based on a well-known data structure, the compressed quad-
tree (described in Section 2.1). To perform a search involving a query ball b,
the search algorithm begins by computing a constant number of cells in the
compressed quadtree that cover b. Each cell locally answers the query for the
portion of the ball that lies within the cell. To achieve low storage, we divide the
cells into two types:
(i) Cells enclosing a large number of points store a data structure whose storage

is not dependent on that number. We call this data structure an insensitive
module. The insensitive module is generally a table where a query is answered
by performing a single lookup.

(ii) Cells with a small number of points store a data structure whose storage
benefits from the low number of points. We call this data structure an adap-
tive module. The adaptive module can either be as simple as a list of points

A Unified Approach to Approximate Proximity Searching 377

where queries are answered by brute force or as complex as the most efficient
data structures known for exact range searching.

Since our framework is modular, we can plug the appropriate building blocks to
obtain different data structures. By plugging simple and practical data struc-
tures, we obtain bounds that match the best known bounds up to logarithmic
factors. Alternatively, we can plug advanced exact data structures in order to ob-
tain small improvements to the most efficient data structures known for all afore-
mentioned proximity problems. For example, with Õ(n) storage, we can perform
approximate nearest neighbor queries in Õ

(
1/ε

d−1
2
)

time using only simple data

structures, matching the best bound previously known [3], or Õ
(
1/ε

d−3
2 + 2

d+1
)

time by using exact data structures for halfspace emptiness queries from [22].
(Throughout, Õ(x) stand for O(x polylog(n, 1/ε)).) As another example, we
can answer idempotent spherical range queries in polylogarithmic time with
Õ(n/εd+1) storage using only simple data structures, thus matching the best
bound previously known [5], or with Õ(n/εd) storage using exact data struc-
tures for halfspace range searching from [21].

Next, we highlight the most efficient tradeoffs obtained using our approach.
The tradeoffs are described as a function of the tradeoff parameter γ ∈ [1, 1/ε].
Although the improvements are not dramatic, they are significant because they
show that our method, while being both simpler and more unified, also offers
new insights into the computational complexities of these problems.

– For general spherical range searching with query time Õ(1/(εγ)d−1), we im-
prove the best previous storage [4, 1] from Õ(nγd) to Õ(nγd−1(1 + εγ2)).
This improves the storage by a factor of Õ(γ/(1 + εγ2)) for the same query
time.

– For idempotent spherical range searching with query time Õ
(
1/(εγ)

d−1
2
)
, we

improve the best previous storage [5] from Õ(nγd/ε) to Õ
(
nγd−1

2 /
√

ε
)
. This

improves the storage by a factor of Õ(
√

γ/ε) for the same query time.
– For nearest neighbor searching, the best previous result [3, 2, 6] has query

time Õ
(
1/(εγ)

d−1
2
)

with storage Õ(nγd−1). We improve this result to query
time Õ

(
1/(εγ)

d−3
2 + 1

d

)
with storage Õ(nγd−2), for even d ≥ 4. For odd d ≥ 3,

we obtain query time Õ
(
1/(εγ)

d−3
2 + 2

d+1
)

with storage Õ
(
nγd−2+ 2

d+1
)
.

The insensitive modules are of special interest because they work in the abso-
lute error model [14], providing more efficient tradeoffs for approximate spherical
range searching in this model. The insensitive general module can be used to re-
duce the ε-dependency in algorithms for approximating the smallest k-enclosing
disk [20] and the unit disk enclosing the most points [17].

2 Framework

In this section, we present our new approach as a general framework and show
how to analyze its complexity. First, we review preliminary results on compressed

378 S. Arya, G.D. da Fonseca, and D.M. Mount

quadtrees. Second, as concrete illustration, we present a simple data structure
for approximate spherical emptiness. Finally, we generalize this data structure
to an abstract framework for approximate proximity searching.

2.1 Quadtrees

A quadtree is a hierarchical decomposition of the data points induced by a hi-
erarchical partition of the space into d-dimensional hypercubes. The root of the
quadtree corresponds to the whole set of data points. An internal node has 2d

children corresponding to the sets of points in the disjoint subdivisions of the
parent hypercube. A leaf is a node which contains a single data point. A quadtree
box is defined recursively as the original bounding hypercube or the hypercubes
obtained by evenly dividing a quadtree box.

A compressed quadtree, is obtained by replacing all maximal chains of nodes
that have a single non-empty child by a single node associated with the coor-
dinates of the smallest quadtree box containing the data points. The size of
a compressed quadtree is O(n) and there are many different ways to build a
compressed quadtree with n points in O(n log n) time [8, 18, 16]. Even though
the height of the tree can be as much as Θ(n), we can efficiently search a com-
pressed quadtree by using an auxiliary structure which can be a simple hierarchy
of separators [18], a skip-quadtree [16], or a BBD-tree [8]. An important type
of query that these auxiliary structures answer in O(log n) time is called a cell
query [18]. Let T be a compressed quadtree for the set of points P . Given a
query quadtree box Q, a cell query consists of finding the unique cell Q′ in T
such that P ∩Q = P ∩Q′, if it exists. The quadtree box Q′ exists if P ∩Q 	= ∅
and Q′ is unique because T is compressed.

Let v be a vertex in a compressed quadtree associated with a quadtree box �v

of diameter δv. Consider a grid with cells of diameter εδv subdividing �v. Let
cv denote the number of non-empty grid cells (that is, those containing a point
of P). Since there are O(n) nodes in T and cv ≤ (1

ε)d by a packing argument, it
follows that

∑
v∈T cv = O

(
n(1

ε)d
)
. The following technical lemma, which will be

useful in analyzing the storage requirements of our data structures, shows that
the sum is significantly smaller.

Lemma 1. For any compressed quadtree T with n points,
∑

v cv = O(n log 1/ε).
Consequently, the number of nodes v with cv > α is O(n(log 1/ε)/α).

Proof. The proof proceeds by a charging argument, where each of the O(n)
quadtree nodes receives up to O(log 1

ε) charges from the ancestors of the node.
Assume without loss of generality that ε is a power of 1/2 and consider an internal
node v. Let S1 be the set of quadtree nodes corresponding, by cell queries, to
the non-empty grid cells of diameter εδv subdividing �v. A node in S1 may have
arbitrarily small diameter because of compression, but the parent of a node in
S1 has diameter at least εδv. Let S2 be the set of parents of the nodes in S1. We
have |S2| ≥ |S1|/2d = cv/2d. Node v assigns cv/|S2| = O(1) charges to each cell
in S2, so the sum of charges over all nodes is equal to

∑
v cv. Since a node v only

receives charges from ancestors of diameter at most δv/ε, each node receives at
most O(log 1

ε) charges. ��

A Unified Approach to Approximate Proximity Searching 379

δv
√
ε

q

a′

q′

a

≤ δv
√
ε

2 ≥ δv
2

≥ δv
2

(c)(b)

εδv

(a)

Fig. 1. Spherical emptiness cells: (a) for the case cv ≤ 1/ε(d−1)/2 and (b) for the case
cv > 1/ε(d−1)/2. Part (c) illustrates the correctness proof when cv > 1/ε(d−1)/2.

2.2 A Simple Data Structure for Approximate Spherical Emptiness

To illustrate our new approach, we demonstrate how to use it to answer approx-
imate spherical emptiness queries. Given a query ball b of radius r and ε > 0,
the algorithm must return “yes” if the expanded ball of radius r(1 + ε) is empty
and “no” if the contracted ball of radius r/(1 + ε) is nonempty. The basis of
our data structure is a compressed quadtree, together with any data structure
that can answer cell queries in time O(log n). Each leaf node in the compressed
quadtree simply stores the single point (if any) contained in it. Each internal
node v will store a set Sv of O(min(cv, 1/ε(d−1)/2)) points. We shall see that the
approximate emptiness of a ball b of radius r ≥ 2δv with respect to the points
of P ∩�v can be reduced to a simple brute-force test of whether Sv ∩ b = ∅. We
consider two cases, depending on the size of cv.

If cv ≤ 1/ε(d−1)/2, consider a grid with cells of diameter εδv subdividing �v,
and set Sv to be the set of at most cv center points of the nonempty grid cells
(see Figure 1(a)). Since the set Sv is obtained by moving the points in �v by
at most εδv and the query ball has radius r ≥ 2δv, testing the approximate
emptiness of b with respect to P ∩�v reduces to testing whether Sv ∩b is empty.

On the other hand, if cv > 1/ε(d−1)/2, we use a coreset construction like the
one in [12]. Consider ball of radius δv centered at �v’s center, and let A be a
β-dense set of points on the boundary of this ball, for β = δv

√
ε/2. (That is,

given any point a′ on the boundary of the ball, there is a point a ∈ A such
that ‖aa′‖ ≤ δv

√
ε/2.) By a simple packing argument, we may assume that

|A| = O(1/ε(d−1)/2). For each a ∈ A, we compute its nearest neighbor among
P ∩�v. Let Sv be the resulting set of nearest neighbors (see Figure 1(b)). Next,
we show that this set is sufficient to approximately answer the query.

Since the case when the query ball completely contains �v is trivial, we may
assume that the center of the query ball (of radius r ≥ 2δv) is at distance
at least δv from any point in �v. For a given query point q and its nearest
neighbor q′, there exists a ∈ A such that ‖qa‖ + ‖aq′‖ ≤ ‖qq′‖(1 + ε). This
follows by a simple application of the Pythagorean Theorem on the pair of
right triangles defined by the obtuse triangle �qaq′ (see Figure 1(c)). Letting

380 S. Arya, G.D. da Fonseca, and D.M. Mount

qa denote the nearest neighbor of a among the points inside �v, it follows that
‖qqa‖ ≤ ‖qa‖+ ‖aqa‖ ≤ ‖qa‖+ ‖aq′‖ ≤ (1 + ε)‖qq′‖.

To answer a query for a ball b of radius r, we start by locating a set V of O(1)
quadtree boxes of diameter at most r/2 that disjointly cover b∩P . This task can
be performed in O(log n) time by determining the intersection of b with a grid (of
side length 2!log2(r/2

√
d)") and then performing the corresponding cell queries.

As mentioned above, we answer the query by a simple brute-force test that, for
each v ∈ V , Sv ∩ b = ∅. Since we consider only a constant number of cells, each
storing O(1/ε(d−1)/2) points, the total query time is O(log n + 1/ε(d−1)/2).

To analyze the storage, note that, by Lemma 1 the number of nodes with cv >
1/ε(d−1)/2 is O(nε(d−1)/2 log 1

ε). Since the storage for each node is O(1/ε(d−1)/2),
the total storage for the nodes with cv > 1/ε(d−1)/2 is O(n log 1

ε). The storage
for each node with cv ≤ 1/ε(d−1)/2 is O(cv). By Lemma 1, the sum of cv for all
nodes in the quadtree is O(n log 1

ε), hence the total storage is O(n log 1
ε).

Lemma 2. Given a set of n points in d-dimensional space, there exists a data
structure of space O(n log 1

ε) that can answer approximate spherical emptiness
queries in time O(log n + 1/ε(d−1)/2), and approximate nearest neighbor queries
in time O(log n + (log 1

ε)/ε(d−1)/2).

2.3 Abstract Framework

We now introduce our framework in an abstract setting. The basis of the data
structure is a compressed quadtree equipped with an auxiliary structure to an-
swer cell queries. Each internal node v in the compressed quadtree stores a data
structure (called a module) that answers approximate spherical queries for a ball
of radius r ≥ 2δv with respect to the points that are inside �v. If v is a leaf
node, then we simply store the single point contained in �v.

Define a module to be a data structure that takes two inputs: a box � and a
set of points X contained in this box. A module answers ε-approximate spherical
queries with respect to X for balls of radius 2δ, where δ is the size of �. Let
k = |X |, and let s(k) denote the module’s storage bound. We distinguish between
two types of modules. A module is insensitive if its storage s(k) depends only
on ε, regardless of the number of points in �. For the remaining modules, called
adaptive, f(k) = s(k)/k is assumed to be a nondecreasing function of k. For a
threshold parameter α to be specified, if cv > α, then node v stores an insensitive
module for the box �v and the set of points P ∩ �v. Otherwise, v stores an
adaptive module for the box �v and the set of center points of the grid cells
defining cv.

To answer a query for a ball of radius r, we start by identifying a set V of
O(1) quadtree boxes of diameter at most r/2 that disjointly cover the points
in the query ball, in O(log n) time. Then, we answer the query inside each of
these cells and combine the results. For the sake of approximate nearest neighbor
queries, it is useful to observe that, if we are performing multiple queries with
consecutive spheres whose radii vary within a constant factor of each other, this
O(log n) term is incurred only for the first query.

A Unified Approach to Approximate Proximity Searching 381

Let t denote the query time for the module with the largest query time used.
Since we are performing a constant number of queries among the quadtree cells
after O(log n) time to perform cell queries, our data structure has query time
O(log n + t). We generally choose the modules in a manner to make the query
time equal to t for all modules, unless this is not an option in the tradeoff.

Let S denote the storage for each node that uses the insensitive module. Note
that this is the same for all nodes, regardless of the number of points in the node.
Since the insensitive module is used only for nodes v with cv > α, by Lemma 1,
the total storage for the insensitive-module nodes is O

(
nS
α log 1

ε

)
.

Let s(cv) denote the storage for the adaptive module with query time t storing
the cv points in �v. Recall that cv ≤ α for all nodes v where the adaptive module
is used. Since f(cv) = s(cv)/cv is monotonically increasing in cv for an adaptive
module, we have s(cv)/cv ≤ s(α)/α. Thus, the total storage for all the adaptive
module nodes is

∑
v∈T, cv≤α s(cv) =

∑
v∈T

s(cv)
cv

· cv ≤ s(α)
α

∑
v∈T cv, which by

Lemma 1 is O
(ns(α)

α log 1
ε

)
. In summary, we have:

Theorem 1. For any threshold parameter α, given an insensitive module with
query time t and storage S, and an adaptive module with query time t and storage
s(α) for α points, we can build a spherical range searching data structure (for a
semigroup compatible with the modules) with O(log n+ t) query time and storage

O

(
n(S + s(α))

α
log

1
ε

)
.

3 Modules

In this section, we consider the design of efficient modules to be used in our
framework. Recall that a module is a data structure for the following simple
range searching problem: Preprocess a set of n points, inside a box of diameter
δ, in order to efficiently answer approximate spherical queries where the radius
of the query ball is at least 2δ. We remark that, when addressing the design of
modules, n refers to the number of points stored just in the module.

We consider three cases, general spherical range queries, idempotent queries
and emptiness queries. We present each of these cases in the next three sections.

3.1 General Spherical Range Queries

In the most general version, we cannot assume any properties about the com-
mutative semigroup. The modules designed for the general version can also be
used for the idempotent or emptiness versions. The simplest (and surprisingly
useful) adaptive module has both O(n) storage and query time. We call this a
brute force module, and it consists of a list of the n points where queries are
answered in O(n) time by inspecting each point individually.

A much more sophisticated adaptive module consists of reducing spherical
range searching to halfspace range searching by lifting the points onto a (d+1)-
dimensional paraboloid and then using Matoušek’s exact range searching data

382 S. Arya, G.D. da Fonseca, and D.M. Mount

structure [21]. Storage is m ∈ [n, nd+1/ logd+1 n], preprocessing is O(n1+β +
m logβ n) for arbitrarily small β, and query time is O(n/m1/(d+1)). We call this
an exact general module. Next, we describe an insensitive module.

Let x1, . . . , xd denote the orthogonal axes. We call the xd axis vertical, the
hyperplane determined by the remaining axes horizontal, and use standard terms
such as top with respect to these directions. Without loss of generality, we assume
that the box of diameter δ intersects only a portion of the query ball boundary
that has normal vectors within an angle at most π/4 of the vertical axis. Separate
data structures can be defined for a constant number of rotated sets of points.

Consider a d− 1 dimensional grid subdividing the horizontal hyperplane into
cells of diameter ρ ≤ δ, for a parameter ρ to be defined later. Each of these cells
induces a prism inside the bounding hypercube in the vertical direction, which
we call a column. The column has height O(δ) and size O(ρ) in the horizontal
directions. Next, we define a data structure to answer approximate spherical
range queries, in time O(1), corresponding to the portion of the query ball that
is contained in a column. The number of columns in the box, which we will
denote by C, is O((δ/ρ)d−1).

For simplicity, we scale down the space by ρ, making the horizontal diameter of
the column equal to 1 and the height δ′ = Θ(δ/ρ). We describe a data structure
with absolute approximation error φ, irrespective of the radius of the query ball
(as in the absolute error model [14]).

Let B be a ball of radius r ≥ 2 centered on the vertical axis and tangent to
the horizontal hyperplane xd = 0. We define f(r) = r −

√
r2 − 1 as the length

of a vertical segment connecting B to a point at distance 1 from the origin in
the horizontal hyperplane xd = 0. Consider two balls of radius r and r′ that are
tangent to each other at a point within the column. If |f(r′) − f(r)| ≤ φ, then
it is easy to see that these balls approximate each other inside the column, in
the sense that any point on intersection of the column with the boundary of one
ball is within (vertical) distance of φ of a point on the boundary of the other
ball. Let R be the set of radii r ≤ 1/φ such that f(r) is a multiple of φ.

Next, we analyze |R|. It is easy to show that f(r) ≤ 1/r (by setting r = secx
with 0 ≤ x < π/2, and applying standard trigonometric identities). Since r ≥
2δ′, we have f(r) ≤ 1/δ′, and therefore |R| = O(1 + 1/(δ′φ)).

Let G be a set of balls of radius r′, for each r′ ∈ R, centers with vertical
coordinates in increments of φ, and centers with horizontal coordinates defined
by the vertices of a horizontal grid with cells of diameter φr′. Consider that
G only has balls such that the normal vectors inside the column are within an
angle at most π/4 of the vertical axis, since other balls can be handled using
a suitable rotation. We always have a ball g ∈ G whose boundary is within
vertical distance φ of a tangent ball to the query ball inside the column. The
set of balls G define a data structure with O(1) query time for query balls of
radius r ≥ 2δ′ inside a column of horizontal diameter 1. For each radius r′, the
set G has H = O(1/φd−1) horizontal coordinates and, since we only store balls
that have normal vectors within an angle at most π/4 of the vertical axis, G has
V = O(δ′/φ) vertical coordinates, |G| = |R|HV = O

((
1 + 1

δ′φ

)
δ′
φd

)
.

A Unified Approach to Approximate Proximity Searching 383

To change the scale back to columns of diameter ρ with error εδ, we set
δ′ = δ/ρ and φ = εδ/ρ, from which we have |G| = O

((
1 + ρ2

εδ2

)
ρd−1

εdδd−1

)
.

To obtain the data structure for the whole bounding box, we build a set of
balls for each column, cropping the balls to inside the corresponding columns. Let
γ ∈ [1, 1/ε] be a parameter to control the space-time tradeoff. Setting ρ = δεγ,
and multiplying by the C = O((δ/ρ)d−1) columns we have storage S = C|G| =
O
((

1 + εγ2
) 1

εd

)
.

Next, we describe an adaptive module based on the previous idea. Instead of
having V = O(1/ε) balls in C = O(1/(εγ)d−1) columns, we only consider balls
that have a point on the boundary of the ball. Therefore, if the box has n points,
the total storage is n|R|H = O(n(1 + εγ2)γd−1). The query time increases by
an O(log 1

ε) factor because we need to perform a binary search for each column.

Lemma 3. There are adaptive modules for the general version with (i) query
time and storage t = s(n) = O(n) (brute force module), (ii) query time t =
O(n/m1/(d+1)) and storage m ∈ [n, nd+1/ logd+1 n] (exact general module), and
(iii) query time t = O((log 1

ε)/(εγ)d−1) and storage S = O(n(1 + εγ2)γd−1),
for γ ∈ [1, 1/ε] (approximate general module). There is an insensitive module
for the general version with query time t = O(1/(εγ)d−1) and storage S =
O((1 + εγ2)/εd), for γ ∈ [1, 1/ε] (insensitive general module).

Applications. The modules from Lemma 3 can be used together with Theorem 1
to obtain the following data structures for spherical range searching. If we use the
insensitive general module and the brute force module, setting α = 1/(εγ)d−1,
then we obtain query time O(log n+α) with storage O(nγd−1(1+εγ2)(log 1

ε)/ε).
If we use only the approximate general module (by setting α = n), then we have
query time O(log n + (log 1

ε)/(εγ)d−1) with storage O(nγd−1(1 + εγ2) log 1
ε).

3.2 Idempotent Spherical Range Queries

It is not known how to exploit idempotence in exact range searching. Thus,
we introduce no adaptive module for this case. The insensitive module for the
idempotent case is strongly based on the insensitive general module, albeit much
more efficient. In the idempotent version, the generators can overlap, therefore
we do not need to crop the balls inside each column as in the insensitive module.
A careful look at the insensitive module shows that the same balls are used by
essentially all columns. Therefore, the storage for a single column is equal to
the total storage. In the idempotent and emptiness versions, we set ρ = δ

√
εγ to

obtain query time O(1/(εγ)(d−1)/2). We have storage S = |G| = O((γ/ε)(d+1)/2).

Lemma 4. There is an insensitive module for the idempotent version with query
time t = O(1/(εγ)(d−1)/2) and storage S = O((γ/ε)(d+1)/2), for γ ∈ [1, 1/ε]
(insensitive idempotent module).

Applications. The insensitive idempotent module from Lemma 4 can be used to-
gether with Theorem 1 to obtain the following data structures for the idempotent

384 S. Arya, G.D. da Fonseca, and D.M. Mount

version. If we use brute force as the adaptive module and set α = 1/(εγ)(d−1)/2,
then we obtain query time O(log n + α) with storage O(nγd(log 1

ε)/ε). If we use
the exact general module and set α = 1/ε

d
2 γ

d−2
2 , then we obtain query time

O(log n + 1/(εγ)
d−1
2) with storage O(nγd− 1

2 (log 1
ε)/
√

ε).

3.3 Spherical Emptiness Queries

Halfspace emptiness is a well studied problem. Exact data structures for halfspace
emptiness aremuchmore efficient than for general semigroups. By lifting the points
onto a (d+1)-dimensional paraboloid and then using Matoušek’s halfspace empti-
ness data structure [22] we obtain an adaptive module with storage m ∈ [n, n�d/2]
and query time Õ(n/m1/�d/2). We call this an exact emptiness module.

To obtain an insensitive module for the emptiness version, we simply modify
the insensitive idempotent module in order to store only the vertical coordinate
of the center of the bottommost non-empty ball for each horizontal coordinate of
the center. Therefore, storage is reduced by a factor of O(1/ε). Storage becomes
O(γ(d+1)/2/ε(d−1)/2) with the same O(1/(εγ)(d−1)/2) query time. Note that this
insensitive module generalizes the one used in Section 2.2.

We can improve upon this by adapting constructs from [6] (such as the Con-
centric Ball Lemma) and using exact data structure for spherical emptiness.
As a result, it is possible to obtain an insensitive module whose storage is
O(γ(d+1)/2/ε(d−1)/2) and whose query time is Õ(1/(εγ)(d−3)/2+1/d) for even d

and Õ(1/(εγ)(d−3)/2+2/(d+1)) for odd d. The technical details are omitted.

Lemma 5. There is an adaptive module for the emptiness version with query
time t = Õ(n/m1/�d/2) and storage m ∈ [n, n�d/2] (exact emptiness module).

There is an insensitive module for the emptiness version with query time
t = O(1/(εγ)(d−1)/2) and storage S = O(γ(d+1)/2/ε(d−1)/2), for γ ∈ [1, 1/ε] (in-
sensitive emptiness module). There is also an insensitive module for the empti-
ness version with query time t = Õ(1/(εγ)(d−3)/2+1/d) for even d ≥ 4 and
t = Õ(1/(εγ)(d−3)/2+2/(d+1)) for odd d ≥ 3 and storage S = Õ(γ(d+1)/2/ε(d−1)/2)
(advanced insensitive emptiness module).

Applications. The modules from Lemma 5 can be used together with Theorem 1
to obtain the following data structures. If we use the brute force module, the
insensitive emptiness module, and set α = 1/(εγ)(d−1)/2, we have query time
O(log n + α) with storage O(nγd log 1

ε). If we use the exact emptiness mod-
ule and the advanced insensitive emptiness module, then we obtain query time
Õ(1/(εγ)(d−3)/2+1/d) with storage Õ(nγd−2) for even d ≥ 4. For odd d ≥ 3, we
obtain query time Õ(1/(εγ)(d−3)/2+2/(d+1)) with storage Õ(nγd−2+2/(d+1)).

References

1. Arya, S., da Fonseca, G.D., Mount, D.M.: Tradeoffs in approximate range searching
made simpler. In: Proc. 21st SIBGRAPI, pp. 237–244 (2008)

2. Arya, S., Malamatos, T.: Linear-size approximate Voronoi diagrams. In: Proc. 13th
Ann. ACM-SIAM Symp. Discrete Algorithms (SODA), pp. 147–155 (2002)

A Unified Approach to Approximate Proximity Searching 385

3. Arya, S., Malamatos, T., Mount, D.M.: Space-efficient approximate Voronoi dia-
grams. In: Proc. 34th Ann. ACM Symp. Theory of Comput. (STOC), pp. 721–730
(2002)

4. Arya, S., Malamatos, T., Mount, D.M.: Space-time tradeoffs for approximate spher-
ical range counting. In: Proc. 16th Ann. ACM-SIAM Symp. on Discrete Algorithms
(SODA), pp. 535–544 (2005)

5. Arya, S., Malamatos, T., Mount, D.M.: On the importance of idempotence. In:
Proc. 38th ACM Symp. on Theory of Comput. (STOC), pp. 564–573 (2006)

6. Arya, S., Malamatos, T., Mount, D.M.: Space-time tradeoffs for approximate near-
est neighbor searching. J. ACM 57, 1–54 (2009)

7. Arya, S., Mount, D.M.: Approximate range searching. Comput. Geom. 17, 135–163
(2001)

8. Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y.: An opti-
mal algorithm for approximate nearest neighbor searching fixed dimensions. J.
ACM 45(6), 891–923 (1998)

9. Bespamyatnikh, S.N.: Dynamic algorithms for approximate neighbor searching. In:
Proc. 8th Canad. Conf. Comput. Geom. (CCCG), pp. 252–257 (1996)

10. Chan, T.M.: Approximate nearest neighbor queries revisited. Discrete Comput.
Geom. 20, 359–373 (1998)

11. Chan, T.M.: Closest-point problems simplified on the ram. In: Proc. 13th Annu.
ACM-SIAM Symp. Discrete Algorithms (SODA), pp. 472–473 (2002)

12. Chan, T.M.: Faster core-set constructions and data-stream algorithms in fixed
dimensions. Comput. Geom. 35(1), 20–35 (2006)

13. Clarkson, K.L.: An algorithm for approximate closest-point queries. In: Proc. 10th
Annu. ACM Symp. Comput. Geom. (SoCG), pp. 160–164 (1994)

14. da Fonseca, G.D., Mount, D.M.: Approximate range searching: The absolute model.
Comput. Geom. 43(4), 434–444 (2010)

15. Duncan, C.A., Goodrich, M.T., Kobourov, S.: Balanced aspect ratio trees: Com-
bining the advantages of k-d trees and octrees. J. Algorithms 38, 303–333 (2001)

16. Eppstein, D., Goodrich, M.T., Sun, J.Z.: The skip quadtree: a simple dynamic data
structure for multidimensional data. In: Proc. 21st ACM Symp. Comput. Geom.
(SoCG), pp. 296–305 (2005)

17. Funke, S., Malamatos, T., Ray, R.: Finding planar regions in a terrain: in practice
and with a guarantee. Internat. J. Comput. Geom. Appl. 15(4), 379–401 (2005)

18. Har-Peled, S.: Notes on geometric approximation algorithms,
http://valis.cs.uiuc.edu/~sariel/teach/notes/aprx/

19. Har-Peled, S.: A replacement for Voronoi diagrams of near linear size. In: Proc.
42nd Ann. Symp. Foundations of Computer Science (FOCS), pp. 94–103 (2001)

20. Har-Peled, S., Mazumdar, S.: Fast algorithms for comput. the smallest k-enclosing
circle. Algorithmica 41(3), 147–157 (2005)

21. Matoušek, J.: Range searching with efficient hierarchical cutting. Discrete Comput.
Geom. 10, 157–182 (1993)

22. Matoušek, J., Schwarzkopf, O.: On ray shooting in convex polytopes. Discrete
Comput. Geom. 10, 215–232 (1993)

23. Sabharwal, Y., Sen, S., Sharma, N.: Nearest neighbors search using point location
in balls with applications to approximate Voronoi decompositions. J. Comput. Sys.
Sci. 72, 955–977 (2006)

http://valis.cs.uiuc.edu/~sariel/teach/notes/aprx/

Spatio-temporal Range Searching over

Compressed Kinetic Sensor Data

Sorelle A. Friedler� and David M. Mount��

Dept. of Computer Science, University of Maryland,
College Park, MD 20742, USA
{sorelle,mount}@cs.umd.edu

http://www.cs.umd.edu/~sorelle,
http://www.cs.umd.edu/~mount

Abstract. As sensor networks increase in size and number, efficient
techniques are required to process the very large data sets that they
generate. Frequently, sensor networks monitor objects in motion within
their vicinity; the data associated with the movement of these objects are
known as kinetic data. In an earlier paper we introduced an algorithm
which, given a set of sensor observations, losslessly compresses this data
to a size that is within a constant factor of the asymptotically optimal
joint entropy bound. In this paper we present an efficient algorithm for
answering spatio-temporal range queries. Our algorithm operates on a
compressed representation of the data, without the need to decompress
it. We analyze the efficiency of our algorithm in terms of a natural mea-
sure of information content, the joint entropy of the sensor outputs. We
show that with space roughly equal to entropy, queries can be answered in
time that is roughly logarithmic in entropy. In addition, we show exper-
imentally that on real-world data our range searching structures use less
space and have faster query times than the naive versions. These results
represent the first solutions to range searching problems over compressed
kinetic sensor data.

1 Introduction

Sensor networks and the data they collect have become increasingly prevalent.
They are frequently employed to observe objects in motion and are used to
record traffic data [14, 23], observe wildlife migration patterns [20, 25], and
observe motion from many other settings [2]. In order to perform accurate sta-
tistical analyses of this data over arbitrary periods of time, the data must be
faithfully recorded and stored. For example, a large sensor network observing
a city’s traffic patterns may generate gigabytes of data each day [14]. The vast

� The work of Sorelle Friedler has been supported in part by the AT&T Labs Fellow-
ship Program and the University of Maryland Ann G. Wylie Dissertation Fellowship.

�� The work of David Mount has been supported in part by the National Science
Foundation under grant CCR-0635099 and the Office of Naval Research under grant
N00014-08-1-1015.

M. de Berg and U. Meyer (Eds.): ESA 2010, Part I, LNCS 6346, pp. 386–397, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Spatio-temporal Range Searching over Compressed Kinetic Sensor Data 387

quantities of such data necessitate compression of the sensor observations, yet
analyses of these observations is desirable. Ideally, such analysis should operate
over the compressed data without the need to decompress it. In order to per-
form statistical analyses of the data, it is often desirable that retrieval queries
be supported. In this paper, we present the first data structure and algorithms
for answering range searching queries over compressed data streams arising from
large sensor networks.

In an earlier paper [10], we presented an algorithm for losslessly compressing
kinetic sensor data and a framework for analyzing its performance. (See Section 2
for a brief introduction.) We assume that we are given a set of sensors, which are
at fixed locations in a space of constant dimension (our results apply generally
to metric spaces of constant doubling dimension [18].) These sensors monitor the
movement of a number of kinetic objects. Each sensor monitors an associated
region of space, and at regular time steps it records an occupancy count of the
number of objects passing through its region. Over time, each sensor produces
a string of occupancy counts; the problem considered in [10] is how to compress
all these strings.

Previous compression of sensor data in the literature has focused largely on
approximation algorithms in the streaming model or lossy compression of the
data. We consider lossless compression. This is often more appropriate in sci-
entific contexts, where analysis is performed after the data has been collected
and accurate results are required. Lossless compression algorithms have been
studied in the single-string setting [16, 22, 27, 28] but remain mostly unstudied
in a sensor-based setting [10].

In order to query observed sensor data, which ranges over time and space, we
need to consider both temporal and spatial queries. Temporal range queries are
given a time interval and return an aggregation of the observations over that
interval. Spatial range queries are given some region of space (e.g., a rectangle,
sphere, or halfplane) and return an aggregation of the observations within that
region. Spatio-temporal range queries generalize these by returning an aggrega-
tion restricted by both a temporal and a spatial range. We assume that occu-
pancy counts are taken from a commutative semigroup of fixed size, and the
result is a semigroup sum over the range. There are many different data struc-
tures for range searching (on uncompressed data), depending on the properties
of the underlying space, the nature of the ranges, properties of the semigroup,
and whether approximation is allowed [1].

We present data structures for storing compressed sensor data and algorithms
for performing spatio-temporal range queries over these data. We analyze the
quality of these range searching algorithms in terms of both time and space by
considering the information content of the set of sensor outputs. There are two
well-known ways in which to define the information content of a string, classi-
cal statistical (Shannon) entropy and empirical entropy. Statistical entropy [24]
is defined under the assumption that the source X is drawn from a stationary,
ergodic random process. The normalized statistical entropy, denoted H(X), pro-
vides a lower bound on the number of bits needed to encode a character of X . In

388 S.A. Friedler and D.M. Mount

Table 1. Time and space bounds for temporal range searching and ε-approximate
spatio-temporal range searching for fat convex ranges in Rd. S is the number of sensors
in the network, T is the length of the observation period, and Enc(X) and Enc(X)
denote the sizes of the compressed representations for single sensor stream (for temporal
range searching) and sensor system (for spatio-temporal range searching), respectively.

Bounds for Range Searching.

Temporal Spatio-temporal

Preprocessing time O(Enc(X)) O(Enc(X))

Query time O(log T) O(((1/εd−1) + log S) log T)
Space O(Enc(X)) O(Enc(X) log S)

contrast, the empirical entropy [17, 19], denoted Hk(X), while similar in spirit to
the statistical entropy, assumes no underlying random process and relies only on
the observed string and the context of the most recent k characters. These defini-
tions and distinctions are discussed in more detail in a companion paper[11].

Previously, random access or pattern matching queries over compressed text
(without relying on decompression) have been studied in the context of strings [3,
8, 9, 13] and XML files [7]. For example, Ferragina and Venturini [9] show that
it is possible to retrieve a substring (indexed by start and end times) in the
compressed text with query time equal to O(1 + �

log T) where 	 is the length of
the substring and T is the length of the string X . Their space requirement is
T · Hk(X) + o(T) bits. Their data structure allows substring queries, which are
very different from semigroup range searching queries, which we consider here.
For surveys of this area see [6, 15, 21].

In this paper we present the first range query results over compressed kinetic
sensor data. Specifically, we consider the problems of temporal range searching
and spatio-temporal range searching for fat convex ranges (e.g. spheres, rectan-
gles with low aspect ratio, etc. [4]).

As mentioned earlier, we analyze our algorithms in terms of the joint entropy of
the sensor outputs. The preprocessing makes only one pass over the compressed
data, and thus it can be performed as the data are collected. The query bounds are
logarithmic in the input size. The space bounds, given in bits, match the entropy
lower bound up to constant factors. Specific bounds are given in Table 1.

In addition to theoretical results, we present experimental evaluation of our
temporal range searching structure. These results show that, in addition to being
theoretically efficient, our data structure offers a roughly 50-fold improvement
in space. These improvements increase as the data sets become larger. Both our
temporal and spatio-temporal data structures are quite practical, being based
on very simple data structures (tries, binary trees, and quadtrees, in particular).

2 Framework for Kinetic Sensor Data

In an earlier paper [10] we introduced a framework and a lossless compression
scheme for discrete kinetic data observed by a sensor network. This framework

Spatio-temporal Range Searching over Compressed Kinetic Sensor Data 389

will be used as a basis for the results of this paper. We begin with some basic
definitions about the structure of the sensor network and the associated observed
data streams. Consider a static sensor network with S sensors, monitoring the
motion of a collection of moving objects. Let P be a point set indicating the
sensor locations. All sensors are assumed to operate over T synchronized time
steps. Each sensor observes the motion of objects in some region surrounding it,
and records an occupancy count indicating the number of objects passing within
its region during the observed time step. No assumptions are made about the
nature of the point motion nor the nature of the sensor regions.

Central to our framework is the notion that each sensor’s output is statistically
dependent on a relatively small number of nearby sensors. For some point p ∈ P ,
let NN m(p) ⊆ P be the m nearest neighbors of p. Sensors i and j with associated
sensor positions pi, pj ∈ P are said to be mutually m-close if pi ∈ NN m(pj) and
pj ∈ NN m(pi). For a constant m, a sensor system is said to be m-local if all
pairs of sensors that are not mutually m-close are statistically independent.

In [10] we introduced a compression algorithm, PartitionCompress , which op-
erates on an m-local sensor system. It compresses the sensor outputs to within a
constant factor c (depending on dimension) of the optimal joint entropy bound.
Intuitively, the compression algorithm is based on the following idea. If two
sensor streams are statistically independent, they may be compressed indepen-
dently from each other. If not, optimal compression can only be achieved if they
are compressed jointly. The algorithm works by compressing the outputs from
clusters of nearest neighbor groups together, as if they were a single stream. In
order to obtain the desired compression bounds, these clusters must be suffi-
ciently well separated so that any two mutually m-close sensors are in the same
cluster. PartitionCompress partitions the points into a constant number c (in-
dependent of m but depending on dimension) of subsets for which this is true
and then compresses clusters together to take advantage of local dependencies.
The compression of a single cluster may be performed using any string compres-
sion algorithm; to obtain the near optimal bound, this algorithm must compress
streams to their optimal entropy bound. It is shown in a companion paper[11]
that LZ78, the Lempel-Ziv dictionary compression algorithm [28], is sufficient
for our purposes.

For the rest of the paper, we will use Encalg(X) to denote the length of
the encoded set of sensor outputs X, where alg specifies the string compressor
used by the compression algorithm of [10]. Since LZ78 will suffice, let Enc(X) =
EncLZ78(X). In [11], it is shown that Enc(X) is on the order of the optimal space
bound when analyzed in terms of either the statistical or empirical entropy.

3 Temporal Range Searching

In this section we describe a data structure that answers temporal range search-
ing queries over a single compressed sensor stream. Let X be a sequence of sensor
counts over time period [1, T], which will be compressed and preprocessed into a
data structure so that given any temporal range [t0, t1] ∈ [1, T], the aggregated

390 S.A. Friedler and D.M. Mount

count over that time period can be calculated efficiently. We assume that the
individual sensor counts are drawn from a semigroup, and the sum is taken over
this semigroup. The space used by the data structure (in bits) will be asymp-
totically equal to that of the compressed string, and the query time will be
logarithmic in T . Here is the main result of this section. Recall that, given string
X , Enc(X) denotes the length of the compressed encoding of X .

Theorem 1. There exists a temporal range searching data structure, which given
string X over a time period of length T , can be built in time O(Enc(X)), achieves
query time O(log T), and uses space O(Enc(X)) bits.

The remainder of this section is devoted to proving this theorem. Here we con-
sider the simpler special case where the semigroup is in fact a group, which means
that both addition and subtraction of weights are allowed. The semigroup case
involves a more sophisticated data structure; that description and the full proofs
for this section can be found in [12].

We begin by describing the preprocessing for our data structure in the group
context, where subtraction of counts is allowed. First, the given sequence X is
compressed using the LZ78 compression algorithm and the standard accompa-
nying trie (also known as a dictionary) containing nodes that represent words is
created [28]. We begin with a short overview of this algorithm. LZ78 scans over
the input, putting characters into a trie so that each edge in the trie represents
a single character. As the string is scanned from beginning to end, the prefix
is looked up in the trie and the most recent character is added to that path in
the trie. The resulting word is added to the compressed version of the string by
simply storing a pointer to the bottom most node of the path in the dictionary.
Let d be the number of words in the dictionary. Each word in the dictionary
(possibly excepting the last) is used in the compressed version of the string ex-
actly once. In addition, each word in the dictionary was generated only after all
prefixes had previously been added, so the trie is prefix-complete [8]. We will
make use of the fact, proved in a companion paper[11], that d log d = Enc(X).

Let us now discuss our preprocessing of the stream X . It involves two phases.
The first takes place during the single scan through the input. The data are
compressed using LZ78 compression, the associated trie is created, and pointers
to word endings (called anchor points) are stored. Additionally, the aggregated
value of each word (e.g. the sum of its component counts, or the word sum)
is added to the associated node in the dictionary. This value can be found by
adding the count at the current node to its parent’s stored aggregated value as
each letter is added to an existing word in the trie. This phase takes time O(T)
and we will refer to the result of this phase as the compressed form of the input.

The second phase, which is the one we will analyze for its additional non-
compression related time, consists of creating a binary search tree over the an-
chor points and initializing auxiliary data structures. Building a binary search
tree over the anchor points (stored already sorted by word start time) requires
O(d) time, since there are d words and each has one associated anchor point.
Additionally, we create an aggregation tree over the aggregate word values, so
that aggregate values of consecutive words can be easily found when considering

Spatio-temporal Range Searching over Compressed Kinetic Sensor Data 391

1

1 2

2

3

$0 1

$2 2 $4 3

$1 2

$3 5

$0 1 1

anchor time aggregated
Key:

sum

$2 3 2

$3 5 10

$4 7 3

$1 2 13

Fig. 1. Left: LZ78 trie annotated with associated anchor points and word sums for a
single sensor with observation string “12112312”. Considered inline, the string with
anchor points as breaks between the words becomes 1 $0 2 $1 11 $2 23 $3 12 $4. Right:
The corresponding binary search tree based on word start times that also contains
aggregated sums for the words contained in each node’s subtree.

substrings. This takes time O(d) when created as an annotation to the existing
binary search tree. Finally, we will later need access to a level ancestor data
structure, which can be built in O(d) time [5].

Lemma 1. Assuming that the input is given in compressed form, temporal range
searching takes preprocessing time O(d) = O(Enc(X)).

Next we describe query processing. Each temporal query can be categorized as
either internal or overlapping depending on whether the query interval overlaps
one word or multiple words, respectively. Internal queries implicitly divide a
word into a prefix, query region, and suffix. Since the trie is prefix-complete, all
prefix aggregations are stored in our annotated trie and can be retrieved in O(1)
time using these annotations and the level-ancestor data structure. Entire word
aggregate values can be retrieved as a group using the annotated binary search
tree created over the aggregate word values. Using these basic retrieval systems,
internal queries can be found by subtracting the prefix and suffix values from
the word total and overlapping queries can be determined by adding the suffix,
complete word sums, and prefix values.

The running time is dominated by the O(log d) time needed to lookup which
word(s) overlap the given temporal query using a binary search over the sorted
anchor points, and the O(log d) complete words that might be summed using
the aggregation tree for overlapping queries.

Lemma 2. The query time for temporal range searching in the group setting is
O(log d) = O(log T).

Finally, we consider the total number of bits of space used in this process. The
storage of the anchor points requires space d and the annotated dictionary takes
space d. Under our assumption that the group is of fixed size, the largest sum
that can be achieved during this process is O(T). These sums annotate dictio-
nary words, so the modified dictionary takes space at most O(d log T), which
is O(d log d) since T = O(d2). In addition, we make use of an auxiliary data
structure to solve the level ancestor problem [5]. This data structure requires

392 S.A. Friedler and D.M. Mount

storage only of the tree, O(d) pointers to nodes in the tree, and a table of O(d)
encoded subtrees that each take O(log d) space. Thus, the total size required by
this auxiliary data structure is also O(d log d).

Lemma 3. The total space in bits required for our temporal range structure in
the group setting is O(d log d) = O(Enc(X)).

4 Spatio-temporal Range Searching

In this section we consider how to extend the results of the previous section
on temporal range searching on a single string to range searching for a sensor
system, in which queries include both the spatial and temporal components
of the data. We assume that we are given an m-local sensor system with S
sensors. Each sensor is identified with its location pi in space and a stream Xi

of occupancy counts over some common time interval [1, T]. We assume that
the sensors reside in real d-dimensional space, Rd, where d is a constant. Our
approach can be generalized to metric spaces with constant doubling dimension.
We model each sensor’s location as a point, and the answer to a range query
consists of the sensors whose associated point lies within the query region. Let P
and X denote the sets of sensor locations and observation streams, respectively.

Define a spatio-temporal range query to be a pair (Q, [t0, t1]) consisting of a
geometric query range Q from some space Q of allowable ranges (e.g., rectangles,
balls, or halfspaces) and a time interval [t0, t1] ⊆ [1, T]. The problem is to com-
pute the sum of the occupancy counts of the sensors whose locations lie within
the range, that is, P ∩Q, over the given time interval. In general, the occupancy
counts are assumed to be drawn from a commutative semigroup, and the sum is
taken over this semigroup. The remainder of this section is devoted to proving
the following theorem, which shows that approximate spherical spatio-temporal
range queries can be answered efficiently. In fact, these techniques hold for all
fat convex ranges, but for simplicity of presentation we will limit ourselves to
the spherical case here. (Proofs can be found in [12].)

Theorem 2. There exists a data structure for answering ε-approximate spatio-
temporal spherical range queries for an S-element m-local sensor system X in
Rd for all sufficiently long time intervals T with preprocessing time O(Enc(X)),
query time O(((1/εd−1) + log S) log T), and space O(Enc(X) log S) bits.

Rather than considering a particular range searching problem, we will show that
the above problem can be reduced to a generalization of classical range searching.
To motivate this reduction, we recall that the compression algorithm presented
in [10] groups sensors into clusters, and the sensor outputs within each cluster
are then compressed jointly. In order to answer range queries efficiently, it will be
necessary to classify each such cluster as lying entirely inside the range, outside
the range, or overlapping the range’s boundary. In the last case, we will need to
further investigate the cluster’s internal structure. Efficiency therefore is depen-
dent on the number of clusters that overlap the range’s boundary. We will exploit

Spatio-temporal Range Searching over Compressed Kinetic Sensor Data 393

spatial properties of the clusters as defined in [10] to achieve this efficiency. To
encapsulate this notion abstractly, we introduce the problem of range searching
over clumps, in which the points are replaced by balls having certain separation
properties. Eventually, we will show how to adapt the BBD-tree structure [4] to
answer approximate range queries in this context.

Given any metric space of constant dimension, a set of clumps is defined to
be a finite set C of balls that satisfies the following packing property for some
constant γ (depending possibly on dimension): Given any metric ball b of radius
r, the number of clumps of C of radius r′ that have a nonempty intersection
with b is at most O((1 + (r/r′))γ). Given a range shape Q, a clump may either
lie entirely within Q, entirely outside Q, or may intersect the boundary of Q. In
the last case, we say that the clump is stabbed by Q.

The relevance of the notion of clumps to our setting is established in the
following lemma. The lemma states that the clusters of sensors within a single
partition created by the PartitionCompress algorithm of [10], when associated
with a bounding ball, form a set of clumps. The PartitionCompress algorithm
partitions the sensor point set P into a constant number of groups, P1, . . . , Pc

(where c depends only on the dimension of the space). Each group Pi is further
partitioned into subsets, called clusters, such that if two sensors are in different
clusters then their outputs are independent of each other. Given a ball b and
real ϕ > 0, let ϕ b denote the ball concentric with b whose radius is a factor of
ϕ times the radius of b.

Lemma 4. Given a point set P , let P ′ ⊆ P be any of the groups generated by
the PartitionCompress algorithm, and let P ′

1, . . . , P
′
h denote the associated set

of clusters for this group. Then there exists a set of balls C = {b1, . . . , bh} that
form a set of clumps such that P ′

i ⊆ bi.

The proof of this lemma (given in [12]) relies on the observation that 1
2b1, ...,

1
2bh

are pairwise disjoint. This is established based on the geometric properties of
the repetitive partitioning process of the PartitionCompress algorithm.

We define the problem of range searching among clumps as follows: Given a
space Q of allowable ranges and a set C of clumps, each of which is associated
with a numeric weight from some commutative semigroup, preprocess the clumps
into a collection of subsets, called generators, such that given any query range
Q ∈ Q, it is possible to report (1) a subset of these generators that form a disjoint
cover of the clumps lying wholly within Q and (2) the subset of clumps that Q
stabs. The total space requirements of a data structure for the range searching
problem over clumps is the sum of space needed to represent the generators
and the clumps, together with the space needed for storing the index structure
needed to answer queries. The query time includes number of generators and
stabbed clumps returned, plus the time to compute them.

Many data structures used in range searching are based on partition trees
[1]. In such data structures, space is recursively subdivided into regions and the
points are partitioned among these regions, until each region contains a single
point. Each node of the tree is associated with a generator corresponding to the
elements of the point set that lie in the leaves descended from this node. Our

394 S.A. Friedler and D.M. Mount

main result shows that, given a partition-tree based solution to the problem of
range-searching among clumps, we can use such a structure to answer spatio-
temporal range queries. This is done by adding an auxiliary data structure to
each of the nodes of the tree to answer the temporal queries.

Lemma 5. Suppose that we have a partition-tree based data structure that, given
a set C of n clumps, can answer range queries over a query space Q with pre-
processing time pp(n), query time qt(n), space sp(n) bits, and has height h(n).
Then there exists a data structure that can answer spatio-temporal range queries
for an m-local sensor system X of size S over a range space Q and time inter-
val of length T with preprocessing time O(h(S) · pp(S) + Enc(X)), query time
O(qt(S) · log T), and space O(sp(S) + h(S) · Enc(X)) bits.

Observe that we can generalize the notion of ε-approximate range searching to
approximate range searching over clumps. To do so we define two ranges Q− and
Q+, representing the inner and outer approximate ranges. For example, in the
case of spherical range searching, given a query ball Q, we define Q− = Q and
Q+ to be the ball concentric with Q but whose radius is scaled relative to Q’s
radius by a factor of (1 + ε). (See Arya and Mount [4] for further details.) If a
generator lies entirely within Q+ its points may be counted as lying within the
approximate range, if it lies entirely outside of Q−, its points may be considered
to lie outside the approximate range. A clump is classified as being stabbed by Q
if and only if it has a nonempty intersection with both Q− and the complement
of Q+. It is easy to show that such a clump has diameter Ω(ε · diam(Q)) [4]. By
the packing property of clumps, the number of such clumps is O(1/εγ), where
the parameter γ depends only on the dimension of the space. We conclude by
remarking that it is relatively easy to generalize many standard approximate
range searching data structures based on hierarchical partitioning to answer
range searching over clumps. We present one example based on the BBD-tree
data structure of [4].

Lemma 6. There exists a data structure for answering ε-approximate spherical
range searching queries over a set C of n clumps in Rd with preprocessing time
O(n log n), query time O((1/εd−1)+log n), and space O(n·(prec(C)+log n)) bits,
where prec(C) denotes the maximum number of bits of precision in the geometric
coordinates used to define C.

By applying Lemma 5 to the above data structure, it follows that we can answer
ε-approximate spherical range searching queries for a sensor system of size S
over a time period of length T with preprocessing time O((S log2 S) + Enc(X)),
query time O(((1/εd−1) + log S) log T), and space O((S · (prec(C) + log S) +
Enc(X) log S) bits, where prec(C) denotes the maximum number of bits of pre-
cision in the geometric coordinates used to define C. Under the assumption that
T is sufficiently large that the encoding space dominates over time-invariant
quantities, this completes the proof of Theorem 2.

Spatio-temporal Range Searching over Compressed Kinetic Sensor Data 395

Fig. 2. Locality shown via a comparison
of the graph distance between sensor 369
and other sensors and the average joint
entropy between all such pairs of sensors.
As the distance between the sensors in-
creases so does the joint entropy, showing
that closer sensors are more likely to have
related outputs.

Fig. 3. Left: The space used by the raw data in comparison to that used by the temporal
range structure shown for varying numbers of days of data. Note that the size is shown
in a logarithmic scale. As the number of days increase, the space saving increases as
well. Right: Average temporal query times for 100 randomly chosen queries for each
interval length. Query times for two methods are shown; one using the temporal range
structure and one using a naive method that simply aggregates values one by one.

5 Experimental Results

In addition to the theoretical analysis of the range searching results presented
here, we evaluated the temporal range searching structure experimentally. Using
a data set provided by the Mitsubishi Electronic Research Laboratory
(MERL)[26] consisting of activation times for sensors located in the hallways
of their building, we analyzed three aspects of our data structure’s performance;
locality, space, and time. In short, we found that our assumption that sensors
closer to each other are more likely to have similar outputs was correct and that
our data structure was able to use less space than a naive structure while pro-
viding faster query times. In the rest of this section, we describe the data set
and our experimental methods in greater detail.

The MERL data set consists of activation times, representing people moving,
for 213 sensors. These activation times are given with epoch start and end times.
Using these start times, and noting that each activation lasted approximately
one second, we translated these activation times into streams of data for each
sensor in the form described earlier. Each activation is represented by a count
of one and seconds in which no activations were reported are represented by
a count of zero. These streams are associated with sensors whose locations are
known and relationships are shown in a building map. Using this map, we create
a graph in which neighboring sensors are connected by an edge with weight one.

396 S.A. Friedler and D.M. Mount

In order to evaluate our assumption that nearby sensors are more likely to
have related outputs, we compared the distance between a single sensor (sensor
369, a sensor in the middle of a hallway) to the pairwise joint entropy of that
sensor and all other sensors’ outputs. Distance was computed as the shortest
path distance within the neighborhood graph described earlier, and the joint
entropy considered was an empirical generalization of joint entropy[11] with a
window size of 10 seconds. The average joint entropy for each distance is shown
in Figure 2. The graph shows that those sensors in the neighborhood near sensor
369, those less than distance five away, have outputs with lower joint entropy.
After this local neighborhood, the joint entropy raises to a relatively constant
threshold for the majority of distances, and finally raises again for far away
sensors. The outlying points at distances 8 and 18 represent comparisons with
sensors in the unusual areas near the elevators and lunch room, respectively.

We considered the storage space for the sensor data streams for the raw data
(consisting of one value per second) versus the temporal range structures (specif-
ically the annotated tries) written to files. The size taken over all sensors by each
of these methods as it varies based on the number of days (in increments of 10)
of data can be seen in Figure 3. We call the ratio between the space used by the
raw data and the space used by the temporal range structure the improvement
ratio. The improvement ratio increases as the amount of data increases, ranging
from a 14-fold improvement for 1 day to a 66-fold improvement for 80 days of
data. This increase is likely caused by the observation of repeated patterns; the
first observation must be stored in the annotated trie while later observations
can simply extend existing patterns, taking less space.

Query time is considered for varying query interval lengths for 150 days of
data (at 1 day intervals). We compare our temporal range searching method to
the naive method that aggregates by linearly adding each count. Query times
do not include the time to read in the file or, in the case of the temporal range
structure, the one-time preprocessing cost. A graph showing the interval length
versus the query time for each of these methods is given in Figure 3. Each query
time depicted on the graph represents the average of 100 randomly chosen queries
of the given interval length. As the interval length increases, the temporal range
structure’s improvement over the naive method increases as well.

References

[1] Agarwal, P.K., Erickson, J.: Geometric range searching and its relatives. In:
Chazelle, B., Goodman, J., Pollack, R. (eds.) Advances in Discrete and Compu-
tational Geometry, pp. 1–56. American Mathematical Society, Providence (1998)

[2] Akyildiz, I., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor net-
works: A survey. In: Computer Networks, pp. 393–422 (2002)

[3] Amir, A., Benson, G., Farach-Colton, M.: Let sleeping files lie: Pattern matching
in Z-compressed files. J. Comput. Syst. Sci. 52(2), 299–307 (1996)

[4] Arya, S., Mount, D.M.: Approximate range searching. Computational Geometry:
Theory and Applications 17, 135–152 (2000)

[5] Bender, M.A., Farach-Colton, M.: The level ancestor problem simplified. Theoret-
ical Computer Science 321, 5–12 (2004)

Spatio-temporal Range Searching over Compressed Kinetic Sensor Data 397

[6] Ferragina, P., Gonzalez, R., Navarro, G., Venturini, R.: Compressed text indexes:
From theory to practice. Journal of Experimental Algorithmics 13, 12–31 (2009)

[7] Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Compressing and
searching XML data via two zips. In: Proc. of the 15th International Conference
on World Wide Web, pp. 751–760 (2006)

[8] Ferragina, P., Manzini, G.: Indexing compressed text. Journal of the ACM 52(4),
552–581 (2005)

[9] Ferragina, P., Venturini, R.: A simple storage scheme for strings achieving entropy
bounds. Theoretical Computer Science 372(1), 115–121 (2007)

[10] Friedler, S.A., Mount, D.M.: Compressing kinetic data from sensor networks. In:
Dolev, S. (ed.) ALGOSENSORS 2009. LNCS, vol. 5804, pp. 191–202. Springer,
Heidelberg (2009)

[11] Friedler, S.A., Mount, D.M.: Realistic compression of kinetic sensor data. Techni-
cal Report CS-TR-4959, University of Maryland, College Park (2010)

[12] Friedler, S.A., Mount, D.M.: Spatio-temporal range searching over compressed
kinetic sensor data. Technical Report CS-TR-4960, U. Maryland (2010)

[13] González, R., Navarro, G.: Statistical encoding of succinct data structures. In:
Lewenstein, M., Valiente, G. (eds.) CPM 2006. LNCS, vol. 4009, pp. 294–305.
Springer, Heidelberg (2006)

[14] Guitton, A., Trigoni, N., Helmer, S.: Fault-tolerant compression algorithms for
sensor networks with unreliable links. Technical Report BBKCS-08-01, Birkbeck,
University of London (2008)

[15] Hon, W.-K., Shah, R., Vitter, J.S.: Compression, indexing, and retrieval for mas-
sive string data. In: Amir, A., Parida, L. (eds.) Combinatorial Pattern Matching.
LNCS, vol. 6129, pp. 260–274. Springer, Heidelberg (2010)

[16] Huffman, D.A.: A method for the construction of minimum-redundancy codes. In:
Proceedings of the IRE, vol. 40 (September 1952)

[17] Kosaraju, R.S., Manzini, G.: Compression of low entropy strings with Lempel–Ziv
algorithms. SIAM J. Comput. 29(3), 893–911 (1999)

[18] Krauthgamer, R., Lee, J.R.: Navigating nets: Simple algorithms for proximity
search. In: Symposium on Discrete Algorithms (2004)

[19] Manzini, G.: An analysis of the Burrows–Wheeler transform. J. ACM 48(3), 407–
430 (2001)

[20] MIT Media Lab. The Owl project, http://owlproject.media.mit.edu/
[21] Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Computing Sur-

veys 39(1) (2007)
[22] Rissanen, J.: Generalized Kraft inequality and arithmetic coding. IBM Journal of

Research and Development 20 (1976)
[23] Saunier, N., Sayed, T.: Automated analysis of road safety with video data. In:

Transportation Research Record, pp. 57–64 (2007)
[24] Shannon, C.E.: A mathematical theory of communication. The Bell System Tech-

nical Journal 27, 379–423, 623–656 (1948)
[25] Stutchbury, B.J.M., Tarof, S.A., Done, T., Gow, E., Kramer, P.M., Tautin, J.,

Fox, J.W., Afanasyev, V.: Tracking long-distance songbird migration by using
geolocators. Science, 896 (February 2009)

[26] Wren, C.R., Ivanov, Y.A., Leigh, D., Westbues, J.: The MERL motion detec-
tor dataset: 2007 workshop on massive datasets. Technical Report TR2007-069,
Mitsubishi Electric Research Laboratories, Cambridge, MA, USA (August 2007)

[27] Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Transactions on Information Theory IT-23(3) (May 1977)

[28] Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding.
IEEE Transactions on Information Theory 24(5), 530–536 (1978)

http://owlproject.media.mit.edu/

Constructing the Exact Voronoi Diagram of

Arbitrary Lines in Three-Dimensional Space�

with Fast Point-Location

Michael Hemmer1, Ophir Setter2, and Dan Halperin2

1 INRIA - Sophia Antipolis, France
Michael.Hemmer@sophia.inria.fr

2 Tel-Aviv University, Israel
{ophirset,danha}@post.tau.ac.il

Abstract. We introduce a new, efficient, and complete algorithm, and
its exact implementation, to compute the Voronoi diagram of lines in
space. This is a major milestone towards the robust construction of
the Voronoi diagram of polyhedra. As we follow the exact geometric-
computation paradigm, it is guaranteed that we always compute the
mathematically correct result. The algorithm is complete in the sense
that it can handle all configurations, in particular all degenerate ones.
The algorithm requires O(n3+ε) time and space, where n is the number of
lines. The Voronoi diagram is represented by a data structure that per-
mits answering point-location queries in O(log2 n) expected time. The
implementation employs the Cgal packages for constructing arrange-
ments and lower envelopes together with advanced algebraic tools.

Keywords: Voronoi Diagrams, Point Location, Lower Envelopes, Ro-
bust Geometric Computing, Computational Geometry, CGAL.

1 Introduction

The Voronoi diagram (VD) is among the most fundamental structures in Compu-
tational Geometry, and is known to be a useful tool in a variety of domains. For
instance, structural biology [19], [34] and robot motion planing [25], [35] apply
Voronoi diagrams to encode point sets keeping maximal distance from atoms or
obstacles, respectively. A related concept is the medial-axis transform [6], which is
considered fundamental in solid modeling and applied to problems such as finite
element meshing, shape morphing, and feature recognition. Yet, the adaptation of
complex three-dimensional Voronoi diagrams in professional tools has been very
slow. Their use is hindered by the difficulty of designing and implementing reliable
geometric algorithms for complex structures in three-dimensional space.

Voronoi diagrams have been the subject of a tremendous amount of research.
We refer the reader to the survey by Aurenhammer and Klein [2] of work
� This work has been supported in part by the Israel Science Foundation (grant no.

236/06), by the German-Israeli Foundation (grant no. 969/07), and by the Hermann
Minkowski–Minerva Center for Geometry at Tel Aviv University.

M. de Berg and U. Meyer (Eds.): ESA 2010, Part I, LNCS 6346, pp. 398–409, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Constructing the Exact Voronoi Diagram of Arbitrary Lines in Space 399

published up till 2000. Voronoi diagrams in R2 are well understood in almost
all aspects, that is, in terms of complexity and optimal algorithms as well as in
terms of robust and efficient implementations. In R3 much less is known, even for
simple objects such as lines, segments, or polyhedra. For example, a tight bound
on the combinatorial complexity of the VD of n lines or line segments in R3

is unknown; it is conjectured that the complexity is near-quadratic; the known
lower bound is Ω(n2) [1], but the best known upper bound is1 O(n3+ε) [32].
In the case of lines with a fixed number c of orientations the upper bound was
improved to O(c4n2+ε) [26]. A complete analysis of all possible combinatorial
cases for three arbitrary lines is presented by Everett et al. [16], [17].

Today, there are many published results on robust constructions of different
types of Voronoi diagrams in R2. Not only Voronoi diagrams of points are con-
sidered, but also Voronoi diagrams of line segments [23], circles [15], ellipses [14],
and more [8, §2], [31]. In R3, an exact implementation of the Voronoi diagram
of additively-weighted points was analyzed in [7], but we are not aware of any
exact, complete, and implemented algorithm that computes Voronoi diagrams of
lines, line segments, or polyhedra. Nevertheless, progress has been made toward
the exact computation of the arrangement of quadrics [5], [12]. Each Voronoi
cell of the diagram of lines in space can be represented as the union of cells of
such an arrangement. Other approaches explicitly aim for an exact or robust
computation of the Voronoi diagram (or the medial axis) [9], [27]. However,
those approaches are not complete. For example, Culver’s algorithm [9] does not
handle singular trisector-curves.

Finally, Hanniel and Elber [20] provided an algorithm to construct the Voronoi
cell of bounded planes, spheres, and cylinders in R3. Similar to ours, the ap-
proach utilizes lower envelopes but leaves robustness issues aside, since the use
of parametrized intersection curves hinders an efficient implementation using
exact arithmetic. Moreover, it does not consider point location.

We present an exact and complete (and thus robust) algorithm for computing
the Voronoi diagram of arbitrary lines in three dimensions with respect to the
Euclidean metric. The algorithm requires O(n3+ε) time and space, where n is
the number of input lines. The data structure admits answering of point-location
queries in O(log2 n) time. We believe that the nature of the algorithm and the
general approach of its implementation constitute a major milestone towards an
exact and robust construction of the Voronoi diagram of polyhedra in R3.

We utilize the fact that in Euclidean space the boundary of Voronoi cell (VC)
can be considered as a lower envelope since the cell essentially has a certain “star
shapedness” property: For any point p inside the Voronoi cell of a specific line
site 	, the line segment connecting p to its projection p� onto 	, is fully contained
in the cell. This observation enables us to represent the Voronoi cell of 	 as a
minimization diagram, which is (conceptually) embedded on an infinitesimally
small cylinder around 	. This observation is similar to the well-known connection

1 A bound of the form O(f(n) ·nε) means that the actual upper bound is Cεf(n) ·nε,
for any ε > 0, where Cε is a constant that depends on ε, and generally tends to
infinity as ε goes to 0.

400 M. Hemmer, O. Setter, and D. Halperin

between Voronoi diagrams and lower envelopes [13]. Lower dimensional cells are
represented several times, namely as part of the boundary of the VC of each
line they are associated with. The implementation is developed in and based on
Cgal, the Computational Geometry Algorithms Library.2

The paper is organized as follows. Section 2 discusses preliminary subjects,
such as properties of bisectors and trisectors of lines in space and the lower en-
velope algorithm. Section 3 describes the details of the construction of a Voronoi
cell. Section 4 discusses the point location algorithm and its analysis. Section 5
gives implementation details and presents preliminary experimental results that
were obtained with our software.

2 Preliminaries

Let O = {s1, s2, . . . , sn} be a set of objects in Rd, also referred to as sites.
We follow the Voronoi diagram definition by Everett et al. [17]: The Voronoi
diagram VD(O) is the subdivision of Rd into cells, where each cell VC(S) is
associated with a subset S ⊆ O, such that every point in VC(S) is strictly closer
to all sites in S than to all other sites in O and is equidistant from all sites in S.
The formal definition is:

VC(S) =
{

p ∈ Rd

∣∣∣∣∀s ∈ S, t ∈ O \ S : d(p, s) < d(p, t)
∀s, t ∈ S : d(p, s) = d(p, t)

}
In the context of this paper, O denotes a set of arbitrary rational lines in R3

and d(·, ·) denotes the Euclidean distance function. The set of points that is of
equal distance to two or three sites is called a bisector or trisector, respectively.

2.1 Properties of Bisectors and Trisectors

We next state some properties of bisectors and trisectors of the Voronoi diagram
of lines in R3 that are used throughout this paper. Proposition 1 gives properties
of bisectors; see Figure 1 for illustrations.

(a) (b) (c)

Fig. 1. Bisector of: (a) two generic lines; (b) two parallel lines; (c) two intersecting
lines. The diagrams were created with our implementation (see Section 5), and were
clipped by a sphere for convenience.

2 http://www.cgal.org

http://www.cgal.org

Constructing the Exact Voronoi Diagram of Arbitrary Lines in Space 401

Proposition 1. The bisector of two lines 	1 and 	2 in three-dimensional space
is either (a) a hyperbolic paraboloid (a surface of algebraic degree 2), if 	1 and 	2
are skew, (b) a plane, if 	1 and 	2 are parallel, or (c) a pair of orthogonal planes,
if 	1 and 	2 are concurrent. In the latter case, the singular locus of the bisector
is a line that perpendicularly intersects 	1 and 	2 in their intersection.

The main theorem of Everett et al. [16] provides a good overview of the different
cases of the trisector:

Theorem 1 (Everett et al.). The trisector of three lines is either (i) a non-
singular quartic, if the three lines are pairwise skew but not all parallel to a
common plane nor lie on the surface of a hyperboloid of revolution, (ii) a cubic
and a line that do not intersect, if the three lines are pairwise skew and lie on the
surface of a hyperboloid of revolution, (iii) a nodal quartic, if the three lines are
pairwise skew and all parallel to a common plane, (iv) one parabola or hyperbola,
if there is exactly one pair of coplanar lines which are parallel, (v) two parabolas
or hyperbolas that intersect, if there is exactly one pair of coplanar lines that
intersect, (vi) between 0 and 4 lines, if there are two pairs of coplanar lines,
or (vii) one line, in the case of three coplanar concurrent lines, the common
singular locus of the bisectors.

We use a corollary of the above theorem in Section 3, where we describe the
construction of a Voronoi cell in the diagram of lines.

2.2 Lower Envelope Algorithm

Again, we regard the boundary of each three-dimensional VC as a lower envelope
with respect to its line site 	0. This lower envelope is represented as a minimiza-
tion diagram which is conceptually embedded in the uv-parameter space of the
surface of an infinitesimally small cylinder around 	0.3 We utilize the divide-
and-conquer algorithm for constructing lower envelopes [1] as it is implemented
in Cgal [33, §8.5], which we briefly describe next.

Since the algorithm projects bisectors into the parameter space, all bisectors
are initially split up into uv-monotone surfaces. The algorithm then splits the
resulting set G into two subsets G1 and G2 of roughly equal size, and recursively
computes their minimization diagrams M1 and M2. In the conquer step, the two
diagrams are merged into one. First, the overlay of M1 and M2 is computed,
where each feature is labeled with up to two sets of labels L1 and L2 of candidate
surfaces from both diagrams. Thereafter, the arrangement is further refined such
that each feature can either be labeled with L1, L2, or L1∪L2. In particular, each
face that is labeled with two bisectors is refined by the corresponding projected
trisector curve. Note that this step can also split up edges. After the comparison
of bisectors the algorithm removes redundant edges and vertices, which yields
the final diagram. The complexity of the above algorithm is O(n2+ε), with the
condition that the bisector surfaces are “well-behaved”.

Note that the algorithm heavily relies on arrangement operations such as
overlay, which are provided by [33, §8.1] and [4]. Though, we treat these as a black
3 See Section 3 for details on the uv-parameter space setting.

402 M. Hemmer, O. Setter, and D. Halperin

box throughout most of the paper, some details can be found in Section 5. The
additional constructions and predicates required by the lower envelope algorithm
are: the construction of the projected boundary of uv-monotone surfaces, the
construction of the projected intersection of two uv-monotone surfaces, and the
comparison of two bisectors above a face, an edge, or a vertex.

3 Computing a Voronoi Cell

This section discusses the computation of the VC of one line, referred to as the
base line and denoted by 	0.

Cgal’s arrangement package has the infrastructure to compute envelopes over
cylinders. However, for the efficiency of the implementation it is important to
keep the algebraic degree of the projected curves as low as possible. Therefore,
we project the curves on two parallel planes that “sandwich” the base line,
while keeping the projection direction normal to the cylinder. This reduces the
maximum degree of a projected trisector curve from sixteen down to eight.

3.1 Parametrization and Projection

Let F = {−→b1 ,
−→
b2 ,

−→
b3} be an orthogonal basis of R3 which is chosen such that

−→
b1

is the direction of the base line 	0. Moreover, let p0 be some rational point on 	0.
Now, consider the parametrization X (u, v, r) = p0 + u · −→b1 + v · r · −→b2 + r · −→b3 .
X (u, v,±1) defines two parallel planes (uv-planes) that sandwich 	0. A point
X (u0, v0,±1) represents a ray that originates from point p0 + u0 ·

−→
b1 on 	0 with

direction ±(v0 ·
−→
b2 +

−→
b3). Projecting along these rays onto X (u, v,±1), we denote

X (u, v,±1) as the positive and the negative projection plane, respectively.
Note that the plane H∗ = {x ∈ R3|(x − p0)T · −→b3 = 0} is not covered by

the parametrization. But it is straightforward to glue the two minimization dia-
grams on the two planes together as long as the chosen frame F is generic, that
is, curves are not allowed to touch H∗, intersect in H∗, or even be contained
in H∗. However, curves are of course allowed to transversely intersect H∗, each
intersection giving rise to a single vertical asymptote on each projection plane.

In order to avoid these critical cases, we generate the local frame by setting
−→
b2

to some random vector that is orthogonal to
−→
b1 . Though this frame is generic

with high probability, we also check in all relevant predicates that the frame is
indeed generic. If necessary, we restart the computation choosing another random
frame. We chose the standard strategy that increases the number of random bits
used for each iteration. This way we guarantee termination and a small number
of additional bits due to the randomization.

We highlight below several major issues in the projection of a trisector. The
projection of a bisectors’ boundary and a detailed case analysis is not addressed
due to lack of space. We rely merely on the generic frame and on the following
corollary that directly follows from Theorem 1:

Corollary 1. The set of points where the trisector does not represent a transver-
sal intersection of the bisectors is a 0-dimensional set, namely, the singular

Constructing the Exact Voronoi Diagram of Arbitrary Lines in Space 403

points of the trisector. The only exception is the case of three coplanar con-
current lines; in this case the trisector is the common singular locus (line) of the
three bisectors.

For a trisector T0ij let B0i, B0j , Bij ∈ Q[x1, x2, x3] be the three trivariate poly-
nomials of the relevant bisectors. Now let B1 and B2 be the two bisectors of
minimal degree, d1 and d2, respectively. The projection is carried out by a re-
sultant computation [18]. Since we wish to project towards 	0 we first substitute
X (u, v, r) into B1 and B2 and compute the resultant with respect to r.

res(u, v) := resultant(B1(X (u, v, r), B2(X (u, v, r)), r) ∈ Q[u, v] .

−→v2

−→v3

−→v1

B0i

B0j

X (u, v,+1)

X (u, v,−1)

v →

← v
	0

T0ij

T0ij

cross-section
perpendicular to �0

This is at most a bivariate polynomial of
degree 2d1d2. Thus, in the worst case (the
generic case) this is an irreducible polyno-
mial of degree4 only 8. However, due to its
algebraic nature the approach can not im-
mediately distinguish between the parameter
spaces of the positive and the negative planes.
The Figure to the right illustrates how the
resultant projects T0ij into the positive and
negative plane. We first split up the projected
curve into u-monotone arcs using [4]. In particular, curves are split up at vertical
asymptotes. In order to decide that an arc α is on a certain plain we utilize Corol-
lary 1, namely the observation that in all but one exception (which is handled
explicitly) two bisectors must intersect transversely along the trisector curve,
which implies that B0i and B0j must interchange their order while passing the
projected trisector.

This is detected by two ray shoots at rational points right above and below α.
Let p and p be these two points, respectively. To ensure that both points are
chosen sufficiently close, we construct a rational vertical line L that intersects α
in its interior, say at point pα. We choose the points on L such that they isolate
the arc from all other intersections of L with res. Now consider the path on L
from p (or p) to pα. p is sufficiently close to α since this path does not intersect
res until it reaches α. In case α is vertical, we choose L to be horizontal.

3.2 Lower Envelope Predicates

A core part of the envelope algorithm is the representation of minimization
diagrams as labeled arrangements and the overlay of such arrangements. The
required constructions and predicates for these operations relate to planar alge-
braic curves only, which are provided by [4]. However, it remains to ensure that
no intersection takes place in H∗. This boils down to testing that the leading
4 More precisely, it is a bivariate polynomial of bi-degree at most (4, 4). For a standard

rational parametrization of the cylinder, we would obtain a polynomial of bi-degree
(8, 8) or 16 in total.

404 M. Hemmer, O. Setter, and D. Halperin

coefficients with respect to v of two non overlapping (co-prime) curves have no
common root. Thus, we provide a slightly modified set of operations that ensure
this condition in addition.

The remaining predicates that are required by the envelope algorithm are the
comparison of two bisectors above a face, an edge, or a vertex, respectively; see
also Section 2.2. For a vertex, which may not have rational coordinates, we first
check whether the point is on the projected intersection of the two bisectors and
report equality if it is indeed the case. Otherwise it is sufficient to compute a
rational point that is close enough to the vertex, and to compare the surfaces
along the corresponding ray. In order to compare above an edge we construct
a vertex in its interior and compare at that vertex as described above. For a
face, it is sufficient to compare (again via ray-shooting) at a rational point in its
interior. In each case, the rational point is constructed using strategies similar
to the one discussed at the end of Section 3.1.

3.3 Complexity

For the time and space complexity analysis we ignore additional costs that may
arise due to variable bit-length of various implementations adhering to the exact
computation paradigm [36]. We also ignore the additional run-time that can
result from a poor choice of a generic frame (Section 3.1), as it is not the general
case, and has no impact on performance in expectation.

The bisector surfaces are algebraic and thus comply with the definition of
“well-behaved” surfaces required in [32]. Thus, the time-complexity of the lower
envelope algorithm is O(n2+ε) (which is also the best known upper bound).
Overall, the run-time complexity of computing the cells for all n lines is O(n3+ε),
which also bounds the space complexity.

4 Fast Point Location

Given a query point q we wish to find the closest line to it. Consider the following
point-location strategy: We start with a random line site 	. First we project q
on 	 and locate its image in the minimization diagram of 	. The image is located
on a feature of the minimization diagram which is labeled with a (in general not
empty) set of line sites S. We then compare the distance d(, q) to d(′, q) for one
line 	′ ∈ S. If d(, q) is less than or equal to d(′, q) we report 	 or S ∪ 	, respec-
tively. Otherwise we continue in the cell of 	′. This walk through the Voronoi
diagram terminates since there is only a finite number of cells and the distance
of q to the current line always decreases. We can locate the image of q inside the
minimization diagram in expected O(log n) time by using point-location that
is based on trapezoidal decomposition [28]. Combining this algorithm with the
idea of landmarks [21] may already have good performance in practice. However,
the algorithm has a worst-case time complexity O(n log n).

Constructing the Exact Voronoi Diagram of Arbitrary Lines in Space 405

We turn it into an algorithm with a time-complexity O(log2 n) by combining
it with a strategy that is similar to skip lists. We build a hierarchy of Voronoi
diagrams. The lowest layer contains the VD of the full set of lines. The lines
for the other layers are from the previous layer, each chosen with probability
1/k, where k > 1 is constant. The highest layer (the root layer) contains only
a constant number of lines (≤ k). The expected number of layers is O(log n).
In order to locate a point q we first locate it in the root layer using the walk
strategy described above. We then proceed to the next layer starting at the line
that was found in the preceding layer.

We remark that some special cases are left out in this discussion for brevity
(e.g., query points in H∗), but they are completely handled in our software. The
following theorem summarizes the performance of the point-location structure
(see [10] and [24] for a similar analysis in 2D):

Theorem 2. For any query point q the expected running time of the point-
location query in the hierarchical VD structure is O(log2 n).

Proof. The number of cells visited at the root layer is obviously at most k. For all
other layers, consider the the path backward, from its target to the source: For
every cell the probability that it is already the source is 1/k. Thus, the expected
length of a path is

∑n
i=1

i
k (k−1

k)i−1 ≤ k.
That is, the expected running-time is k

∑logk n
i=1 T (ki), where T (m) is the ex-

pected time spent on the point location in the minimization diagram of m lines.
Thus we obtain an expected running-time of O(log2 n) in total.

5 Implementation Details

Our implementation is based on Cgal, which follows the generic-programming
paradigm [3]. Algorithms are formulated and implemented such that they are
abstract from the actual types, constructions, and predicates. Thus, the imple-
mentation of every algorithm and data structure in Cgal is parametrized by a
so-called traits class [29], in which these functionalities are defined. In particular,
users can employ an algorithm with their own types, constructions, and predi-
cates by providing their own traits class. This way it is possible to achieve a great
amount of flexibility. At the extreme, it is possible to even partially change the
nature of an algorithm, as we do here for the three-dimensional lower envelope
class [33, §8.5].

The core of our implementation is the traits class for the lower envelope al-
gorithm, which also needs to be a valid traits class for CGAL’s arrangement
package. The required functionalities by the arrangement package are provided
by the traits class presented in [4]. The approach reduces all construction and
predicates to cylindrical algebraic decompositions of the plane for one or two
curves. We essentially wrap this traits class and add the auxiliary functionalities
required by the envelope algorithm; see also Section 3. In case we detect that
the current frame is not generic an exception is thrown, which is then caught
by our primary class that computes a new frame and restarts the computation

406 M. Hemmer, O. Setter, and D. Halperin

(a) (b) (c)

Fig. 2. Degenerate Voronoi diagrams of lines. The diagrams are clipped by a sphere
for convenience. (a) VD of 4 lines, obtained by rotating one line around the z-axis.
All bisectors meet in that axis. (b) VD of 4 lines intersecting in one point. (c) VD of
4 lines, two lines intersect and the others are parallel to each of them, respectively.

of the cell. For each Voronoi cell we keep a separate instance of the traits class,
which is used for both planes. This allows caching of relevant results.

Approximation of the three-dimensional coordinates of a vertex, is based on
multi-precision floating-point interval arithmetic (MPFI) [8, §8]. Since this is a
certified approximation, we obtain a bounding box that contains the vertex. This
could be used to easily establish the adjacency among lower dimensional cells.
For instance, let v denote a vertex in a minimization diagram M. The label of v
points to all other minimization diagrams that contain a representation of it.
Let M′ be one of these diagrams and v′ be the representation of v that we wish
to find therein. We could use a similar approach to the one used in [12]: By using
the labels, we identify all possible candidates in M′. Since the bisector surfaces
are at most of algebraic degree two, this set contains only up to 8 representations
and contains at least v′. We progressively compute more precise bounding boxes
for all candidates until only one (the one of v′) overlaps the bounding box of v.

Our implementation can handle arbitrary rational lines, in particular, it can
handle all possible degenerate cases. Figure 2 depicts degenerate Voronoi dia-
grams. Each mesh was generated using CGAL’s package for labeled mesh do-
mains [30]. The oracle, which is required by the mesh generation, was written
such that it only utilizes (and thereby tests) our point location structure. We
used medit [22] for the final visualization.

Since we aim to eventually incorporate our code into a Cgal package the
software is developed within the revision control system of the project. All ex-
periments within this section where carried out on an internal Cgal release
CGAL-3.7-Ic-27, which already comprises all the necessary algebraic tools [4].
However, the trapezoidal map is currently not available for minimization di-
agrams due to ongoing changes in the arrangement package (it is anticipated
soon), which forces us to resort to simpler point location strategies for now.

Finally, we present preliminary results obtained with our software. The point
location structure as it is discussed in Section 4 leaves the ratio k among levels
undetermined. In order to show the impact of k we created random instance of

Constructing the Exact Voronoi Diagram of Arbitrary Lines in Space 407

Table 1. Average number of visited cells per query, where k denotes the ratio of the
hierarchy and N the number of lines. Cases where the hierarchy would only consist
of one level are marked with ’n/a’, the times would correspond to those in the last
column. To the right is depicted a Voronoi diagram of 5 parallel lines.

N\k 2 4 8 12 16 20 24 28 +∞
16 6.48 4.30 4.34 n/a n/a n/a n/a n/a 3.94
36 8.09 6.33 5.33 6.23 5.67 n/a n/a n/a 5.62
64 9.77 6.42 5.73 7.34 6.07 6.00 6.12 6.83 6.63
100 9.87 7.22 6.18 7.10 6.45 6.97 6.83 7.13 7.43
144 11.56 8.14 8.47 7.46 7.81 9.64 9.75 8.68 12.72

parallel lines5 with coefficients in the range [0, 210]. For each instance, we created
10 Voronoi diagram hierarchies, which where queried with 1000 random points
in [0, 210]3 each.

Table 1 shows the average number of visited cells per query depending on the
number of lines and the chosen value for k. The last column shows the pure walk
without a hierarchy, which suggests (for the case of parallel lines) an average
query time in O(

√
n), as one may also expect due to results in [11]. For larger

instances, it seems that choosing k between 8 and 12 is appropriate.

6 Conclusions

We have presented an exact, complete, and thus robust, algorithm that computes
the Voronoi diagram of arbitrary rational lines in R3. The algorithm requires
O(n3+ε) time and space, where n is the number of lines. The introduced data
structure admits answering point-location queries in O(log2 n) expected time.
The implemented prototype is exact and can handle all degenerate cases.6

The algorithm is intentionally designed such that it avoids tedious case distinc-
tions, which makes it implementable, maintainable and, in particular, extensible
to other primitives such as points, line segments, and triangles. Thus, we con-
sider our approach as a major milestone towards the exact computation of the
Voronoi diagram of polyhedra in three dimensions.

The approach may also be generalized to spheres (see also [20]) which would
open the door for innovative solutions to central problems in Structural Bi-
ology [25], [35]. Moreover, we expect that it will pave the way to devising a
three-dimensional variant of the visibility-Voronoi complex [34], a structure that
enables to trade-off clearance and path length in robot motion planning, and has
proved to be especially useful in the plane.

Acknowledgments. We thank S. Lazard and M. Yvinec for fruitful discussions.

5 Since the trapezoidal map is not yet available for envelopes, we had to resort to
instances that keep the complexity of a cell small.

6 For the most recent version and supplemental material we refer to: http://acg.cs.
tau.ac.il/projects/internal-projects/3d-lines-vor/project-page

http://acg.cs.tau.ac.il/projects/internal-projects/3d-lines-vor/project-page
http://acg.cs.tau.ac.il/projects/internal-projects/3d-lines-vor/project-page

408 M. Hemmer, O. Setter, and D. Halperin

References

1. Agarwal, P.K., Schwarzkopf, O., Sharir, M.: The overlay of lower envelopes and its
applications. Disc. Comput. Geom. 15(1), 1–13 (1996)

2. Aurenhammer, F., Klein, R.: Voronoi diagrams. In: Sack, J., Urrutia, G. (eds.)
Handb. Comput. Geom., ch. 5, pp. 201–290. Elsevier, Amsterdam (2000)

3. Austern, M.H.: Generic Programming and the STL. Addison-Wesley, Reading
(1999)

4. Berberich, E., Hemmer, M., Kerber, M.: A generic algebraic kernel for non-linear
geometric applications. Research Report 7274, INRIA (2010)

5. Berberich, E., Hemmer, M., Kettner, L., Schömer, E., Wolpert, N.: An exact, com-
plete and efficient implementation for computing planar maps of quadric intersec-
tion curves. In: Mitchell, J., Rote, G., Kettner, L. (eds.) Proc. 21st Annu. ACM
Symp. Comput. Geom., pp. 99–106. ACM Press, Pisa (2005)

6. Blum, H.: A transformation for extracting new descriptors of shape. In: Wathen-
Dunn, W. (ed.) Models for the Perception of Speech and Visual Form. MIT Press,
Cambridge (1967)

7. Boissonnat, J.D., Delage, C.: Convex hull and Voronoi diagram of additively
weighted points. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669,
pp. 367–378. Springer, Heidelberg (2005)

8. Boissonnat, J.D., Teillaud, M. (eds.): Effective Computational Geometry for Curves
and Surfaces. Mathematics and Visualization. Springer, Heidelberg (2006)

9. Culver, T., Keyser, J., Manocha, D.: Exact computation of the medial axis of a
polyhedron. Computer Aided Geometric Design 21(1), 65–98 (2004)

10. Devillers, O.: Improved incremental randomized Delaunay triangulation. In: Proc.
14th Annu. ACM Symp. Comput. Geom., pp. 106–115. ACM Press, New York
(1998)

11. Devroye, L., Lemaire, C., Moreau, J.M.: Expected time analysis for Delaunay point
location. Computational Geometry 29(2), 61–89 (2004)

12. Dupont, L., Hemmer, M., Petitjean, S., Schömer, E.: Complete, exact and efficient
implementation for computing the adjacency graph of an arrangement of quadrics.
In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 633–
644. Springer, Heidelberg (2007)

13. Edelsbrunner, H., Seidel, R.: Voronoi diagrams and arrangements. Disc. Comput.
Geom. 1, 25–44 (1986)

14. Emiris, I.Z., Tsigaridas, E.P., Tzoumas, G.M.: The predicates for the Voronoi
diagram of ellipses. In: Proc. 22nd Annu. ACM Symp. Comput. Geom., pp. 227–
236. ACM Press, New York (2006)

15. Emiris, I.Z., Karavelas, M.I.: The predicates of the Apollonius diagram: Algorith-
mic analysis and implementation. Comput. Geom. Theory Appl. 33(1-2), 18–57
(2006)

16. Everett, H., Gillot, C., Lazard, D., Lazard, S., Pouget, M.: The Voronoi diagram of
three arbitrary lines in R3. In: Abstracts of 25th Eur. Workshop Comput. Geom.
(2009)

17. Everett, H., Lazard, S., Lazard, D., Din, M.S.E.: The Voronoi diagram of three
lines. In: Proc. 23rd Annu. ACM Symp. Comput. Geom., pp. 255–264. ACM Press,
New York (2007)

18. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University
Press, Cambridge (1999)

Constructing the Exact Voronoi Diagram of Arbitrary Lines in Space 409

19. Halperin, D., Kavraki, L.E., Latombe, J.C.: Robotics. In: Goodman, J.E.,
O’Rourke, J. (eds.) Handb. Disc. Comput. Geom., 2nd edn., ch. 48, pp. 1065–1093.
Chapman & Hall/CRC, Boca Raton (2004)

20. Hanniel, I., Elber, G.: Computing the Voronoi cells of planes, spheres and cylinders
in R3. Comput. Aided Geom. Des. 26(6), 695–710 (2009)

21. Haran, I., Halperin, D.: An experimental study of point location in planar arrange-
ments in CGAL. ACM Journal of Experimental Algorithmics 13 (2008)

22. Frey, P.J.: : MEDIT : An interactive Mesh visualization Software. Technical Report
RT-0253, INRIA (December 2001)

23. Karavelas, M.I.: A robust and effient implementation for the segment Voronoi
diagram. In: Int. Symp. on Voronoi Diagrams in Sci. and Engineering, pp. 51–62
(2004)

24. Karavelas, M.I., Yvinec, M.: Dynamic additively weighted Voronoi diagrams in
2D. In: Proc. 10th Annu. Eur. Symp. Alg., pp. 586–598. Springer, London (2002)

25. Kim, D.S., Seo, J., Kim, D., Cho, Y., Ryu, J.: The beta-shape and beta-complex
for analysis of molecular structures. In: Gavrilova, M.L. (ed.) Generalized Voronoi
Diagram: A Geometry-Based Approach to Computational Intelligence. Studies in
Computational Intelligence, vol. 158, pp. 47–66. Springer, Heidelberg (2008)

26. Koltun, V., Sharir, M.: 3-dimensional Euclidean Voronoi diagrams of lines with a
fixed number of orientations. SIAM J. on Computing 32(3), 616–642 (2003)

27. Milenkovic, V.: Robust construction of the Voronoi diagram of a polyhedron. In:
Proc. 5th Canad. Conf. Comput. Geom., pp. 473–478 (1993)

28. Mulmuley, K.: A fast planar partition algorithm, I. In: Proc. 29th Annu. IEEE
Sympos. Found. Comput. Sci., pp. 580–589 (1988)

29. Myers, N.: Traits: A new and useful template technique. C++ Gems 17 (1995)
30. Rineau, L., Yvinec, M.: 3D surface mesh generation. In: CGAL Editorial Board

CGAL User and Reference Manual (ed.), 3.5 edn. (2009)
31. Setter, O., Sharir, M., Halperin, D.: Constructing two-dimensional Voronoi dia-

grams via divide-and-conquer of envelopes in space. Transactions on Computa-
tional Sciences (to appear, 2010)

32. Sharir, M.: Almost tight upper bounds for lower envelopes in higher dimensions.
Disc. Comput. Geom. 12(1), 327–345 (1994)

33. The CGAL Project: CGAL User and Reference Manual. CGAL Editorial Board,
3.6 edn. (2010), http://www.cgal.org/

34. Wein, R., van den Berg, J.P., Halperin, D.: The visibility-Voronoi complex and
its applications. Computational Geometry: Theory and Applications 36(1), 66–87
(2007); special Issue on the 21st European Workshop on Computational Geometry
- EWCG 2005

35. Yaffe, E., Halperin, D.: Approximating the pathway axis and the persistence dia-
gram of a collection of balls in 3-space. In: Proc. 24th Annu. ACM Symp. Comput.
Geom., pp. 260–269. ACM Press, New York (2008)

36. Yap, C.K., Dubé, T.: The exact computation paradigm. In: Du, D.Z., Hwang, F.K.
(eds.) Computing in Euclidean Geometry, 2nd edn. LNCS, vol. 1, pp. 452–492.
World Scientific, Singapore (1995)

http://www.cgal.org/

Local Graph Exploration and

Fast Property Testing�

Artur Czumaj

Centre for Discrete Mathematics and its Applications (DIMAP) and
Department of Computer Science, University of Warwick, UK

A.Czumaj@warwick.ac.uk

Abstract. We will present some recent results about testing graph prop-
erties in sparse graphs and will discuss graph exploration techniques
which allow very efficient algorithms for testing graph properties.

1 Introduction

Property testing is a relaxation of classical decision problems, in which one wants
to distinguish objects (for example, graphs, functions, or point sets) that have
a given predetermined property (for example, being bipartite, monotone, or in
convex position) from those that are far from this property. Property testing is
motivated by the need to understand how to obtain information from massive
structured or semi-structured data sets using small random samples. The no-
tion of property testing was first explicitly formulated by Rubinfeld and Sudan
[25] and it arises naturally in the context of program verification [4,25], learning
theory, etc. Goldreich et al. [14] initiated the study of property testing for com-
binatorial objects, and in the recent years we have seen a number of property
testing algorithms to test functions, probability distributions, graph and hyper-
graph properties, properties of languages, etc. (for references, see the surveys
[8,13,23,24]).

One of the main directions in property testing is that of testing graph proper-
ties, as introduced by Goldreich, Goldwasser, and Ron [14,15]. The goal is for a
given graph G = (V, E) and a given property P (e.g., being bipartite), to decide
if G satisfies property P or G is ε-far1 from property P . Here, informally, we say
G is ε-far from property P if it differs in an ε-fraction of its description from
any graph having the property P . The tester is usually randomized and we allow
it to err with probability at most 1

3 ; if it always accepts any G that satisfies P
then the tester has one-sided error ; otherwise, it has two-sided error.

Property testing can be seen as approximation algorithms for decision prob-
lems. Since we only want to “approximately decide” problems, it is often possible
to obtain algorithms that are much more efficient than their exact counterparts.

� Research supported by EPSRC award EP/G064679/1 and by the Centre for Discrete
Mathematics and its Applications (DIMAP), EPSRC award EP/D063191/1.

1 Normally one considers ε as being a small constant, independent of the input.

M. de Berg and U. Meyer (Eds.): ESA 2010, Part I, LNCS 6346, pp. 410–414, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Local Graph Exploration and Fast Property Testing 411

As it has been demonstrated in numerous papers in the last decade, many prop-
erty testers have indeed running times that are sublinear in the input size; for
some problems it is even possible to obtain property testers whose complexity is
independent of the input size. This, in turn, resulted in the recent development of
sublinear-time approximation algorithms for many classical combinatorial prob-
lems, including dense max-cut, clustering problems, and estimating the cost of
the minimum spanning tree and maximum matching (see, e.g., [5,6,9,10,12,14,22]
and [8]).

1.1 Testing Properties of Dense Graphs

Since the notion of being ε-far depends on the input representation, we consider
here two most popular models for analyzing graph properties. We begin with the
adjacency matrix model [14], where the input graph G = (V, E) on n vertices is
represented by its adjacency matrix of size n2; then G is ε-far from property P if
one has to modify at least εn2 entries in the adjacency matrix to obtain a graph
satisfying property P . (Since we consider here graphs obtained by changing
O(εn2) edges of the original graph G, it is easy to see that this definition is
suitable mostly for dense graphs.) For such input representation, the complexity
of a testing algorithm is measured by the number of queries to the adjacency
matrix of G.

This model has been extensively studied in the last decade and it is now quite
well understood [13]. After a series of papers, we know that in the adjacency
matrix model, testability of a property in constant time (independent on the
input size, but possibly depending on ε) is closely related to Szemerédi partitions
of the graph. In fact, it has been shown that a graph property is testable in time
independent of the size of G if and only if it can be reduced to testing finitely
many Szemerédi partitions [1]. Moreover, Alon and Shapira [2] show that any
natural graph property is testable in time independent of n with one-sided error
if and only if it is either hereditary or it is close (in some well-defined sense) to
a hereditary property.

1.2 Testing Properties of Sparse Graphs and Graph Exploration

While property testing in the adjacency matrix model for dense graphs is now
relatively well understood, much less is known about testing properties of sparse
(or arbitrary) graphs in the adjacency list model.

Properties of sparse graphs have been traditionally studied in the model of
bounded-degree graphs introduced by Goldreich and Ron [15]. In this model, the
input graph G = (V, E) is represented by its adjacency list (or, equivalently, by
its incidence list) and the vertex degrees are bounded by a constant d indepen-
dent of the number of vertices of G. A testing algorithm has a constant-time
access to any entry in the adjacency list by making a query to the ith neighbor
of a given vertex, and the number of accesses to the adjacency list is the (query)
complexity of the tester. A property testing algorithm is an algorithm that for a
given graph G determines if it satisfies a predetermined property P or it is ε-far

412 A. Czumaj

from property P ; a graph G is ε-far from property P if one has to modify more
than εdn edges in G to obtain a graph having property P .

We will now briefly discuss central results for testing properties of sparse
graphs and basic techniques used to efficiently test properties of sparse graphs.

Goldreich and Ron [15,16,17] were the first to study properties of sparse
graphs. They show that although some basic properties (eg., being connected,
k-connected, or Eulerian) can be tested in time independent of n, a number of
fundamental properties require a superconstant testing time. For example, it has
been shown that testing if a graph G is bipartite requires Ω(

√
n) time [15]. (One

needs Ω(
√

n) time to distinguish between random graphs from the following two
classes: (i) sum of a Hamiltonian cycle H and a perfect matching, and (ii) sum
of a Hamiltonian cycle H and a perfect matching M such that each edge from
M creates an even-length cycle when added to H . Since the latter class consists
only of bipartite graphs and a random graph from the former class is with high
probability ε-far from bipartite, the lower bound follows.) Similar bounds are
known for testing if a graph is a good expander, is k-colorable, etc.

Comparing to the results for the adjacency matrix model, the adjacency list
model has much more algorithmic flavor. In particular, to test if a given graph
has a predetermined property one typically requires to do much more than just
a simple sampling of vertices; many testing algorithms require some graph ex-
ploration algorithms to collect information about local and global properties of
graphs. Indeed, the main three techniques are random sampling, local search
(exploring the neighborhood of a vertex), and random walks.

The aforementioned lower bound for testing bipartitness was complemented
by an upper bound of Õ(

√
n/εO(1)) time for testing bipartitness in [16]. The

algorithm by Goldreich and Ron is very representative for the area:

Testing Bipartitness:

– Pick a random sample S of O(1/ε) vertices
– For each v ∈ S:

• perform poly(log n/ε)
√

n random walks from v, each of
length poly(log n/ε)

• If the graph induced by all edges visited is not bipartite
then reject

– If the algorithm did not reject yet then accept

The analysis of the algorithm is very elaborate and it establishes an interesting
connection with the analysis of the convergence times of Markov chains. Similar
techniques of exploring the input graph by many independent random walks have
been used in several recent works, for example, in Õ(

√
n/εO(1))-time algorithms

for testing if a graph is a good expander [11,19,21] (see also [17]).
A new approach has been proposed recently by Czumaj, Sohler, and Shapira

[7], who consider testing graph properties not for all graphs, but rather for some
specific classes of graphs. For example, they show that if the underlying graph is

Local Graph Exploration and Fast Property Testing 413

planar, then any hereditary graph property (e.g., bipartiteness, k-colorability, or
perfectness) is testable in time independent of the input size. This approach can
be generalized to any class of graphs that can be partitioned into constant size
components by removing εn edges of the graph, for any ε > 0; we call such graphs
hyperfinite. Benjamini et al. [3] extended this result and show that every minor-
closed graph property is testable in time independent of the input size in general
bounded-degree graphs (with two-sided error); this is shown by first proving
that hyperfiniteness is testable for general bounded-degree graphs, and then by
observing that every minor-closed graph property is hyperfinite. In particular,
testing if a graph is planar can be done in time independent on n with two-sided
error. This result (the complexity) has been improved by Hassidim et al. [18]; in
particular, testing if a bounded degree graph is planar can be done with 2poly(1/ε)

queries. Hassidim et al. [18] show also how to apply similar techniques to not
only test graph properties, but also to approximate the distance to almost any
hereditary property in any bounded degree hereditary families of graphs.

Future directions and challenges. Despite seeing a lot of progress in the
last several years, we still have only a partial picture of the complexity of testing
graph properties in the model of sparse graphs. For example, we know that in
the two-sided error model, testing planarity can be done in time 2poly(1/ε); can
we do it in time polynomial in 1/ε? Or, what is the complexity of testing pla-
narity in the one-sided error model, where it is conjectured that the complexity
is Θ(

√
n/εO(1)). Similar question can be asked for testing other minor-closed

properties. In fact, a more ambitious challenge would be to provide a charac-
terization of properties of bounded degree graphs represented by adjacency lists
that can be tested in constant time, or in Θ(

√
n/εO(1)) time. In this flavor, it has

been shown recently that testing (with one-sided error) the property of having
an H-minor can be done in time independent of n if and only if H is cycle-free.

The results for sparse graphs mentioned above are dealing solely with bounded-
degree graphs. While the model of bounded-degree graphs is elegant and very
natural, it is also desirable to consider the model of arbitrary graphs represented
by adjacency list (see, e.g., [20]). How quickly can we test basic graph proper-
ties in this model? For example, it is easy to see that testing planarity require
Ω(

√
n); can we design an algorithm that could match this bound?

References

1. Alon, N., Fischer, E., Newman, I., Shapira, A.: A combinatorial characterization
of the testable graph properties: it’s all about regularity. SIAM Journal on Com-
puting 39(1), 143–167 (2009)

2. Alon, N., Shapira, A.: A characterization of the (natural) graph properties testable
with one-sided error. SIAM Journal on Computing 37(6), 1703–1727 (2008)

3. Benjamini, I., Schramm, O., Shapira, A.: Every minor-closed property of sparse
graphs is testable. In: Proceedings of the 40th Annual ACM Symposium on Theory
of Computing (STOC), pp. 393–402 (2008)

4. Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to
numerical problems. Journal of Computer and System Sciences 47(3), 549–595
(1993)

414 A. Czumaj

5. Chazelle, B., Rubinfeld, R., Trevisan, L.: Approximating the minimum spanning
tree weight in sublinear time. SIAM Journal on Computing 34(6), 1370–1379 (2005)

6. Czumaj, A., Ergün, F., Fortnow, L., Magen, A., Newman, I., Rubinfeld, R., Sohler,
C.: Approximating the weight of the Euclidean minimum spanning tree in sublinear
time. SIAM Journal on Computing 35(1), 91–109 (2005)

7. Czumaj, A., Shapira, A., Sohler, C.: Testing hereditary properties of nonexpanding
bounded-degree graphs. SIAM Journal on Computing 38, 2499–2510 (2009)

8. Czumaj, A., Sohler, C.: Sublinear-time algorithms. Bulletin of the EATCS 89, 23–
47 (2006)

9. Czumaj, A., Sohler, C.: Sublinear-time approximation algorithms for clustering via
random sampling. Random Structures and Algorithms 30(1-2), 226–256 (2007)

10. Czumaj, A., Sohler, C.: Estimating the weight of metric minimum spanning trees
in sublinear-time. SIAM Journal on Computing 39(3), 904–922 (2009)

11. Czumaj, A., Sohler, C.: Testing expansion in bounded-degree graphs. In: Proceed-
ings of the 48th IEEE Symposium on Foundations of Computer Science (FOCS),
pp. 570–578 (2007)

12. Frieze, A., Kannan, R.: The regularity lemma and approximation schemes for dense
problems. In: Proceedings of the 37th IEEE Symposium on Foundations of Com-
puter Science (FOCS), pp. 12–20 (1996)

13. Goldreich, O.: Introduction to testing graph properties. Electronic Colloquium on
Computational Complexity (ECCC), Report No. 082 (2010)

14. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to
learning and approximation. Journal of the ACM 45(4), 653–750 (1998)

15. Goldreich, O., Ron, D.: Property testing in bounded degree graphs. Algorith-
mica 32(2), 302–343 (2002)

16. Goldreich, O., Ron, D.: A sublinear bipartiteness tester for bounded degree graphs.
Combinatorica 19(3), 335–373 (1999)

17. Goldreich, O., Ron, D.: On testing expansion in bounded-degree graphs. Electronic
Colloquium on Computational Complexity (ECCC), Report No. 7 (2000)

18. Hassidim, A., Kelner, J.A., Nguyen, H.N., Onak, K.: Local graph partitions for
approximation and testing. In: Proceedings of the 50th IEEE Symposium on Foun-
dations of Computer Science (FOCS), pp. 22–31 (2009)

19. Kale, S., Seshadhri, C.: An expansion tester for bounded degree graphs. In: Aceto,
L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz,
I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 527–538. Springer, Heidelberg
(2008)

20. Kaufman, T., Krivelevich, M., Ron, D.: Tight bounds for testing bipartiteness in
general graphs. SIAM Journal on Computing 33(6), 1441–1483 (2004)

21. Nachmias, A., Shapira, A.: Testing the expansion of a graph. Information and
Computation 208(4), 309–314 (2010)

22. Nguyen, H.N., Onak, K.: Constant-time approximation algorithms via local im-
provements. In: Proceedings of the 49th IEEE Symposium on Foundations of Com-
puter Science (FOCS), pp. 327–336 (2008)

23. Ron, D.: Property testing. In: Handobook of Randomized Algorithms, vol. II, pp.
597–649 (2001)

24. Rubinfeld, R.: Sublinear time algorithms. In: Proceedings of the International
Congress of Mathematicians, ICM (2006)

25. Rubinfeld, R., Sudan, M.: Robust characterization of polynomials with applications
to program testing. SIAM Journal on Computing 25(2), 252–271 (1996)

A Fully Compressed Algorithm for Computing

the Edit Distance of Run-Length Encoded
Strings�

Kuan-Yu Chen1 and Kun-Mao Chao1,2,3

1 Department of Computer Science and Information Engineering
2 Graduate Institute of Biomedical Electronics and Bioinformatics

3 Graduate Institute of Networking and Multimedia
National Taiwan University, Taipei, Taiwan 106

Abstract. In this paper, a commonly used data compression scheme,
called run-length encoding, is employed to speed up the computation of
edit distance between two strings. Our algorithm is the first to achieve
“fully compressed,” meaning that it runs in time polynomial in the num-
ber of runs of both strings. Specifically, given two strings, compressed into
m and n runs, m ≤ n, we present an O(mn2)-time algorithm for com-
puting the edit distance of the two strings. Our approach also gives the
first fully compressed algorithm for approximate matching of a pattern
of m runs in a text of n runs in O(mn2) time.

1 Introduction

The edit distance (a.k.a Levenshtein distance) is a common similarity measure
between two strings. It is defined as the minimum steps required to transform
one string into the other via operations of insertions, deletions, or substitutions.
The problem of computing the edit distance between two strings has been ex-
plored for decades. The classic dynamic programming solution takes O(N2) time,
where N denotes the length of both strings. All known techniques for breaking
the O(N2) time bound essentially follow the paradigm of acceleration via com-
pression (see [8] for more details.). The first breakthrough to O(N2/ log N)-time
was made by Masek and Paterson [12], who used the Four-Russians technique
to speed up the edit-distance computation. The Four-Russians technique can be
seen as a näıve compression utilizing the fact that sufficiently short substrings
over a constant alphabet must appear many times. After that, Crochemore et
al. [6] exploited LZ -factorization of strings and gave an O(hN2/ log N)-time al-
gorithm, where h ≤ 1 is the entropy of the text. Their solution is general enough
for the sequence alignment problem with unrestricted scoring matrices.

In this paper, we accelerate the edit-distance computation by exploiting sym-
bol repetitions in strings. The underlying compression scheme is called run-length

� Partially supported by NSC grants 97-2221-E-002-097-MY3 and 98-2221-E-002-081-
MY3 from the National Science Council, Taiwan.

M. de Berg and U. Meyer (Eds.): ESA 2010, Part I, LNCS 6346, pp. 415–426, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

416 K.-Y. Chen and K.-M. Chao

encoding (rle), which is widely applied in many areas, e.g. FAX transmission,
image compression, and optical character recognition. Previous results under this
paradigm include the computation of indel-distance (dual of longest common
subsequence) of two run-length encoded strings which requires O(mn log mn)
time [2,14], where m and n denote the number of runs of input strings of
lengths M and N . Several papers showed how to compute the edit distance of
two run-length encoded strings in O(Mn+mN) time [3,6,13]. Recently, Huang et
al. [10] and Liu et al. [11] improved the bound to O(min{Mn, mN}) time. (It
should be noted that the works of [3,11] focused on the Levenshtein distance in
which each edit operation has a unit cost, while the results of [6,10,13] apply
to the general edit distance problem with weighted costs.) To date, all the time
bounds for the edit distance problem still depend on the uncompressed string
lengths. Therefore, an intriguing question is (as asked in [10,13]) whether one can
design an algorithm that is “fully compressed,” i.e. its time complexity depends
solely on the number of runs of the rle strings. For Levenshtein distance, this
paper answers the question affirmatively by giving an O(mn2)-time solution.

On the other hand, a closely related problem, called compressed pattern match-
ing is, given a compressed text T and an uncompressed pattern P , to find all oc-
currences of P in T without decompressing T . If pattern P is also compressed, the
problem is referred to as fully compressed pattern matching. Many studies have
been made around this subject under different compression schemes, e.g. rle

compression, LZ-family compression, and straight-line programs. For rle inputs,
the exact string matching problem can be easily solved in O(m+n) time, where m
and n denote the number of runs of the pattern and the text. The k-mismatch
with wildcards problem can be solved in O(mn log m) time [5]. The approximate
matching problem seeks for occurrences of an rle string within another rle

string, allowing up to k edit operations. For this problem, Mäkinen et al. [13]
proposed an O(mnM)-time algorithm, where M denotes the uncompressed pat-
tern length. Huang et al. later improved the bound to O(nM) time [10]. The
approach presented in this paper gives the first fully compressed algorithm run-
ning in O(mn2) time.

2 Preliminaries

2.1 Edit Graph

Given two strings A[1 . . . M] and B[1 . . .N], the edit distance problem can be
solved as follows. Initially, ED(i, 0) = i and ED(0, j) = j for 0 ≤ i ≤ M and
1 ≤ j ≤ N . For 1 ≤ i ≤ M and 1 ≤ j ≤ N , ED(i, j) = min{ED(i − 1, j) +
1, ED(i, j − 1) + 1, ED(i − 1, j − 1) + δ(A[i], B[j])}, where δ(A[i], B[j]) = 0 if
A[i] matches B[j], and δ(A[i], B[j]) = 1 otherwise. The edit distance between A
and B is the value of ED(M, N). This dynamic programming solution can be
represented in terms of a weighted, acyclic grid graph G of (M + 1) × (N + 1)
vertices, called edit graph. Each vertex (i, j) stores the value of ED(i, j), and
any shortest path in G from vertex (0, 0) to vertex (M, N) specifies an optimal
edit trace (a sequence of edit operations).

A Fully Compressed Algorithm 417

2.2 Propagation over Run-Sized Blocks

Run-length encoding (abbreviated as rle) is a well-known coding scheme that
performs lossless data compression. rle compression simply groups consecutive,
identical symbols of a string into a run, usually denoted by σi, where σ is an
alphabet symbol and i is its repetition times. For example, string bbcccddaaaaa
can be compressed into rle format as b2c3d2a5. Based on the rle factorization
of input strings A and B, the edit graph G can be partitioned into mn blocks,
where m and n denote the number of runs of A and B, respectively. We refer
to a subgraph of G as a match block if it corresponds to a run of A and a run
of B that encode the same symbol, and as a mismatch block otherwise. Note
that two adjacent blocks in G share the vertices in their adjoining borders. As
observed in [3,6,13], instead of computing all the vertex values of G, it suffices
to compute only the vertex values in the block borders. That is, given a block H
of G, we refer to the left and top borders of H as its input border, denoted by I,
and refer to the bottom and right borders of H as its output border, denoted by
O. Our algorithm follows the framework of [3,6,13], traversing the blocks of G
in a left-to-right, top-to-bottom order, and propagates the accumulated values
from I to O without filling in the vertices lying in-between.

2.3 Problem Reduction

In this subsection, we briefly review the observations made in previous
work [4,3,13]. Given two vertices (i′, j′) and (i, j) of G, where i′ ≤ i and j′ ≤ j,
we let dist(i′, j′, i, j) denote the total weight of the shortest path from (i′, j′)
to (i, j). Moreover, we say that vertex (i, j) of G is in diagonal j − i of G. Let
vertex (i0, j0) denote the upper-left corner of block H . For each vertex (i, j)
in O, we have the following recurrence relation:

ED(i, j) = min
{

mini0≤i′≤i(ED(i′, j0) + dist(i′, j0, i, j))
minj0≤j′≤j(ED(i0, j′) + dist(i0, j′, i, j))

}
(1)

Lemma 1 ([4]). If H is a match block, for each vertex (i, j) in O, we have that
ED(i, j) = ED(id, jd), where (id, jd) is the intersection of diagonal j − i with I.

By Lemma 1, the propagation over a match block is easy. To obtain the vertex
values in the output border, we simply copy their diagonal values in the input
border. Therefore, the difficulty lies in the propagation over a mismatch block,
which can be reduced to the so-called sliding-window minima problem as follows.

Lemma 2 ([3,13]). If H is a mismatch block, for vertex (i, j) in O, we have that
ED(i, j) = min(minid≤i′≤i(ED(i′, j0) + j − j0), minjd≤j′≤j(ED(i0, j′) + i− i0)),
where (id, jd) is the intersection of diagonal j − i with I.

Let LEFT [1 . . . h] and TOP [1 . . . w] denote the vertex values of the left border
and the top border of I. The entries of LEFT and TOP are numbered in a
bottom-to-top and left-to-right direction, respectively. Let OUT [1 . . .w + h− 1]

418 K.-Y. Chen and K.-M. Chao

denote the vertex values of O. The entries of OUT are numbered in a counter-
clockwise direction, starting from the lower-left corner. For simplicity, we only
discuss the case that block H is flat, i.e. h ≤ w. The other case where h > w
can be argued symmetrically.

Definition 1. For i ∈ [1, w+h−1], we let OUTleft[i] (resp., OUTtop[i]) denote
the weight of the shortest path passing through the left border (resp., top border)
of I and ending at the vertex corresponding to OUT [i].

By Equation (1), we can write:

OUT [i] = min{OUTleft[i], OUTtop[i]} for i ∈ [1, w + h − 1]. (2)

Problem 1. Given a numerical array S[1 . . .] and a positive integer h, denoting
the window size, we define the sliding-window minima array of S as S(h)[i] =
min{S[j] | i − h + 1 ≤ j ≤ i and 1 ≤ j ≤ 	} for i ∈ [1, 	 + h − 1]. The sliding-
window minima problem (abbreviated as the SWM problem) is, given array S,
to compute array S(h).

Given input array S, the SWM problem can be solved in O(|S|) time using deques
with heap orders described in [7]. By Lemma 2, we can derive the following
equations, which are expressed in terms of the sliding-window minima arrays of
LEFT and TOP .

OUTleft[i] =

⎧⎨⎩
LEFT (h)[i] + i − 1, for i ∈ [1, h];
LEFT (h)[h] + i − 1, for i ∈ [h, w];
LEFT (h)[i − w + h] + w − 1, for i ∈ [w, w + h − 1];

(3)

OUTtop[i] =
{

TOP (h)[i] + h − 1, for i ∈ [1, w];
TOP (h)[i] + w + h − 1 − i, for i ∈ [w, w + h − 1];

(4)

According to Equations (2)–(4), once arrays LEFT (h) and TOP (h) are obtained,
the values of array OUT are easily computed. Therefore, the propagation over
a mismatch block is reduced to two instances of the SWM problem.

3 A Geometric View

In this section, we show that the propagation described in the previous section
can be further accelerated by computing only a subset of the border values.

3.1 A Succinct Representation of Border Values

Instead of storing the I/O values explicitly in arrays, we represent them with a
series of two-dimensional points, which we call the turning points of arrays.

Definition 2. Given a numerical array S[1 . . .], we define ΔS(i) = S[i+1]−S[i]
for i ∈ [1, 	−1]. For simplicity’s sake, we let ΔS(0) = ΔS() = ∞. We call (i, S[i])
a turning point of S if ΔS(i − 1) �= ΔS(i) for i ∈ [1,]. The geometric encoding
of S, denoted by GE(S), is the list of turning points of S from left to right.

A Fully Compressed Algorithm 419

By definition (1, S[1]) and (, S[]) are the first and the last turning points
of S[1 . . .]. If we plot points (i, S[i]) for all i ∈ [1,] in the plane and connect
two neighboring points with a straight line, we obtain the trajectory (piecewise
line segments) of S, and GE(S) is the list of turning points of the trajectory
from left to right. It is easily seen that |GE(S)| ≤ |S|, where |GE(S)| denotes
the size of list GE(S) and |S| denotes the length of numerical array S.

Definition 3. We call (i, S[i]) a valley point of S if ΔS(i−1) < 0 and ΔS(i) > 0
for i ∈ [2, 	 − 1]. Similarly, we let V P (S) denote the list of valley points of S
and |V P (S)| denote its size.

Figure 1 gives an example of turning points and valley points. As will be discussed
in Section 5, the number of turning points and valley points in the block borders
is crucial to the time analysis of our algorithm.

position i

S[i]

10

5

105 15 20 25

(24,7)

(26,9)

(21,6)

(19,8)

(14,3)
(13,3)

(10,6)

(6,2)

(3,5)(1,5)

(23,8)

Fig. 1. The geometric encoding of array S[1 . . . 26] = 55543234565433456787678789.
Array S comprises 26 integers, whereas its geometric encoding GE(S) is composed of
11 turning points. Among them there are three valley points, (6, 2), (21, 6), and (24, 7).

3.2 Propagation of Turning Points

We use geometric encoding to encode the border values. Since ED(i, 0) = i
for 1 ≤ i ≤ M and ED(0, j) = j for 1 ≤ j ≤ N , we have that each of the
leftmost and topmost block borders of G contains exactly two turning points.
Again, by Lemma 1 the propagation over a match block is easily handled by
copying the turning points from the input border to the output border. Thus, the
difficulty lies in the propagation over a mismatch block. Based on the discussion
of Section 2.3, it can be handled by procedure Propagate of Figure 2.

Procedure Propagate

Step 1: Use GE(LEFT) and GE(TOP) to compute GE(LEFT (h)) and GE(TOP (h));

Step 2: Use GE(LEFT (h)) and GE(TOP (h)) to compute GE(OUTleft) and GE(OUTtop);
Step 3: Use GE(OUTleft) and GE(OUTtop) to compute GE(OUT);

Fig. 2. Procedure of propagating turning points over a mismatch block

In Step 1 of Propagate, we need to solve the SWM problem with its input
and output arrays represented as lists of turning points. We call the problem the
continuous sliding-window minima problem (abbreviated as CSWM).

420 K.-Y. Chen and K.-M. Chao

Problem 2. Let S be a numerical array and h be a positive integer, denoting the
window size. The CSWM problem is, given GE(S), to compute GE(S(h)).

The CSWM problem can be described graphically as follows. We are given a
trajectory T in the plane, represented by its turning points, and a window W ,
having a fixed width and an unlimited height. Window W is slid, from left to
right, across T in a continuous manner, and at any time, the lowest point of the
portion of T covered by W is plotted in the plane. The CSWM problem seeks
for a list of turning points describing the resulting trajectory drawn as above.
We will show in Section 4 that the CSWM problem can be solved in O(|GE(S)|)
time, a gain of efficiency over O(|S|) time.

Given a point p, we let x(p) and y(p) denote its x-coordinate and its y-
coordinate, i.e. p = (x(p), y(p)). According to Equations (3) and (4), Step 2 of
Propagate can be handled as follows. We split list GE(LEFT (h)) into two lists
L1 = GE(LEFT (h)[1 . . . h]) and L2 = GE(LEFT (h)[h . . . 2h − 1]). We retrieve
each point p ∈ L1 in order and output point (x(p), y(p) + x(p) − 1), and then
retrieve point q ∈ L2 in order and output (x(q) + w − h, y(q) + w − 1). This
produces all the turning points of list GE(OUTleft). Similarly, we can easily
compute list GE(OUTtop) from list GE(TOP (h)).

According to Equation (2), Step 3 of Propagate can be handled by traversing
lists GE(OUTleft) and GE(OUTtop) simultaneously and output the lower part
of the two trajectories.

To conclude, both Step 2 and Step 3 of Propagate can be done in linear time.
Hence, if the CSWM problem is also solvable in linear time, the propagation over
a mismatch block can be done in time linear in the number of turning points
of LEFT and TOP , which implies the following crucial theorem.

Theorem 1. The edit distance problem can be solved in O(R) time, where R
denotes the total number of turning points in all block borders.

Note that the time of Theorem 1 is never worse than that of [3,6,13]. We will
show in Section 5 that R is bounded by O(mn2), leading to the fully compressed
feature of our algorithm.

4 A Linear-Time Algorithm for the Continuous
Sliding-Window Minima Problem

In this section, we present a linear-time algorithm for the CSWM problem. We
are given GE(S), the geometric encoding of array S, and a positive integer h,
the window size. Our algorithm simulates the window sliding from left to right
across the trajectory of S, and performs actions whenever the right boundary
of the window meets a turning point. We begin by describing the information
maintained by our algorithm. Given point p and a positive number d, we define
p⊕ d = (x(p) + d, y(p)). Similarly, given a list of points L, we define L⊕ d to be
the list of points obtained by moving the points in L distance d to the right.

Definition 4. For each prefix array S[1 . . . j] of S[1 . . .], j ≤ 	, we define its
suffix-minimum array as SMj[i] = min{S[i], S[i + 1], . . . , S[j]} for i ≤ j.

A Fully Compressed Algorithm 421

Note that the values of SMj are increasing, i.e. SMj[i] ≤ SMj[i + 1] for
i ∈ [1, j − 1]. Let GE(S) = 〈s1, s2, . . . , sk〉, where si is the i-th turn-
ing point of S. At iteration i, our algorithm needs to consult the values of
SMx(si)[x(si)− h + 1 . . . x(si)]. In implementation, the algorithm maintains list
L = GE(SMx(si)[x(si)− h + 1 . . . x(si)])⊕ (h− 1). See Figure 3 for an example.
The window is of size 13 and its right boundary is currently at position 24. The
bold lines depict the trajectory of SM24[12 . . .24], and the dashed lines depict
the trajectory of list L. As the window slides from position 24 to the right, the
trajectory of L specifies the minimal values contributed by the values of S before
position 24.

position j

10

5

105 15 20 25

S[j]

(12,3) (14,3)

(17,6) (21,6)
(22,7)

(24,7)

(24,3) (26,3)

(29,6) (33,6)
(34,7)

(36,7)

30 35

Fig. 3. The data structure, list L, maintained by the algorithm

Our algorithm, named Slide (see Figure 4), is devised to follow the tra-
jectory of S(h) from left to right and output the turning points of S(h) on
the fly. Specifically, at iteration i the algorithm follows the sub-trajectory of
S(h)[x(si) . . . x(si+1)] and outputs the turning points of S(h)[x(si) . . . x(si+1)].

Lemma 3. Given a numerical array S and a positive number h, algorithm slide

correctly outputs a list of points containing GE(S(h)) in O(|GE(S)|) time.

Proof. We show that at iteration i, the algorithm correctly computes the turn-
ing points of S(h)[x(si) . . . x(si+1)] and updates list L to GE(SMi+1[x(si+1) −
h + 1 . . . x(si+1)]) ⊕ (h − 1) for the use of iteration i + 1. Suppose by in-
duction that list L = GE(SMx(si)[x(si) − h + 1 . . . x(si)]) ⊕ (h − 1) is com-
puted at iteration i − 1. Observe that for j ∈ [x(si), x(si) + h − 1], S(h)[j] =
min{S[j − h + 1], . . . , S[j]} = min(SMx(si)[j − h + 1], min(S[x(si)], . . . , S[j])).
Hence, the trajectory of S(h)[x(si) . . . x(si+1)] is the lower part of the trajectories
of L and sisi+1. The algorithm proceeds in the following cases (see Figure 5 for
an illustration):

Case 1: The slope of sisi+1 is nonnegative, which implies that sisi+1 never
goes below the trajectory of L. The algorithm thus outputs the turning
points belonging to L (see line 6). Observe that SMx(si+1)[j] = SMx(si)[j]
for j ∈ [x(si)− h + 1, x(si)], and SMx(si+1)[j] = S[j] for j ∈ (x(si), x(si+1)].
Hence, to update L the algorithm appends point si+1 ⊕ (h − 1) to its end
and then cuts off its front piece before position x(si+1) (see lines 7–10).

422 K.-Y. Chen and K.-M. Chao

Algorithm Slide

Input: GE(S) = 〈s1, s2, . . . , sk〉, where x(s1) < . . . < x(sk), and a positive number h.

Output: A list of points containing GE(S(h)).
1 Output point s1;
2 Initialize list L ← 〈s1, s1 ⊕ (h − 1)〉;
3 for i ← 1 to k − 1 do
4 Retrieve the next point si+1 from GE(S);
5 Case 1: y(si) ≤ y(si+1)
6 Output all the points p in L, where x(p) ∈ (x(si), x(si+1)];
7 Insert point si+1 ⊕ (h − 1) into the end of L;
8 Traverse L from left to right to point q such that x(q) = x(si+1);
9 Delete all the points p in L, where x(p) ∈ [x(si), x(q)];
10 Insert q into the front of L;
11 Case 2: y(si) > y(si+1)
12 Traverse L from left to right and check if it intersects with sisi+1;
13 Case 2a: there is no intersection.
14 Output all the points p in L, where x(p) ∈ (x(si), x(si+1)];
15 Traverse L from left to right to point q such that x(q) = x(si+1);
16 Delete all the points p in L, where x(p) ∈ [x(si), x(q)]
17 Insert q into the front of L;
18 Traverse L from right to left to the leftmost q′ such that y(q′) = y(si+1);
19 Delete all the points p in L, where x(p) ∈ [x(q′), x(si) + h − 1];
20 Insert q′ and si+1 ⊕ (h − 1) into the end of L;
21 Case 2b: there is an intersection r.
22 Output all the points p in L, where x(p) ∈ (x(si), x(r));
23 Output points r and si+1;
24 Reset list L ← 〈si+1, si+1 ⊕ (h − 1)〉;
25 end for
26 Output all the points p in L, where x(p) ∈ (x(sk), x(sk) + h − 1];

Fig. 4. Algorithm for the continuous sliding-window minima problem

Case 2: The slope of sisi+1 is negative.
– Case 2a: If sisi+1 does not intersect with the trajectory of L, we have that
sisi+1 never goes below the trajectory of L. The algorithm again outputs the
turning points belonging to L. Observe that SMx(si+1)[j] = SMx(si)[j] for
j ∈ [x(si)−h+1, x(q′)), and SMx(si+1)[j] = S[x(si+1)] for j ∈ [x(q′), x(si+1)],
where q′ is the leftmost point in L such that y(q′) = y(si+1). Therefore, to
update list L the algorithm cuts off its front piece before position x(si+1)
and its back piece after position x(q′), and then appends point si+1⊕ (h−1)
to its end (see lines 15–20).
– Case 2b: If sisi+1 intersects with the trajectory ofL at point r, we have that
the trajectory ofS(h)[x(si) . . . x(si+1)] coincideswith the trajectory ofLbefore
position x(r) and coincides with sisi+1 after position x(r). The algorithm thus
outputs the turning points of L lying in (x(si), x(r)), and then points r and
si+1 (see lines 22–23). List L is reset to 〈si+1, si+1 ⊕ (h − 1)〉 due to the fact
that SMx(si+1)[j] = S[x(si+1)] for j ∈ [x(si+1) − h + 1, x(si+1)] (see line 24).

A Fully Compressed Algorithm 423

Observe that the total time spent in the above cases is proportional to the num-
ber of elements deleted from list L. Since there are O(|GE(S)|) points inserted
into list L, the algorithm runs in O(|GE(S)|) time. ��

position j
10 15 20 25 30 35

si

si+110

5

S[j]

si+1

si+1

si+1

Case 1

Case 2a

Case 2b

Fig. 5. The three possible positions of the next turning point si+1. The dashed lines
depict the trajectory of L, which should be compared with line segment sisi+1 in order
to determine the trajectory of S(h)[x(si) . . . x(si+1)].

According to algorithm Slide, below we prove two properties of the trajectory
of S(h), which will be used in the next section.

Lemma 4. Given a numerical array S and a positive number h, we have that
|GE(S(h))| ≤ |GE(S)| + |V P (S)|.

Proof. We examine the points output by algorithm Slide and show that among
them there are at most |GE(S)|+|V P (S)| turning points of S(h). Let σ1, σ2, and
σ3 denote the numbers of points of Case 1, Case 2a, and Case 2b, encountered by
algorithm Slide, respectively. Note that |GE(S)| = σ1+σ2+σ3+1. Observe that
if si is a point of Case 1 or Case 2a, then si is not output but deposited in list L
as point si⊕(h−1). If si is a point of Case 2b, it is output as well as deposited in
L as point si ⊕ (h−1). That is, a point of Case 1 or Case 2a contributes at most
one turning point to S(h), whereas a point of Case 2b may contribute two turning
points. Hence, we have that |GE(S(h))| ≤ σ1 + σ2 + 2σ3 + 1 = |GE(S)| + σ3.
We next examine those points of Case 2b in more details. Let si be a point of
Case 2b. If the slope of sisi+1 is non-positive, the deposited point si ⊕ (h − 1)
will not be a turning point of S(h). This is because after iteration i − 1, L is
set to 〈si, si ⊕ (h − 1)〉, a horizontal line segment. Thus, if the slope of sisi+1 is
non-positive, then either sisi+1 intersects with the trajectory of L immediately
or both of their slopes are 0. Therefore, si contributes two turning points to S(h)

only when the slope of sisi+1 is positive (in this case, si is a valley point). Hence,
we can refine the bound into |GE(Sh)| ≤ |GE(S)| + |V P (S)|. ��

Lemma 5. Given a numerical array S and a positive number h, we have that
|V P (S(h))| = 0.

Proof. Because the trajectory of L is always rising, algorithm Slide follows a
negative-slope line only when a point of Case 2b is encountered. Observe that it

424 K.-Y. Chen and K.-M. Chao

cannot next follow a positive-slope line immediately, for L is set to a horizontal
line segment after Case 2b. Hence, we have that the complete trajectory of S(h)

contains no valley point, i.e. |V P (S(h))| = 0. ��

5 Time Complexity

Since there are mn propagations in total, if each propagation doubles the number
of turning points, the number of turning points will grow in an exponential
manner as they cascade down. Below, we show that the number of turning points
can only grow by a constant in one propagation. This is obviously correct for
propagations over match blocks, since they are simple copies of the turning points
from the input border. Thus, we focus on propagations over mismatch blocks.
We begin by introducing the monotonicity property of the border values. This
property was observed by [1] and applied in [1,6,10,15].

Lemma 6 ([1,15]). Given two vertices (x4, y4) and (x3, y3) in I, and two ver-
tices (x1, y1) and (x2, y2) in O, such that x4 ≤ x3 ≤ x1 ≤ x2 and y3 ≤
y4 ≤ y2 ≤ y1, we have that if ED(x3, y3) + dist(x3, y3, x1, y1) ≤ ED(x4, y4) +
dist(x4, y4, x1, y1), then ED(x3, y3) + dist(x3, y3, x2, y2) ≤ ED(x4, y4) +
dist(x4, y4, x2, y2).

Lemma 7. The trajectories of OUTleft and OUTtop, obtained in Step 2 of
Propagate, cross at most once. That is, if OUTtop[i] ≤ OUTleft[i] for some i,
then OUTtop[j] ≤ OUTleft[j] for all j ≥ i.

Proof. Suppose that OUT [i] and OUT [j] correspond to vertex (x1, y1) and ver-
tex (x2, y2) in G. From OUTtop[i] ≤ OUTleft[i], we know that there exists
vertex (x3, y3) in the top border such that ED(x3, y3) + dist(x3, y3, x1, y1) ≤
ED(x4, y4) + dist(x4, y4, x1, y1) for all vertices (x4, y4), y4 ≤ y2, in the left bor-
der. By Lemma 6 we have that ED(x3, y3) + dist(x3, y3, x2, y2) ≤ ED(x4, y4) +
dist(x4, y4, x2, y2) for all vertices (x4, y4), y4 ≤ y2, in the left border. Since
OUTleft[j] ≤ ED(x3, y3) + dist(x3, y3, x2, y2), the lemma thus follows. ��
Lemma 8. After Step 1 of Propagate, we have that |GE(LEFT (h))| ≤
|GE(LEFT)| + 1 and |GE(TOP (h))| ≤ |GE(TOP)| + 1.

Proof. We show by induction that the number of valley points in each block
border is at most one, and the lemma thus follows from Lemma 4. Initially,
each of the leftmost and topmost block borders contains no valley point. By
Lemma 1, the propagation over a match block produces no extra valley point in
the output border. As for the propagation over a mismatch block, by Lemma 5
we know that Step 1 leads to no valley point in LEFT (h) and TOP (h). Step 2
clearly produces no extra valley point, and we know by Lemma 7 that Step 3
produces at most one valley point. Hence, we conclude that the propagation over
a mismatch block results in at most one valley point in the output border. ��
It is also not hard to see that after Steps 2–3 of Propagate, the number of
turning points can only grow by a constant. Now, we are ready to prove the
time complexity of our algorithm.

A Fully Compressed Algorithm 425

Theorem 2. Given two strings A and B, compressed into m and n runs, m ≤ n,
computing the edit distance between A and B can be done in O(mn2) time.

Proof. Let Hi,j denote the block corresponding to the i-th run of A and the j-th
run of B for i ∈ [1, m] and j ∈ [1, n]. Let ui,j (resp., vi,j) denote the number of
turning points in the top border (resp., left border) of Hi,j . Let Ui =

∑n
j=1 ui,j

and Vj =
∑m

i=1 vi,j . By Theorem 1, the time of our algorithm is proportional to∑m
i=1 Ui +

∑n
j=1 Vj . Let vi′,n+1 (resp., um+1,j′) denote the number of turning

points in the bottom border of Hn,j′ (resp., the right border of Hi′,n) for i′ ∈
[1, m] (resp., for j′ ∈ [1, n]). Since the number of turning points can only grow
by a constant c in each propagation, we have that ui+1,j + vi,j+1 ≤ ui,j + vi,j +
c for all i ∈ [1, m], j ∈ [1, n]. Hence, we have that

∑n
j=1(ui+1,j + vi,j+1) ≤∑n

j=1(ui,j + vi,j) + cn, implying
∑n

j=1 ui+1,j ≤
∑n

j=1 ui,j + cn + vi,1 − vi,n+1 ≤∑n
j=1 ui,j + (cn + 1). That is, Ui+1 ≤ Ui + (cn + 1). Since U1 =

∑n
j=1 u1,j = 2n,

it is not hard to derive that
∑m

i=1 Ui = O(m2n). Similarly, we can also derive∑n
j=1 Vj = O(mn2). The theorem thus follows. ��

To recover an optimal edit trace, we start from vertex (M, N) and trace a series of
block-crossing paths back to vertex (0, 0). This requires additional computation
and storage of information during the propagation stage. As long as we associate
each point output by algorithm Slide with its source entry, we can trace, for each
vertex in the output border, back to its optimal source vertex in the input border.
This requires O(mn2) space in total. Hirschberg’s space reduction method [9] can
be used to reduce the space to O(mn) without impairing the O(mn2) time bound.

6 Concluding Remarks

We present the first fully compressed algorithm for computing the edit distance
between two rle strings, of m and n runs, in O(mn2) time and O(mn) space.
The approximate matching problem is, given pattern P and text T , to identify
substrings T ′ of T such that the edit distance between P and T ′ is at most k. The
dynamic programming solution for this problem requires the following setting.
The vertex values in the first row of the edit graph are initialized as zeros, and
the goal becomes to identify the vertex values in the last row that are less than
or equal to k. Our approach can be easily adapted to this setting within the
same time and space bound. Furthermore, our algorithm in fact runs in O(R)
time, where R denotes the total number of turning points in the block borders.
In the paper, we prove that R is bounded by O(mn2). Providing a tighter bound
for R implies better time complexity of our algorithm.

References

1. Aggarwal, A., Park, J.K.: Notes on Searching in Multidimensional Monotone Ar-
rays. In: FOCS 1998, pp. 497–512 (1998)

2. Apostolico, A., Landau, G.M., Skiena, S.: Matching for Run-Length Encoded
Strings. Journal of Complexity 15(1), 4–16 (1999)

426 K.-Y. Chen and K.-M. Chao

3. Arbell, O., Landau, G.M., Mitchell, J.S.B.: Edit Distance of Run-Length Encoded
Strings. Information Processing Letters 83(6), 307–314 (2002)

4. Bunke, H., Csirik, J.: An Improved Algorithm for Computing the Edit Distance of
Run-Length Coded Strings. Information Processing Letters 54(2), 93–96 (1995)

5. Chen, K.-Y., Hsu, P.-H., Chao, K.-M.: Approximate Matching for Run-Length
Encoded Strings Is 3SUM-Hard. Journal of Complexity (accepted); A preliminary
version appeared in CPM 2009 (2009)

6. Crochemore, M., Landau, G.M., Ziv-Ukelson, M.: A Subquadratic Sequence Align-
ment Algorithm for Unrestricted Scoring Matrices. SIAM Journal on Comput-
ing 32(6), 1654–1673 (2003)

7. Gajewska, H., Tarjan, R.E.: Deques with Heap Order. Information Processing Let-
ters 22(4), 197–200 (1986)

8. Hermelin, D., Landau, G.M., Landau, S., Weimann, O.: A Unified Algorithm for
Accelerating Edit-Distance Computation via Text-Compression. In: STACS, pp.
529–540 (2009)

9. Hirschberg, D.S.: A Linear Space Algorithm for Computing Maximal Common
Subsequences. Communications of the ACM 18(6), 341–343 (1975)

10. Huang, G.-S., Liu, J.J., Wang, Y.-L.: Sequence Alignment Algorithms for Run-
Length-Encoded Strings. In: Hu, X., Wang, J. (eds.) COCOON 2008. LNCS,
vol. 5092, pp. 319–330. Springer, Heidelberg (2008)

11. Liu, J.J., Huang, G.-S., Wang, Y.-L., Lee, R.C.-T.: Edit Distance for a Run-
Length-Encoded String and an Uncompressed String. Information Processing Let-
ters 105(1), 12–16 (2007)

12. Masek, W.J., Paterson, M.: A Faster Algorithm Computing String Edit Distances.
Journal of Computer and System Sciences 20(1), 18–31 (1980)

13. Mäkinen, V., Ukkonen, E., Navarro, G.: Approximate Matching of Run-Length
Compressed Strings. Algorithmica 35(4), 347–369 (2003)

14. Mitchell, J.S.B.: A Geometric Shortest Path Problem, with Application to Com-
puting a Longest Common Subsequence in Run-Length Encoded Strings. Technical
Report, SUNY Stony Brook (1997)

15. Schmidt, J.P.: All Highest Scoring Paths in Weighted Grid Graphs and Their
Application to Finding All Approximate Repeats in Strings. SIAM Journal on
Computing 27(4), 972–992 (1998)

Fast Prefix Search in Little Space, with
Applications

Djamal Belazzougui1, Paolo Boldi2, Rasmus Pagh3, and Sebastiano Vigna2

1 Université Paris Diderot—Paris 7, France
2 Dipartimento di Scienze dell’Informazione, Università degli Studi di Milano, Italy

3 IT University of Copenhagen, Denmark

Abstract. A prefix search returns the strings out of a given collection
S that start with a given prefix. Traditionally, prefix search is solved by
data structures that are also dictionaries, that is, they actually contain
the strings in S. For very large collections stored in slow-access memory,
we propose extremely compact data structures that solve weak prefix
searches—they return the correct result only if some string in S starts
with the given prefix. Our data structures for weak prefix search use
O(|S| log �) bits in the worst case, where � is the average string length,
as opposed to O(|S|�) bits for a dictionary. We show a lower bound
implying that this space usage is optimal.

1 Introduction

In this paper we are interested in the following problem (hereafter referred to as
prefix search): given a collection of n strings, find all the strings that start with
a given prefix p. In particular, we will be interested in the space/time tradeoffs
needed to do prefix search in a static context (i.e., when the collection does not
change over time).

There is a large literature on indexing string collections. We refer to Ferragina
et al. [11,4] for state-of-the-art results, with emphasis on the cache-oblivious
model. Roughly speaking, results can be divided into two categories based on
the power of queries allowed. As shown by Pǎtraşcu and Thorup [15] any data
structure for bit strings that supports predecessor (or rank) queries must either
use super-linear space, or use time Ω(log |p|) for a query on a prefix p. On the
other hand, it is known that prefix queries, and more generally range queries,
can be answered in constant time using linear space [1].

Another distinction is between data structures (typically comparison-based)
where the query time grows with the number of strings in the collection, versus
those (typically some kind of trie) where the query time depends only on the
length of the query string1. In this paper we fill a gap in the literature by
considering data structures for weak prefix search, a relaxation of prefix search,
with query time depending only on the length of the query string. In a weak
prefix search we have the guarantee that the input p is a prefix of some string in
1 Obviously, one can also combine the two in a single data structure.

M. de Berg and U. Meyer (Eds.): ESA 2010, Part I, LNCS 6346, pp. 427–438, 2010.
© Springer-Verlag Berlin Heidelberg 2010

428 D. Belazzougui et al.

the set, and we are only requested to output the ranks (in lexicographic order)
of the strings that have p as prefix.

Our first result is that weak prefix search can be performed by accessing a data
structure that uses just O(n log) bits, where 	 is the average string length. This
is much less than the space of n	 bits used for the strings themselves. We also
show that this is the minimum possible space usage for any such data structure,
regardless of query time. We investigate different time/space tradeoffs: At one
end of this spectrum we have constant-time queries (for prefixes that fit in O(1)
words), and still asymptotically vanishing space usage for the index. At the other
end, space is optimal and the query time grows logarithmically with the length
of the prefix. Precise statements can be found in the technical overview below.

Technical overview. For simplicity we consider strings over a binary alphabet,
but our methods generalise to larger alphabets. Our main result is that weak
prefix search needs just O(|p|/w + log |p|) time and O(n log) space, where 	 is
the average length of the strings, p is the query string, and w is the machine word
size. In the cache-oblivious model [12], we use O(p/B + log |p|) I/Os. For strings
of fixed length w, this reduces to query time O(log w) and space O(n log w),
and we show that the latter is optimal regardless of query time. Throughout
the paper we strive to state all space results in terms of 	, and time results in
terms of the length of the actual query string p, because in a realistic setting
(e.g., term dictionaries of a search engine) string lengths might vary wildly, and
queries might be issued that are significantly shorter than the average (let alone
maximum) string length. Actually, the data structure size depends on the hollow
trie size of the set S—a data-aware measure related to the trie size [13] that is
much more precise than the bound O(n log).

Building on ideas from [1], we then give an O(|p|/w+1) solution (i.e., constant
time for prefixes of length O(w)) that uses space O(n	1/c log) (for any c > 0).
This structure shows that weak prefix search is possible in constant time using
sublinear space; queries requires O(|p|/B +1) I/Os in the cache-oblivious model.

Comparison to related results. If we study the same problem in the I/O model or
in the cache-oblivious model, the nearest competitors are the String B-tree [10]
and its cache-oblivious version [4], albeit they require access to the set S. The
static String B-tree can be modified to use space O(n log n+n log); it has very
good search performance with O(|p|/B + logB n) I/Os per query (supporting all
query types discussed in this paper), and its cache-oblivious version guarantees
the same bounds with high probability. However, a search for p inside the String
B-tree may involve Ω(|p| + log n) RAM operations (Ω(|p|/w + log n) for the
cache-oblivious version), so it may be too expensive for intensive computations.
Our first method, which achieves the optimal space usage of O(n log) bits,
uses O(|p|/w+log |p|) RAM operations and O(|p|/B +log |p|) I/Os instead. The
number of RAM operations is a strict improvement over String B-trees, while
the I/O bound is better for large enough sets. Our second method uses slightly
more space (O(n	1/c log) bits for any c > 0) but features O(|p|/w + 1) RAM
operations and O(|p|/B + 1) I/Os.

Fast Prefix Search in Little Space, with Applications 429

In [11], the authors discuss very succinct static data structures for the same
purposes (on a generic alphabet), decreasing the space to a lower bound that is,
in the binary case, the trie size. The search time is logarithmic in the number
of strings. As in the previous case, we improve on RAM operations and on I/Os
for large enough sets.

The first cache-oblivious dictionary supporting prefix search was devised by
Brodal et al. [5] achieving O(|p|) RAM operations and O(|p|/B + logB n) I/Os.
We note that the result in [5] is optimal in a comparison-based model, where we
have a lower bound of Ω(logB n) I/Os per query. By contrast, our result, like
those in [4,11], assumes an integer alphabet where there is no such lower bound.

Implicit in the paper of Alstrup et al. [1] on range queries is a linear-space struc-
ture for constant-time weak prefix search on fixed-length bit strings. Our constant-
time data structure, instead, uses sublinear space and allows for variable-length
strings.

Applications. Data structures that allow weak prefix search can be used to solve
the non-weak version of the problem, provided that the original data is stored
(typically, in some slow-access memory): a single probe is sufficient to determine
if the result set is empty; if not, access to the string set is needed just to retrieve
the strings that match the query. By the same means we can answer prefix
counting queries. It is also possible to solve range queries with two additional
probes to the original data (w.r.t. the output size), improving the results in [1].
We finally show that our results extend to the cache-oblivious model, where we
provide an alternative to the results in [5,4,11] that removes the dependence on
the data set size for prefix searches and range queries.

Our contributions. The main contribution of this paper is the identification of the
weak prefix search problem, and the proposal of a solutions based on techniques
developed in [2]. Optimality (in space or time) of the solution is also a central
result of this research. The second interesting contribution is the description of
range locators for variable-length strings; they are an essential building block in
our weak prefix search algorithms, and can be used whenever it is necessary to
recover in little space the range of leaves under a node of a trie.

2 Notation and Tools

In the following sections, we will use the toy set of strings shown in Figure 1
to display examples of our constructions. We use von Neumann’s definition and
notation for natural numbers: n = { 0, 1, . . . , n− 1 }, so 2 = { 0, 1 } and 2∗ is the
set of all binary strings.
Weak prefix search. Given a prefix-free set of strings S ⊆ 2∗, the weak prefix
search problem requires, given a prefix p of some string in S, to return the range
of strings of S having p as prefix; this set is returned as the interval of integers
that are the ranks (in lexicographic order) of the strings in S having p as prefix.
Model and assumptions. The model of computation considered in most of the
paper is a unit-cost word RAM with word size w. We assume that |S| = O(2cw)

430 D. Belazzougui et al.

for some constant c, so that constant-time static data structures depending on
|S| can be used. We extend several results also to the cache-oblivious model [12].

Compacted tries. Consider the compacted trie built for a prefix-free set of
strings S ⊆ 2∗. For a given node α of the trie, we define (see Figure 1):

0
0
1
0
0
1

0 1

1
0

0
1
0

0 1

1
0

α

nam
e

(n
α)

c
α

handle
(h

α)

extent
(e

α)

skip
interval

(iα
..j

α]=
(6

..10]

T

0 → ∞
00 → ∞
0010 → 001001 (6)
0010010 → ∞
00100101 → 001001010 (9)
0010011 → ∞
00100110 → 0010011010 (10)
00100110100 → ∞
001001101001 → 0010011010010 (13)
00100110101 → 00100110101 (11)

P b

0010010 1
0010011 0
00100110100 1
00100110101 1
00100110110 0
0010100 0

Fig. 1. The trie built on the sample set {001001010, 0010011010010, 00100110101}, and
the associated map and range locator. T maps handles to extents; the corresponding
hollow z-fast prefix trie just returns the lengths (shown in parentheses) of the extents.
In the range locator table, we boldface the zeroes and ones appended to extents, and
we underline the actual keys (as trailing zeroes are removed). The last two keys are
00100110101+ and 0010011+ , respectively.

– eα, the extent of node α, is the longest common prefix of the strings repre-
sented by the leaves that are descendants of α (this was called the “string
represented by α” in [2]);

– cα, the compacted path of node α, is the string stored at α;
– nα, the name of node α, is the string eα deprived of its suffix cα (this was

called the “path leading to α” in [2]);
– given a string x, we let exit(x) be the exit node of x, that is, the only node

α such that nα is a prefix of x and eα is not a proper prefix of x;
– the skip interval (iα . . jα] associated to α is (0 . . |cα|] for the root, and (|nα|−

1 . . |eα|] for all other nodes.

Data-aware measures. Consider the compacted trie on a set S ⊆ 2∗. We define
the trie measure of S [13] as

T(S) =
∑

α

(jα − iα) =
∑

α

(|cα| + 1) − 1 = 2n − 2 +
∑
α

|cα| = O(n),

where the summation ranges over all nodes of the trie. For the purpose of this
paper, we will also use the hollow2 trie measure

HT(S) =
∑

α internal

(bitlength(|cα|) + 1) − 1.

2 A compacted trie is made hollow by replacing the compacted path at each node
by its length and then discarding all its leaves. A recursive definition of hollow trie
appears in [3].

Fast Prefix Search in Little Space, with Applications 431

Since bitlength(x) = �log(x + 1)�, we have HT(S) = O(n log).
Storing functions. The problem of storing statically an r-bit function f : A →
2r from a given set of keys A has recently received renewed attention [7]. For
the purposes of this paper, we simply recall that these methods allow us to store
an r-bit function on n keys using rn + cn + o(n) bits for some constant c ≥ 0,
with O(|x|/w) access time for a query string x. Practical implementations are de-
scribed in [3]. In some cases, we will store a compressed function using a minimal
perfect function (O(n) bits) followed by a compressed data representation (e.g.,
an Elias–Fano compressed list [3]). In that case, storing natural numbers x0, x1,
. . . , xn−1 requires space

∑
i�log(xi + 1)� + n log(

∑
i�log(xi + 1)�/n) + O(n).

Relative dictionaries. A relative dictionary stores a set E relatively to some
set S ⊇ E. That is, the relative dictionary answers questions about membership
to E, but its answers are required to be correct only if the query string is in
S. It is possible to store such a dictionary in |E| log(|S|/|E|) bits of space with
O(|x|/w) access time [2].
Rank and select. We will use two basic blocks of several succinct data
structures—rank and select. Given a bit array (or bit string) b ∈ 2n, whose
positions are numbered starting from 0, rankb(p) is the number of ones up to
position p, exclusive (0 ≤ p ≤ n), whereas selectb(r) is the position of the r-th
one in b, with bits numbered starting from 0 (0 ≤ r < rankb(n)). It is well
known that these operations can be performed in constant time on a string of n
bits using additional o(n) bits, see [14,16].

3 From Prefixes to Exit Nodes

We break the weak prefix search problem into two subproblems. Our first goal
is to go from a given prefix of some string in S to its exit node.

Hollow z-fast prefix tries. We start by describing an improvement of the z-fast
trie, a data structure first defined in [2]. The main idea behind a z-fast trie is that,
instead of representing explicitly a binary tree structure containing compacted
paths of the trie, we will store a function that maps a certain prefix of each
extent to the extent itself. This mapping (which can be stored in linear space)
will be sufficient to navigate the trie and obtain, given a string x, the name of the
exit node of x and the exit behaviour (left, right, or possibly equality for leaves).
The interesting point about the z-fast trie is that it provides such a name in time
O(|x|/w + log |x|), and that it leads easily to a probabilistically relaxed version,
or even to hollow variants.

To make the paper self-contained, we recall the main definitions from [2]. The
2-fattest number in a nonempty interval of positive integers is the number in the
interval whose binary representation has the largest number of trailing zeros.
Consider the compacted trie on S, one of its nodes α, and the 2-fattest number
f in its skip interval (iα . . jα]; if the interval is empty, which can happen only at
the root, we set f = 0. The handle hα of α is eα[0 . . f), where eα[0 . . f) denotes
the first f bits of eα. A (deterministic) z-fast trie is a dictionary T mapping each

432 D. Belazzougui et al.

Algorithm 1
Input: a prefix p of some string in S.
Output: the name of exit(p).
a, b ← 0, |p|
while b − a > 1 do

f ← the 2-fattest number in (a . . b)
g ← T

(
p[0 . . f)

)
if g ≥ |p| then

b ← f
else

a ← g
end if

end while
if a = 0 then

return ε
else

return p[0 . . a + 1)
end if

Algorithm 2
Input: the name x of a node.
Output: the interval [i . . j) of
strings prefixed by x.
if x = ε then

i ← 0, j ← n
else

i ← rankb h(x←)
if x = 111 · · · 11 then

j ← n
else

j ← rankb h((x+)←)
end if

end if
return [i . . j)

Fig. 2. Algorithms for weak prefix search and range location

handle hα to the corresponding extent eα. In Figure 1, the part of the mapping
T with non-∞ output is the z-fast trie built on the trie of Figure 1.

We now introduce a more powerful structure, the (deterministic) z-fast prefix
trie. Consider again a node α of the compacted trie on S with notation as
above. The pseudohandles of α are the strings eα[0 . . f ′), where f ′ ranges among
the 2-fattest numbers of the intervals (iα . . t], with iα < t < f . Essentially,
pseudohandles play the same rôle as handles for every prefix of the handle that
extends the node name. We note immediately that there are at most log(f−iα) ≤
log |cα| pseudohandles associated with α, so the overall number of handles and
pseudohandles is bounded by HT(S) +

∑
x∈S log |x| = O(n log). It is now easy

to define a z-fast prefix trie: the dictionary providing the map from handles to
extents is enlarged to pseudohandles, which are mapped to the special value ∞.

We are actually interested in a hollow version of a z-fast prefix trie—more
precisely, a version implemented by a function T that maps handles of internal
nodes to the length of their extents, and handles of leaves and pseudohandles to
∞. The function (see again Figure 1) can be stored in a very small amount of
space; nonetheless, we will still be able to compute the name of the exit node of
any string that is a prefix of some string in S using Algorithm 1:

Theorem 1. Let p be a nonempty string that is a prefix of some string in S
and X = { p0 = ε, p1, . . . , pt }, where p1, p2, . . . , pt are the extents of the nodes
of the trie that are proper prefixes of p, ordered by increasing length. Let (a . . b)
be the interval maintained by Algorithm 1. Before and after each iteration the
following invariant is satisfied: a = |pj| for some j, and a ≤ |pt| < b.

Proof. We note that the invariant is trivially true at the start, as the initial
interval is (0 . . |p|). We now prove by induction that in the rest of execution the

Fast Prefix Search in Little Space, with Applications 433

invariant is true. At each step we pick the 2-fattest number f ∈ (|pi| . . b), and
change interval. We have two cases (we follow the notation of Algorithm 1):

– If f > |pt|, since f < |p| then it is either the length of the handle of the exit
node of p, or the length of a pseudohandle associated with the exit node of
p, so we set b = f and the invariant is preserved.

– Otherwise, f is 2-fattest in (|pi| . . |pt|], so p[0 . . f) must be the handle of an
ancestor of exit(p) (as f is 2-fattest in every subinterval of (|pi| . . |pt|] that
contains it) which implies g = |pk| for some k. Thus, by setting a = g the
invariant is preserved. ��

By the previous theorem, Algorithm 1 is correct and completes in at most log |p|
iterations. We note that finding the 2-fattest number in an interval requires the
computation of the most significant bit3, but alternatively we can check that
(1 � i) & a �= (1 � i) & b for decreasing i: if the test is satisfied, the number is
b & −1 � i, otherwise we decrement i.

Space and time. The space needed for a hollow z-fast prefix trie depends on the
component chosen for its implementation. The most trivial bound uses a function
mapping handles and pseudohandles to one bit that makes it possible to recognise
handles of internal nodes (O(n log) bits), and a function mapping handles to
extent lengths (O(n log L) bits, where L is the maximum string length).

These results, however, can be significantly improved. First of all, we can store
handles of internal nodes in a relative dictionary. The dictionary will store n− 1
strings out of O(n log) strings, using O(n log((n log)/n)) = O(n log log) bits.
Then, the mapping from handles to extent lengths hα �→ |eα| can actually be
recast into a mapping hα �→ |eα| − |hα|. But since |eα| − |hα| ≤ |cα|, by storing
these data by means of a compressed function we will use space∑

α

�log(|eα| − |hα| + 1)� + O(n log log) + O(n)

≤
∑

α

�log(|cα| + 1)� + O(n log log) ≤ HT(S) + O(n log log),

where α ranges over internal nodes.
Algorithm 1 cannot iterate more than log |p| times; at each step, we query

constant-time data structures using a prefix of p: using incremental hashing [6,
Section 5], we can preprocess p in time O(|p|/w) (and in |p|/B I/Os) so that
hashing prefixes of p requires constant time afterwards. We conclude that Algo-
rithm 1 requires time O(|p|/w + log |p|).

Faster, faster, faster. . . We now describe a data structure mapping prefixes to
exit nodes inspired by the techniques used in [1] that needs O(n	1/2 log) bits
of space and answers in time O(|p|/w), thus providing a different space/time
tradeoff. The basic idea is as follows: let s =

⌈
	1/2
⌉

and, for each node α of

3 More precisely, the 2-fattest number in (a..b] is −1 � msb(a ⊕ b) & b.

434 D. Belazzougui et al.

the compacted trie on the set S, consider the set of prefixes of eα with length
t ∈ (iα . . jα] such that either t is a multiple of s or is smaller than the first such
multiple. More precisely, we consider prefixes whose length is either of the form
ks, where ks ∈ (iα . . jα], or in (iα . .min{ k̄s, jα }], where k̄ is the minimum k
such that ks > iα.

We store a function F mapping each prefix p defined above to the length of
the name of the corresponding node α (actually, we can map p to |p| − |nα|).
Additionally, we store a mapping G from each node name to the length of its
extent (again, we can just map nα �→ |cα|).

To retrieve the exit node of a string p that is a prefix of some string in S, we
consider the string q = p[0 . . |p| − |p| mod s) (i.e., the longest prefix of p whose
length is a multiple of s). Then, we check whether G(p[0 . . F (q))) ≥ |p| (i.e.,
whether p is a prefix of the extent of the exit node of q). If this is the case, then
clearly p has the same exit node as q (i.e., p[0 . . F (q))). Otherwise, the map F
provides directly the length of the name of the exit node of p, which is thus
p[0 . . F (p)). All operations are completed in time O(|p|/w). The proof that this
structure uses space O(n	1/2 log) is deferred to the full paper.

4 Range Location

Our next problem is determining the range (of lexicographical ranks) of the
leaves that appear under a certain node of a trie. Actually, this problem is
pretty common in static data structures, and usually it is solved by associating
with each node a pair of integers of log n ≤ w bits. However, this means that
the structure has, in the worst case, a linear (O(nw)) dependency on the data.

To work around this issue, we propose to use a range locator—an abstraction
of a component used in [2]. Here we redefine range locators from scratch, and
improve their space usage so that it is dependent on the average string length,
rather than on the maximum string length. A range locator takes as input the
name of a node, and returns the range of ranks of the leaves that appear under
that node. For instance, in our toy example the answer to 0010011 would be
[1 . . 3). To build a range locator, we need to introduce monotone minimal perfect
hashing.

Given a set of n strings T , a monotone minimal perfect hash function [2] is a
bijection T → n that preserves lexicographical ordering. This means that each
string of T is mapped to its rank in T (but strings not in T give random results).
We use the following results from [3]:4

Theorem 2. Let T be a set of n strings of average length 	 and maximum length
L, and x ∈ 2∗ be a string. Then, there are monotone minimal perfect hashing
functions on T that:

1. use space O(n log) and answer in time O(|x|/w);
2. use space O(n log log L) and answer in time O(|x|/w + log |x|).

4 Actually, results in [3] are stated for prefix-free sets, but it is trivial to make a set
of strings prefix-free at the cost of doubling the average length.

Fast Prefix Search in Little Space, with Applications 435

We show how a reduction can relieve us from the dependency on L; this is
essential to our goals, as we want to depend just on the average length:

Theorem 3. There is a monotone minimal perfect hashing function on T using
space O(n log log) that answers in time O(|x|/w + log |x|) on a query string
x ∈ 2∗.

Proof. We divide T into the set of strings T− shorter then 	 logn, and the re-
maining “long” strings T +. Setting up a n-bit vector b that records the elements
of T− with select-one and select-zero structures (n + o(n) bits), we can reduce
the problem to hashing monotonically T− and T +. We note, however, that us-
ing Theorem 2 the set T− can be hashed in space O(|T−| log log(log n)) =
O(|T−| log log), as 2	 ≥ log n, and T + can be hashed explicitly using a (log n)-
bit function; since |T +| ≤ n/ log n necessarily, the function requires O(n) bits.
Overall, we obtain the required bounds. ��

We now describe in detail our range locator, using the notation of Section 2.
Given a string x, let x← be x with all its trailing zeroes removed. We build
a set of strings P as follows: for each extent e of an internal node, we add
to P the strings e←, e1, and, if e �= 111 · · ·11, we also add to P the string
(e1+)←, where e1+ denotes the successor of length |e1| of e1 in lexicographical
order (numerically, it is e1 + 1). We build a monotone minimal perfect hashing
function h on P , noting the following easily proven fact:

Proposition 1. The average length of the strings in P is at most 3	.

The second component of the range locator is a bit vector b of length |P |, in
which bits corresponding to the names of leaves are set to one. The vector is
endowed with a ranking structure rankb (see Figure 1).

It is now immediate that given a node name x, by hashing x← and ranking
the bit position thus obtained in b, we obtain the left extreme of the range of
leaves under x. Moreover, performing the same operations on (x+)←, we obtain
the right extreme. All these strings are in P by construction, except for the case
of a node name of the form 111 · · ·11; however, in that case the right extreme is
just the number of leaves (see Algorithm 2 for the details).

A range locator uses at most 3n + o(n) bits for b and its selection structures.
Thus, space usage is dominated by the monotone hashing component. Using the
structures described above, we obtain:

Theorem 4. There are structures implementing range location in time O(|x|/w)
using O(n log) bits of space, and in O(|x|/w + log |x|) time using O(n log log)
bits of space.

We remark that other combinations of monotone minimal perfect hashing and
succinct data structures can lead to similar results. Among several such asymp-
totically equivalent solutions, we believe ours is the most practical.

436 D. Belazzougui et al.

5 Putting It All Together

In this section we gather the main results about prefix search:

Theorem 5. There are structures implementing weak prefix search in space
HT(S) + O(n log log) with query time O(|p|/w + log |p|), and in space
O(n	1/2 log) with query time O(|p|/w).

Proof. The first structure uses a hollow z-fast prefix trie followed by the range
locator of Theorem 3: the first component provides the name nα of exit node
of |p|; given nα, the range locator returns the correct range. For the second
structure, we use the structure defined in Section 3 followed by the first range
locator of Theorem 2. ��

Actually, the second structure described in Theorem 5 can be made to occupy
space O(n	1/c log) for any constant c > 0 (the proof will be given in the full
version):

Theorem 6. For any constant c > 0, there is a structure implementing weak
prefix search in space O(n	1/c log) with query time O(|p|/w).

We note that all our time bounds can be translated into I/O bounds in the cache-
oblivious model if we replace the O(|p|/w) terms by O(|p|/B) (where B is the I/O
block size in bits). The O(|p|/w) term appears in two places: first, in the phase
of precalculation of a hash-vector of �|p|/w� hash words on the prefix p which is
later used to compute all the hash functions on prefixes of p; second, in the range
location phase, where we need to compute x← and (x+)←, where x is a prefix
of p and subsequently compute the hash vectors on x← and (x+)← . Observe
that the above operations can be carried on using arithmetic operations only,
without any additional I/O (we can use 2-wise independent hashing involving
only multiplications and additions for computing the hash vectors and only basic
arithmetic operations for computing x← and (x+)←) except for the writing of the
result of the computation which occupies O(|p|/w) words of space and thus take
O(|p|/B) I/Os. Thus in both cases we need only O(|p|/B) I/Os corresponding
to the time needed to read the pattern and to write the result.

6 A Space Lower Bound

In this section we show that the space usage achieved by the weak prefix search
data structure described in Theorem 5 is optimal up to a constant factor. In
fact, we show a matching lower bound for the easier problem of prefix counting
(i.e., counting how many strings start with a given prefix), and consider the
more general case where the answer is only required to be correct up to an
additive constant less than k. We note that any data structure supporting prefix
counting can be used to achieve approximate prefix counting, by building the
data structure for the set that contains every k-th element in sorted order.

Fast Prefix Search in Little Space, with Applications 437

Theorem 7. Consider a data structure (possibly randomised) indexing a set S
of n strings with average length 	 > log(n) + 1, supporting k-approximate prefix
count queries: Given a prefix of some key in S, the structure returns the number
of elements in S that have this prefix with an additive error of less than k, where
k < n/2. The data structure may return any number when given a string that
is not a prefix of a key in S. Then the expected space usage on a worst-case
set S is Ω((n/k) log(− log n)) bits. In particular, if no error is allowed and
	 > (1 + ε) log n, for constant ε > 0, the expected space usage is Ω(n log) bits.

Proof. Let u = 2� be the number of possible keys of length 	. We show that there
exists a probability distribution on key sets S such that the expected space
usage is Ω((n/k) log log(u/n)) bits. By the “easy directions of Yao’s lemma,”
this implies that the expected space usage of any (possibly randomised) data
structure on a worst case input is at least Ω((n/k) log log(u/n)) bits. The bound
for 	 > (1 + ε) log n and k = 1 follows immediately.

Assume without loss of generality that n/(k + 1) and k are powers of 2.
All strings in S will be of the form abc ∈ 2∗, where |a| = log2(n/(k + 1)),
|b| = 	−log2(n/(k+1))−log2 k, and |c| = log2 k. Let t = 	−log2(n/(k+1))−log2 k
denote the length of b. For every value of a the set will contain exactly k + 1
elements: One where b and c are strings of 0s, and for b chosen uniformly at
random among strings of Hamming weight 1 we have k strings for c ∈ 2log2 k.
Notice that the entropy of the set S is n/(k + 1) log2 t, as we choose n/(k + 1)
values of b independently from a set of t strings. To finish the argument we will
need to show that any two such sets require different data structures, which
means that the entropy of the bit string representing the data structure for S
must also be at least n/(k + 1) log2 t, and in particular this is a lower bound on
the expected length of the bit string.

Consider two different sets S′ and S′′. There exists a value of a, and distinct
values b′, b′′ of Hamming weight 1 such that S′ contains all k 	-bits strings
prefixed by ab′, and S′′ contains all k 	-bits strings prefixed by ab′′. Assume
without loss of generality that b′ is lexicographically before b′′. Now consider
the query for a string of the form a0�, which is a prefix of ab′ but not ab′′ –
such a string exists since b′ and b′′ have Hamming weight 1. The number of keys
with this prefix is k + 1 and 1, respectively, for S′ and S′′, so the answers to the
queries must be different (both in the multiplicative and additive case). Hence,
different data structures are needed for S′ and S′′. ��
Note that the trivial information-theoretical lower bound does not apply, as it
is impossible to reconstruct S from the data structure.

It is interesting to note the connections with the lower and upper bounds pre-
sented in [11]. This paper shows a lower bound on the number of bits necessary to
represent a set of strings S that, in the binary case, reduces to T(S)+ log 	, and
provide a matching data structure. Theorem 5 provides a hollow data structure
that is sized following the naturally associated measure: HT(S) + O(n log log).
Thus, Theorem 5 and 7 can be seen as the hollow version of the results pre-
sented in [11], albeit our lower bound is a match only asymptotically. Improving
Theorem 7 to HT(S) + o(HT(S)) is an interesting open problem.

438 D. Belazzougui et al.

References

1. Alstrup, S., Brodal, G.S., Rauhe, T.: Optimal static range reporting in one dimen-
sion. In: STOC 2001, pp. 476–482 (2001)

2. Belazzougui, D., Boldi, P., Pagh, R., Vigna, S.: Monotone minimal perfect hashing:
Searching a sorted table with O(1) accesses. In: SODA 2009, pp. 785–794. ACM
Press, New York (2009)

3. Belazzougui, D., Boldi, P., Pagh, R., Vigna, S.: Theory and practise of monotone
minimal perfect hashing. In: ALENEX 2009. SIAM, Philadelphia (2009)

4. Bender, M.A., Farach-Colton, M., Kuszmaul, B.C.: Cache-oblivious string B-trees.
In: PODS 2006, pp. 233–242. ACM, New York (2006)

5. Brodal, G.S., Fagerberg, R.: Cache-oblivious string dictionaries. In: SODA 2006,
pp. 581–590 (2006)

6. Dietzfelbinger, M., Gil, J., Matias, Y., Pippenger, N.: Polynomial hash functions
are reliable (extended abstract). In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623,
pp. 235–246. Springer, Heidelberg (1992)

7. Dietzfelbinger, M., Pagh, R.: Succinct data structures for retrieval and approxi-
mate membership (extended abstract). In: Aceto, L., Damgård, I., Goldberg, L.A.,
Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I.
LNCS, vol. 5125, pp. 385–396. Springer, Heidelberg (2008)

8. Elias, P.: Efficient storage and retrieval by content and address of static files. J.
Assoc. Comput. Mach. 21(2), 246–260 (1974)

9. Elias, P.: Universal codeword sets and representations of the integers. IEEE
Trans. on Info. Theory 21, 194–203 (1975)

10. Ferragina, P., Grossi, R.: The string B-tree: a new data structure for string search
in external memory and its applications. Journal of the ACM 46(2), 236–280 (1999)

11. Ferragina, P., Grossi, R., Gupta, A., Shah, R., Vitter, J.S.: On searching com-
pressed string collections cache-obliviously. In: PODS 2008, pp. 181–190 (2008)

12. Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache-oblivious algo-
rithms. In: FOCS 1999, pp. 285–297. IEEE Comput. Soc. Press, Los Alamitos
(1999)

13. Gupta, A., Hon, W.-K., Shah, R., Vitter, J.S.: Compressed data structures: Dic-
tionaries and data-aware measures. Theor. Comput. Sci. 387(3), 313–331 (2007)

14. Jacobson, G.: Space-efficient static trees and graphs. In: FOCS 1989, pp. 549–554
(1989)

15. Pǎtraşcu, M., Thorup, M.: Randomization does not help searching predecessors.
In: SODA 2007, pp. 555–564 (2007)

16. Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries with applications
to encoding k-ary trees and multisets. In: SODA 2002, pp. 233–242. ACM Press,
New York (2002)

On the Huffman and Alphabetic Tree Problem

with General Cost Functions

Hiroshi Fujiwara1,� and Tobias Jacobs2,��

1 Department of Information and Computer Sciences, Toyohashi University of
Technology, 1-1 Tenpaku-cho, Toyohashi 441-8580, Japan

h-fujiwara@cs.tut.ac.jp
2 National Institute of Informatics, 2-1-2 Hitotsubashi,

Chiyoda-ku, Tokyo 101-8430, Japan
jacobs@nii.ac.jp

Abstract. We study a wide generalization of two classical problems, the
Huffman Tree and Alphabetic Tree Problem. We assume that the cost
caused by the ith leaf is fi(di), where di is its depth in the tree under
consideration, and fi : N0 → R+

0 is an arbitrary function. All solution
methods known for the classical cases fail to compute the optimum here.

For the generalized Alphabetic Tree Problem, we give a dynamic pro-
gramming algorithm solving it in time O(n4), using space O(n3). Fur-
thermore, we show that the runtime can be reduced to O(n3) if the cost
functions are nondecreasing and convex. The improved algorithm can
also be used in the setting where the cost functions are nondecreasing
and the objective function is the maximum leaf cost.

We also prove that the Huffman Tree Problem in its full generality is
inapproximable unless P=NP, no matter if the objective function is the
sum of leaf costs or their maximum. For the latter problem, we show that
the case where the cost functions are nondecreasing admits a polynomial
time algorithm.

1 Introduction

Computing minimum cost binary trees is a classical combinatorial problem hav-
ing applications in various areas of informatics. Given a set {	1, , . . . , 	n} of leaves
having weights {w1, . . . , wn}, the famous Huffman Tree Problem describes the
task to compute a binary tree T with leaf set {	1, , . . . , 	n}, such that the weighted
total distance between the tree root and a leaf is minimized. The Alphabetic Tree
Problem differs from the Huffman Problem by the additional constraint that the
left-to-right order of the leaves in the solution tree must be exactly 	1, , . . . 	n.
The objective function of both versions is given as

n∑
i=1

wi · dist(root(T), 	i) .

� This work was supported by KAKENHI (19700015).
�� This work was supported by a fellowship within the Postdoc-Programme of the

German Academic Exchange Service (DAAD).

M. de Berg and U. Meyer (Eds.): ESA 2010, Part I, LNCS 6346, pp. 439–450, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

440 H. Fujiwara and T. Jacobs

In the above model it is assumed that the access cost of a leaf is proportional
to its depth in the tree. In this work we investigate a generalized problem: we
assume that the cost of leaf 	i having distance di from the root is determined by
fi(di), where fi : N0 → R+

0 is an arbitrary function. Instances of our generalized
problem are determined by the n cost functions f1, . . . , fn, one for each leaf. The
corresponding optimization problems can be formulated as follows.

General Cost Huffman Tree Problem, GHT. Given n arbitrary func-
tions f1, . . . , fn : N0 → R+

0 , the objective of GHT is to determine a binary
tree T having n leaves and a bijection g : {1, . . . , n} → leaves(T) such that∑n

i=1 fi(depth(g(i), T)) is minimized, where depth(g(i), T) is the distance
between the root of T and the leaf g(i).
General Cost Alphabetic Tree Problem, GAT. Given n arbitrary
functions f1, . . . , fn : N0 → R+

0 , the objective of GAT is to determine a
binary tree T whose leaves in left-to-right order are 	1, . . . , 	n, such that∑n

i=1 fi(depth(i, T)) is minimized.
We also investigate problems max-GHT and max-GAT, where the objective
function is maxn

i=1 fi(depth(g(i), T)) and maxn
i=1 fi(depth(i, T)), respectively.

Related Work. The Huffman Tree Problem is named after D. A. Huffman [1],
who gave an algorithm solving it in time O(n log n), which is the fastest possible.
For the Alphabetic Tree Problem, the first polynomial time algorithm was a dy-
namic programming approach having a runtime of O(n3), proposed by Gilbert
and Moore [2]. Knuth [3] identified a property of optimal alphabetic trees that
admits a speedup of the DP algorithm. The resulting runtime is O(n2). The
O(n log n) time method discovered by Hu and Tucker [4] uses a bottom-up ap-
proach which resembles the Huffman-Algorithm.

Up to today it is unknown whether the Alphabetic Tree Problem can be solved
in time o(n log n). However, for certain classes of special weight assignments,
linear time algorithms were given [7,8], and for certain classes of algorithms
Θ(n log n) was shown to be a lower bound for the runtime [7]. Flajolet and
Prodinger [6] gave an asymptotic estimate of the number of feasible solutions to
the Alphabetic Tree Problem.

Efforts to solve the Alphabetic Tree Problem with non-linear costs were made
by Hu et al. in [9]. The authors identified a class of cost functions where the
Hu-Tucker Algorithm is applicable, including power summations of the type
cost(T) = wit

di for any t ≥ 1. Baer [15] recently showed that for t < 1 neither
the Hu-Tucker algorithm nor the approach of Knuth leads to optimal solutions,
and he proposes to use the O(n3) algorithm by Gilbert and Moore instead.

Another direction of generalization is to impose additional constraints on the
structure of the output tree. The Alphabetic Tree Problem can be interpreted
as the task to determine an optimal binary search strategy for a totally ordered
set. A considerable number of papers about search in partially ordered sets have
been published, see e.g. [10,12,16]. In the even more general Binary Identification
Problem, the input is a number of subsets S1, . . . , Sm of leaves, and the goal is
to compute a minimum cost search strategy using queries of the type “is leaf 	i

in set Sj or not?”. Recent results from this area can be found in e.g. [11,13,14].

On the Huffman and Alphabetic Tree Problem with General Cost Functions 441

Our Results. We contribute a number of insights concerning the General Cost
Alphabetic Tree (GAT) and Huffman Tree Problem (GHT), including the ver-
sions where the maximum leaf cost has to be minimized instead of the sum.

In Section 2 we show that an extension of the Gilbert-Moore Algorithm solves
GAT in time O(n4) and space O(n3), regardless of the cost functions. We then
define two properties of cost functions, subtree optimality and structural con-
tinuity. Both properties admit a speedup of the algorithm by the factor of n.
The speedups are independent from each other, so problem instances whose cost
functions satisfy both properties admit a O(n2) time optimal algorithm, which
happens to be exactly the method proposed by Knuth [3].

We prove that if the cost functions are nondecreasing and convex, then the
property of structural continuity is satisfied. Therefore, this case of the Alpha-
betic Tree Problem can be solved in time O(n3). Furthermore, we show that for
max-GAT instances to satisfy structural continuity it even suffices that the cost
functions are nondecreasing. These results can be found in Section 3.

In Section 4 we address the Huffman Tree Problem. We show for both GHT
and max-GHT that it is NP-hard to decide whether an instance admits a cost
zero solution. This means that those problems are much harder than their Al-
phabetic Tree counterparts: they are inapproximable unless P=NP. As a positive
result, we show that max-GHT admits a polynomial time algorithm if the cost
functions are nondecreasing. The computational tractability of standard GHT
with nondecreasing cost functions remains an open problem.

2 Dynamic Programming Algorithm for GAT

This section begins with a recapitulation of the Gilbert-Moore algorithm for
the classical Alphabetic Tree Problem. We believe that the property of subtree
optimality can be well understood in the context of that algorithm, because
this property is essentially required for its correctness. Subsequently, we give an
extended algorithm which solves GAT without requiring subtree optimality. The
runtime and space requirements of that algorithm are however by a factor of n
higher. We then introduce the property of structural continuity and show how
it helps to make the algorithm more time-efficient again.

The Gilbert-Moore Algorithm and Subtree Optimality. The algorithm
by Gilbert and Moore employs a dynamic programming approach to solve the
classical problem with fi(x) = wix for i = 1, . . . , n. Subproblems are determined
by two integer parameters (l, r) with 1 ≤ l ≤ r ≤ n. A subproblem (l, r) asks
about an optimal alphabetic tree for fl, . . . , fr. The value c̃(l, r) of an optimal
solution to that subproblem is calculated recursively as minl≤i<r(c̃(l, i) + c̃(i +
1, r)), and the optimal search tree is obtained by making the optimal solution
tree to (l, j) and (j + 1, r) the left and right subtree of the root, respectively,
where j is the value of i for which the minimum is reached in the above formula.
In the basic case of l = r, the optimal tree only consists of one leaf.

There are O(n2) different subproblems, and each of them requires computa-
tion time O(n), so the overall runtime is O(n3), while the space requirements

442 H. Fujiwara and T. Jacobs

are O(n2). The algorithm successively merges optimal alphabetic trees for subse-
quences of cost functions into optimal trees for larger subsequences. The reason
why this works out is because an optimal tree for f1, . . . , fn is always the com-
bination of optimal trees for f1, . . . , fi and fi+1, . . . , fn, for some i ∈ {1, . . . , n}.
This property is called subtree optimality. Note that by induction it follows that
for any internal node v in an optimal alphabetic tree, the subtree under v is an
optimal alphabetic tree for the sequence of leaves that are descendants of v.

Algorithm for GAT. A simple counterexample (see full paper) shows that
GAT is not subtree-optimal in general, i.e. the left and right subtree under the
root of an optimal alphabetic tree are not necessarily optimal alphabetic trees.

For some problem instance (f1, . . . , fn), assume that i is such that the leaves
	1, . . . , 	i and the leaves 	i+1, . . . , 	n are in the left and right subtree T1 and T2
under the root of an optimal alphabetic tree T , respectively. We have that

cost(T) =
∑

1≤j≤i

fj(depth(j , T)) +
∑

i<j≤n

fj(depth(j , T))

=
∑

1≤j≤i

fj(depth(j , T1) + 1) +
∑

i<j≤n

fj(depth(j , T2) + 1) .

The optimality of T implies that the structure of say T1 must be such that the
term

∑
1≤j≤i fi(depth(i, T1) + 1) is minimized. This differs from the optimiza-

tion term for problem instance (f1, . . . , fi) only by the offset of 1 that is added
to each depth value. By the same argument, the two subtrees under the root of
T1 are optimal alphabetic trees with respect to the cost function where an offset
of 2 is added to the depth values before applying the fjs, and so on.

This offset is added as an additional parameter to the description of subprob-
lems, so subproblem (l, r, k) is to determine an alphabetic tree T ′ having leaves
	l, . . . , 	r so as to minimize

∑r
i=l fi(depth(i, T

′) + k). It can also be interpreted
as the task to compute a tree T ′ which minimizes the sum of access costs under
the assumption that the root of T ′ is appended to a path of length k.

The cost c̃ of an optimal solution to a subproblem is calculated as

c̃(l, r, k) =
{

fr(k) if l = r
minr−1

i=l {c̃(l, i, k + 1) + c̃(i + 1, r, k + 1)} otherwise .
(1)

The original problem instance I is given as subproblem (1, n, 0). Each time
a new subproblem with k incremented by one is generated, the difference be-
tween l and r decreases by at least one, which implies that k never grows larger
than n. Consequently, we have no more than O(n3) different subproblems. Each
subproblem requires an effort of O(n), so the runtime of this algorithm is O(n4).

Structural Continuity. The property of structural continuity was proven by
Knuth [3] to hold for the classical Alphabetic Tree Problem. It roughly states that
the root of an optimal alphabetic tree can only move left when the interval under
consideration is extended to the left. For making this more precise, recall that
the root of an alphabetic tree divides the sequence of leaves into a left and a right

On the Huffman and Alphabetic Tree Problem with General Cost Functions 443

subsequence, 	1, . . . , 	i and 	i+1, . . . , 	n. We say that i is the position of the root.
Now assume that i is the position of the root of an optimal tree for subsequence
	l, . . . , 	r. Then the property of structural continuity guarantees that there is
an optimal alphabetic tree for subsequence 	l−1, . . . , 	r where the root is at a
position smaller than or equal to i. Symmetrically, for 	l, . . . , 	r+1, there is an
optimal solution where the index of the root’s position is not smaller than i.

Structural continuity yields an improved algorithm for the GAT problem. This
algorithm computes optimal solutions to the subproblems in the following order:
For a = 0, . . . , n − 1, for k = 0, . . . , n, compute the solutions to all subproblems
(l, r, k) with r − l = a. It is not hard to see that this order of computation
guarantees that each solution to a subproblem is computed before it is needed
during the computation of another subproblem’s optimal solution.

We reason about the behavior of the algorithm during some fixed assignment
of a and k. Denote the choice of i in Equation 1 as i[l, r, k]. For j = 1, . . . , n− a,
the optimal solution to (j, j+a, k) is computed. Structural continuity implies that
i[j, j+a−1, k] ≤ i[j, j+a, k] ≤ i[j+1, j+a, k]. The values of i[j, j+a−1, k] and
i[j + 1, j + a, k] have already been determined due to the order of computation.
There are only i[j+1, j+a, k]− i[j, j+a−1, k]+1 possible values for i[j, j+a, k]
to be considered by the algorithm. Summing them up for i[j, j + a, k], j =
1, . . . , n−a, results in a telescope sum which evaluates to O(n). There are O(n2)
different configurations of a and k, so the improved runtime is O(n3).

If both subset optimality and structural continuity holds, the Gilbert-Moore
algorithm can modified in a similar manner to obtain runtime O(n2), details
can be found in [3]. The resource requirements of the dynamic programming
approach are visualized in Figure 1.

3 Cost Functions Satisfying Structural Continuity

In this section we prove that structural continuity is satisfied by GAT instances
whose cost functions are nondecreasing and convex. We also show that nonde-
creasing cost functions lead to structural continuity in the case of max-GAT.

Theorem 1. Let (f1, . . . , fn) be an instance of GAT where the cost functions
are nondecreasing and convex, i.e. 0 ≤ fi(x) − fi(x − 1) ≤ fi(x + 1) − fi(x) for
each i = 1, . . . , n and x ≥ 1. Then the instance satisfies structural continuity.

For proving the theorem, we use an alternative characterization of the GAT
problem. Imagine the infinite binary tree T , where every node is an internal
one. Given the functions f1, . . . , fn, we seek to find a minimum cost injective
assignment g from the index set {1, . . . , n} to nodes of T , under the restriction
that any downward path in T encounters at most one of these n indices. Fur-
thermore, the assignment has to be alphabetical, i.e. for any two indices i < j,
g(i) and g(j) must have a common ancestor w such that g(i) is in the left and
g(j) is in the right subtree under w. The objective function to be minimized is∑n

i=1 fi(depth(g(i), T)).

444 H. Fujiwara and T. Jacobs

n2, n2

arbirtrary fi n4, n3

n3, n3

n3, n2

structural continuity

subtree optimality

Fig. 1. Runtime and space requirements of the DP approach for GAT

As the fis are nondecreasing, it is not hard to verify that there always ex-
ists an optimal solution where any infinite downward path starting at the root
of T contains a node some index is assigned to. Assignments satisfying that
property are called regular. When g is regular, then, by turning the n nodes
in g({1, . . . , n}) into leaves, one obtains a finite tree that has n nodes and is a
solution to the GAT instance. Conversely, any solution for the GAT problem can
be interpreted as a regular assignment g having the same cost.

The subproblems considered by the dynamic programming approach also have
a natural interpretation in terms of T . Subproblem (l, r, k) describes the task
to find a minimum cost regular assignment of the index set {l, . . . , r} to T
under the same restrictions as above, but with each fi replaced with f+k

i , where
f+k

i (d) := fi(d + k).
Theorem 1 claims that the root of the optimal tree never has to move right

when the interval under consideration is extended to the left. In that proposition,
the sequence of functions is interpreted to be fixed, while the tree structure is
flexible and adapts to the subproblem under consideration. However, from the
point of view just introduced, the tree T is fixed and the assignment g of the
index set to nodes in T is the flexible part. In this context, Theorem 1 claims
that indices never move left when the interval is extended to the left.

To make our statements more formal, we need to introduce some more no-
tation. Let i be an index that is assigned to a node of T by g. Assume that g
is modified. We say that i moves upwards/downwards, if its new position is an
ancestor/descendant of its old position. We further say that i moves left/right,
when its new position is left/right of its old position, where a node u is defined
to be left (right) of node v, when there exists a node w in T such that u is in
the left (right) and v is in the right (left) subtree under w. Any movement of i
is either an upward, downward, left, or right movement. The proposition we are
going to show is actually more general than Theorem 1. The complete proof of
the following lemma will appear in the full version of this paper.

Lemma 1. Let g be the assignment corresponding to an optimal solution to
(l, r, k). Then there is a regular optimal solution g′ to (l − 1, r, k) such that for
any index i = l, . . . , r, it either holds that g′(i) = g(i), g′(i) is right of g(i), or
g′(i) is a descendant of g(i).

On the Huffman and Alphabetic Tree Problem with General Cost Functions 445

Proof (sketched). Assume for contradiction that there is some index i moving
upwards or left, no matter which optimal regular solution g′ is chosen. Let i the
minimum index with that behavior in some optimal solution g′.

If i = l, a contradiction is caused by the fact that i is assigned to the leftmost
path of T by g, but g′ must assign index i − 1 to a node on this path.

If i > l, first consider the case that index i moves upwards. We split the
transformation from g into g′ into the transformation from g|{l, . . . , i − 1} into
g′|{l − 1, . . . , i − 1}, and the transformation from g|{i, . . . , r} into g′|{i, . . . , r}.
The further transformation only changes the positions of indices < i, and the
latter only affects indices ≥ i. As index i − 1 moves neither left nor upwards,
these two transformations take place in non-overlapping parts of T and can
therefore be performed independently of each others. Only the transformation
from g|{i, . . . , r} into g′|{i, . . . , r} causes indices to move left or downwards, and
from the optimality of g and g′ we conclude that the solution obtained from g
by only performing the first transformation is as good as g′.

For analyzing the case where i moves left, observe that i − 1 can only move
downwards in order to make room for i. We define an alternative solution h′ for
(l−1, r, k). Solution h′ is constructed starting from g′, by changing the positions
of the indices i, . . . , r to the positions they are assigned to by g. After that, we
can move index i − 1 a certain number of steps upwards. We then show that
h′ is optimal for (l − 1, r, k), although no index moves down or left during the
transformation from g into h′. �

Proof (of Theorem 1). Let i be the position of the root in an alphabetic tree
T for subproblem (l, r, k). The corresponding function g assigns indices l, . . . , i
to the left subtree under the root of T , and indices i + 1, . . . , r are assigned to
the right subtree. Conversely, the position of the root of T is exactly the largest
index being assigned to the left subtree under the root of T .

So when during the transformation from g to g′ no index moves left, no
index larger than i can move into the left subtree under the root of T , and this
means that the root of the alphabetic tree T ′ corresponding to g′ cannot have a
greater position than the root of T . Using this argumentation, Theorem 1 follows
immediately from Lemma 1. �

Theorem 2. Let (f1, . . . , fn) be an instance of max-GAT where the cost func-
tions are nondecreasing, i.e. fi(x) ≥ fi(x − 1) for each i = 1, . . . , n and x > 1.
Then the instance satisfies structural continuity.

This theorem is much simpler to prove than Theorem 1. The argumentation is
based on a simple observation about the cost c̃(l, r, k) of the optimal solution
to subproblem (l, r, k). The correctness of the following lemma is established by
the fact that any solution to (l−1, r, k) can easily be transformed into a cheaper
solution to (l, r, k) when the cost functions are nondecreasing.

Lemma 2. For any instance of max-GAT with nondecreasing cost functions and
any subproblem (l, r, k) of it, it holds that c̃(l, r, k) ≤ c̃(l− 1, r, k) and c̃(l, r, k) ≤
c̃(l, r + 1, k).

446 H. Fujiwara and T. Jacobs

Proof (of Theorem 2). Let i be the position of the root in an optimal solution
T to subproblem (l, r, k). For some j > i, let T ′ be an optimal solution to
subproblem (l − 1, r, k) with the root’s position at j. We show that the tree T ′′,
which is defined as the best solution to (l− 1, r, k) having the root at position i,
is not more expensive than T ′. The cost of T ′′ is given as cost(T ′′) = max{c̃(l−
1, i, k + 1), c̃(i + 1, r, k + 1)}.

Let us first assume that the maximum in the formula for cost(T ′′) is defined
by the first term, i.e. c̃(l − 1, i, k + 1) ≥ c̃(i + 1, r, k + 1). Multiple application of
Lemma 2 gives

c̃(l − 1, j, k + 1) ≥ c̃(l − 1, i, k + 1) ≥ c̃(i + 1, r, k + 1) ≥ c̃(j + 1, r, k + 1) ,

and this implies that cost(T ′) = max{c̃(l − 1, j, k + 1), c̃(j + 1, r, k + 1)} is not
smaller than cost(T ′′).

Now we assume that the second term establishes the maximum, i.e. c̃(l −
1, i, k+1) ≤ c̃(i+1, r, k+1). By Lemma 2, c̃(l, i, k+1) ≤ c̃(i+1, r, k+1), which
means that c̃(i+1, r, k+1) is the maximum in the cost term for T as well. In other
words, cost(T) = cost(T ′′). Lemma 2 states that no solution to (l − 1, r, k + 1),
including T ′, can be cheaper than T . Therefore, T ′′ is optimal. �

4 Huffman Tree Problem

In this section we address the General Cost Huffman Tree Problem (GHT). In the
classical linear cost model, this problem can be reduced to the Alphabetic Tree
Problem by sorting the nodes by weight. A simple counterexample (to appear in
the full paper) demonstrates that this reduction does not work correctly in the
case of general costs, even if the cost functions are monotonic and convex. We
show that GHT in its full generality is inapproximable unless P=NP, which holds
for both GHT and max-GHT. Subsequently, we prove that the latter problem
admits a polynomial time algorithm if the cost functions are nonincreasing.

Complexity of GHT. The computational complexity of sum-GHT and max-
GHT will both be settled by one reduction from the 3-Set Cover Problem, which
is well-known to be NP-hard [5].

Exact Cover by 3-Sets, X3C. Given some set C with |C| = 3k, k ∈ N,
and a collection D of 3 element subsets of C, the problem X3C is to decide
whether there is a sub-collection D′ ⊆ D, such that each element of C occurs
in exactly one member of D′.

Let (C, D) be an instance of X3C with |D| = m and |C| = n. In the following,
we show how to construct an equivalent instance I of GHT. We consider the
solution tree for instance I to be partitioned into m layers, each consisting of
three levels. In order to simplify notation, let liq = 3(i − 1) + q denote the qth
level of the ith layer for i = 1, . . . , m and q = 1, 2, 3. The tree root level 0 is not
considered to be in one of the layers.

On the Huffman and Alphabetic Tree Problem with General Cost Functions 447

In instance I there are three different types of cost functions. First, there are
functions f i

2 and f i
3 for i = 1, . . . , m. For i < m, f i

q is defined as f i
q(l

i
q) = 0 and

f i
q(x) = 1 for any x �= liq. The mth pair is defined as fm

2 (x) = fm
3 (x) = 0 for

x = lm2 , and fm
2 (x) = fm

3 (x) = 1 otherwise. Note that there are no functions f i
1.

Second, we introduce m − k functions g1, . . . , gm−k. Those functions are all
identical, for t = 1, . . . , m − k they are defined as gt(li1) = 0 for i = 1, . . . , m,
and gt(x) = 1 for all other values of x.

Finally, I contains n different functions h1, . . . , hn, one for each element of
C = {c1, . . . , cn}. Let D = {D1, . . . , Dm}. For each i = 1, . . . , m, select one
element di ∈ Di arbitrarily. Now, for j = 1, . . . , n, define

hj(x) =

⎧⎨⎩
0 if x = li2 for some i with cj = di

0 if x = li3for some i with cj ∈ Di \ {di}
1 otherwise .

Lemma 3. There is a solution to instance I having cost 0 if and only if instance
(C, D) admits an exact cover.

Proof. “⇒” Assume that there is a solution T to instance I having cost 0.
Then the leaf associated with function f i

q must be on level liq for q = 1, 2
and i = 1, . . . , m − 1, and the leaves associated with fm

2 and fm
3 must be on

level lm2 . Because of the leaves on level lm2 , there must be a downward path
v1
1 , v

1
2 , v1

3 , v
2
1 , . . . , v

m
2 starting in the root v1

1 of T , such that vi
q is on level liq − 1,

and vm
2 is the parent of the leaves associated with fm

2 and fm
3 .

We can assume that in T , for 1 ≤ i ≤ m − 1, the internal nodes vi
2 and

vi
3 are the parents of the leaves associated with f i

2 and f i
3, respectively. If this

property does not hold, then the tree T can be modified in order to satisfy it:
simply interchange children between vi

t and the parent of the leaf associated
with f i

t appropriately. This does not change the level of any leaf, so the cost of
T remains zero.

Now consider the subtrees T1, . . . , Tm, where Ti is defined as the subtree under
vi
1 which does not contain vi

2. The set of leaves associated with the the g-type
and h-type functions is exactly the set of leaves being in those subtrees. For
0 ≤ i ≤ m, the unique hj with cj = di is the only function besides f i

2 which
evaluates to 0 for input li2. Furthermore, only the g-type functions evaluate to 0
for input li1. Therefore, if some Ti does not contain any g-type leaf, then it has
at least three leaves which are associated with h-type functions.

As there are only m − k functions of type g, k of the m subtrees Ti must
contain at least three h-type leaves. As the total number of h-type leaves is
n = 3k, each of those subtrees must contain exactly three of them.

Let Ti be such a subtree. Function hj with cj = di is the only function besides
f i
2 which evaluates to 0 for input li2, and hj′ , hj′′ with {cj′ , cj′′} = Di\{di} are the

only two functions besides f i
3 evaluating to 0 for input li3. Ti must contain exactly

those three functions, because otherwise it would have more than three leaves.
As the number of subtrees Ti of this kind is m, and each h-type function can

only occur in one of them, the corresponding selection of Dis must be an exact
cover of U .

448 H. Fujiwara and T. Jacobs

“⇐” If D′ ⊂ D is an exact cover, then one can construct a zero cost solution
tree T from it which has the structure just described. �

We have given a reduction showing that it is NP-hard to decide whether a GHT
instance admits a zero cost solution. This establishes the following theorem.

Theorem 3. GHT and max-GHT are inapproximable unless P=NP.

Max-GHT with Monotonic Costs. We give a polynomial time algorithm for
the version of GHT where the cost functions are monotonic and the objective is
to minimize the maximum cost caused by a leaf.

Let (f1, . . . , fn) be an instance of max-GHT. The cost of any solution is fully
characterized by the level assignment function d : {1, . . . , n} → {0, . . . , n}, which
assigns the tree level of the corresponding leaves to indices of the cost functions
(note that no leaf can have a depth greater than n). Given d, the cost of the
corresponding tree can be calculated as cost(d) = maxi fi(d(i)).

Our approach is to compute an optimal level assignment function and then
derive an optimal tree from it. Given d, let d̄ : j �→ |{d(i) = j}| be the function
which assigns to each tree level the number of leaves assigned to it by d.

Lemma 4. A function d : {1, . . . , n} → {0, . . . , n} is the level assignment func-
tion of a binary tree having n leaves, if and only if

n∑
k=0

d̄(k)2n+1−k = 2n+1 . (2)

Furthermore, for any level assignment function satisfying that equation, a cor-
responding binary tree can be computed in polynomial time.

Proof. “⇒”: Let d be the level function of a binary tree T having leaves 	1, . . . , 	n.
For i = 1, . . . , n, replace 	i with a full binary tree having depth

(n + 1) − depth(i, T) = (n + 1) − d(i) .

By this transformation, we obtain the full binary tree Tn+1 having depth n + 1.
For i = 1, . . . , n, the tree replacing 	i has 2(n+1)−d(i) leaves. The claim follows
from the fact that Tn+1 has 2n+1 leaves.

“⇐”: From the level function d we construct a tree T level by level, keeping
track of the total number v(j) of nodes (internal nodes and leaves) on each level
j. Our construction will maintain the invariant

j−1∑
k=0

d̄(k)2n+1−k + v(j)2n+1−j = 2n+1 .

If n = 1, then it must hold that f(1) = 0, so we can simply place the only leaf
at the root of T . Otherwise, we place an internal node at the root of T at level
0. In both cases, the above invariant is established with respect to j = 0.

On the Huffman and Alphabetic Tree Problem with General Cost Functions 449

For 1 ≤ j ≤ n, assume that we have already created level 0, . . . , j − 1 of T and
have established

j−2∑
k=0

d̄(k)2n+1−k + v(j − 1)2n+1−(j−1) = 2n+1 .

We have v(j − 1) − d(j − 1) internal nodes at level j − 1, so the total number
of nodes on level j is v(j) = 2v(j − 1) − 2d(j − 1)). This implies v(j)2n+1−j =
v(j − 1)2n+1−(j−1) − d(j − 1)2n+1−(j−1), so

j−1∑
k=0

d̄(k)2n+1−k + v(j)2n+1−j =
j−2∑
k=0

d̄(k)2n+1−k + v(j − 1)2n+1−(j−1) = 2n+1 ,

which establishes the invariant with respect to j. For showing that level j of the
tree can be constructed, we need to prove that d̄(j) ≤ v(j). This can be shown
using the invariant: 2n+1−jv(j) =

2n+1 −
j−1∑
k=0

d̄(k)2n+1−k ≥ 2n+1 −

⎛⎝j−1∑
k=0

d̄(k)2n+1−k +
n∑

k=j+1

d̄(k)2n+1−k

⎞⎠
= 2n+1−j d̄(j), where both equalities are implied by Equation 2.

When j is the largest index with d̄(j) > 0, the above formula gives v(j) = d(j),
so any node on the deepest level of T is a leaf. Thus, T is a feasible binary tree
with n leaves. The construction of T clearly takes only polynomial time. �

Lemma 4 reduces max-GHT to the search for a minimum cost assignment d
satisfying Equation 2. We further simplify this task by relaxing the Equation to
an Inequation. The proof of the following lemma is deferred to the full paper.

Lemma 5. Let d : {1, . . . , n} → {0, . . . , n} be a function satisfying

n∑
k=0

d̄(k)2n+1−k ≤ 2n+1 . (3)

Then there is a feasible level assignment function d′ with d′(x) ≤ d(x) for 1 ≤
x ≤ n. Furthermore, d′ can be determined from d in polynomial time.

Theorem 4. The version of max-GHT where all cost functions are monotonic
can be solved in polynomial time.

Proof. We have reduced max-GHT to the problem of determining a minimum
cost assignment d satisfying Inequation 3. This problem can be solved using
binary search to determine the minimum cost of any feasible d. The search is
performed over the set of all n2 function values of f1, . . . , fn, because the cost
of any solution for our problem instance is one of those function values.

In each iteration of binary search, guess a value c for cost(d). Recall that we
have assumed the cost functions to be monotonic. So, for i = 1, . . . , n, there is

450 H. Fujiwara and T. Jacobs

some xi such that fi(x) ≤ c for x ≤ xi and fi(x) > c otherwise. Assign d(i) = xi

for i = 1, . . . , n and check Inequation 3. If it is satisfied, then there is a solution
tree to our problem instance having cost equal or less than c, which is computable
in polynomial time, due to Lemma 5 and 4. Conversely, if Inequation 3 is not
satisfied, then there is no solution tree to the instance having cost c or less.
This is because the level function d′ of such a tree could be obtained from d by
decreasing the function values of a certain set of indices, and changing d in that
manner can only further increase the left side of Inequation 3. �

References

1. Huffman, D.A.: A Method for the Construction of Minimum-Redundancy Codes.
In: Proceedings of the I.R.E., pp. 1098–1101 (1952)

2. Gilbert, E.N., Moore, E.F.: Variable Length Binary Encodings. Bell System Tech.
J. 38, 933–968 (1959)

3. Knuth, D.E.: Optimum Binary Search Trees. Acta Informatica 1, 14–25 (1971)
4. Hu, T.C., Tucker, A.C.: Optimal Computer Search Trees and Variable-Length Al-

phabetical Codes. SIAM Journal on Applied Mathematics 21(4), 514–532 (1971)
5. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Com-

puter Computations, pp. 85–103. Plenum Press, New York (1972)
6. Flajolet, P., Prodinger, H.: Level Number Sequences for Trees. Discrete Mathe-

matics 65(2), 149–156 (1987)
7. Klawe, M.M., Mumey, B.: Upper and Lower Bounds on Constructing Alphabetical

Binary Trees. In: Proc. 4th ACM-SIAM Symposium on Discrete Algorithms, pp.
185–193 (1993)

8. Hu, T.C.: A New Proof of the T-C Algorithm. SIAM J. Appl. Math 25, 83–94
(1973)

9. Hu, T.C., Kleitman, D.J., Tamaki, J.K.: Binary Trees Optimum Under Various
Criteria. SIAM Journal on Applied Mathematics 37(2), 246–256 (1979)

10. Carmo, R., Donaldelli, J., Kohayakawa, Y., Laber, E.: Searching in Random Par-
tially Ordered Sets. Theor. Comp. Science 321, 41–57 (2004)

11. Chakaravarthy, V., Pandit, V., Roy, S., Awasthi, P., Mohania, M.: Decision Trees
for Entity Identification: Approximation Algorithms and Hardness Results. In: Pro-
ceedings of PODS (2007)

12. Mozes, S., Onak, K., Weizmann, O.: Finding an Optimal Tree Searching Strategy
in Linear Time. In: Proceedings of SODA (2008)

13. Adler, M., Heeringa, B.: Approximating Optimal Binary Decision Trees. In: Goel,
A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.) APPROX and RANDOM 2008.
LNCS, vol. 5171, pp. 1–9. Springer, Heidelberg (2008)

14. Chakaravarthy, V., Pandit, V., Roy, S., Sabharwal., Y.: Approximating Decision
Trees with Multiway Branches. In: Proceedings of ICALP (2009)

15. Baer, M.B.: Alphabetic Coding with Exponential Costs. Information Processing
Letters 110(4), 139–142 (2010)

16. Cicalese, F., Jacobs, T., Laber, E., Molinaro, M.: On The Complexity of Searching
in Trees: Average-case Minimization. In: Proceedings of ICALP 2010 (to appear,
2010)

Medium-Space Algorithms for Inverse BWT�

Juha Kärkkäinen1 and Simon J. Puglisi2

1 Department of Computer Science, University of Helsinki, Finland
juha.karkkainen@cs.helsinki.fi

2 School of Computer Science and Information Technology,
Royal Melbourne Institute of Technology, Australia

simon.puglisi@rmit.edu.au

Abstract. The Burrows–Wheeler transform is a powerful tool for data
compression and has been the focus of intense research in the last decade.
Little attention, however, has been paid to the inverse transform, even
though it is a bottleneck in decompression. We introduce three new in-
version algorithms with improved performance in a wide range of the
space-time spectrum, as confirmed by both theoretical analysis and ex-
perimental comparison.

1 Introduction

The Burrows–Wheeler transform (BWT) [2,1] is an invertible transformation of
a text that has a central role in some of the best data compression methods.
The transform itself performs no compression — the result is just a permutation
of the text — but the transformed text is easier to compress using simple and
fast methods [15]. Much effort has gone into developing efficient algorithms for
the forward transform, largely owing to its close relation to constructing the
suffix array [17] and compressed text indexes [16]. The less studied problem of
inverting the transform is the subject of this paper.

The inverse transform is a bottleneck in decompression and thus needs to be
fast, particularly in applications requiring frequent decompression such as on-
the-fly disk compression. The space requirement is also an issue: a typical, fast
implementation requires 5 times the space of the text. As already proposed in
the original paper [2], the text can be broken into smaller blocks, each of which is
compressed separately. However, a large block size is preferable because it allows
better compression (see e.g. [4]). Furthermore, the block size is determined during
the forward transform, possibly on a machine with more memory or using a space
efficient algorithm (e.g. [11]), and the inverse transform is impossible unless a
sufficiently space-efficient algorithm is available.

The key operation in the inversion is a rank query:

rank(j) ≡
∣∣{i | i < j and L[i] = L[j]}

∣∣ ,

� This work is supported by the Academy of Finland grant 118653 (ALGODAN) and
by the Australian Research Council.

M. de Berg and U. Meyer (Eds.): ESA 2010, Part I, LNCS 6346, pp. 451–462, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

452 J. Kärkkäinen and S.J. Puglisi

where L is the transformed text. A single scan of L is sufficient to answer all
distinct rank queries in the sequential order, but during the inversion they are
needed in a different order. By tabulating the answers, we obtain a simple, linear
time inversion algorithm, already described in [2]. There are a few variations
but all of them need at least n log n bits of space for the tabulated answers or
something equivalent. We call these large-space algorithms.

Space-efficient data structures for rank queries are widely used with com-
pressed text indexes [16], but the query needed there is of a more general form:

rank(c, j) ≡
∣∣{i | i < j and L[i] = c}

∣∣ .

We call this the general rank query as opposed to the special rank query needed in
inverse BWT algorithms. Obviously, any data structure for general rank queries
can be used for special rank queries, so using the techniques from compressed
text indexes, we obtain space-efficient algorithms for inverse BWT. Many of
these algorithms need at most n log σ + o(n log σ) bits of space, where σ is the
size of the alphabet. This is only slightly more than needed for the text itself —
and sometimes even less by way of compression — but this comes at a significant
cost in query time, especially in practice. We call these small-space algorithms.

The focus of this paper is on medium-space algorithms that are between large-
space and small-space algorithms with respect to both time and space complex-
ity. The key characteristic of medium-space algorithms is the tabulation of partial
answers to all special rank queries.

Related work. Seward [19] describes several large-space BWT inversion algo-
rithms, among them the original algorithm from [2], and compares them exper-
imentally. One of the algorithms, mergedTL, is the fastest known algorithm in
practice. Seward also has two algorithms in the small-space category, but they
are not competitive either in theory or in practice.

The only previous medium-space algorithm we are aware of is by Lauther
and Lukovszki [13]. They also propose two small-space algorithms and provide
experimental results for two of their algorithms. They identify the central role
of the special rank query but not its relation to the general rank query.

Ferragina, Gagie and Manzini [3] have recently described an external memory
algorithm for the inversion. It is, however, rather complicated and unlikely to be
competitive except when external memory algorithms are the only option.

There is a large body of research on space-efficient data structures for (gen-
eral) rank queries in the area of compressed text indexes and succinct data
structures. The theoretically best results on BWT inversion achievable using
those techniques are reported at the bottom of Table 1.

Our contribution. We introduce three new medium-space algorithms for BWT
inversion, offering improved space–time tradeoffs, including the most space-
efficient linear-time algorithm for large alphabets. The time and space com-
plexities are shown in Table 1. The table also shows our improved analysis of
the only previous medium-space algorithm in [13]. Experimental results show
that the favorable tradeoff properties extend to practice too.

Medium-Space Algorithms for Inverse BWT 453

Table 1. Time and space complexities of BWT inversion algorithms. The sections
correspond to large-, medium- and small-space algorithms. The space complexities
exclude the space for input, output and O(σ log n)-bit data structures.

space (bits/symbol) time per symbol comment

�log n	 + �log σ	 O(1) mergeTL in [19]
�log n	 O(log σ) indexF in [19]

log �log n	 + log σ + �log σ	 O(1) [13]
1 + log b + �log σ	 O(log(n/b)

−H0 + bσ/n)
this paper
�log n	 ≤ b ≤ n/σ

2 + log
(
�log n	 + 3�log σ	

)
+ log σ + 2 log log n

log n

O(1) this paper

1 + log b + log σ O(log(n/b) − log σ) this paper
2(1 + �log n) ≤ b ≤ n/σ

�log σ	 + (σ log n)/b O(b) [13]

�log σ	 + σ
b1

(
log b1 + log n

b2

)
O(b1 + b2) [13]

Hk + O
(

log σ log log n
log n

+ σk+1 log n
n

)
O(1 + log σ

log log n
) [5,14]

log σ + O(log σ
log log σ

) O(log log σ) [6]

Perhaps of independent interest is the identification of the special rank query
as an operation of interest, separate from the general rank query. The separate
nature is illustrated by the fact that extending the techniques used by the large-
and medium-space algorithms to general rank queries would blow up the space
by factor σ, which is usually too much. We note that, besides inverse BWT, the
locate and display procedures over BWT-based compressed indexes (see [16])
perform repeated special rank queries.

2 Preliminaries

Let S = S[0..n] = S[0]S[1] . . . S[n] be a string of n + 1 symbols or characters.
The first n characters of S are drawn from an ordered alphabet Σ, and the
final character S[n] is a special “end of string” symbol, $, distinct from and
lexicographically smaller than all the other symbols. We assume that the symbols
in Σ are encoded with the integers {0, 1, .., σ − 1} in an order preserving way.

For any i ∈ 0..n, the string S[i..n]S[0..i− 1] is a rotation of S. Let M be the
(n + 1) × (n + 1) matrix whose rows are all the rotations of S in lexicographic
order. Let F be the first and L the last column of M, both taken to be strings
of length n + 1. The string L is the Burrows–Wheeler transform of S. An
example is given in Fig. 1. Note that F and L are permutations of S.

For a string X , integers j, r ∈ {0, . . . , |X | − 1} and a symbol c, define the
following functions:

accessX(j) ≡ X [j]
rankX(j) ≡

∣∣{i | i < j and X [i] = X [j]}
∣∣

454 J. Kärkkäinen and S.J. Puglisi

F L
$ B A N A N A
A $ B A N A N
A N A $ B A N
A N A N A $ B
B A N A N A $
N A $ B A N A
N A N A $ B A

0
0
1
0
0
1
2

L rankLF
$
A
A
A
B
N
N

A
N
N
B
$
A
A

Fig. 1. BWT matrix M and inverse BWT permutation for text S = BANANA$

Inverse BWT in forward order
1: construct F by sorting L
2: j ← selectL($, 0)
3: for i ← 0 to n do
4: S[i] ← c ← accessF (j)
5: r ← rankF (j)
6: j ← selectL(c, r)

Inverse BWT in reverse order
1: construct F by sorting L
2: j ← selectL($, 0)
3: for i ← n downto 0 do
4: S[i] ← c ← accessL(j)
5: r ← rankL(j)
6: j ← selectF (c, r)

Fig. 2. Two abstract algorithms for the inverse Burrows–Wheeler transform

selectX(c, r) ≡
{

j if X [j] = c and rankX(j) = r
undefined if there is no such j

The notation accessX(j) is used instead of X [j] when X might be stored in a
form that does not support trivial character access.

Two abstract inversion algorithms are given in Fig. 2. The first (left-hand
side) algorithm constructs S from the beginning to the end and the second in
the reverse order. Both algorithms follow the same unicyclic permutation but in
different directions. An example of the permutation is shown in Fig. 1. To obtain
concrete algorithms, we need to define the implementation of the operations
access, rank, and select.

3 Basic Large-Space Algorithms

Of the two abstract algorithms in Fig. 2, we will focus on the reverse order
algorithm, as its operations are easier to implement and faster in practice. All
the algorithms mentioned in this paper are based on it.

Another feature shared by all the algorithms is the implementation of selectF

based on the special nature of F . The string F contains the characters of S
in sorted order and all copies of the same symbol are grouped together. For
any symbol c, let C[c] be the position of the first occurrence of c in F . We can
implement selectF as

selectF (c, r) = C[c] + r .

The array C can be easily computed by scanning L.

Medium-Space Algorithms for Inverse BWT 455

The difference between various algorithms is the implementation of accessL

and rankL. We will describe next the algorithm from the seminal paper by
Burrows and Wheeler [2]. They store L explicitly, making accessL trivial. The
values rankL(j) are stored in a table R[0..n], which can be computed by scanning
L while keeping account of the number of occurrences of each symbol.

The algorithm runs in linear time and needs n(�log n� + �log σ�) + (σ +
O(1))�log n� bits of space. It would be very fast in practice, but for cache misses.
In the main loop, the sequence of accesses to L and R is essentially random with
a high likelihood of a cache miss for each access. Seward [19] describes an opti-
mized version that replaces the arrays L and R with a single array LR that stores
both values. This can reduce the number of cache misses to a half, leading to a
significant improvement in speed. This algorithm, which we call Algorithm LR
(mergeTL in [19]), is the fastest known algorithm for BWT inversion. It is also
the starting point for our medium-space algorithms.

4 Basic Medium-Space Algorithms

In this section we describe two simple medium-space algorithms. One of them is
by Lauther and Lukovszki [13] and one is new.

Both algorithms modify Algorithm LR by storing only partial information
about ranks in R (i.e., in the R-fields of the array LR). Every position j ∈
{0, . . . , n} is associated with a nearby reference point ref(j) ∈ {0, . . . , n}, and

R[j] = rankL(j) − rankL(L[j], ref(j)) .

Now we can compute a rank query as rankL(j) = rankL(L[j], ref(j))+R[j]. The
difference between the two algorithms is the choice of reference points and the
computation of rankL(L[j], ref(j)).

4.1 Algorithm LR-B

The first algorithm is by Lauther and Lukovszki [13]. We provide an improved
analysis.

Divide R into �(n + 1)/b� blocks of size b. Every position in a block is asso-
ciated with the same reference point, which is the center of the block. In other
words, the reference points are the positions b/2, b+ b/2, 2b+ b/2, As a small
twist to the basic scheme, if j is in the first half of a block, i.e., if j < ref(j), we
set

R[j] = rankL(L[j], ref(j)) − rankL(j) − 1 .

Otherwise, i.e., if j ≥ ref(j), we use the basic scheme and set

R[j] = rankL(j) − rankL(L[j], ref(j)) .

Now all the values in R are in the range [0, b/2 − 1] and can be stored using
�log b�−1 bits. The ranks at the reference points are stored in a two-dimensional
array Rref, i.e., for all c ∈ Σ and j ∈ {0, . . . , �(n + 1)/b� − 1},

Rref[c, j] = rankL(c, b/2 + jb) .

456 J. Kärkkäinen and S.J. Puglisi

We need at most σ(n/b + 1)�logn� bits for the array Rref.
The following theorem summarizes the properties of the algorithm. All proofs

are omitted here due to lack of space and are provided in the full paper.

Theorem 1. Setting b = 2k for k = �log(σ�log n�)�, Algorithm LR-B computes
the inverse Burrows-Wheeler transform in O(n) time using at most

n(log �log n� + log σ + �log σ�) + O(σ�log n�)

bits of space.

4.2 Algorithm LR-I

In our new algorithm, reference points are separate for each symbol of the al-
phabet. For a symbol c, the reference points are at every bth occurrence of c, i.e.,
at positions selectL(c, 0), selectL(c, b), selectL(c, 2b), A position j is assigned
to the closest preceding reference point for the symbol L[j], i.e.,

ref(j) = selectL(L[j], b�rankL(j)/b�) .

The array R is as in the basic scheme, i.e., R[j] = rankL(j)− rankL(L[j], ref(j)),
and we need �log b� bits for each entry. The reference points for a symbol c
are stored in an array Ic, i.e., Ic[i] = selectL(c, ib). The arrays Ic, c ∈ Σ, can
be seen as sparse inverted lists for the symbols. The total space for them is
n�log n�/b+O(σ log n) bits. To compute rankL(j), we binary search IL[j] to find
i such that IL[j][i] ≤ j < IL[j][i + 1], and then rankL(j) = ib + R[j].

Unlike LR-B, Algorithm LR-I offers a space-time tradeoff as shown by the
following result.

Theorem 2. Let b = 2k for an integral k. If k = �log �log n��, the space re-
quirement of Algorithm LR-I is at most

n(1 + log �log n� + �log σ�) + O(σ log n) .

For �log �log n�� < k ≤ log(n/σ), the space requirement is at most

n(1 + k + �log σ�) + O(σ log n) .

The time complexity is O(n(log(n/b)−H0)+ bσ), where H0 ≤ log σ is the zeroth
order empirical entropy of S (see Section 5).

5 Variable-Length Encoding

In this section, we show how to improve the algorithms of the previous section
using variable-length encoding.

Medium-Space Algorithms for Inverse BWT 457

For a string X , let ΣX be the set of symbols occurring in X , let |Xc| be the
number of occurrences of a symbol c in X , and let fX(c) = |Xc|/|X | be the
frequency of c. The zeroth order empirical entropy of X is

H0(X) =
∑

c∈ΣX

fX(c) log(1/fX(c)) .

A canonical prefix code [18] for X is characterized by a non-decreasing se-
quence 	 = (1, . . . , 	|ΣX|) of positive, integral code lengths satisfying Kraft’s
inequality:

∑|ΣX |
i=1 2−�i ≤ 1. The code lengths are assigned to symbols in de-

creasing order of symbol frequency; let 	(c) denote the code length of a symbol
c. There exists an assignment of binary code words code(c) of 	(c) bits to each
symbol c so that, for every c, c′ ∈ ΣX with fX(c) < fX(c′),

– code(c) is not a prefix of code(c′) (the code is prefix-free), and
– code(c) is lexicographically smaller than code(c′) (the code is canonical).

Let 	(X) be the encoded length of X for a code 	:

	(X) =
m−1∑
i=0

	(X [i]) = m
∑

c∈ΣX

fX(c)	(c) .

For any prefix code, 	(X) ≥ mH0(X). The equality is achieved with the frac-
tional lengths 	(c) = log(1/fX(c)). The Huffman code [9] is known to be the
optimal code with integral lengths. However, for our purposes, we need a code
where the code length of every symbol is close to the fractional optimum, which
the Huffman code does not guarantee [12]. Furthermore, with one of our algo-
rithms (VRL-I, Section 5.2), we have a strict upper limit h on the code lengths.
We will be using the length-limited rounded code 	̂h

X with

	̂h
X(c) = �h − log(fX(c)(2h − σX) + 1)� ,

for any integer h ≥ �log σX�. When there is no upper limit, the code is 	̂X = 	̂∞X
with 	̂X(c) = �log(1/fX(c))�. The properties of the code are established in the
following lemma.

Lemma 1. The code lengths 	̂h
X define a valid prefix code for X with 	̂(c) ≤ h

for all c ∈ Σ. Furthermore, for all c ∈ Σ,

	̂h
X(c) < log(1/fX(c)) + log(2h/(2h − σX)) + 1 ,

and if log(1/fX(c)) ≥ h, then 	̂h
X(c) = h.

5.1 Algorithm VLR-B

As with LR-B, we divide the array LR into blocks of size b. The reference point for
all positions in a block is now the beginning of the block (instead of the center).

458 J. Kärkkäinen and S.J. Puglisi

Let B be a block. We encode the L-fields in B with the unlimited rounded code
	̂B, and the R-fields using �log |Bc|� bits for a symbol c. The combined length
of the two fields for a symbol c is

�log(1/fB(c))� + �log |Bc|� = �log(b/|Bc|)� + �log |Bc|� ≤ �log b� + 1 .

Thus we need n(�log b� + 1) bits for the whole LR array.
For each block B, we have a table V with an entry for each symbol c in ΣB

containing three fields

– The e-field has �log b�+ 1 bits with code(c) in the beginning and the rest of
the field filled with zeros.

– The s-field contains the original code for c using �log σ� bits.
– The r-field is the rank of the symbol c at the reference point, i.e., at the

beginning of the block in �log n� bits.

The table V is ordered by the e-field. Given LR[j], we find the entry in V [i] such
that V [i].e ≤ LR[j] < V [i + 1].e. We obtain the symbol L[j] from V [i].s and its
rank at the reference point from V [i].r. The rank relative to the reference point
is LR[j] − V [i].e. Thus rankL(j) = V [i].r + (LR[j] − V [i].e).

To speed up the search in V , there is another table U [0..2q − 1], 0 ≤ q ≤
�log b�+ 1. The entries of U represent the bitstrings of length q. The entry for a
bitstring Q contains a pointer to the first position in V with a code beginning
with Q. If a code is shorter than q, say 	̂B(c) < q, all bitstrings beginning with
code(c) point to V [c]. We need �log σ� bits for each pointer.

Using U we can short-cut to a good starting point for the search in V . The
search itself can be done linearly, and we still obtain a linear-time algorithm as
shown by the following theorem.

Theorem 3. Setting q=�log σ� and b = 2k for k = �log(σ(�log n� + 3�logσ�))�,
Algorithm VLR-B computes the inverse Burrows-Wheeler transform in O(n) time
using at most

n

(
2 + log(σ) + log

(
�log n� + 3�log σ�

)
+

2 log log n

log n

)
+ O(σ log n)

bits of space.

5.2 Algorithm VLR-I

Our final algorithm is a modification of Algorithm LR-I to use variable-length
fields in the LR array. Each entry in the LR array is h > log σ bits. The L-
fields use the length-limited rounded code 	̂h

L, leaving h − 	̂h
L(c) bits for the

R field. Thus the reference points are placed at every b(c)th occurrence for
b(c) = 2h−�̂h

L(c). The decoding of the LR entries is done as in Algorithm VLR-B.
Otherwise the algorithm works as LR-I. The properties are summarized in the
following theorem.

Medium-Space Algorithms for Inverse BWT 459

Theorem 4. Let hmin = �1 + log �1 + log n� + log σ�. When h = hmin, the
space requirement of Algorithm VLR-I is at most

n(2 + log �1 + log n� + log σ) + O(σ log n)

bits. For h > hmin, the space requirement is at most

n(h + 1) + O(σ log n)

bits. The time complexity is O(n(max(1, log n − h)).

6 Experimental Results

For testing we used the files listed in Table 21. All tests were conducted on a 3.0
GHz Intel Xeon CPU with 4Gb main memory and 1024K L2 Cache. The machine
had no other significant CPU tasks running. The operating system was Fedora
Linux running kernel 2.6.9. The compiler was g++ (gcc version 4.1.1) executed
with the -O3 option. The times given are the minima of three runs and were
recorded with the standard C getrusage function. The memory requirements
are sums of the sizes of all data structures as reported by the sizeof function.

Table 2. Data sets used for empirical tests. For each type of data (dna, xml, english,
protein) a 100Mb file was used.

Data set name σ H0 mean LCP

xml 97 5.23 44
dna 16 1.98 31
english 239 4.53 2,221
protein 27 4.20 166

Table 3. Algorithms and their parameter settings. Underlined parameter values indi-
cate that the implementation is optimized for the byte or word alignment provided by
those parameters values.

Alg. Description

LR Algorithm LR (Sect. 3) = mergedTL in [19] with 32-bit integers
IF indexF in [19] with 32-bit integers

LR-B k ∈ 5 + �log σ�, . . . , 17, 25
VLR-B k ∈ 10, . . . , 24
LR-I k + �log σ	 ∈ 14, 16, 24, 32
VLR-I h ∈ 12, 14, 16, 24, 32

LL The simple small-space algorithm in [13]
Blocksizes are powers of two in [max(32, σ) . . . min(2048, 40σ)]

WT A simple algorithm using wavelet tree for rank queries (see text)

1 Available from http://pizzachili.dcc.uchile.cl/

http://pizzachili.dcc.uchile.cl/

460 J. Kärkkäinen and S.J. Puglisi

0 2 4 6

Memory (bytes/symbol)

0.0

0.5

1.0

T
im

e
(s

ec
on

ds
/m

eg
ab

yt
e)

XML 100MB

0 2 4 6

Memory (bytes/symbol)

0.0

0.2

0.4

0.6

T
im

e
(s

ec
on

ds
/m

eg
ab

yt
e)

DNA 100MB
LR

IF

LR-B

VLR-B

LL

LR-I

VLR-I

WT/2

0 2 4 6

Memory (bytes/symbol)

0.0

0.5

1.0

T
im

e
(s

ec
on

ds
/m

eg
ab

yt
e)

ENGLISH 100MB

0 2 4 6

Memory (bytes/symbol)

0.0

0.2

0.4

0.6

0.8

T
im

e
(s

ec
on

ds
/m

eg
ab

yt
e)

PROTEIN 100MB

Fig. 3. Time-memory tradeoff for various inversion algorithms. For clarity, the time
shown for WT is half of the actual time, which would be far outside the graph.

The focus of the experiments is on the four algorithms described in Sec-
tions 4 and 5, but for comparison we also implemented two large-space algo-
rithms by Seward [19] and two simple small-space algorithms, one by Lauther
and Lukovszki [13] and one based on the wavelet tree [7], which is a commonly
used rank data structure with compressed text indexes [16]. We optimized the
wavelet tree implementation for special rank queries and used the method of Vi-
gna [21] (the fastest we know) for bitvector rank queries. For canonical prefix
coding, we use the techniques of Turpin and Moffat [20]2 instead of the technique

2 Originally downloaded from http://ww2.cs.mu.oz.au/~alistair/mr_coder/

http://ww2.cs.mu.oz.au/~alistair/mr_coder/

Medium-Space Algorithms for Inverse BWT 461

of Sect. 5.1. In all medium- and small-space algorithms, we use σ = |ΣS | (see
Table 2), which affects arrays of size σ, the height �log σ� of the wavelet tree,
and the size �log σ� of the L-field in the LR array for Algorithms LR-B and LR-I.
The algorithms and their parameter settings are summarized in Table 3.

The time and space requirements during BWT inversion are shown in Fig. 3.
The times do not include reading the input or writing the output. The input
and output are held in memory during the computation but are excluded from
space requirements when the algorithm accesses them only sequentially.

All the medium-space algorithms display a fairly smooth space-time tradeoff
curve, even the constant-time algorithms with no theoretical tradeoff. This is
explained by cache effects. As the LR array (which always dominates the space)
gets bigger, the other data structures get smaller and start to fit in the cache.

At the fast end of the space-time tradeoff, LR-B matches the speed of the
fastest known algorithm, LR, in less memory. Note that this parameter setting
(k = 25) was not implemented or even suggested by Lauther and Lukovszki [13].
The middle area is dominated by the algorithms VLR-B and VLR-I using variable-
length encoding. They reduce the space by a factor of 2–3 compared with LR
without slowing down by more than a factor of two. The results for the small
end are mixed, and anyway should be considered incomplete, since there are
many possibilities for improving the small-space algorithms.

7 Concluding Remarks

We have introduced three new algorithms for the BWT inversion and demon-
strated, theoretically and experimentally, that they improve the state of the
art, particularly in the middle area of the space-time tradeoff spectrum. We are
continuing our research by focusing on the extremes of the spectrum.

At the small end, the two-level version of the small-space algorithm by Lau-
ther and Lukovszki [13], and advanced techniques from compressed text indexes
such as Huffman-shaped wavelet trees [8] and implicit compression boosting [14]
appear promising approaches.

At the large end, we are experimenting with an algorithm that reduces cache
misses by taking advantage of repetitions in the text. Another interesting avenue
for future work is exploiting properties of modern processors such as parallelism
and out-of-order execution [10].

References

1. Adjeroh, D., Bell, T., Mukherjee, A.: The Burrows-Wheeler Transform: Data Com-
pression, Suffix Arrays, and Pattern Matching. Springer, Heidelberg (2008)

2. Burrows, M., Wheeler, D.J.: A block sorting lossless data compression algorithm.
Technical Report 124, Digital Equipment Corporation, Palo Alto, California (1994)

3. Ferragina, P., Gagie, T., Manzini, G.: Lightweight data indexing and compression
in external memory. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp.
697–710. Springer, Heidelberg (2010)

462 J. Kärkkäinen and S.J. Puglisi

4. Ferragina, P., Manzini, G.: On compressing the textual web. In: Proc. 3rd ACM
International Conference on Web Search and Data Mining, pp. 391–400. ACM,
New York (2010)

5. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed representations
of sequences and full-text indexes. ACM Trans. Algorithms 3, Article 20 (2007)

6. Golynski, A., Munro, J.I., Rao, S.S.: Rank/select operations on large alphabets: a
tool for text indexing. In: Proc. 17th ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 368–373. ACM, New York (2006)

7. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes. In:
Proc. 14th ACM-SIAM Symposium on Discrete Algorithms, pp. 841–850. SIAM,
Philadelphia (2003)

8. Grossi, R., Gupta, A., Vitter, J.S.: When indexing equals compression: experi-
ments with compressing suffix arrays and applications. In: Proc. 15th ACM-SIAM
Symposium on Discrete Algorithms, pp. 636–645. SIAM, Philadelphia (2004)

9. Huffman, D.A.: A method for the construction of minimum-redundancy codes.
Proceedings of the I.R.E. 40, 1098–1101 (1952)

10. Kärkkäinen, J., Rantala, T.: Engineering radix sort for strings. In: Amir, A.,
Turpin, A., Moffat, A. (eds.) SPIRE 2008. LNCS, vol. 5280, pp. 3–14. Springer,
Heidelberg (2008)

11. Kärkkäinen, J.: Fast BWT in small space by blockwise suffix sorting. Theoretical
Computer Science 387, 249–257 (2007)

12. Katona, G.O.H., Nemetz, T.O.H.: Huffman codes and self-information. IEEE
Transactions on Information Theory IT-22, 337–340 (1976)

13. Lauther, U., Lukovszki, T.: Space efficient algorithms for the Burrows-Wheeler
backtransformation. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS,
vol. 3669, pp. 293–304. Springer, Heidelberg (2005)

14. Mäkinen, V., Navarro, G.: Implicit compression boosting with applications to self-
indexing. In: Ziviani, N., Baeza-Yates, R. (eds.) SPIRE 2007. LNCS, vol. 4726, pp.
229–241. Springer, Heidelberg (2007)

15. Manzini, G.: An analysis of the Burrows-Wheeler transform. Journal of the
ACM 48, 407–430 (2001)

16. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Computing Sur-
veys 39, Article 2 (2007)

17. Puglisi, S.J., Smyth, W.F., Turpin, A.: A taxonomy of suffix array construction
algorithms. ACM Computing Surveys 39, 1–31 (2007)

18. Schwartz, E.S., Kallick, B.: Generating a canonical prefix encoding. Communica-
tions of the ACM 7, 166–169 (1964)

19. Seward, J.: Space-time tradeoffs in the inverse B-W transform. In: Storer, J., Cohn,
M. (eds.) Proc. IEEE Data Compression Conference, pp. 439–448. IEEE Computer
Society, Los Alamitos (2001)

20. Turpin, A., Moffat, A.: Housekeeping for prefix coding. IEEE Transactions on
Communications 48, 622–628 (2000)

21. Vigna, S.: Broadword implementation of rank/select queries. In: McGeoch, C.C.
(ed.) WEA 2008. LNCS, vol. 5038, pp. 154–168. Springer, Heidelberg (2008)

Median Trajectories�

Kevin Buchin1, Maike Buchin2, Marc van Kreveld2,
Maarten Löffler3, Rodrigo I. Silveira4, Carola Wenk5, and Lionov Wiratma2

1 Dept. of Mathematics and Computer Science, TU Eindhoven
k.a.buchin@tue.nl

2 Dept. of Information and Computing Sciences, Utrecht University
{maike,marc}@cs.uu.nl, lionov@gmail.com

3 Dept. of Computer Science, University of California, Irvine
mloffler@uci.edu

4 Dept. de Matemàtica Aplicada II, Universitat Politècnica de Catalunya
rodrigo.silveira@upc.edu

5 Dept. of Computer Science, University of Texas at San Antonio
carola@cs.utsa.edu

Abstract. We investigate the concept of a median among a set of trajec-
tories. We establish criteria that a “median trajectory” should meet, and
present two different methods to construct a median for a set of input
trajectories. The first method is very simple, while the second method is
more complicated and uses homotopy with respect to sufficiently large
faces in the arrangement formed by the trajectories. We give algorithms
for both methods, analyze the worst-case running time, and show that
under certain assumptions both methods can be implemented efficiently.
We empirically compare the output of both methods on randomly gen-
erated trajectories, and analyze whether the two methods yield medians
that are according to our intuition. Our results suggest that the second
method, using homotopy, performs considerably better.

1 Introduction

A relatively new type of geometric data that is being collected and analyzed
more and more often is the trajectory: a path through space and time that a
certain object traverses. This is due to technological advances like GPS, RFID
tags, and mobile phones, and has caused an increase in demand for analysis
possibilities. New analysis methods for trajectory data have been developed in
the last few years, but a number of basic concepts are still lacking a satisfactory
study. One of these concepts is the median trajectory for a given collection of
� This research has been supported by the Netherlands Organisation for Scientific Re-

search (NWO) under BRICKS/FOCUS grant number 642.065.503, under the project
GOGO, and under project no. 639.022.707. M. B. is supported by the German Re-
search Foundation (DFG) under grant number BU 2419/1-1. M. L. is further sup-
ported by the U.S. Office of Naval Research under grant N00014-08-1-1015. R. I. S.
is also supported by the Netherlands Organisation for Scientific Research (NWO).
C. W. is supported by the National Science Foundation grant NSF CCF-0643597.

M. de Berg and U. Meyer (Eds.): ESA 2010, Part I, LNCS 6346, pp. 463–474, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

464 K. Buchin et al.

trajectories. Intuitively, a median trajectory is a trajectory that uses pieces of
the trajectories of the collection and is somehow in the middle. However, it is
not clear how this concept should be defined. In this paper we establish criteria
that we believe a median trajectory should meet, and we develop two median
definitions that meet these criteria. Furthermore, we give algorithms to compute
the median trajectory according to these definitions, and analyze experimentally
whether our definitions give useful output.

Trajectories. Trajectories are a type of geographic data that have a temporal
and a spatial component. Trajectories describe the locations over time of an
entity that can move. The entity can be a person, animal, vehicle, hurricane
(eye of), shopping basket (with an RFID tag), or any other moving object. We
assume that the movement is continuous, but is measured at a discrete set of
times.

Formally, a trajectory is the time-stamped path taken by a moving object, and
is typically represented by a sequence of tuples of points and time stamps, that
are points in space-time, where space is two- or three-dimensional. A collection of
m trajectories τ1, . . . , τm therefore gives rise to an input size of Θ(nm). In some
applications, the time stamps of the m trajectories are exactly the same, while
in other applications they are different. In general, trajectories can be collected
with different or irregular sampling rates, at different times, and data can be
missing. In between time stamps, we have no knowledge of the movement of the
entity. The standard assumption is that the moving object moves with constant
velocity from a time-stamped point to the next time-stamped point. Therefore,
the path of a trajectory is a polygonal curve that can self-intersect, and can have
repeated vertices if the entity does not move. Often, the number of vertices of a
trajectory is much larger than the number of trajectories, that is, n � m.

Trajectory analysis. Analysis methods for trajectories have been developed in
GIScience and in data mining. Sets of trajectories can be analyzed in a variety of
ways. They can be clustered into a collection of subsets that have a high within-
subset similarity and a low across-subset similarity (e.g. [11,18] and many more).
They can be classified if a clustering is given [19]. Movement patterns on them
can be computed [5,12,17]. Movement patterns that have been defined and for
which algorithms have been suggested are flocking, convoys, herds, leadership,
commuting, encounter, and various others. These intuitively represent similar
movement in a group (same location), similar movement over a time span (same
heading), or movement to the same position (same destination).

Several analysis tasks require a definition of (and algorithms for) similarity
of trajectories. For instance, a simple similarity measure for trajectories is the
average distance at corresponding times. With a similarity measure, or its inverse,
a distance measure, clustering methods can easily be given. Single linkage and
complete linkage clustering need a similarity measure only, and that defines
the clustering. On the other hand, k-means and k-medoids clustering requires a
definition of the mean and the median, respectively, regardless of whether the
data are numbers or trajectories.

Median Trajectories 465

Mean and median trajectories. The intuition behind a mean trajectory is
that it averages locations, one of each trajectory, like a center of gravity. In
contrast, the intuition behind a median trajectory is that it always is central
with respect to the number of given trajectories. Imagine a collection of GPS
tracks from hikes by different people on different days. The hikers may have
followed the same route globally, but there may have been options like going
left around a lake or right, or taking a detour to a viewpoint. From their tracks,
we want to extract a good global route. Notice that if in such a data set, seven
hikers went left around a lake and three went right, then a mean trajectory
would actually go through the lake, whereas a median trajectory would go with
the group of seven. Similarly, with a side path to a viewpoint and back, if the
majority goes to the viewpoint, then a median trajectory should do so as well. A
mean trajectory might go partially to the viewpoint, which does not make sense
in this context.

Overview of results. In Section 2 we discuss the idea of median trajectories.
No definition has been suggested yet, so we investigate properties that a suit-
able median should have. We first propose a simple definition (simple median)
that directly follows the definition of a level in an arrangement of lines. We
also propose a more refined definition (homotopic median) that uses geometric
and topological concepts, and may be better suited to most applications that
involve trajectories. Then we discuss the maximum combinatorial complexity of
a median according to these definitions.

In Section 3 we present algorithms that compute median trajectories according
to the two definitions. We can compute the simple median in O((nm)2) time,
and the homotopic median in O((nm)2+ε) time for any ε > 0, in the worst case.
Here, m is the number of given trajectories and n is the maximum complexity
of any trajectory. We improve our algorithms for practical situations. We can
compute the simple median in O((nm + k)α(nm) log(nm)) time, where α is the
inverse Ackermann function and k is the number of vertices of the median, i.e.,
the output complexity. Under certain assumptions related to the sampling of the
trajectory, we can compute the homotopic median in O(nm log2(nm) + (nm +
k)α(nm) log(nm)) time. We note that k = O((nm)2) in the worst case, as we
show in Section 2.2. One would expect that typically, k = Ω(n) and k = O(nm).

In Section 4 we give results of tests that we obtain from an implementation.
They mainly serve to analyze the quality of the median trajectories. In Section 5
we discuss our results and suggest directions of further research.

2 On the Definition of a Median Trajectory

The mean and the median are notions that define a “middle” of a set of data of
a certain type. For sets of numbers, their definitions are clear, but for points in
the plane, for instance, there are already many different possibilities. Existing
notions of middle include the center of gravity, the center of the smallest enclosing
disk (also known as Gaussian center or Steiner center [9,10]), the point that

466 K. Buchin et al.

minimizes the sum of distances to the other points (the Weber point [8]), or the
center point [4]. The one-dimensional equivalents of these notions correspond to
the mean or the median. Observe that for some point sets, such as a set of points
in convex position, no point in the set would intuitively be the mean or median.
For a set of m real-valued, continuous functions the median of the functions
corresponds (assuming m is odd) to the �m/2�-level in the arrangement of the
graphs of the functions. Figure 1 (left) shows an example for lines.

s t

Fig. 1. Left, the median level in an arrangement of lines. Right, a median trajectory
from s to t that always switches trajectory at every intersection.

Let us consider median trajectories. Trajectories include a temporal compo-
nent as well as a spatial component, but it is not clear whether a median can take
the temporal component into account in a useful way. We discuss some examples.
Suppose the trajectories came from a group of animals that were traveling in
a herd. Then we can use the temporal component because we know that the
animals were together at any point in time. Next, suppose that the animals were
traveling solitary, according to a similar route. Then they traveled on different
days or months, and we cannot use the temporal component. Even if the animals
had the same starting location of the route, we cannot simply align the starting
times of the travel, because one animal may have been held up due to a predator,
which upsets the time correspondence that we assumed at the start. The same is
true for trajectories of cars with the same origin and destination: an initial time
correspondence may easily be upset due to traffic lights or traffic conditions.

Thus, in many situations we want a median trajectory that does not take the
temporal component into account. Similar motivation was given for trajectory
similarity measures: many of these are partly shape-based, like dynamic time
warping or largest common subsequence, or fully shape-based, like Hausdorff
distance or Fréchet distance. Hence, we will concentrate on medians of trajec-
tories based on the path of the trajectory. The median that we will define and
compute will therefore be the path of a median trajectory. With slight abuse
of terminology, we will just write “median trajectory” for brevity. We note that
with a temporal component, some research on modeling motion and kinetic data
structures is related to the median (or mean) trajectory (e.g. [1,2,3]).

2.1 Requirements for a Median Trajectory

Let a set T = {τ1, . . . , τm} of m trajectories be given, each containing n vertices.
We assume for convenience that all trajectories start at the same point s and
end at the same point t; this is a strong and unrealistic assumption but we

Median Trajectories 467

are interested in a clean definition of the median where behavior at the ends
is not considered important. We also assume that no trajectory passes through
s or t a second time and that s and t are incident to the unbounded face of
the arrangement of curves corresponding to the trajectories. Note that we also
assume a direction on the trajectories, namely from s to t, and for convenience
we assume that m is odd. Finally, we assume that the curves do not touch or
coincide with each other or themselves at any point, unless they cross, and no
three trajectories pass through a common point. Several of these assumptions
can be removed, but they make the description easier.

We list several required properties of the median trajectory:

1. The median trajectory is a polygonal curve from s to t.
2. Any point on the median trajectory lies on some trajectory of the input.
3. For any point p on the median trajectory, the minimum number of distinct

trajectories that p must cross to reach the unbounded face (including the
one(s) on which p lies) is (m + 1)/2.

Besides these requirements, a number of desirable properties of the median tra-
jectory can be given: Its length, total angular change, and number of vertices
should be about the same as in the input trajectories. Finally, the median trajec-
tory should be robust with respect to outliers: if ten trajectories follow the same
route but one or two are completely different, the presence of these two outliers
should not influence the median trajectory much. In particular, in the presence
of outlier trajectories, the third property should be restated with m the number
of non-outlying trajectories instead of the total number of trajectories.

Let A be the arrangement formed by the (paths of the) trajectories in T .
It is composed of O(nm) line segments and therefore it may have complexity
up to Θ((nm)2). The median trajectory is a path that follows edges of this
arrangement. In the immediate neighborhood of s, it is clear how the median
trajectory leaves s. Since we assume that s is on the outer face, we can order
the m edges adjacent to s with the first and last edge adjacent to the outer face.
Then the edge the median starts on is simply the (m/2)nd edge in the order.

Simple definition. Inspired by the median level in an arrangement of lines,
we can give a simple definition of the median: It is the trajectory obtained
after leaving s in the only possible way, and then switching the trajectory at
every intersection point, following the next trajectory in the forward direction
(see Figure 1 (right)). Note that if the trajectories are x-monotone, then this
definition gives the same result as the �m/2�-level or median function given
before. We refer to a median by this definition as a simple median. The proofs
of the following and other lemmas are omitted due to space constraints.

Lemma 1. The simple median satisfies the three required properties for a median.

Although this definition often gives desired results, it can behave badly when
trajectories are self-intersecting, see Figure 2 (left). All three trajectories make
the loop, but the median does not. Similarly, when the trajectories are not self-
intersecting, the majority route can also be missed. In Figure 2 (middle), two

468 K. Buchin et al.

τ1

τ2

τ3

p1

p2

s t

s

ts
t

Fig. 2. Left, a loop in all trajectories makes the outcome (bold) of always switching tra-
jectory undesirable. Middle, similar undesirable outcome can occur when no trajectory
has self-intersections. Right, homotopy with respect to two poles.

trajectories go up and make a detour, while one trajectory stays low. The simple
median in this situation also stays low.

Homotopy definition. To deal with this situation better, we identify parts of
the plane with respect to which the median should behave the same as most of
the input trajectories. In both examples of Figure 2, we have a region in the plane
that is a bounded face of the arrangement A that is relatively large. We propose
placing poles in such large faces and require that the median goes in the same
way around the poles as the input trajectories, using the concept of homotopy.

We make this more precise. Let T = {τ1, . . . , τm} be the input trajectories
and let P = {p1, . . . , ph} be a set of h poles which are assumed to not lie on any
trajectory. Since the trajectories all go from s to t, we can use deformability of
the trajectories into each other in the punctured plane [15]. Two trajectories τi

and τj are homotopic if one can be deformed continuously into the other without
passing over any pole, and while keeping s and t fixed. In Figure 2 (right), τ1
and τ2 are homotopic to each other, while τ3 is not homotopic to τ1 or τ2.

We first discuss how we find the median when all trajectories in T are ho-
motopic with respect to P . We now use a variation of the trajectory switching
approach: follow the median over the correct edge at s. Assume we have followed
the median and we are on an edge of trajectory τi and we encounter an intersec-
tion v with a trajectory τj . If the median so far, concatenated with trajectory
τj from v until t, has the same homotopy type as the input trajectories, then we
switch to τj , otherwise we ignore the intersection and stay on τi. This approach
maintains the invariant that if we would simply stay on the current trajectory
until t, the homotopy type of the median is correct. A median by this definition
is referred to as a homotopic median. In Figure 2 (left) the dotted loop would
be included in the homotopic median.

Lemma 2. The homotopic median satisfies the required properties for a median.

The remaining question is how to find a set of poles P such that all trajectories
in T are homotopic with respect to it. A number of different strategies for this
are conceivable. We choose to use a simple approach that places a pole in a face
of A whenever it is larger than r, i.e., a disk of size r fits in the face, for some
value of r to be determined later, motivated by the fact that large faces are more

Median Trajectories 469

likely to be important. This choice gives no guarantee that the trajectories will be
homotopic though. To solve this we could either increase r or allow some of the
trajectories to have a different homotopy, and instead compute the median for
a subset T ′ ⊂ T , i.e., effectively treating the remaining trajectories as outliers.

2.2 The Complexity of Median Trajectories

Since the arrangement A formed by the m trajectories has complexity O((nm)2),
the median trajectory cannot have more edges than that. In the full version of
the paper we show that m non-self-intersecting trajectories with n edges each
can indeed give rise to a median of complexity Ω((nm)2), using both definitions.
We also note that using the median level lower bound for arrangements of lines,
we immediately obtain an Ω(nm log m) lower bound on the complexity of the
median of x-monotone trajectories.

3 Algorithms to Compute a Median Trajectory

In this section we show that both methods can be implemented efficiently. The
simple median can be computed in O((nm)2) time in the worst case, while the
homotopic median can be computed in O((nm)2 log(nm)) time in the worst case.
In practice, running times will be faster because they depend on complexities of
intermediate results that should be much less than the worst-case situations. In
particular, let A be the complexity of the arrangement formed by the nm edges
of the trajectories. Although A = O((nm)2) and this is tight in the worst case,
for trajectories we typically expect it to be much smaller. Therefore, making
the time bound depend on A instead of (nm)2 is desirable. Similarly, let h be
the number of poles. Then h = O(A) = O((nm)2), but only large enough faces
give poles so h is typically much smaller than A. Finally, the complexity of the
median itself, the output size k, is O(A) = O((nm)2), but typically we expect it
to be smaller. Notice that h or k can be large when the other is small.

3.1 Computing the Simple Median

A simple algorithm to compute the median with the simple definition is via
the construction of the arrangement A. The arrangement can be constructed in
O(nm log(nm) + A) time, where A is the complexity of the arrangement [13].
Then we simply follow the median trajectory through this arrangement, taking
O(1) time at every intersection point or trajectory vertex. Hence, this algorithm
takes O(nm log(nm) + A) = O((nm)2) time.

For an output-sensitive algorithm, we use Har-Peled’s randomized algorithm
for an on-line walk in a planar arrangement [14]. This algorithm has an expected
runtime of O((nm+I)α(nm+I) log(nm)) in an arrangement of nm line segments,
where I is the number of intersections between the walk and the arrangement,
and α denotes the inverse Ackermann function. In our case, I = k is the complex-
ity of the median, because the median switches trajectories at every intersection.
Furthermore, I = O((nm)2) and then α(nm + I) = O(α(nm)).

470 K. Buchin et al.

Theorem 1. The simple median of m trajectories with n edges can be computed
in O((nm)2) time or in O((nm + k)α(nm) log(nm)) expected time, where k is
the size of the output.

3.2 Computing the Homotopic Median

We give an algorithm that computes the homotopic median for a given value
of r. If for the resulting poles not all trajectories are homotopic, we compute the
median trajectory of the largest homotopy class with respect to these poles. The
algorithm consists of three steps.

1. Compute poles, one for each face in which a disk of radius r fits.
2. Compute the homotopy type of each trajectory, and determine the type that

occurs most often. Remove all trajectories that do not have this type.
3. Follow the median from s: at every intersection, determine whether the con-

tinuation on the new trajectory yields the correct homotopy type (when the
new trajectory is followed to t).

Step 1 can be performed in O(nm log(nm) + A) time by constructing the ar-
rangement [13] and then computing the medial axis in each face [7]; the medial
axis gives the largest disk that fits inside. Step 2 can be performed using an
algorithm of Cabello et al. [6]: Deciding whether two paths are homotopic takes
O(n

√
h log h) time, assuming the two paths have n edges and there are h poles.

The algorithm makes use of a spanning tree on the poles so that any line in-
tersects at most O(

√
h) edges of this spanning tree, which can be constructed

in O(h1+ε) time for any ε > 0. We can adapt this algorithm to determine the
largest subset of homotopic trajectories. Step 3 can be performed by explicitly
computing the arrangement of the trajectories. We trace the median, switching
between two intersecting trajectories only if this intersection also occurs in the
universal cover. The running time of this step is O(nm log(nm) + A) time to
compute the arrangement, and O(mn

√
h + A) time to trace the median.

Theorem 2. The homotopic median of m trajectories with n edges can be com-
puted in O((nm)2+ε) time or in O((nm

√
h + k)α(nm) log(nm) + h1+ε + A) ex-

pected time for any ε > 0, where h is the number of poles, A is the arrangement
size and k is the output size.

Sampling assumption. It seems reasonable to assume that the size of faces
that are relevant and get a pole, represented by r, is not much less than the length
s of the longest edge in any trajectory. Suppose for instance that r ≤ s/6. Then
the trajectories are sampled so sparsely that it can happen that two trajectories
have exactly the same edge of length 2r, whereas one traversed in that time unit a
distance 6r using three sides of a square of side length 2r instead of one side; note
that such a square contains a disk of radius r and therefore would contain a pole.
However, we could not know that the trajectories were very different, although
the choice of r suggests that this is relevant. This makes the assumption r = Ω(s)
reasonable; we refer to it as the sampling assumption. Under this assumption,
we can improve the running times of our algorithms.

Median Trajectories 471

For Step 1, we determine all faces that get a pole without constructing the ar-
rangement. Let D be a disk of radius r centered at the origin. Take the Minkowski
sum of every edge of every trajectory and D, and compute the union of these
O(nm) “race tracks”. The complement of the union contains parts of all faces
that are large enough, although the same face of A may appear as several faces
in the complement of the union. Notice that homotopic equivalence is not in-
fluenced if any face of A has more than one pole. The sampling assumption
implies that all race tracks are fat objects of similar size, and hence the union
complexity is bounded by O(nm) [20]. We use the algorithm of Kedem et al. [16]
to construct it in O(nm log2(nm)) time. This gives us a set of h = O(nm) poles.

For efficiency reasons in Steps 2 and 3, we must avoid having two poles closer
than 2r. Two such poles would lie in the same face of A, so we can remove
either one. We determine a subset of the poles such that every big face of A
has at least one pole in the subset, and any two poles in the subset are at least
2r apart. We do this by computing the Delaunay triangulation of the poles. We
then remove all edges that have length more than 2r, and choose one pole per
connected component in our subset. Let P be this subset of poles. The idea is
to construct a spanning tree on P with stabbing number O(1) for line segments
of length at most s.

We do this as follows: take a set of vertical lines that are exactly r apart.
Within each vertical slab, connect the poles by y-coordinate. Across vertical
slabs, consider every two consecutive non-empty slabs; there may be empty slabs
in between. We connect the rightmost point of the left slab with the leftmost
point of the right slab. Any segment of length at most s crosses O(1) slabs, and
due to vertical spacing within a slab, it intersects O(1) spanning tree edges per
slab. Hence, the spanning tree on P has O(1) stabbing number for line segments
of length at most s, in particular, for the edges of the trajectories.

Now we again use the same algorithm as above, but replace the spanning tree
with stabbing number O(

√
h) by this spanning tree with O(1) stabbing number.

The resulting expected running time for Step 3 is O((nm + k)α(nm) log(nm)).

Theorem 3. The homotopic median of m trajectories with n edges can be com-
puted in O(nm log2(nm) + (nm + k)α(nm) log(nm)) expected time, where k is
the size of the output, if the sampling assumption is satisfied.

4 Experimental Results for Median Trajectories

In this section we present experimental results that aim at analyzing the quality
of the medians generated by our two definitions. The experiments compare the
definitions quantitatively, with respect to the desirable properties mentioned
in Section 2—number of vertices, total length, and total turning angle—and
also qualitatively, by analyzing visually in which cases one or the other method
produces counterintuitive results.

Experimental set-up. We implemented a random trajectory generator that
generates sets of “similar trajectories”. For each of these sets of trajectories, the
medians for both definitions were computed and analyzed.

472 K. Buchin et al.

The random trajectory generator starts by generating a given number of way-
points uniformly distributed at random inside a rectangle, with the restriction
that two consecutive waypoints are further than some minimum distance apart,
and for three consecutive waypoints, the angle between them is not too small
(to avoid U-turns). Given these waypoints, a given number of trajectories is gen-
erated that all follow the sequence of waypoints. For each trajectory, edges are
generated that have a variation in length and in heading, but always somewhat
towards the next waypoint. A waypoint is considered reached if a trajectory has
a vertex within a certain distance from it, and then the next edge proceeds to-
wards the next waypoint. The longest-to-shortest edge length ratio is 2, and the
heading is up to 45◦ off from being directed to the next waypoint. With some
small probability, a trajectory may temporarily not head to the next waypoint
but somewhere else, resulting in outliers. Also with a small probability, a gener-
ated trajectory may skip waypoints. All trajectories start at the first waypoint
and end at the last one.

Data set. We generated many sets of 8 waypoints and then 9 trajectories
for each of them. A set was accepted if at least 6 out of 9 trajectories were
homotopic for a fixed value of r. For each accepted set, the medians according to
both definitions were computed, giving the length, angular change, and number
of vertices for both. We distinguished four types of waypoint sets, depending on
two properties of the polygonal line implied by the sequence of 8 waypoints: we
compare no self-intersections (1) to self-intersections (2), and low angular change
(a) to high angular change (b) (angles below or above 3.8π). We repeatedly
generated sets until we had 100 sets in each of the four classes. Note that the
classes refer to the properties of the waypoints, not the trajectories themselves
(trajectories may self-intersect even if the waypoint sequence does not).

Table 1. Left: average length and standard deviation according to both definitions
(μS and σS for the simple median; μH and σH for the homotopic median), where the
average length of the input trajectories is normalized to 1. Middle: same for angular
change. Right: same for number of vertices, again after normalization.

length angular change no. of vertices
μS σS μH σH

1a 0.960 0.171 0.986 0.060
1b 0.947 0.186 0.992 0.060
2a 0.513 0.263 0.963 0.115
2b 0.520 0.268 0.956 0.087

μS σS μH σH

5.387 1.025 4.680 0.747
5.757 1.148 4.977 0.900
3.807 2.112 4.656 0.970
4.120 2.402 4.698 1.009

μS σS μH σH

3.446 0.690 3.188 0.476
3.571 0.776 3.254 0.554
2.071 1.062 3.433 0.753
2.143 1.160 3.426 0.720

Results. We summarize the results in Table 1. Observe that with self-
intersections the simple median method gives medians that are on average sig-
nificantly shorter than the input trajectories. The other tables also indicate that
often the simple method does not deal well with self-intersecting trajectories.
Regarding the angular change and the number of vertices, we see that the me-
dian has much higher values than the average input. The fact that the number

Median Trajectories 473

of vertices of the median is higher is not surprising, and this nearly implies that
the angular change is higher as well. This higher angular change is undesirable,
because it can make the median trajectory appear very different from the input
trajectories. Comparing the definitions, the lower standard deviation suggests
that the results for the homotopic median are more consistent.

Visual inspection showed that the simple median occasionally made “errors”
(against intuition) even for inputs without self-intersections, and nearly always
for inputs with self-intersections. The homotopic median nearly always gave in-
tuitive results, although an occasional “error” could be observed, due to the
absence of poles in regions that are split by unrelated pieces of the trajectories.
We also tested how the number of vertices of the median is influenced by the
number of trajectories. There seems to be a linear dependence, suggesting that
the output size k = Θ(mn), but this observation is highly dependent on our
random trajectory generator. In summary, except for the high angular change
and occasional missing parts, the homotopic median performs well even for in-
tersecting trajectories.

5 Discussion and Future Research

We discussed the fundamental—but up to now missing—concept of the median
of a set of trajectories. We make a first step in this direction by proposing
necessary and desirable conditions that a trajectory median should satisfy. Based
on them, we presented two definitions of the path of a median trajectory of a
set of trajectories, together with efficient methods to compute them. We also
proved properties of the resulting medians and analyzed them experimentally.

Given the importance of the concept of a median trajectory and its novelty,
we believe this paper opens up many venues of further research. We made several
restrictions in this paper that may be unrealistic. We assumed the start and end
points of all trajectories to coincide and to lie in the unbounded face. We also
assumed that most trajectories are similar enough; the homotopy method can
deal with some trajectories that are outliers, but it cannot deal properly with
the situation where parts of many trajectories are outliers. This can result in a
situation where the largest homotopy class has only one trajectory, whereas an
intuitively correct median may still exist. We also assumed the parameter r to
be given; it would be desirable to choose it automatically in an efficient manner.

We have not addressed the question how to assign time stamps to the median
or how to use the time stamps of the input to guide the computation. And
of course it may be possible to define a median that has good properties in a
completely different way. Finally, it would be interesting to test the definitions
of medians for various types of real-world data, instead of generated data.

References

1. Agarwal, P.K., de Berg, M., Gao, J., Guibas, L.J.: Staying in the middle: Exact
and approximate medians in R1 and R2 for moving points. In: Proc. CCCG, pp.
43–46 (2005)

474 K. Buchin et al.

2. Agarwal, P.K., Gao, J., Guibas, L.J.: Kinetic medians and kd-trees. In: Möhring,
R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 5–16. Springer, Heidelberg
(2002)

3. Agarwal, P.K., Guibas, L.J., Hershberger, J., Veach, E.: Maintaining the extent of
a moving point set. Discrete Comput. Geom. 26, 353–374 (2001)

4. Amenta, N., Bern, M.W., Eppstein, D., Teng, S.-H.: Regression depth and center
points. Discrete Comput. Geom. 23, 305–323 (2000)

5. Buchin, K., Buchin, M., Gudmundsson, J., Löffler, M., Luo, J.: Detecting commut-
ing patterns by clustering subtrajectories. In: Hong, S.-H., Nagamochi, H., Fuku-
naga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 644–655. Springer, Heidelberg
(2008)

6. Cabello, S., Liu, Y., Mantler, A., Snoeyink, J.: Testing homotopy for paths in the
plane. Discrete Comput. Geom. 31, 61–81 (2004)

7. Chin, F.Y.L., Snoeyink, J., Wang, C.A.: Finding the medial axis of a simple polygon
in linear time. Discrete Comput. Geom. 21, 405–420 (1999)

8. Durocher, S., Kirkpatrick, D.: The projection median of a set of points. Comput.
Geom. 42, 364–375 (2009)

9. Durocher, S., Kirkpatrick, D.G.: The Steiner centre of a set of points: Stability,
eccentricity, and applications to mobile facility location. Int. J. Comput. Geom.
Appl. 16, 345–372 (2006)

10. Durocher, S., Kirkpatrick, D.G.: Bounded-velocity approximation of mobile Eu-
clidean 2-centres. Int. J. Comput. Geom. Appl. 18, 161–183 (2008)

11. Gaffney, S., Smyth, P.: Trajectory clustering with mixtures of regression models.
In: Proc. 5th KDD, pp. 63–72 (1999)

12. Gudmundsson, J., van Kreveld, M., Speckmann, B.: Efficient detection of patterns
in 2D trajectories of moving points. GeoInformatica 11, 195–215 (2007)

13. Halperin, D.: Arrangements. In: Goodmann, J.E., O’Rourke, J. (eds.) Handbook
of Discrete and Comput. Geom, pp. 529–562. Chapman & Hall/CRC, Boca Raton
(2004)

14. Har-Peled, S.: Taking a walk in a planar arrangement. SIAM J. Comput. 30(4),
1341–1367 (2000)

15. Hershberger, J., Snoeyink, J.: Computing minimum length paths of a given homo-
topy class. Comput. Geom. 4, 63–97 (1994)

16. Kedem, K., Livne, R., Pach, J., Sharir, M.: On the union of jordan regions and
collision-free translational motion amidst polygonal obstacles. Discrete Comput.
Geom. 1, 59–70 (1986)

17. Laube, P., Purves, R.S.: An approach to evaluating motion pattern detection tech-
niques in spatio-temporal data. Comp., Env. and Urb. Syst. 30, 347–374 (2006)

18. Lee, J., Han, J., Whang, K.-Y.: Trajectory clustering: a partition-and-group frame-
work. In: Proc. ACM SIGMOD Int. Conf. Man. of Data, pp. 593–604 (2007)

19. Lee, J.-G., Han, J., Li, X., Gonzalez, H.: TraClass: Trajectory classification using
hierarchical region-based and trajectory-based clustering. In: PVLDB 2008, pp.
1081–1094 (2008)

20. van der Stappen, A.F., Halperin, D., Overmars, M.H.: The complexity of the free
space for a robot moving amidst fat obstacles. Comput. Geom. 3, 353–373 (1993)

Optimal Cover of Points by Disks

in a Simple Polygon

Haim Kaplan�, Matthew J. Katz��, Gila Morgenstern���, and Micha Sharir†

Abstract. Let P be a simple polygon, and let Q be a set of points in P .
We present an almost-linear time algorithm for computing a minimum
cover of Q by disks that are contained in P . We generalize the algorithm
above, so that it can compute a minimum cover of Q by homothets of
any fixed compact convex set O of constant description complexity that
are contained in P . This improves previous results of Katz and Morgen-
stern [20]. We also consider the disk-cover problem when Q is contained
in a (not too wide) annulus, and present a nearly linear algorithm for
this case too.

1 Introduction

Let P be a simple n-gon in the plane, and let Q be a set of m points in P . A
disk cover of Q with respect to P is a set D of disks (of variable radii), such
that the union of the disks of D covers (i.e., contains) Q and is contained in
P . In other words, each disk D ∈ D is contained in P , and each point q ∈ Q,
lies in at least one disk D ∈ D. A minimum disk cover of Q with respect to P
is a disk cover of Q with respect to P of minimum cardinality. The problem of
computing a minimum disk cover of Q with respect to P was introduced and
studied by Katz and Morgenstern [20]. They also considered the case where the

� School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel. E-mail:
haimk@post.tau.ac.il. Work by Haim Kaplan was partially supported by the
U.S.-Israeli Binational Science Foundation, project number 2006-204, and by grant
975/06 from the Israel Science Fund.

�� Department of Computer Science, Ben-Gurion University, Beer-Sheva 84105, Israel.
E-mail: matya@cs.bgu.ac.il. Work by Matthew Katz was partially supported by
the MAGNET program of the Israel Ministry of Industry, Trade & Labor (COR-
NET consortium), and by the Lynn and William Frankel Center for Computer
Sciences.

��� Department of Computer Science, Ben-Gurion University, Beer-Sheva 84105, Israel.
E-mail: gilamor@cs.bgu.ac.il. Work by Gila Morgenstern was partially supported
by the Lynn and William Frankel Center for Computer Sciences.

† School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel, and
Courant Institute of Mathematical Sciences, New York University, New York, NY
10012, USA. E-mail: michas@post.tau.ac.il. Work by Micha Sharir was partially
supported by NSF Grant CCF-08-30272, by grant 2006-194 from the U.S.-Israeli
Binational Science Foundation, by grant 338/09 from the Israel Science Fund, Is-
raeli Academy of Sciences, and by the Hermann Minkowski–MINERVA Center for
Geometry at Tel Aviv University.

M. de Berg and U. Meyer (Eds.): ESA 2010, Part I, LNCS 6346, pp. 475–486, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

476 H. Kaplan et al.

covering objects are homothets (contained in P) of any fixed compact convex
set O of constant description complexity. In both cases, exact polynomial-time
solutions were presented. In this paper we present alternative and significantly
faster solutions for both disks and homothets, and also consider the case where
the points are in an annulus. All our solutions run in close to linear time.

Background. Geometric covering problems have been studied extensively. These
problems are instances induced by geometric settings of the well-known set cover
problem. Most of these instances are known to be NP-hard. Let us briefly review
several geometric covering problems that are related to the problems studied in
this paper.

In the unit disk cover problem, the goal is to cover a given set of points with
the smallest possible number of unit disks. A polynomial-time approximation
scheme (PTAS) for this problem was given by Hochbaum and Maass [17]. In
the discrete version of this problem, the covering unit disks must be selected
from a given set of unit disks. Until recently only constant-factor approximation
algorithms were known for the discrete version; see [2,5,6,30]. This was recently
improved by Mustafa and Ray [29], who presented a PTAS for the discrete
version (as well as for several other problems), which is based on local search.

Hurtado et al. [19] studied the related problem of computing a minimum
enclosing disk of a given set of m points, whose center must lie in a given convex
n-gon; they presented an O(m+n)-time algorithm for this problem. The 2-center
problem with obstacles was studied by Halperin et al. [16]. In this problem, the
goal is to find two congruent disks of smallest radius whose union covers a given
set of m points and whose centers lie outside a given set of disjoint simple
polygons with a total of n edges. They presented a randomized O(n log2(mn) +
mn log2 m log(mn)) expected time algorithm for this problem. The analogous
1-center problem was studied by Halperin and Linhart [15], who presented an
O((m + n) log(mn))-time algorithm for this problem.

The solutions of Katz and Morgenstern [20] for the problems mentioned above
are based on the “perfect graph approach”, previously used in the solution
of several art-gallery problems, under restricted models of visibility; see, e.g.,
[21,22,27,28,32]. In this approach, one first defines a graph G corresponding to
the input scene. Next, the following two theorems are proven: (i) There is a
one-to-one correspondence between a minimum cover of the desired kind (e.g.,
disk cover) and a minimum clique cover of G, and (ii) G is perfect. Note that the
second claim is crucial, since, in general, minimum clique cover is NP-complete,
but is polynomial for perfect graphs [13,14] and in particular for chordal graphs1

[11]. The algorithms of Katz and Morgenstern consist of three stages. First, con-
struct G, next, find a minimum clique cover of G, and finally, construct the cover
of Q corresponding to the minimum clique cover of G. The bottlenecks of their
algorithms are the first and last stages, which, in the case of covering by disks
within a simple polygon, required O(nm2) time.

1 A graph is chordal if every cycle of at least four edges has a chord, i.e., an edge
connecting two non-consecutive vertices of the cycle; see [13].

Optimal Cover of Points by Disks in a Simple Polygon 477

In this paper we take a different approach, avoiding the explicit construction
of the graph G, and computing the cover itself by following the algorithm of
Gavril [11] for finding a minimum clique cover in a chordal graph, and by ex-
ploiting the special geometric structure of G. This leads to improved solutions,
which, when carefully implemented, run in nearly linear time.

The rest of this paper is organized as follows: In Section 2, we describe an
algorithm for computing a minimum cover of Q by disks contained in P in
O((n + m(log n + log2 m))) time and O(n + m) space. In Section 3, we extend
this result to the case of O-cover, that is, computing a minimum cover of Q
by homothets of an object O which are contained in P , where O is as above.
We show that such a cover can be computed within the same bounds. Finally,
in Section 4 we consider the case where the point set Q is contained in a “not
too wide” annulus R, and give an O(m log m)-time algorithm for computing a
minimum-disk cover of Q by disks contained in R.

2 Minimum Disk Cover in a Simple Polygon

Let P be a simple polygon with n edges and let Q be a set of m points inside
P . We present a nearly linear time algorithm for finding a minimum cover of Q
by disks contained in P .

Consider the Voronoi diagram of the relatively open edges and reflex vertices
of P , confined to within P . We refer to these relatively open edges and reflex
vertices collectively as boundary features (or simply features) of P , and let P ∗

denote the set of these features. The medial axis M is the network of vertices,
straight edges, and parabolic arcs of this Voronoi diagram which are strictly
inside P , including also the non-reflex vertices of P . More precisely, a vertex of
M which is not a vertex of P is a point at equal and smallest distance from
three features of P (including the case where two of these features are an edge
e and a reflex endpoint of e). An edge of M is the locus of all points at equal
(and smallest) distance from two features of P (this time excluding the case of
an edge and one of its endpoints). It is well known (and easy to show) that the
network M is in fact a tree; that is, it is a connected network without cycles.
See Fig. 1(a).2

As we will argue shortly, when constructing a disk cover of Q inside P , it
suffices to consider disks whose centers lie on M , and in fact only maximal such
disks, whose boundary touches ∂P (necessarily in at least two points).

The proof of Lemma 1 below, a major geometric component of our analysis,
can be found in the full version of this paper.3

Lemma 1. For each point q ∈ Q, the portion Mq of the medial axis consisting
of centers of maximal disks that contain q and are contained in P is connected.

2 The tree property may fail if we include in M edges at equal distance from an edge
e of ∂P and from a reflex endpoint of e.

3 The full version of this paper can be found at:
http:/www.cs.bgu.ac.il/~gilamor/papers/KKMS10.pdf

http:/www.cs.bgu.ac.il/~gilamor/papers/KKMS10.pdf

478 H. Kaplan et al.

q

r(Mq)

(a)

q

(b)

Fig. 1. (a) The medial axis of a simple polygon and the subtree Mq of a point q ∈ Q
(drawn bold, with its root r(Mq) highlighted). (b) The complexity of each subtree Mq

is Θ(n) in this example.

Consider the graph G whose vertices are the points of Q, and there is an
edge between two points p, q ∈ Q if there exists a disk containing both p and
q and contained in P . Clearly there is such a disk if and only if there is a disk
containing p and q whose center is on M and whose radius is the distance from
its center to ∂P . This follows by noting that every disk D contained in P is
contained in a maximal disk of the above kind, which is obtained by inflating D
about its center until it touches ∂P , and then by moving its center away from
the contact with ∂P , maintaining that contact, until a second contact is made.

For each q ∈ Q, the portion Mq of M considered in Lemma 1 is equal to the
intersection of M with the Voronoi cell of q in the diagram of P ∗ ∪ {q}. The
lemma asserts that Mq is a connected subset of M . We refer to Mq as a subtree
of M , but note that the leaves of Mq (points of Mq whose removal does not
disconnect Mq) need not necessarily be vertices of M , but can lie in the relative
interior of edges of M ; see Fig. 1(a). It follows by definition that, by identifying
each point q of Q with its subtree Mq, G becomes the intersection graph of these
subtrees. Therefore, by the characterization of Buneman and Gavril [4,12], G is
a chordal graph.

We note that computing the subtrees Mq explicitly is too expensive, because
their overall complexity can be Θ(mn) in the worst case, as depicted in Fig. 1(b).

As shown by Katz and Morgenstern [20], a cover of Q by disks contained in P
corresponds to a clique cover of G and vice versa. This also follows from the fact
that subtrees of a tree T satisfy the 2-Helly-property: if every pair of subtrees
in a given collection intersect, then they all have a common intersection [13].
Therefore, a clique of G can be covered by a single disk which is a maximal
disk centered at a common point of all subtrees Mq corresponding to the points
q of the clique. (The converse direction is trivial.) So our problem is to find a
minimum clique cover of G. As is known [11], the chordality of G implies that
this latter problem is solvable in polynomial time, but, exploiting the special
geometric structure of the graph G, we are able to solve it particularly efficiently,
by an algorithm which runs in O(n+m(log n+log2 m)) time (improving upon the
cubic algorithm of Katz and Morgenstern in [20] mentioned in the introduction).

Optimal Cover of Points by Disks in a Simple Polygon 479

We follow the algorithm of Gavril [11] for finding a minimum clique cover
in a chordal graph. The algorithm is greedy and is based on the fact (see, e.g.,
[13]) that a chordal graph contains a simplicial vertex v, that is, a vertex whose
neighbors induce a clique. The greedy clique cover algorithm takes as the first
clique in the cover such a simplicial vertex v and its neighbors. It then deletes v
and its neighbors and iterates this step on the subgraph induced by the remaining
vertices (which is still chordal). It is not hard to see that the output clique cover
is indeed minimum, because the simplicial vertices picked at each iteration form
an independent set in the original G, and clearly the size of any clique cover is
at least the size of this (or any) independent set.

We can implement this algorithm using the subtree representation of G, as
follows. Root M at an arbitrary vertex of ∂P . Making M rooted induces a root
for each subtree Mq, for q ∈ Q, which we denote by r(Mq). Note that r(Mq) is
not necessarily a vertex of M but can lie in the relative interior of an edge. See
Fig. 1(a).

Pick Mq such that the (appropriately defined) subtree of M rooted at r(Mq)
contains no other root. The points of Q corresponding to all subtrees which
contain r(Mq) are the first clique in our cover (q is a simplicial vertex). The
disk corresponding to this clique can be taken to be the maximal disk within
P centered at r(Mq). We then delete all subtrees containing r(Mq) and iterate,
until all of Q is exhausted.

We now present an efficient implementation of this algorithm. It consists of
the following steps.

1. For each point q ∈ Q compute an “anchor point” A(q) ∈ Mq.
2. Starting from each A(q), search M to find the corresponding root r(Mq).
3. Maintain the set of disks D that have already been placed in the cover in

a data structure S that can efficiently test whether a query point is in the
union of the disks in D.

4. Search M in a bottom-up manner to find the next simplicial vertex q of
G (whose root r(Mq) is lowest in M , ignoring subtrees corresponding to
points that are already covered). When the search reaches a root r(Mq) we
check whether q is in the union of the disks in D. If so, we skip r(Mq) and
continue. Otherwise we add to D the maximal disk centered at r(Mq), update
S accordingly, and continue. At the end D contains the desired minimum
disk cover.

We now give the details of the implementation of each of these steps. We first
compute M in O(n) time, using the algorithm of Chin et al. [10]. We regard
the edges and vertices of M ∪ ∂P as the edges and vertices of a planar map H .
We further partition H into “pseudo-trapezoids” (referred to as “trapezoids”,
in short), by connecting each vertex of M (lying in the interior of P , including
breakpoints along edges which are equidistant from an edge of P and an endpoint
of that edge) to its nearest points on ∂P .

For each point q ∈ Q we compute the trapezoid T (q) in the decomposition of
H containing q. To do so we preprocess the decomposition of H in O(n) time and
construct the point location data structure of Kirkpatrick [24], which supports

480 H. Kaplan et al.

logarithmic-time point-location queries. Then we locate the trapezoids T (q), for
q ∈ Q, by m point location queries to this data structure, in O(m log n) time.

For each q ∈ Q, let e be the feature of P ∗ on ∂T (q) (that is, T (q) is contained
in the Voronoi cell of e). We compute the closest point q′ to q on e and take A(q)
to be the intersection of the line q′q with M which is closest to q (and which
also lies on ∂T (q)). It is easy to see that a maximal disk centered at A(q) inside
P contains q, and therefore Mq indeed contains A(q).

We compute the roots r(Mq), for q ∈ Q, as follows. We fix a root for M , for
example, the rightmost vertex of P . We then traverse M in depth-first order from
the root, and maintain its vertices on the stack (those vertices whose subtrees
are still being traversed) in an array L, stored in their reverse order on the stack,
i.e., in their order along the path of M from the root to the vertex currently
being explored (L is in fact just a concrete structure for implementing the stack).
When the search moves from a vertex v to a new vertex w, we insert w as the
rightmost element of L, and when the search backtracks from a vertex v, we
delete v from (the end of) L.

When we traverse the edge (v, w) during the depth-first search, we find r(Mq)
for every point q such that A(q) is on the edge (v, w), as follows. First observe that
testing whether a point z ∈ M belongs to Mq is easy to do in O(1) time, provided
we know the feature (edge or vertex) of M containing z: This is equivalent to
testing whether |zq| is at most the radius of the maximal disk centered at z,
which is readily available since we know the features of P ∗ nearest to z.

So let q ∈ Q be a point whose anchor A(q) lies on (v, w). If v �∈ Mq then r(Mq)
is on the edge (v, w). Furthermore, it is a point on (v, w) at equal distances to
the two features of P defining the edge (v, w) and to q. We compute it by solving
the appropriate system of algebraic equations (as is well known, there can be
at most two solutions, for otherwise, since Voronoi regions are star-shaped, we
would get an impossible planar embedding of K3,3), and by taking the solution
which lies on (v, w) closest to the root of M (i.e., to v).

If v ∈ Mq, we use binary search on the array L to find the farthest ancestor
u of v which is still in Mq. The root r(Mq) is on the edge from u to its parent,
and we find it by solving a system of algebraic equations analogous to the one
described above.

Having collected all the roots r(Mq), we sort them along the edges of M
containing them, and split the edges at these roots, making the roots additional
vertices of M .

Finally we collect the roots which are centers of the maximal disks in our cover,
using the greedy algorithm described above. For that we use a data structure S
that maintains a set D of disks, subject to insertions of disks and queries of the
form: Given a point q, determine whether q is in the union of the disks currently
in D. The structure S is initially empty, but, as we add disks to the cover D, we
insert them into S.

We traverse M again bottom-up, stopping at each root r(Mq). When we
encounter a root r(Mq), we use the data structure S to determine whether the
corresponding point q lies in the union of the disks currently in D. If the answer

Optimal Cover of Points by Disks in a Simple Polygon 481

is yes, we continue traversing M , effectively ignoring q. Otherwise, we add to D
the maximal disk centered at r(Mq) and contained in P , update S accordingly,
and continue. When the traversal terminates, D is the desired minimum disk
cover.

We now analyze the complexity of the algorithm. Computing M and the
Voronoi diagram H induced by M ∪ ∂P , the triangulation of H into trapezoids,
and the point location data structure for this triangulation, takes O(n) time
[10,24]. For each point q ∈ Q, computing A(q) takes O(log n) time, for a total
of O(m log n) time. The computation of the roots r(Mq) takes O(n + m log n)
time: maintaining the array L takes O(n) time, and the binary searches for the
roots take a total of O(m log n) time. Sorting the roots along the edges of M
and subdividing M at these roots takes O(n + m log m) time.

Finally, in the last step we again traverse M and use the data structure S
to determine, for each root r(Mq), whether its corresponding point q is in the
union of the disks that we have already added to the cover. We construct S
using a standard reduction [3] that converts a static point location data struc-
ture to a dynamic incremental one, as follows. We recall that the combinato-
rial complexity of the of the boundary of the union of k disks is O(k) [23],
and that one can compute this union and preprocess it for logarithmic-time
point location queries in time O(k log k). Let k be the number of disks cur-
rently in D, and let b�log k� · · · b1b0 be the binary representation of k. For each
i, 0 ≤ i ≤ �log k�, such that bi = 1, D contains a static point location data
structure for the union of a subset of 2i disks. Moreover, each of the k disks
belongs to exactly one of these subsets. Thus, given a query point q, one can
determine in O(log2 k) time whether q lies in the union of the k disks, by per-
forming a point location query in at most �log k� + 1 substructures. To insert
a new disk into S, we construct a new static data structure containing the new
disk and all the disks in the subsets corresponding to the maximal block of
least significant bits b0, b1, . . ., which are equal to 1 in the binary representation
of the current k. This is analogous to performing an increment of the binary
counter b�log k� · · · b1b0. Since each disk participates in the construction of at
most O(log k) static structures, an insertion takes O(log2 k) amortized time. In
summary, we obtain:

Theorem 2. Let P be a simple polygon with n edges and Q a set of m points
contained in P . We can compute a minimum cover of Q by disks contained in
P in O(n + m(log n + log2 m)) time and O(n + m) space.

Remark. If the minimum cover consists of k � m disks, the running time
improves to O(n + m(log n + log m + log2 k)). Hence, if k = O(1), say, or if we
just want to decide whether Q can be covered by at most k = O(1) disks, the
superlinearity of the bound is caused only by the steps which compute the anchor
points A(q) and the roots r(Mq), for q ∈ Q. It is a challenging open problem to
come up with an alternative approach which avoids the supelinear cost of these
steps.

482 H. Kaplan et al.

3 Covering by Homothetic Copies of a Convex Set

Let P and Q be as in Section 2, and let O be some fixed compact convex set
with nonempty interior. For a large part of the analysis, this is essentially all
we assume about O. For the algorithmic part, however, we need to assume that
O has a sufficiently simple shape so as to facilitate efficient implementation of
certain operations on O as well as efficient construction of a dynamic point
location data structure, similar to the structure S used above. For the time
being, we only add the assumption that P , Q and O are in general position, to
avoid possible degeneracies in the constructs that extend those studied in the
preceding section. Further assumptions will be elaborated below.

We fix some point o inside O as its “center point”, and assume that O is
initially specified so that o lies at the origin. Thinking of each point of O as a
vector, λO then denotes the convex set obtained from O by scaling it about o by
λ, for any positive λ. The convex distance function induced by O is dO(p, q) =
inf{λ | q ∈ p + λO}. We refer to it as the O-distance. Chew and Drysdale [8]
were the first to study Voronoi diagrams under convex distance functions; see
also Leven and Sharir [25]. Note that dO is a metric if and only if O is centrally
symmetric with respect to its center.

The medial axis MO of P under the O-distance is defined analogously to
the medial axis of P under the Euclidean distance, as the locus of all points
inside P whose O-distance to the boundary is attained in at least two points.
Assuming general position, MO is a connected 1-dimensional network, consisting
of vertices and edges. Each edge is the locus of all points which are at the same
(nearest) O-distance from two features of P ∗ (where P ∗ is defined as in the
previous section). A vertex of MO which is not a vertex of P is a point at the
same (nearest) O-distance from three features of P ∗. The shape of the edges of
MO depends on the shape of O. For example, if O is a convex polygon then
each edge is a polygonal curve, whose breakpoints correspond to placements of
the center o of O at which a vertex of O touches a vertex of P . See [8,25] for
more details. Finally, as in the previous section, it follows from basic properties
of generalized Voronoi diagrams that MO is a tree.

As in the preceding section, for a point q ∈ Q, we denote by Mq the portion
of MO consisting of centers of maximal homothets of O that contain q (and are
contained in P). Lemma 3 below is analogous to Lemma 1, asserting that for
each q ∈ Q, Mq is a subtree of MO; its proof can be found in the full version of
this paper.3 The analysis below uses the well known fact that homothetic copies
of Q (in general position) are pseudo-disks; see, e.g., [23].

Lemma 3. Mq is connected for each point q ∈ Q.

Consider the graph GO defined similarly to G in the previous section. Its vertices
are the points of Q, and it contains an edge between two points p, q ∈ Q if there
exists a homothet of O containing both p and q and contained in P . As in the
case of disks, one can show that there is such a homothet if and only if there
is a homothet containing p and q whose center is on MO and whose boundary
touches ∂P (at least twice).

Optimal Cover of Points by Disks in a Simple Polygon 483

Again, if we identify each point q of Q with its subtree Mq, then GO is
the intersection graph of these subtrees and thus GO is a chordal graph. As
in Section 2, since pairwise intersecting subtrees of a tree T have a point in
common, covering Q by homothets of O is equivalent to a clique cover of GO,
so our problem now is to find a minimum clique cover of GO.

We use the same high-level algorithm as in Section 2. Below, we mainly refer
to the steps of the algorithm that are affected by the use of O-distance instead
of Euclidean distance. Recall that so far the analysis did not require any further
assumptions concerning the actual shape of O. However, to facilitate an efficient
implementation of the algorithm, we need to assume that this shape is sufficiently
simple, so as to allow various operations on O and on a constant number of
other features (points and/or line segments) to be performed in constant time.
Examples of such operations are computing the O-distance between two points,
or between a point and a line segment, finding a point at the same O-distance
from three features of P ∗, etc. The simplest way to enforce these properties is
to assume that O has constant description complexity (see, e.g., [31]).

The combinatorial complexity of the medial axis MO is O(n), we compute it
in time O(n) using the algorithm of Chin et al. [10] (which also applies to convex
distance functions). The planar map H (induced by MO ∪∂P) is partitioned, in
time O(n), into simply-shaped cells, by connecting each vertex of MO \ ∂P to
its nearest point(s) (in the O-distance) on ∂P .

As in the previous section, we perform, in total time O(m log n), point location
queries in H for the points in Q, as in [24]. Let T (q) be the trapezoid containing
a point q ∈ Q, and let e be the feature of P ∗ on ∂T (q). We compute the closest
point q′ to q on e under the O-distance, and take A(q) to be the intersection of the
line q′q with MO which is closest to q (and which also lies on ∂T (q)). It is easy to
see, arguing as above, that the maximal copy of O centered at A(q) and contained
in P touches ∂P at q′ (and at another point) and contains q, and therefore Mq

contains A(q). Computing the roots r(Mq) and sorting them along the edges of
MO, is done exactly as in the previous section, in O(n + m(log n + log m)) time.

Finally, in the last step, we maintain, in a data structure S, the union of all
the homothets of O that have so far been placed in the cover, and perform on
it point location queries. Since homothets of O are pseudo-disks, we can use
essentially the same structure described in the previous section, with the same
time and space bounds. We thus obtain (the remark following Theorem 2 applies
here as well):

Theorem 4. Let O be a fixed compact convex set of constant description com-
plexity, let P be a simple polygon with n edges, and let Q be a set of m points
in P . We can compute a minimum cover of Q by homothets of O contained in
P , in O(n + m(log n + log2 m)) time, in an appropriate model of computation,
using O(n + m) storage.

4 Covering by Disks in a Sufficiently Narrow Annulus

Assume that the points of Q lie in an annulus R rather than in a simple polygon.
In this case, M , the medial axis of R, is not a tree but a circle. Specifically, let c

484 H. Kaplan et al.

q
Mq

aq

bq

c M

(a)

q
Mq

aq

bq

c1

c2

M

(b)

Fig. 2. (a) The arc Mq of a point q ∈ Q, obtained as the intersection of M with the
(dotted) disk of radius r2−r1

2
around q. (b) R is a disk centered at c1 with a hole

centered at c2; the medial axis M is elliptic. The endpoints of Mq are at equal distance
to the two circles bounding R and its hole and to q.

be the center of R and let r1 and r2 be inner and outer radii of R, respectively,
then M is a circle of radius rM = r1+r2

2 , centered at c.
As in the previous sections, each point q ∈ Q is associated with an arc Mq

of the circle M , which is the portion of M consisting of centers of maximal
disks that cover q (and are contained in R). See Fig. 2(a), which illustrates a
proof of the property that Mq is the intersection of M with the disk of radius
r2−r1

2 centered at q. Again, we consider the intersection graph G of these arcs.
However, unlike the previous cases, G is not chordal, since M is not a tree.
Instead, G is a circular-arc graph (see, e.g., [13]). Moreover, we argue that if
r2 < 2+

√
3

2−
√

3
r1 ≈ 13.93r1 then G has the 2-Helly property, which means that the

circular arcs in a clique of G have a point in common.
Indeed, since Mq is the intersection of M with the disk of radius r2−r1

2 centered
at q, it is maximal when aq, q, and bq are collinear, where aq and bq are the
endpoints of Mq. Let θ = ∠aqcbq. If aq, q, and bq are indeed collinear then
sin θ

2 = r2−r1
r2+r1

. So if r2 < 2+
√

3
2−

√
3
r1 then sin θ

2 <
√

3
2 , and therefore θ < 2π/3.

Consider a clique C in G. Since all arcs are of length smaller than 1/3 the
length of M , and they all intersect one specific arc of C, then they cannot cover
M completely. Consequently, C can be viewed as a set of pairwise intersecting
intervals on a line and it follows that all the arcs of C must have a common
intersection.

We conclude that, again, a cover of Q by disks contained in R corresponds to
a clique cover of G, and vice versa. We thus compute a minimum clique cover of
G by applying the O(m)-time algorithm of Hsu and Tsai [18], after sorting the
arcs Mq by their endpoints in O(m log m) time. In summary, we obtain

Theorem 5. Let R be an annulus such that r2 < 2+
√

3
2−

√
3
r1, where r1, r2 are the

inner and outer radii of R, respectively, and let Q a set of m points contained in
R. We can compute a minimum cover of Q by disks contained in R in O(m log m)
time and O(m) space.

Optimal Cover of Points by Disks in a Simple Polygon 485

Theorem 5 also applies to the slightly more general case, where R is a disk with
a circular hole, not necessarily concentric; see Fig. 2(b). In this case, the medial
axis is an ellipse with foci at the centers of R and of its hole. For each q ∈ Q,
Mq is still a connected arc of M . Specifically, the endpoints of Mq are the points
at equal distance to the two circles bounding R and its hole and to q, and there
can be at most two such points. (Otherwise, arguing as in Section 2, we would
get an impossible planar embedding of K3,3.)

The graph G is a circular-arc graph, and it possesses the 2-Helly property
provided that the hole is not too small. (The exact condition is that there do
not exist three points q1, q2, q3 ∈ R whose arcs Mq1 , Mq2 , Mq3 cover M .) Hence,
if this condition holds then a minimum clique cover can be found as above, with
the same asymptotic bounds on the running time and storage.

Finally, we do not know how critical is the assumption that R is not too wide,
as in Theorem 5. Does the problem become hard if R is wider?

Acknowledgments. The authors wish to thank Lior Kapelushnik and an anony-
mous referee for independently suggesting that we use the data structure for
union of disks instead of a less efficient range reporting data structure that was
used in a previous version of this paper.

References

1. Agarwal, P.K., Efrat, A., Sharir, M.: Vertical decomposition of shallow levels in
3-dimensional arrangements and its applications. SIAM J. Comput. 29, 912–953
(2000)

2. Brönnimann, H., Goodrich, M.T.: Almost optimal set covers in finite vc-dimension.
Discrete Comput. Geom. 14(4), 469–479 (1995)

3. Bentley, J.L., Saxe, J.B.: Decomposable searching problems I: Static-to-dynamic
transformation. J. Algorithms 1(4), 301–358 (1980)

4. Buneman, P.: A characterization of rigid circuit graphs. Discrete Math. 9, 205–212
(1974)

5. Calinescu, G., Mandoiu, I.I., Wan, P.-J., Zelikovsky, A.: Selecting forwarding neigh-
bors in wireless ad hoc networks. MONET 9(2), 101–111 (2004)

6. Carmi, P., Katz, M.J., Lev-Tov, N.: Covering points by unit disks of fixed location.
In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 644–655. Springer,
Heidelberg (2007)

7. Chan, T.M.: A dynamic data structure for 3-d convex hulls and 2-d nearest neigh-
bor queries. J. ACM 57(3), Article 16 (2010)

8. Chew, L.P., Drysdale III., R.L.: Voronoi diagrams based on convex distance func-
tions. In: SCG 1985: Proc. First Annual Sympos. Comput. Geom., pp. 235–244
(1985)

9. Chiang, Y., Tamassia, R.: Dynamic algorithms in computational geometry. Proc.
IEEE 80(9), 1412–1434 (1992)

10. Chin, F.Y.L., Snoeyink, J., Wang, C.A.: Finding the medial axis of a simple polygon
in linear time. Discrete Comput. Geom. 21(3), 405–420 (1999)

11. Gavril, F.: Algorithms for minimum coloring, maximum clique, minimum covering
by cliques, and maximum independent set of a chordal graph. SIAM J. Com-
put. 1(2), 180–187 (1972)

486 H. Kaplan et al.

12. Gavril, F.: The intersection graphs of subtrees of a tree are exactly the chordal
graphs. J. Combinat. Theory Ser. B 16, 47–56 (1974)

13. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press,
New York (1980)

14. Grötschel, M., Lovász, L., Schrijver, A.: Polynomial algorithms for perfect graphs.
In: Berge, C., Chvátal, V. (eds.) Topics on Perfect Graphs. Ann. Discrete Math.,
vol. 21, pp. 325–356. North-Holland, Amsterdam (1984)

15. Halperin, D., Linhart, C.: The minimum enclosing disk with obstacles (1999)
(Manuscript)

16. Halperin, D., Sharir, M., Goldberg, K.Y.: The 2-center problem with obstacles. J.
Algorithms 42(1), 109–134 (2002)

17. Hochbaum, D.S., Maass, W.: Approximation schemes for covering and packing
problems in image processing and VLSI. J. ACM 32(1), 130–136 (1985)

18. Hsu, W.L., Tsai, K.H.: Linear time algorithms on circular-arc graphs. Inform.
Process. Lett. 40(3), 123–129 (1991)

19. Hurtado, F., Sacristán, V., Toussaint, G.: Some constrained minimax and maximin
location problems. Studies in Locational Analysis 15, 17–35 (2000)

20. Katz, M.J., Morgenstern, G.: A scheme for computing minimum covers within
simple regions. In: Dehne, F., et al. (eds.) 11th Int. Sympos. Algorithms and Data
Structures (WADS). LNCS, vol. 5664, pp. 447–458. Springer, Heidelberg (2009)

21. Katz, M.J., Morgenstern, G.: Guarding orthogonal art galleries with sliding cam-
eras. In: 25th European Workshop on Comput. Geom, pp. 159–162 (2009)

22. Katz, M.J., Roisman, G.S.: On guarding the vertices of rectilinear domains. Com-
put. Geom. 39(3), 219–228 (2008)

23. Kedem, K., Livne, R., Pach, J., Sharir, M.: On the union of Jordan regions and
collision-free translational motion amidst polygonal obstacles. Discrete Comput.
Geom. 1(1), 59–71 (1986)

24. Kirkpatrick, D.: Optimal search in planar subdivisions. SIAM J. Comput. 12(1),
28–34 (1983)

25. Leven, D., Sharir, M.: Planning a purely translational motion for a convex object
in two–dimensional space using generalized Voronoi diagrams. Discrete Comput.
Geom. 2, 9–31 (1987)

26. Mehlhorn, K., Näher, S.: Dynamic fractional cascading. Algorithmica 5(2), 215–241
(1990)

27. Motwani, R., Raghunathan, A., Saran, H.: Perfect graphs and orthogonally convex
covers. SIAM J. Discrete Math. 2(3), 371–392 (1989)

28. Motwani, R., Raghunathan, A., Saran, H.: Covering orthogonal polygons with star
polygons: The perfect graph approach. J. Comput. Syst. Sci. 40(1), 19–48 (1990)

29. Mustafa, N.H., Ray, S.: PTAS for geometric hitting set problems via local search.
In: SCG 2009: Proc. 25th Annual Sympos. Comput. Geom, pp. 17–22 (2009)

30. Narayanappa, S., Vojtechovský, P.: An improved approximation factor for the unit
disk covering problem. In: 18th Canadian Conf. on Comput. Geom, pp. 15–18
(2006)

31. Sharir, M., Agarwal, P.K.: Davenport-Schinzel Sequences and their Geometric Ap-
plications. Cambridge University Press, New York (1995)

32. Worman, C., Keil, J.M.: Polygon decomposition and the orthogonal art gallery
problem. Int. J. Comput. Geometry Appl. 17(2), 105–138 (2007)

Stability of ε-Kernels

Pankaj K. Agarwal, Jeff M. Phillips, and Hai Yu

Duke University, University of Utah, and Google

Abstract. Given a set P of n points in Rd, an ε-kernel K ⊆ P approxi-
mates the directional width of P in every direction within a relative (1−ε)
factor. In this paper we study the stability of ε-kernels under dynamic
insertion and deletion of points to P and by changing the approximation
factor ε. In the first case, we say an algorithm for dynamically maintain-
ing a ε-kernel is stable if at most O(1) points change in K as one point
is inserted or deleted from P . We describe an algorithm to maintain an
ε-kernel of size O(1/ε(d−1)/2) in O(1/ε(d−1)/2 + log n) time per update.
Not only does our algorithm maintain a stable ε-kernel, its update time
is faster than any known algorithm that maintains an ε-kernel of size
O(1/ε(d−1)/2). Next, we show that if there is an ε-kernel of P of size
κ, which may be dramatically less than O(1/ε(d−1)/2), then there is an
(ε/2)-kernel of P of size O(min{1/ε(d−1)/2, κ�d/2� logd−2(1/ε)}). More-
over, there exists a point set P in Rd and a parameter ε > 0 such that
if every ε-kernel of P has size at least κ, then any (ε/2)-kernel of P has
size Ω(κ�d/2�).1

1 Introduction

With recent advances in sensing technology, massive geospatial data sets are
being acquired at an unprecedented rate in many application areas, including
GIS, sensor networks, robotics, and spatial databases. Realizing the full poten-
tial of these data sets requires developing scalable algorithms for analyzing and
querying them. Among many interesting algorithmic developments to meet this
challenge, there is an extensive amount of work on computing a “small sum-
mary” of large data sets that preserves certain desired properties of the input
data and on obtaining a good trade-off between the quality of the summary and
its size. A coreset is one example of such approximate summaries. Specifically,
for an input set P and a function f , a coreset C ⊆ P is a subset of P (with
respect to f) with the property that f(C) approximates f(P). If a small-size
coreset C can be computed quickly (much faster than computing f(P)), then
one can compute an approximate value of f(P) by first computing C and then
computing f(C). This coreset-based approach has been successfully used in a
wide range of geometric optimization problems over the last decade; see [2].
1 Research supported by subaward CIF-32 from NSF grant 0937060 to CRA, by NSF

under grants CNS-05-40347, CFF-06-35000, and DEB-04-25465, by ARO grants
W911NF-04-1-0278 and W911NF-07-1-0376, by an NIH grant 1P50-GM-08183-01,
by a DOE grant OEG-P200A070505, and by a grant from the U.S.–Israel Binational
Science Foundation.

M. de Berg and U. Meyer (Eds.): ESA 2010, Part I, LNCS 6346, pp. 487–499, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

488 P.K. Agarwal, J.M. Phillips, and H. Yu

ε-kernels. Agarwal et al. [1] introduced the notion of ε-kernels and proved
that it is a coreset for many functions. For any direction u ∈ Sd−1, let P [u] =
argmaxp∈P 〈p, u〉 be the extreme point in P along u; ω(P, u) = 〈P [u]−P [−u], u〉
is called the directional width of P in direction u. For a given ε > 0, K ⊂ P ⊂ Rd

is called an ε-kernel of P if

〈P [u] − K[u], u〉 ≤ εω(P, u)

for all directions u ∈ Sd−1.2 For simplicity, we assume ε ∈ (0, 1), because for
ε ≥ 1, one can choose a constant number of points to form an ε-kernel. By
definition, if X is an ε-kernel of P and K is a δ-kernel of X , then K is a (δ + ε)-
kernel of P .

Agarwal et al. [1] showed that there exists an ε-kernel of size O(1/ε(d−1)/2)
and it can be computed in time O(n+1/ε3d/2), when d is fixed (assumed through-
out the paper). The running time was improved by Chan [6] to O(n + 1/εd−3/2)
(see also [10]). In a number of applications, the input point set is being up-
dated periodically, so algorithms have also been developed to maintain ε-kernels
dynamically. Agarwal et al. [1] had described a data structure to maintain an
ε-kernel of size O(1/ε(d−1)/2) in (log(n)/ε)O(d) time per update. The update
time was recently improved by Chan [7] to O((1/ε(d−1)/2) log n + 1/εd−3/2). His
approach can also maintain an ε-kernel of size O((1/εd) log n) with update time
O(log n). If only insertions are allowed (e.g. in a streaming model), the size of
the data structure can be improved to O(1/ε(d−1)/2) [4,11].

In this paper we study two problems related to the stability of ε-kernels: how
ε-kernels change as we update the input set or vary the value of ε.

Dynamic stability. Since the aforementioned dynamic algorithms for maintain-
ing an ε-kernel focus on minimizing the size of the kernel, changing a single point
in the input set P may drastically change the resulting kernel. This is partic-
ularly undesirable when the resulting kernel is used to build a dynamic data
structure for maintaining another information. For example, kinetic data struc-
tures (KDS) based on coresets have been proposed to maintain various extent
measures of a set of moving points [2]. If an insertion or deletion of an object
changes the entire summary, then one has to reconstruct the entire KDS in-
stead of locally updating it. In fact, many other dynamic data structures for
maintaining geometric summaries also suffer from this undesirable property [9].

We call an ε-kernel s-stable if the insertion or deletion of a point causes the ε-
kernel to change by at most s points. For brevity, if s = O(1), we call the ε-kernel
to be stable. Chan’s dynamic algorithm can be adapted to maintain a stable ε-
kernel of size O((1/εd−1) log n); see Lemma 1 below. An interesting question is
whether there is an efficient algorithm for maintaining a stable ε-kernel of size
O(1/ε(d−1)/2), as points are being inserted or deleted. Maintaining a stable ε-
kernel dynamically is difficult for two main reasons. First, for an input set P ,

2 This is a slightly stronger version of the definition than defined in [1] and an ε-
kernel K gives a relative (1 + 2ε)-approximation of ω(P, u) for all u ∈ Sd−1 (i.e.
ω(K,u) ≤ ω(P,u) ≤ (1 + 2ε)ω(K, u)).

Stability of ε-Kernels 489

many algorithms compute ε-kernels in two or more steps. They first construct
a large ε-kernel K ′ (e.g. see [1,7]), and then use a more expensive algorithm to
create a small ε-kernel of K ′. However, if the first algorithm is unstable, then K ′

may change completely each time P is updated. Second, all of the known ε-kernel
algorithms rely on first finding a “rough shape” of the input set P (e.g., finding a
small box that contains P), estimating its fatness [5]. This rough approximation
is used crucially in the computation of the ε-kernel. However, this shape is itself
very unstable under insertions or deletions to P . Overcoming these difficulties,
we prove the following in Section 2:

Theorem 1. Given a parameter 0 ≤ ε ≤ 1, a stable ε-kernel of size O(1/ε(d−1)/2)
of a set of n points in Rd can be maintained under insertions and deletions in
O(1/ε(d−1)/2 + log n) amortized time.

Note that the update time of maintaining an ε-kernel of size O(1/ε(d−1)/2) is
better than that in [7].

Approximation stability. If the size of an ε-kernel K is O(1/ε(d−1)/2), then de-
creasing ε changes K quite predictably. However, this is the worst-case bound,
and it is possible that the size of K may be quite small, e.g., O(1), or in general
much smaller than the 1/ε(d−1)/2 maximum (efficient algorithms are known for
computing ε-kernels of near-optimal size [2]). Then how much can the size in-
crease as we reduce the allowable error from ε to ε/2? For any ε > 0, let κ(P, ε)
denote the minimum size of an ε-kernel of P . Unlike many shape simplification
problems, in which the size of simplification can change drastically as we reduce
the value of ε, we show (Section 3) that this does not happen for ε-kernels and
that κ(P, ε/2) can be expressed in terms of κ(P, ε).

Theorem 2. For any point set P and for any ε > 0,

κ(P, ε/2) = O(min{κ(P, ε)�d/2� logd−2(1/ε), 1/ε(d−1)/2}).

Moreover, there exist a point set P and some ε > 0 such that κ(P, ε/2) =
Ω(κ(P, ε)�d/2�).

2 Dynamic Stability

In this section we describe an algorithm that proves Theorem 1. The algorithm
is composed of a sequence of modules, each with certain property. We first state
that Chan’s dynamic coreset algorithm [7] can be made stable (see proof in full
version [3]):

Lemma 1. For any 0 < ε < 1, an ε-kernel K of P of size O((1/εd−1) log n)
can be maintained in O(log n) time with O(1) changes to K per update.

We first define the notion of anchor points and fatness of a point set and de-
scribe two algorithms for maintaining stable ε-kernels with respect to a fixed
anchor: one of them maintains a kernel of size O(1/εd−1) and the other of size
O(1/ε(d−1)/2); the former has smaller update time. Then we describe the algo-
rithm for updating anchor points and maintaining a stable kernel as the anchors

490 P.K. Agarwal, J.M. Phillips, and H. Yu

change. Finally, we put these modules together to obtain the final algorithm.
We make the following simple observation, which will be crucial for combining
different modules.

Lemma 2 (Composition Lemma). If K is an s-stable ε-kernel of P and K ′ is
an s′-stable ε′-kernel of K, then K ′ is an (s · s′)-stable (ε + ε′)-kernel of P .

Anchors and fatness of a point set. We call a point set P β-fat if

max
u,v∈Sd−1

ω(P, u)/ω(P, v) ≤ β.

If β is a constant, we sometimes just say that P is fat. An arbitrary point set P
can be made fat by applying an affine transform: we first choose a set of d + 1
anchor points A = {a0, a1, . . . , ad} using the following procedure of Barequet
and Har-Peled [5]. Choose a0 arbitrarily. Let a1 be the farthest point from a0.
Then inductively, let ai be the farthest point from the flat span(a0, . . . , ai−1).
(See Figure 1.) The anchor points A define a bounding box IA with center at a0
and orthogonal directions defined by vectors from the flat span(a0, . . . , ai−1) to
ai. The extents of IA in each orthogonal direction is defined by placing each ai

on a bounding face and extending IA the same distance from a0 in the opposite
direction. Next we perform an affine transform TA on P such that the vector
from the flat span(a0, . . . , ai−1) to ai is equal to ei, where e0 = (0, . . . , 0), e1 =
(1, 0, . . . , 0), . . . , ed = (0, . . . , 0, 1). This ensures that TA(P) ⊆ TA(IA) = [−1, 1]d.
The next lemma shows that TA(P) is fat, and follows easily from [8].

Lemma 3. For all u ∈ Sd−1 and for βd ≤ 2dd5/2d!,

ω(TA(A), u) ≤ ω(TA(P), u) ≤ ω(TA(IA), u) ≤ βd · ω(TA(A), u). (1)

Agarwal et al. [1] show if K is an ε-kernel of P , then T (K) is an ε-kernel of T (P)
for any affine transform T , which implies that one can compute an ε-kernel of
T (P). We will need the following generalization of the definition of ε-kernel. For
two points sets P and Q, a subset K ⊆ P is called an ε-kernel of P with respect
to Q if 〈P [u] − K[u], u〉 ≤ εω(Q, u) for all u ∈ Sd−1.

a0

a1

a2

IA H

e

Fig. 1. Anchor points A = {a0, a1, a2}, rectangle IA, and transform TA applied to P ;
square H, two-dimensional grid G, and one-dimensional grid Ge on the edge e of H

Stability of ε-Kernels 491

Stable ε-kernels for a fixed anchor. Let A be a set of anchor points of P , as
described above. We describe algorithms for maintaining stable ε-kernels (with
respect to A) under the assumption that A remains a set of anchor points of P ,
i.e., A ⊆ P ⊂ IA, as P is being updated by inserting and deleting points. In view
of the above discussion, without loss of generality, we assume IA = [−1, +1]d and
denote it by H. As for the static case [1,6], we first describe a simpler algorithm
that maintains a stable ε-kernel of size O(1/εd−1), and then a more involved one
that maintains a stable ε-kernel of size O(1/ε(d−1)/2).

Set δ = ε/
√

d and draw a d-dimensional grid G inside H of size δ, i.e., the
side-length of each grid cell is at most δ; G has O(1/δd) cells. For each grid cell
τ , let Pτ = P ∩ τ . For a point x ∈ H lying in a grid cell τ , let x̂ be the vertex of
τ nearest to the origin; we can view x being snapped to the vertex x̂. For each
facet f of H, G induces a (d−1)-dimensional grid Gf on f ; G contains a column
of cells for each cell in Gf . For each cell Δ ∈ Gf , we choose (at most) one point
of P as follows: let τ be the nonempty grid cell in the column of G corresponding
to Δ that is closest to f . We choose an arbitrary point from Pτ ; if there is no
nonempty cell in the column, no point is chosen. Let Lf be the set of chosen
points. Set L =

⋃
f∈H

Lf . Agarwal et al. [1] proved that L is an ε-kernel of P .
Insertion or deletion of a point in P affects at most one point in Lf , and it can
be updated in O(log(1/ε)) time. Hence, we obtain the following:

Lemma 4. Let P be a set of n points in Rd, let A ⊆ P be a set of anchor points
of P , and let 0 < ε < 1 be a parameter. P can be preprocessed in O(n + 1/εd−1)
time, so that a (2d)-stable ε-kernel of P with respect to A of size O(1/εd−1) can
be maintained in O(log 1/ε) time per update provided that A remains an anchor
set of P .

Agarwal et al. [1] and Chan [6] have described algorithms for computing an ε-
kernel of size O(1/ε(d−1)/2). We adapt Chan’s algorithm to maintain a stable
ε-kernel with respect to a fixed anchor A. We begin by mentioning a result of
Chan that lies at the heart of his algorithm.

Lemma 5 (Chan [6]). Let E ∈ N, Eτ ≤ F ≤ E for some 0 < τ < 1, and
P ⊆ [0 : E]d−1×R a set of at most n points. For all grid points b ∈ [0 : F]d−1×R,
the nearest neighbors of each b in P can be computed in time O(n + Ed−2F).

We now set γ =
√

ε/c for a constant c > 1 to be used in a much sparser grid than
with δ. Let C = [−2, +2]d and f be a facet of C. We draw a (d− 1)-dimensional
grid on f of size γ. Assuming f lies on the plane xd = −2, we choose a set
Bf = {(i1γ, . . . , id−1γ,−2) ∈ Zd | −�2/γ� ≤ i1, . . . , id−1 ≤ �2/γ�} of grid points.
For a subset X ⊆ P and a point b, we define ψ(X, b) = arg minx∈X ‖x̂ − b‖,
i.e., the point in X such that the snapped point is nearest to b. For a set R,
ψ(X, R) = {ψ(X, r) | r ∈ R}. There is a one to one mapping between the faces
of C and H, so we also use f to denote the corresponding facet of H. Let Lf be
the set of points chosen in the previous algorithm corresponding to facet f of
H for computing an (ε/2)-kernel of P . Set Gf = ψ(Lf , Bf). Chan showed that
G =

⋃
f∈C

Gf is an (ε/2)-kernel of L and thus an ε-kernel of P . Scaling G and

492 P.K. Agarwal, J.M. Phillips, and H. Yu

Bf appropriately and using Lemma 5, Gf can be computed in O(n + 1/εd−3/2)
time. Hence, G can be computed in O(n + 1/εd−3/2) time.

Note that ψ(Lf , b) can be the same for many points b ∈ Bf , so insertion or
deletion of a point in P (and thus in Lf) may change Gf significantly, thereby
making G unstable. We circumvent this problem by introducing two new ideas.
First, ψ(Lf , Bf) is computed in two stages, and second it is computed in an
iterative manner. We describe the construction and the update algorithm for f ;
the same algorithm is repeated for all facets.

We partition H into O(1/γd−1) boxes: for J = 〈i1. . . . , id−1〉 ∈ [−1/γ, 1/γ]d−1

∩Zd−1, we define HJ = [i1γ, (i1 + 1)γ] × · · · × [id−1γ, (id−1 + 1)γ] × [−1, +1].
We maintain a subset X ⊆ Lf . Initially, we set X = Lf . Set XJ = X ∩ HJ . We
define a total order on the points of Bf . Initially, we sort Bf in lexicographic
order, but the ordering will change as insertions and deletions are performed
on P . Let 〈b1, . . . , bu〉 be the current ordering of Bf . We define a map ϕ :
Bf → Lf as follows. Suppose ϕ(b1), . . . , ϕ(bi−1) have been defined. Let Ji =
argminJ ‖ψ̂(XJ , bi) − bi‖; here ψ̂(·) denotes the snapped point of ψ(·). We set
ϕ(bi) = ψ(XJi , bi). We delete ϕ(bi) from X (and from XJi) and recompute
ψ̂(XJi , Bf). Set Kf = {ϕ(b) | b ∈ Bf} and K =

⋃
f Kf . Computing Ji and

ϕ(bi) takes O(1/ε(d−1)/2) time, and, by Lemma 5, ψ(XJi , Bf) can be computed
in O(|XJ | + 1/γd−2 · 1/γ) = O(1/ε(d−1)/2) time.

It can be proved that the map ϕ and the set Kf satisfy the following
properties:

(P1) ϕ(bi) �= ϕ(bj) for i �= j,
(P2) ϕ(bi) = ψ(Lf \ {ϕ(bj) | j < i}, bi),
(P3) Kf ⊇ ψ(Lf , Bf).

Indeed, (P1) and (P2) follow from the construction, and (P3) follows from (P2).
(P3) immediately implies that K is an ε-kernel of P . Next, we describe the
procedures for updating Kf when Lf changes. These procedures maintain (P1)–
(P3), thereby ensuring that the algorithm maintains an ε-kernel.

Inserting a point. Suppose a point p is inserted into Lf . We add p to X . Suppose
p ∈ HJ . We recompute ψ(XJ , Bf). Next, we update ϕ(·) and K as follows. We
maintain a point ξ ∈ Lf . Initially, ξ is set to p. Suppose we have processed
b1, . . . , bi−1. Let η ∈ Lf be the current ϕ(bi). If ‖ξ̂ − bi‖ ≤ ‖η̂ − bi‖, then we
swap ξ and ϕ(bi), otherwise neither ξ nor ϕ(bi) is updated. We then process
bi+1. After processing all points of Bf if ξ = p, i.e., no ϕ(bi) is updated, we stop.
Otherwise, we add p to Kf and delete ξ from Kf . The insertion procedure makes
at most two changes in Kf , and it can be verified that (P1)-(P3) are maintained.

Deleting a point. Suppose p is deleted from Lf . Suppose p ∈ HJ . If p �∈ Kf ,
then p ∈ X . We delete p from X and XJ and recompute ψ(XJ , B). If p ∈ Kf ,
i.e., there is a bi ∈ B with p = ϕ(bi), then p �∈ X . We delete p from Kf and K,
recompute ϕ(bi), and add the new ϕ(bi) to Kf . Let ϕ(bi) ∈ HJ ; we remove ϕ(bi)
from XJ and recompute ψ(XJ , Bf). We modify the ordering of Bf by moving
bi from its current position to the end. This is the only place where the ordering

Stability of ε-Kernels 493

of Bf is modified. Since bi is now the last point in the ordering of Bf , the new
ϕ(bi) does not affect any other ϕ(bj). The deletion procedure also makes at most
two changes in Kf and maintains (P1)–(P3).

Finally, insertion or deletion of a point in P causes at most one insertion plus
one deletion in Lf , therefore we can conclude the following:

Lemma 6. Let P be a set of n points in Rd, A a set of anchor points of P , and
0 < ε < 1 a parameter. P can be preprocessed in O(n+1/εd−1) time into a data
structure so that a stable ε-kernel of P with respect to A of size O(1/ε(d−1)/2)
can be maintained in O(1/ε(d−1)/2) time under insertion and deletion, provided
that A remains an anchor set of P .

Updating anchors. We now describe the algorithm for maintaining a stable ε-
kernel when anchors of P are no longer fixed and need to be updated dynamically.
Roughly speaking, we divide P into inner and outer subsets of points. The outer
subset acts as a shield so that a stable kernel of the inner subset with respect to a
fixed anchor can be maintained using Lemma 4 or 6. When the outer subset can
no longer act as a shield, we reconstruct the inner and outer sets and start the
algorithm again. We refer to the duration between two consecutive reconstruction
steps as an epoch. The algorithm maintains a stable kernel within each epoch, and
the amortized number of changes in the kernel because of reconstruction at the
beginning of a new epoch will be O(1). We can use a de-amortization technique
to make the ε-kernel stable across epochs. We now describe the algorithm in
detail.

In the beginning of each epoch, we perform the following preprocessing. Set
α = 1/10 and compute a α-kernel L of P of size O(log n) using Chan’s dynamic
algorithm; we do not need the stable version of his algorithm advertised above. L

can be updated in O(log n) time per insertion/deletion. We choose a parameter
m, which is set to 1/εd−1 or 1/ε(d−1)/2. We create the outer subset of P by
peeling off m “layers” of anchor points A1, . . . , Am. Initially, we set P0 = P .
Suppose we have constructed A0, . . . , Ai−1. Set Pi−1 = P \

⋃i−1
j=1 Aj , and L is an

α-kernel of Pi−1. Next, we construct the anchor set Ai of L as described earlier
in this section. We set Pi = Pi−1 \ Ai and update L so that it is an α-kernel of
Pi. Let A =

⋃
i Ai, A = Am, and PI = P \A. Let H = (1+α)IA. By construction

PI ⊂ H. A forms the outer subset and acts as a shield for PI , which is the inner
subset. Set δ = ε/(2(1 + α)(βd)2), where βd is the constant in Lemma 3.

If m = 1/εd−1 (resp. 1/ε(d−1)/2), we maintain a stable δ-kernel KI of PI with
respect to A of size O(m) using Lemma 4 (resp. Lemma 6). Set K = KI ∪ A;
|K| = O(m). We prove below that K is an ε-kernel of P . Let p be a point that
is inserted into or deleted from P . If p ∈ H, then we update KI using Lemma 4
or 6. On the other hand, if p lies outside H, we insert it into or delete it from A.
Once A has been updated m times, we end the current epoch and discard the
current K. We begin a new epoch and reconstruct A, PI , and KI as described
above.

The preprocessing step at the beginning of a new epoch causes O(m) changes
in K and there are at least m updates in each epoch, therefore the algorithm
maintains a stable kernel in the amortized sense. Again, using a de-amortization

494 P.K. Agarwal, J.M. Phillips, and H. Yu

K

1/ε(d−1)/2

K1

log(n)/εd−1

K2

1/εd−1

log n

n

P log n 1/ε(d−1)/2

Fig. 2. Composing stable ε-kernel algorithms

technique, we can ensure that K is stable. The correctness of the algorithm
follows from the following lemma (proved in full version [3]).

Lemma 7. K is always an ε-kernel of P .

Using Lemmas 4 and 6, we can bound the amortized update time and conclude
the following.

Lemma 8. For a set P of n points in Rd and a parameter 0 < ε < 1, there is
a data structure that can maintain a stable ε-kernel of P of size O(1/ε(d−1)/2)
under insertions and deletions in amortized time O(nε(d−1)/2 + 1/ε(d−1)/2 +
log n), or of size O(1/εd−1) in amortized time O(nεd−1 + log n + log(1/ε)).

Putting it together. For a point set P ⊂ Rd of size n, we can produce the best
size and update time tradeoff for stable ε-kernels by invoking Lemma 2 to com-
pose three stable ε-kernel algorithms, as illustrated in Figure 2. We first apply
Lemma 1 to maintain a stable (ε/3)-kernel K1 of P of size O(min{n, (1/εd−1) ·
log n}) with update time O(log n). We then apply Lemma 8 to maintain a sta-
ble (ε/3)-kernel K2 of K1 of size O(1/εd−1) with update time O(|K1|εd−1 +
log |K1| + log(1/ε)) = O(log n + log(1/ε)). Finally we apply Lemma 8 again to
maintain a stable (ε/3)-kernel K of K2 of size O(1/ε(d−1)/2) with update time
O(|K2|ε(d−1)/2 +1/ε(d−1)/2 +log |K2|) = O(1/ε(d−1)/2). K is a stable ε-kernel of
P of size O(1/ε(d−1)/2) with update time O(log n + 1/ε(d−1)/2). This completes
the proof of Theorem 1.

3 Approximation Stability

In this section we prove the upper bound in Theorem 2. Due to lack of space we
only prove the upper bound for d = 2, 3; the remainder is in the full version [3].

By [1], it suffices to consider the case in which P is fat and the diameter of P is
normalized to 1. Let K be an ε-kernel of P of the smallest size. Let P = conv(K),
and Pε = P ⊕ εBd. We have P ⊆ conv(P) ⊆ Pε by the definition of ε-kernels.
It suffices to show that there is a set K ′ ⊆ P such that for P′ = conv(K ′),
P′ ⊆ conv(P) ⊆ P′

ε/2, and |K ′| = O(|K|�d/2� logd−2(1/ε)) [1].
For convenience, we assume that K ′ is not necessarily a subset of points

in P ; instead, we only require K ′ to be a subset of points in conv(P). By
Caratheodory’s theorem, for each point x ∈ K, we can choose a set Px ⊆ P
of at most d + 1 points such that x ∈ conv(Px). We set

⋃
x∈K′ Px as the desired

(ε/2)-kernel of P ; |
⋃

x∈K′ Px| ≤ (d + 1)|K ′| = O(κ(P, ε)�d/2� logd−2(1/ε)).
Initially, we add a point into K ′ for each point in K. If p ∈ K lies on ∂ conv(P),

we add p to K ′. Otherwise we project p onto ∂ conv(P) in a direction in which
p is maximal in K and add the projected point to K ′. Abusing the notation

Stability of ε-Kernels 495

slightly, we use P to denote hull of these initial points. For simplicity, we assume
P to be a simplicial polytope.

Decomposition of Pε \ intr P. There are d types of simplices on ∂P. In R2

these are points and edges. In R3 these are points, edges, and triangles. We can
decompose Pε \ intr P into a set of regions, each region σ(f) corresponding to a
simplex f in P. For each simplex f in P let f∗ ⊆ Sd−1 denote the dual of f in
the Gaussian diagram of P. Recall that if f has dimension k (0 ≤ k ≤ d − 1),
then f∗ has dimension d − 1 − k. The region Pε \ intr P is partitioned into a
collection of |P| regions (where |P| is the number of faces of all dimensions in
P). Each simplex f in P corresponds to a region defined

σ(f) = {f + zu | 0 ≤ z ≤ ε, u ∈ f∗}.

For a subsimplex τ ∈ f , we can similarly define a region σ(τ) = {τ + zu | 0 ≤
z ≤ ε, u ∈ f∗}. In R2, there are two types of regions: point regions and edge
regions. In R3, there are three types of regions: point regions (see Figure 4(a)),
edge regions (see Figure 4(b)), and triangle regions (see Figure 4(c)).

For convenience, for any point q = q̄+z ·u ∈ σ(f), where q̄ ∈ f, 0 ≤ z ≤ ε, and
u ∈ f∗, we write q = q̄[u, z] (which intuitively reads, the point whose projection
onto f is q̄ and which is at a distance z above f in direction u). We also write
q[v] = q̄ + z · v (intuitively, q[v] is obtained by rotating q w.r.t. f from direction
u to direction v). Similarly, we write a simplex Δ̄[u, z] = Δ̄⊕ z · u, where Δ̄ is a
simplex inside f , 0 ≤ z ≤ ε, and u ∈ f∗, and write Δ[v] = Δ̄ ⊕ z · v.

We will proceed to prove the upper bound as follows. For each type of region
σ(f) we place a bounded number of points from σ(f)∩conv(P) into K ′ and then
prove that all points in σ(f)∩conv(P) are within a distance ε/2 from some point
in P′ = conv(K ′). We begin by introducing three ways of “gridding” σ(f) and
then use these techniques to directly prove results for several base cases, which
illustrate the main conceptual ideas. These base cases will already be enough to
prove the results in R2 and R3. In the full version [3] we generalize this to Rd

using an involved recursive construction. We set a few global values: δ = ε/12d,
θ = 2 arcsin(δ/2ε), and ρ = δ/ε.

1: Creating layers. For a point q = q̄[u, z] ∈ σ(f) we classify it depending on
the value z = |q − q̄|. If z ≤ ε/2, then q is already within ε/2 of P. We then
divide the range [ε/2, ε] into a constant H = (ε/2)/δ number of cases using
H = {h1 = ε/2, h2 = ε/2 + δ, . . . , hH = ε − δ}. If z ∈ [hi, hi+1), then we set
qhi = q̄[u, hi]. We define Ψf,hi ⊂ σ(f) ∩ conv(P) to be the set of points that
are a distance exactly hi from f .

2: Discretize angles. We create a constant size θ-net Uf,h = {u1, u2, . . .} ⊂ f∗

of directions with the following properties. (1) For each q = q̄[u, h] ∈ Ψf,h

there is a direction ui ∈ Uf,h such that the angle between u and ui is at
most θ. (2) For each ui ∈ Uf,h there is a point pi = p̄i[ui, h] ∈ Ψf,h; let
Nf,h = {pi | i ≥ 1}. Uf,h is constructed by first taking a (θ/2)-net Uf of
f∗, then for each u′

i ∈ Uf choosing a point pi = q̄i[ui, h] ∈ Ψf,h where ui is
within an angle θ/2 of u′

i (if one exists), and finally placing ui in Uf,h.

496 P.K. Agarwal, J.M. Phillips, and H. Yu

3: Exponential grid. Define a set D = {d0, d1 = (1 + ρ)d0, . . . , dm = (1 +
ρ)md0} of distances where dm < 1 and d0 = δ, so m = O(log 1/ε). For a
face f ∈ P, let any r ∈ σ(f) be called a support point of f . Let p1, . . . , pk

be the vertices of the k-simplex f . For each pj , and each di ∈ D (where
di < ||pj − r̄||), let pj,i be the point at distance di from pj on the segment
pj r̄. For each boundary facet F of f , define a sequence of at most m simplices
F0, F1, . . . ∈ conv(F ∪ r̄), each a homothet of F , so the vertices of Fi lie on
segments pj r̄ where pj ∈ ∂F (see Figure 5(a)). The translation of each Fi

is defined so it intersects a point pj,i (where pj ∈ ∂F) and is as close to F
as possible. This set of (k − 1)-simplices for each F defines the exponential
grid Gr,f . The full grid structure is revealed as this is applied recursively on
each Fi.
The exponential grid Gr,Δ on a simplex Δ has two important properties for
a point q ∈ Δ:

(G1) If q ∈ conv(F ∩ r̄) lies between boundary facet F and F0, let q0 be the
intersection of the line segment qr̄ with F0; then ||q − q0|| ≤ d0 = δ.

(G2) If q ∈ conv(F ∩ r̄) lies between Fi−1 and Fi and the segment qr̄ intersects
Fi at qi, let qF be the intersection of F with the ray−→rq; then ||qi−q||/||qi−
qF || ≤ ρ = δ/ε.

We now describe how to handle certain simple types of regions: where f is a
point or an edge. These will be handled the same regardless of the dimension of
the problem, and they (the edge case in particular) will be used as important
base cases for higher dimensional problems.

Point regions. Consider a point region σ(p). For each h ∈ H create θ-net Up,h

for Ψp,h, so Np,h are the corresponding points where each pi = p[h, ui] ∈ Np,h

has ui ∈ Up,h. Put each Np,h in K ′.

q̄ = p
θ

qh

q′
qFor any point q = q̄[u′, z] ∈ σ(p)∩conv(P), let q′ = q̄[u, h] where

h ∈ H is the largest value such that h ≤ z and u ∈ Up,h is the
closest direction to u′; set qh = q̄[u′, h] = q′[u′]. First ||q − qh|| ≤ δ
because z −h ≤ δ. Second ||qh − q′|| ≤ δ because the angle between
u′ and u is at most θ, and they are rotated about the point p. Thus
||q − q′|| ≤ ||q − qh|| + ||qh − q′|| ≤ 2δ ≤ ε/2.

Lemma 9. For a point region σ(p), there exists a constant number
of points Kp ⊂ σ(p)∩conv(P) such that all points q ∈ σ(p)∩conv(P) are within
a distance ε/2 of conv(Kp).

Edge regions. Consider an edge region σ(e) for an edge e of P. Orient e along
the x-axis. For each h ∈ H and u ∈ Ue,h, let Ψe,h,u be the set of points in Ψe,h

within an angle θ of u. For each Ψe,h,u, we add to Ke the (two) points of Ψe,h,u

with the largest and smallest x-coordinates, denoted by p+
h,u and p−h,u.

For any point q = q̄[v, z] ∈ σ(e) ∩ conv(P), there is a point q′′ = q̄[u, h] such
that h ∈ H is the largest value less than z and u ∈ Ue,h is the closest direction to
v. Furthermore, ||q−q′′|| ≤ ||q−qh||+||qh−q′′|| ≤ (z−h)+2ε sin(θ/2) = δ+δ = 2δ.
We can also argue that there is a point q′ = q̄[u′, z′] ∈ p−h,up+

h,u, because if q̄ has

Stability of ε-Kernels 497

h

e

u

p−h,u

p+
h,u

qh

q′Ψe,h,u
q′′

(a) σ(e) in R3 (b) top view of σ(e) at height h

Fig. 3. Illustration of 2 points in K′ for edge case with specific h ∈ H and u ∈ Ue,h,θ

smaller x-coordinate than p̄−h,u or larger x-coordinate than p̄+
h,u, then q′ cannot

be in Ψe,h,u. Clearly the angle between u and u′ is less than θ. This also implies
that h − z′ < δ. Thus ||q′′ − q′|| ≤ 2δ, implying ||q − q′|| ≤ 4δ ≤ ε/2.

Lemma 10. For an edge region σ(e), there exists O(1) points Ke ⊂ σ(e) ∩
conv(P) such that for any point q = q̄[z, v] ∈ σ(e) ∩ conv(P) there is a point
p = q̄[h, u] ∈ conv(Ke) such that z − h ≤ 2δ, ||v − u|| ≤ 2δ, and, in particular,
||q − p|| ≤ 4δ ≤ ε/2.

For K ⊂ P ∈ R2 there are |K| points and edges in P. Thus combining Lemmas 9
and 10 |K ′|/|K| = O(1) and we have proven Theorem 2 for d = 2. Next, we prove
the theorem for d = 3.

Construction of K ′. Now consider K ⊂ P ∈ R3 and the point regions, edge
regions, and triangle regions in the decomposition of Pε \ intr P (see Figure 4).
By Lemmas 9 and 10 we can add O(|K|) points to K ′ to account for all point
and edge regions. We can now focus on the O(|K|) triangle regions.

Consider a triangle region σ(t) for a triangle t in P (see Figure 5(a)), t∗

consists of a single direction, the one normal to t. Let r be the highest point of
σ(t)∩conv(P) in direction t∗. We add r to K ′ and we create an exponential grid
Gr,t with r as the support point. For each edge e ∈ Gr,t and h ∈ H we add the
intersection of e[t∗, h] with the boundary of σ(t) ∩ conv(P) to K ′, as shown in
Figure 5(b). Thus, in total we add O(|K| log(1/ε)) points to K ′.

Proof of correctness. Consider any point q = q̄[t∗, z] ∈ σ(t) ∩ conv(P) and
associate it with a boundary edge e of t such that q̄ ∈ conv(e∪r̄). Let qh = q̄[t∗, h]
where h ∈ H is the largest height such that h ≤ z. If segment q̄r̄ does not

(a) f is a vertex of P (b) f is an edge of P (c) f is a facet of P

Fig. 4. Illustration of regions in the partition of Pε \ intr P in three dimensions

498 P.K. Agarwal, J.M. Phillips, and H. Yu

e = F

r̄
p1

p2

p3

r

r̄̄r

r

e

r

q̄e

q

qh

r̄

h

p
q′′

(a) σ(t) with r and Gr,t (b) Subtriangle te of σ(t) (c) Slice of (b) through r, q

Fig. 5. Illustration to aid correctness of approximation of triangle regions in R3

intersect any edge ei parallel to e in Gr,t, let p̄ = r̄. Otherwise, let ei be the
first segment parallel to e in Gr,t intersected by the ray −→̄

qr̄, and let p̄ be the
intersection. Let p = p̄[t∗, h] which must be in conv(K ′) by construction. If
ei = e0, then by (G1) we have ||qh − p|| = ||q̄ − p̄|| ≤ δ, thus ||q − p|| ≤ 2δ ≤ ε/2
and we are done. Otherwise, let q̄e be the intersection of e with ray −→̄

rq̄. By (G2)
||p̄− q̄||/||p̄− q̄e|| ≤ ρ = δ/ε. Thus, q′′ = q̄[t∗, h−ερ] is below the segment q̄ep (see
Figure 5(c)) and thus q′′ ∈ conv(K ′) since triangle pp̄q̄e is in conv(K ′). Finally,
||q − q′′|| = ||q − qh|| + ||qh − q′′|| ≤ 2δ ≤ ε/2. This proves Theorem 2 for d = 3.

3.1 Remarks

(1) For d = 2, 3, κ(P, ε/2) is only a factor of O(1) and O(log(1/ε)), respectively,
larger than κ(P, ε); therefore, the sizes of optimal ε-kernels in these dimen-
sions are relative stable. However, for d ≥ 4, the stability drastically reduces
in the worst case because of the superlinear dependency on κ(P, ε).

(2) Neither the upper nor the lower bound in the theorem is tight. For d = 3,
we can prove a tighter lower bound of Ω

(
κ(P, ε) log(1/(ε · κ(P, ε)))

)
. We

conjecture in Rd that

κ(P, ε/2) = Θ
(
κ(P, ε)�d/2� logd−2(1/(ε(d−1)/2 · κ(P, ε)))

)
.

References

1. Agarwal, P.K., Har-Peled, S., Varadarajan, K.: Approximating extent measure of
points. Journal of ACM 51(4), 606–635 (2004)

2. Agarwal, P.K., Har-Peled, S., Varadarajan, K.: Geometric approximations via core-
sets. In: Combinatorial and Computational Geometry, pp. 1–31 (2005)

3. Agarwal, P.K., Phillips, J.M., Yu, H.: Stability of ε-kernels. arXiv:1003.5874
4. Agarwal, P.K., Yu, H.: A space-optimal data-stream algorithm for coresets in the

plane. In: SoCG, pp. 1–10 (2007)
5. Barequet, G., Har-Peled, S.: Efficiently approximating the minimum-volume

bounding box of a point set in three dimensions. Journ. of Algs. 38, 91–109
(2001)

6. Chan, T.: Faster core-set constructions and data-stream algorithms in fixed dimen-
sions. Computational Geometry: Theory and Applications 35, 20–35 (2006)

7. Chan, T.: Dynamic coresets. In: SoCG, pp. 1–9 (2008)

Stability of ε-Kernels 499

8. Har-Peled, S.: Approximation Algorithm in Geometry, ch. 22 (2010),
http://valis.cs.uiuc.edu/~sariel/teach/notes/aprx/

9. Hershberger, J., Suri, S.: Adaptive sampling for geometric problems over
data streams. Computational Geometry: Theory and Applications 39, 191–208
(2008)

10. Yu, H., Agarwal, P.K., Poreddy, R., Varadarajan, K.: Practical methods for
shape fitting and kinetic data structures using coresets. Algorithmica 52, 378–402
(2008)

11. Zarrabi-Zadeh, H.: An almost space-optimal streaming algorithm for coresets in
fixed dimensions. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193,
pp. 817–829. Springer, Heidelberg (2008)

http://valis.cs.uiuc.edu/~sariel/teach/notes/aprx/

The Geodesic Diameter of Polygonal Domains�

Sang Won Bae1, Matias Korman2, and Yoshio Okamoto3

1 Department of Computer Science, Kyonggi University, Korea
swbae@kgu.ac.kr

2 Computer Science Department, Université Libre de Bruxelles (ULB), Belgium
mkormanc@ulb.ac.be

3 Graduate School of Information Science and Engineering, Tokyo Institute of
Technology, Tokyo, Japan
okamoto@is.titech.ac.jp

Abstract. This paper studies the geodesic diameter of polygonal do-
mains having h holes and n corners. For simple polygons (i.e., h = 0),
it is known that the geodesic diameter is determined by a pair of cor-
ners of a given polygon and can be computed in linear time. For general
polygonal domains with h ≥ 1, however, no algorithm for computing
the geodesic diameter was known prior to this paper. In this paper, we
present the first algorithm that computes the geodesic diameter of a
given polygonal domain in worst-case time O(n7.73) or O(n7(log n+h)).
Among other results, we show the following geometric observation: the
geodesic diameter can be determined by two points in its interior. In
such a case, there are at least five shortest paths between the points.

1 Introduction

In this paper, we address the geodesic diameter problem in polygonal domains.
Intuitively, given a polygonal domain P with holes, the geodesic distance d(p, q)
between points p and q of P is defined as the length of a shortest path between
them, among all the paths that stay within P . The geodesic diameter diam(P)
is defined as the largest geodesic distance between any two points of P .

For simple polygons (i.e., domains with no holes), the geodesic diameter has
been extensively studied. Chazelle [7] provided the first O(n2)-time algorithm
computing the geodesic diameter of a simple polygon, where n is the number
of corners of P . Afterwards, Suri [19] presented an O(n log n)-time algorithm
that solves the all-geodesic-farthest neighbors problem, computing the farthest
neighbor of every corner and thus finding the geodesic diameter. At last, Hersh-
berger and Suri [12] showed that the diameter can be computed in linear time
using their fast matrix search technique.
� Work by S.W. Bae was supported by National Research Foundation of Korea (NRF)

grant funded by the Korea government (MEST) (No. 2010-0005974). Work by Y.
Okamoto was supported by Global COE Program “Computationism as a Founda-
tion for the Sciences” and Grant-in-Aid for Scientific Research from Ministry of
Education, Science and Culture, Japan, and Japan Society for the Promotion of
Science.

M. de Berg and U. Meyer (Eds.): ESA 2010, Part I, LNCS 6346, pp. 500–511, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

The Geodesic Diameter of Polygonal Domains 501

On the other hand, the geodesic diameter of a domain with holes is less
understood. Mitchell [15] has posed an open problem asking an algorithm for
computing the geodesic diameter of a polygonal domain. Moreover, even for
the corner-to-corner diameter maxu,v∈V d(u, v), we know nothing but the brute-
force algorithm that takes O(n2 log n) time, checking all the geodesic distances
between every pair of corners.1

This fairly wide gap between simple polygons and polygonal domains is seem-
ingly due to the uniqueness of the shortest path between any two points. When
no holes exist, it is well known that there is a unique shortest path between any
two points [10]. Using this uniqueness, one can show that the diameter is real-
ized by a pair of corners [12, 19]. For general polygonal domains, however, this
is not the case. In this paper, we exhibit several examples where the diameter is
realized by non-corner points on ∂P or even by interior points of P . (See Fig. 1.)
This observation also shows an immediate difficulty in devising any exhaustive
algorithm since the search space is not discrete.

The status of the geodesic center problem is also similar. A point in P is de-
fined as a geodesic center if it minimizes the maximum geodesic distance from it
to any other point of P . Asano and Toussaint [3] introduced the first O(n4 log n)-
time algorithm for computing the geodesic center of a simple polygon (i.e., when
h = 0), and Pollack, Sharir and Rote [18] improved it to O(n log n) time. As
with the diameter problem, there is no known algorithm for domains with holes.
See O’Rourke and Suri [17] and Mitchell [15] for more references on the geodesic
diameter/center problem.

Since the geodesic diameter/center of a simple polygon is determined by its
corners, one can exploit the geodesic farthest-site Voronoi diagram of the corners
V to compute the diameter/center, which can be built in O(n log n) time [2].
Recently, Bae and Chwa [4] presented an O(nk log3(n + k))-time algorithm for
computing the geodesic farthest-site Voronoi diagram of k sites in polygonal
domains with holes. This result can be used to compute the geodesic diameter
maxp,q∈S d(p, q) of a finite set S of points in P . However, this approach cannot
be directly used for computing diam(P) without any characterization of the
diameter. Moreover, when S = V , this approach is no better than the brute-
force O(n2 log n)-time algorithm for computing the corner-to-corner diameter
maxu,v∈V d(u, v).

In this paper, we present the first algorithms that compute the geodesic di-
ameter of a given polygonal domain in O(n7.73) or O(n7(log n + h)) time in the
worst case. Our new geometric results underlying the algorithms show that the
existence of any diametral pair consisting of non-corner points implies multiple
shortest paths between the pair; Among other results, we show that if (s, t) is
a diametral pair and both s and t lie in the interior of P, then there are at least
five shortest paths between s and t.

Some analogies between polygonal domains and convex polytopes in R3 can
be seen. O’Rourke and Schevon [16] proved that if the geodesic diameter on
a convex 3-polytope is realized by two non-corner points, at least five shortest

1 Personal communication with Mitchell.

502 S.W. Bae, M. Korman, and Y. Okamoto

t∗

s∗

(a) (b) (c)

u1

u2

u3 v3

v2

v1

s∗
t∗

s∗

t∗

Fig. 1. Three polygonal domains where the geodesic diameter is determined by a pair
(s∗, t∗) of non-corner points; Gray-shaded regions depict the interior of the holes and
dark gray segments depict the boundary ∂P . Recall that P , as a set, contains its
boundary ∂P . (a) Both s∗ and t∗ lie on ∂P . There are three shortest paths between
s∗ and t∗. In this polygonal domain, there are two (symmetric) diametral pairs. (b)
s∗ ∈ ∂P\V and t∗ ∈ intP . Three triangular holes are placed in a symmetric way. There
are four shortest paths between s∗ and t∗. (c) Both s∗ and t∗ lie in the interior intP .
Here, the five holes are packed like jigsaw puzzle pieces, forming narrow corridors (dark
gray paths) and two empty, regular triangles. Observe that d(u1, v1) = d(u1, v2) =
d(u2, v2) = d(u2, v3) = d(u3, v3) = d(u3, v1). The points s∗ and t∗ lie at the centers
of the triangles formed by the ui and the vi, respectively. There are six shortest paths
between s∗ and t∗.

paths exist between the two (a simpler proof of the same fact was later shown
by Zalgaller [20]). Based on this observation, they presented an O(n14 log n)-
time algorithm for computing the geodesic diameter on a convex 3-polytope.
Afterwards, the time bound was improved to O(n8 log n) by Agarwal et al. [1]
and recently to O(n7 log n) by Cook IV and Wenk [9]. Although our algorithms
seemingly require fairly large amount of time, notice that they are comparable
with the runtimes for convex polytopes.

Due to the space constraints, some of the discussions and examples are omitted
in this version. Details can be found in the arXiv version [5].

2 Preliminaries

A polygonal domain P with h holes and n corners V is a connected and closed
subset of R2 with h holes whose boundary ∂P consists of h + 1 simple closed
polygonal chains of n total line segments. The holes and the outer boundary of
P are regarded as obstacles so that any feasible path in P is not allowed to cross
the boundary ∂P . The geodesic distance d(p, q) between any two points p, q in a
polygonal domain P is defined as the length of a shortest obstacle-avoiding path
between p and q, where the length of a path is the sum of the Euclidean lengths
of its segments. It is well known from earlier work that there always exists a
shortest feasible path between any two points p, q ∈ P [14]. A pair (s, t) of points
in P that realizes the geodesic diameter diam(P) is called a diametral pair.

Throughout the paper, we frequently use several topological concepts such as
open and closed subsets, neighborhoods, and the boundary ∂A and the interior

The Geodesic Diameter of Polygonal Domains 503

intA of a set A; all of them are derived with respect to the standard topology on
Rd with the Euclidean norm ‖ · ‖ for fixed d ≥ 1. We call a k-dimensional affine
subspace of Rd a k-flat and denote the straight line segment joining two points
a, b by ab.

Let V be the set of all corners of P and π(s, t) be a shortest path between s ∈ P
and t ∈ P . Such a path is represented as a sequence π(s, t) = (s, v1, . . . , vk, t) for
some v1, . . . , vk ∈ V ; that is, a polygonal chain through a sequence of corners [14].
Note that we may have k = 0 when d(s, t) = ‖s− t‖. If two paths (with possibly
different endpoints) induce the same sequence of corners, then they are said to
have the same combinatorial structure.

The shortest path map SPM(s) for a fixed s ∈ P is a decomposition of P
into cells such that every point in a common cell can be reached from s by
shortest paths of the same combinatorial structure. Each cell σs(v) of SPM(s)
is associated with a corner v ∈ V which is the last corner of π(s, t) for any t
in the cell σs(v). We also define the cell σs(s) as the set of points t ∈ P in
which π(s, t) passes through no corner of P . Each edge of SPM(s) is an arc on
the boundary of two incident cells σs(v1) and σs(v2) determined by two corners
v1, v2 ∈ V ∪{s}. Similarly, each vertex of SPM(s) is determined by at least three
corners v1, v2, v3 ∈ V ∪{s}. Note that for fixed s ∈ P a point whose distance to s
is the largest lies at either (1) a vertex of SPM(s), (2) an intersection between the
boundary ∂P and an edge of SPM(s), or (3) a corner in V (otherwise a farther
point can be found). The shortest path map SPM(s) has O(n) complexity and
can be computed in O(n log n) time using O(n log n) working space [13]. For
more details on shortest path maps, see [14, 13, 15].

Path-length function. If π(s, t) �= st, let u and v be the first and last corners of
V visited in π(s, t), respectively. The path π(s, t) is formed as the union of su,
vt and π(u, v). Note that u and v are not necessarily distinct. In order to realize
such a path, we assert that s is visible from u and t is visible from v. That is,
s ∈ VR(u) and t ∈ VR(v), where VR(p) for any p ∈ P is defined to be the set of
all points q ∈ P such that pq ⊂ P . The set VR(p) is called the visibility region
of p ∈ P [8].

We now define the path-length function lenu,v : VR(u) × VR(v) → R for any
fixed pair of corners u, v ∈ V to be lenu,v(s, t) := ‖s − u‖ + d(u, v) + ‖v − t‖.
That is, lenu,v(s, t) represents the length of the path from s to t that has the
fixed combinatorial structure, entering u from s and exiting v to t. Also, unless
d(s, t) = ‖s − t‖ (equivalently, s ∈ VR(t)), the geodesic distance d(s, t) can be
expressed as the pointwise minimum of some path-length functions:

d(s, t) = min
u∈VR(s), v∈VR(t)

lenu,v(s, t).

Consequently, we have two possibilities for a diametral pair (s∗, t∗); either we
have d(s∗, t∗) = ‖s∗ − t∗‖ or the pair (s∗, t∗) is a local maximum of the lower
envelope of several path-length functions. We will mainly study the latter case,
since the former can be easily handled.

504 S.W. Bae, M. Korman, and Y. Okamoto

2.1 Local Maxima of the Lower Envelope of Convex Functions

In this section, we give an interesting property of the lower envelope of a family
of convex functions.

Theorem 1. Let F be a finite family of real-valued convex functions defined
on a convex subset C ⊆ Rd and g(x) := minf∈F f(x) be their lower envelope.
Suppose that g attains a local maximum at an interior point x∗ ∈ C and there
are exactly m functions f1, . . . , fm ∈ F such that m ≤ d and fi(x∗) = g(x∗)
for all i = 1, . . . , m. If none of the fi attains a local minimum at x∗, then there
exists a (d + 1−m)-flat ϕ ⊂ Rd through x∗ such that g is constant on ϕ∩U for
some neighborhood U ⊂ Rd of x∗ with U ⊂ C.

Here, we give a sketchy idea of our proof for the theorem. Consider a local
maximum x∗ of the lower envelope g of a family of functions. Let m be the
number of functions f ∈ F such that f(x∗) = g(x∗). Since g is the lower envelope,
all other functions f ′ ∈ F must satisfy f ′(x∗) > g(x∗). In particular, the function
g is the lower envelope of the m convex functions in a small neighborhood of
x∗. Since no function attains a local minimum at x∗, for each function there
exists at least one direction in which the function value does not decrease. We
show something stronger: Using convexity of the fi, we will show that there is
a flat of dimension d + 1 − m through x∗ on which the m functions that define
g must either increase or stay constant. Since x∗ is a local maximum, the only
possibility is that g remains constant in the flat.

3 Properties of Geodesic-Maximal Pairs

We call a pair (s∗, t∗) ∈ P × P maximal if (s∗, t∗) is a local maximum of the
geodesic distance function d. That is, (s∗, t∗) is maximal if and only if there are
two neighborhoods Us, Ut ⊂ R2 of s∗ and of t∗, respectively, such that for any
s ∈ Us ∩ P and any t ∈ Ut ∩ P we have d(s∗, t∗) ≥ d(s, t).

Let E be the set of all sides of P without their endpoints and B be their union.
Note that B = ∂P \ V is the boundary of P except the corners V . The goal of
this section is to prove the following theorem, which is the main geometric result
of this paper.

Theorem 2. Suppose that (s∗, t∗) is a maximal pair in P that are not visible
from each other, and Π(s∗, t∗), Vs∗ , and Vt∗ are defined as above. We have the
following implications.

(V-V) s∗ ∈ V , t∗ ∈ V implies |Π(s∗, t∗)| ≥ 1, |Vs∗ | ≥ 1, |Vt∗ | ≥ 1;
(V-B) s∗ ∈ V , t∗ ∈ B implies |Π(s∗, t∗)| ≥ 2, |Vs∗ | ≥ 1, |Vt∗ | ≥ 2;
(V-I) s∗ ∈ V , t∗ ∈ intP implies |Π(s∗, t∗)| ≥ 3, |Vs∗ | ≥ 1, |Vt∗ | ≥ 3;
(B-B) s∗ ∈ B, t∗ ∈ B implies |Π(s∗, t∗)| ≥ 3, |Vs∗ | ≥ 2, |Vt∗ | ≥ 2;
(B-I) s∗ ∈ B, t∗ ∈ intP implies |Π(s∗, t∗)| ≥ 4, |Vs∗ | ≥ 2, |Vt∗ | ≥ 3;
(I-I) s∗ ∈ intP, t∗ ∈ intP implies |Π(s∗, t∗)| ≥ 5, |Vs∗ | ≥ 3, |Vt∗ | ≥ 3.

Moreover, each of the above bounds is tight.

The Geodesic Diameter of Polygonal Domains 505

We first give an idea of the proof. The general reasoning is roughly the same
for all the different scenarios, and thus we focus on the case in which (s∗, t∗)
is a maximal pair and both s∗ and t∗ are interior points. Consider the geodesic
distance as a four-variate function in a neighborhood of (s∗, t∗). As mentioned in
Section 2, the geodesic distance is the pointwise minimum of the family of path-
length functions. Since the pair (s∗, t∗) is maximal, we want to apply Theorem
1. We will show that all the requirements are satisfied, which implies that the
geodesic distance is constant in a flat of dimension d + 1−m = 5−m. However,
we will also show that the geodesic distance function can only remain constant in
a zero-dimensional flat (i.e., a point), hence m ≥ 5. The main technical difficulty
of the proof is the fact that the lenu,v are not globally defined. Thus, we must
slightly redefine them in a way that all conditions of Theorem 1 are satisfied.
In the other cases (boundary-interior, boundary-boundary, etc.) the boundary
of P introduces additional constraints that reduce the degrees of freedom of the
geodesic distance function. Hence, fewer paths are enough to pin the solution.

Throughout this section, for easy discussion, we assume that there is a unique
shortest path between any two corners u, v ∈ V . This assumption does not affect
Theorem 2 since multiple shortest paths between corners in V can only increase
|Π(s∗, t∗)|. Note that this assumption implies that the pairs (ui, vi) are distinct,
while the ui (also the vi) are not necessarily distinct. We then have |Vs∗ | ≤ m,
|Vt∗ | ≤ m, and |{(ui, vi) | 1 ≤ i ≤ m}| = m, where m = |Π(s∗, t∗)|.

The following lemma proves the bounds on |Vs∗ | and |Vt∗ | of Theorem 2.

Lemma 1. Let (s∗, t∗) be a maximal pair.

1. If t∗ ∈ B, then |Vt∗ | ≥ 2. Moreover, if t∗ ∈ e ∈ E, then there exists v ∈ Vt∗

such that v is off the line supporting e.
2. If t∗ ∈ intP, then |Vt∗ | ≥ 3 and t∗ lies in the interior of the convex hull of Vt∗ .

Lemma 1 immediately implies the lower bound on |Π(s∗, t∗)| when s∗ ∈ V or
t∗ ∈ V since |Π(s∗, t∗)| ≥ max{|Vs∗ |, |Vt∗ |}. This finishes the proof for Cases
(V-*). Note that the bounds for Case (V-V) are trivial.

From now on, we assume that both s∗ and t∗ are not corners of P . This
assumption, together with Lemma 1, implies multiple shortest paths between
s∗ and t∗, and thus d(s∗, t∗) > ‖s∗ − t∗‖. Hence, as discussed in Section 2, any
maximal pair falling into one of Cases (B-B), (B-I), and (I-I) appears as a
local maximum of the lower envelope of some path-length functions.

Case (I-I): When both s∗ and t∗ lie in intP. We will apply Theorem 1 to prove
Theorem 2 for Case (I-I). By definition of ui and vi, we have that the path-
length function lenui,vi(s∗, t∗) satisfies lenui,vi(s∗, t∗) = d(s∗, t∗). Thus, at least
m pairs (u, v) of corners satisfy lenu,v(s∗, t∗) = d(s∗, t∗). If there are exactly m
such pairs, we can apply Theorem 1 directly.

Unfortunately, this is not always the case. A single shortest path πi ∈ Π(s∗, t∗)
may give additional pairs (u, v) of corners with u, v ∈ πi such that (u, v) �= (ui, vi)
and lenu,v(s∗, t∗) = d(s∗, t∗). This happens only when u, ui, s

∗ or v, vi, t
∗ are

collinear. In order to resolve this problem, we define the merged path-length func-
tions that satisfy all the requirements of Theorem 1 even in the degenerate case.

506 S.W. Bae, M. Korman, and Y. Okamoto

s∗

ui

u′
i

πi

s∗

ui = u′
i

πi

s∗

ui

u′
i

πi

(a)

ui

u′
i

πi

(b)

s∗s∗

ui
u′

i

πi

Fig. 2. (a) How to determine u′
i. (left to right) ui = u′

i; s∗, ui, and the second corner
are collinear; s∗ and the first three corners are collinear (b) For points in a small disk
B centered at s∗ with B ⊂ VR(u′

i) ∪ VR(ui), the function starti measures the length
of the shortest path from u′

i to each.

Recall that the combinatorial structure of each shortest path πi ∈ Π(s∗, t∗)
can be represented by a sequence (ui = ui,1, . . . , ui,k = vi) of corners in V (see
Fig. 2). We define u′

i to be one of the ui,j as follows: If s∗ does not lie on the
line � through ui and ui,2, then u′

i := ui; otherwise, if s∗ ∈ �, then u′
i := ui,j ,

where j is the largest index such that for any open neighborhood N ⊂ R2 of s∗

there exists a point s ∈ (N ∩ VR(ui,j)) \ �. Note that such u′
i always exists, and

if no three of V are collinear, then we always have either u′
i = ui or u′

i = ui,2;
Fig. 2(a) illustrates how to determine u′

i. Also, we define v′i in an analogous
way. Let starti : VR(u′

i) ∪ VR(ui) → R and endi : VR(v′i) ∪ VR(vi) → R be two
functions defined as

starti(s) :=

�
‖s − u′

i‖ if s ∈ VR(u′
i),

‖s − ui‖ + ‖ui − u′
i‖ if s ∈ VR(ui) \ VR(u′

i);

endi(t) :=

�
‖t − v′i‖ if t ∈ VR(v′i),
‖t − vi‖ + ‖vi − v′i‖ if t ∈ VR(vi) \ VR(v′i).

This allows us to define merged path-length function fi : Di → R as

fi(s, t) := starti(s) + d(u′
i, v

′
i) + endi(t),

where Di := (VR(u′
i) ∪ VR(ui)) × (VR(v′i) ∪ VR(vi)) ⊆ P × P ; see Fig. 2(b).

We consider P × P as a subset of R4 and each pair (s, t) ∈ P × P as a point
in R4. Also, we denote by (sx, sy) the coordinates of a point s ∈ P and we
write s = (sx, sy) or (s, t) = (sx, sy, tx, ty) by an abuse of notation. Observe
that fi(s, t) = min{lenui,vi(s, t), lenu′

i
,vi

(s, t), lenui,v′
i
(s, t), lenu′

i
,v′

i
(s, t)} for any

(s, t) ∈ Di if we define lenu,v(s, t) = ∞ when s �∈ VR(u) or t �∈ VR(v).

Lemma 2. The functions fi satisfy the following conditions.

(i) There exists an open convex neighborhood C ⊂ R4 of (s∗, t∗) with C ⊆
�

Di

such that d(s, t) = mini∈{1,...,m} fi(s, t) for any (s, t) ∈ C.
(ii) All functions fi are convex on C.

The Geodesic Diameter of Polygonal Domains 507

(iii) None of the fi attains a local minimum at (s∗, t∗).
(iv) fi(s∗, t∗) = d(s∗, t∗) for any i ∈ {1, . . . , m}.
(v) For any i ∈ {1, . . . , m} and any (s, t) ∈ intDi, there exists a unique line

�i ⊂ R4 through (s, t) such that fi is constant on �i ∩ C. Moreover, there
exists at most one other index j �= i such that �i = �j.

(vi) For any two indices i, j ∈ {1, . . . , m}, any (s, t) ∈ C and any small
neighborhood U ⊆ C of (s, t), there exists a pair (s′, t′) ∈ U such that
fi(s, t) < fi(s′, t′) and fj(s, t) < fj(s′, t′).

We take the convex neighborhood C of (s∗, t∗) of property (i) in Lemma 2 and
apply Theorem 1 (note that properties (i)-(iv) ensure that the conditions of
Theorem 1 are satisfied). Suppose that m < 5. Then, by Theorem 1, there exists
at least one line � ∈ R4 through (s∗, t∗) such that d is constant on � ∩ C. In
the following, we will use the other geometric properties (v)-(vi) of Lemma 2 to
achieve a contradiction, finally showing that m ≥ 5 must hold.

Since (s∗, t∗) is a local maximum, there exists a small neighborhood U ⊂ C of
(s∗, t∗) such that d(s, t) ≤ d(s∗, t∗) for all (s, t) ∈ U . By property (v) of Lemma 2,
at most two functions fi are constant on �∩U . Without loss of generality, we can
assume that functions f3, . . . , fm are not constant. Since the geodesic distance
is constant on � ∩ U and d(s, t) = mini∈{1,...,m} fi(s, t), any function that does
not remain constant must strictly increase in both directions along �.

That is, for any (s′, t′) ∈ � ∩ U with (s′, t′) �= (s∗, t∗) and for all i ≥ 3, we
have min{f1(s′, t′), f2(s′, t′)} < fi(s′, t′). Thus, there exists a small neighborhood
U2 ⊆ U of (s′, t′) such that d(s, t) = min{f1(s, t), f2(s, t)} for all (s, t) ∈ U2.
However, by property (vi) of Lemma 2, there exists a pair (s′′, t′′) ∈ U2 such
that f1(s′, t′) < f1(s′′, t′′) and f2(s′, t′) < f2(s′′, t′′), contradicting the fact that
(s∗, t∗) is maximal. Hence, we achieve a bound m = |Π(s∗, t∗)| ≥ 5, as claimed
in Case (I-I) of Theorem 2.

As aforementioned, the other cases (B-B) and (B-I) can be handled with
analogous arguments. The claimed bounds on |Vs∗ | and |Vt∗ | are shown by
Lemma 1, which completes the proof of Theorem 2.

4 Computing the Geodesic Diameter

Since a diametral pair is in fact maximal, it falls into one of the cases shown in
Theorem 2. In order to find a diametral pair we examine all possible scenarios
accordingly.

Cases (V-*), where at least one point is a corner in V , can be handled in
O(n2 log n) time by computing SPM(v) for every v ∈ V and traversing it to find
the farthest point from v, as discussed in Section 2. We focus on Cases (B-B),
(B-I), and (I-I), where a diametral pair consists of two non-corner points.

From the computational point of view, the most difficult case corresponds to
Case (I-I) of Theorem 2. In particular, when |Π(s∗, t∗)| = 5 and ten corners of
V are involved, resulting in |Vs∗ | = |Vt∗ | = 5. Note that we do not need to take
special care for the case of |Π(s∗, t∗)| > 5. By Theorem 2 and its proof, it is guar-
anteed that there are at least five distinct pairs (u1, v1), . . . , (u5, v5) of corners

508 S.W. Bae, M. Korman, and Y. Okamoto

in V such that lenui,vi(s∗, t∗) = d(s∗, t∗) for any i ∈ {1, . . . , 5} and the sys-
tem of equations lenu1,v1(s, t) = · · · = lenu5,v5(s, t) determines a 0-dimensional
zero set, corresponding to a constant number of candidate pairs in intP × intP .
Moreover, each path-length function lenu,v is an algebraic function of degree at
most 4. Given five distinct pairs (ui, vi) of corners, we can compute all candi-
date pairs (s, t) in O(1) time by solving the system.2 For each candidate pair we
compute the geodesic distance between the pair to check its validity. Since the
geodesic distance between any two points s, t ∈ P can be computed in O(n log n)
time [13], we obtain a brute-force O(n11 log n)-time algorithm, checking O(n10)
candidate pairs obtained from all possible combinations of 10 corners in V .

As a different approach, one can exploit the SPM-equivalence decomposition
of P , which subdivides P into regions such that the shortest path map of any two
points in a common region are topologically equivalent [8]. It is not difficult to
see that if (s, t) is a pair of points that equalizes any five path-length functions,
then both s and t appear as vertices of the decomposition. However, the current
best upper bound on the complexity of the SPM-equivalence decomposition is
O(n10) [8], and thus this approach hardly leads to a remarkable improvement.

Instead, we do the following for Case (I-I) with |Vs∗ | = 5. We choose any five
corners u1, . . . , u5 ∈ V (as a candidate for the set Vs∗) and overlay their shortest
path maps SPM(ui). Since each SPM(ui) has O(n) complexity, the overlay consists
of O(n2) cells. Any cell of the overlay is the intersection of five cells associated
with v1, . . . , v5 ∈ V in SPM(u1), . . . , SPM(u5), respectively. Choosing a cell of
the overlay, we get five (possibly, not distinct) v1, . . . , v5 and a constant number
of candidate pairs by solving the system lenu1,v1(s, t) = · · · = lenu5,v5(s, t). We
iterate this process for all possible tuples of five corners u1, . . . , u5, obtaining a
total of O(n7) candidate pairs in O(n7 log n) time. Note that the other subcases
with |Vs∗ | ≤ 4 can be handled similarly, resulting in O(n6) candidate pairs.

For each candidate pair (s, t), we must check their validity (that is, that the
paths (s, ui, . . . , vi, t) are indeed shortest paths) and their geodesic distance using
a two-point query structure of Chiang and Mitchell [8]. For a fixed parameter
0 < δ ≤ 1 and any fixed ε > 0, we can construct, in O(n5+10δ+ε) time, a data
structure that supports O(n1−δ log n)-time two-point shortest path queries. The
total running time is O(n7 log n)+O(n5+10δ+ε)+O(n7)×O(n1−δ log n). We set
δ = 3

11 to optimize the running time to O(n7+ 8
11 +ε).

Also, we can use an alternative two-point query data structure whose perfor-
mance is sensitive to h [8]: after O(n5) preprocessing time using O(n5) storage,
two-point queries can be answered in O(log n + h) time.3 Using this alternative

2 Here, we assume that fundamental operations on a constant number of polynomials of
constant degree with a constant number of variables can be performed in constant time.

3 If h is relatively small, one could use the structure of Guo, Maheshwari and Sack [11]
which answers a two-point query in O(h log n) time after O(n2 log n) preprocessing
time using O(n2) storage, or another structure by Chiang and Mitchell [8] that
supports a two-point query in O(h log n) time, spending O(n + h5) preprocessing
time and storage.

The Geodesic Diameter of Polygonal Domains 509

structure, the total running time of our algorithm becomes O(n7(log n + h)).
Note that this method outperforms the previous one when h = O(n

8
11).

The other cases can be handled analogously with strictly better time bound.
For Case (B-I), we handle only the case of |Π(s∗, t∗)| = 4 with |Vt∗ | = 3
or 4. For the subcase with |Vt∗ | = 4, we choose any four corners from V as
v1, . . . , v4 as a candidate for Vt∗ and overlay their shortest path maps SPM(vi).
The overlay, together with V , decomposes ∂P into O(n) intervals. Each such
interval determines u1, . . . , u4 as above, and the side es ∈ E on which s∗ should
lie. Now, we have a system of four equations on four variables: three from the
corresponding path-length functions lenui,vi which should be equalized at (s∗, t∗)
and the fourth from the supporting line of es. Solving the system, we get a
constant number of candidate maximal pairs, again by Theorem 2 and its proof.
In total, we obtain O(n5) candidate pairs. The other subcase with |Vt∗ | = 3 can
be handled similarly, resulting in O(n4) candidate pairs. As above, we can exploit
two different structures for two-point queries. Consequently, we can handle Case
(B-I) in O(n5+ 10

11 +ε) or O(n5(log n + h)) time.
In Case (B-B) when s∗, t∗ ∈ B, we handle the case of |Π(s∗, t∗)| = 3 with

|Vs∗ | = 2 or 3. For the subcase with |Vs∗ | = 3, we choose three corners as a
candidate of Vs∗ and take the overlay of their shortest path maps SPM(ui). It
decomposes ∂P into O(n) intervals. Each such interval determines three corners
v1, v2, v3 forming Vt∗ and a side et ∈ E on which t∗ should lie. Note that we have
only three equations so far; two from the three path-length functions and the
third from the line supporting to et. Since s∗ also should lie on a side es ∈ E with
es �= et, we need to fix such a side es that

�
1≤i≤3 VR(ui) intersects es. In the

worst case, the number of such sides es is Θ(n). Thus, we have O(n5) candidate
pairs for Case (B-B); again, the other subcase with |Vs∗ | = 2 contributes to a
smaller number O(n4) of candidate pairs. Testing each candidate pair can be
done as above, resulting in O(n5+ 10

11 +ε) or O(n5(log n + h)) total running time.
Alternatively, one can exploit a two-point query structure only for boundary

points on ∂P for Case (B-B). The two-point query structure by Bae and Okam-
ato [6] builds an explicit representation of the graph of the lower envelope of the
path-length functions lenu,v restricted on ∂P × ∂P in O(n5 log n log∗ n) time.4

Since |Π(s∗, t∗)| ≥ 3 in Case (B-B), such a pair appears as a vertex on the lower
envelope. Hence, we are done by traversing all the vertices of the lower envelope.

As Case (I-I) is the bottleneck, we conclude the following.

Theorem 3. Given a polygonal domain having n corners and h holes, the
geodesic diameter and a diametral pair can be computed in O(n7+ 8

11+ε) or
O(n7(log n + h)) time in the worst case, where ε is any fixed positive number.

5 Concluding Remarks

We have presented the first algorithms that compute the geodesic diameter of a
given polygonal domain. As mentioned in the introduction, a similar result for
4 More precisely, in O(n4λ65(n) log n) time, where λm(n) stands for the maximum

length of a Davenport-Schinzel sequence of order m on n symbols.

510 S.W. Bae, M. Korman, and Y. Okamoto

convex 3-polytopes was shown in [16]. We note that, although the main result
of this paper is similar, the techniques used in the proof are quite different.
Indeed, the key requirement for our proof is the fact that shortest paths in our
environment are polygonal chains whose vertices are in V , a claim that does not
hold in higher dimensions (even in 2.5-D surfaces). It would be interesting to
find other environments in which similar result holds.

Another interesting question would be finding out how many maximal pairs
a polygonal domain can have. The analysis of Section 4 gives an O(n7) upper
bound. On the other hand, one can easily construct a simple polygon in which
the number of maximal pairs is Ω(n2). Any improvement on the O(n7) upper
bound would lead to an improvement in the running time of our algorithm.

Though in this paper we have focused on exact geodesic diameters only, an
efficient algorithm for finding an approximate geodesic diameter would be also
interesting. Notice that any point s ∈ P and its farthest point t ∈ P yield a
2-approximate diameter; that is, diam(P) ≤ 2 maxt∈P d(s, t) for any s ∈ P .
Also, based on a standard technique using a rectangular grid with a specified
parameter 0 < ε < 1, one can obtain a (1 + ε)-approximate diameter in O((n

ε2 +
n2

ε) log n) time as follows. Scale P so that P can fit into a unit square, and
partition P with a grid of size ε−1 × ε−1. We define the set D as the point set
that has the center of grid squares (that have a nonempty intersection with P)
and intersection points between boundary edges and grid segments. We now can
discretize the diameter problem by considering only geodesic distances between
pairs of points of D. It turns out that, when ε is small enough, the distance
between any two points s and t in P is within a 1 + ε factor of the distance
between two points of D. Breaking the quadratic bound in n for the (1 + ε)-
approximate diameter seems a challenge at this stage.5 We conclude by posing
the following problem: for any or some 0 < ε < 1, is there any algorithm that
finds a (1 + ε)-approximate diametral pair in O(n2−δ · poly(1/ε)) time for some
positive δ > 0?

Acknowledgements. We thank Hee-Kap Ahn, Jiongxin Jin, Christian Knauer,
and Joseph Mitchell for fruitful discussion, and Joseph O’Rourke for pointing
out the reference [20].

References

1. Agarwal, P.K., Aronov, B., O’Rourke, J., Schevon, C.A.: Star unfolding of a poly-
tope with applications. SIAM J. Comput. 26(6), 1689–1713 (1997)

2. Aronov, B., Fortune, S., Wilfong, G.: The furthest-site geodesic Voronoi diagram.
Discrete Comput. Geom. 9, 217–255 (1993)

3. Asano, T., Toussaint, G.: Computing the geodesic center of a simple polygon.
Technical Report SOCS-85.32, McGill University (1985)

4. Bae, S.W., Chwa, K.-Y.: The geodesic farthest-site Voronoi diagram in a polygonal
domain with holes. In: Proc. 25th Annu. Sympos. Comput. Geom. (SoCG), pp.
198–207 (2009)

5 The idea of this approximation algorithm is due to Hee-Kap Ahn.

The Geodesic Diameter of Polygonal Domains 511

5. Bae, S.W., Korman, M., Okamoto, Y.: The geodesic diameter of polygonal domains.
arXiv preprint (2010), arXiv:1001.0695

6. Bae, S.W., Okamoto, Y.: Querying two boundary points for shortest paths in a
polygonal domain. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS,
vol. 5878, pp. 1054–1063. Springer, Heidelberg (2009), arXiv:0911.5017

7. Chazelle, B.: A theorem on polygon cutting with applications. In: Proc. 23rd Annu.
Sympos. Found. Comput. Sci. (FOCS), pp. 339–349 (1982)

8. Chiang, Y.-J., Mitchell, J.S.B.: Two-point Euclidean shortest path queries in the
plane. In: Proc. 10th ACM-SIAM Sympos. Discrete Algorithms (SODA), pp. 215–
224 (1999)

9. Cook IV, A.F., Wenk, C.: Shortest path problems on a polyhedral surface. In: Proc.
11th Internat. Sympos. Algo. Data Struct (WADS), pp. 156–167 (2009)

10. Guibas, L.J., Hershberger, J.: Optimal shortest path queries in a simple polygon.
J. Comput. Syst. Sci. 39(2), 126–152 (1989)

11. Guo, H., Maheshwari, A., Sack, J.-R.: Shortest path queries in polygonal domains.
In: Fleischer, R., Xu, J. (eds.) AAIM 2008. LNCS, vol. 5034, pp. 200–211. Springer,
Heidelberg (2008)

12. Hershberger, J., Suri, S.: Matrix searching with the shortest path metric. SIAM J.
Comput. 26(6), 1612–1634 (1997)

13. Hershberger, J., Suri, S.: An optimal algorithm for Euclidean shortest paths in the
plane. SIAM J. Comput. 28(6), 2215–2256 (1999)

14. Mitchell, J.S.B.: Shortest paths among obstacles in the plane. Internat. J. Comput.
Geom. Appl. 6(3), 309–331 (1996)

15. Mitchell, J.S.B.: Shortest paths and networks. In: Handbook of Discrete and Com-
putational Geometry, 2nd edn., ch. 27, pp. 607–641. CRC Press, Inc., Boca Raton
(2004)

16. O’Rourke, J., Schevon, C.: Computing the geodesic diameter of a 3-polytope. In:
Proc. 5th Annu. Sympos. Comput. Geom. (SoCG), pp. 370–379 (1989)

17. O’Rourke, J., Suri, S.: Polygons. In: Handbook of Discrete and Computational
Geometry, 2nd edn., ch. 26, pp. 583–606. CRC Press, Inc., Boca Raton (2004)

18. Pollack, R., Sharir, M., Rote, G.: Computing the geodesic center of a simple poly-
gon. Discrete Comput. Geom. 4(6), 611–626 (1989)

19. Suri, S.: The all-geodesic-furthest neighbors problem for simple polygons. In: Proc.
3rd Annu. Sympos. Comput. Geom. (SoCG), pp. 64–75 (1987)

20. Zalgaller, V.A.: An isoperimetric problem for tetrahedra. Journal of Mathematical
Sciences 140(4), 511–527 (2007)

Polyhedral and Algorithmic Properties of

Quantified Linear Programs�

Ulf Lorenz, Alexander Martin, and Jan Wolf

Institute of Mathematics, Technische Universität Darmstadt, Germany

Abstract. Quantified linear programs (QLPs) are linear programs with
variables being either existentially or universally quantified. The integer
variant is PSPACE-complete, and the problem is similar to games like
chess, where an existential and a universal player have to play a two-
person-zero-sum game. At the same time, a QLP with n variables is a
variant of a linear program living in IRn, and it has strong similarities
with multistage-stochastic programs with variable right-hand side. We
show for the continuous case that the union of all winning policies of the
existential player forms a polytope in IRn, that its vertices are games of
so called extremal strategies, and that these vertices can be encoded with
polynomially many bits. The latter allows the conclusion that solving a
QLP is in PSPACE. The hardness of the problem stays unknown.

1 Introduction

In the 1940s, linear programming arose as a mathematical planning model and
rapidly found its daily use in many industries. However, integer programming,
which was introduced in 1951, became dominant far later at the beginning the
1990s. Certainly, one reason for the delay of the integer programming success
story stems from the fact that linear programming resides in the complexity
class P, while integer programming is NP complete. Nowadays, we are able to
solve very large mixed integer programs of practical size, but companies observe
an increasing danger of disruptions, i.e., events occur which prevent companies
from acting as planned. Therefore, there is a need for planning and deciding
under uncertainty. Uncertainty, however, often pushes the complexity of tradi-
tional optimizations problems, which are in P or NP, to PSPACE. The quantified
versions of linear integer programs cover the complexity class PSPACE. The re-
laxed versions, which we examine in this paper, additionally have remarkable
polyhedral properties. The idea of our research is to explore the abilities of lin-
ear programming when applied to PSPACE-complete problems, similar as it was
applied to NP-complete problems in the 1990s.

1.1 State-of-the-Art

For traditional deterministic optimization one assumes data for a given problem
to be fixed and exactly known when the decisions have to be taken. However, data
� Research partially supported by German Research Foundation (DFG) funded SFB

805.

M. de Berg and U. Meyer (Eds.): ESA 2010, Part I, LNCS 6346, pp. 512–523, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Polyhedral and Algorithmic Properties of Quantified Linear Programs 513

are often afflicted with some kinds of uncertainties, and only estimations, maybe
in form of probability distributions, are known. Examples are flight or travel
times. Throughput-time, arrival times of externally produced goods, and scrap
rate are subject to variations in production planning processes. One possibility
to deal with these uncertainties is to aggregate a given probability distribution
to a single estimated number. Then, the optimum concerning these estimated
input data can be computed with the help of traditional optimization tools. In
some fields of application, as e.g. the fleet assignment problem of airlines, this
procedure was successfully established. In other fields, like production planning
and control, this technique could not be successfully applied, although mathe-
matical models do exist [17]. Because of the intuitive complexity of even some
deterministic models, its stochastic counterparts are often not considered. In-
stead, safety stock is introduced, demanded quantities are overestimated, and
buffers are oversized. However, this resource intensive behaviour is contrasted
by a couple of publications within the last decade, indicating that stochastic
problems are not necessarily out of scope [7,12,15,14,19].

1.2 Complexity and Algorithmic Issues

From complexity theory, we know that many interesting optimization prob-
lems under uncertainty are PSPACE complete [16]. The negative results from
complexity theory seem discouraging to find efficient (i.e. polynomial time) algo-
rithms to solve optimization problems that are PSPACE complete. As a conse-
quence, algorithmics mostly deal with restricted problems which allow finding a
polynomial-time algorithm, or at least approximations [10,6]. The self-restriction
to efficient algorithms (in a formal sense), however, is related to worst-case in-
stances. This does not reflect the fact that the most astonishing and admired
successes of computing intelligence are modeled as NP-complete problems (mixed
integer linear programs) and PSPACE-complete problems (computer games like
Chess [4]).

Contrasting the efficiency debate, we can interpret a set of expressions, which
can encode a PSPACE-complete problem, as a very powerful modeling language:
more powerful than necessary to encode any NP-complete problem. The fact that
it is not possible to find polynomial time algorithms for all problems that are
encoded with the help of such a powerful modeling language, leads to the conse-
quence that research for new solutions must be driven from the application-side
or even from the instances-side, as e.g. presented in [12]. Relatively unexplored
are the abilities of linear programming extensions in the PSPACE-complete
world. In this context, Subramani introduced the notion of quantified linear
programs [20,21].

1.3 Solution Issues

Prominent solution paradigms for optimization under uncertainty are Dynamic
Programming [2], Sampling [11], the exploration of Markov-Chains [22], Robust
Optimization [13], and Stochastic Programming [3,7,18,5]. Markov-Chains and

514 U. Lorenz, A. Martin, and J. Wolf

Dynamic Programming are often used for problems from complexity class P, but
for more complex problems, other algorithms are often faster, like e.g. the Al-
phabeta algorithm for two-person zero-sum games [4]. Stochastic Programming
can be essentially divided into two-stage and multi-stage problems with so-called
recourse. A set of initial decisions are taken first, followed by a random event.
After this, recourse decisions are taken, which allow to compensate for events
that have been observed in previous stages. The multi-stage problem, accord-
ingly consists of multiple stages, with a random event occurring between each
stage. Such a problem can be transformed into a so-called deterministic equiv-
alent program (DEP) and then be solved with the help of linear programming.
An appropriate procedure for solving multi-stage stochastic programs are the
nested decomposition procedure and its variants [3]. A multi-stage stochastic
integer problem with only discrete probabilities is also called a game against
nature, cf. [16,8].

In Section 2, we formally describe the QLP-problem and present an illustrating
example. In Section 3, we analyse the polyhedral properties of the QLP problem.
We make intensive use of the problem’s ambiguity, being a two-person zero-
sum game between two players on the one side, and being a convex multi-stage
decision problem on the other one. In the last section, we present a solution
algorithm running in polynomial space, based on Nested Benders decomposition.
Up to now, only Fourier-Motzkin elimination based procedures were known,
which consume double exponential time and space in the worst case.

2 The Problem Statement: Quantified Linear Programs

Within this paper, we intend to concentrate on quantified linear programs, as
they were introduced by Subramani [21,20], who also presented first analytical
results.

Given: A vector of variables x = (x1, ..., xn) ∈ Qn, upper and lower bounds
u ∈ ZZn and l ∈ ZZn with li ≤ xi ≤ ui , a matrix A ∈ Qm×n, a vector b ∈ Qm

and a quantifier string Q = (q1, ..., qn) ∈ {∀, ∃}n, where the quantifier qi belongs
to the variable xi, for all 1 ≤ i ≤ n. We denote a QLP as [Q : Ax ≤ b]. A maximal
subset of Q(x), which contains a consecutive sequence of quantifiers of the same
type, is called a (variable-) block. A full assignment of numbers to the variables
is interpreted as a game between an existential player (fixing the existential
variables) and a universal player (fixing the universally quantified variables).
The variables are set in consecutive order, as determined by the quantifier string.
Consequently, we say that a player makes the move xk = z, if he fixes the variable
xk to the value z. At each such move, the corresponding player knows the settings
of x1, ..., xi−1 before setting xi. If, at the end, all constraints of Ax ≤ b hold,
the existential player wins the game. Otherwise the universal player wins. For
ease of explanation, we sometimes rewrite the system as [Q(x, y) : A · (x

y) ≤ b],
y representing the universal variables, x the existential ones. Without loss of
generality, we can assume that universally quantified variables are between zero
and one.

Polyhedral and Algorithmic Properties of Quantified Linear Programs 515

Fig. 1. QLP instance in dimension 3

Question: Is there an algorithm that fixes a variable xi with the knowledge,
how x1, ..., xi−1 have been set before, such that the existential player wins the
game, no matter, how the universal player acts when he has to move?

In [20,21], this problem occurs in two variants: a) all variables are discrete
(QIP) and b) all variables are continuous (QLP). It has been shown that the
restricted QLP problem with only one quantifier-change is either in P (when the
quantifier string begins with existential quantifiers and ends with universal ones)
or is coNP-complete (when the quantifier string begins with universal quantifiers
and ends with existential ones) [21].

Definition 1. (Strategy) A strategy (Vx∪̇Vy, E, L) for the existential player
S is a labeled tree of depth n, withVx and Vy being two disjoint sets of nodes,
and a set L ∈ Q|E| of edge-labels. Nodes from Vx are called existential nodes,
nodes from Vy are called universal nodes. Each tree level i consists either of only
existential nodes or of only universal nodes, depending on the quantifier qi of
the variable xi. Each edge of the set E, leaving a tree-node of level i, represents
an assignment for the variable xi. li ∈ L describes the value of variable xi on
edge ei ∈ E. Existential nodes have exactly one successor, universal nodes have
two successors, one representing xi = 0 and xi = 1 the other1. (Generally, the
coefficients of a universal variable y of an arbitrary QLP-instance can be scaled
in a way such that y ∈ [0, 1].) A strategy is called a winning strategy, if all paths
from the root to a leaf represent a vector x such that Ax ≤ b.

Definition 2. (Policy) A policy is an algorithm that fixes a variable xi, being
the ith component of the vector x, with the knowledge, how x1, ..., xi−1 have been
set before.

A 3-dimensional example of a QIP/QLP is shown in Fig. 1. If we restrict the
variables to the integer bounds of their domains, we observe a winning strategy
for the existential player as shown in Figure 2. In this example, a + in a tree leaf
means that the existential player wins when this leaf is reached. A - marks a win
for the universal player. Numbers at the edges mark the choices for variables.
If the universal player moves to −1 and 0 (i.e., he sets x1 = −1 and x2 = 0)
the existential player has to move to 2. If the universal player moves to −1 and
1, the existential player must set the variable x3 = −2 etc. We see that the
existential player has to react carefully to former moves of the universal player.

1 Later, in Lemma 2, we will show that by forcing universal variables to 0 and 1, we
do not loose any generality.

516 U. Lorenz, A. Martin, and J. Wolf

If we now relax the variables, allowing non-integral values for the correspond-
ing domains, the resulting solution space of the corresponding QLP becomes

Fig. 2. The winning strategy (solid) for the integer QLP
example in Fig. 1

polyhedral.
Moreover, the solu-

tion of the resulting
problem when x1 =
−1 is a line segment:
B (cf. Fig 3). On the
left side of Figure 3,
we can still see the
corresponding partial
strategy of the integer
example in Figure 2.
The strategy consists
of the two end-points
of B. On the right side of Figure 3, the same convex hull of the solution space is
shown from another perspective.

Fig. 3. A visualization of the 3-d solution space of exam-
ple of Fig. 1

We observe that the
existential player has more
freedom in the choice of
x3, when the universal
player sets x1 = 0. If
x1 = 0, the solution
space of the rest-problem
will just be the facet
C. Interestingly, the line
segment B and the facet
C lie in the 3-dimensional
vector space in such a
way that there exists no
linear description for a solution policy. The fact that a solution of a QLP has
no linear description in general is not surprising, because the QLP problem is
coNP-hard.

3 QLP Analysis

In the following, we consider a QLP as defined in the previous section. Let
existentially quantified variables be from Q and universally quantified variables
be from {0, 1}, and let n be the dimension of x.

Definition 3. (convex combination of strategies) Let S and S′ be two strategies
for the same QLP instance. We call S′′ = (V, E, L′′) a convex combination of
S = (V, E, L) and S′ = (V, E, L′) if there is some α ∈ [0, 1] such that for each
edge ei ∈ E it is l′′i = αl′i + (1 − α)li. We write S′′ = αS′ + (1 − α)S.

Lemma 1. (strategy-convexity) If S and S′ are winning strategies (for the exis-
tential player), and α ∈ [0, 1], also S′′ = αS′ + (1−α)S will be a winning strategy.

Polyhedral and Algorithmic Properties of Quantified Linear Programs 517

Proof. (sketched) We apply conventional convexity to all paths of the strategies
S, S′ and S′′.

Up to this point, we have restricted the choices of the universal player to
0 and 1 because we were interested in the existence of winning policies for the
existential player. Now, we are interested in polyhedral properties. Therefore, the
next step is to relax this integrality constraint. As a consequence, the solution
of an existential strategy can no longer be described as a tree, and instead, we
have to use the notion of a policy. This means, an existential variable, i.e. the
component xk of a solution vector x is determined as the value of a computable
function: xk = fk(x1, ..., xk−1).

Lemma 2. (policy-convexity) If P and P ′ are winning policies for the existential
player, also P ′′ = αP ′ + (1 − α)P will be a winning policy for the existential
player. Here, P ′′ is an algorithm that picks the outputs of P and P ′ for arbitrary
input and combines them accordingly.

Proof. (sketched) Conventional convexity arguments on paths of the policies P, P ′

and P ′′ are combined with induction.

Remark: We can conclude that the existential player has a winning strategy
against a two-value-restricted universal player if and only if he has a winning
policy against an universal player without the restriction (also cf. [21]).

3.1 A Simple Solution Procedure for the QLP Problem ([21])

Let [Q : Ax ≤ b] be a QLP instance. If the last variable xn of x is existentially
quantified, we can apply the Fourier-Motzkin elimination (FME) procedure. No
matter how x1, ..., xn−1 are fixed, the remaining problem is a (parametrized)
polytope. If, however, xn is a universal quantified variable, there is a simpler
algorithm to eliminate the last variable. Let us interpret the given instance as
a game between the two players. Then fixing the last variable means that the
universal player makes the last move. The existential player wants to achieve
that Ax ≤ b, but the universal player wants to hinder him, especially with his
last move. If possible, the universal player will therefore choose a move which
destroys at least one of the inequalities. Therefore, the existential player has a
winning strategy if and only if he has a winning strategy against the (n − 1)-
dimensional problem which occurs if we assume the worst case universal choice,
inequality by inequality. Let us call the procedure that eliminates existential
variables with the help of the FME and universal variables with the help of the
given gaming argument, the QLP-elimination-procedure. A detailed step by step
proof for correctness can be found in [21].

Definition 4. (extremal strategies (extremal policy)) A strategy (policy) S is
called extremal, if S cannot be described as a convex combination of two different
strategies (policies). This includes that all sub-strategies / sub-policies, induced
by the corresponding subtrees of S, are extremal, if and only if S is extremal
itself.

518 U. Lorenz, A. Martin, and J. Wolf

3.2 The Solution Spaces of QLP Instances

In the following, we show that the solution space of a QLP instance, i.e., the
union of all winning policies of the existential player, is a polytope. Certainly,
there are several ways how to show the given fact, but we choose a quite elemen-
tary approach, because it makes the following detail visible: The vertices of the
solution-space correspond to games of extremal winning strategies. Moreover, an
extremal winning strategy is determined by a subset of polytope-vertices in IRn.
The proof proceeds in several steps.

Lemma 3. The convex combination of all leaves of all extremal winning strate-
gies against a {0, 1}-restricted universal player, is a polytope in IRn.

Proof. : Of course, the convex combination of the leaves of all winning strategies
is a convex set. We now argue that the number of extreme points is finite. Let any
QLP-instance I = [Q : Ax ≤ b] be given, let S be an extremal winning strategy
for the existential player. We eliminate the variables xn, ..., xn−k such that only
the first block of variables stays, with the help of the QLP-elimination-procedure.
If the variables of this first block are m universally quantified variables, the first
move of the universal player is an element of {0, 1}m. If the variables of the first
block are existential variables, the remaining problem is a conventional linear
program with m variables. This remaining problem has finitely many extreme
points, and S can only be extremal, if the first move of S corresponds to one of
these extreme points, because otherwise S could be composed as a convex combi-
nation of other strategies. Therefore, there are only finitely many possible choices
for the first player in any extremal strategy. Inductively, we see that there are
only finitely many extremal strategies, and therefore there are only finitely many
leaves within these strategies, and therefore the convex combination of all leaves
of all extremal strategies contains only finitely many extreme points.

Lemma 4. The convex combination of all outcomes of all possible winning poli-
cies is a polytope.

Proof. Let P be a winning policy. If the universal player chooses moves only
from {0, 1}, the winning policy is a winning strategy. This strategy is either an
extremal strategy, or each game of the strategy can be expressed as the convex
combination of two other strategies. Thus, every point, which is represented by
an existential-player-winning game, is also a point in the convex hull of the
leaves of all extremal winning strategies. If the universal player is allowed to
choose his moves from {0, α, 1}, the resulting game can be expressed as a convex
combination of extremal strategies as well, for all α ∈ [0, 1]. Again, every point,
which is represented by such a game, where the existential player wins, is also
a point in the convex hull of the leaves of all extremal winning strategies. Last
but not least, it is obvious that there are no holes in the union of the winning
policies. Let p be any point in the convex hull of the extremal winning strategies,
and let us interpret this point as a game between the existential player and the
universal player. Then, this game is part of a winning policy, because otherwise
the point could not be part of the convex hull of the extremal winning strategies.

Polyhedral and Algorithmic Properties of Quantified Linear Programs 519

Theorem 1. The solution space of all winning policies is a polytope (clear with
Lemma 3 and Lemma 4)

Theorem 2. The vertices of a QLP-solution space can be described with poly-
nomial many bits per vertex. In order to prove this theorem, we present some
preparations. Especially, we make use of a technique known from stochastic
programming, where a deterministic equivalent program (DEP) is built for a
multistage stochastic program. The general form of a multistage stochastic pro-
gram with fixed recourse is as follows (cf. [3]), where the matrices T i and the
vectors hi are possibly stochastic.

minx0 c0x0 + Eξ1

(
minx1 c1x1 + . . . + EξH |ξ1...ξH−1

(
minxH cHxH

))
s.t. Ax0 = b,

T0x0 + Wx1 = h1

. . .
TH−1xH−1 + WxH = hH ,
lt ≤ xt ≤ ut, for all x ∈ {0, . . . , H}

Usually, it is assumed that the stochastic elements are defined over a discrete prob-
ability space (Ξ, σ(Ξ), P), where Ξ = Ξ1⊗· · ·⊗ΞH is the support of the random
data in each period, subject to Ξt = {ξt

s = (T t
s , W t

s , ht
s, c

t
s), s = 1, . . . , St}. Be-

cause the probability space is discrete, a DEP can be defined by replicating the
deterministic linear program for each possible scenario (possible path of events).
Additionally, it is required that decisions do not depend on future events. We can
construct a deterministic equivalent for QLP-instances, accordingly. Instead to en-
code the scenario tree,we encode thedecision tree of theuniversalplayer into thede-
terministic equivalent by replicating the inequalities of the QLP-instance for each
possible decision combination of the universal player. Let A1, .., At be those blocks
of columns ofA that belong to the existential player and which are separatedby the
columns belonging to the universal player. Ifwe bring the universal-player-columns
to the right side, we will have created a multistage decision problem with variable
right-hand side. Now, let [Q : Ax ≤ b] be a QLP instance with t quantifier-changes,
and, furthermore, let [Q′ : Ax ≤ b] be the QLP-instance where the sequence of
quantifiers is modified to (∃ . . . ∃∀ . . . ∀).

Figure 4a) shows the block structure of an example with four scenarios in block
ladder matrix form. In the example, the universal player is allowed to make two
moves, and there are two universally quantified variables and the quantifier-
sequence is ∃∀∃∀∃. Figure 4c) shows the block structure of the manipulated
QLP Q’. It can be observed that the dimension of the deterministic equivalent
in Fig. 4 a) is higher, because the different choices of the existential player after
a move of the universal player have to be considered. Figure 4a) and b) show,
how the block structure of an instance changes, when the position of the last
universal quantifier is changed.

Definition 5. Let P ⊂ IRn be a polytope and φ and ν be positive integers.

(i) P has row-complexity (also called facet-complexity in [9]) of at most φ, if
there is a system of inequalities with rational coefficients A ∈ Qm×n, b ∈ Qm

520 U. Lorenz, A. Martin, and J. Wolf

A3

A3

A3

A3
A1

A1

A1

A1

A2

A2

A2

A2 A3

A3

A3

A3
A1

A1

A1

A1

A2

A2

A2

A2 A3

A3

A3

A3
A1

A1

A1

A1

A2

A2

A2

A2

a)  Example block structure
for [Q : Ax ≤ b]

c) block structure
of [Q‘ : Ax ≤ b]

b) block structure of
[: Ax ≤ b]

~ x1 x2 x3
~ x1 x2 x3 x2 x3x1 x2 x2 x‘3 x3x3 x‘3~ ~ ~

Fig. 4. Block structures of Q, Q’, and a medium instance

for some m ∈ IN , such that P is described with the help of a set of inequalities
and the encoding length (i.e. the number of bits used) of each row is at most
φ. Each entry in A and b requires at least one bit.

(ii) P has vertex-complexity of at most ν, if there are finite sets V, E ⊆ IRn,
such that P = convexhull(V) and the encoding length of each vector in V ∪E
is at most ν. We assume that ν ≥ n.

Lemma 5. ν ≤ 4φn2, and φ ≤ 3νn2. Proof and details can be found in [9].

Lemma 6. The vertex-complexity ν′ of the manipulated QLP-polytope P ([Q′ :
Ax ≤ b]), A ∈ Qm×n, b ∈ Qm is in O(φn6), φ being the worst-case row-
complexity of (A, b).

Proof. Let the row-complexity of QLP ′ := [Q′ : Ax + By ≤ b] be φQLP ′ with
existential variables x and universal variables y, let the number of universal
variables equal to k. QLP ′ has 2k scenarios. Its DEP, denoted by detEq(QLP ′),
or detEq′ for short, lives in IRn−k and has row-complexity φdetEq′ ≤ φQLP ′

because the DEP simply consists of a replication of A with various right hand
sides bi, i ∈ {1, .., 2k}. Moreover, the encoding length 〈bi〉 is less or equal to 〈By〉
for any y. Let D be the set of inequalities of detEq′. (q.e.d.)

As a consequence of Lemma 5, the vertex-complexity νD ≤ 4φDn2. Now we
analyse the application of the following algorithm, which creates a game of an
extremal winning strategy for the existential player and thus a vertex of an
implicit QLP-polytope.

Algorithm: compute some QLP-vertex (Q)

1 DQ := set of inequalities of deterministic equivalent of QLP-instance Q
2 for i := 1 to t-1 // let t different blocks of existential variables in Q exist
3 Dcopy := DQ

4 eliminate the variables x(i+1,1), ..., x(i+1,k(i)), .., x(t,1), ..., x(t,k(t)) of the variable
blocks i + 1, ..., t in Dcopy, with the help of Fourier-Motzkin elimination (FME),
and store the new inequalities in DQ

i

5 choose the ith move mi of the universal player, i.e., delete those half of
inequalities from DQ, which do not belong to mi

6 solve DQ
1 ∪ ... ∪ DQ

t

Polyhedral and Algorithmic Properties of Quantified Linear Programs 521

The elimination in line 4 does not effect the vertex-complexity of the given sys-
tem in the remaining dimensions. Therefore, the row-complexity of Di is φDi ≤
3νDn2 ≤ 3 · 4φDn2 · n2. The deletions in line 5 do not increase the row-complexity
of DQ. Therefore, the row-complexity of φD1∪...∪Dt ≤ 12φDn4. A last application
of Lemma 5 leads us to νQLP ′ = O(νD1∪...∪Dt) = O(φDn6) = O(φQLP ′n6).

Lemma 7. The vertex-complexity of the original QLP-polytope P ([Q : Ax ≤ b])
is of order O(φQLP n6).

Proof. Let two QLP-instances Q,Q′ be given, and let without loss of generality
the quantifier string of Q end with the existential quantifiers (qj+1, ..., qn), qj be-
ing the universal quantifier with largest index. Let Q and Q′ be equal except that
in Q′ the universal quantifier qj is shifted to the end of the quantifier string, i.e.,
Q′ = (q1, ..., qj−1, qj+1, qj). Now, let us inspect the given algorithm, acting on Q′

and Q. Assume that the sets DQ′
1 ∪ ... ∪ DQ′

t are already known. Moving the quan-
tifier qj from the last position to the position j in Q′ has the following effect. In Q′

the existential player must fix the variables xj+1, ..., xn before the universal player
decides xj . In Q, this is not the case, and in order to express that the existential
player has a choice after xj is fixed, the variables xj+1, ..., xn must be duplicated in
the representation of the corresponding DEP, let us say to x′

j+1, ..., x
′
n (cf. Fig. 4).

This increases the dimension of the deterministic equivalent and, at the same time,
partitions the inequalities belonging to different scenarios, one induced by xj = 0
and the other induced by xj = 1, whereas xj is a universal variable. Thus, due to the
nature of the Fourier-Motzkin elimination, every new inequality in DQ

i , processed
by line 4 of the above algorithm, is also contained in DQ′

i as well. Inductively, it fol-
lows that DQ

1 ∪...∪DQ
t is a subset of DQ′

1 ∪...∪DQ′
t , and therefore withQ′ := QLP ′

of Lemma 6: φDQ
1 ∪...∪DQ

t
≤ φ

DQ′
1 ∪...∪DQ′

t
and thus νQLP = O(φDQ

1 ∪...∪DQ
t

n6) =
O(φ

DQ′
1 ∪...∪DQ′

t
n6) = O(φQLP n6). Thus, Theorem 2 is proven as well.

4 Algorithms Using Polynomial Space

The task of the following algorithm is to find suitable first-stage variables or the
information that no solution exists. Because single paths of extremal strategies
can be expressed with O(φn6) bits, it is possible to find a winning strategy, if it
exists, with the help of a depth first search (DFS). On each level of the DFS, one
of the variables is fixed, and the choices on each level are all numbers of Q that
can be encoded with O(φn6) many bits. This technique can be applied to the
integer version of the QLP problem and to the mixed integer version, as well.

Another, more practical way, to organize the solution process in polynomial
space is based upon the nested decomposition algorithm (NDA). Nested decom-
position is based on the observation that the corresponding implicit scenario tree
can be transformed to a DEP that can be solved by a recursive application of
Benders decomposition To solve a QLP with this algorithm, we construct a DEP
as well. However, instead of encoding the scenario tree, we encode the decision
tree of the universal player into the deterministic equivalent by replicating the
inequalities of the QLP-instance for each possible decision combination of the

522 U. Lorenz, A. Martin, and J. Wolf

a) QLP Decision Tree b) Active Path

Fig. 5. QLP Decision Tree and Active Path

universal player. A mapping from a QLP with the quantifier sequence ∃∀∃∀∃ to
a decision tree is shown in Figure 5a). Due to the nature of QLPs, we can use
the following simplifying assumptions for our variant of nested benders. First of
all, since QLPs do not have an objective function, we only need to pass back
Bender’s feasibility cuts to parent nodes. Furthermore, because we only need
to consider the upper and lower bound of each universally quantified variable,
each node only has two successors. Since we only need a variable allocation for
the first-stage variables, the only type of information that has to be stored in
the tree, are feasibility cuts and the proposal for the current x-vector allocation,
which then belong to a specific path as depicted in Figure 5b). As described
in [1] we traverse the tree depth-first instead breath-first. Thus, only nodes that
are contained in the current path are active nodes and must therefore store cuts
from their successors. When a node becomes a passive node, all cuts that are
stored at the node can be removed, and recomputed later if needed.

To solve QLPs with polynomial space, we propose the following modification
of the (implicit) decision tree, whose stages until now were determined by the
quantifier changes, respectively the different quantifier blocks of existentially
quantified variables. We change to a formulation where each stage consists of
nodes where each master problem only corresponds to a single existential vari-
able. The resulting decision tree now consists of nodes that either have two
outgoing arcs in the case when the existentially quantified variable is the last
one in the respective quantifier block, or one outgoing arc for inner variables of
a block, since the successor node is not affected by an universal variable. The
feasibility cuts that are passed back to the nodes at higher stages can be viewed
as variable bounds. This implies that using simple preprocessing techniques each
node of the current path will consist of at most two constraints, an upper and a
lower bound. The polynomial space complexity directly follows.

References

1. Altenstedt, F.: Memory consumption versus computational time in nested benders
decomposition for stochastic linear programming. Tech. Rep., Chalmers University,
Goteborg (2003)

Polyhedral and Algorithmic Properties of Quantified Linear Programs 523

2. Bellmann, R.: Dynamic programming. Princeton University Press, Princeton (1957)
3. Birge, J.R., Louveaux, F.: Intro. to Stochastic Programming. Springer, Heidelberg

(1997)
4. Donninger, C., Kure, A., Lorenz, U.: Parallel brutus: The first distributed, fpga

accelarated chess program. In: Proc. of 18th International Parallel & Distributed
Processing Symposium (IPDPS), Santa Fe. IEEE Computer Society, Los Alamitos
(2004)

5. Dyer, M.E., Stougie, L.: Computational complexity of stochastic programming
problems. Math. Program. 106(3), 423–432 (2006)

6. Eisenbrand, F., Rothvoß, T.: A ptas for static priority real-time scheduling with
resource augmentation. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson,
M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS,
vol. 5125, pp. 246–257. Springer, Heidelberg (2008)

7. Engell, S., Märkert, A.M., Sand, G., Schultz, R.: Aggregated scheduling of a mul-
tiproduct batch plant by two-stage stochastic integer programming. Optimiz. and
Engineering 5 (2004)

8. Grothklags, S., Lorenz, U., Monien, B.: From state-of-the-art static fleet assignment
to flexible stochastic planning of the future. In: Lerner, J., Wagner, D., Zweig, K.A.
(eds.) Algorithmics of Large and Complex Networks. LNCS, vol. 5515, pp. 140–165.
Springer, Heidelberg (2009)

9. Grötschel, M., Lovasz, L., Schrijver, A.: Geometric Algorithms and Combinatorial
Optimization, 2nd edn. Springer, Heidelberg (1993)

10. Hochbaum, D.S.: Approximation Algorithms for NP-hard Problems. PWS (1997)
11. Kleywegt, A.J., Shapiro, A., Homem-De-Mello, T.: The sample average approxima-

tion method for stochastic discrete optimization. SIAMJour. of Opt., 479–502 (2001)
12. König,F.G.,Lübbecke,M.E.,Möhring,R.H.,Schäfer,G.,Spenke, I.:Solutions toreal-

world instances of pspace-complete stacking. In: Arge, L., Hoffmann, M., Welzl, E.
(eds.) ESA 2007. LNCS, vol. 4698, pp. 729–740. Springer, Heidelberg (2007)

13. Liebchen, C., Lübbecke, M.E., Möhring, R.H., Stiller, S.: The concept of recover-
able robustness, linear programming recovery, and railway applications. In: Robust
and online large-scale optimization, pp. 1–27 (2009)

14. Megow, N., Vredeveld, T.: Approximation results for preemtive stochastic online
scheduling. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 516–
527. Springer, Heidelberg (2006)

15. Möhring, R.H., Schulz, A.S., Uetz, M.: Approximation in stochastic scheduling:
The power of lp-based priority schedules. Journal of ACM 46(6), 924–942 (1999)

16. Papadimitriou, C.H.: Games against nature. J. of Comp. and Sys. Sc, 288–301 (1985)
17. Pochet, Y., Wolsey, L.A.: Production planning by mixed integer programming.

Springer Series in Operations Research and Financial Engineering. Springer, New
York (2006)

18. Schultz, R.: Stochastic programming with integer variables. Math. Progr. 97, 285–
309 (2003)

19. Shmoys, D.B., Swamy, C.: Stochastic optimization is (almost) as easy as determin-
istic optimization. In: Proc. FOCS 2004, pp. 228–237 (2004)

20. Subramani, K.: Analyzing selected quantified integer programs. In: Basin, D., Rusi-
nowitch, M. (eds.) IJCAR 2004. LNCS (LNAI), vol. 3097, pp. 342–356. Springer,
Heidelberg (2004)

21. Subramani, K.: On a decision procedure for quantified linear programs. Annals of
Mathematics and Artificial Intelligence 51(1), 55–77 (2007)

22. Zhang, L., Hermanns, H., Eisenbrand, F., Jansen, D.N.: Flow faster: Efficient de-
cision algorithms for probabilistic simulations. Logical Methods in Computer Sci-
ence 4(4) (2008)

Approximating Parameterized Convex

Optimization Problems�

Joachim Giesen1, Martin Jaggi2, and Sören Laue1

1 Friedrich-Schiller-Universität Jena, Germany
2 ETH Zürich, Switzerland

Abstract. We extend Clarkson’s framework by considering parameter-
ized convex optimization problems over the unit simplex, that depend on
one parameter. We provide a simple and efficient scheme for maintaining
an ε-approximate solution (and a corresponding ε-coreset) along the en-
tire parameter path. We prove correctness and optimality of the method.
Practically relevant instances of the abstract parameterized optimization
problem are for example regularization paths of support vector machines,
multiple kernel learning, and minimum enclosing balls of moving points.

1 Introduction

We study convex optimization problems over the unit simplex that are param-
eterized by a single parameter. We are interested in optimal solutions of the
optimization problem for all parameter values, i.e., the whole solution path in
the parameter. Since the complexity of the exact solution path might be ex-
ponential in the size of the input [7], we consider approximate solutions with
an approximation guarantee for all parameter values, i.e., approximate solutions
along the whole path. We provide a general framework for computing approxi-
mate solution paths that has the following properties:

(1) Generality. Apart from being specified over the unit simplex, we hardly make
any assumptions on the optimization problem under consideration. Hence,
the framework can be applied in many different situations.

(2) Simplicity. The basic idea behind the framework is a very simple continuity
argument.

(3) Practicality. It has been shown that our framework works well for real world
problems.

(4) Efficiency. Although the framework is very simple it still gives improved
theoretical bounds for known problems.

(5) Optimality. We show that it is the best possible one can do up to a constant
factor.

� This work has been supported by the DFG under grant GI-711/3-1, by a Google Re-
search Award, and by the Swiss National Science Foundation (SNF Project 20PA21-
121957).

M. de Berg and U. Meyer (Eds.): ESA 2010, Part I, LNCS 6346, pp. 524–535, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Approximating Parameterized Convex Optimization Problems 525

Let us explain the different aspects in more detail.

Generality: We build on the general primal-dual approximation criterion that
has been introduced by Clarkson in his coreset framework [5] for convex opti-
mization problems over the unit simplex. Among the many problems that fit
into Clarkson’s framework are for example the smallest enclosing ball problem,
polytope distance problems, and binary classification support vector machines.
For many of these problems parameterized versions are known, e.g., the smallest
enclosing ball problem for points that move with time, or soft margin support
vector machines that trade-off a regularization term and a loss term in the ob-
jective function of the corresponding optimization problem.

Simplicity: The basic algorithmic idea behind our framework is computing at
some parameter value an approximate solution whose approximation guarantee
holds for some sub-interval of the problem path. This solution is then updated at
the boundary of the sub-interval to a better approximation that remains a good
approximation for a consecutive sub-interval. For computing the initial approx-
imation and the updates from previous approximations, any arbitrary (possibly
problem specific) algorithm can be used, that ideally can be started from the
previous solution (warm start). We provide a simple lemma that allows to bound
the number of necessary parameter sub-intervals for a prescribed approximation
quality. For interesting problems, the lemma also implies the existence of small
coresets that are valid for the entire parameter path.

Practicality: Our work is motivated by several problems from machine learning
and computational geometry that fit into the described framework, in particu-
lar, support vector machines and related classification methods, multiple kernel
learning [3], and the smallest enclosing ball problem [4]. We have implemented
the proposed algorithms and applied them to choose the optimal regularization
parameter for a support vector machine, and to find the best combination of two
kernels which is a special case of the multiple kernel learning problem.

Efficiency: Our framework gives a path complexity of O
(1

ε

)
, meaning that an

ε-approximate solution needs to be updated only O
(1

ε

)
times along the whole

path. This positively contrasts the complexity of exact solution paths.

Optimality: We provide lower bounds that show that one cannot do better, i.e.,
there exist examples where one needs essentially at least one fourth as many
sub-intervals as predicted by our method.
Related Work. Many of the aforementioned problems have been recently studied
intensively, especially machine learning methods such as computing exact solution
paths in the context of support vector machines and related problems [10,12,13,8].
But exact algorithms can be fairly slow compared to approximate methods. To
make things even worse, the complexity of exact solution paths can be very large,
e.g., it can grow exponentially in the input size as it has been shown for support
vector machines with �1-loss term [7]. Hence, approximation algorithms have be-
come popular also for the case of solution paths lately, see e.g. [6]. However, to the
best of our knowledge, so far no approximation quality guarantees along the path
could be given for any of these existing algorithms.

526 J. Giesen, M. Jaggi, and S. Laue

2 Clarkson’s Framework

In [5] Clarkson considers convex optimization problems of the form

minx f(x)
s.t. x ∈ Sn

(1)

where f : Rn → R is convex and continuously differentiable, and Sn is the
unit simplex, i.e., Sn is the convex hull of the standard basis vectors of Rn. We
additionally assume that the function f is non-negative on Sn. A point x ∈ Rn

is called a feasible solution, if x ∈ Sn.
The Lagrangian dual of Problem 1 (sometimes also called Wolfe dual) is given

by the unconstrained problem

max
x

ω(x), where ω(x) := f(x) + min
i

(∇f(x))i − xT∇f(x).

In this framework Clarkson studies approximating the optimal solution. His
measure of approximation quality is (up to a multiplicative positive constant)
the primal-dual gap

g(x) := f(x) − ω(x) = xT∇f(x) − min
i

(∇f(x))i.

Note that convexity of f implies the weak duality condition f(x̂) ≥ ω(x), for
the optimal solution x̂ ∈ Sn of the primal problem and any feasible solution x,
which in turn implies non-negativity of the primal-dual gap, i.e., g(x) ≥ 0 for all
feasible x, see [5]. A feasible solution x is an ε-approximation to Problem 1 if

g(x) ≤ εf(x).

Sometimes an ε-approximation is defined more restrictively as g(x) ≤ εf(x̂),
relative to the optimal value f(x̂) of the primal optimization problem. Note that
this can directly be obtained from our slightly weaker definition by setting ε
in the definition of an ε-approximation to ε′ := ε

1+ε , because g(x) ≤ ε
1+εf(x)

⇔ (1 + ε)(f(x) − ω(x)) ≤ εf(x) ⇔ g(x) ≤ εω(x) ≤ εf(x̂). A subset C ⊆ [n]
is called an ε-coreset, if there exists an ε-approximation x to Problem 1 with
xi = 0, ∀i ∈ [n] \ C.

The case of maximizing a concave, continuously differentiable, non-negative
function f over the unit simplex Sn can be treated analogously. The Lagrangian
dual problem is given as

min
x

ω(x), where ω(x) := f(x) + max
i

(∇f(x))i − xT∇f(x),

and the duality gap is g(x) := ω(x) − f(x) = maxi(∇f(x))i − xT∇f(x). Again,
x ∈ Sn is an ε-approximation if g(x) ≤ εf(x) (which immediately implies g(x) ≤
εf(x̂) for the optimal solution x̂ of the primal maximization problem).

Clarkson [5] showed that ε-coresets of size
⌈

2Cf

ε

⌉
do always exist, and that

the sparse greedy algorithm [5, Algorithm 1.1] obtains an ε-approximation after
at most 2

⌈
4Cf

ε

⌉
many steps. Here Cf is an absolute constant describing the

“non-linearity” or “curvature” of the function f .

Approximating Parameterized Convex Optimization Problems 527

3 Optimizing Parameterized Functions

We extend Clarkson’s framework and consider parameterized families of func-
tions ft(x) = f(x; t) : Rn × R → R that are convex and continuously differen-
tiable in x and parameterized by t ∈ R, i.e., we consider the following families
of minimization problems

minx ft(x)
s.t. x ∈ Sn

(2)

Again, we assume ft(x) ≥ 0 for all x ∈ Sn and t ∈ R.
The following simple lemma is at the core of our discussion and characterizes

how we can change the parameter t such that a given ε
γ -approximate solution x

(for γ > 1) at t stays an ε-approximate solution.

Lemma 1. Let x ∈ Sn be an ε
γ -approximation to Problem 2 for some fixed

parameter value t, and for some γ > 1. Then for all t′ ∈ R that satisfy

xT∇(ft′(x) − ft(x)) − (∇(ft′(x) − ft(x)))i − ε(ft′(x) − ft(x))
≤ ε

(
1 − 1

γ

)
ft(x), ∀i ∈ [n], (3)

the solution x is still an ε-approximation to Problem 2 at the changed parameter
value t′.

Proof. We have to show that g(x; t′) ≤ εft′(x), or in other words that

xT∇ft′(x) − (∇ft′(x))i ≤ εft′(x)

holds for all components i. We add to the Inequalities 3 for all components i the
inequalities stating that x is an ε

γ -approximate solution at value t, i.e.

xT∇ft(x) − (∇ft(x))i ≤
ε

γ
ft(x).

This gives for all i ∈ [n]

xT∇ft′(x) − (∇ft′(x))i − ε(ft′(x) − ft(x)) ≤ εft(x),

which simplifies to the claimed bound xT∇ft′(x) − (∇ft′(x))i ≤ εft′(x). ��

The analogue of Lemma 1 for maximizing a concave function over the unit
simplex is the following lemma whose proof follows along the same lines:

Lemma 2. Let x ∈ Sn be an ε
γ -approximation to the maximization problem

maxx∈Sn ft(x) at parameter value t, for some γ > 1. Here ft(x) is a param-
eterized family of concave, continuously differentiable functions in x that are
non-negative on Sn. Then for all t′ ∈ R that satisfy

(∇(ft′(x) − ft(x)))i − xT∇(ft′(x) − ft(x)) − ε(ft′(x) − ft(x))
≤ ε

(
1 − 1

γ

)
ft(x), ∀i ∈ [n], (4)

the solution x is still an ε-approximation at the changed parameter value t′.

528 J. Giesen, M. Jaggi, and S. Laue

We define the ε-approximation path complexity for Problem 2 as the minimum
number of sub-intervals of the parameter interval R such that for each sub-
interval there is a single solution of Problem 2 which is an ε-approximation for
that entire sub-interval.

Lemma 1 and 2 imply upper bounds on the path complexity. Next, we will
show that these upper bounds are tight up to a multiplicative factor of 4 + 2ε.

3.1 Lower Bound

To see that the approximate path complexity bounds we get from Lemma 2 are
optimal consider the following parameterized optimization problem:

maxx ft(x) := xT f(t)
s.t. x ∈ Sn

(5)

where f(t) = (f0(t), . . . , fk(t)) is a vector of functions and fi(t) is defined as
follows

fi(t) =

⎧⎪⎪⎨⎪⎪⎩
0, for t < iε′

t − iε′, for iε′ ≤ t < 1 + iε′

−t + 2 + iε′, for 1 + iε′ ≤ t ≤ 2 + iε′

0, for 2 + iε′ < t

for some arbitrary fixed ε′ > 0 and n ≥ 1/ε′. See Figure 1 for an illustration of
the function fi(t).

i · ε′ 1 + i · ε′ 2 + i · ε′

1

t

Fig. 1. Function fi(t)

Each of the fi(t) attains its maximum 1 at
t = 1+ iε′. Since ft(x) is linear in x it is hence
concave in x for every fixed t. Hence, it is an
instance of Problem 2. Let us now consider
the interval t ∈ [1, 2]. In this interval consider
the points ti := 1 + iε′, for i = 0, . . . , �1/ε′�.
At each of these points it holds that fi(ti) = 1
and all the other fj(ti) ≤ 1 − ε′ when j �= i.
Hence, the value of the optimal solution to
Problem 5 at parameter value ti is 1, and it is
attained at x = ei, where ei is the i-th stan-

dard basis vector. Furthermore, for all other x ∈ Sn that have an entry at the
coordinate position i that is at most 1/2 it holds that fti(x) ≤ 1 − ε′/2.

Hence, in order to have an ε-approximation for ε < ε′/2 the approximate
solution x needs to have an entry of more than 1/2 at the i-th coordinate position.
Since all entries of x sum up to 1, all the other entries are strictly less than 1/2
and hence this solution cannot be an ε-approximation for any other parameter
value t = tj with j �= i. Thus, for all values of t ∈ [1, 2] one needs at least 1/ε′

different solutions for any ε < ε′/2.
Choosing ε′ arbitrarily close to 2ε this implies that one needs at least 1

2ε − 1
different solutions to cover the whole path for t ∈ [1, 2].

Lemma 2 gives an upper bound of 2+ε
ε

γ
γ−1 =

(2
ε + 1

)
γ

γ−1 different solutions,

since ∇ft(x) = f(t) = (fi(t))i∈[n] and
∣∣∣∂fi

∂t

∣∣∣ ≤ 1,
(
∇(ft′(x) − ft(x))

)
i
≤ |t′ − t|.

Approximating Parameterized Convex Optimization Problems 529

Hence, this is optimal up to a factor of 4+2ε. Indeed, also the dependence on the
problem specific constants in Lemma 2 is tight: ’contracting’ the functions fi(t)
along the t-direction increases the Lipschitz constant of (∇ft(x))i, which can be
shown to be an upper bound on the problem specific constants in Lemma 2.

3.2 The Weighted Sum of Two Convex Functions

We are particularly interested in a special case of Problem 2. For any two convex,
continuously differentiable functions f (1), f (2) : Rn → R that are non-negative on
Sn, we consider the weighted sum ft(x) := f (1)(x)+tf (2)(x) for a real parameter
t ≥ 0. The parameterized optimization Problem 2 in this case becomes:

minx f (1)(x) + tf (2)(x)
s.t. x ∈ Sn

(6)

For this optimization problem we have the following corollary of Lemma 1:

Corollary 1. Let x ∈ Sn be an ε
γ -approximate solution to Problem 6 for some

fixed parameter value t ≥ 0, and for some γ > 1. Then for all t′ ≥ 0 that satisfy

(t′ − t)
(
xT∇f (2)(x) − (∇f (2)(x))i − εf (2)(x)

)
≤ ε

(
1 − 1

γ

)
ft(x), ∀i ∈ [n]

(7)
solution x is an ε-approximate solution to Problem 6 at the parameter value t′.

Proof. Follows directly from Lemma 1, and ft′(x) − ft(x) = (t′ − t)f (2)(x). ��

This allows us to determine the entire interval of admissible parameter values t′

such that an ε
γ -approximate solution at t is still an ε-approximate solution at t′.

Corollary 2. Let x be an ε
γ -approximate solution to the Problem 6 for some

fixed parameter value t ≥ 0, for some γ > 1, and let

u := xT∇f (2)(x) − min
i

(
∇f (2)(x)

)
i
− εf (2)(x)

l := xT∇f (2)(x) − max
i

(
∇f (2)(x)

)
i
− εf (2)(x),

then x remains an ε-approximate solution for all 0 ≤ t′ = t + δ for the following
values of δ:

(i) If l < 0 or 0 < u, then the respective admissible values for δ are

ε

(
1 − 1

γ

)
ft(x)

l
≤ δ ≤ ε

(
1 − 1

γ

)
ft(x)

u

(ii) If u ≤ 0, then δ (and thus t′) can become arbitrarily large.
(iii) If l ≥ 0, then δ can become as small as −t, and thus t′ can become 0.

530 J. Giesen, M. Jaggi, and S. Laue

Note that the ε-approximation path complexity for Problem 6 for a given
value of γ > 1 can be upper bounded by the minimum number of points tj ≥ 0
such that the admissible intervals of ε

γ -approximate solutions xj at tj cover the
whole parameter interval [0,∞).

Corollary 2 immediately suggests two variants of an algorithmic framework
(forward- and backwards version) maintaining ε-approximate solutions over the
entire parameter interval or in other words, tracking a guaranteed ε-approximate
solution path. Note that as the internal optimizer, any arbitrary approximation
algorithm can be used here, as long as it provides an approximation guarantee on
the relative primal-dual gap. For example the standard Frank-Wolfe algorithm [5,
Algorithm 1.1] is particularly suitable as its resulting coreset solutions are also
sparse. The forward version is depicted in Algorithm 1.

Algorithm 1. ApproximationPath—ForwardVersion (ε, γ, tmin, tmax)

1 compute an ε
γ
-approximation x for ft(x) at t := tmin using a standard optimizer.

2 do

3 u := xT∇f (2)(x) − mini

(
∇f (2)(x)

)
i
− εf (2)(x)

4 if u > 0 then

5 δ := ε
(
1 − 1

γ

)
ft(x)

u
> 0

6 t := t + δ

7 improve the (now still ε-approximate) solution x for ft(x) to an at least
ε
γ
-approximate solution by applying steps of any standard optimizer.

8 else

9 t := tmax

10 while t < tmax

4 Applications

Special cases of Problem 6 or the more general Problem 2 have applications in
computational geometry and machine learning. In the following we discuss two
applications in more detail, namely, a parameterized polytope distance problem
as an application of the special case of Problem 6, and smallest enclosing balls of
linearly moving points as an application of the general Problem 2. The polytope
distance problem itself can be specialized for computing regularization paths
of support vector machines (SVMs), and for kernel learning in the context of
SVMs.

4.1 A Parameterized Polytope Distance Problem

In the setting of Section 3.2 we consider the case f (1)(x) := xT K(1)x and
f (2)(x) := xT K(2)x, for two positive semi-definite matrices K(1), K(2) ∈ Rn×n,
i.e.,

minx f (1)(x) + tf (2)(x) = xT
(
K(1) + tK(2)

)
x

s.t. x ∈ Sn .
(8)

Approximating Parameterized Convex Optimization Problems 531

The geometric interpretation of this problem is as follows: let A(t) ∈ Rn×r, r ≤ n,
be the unique matrix such A(t)T A(t) = K(1) + tK(2) (Cholesky decomposition).
The solution x̂ to Problem 8 is the point in the convex hull of the column
vectors of the matrix A(t) that is closest to the origin. Hence, Problem 8 is
a parameterized polytope distance problem. For the geometric interpretation
of an ε-approximation in this context we refer to [9]. In the following we will
always assume that the two original polytope distance problems are separable,
i.e. minx∈Sn xT K(1)x > 0 and minx∈Sn xT K(2)x > 0.

For this parameterized problem, the two quantities u and l that determine
the admissible parameter intervals in Corollary 2 and the step size in both ap-
proximate path algorithms take the simpler form

u = (2 − ε)xT K(2)x − 2 min
i

(K(2)x)i and l = (2 − ε)xT K(2)x − 2 max
i

(K(2)x)i,

since ∇f (2)(x) = 2K(2)x. We now use the following lemma to bound the path
complexity for instances of Problem 8.

Lemma 3. Let 0 < ε ≤ 1 and γ > 1. Then for any parameter t ≥ 0, the length
of the interval [t − δ, t] with δ > 0, on which an ε

γ -approximate solution x to
Problem 8 at parameter value t remains an ε-approximation, is at least

lf (ε, γ) :=
ε

2

(
1 − 1

γ

) min
x∈Sn

xT K(1)x

max
x∈Sn

xT K(2)x
= Ω(ε) . (9)

Proof. For l = (2 − ε)xT K(2)x − 2 maxi(K(2)x)i < 0, we get from Corollary 2
that the length of the left interval at x is of length at least

ε

(
1 − 1

γ

)
ft(x)
−l

.

For any t ≥ 0, we can lower bound

ft(x) ≥ f (1)(x) = xT K(1)x ≥ min
x∈Sn

xT K(1)x,

and for ε ≤ 1 we can upper bound

−l = 2 max
i

(K(2)x)i − (2 − ε)xT K(2)x ≤ 2 max
i

(K(2)x)i,

because f (2)(x) ≥ 0. The value maxi(K(2)x)i = maxi eT
i K(2)x is the inner prod-

uct between two points in the convex hull of the columns of the square root
of the positive semi-definite matrix K(2) (see the discussion at the beginning
of this section). Let these two points be u, v ∈ Rn. Using the Cauchy-Schwarz
inequality we get

max
i

(K(2)x)i = uT v ≤
√
||u||2||v||2 ≤ 1

2
(||u||2 + ||v||2)

≤ max{||u||2, ||v||2} ≤ max
x∈Sn

xT K(2)x,

532 J. Giesen, M. Jaggi, and S. Laue

where the last expression gives the norm of the largest vector with endpoint
in the convex hull of the columns of the square root of K(2). Hence, −l ≤
2 maxx∈Sn xT K(2)x. Combining the lower bound for ft(x) and the upper bound
for −l gives the stated bound on the interval length. ��

Now, to upper bound the approximation path complexity we split the interval
[0,∞] into two parts: the sub-interval [0, 1] can be covered by at most 1/lf(ε, γ)
admissible left intervals, i.e., by at most 1/lf(ε, γ) many admissible intervals.
We reduce the analysis for the sub-interval t ∈ [1,∞] to the analysis for [0, 1] by
interchanging the roles of f (1) and f (2). For any t ≥ 1, x is an ε-approximate so-
lution to minx∈Sn ft(x) := f (1)(x)+ tf (2)(x) if and only if x is an ε-approximate
solution to minx∈Sn f ′

t′(x) := t′f (1)(x) + f (2)(x) for t′ = 1
t ≤ 1, because the def-

inition of an ε-approximation is invariant under scaling the objective function.
Note that by allowing t = ∞ we just refer to the case t′ = 0 in the equivalent
problem for f ′

t′(x) with t′ = 1
t ∈ [0, 1]. Using the lower bounds on the inter-

val lengths lf (ε, γ) and lf ′(ε, γ) (for the problem for f ′
t′(x) with t′ ∈ [0, 1]) on

both sub-intervals we get an upper bound of
⌈

1
lf (ε,γ)

⌉
+
⌈

1
lf′(ε,γ)

⌉
on the path

complexity as is detailed in the following theorem:

Theorem 1. Given any 0 < ε ≤ 1 and γ > 1, the ε-approximation path com-
plexity of Problem 8 is at most

γ

γ − 1

⎛⎝max
x∈Sn

xT K(2)x

min
x∈Sn

xT K(1)x
+

max
x∈Sn

xT K(1)x

min
x∈Sn

xT K(2)x

⎞⎠ 2
ε

+ 2 = O

(
1
ε

)
.

This proof of the path complexity immediately implies a bound on the time
complexity of our approximation path Algorithm 1. In particular we obtain
a linear running time of O

(
n
ε2

)
for computing the global solution path when

using [5, Algorithm 1.1] as the internal optimizer.
There are interesting applications of this result, because it is known that

instances of Problem 8 include for example computing the solution path of a
support vector machine – as the regularization parameter changes – and also
finding the optimal combination of two kernel matrices in the setting of kernel
learning. For more details we refer the reader to the full version of this paper.

4.2 Minimum Enclosing Ball of Points under Linear Motion

Let P = {p1, . . . , pn} be a set of n points in Rd. The minimum enclosing ball
(MEB) problem asks to find the smallest ball containing all points of P . The
dual of the problem can be written [11] as:

maxx xT b − xT AT Ax
s.t. x ∈ Sn

(10)

where b = (bi) = (pT
i pi)i∈[n] and A is the matrix whose columns are the pi.

Approximating Parameterized Convex Optimization Problems 533

Now we assume that the points move with constant speed in a fixed direction,
i.e., they move linearly as follows

pi(t) = pi + tvi, t ∈ [0,∞)

where t can be referred to as time parameter. The MEB problem for moving
points reads as:

maxx xT b(t) − xT (P + tV)T (P + tV)x
s.t. x ∈ Sn

(11)

where b(t) = (bi(t)) = ((pi + tvi)T (pi + tvi))i∈[n] and P is the matrix whose
columns are the points pi and V is the matrix whose columns are the vector vi.
Problem 11 is a special case of the maximization version of Problem 6. Again,
we are interested in the whole solution path, i.e. we want to track the center and
the radius

r(t) =
√

x̂T b(t) − x̂T (P + tV)T (P + tV)x̂ with x̂ ∈ Sn optimal

of the MEB of the points pi(t) for t ∈ [0,∞) (or approximations of it). For an
analysis of an approximate solution path we make use of the following observation.

Observation 1. The interval [0,∞) can be subdivided into three parts: on the
first sub-interval r(t) is decreasing, on the second sub-interval, the radius r(t) is
constant, and on the third sub-interval, the radius is increasing.

This can be seen as follows: consider the time when the radius of the MEB
reaches its global minimum, just before the ball is expanding again. This is the
point between the second and the third sub-interval. The points that cause the
ball to expand at this point in time will prevent the ball from shrinking again
in the future since the points move linearly. Thus the radius of the MEB will
increase on the third sub-interval. By reversing the direction of time the same
consideration leads to the observation that the radius of the MEB is decreasing
on the first sub-interval.

We will consider each of the three sub-intervals individually. The second sub-
interval can be treated like the standard MEB problem of non-moving points.
Hence we only have to consider the first and the third sub-interval. We will
only analyze the third sub-interval since the first sub-interval can be treated
analogously with the direction of time reversed, i.e., the parameter t decreasing
instead of increasing.

For the third sub-interval we know that the radius is increasing with time.
We can shift the time parameter t such that we start with the third sub-interval
at time t = 0. Let r > 0 be the radius r(0) at time zero, i.e., we assume that the
radius of the MEB never becomes zero. The case where the radius reaches 0 at
some point is actually equivalent to the standard MEB problem for non-moving
points. Without loss of generality we can scale all the vectors vi such that the
MEB defined by the points vi has radius r as well, because this just means scaling

534 J. Giesen, M. Jaggi, and S. Laue

time. Without loss of generality we can also assume that the center of the MEB
of the point sets P and V are both the origin. That is, ‖pi‖ ≤ r and ‖vi‖ ≤ r.
We have ft(x) := xT b(t)− xT (P + tV)T (P + tV)x. A short computation shows
that

(∇ft+δ(x) −∇ft(x))i − xT (∇ft+δ(x)) −∇ft(x)) ≤ 12r2(1 + t + δ)δ.

and
|ft+δ(x) − ft(x)| ≤ 4r2(1 + t + δ)δ.

Now we can apply Lemma 2. Inequality 4 here simplifies to

12r2(1 + t + δ)δ + ε4r2(1 + t + δ)δ ≤ ε

(
1 − 1

γ

)
r2

since ft(x) ≥ r2. Assuming ε ≤ 1, we can set δ = ε
32

(
1 − 1

γ

)
for t, t + δ ∈ [0, 1].

For the interval of t, t + δ = [1,∞) we apply the same trick as before and reduce
it to the case of t, t + δ ∈ [0, 1] by interchanging the roles of P and V . A short
computation shows that an ε-approximation x at time t ≥ 1 for the original
optimization problem

maxx xT b(t) − xT (P + tV)T (P + tV)x
s.t. x ∈ Sn

is an ε-approximation for the optimization problem

maxx xT b′(t′) − xT (t′P + V)T (t′P + V)x
s.t. x ∈ Sn

at time t′ = 1/t, where b′(t′) = (b′i(t
′)) = ((t′pi + vi)T (t′pi + vi))i∈[n], i.e.,

the roles of P and V have been interchanged. This is again due to the fact
that the relative approximation guarantee is invariant under scaling. Hence, we
conclude with the following theorem on the approximation path complexity for
the minimum enclosing ball problem under linear motion:

Theorem 2. The ε-approximation path complexity of the minimum enclosing
ball Problem 11 for parameter t ∈ [0,∞) is at most

64
γ

γ − 1
1
ε

= O

(
1
ε

)
.

Since for the static MEB Problem 10, coresets of size O(1
ε) exist, see [4], we

obtain the following corollary to Theorem 2.

Corollary 3. There exists an ε-coreset of size O(1
ε2) for Problem 11 that is

globally valid under the linear motion, i.e., valid for all t ≥ 0.

The only other result known in this context is the existence of coresets of size
2O(1

ε2 log 1
ε) that remain valid under polynomial motions [2], and earlier, Agarwal

et al. [1] have already proven the existence of coresets of size O(1/ε2d) for the
extent problem for moving points, which includes the MEB problem as a special
case.

Approximating Parameterized Convex Optimization Problems 535

5 Conclusion

We have presented a framework to optimize convex functions over the unit sim-
plex that are parameterized in one parameter. The framework is very general,
simple and has been proven to be practical on a number of machine learning prob-
lems. Although it is very simple it still provides improved theoretical bounds on
known problems. In fact, we showed that our method is optimal up to a small
constant factor.

References

1. Agarwal, P., Har-Peled, S., Varadarajan, K.: Approximating extent measures of
points. Journal of the ACM 51(4), 606–635 (2004)

2. Agarwal, P., Har-Peled, S., Yu, H.: Embeddings of surfaces, curves, and moving
points in euclidean space. In: SCG 2007: Proceedings of the Twenty-third Annual
Symposium on Computational Geometry (2007)

3. Bach, F., Lanckriet, G., Jordan, M.: Multiple kernel learning, conic duality, and
the smo algorithm. In: ICML 2004: Proceedings of the Twenty-first International
Conference on Machine Learning (2004)

4. Bădoiu, M., Clarkson, K.L.: Optimal core-sets for balls. Computational Geometry:
Theory and Applications 40(1), 14–22 (2007)

5. Clarkson, K.L.: Coresets, sparse greedy approximation, and the frank-wolfe algo-
rithm. In: SODA 2008: Proceedings of the Nineteenth Annual ACM-SIAM Sym-
posium on Discrete Algorithms (2008)

6. Friedman, J., Hastie, T., Höfling, H., Tibshirani, R.: Pathwise coordinate optimiza-
tion. The Annals of Applied Statistics 1(2), 302–332 (2007)

7. Gärtner, B., Giesen, J., Jaggi, M.: An exponential lower bound on the complexity
of regularization paths. arXiv, cs.LG (2009)

8. Gärtner, B., Giesen, J., Jaggi, M., Welsch, T.: A combinatorial algorithm to com-
pute regularization paths. arXiv, cs.LG (2009)

9. Gärtner, B., Jaggi, M.: Coresets for polytope distance. In: SCG 2009: Proceedings
of the 25th Annual Symposium on Computational Geometry (2009)

10. Hastie, T., Rosset, S., Tibshirani, R., Zhu, J.: The entire regularization path for the
support vector machine. The Journal of Machine Learning Research 5, 1391–1415
(2004)

11. Matousek, J., Gärtner, B.: Understanding and Using Linear Programming (Uni-
versitext). Springer, New York (2006)

12. Rosset, S., Zhu, J.: Piecewise linear regularized solution paths. Annals of Statis-
tics 35(3), 1012–1030 (2007)

13. Wu, Z., Zhang, A., Li, C., Sudjianto, A.: Trace solution paths for svms via para-
metric quadratic programming. In: KDD 2008 DMMT Workshop (2008)

Approximation Schemes for

Multi-Budgeted Independence Systems�

Fabrizio Grandoni1 and Rico Zenklusen2,��

1 Computer Science Department, University of Rome Tor Vergata
grandoni@disp.uniroma2.it

2 Department of Mathematics, EPFL
rico.zenklusen@epfl.ch

Abstract. A natural way to deal with multiple, partially conflicting
objectives is turning all the objectives but one into budget constraints.
Some classical optimization problems, such as spanning tree and forest,
shortest path, (perfect) matching, independent set (basis) in a matroid
or in the intersection of two matroids, become NP-hard even with one
budget constraint. Still, for most of these problems efficient deterministic
and randomized approximation schemes are known. For two or more bud-
gets, typically only multi-criteria approximation schemes are available,
which return slightly infeasible solutions. Not much is known however for
strict budget constraints: filling this gap is the main goal of this paper.

It is not hard to see that the above-mentioned problems whose so-
lution sets do not correspond to independence systems are inapprox-
imable already for two budget constraints. For the remaining problems,
we present approximation schemes for a constant number k of budget
constraints using a variety of techniques: i) we present a simple and pow-
erful mechanism to transform multi-criteria approximation schemes into
pure approximation schemes. This leads to deterministic and randomized
approximation schemes for various of the above-mentioned problems; ii)
we show that points in low-dimensional faces of any matroid polytope
are almost integral, an interesting result on its own. This gives a de-
terministic approximation scheme for k-budgeted matroid independent
set; iii) we present a deterministic approximation scheme for 2-budgeted
matching. The backbone of this result is a purely topological property
of curves in R2.

1 Introduction

In many applications, one has to compromise between several, partially conflict-
ing goals. Multi-Objective Optimization is a broad area of study in Operations
Research, Economics and Computer Science (see [8,22] and references therein).
A variety of approaches have been employed to formulate such problems. Here we

� Partially developed while the first author was visiting EPFL.
�� Partially supported by the Swiss National Science Foundation, grant number:

PBEZP2-129524.

M. de Berg and U. Meyer (Eds.): ESA 2010, Part I, LNCS 6346, pp. 536–548, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Approximation Schemes for Multi-Budgeted Independence Systems 537

adopt the Multi-Budgeted Optimization approach [22]: we cast one of the goals
as the objective function, and the others as budget constraints. More precisely,
we are given a (finite) set F of solutions for the problem, where each solution
is a subset S of elements from a given universe E (e.g., the edges of a graph).
We are also given a weight function w : F → Q+ and a set of k = O(1)1 length
functions �i : F → Q+, 1 ≤ i ≤ k, that assign a weight w(S) :=

∑
e∈S w(e)

and an ith-length �i(S) :=
∑

e∈S �i(e), 1 ≤ i ≤ k, to every candidate solution
S. For each length function �i, there is a budget Li ∈ Q+. The multi-budgeted
optimization problem can then be formulated as follows:

maximize/minimize w(S) subject to S ∈ F , �i(S) ≤ Li, 1 ≤ i ≤ k.

We next use OPT to denote an optimum solution.
Following the literature on the topic, we focused on the set of problems below:
• k-budgeted (perfect) matching: F is given by the (perfect) matchings

of an undirected graph G = (V, E).
• k-budgeted spanning tree (forest): F is given by the spanning trees

(forests) of G.
• k-budgeted shortest path: F is given by the paths connecting two given

nodes s and t in G.
• k-budgeted matroid independent set (basis): F is given by the inde-

pendent sets (bases) of a matroid M = (E, I)2.
• k-budgeted matroid intersection independent set (basis): F is

given by the independent sets (bases) in the intersection of two matroids
M1 = (E, I1) and M2 = (E, I2).

All the problems above are polynomial-time solvable (see, e.g., [24]) in their un-
budgeted version (k = 0), but become NP-hard [1,3,7] even for a single budget
constraint (k = 1). For the case of one budget (k = 1), polynomial-time approx-
imation schemes (PTASs) are known for spanning tree [21] (see also [11]),
shortest path [25] (see also [10,14]), and matching [3]. The approach in [21]
easily generalizes to the case of matroid basis. A PTAS is also known for
matroid intersection independent set [3]. No approximation algorithm is
known for the problems above in the case k ≥ 2 (excluding multi-criteria algo-
rithms which provide slightly infeasible solutions): investigating the existence of
such algorithms is the main goal of this paper.

1.1 Our Results

We start by observing that several of the mentioned problems are inapproximable
already for two budget constraints. More precisely, the corresponding feasibility
1 The assumption that k is a constant is crucial in this paper.
2 We recall that E is a finite ground set and I ⊆ 2E is a nonempty family of subsets

of E (independent sets) which have to satisfy the following two conditions: (i) I ∈
I, J ⊆ I ⇒ J ∈ I and (ii) I, J ∈ I, |I | > |J | ⇒ ∃z ∈ I \ J : J ∪ {z} ∈ I. A
basis is a maximal independent set. For all matroids used in this paper we make the
usual assumption that independence of a set can be checked in polynomial time. For
additional information on matroids, see e.g. [24].

538 F. Grandoni and R. Zenklusen

problem is NP-complete. Due to space constraints, we omit the simple proof of
the following theorem (which might be considered as part of folklore).

Theorem 1. For k ≥ 2, it is NP -complete to decide whether there is a feasible
solution for k-budgeted shortest path, k-budgeted perfect matching

and k-budgeted spanning tree (and hence also for k-budgeted matroid basis
and matroid intersection basis).

The remaining problems in the above list have a common aspect: the set of
solutions F forms an independence system. In other terms, for S ∈ F and S′ ⊆ S,
we have S′ ∈ F . For these problems, we present deterministic and randomized
approximation schemes, based on a variety of techniques.

Our first result is a simple but powerful mechanism to transform a multi-
criteria PTAS, i.e., a PTAS that might violate the budgets by a small multi-
plicative factor, into a pure PTAS, where no budget is violated. Similarly, a
multi-criteria polynomial randomized-time approximation scheme (PRAS) can
be transformed into a pure PRAS (see Section 2).

Theorem 2. (Feasibilization) Let Pind be a k-budgeted problem where the set
of solutions F is an independence system. Suppose that we are given an algorithm
A which, for any constant δ > 0, computes in polynomial time an (1− δ) (resp.,
expected (1 − δ)) approximate solution to Pind violating each budget by a factor
at most (1 + δ). Then there is a PTAS (resp., PRAS) for Pind.

The basic idea is as follows. We show that a good solution exists even if we
scale down the budgets by a small factor. This is done by applying a greedy
discarding strategy similar to the greedy algorithm for knapsack. Applying a
multi-criteria PTAS (given as a black box) to the scaled problem gives a feasible
solution for the original one, of weight close to the optimal weight.

To the best of our knowledge, this simple result was never observed before.
Indeed, it implies improved approximation algorithms for a number of prob-
lems. A general construction by Papadimitriou and Yannakakis [18] provides
multi-criteria PTASs (resp., PRASs) for problems whose exact version admits
a pseudo-polynomial-time (PPT) deterministic (resp., Monte-Carlo) algorithm.
We recall that the exact version of a given optimization problem asks for a fea-
sible solution of exactly a given target weight. Combining their approach with
our mechanism one obtains approximation schemes for several problems. For ex-
ample, using the PPT-algorithm for exact forest in [2], one obtains a PTAS
for k-budgeted forest. Similarly, the Monte-Carlo PPT-algorithm for exact

matching in [17] gives a PRAS for k-budgeted matching. The Monte-Carlo
PPT-algorithms for exact matroid intersection independent set in [5],
which works in the special case of representable matroids3, implies a PRAS for
the corresponding budgeted problem.

Of course, one can also exploit multi-criteria approximation schemes obtained
with different techniques. For example, exploiting the multi-criteria PTAS in
3 A matroid M = (E,I) is representable if its ground set E can be mapped in a

bijective way to the columns of a matrix over some field, and I ⊆ E is independent
in M iff the corresponding columns are linearly independent.

Approximation Schemes for Multi-Budgeted Independence Systems 539

[8] for k-budgeted matching in bipartite graphs, which is based on itera-
tive rounding, one obtains a PTAS for the same problem. Very recently [6], a
multi-criteria PRAS for k-budgeted matroid independent set, based on
dependent randomized rounding, has been presented. This implies a PRAS for
k-budgeted matroid independent set.

Corollary 1. There are PTASs for k-budgeted forest and k-budgeted

matching in bipartite graphs. There are PRASs for k-budgeted matching,
k-budgeted matroid independent set, and k-budgeted matroid inter-

section in representable matroids.

Based on a different, more direct approach, we are able to turn the PRAS for
k-budgeted matroid independent set into a PTAS. The main insight is the
following structural property of faces of the matroid polytope which might be of
independent interest (proof in Section 3).

Theorem 3. Let M = (E, I) be a matroid and let F be a face of dimension
d of the matroid polytope4 PI. Then any x ∈ F has at most 2d non-integral
components. Furthermore, the sum of all fractional components of x is at most d.

A PTAS can then be easily derived as follows. We first guess the k/ε elements EH

of largest weight in the optimum solution in a preliminary phase, and reduce the
problem consequently. This guessing step guarantees that the maximum weight
wmax of an element in the reduced problem satisfies kwmax ≤ εw(EH). For
the reduced problem, we compute an optimal fractional vertex solution x∗ to
the LP which seeks to find a maximum weight point in the matroid polytope
intersected with the k budget constraints. Since x∗ is chosen to be a vertex
solution, and only k linear constraints are added to the matroid polytope, x∗

lies on a face of the matroid polytope of dimension at most k. We then round
down the fractional components of x∗ to obtain an incidence vector x which
corresponds to some independent set EL. By Theorem 3, |x∗ − x| ≤ k, and
hence, w(EL) ≥ w(x∗) − kwmax. Then, it is not hard to see that EH ∪ EL is a
(1 − ε)-approximate feasible solution for the starting problem.

Corollary 2. There is a PTAS for k-budgeted matroid independent set.

Eventually, we present a PTAS (rather than a PRAS as in Corollary 1) for
2-budgeted matching (see Section 4).

Theorem 4. There is a PTAS for 2-budgeted matching.

Our PTAS works as follows. Let us confuse a matching M with the associated
incidence vector xM . We initially compute an optimal fractional matching x∗,
and express it as the convex combination x∗ = α1x1 + α2x2 + α3x3 of three
matchings x1, x2, and x3. Then we exploit a patching procedure which, given two
matchings x′ and x′′ with high Lagrangian weight and a parameter μ ∈ [0, 1],
computes a matching z which is not longer than xμ := μx′ + (1 − μ)x′′ with

4 For some given matroid M = (E, I), the corresponding matroid polytope PI is the
convex hull of the incidence vectors of all independent sets.

540 F. Grandoni and R. Zenklusen

respect to both lengths, and has a comparable weight. This procedure is applied
twice: first on the matchings x1 and x2 with parameter μ = α1/(α1 +α2), hence
getting a matching z′. Second, on the two matchings z′ and x3 with parameter
μ = (α1 + α2)/(α1 + α2 + α3). The resulting matching z′′ is feasible and almost
optimal (modulo a preliminary guessing step).

Our patching procedure relies on a topological property of curves in R2, that
we prove via Jordan’s curve theorem [15]. An extension of the property above
to curves in Rk would imply a PTAS for k-budgeted matching: this is left as
an interesting open problem (details are omitted for lack of space).

1.2 Related Work

There are a few general tools for designing approximation algorithms for bud-
geted problems. One basic approach is combining dynamic programming (which
solves the problem for polynomial weights and lengths) with rounding and scal-
ing techniques (to reduce the problem to the case of polynomial quantities). This
leads for example to the FPTAS for 1-budgeted shortest path [10,14,25].
Another fundamental technique is the Lagrangian relaxation method. The basic
idea is relaxing the budget constraints, and lifting them into the objective func-
tion, where they are weighted by Lagrangian multipliers. Solving the relaxed
problem, one obtains two or more solutions with optimal Lagrangian weight,
which can - if needed - be patched together to get a good solution for the origi-
nal problem. Demonstrating this method, Goemans and Ravi [21] gave a PTAS
for 1-budgeted spanning tree, which also extends to 1-budgeted matroid

basis. Using the same approach, with an involved patching step, Berger, Boni-
faci, Grandoni, and Schäfer [3] obtained a PTAS for 1-budgeted matching

and 1-budgeted matroid intersection independent set. Their approach
does not seem to generalize to the case of multiple budget constraints.

The techniques above apply to the case of one budget. Not much is known
for problems with two or more budgets. However, often multi-criteria approx-
imation schemes are known, which provide a (1 − ε)-approximate solution vi-
olating the budgets by a factor (1 + ε). First of all, there is a very general
technique by Papadimitriou and Yannakakis [18], based on the construction of
ε-approximate Pareto curves. Given an optimization problem with multiple ob-
jectives, the Pareto curve consists of the set of solutions S such that there is
no solution S′ which is strictly better than S (in a vectorial sense). Papadim-
itriou and Yannakakis show that, for any constant ε > 0, there always exists a
polynomial-size ε-approximate Pareto curve A, i.e., a set of solutions such that
every solution in the Pareto curve is within a factor of (1+ε) from some solution
in A on each objective. Furthermore, this approximate curve can be constructed
in polynomial time in the size of the input and 1/ε whenever there exists a PPT
algorithm for the associated exact problem. This implies multi-criteria FPTASs
for k-budgeted spanning tree and k-budgeted shortest path. Further-
more, it implies a multi-criteria FPRAS for k-budgeted (perfect) matching.
The latter result exploits the Monte-Carlo PPT algorithm for exact matching

Approximation Schemes for Multi-Budgeted Independence Systems 541

in [17]. Our PRAS improves on these results, approximation-wise (the running
time is larger in our case).

Recently, Grandoni, Ravi and Singh [8] showed that the iterative rounding
technique is an alternative way to achieve similar (or better) results. Using this
method they obtain a multi-criteria PTAS for k-budgeted spanning tree,
which computes a solution of optimal cost violating each budget by a factor
(1 + ε). This improves, approximation-wise, on the result in [18] for the same
problem (where the solution returned is suboptimal). The authors also show how
to obtain a deterministic (rather than randomized [18]) multi-criteria PTAS for
k-budgeted matching in bipartite graphs.

All mentioned problems are easy in the unbudgeted version. Given an NP-hard
unbudgeted problem which admits a ρ approximation, the parametric search
technique in [16] provides a multi-criteria kρ approximation algorithm violating
each budget by a factor kρ for the corresponding problem with k budgets. Other
techniques lead to logarithmic approximation factors (see, e.g., [4,19,20]).

2 A Feasibilization Mechanism

Proof (Theorem 2). Let ε ∈ (0, 1] be a given constant, with 1/ε ∈ N. Consider
the following algorithm. Initially we guess the h = k/ε elements EH of OPT of
largest weight, and reduce the problem consequently5, hence getting a problem
P ′. Then we scale down all the budgets by a factor (1−δ), and solve the resulting
problem P ′′ by means of A, where δ = ε/(k+1). Let EL be the solution returned
by A. We finally output EH ∪ EL.

Let OPT ′ and OPT ′′ be the optimum solution to problems P ′ and P ′′, re-
spectively. We also denote by L′

i and L′′
i the ith budget in the two problems,

respectively. Let wmax be the largest weight in P ′ and P ′′. We observe that
trivially: (a) w(OPT) = w(EH) + w(OPT ′) and (b) wmax ≤ w(EH)/h.

Let us show that (c) w(OPT ′′) ≥ w(OPT ′)(1 − kδ) − kwmax. Consider the
following process: for each length function i, we remove from OPT ′ the element
e with smallest ratio w(e)/�i(e) until �i(OPT ′) ≤ (1 − δ)L′

i. Let Ei be the set
of elements removed. It is not hard to see that w(Ei) ≤ δw(OPT ′) + wmax.
It follows that OPT ′ − ∪iEi is a feasible solution for P ′′ of weight at least
w(OPT ′)(1 − δk) − kwmax, proving (c).

We observe that EL is feasible for P ′ since, for each i, �i(EL) ≤ (1 + δ)L′′
i =

(1+δ)(1−δ)L′
i ≤ L′

i. As a consequence, the returned solution EH∪EL is feasible.
Moreover, when A is deterministic, we have

w(EH) + w(EL) ≥ w(EH) + (1 − δ)w(OPT ′′)
(c)
≥ w(EH) + (1 − δ)(w(OPT ′)(1 − δk) − kwmax)

5 As usual, by reducing we mean decreasing each budget Li by �i(EH) and removing
all the elements of weight strictly larger than mine∈EH w(e). By guessing we mean
trying all the O(mh) subsets of h elements.

542 F. Grandoni and R. Zenklusen

(b)
≥ (1 − k/h)w(EH) + (1 − δ(k + 1))w(OPT ′)

≥ (1 − ε)(w(EH) + w(OPT ′))
(a)
= (1 − ε)w(OPT).

The same bound holds in expectation when A is randomized.

3 A PTAS for k-Budgeted Matroid Independent Set

It is convenient to consider weights w and lengths �i as vectors in QE . We
denote by � the matrix whose ith column is �i, and let L = (L1, . . . , Lk)T . A
rank function r : 2E → N is associated to every matroid M = (E, I); it is defined
by r(S) = max{|J | | J ⊆ S, J ∈ I}. The matroid polytope PI is the convex hull
of the characteristic vectors χI of the independent sets I ∈ I and is described
by the following set of inequalities: PI = conv{χI : I ∈ I} = {x ≥ 0 : x(S) ≤
r(S) ∀S ⊆ E}. As usual, x(S) :=

∑
e∈S x(e)6.

Proof (Theorem 3). Let m = |E|. We assume that the matroid polytope has full
dimension, i.e., dim(PI) = m, or equivalently, every element e ∈ E is indepen-
dent. This can be assumed wlog since if {e} 	∈ I for some e ∈ E, then we can
reduce the matroid by deleting element e. Since dim(PI) = m and dim(F) = d,
F can be described by the inequality system of PI , where m − d linearly in-
dependent inequalities used in the description of PI are turned into equalities.
More precisely, there are N ⊆ E and A1, . . . , Ak ⊆ E such that

F = {x ∈ PI | x(e) = 0 ∀e ∈ N, x(Ai) = r(Ai) ∀i ∈ {1, . . . , k}},

and |N |+k = m−d. By standard uncrossing arguments, we can assume that the
sets Ai form a chain, i.e., A1 � A2 � · · · � Ak (see for example [9,12] for further
information on combinatorial uncrossing). We prove the claim by induction on
the number of elements of the matroid. The theorem clearly holds for matroids
with a ground set of cardinality one. First assume N 	= ∅ and let e ∈ N . Let M ′

be the matroid obtained from M by deleting e, and let F ′ be the projection of F
onto the coordinates corresponding to N \{e}. Since F ′ is a face of M ′, the claim
follows by induction. Henceforth, we assume N = ∅ which implies k = m − d.
Let A0 = ∅ and Bi = Ai \Ai−1 for i ∈ {1, . . . , k}. In the following we show that
we can assume

0 < r(Ai) − r(Ai−1) < |Bi| ∀ i ∈ {1, . . . , k}. (1)
Notice that 0 ≤ r(Ai) − r(Ai−1) ≤ |Bi| clearly holds by standard properties of
rank functions (see [24] for more details). Assume that there is i ∈ {1, . . . , k} with
r(Ai) = r(Ai−1). Since all points x ∈ F satisfy x(Ai) = r(Ai) and x(Ai−1) =
r(Ai−1), we have x(Bi) = 0. Hence for any e ∈ Bi, we have x(e) = 0 for x ∈ F .
Again, we can delete e from the matroid, hence obtaining a smaller matroid for
which the claim holds by the inductive hypothesis. Therefore, we can assume
r(Ai) > r(Ai−1) which implies the left inequality in (1).

6 See [24] for more details and omitted standard definitions.

Approximation Schemes for Multi-Budgeted Independence Systems 543

For the right inequality assume that there is i ∈ {1, . . . , k} with r(Ai) −
r(Ai−1) = |Bi|. Hence, every x ∈ F satisfies x(Bi) = |Bi|, implying x(e) = 1
for all e ∈ Bi. Let e ∈ Bi, and let F ′ be the projection of the face F onto the
components N \ {e}. Since F ′ is a face of the matroid M ′ obtained from M by
contracting e, the result follows again by the inductive hypothesis.

Henceforth, we assume that (1) holds. This implies in particular that |Bi| > 1
for i ∈ {1, . . . , k}. Since

∑k
i=1 |Bi| ≤ m, we have k ≤ m/2, which together with

k = m − d implies d ≥ m/2. The claim of the theorem that x ∈ F has at most
2d non-integral components is thus trivial in this case.

To prove the second part of the theorem we show that if (1) holds then
x(E) ≤ d for x ∈ F . For x ∈ F we have

x(E) = x(E \ Ak) +
∑k

i=1 x(Bi) ≤ |E| − |Ak| +
∑k

i=1(r(Ai) − r(Ai−1))

≤ |E| − |Ak| +
∑k

i=1(|Ai| − |Ai−1| − 1) = m − k = d,

where the first inequality follows from x(E \Ak) ≤ |E \Ak| and x(Bi) = r(Ai)−
r(Ai−1), and the second inequality follows from (1).

4 A PTAS for 2-BUDGETED MATCHING

In this section we present our PTAS for 2-budgeted matching. We denote by
M the set of incidence vectors of matchings. With a slight abuse of terminology
we call the elements in M matchings. Let PM be the matching polyhedron.
Analogously to Section 3, let � = (�1, �2) and L = (L1, L2)T . A feasible solution in
this framework is a matching x ∈ M such that �T x ≤ L. For two elements z′, z′′ ∈
[0, 1]E, we define their symmetric difference z′Δz′′ ∈ [0, 1]E by (z′Δz′′)(e) =
|z′(e)−z′′(e)| for all e ∈ E. In particular, if z′ and z′′ are incidence vectors, then
their symmetric difference as defined above corresponds indeed to the symmetric
difference in the usual sense. Recall that, when z′ and z′′ are matchings, z′Δz′′

consists of a set of node-disjoint paths and cycles.
We start by presenting a property of curves in R2. This property is used to

derive the mentioned patching procedure. Eventually, we describe and analyze
our PTAS.

A Property of Curves in R2. We next describe a topological property of
polygonal curves in R2, which will be crucial in our proof7. A curve in R2 is a
continuous function f : [0, τ] → R2 for some τ ∈ R+. A curve is called polygonal
if it is piecewise linear. For a ∈ [0, τ], let fa : [0, τ] → R2 be the following curve.

fa(t) =

{
f(t + a) − f(a) + f(0) if t + a < τ,

f(τ) − f(a) + f(a + t − τ) if t + a ≥ τ.

7 The lemma even holds for general (non-polygonal) curves. However, since we only
need polygonal curves in our setting we restrict ourselves to this case since it sim-
plifies the exposition.

544 F. Grandoni and R. Zenklusen

Observe that fa(0) = f(0) and fa(τ) = f(τ) for any a ∈ [0, τ]. The next lemma
shows that any point x on the segment between f(0) and f(τ) is contained in
some curve fa.

Lemma 1. Let f : [0, τ] → R2 be a polygonal curve, and let μ ∈ [0, 1]. Then
there are a, t ∈ [0, τ] such that fa(t) = μf(0) + (1 − μ)f(τ).

We next give an intuitive description of the proof of the lemma: a formal proof
is postponed to the journal version of the paper. Let f = (f1, f2). Since the
statement of the lemma is independent of changes in the coordinate system
(and the claim is trivial for f(0) = f(τ)), we can assume that f(0) = (0, 0)
and f(τ) = (r, 0) for some r > 0. The Gasoline Lemma [3] states that there
is a1 ∈ [0, τ] such that fa1

2 (t) ≥ 0 ∀t ∈ [0, τ]. In particular, this condition is
satisfied by choosing a1 ∈ argmin{f2(t) | t ∈ [0, τ]}. Analogously, for a2 ∈
argmax{f2(t) | t ∈ [0, τ]}, fa2

2 (t) ≤ 0 ∀t ∈ [0, τ]. Hence, we have two curves, fa1

and fa2 , one above and the other below the x-axis, both with the same endpoints
(0, 0) and (r, 0). Furthermore, for a ranging from a1 to a2 (in a circular sense),
the curve fa continuously transforms from fa1 to fa2 , always maintaining the
same endpoints. Then it is intuitively clear that the union of the curves fa spans
all the points on the segment from (0, 0) to (r, 0), hence proving the claim.

The Patching Procedure. In this section we describe a patching procedure
which, given two matchings x′ and x′′ and a parameter μ ∈ [0, 1], computes a
matching z satisfying �T z ≤ �T xμ, where xμ := μx′ + (1 − μ)x′′ is a convex
combination of the first two matchings. Furthermore, the weight wT z is close to
wT xμ, provided that x′ and x′′ have a sufficiently large Lagrangian weight, which
is defined as follows. Let λ∗

1, λ
∗
2 ∈ R+ be a pair of optimal dual multipliers for the

budgets in the linear program max{wT x | x ∈ PM, �T x ≤ L}. The Langrangian
weight of x ∈ [0, 1]E is L(x) = wT x − (λ∗

1, λ
∗
2)(�

T x − L). Notice, that by the
theory of Lagrangian duality we have w∗ = max{L(x) | x ∈ PM}, where w∗ is
the weight of an optimal LP solution, i.e., w∗ = max{wT x | x ∈ PM, �T x ≤ L}
(see [13] for more information on Lagrangian duality).

We need the following notion of almost matching.

Definition 1. For r ∈ N, an r-almost matching in G is a (possibly fractional)
vector y ∈ [0, 1]E such that it is possible to set at most r components of y to zero
to obtain a matching.

We denote by Mr the set of all r-almost matchings in G. Given an r-almost
matching y, we let a corresponding matching z ∈ M be a matching obtained by
setting to zero the fractional components of y, and then computing a maximal
matching in the resulting set of edges (in particular, we might need to set to 0
some 1 entries of y to obtain z). Notice that wT z ≥ wT y − rwmax, where wmax
is the largest weight.

Our patching procedure first constructs a 2-almost matching y, and then
returns a corresponding matching z. We next show how to compute y. Let us
restrict our attention to the following set of candidate 2-almost matchings. Recall
that s = x′Δx′′ is a set of paths and cycles. We construct an auxiliary graph

Approximation Schemes for Multi-Budgeted Independence Systems 545

C, consisting of one cycle (e0, e1, . . . , eτ−1), with the following property: there
is a bijective mapping between the edges of C and the edges of s such that
two consecutive edges of C are either consecutive in some path/cycle or belong
to different paths/cycles. This can be easily achieved by cutting each cycle,
appending the resulting set of paths one to the other, and gluing together the
endpoints of the obtained path. For t ∈ [0, τ], we define s(t) ∈ [0, 1]E as

(s(t))(e) =

⎧⎪⎨⎪⎩
1 if e = ei, i < �t�;
t − �t� if e = ei, i = �t�;
0 otherwise.

Moreover, for a, t ∈ [0, τ], we define

[0, 1]E sa(t) =

{
s(a + t) − s(a) if a + t ≤ τ ;
s(a + t − τ) + s(τ) − s(a) if a + t > τ.

Intuitively, a and (a + t) (mod τ) define a (fractional) subpath of C, and sa(t)
is the (fractional) incidence vector corresponding to that subpath. Additionally
we define ya(t) := x′�sa(t). Note that ya(t) is equal to x′ and x′′ for t = 0 and
t = τ , respectively.

Lemma 2. For any a, t ∈ [0, τ], ya(t) is a 2-almost matching.

Proof. One can easily observe that a matching can be obtained by setting the two
components of ya(t) to zero that correspond to the edges e�a	 and e�(a+t) (mod τ)	.

The following lemma shows that, in polynomial time, one can find a 2-almost
matching y with lengths �T y equal to the lengths of any convex combination of
the two matchings x′ and x′′.

Lemma 3. Let μ ∈ [0, 1] and xμ = μx′ + (1 − μ)x′′. In polynomial time, a, t ∈
[0, τ] can be determined such that �T ya(t) = �T xμ.

Proof. Let f : [0, τ] → R2 be the polygonal curve defined by f(t) = �T y0(t).
Since f(0) = �T x′ and f(τ) = �T x′′, we have by Lemma 1 that there exists
a, t ∈ [0, τ] such that fa(t) = �T xμ. Since fa(t) = �T ya(t), y := ya(t) satisfies
the claim. The values of �a� and �a + t� can be guessed in polynomial time
by considering O(n2) possibilities. Given those two rounded values, the actual
values of a and t can be obtained by solving a linear program with a constant
number of variables and constraints.

Our patching procedure computes a 2-almost matching y = ya(t) with �T y =
�T xμ, exploiting the lemma above, and then returns a corresponding matching
z, by applying the procedure explained in the proof of Lemma 2. Trivially, �T z ≤
�T y = �T xμ. We next show that, if x′ and x′′ have sufficiently large Lagrangian
weight, then the weight of z is close to the weight of xμ.

Lemma 4. Assume L(x′) ≥ w∗ − Γ and L(x′′) ≥ w∗ − Γ for some Γ ∈ R+.
Then the matching z returned by the patching procedure satisfies wT z ≥ wT xμ −
2wmax − Γ and �T z ≤ �T xμ.

546 F. Grandoni and R. Zenklusen

Proof. By Lemma 3 we have �T y = �T xμ, and since z ≤ y, we get �T z ≤ �T xμ.
Let xμ = x′ +x′′ −xμ = (1−μ)x′ +μx′′. Since L(x′) ≥ w∗ −Γ , L(x′′) ≥ w∗ −Γ
and L is linear, we have L(xμ) ≥ w∗ − Γ and L(xμ) ≥ w∗ − Γ . Recall that
y = ya(t) for a proper choice of a, t ∈ [0, τ]. Let y := x′ + x′′ − y. Notice that
y = ya′

(τ − t) where a′ = (a + t) (mod τ), and hence, y is also a 2-almost
matching by Lemma 2. Let z be the matching corresponding to y obtained by
applying the procedure explained in the proof of Lemma 2 to y. Notice that the
pairs (z, y) and (z, y) differ on the same two (or less) components. Hence

wT z + wT z + 2wmax ≥ wT y + wT y = wT xμ + wT xμ. (2)

Since y + y = xμ + xμ and �T y = �T xμ, we get �T y = �T xμ. Thus, �T z ≤ �T xμ

since z ≤ y. This can be rewritten as L(z) − wT z ≥ L(xμ) − wT xμ. Since
L(xμ) ≥ w∗ − Γ and L(z) ≤ w∗, we obtain wT z ≤ wT xμ + Γ . Combining this
result with (2) implies wT z ≥ wT xμ − 2wmax − Γ .

The Algorithm. Our PTAS works as follows. First it guesses the 6/ε heaviest
edges EH in the optimum solution, and reduces the problem consequently. Then
it computes a vertex x∗ ∈ PM of the polytope {x ∈ PM | �T x ≤ L} of maximum
weight w∗ := wT x∗. As x∗ is a vertex solution of the polytope PM with two
additional constraints, it lies on a face of PM of dimension at most two. Hence,
by Carathéodory’s Theorem, x∗ can be expressed as a convex combination x∗ =
α1x1 + α2x2 + α3x3 of three matchings x1, x2, x3 ∈ PM. Let μ′ = α1/(α1 + α2)
and μ′′ = (α1 + α2)/(α1 + α2 + α3). Applying Lemma 4 to x1 and x2 with
μ = μ′, a matching z′ is obtained. Applying Lemma 4 to z′ and x3 with μ = μ′′,
we obtain a matching z′′. The algorithm returns z′′ and EH .

Proof (Theorem 4). Consider the algorithm above. The initial guessing can be
performed in O(|E|6/ε) time. Since it is possible to efficiently separate over PM,
x∗ can be computed in polynomial time [24]. The same holds for the decompo-
sition of x∗ into three matchings by standard techniques (see for example [23]).
Lemma 3 implies that the patching can be done in polynomial time. Hence the
proposed algorithm runs in polynomial time as claimed.

Since L(x∗) = w∗ and L(x) ≤ w∗ for x ∈ PM, we get L(x1) = L(x2) =
L(x3) = w∗. Let u := μ′x1 +(1−μ′)x2 and v := μ′′z′+(1−μ′′)x3. By Lemma 4,
matching z′ satisfies �T z′ ≤ �T u and wT z′ ≥ wT u − 2wmax. Since u is a convex
combination of x1 and x2, we have L(u) = w∗. Furthermore, by the relations
between the lengths and weight of z′ and u, we get L(z′) ≥ L(u) − 2wmax =
w∗ − 2wmax.

By Lemma 4, matching z′′ satisfies �T z′′ ≤ �T v and wT z′′ ≥ wT v − 4wmax.
We observe that z′′ satisfies the budget constraints since

�T z′′ ≤ �T v = �T ((α1 + α2)z′ + α3x3) ≤ �T ((α1 + α2)u + α3x3) = �T x∗ ≤ L.

Furthermore,

wT z′′ ≥ wT v − 4wmax = wT ((α1 + α2)z′ + α3x3) − 4wmax

≥ wT ((α1 + α2)u + α3x3) − 6wmax = w∗ − 6wmax.

Approximation Schemes for Multi-Budgeted Independence Systems 547

Let OPT ′ be an optimum solution to the reduced problem. Of course, w∗ ≥
w(OPT ′). Furthermore, the weight of the guessed edges EH is at least 6/ε wmax.
Since w(OPT) = w(EH)+w(OPT ′), we can conclude that the solution returned
by the algorithm has weight at least w(EH)(1−ε)+w(OPT ′) ≥ (1−ε)w(OPT).

References

1. Aggarwal, V., Aneja, Y.P., Nair, K.P.K.: Minimal spanning tree subject to a side
constraint. Computers & Operations Research 9, 287–296 (1982)

2. Barahona, F., Pulleyblank, W.R.: Exact arborescences, matchings and cycles. Dis-
crete Applied Mathematics 16(2), 91–99 (1987)

3. Berger, A., Bonifaci, V., Grandoni, F., Schäfer, G.: Budgeted matching and bud-
geted matroid intersection via the gasoline puzzle. To appear in Mathematical
Programming, Preliminary version in IPCO 2008

4. Bilu, V., Goyal, V., Ravi, R., Singh, M.: On the crossing spanning tree problem.
In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) RANDOM 2004 and
APPROX 2004. LNCS, vol. 3122, pp. 51–64. Springer, Heidelberg (2004)

5. Camerini, P., Galbiati, G., Maffioli, F.: Random pseudo-polynomial algorithms for
exact matroid problems. Journal of Algorithms 13, 258–273 (1992)

6. Chekuri, C., Vondrák, J., Zenklusen, R.: Dependent randomized rounding for ma-
troid polytopes and applications (2009), http://arxiv.org/abs/0909.4348

7. Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory
of NP-completeness. W.H. Freeman, New York (1979)

8. Grandoni, F., Ravi, R., Singh, M.: Iterative rounding for multi-objective optimiza-
tion problems. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp.
95–106. Springer, Heidelberg (2009)

9. Hurkens, C.A., Lovász, L., Schrijver, A., Tardos, E.: How to tidy up your set
system. Combinatorics, 309–314 (1988)

10. Hassin, R.: Approximation schemes for the restricted shortest path problem. Math-
ematics of Operation Research 17(1), 36–42 (1992)

11. Hassin, R., Levin, A.: An efficient polynomial time approximation scheme for the
constrained minimum spanning tree problem using matroid intersection. SIAM
Journal on Computing 33(2), 261–268 (2004)

12. Jain, K.: A factor 2 approximation algorithm for the generalized Steiner network
problem. Combinatorica 21, 39–60 (2001)

13. Korte, B., Vygen, J.: Combinatorial optimization. Springer, Heidelberg (2008)
14. Lorenz, D., Raz, D.: A simple efficient approximation scheme for the restricted

shortest paths problem. Operations Research Letters 28, 213–219 (2001)

15. Munkres, J.R.: Topology, 2nd edn. Prentice-Hall, Englewood Cliffs (2000)
16. Marathe, M.V., Ravi, R., Sundaram, R., Ravi, S.S., Rosenkrantz, D.J., Hunt

III, H.B.: Bicriteria network design problems. In: Fülöp, Z., Gecseg, F. (eds.)
ICALP 1995. LNCS, vol. 944, pp. 487–498. Springer, Heidelberg (1995)

17. Mulmuley, K., Vazirani, U., Vazirani, V.: Matching is as easy as matrix inversion.
Combinatorica 7(1), 101–104 (1987)

18. Papadimitriou, C.H., Yannakakis, M.: On the approximability of trade-offs and
optimal access of Web sources. In: FOCS, pp. 86–92 (2000)

19. Ravi, R.: Rapid rumor ramification: Approximating the minimum broadcast time.
In: FOCS, pp. 202–213 (1994)

http://arxiv.org/abs/0909.4348

548 F. Grandoni and R. Zenklusen

20. Ravi, R.: Matching based augmentations for approximating connectivity problems.
In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 13–
24. Springer, Heidelberg (2006) (invited lecture)

21. Ravi, R., Goemans, M.X.: The constrained minimum spanning tree problem (ex-
tended abstract). In: Karlsson, R., Lingas, A. (eds.) SWAT 1996. LNCS, vol. 1097,
pp. 66–75. Springer, Heidelberg (1996)

22. Ravi, R., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Hunt, H.B.: Many birds
with one stone: Multi-objective approximation algorithms. In: STOC, pp. 438–447
(1993)

23. Schrijver, A.: Theory of linear and integer programming. John Wiley & Sons,
Chichester (1998)

24. Schrijver, A.: Combinatorial optimization, polyhedra and efficiency. Springer, Hei-
delberg (2003)

25. Warburton, A.: Approximation of Pareto optima in multiple-objective, shortest
path problems. Operations Research 35, 70–79 (1987)

Algorithmic Meta-theorems for Restrictions of

Treewidth

Michael Lampis

Computer Science Department,
Graduate Center, City University of New York

mlampis@gc.cuny.edu

Abstract. Possibly the most famous algorithmic meta-theorem is Cour-
celle’s theorem, which states that all MSO-expressible graph properties
are decidable in linear time for graphs of bounded treewidth. Unfor-
tunately, the running time’s dependence on the formula describing the
problem is in general a tower of exponentials of unbounded height, and
there exist lower bounds proving that this cannot be improved even if
we restrict ourselves to deciding FO logic on trees.

We investigate whether this parameter dependence can be improved
by focusing on two proper subclasses of the class of bounded treewidth
graphs: graphs of bounded vertex cover and graphs of bounded max-leaf
number. We prove stronger algorithmic meta-theorems for these more
restricted classes of graphs. More specifically, we show it is possible to
decide any FO property in both of these classes with a singly exponential
parameter dependence and that it is possible to decide MSO logic on
graphs of bounded vertex cover with a doubly exponential parameter
dependence. We also prove lower bound results which show that our
upper bounds cannot be improved significantly, under widely believed
complexity assumptions. Our work addresses an open problem posed by
Michael Fellows.

1 Introduction

Algorithmic metatheorems are general statements of the form “All problems
sharing property P, restricted to a class of inputs I can be solved efficiently”.
The archetypal, and possibly most celebrated, such metatheorem is Courcelle’s
theorem which states that every graph property expressible in monadic second-
order (MSO2) logic is decidable in linear time if restricted to graphs of bounded
treewidth [3]. Metatheorems have been a subject of intensive research in the last
years producing a wealth of interesting results. Some representative examples of
metatheorems with a flavor similar to Courcelle’s can be found in the work of
Frick and Grohe [12], where it is shown that all properties expressible in first
order (FO) logic are solvable in linear time on planar graphs, and the work of
Dawar et al. [5], where it is shown that all FO-definable optimisation problems
admit a PTAS on graphs excluding a fixed minor (see [14] and [15] for more
results on the topic).

M. de Berg and U. Meyer (Eds.): ESA 2010, Part I, LNCS 6346, pp. 549–560, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

550 M. Lampis

Many interesting extensions have followed Courcelle’s seminal result: for in-
stance, Courcelle’s theorem has been extended to logics more suitable for the ex-
pression of optimisation problems [1]. It has also been investigated whether it’s
possible to obtain similar results for larger graph classes (see [4] for a metatheo-
rem for bounded cliquewidth graphs, [11] for corresponding hardness results and
[17] for hardness results for graphs of small but unbounded treewidth). Finally,
lower bound results have been shown proving that the running times predicted
by Courcelle’s theorem can not be improved significantly in general [13].

This lower bound result is one of the main motivations of this work, because in
some ways it is quite devastating. Though Courcelle’s theorem shows that a vast
class of problems is solvable in linear time on graphs of bounded treewidth, the
“hidden constant” in this running time, that is, the running time’s dependence
on the input’s other parameters, which are the graph’s treewidth and the formula
describing the problem, is in fact (in the worst case) a tower of exponentials.
Unfortunately, in [13] it is shown that this tower of exponentials is unavoidable
even if we restrict ourselves to deciding FO logic on trees.

In this paper our aim is to investigate if it is possible to go around this harsh
lower bound by restricting the considered class of input graphs further. In other
words, we are looking for meta-theorems which would imply that all of FO or
MSO logic can be solved in time not only linear in the size of the graph, but
also depending more reasonably on the secondary parameters, if we are willing
to give up some of the generality of the class of bounded-treewidth graphs. We
concentrate on two graph classes: graphs of bounded vertex cover and graphs
of bounded max-leaf number. We note that the investigation of the existence of
stronger meta-theorems for these classes has been posed explicitly as an open
problem by Fellows in [7].

Though graphs of bounded vertex cover or max-leaf number are considerably
more restricted than bounded treewidth graphs, these classes are still interesting
from the algorithmic point of view and the complexity of hard problems param-
eterized by vertex cover or max-leaf number has been investigated in the past
([9], [8]). Furthermore, as mentioned, strong lower bounds are known to apply
to slightly more general classes: for bounded feedback vertex set and bounded
pathwidth graphs even FO logic is non-elementary, while even for binary trees
(thus for graphs of bounded treewidth and max degree) FO logic is at least
triply exponential (again by [13]). Bounded vertex cover and bounded max-leaf
number evade all these lower bound arguments so it’s natural to ask what is
exactly the complexity of FO and MSO logic for these classes of graphs?

The main results of this paper show that meta-theorems stronger than Cour-
celle’s can indeed be shown for these classes of graphs. In addition, we show
that our meta-theorems for vertex cover cannot be significantly improved under
standard complexity assumptions.

Specifically, for the class of graphs of vertex cover bounded by k we show that

– All graph problems expressible with an FO formula φ can be solved in time
linear in the graph size and singly exponential in k and |φ|.

Algorithmic Meta-theorems for Restrictions of Treewidth 551

– All graph problems expressible with an MSO1 formula φ can be solved in
time linear in the graph size and doubly exponential in k and |φ|.

– Unless n-variable 3SAT can be solved in time 2o(n) (that is, unless the Ex-
ponential Time Hypothesis fails), then no f(k, φ) ·poly(|G|) algorithm exists
to decide MSO logic on graphs for any f(k, φ) = 22o(k+|φ|)

.
– Unless FPT=W[1], there is no algorithm which can decide if an FO formula

φ with q quantifiers holds in a graph G of vertex cover k in time f(k, q)nc,
for any f(k, q) = 2O(k+q).

Furthermore, for the class of graphs of max-leaf number bounded by k we show
that

– All graph problems expressible with an FO formula φ can be solved in time
linear in the graph size and singly exponential in k and |φ|.

Our upper bounds rely on techniques different from the standard dynamic pro-
gramming on decompositions usually associated with treewidth. For max-leaf
number we rely on the characterization of bounded max-leaf number graphs
from [16] also used heavily in [8] and the fact that FO logic has limited counting
power in paths. For vertex cover we exploit an observation that for FO logic two
vertices that have the same neighbors are “equivalent” in a sense we will make
precise. We state our results in this case in terms of a new graph “width” pa-
rameter that captures this graph property more precisely than bounded vertex
cover. We call the new parameter neighborhood diversity, and the upper bounds
for vertex cover follow by showing that bounded vertex cover is a special case of
bounded neighborhood diversity. Our essentially matching lower bounds on the
other hand are shown for vertex cover. In the last section of this paper we prove
some additional results for neighborhood diversity, beyond the algorithmic meta-
theorems of the rest of the paper, which we believe indicate that neighborhood
diversity might be a graph structure parameter of independent interest and that
its algorithmic and graph-theoretic properties may merit further investigation.

Due to space constraints, some of the proofs have been omitted and will appear
in the full version of this paper.

2 Definitions and Preliminaries

Model Checking, FO and MSO Logic. In this paper we will describe algo-
rithmic meta-theorems, that is, general methods for solving all problems belong-
ing in a class of problems. However, the presentation is simplified if one poses
this approach as an attack on a single problem, the model checking problem. In
the model checking problem we are given a logic formula φ, expressing a graph
property, and a graph G, and we must decide if the property described by φ
holds in G. In that case, we write G |= φ. Clearly, if we can describe an efficient
algorithm for model checking for a specific logic, this will imply the existence
of efficient algorithms for all problems expressible in this logic. Let us now give

552 M. Lampis

more details about the logics we will deal with and the graphs which will be our
input instances.

Our universe of discourse will be labeled, colored graphs. Specifically, we as-
sume that the first part of the input is an undirected graph G(V, E), a set
of labels L, each associated with a vertex of V and a set of subsets of V ,
C = {C1, C2, . . . , Cc}, which we refer to as color classes. The interesting case
here is unlabeled, uncolored graphs (that is, L = C = ∅), but the additional
generality in the definition of the problem makes it easier to describe a recursive
algorithm.

The formulas of FO logic are those which can be constructed using vertex
variables, denoted usually by xi, yi, . . ., vertex labels denoted by li, color classes
denoted by Ci, the predicates E(xi, xj), xi ∈ Cj , xi = xj operating on vertex
variables or labels, standard propositional connectives and the quantifiers ∃, ∀
operating on vertex variables. The semantics are defined in the usual way, with
the E() predicate being true if (xi, xj) ∈ E.

For MSO logic the additional propery is that we now introduce set variables
denoted by Xi and allow the quantifiers and the ∈ predicate to operate on them.
The semantics are defined in the obvious way.

If the set variables are allowed to range over sets of vertices only then the
logic is sometimes referred to as MSO1. A variation is MSO2 logic, where one is
also allowed to use set variables that range overs sets of edges. To accomodate
for this case one also usually modifies slightly the definition of FO formulas to
allow edge variables and an incidence predicate I(v, e) which is true is true if
edge e is incident on vertex v.

Bounded Vertex Cover and neighborhood diversity. We will work exten-
sively with graphs of bounded vertex cover, that is, graphs for which there exists
a small set of vertices whose removal also removes all edges. We will usually de-
note the size of a graph’s vertex cover by k. Note that there exist linear-time
FPT algorithms for finding an optimal vertex cover in graphs where k is small
(see e.g. [2]).

Our technique relies on the fact that in a graph of vertex cover k, the vertices
outside the vertex cover can be partitioned into at most 2k sets, such that all the
vertices in each set have exactly the same neighbors outside the set and each set
contains no edges inside it. Since we do not make use of any other special property
of graphs of small vertex cover, we are motivated to define a new graph parameter,
called neighborhood diversity, which intuitively seems to give the largest graph
family to which we can apply our method in a straightforward way.

Definition 1. We will say that two vertices v, v′ of a graph G(V, E) have the
same type iff they have the same colors and N(v) \ {v′} = N(v′) \ {v}.

Definition 2. A colored graph G(V, E) has neighborhood diversity at most w,
if there exists a partition of V into at most w sets, such that all the vertices in
each set have the same type.

Algorithmic Meta-theorems for Restrictions of Treewidth 553

Lemma 1. If an uncolored graph has vertex cover at most k, then it has neigh-
borhood diversity at most 2k + k.

In Section 7 we will show that neighborhood diversity can be computed in poly-
nomial time and also prove some results which indicate it may be an interesting
parameter in its own right. However, until then our main focus will be graphs of
bounded vertex cover. We will prove most of our algorithmic results in terms of
neighborhood diversity and then invoke Lemma 1 to obtain our main objective.
We will usually assume that a partition of the graph into sets with the same
neighbors is given to us, because otherwise one can easily be found in linear
time by using the mentioned linear-time FPT algorithm for vertex cover and
Lemma 1.

Bounded Max-Leaf Number. We say that a connected graph G has max-
leaf number at most l if no spanning tree of G has more than l leaves. The
algorithmic properties of this class of graphs have been investigated in the past
[6,10,8]. In this paper we rely heavily on a characterization of bounded max-leaf
graphs by Kleitman and West [16] which is also heavily used in [8].

Theorem 1. [16] If a graph G has max-leaf number at most l, then G is a
subdivision of a graph on O(l) vertices.

What this theorem tells us intuitively is that in a graph G(V, E) with max-leaf
number l there exists a set S of O(l) vertices such that G[V \ S] is a collection
of O(l2) paths. Furthermore, only the endpoints of the paths can be connected
to vertices of S in G.

It is well-known that a graph of max-leaf number at most l has a path de-
composition of width at most 2l. Furthermore, it must have maximum degree at
most l. Bounded max-leaf number graphs are therefore a subclass of the inter-
section of bounded pathwidth and bounded degree graphs (in fact, they are a
proper subclass, as witnessed by the existence of say 2×n grids). Let us mention
again that deciding FO logic on binary trees has at least a triply exponential
parameter dependence, so the results we present for graphs of bounded max-leaf
number can also be seen as an improvement on the currently known results for
FO logic on bounded degree graphs, for this more restricted case.

3 FO Logic for Bounded Vertex Cover

In this Section we show how any FO formula can be decided on graphs of
bounded vertex cover, with a singly exponential parameter dependence. Our
main argument is that for FO logic, two vertices which have the same neigh-
bors are essentially equivalent. We will state our results in the more general case
of bounded neighborhood diversity and then show the corresponding result for
bounded vertex cover as a corollary.

Lemma 2. Let G(V, E) be a graph and φ(x) a FO formula with one free vari-
able. Let v, v′ ∈ V be two distinct unlabeled vertices of G that have the same
type. Then G |= φ(v) iff G |= φ(v′).

554 M. Lampis

Proof. (Sketch) Recall that the standard way of deciding an FO formula on
a graph is, whenever we encounter an existential quantifier to try all possible
choices of a vertex for that variable. This creates an n-ary decision tree with
height equal to the number of quantifiers in φ(x). Every leaf corresponds to a
choice of vertices for the q quantified variables, which makes the formula true or
false. Internal nodes are evaluated as the disjunction (for existential quantifiers)
or conjunction (for universal quantifiers) of their children.

It is possible to create a one-to-one correspondence between the trees for φ(v)
and φ(v′), by essentially exchanging v and v′, showing that φ(v) and φ(v′) are
equivalent. ��

Theorem 2. Let φ be a FO sentence of quantifier depth q. Let G(V, E) be a
labeled colored graph with neighborhood diversity at most w and l labeled vertices.
Then, there is an algorithm that decides if G |= φ in time O((w + l + q)q · |φ|).

Corollary 1. There exists an algorithm which, given a FO sentence φ with q
variables and an uncolored, unlabeled graph G with vertex cover at most k, de-
cides if G |= φ in time 2O(kq+q log q).

Thus, the running time is (only) singly exponential in the parameters, while
a straightforward observation that bounded vertex cover graphs have bounded
treewidth and an application of Courcelle’s theorem would in general have a non-
elementary running time. Of course, a natural question to ask now is whether it is
possible to do even better, perhaps making the exponent linear in the parameter,
which is (k + q). As we will see later on, this is not possible if we accept some
standard complexity assumptions.

4 FO Logic for Bounded Max-Leaf Number

In this section we describe a model checking algorithm for FO logic on graphs of
small max-leaf number. Our main tool is the mentioned observation that all but
a small fraction of the vertices have degree 2, and therefore (since we assume
without loss of generality that the graph is connected) induce paths. We call a
maximal set of connected vertices of degree 2 a topo-edge.

Our main argument is that when a topo-edge is very long (exponentially long
in the number of quantifiers of the first-order sentence we are model checking)
its precise length does not matter.

To make this more precise, let us first define a similarity relation on graphs.

Definition 3. Let G1, G2, be two graphs. For a given q we will say that G1 and
G2 are q-similar and write G1 ∼q G2 iff G1 contains a topo-edge of order at
least 2q+1 consisting of unlabeled vertices, call it P , and G2 can be obtained from
G1 by contracting one of the edges of P . We denote the transitive closure of the
relation ∼q as ∼∗

q.

Our main technical tool is now the following lemma.

Algorithmic Meta-theorems for Restrictions of Treewidth 555

Lemma 3. Let φ be a FO formula with q quantifiers. Then, for any two graphs
G1, G2 if G1 ∼q G2 then G1 |= φ iff G2 |= φ. Therefore, if G1 ∼∗

q G2 then
G1 |= φ iff G2 |= φ.

Now we are ready to state our main result of this section.

Theorem 3. Let G be a graph on n vertices with max-leaf number k and φ a
FO formula with q quantifiers. Then, there exists an algorithm for deciding if
G |= φ running in time poly(n) + 2O(q2+q log k).

Proof. By applying Theorem 1 we know that G can be partitioned into a set of
at most O(k) vertices of degree at least 3 and a collection of paths. By applying
Lemma 3 we know that there exists a G′ such that G ∼∗

q G′ and G′ consists
of the same O(k) vertices of degree at least 3 and at most O(k2) paths whose
length is at most 2q+1. Of course, G′ can be found in time polynomial in n.

Now, we can apply the straightforward algorithm to model check φ on G′. For
every quantifier we have at most O(k + q) + O(k(k + q)2q+1) choices, which is
2O(q+log k). Exhausting all possibilities for each vertex gives the promised running
time. ��

5 MSO Logic for Bounded Vertex Cover

First, let us state a helpful extension of the results of the Section 3. From the
following Lemma it follows naturally that the model checking problem for MSO1
logic on bounded vertex cover graphs is in XP, that is, solvable in polynomial
time for constant φ and k, but our objective later on will be to do better.

Lemma 4. Let φ(X) be an MSO1 formula with a free set variable X. Let G be a
graph and S1, S2 two sets of vertices of G such that all vertices of (S1\S2)∪(S2\
S1) are unlabeled and have the same type and furthermore |S1 \ S2| = |S2 \ S1|.
Then G |= φ(S1) iff G |= φ(S2).

Our main tool in this section is the following lemma.

Lemma 5. Let φ(X) be an MSO1 formula with one free set variable X, qV

quantified vertex variables and qS quantified set variables. Let G be a graph and
S1, S2 two sets of vertices of G such that all vertices of (S1 \ S2) ∪ (S2 \ S1) are
unlabeled and belong in the same type T . Suppose that both |S1 ∩T | and |S2 ∩T |
fall in the interval [2qS qV , |T | − 2qSqV − 1]. Then G |= φ(S1) iff G |= φ(S2).

Proof. (Sketch) We can assume without loss of generality that S1 ⊆ S2, thanks
to Lemma 4. In fact, we may assume that S2 = S1 ∪ {u} for some vertex u and
repeated applications of the same argument yield the claimed result.

Our argument is that the truth of φ(S1) and φ(S2) can be decided by an
algorithm which checks for each set variable every combination of sizes that its
intersection has with each type and for each vertex variable one representative
of each type. If u is never picked as a representative then the algorithm must

556 M. Lampis

give the same answer for φ(S1) and φ(S2). This can be guaranteed if the type
u belongs in always has more than qV vertices. Every time the algorithm picks
a value for a set variable, the type u belongs in is partitioned in two. Since the
only thing that matters to the algorithm is the size of the set’s intersection with
u’s type, we are free to select a set that puts u in the larger of the two new
sub-types. Because S1 ∩ T and S2 ∩ T have constrained sizes, we can always
guarantee that u is never selected. ��

Theorem 4. There exists an algorithm which, given a graph G with l labels, neigh-
borhood diversity at most w and an MSO1 formula φ with at most qS set variables
and qV vertex variables, decides if G |= φ in time 2O(2qS (w+l)q2

SqV log qV) · |φ|.

Corollary 2. There exists an algorithm which, given an MSO1 sentence φ with
q variables and an uncolored, unlabeled graph G with vertex cover at most k,
decides if G |= φ in time 22O(k+q)

.

Again, this gives a dramatic improvement compared to Courcelle’s theorem,
though exponentially worse than the case of FO logic. This is an interesting
point to consider because for treewidth there does not seem to be any major
difference between the complexities of model checking FO and MSO1 logic.

The natural question to ask here is once again, can we do significantly better?
For example, perhaps the most natural question to ask is, is it possible to solve
this problem in 22o(k+q)

? As we will see later on, the answer is no, if we accept
some standard complexity assumptions.

Finally, let us briefly discuss the case of MSO2 logic. In general this logic is
more powerful than MSO1, so it is not straightforward to extend Theorem 4 in
this case. However, if we are not interested in neighborhood diversity but just in
vertex cover we can observe that all edges in a graph with vertex cover of size
k have one of their endpoints in one of the k vertices of the vertex cover. Thus,
any edge set X can be written as the union of k edge sets. In turn, each of these
k edge sets can easily be replaced by vertex sets, without loss of information,
since we already know one of the endpoints of each of these edges. Using this
trick we can replace every edge set variable in an MSO2 sentence with k vertex
set variables, thus obtaining a 22O(kq)

algorithm for MSO2 logic on graphs of
bounded vertex cover.

6 Lower Bounds

In this Section we will prove some lower bound results for the model checking
problems we are dealing with. Our proofs rely on a construction which reduces
SAT to a model checking problem on a graph with small vertex cover.

Given a propositional 3-CNF formula φp with n variables and m clauses, we
want to construct a graph G that encodes its structure, while having a small
vertex cover. The main problem is encoding numbers up to n with graphs of small
vertex cover but this can easily be achieved by using the binary representation
of numbers.

Algorithmic Meta-theorems for Restrictions of Treewidth 557

We begin constucting a graph by adding 7 log n vertices, call them u(i,j), 1 ≤
i ≤ 7, 1 ≤ j ≤ log n. Add all edges of the form (u(i,j), u(k,j)) (so we now have
log n disjoint copies of K7). Let Ni = {u(i,j) | 1 ≤ j ≤ log n}.

For every variable xi in φp add a new vertex to the graph, call it vi. Define for ev-
ery number i the set X(i) = {j | the j-th bit of the binary representation of i is 1}.
Add the edges (vi, u(1,j)), j ∈ X(i), that is connect every variable vertex with
the vertices of N1 that correspond to the binary representation of its index. Let
U = {vi | 1 ≤ i ≤ n} be the vertices corresponding to variables.

For every clause ci in φp add a new vertex to the graph, call it wi. If the first
literal in ci is a positive variable xk then add the edges (wi, u(2,j), j ∈ X(k). If
the first literal is a negated variable ¬xk, add the edges (wi, u(3,j), j ∈ X(k).
Proceed in a similar way for the second and third literal, that is, if the second
literal is positive connect wi with the vertices that correspond to the binary
representation of the variable in N4, otherwise in N5. For the third literal do the
same with N6 or N7. Let W = {wi | 1 ≤ i ≤ m} be the vertices corresponding
to clauses.

Finally, set the color classes to be {N1, N2, . . . , N7, U, W}.
Now, looking at the graph it is easy to see if a vertex vi corresponds to a

variable that appears positive in the clause represented by a vertex wi. They
must satisfy the formula

pos(vi, wj) =
∨

k=2,4,6

∀x(x ∈ N1 → ∃y((E(vi, x) ↔ E(wj , y))∧y ∈ Nk ∧E(x, y)))

It is not hard to define neg(vi, wj) in a similar way. Now it is straight-forward
to check if φp was satisfiable:

φ = ∃S(∀xx ∈ S → x ∈ U) ∧ (∀ww ∈ W → ∃xx ∈ U ∧
((pos(x, w) ∧ x ∈ S) ∨ (neg(x, w) ∧ x 	∈ S)))

Clearly, φ holds in the constructed graph iff φp is satisfiable. S corresponds to the
set of variables set to true in a satisfying assignment. Let us also briefly remark
that it is relatively easy to eliminate the colors and labels from the construction
above, therefore the lower bounds given below apply to the natural form of the
problem.

Lemma 6. G |= φ iff φp is satisfiable. Furthermore, φ has size O(1) and G has
a vertex cover of size O(log n).

Theorem 5. Let φ be a MSO formula with q quantifiers and G a graph with
vertex cover k. Then, unless 3-SAT can be solved in time 2o(n), there is no
algorithm which decides if G |= φ in time O(22o(k+q) · poly(n)).

Theorem 6. Let φ be a FO formula with qv vertex quantifiers and G a graph
with vertex cover k. Then, unless FPT=W[1], there is no algorithm which decides
if G |= φ in time O(2O(k+qv) · poly(n)).

558 M. Lampis

7 Neighborhood Diversity

In this Section we give some general results on the new graph parameter we have
defined, neighborhood diversity. We will use nd(G), tw(G), cw(G) and vc(G) to
denote the neighborhood diversity, treewidth, cliquewidth and minimum vertex
cover of a graph G. We will call a partition of the vertex set of a graph G into
w sets such that all vertices in every set share the same type a neighborhood
partition of width w.

First, some general results

Theorem 7. 1. Let V1, V2, . . . , Vw be a neighborhood partition of the vertices
of a graph G(V, E). Then each Vi induces either a clique or an independent
set. Furthermore, for all i, j the graph either includes all possible edges from
Vi to Vj or none.

2. For every graph G we have nd(G) ≤ 2vc(G) + vc(G) and cw(G) ≤ nd(G)+1.
Furthermore, there exist graphs of constant treewidth and unbounded neigh-
borhood diversity and vice-versa.

3. There exists an algorithm which runs in polynomial time and given a graph
G(V, E) finds a neighborhood partition of the graph with minimum width.

Taking into account the observations of Theorem 7 we summarize what we know
about the graph-theoretic and algorithmic properties of neighborhood diversity
and related measures in Figure 1.

There are several interesting points to make here. First, though our work is
motivated by a specific goal, beating the lower bounds that apply to graphs of
bounded treewidth by concentrating on a special case, it seems that what we
have achieved is at least somewhat better; we have managed to improve the
algorithmic meta-theorems that were known by focusing on a class which is not

FO MSO MSO2

Cliquewidth tow(w) tow(w) tow(w)
Treewidth tow(w) tow(w) tow(w)

Vertex Cover 2O(w) 22O(w)
22O(w)

Neighborhood Diversity poly(w) 2O(w) Open

Fig. 1. A summary of the relations between neighborhood diversity and other graph
widths. Included are cliquewidth, treewidth, pathwidth, feedback vertex set and vertex
cover. Arrows indicate generalization, for example bounded vertex cover is a special case
of bounded feedback vertex set. Dashed arrows indicate that the generalization may
increase the parameter exponentially, for example treewidth w implies cliquewidth at
most 2w . The table summarizes the best known model checking algorithm’s dependence
on each width for the corresponding logic.

Algorithmic Meta-theorems for Restrictions of Treewidth 559

necessarily smaller than bounded treewidth, only different. However, our class
is a special case of another known width which generalizes treewidth as well,
namely cliquewidth. Since the lower bound results which apply to treewidth
apply to cliquewidth as well, this work can perhaps be viewed more appropriately
as an improvement on the results of [4] for bounded cliquewidth graphs.

Second, is the case of MSO2 logic. The very interesting hardness results shown
in [11] demonstrate that the tractability of MSO2 logic is in a sense the price one
has to pay for the additional generality that cliquewidth provides over treewidth.
It is natural to ask if the results of [11] can be strengthened to apply to neighbor-
hood diversity or MSO2 logic can be shown tractable parameterized by neigh-
borhood diversity.

Though we cannot yet fully answer the above question related to MSO2, we
can offer some first indications that this direction might merit further investi-
gation. In [11] it is shown that MSO2 model checking is not fixed-parameter
tractable when the input graph’s cliquewidth is the parameter by considering
three specific MSO2-expressible problems and showing that they are W-hard.
The problems considered are Hamiltonian cycle, Graph Chromatic Number and
Edge Dominating Set. We can show that these three problems can be solved
efficiently on graphs of small neighborhood diversity. Since small neighborhood
diversity is a special case of small cliquewidth, where these problems are hard,
this result could be of independent interest.

Theorem 8. Given a graph G whose neighborhood diversity is w, there exist
algorithms running in time O(f(w) · poly(|G|)) that decide Hamiltonian cycle,
Graph Chromatic Number and Edge Dominating Set.

8 Conclusions and Open Problems

In this paper we presented algorithmic meta-theorems which improve the running
times implied by previously known meta-theorems for more restricted inputs. In
this way we have partially explored the trade-off which can be achieved between
running time and generality. This is an interesting area for further investigations
and much more can be done.

For bounded max-leaf number the complexity of MSO logic is unknown. Quite
likely, it is possible to improve upon the Courcelle’s theorem for this case as well,
but the problem remains open. Also, it would be nice to obtain a lower bound for
FO logic in this case showing that it is impossible to achieve 2o(q2), i.e. that the
exponent must be quadratic. For neighborhood diversity the most interesting
open problem is the complexity of MSO2.

Going further, it would also make sense to investigate whether restricting the
model checking problem to graphs of bounded vertex cover or max-leaf number
can also allow us to solve logics wider than MSO2. Some indications that this
may be possible are given in [9].

560 M. Lampis

References

1. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs.
J. Algorithms 12(2), 308–340 (1991)

2. Chen, J., Kanj, I.A., Xia, G.: Improved parameterized upper bounds for vertex
cover. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 238–
249. Springer, Heidelberg (2006)

3. Courcelle, B.: The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of
Finite Graphs. Inf. Comput. 85(1), 12–75 (1990)

4. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization prob-
lems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150
(2000)

5. Dawar, A., Grohe, M., Kreutzer, S., Schweikardt, N.: Approximation schemes for
first-order definable optimisation problems. In: LICS, pp. 411–420. IEEE Computer
Society, Los Alamitos (2006)

6. Estivill-Castro, V., Fellows, M.R., Langston, M.A., Rosamond, F.A.: FPT is P-
Time Extremal Structure I. In: Broersma, H., Johnson, M., Szeider, S. (eds.) ACiD.
Texts in Algorithmics, vol. 4, pp. 1–41. King’s College, London (2005)

7. Fellows, M.R.: Open problems in parameterized complexity. In: AGAPE spring
school on fixed parameter and exact algorithms (2009)

8. Fellows, M.R., Lokshtanov, D., Misra, N., Mnich, M., Rosamond, F.A., Saurabh,
S.: The Complexity Ecology of Parameters: An Illustration Using Bounded Max
Leaf Number. Theory Comput. Syst. 45(4), 822–848 (2009)

9. Fellows, M.R., Lokshtanov, D., Misra, N., Rosamond, F.A., Saurabh, S.: Graph
layout problems parameterized by vertex cover. In: Hong, S.-H., Nagamochi, H.,
Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 294–305. Springer, Heidel-
berg (2008)

10. Fellows, M.R., Rosamond, F.A.: The Complexity Ecology of Parameters: An Illus-
tration Using Bounded Max Leaf Number. In: Cooper, S.B., Löwe, B., Sorbi, A.
(eds.) CiE 2007. LNCS, vol. 4497, pp. 268–277. Springer, Heidelberg (2007)

11. Fomin, F.V., Golovach, P.A., Lokshtanov, D., Saurabh, S.: Clique-width: on the
price of generality. In: Mathieu, C. (ed.) SODA, pp. 825–834. SIAM, Philadelphia
(2009)

12. Frick, M., Grohe, M.: Deciding first-order properties of locally tree-decomposable
structures. J. ACM 48(6), 1184–1206 (2001)

13. Frick, M., Grohe, M.: The complexity of first-order and monadic second-order logic
revisited. Ann. Pure Appl. Logic 130(1-3), 3–31 (2004)

14. Grohe, M.: Logic, graphs, and algorithms. Electronic Colloquium on Computa-
tional Complexity (ECCC) 14(091) (2007)

15. Hlinený, P., il Oum, S., Seese, D., Gottlob, G.: Width parameters beyond tree-
width and their applications. Comput. J. 51(3), 326–362 (2008)

16. Kleitman, D., West, D.: Spanning trees with many leaves. SIAM Journal on Dis-
crete Mathematics 4, 99 (1991)

17. Kreutzer, S., Tazari, S.: On brambles, grid-like minors, and parameterized in-
tractability of monadic second order logic. In: SODA (2010)

Determining Edge Expansion and Other

Connectivity Measures of Graphs of Bounded
Genus

Viresh Patel�

School of Engineering and Computing Sciences, Durham University,
Science Laboratories, South Road, Durham DH1 3LE, U.K.

viresh.patel@dur.ac.uk

Abstract. In this paper, we show that for an n-vertex graph G of genus

g, the edge expansion of G can be determined in time nO(g2). We show that
the same is true for various other similar measures of edge connectivity.

1 Introduction

1.1 Background and Motivation

Edge expansion (known also as the minimum cut quotient, the isoperimetric
number, or the flux of a graph) is a well-studied notion in graph theory and arises
in several contexts of discrete mathematics and theoretical computer science.
These include the explicit construction of expander graphs, the analysis of certain
randomised algorithms, and graph partitioning problems. In this paper, we are
concerned with giving an exact algorithm for determining the edge expansion
(and other similar measures) of graphs embedded on surfaces.

Throughout, we use the term graph to mean multigraph without loops, unless
otherwise stated. For a graph G = (V, E) and e ∈ E, we write e = ab to mean
that the vertices a and b are the end points of e.

For S a nonempty proper subset of V and S̄ its complement, we define

[S, S̄]G = {e ∈ E : e = ab, a ∈ S, b ∈ S̄},

which we call an edge-cut of G. (The subscript is dropped when it clear which
graph we are referring to.) For a cut [S, S̄] of a graph G = (V, E), define the
balance of the cut to be b(S, S̄) := min(|S|, |S̄|)/|V |. Note that the balance of
a cut is a real number in the interval (0, 1

2]. Two well-known graph cut prob-
lems, which take into account the balance of cuts, are the minimum quotient cut
problem and the sparsest cut problem. These ask respectively to minimize the
cut quotient q(S, S̄) and the cut density d(S, S̄) over all cuts [S, S̄] of a graph G,
where

q(S, S̄) =
|[S, S̄]|
b(S, S̄)

and d(S, S̄) =
|[S, S̄]|

b(S, S̄)(1 − b(S, S̄))
.

� Supported by EPSRC grant EP/F064551/1.

M. de Berg and U. Meyer (Eds.): ESA 2010, Part I, LNCS 6346, pp. 561–572, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

562 V. Patel

Both q and d penalise unbalanced cuts, although q does so to a greater extent
than d. Note also that q and d differ by at most a factor of 2.

Problems such as the minimum quotient cut problem and the sparsest cut
problem underlie many divide and conquer algorithms [16], and find applications
in VLSI layout problems, packet routing in distributed networking, clustering,
and so on. Unfortunately, for general graphs, finding a minimum quotient cut
or a sparsest cut is known to be NP-hard [6,10]. Thus there are two possible
ways of developing efficient algorithms for these problems: either by considering
approximation algorithms or by restricting attention to certain graph classes.
There has been much research done in finding approximation algorithms for
these problems. Here, we mention only the seminal paper of Leighton and Rao
[9] giving a polynomial-time O(log n)-approximation algorithm for the minimum
quotient cut problem, and the significant improvement in the approximation
factor to O(

√
log n) in a paper of Arora, Rao, and Vazirani [2]. On the hard-

ness side, Ambühl et al. [1] proved that the sparsest cut problem admits no
polynomial-time approximation scheme unless NP-hard problems can be solved
in randomized subexponential time.

We approach the problems of minimum quotient cut and sparsest cut from the
perspective of developing exact polynomial-time algorithms for restricted graph
classes. Such approaches have not received as much attention in recent years as
the development of approximation algorithms, but we hope this paper will take
a step towards sparking interest.

Bonsma [3] gave polynomial-time algorithms for finding sparsest cuts of unit
circular graphs and cactus graphs. Park and Phillips [14], building on the work
of Rao [15], gave a polynomial-time algorithm for determining the minimum
quotient cut (as it has been defined above) of planar graphs. Given that many
planar-graph algorithms have been adapted for generalizations of planar graphs
– see for example the introduction to [4] and the references therein – surpris-
ingly little is known about the complexity of computing minimum quotient cuts
or sparsest cuts for generalizations of planar graphs. Here, we generalize the algo-
rithm of Park and Phillips to give the first exact polynomial-time algorithm for
determining minimum quotient cuts and sparsest cuts of bounded-genus graphs.

1.2 Results

Before we state our result precisely, we give a generalization of the minimum
quotient cut and sparsest cut. Notice that the denominators for both the cut
quotient q and the cut density d are concave and increasing functions of b(S, S̄)
on the interval [0, 1

2]. For any concave, increasing function f : [0, 1
2] → [0,∞)

and a cut [S, S̄] of a graph G, we define

df
G(S, S̄) =

|[S, S̄]|
f
(
b(S, S̄)

) ,
and we define

df (G) = min df
G(S, S̄),

Determining Edge Expansion and Other Connectivity Measures of Graphs 563

where the minimum is taken over all cuts [S, S̄] of G. Any cut [S, S̄] that mini-
mizes df

G is referred to as an f -sparsest cut of G.
Let f : [0, 1

2] → [0,∞) be a fixed concave, increasing function that is com-
putable in polynomial time on the rationals, and let g be a fixed non-negative
integer. The input for our algorithm is an n-vertex undirected multigraph G of
genus g. Our algorithm computes an f -sparsest cut of G in time O(n2g2+4g+7).

1.3 Overview and Techniques

In this section we give an informal overview of our methods. Our methods ex-
tend those of Park and Phillips [14] and combine them with surface homology
techniques, used for example in [4].

A generalisation of an averaging argument given by Mohar [11] shows that,
given a graph G, there exists a sparsest cut [S, S̄] of G that is minimal, i.e. a cut
where the graphs induced by G on S and S̄ are both connected. This extends
easily to f -sparsest cuts, where f is a concave increasing function.

There is a standard correspondence between the cuts of a planar graph G
and the cycles of its dual D(G): the minimal cuts of G correspond precisely
to the cycles of D(G), and the size of a cut in G is equal to the length of its
corresponding cycle in D(G). One can similarly construct a dual graph D(G) for
a graph G embedded on a surface; however the correspondence between minimal
cuts of G and cycles of D(G) is not quite so simple. Roughly, for a graph G of
genus g, a minimal cut of G corresponds to a union of at most g + 1 cycles of
D(G), but the reverse does not hold: a union of at most g+1 cycles in D(G) does
not necessarily correspond to a cut in G. Using the surface embedding of G, we
construct a function Θ from the set of oriented edges of D(G) to Z2g with the
following property: summing Θ around the oriented edges of a union of cycles
of D(G) gives the zero vector if and only if that union of cycles corresponds to
a (certain generalization of a) cut of G.

Extending and simplifying an idea from [14], we also construct a weighting ŵ
on the set of oriented edges of D(G) with the following property: if a union of
cycles in D(G) corresponds to a cut in G, then summing ŵ around the oriented
edges of cycles in the union essentially gives the balance of [S, S̄].

Using D(G), Θ, and ŵ, we construct a type of covering graph H , again ex-
tending an idea in [14]. For each fixed value v and k of Θ and ŵ, we can use H
to find a shortest cycle in D(G) whose Θ-value is v and whose ŵ-value is k. Such
a shortest cycle of D(G) corresponds to a shortest path in H between suitable
vertices.

By repeatedly applying a shortest-path algorithm to H , we obtain, for every
v and k (in a suitable range), a shortest cycle of D(G) whose Θ-value is v and
whose ŵ-value is k. We construct the set X of every union of at most g + 1 of
these shortest cycles. The size of X is nO(g2), and we show that at least one
element of X corresponds to an f -sparsest cut of G.

564 V. Patel

2 Preliminaries

Due to limited space, we only state the various lemmas we require for our algo-
rithm; however, complete proofs will be given in the full version of this paper.

Throughout, rather than working with functions f : [0, 1
2] → [0,∞) that are

concave and increasing, we work instead with functions f : [0, 1] → [0,∞) that
are concave and increasing on [0, 1

2] and have the property that f(x) = f(1− x)
for all x ∈ [0, 1]. We work with these functions purely for the convenience of
having, for any cut [S, S̄] of G, that

f(b(S, S̄)) = f(|S|/|V |) = f(|S̄|/|V |).

For the algorithm, we assume that f can be computed in polynomial time on
the rationals.

The description and the proof of correctness of our algorithm is most conve-
niently and naturally expressed in the language of surface homology. Through
the remainder of this section, we introduce the necessary concepts, keeping our
treatment as simple and self-contained as possible. One can find more compre-
hensive treatments in e.g. [7,8]

Although we are only concerned with undirected graphs when determining
f -sparsest cuts, we will need to orient edges of our graphs through the course
of our proofs and algorithm. Each edge e = ab of a graph G = (V, E) has two
orientations, namely (a, e, b) and (b, e, a). The two orientations are denoted −→e
and ←−e , although we cannot say which is which in general. Given a set E of
edges, we write

−→
E for the set of their orientations, two for each edge. The edge

space of G, denoted E(G), is the free abelian group over
−→
E modulo the relation

that ←−e = −−→e . Thus, for each ρ ∈ E(G), we can express ρ uniquely as

ρ =
∑
−→e ∈−→

E

λ−→e
−→e ,

where λ−→e ∈ Z for all −→e ∈ −→
E and min(λ−→e , λ←−e) = 0. We define

|ρ| =
∑
−→e ∈−→

E

λ−→e .

Thus |ρ| in a sense counts the number of edges in ρ.
The cut space T (G) of G = (V, E), which is a subgroup of E(G), is defined as

follows. For a cut [S, S̄] of G, define
−−−→
[S, S̄] =

∑
ab=e∈E

a∈S, b/∈S

(a, e, b).

Then T (G) is the subgroup of E(G) generated by {
−−−→
[S, S̄] : S ⊆ V }.

The next lemma shows that, by suitably assigning weights to oriented edges of
a graph, we can determine the balance of a cut simply by summing the weights
of the edges in the (oriented) cut.

Determining Edge Expansion and Other Connectivity Measures of Graphs 565

Lemma 1. Let G = (V, E) be a connected graph and let v ∈ V be some fixed
vertex. There exists a function w :

−→
E → Z with the following properties.

(i) For every −→e ∈ −→
E , we have w(←−e) = −w(−→e).

(ii) For every −→e ∈ −→
E , we have |w(−→e)| ≤ |V |.

(iii) For every S satisfying v ∈ S ⊆ V , we have that

w(
−−−→
[S, S̄]) :=

∑
(a,e,b)∈

−−−→
[S,S̄]

w(a, e, b) = |S̄|.

Furthermore, a function satisfying the above properties can be constructed in
linear time.

Remark 1. The function w described in Lemma 1 can be extended to a homo-
morphism w : E(G) → Z because of property (i).

Throughout, w will be a homomorphism from E(G) to Z satisfying the properties
of Lemma 1.

Recall that the domain for the function df
G is the set of all cuts of G. It turns

out that it is necessary to extend df
G in a natural way to a function on T (G).

Minimizing df
G over T (G) will be equivalent to minimizing it over the set of cuts

of G. Although T (G) is an infinite set, we will eventually look to minimize df
G

over a suitable finite subset of T (G).
For each φ ∈ T (G), we define

df
G(φ) :=

|φ|
f(|w(φ)|/n)

; (1)

if f(|w(φ)|) = 0 or |w(φ)| > n, we define df
G(φ) = ∞. Note that if φ =

−−−→
[S, S̄],

then |φ| = |[S, S̄]| and |w(φ)| is either |S| or |S̄|. Hence the function df
G defined

above extends the definition of df
G given in the introduction.

Our next lemma shows that minimizing df
G over T (G) is equivalent to mini-

mizing df
G over simple cuts

−−−→
[S, S̄] of G. The proof uses the concavity of f together

with a straightforward averaging argument.

Lemma 2. Let G = (V, E) be a graph. For every φ ∈ T (G), there exists S ⊆ V
such that

df
G(S, S̄) ≤ df

G(φ),

so in particular
min

φ∈T (G)
df

G(φ) = df (G).

A walk w in a graph G = (V, E) is specified by giving an alternating sequence of
vertices and edges w = (x1, e1, x2, e2, . . . , xk−1, ek−1, xk), where (xi, ei, xi+1) ∈−→
E for all i. We write |w| for the number of oriented edges (with multiplicity)
traversed in w (which in this case is k − 1). If x1 = xk then w is called a closed

566 V. Patel

walk. If all (non-oriented) edges of a closed walk w are distinct, then w is called
a circuit of G. If all the vertices of a closed walk w are distinct (except x1 = xk),
then w is called a cycle. A walk in which all vertices are distinct is called a path.
We write −→w for the element of E(G) given by

−→w =
k−1∑
i=1

(xi, ei, xi+1);

we refer to −→w as an oriented walk, (circuit, etc). Note that for a walk w, we have
|w| ≥ |−→w | with equality when w is a circuit.

The cycle space C(G) is the subgroup of E(G) (redundantly) generated by the
oriented cycles −→c of G. Note that C(G) contains all oriented closed walks of G.

We now turn our attention to graphs embedded on closed orientable surfaces.
Formally, a surface is a compact, connected topological space in which every
point of the surface has an open neighbourhood homeomorphic to R2 or the
closed halfplane {(x, y) ∈ R2 : y ≥ 0}. The set of points having halfplane open
neighbourhoods is called the boundary of the surface. Every component of the
boundary is homeomorphic to the circle S1. A closed surface is one without
boundary. A surface is called orientable if it does not contain a subset (with the
subset topology) homeomorphic to the möbius band.

The genus of a connected, orientable surface is the maximum number of cut-
tings along non-intersecting, closed, simple curves that can be made without
disconnecting the surface. It is well known from the classification of surfaces
that every closed orientable surface of genus g is homeomorphic to a sphere with
g handles. Informally, a graph G can be embedded on a surface Σ if G can be
drawn on Σ in such a way that no edge crosses a vertex or another edge, except
possibly at its end points. For example, all planar graphs can be embedded on
the sphere.

From an algorithmic point of view, one can use rotation systems to input or
output embeddings of graphs on surfaces. We do not formally define embeddings
or rotation systems here because we shall only use graph embeddings indirectly
when applying existing algorithms to our problem; instead we refer the reader
to [13].

Throughout, we shall only consider cellular embeddings. An embedding of
G on Σ is called cellular if removing the image of G from Σ leaves a set of
topological disks called the faces of G. The genus of a graph G is defined to
be the smallest integer g such that G can be embedded on a closed orientable
surface of genus g. If G is a graph of genus g, then every embedding of G on a
closed orientable surface of genus g is cellular (Proposition 3.4.1 [13]), and for
fixed g, such an embedding can be found in linear time [12]. Euler’s Theorem
gives the following relationship between the number of vertices n, the number
of edges m, the number of faces �, and the number of boundary components b
in a cellular embedding of a graph G on a surface Σ of genus g:

n − m + � + b = 2 − 2g.

Determining Edge Expansion and Other Connectivity Measures of Graphs 567

We now define the boundary space of a graph G embedded on Σ. Each oriented
edge −→e of G separates two (possibly equal) faces of G denoted left(−→e) and
right(−→e). (The notion of left and right with respect to an oriented edge is well
defined for orientable surfaces.) For a face F , the oriented edges −→e for which
left(−→e) = F taken in order (with appropriate intervening vertices) form a closed
walk f around F , which we call the facial walk of F . Let F1, . . . , F� be the faces
of the embedding and let fi be the facial walk of Fi. The oriented facial walk

−→
fi

of Fi is given by −→
fi =

∑
−→e : left(−→e)=Fi

−→e .

Notice that fi may contain two oppositely oriented edges, but such edges cancel
in

−→
fi , leaving the sum of oriented edges that form the boundary of Fi. The

boundary space B(G) is defined to be the group generated by
−→
f1, . . . ,

−→
f� and is

easily seen to be a subgroup of C(G). Note that the boundary space of G, in
contrast to the cycle space and cut space, depends on the embedding of G.

The geometric dual of a graph G cellularly embedded on Σ is denoted by
D(G) = (V ′, E′) and is the graph (with cellular embedding on Σ) constructed
from G as follows. For each face F of G, a vertex D(F) is placed inside F :
these are the vertices of D(G). Each edge e of G has a corresponding edge D(e)
in D(G): D(e) = D(F1)D(F2), where e is the edge separating the (possibly
indistinct) faces F1 and F2 (and D(e) crosses e and no other edge of G in the
embedding of D(G)). Note that G (with its embedding) is a dual of D(G) (with
its embedding). Therefore, each vertex v of G corresponds to a face D(v) of
D(G). Thus D maps vertices, edges, and faces of G bijectively to faces, edges,
and vertices of D(G) respectively. We extend D to map oriented edges of G to
oriented edges of D(G) as follows. Given an oriented edge −→e , we set D(−→e) =
(D(left(−→e)), D(e), D(right(−→e))). This, however, reverses the sense of left and
right so that D(D(−→e)) = −−→e .

Remark 2. Although G is a loopless graph, D(G) may not be. Nonetheless, all
notions introduced so far carry through naturally for loops of embedded graphs.

Since D bijectively maps edges of G to edges of D(G), we see that D can be
extended to an isomorphism D : E(G) → E(D(G)). We have the following well-
known correspondence.

Proposition 1. The restriction of D to T (G) gives an isomorphism T (G) →
B(D(G)).

Rather than working with T (G), we can work instead with B(D(G)) using the
isomorphism D. Since all boundaries are sums of oriented cycles, we can use
shortest-path algorithms to find shortest boundaries in D(G), which if done
suitably, can give us f -sparsest cuts in G.

For σ ∈ E(D(G)), define ŵ(σ) := ŵ(D−1(σ)). Notice that for all σ ∈ B(D(G)),
we have |D−1(σ)| = |σ|. Thus, defining

d̂f
D(G)(σ) =

|σ|
f(|ŵ(σ)|) , (2)

568 V. Patel

we have that
min

σ∈B(D(G))
d̂f

D(G)(σ) = min
φ∈T (G)

df
G(φ) = df (G).

We now set about trying to minimize d̂f
D(G). Our next lemma says that when

minimizing d̂f
D(G), we can restrict attention to elements of B(D(G)) that are

the sum of at most g + 1 oriented circuits (where g is the genus of G). The
lemma essentially follows from Euler’s Theorem and the fact that there exists
an f -sparsest cut that is minimal.

Lemma 3. Suppose G = (V, E) is a graph cellularly embedded on a surface Σ

of genus g. There exists σ ∈ B(D(G)) that minimizes d̂f
D(G) such that σ = −→w1 +

· · ·+ −→wr, where −→w1, . . . ,
−→wr are disjoint oriented circuits of D(G) and r ≤ g + 1.

Furthermore m ≥ |σ| = |−→w1| + · · · + |−→wr|, where m = |E|.

We can easily use shortest-path algorithms to find shortest cycles in a graph.
However in this situation, we are required to find a shortest boundary (loosely
speaking). We require a simple way of testing whether a cycle is a boundary.
This is accomplished using the ideas of homology.

Given a closed, orientable surface Σ of genus g and a point x0 on Σ, a simple
loop at x0 is a curve γ : [0, 1] → Σ that is injective except that γ(0) = γ(1) =
x0. A system of loops at x0 is a set of simple loops at x0 that are pairwise
disjoint (except at x0) with the property that cutting Σ along these loops yields
a topological disk. By Euler’s formula, every system of loops must consist of
2g loops. Let G be an n-vertex graph cellularly embedded on Σ and let x0
be a vertex. A combinatorial system of loops at x0 is a set of 2g closed walks
of G through x0 such that an infinitesimal perturbation of these walks gives a
system of loops. Erickson and Whittlesey [5] give a greedy algorithm, which,
given a cellular embedding of G on Σ, finds a combinatorial system of loops
c(1), . . . , c(2g) in O(n log n + gn) time.

We define a homomorphism Θi : C(D(G)) → Z, where, for every σ ∈ C(D(G)),
the integer Θi(σ) measures the net number of times σ crosses c(i) (here sign
indicates the direction of crossings). Let us define Θi formally.

For each oriented edge −→e of G and each oriented edge
−→
e∗ of D(G), define

Θ−→e (
−→
e∗) =

⎧⎪⎨⎪⎩
1 if D(−→e) =

−→
e∗ ;

−1 if D(−→e) = −−→
e∗ ;

0 otherwise.

For every φ =
∑

i λi
−→ei ∈ E(G) and every σ =

∑
j μj

−→
e∗j ∈ E(D(G)), we define

Θφ(σ) =
∑

i

∑
j

λiμjΘ−→ei
(
−→
e∗j),

which counts the directed number of times φ and π cross each other. In algebraic
topology, Θφ(σ) is referred to as a cap product. It is easy to check that the above is

Determining Edge Expansion and Other Connectivity Measures of Graphs 569

well defined. We write Θi as a shorthand for Θ−−→
c(i)

. Finally, define Θ : E(D(G)) →
Z2g by setting

Θ(σ) =
(
Θ1(σ), . . . , Θ2g(σ)

)
for every σ ∈ E(D(G)).

We have the following proposition which effectively says that any cycle of
D(G) that intersects each

−→
c(i) a net number of zero times is a boundary. It is

very much what we expect from the properties of homology.

Lemma 4. The function Θ defined above is a surjective homomorphism from
C(D(G)) to Z2g whose kernel is B(D(G)).

For convenience, we combine some of the results we have so far to give the
following proposition.

Proposition 2. There exists an element σ ∈ B(D(G)) that minimizes d̂f
D(G)

and satisfies the following properties.

(a) We can write σ as −→w1 + · · ·+−→wr where the −→wi are oriented circuits in D(G)
and r ≤ g + 1.

(b) We have |σ| = |−→w1| + · · · + |−→wr| with |−→wi| ≤ m for all i.
(c) Θ(σ) = Θ(−→w1) + · · · + Θ(−→wr) = 0.

Proof. Statements (a) and (b) follow from Lemma 3, and statement (c) follows
from Lemma 4. �

Next we define a type of covering graph of D(G) in which certain shortest paths
will correspond to elements of C(D(G)) whose sum will minimize d̂f

D(G). The gen-
eral construction we use is often referred to as the derived graph of a voltage graph.

We construct an infinite multigraph H = (VH , EH) from D(G) = (V ′, E′) as
follows. We set VH = V ′ × Z × Z2g. For convenience, we describe the oriented
edges of H before describing its edges. For each oriented edge −→e = (u1, e, u2)
of D(G) and each (k,v) ∈ Z × Z2g, we have an oriented edge of H , denoted
(−→e , k,v)∗, from

(u1, k,v) to (u2, k + ŵ(−→e),v + Θ(−→e)).

The same edge oriented oppositely is given by (←−e , k + ŵ(−→e),v + Θ(−→e))∗. We
write (−→e , k,v) for the edge of H corresponding to the oriented edge (−→e , k,v)∗;
thus every edge of H has two labels.

Walks of D(G) naturally correspond to walks of H as follows. Let w =
(u0, e1, u1, . . . , et−1, ut) be a walk of D(G). Let wi = (u0, e1, u1, . . . , ei−1, ui)
be the same walk up to the ith vertex, and let −→ei = (ui−1, ei, ui). Let H(w) be
the walk in H given by H(w) = (uH

0 , eH
1 , uH

1 , . . . , eH
t−1, u

H
t), where uH

0 = (u, 0,0)
and

uH
i = (ui, ŵ(−→wi), Θ(−→wi)) and eH

i = (−→ei , ŵ(−−→wi−1), Θ(−−→wi−1)).

It is easy to check that w �→ H(w) is a bijective correspondence between walks
of D(G) and walks of H that start at (u, 0,0) for some u ∈ V ′. Furthermore, w

570 V. Patel

is a walk of D(G) from u to u′ and satisfies ŵ(−→w) = k and Θ(−→w) = v if and
only if H(w) is a walk of H from (u, 0,0) to (u′, k,v).

Defining V ∗
H = V ′ × {−mn, . . . , mn} × {−m, . . . , m}2g ⊂ VH , let H∗ be the

finite graph induced by H on V ∗
H . For (u, k,v) ∈ V ∗

H , define p(u, k,v) to be a
shortest path in H∗ from (u, 0,0) to (u, k,v) (if it exists); this path corresponds
to a closed walk in D(G). For fixed k and v, let p(k,v) be the path of minimum
length in {p(u, k,v) : u ∈ V ′} (if it exists). Let w(k,v) be the (closed) walk of
D(G) corresponding to the path p(k,v) in H∗. We have the following lemma.

Lemma 5. Suppose w is a circuit of D(G) such that ŵ(−→w) = k and Θ(−→w) = v
and |−→w | ≤ m. Then |−→w | ≥ |

−−−−→
w(k,v)|.

Let W be the set of all the
−−−−→
w(k,v). Let X = {−→w1 + · · ·+−→wr : −→wi ∈ W ∀i and r ≤

g + 1}, and let Y = {σ ∈ X : Θ(σ) = 0}. We have the following corollary.

Corollary 1. There exists an element of Y that minimizes d̂f
D(G).

We are now ready to present our algorithm and to prove its correctness.

3 The Algorithm

In this section, we present the basic steps of our algorithm and compute its
running time. In order to keep the presentation simple, we do not optimize the
running time. Our algorithm runs in time O(n2g2+4g+7).

Let f : [0, 1
2] → [0,∞) be a fixed concave, increasing function that is com-

putable in polynomial time on the rationals, and let g be a fixed non-negative
integer. The input for our algorithm is an n-vertex undirected graph G of genus
g. Since n = |V | then m = |E| = O(n) from Euler’s formula. Using the result of
Mohar [12] mentioned earlier, we can find an embedding of G on a surface Σ of
genus g in O(n) time (where the constant factor strongly depends on g). From
the embedding we can construct (in O(n) time) the dual graph D(G) = (V ′, E′)
together with the function D which maps each oriented edge −→e ∈ −→

E of G to its
dual D(−→e) ∈

−→
E′ in D(G). We have |E′| = |E| = O(n), and from Euler’s formula,

we have |V ′| = O(n). By the result of Erickson and Whittlesey [5] mentioned
earlier, we can find a combinatorial system of loops

−−→
c(1), . . . ,

−−−→
c(2g) of G in time

O(n). At this point the algorithm no longer requires the embedding of G.
Next we construct and store the (restricted) functions ŵ :

−→
E′ → Z and

Θ :
−→
E′ → Z2g. The computation and storage of these functions imposes an

insignificant time cost in the final analysis, so any crude bound on the running
time is sufficient. It is easy to check that both functions can be computed and
stored in time O(n2).

From the (restricted) functions ŵ and Θ, we can construct the graph H∗

directly from its definition (given in the previous section). Observe that H∗ has
O(n)·(2mn+1)·(2m+1)2g = O(n2g+3) vertices and O(n2g+3) edges. Thus it takes
O(n2g+3) time to construct H∗. For each (u, k,v) ∈ VH∗ , we compute and store

Determining Edge Expansion and Other Connectivity Measures of Graphs 571

the shortest path p(u, k,v) from (u, 0,0) to (u, k,v) in H∗. Finding each shortest
path requires O(|VH∗ | log(|VH∗ |)) = O(n2g+4) time using Dijkstra’s algorithm,
and so, computing all the p(u, k,v) requires |VH∗ |O(n2g+4) = O(n4g+7) time.
For each fixed k ∈ {−mn, . . . , mn} and v ∈ {−n, . . . , n}2g, we compute and
store p(k,v), the path of minimum length amongst the p(u, k,v), and we use
p(k,v) to compute and store w(k,v) and

−−−−→
w(k,v) (recall that w(k,v) is the closed

walk in D(G) corresponding to p(k,v) as described in the previous section). The
time cost so far is O(n4g+7).

Recall the sets W , X , and Y from the previous section. Having stored the set
W of all walks

−−−−→
w(k,v), we compute and store the set

X = {−→w1 + · · · + −→wr : −→wi ∈ W ∀i and r ≤ g + 1}.

Adding elements of W together requires O(n) time; hence computing and storing
X requires O(n|X |) = O(n|W |g+1) = O(n · n2(g+1)2) time. We compute Θ(σ)
for every σ ∈ X and store the set Y = {σ ∈ X : Θ(σ) = 0}, which takes
O(n|X |) time. Finally we find an element σ∗ of Y that minimizes d̂f

D(G), which

takes O(n|Y |) time, and from Corollary 1 we know σ∗ minimizes d̂f
D(G) over all

elements of B(D(G). Thus df (G) is given by d̂f
D(G)(σ

∗), and the total time taken

to find σ∗ is dominated by max(O(n2(g+1)2+1), O(n4g+7)) = O(n2g2+4g+7).
In order to find an f -sparest cut of G, we compute φ∗ = D−1(σ∗) and decom-

pose it into a sum of cuts to give

φ =
k∑

i=1

−−−−→
[Si, S̄i],

where k = O(mn) from the bound on the size of H∗. Now one of the cuts [Si, S̄i]
is an f -sparsest cut by the proof of Lemma 2, and such a cut can be found in
O(n2) time once σ∗ has been found.

4 Open Problems

An obvious question that arises from this work is whether the running time of
our algorithm can be improved. Specifically, it would be interesting to know if
the problem of finding the edge expansion of a graph is fixed parameter tractable
with respect to genus.

Our algorithm crucially relies on our graph being embedded on an orientable
surface. In particular, we use the fact that a graph embedded on an orientable
surface has a directed dual; this is not the case for graphs embedded on non-
orientable surfaces. It would be interesting to develop methods for finding edge
expansion of graphs embedded on non-orientable surfaces.

Acknowledgements

The author thanks the anonymous reviewer whose detailed comments and sug-
gested references have improved the paper.

572 V. Patel

References

1. Ambuhl, C., Mastrolilli, M., Svensson, O.: Inapproximability results for spars-
est cut, optimal linear arrangement, and precedence constrained scheduling. In:
FOCS 2007: Proceedings of the 48th Annual IEEE Symposium on Foundations of
Computer Science, Washington, DC, USA, pp. 329–337. IEEE Computer Society,
Los Alamitos (2007)

2. Arora, S., Rao, S., Vazirani, U.: Expander flows, geometric embeddings and graph
partitioning. J. ACM 56(2), Art. 5, 37 (2009)

3. Bonsma, P.S.: Linear time algorithms for finding sparsest cuts in various graph
classes. In: 6th Czech-Slovak International Symposium on Combinatorics, Graph
Theory, Algorithms and Applications. Electron. Notes Discrete Math, vol. 28, pp.
265–272. Elsevier, Amsterdam (2007)

4. Chambers, E.W., Erickson, J., Nayyeri, A.: Minimum cuts and shortest homologous
cycles. In: SCG 2009: Proceedings of the 25th annual symposium on Computational
geometry, pp. 377–385. ACM, New York (2009)

5. Erickson, J., Whittlesey, K.: Greedy optimal homotopy and homology generators.
In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, pp. 1038–1046. ACM, New York (2005) (electronic)

6. Garey, M.R., Johnson, D.S.: Computers and intractability. In: A guide to the the-
ory of NP-completeness. A Series of Books in the Mathematical Sciences. W. H.
Freeman and Co, San Francisco (1979)

7. Giblin, P.J.: Graphs, surfaces and homology, 2nd edn. Chapman & Hall, London
(1981); An introduction to algebraic topology, Chapman and Hall Mathematics
Series

8. Gross, J.L., Tucker, T.W.: Topological graph theory. Dover Publications Inc., Mine-
ola (2001); Reprint of the 1987 original [Wiley, New York; MR0898434 (88h:05034)]
with a new preface and supplementary bibliography

9. Leighton, T., Rao, S.: Multicommodity max-flow min-cut theorems and their use
in designing approximation algorithms. J. ACM 46(6), 787–832 (1999)

10. Matula, D.W., Shahrokhi, F.: Sparsest cuts and bottlenecks in graphs. Discrete
Appl. Math. 27(1-2), 113–123 (1990); Computational algorithms, operations re-
search and computer science, Burnaby, BC (1987)

11. Mohar, B.: Isoperimetric numbers of graphs. J. Combin. Theory Ser. B 47(3), 274–
291 (1989)

12. Mohar, B.: A linear time algorithm for embedding graphs in an arbitrary surface.
SIAM J. Discrete Math. 12(1), 6–26 (1999) (electronic)

13. Mohar, B., Thomassen, C.: Graphs on surfaces. Johns Hopkins Studies in the
Mathematical Sciences. Johns Hopkins University Press, Baltimore (2001)

14. Park, J.K., Phillips, C.A.: Finding minimum-quotient cuts in planar graphs. In:
STOC, pp. 766–775 (1993)

15. Rao, S.B.: Faster algorithms for finding small edge cuts in planar graphs. In:
STOC 1992: Proceedings of the twenty-fourth annual ACM symposium on Theory
of computing, pp. 229–240. ACM, New York (1992)

16. Shmoys, D.M.: Approximation algorithms for NP-hard problems, ch. 5. PWS Pub-
lishing Co., Boston (1997)

Constructing the R* Consensus Tree

of Two Trees in Subcubic Time

Jesper Jansson1,� and Wing-Kin Sung2,3

1 Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
Jesper.Jansson@ocha.ac.jp

2 School of Computing, National University of Singapore, 3 Science Drive 2,
Singapore 117543

ksung@comp.nus.edu.sg
3 Genome Institute of Singapore, 60 Biopolis Street, Genome, Singapore 138672

Abstract. The previously fastest algorithms for computing the R* con-
sensus tree of two given (rooted) phylogenetic trees T1 and T2 with a
leaf label set of cardinality n run in Θ(n3) time [3,8]. In this manuscript,
we describe a new O(n2 log n)-time algorithm to solve the problem. This
is a significant improvement because the R* consensus tree is defined in
terms of a set Rmaj which may contain Ω(n3) elements, so any direct
approach which explicitly constructs Rmaj requires Ω(n3) time.

1 Introduction

Phylogenetic trees are leaf-labeled trees which are commonly used to describe
the evolutionary history of a set of objects such as biological species or lan-
guages [5,6,10]. Typically, in a phylogenetic tree, each leaf represents one of the
objects being studied and the branching structure of the tree indicates the as-
sumed evolutionary relationships among the objects. A consensus tree is a single
phylogenetic tree which summarizes the branching information contained in an
input collection of phylogenetic trees with identical leaf label sets. Consensus
trees are useful when different data sets or different tree inference methods have
produced a set of trees with the same leaf label set and slightly conflicting struc-
tures, yet a single tree is required to represent all of them [5]. Also, by exclusion,
a consensus tree indicates areas of conflict in the input trees [2]. Furthermore,
consensus trees are sometimes used as a basis for new phylogenetic inferences [2].

Many types of consensus trees have been defined and studied in detail. For a
survey, see, e.g., [2]. Different types of consensus trees use different criteria to
resolve conflicts among the input trees, so their mathematical properties vary.
Therefore, the most suitable type of consensus tree to use in practice depends on
the particular application. In this paper, we consider the so-called R* consensus
tree. One advantage of the R* consensus tree is that it provides a statistically
consistent estimator of the species tree topology when combining a set of gene
� Funded by the Special Coordination Funds for Promoting Science and Technology,

Japan.

M. de Berg and U. Meyer (Eds.): ESA 2010, Part I, LNCS 6346, pp. 573–584, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

574 J. Jansson and W.-K. Sung

trees, as recently demonstrated by Degnan et al. [4]; moreover, R* consensus
outperformed other methods such as majority-rule consensus in the study con-
ducted by [4]. For the case of two input trees, it is known that the R* consensus
tree is equivalent to the RV-III tree introduced in [8].

The R* consensus tree is defined formally in Section 2 below. In short, given a
set of input trees on a leaf label set L, if the rooted triplet xy|z for any {x, y, z} ⊆
L is consistent with more input trees than each of the two rooted triplets xz|y
and yz|x is, then xy|z belongs to a set named Rmaj . The R* consensus tree is
the tree τ having the largest possible number of internal nodes such that every
rooted triplet consistent with τ belongs to Rmaj .

The goal of this paper is to develop a fast algorithm for constructing the
R* consensus tree for two input trees T1 and T2 with a leaf label set L of
cardinality n. The previous algorithms for this problem require Θ(n3) time [3,8].
Our main result is to reduce the time complexity to subcubic. When T1 and T2
have similar branching structures, |Rmaj | = Ω(n3). Hence, in order to obtain a
fast algorithm, we have to avoid explicitly constructing the set Rmaj . For this
purpose, we use an alternative formulation based on distances from leaves to
lowest common ancestors of pairs of leaves to compute the Apresjan clusters of
a function sRmaj associated to Rmaj . Then, we find the strong clusters of Rmaj

which are subsequently used to build the R* consensus tree. The running time
of our new algorithm R* consensus tree (described in Section 3) is O(n2 log n).

2 Preliminaries

2.1 Basic Definitions

A phylogenetic tree is a rooted, unordered, distinctly leaf-labeled tree in which
every internal node has at least two children. From here on, “tree” means “phy-
logenetic tree”, and every leaf in a tree is identified with its label.

We shall use the following terminology and notation. For any tree T and any
internal node u of T , the subtree of T rooted at u is denoted by T [u]. The set
of all leaves in a tree T is written as Λ(T). For any two nodes u and v in a
tree T , the lowest common ancestor of u and v in T is denoted by lcaT (u, v). A
triplet is a tree with exactly three leaves. Any non-binary tree with exactly three
leaves {x, y, z} is called a fan triplet and is written as x|y|z. On the other hand,
any binary tree with exactly three leaves {x, y, z} is called a rooted triplet, and is
denoted by xy|z if the lowest common ancestor of x and y is a proper descendant
of the lowest common ancestor of x and z. Note that there are precisely four
different triplets for any set of three leaf labels {x, y, z}, namely x|y|z, xy|z,
xz|y, and yz|x (see Fig. 1).

For any tree T and {x, y, z} ⊆ Λ(T), the fan triplet x|y|z is said to be
consistent with T if lcaT (x, y) = lcaT (x, z) = lcaT (y, z). Similarly, the rooted
triplet xy|z is consistent with T if lcaT (x, y) is a proper descendant of lcaT (x, z)
= lcaT (y, z). Let T ||{x,y,z} denote the unique fan triplet or rooted triplet with
leaf label set {x, y, z} which is consistent with T . Finally, for any tree T , let
r(T) be the set of all rooted triplets which are consistent with T , i.e., define

Constructing the R* Consensus Tree of Two Trees in Subcubic Time 575

x y z

x | y | z

z

yx

y

zx

x

zy

x y | z x z | y y z | x

Fig. 1. The four different triplets x|y|z, xy|z, xz|y, and yz|x leaf-labeled by {x, y, z}

r(T) = {T ||{x,y,z} : {x, y, z} ⊆ Λ(T) and T ||{x,y,z} is not a fan triplet}, and
define t(T) as the set of all triplets (rooted triplets as well as fan triplets)
consistent with T , i.e., t(T) = {T ||{x,y,z} : {x, y, z} ⊆ Λ(T)}. It follows that
|t(T)| = Θ(|Λ(T)|3) for any tree T , and |r(T)| = Θ(|Λ(T)|3) when T is a binary
tree because |r(T)| = |t(T)| in this case.

2.2 Strong Clusters and Apresjan Clusters

Below, let R be a given set of triplets over a leaf label set L =
⋃

r∈R Λ(r) such
that for each {x, y, z} ⊆ L, at most one of x|y|z, xy|z, xz|y, and yz|x belongs
to R. A cluster of L is any subset of L. We define two special types of clusters:

• A cluster A of L is called a strong cluster of R if aa′|x ∈ R for all a, a′ ∈ A
and x ∈ L \ A. Furthermore, L as well as every singleton set of L is also
defined to be a strong cluster of R.

• For each a, b ∈ L, define sR(a, b) = |{ab|y : ab|y ∈ R}|. A cluster A of L is
called an Apresjan cluster of sR if sR(a, a′) > sR(a, x) for all a, a′ ∈ A and
x ∈ L \ A.

Write n = |L|. By Theorem 2.3 and Corollary 2.1 of [3], the following holds:

Lemma 1. (Bryant and Berry [3].)

1. There are O(n) Apresjan clusters of sR.
2. Given the values of sR(a, b) for all a, b ∈ L, the Apresjan clusters of sR can

be computed in O(n2) time.

There is a relationship between the strong clusters of R and the Apresjan clusters
of sR:

Lemma 2. Every strong cluster of R is an Apresjan cluster of sR.

Proof. Let C be a strong cluster of R. Consider any fixed a, a′ ∈ C and x ∈ L\C.
For every y ∈ L\C, we have aa′|y ∈ R by the definition of a strong cluster, which
gives sR(a, a′) = |{aa′|y : aa′|y ∈ R}| ≥ |L\C|. In the same way, ab|x ∈ R holds
for every b ∈ C, which (along with the requirement that for each {x, y, z} ⊆ L,
at most one of x|y|z, xy|z, xz|y, and yz|x belongs to R) implies that ax|b 	∈ R.
Thus, sR(a, x) = |{ax|y : ax|y ∈ R}| ≤ |(L \ C) \ {x}| < |L \ C|. We have just
shown that sR(a, a′) > sR(a, x), so C is an Apresjan cluster of sR. ��

576 J. Jansson and W.-K. Sung

2.3 R* Consensus Trees

Let T1 and T2 be two given trees with Λ(T1) = Λ(T2) = L. For any {a, b, c} ⊆ L,
define #ab|c as the number of trees Ti for which ab|c ∈ r(Ti). The set of “majority
rooted triplets” Rmaj is defined as {ab|c : a, b, c ∈ L and #ab|c > #ac|b, #bc|a}.
An R* consensus tree of T1 and T2 is a tree τ with Λ(τ) = L which satisfies
r(τ) ⊆ Rmaj and which maximizes the number of internal nodes.

The next two lemmas describe some useful properties of the strong clusters
of Rmaj .

Lemma 3. Let T be a tree with Λ(T) = L and r(T) ⊆ Rmaj. For any node u
of T , Λ(T [u]) is a strong cluster of Rmaj.

Proof. If u is a leaf or the root of T then Λ(T [u]) is trivially a strong cluster
of Rmaj . If u is an internal node then for any two a, a′ ∈ Λ(T [u]) and any
x 	∈ Λ(T [u]), the triplet aa′|x belongs to Rmaj , so Λ(T [u]) is a strong cluster
of Rmaj . ��

Lemma 4. There exists a tree τ such that the set {Λ(τ [u]) : u is a node in τ}
equals the set of strong clusters of Rmaj.

Proof. First observe that for any two strong clusters A and B of R, either A � B,
B � A, or A∩B = ∅. To prove this claim, suppose for the sake of contradiction
that there are x, y, z ∈ L such that x ∈ A \ B, y ∈ B \ A, and z ∈ A ∩ B. Since
A is a strong cluster, xz|y ∈ R. Since B is a strong cluster, yz|x ∈ R. By the
definition of Rmaj , we cannot have both of xz|y and yz|x in Rmaj . The claim
follows. This implies that the strong clusters of Rmaj form a hierarchy (laminar
family) on L.

Next, if A and B are strong clusters of Rmaj with A � B then there must
exist some strong cluster C of Rmaj such that C � B and C ∩ A = ∅. (To see
this, take any c ∈ B \ A and recall that {c} is by definition a strong cluster
of Rmaj .)

By these two observations, there exists a tree τ leaf-labeled by L such that:
(1) each strong cluster A of Rmaj corresponds to a node in τ whose set of
descendants is precisely A; (2) A � B, where A and B are strong clusters
of Rmaj , implies that the node corresponding to A is a proper descendant of
the node corresponding to B; and (3) every internal node of τ has at least two
children. Hence, the lemma follows. ��

Say that a tree T includes a cluster A of L if T contains a node u such that
Λ(T [u]) = A.

Theorem 1. The R* consensus tree of T1 and T2 exists and is unique. In par-
ticular, it includes every strong cluster of Rmaj and no other clusters of L.

Proof. By Lemma 4, there exists a (unique) tree τ that includes all the strong
clusters of Rmaj and does not include any other clusters. For any aa′|x ∈ r(τ),
there exists a node u in τ such that a, a′ ∈ Λ(τ [u]) and x 	∈ Λ(τ [u]), i.e., a, a′ ∈ A

Constructing the R* Consensus Tree of Two Trees in Subcubic Time 577

and x 	∈ A for some strong cluster A of Rmaj , which implies that aa′|x ∈ Rmaj .
Thus, r(τ) ⊆ Rmaj .

To prove the optimality of τ , suppose that there exists a tree τ ′ which satisfies
r(τ ′) ⊆ Rmaj and has more internal nodes than τ . By Lemma 3, the set of leaves
in each rooted subtree of τ ′ forms a strong cluster of Rmaj . Since τ ′ has more
internal nodes than τ , it follows that τ ′ includes some strong cluster of Rmaj

which τ does not include. This contradicts Lemma 4. Hence, τ is an R* consensus
tree of T1 and T2. ��

3 Constructing the R* Consensus Tree

Based on the discussion in Sections 2.2 and 2.3, we can construct the R* consen-
sus tree of two given trees T1 and T2 as follows: First compute sRmaj and all the
Apresjan clusters of sRmaj .

1 Then, check each Apresjan cluster to see if it is a
strong cluster of Rmaj (by Lemma 2, the set of strong clusters of Rmaj is a sub-
set of the set of Apresjan clusters of sRmaj). Finally, build a tree which includes
all the strong clusters of Rmaj in accordance with Theorem 1. The algorithm is
named R* consensus tree and is outlined in Fig. 2.

Algorithm R* consensus tree

Input: Two trees T1, T2 with Λ(T1) = Λ(T2).
Output: The R* consensus tree of T1 and T2.

1: Define L = Λ(T1) = Λ(T2) and compute sRmaj (a, b) for all a, b ∈ L as described
in Section 4.

2: Compute the Apresjan clusters of sRmaj .
3: for each Apresjan cluster A of sRmaj do
4: Determine if A is a strong cluster of Rmaj as described in Section 5.
5: end for
6: Construct the R* consensus tree using all the strong clusters of Rmaj .

Fig. 2. Algorithm R* consensus tree

We now analyze the time complexity of Algorithm R* consensus tree. In
Section 4 below, we shall describe how to implement step 1 in O(n2 log n) time.
Next, in step 2, the Apresjan clusters of sRmaj can be computed by running
the algorithm of Bryant and Berry [3], which takes O(n2) time according to
Lemma 1 (see also Corollary 2.1 in [3]). There are O(n) Apresjan clusters in the
loop of step 3 by Lemma 1, and each one is checked in O(n) time in step 4,
as detailed in Section 5 below. Finally, the last step builds the R* consensus
tree from the strong clusters of Rmaj in O(n2) time. In summary, we have the
following theorem.
1 Recall from Section 2.2 that for a set R of triplets over a leaf label set L, the

function sR is defined on each a, b ∈ L by sR(a, b) = |{ab|y : ab|y ∈ R}|.

578 J. Jansson and W.-K. Sung

Theorem 2. Algorithm R* consensus tree constructs the R* consensus tree
of T1 and T2 in O(n2 log n) time.

The following two sections are devoted to implementing steps 1 and 4 of Algo-
rithm R* consensus tree efficiently.

4 Computing sRmaj
(a, b) for all a, b ∈ L

From the definition of Rmaj , we have:

Lemma 5. For any a, b, c ∈ L, ab|c ∈ Rmaj if and only if either

1. ab|c ∈ t(T1) ∩ t(T2); or
2. ab|c ∈ t(T1) and a|b|c ∈ t(T2); or
3. a|b|c ∈ t(T1) and ab|c ∈ t(T2).

We introduce the following three auxiliary functions:⎧⎪⎨⎪⎩
count1(a, b) = |{w ∈ L \ {a, b} : ab|w ∈ t(T1) ∩ t(T2)}|
count2(a, b) = |{w ∈ L \ {a, b} : ab|w ∈ t(T1), a|b|w ∈ t(T2)}|
count3(a, b) = |{w ∈ L \ {a, b} : a|b|w ∈ t(T1), ab|w ∈ t(T2)}|

Then, Lemma 5 immediately gives sRmaj (a, b) = count1(a, b) + count2(a, b) +
count3(a, b) for any a, b ∈ L.

To compute count1, count2, and count3, we could preprocess T1 and T2 in
O(n) time so that lowest common ancestor queries in T1 and T2 can be answered
in O(1) time [1,7]. Then, for any given a, b ∈ L, a brute-force solution would
easily obtain all of count1(a, b), count2(a, b), and count3(a, b) in O(n) time by
checking T1||{a,b,w} and T2||{a,b,w} for each w ∈ L \ {a, b}. This approach would
therefore compute counti(a, b) for all a, b ∈ L and all i = 1, 2, 3 in O(n3) time.
In the rest of this section, we show how to obtain counti(a, b) for all a, b ∈ L
and i = 1, 2, 3 more efficiently.

First, in Section 4.1, we reformulate the counti(a, b)-functions in terms of
distances from leaves to lowest common ancestors of leaves. All of these distances
may be computed in O(n2) time. Then, based on this alternative formulation, for
any fixed leaf label a ∈ L, Section 4.2 describes an O(n log n)-time method for
computing count1(a, b) for all b ∈ L\{a}, and Section 4.3 describes an O(n)-time
method for computing count2(a, b) for all b ∈ L \ {a}. (By symmetry, we can
obtain count3(a, b) for all b ∈ L\{a} in O(n) time with the same technique as in
Section 4.3.) To summarize, after O(n2) time preprocessing, O(n log n) time is
enough to compute count1(a, b), count2(a, b), and count3(a, b) for all b ∈ L \ {a}
for any fixed a ∈ L. Therefore, we only need O(n2 log n) time in total to obtain
sRmaj (a, b) for all a, b ∈ L.

Constructing the R* Consensus Tree of Two Trees in Subcubic Time 579

a

b

T:

lca (a,b)

d (b)a, T

T

e (b)a, T

Fig. 3. Illustrating the definitions of da,T (b) and ea,T (b)

4.1 Distances from Leaves to Lowest Common Ancestors

For any tree T and any a, b ∈ Λ(T), let da,T (b) be the distance between a and
lcaT (a, b) in T , and let ea,T (b) be the child of lcaT (a, b) which is an ancestor of b.
(W.l.o.g., define ea,T (a) = ∅.) See Fig. 3 for an example. Note that the values
of da,T (b) and ea,T (b) for all a, b ∈ Λ(T) can be computed in O(n2) time by
a bottom-up traversal. The next lemma states the connection between d and e
and the triplets consistent with T .

Lemma 6. For any tree T and any a, x, w ∈ Λ(T), it holds that:

– If da,T (x) < da,T (w) then ax|w ∈ t(T).
– If da,T (x) = da,T (w) and ea,T (x) 	= ea,T (w) then a|x|w ∈ t(T).

Proof. If da,T (x) < da,T (w), the lcaT (a, w) is an ancestor of lcaT (a, x). Thus,
ax|w ∈ t(T).

If da,T (x) = da,T (w) then v = lcaT (a, w) = lcaT (a, x). Since ea,T (x) 	=
ea,T (w), we know that lcaT (x, w) = v. Hence, a|x|w ∈ t(T). ��

We remark that the first part of Lemma 6 is a special case of Theorem 1 in [9],
which was derived by Lee et al. [9] to solve a different problem known as the
maximum agreement subtree problem.

Next, consider two trees T1 and T2 with Λ(T1) = Λ(T2) = L. We have:

Lemma 7. For any a, b, w ∈ L:

– count1(a, b) = |{w : da,T1(b) < da,T1(w) and da,T2(b) < da,T2(w)}|.
– count2(a, b) = |{w : da,T1(b) < da,T1(w), da,T2(b) = da,T2(w), and ea,T2(b) 	=

ea,T2(w)}|.
– count3(a, b) = |{w : da,T1(b) = da,T1(w), ea,T1(b) 	= ea,T1(w), and da,T2(b) <

da,T2(w)}|.

580 J. Jansson and W.-K. Sung

Proof. By Lemma 6, da,T1(b) < da,T1(w) and da,T2(b) < da,T2(w) mean that
ab|w ∈ t(T1) ∩ t(T2). Hence, count1(a, b) = |{w : da,T1(b) < da,T1(w) and
da,T2(b) < da,T2(w)}|.

By Lemma 6 again, da,T1(b) < da,T1(w), da,T2(b) = da,T2(w), and ea,T2(b) 	=
ea,T2(w) mean that ab|w ∈ t(T1) and a|b|w ∈ t(T2). Hence, count2(a, b) = |{w :
da,T1(b) < da,T1(w), da,T2(b) = da,T2(w), and ea,T2(b) 	= ea,T2(w)}|.

The formula for count3(a, b) follows by symmetry. ��

4.2 Computing count1(a, b) for All b ∈ L \ {a}
This section describes how to compute count1(a, b) for all b ∈ L\{a} in O(n log n)
time for any fixed a ∈ L, assuming the values of da,T1(b), da,T2(b) for all b ∈
L \ {a} have been precomputed.

By applying a stable sorting, all elements in L\{a} can be ordered using O(n)
time so that x is before y if either: (1) da,T1(x) < da,T1(y); or (2) da,T1(x) =
da,T1(y) and da,T2(x) < da,T2(y). Suppose the resulting ordering of L \ {a} is
x(1), x(2), . . . , x(n−1). For any x(i), let i′ be the smallest integer which is larger
than i such that da,T1(x(i′)) 	= da,T1(x(i)). Then, count1 obeys the following:

Lemma 8. For any i ∈ {1, 2, . . . , n − 1}, count1(a, x(i)) equals the number of
elements in {da,T2(x(j)) : j ≥ i′} which are strictly larger than da,T2(x(i)).

Proof. From Lemma 7, count1(a, x(i)) = |{x(j) : da,T1(x(i)) < da,T1(x(j)) and
da,T2(x(i)) < da,T2(x(j))}|. By the definition of i′, count1(a, x(i)) = |{x(j) : j ≥ i′

and da,T2(x(i)) < da,T2(x(j))}|. The lemma follows. ��

We compute count1(a, x(i)) for all i in decreasing order from n−1 to 1 iteratively,
as illustrated in Algorithm Compute count1 in Fig. 4. We maintain the invariant

Algorithm Compute count1

Input: a ∈ L.
Output: The values of count1(a, b) for all b ∈ L \ {a}.
1: Perform a stable sorting to rank the elements of L \ {a} according to da,T1

and da,T2 , and obtain the ordering x(1), x(2), . . . , x(n−1).
2: Let D be an empty binary search tree.
3: Let i′ = n and define da,T1(x(n)) = da,T2(x(n)) = ∞.
4: for i = n − 1 downto 1 do
5: if da,T1(x(i)) < da,T1(x(i+1)) then
6: Insert da,T2(x(j)) into D for j = i + 1, . . . , i′ − 1.
7: Let i′ = i + 1.
8: end if
9: Set count1(a, x(i)) to the number of elements in D which are strictly greater

than da,T2(x(i)).
10: end for

Fig. 4. Algorithm Compute count1

Constructing the R* Consensus Tree of Two Trees in Subcubic Time 581

that in every iteration i, the value i′ equals the smallest integer larger than i such
that da,T1(x(i′)) 	= da,T1(x(i)), and keep a binary search tree D for {da,T2(x(j)) :
j ≥ i′} so that by Lemma 8, count1(a, x(i)) equals the number of elements in D
strictly greater than da,T2(x(i)). Each operation on a binary search tree takes
O(log n) time, so in total, Compute count1 runs in O(n log n) time.

4.3 Computing count2(a, b) for All b ∈ L \ {a}
Here, we show how to compute count2(a, b) (and by symmetry, count3(a, b)) for
all b ∈ L \ {a} in O(n) time for any fixed a ∈ L. We assume that the values of
da,T1(b), da,T2(b), ea,T1(b), ea,T2(b) for all b ∈ L \ {a} have been precomputed.

The algorithm is named Compute count2 and is listed in Fig. 5. It first par-
titions L \ {a} into disjoint subsets C1, C2, . . . , Cp in such a way that for every
pair of elements x, y in the same Ci, it holds that da,T2(x) = da,T2(y). Then,
the algorithm further partitions each Ci into Ci1, . . . , Ciq so that for every pair
of elements x, y in the same Cij , it holds that ea,T2(x) = ea,T2(y). Finally, the
algorithm obtains count2(a, x) for all x ∈ L\{a} in O(n) time based on Lemma 9.

Lemma 9. Let b ∈ L \ {a} and suppose b ∈ Cij . Then, count2(a, b) = |{w ∈
Ci : da,T1(w) > da,T1(b)}| − |{w ∈ Cij : da,T1(w) > da,T1(b)}|.

Proof. By Lemma 7, count2(a, b) = |{w : da,T1(b) < da,T1(w), da,T2(b) =
da,T2(w), and ea,T2(b) 	= ea,T2(w)}|. Since b ∈ Cij , we have: (1) w ∈ Ci means
da,T2(b) = da,T2(w); and (2) w ∈ Cij means ea,T2(b) = ea,T2(w). Therefore,
count2(a, b) = |{w : da,T1(b) < da,T1(w), w ∈ Ci, and w 	∈ Cij}|. ��

5 Determining If a Cluster Is a Strong Cluster

This section shows how to check whether a given cluster A of L is a strong cluster
of Rmaj in O(n) time. Our solution depends on the following lemma.

Lemma 10. Let u1 and u2 be the lowest common ancestor of A in T1 and T2,
respectively. A is a strong cluster of Rmaj if and only if:

(1) For i = 1, 2, each subtree B attached to ui in Ti satisfies either Λ(B) ⊆ A
or Λ(B) ⊆ L \ A; and

(2) X1 ∩ X2 = ∅, where Xi = (L \ A) ∩ Λ(Ti[ui]).

Proof. (⇒) Let A be a strong cluster of Rmaj . We need to prove that both
conditions (1) and (2) hold.

For the sake of obtaining a contradiction, suppose that for some i ∈ {1, 2},
there exist a ∈ A, x ∈ L\A where both a and x are in the same subtree attached
to ui. Then, lcaTi(a, x) is a proper descendant of ui. The node ui is defined as
the lowest common ancestor of the leaves in A, so lcaTi(a, a′) = ui for some
a′ ∈ A. However, then lcaTi(a, x) is a proper descendant of lcaTi(a, a′), giving
ax|a′ ∈ t(Ti). This implies that aa′|x cannot belong to Rmaj , which contradicts
the fact that A is a strong cluster of Rmaj . Thus, condition (1) must hold.

582 J. Jansson and W.-K. Sung

Algorithm Compute count2

Input: a ∈ L.
Output: The values of count2(a, b) for all b ∈ L \ {a}.
1: Partition L \ {a} into C1, . . . , Cp so that for every pair of elements x, y in the

same Ci, it holds that da,T2(x) = da,T2(y).
2: for every Ci do
3: Perform a stable sorting to rank the elements of Ci and obtain the ordering

b1, . . . , b|Ci| such that da,T1(b1) ≤ da,T2(b2) ≤ . . . ≤ da,T2(b|Ci|).
4: { Note that si(b) = |{w ∈ Ci : da,T1(w) > da,T1(b)}|. }
5: si(b1) = 0.
6: for j = 2, 3, . . . , |Ci| do
7: if da,T1(bj) > da,T1(bj−1) then
8: si(bj) = si(bj−1) + 1.
9: else

10: si(bj) = si(bj−1).
11: end if
12: end for
13: Partition Ci into Ci1, . . . , Ciq so that for every pair of elements x, y in the

same Cij , it holds that ea,T2(x) = ea,T2(y).
14: for every Cij do
15: Perform a stable sorting to rank the elements of Cij and obtain the or-

dering b1, . . . , b|Cij | such that da,T1(b1) ≤ da,T2(b2) ≤ . . . ≤ da,T2(b|Cij |).

16: { Note that sij(b) = |{w ∈ Cij : da,T1(w) > da,T1(b)}|.}
17: sij(b1) = 0.
18: for k = 2, 3, . . . , |Cij | do
19: if da,T1(bk) > da,T1(bk−1) then
20: sij(bk) = sij(bk−1) + 1.
21: else
22: sij(bk) = sij(bk−1).
23: end if
24: end for
25: for every b ∈ Cij do
26: Let count2(a, b) equal si(b) − sij(b).
27: end for
28: end for
29: end for

Fig. 5. Algorithm Compute count2

Next, we prove by contradiction that condition (2) must hold. If X1∩X2 	= ∅,
where Xi = (L \ A) ∩ Λ(Ti[ui]), is true then there exists an x ∈ X1 ∩ X2. We
claim that there exist a, a′ ∈ A with lcaT1(a, a′) = u1 and lcaT2(a, a′) = u2. This
yields x|a|a′ ∈ t(T1) and x|a|a′ ∈ t(T2) because the subtree attached to ui for
i = 1, 2 which contains x cannot contain a or a′ by condition (1) above. Thus,
aa′|x 	∈ Rmaj , contradicting the fact that A is a strong cluster of Rmaj .

It remains to prove the claim that there exist a, a′ ∈ A such that lcaT1(a, a′) =
u1 and lcaT2(a, a′) = u2. Assume on the contrary that for each pair a, a′ ∈ A,

Constructing the R* Consensus Tree of Two Trees in Subcubic Time 583

Algorithm Check if strong cluster

Input: A cluster A of L.
Output: “Yes”, if A is a strong cluster of Rmaj ; “no”, otherwise.

1: Let u1 and u2 be the lowest common ancestor of A in T1 and T2, respectively.
2: for i = 1, 2 do
3: if there exists a subtree in Ti attached to ui containing leaves from A as well

as from L \ A then
4: return “no”
5: end if
6: end for
7: Let Xi = (L \ A) ∩ Λ(Ti[ui]) for i = 1, 2.
8: if X1 ∩ X2 = ∅ then
9: return “yes”

10: else
11: return “no”
12: end if

Fig. 6. Algorithm Check if strong cluster

there exists an i ∈ {1, 2} such that lcaTi(a, a′) is a proper descendant of ui. Note
that A is located in at least two subtrees attached to ui for i = 1, 2. For every
pair of subtrees attached to u1 that contain elements from A, suppose the sets of
leaves in the two subtrees are A1 and A2. To ensure that lcaT2(x, y) is a proper
descendant of u2 for every x ∈ A1 and y ∈ A2, we need A1 ∪ A2 to appear in
one subtree attached to u2. By this argument, all elements of A appear in one
subtree attached to u2. Then, u2 cannot be the lowest common ancestor of A
in T2, and we arrive at a contradiction.

(⇐) Suppose A satisfies the two conditions stated in the lemma. We need to
prove that for every x, y ∈ A and z ∈ L \ A, it holds that xy|z ∈ Rmaj . Note
that z belongs to either X1, X2, or ((L \ A) \X1) \X2, which gives three cases:

– If z ∈ ((L \A) \X1) \X2: Then lcaTi(x, z) is a proper ancestor of lcaTi(x, y)
for i = 1, 2. Thus, xy|z ∈ Rmaj .

– If z ∈ X1: Then xy|z ∈ t(T2) and there are two cases depending on whether
or not lcaT1(x, y) is a proper descendant of u1. If yes, then xy|z ∈ t(T1),
and thus xy|z ∈ Rmaj . If no, then lcaT1(x, y) = u1, and thus x|y|z ∈ t(T1),
which also yields xy|z ∈ Rmaj .

– If z ∈ X2: Then it follows that xy|z ∈ Rmaj in the same way as for the case
z ∈ X1 above. ��

We can use Lemma 10 to check if a given cluster A of L is a strong cluster of
Rmaj in O(n) time, as shown in Algorithm Check if strong cluster in Fig. 6.

6 Concluding Remarks

In this paper, we have described how to compute the R* consensus tree of two
input trees in O(n2 log n) time. The definition of the set of majority rooted

584 J. Jansson and W.-K. Sung

triplets Rmaj as well as the definition of an R* consensus tree can be natu-
rally extended to the case of k > 2 input trees; see [2]. The currently fastest
algorithm for the case k > 2 runs in O(kn3) time and is outlined in [2]. It can
be implemented by explicitly constructing the sets r(Ti) for every input tree Ti

using O(kn3) total time, then obtaining Rmaj in O(kn3) time by finding the
most frequently occurring rooted triplet (if it exists) for each {x, y, z} in the
leaf label set in O(k) time, and finally applying the O(n3)-time strong clustering
algorithm from Corollary 2.2 in [3] to Rmaj . An open problem is to reduce the
time complexity to o(kn3). It seems difficult to extend the approach used in this
paper because it would yield an exponential number (in k) of cases in Lemma 5
and thus express sRmaj (a, b) as the sum of an exponential number of auxiliary
count-functions, causing the total running time to be exponential in k.

Acknowledgments

The authors would like to thank David Bryant for some clarifications and the
anonymous referees for their helpful comments.

References

1. Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Gonnet, G.H.,
Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg
(2000)

2. Bryant, D.: A classification of consensus methods for phylogenetics. In: Janowitz,
M.F., Lapointe, F.-J., McMorris, F.R., Mirkin, B., Roberts, F.S. (eds.) Bioconsen-
sus. DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
vol. 61, pp. 163–184. American Mathematical Society, Providence (2003)

3. Bryant, D., Berry, V.: A structured family of clustering and tree construction
methods. Advances in Applied Mathematics 27(4), 705–732 (2001)

4. Degnan, J.H., DeGiorgio, M., Bryant, D., Rosenberg, N.A.: Properties of consensus
methods for inferring species trees from gene trees. Systematic Biology 58(1), 35–54
(2009)

5. Felsenstein, J.: Inferring Phylogenies. Sinauer Associates, Inc., Sunderland (2004)
6. Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge University

Press, New York (1997)
7. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors.

SIAM Journal on Computing 13(2), 338–355 (1984)
8. Kannan, S., Warnow, T., Yooseph, S.: Computing the local consensus of trees.

SIAM Journal on Computing 27(6), 1695–1724 (1998)
9. Lee, C.-M., Hung, L.-J., Chang, M.-S., Shen, C.-B., Tang, C.-Y.: An improved

algorithm for the maximum agreement subtree problem. Information Processing
Letters 94(5), 211–216 (2005)

10. Nakhleh, L., Warnow, T., Ringe, D., Evans, S.N.: A comparison of phylogenetic
reconstruction methods on an Indo-European dataset. Transactions of the Philo-
logical Society 103(2), 171–192 (2005)

Author Index

Abraham, Ittai II-87
Adler, Isolde I-97
Agarwal, Pankaj K. I-487
Ajwani, Deepak II-75
Anshelevich, Elliot I-158
Arya, Sunil I-374
Azar, Yossi II-51

Bae, Sang Won I-500
Bahmani, Bahman I-170
Bansal, Nikhil II-218
Bartal, Yair II-87
Bar-Yehuda, Reuven I-255
Bast, Hannah I-290
Belazzougui, Djamal I-427
Bendich, Paul I-1
Berenbrink, Petra I-134
Bhawalkar, Kshipra II-17
Boldi, Paolo I-427
Bonifaci, Vincenzo II-230
Brodal, Gerth Stølting II-171
Buchbinder, Niv II-51
Buchin, Kevin I-110, I-463, II-63
Buchin, Maike I-463, II-63
Büsing, Christina I-350

Carlsson, Erik I-290
Chan, Sze-Hang I-23
Chao, Kun-Mao I-415
Chechik, Shiri I-84
Chen, Kuan-Yu I-415
Chen, Ning II-147
Chrobak, Marek I-195
Cicalese, Ferdinando I-207
Colin de Verdière, Éric II-100
Cormode, Graham I-231
Crescenzi, Pierluigi I-302
Culpepper, J. Shane II-194
Cygan, Marek I-72
Czumaj, Artur I-410

da Fonseca, Guilherme D. I-374
Das, Abhimanyu I-219
Davoodi, Pooya II-171

Dickerson, Matthew T. I-362
Dorn, Frederic I-97

Edelsbrunner, Herbert I-1
Eigenwillig, Arno I-290
Eisenbrand, Friedrich I-11
Elkin, Michael I-48
Elmasry, Amr II-183
Elsässer, Robert I-134
Eppstein, David I-362

Feldman, Jon I-182
Ferragina, Paolo II-1
Fomin, Fedor V. I-97
Friedler, Sorelle A. I-386
Fujita, Ryo II-123
Fujiwara, Hiroshi I-439

Gairing, Martin II-17
Galli, Laura I-338
Gaspers, Serge I-267
Geisberger, Robert I-290
Ghosh, Arpita II-147
Gibson, Matt I-243
Giesen, Joachim I-524
Goodrich, Michael T. I-362
Grandoni, Fabrizio I-536
Grossi, Roberto I-302
Gupta, Anupam II-218
Gutin, Gregory I-326

Hajiaghayi, MohammadTaghi I-314
Halperin, Dan I-398
Harks, Tobias II-29
Harrelson, Chris I-290
Hellweg, Frank I-60
Hemmer, Michael I-398
Henzinger, Monika I-182
Hermelin, Danny I-255
Hoefer, Martin I-158, II-29

Iersel, Leo van I-326
Imbrenda, Claudio I-302
Iwama, Kazuo II-135

586 Author Index

Jacobs, Tobias I-439
Jaggi, Martin I-524
Jain, Kamal II-51
Jansson, Jesper I-573

Kamiński, Marcin I-122
Kang, Ross J. II-112
Kaplan, Haim I-475
Kapralov, Michael I-170
Kärkkäinen, Juha I-451
Katz, Matthew J. I-475
Kempe, David I-219
Kesavan, Karthikeyan I-11
Khandekar, Rohit I-314
Klimm, Max II-29
Kobayashi, Yusuke II-123
Korman, Matias I-500
Kortsarz, Guy I-314
Korula, Nitish I-182
Kowalik, Lukasz I-72
Kreveld, Marc van I-463
Krysta, Piotr II-39

Lampis, Michael I-549
Lam, Tak-Wah I-23
Langberg, Michael I-84
Lanzi, Leonardo I-302
Laue, Sören I-524
Lee, Lap-Kei I-23
Li, Jian II-218
Löffler, Maarten I-463
Lorenz, Ulf I-512

Makino, Kazuhisa I-195, II-123
Marchetti-Spaccamela, Alberto II-230
Marino, Andrea I-302
Martin, Alexander I-512
Mattikalli, Raju S. I-11
Maue, Jens I-350
Mestre, Julián II-218
Mirrokni, Vahab S. I-182
Mitzenmacher, Michael I-231
Miyazaki, Shuichi II-135
Mnich, Matthias I-267, I-326, II-112
Morgenstern, Gila I-475
Morozov, Dmitriy I-1
Mount, David M. I-374, I-386
Mozes, Shay II-206
Mucha, Marcin I-72
Müller, Tobias II-112

Nagarajan, Viswanath II-218
Navarro, Gonzalo II-194
Neiman, Ofer II-87
Niemeier, Martin I-11
Nordsieck, Arnold W. I-11

Okamoto, Yoshio I-500
Osipov, Vitaly I-278

Pagh, Rasmus I-427
Patel, Amit I-1
Patel, Viresh I-561
Paulusma, Daniël I-122
Peleg, David I-84
Phillips, Jeff M. I-487
Pilipczuk, Marcin I-72
Pirwani, Imran A. I-243
Pountourakis, Emmanouil I-146
Puglisi, Simon J. I-451, II-194

Radhakrishnan, Jaikumar II-159
Rao, S. Srinivasa II-171
Rawitz, Dror I-255
Raychev, Veselin I-290
Roditty, Liam I-84
Roughgarden, Tim II-17
Rudra, Atri II-218

Sanders, Peter I-278
Sankowski, Piotr I-72
Sauerwald, Thomas I-134
Sau, Ignasi I-97
Schmidt, Melanie I-60
Schulman, Leonard J. II-87
Schulz, André I-110, II-63
Setter, Ophir I-398
Shah, Smit II-159
Shannigrahi, Saswata II-159
Sharir, Micha I-475
Silveira, Rodrigo I. I-463
Sitchinava, Nodari II-75
Skopalik, Alexander II-29
Skutella, Martin I-11, I-36
Sohler, Christian I-60
Solomon, Shay I-48
Stein, Cliff I-182
Stiller, Sebastian I-338
Sung, Wing-Kin I-573

Author Index 587

Thaler, Justin I-231
Thilikos, Dimitrios M. I-97, I-122
Turpin, Andrew II-194

Vaccaro, Ugo I-207
Ventre, Carmine II-39
Verschae, José I-11, I-36
Vidali, Angelina I-146
Viger, Fabien I-290
Vigna, Sebastiano I-427

Wenk, Carola I-463
Wiese, Andreas I-11

Wiratma, Lionov I-463
Woeginger, Gerhard J. I-195
Wolf, Jan I-512
Wulff-Nilsen, Christian II-206

Xu, Haifeng I-195

Yanagisawa, Hiroki II-135
Yeo, Anders I-326
Yu, Hai I-487

Zeh, Norbert II-75
Zenklusen, Rico I-536

	Title
	Preface
	Organization
	Table of Contents
	Invited Talk
	The Robustness of Level Sets
	Introduction
	Background
	Characterization
	Combinatorics of Homology
	Combinatorics of Robustness
	Discussion
	References

	Session 1a
	Solving an Avionics Real-Time Scheduling Problem by Advanced IP-Methods
	Introduction
	Problem Definition
	Related Work

	Structural Insights
	IP-Formulations
	Time-Indexed-Formulation
	Congruence-Formulation
	Bin-Formulation
	Extended Constraints

	Computational Results
	Non-harmonic Case
	Harmonic Case
	Original Boeing Instances

	References

	Non-clairvoyant Speed Scaling for Weighted Flow Time
	Introduction
	Definitions and Notations
	Non-clairvoyant Speed Scaling
	Traditional Power Model
	Arbitrary Power Model

	Clairvoyant Transformation to AJW
	References

	A Robust PTAS for Machine Covering and Packing
	Introduction
	A Lower Bound on the Best Approximation with Constant Migration Factor
	A Stable Estimate of the Optimum Value
	The Structure of Robust Solutions
	Compact Description of a Schedule
	Constructing Stable Solutions

	Maintaining Robust Solutions Dynamically
	References

	Session 1b
	Balancing Degree, Diameter and Weight in Euclidean Spanners
	Introduction
	1-Spanners for Tree Metrics
	The Basic Scheme
	1-Dimensional Spaces
	General Tree Metrics

	Euclidean Spanners
	References

	Testing Euclidean Spanners
	Introduction
	Preliminaries
	The Algorithm
	Testing Graphs with Uniformly Spread Vertices
	Testing Graphs with Vertices Placed on a Discrete Grid
	A Lower Bound for Testing Spanners
	References

	Fast Approximation in Subspaces by Doubling Metric Decomposition
	Introduction
	Space Partition Tree
	Compressed Tree ˆT and Additional Information at Nodes
	Fast Subtree Extraction

	Pseudospanner Construction and Applications in Approximation
	Pseudospanner Construction
	Applications in Approximation

	Dynamic Minimum Spanning Tree and Steiner Tree
	References

	f-Sensitivity Distance Oracles and Routing Schemes
	Introduction
	f-Sensitivity Distance Oracle
	2-Sensitive Compact Routing Schemes
	References

	Session 2a
	Fast Minor Testing in Planar Graphs
	Introduction
	Preliminaries
	Minor Testing in Planar Graphs
	Preprocessing
	Partially Embedded Dynamic Programming

	Conclusions and Further Research
	References

	On the Number of Spanning Trees a Planar Graph Can Have
	Introduction
	Refined Outgoing Edge Approach
	The Dependencies of Cycles in a Random Outdegree-One Graph
	Bounding the Probability of the Appearance of Cycles
	A Charging Scheme for the Vertex Degrees
	Finding Constraints

	Further Bounds and Future Work
	References

	Contractions of Planar Graphs in Polynomial Time
	Introduction
	Previous Work
	Our Contribution

	Definitions
	Contractions vs. Topological Minors
	Embedded Topological Minors and the Algorithm
	Bounded Genus Graphs
	Discussion
	References

	Session 2b
	Communication Complexity of Quasirandom Rumor Spreading
	Introduction
	Related Work
	Model
	Our Contribution

	Random Graphs
	Our Algorithm
	Analysis of the Algorithm

	Hypercube
	Our Algorithm
	Analysis of the Algorithm

	References

	A Complete Characterization of Group-Strategyproof Mechanisms of Cost-Sharing
	Introduction
	Defining the Model
	Our Characterization
	Fence Monotonicity, and Fencing Mechanisms
	Every GSP Mechanism Is a Fencing Mechanism
	The Classes of GSP and Fencing Mechanisms Coincide

	Conclusion and Future Directions
	References

	Contribution Games in Social Networks
	Introduction
	Polynomials, Convex, and Concave Reward Functions
	Existence and Complexity of Pairwise Equilibria
	Concave Reward Functions

	Minimum Effort Games
	Convex Functions in Minimum Effort Games
	Concave Functions in Minimum Effort Games

	Additional Aspects
	Conclusions
	References

	Session 3a
	Improved Bounds for Online Stochastic Matching
	Introduction
	Our Results and Techniques
	Other Related Work
	Preliminaries
	d-Suggested Matchings Algorithm
	Organization

	Dynamic Analysis for Regular Graphs
	Upper-Bounding the Performance of d-SM
	The Random Algorithm

	Hardness
	Improved Competitive Ratio for General Graphs
	References

	Online Stochastic Packing Applied to Display Ad Allocation
	Introduction
	A Dual-Based Algorithm
	Proof Sketch

	Experimental Evaluation: Efficiency and Fairness
	Concluding Remarks
	References

	Caching Is Hard – Even in the Fault Model
	Introduction
	Caching Versus Interval Packing
	Hardness for Optional Policies
	Hardness for Forced Policies

	Setting Up the NP-completeness Proof
	An Extension of Interval Packing
	Strong NP-Completeness of INTVPACK-CARD
	Strong NP-Completeness of INTVPACK-WEIGHT
	References

	Session 3b
	Superselectors: Efficient Constructions and Applications
	Introduction
	The(p, v, n)-SUPER-SELETOR
	Applications of the SUPER-SELECTORS
	Bounds on the Size of a (p, v, n)-SUPER-SELECTOR
	References

	Estimating the Average of a Lipschitz-Continuous Function from One Sample
	Introduction
	Related Work

	Preliminaries
	Discrete Metric Spaces
	A PTAS for Arbitrary Metric Spaces

	Sampling in the Interval [0, 1]
	Characterization of Worst-Case Functions

	Future Work
	References

	Streaming Graph Computations with a Helpful Advisor
	Introduction
	Model and Definitions
	Fingerprints

	Directly Proving Matching Upper and Lower Bounds
	Warmup: Topological Ordering and DAGs
	Maximum Matching
	Linear Programming and TUM Integer Programs

	Simulating Non-streaming Algorithms
	Conclusion and Future Directions
	References

	Session 4a
	Algorithms for Dominating Set in Disk Graphs: Breaking the log n Barrier (Extended Abstract)
	Introduction
	The Unweighted Case: PTAS via Local Search
	The Algorithm
	Approximation Ratio
	Establishing the Locality Condition

	The Weighted Dominating Set Case
	Proof of Theorem 2

	Concluding Remarks and Open Questions
	References

	Minimum Vertex Cover in Rectangle Graphs
	Introduction
	Preliminaries
	An EPTAS for Non-crossing Rectangle Graphs
	The Arrangement Graph
	Baker’s Algorithm
	Our Algorithm

	References

	Feedback Vertex Sets in Tournaments
	Introduction
	Preliminaries
	Lower Bound on the Maximum Number of Minimal FVSs
	Upper Bound on the Maximum Number of Minimal FVSs
	Polynomial-Delay Enumeration in Polynomial Space
	References

	Session 4b
	n-Level Graph Partitioning
	Introduction
	Preliminaries
	n-Level Graph Partitioning
	Local Search Strategy

	Trial Trees
	Experiments
	Conclusion
	References

	Fast Routing in Very Large Public Transportation Networks Using Transfer Patterns
	Introduction
	Related Work
	Problem Formalization
	Basic Algorithm
	Fast Direct-Connection Queries
	Transfer patterns precomputation
	Query Graph Construction and Evaluation

	Hub Stations
	Further Refinements
	Heuristic Optimizations
	Experiments
	Conclusions
	References

	Finding the Diameter in Real-World Graphs Experimentally Turning a Lower Bound into an Upper Bound
	Introduction
	The Fringe Algorithm
	The Datasets
	Experiments
	Conclusion
	References

	Session 5a
	Budgeted Red-Blue Median and Its Generalizations
	Introduction
	Related Results
	Our Results
	An Overview of Our Techniques

	Proof of Theorem 1
	The Blocks
	The Swaps
	Putting Together

	Proof of Theorem 2
	References

	All Ternary Permutation Constraint Satisfaction Problems Parameterized above Average Have Kernels with Quadratic Numbers of Variables
	Introduction
	Permutation CSPs Parameterized above Average
	Probabilistic and Harmonic Analysis Tools
	Facts on the Betweenness and Acyclic Subdigraph Problems
	Kernels for Π-AA Problems
	References

	Strong Formulations for the Multi-module PESP and a Quadratic Algorithm for Graphical Diophantine Equation Systems
	Introduction
	Graphical Diophantine Equations Systems
	Solving PESP with Multiple Modules
	Computational Results
	References

	Robust Algorithms for Sorting Railway Cars
	Introduction
	Encoding Classification Schedules
	Recovery through Additional Sorting Steps
	Limited Number of Delayed Trains
	Conclusion
	References

	Session 5b
	Cloning Voronoi Diagrams via Retroactive Data Structures
	Introduction
	A Fully-Retroactive Ordered Dictionary
	ExactQuery Probes
	Distance Query Probes
	Label-Only Query Probes
	References

	A Unified Approach to Approximate Proximity Searching
	Introduction
	Framework
	Quadtrees
	A Simple Data Structure for Approximate Spherical Emptiness
	Abstract Framework

	Modules
	General Spherical Range Queries
	Idempotent Spherical Range Queries
	Spherical Emptiness Queries

	References

	Spatio-temporal Range Searching over Compressed Kinetic Sensor Data
	Introduction
	Framework for Kinetic Sensor Data
	Temporal Range Searching
	Spatio-temporal Range Searching
	Experimental Results
	References

	Constructing the Exact Voronoi Diagram of Arbitrary Lines in Three-Dimensional Space with Fast Point-Location
	Introduction
	Preliminaries
	Properties of Bisectors and Trisectors
	Lower Envelope Algorithm

	Computing a Voronoi Cell
	Parametrization and Projection
	Lower Envelope Predicates
	Complexity

	Fast Point Location
	Implementation Details
	Conclusions
	References

	Invited Talk
	Local Graph Exploration and Fast Property Testing
	Introduction
	Testing Properties of Dense Graphs
	Testing Properties of Sparse Graphs and Graph Exploration

	References

	Session 6a
	A Fully Compressed Algorithm for Computing the Edit Distance of Run-Length Encoded Strings
	Introduction
	Preliminaries
	Edit Graph
	Propagation over Run-Sized Blocks
	Problem Reduction

	AGeometricView
	A Succinct Representation of Border Values
	Propagation of Turning Points

	A Linear-Time Algorithm for the Continuous Sliding-Window Minima Problem
	Time Complexity
	Concluding Remarks
	References

	Fast Prefix Search in Little Space, with Applications
	Introduction
	Notation and Tools
	From Prefixes to Exit Nodes
	Range Location
	Putting It All Together
	A Space Lower Bound
	References

	On the Huffman and Alphabetic Tree Problem with General Cost Functions
	Introduction
	Dynamic Programming Algorithm for GAT
	Cost Functions Satisfying Structural Continuity
	Huffman Tree Problem
	References

	Medium-Space Algorithms for Inverse BWT
	Introduction
	Preliminaries
	Basic Large-Space Algorithms
	Basic Medium-Space Algorithms
	Algorithm LR-B
	Algorithm LR-I

	Variable-Length Encoding
	Algorithm VLR-B
	Algorithm VLR-I

	Experimental Results
	Concluding Remarks
	References

	Session 6b
	Median Trajectories
	Introduction
	On the Definition of a Median Trajectory
	Requirements for a Median Trajectory
	The Complexity of Median Trajectories

	Algorithms to Compute a Median Trajectory
	Computing the Simple Median
	Computing the Homotopic Median

	Experimental Results for Median Trajectories
	Discussion and Future Research
	References

	Optimal Cover of Points by Disks in a Simple Polygon
	Introduction
	Minimum Disk Cover in a Simple Polygon
	Covering by Homothetic Copies of a Convex Set
	Covering by Disks in a Sufficiently Narrow Annulus
	References

	Stability of ε-Kernels
	Introduction
	Dynamic Stability
	Approximation Stability
	References

	The Geodesic Diameter of Polygonal Domains
	Introduction
	Preliminaries
	Local Maxima of the Lower Envelope of Convex Functions

	Properties of Geodesic-Maximal Pairs
	Computing the Geodesic Diameter
	Concluding Remarks
	References

	Session 7a
	Polyhedral and Algorithmic Properties of Quantified Linear Programs
	Introduction
	State-of-the-Art
	Complexity and Algorithmic Issues
	Solution Issues

	The Problem Statement: Quantified Linear Programs
	QLPAnalysis
	A Simple Solution Procedure for the QLP Problem ([21])
	The Solution Spaces of QLP Instances

	Algorithms Using Polynomial Space
	References

	Approximating Parameterized Convex Optimization Problems
	Introduction
	Clarkson’s Framework
	Optimizing Parameterized Functions
	Lower Bound
	The Weighted Sum of Two Convex Functions

	Applications
	A Parameterized Polytope Distance Problem
	Minimum Enclosing Ball of Points under Linear Motion

	Conclusion
	References

	Approximation Schemes for Multi-Budgeted Independence Systems
	Introduction
	Our Results
	Related Work

	A Feasibilization Mechanism
	A PTAS for k-Budgeted Matroid Independent Set
	A PTAS for 2-BUDGETED MATCHING
	References

	Session 7b
	Algorithmic Meta-theorems for Restrictions of Treewidth
	Introduction
	Definitions and Preliminaries
	FO Logic for Bounded Vertex Cover
	FO Logic for Bounded Max-Leaf Number
	MSO Logic for Bounded Vertex Cover
	Lower Bounds
	Neighborhood Diversity
	Conclusions and Open Problems
	References

	Determining Edge Expansion and Other Connectivity Measures of Graphs of Bounded Genus
	Introduction
	Background and Motivation
	Results
	Overview and Techniques

	Preliminaries
	The Algorithm
	Open Problems
	References

	Constructing the R* Consensus Tree of Two Trees in Subcubic Time
	Introduction
	Preliminaries
	Basic Definitions
	Strong Clusters and Apresjan Clusters
	R* Consensus Trees

	Constructing the R* Consensus Tree
	Computing sR_{maj} (a, b) for all a, b \in L
	Distances from Leaves to Lowest Common Ancestors
	Computing count_1(a, b) for All b \in L \ \{a\}
	Computing count_2(a, b) for All b \in L \ \{a

	Determining If a Cluster Is a Strong Cluster
	Concluding Remarks
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

