
Interprocedural Analysis with Lazy Propagation

Simon Holm Jensen1,�, Anders Møller1,�,��, and Peter Thiemann2

1 Aarhus University, Denmark
{simonhj,amoeller}@cs.au.dk
2 Universität Freiburg, Germany

thiemann@informatik.uni-freiburg.de

Abstract. We propose lazy propagation as a technique for flow- and
context-sensitive interprocedural analysis of programs with objects and
first-class functions where transfer functions may not be distributive. The
technique is described formally as a systematic modification of a variant
of the monotone framework and its theoretical properties are shown. It
is implemented in a type analysis tool for JavaScript where it results in
a significant improvement in performance.

1 Introduction

With the increasing use of object-oriented scripting languages, such as JavaScript,
program analysis techniques are being developed as an aid to the programmers [7,
8, 29, 27, 2, 9]. Although programs written in such languages are often relatively
small compared to typical programs in other languages, their highly dynamic
nature poses difficulties to static analysis. In particular, JavaScript programs
involve complex interplays between first-class functions, objects with modifiable
prototype chains, and implicit type coercions that all must be carefully modeled
to ensure sufficient precision.

While developing a program analysis for JavaScript [14] aiming to statically
infer type information we encountered the following challenge: How can we obtain
a flow- and context-sensitive interprocedural dataflow analysis that accounts for
mutable heap structures, supports objects and first-class functions, is amenable
to non-distributive transfer functions, and is efficient and precise? Various di-
rections can be considered. First, one may attempt to apply the classical mono-
tone framework [18] as a whole-program analysis with an iterative fixpoint al-
gorithm, where function call and return flow is treated as any other dataflow.
This approach turns out to be unacceptable: the fixpoint algorithm requires
too many iterations, and precision may suffer because spurious dataflow ap-
pears via interprocedurally unrealizable paths. Another approach is to apply the
IFDS technique [23], which eliminates those problems. However, it is restricted
to distributive analyses, which makes it inapplicable in our situation. A further

� Supported by The Danish Research Council for Technology and Production,
grant no. 274-07-0488.

�� Corresponding author.

R. Cousot and M. Martel (Eds.): SAS 2010, LNCS 6337, pp. 320–339, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Interprocedural Analysis with Lazy Propagation 321

consideration is the functional approach [26] which models each function in the
program as a partial summary function that maps input dataflow facts to out-
put dataflow facts and then uses this summary function whenever the function is
called. However, with a dataflow lattice as large as in our case it becomes difficult
to avoid reanalyzing each function a large number of times. Although there are
numerous alternatives and variations of these approaches, we have been unable
to find one in the literature that adequately addresses the challenge described
above. Much effort has also been put into more specialized analyses, such as
pointer analysis [10], however it is far from obvious how to generalize that work
to our setting.

As an introductory example, consider this fragment of a JavaScript program:

function Person(n) { this.setName(n); }
Person.prototype.setName = function(n) { this.name = n; }
function Student(n,s) { Person.call(this, n);

this.studentid = s.toString(); }
Student.prototype = new Person;
var x = new Student("John Doe", 12345);
x.setName("John Q. Doe");

The code defines two “classes” with constructors Person and Student. Person
has a method setName via its prototype object, and Student inherits setName
and defines an additional field studentid. The call statement in Student in-
vokes the super class constructor Person.

Analyzing the often intricate flow of control and data in such programs re-
quires detailed modeling of points-to relations among objects and functions and
of type coercion rules. TAJS is a whole-program analysis based on the monotone
framework that follows this approach, and our first implementation is capable
of analyzing complex properties of many JavaScript programs. However, our
experiments have shown a considerable redundancy of computation during the
analysis that causes simple functions to be analyzed a large number of times.
If, for example, the setName method is called from other locations in the pro-
gram, then the slightest change of any abstract state appearing at any call site
of setName during the analysis would cause the method to be reanalyzed, even
though the changes may be entirely irrelevant for that method. In this paper,
we propose a technique for avoiding much of this redundancy while preserving,
or even improving, the precision of the analysis. Although our main applica-
tion is type analysis for JavaScript, we believe the technique is more generally
applicable to analyses for object-oriented languages.

The main idea is to introduce a notion of “unknown” values for object fields
that are not accessed within the current function. This prevents much irrelevant
information from being propagated during the fixpoint computation. The anal-
ysis initially assumes that no fields are accessed when flow enters a function.
When such an unknown value is read, a recovery operation is invoked to go back
through the call graph and propagate the correct value. By avoiding to recover
the same values repeatedly, the total amortized cost of recovery is never higher

322 S.M. Jensen, A. Møller, and P. Thiemann

than that of the original analysis. With large abstract states, the mechanism
makes a noticeable difference to the analysis performance.

Lazy propagation should not be confused with demand-driven analysis [13].
The goal of the latter is to compute the results of an analysis only at specific pro-
gram points thereby avoiding the effort to compute a global result. In contrast,
lazy propagation computes a model of the state for each program point.

The contributions of this paper can be summarized as follows:

– We propose an ADT-based adaptation of the monotone framework to pro-
gramming languages with mutable heap structures and first-class functions
and exhibit some of its limitations regarding precision and performance.

– We describe a systematic modification of the framework that introduces
lazy propagation. This novel technique propagates dataflow facts “by need”
in an iterative fixpoint algorithm. We provide a formal description of the
method to reason about its properties and to serve as a blueprint for an
implementation.

– The lazy propagation technique is experimentally validated: It has been im-
plemented into our type analysis for JavaScript, TAJS [14], resulting in a
significant improvement in performance.

In the full version of the paper [15], we also prove termination, relate lazy propa-
gation with the basic framework—showing that precision does not decrease, and
sketch a soundness proof of the analysis.

2 A Basic Analysis Framework

Our starting point is the classical monotone framework [18] tailored to pro-
gramming languages with mutable heap structures and first-class functions. The
mutable state consists of a heap of objects. Each object is a map from field
names to values, and each value is either a reference to an object, a function, or
some primitive value. Note that this section contains no new results, but it sets
the stage for presenting our approach in Section 3.

2.1 Analysis Instances

Given a program Q, an instance of the monotone framework for an analysis of
Q is a tuple A = (F, N, L, P, C, n0, c0, Base, T) consisting of:

F : the set of functions in Q;
N : the set of primitive statements (also called nodes) in Q;
L: a set of object labels in Q;
P : a set of field names (also called properties) in Q;
C: a set of abstract contexts, which are used for context sensitivity;
n0 ∈ N and c0 ∈ C: an initial statement and context describing the entry of Q;
Base: a base lattice for modeling primitive values, such as integers or booleans;

Interprocedural Analysis with Lazy Propagation 323

T : C × N → AnalysisLattice → AnalysisLattice: a monotone transfer function for
each primitive statement, where AnalysisLattice is a lattice derived from the
above information as detailed in Section 2.2.

Each of the sets must be finite and the Base lattice must have finite height. The
primitive statements are organized into intraprocedural control flow graphs [19],
and the set of object labels is typically determined by allocation-site abstrac-
tion [16, 5].

The notation fun(n) ∈ F denotes the function that contains the statement
n ∈ N , and entry(f) and exit(f) denote the unique entry statement and exit
statement, respectively, of the function f ∈ F . For a function call statement
n ∈ N , after (n) denotes the statement being returned to after the call. A location
is a pair (c, n) of a context c ∈ C and a statement n ∈ N .

2.2 Derived Lattices

An analysis instance gives rise to a collection of derived lattices. In the following,
each function space is ordered pointwise and each powerset is ordered by inclu-
sion. For a lattice X , the symbols ⊥X , �X , and �X denote the bottom element
(representing the absence of information), the partial order, and the least upper
bound operator (for merging information). We omit the X subscript when it is
clear from the context.

An abstract value is described by the lattice Value as a set of object labels, a
set of functions, and an element from the base lattice:

Value = P(L) × P(F) × Base

An abstract object is a map from field names to abstract values:

Obj = P → Value

An abstract state is a map from object labels to abstract objects:

State = L → Obj

Call graphs are described by this powerset lattice:

CallGraph = P(C × N × C × F)

In a call graph g ∈ CallGraph, we interpret (c1, n1, c2, f2) ∈ g as a potential
function call from statement n1 in context c1 to function f2 in context c2.

Finally, an element of AnalysisLattice provides an abstract state for each con-
text and primitive statement (in a forward analysis, the program point immedi-
ately before the statement), combined with a call graph:

AnalysisLattice = (C × N → State) × CallGraph

In practice, an analysis may involve additional lattice components such as an
abstract stack or extra information associated with each abstract object or field.
We omit such components to simplify the presentation as they are irrelevant to
the features that we focus on here. Our previous paper [14] describes the full
lattices used in our type analysis for JavaScript.

324 S.M. Jensen, A. Møller, and P. Thiemann

solve
(A)

where A = (F, N, L, P, C, n0, c0, Base, T):
a := ⊥AnalysisLattice

W := {(c0, n0)}
while W �= ∅ do

select and remove (c, n) from W
Ta(c, n)

end while
return a

Fig. 1. The worklist algorithm. The worklist contains locations, i.e., pairs of a context
and a statement. The operation Ta(c, n) computes the transfer function for (c, n) on
the current analysis lattice element a and updates a accordingly. Additionally, it may
add new entries to the worklist W . The transfer function for the initial location (c0, n0)
is responsible for creating the initial abstract state.

2.3 Computing the Solution

The solution to A is the least element a ∈ AnalysisLattice that solves these
constraints:

∀c ∈ C, n ∈ N : T (c, n)(a) � a

Computing the solution to the constraints involves fixpoint iteration of the trans-
fer functions, which is typically implemented with a worklist algorithm as the
one presented in Figure 1. The algorithm maintains a worklist W ⊆ C × N
of locations where the abstract state has changed and thus the transfer func-
tion should be applied. Lattice elements representing functions, in particular
a ∈ AnalysisLattice, are generally considered as mutable and we use the notation
Ta(c, n) for the assignment a := T (c, n)(a). As a side effect, the call to Ta(c, n)
is responsible for adding entries to the worklist W , as explained in Section 2.4.
This slightly unconventional approach to describing fixpoint iteration simplifies
the presentation in the subsequent sections.

Note that the solution consists of both the computed call graph and an ab-
stract state for each location. We do not construct the call graph in a prelim-
inary phase because the presence of first-class functions implies that dataflow
facts and call graph information are mutually dependent (as evident from the
example program in Section 1).

This fixpoint algorithm leaves two implementation choices: the order in which
entries are removed from the worklist W , which can greatly affect the number of
iterations needed to reach the fixpoint, and the representation of lattice elements,
which can affect both time and memory usage. These choices are, however, not
the focus of the present paper (see, e.g. [17, 19, 12, 3, 28]).

2.4 An Abstract Data Type for Transfer Functions

To precisely explain our modifications of the framework in the subsequent sec-
tions, we treat AnalysisLattice as an imperative ADT (abstract data type) [20]
with the following operations:

Interprocedural Analysis with Lazy Propagation 325

– getfield : C × N × L × P → Value
– getcallgraph : () → CallGraph
– getstate : C × N → State
– propagate : C × N × State → ()
– funentry : C × N × C × F × State → ()
– funexit : C × N × C × F × State → ()

We let a ∈ AnalysisLattice denote the current, mutable analysis lattice element.
The transfer functions can only access a through these operations.

The operation getfield(c, n, �, p) returns the abstract value of the field p in the
abstract object � at the entry of the primitive statement n in context c. In the
basic framework, getfield performs a simple lookup, without any side effects on
the analysis lattice element:

a.getfield(c ∈ C, n ∈ N, � ∈ L, p ∈ P):
return u(�)(p) where (m, _) = a and u = m(c, n)

The getcallgraph operation selects the call graph component of the analysis lat-
tice element:

a.getcallgraph():
return g where (_, g) = a

Transfer functions typically use the getcallgraph operation in combination with
the funexit operation explained below. Moreover, the getcallgraph operation
plays a role in the extended framework presented in Section 3.

The getstate operation returns the abstract state at a given location:

a.getstate(c ∈ C, n ∈ N):
return m(c, n) where (m, _) = a

The transfer functions must not read the field values from the returned abstract
state (for that, the getfield operation is to be used). They may construct param-
eters to the operations propagate , funentry, and funexit by updating a copy of
the returned abstract state.

The transfer functions must use the operation propagate(c, n, s) to pass in-
formation from one location to another within the same function (excluding re-
cursive function calls). As a side effect, propagate adds the location (c, n) to the
worklist W if its abstract state has changed. In the basic framework, propagate
is defined as follows:

a.propagate(c ∈ C, n ∈ N , s ∈ State):
let (m, g) = a
if s 	� m(c, n) then

m(c, n) := m(c, n) � s
W := W ∪ {(c, n)}

end if

The operation funentry(c1, n1, c2, f2, s) models function calls in a forward analy-
sis. It modifies the analysis lattice element a to reflect the possibility of a function

326 S.M. Jensen, A. Møller, and P. Thiemann

call from a statement n1 in context c1 to a function entry statement entry(f2) in
context c2 where s is the abstract state after parameter passing. (With languages
where parameters are passed via the stack, which we ignore here, the lattice is
augmented accordingly.) In the basic framework, funentry adds the call edge
from (c1, n1) to (c2, f2) and propagates s into the abstract state at the function
entry statement entry(f2) in context c2:

a.funentry(c1 ∈ C, n1 ∈ N , c2 ∈ C, f2 ∈ F , s ∈ State):
g := g ∪ {(c1, n1, c2, f2)} where (_, g) = a
a.propagate(c2, entry(f2), s)
a.funexit(c1, n1, c2, f2, m(c2, exit(f2)))

Adding a new call edge also triggers a call to funexit to establish dataflow from
the function exit to the successor of the new call site.

The operation funexit(c1, n1, c2, f2, s) is used for modeling function returns.
It modifies the analysis lattice element to reflect the dataflow of s from the exit
of a function f2 in callee context c2 to the successor of the call statement n1

with caller context c1. The basic framework does so by propagating s into the
abstract state at the latter location:

a.funexit(c1 ∈ C, n1 ∈ N , c2 ∈ C, f2 ∈ F , s ∈ State):
a.propagate(c1, after (n1), s)

The parameters c2 and f2 are not used in the basic framework; they will be used
in Section 3. The transfer functions obtain the connections between callers and
callees via the getcallgraph operation explained earlier. If using an augmented
lattice where the call stack is also modeled, that component would naturally be
handled differently by funexit simply by copying it from the call location (c1, n1),
essentially as local variables are treated in, for example, IFDS [23].

This basic framework is sufficiently general as a foundation for many analyses
for object-oriented programming languages, such as Java or C#, as well as for
object-based scripting languages like JavaScript as explained in Section 4. At
the same time, it is sufficiently simple to allow us to precisely demonstrate the
problems we attack and our solution in the following sections.

2.5 Problems with the Basic Analysis Framework

The first implementation of TAJS, our program analysis for JavaScript, is based
on the basic analysis framework. Our initial experiments showed, perhaps not
surprisingly, that many simple functions in our benchmark programs were ana-
lyzed over and over again (even for the same calling contexts) until the fixpoint
was reached.

For example, a function in the richards.js benchmark from the V8 collection
was analyzed 18 times when new dataflow appeared at the function entry:

TaskControlBlock.prototype.markAsRunnable = function () {
this.state = this.state | STATE_RUNNABLE;

};

Interprocedural Analysis with Lazy Propagation 327

Most of the time, the new dataflow had nothing to do with the this object or the
STATE_RUNNABLE variable. Although this particular function body is very short,
it still takes time and space to analyze it and similar situations were observed
for more complex functions and in other benchmark programs.

In addition to this abundant redundancy, we observed – again not
surprisingly – a significant amount of spurious dataflow resulting from inter-
procedurally invalid paths. For example, if the function above is called from
two different locations, with the same calling context, their entire heap struc-
tures (that is, the State component in the lattice) become joined, thereby losing
precision.

Another issue we noticed was time and space required for propagating the
initial state, which consists of 161 objects in the case of JavaScript. These objects
are mutable and the analysis must account for changes made to them by the
program. Since the analysis is both flow- and context-sensitive, a typical element
of AnalysisLattice carries a lot of information even for small programs.

Our first version of TAJS applied two techniques to address these issues: (1)
Lattice elements were represented in memory using copy-on-write to make their
constituents shared between different locations until modified. (2) The lattice
was extended to incorporate a simple effect analysis called maybe-modified : For
each object field, the analysis would keep track of whether the field might have
been modified since entering the current function. At function exit, field values
that were definitely not modified by the function would be replaced by the
value from the call site. As a consequence, the flow of unmodified fields was
not affected by function calls. Although these two techniques are quite effective,
the lazy propagation approach that we introduce in the next section supersedes
the maybe-modified technique and renders copy-on-write essentially superfluous.
In Section 4 we experimentally compare lazy propagation with both the basic
framework and the basic framework extended with the copy-on-write and maybe-
modified techniques.

3 Extending the Framework with Lazy Propagation

To remedy the shortcomings of the basic framework, we propose an extension
that can help reducing the observed redundancy and the amount of informa-
tion being propagated by the transfer functions. The key idea is to ensure that
the fixpoint solver propagates information “by need”. The extension consists of
a systematic modification of the ADT representing the analysis lattice. This
modification implicitly changes the behavior of the transfer functions without
touching their implementation.

3.1 Modifications of the Analysis Lattice

In short, we modify the analysis lattice as follows:

1. We introduce an additional abstract value, unknown. Intuitively, a field p of
an object has this value in an abstract state associated with some location in

328 S.M. Jensen, A. Møller, and P. Thiemann

a function f if the value of p is not known to be needed (that is, referenced)
in f or in a function called from f .

2. Each call edge is augmented with an abstract state that captures the data
flow along the edge after parameter passing, such that this information is
readily available when resolving unknown field values.

3. A special abstract state, none, is added, for describing absent call edges and
locations that may be unreachable from the program entry.

More formally, we modify three of the sub-lattices as follows:

Obj = P → (
Value↓unknown

)

CallGraph = C × N × C × F → (State↓none)

AnalysisLattice =
(
C × N → (State↓none)

) × CallGraph

Here, X↓y means the lattice X lifted over a new bottom element y. In a call graph
g ∈ CallGraph in the original lattice, the presence of an edge (c1, n1, c2, f2) ∈ g
is modeled by g′(c1, n1, c2, f2) 	= none for the corresponding call graph g′ in the
modified lattice. Notice that ⊥State is now the function that maps all object
labels and field names to unknown, which is different from the element none.

3.2 Modifications of the Abstract Data Type Operations

Before we describe the systematic modifications of the ADT operations we mo-
tivate the need for an auxiliary operation, recover , on the ADT:

recover : C × N × L × P → Value

Suppose that, during the fixpoint iteration, a transfer function Ta(c, n) invokes
a.getfield(c, n, �, p) with the result unknown. This result indicates the situation
that the field p of an abstract object � is referenced at the location (c, n), but
the field value has not yet been propagated to this location due to the lazy
propagation. The recover operation can then compute the proper field value by
performing a specialized fixpoint computation to propagate just that field value
to (c, n). We explain in Section 3.3 how recover is defined.

The getfield operation is modified such that it invokes recover if the desired
field value is unknown, as shown in Figure 2. The modification may break mono-
tonicity of the transfer functions, however, the analysis still produces the correct
result [15].

Similarly, the propagate operation needs to be modified to account for the lat-
tice element none and for the situation where unknown is joined with an ordinary
element. The latter is accomplished by using recover whenever this situation oc-
curs. The resulting operation propagate ′ is shown in Figure 3.

We then modify funentry(c1, n1, c2, f2, s) such that the abstract state s is
propagated “lazily” into the abstract state at the primitive statement entry(f2)
in context c2. Here, laziness means that every field value that, according to a,
is not referenced within the function f2 in context c2 gets replaced by unknown
in the abstract state. Additionally, the modified operation records the abstract

Interprocedural Analysis with Lazy Propagation 329

a.getfield ′(c ∈ C, n ∈ N , � ∈ L, p ∈ P):
if m(c, n) �= none where (m, _) = a then

v := a.getfield(c, n, �, p)
if v = unknown then

v := a.recover (c, n, �, p)
end if
return v

else
return ⊥Value

end if

Fig. 2. Algorithm for getfield ′(c, n, �, p). This modified version of getfield invokes
recover in case the desired field value is unknown. If the state is none according to
a, the operation simply returns ⊥Value.

a.propagate ′(c ∈ C, n ∈ N , s ∈ State):
let (m,g) = a and u = m(c, n)
s′ := s
if u �= none then

for all � ∈ L, p ∈ P do
if u(�)(p) = unknown∧ s(�)(p) �= unknown then

u(�)(p) := a.recover (c, n, �, p)
else if u(�)(p) �= unknown ∧ s(�)(p) = unknown then

s′(�)(p) := a.recover (c, n, �, p)
end if

end for
end if
a.propagate(c, n, s′)

Fig. 3. Algorithm for propagate ′(c, n, s). This modified version of propagate takes into
account that field values may be unknown in both a and s. Specifically, it uses recover
to ensure that the invocation of propagate in the last line never computes the least
upper bound of unknown and an ordinary field value. The treatment of unknown values
in s assumes that s is recoverable with respect to the current location (c, n). If the
abstract state at (c, n) is none (the least element), then that gets updated to s.

state at the call edge as required in the modified CallGraph lattice. The resulting
operation funentry ′ is defined in Figure 4. (Without loss of generality, we assume
that the statement at exit(f2) returns to the caller without modifying the state.)
As consequence of the modification, unknown field values get introduced into the
abstract states at function entries.

The funexit operation is modified such that every unknown field value appear-
ing in the abstract state being returned is replaced by the corresponding field
value from the call edge, as shown in Figure 5. In JavaScript, entering a function
body at a functions call affects the heap, which is the reason for using the state
from the call edge rather than the state from the call statement. If we extended
the lattice to also model the call stack, then that component would naturally be
recovered from the call statement rather than the call edge.

330 S.M. Jensen, A. Møller, and P. Thiemann

a.funentry ′(c1 ∈ C, n1 ∈ N , c2 ∈ C, f2 ∈ F , s ∈ State):
let (m,g) = a and u = m(c2, entry(f2))
// update the call edge
g(c1, n1, c2, f2) := g(c1, n1, c2, f2) � s
// introduce unknown field values
s′ := ⊥State

if u �= none then
for all � ∈ L, p ∈ P do

if u(�)(p) �= unknown then
// the field has been referenced
s′(�)(p) := s(�)(p)

end if
end for

end if
// propagate the resulting state into the function entry
a.propagate ′(c2, entry(f2), s

′)
// propagate flow for the return edge, if any is known already
let t = m(c2, exit(f2))
if t �= none then

a.funexit ′(c1, n1, c2, f2, t)
end if

Fig. 4. Algorithm for funentry ′(c1, n1, c2, f2, s). This modified version of funentry
“lazily” propagates s into the abstract state at entry(f2) in context c2. The abstract
state s′ is unknown for all fields that have not yet been referenced by the function being
called according to u (recall that ⊥State maps all fields to unknown).

a.funexit ′(c1 ∈ C, n1 ∈ N , c2 ∈ C, f2 ∈ F , s ∈ State):
let (_, g) = a and ug = g(c1, n1, c2, f2)
s′ := ⊥State

for all � ∈ L, p ∈ P do
if s(�)(p) = unknown then

// the field has not been accessed, so restore its value from the call edge state
s′(�)(p) := ug(�)(p)

else
s′(�)(p) := s(�)(p)

end if
end for
a.propagate ′(c1, after(n1), s

′)

Fig. 5. Algorithm for funexit ′(c1, n1, c2, f2, s). This modified version of funexit restores
field values that have not been accessed within the function being called, using the value
from before the call. It then propagates the resulting state as in the original operation.

Figure 6 illustrates the dataflow at function entries and exits as modeled
by the funexit ′ and funentry ′ operations. The two nodes n1 and n2 represent
function call statements that invoke the function f . Assume that the value of
the field p in the abstract object �, denoted �.p, is v1 at n1 and v2 at n2 where
v1, v2 ∈ Value. When dataflow first arrives at entry(f) the funentry ′ operation
sets �.p to unknown. Assuming that f does not access �.p it remains unknown

Interprocedural Analysis with Lazy Propagation 331

n1

after (n1)

ug1 ug2

n2

after (n2)

entry(f)

exit(f)

f

Fig. 6. A function f being called from two different statements, n1 and n2 appearing
in other functions (for simplicity, all with the same context c). The edges indicate
dataflow, and each bullet corresponds to an element of State with ug1 = g(c, n1, c, f)
and ug2 = g(c, n2, c, f) where g ∈ CallGraph .

throughout f , so funexit ′ can safely restore the original value v1 by merging the
state from exit(f) with ug1 (the state recorded at the call edge) at after (n1).
Similarly for the other call site, the value v2 will be restored at after(n2). Thus,
the dataflow for non-referenced fields respects the interprocedurally valid paths.
This is in contrast to the basic framework where the value of �.p would be v1�v2

at both after (n1) and after(n2). Thereby, the modification of funexit may –
perhaps surprisingly – cause the resulting analysis solution to be more precise
than in the basic framework even for non-unknown field values. If a statement in
f writes a value v′ to �.p it will no longer be unknown, so v′ will propagate to
both after(n1) and after (n2). If the transfer function of a statement in f invokes
getfield ′ to obtain the value of �.p while it is unknown, it will be recovered by
considering the call edges into f , as explained in Section 3.3.

The getstate operation is not modified. A transfer function cannot notice the
fact that the returned State elements may contain unknown field values, because
it is not permitted to read a field value through such a state.

Finally, the getcallgraph operation requires a minor modification to ensure
that its output has the same type although the underlying lattice has changed:

a.getcallgraph ′():
return {(c1, n1, c2, f2) | g(c1, n1, c2, f2) 	= none} where (_, g) = a

To demonstrate how the lazy propagation framework manages to avoid certain
redundant computations, consider again the markAsRunnable function in Sec-
tion 2.5. Suppose that the analysis first encounters a call to this function with
some abstract state s. This call triggers the analysis of the function body, which
accesses only a few object fields within s. The abstract state at the entry location
of the function is unknown for all other fields. If new flow subsequently arrives
via a call to the function with another abstract state s′ where s � s′, the intro-
duction of unknown values ensures that the function body is only reanalyzed if
s′ differs from s at the few relevant fields that are not unknown.

332 S.M. Jensen, A. Møller, and P. Thiemann

3.3 Recovering Unknown Field Values

We now turn to the definition of the auxiliary operation recover . It gets invoked
by getfield ′ and propagate ′ whenever an unknown element needs to be replaced
by a proper field value. The operation returns the desired field value but also,
as a side effect, modifies the relevant abstract states for function entry locations
in a.

The key observation for defining recover(c, n, �, p) where c ∈ C, n ∈ N , � ∈ L,
and p ∈ P is that unknown is only introduced in funentry ′ and that each call
edge – very conveniently – records the abstract state just before the ordinary field
value is changed into unknown. Thus, the operation needs to go back through
the call graph and recover the missing information. However, it only needs to
modify the abstract states that belong to function entry statements.

Recovery is a two phase process. The first phase constructs a directed multi-
rooted graph G the nodes of which are a subset of C ×F . It is constructed from
the call graph in a backward manner starting from (c, n) as the smallest graph
satisfying the following two constraints, where (m, g) = a:

– If u(�)(p) = unknown where u = m(c, entry(fun(n)))
then G contains the node (c, fun(n)).

– For each node (c2, f2) in G and for each (c1, n1) where g(c1, n1, c2, f2) 	= none:
• If ug(�)(p) = unknown ∧ u1(�)(p) = unknown where ug = g(c1, n1, c2, f2)

and u1 = m(c1, entry(fun(n1))) then G contains the node (c1, fun(n1))
with an edge to (c2, f2),

• otherwise, (c2, f2) is a root of G.

The resulting graph is essentially a subgraph of the call graph such that every
node (c′, f ′) in G satisfies u(�)(p) = unknown where u = m(c′, entry(f ′)). A node
is a root if at least one of its incoming edges contributes with a non-unknown
value. Notice that root nodes may have incoming edges.

The second phase is a fixpoint computation over G:

// recover the abstract value at the roots of G
for each root (c′, f ′) of G do

let u′ = m(c′, entry(f ′))
for all (c1, n1) where g(c1, n1, c

′, f ′) 	= none do
let ug = g(c1, n1, c

′, f ′) and u1 = m(c1, entry(fun(n1)))
if ug(�)(p) 	= unknown then

u′(�)(p) := u′(�)(p) � ug(�)(p)
else if u1(�)(p) 	= unknown then

u′(�)(p) := u′(�)(p) � u1(�)(p)
end if

end for
end for
// propagate throughout G at function entry nodes
S := the set of roots of G
while S 	= ∅ do

select and remove (c′, f ′) from S

Interprocedural Analysis with Lazy Propagation 333

let u′ = m(c′, entry(f ′))
for each successor (c2, f2) of (c′, f ′) in G do

let u2 = m(c2, entry(f2))
if u′(�)(p) 	� u2(�)(p) then

u2(�)(p) := u2(�)(p) � u′(�)(p)
add (c2, f2) to S

end if
end for

end while

This phase recovers the abstract value at the roots of G and then propagates
the value through the nodes of G until a fixpoint is reached. Although recover
modifies abstract states in this phase, it does not modify the worklist. After this
phase, we have u(�)(p) 	= unknown where u = m(c′, entry(f ′)) for each node
(c′, f ′) in G. (Notice that the side effects on a only concern abstract states at
function entry statements.) In particular, this holds for (c, fun(n)), so when
recover(c, n, �, p) has completed the two phases, it returns the desired value
u(�)(p) where u = m(c, entry(fun(n))).

Notice that the graph G is empty if u(�)(p) 	= unknown where u = m(c,
entry(fun(n))) (see the first of the two constraints defining G). In this case, the
desired field has already been recovered, the second phase is effectively skipped,
and u(�)(p) is returned immediately.

Figure 7 illustrates an example of interprocedural dataflow among four func-
tions. (This example ignores dataflow for function returns and assumes a fixed
calling context c.) The statements write1 and write2 write to a field �.p, and
read reads from it. Assume that the analysis discovers all the call edges before
visiting read . In that case, �.p will have the value unknown when entering f2 and
f3, which will propagate to f4. The transfer function for read will then invoke
getfield ′, which in turn invokes recover . The graph G will be constructed with
three nodes: (c, f2), (c, f3), and (c, f4) where (c, f2) and (c, f3) are roots and
have edges to (c, f4). The second phase of recover will replace the unknown value
of �.p at entry(f2) and entry(f2) by its proper value stored at the call edges and
then propagate that value to entry(f3) and finally return it to getfield ′. Notice
that the value of �.p at, for example, the call edges, remains unknown. How-
ever, if dataflow subsequently arrives via transfer functions of other statements,
those unknown values may be replaced by ordinary values. Finally, note that
this simple example does not require fixpoint iteration within recover , however
that becomes necessary when call graphs contain cycles (resulting from programs
with recursive function calls).

The modifications only concern the AnalysisLattice ADT, in terms of which all
transfer functions of an analysis are defined. The transfer functions themselves
are not changed. Although invocations of recover involve traversals of parts of
the call graph, the main worklist algorithm (Figure 1) requires no modifications.

334 S.M. Jensen, A. Møller, and P. Thiemann

entry(f2)

call2

entry(f3)

call3

write1

call1

entry(f4)

read

write2

f1

f2

f4

f3

Fig. 7. Fragments of four functions, f1 . . . f4. As in Figure 6, edges indicate dataflow
and bullets correspond to elements of State. The statements write1 and write2 write to
a field �.p, and read reads from it. The recover operation applied to the read statement
and �.p will ensure that values written at write1 and write2 will be read at the read
statements, despite the possible presence of unknown values.

4 Implementation and Experiments

To examine the impact of lazy propagation on analysis performance, we ex-
tended the Java implementation of TAJS, our type analyzer for JavaScript [14],
by systematically applying the modifications described in Section 3. As usual in
dataflow analysis, primitive statements are grouped into basic blocks. The im-
plementation focuses on the JavaScript language itself and the built-in library,
but presently excludes the DOM API, so we use the most complex benchmarks
from the V81 and SunSpider2 benchmark collections for the experiments.

Descriptions of other aspects of TAJS not directly related to lazy propaga-
tion may be found in the TAJS paper [14]. These include the use of recency

1 http://v8.googlecode.com/svn/data/benchmarks/v1/
2 http://www2.webkit.org/perf/sunspider-0.9/sunspider.html

Interprocedural Analysis with Lazy Propagation 335

Table 1. Performance benchmark results

Iterations Time (seconds) Memory (MB)
LOC Blocks basic basic+ lazy basic basic+ lazy basic basic+ lazy

richards.js 529 478 2663 2782 1399 5.6 4.6 3.8 11.05 6.4 3.7
benchpress.js 463 710 18060 12581 5097 33.2 13.4 5.4 42.02 24.0 7.8
delta-blue.js 853 1054 ∞ ∞ 63611 ∞ ∞ 136.7 ∞ ∞ 140.5
cryptobench.js 1736 2857 ∞ 43848 17213 ∞ 99.4 22.1 ∞ 127.9 42.8
3d-cube.js 342 545 7116 4147 2009 14.1 5.3 4.0 18.4 10.6 6.2
3d-raytrace.js 446 575 ∞ 30323 6749 ∞ 24.8 8.2 ∞ 16.7 10.1
crypto-md5.js 296 392 5358 1004 646 4.5 2.0 1.8 6.1 3.6 2.7
access-nbody.js 179 149 551 523 317 1.8 1.3 1.0 3.2 1.7 0.9

abstraction [4], which complicates the implementation, but does not change the
properties of the lazy propagation technique.

We compare three versions of the analysis: basic corresponds to the basic
framework described in Section 2; basic+ extends the basic version with the copy-
on-write and maybe-modified techniques discussed in Section 2.5, which is the
version used in [14]; and lazy is the new implementation using lazy propagation
(without the other extensions from the basic+ version).

Table 1 shows for each program, the number of lines of code, the number of ba-
sic blocks, the number of fixpoint iterations for the worklist algorithm (Figure 1),
analysis time (in seconds, running on a 3.2GHz PC), and memory consumption.
We use ∞ to denote runs that require more than 512MB of memory.

We focus on the time and space requirements for these experiments. Regarding
precision, lazy is in principle more precise than basic+, which is more precise
than basic. On these benchmark programs, however, the precision improvement
is insignificant with respect to the number of potential type related bugs, which
is the precision measure we have used in our previous work.

The experiments demonstrate that although the copy-on-write and maybe-
modified techniques have a significant positive effect on the resource require-
ments, lazy propagation leads to even better results. The results for richards.js
are a bit unusual as it takes more iterations in basic+ than in basic, however the
fixpoint is more precise in basic+.

The benchmark results demonstrate that lazy propagation results in a signif-
icant reduction of analysis time without sacrificing precision. Memory consump-
tion is reduced by propagating less information during the fixpoint computation
and fixpoints are reached in fewer iterations by eliminating a cause of redundant
computation observed in the basic framework.

5 Related Work

Recently, JavaScript and other scripting languages have come into the focus of
research on static program analysis, partly because of their challenging dynamic
nature. These works range from analysis for security vulnerabilities [29, 8] to
static type inference [7, 27, 1, 14]. We concentrate on the latter category, aiming
to develop program analyses that can compensate for the lack of static type

336 S.M. Jensen, A. Møller, and P. Thiemann

checking in these languages. The interplay of language features of JavaScript,
including first-class functions, objects with modifiable prototype chains, and
implicit type coercions, makes analysis a demanding task.

The IFDS framework by Reps, Horwitz, and Sagiv [23] is a powerful and
widely used approach for obtaining precise interprocedural analyses. It requires
the underlying lattice to be a powerset and the transfer functions to be dis-
tributive. Unfortunately, these requirements are not met by our type analysis
problem for dynamic object-oriented scripting languages. The more general IDE
framework also requires distributive transfer functions [25]. A connection to our
approach is that fields that are marked as unknown at function exits, and hence
have not been referenced within the function, are recovered from the call site in
the same way local variables are treated in IFDS.

Sharir and Pnueli’s functional approach to interprocedural analysis can be
phrased both with symbolic representations and in an iterative style [26], where
the latter is closer to our approach. With the complex lattices and transfer
functions that appear to be necessary in analyses for object-oriented scripting
languages, symbolic representations are difficult to work with, so TAJS uses the
iterative style and a relatively direct representation of lattice elements. Further-
more, the functional approach is expensive if the analysis lattice is large.

Our analysis framework encompasses a general notion of context sensitivity
through the C component of the analysis instances. Different instantiations of C
lead to different kinds of context sensitivity, including variations of the call-string
approach [26], which may also affect the quality of interprocedural analysis. We
leave the choice of C open here; TAJS currently uses a heuristic that distinguishes
call sites that have different values of this.

The introduction of unknown field values subsumes the maybe-modified tech-
nique that we used in the first version of TAJS [14]: a field whose value is unknown
is definitely not modified. Both ideas can be viewed as instances of side effect
analysis. Unlike, for example, the side effect analysis by Landi et al. [24] our
analysis computes the call graph on-the-fly and we exploit the information that
certain fields are found to be non-referenced for obtaining the lazy propagation
mechanism. Via this connection to side effect analysis, one may also view the
unknown field values as establishing a frame condition as in separation logic [21].

Combining call graph construction with other analyses is common in pointer
alias analysis with function pointers, for example in the work of Burke et al. [11].
That paper also describes an approach called deferred evaluation for increasing
analysis efficiency, which is specialized to flow insensitive alias analysis.

Lazy propagation is related to lazy evaluation (e.g., [22]) as it produces values
passed to functions on demand, but there are some differences. Lazy propagation
does not defer evaluation as such, but just the propagation of the values; it
applies not just to the parameters but to the entire state; and it restricts laziness
to data structures (values of fields).

Lazy propagation is different from demand-driven analysis [13]. Both ap-
proaches defer computation, but demand-driven analysis only computes results
for selected hot spots, whereas our goal is a whole-program analysis that infers

Interprocedural Analysis with Lazy Propagation 337

information for all program points. Other techniques for reducing the amount
of redundant computation in fixpoint solvers is difference propagation [6] and
use of interprocedural def-use chains [28]. It might be possible to combine those
techniques with lazy propagation, although they are difficult to apply to the
complex transfer functions that we have in type analysis for JavaScript.

6 Conclusion

We have presented lazy propagation as a technique for improving the perfor-
mance of interprocedural analysis in situations where existing methods, such as
IFDS or the functional approach, do not apply. The technique is described by a
systematic modification of a basic iterative framework. Through an implemen-
tation that performs type analysis for JavaScript we have demonstrated that it
can significantly reduce the memory usage and the number of fixpoint iterations
without sacrificing analysis precision. The result is a step toward sound, precise,
and fast static analysis for object-oriented languages in general and scripting
languages in particular.

Acknowledgments. The authors thank Stephen Fink, Michael Hind, and
Thomas Reps for their inspiring comments on early versions of this paper.

References

1. Anderson, C., Giannini, P., Drossopoulou, S.: Towards type inference for
JavaScript. In: Black, A.P. (ed.) ECOOP 2005. LNCS, vol. 3586, pp. 428–452.
Springer, Heidelberg (2005)

2. Artzi, S., Kiezun, A., Dolby, J., Tip, F., Dig, D., Paradkar, A.M., Ernst, M.D.:
Finding bugs in dynamic web applications. In: Proc. International Symposium on
Software Testing and Analysis, ISSTA 2008. ACM, New York (July2008)

3. Atkinson, D.C., Griswold, W.G.: Implementation techniques for efficient data-flow
analysis of large programs. In: Proc. International Conference on Software Main-
tenance, ICSM 2001, pp. 52–61 (November 2001)

4. Balakrishnan, G., Reps, T.W.: Recency-abstraction for heap-allocated storage. In:
Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 221–239. Springer, Heidelberg (2006)

5. Chase, D.R., Wegman, M., Kenneth Zadeck, F.: Analysis of pointers and struc-
tures. In: Proc. ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 1990 (June 1990)

6. Fecht, C., Seidl, H.: Propagating differences: An efficient new fixpoint algorithm for
distributive constraint systems. In: Hankin, C. (ed.) ESOP 1998. LNCS, vol. 1381,
p. 90. Springer, Heidelberg (1998)

7. Furr, M., An, Jong hoon (David), Foster, J.S., Hicks, M.W.: Static type inference
for Ruby. In: Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009.
LNCS, vol. 5867, Springer, Heidelberg (2009)

338 S.M. Jensen, A. Møller, and P. Thiemann

8. Guha, A., Krishnamurthi, S., Jim, T.: Using static analysis for Ajax intrusion
detection. In: Proc. 18th International Conference on World Wide Web, WWW
2009 (2009)

9. Heidegger, P., Thiemann, P.: Recency types for analyzing scripting languages. In:
D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 200–224. Springer, Heidel-
berg (2010)

10. Hind, M.: Pointer analysis: haven’t we solved this problem yet? In: Proc. ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis For Software Tools and En-
gineering, PASTE 2001, pp. 54–61 (June 2001)

11. Hind, M., Burke, M.G., Carini, P.R., Choi, J.-D.: Interprocedural pointer alias
analysis. ACM Transactions on Programming Languages and Systems 21(4), 848–
894 (1999)

12. Horwitz, S., Demers, A., Teitebaum, T.: An efficient general iterative algorithm for
dataflow analysis. Acta Informatica 24(6), 679–694 (1987)

13. Horwitz, S., Reps, T., Sagiv, M.: Demand interprocedural dataflow analysis. In:
Proc. 3rd ACM SIGSOFT Symposium on Foundations of Software Engineering,
FSE 1995 (October 1995)

14. Jensen, S.H., Møller, A., Thiemann, P.: Type analysis for JavaScript. In: Palsberg,
J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 238–255. Springer, Heidelberg
(2009)

15. Jensen, S.H., Møller, A., Thiemann, P.: Interprocedural analysis with lazy prop-
agation. Technical report, Department of Computer Science, Aarhus University
(2010), http://cs.au.dk/~amoeller/papers/lazy/

16. Jones, N.D., Muchnick, S.S.: A flexible approach to interprocedural data flow anal-
ysis and programs with recursive data structures. In: Proc. 9th ACM Symposium
on Principles of Programming Languages, POPL 1982 (January 1982)

17. Kam, J.B., Ullman, J.D.: Global data flow analysis and iterative algorithms. Jour-
nal of the ACM 23(1), 158–171 (1976)

18. Kam, J.B., Ullman, J.D.: Monotone data flow analysis frameworks. Acta Informat-
ica 7, 305–317 (1977)

19. Kildall, G.A.: A unified approach to global program optimization. In: Proc. 1st
ACM Symposium on Principles of Programming Languages. In: POPL 1973 (Oc-
tober 1973)

20. Liskov, B., Zilles, S.N.: Programming with abstract data types. ACM SIGPLAN
Notices 9(4), 50–59 (1974)

21. O’Hearn, P.W., Reynolds, J.C., Yang, H.: Local reasoning about programs that
alter data structures. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS,
vol. 2142, p. 1. Springer, Heidelberg (2001)

22. Jones, S.L.P.: The Implementation of Functional Programming Languages. Pren-
tice Hall, Englewood Cliffs (1987)

23. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis
via graph reachability. In: Proc. 22th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 1995, pp. 49–61 (January
1995)

24. Ryder, B.G., Landi, W., Stocks, P., Zhang, S., Altucher, R.: A schema for interpro-
cedural modification side-effect analysis with pointer aliasing. ACM Transactions
on Programming Languages and Systems 23(2), 105–186 (2001)

http://cs.au.dk/~amoeller/papers/lazy/

Interprocedural Analysis with Lazy Propagation 339

25. Sagiv, S., Reps, T.W., Horwitz, S.: Precise interprocedural dataflow analysis with
applications to constant propagation. Theoretical Computer Science 167(1&2),
131–170 (1996)

26. Sharir, M., Pnueli, A.: Two approaches to interprocedural dataflow analysis. In:
Program Flow Analysis: Theory and Applications, pp. 189–233. Prentice-Hall, En-
glewood Cliffs (1981)

27. Thiemann, P.: Towards a type system for analyzing JavaScript programs. In: Sagiv,
M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 408–422. Springer, Heidelberg (2005)

28. Tok, T.B., Guyer, S.Z., Lin, C.: Efficient flow-sensitive interprocedural data-flow
analysis in the presence of pointers. In: Mycroft, A., Zeller, A. (eds.) CC 2006.
LNCS, vol. 3923, pp. 17–31. Springer, Heidelberg (2006)

29. Xie, Y., Aiken, A.: Static detection of security vulnerabilities in scripting languages.
In: Proc. 15th USENIX Security Symposium (August 2006)

	Interprocedural Analysis with Lazy Propagation
	Introduction
	A Basic Analysis Framework
	Analysis Instances
	Derived Lattices
	Computing the Solution
	An Abstract Data Type for Transfer Functions
	Problems with the Basic Analysis Framework

	Extending the Framework with Lazy Propagation
	Modifications of the Analysis Lattice
	Modifications of the Abstract Data Type Operations
	Recovering Unknown Field Values

	Implementation and Experiments
	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

