

Lecture Notes in Computer Science 6337
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK

Josef Kittler, UK

Alfred Kobsa, USA

John C. Mitchell, USA

Oscar Nierstrasz, Switzerland

Bernhard Steffen, Germany

Demetri Terzopoulos, USA

Gerhard Weikum, Germany

Takeo Kanade, USA

Jon M. Kleinberg, USA

Friedemann Mattern, Switzerland

Moni Naor, Israel

C. Pandu Rangan, India

Madhu Sudan, USA

Doug Tygar, USA

Advanced Research in Computing and Software Science

Subline of Lectures Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, University of Freiburg, Germany

Benjamin C. Pierce, University of Pennsylvania, USA

Bernhard Steffen, University of Dortmund, Germany

Madhu Sudan, Microsoft Research, Cambridge, MA, USA

Deng Xiaotie, City University of Hong Kong

Jeannette M. Wing, Carnegie Mellon University, Pittsburgh, PA, USA

Radhia Cousot Matthieu Martel (Eds.)

Static Analysis

17th International Symposium, SAS 2010
Perpignan, France, September 14-16, 2010
Proceedings

13

Volume Editors

Radhia Cousot
École normale supérieure
Départment d’Informatique
45, rue d’Ulm
75230 Paris cedex, France
E-mail: radhia.cousot@ens.fr

Matthieu Martel
Université de Perpignan Via Domitia
ELIAUS-DALI Laboratory
52, avenue Paul Alduy
66860 Perpignan cedex, France
E-mail: matthieu.martel@univ-perp.fr

Library of Congress Control Number: 2010934118

CR Subject Classification (1998): D.2, F.3, D.3, D.2.4, F.4.1, D.1

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-642-15768-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-15768-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 06/3180 5 4 3 2 1 0

Preface

Static analysis is a research area aimed at developing principles and tools for
verification, certification, semantics-based manipulation, and high-performance
implementation of programming languages and systems. The series of Static
Analysis Symposia has served as the primary venue for presentation and discus-
sion of theoretical, practical, and applicational advances in the area.

This year’s symposium, The 17th International Static Analysis Symposium
(SAS 2010), was held on September 14–16, 2010 in Perpignan, France, with
3 affiliated workshops: NSAD 2010 (The Second Workshop on Numerical and
Symbolic Abstract Domains), SASB 2010 (The First Workshop on Static Anal-
ysis and Systems Biology) on September 13, 2010, and TAPAS 2010 (Tools for
Automatic Program Analysis) on September 17, 2010.

The programme of SAS 2010 included a special session dedicated to the
memory of the outstanding computer scientists Robin Milner and Amir Pnueli.
This session consisted of 5 invited talks by E. Allen Emerson (The University
of Texas at Austin, USA), Benjamin Goldberg (New York University, USA),
James Leifer (INRIA Paris–Rocquencourt, France), Joachim Parrow (Uppsala
University, Sweden), and Glynn Winskel (University of Cambridge, UK).

There were 58 submissions. Each submission was reviewed by at least three
programme committee members. The committee decided to accept 22 papers.

In addition to the special session and the 22 contributed papers, the pro-
gramme included 4 invited talks by Manuel Fähndrich (Microsoft Research,
USA), David Lesens (EADS Space Transportation, France), Andreas Podelski
(Freiburg University, Germany), and Mooly Sagiv (Tel-Aviv University, Israel
and Stanford University, USA).

We would like to thank all the external referees for their participation in the
reviewing process. Special thanks to Albertine Martel for the design of the nice
poster and websites of SAS 2010 and its affiliated workshops.

We are grateful to our generous sponsors (CNRS, École Normale Supérieure,
INRIA, Microsoft Research, and University of Perpignan), to all the members
of the Organizing Committee in Perpignan, and to the Easy Chair team for the
use of their very handy system.

June 2010 Radhia Cousot
Matthieu Martel

Conference Organization

Programme Chairs

Radhia Cousot École Normale Supérieure and CNRS, France
Matthieu Martel Université de Perpignan Via Domitia, France

Programme Committee

Elvira Albert Complutense University of Madrid, Spain
Mariá Alpuente Universidad Politecnica de Valencia, Spain
Olivier Bouissou Commissariat à l’Energie Atomique, France
Byron Cook Microsoft Research, Cambridge, UK
Susanne Graf Verimag/CNRS, Grenoble, France
Joxan Jaffar National University of Singapore, Singapore
Neil Jones University of Copenhagen, Denmark
Francesca Levi University of Pisa, Italy
Francesco Logozzo Microsoft Research, Redmond, USA
Damien Massé Université de Bretagne Occidentale, France
Isabella Mastroeni Università degli Studi di Verona, Italy
Laurent Mauborgne École Normale Supérieure, France
Matthew Might University of Utah, USA
George Necula University of California, Berkeley, USA
Francesco Ranzato Università di Padova, Italy
Andrey Rybalchenko Max Planck Institute, Saarbrucken, Germany
Mary Lou Soffa University of Virginia, USA
Zhendong Su University of California, Davis, USA
Greta Yorsh IBM T.J. Watson Research Center, USA

Local Arrangement Chair

Matthieu Martel

VIII Organization

External Reviewers

Aaron Bradley, Adriano Peron, Alessandra Di Pierro, Alexandre Chapoutot,
Alexandre Donze, Alexey Gotsman, Alicia Villanueva, Andrea Masini, Andrea
Turrini, Andrew Santosa, Anindya Banerjee, Antoine Miné, Ashutosh Gupta,
Assaĺı Adj́ı, Axel Simon, Bertrand Jeannet, Chiara Bodei, Chris Hankin, Chris-
tophe Joubert, Christos Stergiou, Damiano Zanardini, Daniel Grund, David
Pichardie, David Sanan, Dino Distefano, Durica Nikolic, Earl Barr, Enea Zaf-
fanella, Enric Carbonell, Eran Yahav, Eric Koskinen, Fausto Spoto, Florent
Bouchez, Francesca Scozzari, Francesco Tapparo, Francois Pottier, Georges Gon-
thier, Guido Scatena, Hongseok Yang, Jacob Burnim, Jacob Howe, Jan Olaf
Blech, Jan Reineke, Jérôme Feret, Jorge Navas, Josh Berdine, Juan Chen, Julien
Bertrane, Khalil Ghorbal, Laura Ricci, Leonardo de Moura, Liang Xu, Mario
Mendez-Lojo, Marisa Llorens, Mark Gabel, Mark Marron, Massimo Merro, Matko
Botincan, Matthew Parkinson, Michaël Monerau, Moreno Falaschi, Musard Bal-
liu, Nicholas Kidd, Patricia M. Hill, Pierre Ganty, Raluca Sauciuc, Ranjit Jhala,
Razvan Voicu, Ricardo Peá, Roberto Giacobazzi, Roland Yap, Salvador Lucas,
Samir Genaim, Santiago Escobar, Sarah Zennou, Silvia Crafa, Songtao Xia, Sri-
ram Sankaranarayanan, Stephen Magill, Stéphane Devismes, Techio Terauchi,
Thomas Wies, Tim Harris, VIktor Vafeiadis, Virgile Prevosto, Wei-Ngan Chin,
Xavier Rival, and Yishai A. Feldman.

Table of Contents

Time of Time (Invited Talk) . 1
E. Allen Emerson

Static Verification for Code Contracts (Invited Talk) 2
Manuel Fähndrich

Translation Validation of Loop Optimizations and Software Pipelining
in the TVOC Framework: In Memory of Amir Pnueli (Invited Talk) 6

Benjamin Goldberg

Size-Change Termination and Transition Invariants (Invited Talk) 22
Matthias Heizmann, Neil D. Jones, and Andreas Podelski

Using Static Analysis in Space: Why Doing so? (Invited Talk) 51
David Lesens

Statically Inferring Complex Heap, Array, and Numeric Invariants
(Invited Talk) . 71

Bill McCloskey, Thomas Reps, and Mooly Sagiv

From Object Fields to Local Variables: A Practical Approach to
Field-Sensitive Analysis . 100

Elvira Albert, Puri Arenas, Samir Genaim, German Puebla, and
Diana Vanessa Ramı́rez Deantes

Multi-dimensional Rankings, Program Termination, and Complexity
Bounds of Flowchart Programs . 117

Christophe Alias, Alain Darte, Paul Feautrier, and Laure Gonnord

Deriving Numerical Abstract Domains via Principal Component
Analysis . 134

Gianluca Amato, Maurizio Parton, and Francesca Scozzari

Concurrent Separation Logic for Pipelined Parallelization 151
Christian J. Bell, Andrew W. Appel, and David Walker

Automatic Abstraction for Intervals Using Boolean Formulae 167
Jörg Brauer and Andy King

Interval Slopes as a Numerical Abstract Domain for Floating-Point
Variables . 184

Alexandre Chapoutot

A Shape Analysis for Non-linear Data Structures . 201
Renato Cherini, Lucas Rearte, and Javier Blanco

X Table of Contents

Modelling Metamorphism by Abstract Interpretation 218
Mila Dalla Preda, Roberto Giacobazzi, Saumya Debray,
Kevin Coogan, and Gregg M. Townsend

Small Formulas for Large Programs: On-Line Constraint Simplification
in Scalable Static Analysis . 236

Isil Dillig, Thomas Dillig, and Alex Aiken

Compositional Bitvector Analysis for Concurrent Programs with
Nested Locks . 253

Azadeh Farzan and Zachary Kincaid

Computing Relaxed Abstract Semantics w.r.t. Quadratic Zones
Precisely . 271

Thomas Martin Gawlitza and Helmut Seidl

Boxes: A Symbolic Abstract Domain of Boxes . 287
Arie Gurfinkel and Sagar Chaki

Alternation for Termination . 304
William R. Harris, Akash Lal, Aditya V. Nori, and
Sriram K. Rajamani

Interprocedural Analysis with Lazy Propagation . 320
Simon Holm Jensen, Anders Møller, and Peter Thiemann

Verifying a Local Generic Solver in Coq . 340
Martin Hofmann, Aleksandr Karbyshev, and Helmut Seidl

Thread-Modular Counterexample-Guided Abstraction Refinement 356
Alexander Malkis, Andreas Podelski, and Andrey Rybalchenko

Generating Invariants for Non-linear Hybrid Systems by Linear
Algebraic Methods . 373

Nadir Matringe, Arnaldo Vieira Moura, and Rachid Rebiha

Linear-Invariant Generation for Probabilistic Programs: Automated
Support for Proof-Based Methods . 390

Joost-Pieter Katoen, Annabelle K. McIver,
Larissa A. Meinicke, and Carroll C. Morgan

Abstract Interpreters for Free . 407
Matthew Might

Points-to Analysis as a System of Linear Equations 422
Rupesh Nasre and Ramaswamy Govindarajan

Table of Contents XI

Strictness Meets Data Flow . 439
Tom Schrijvers and Alan Mycroft

Automatic Verification of Determinism for Structured Parallel
Programs . 455

Martin Vechev, Eran Yahav, Raghavan Raman, and Vivek Sarkar

Author Index . 473

Time of Time

E. Allen Emerson1,2

1 Department of Computer Science
2 Computer Engineering Research Center

The University of Texas at Austin,

Austin TX 78712, USA

Abstract. In his landmark 1977 paper “The Temporal Logic of Pro-

grams”, Amir Pnueli gave a fundamental recognition that the ideally

nonterminating behavior of ongoing concurrent programs, such as oper-

ating systems and protocols, was a vital aspect of program reasoning.

As classical approaches to program correctness were based on initial-

state/final-state semantics for terminating programs, these approaches

were inapplicable to programs where infinite behavior was the norm. To

address this shortcoming, Pnueli suggested the use of temporal logic, a

formalism for reasoning about change over time originally studied by

philosophers, to meaningfully describe and reason about the infinite be-

havior of programs. This suggestion turned out to be remarkably fruit-

ful. It struck a resonant chord within the formal verification community,

and it has had an enormous impact on the development of the area.

It matured into an extremely effective mathematical tool for specifying

and verifying a vast class of synchronization and coordination problems

common in concurrency. Pnueli thus caused a sea-change in the field of

program verification, founding the time of reasoning about time, which

has been the most successful period in formal methods yet.

R. Cousot and M. Martel (Eds.): SAS 2010, LNCS 6337, p. 1, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Static Verification for Code Contracts

Manuel Fähndrich

Microsoft Research

maf@microsoft.com

Abstract. The Code Contracts project [3] at Microsoft Research en-

ables programmers on the .NET platform to author specifications in

existing languages such as C# and VisualBasic. To take advantage of

these specifications, we provide tools for documentation generation, run-

time contract checking, and static contract verification.

This talk details the overall approach of the static contract checker

and examines where and how we trade-off soundness in order to obtain

a practical tool that works on a full-fledged object-oriented intermediate

language such as the .NET Common Intermediate Language.

1 Code Contracts

Embedding a specification language in an existing language consists of using a
set of static methods to express specifications inside the body of methods [4].

1 string TrimSuffix(string original , string suffix)
2 {
3 Contract.Requires(original ! = null);
4 Contract.Requires(! String .IsNullOrEmpty(suffix));
5

6 Contract.Ensures(Contract.Result () ! = null);
7 Contract.Ensures(! Contract.Result ().EndsWith(suffix));
8

9 var result = original ;
10 while (result .EndsWith(suffix)) {
11 result = result . Substring (0, result .Length − suffix .Length);
12 }
13 return result ;
14 }

The code above specifies two preconditions using calls to Contract.Requires and
two postconditions using calls to Contract.Ensures. These methods have no intrin-
sic effect and are just used as markers in the resulting compiled code to identify
the preceeding instructions as pre- or postconditions.

2 Verification Steps

Our analysis operates on the compiled .NET Common Intermediate Language [2]
produced by the standard C# compiler. The verification is completely modular

R. Cousot and M. Martel (Eds.): SAS 2010, LNCS 6337, pp. 2–5, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Static Verification for Code Contracts 3

in that we analyze one method at a time, taking into account only the contracts
of called methods. In our example, the contracts of called String methods are:

int Length {
get { Contract.Ensures(Contract.Result<int>() >= 0); }

}

static bool IsNullOrEmpty(string str)
{

Contract.Ensures(Contract.Result<bool>() == (str == null || str.Length == 0));
}

bool EndsWith(string suffix)
{

Contract.Requires(suffix ! = null);

Contract.Ensures(! Contract.Result<bool>() || value.Length <= this.Length);
}

string Substring(int startIndex , int length)
{

Contract.Requires(0 <= startIndex);
Contract.Requires(0 <= length);
Contract.Requires(startIndex + length <= this.Length);

Contract.Ensures(Contract.Result<string>() != null);
Contract.Ensures(Contract.Result<string>().Length == length);

}

We factor the code to be analyzed into subroutines: one subroutine per method
body, one subroutine for a method’s preconditions, and one subroutine for a
method’s postconditions. The actual code to be analyzed is then formed by in-
serting calls to appropriate contract subroutines in the method body. In our
example, we insert a subroutine call to TrimSuffix’s precondition on entry of the
method, and a subroutine call to its postcondition on all exits of the method.
Additionally, at each method call-site, we insert a call to the precondition sub-
routine of the called method just prior to the actual call, and a call to the
corresponding postcondition subroutine immediately following the call.

The actual contract calls to Contract.Requires or Contract.Ensures turn into ei-
ther assert or assume statements depending on their context. Requires on entry
of a method turn into assume and Ensures on exit of a method turn into assert.
Conversely, at call-sites, Requires turn into assert, and Ensures turn into assume.

Conditionalbranches are expanded intonon-deterministicbrancheswith assume

statements on the outgoing edges. Additional proof obligations for implicit correct-
ness conditions in MSIL, such as null-dereference checks and array bound checks
can be automatically inserted into the analyzed code as asserts based on user
preference.

4 M. Fähndrich

In this manner, all conditions are simply sequences of MSIL instructions,
no different than ordinary method body code, and all assumptions are assume

statements, and all proof-obligations are assert statements.

2.1 Heap Abstraction

Next, the code is transformed into a scalar program by abstracting away the heap.
This is the step where we allow some assumptions and approximations that are not
safe in general in order to obtain a practical analysis that does not over-burden
the programmer. First, we assume that memory locations not explicitly aliased
by the code under analysis are non-aliasing. This is clearly an optimistic assump-
tion, but works very well in practice. Second, we guess the set of heap locations
that are modified at call-sites (we don’t require programmers to write heap modi-
fication clauses). Our guesses are often conservative, but may be optimistic if our
non-aliasing assumptions are wrong. These assumptions allow us to compute a
value numbering for all values accessed by the code, including heap accessing ex-
pressions. We also introduce names for uninterpreted functions marked as [Pure]

by the programmer. This provides reasoning over abstract predicates. Finally, ab-
stracting the heap also removes old-expressions in postconditions that refer to the
state of an expression at the beginning of the method.

To compute the value numbering, we break the control flow of the analyzed
code into maximal tree fragments. The root of each tree fragment is a join point
(or the method entry point) and is connected by edges to predecessor leafs of
other tree fragments.

The set of names used by the value numbering is unique in each tree fragment.
Edges connecting tree leafs to tree roots contain a set of assignments effectively
rebinding value names from one fragment to the names of the next. The resulting
code is in mostly passive form, where each instruction simply relates a set of
value names. This form is ideal for standard abstract interpretation based on
numerical domains. The assignments on rebinding edges between tree fragments
provide a way to transform abstract domain knowledge prior to the join from
one set of value names to the next, so that the join can operate on a common set
of value names. The rebindings act as a generalization of φ-nodes. In contrast
to φ-nodes which provide a join for each value separately, our rebindings form
a join for the entire state simultaneously, which is crucial to maintain relational
properties.

2.2 Abstract Interpretation Fixpoints

On the scalar program, we compute abstract program invariants for each pro-
gram point based on standard abstract interpretation fixpoint techniques [1].
Our motivation to use abstract interpretation rather than theorem proving tech-
niques is to enable programmers to use static verification without requiring them
to write loop invariants. It also provides control over cost/precision trade-offs.
We use a variety of novel domains such as Pentagons, Disintervals, and Subpoly-

Static Verification for Code Contracts 5

hedra [5] to deal with relations that arise in practice. We also lift these domains
over sequences in order to deal with universally quantified properties.

For each assert statement in the code, we attempt to discharge the proof
obligation using the computed fixpoint at that program point. If the abstract
state is strong enough to imply the obligation, the obligation is discharged.
Otherwise, we attempt to discharge it using an additional backward analysis.

2.3 Weakest Precondition Analysis

If the abstract state at an assert is too weak to imply the proof obligation,
we transform the obligation using weakest preconditions into obligations for all
predecessor program points and attempt to use the abstract state at those points
to discharge them. This approach is good and handling disjunctive invariants
which our abstract domains typically don’t represent precisely. E.g., an assert

after a join point may not be provable due to loss of precision at the join.
However, the abstract states at the program points just prior to the join may be
strong enough to discharge the obligation. This backwards analysis discharges
an obligation if it can be discharged on all paths leading to the assertion. It thus
acts as a form of on-demand trace partitioning.

3 Conclusion

For the example code, our verification discharges 5 implicit non-null obligations
on the receiver of the calls to EndsWith, Substring, and Length. It also discharges
all preconditions of these methods as well as the postconditions of TrimSuffix.

Our tools have been available to the general public since March 2009 and the
response has been very positive. We received much useful feedback that has been
incorporated back into the tools. We believe that our approach is viable and that
we have made good progress towards our goal of enabling non-verification ex-
perts to start writing specifications and use tools to enforce better programming
discipline. Still, much work remains to be done on the static verification with
respect to better scalability, precision, and automation.

References

1. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In: POPL 1977,

ACM Press, New York (January 1977)

2. ECMA: Standard ECMA-355, Common Language Infrastructure (June 2006)

3. Fähndrich, M., Barnett, M., Logozzo, F.: Code Contracts (March 2009),

http://research.microsoft.com/contracts
4. Fähndrich, M., Barnett, M., Logozzo, F.: Embedded contract languages. In: SAC

2010: Proceedings of the 2010 ACM Symposium on Applied Computing, pp. 2103–

2110. ACM Press, New York (2010)

5. Laviron, V., Logozzo, F.: Subpolyhedra: A (more) scalable approach to infer linear

inequalities. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009. LNCS, vol. 5403,

pp. 229–244. Springer, Heidelberg (2009)

http://research.microsoft.com/contracts

Translation Validation of Loop Optimizations

and Software Pipelining in the TVOC
Framework

In Memory of Amir Pnueli

Benjamin Goldberg

Department of Computer Science

Courant Institute of Mathematical Sciences

New York University

goldberg@cs.nyu.edu

Abstract. Translation validation (TV) is the process of proving that

the execution of a translator has generated an output that is a correct

translation of the input. When applied to optimizing compilers, TV is

used to prove that the generated target code is a correct translation

of the source program being compiled. This is in contrast to verifying

a compiler, i.e. ensuring that the compiler will generate correct target

code for every possible source program – which is generally a far more

difficult endeavor.

This paper reviews the TVOC framework developed by Amir Pnueli

and his colleagues for translation validation for optimizing compilers,

where the program being compiled undergoes substantional transforma-

tion for the purposes of optimization. The paper concludes with a dis-

cussion of how recent work on the TV of software pipelining by Tristan

& Leroy can be incorporated into the TVOC framework.

1 Introduction

Verifying a compiler to ensure that it will produce correct target code every time
it compiles a source program is a very difficult undertaking. First, compilers are
large pieces of software and, given the current state of the art, verifying large
pieces of software is still generally computationally intractable. Second, compilers
tend to undergo updates and new releases, which would require re-verification
each time.

As a proposed solution to the difficulty of verifying that a compiler will pro-
duce correct target code for any possible source program, starting in 1998 Amir
Pnueli and his colleagues [10,9,11,8,12] proposed translation validation (TV),
which is the process of verifying, for a given run of the compiler, that the target
code produced during the run is a correct translation of the source program
being compiled. Initially, the TV work was performed for a compiler that trans-
lated SIGNAL, a reactive language with very simple program structure (a single
outer loop), into C. This work was followed up by Pnueli and various colleagues

R. Cousot and M. Martel (Eds.): SAS 2010, LNCS 6337, pp. 6–21, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

TV of Loop Optimizations and Software Pipelining in the TVOC 7

(including this author), as well by many other researchers, who developed TV
methods for industrial-strength optimizing compilers (see, e.g. [7,2,15,17] among
too many to list).

Performing TV for optimizing compilers is especially challenging because the
optimizations performed by the compiler can significantly change the structure
of a program. The TV for optimizing compilers work performed by Pnueli and
colleagues resulted in a framework and implementation called TVOC [2], for
Translation Validation for Optimizing Compilers, which partitions compiler op-
timizations into two categories:

– Structure-preserving optimizations: These are optimizations that do not rad-
ically change the structure of the program, so that a mapping between states
of the target program and states of the source program is still possible. Ex-
amples of such optimizations include the so-called “global optimizations”,
such as dead-code elimination, constant folding and propagation, and com-
mon subexpression elimination.

– Structure-modifying optimizations: These are optimizations that radically
change the structure of a program – or at least parts of the program, such
as loops – so that there is no useful mapping between states of the target
program and states of the source program. Examples of these optimizations
include loop optimizations such as loop interchange, tiling, reversal, fusion,
and distribution.

These two categories are treated differently within the TVOC framework. In both
cases, based on the source and target programs and the optimizations performed,
the TVOC system generates verification conditions that are then checked by a
theorem prover.

The theorem prover that TVOC uses is CVC [14,1], which is an automatic
theorem prover for proving the validity of first-order formulas and has a large
number of built-in theories that are useful for TV (e.g. integers, arrays, bit-
vectors, etc.). The latest instantiation of CVC is CVC3 [1]. If CVC determines
that the verification conditions that TVOC generates are satisfied, then the
optimizations applied by the compiler were correct. Otherwise, the TVOC system
indicates that the compilation was invalid.

Figure 1 shows a simple schematic of the TVOC system, as applied to the
Intel Open Research Compiler a few years ago. After parsing and type check-
ing (which the TVOC system does not validate), the compiler performs loop
optimizations, global optimizations, and some machine dependent optimizations
prior to code generation. Each optimization phase comprises one or more IR-
to-IR transformations, taking the program in an intermediate reprentation (IR)
and producing a new program represented in the same IR language. Based on
these transformations, TVOC produces the set of verification conditions that are
fed to the CVC theorem prover.

Figure 2 shows a slightly more detailed schematic of the TVOC system. There
are separate components of TVOC for validating loop optimizations (struc-
ture modifying) and global optimizations (structure preserving). At this point,
validation of machine-dependent optimizations has not been implemented in

8 B. Goldberg

Fig. 1. A Simple Schematic of the TVOC System

Fig. 2. Detailed Schematic of the TVOC System

TV of Loop Optimizations and Software Pipelining in the TVOC 9

TVOC. Loop optimizations are generally performed earlier in the compilation
process than global optimizations, since loop optimizations often expose oppor-
tunities for global optimization. In any case, these optimization processes tend to
be iterative. The input (source) and output (target) of each optimization is fed
to the appropriate module (loop TV or global TV) of TVOC, which generates
the verification conditions to be fed to CVC.

We have recently begun to extend the TVOC framework, although not the
implementation yet, to handle machine-dependent optimizations. One such opti-
mization that has not been handled by TVOC, although it was addressed in other
Pnueli work, is software pipelining. Recent work by Tristan & Leroy [16] for val-
idating software pipelining using symbolic evaluation is being been adapted for
the TVOC framework (i.e. using CVC). We describe here how software pipelining
fits into the TVOC framework.

2 Validating Global Optimizations in TVOC

Global optimizations are structure preserving in the sense that they preserve
the structure of a program sufficiently to permit a mapping between states of
the target program (i.e. the IR representation of the program after an optimiza-
tion) and states of the source (i.e. the IR representation of the program before
the optimization). Although a detailed explanation of how validation of global
optimizations are performed in TVOC is beyond the scope of this paper, we
provide a brief description here. We refer the reader to [18] for more details and
examples.

In order to validate a translation from a source program S to a target program
T , where the transformations applied to S are structure-preserving, TVOC rep-
resents each program as a transition system [10] (TS), which is a state machine
consisting of a set V of state variables, a set O ⊆ V of observable variables, an
initial condition Θ characterizing the initial states of the system, and a transi-
tion relation ρ relating each state to its possible successors. The variables are
typed, and a state of a TS is a type-consistent interpretation of the variables.
A computation of a TS is defined to be a maximal finite or infinite sequence of
states starting with a state that satisfies the initial condition such that every
two consecutive states are related by the transition relation.

In order to establish that P
T
, the TS representing the target program T , is a

correct translation of P
S
, the TS representing the source program S, we use a

proof rule, Val, which is inspired by the computational induction approach [3],
originally introduced for proving properties of a single program. Rule Val pro-
vides a proof methodology by which one can prove that one program refines
another. This is achieved by establishing a control mapping from target to source
locations, a data abstraction mapping from source variables to expressions over
the target variables, and proving that these abstractions are maintained along
basic execution paths of the target program.

10 B. Goldberg

In Val, each TS is assumed to have a cut-point set, i.e., a set of blocks that
includes all initial and terminal blocks, as well as at least one block from each of
the cycles in the programs’ control flow graph. A simple path is a path connecting
two cut-points, and containing no other cut-point as an intermediate node. For
each simple path, we can (automatically) construct the transition relation of the
path. Typically, such a transition relation contains the condition which enables
this path to be traversed and the data transformation effected by the path.

Rule Val constructs a set of verification conditions, one for each simple tar-
get path, whose aggregate consists of an inductive proof of the correctness of
the translation between source and target. Roughly speaking, each verification
condition states that, if the target program can execute a simple path, starting
with some conditions correlating the source and target programs, then at the
end of the execution of the simple path, the conditions correlating the source
and target programs still hold. The conditions consist of the control mapping,
the data mapping, and, possibly, some invariant assertion holding at the target
code.

3 Validating Loop Optimizations

The Val rule discussed above relied on there being a mapping between the states
of the source and target programs. However, there is a class of loop optimizations
that optimizing compilers perform that modify the structure of loops sufficiently
so that no such mapping is possible. Thus, Pnueli and his colleagues, including
this author, developed and implemented in TVOC a method for validating loop
optimizations that did not rely on such a mapping. We describe this method
briefly here, but refer the reader to [2].

The loop optimizations that TVOC handles fall under the category of re-
ordering transformations, which are transformations that change the order of
execution of statements in the body of a loop, but do not change the number
of times each statement is executed. Reordering transformations cover many
of the loop optimizations performed by optimizing compilers, including fusion,
distribution, reversal, interchange, and tiling.

To illustrate TVOC’s validation of loop optimizations, we consider loop in-
terchange. The loop interchange optimization reorders the nesting of a nested
loop. Figure 3 shows an example of a loop interchange on a doubly-nested loop.
For this example, the transformation may provide several performance bene-
fits. First, since the expression Y[i2] is loop invariant in the inner loop of the
transformed code, the computation of the address denoted by Y[i2] and the
fetching of its value can be moved outside the inner loop. Second, if the array A
is arranged in row major form, where adjacent elements in a row occupy conse-
cutative locations in memory, then cache performance is likely to be improved.
The illustration below shows the transformation of the access pattern over the
array A caused by the interchange.

TV of Loop Optimizations and Software Pipelining in the TVOC 11

Fig. 3. An example of loop interchange

The curved arrows represent an execution of the assignment statement, where
each element A[i2,i1] is assigned a value computed from the element A[i2-1,i1]
above it. The new access pattern resulting from the optimization must preserve
the relative order in which A[i2,i1] and A[i2-1,i1] are visited during execution
of the loop. Otherwise, the transformation will have changed the result produced
by the loop.

In order to define a single rule for validating all reordering loop transforma-
tions, we represent a loop of the form

for i1 = L1toH1 do
. . .

for im = Lm to Hm do
B(i1, . . . , im)

by
for i ∈ I by ≺I do B(i)

where i = (i1, . . . , im) is the list of nested loop indices, I is the set of the values
assumed by i through the different iterations of the loop, and B represents
the entire body of the loop. The set I can be characterized by a set of linear
inequalities. For example, for the above loop, I is defined by

I = {(i1, . . . , im) | L1 ≤ i1 ≤ H1 ∧ · · · ∧ Lm ≤ im ≤ Hm}

12 B. Goldberg

The relation ≺I is the ordering by which the various points of I are traversed.
For example, for the loop above, this ordering is the lexicographic order on I.

In general, a loop transformation has the form:

for i ∈ I by ≺I do B(i) =⇒ for j ∈ J by ≺J do B(F (j))

Such a transformation may change the domain of the loop indices from I to J ,
change the loop indices from i to j, and possibly introduce an additional linear
transformation in the loop’s body, changing it from the source loop body B(i)
to the target body B(F (j)).

The rule used in TVOC to validate loop transformations is the Permute rule
shown in Figure 4, where F is a bijection (i.e. it is one-to-one and onto) mapping
iterations in the transformed loop back to iterations in the original loop.

∀i1, i2 ∈ I : i1≺I i2 ∧ F−1(i2)≺J F−1(i1) =⇒ B(i1); B(i2) ∼ B(i2); B(i1)

for i ∈ I by ≺I do B(i) ∼ for j ∈ J by ≺J do B(F (j))

Fig. 4. Permutation Rule Permute for reordering transformations

Intuitively, the Permute rule says that if, for any circumstance under which a
reordering transformation switches the relative order of two iterations i1 and i2
in the source and target code, it is case that executing the body B in iteration i1
followed by executing B in iteration i2 is equivalent to executing B in iteration i2
followed by executing the body in iteration i1, then the reordering transformation
is correct.

In order to apply rule Permute to a given case, it is necessary to identify
the function F (and F−1) and verify that the antecedent of Rule Permute is
satisfied. The identification of F can be provided by the compiler, once it de-
termines which of the relevant loop optimizations it chooses to apply. Intel’s
ORC compiler generates a file containing a description of the loop optimiza-
tions applied in the current phase of optimization. TVOC extracts this informa-
tion (identified as “optimization spec” in Figure 2), verifies that the optimized
code has resulted from the indicated optimization, and constructs the verifica-
tion conditions. These conditions are then passed to CVC, which checks them
automatically.

Consider the interchange example shown in Figure 3. The loop interchange
transformation for that example can be characterized as follows:

for i in I by ≺I do A[i2 − 1,i1] + Y[i2]

=⇒
for j in J by ≺J do A[j1 − 1,j2] + Y[j1]

TV of Loop Optimizations and Software Pipelining in the TVOC 13

where

I ={(i1, i2)|1 ≤ i1 ≤ N, 1 ≤ i2 ≤ M}
J ={(j1, j2)|1 ≤ j1 ≤ M, 1 ≤ j2 ≤ N}

and ≺I and ≺J are lexicographic ordering on their respective iteration spaces.
The functions F and F−1 associated with loop interchange are defined by

F (j1, j2) = (j2, j1)

F−1(i1, i2) = (i2, i1)

In order to determine if loop interchange is valid on the example loop, the def-
initions of I, J , ≺I , ≺J ,F , F−1, and the loop body B are plugged into the
antecedent of the Permute rule, namely

∀i1, i2 ∈ I : i1≺Ii2 ∧ F−1(i2)≺J F−1(i1) =⇒ B(i1); B(i2) ∼ B(i2); B(i1)

The resulting formula is then fed to CVC to determine if it is valid. If it is valid,
then loop interchange optimization is correct for this example.

For those cases where the compiler does not indicate the loop transformations
that were applied, TVOC uses a set of heuristics figure out which transformations
were used.

4 Validating Software Pipelining

Machine-dependent optimizations, such as software pipelining, are not yet han-
dled by the TVOC implementation. In this section, we discuss how TV for soft-
ware pipelining can be incorporated into TVOC, based on recent work by Tris-
tan & Leroy [16]. We start, however, with a intuitive explanation of the software
pipelining optimization.

4.1 A Gentle Introduction to Software Pipelining

Software pipelining [13,5] refers to a class of optimizations that improve program
performance by overlaying iterations of a loop – essentially allowing an iteration
to start before the previous iteration has completed, even if there are depen-
dences between iterations that prohibit the iterations executing fully in parallel.
Software pipelining can be view schematically as:

14 B. Goldberg

The benefits of software pipelining include 1) exploiting instruction-level paral-
lelism by allowing instructions from different iterations to execute simultaneously
on VLIW or superscalar machines, 2) filling delay slots in one iteration with in-
structions from other iterations, and 3) other improvements (register allocation,
cache performance, etc.) that can be made during instruction scheduling by be-
ing able to select among instructions from several overlapping iterations.

Although software pipelining generally occurs at the instruction-scheduling
phase of compilation, where the optimization is applied to machine instructions,
for clarity we will show the examples in this paper in an intermediate represen-
tation (IR) that is fairly close to the source.

Consider the following simple loop:

for i= 3 to N
a[i] = a[i-3] + 5

A corresponding (high-level) intermediate representation form of the loop is:

i=3
while (i<=N) {

x = a[i-3]
NOP //delay slot
a[i] = x+5
i = i + 1
}

We assume that the load instruction, x = a[i-3], takes an extra cycle due to
the memory fetch, thus a NOP (“no-op”) is inserted to ensure that x is not
referenced too early1. In the sequential execution of the loop, a cycle is wasted
by the NOP during every iteration.

The figure below illustrates the execution of overlaid iterations in a software
pipeline. These iterations continue executing as long as specified by the loop
bounds.

As can be seen by close examination of the above figure, the actual pipeline code
is accomplished by replicating the body of the loop four times, creatng a total of
four instances of the variables i and x, and then overlaying the four iterations.
1 For simplicity, we assume a purely statically-scheduled machine with no out-of-order

execution or interlocked stages.

TV of Loop Optimizations and Software Pipelining in the TVOC 15

During execution, these four iterations are repeatedly executed, as implied by
the figure above.

In a software pipeline, such as the one illustrated above, the instructions
appearing on the same horizontal level – despite being from different iterations
– can be executed simultaneously or in any order chosen by the compiler. Thus,
although the NOP appears in the figure, it does not consume a cycle since there
are other instructions that can be executed in that same cycle.

Upon further examination of the above figure, it can be seen that horizontal
blocks of code are repeated in the execution of the overlaid iterations. This
is shown in the figure below, where the code within the first large rectangle is
repeated in the second rectangle (which is only partially visible) and many times
subsequently.

The horizontal block of code within the large rectangle is called the “kernel”
of the pipeline. Only one instance of the kernel code is actually generated, and
is then executed in a loop. The figure below illustrates the repeated execution
of the kernel code, preceded by a set of instructions called the “prologue” and
followed by the set of instructions called the “epilogue”. The prologue can be
thought of as a “ramping up” of the pipeline and the epilogue as a “ramping
down” of the pipeline.

For clarity, the above figure doesn’t show the number of times that the kernel
is executed. It can be seen from inspection that, together, the prologue and

16 B. Goldberg

epilogue corresponds to executing three iterations of the original loop body (note
the three assignments to x, the three writes to a[], etc.) and that the kernel
code corresponds to four iterations of the original loop body. Thus, since the
original loop executed N times, it must be the case that N is at least 3, since
the prologue and epilogue will always execute once the pipelined code is entered.
Furthermore, the value of N −3, i.e. the number of iterations of the original loop
that is executed by iterating over the kernel, must be divisible by four since each
iteration of the kernel corresponds to four iterations of the original loop.

Using this logic, and the notation from [16], it is clear that, in general, if the
prologue and epilogue together execute μ iterations of the original loop and each
iteration of the kernel executes δ iterations of the original loop, then we require
that N ≥ μ and that (N − μ) is a multiple of δ. To enforce these requirements,
the pipeline code is generally preceded by a conditional that tests the value of N ,
unless N can be determined statically. If N < μ, then the pipeline code will not
be entered at all. If N−μ is not a multiple of δ, then the appropriate number (i.e.
(N −μ) MOD δ) of iterations of the loop are peeled off and executed separately,
so that the remaining iterations of the loop can be pipelined.

4.2 Validating a Software Pipeline

In [6], Pnueli and Leviathan described a method for validating software pipelin-
ing using an extension of the Val rule described above. This work used a mapping
between transition systems resulting in a fairly complicated method.

In a recent POPL paper [16], Tristan & Leroy describe a less complicated ap-
proach, defining a simple rule to be satisfied in order to deem that the translation
from the original loop into a pipeline is correct. As their paper discusses, given
a source loop with a body B that is translated into the pipeline consisting of a
prologue P , a kernel S, and an epilogue E, where E and P together represent μ
iterations of B and S represents δ iterations of B, the translation is correct iff

BN ∼ P ; S(N−μ)/δ; E

That is, executing the body B of a loop N times is equivalent to executing
the prologue P , followed by iterating over the kernel S for (N − μ)/δ times,
followed by the epilogue E. As discussed above, it is assumed (and enforced by
other code) that N ≥ μ and that (N − μ) is a multiple of δ. Tristan & Leroy
noted, though, that without knowledge of N , which is a run-time value, proving
the above equivalence for all possible N is very difficult. Thus, they proposed a
simple rule that is sound but not complete, in that if the rule is satisfied, then the
translation is correct, but there may be correct translations that do not satisfy
the rule. However, their paper states that such cases don’t arise in practice.

The Tristan & Leory rule can be specified as follows: Suppose a source loop
whose body is B is translated into the pipeline consisting of a prologue P , a
kernel S, and an epilogue E, where E and P together represent μ iterations of
B and S represents δ iterations of B. Then,

TV of Loop Optimizations and Software Pipelining in the TVOC 17

(Bμ ∼ P ; E) ∧ (E; Bδ ∼ S; E)
BN ∼ P ; S(N−μ)/δ; E

(Tristan & Leroy)

where it is assumed that N ≥ μ and (N − μ) is a multiple of δ.
As shown in their POPL paper, the Tristan & Leroy rule is easy to prove

inductively (once a framework, such as their symbolic evaluation, is developed
for reasoning about equivalence – which is not so easy). Informally, the induction
proceeds as follows. Since N − μ is divisble by δ, N = μ + mδ for some m ≥ 0.
m is used as the basis of the induction.

Base Case m = 0:

Bμ+mδ = Bμ

∼ P ; E

= P ; S0; E

Assume for any m ≤ k, Bμ+kδ ∼ P ; Sk; E. Then,

Bμ+(k+1)δ = Bμ+kδ ; Bδ

∼ P ; Sk; E; Bδ

∼ P ; Sk; S; E

= P ; Sk+1; E

Thus, for any m, Bμ+mδ ∼ P ; Sm; E and since N = μ+mδ, i.e. m = (N −u)/δ,
BN ∼ P ; S(N−μ)/δ; E.

The intuition behind the Tristan & Leroy rule can be seen in figure 5, which is
adapted (with permission) from Figure 3 in [16]. The horizontal sequence at the
top of the figure represents the execution of the original code and the sequence
at the bottom is the execution of the pipelined code.

Fig. 5. Illustration of the Tristan & Leroy rule, adapted from [16]

18 B. Goldberg

In their POPL paper, Tristan & Leroy describe a symbolic evaluation method
for proving the equivalences (Bμ ∼ P ; E) and (E; Bδ ∼ S; E) for a particular
source loop body B and target pipeline components P , S, and E. Instead, we
have incorporated the Tristan & Leroy rule into the TVOC framework, where
it is used to generate two verification conditions – simply (Bμ ∼ P ; E) and
(E; Bδ ∼ S; E) – that are fed to CVC theorem prover, along with the code for
Bμ, Bδ, P , S, and E. If CVC finds the two conditions valid, then pipelining is
correct.

Figure 6 shows the original and pipelined loops of our example program,
above, along with the verification conditions, encoded for CVC. P , S, and E in
the CVC code resulted from an SSA transformation applied to the pipeline code.
B3 and B4, corresponding to Bμ, Bδ, respectively, were generated by static loop
unrolling and then an SSA transformation. Equivalence between B3 and P ; E
and between E; B4 and S; E is checked in CVC by asserting that their inputs
(the initial values of a, the i’s, and the x’s) are equal and querying CVC about
the equality of the their outputs (i.e. the final values of a, the i’s, and the x’s).

Software pipelining, although an optimization that can be complicated to
perform, lends itself nicely to simple translation validation rules, such as the
Tristan & Leroy rule, because none of the pipeline prologue, kernel, or epilogue
themselves contain loops or branches. Although the compiler has freedom to
rearrange instructions within each of these blocks, the resulting code will still
be amenable to equivalence checking by a theorem prover.

4.3 Future Work: Validating Pipelining That Uses Hardware
Support

In practice, compilers that perform software pipelining often generate code for
machines, such as the Intel IA64, that provides substantial hardware support
for pipelining. This hardware support includes rotating registers to provide au-
tomatic renaming of variables (such as the loop index i in our example above)
across iterations – thus avoiding replicating identical code in overlapping itera-
tions and reducing the size of the kernel code. Another form of hardware support
for software pipelining is predication, which is the ability to turn off the execu-
tion of certain instructions at run time. Predication, in this case, supports the
execution of prologue and epilogue code – which are subsets of the kernel instruc-
tions – by turning off certain instructions in the kernel during the ramp up and
ramp down phases of the pipeline. As described in [4], predication can also be
used to dynamically alter the software pipeline in order to preserve loop-carried
dependences that can only be computed at run time.

Techniques for translation validation of software pipelining that use such
hardware support have not yet been developed. As with performing TV for
other kinds of machine-dependent optimizations, it will involve encoding the
hardware features of the machine in a logical framework (e.g. as a set of CVC
assertions).

TV of Loop Optimizations and Software Pipelining in the TVOC 19

Unrolled Source Code and Target Pipline Code Assertions and Queries for Validation

%B3 %Assertions for P;E
REAL ARRAY: TYPE = ARRAY INT OF REAL; %Connect the outputs of P to the
a1 b3: REAL ARRAY; i1 b3: INT; %inputs of E.
x1 b3: REAL = a1 b3[i1 b3-3]; ASSERT i11 ep = i1 pl;
a2 b3: REAL ARRAY = a1 b3 WITH [i1 b3] := x1 b3 + 5; ASSERT i21 ep = i2 pl;
x2 b3: REAL = a2 b3[i1 b3-2]; ASSERT i31 ep = i3 pl;
a3 b3: REAL ARRAY = a2 b3 WITH [i1 b3 + 1] := x2 b3 + 5; ASSERT i41 ep = i4 pl;
x3 b3: REAL = a3 b3[i1 b3-1]; ASSERT x2 ep = x2 pl;
a4 b3: REAL ARRAY = a3 b3 WITH [i1 b3 + 2] := x3 b3 + 5; ASSERT x3 ep = x3 pl;
i2 b3: INT = i1 b3 + 3; ASSERT a1 ep = a2 pl;
%B4 %QUERIES FOR B3 = P;E
a1 b4: REAL ARRAY; %Set the inputs to B3̂ equal to inputs to P
i1 b4: INT; ASSERT a1 b3 = a1 pl;
x1 b4: REAL = a1 b4[i1 b4-3]; ASSERT i1 b3 = i1 pl;
a2 b4: REAL ARRAY = a1 b4 WITH [i1 b4] := x1 b4 + 5;
x2 b4: REAL = a2 b4[i1 b4-2]; %Query if the outputs of B3 and E are equal
a3 b4: REAL ARRAY = a2 b4 WITH [i1 b4 + 1] := x2 b4 + 5; QUERY i2 b3 = i41 ep;
x3 b4: REAL = a3 b4[i1 b4-1]; QUERY a3 ep = a4 b3;
a4 b4: REAL ARRAY = a3 b4 WITH [i1 b4 + 2] := x3 b4 + 5; QUERY x3 b3 = x3 ep;
x4 b4: REAL = a4 b4[i1 b4];
a5 b4: REAL ARRAY = a4 b4 WITH [i1 b4 + 3] := x4 b4 + 5; %————————-
i2 b4: INT = i1 b4 + 4; %Assertions for S;E
%PROLOGUE %For S;E, the i1s, i2s, xs, and a’s have to align
i1 pl: INT; ASSERT i11 ep = i12 s;
i2 pl: INT; ASSERT i21 ep = i22 s;
i3 pl: INT; ASSERT i31 ep = i32 s;
i4 pl: INT; ASSERT i41 ep = i42 s;
ASSERT i1 pl = 2; ASSERT x1 ep = x11 s;
ASSERT i2 pl = i1 pl + 1; ASSERT x2 ep = x22 s;
ASSERT i3 pl = i1 pl + 2; ASSERT x3 ep = x32 s;
ASSERT i4 pl = i1 pl + 3; ASSERT x4 ep = x41 s;
a1 pl: REAL ARRAY; ASSERT a1 ep = a5 s;
x1 pl: REAL = a1 pl[i1 pl-3]; %Assertions for E2;B4

x2 pl: REAL = a1 pl[i2 pl-3]; %Need to use second copy of E, namely ” ep2”
a2 pl: REAL ARRAY = a1 pl WITH [i1 pl] := x1 pl + 5; %Align a[] output of E2 with a[] input of B4

x3 pl: REAL = a2 pl[i3 pl-3]; ASSERT a1 b4 = a3 ep2;
%EPILOGUE %Align i1 input of B4 with i4 output of E2
a1 ep: REAL ARRAY; ASSERT i1 b4 = i41 ep2;
i11 ep: INT; %Queries for E2;B4 = S;E
i21 ep: INT; %Assert the equality of the inputs to E2 and S
i31 ep: INT; ASSERT a1 ep2 = a1 s;
i41 ep: INT; ASSERT i11 ep2 = i11 s;
x1 ep: REAL; ASSERT i21 ep2 = i21 s;
x2 ep: REAL; ASSERT i31 ep2 = i31 s;
x3 ep: REAL; ASSERT i41 ep2 = i41 s;
x4 ep: REAL; ASSERT x2 ep2 = x21 s;
i12 ep: INT = i11 ep + 4; ASSERT x3 ep2 = x31 s;
a2 ep: REAL ARRAY = a1 ep WITH [i21 ep] := x2 ep + 5; %This gives the relationship among the i’s in S
i22 ep: INT = i21 ep + 4; ASSERT i21 s = i11 s + 1;
a3 ep: REAL ARRAY = a2 ep WITH [i31 ep] := x3 ep + 5; ASSERT i31 s = i11 s + 2;
i32 ep: INT = i31 ep + 4; ASSERT i41 s = i11 s + 3;
%EPILOGUE2, a copy of EPILOGUE ASSERT x1 ep = x11 s;
a1 ep2: REAL ARRAY; %Query if the outputs of B4 and E are equal.
i11 ep2: INT; QUERY i41 ep = i2 b4;
i21 ep2: INT; QUERY i12 ep = i2 b4+1;
i31 ep2: INT; QUERY i22 ep = i2 b4 + 2;
i41 ep2: INT; QUERY i32 ep = i2 b4 + 3;
x2 ep2: REAL; QUERY x1 b4 = x4 ep;
x3 ep2: REAL; QUERY x2 b4 = x1 ep;
i12 ep2: INT = i11 ep2 + 4; QUERY x3 b4 = x2 ep;
a2 ep2: REAL ARRAY = a1 ep2 WITH [i21 ep2] := x2 ep2 + 5; QUERY x4 b4 = x3 ep;
i22 ep2: INT = i21 ep2 + 4; QUERY a5 b4 = a3 ep;
a3 ep2: REAL ARRAY = a2 ep2 WITH [i31 ep2] := x3 ep2 + 5;
i32 ep2: INT = i31 ep2 + 4;
%KERNEL (S)
a1 s: REAL ARRAY;
i11 s: INT;
i21 s: INT;
i31 s: INT;
i41 s: INT;
x21 s: REAL;
x31 s: REAL;
i12 s: INT = i11 s + 4;
a2 s: REAL ARRAY = a1 s WITH [i21 s] := x21 s + 5;
x41 s: REAL = a2 s[i41 s - 3];
i22 s: INT = i21 s + 4;
a3 s: REAL ARRAY = a2 s WITH [i31 s] := x31 s + 5;
x11 s: REAL = a3 s[i12 s - 3];
i32 s: INT = i31 s + 4;
a4 s: REAL ARRAY = a3 s WITH [i41 s] := x41 s + 5;
x22 s: REAL = a4 s[i22 s - 3];
i42 s: INT = i41 s + 4;
a5 s: REAL ARRAY = a4 s WITH [i12 s] := x11 s + 5;
x32 s: REAL = a5 s[i32 s - 3];

Fig. 6. The pipelining example in CVC

20 B. Goldberg

5 Conclusion

We have attempted in this paper to provide an inkling of the contribution that
Amir Pnueli made to techniques for ensuring the correctness of compilers – and
the extent to which his translation validation work has inspired further work
in this area. A large number of papers (too many to list here, unfortunately)
have been published on translation validation since Pneuli’s 1998 paper, and we
expect translation validation to be an important area of verification for some
time.

References

1. Barrett, C., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) CAV 2007.

LNCS, vol. 4590, pp. 298–302. Springer, Heidelberg (2007)

2. Barrett, C.W., Fang, Y., Goldberg, B., Hu, Y., Pnueli, A., Zuck, L.D.: TVOC: A

translation validator for optimizing compilers. In: Etessami, K., Rajamani, S.K.

(eds.) CAV 2005. LNCS, vol. 3576, pp. 291–295. Springer, Heidelberg (2005)

3. Floyd, R.W.: Assigning meanings to programs. In: Proc. Symp. Appl. Math.,

vol. 19, pp. 19–31 (1967)

4. Goldberg, B., Crutcher, E., Huneycutt, C., Palem, K.: Software bubbles: Using

predication to compensate for aliasing in software pipelines. In: International Con-

ference on Parallel Architectures and Compilation Techniques, p. 211 (2002)

5. Lam, M.: Software pipelining: an effective scheduling technique for vliw machines.

In: Proceedings of the ACM SIGPLAN 1988 Conference on Programming Language

Design and Implementation (PLDI 1988), pp. 318–328 (July 1988)

6. Leviathan, R., Pnueli, A.: Validating software pipelining optimizations. In: CASES

2002: Proceedings of the 2002 International Conference on Compilers, Architecture,

and Synthesis for Embedded Systems, pp. 280–287. ACM Press, New York (2002)

7. Necula, G.C.: Translation validation for an optimizing compiler. In: PLDI 2000:

Proceedings of the ACM SIGPLAN 2000 Conference on Programming Language

Design and Implementation, pp. 83–94. ACM Press, New York (2000)

8. Pnueli, A., Shtrichman, O., Siegel, M.: The code validation tool CVT: Automatic

verification of a compilation process. International Journal on Software Tools for

Technology Transfer (STTT) 2(1), 192–201 (1998)

9. Pnueli, A., Shtrichman, O., Siegel, M.: Translation validation for synchronous

languages. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS,

vol. 1443, pp. 235–246. Springer, Heidelberg (1998)

10. Pnueli, A., Siegel, M., Singerman, E.: Translation validation. In: Steffen, B. (ed.)

TACAS 1998. LNCS, vol. 1384, pp. 151–166. Springer, Heidelberg (1998)

11. Pnueli, A., Shtrichman, O., Siegel, M.: Translation validation: From DC+ to C*.

In: Hutter, D., Traverso, P. (eds.) FM-Trends 1998. LNCS, vol. 1641, pp. 137–150.

Springer, Heidelberg (1999)

12. Pnueli, A., Strichman, O., Siegel, M.: Translation validation: From SIGNAL to C.

In: Olderog, E.-R., Steffen, B. (eds.) Correct System Design. LNCS, vol. 1710, pp.

231–255. Springer, Heidelberg (1999)

13. Rau, B.R., Glaeser, C.D.: Some scheduling techniques and an easily schedulable

horizontal architecture for high performance scientific computing. In: MICRO 14:

Proceedings of the 14th Annual Workshop on Microprogramming, Piscataway, NJ,

USA, pp. 183–198. IEEE Press, Los Alamitos (1981)

TV of Loop Optimizations and Software Pipelining in the TVOC 21

14. Stump, A., Barrett, C.W., Dill, D.L.: CVC: A cooperating validity checker. In:

Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 500–504.

Springer, Heidelberg (2002)

15. Tristan, J.-B., Leroy, X.: Verified validation of lazy code motion. In: PLDI 2009:

Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language

Design and Implementation, pp. 316–326. ACM Press, New York (2009)

16. Tristan, J.-B., Leroy, X.: A simple, verified validator for software pipelining. In:

POPL 2010: Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, pp. 83–92. ACM, New York (2010)

17. Zaks, A., Pnueli, A.: CovaC: Compiler validation by program analysis of the

cross-product. In: Cuéllar, J., Maibaum, T.S.E., Sere, K. (eds.) FM 2008. LNCS,

vol. 5014, pp. 35–51. Springer, Heidelberg (2008)

18. Zuck, L.D., Pnueli, A., Goldberg, B.: VOC: A methodology for the translation

validation of optimizing compilers. J. UCS 9(3), 223–247 (2003)

Size-Change Termination and

Transition Invariants

Matthias Heizmann1, Neil D. Jones2, and Andreas Podelski1

1 University of Freiburg, Germany
2 University of Copenhagen, Denmark

Abstract. Two directions of recent work on program termination use

the concepts of size-change termination resp. transition invariants. The

difference in the setting has as consequence the inherent incomparabil-

ity of the analysis and verification methods that result from this work.

Yet, in order to facilitate the crossover of ideas and techniques in further

developments, it seems interesting to identify which aspects in the respec-

tive formal foundation are related. This paper presents initial results in

this direction.

1 Introduction

There have been rapid advances in methods for automatically proving program
termination in recent years, both in theoretical research and in applications as
practical as finding termination bugs in device drivers. A recent wave of activity
began with the work on size-change termination from [27]. Related work and
further developments include, e.g., [7,24,27,36]). A branch of this work is based
on the concept of transition invariants from [31]; see, e.g., [11,14,15,18,26,32]).
The motivation behind the work in [31] was to carry over the ideas of [27] to ver-
ification methods in the style of software model checking [3,4]. This goal entailed
going from a decidable program analysis problem (for functional programs) to
an undecidable verification problem (for imperative and concurrent programs).
The change of setting has as consequence the inherent incomparability of the
methods that result from the work on size-change termination resp. transition
invariants. Yet, in order to facilitate the crossover of ideas and techniques in
further developments of such methods, it seems interesting to identify which as-
pects in the respective formal foundation are related. This paper presents three
initial results. They concern 1. the soundness proof, 2. the abstract domain, and
3. the base algorithm.

1. If we take the proof rule that implicitely underlies the soundness proof for
the size-change termination analysis in [27] and the transition invariant-
based proof rule from [31], then the premise of the former is strictly stronger
than the premise of the latter and the conclusion of the former is strictly
stronger than the conclusion of the latter (i.e., no proof rule subsumes the
other one).

R. Cousot and M. Martel (Eds.): SAS 2010, LNCS 6337, pp. 22–50, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Size-Change Termination and Transition Invariants 23

In detail: The size-change termination analysis in [27] decides size-change
termination, a property strictly stronger than termination. The intermediate
result of the analysis is a set of size-change graphs. The analysis gives a yes-
answer if some of the graphs (the idempotent ones) denote a well-founded
relation. But then, perhaps surprisingly, all of the graphs must denote a
well-founded relation. This means that the premise in the (complete) proof
rule for termination from [31] is satisfied.

2. The abstract domain of size-change graphs in [27] corresponds to a specific
parameter for the transition predicate abstraction used in [11,14,15,18,32].
In detail: we can fix a specific set of transition predicates such that each size-
change graph can be translated to an equivalent conjunction of transition
predicates in this set, and vice versa. In fact, the arcs correspond to the
conjuncts.

3. When we categorize the base algorithm in the termination analyses by the
decision problem that it solves, we can establish the formal connection be-
tween the base algorithms.

In detail: We define two decision problems, one for size-change termi-
nation and one for transition invariants; let us call them SCT and TI, for
short. Then SCT belongs to a special case of a third decision problem which,
in the special case, can be formulated in terms of TI (in general, the third
decision problem has a strictly higher complexity than TI).

The special case of the third decision problem (in Point 3.) is defined by the
associativity of the abstract composition of relations. The associativity is re-
sponsible not only for the lower complexity but also for the already (in Point 1.)
mentioned feature of size-change termination analysis. I.e., among the elements
in the output of the base algorithm, only the subset of idempotent elements has
to be inspected for well-foundedness (if the binary operation over the elements
is associative).

The definition of the special case thus abstracts away from the graph repre-
sentation and helps us to identify the associativity of their composition as the
crucial property of size-change graphs.1

The question left open by this paper is whether the notions of associativity and
idempotency have correspondent notions for a similar optimization in transition
invariant-based termination analyses.

Roadmap. The first part of this paper presents what we believe is the essence
of size-change termination (Section 2) and transition invariants and transition
predicate abstraction (Section 3). Points 1. and 2. from above are covered in
Section 4. The reader who in interested only in Point 3. can jump directly to
Section 5, which we tried to keep self-contained. The paper ends with a discus-
sion of the qualitative differences that result from the different settings of the
methods.
1 The associativity of the composition is lost in the extension of size-change graphs

with finitely many arc weights in the style of [5] (where, for example, the weighted

arc x
k−→ x means that the value of x decreases by at least the integer k).

24 M. Heizmann, N.D. Jones, and A. Podelski

2 Size-Change Termination (SCT)

2.1 A Running Example

Example 1. Figure 1 is an program example similar to one in [24]. It is a first-
order tail-recursive functional program with three function calls labeled 1, 2 and
3. Argument values range over the natural numbers IN , ordered as usual.

Figure 2 contains the program’s “control flow graph” with the calling function
and called function of each call, e.g., 1 : f → g. It also associates with with each
call τ a “size-change graph”, e.g., Gτ . Example: G1 abstracts the tuple of data
flow size changes that occur in call 1 from f to g. Symbol ↓ in G1, G2, G3 indicates
a value decrease, and symbol ↓= indicates a decrease or equality.

f(x,y) = if x=0 then y else 1: g(x,y,y)

g(u,v,w) = if v>0 then 2: g(u,v-1,2*w) else 3: f(u-1,w)

Fig. 1. Example of a first order tail-recursive functional program

Informal SCT Termination Reasoning for the Running Example. Sup-
pose (hypothetically) there is an infinite call sequence π = τ1τ2τ3 . . . that follows
program P ’s control flow. We argue that any computation following π would have
an infinitely descending sequence of variable values. But this would contradict
the well-foundedness of set IN . Conclusion: program P terminates.

Case 1: π = . . . 2ω ends in infinitely many 2’s. By safety of graph G2, this
implies that the values of variable v descend infinitely.

Case 2: Since π is infinite, the only other possibility is that it has the form
π = . . . (12∗3)ω. Again by safety, this implies that the values of variable u descend
infinitely (once each time loop 12∗3 is traversed).

Therefore a call of any program function with any data will terminate.

Paper [27] shows two different approaches to make such reasoning algorithmic:
One is based on Büchi automata, and the other computes the closure of the given
set of graphs as follows (Section 1.2 of [27], and Section 2.4 below).

2.2 Some Size-Change Definitions

Program semantics: [27] is about first-order functional programs, and contains
both syntax and a denotational (big-step) call-by-value semantics. Given a set
Value containing values of expressions, the semantic function has type

E [[]] : Expression → (Valuen → Value ∪ {⊥})

If e is an expression, then E [[e]]v is the value of expression e, given an an environ-
ment v containing values of the variables occurring in e. We omit the completely
standard definition of E [[]], see [27] or a textbook on semantics for details.

Size-Change Termination and Transition Invariants 25

Control flow graph

f g
�� 2
1

3

�
�

� �

Size-change graph set G

x u

y v

w

G1 : f→ g

↓=→
↓=→
���↓=

u u

v v

w w

G2 : g→ g

↓→

↓=→ u x

v y

w ���↓
=

G3 : g→ f

↓→

Fig. 2. Size-change graphs for the running example

Size changes: we assume given a well-founded order > on Value.

Definition 2. Suppose functions f, g are defined in P . A size-change graph
G : f → g for P is a set of labeled arcs x

r→ y where r ∈ {↓=, ↓}, x ∈ Variables(f),

y ∈ Variables(g), and G does not contain both x
↓=→ y and x

↓→ y for any x, y.

Functions f and g are respectively called the source and the target of G. We will
sometimes elide f and g, writing G rather than G : f → g.

Definition 3. Let G = {Gτ | τ is a call in P} be a set of size-change graphs for
program P .

1. Suppose the definition of f contains a call to g labeled τ :

f(x1, . . . , xm) = . . . τ : g(e1, . . . , en) . . .

The phrase “arc f(i) r→ g(j) safely describes the f(i)-g(j) size relation in call
τ” means: For every v ∈ Value and v = (v1, . . . , vm), if E [[ej]]v = v is
defined, then

r = ↓ implies vi > v ; and r = ↓= implies vi ≥ v

2. Size-change graph Gτ is safe for call τ : f → g if every arc in Gτ is a safe
description as just defined.

3. Set G of size-change graphs is a safe description of program P if graph Gτ

is safe for every call τ .

Assuming values are natural numbers, it is easy to see that all the size-change
graphs shown example 1 are safe for their respective calls. No size relation in
{↓=, ↓} can be safely asserted about argument w of call 2, since 2*w may exceed
the current value of w. According to Definition 3, G2 safely models the parameter
size-changes caused by call 2.

Definition 4. A multipath M is a graph sequence G1, G2, G3, . . . such that
target(Gi) = source(Gi+1) for i = 1, 2, . . . A thread is a connected path of arcs
in M that starts at some Gt, t ≥ 1: th = zit

rt−→ zit+1

rt+1−→ zit+2

rt+2−→ . . .
with each rt+j ∈ {↓=, ↓}. The thread has infinite descent if it contains infinitely
many ↓’s.

26 M. Heizmann, N.D. Jones, and A. Podelski

For example, G2, G3, G1 is a multipath in Figure 2. It contains one thread with

3 arcs, namely u
↓=→ u

↓→ x
↓=→ u.

Definition 5 (Size-change terminating program). (Section 1.2 of [27]) Let
T be the set of calls in program P . Suppose each size-change graph Gτ : f → g
is safe for every call τ in

G = {Gτ | τ ∈ T }

Define P to be size-change terminating if, for any infinite call sequence π =
τ1τ2τ3 . . . that follows P ’s control flow, there is a thread of infinite descent in the
multipath Mπ = Gτ1 , Gτ2 , Gτ3 ,

2.3 Composition of Size-Change Graphs

Definition 6. The composition of two size-change graphs G : f → g and G′ :

g → h is G; G′ : f → h with arc set E defined below. Notation: write x
r→ y

r′
→ z

if x r→ y and y
r′
→ z are respectively arcs of G and G′.

E = {x ↓→ z | ∃y, r . x
↓→ y

r→ z or x
r→ y

↓→ z}⋃
{x ↓=→ z | (∃y . x

↓=→ y
↓=→ z) and (∀y, r, r′ . x

r→ y
r′
→ z implies r = r′ = ↓=)}

Further, we define:

– Size-change graph G is idempotent if G; G = G.
– Gπ = Gτ1 ; . . . ; Gτn for any finite call sequence π = τ1 . . . τn ∈ T ∗.

Lemma 7. The composition operator “ ; ” is associative.

2.4 A Closure Algorithm to Decide the SCT Property

Definition 8. The closure of a set G of size-change graphs is the smallest set
cl(G) such that

– G ⊆ cl(G)
– If G1 : f → f′ and G2 : f′ → f′′ are in cl(G), then G1; G2 ∈ cl(G).

In the worst case, cl(G) can be exponentially larger than G, see [27].

Example 9. Suppose G = {G1, G2, G3} as in Example 1. Its closure is

cl(G) = {G1, G2, G3, G12, G123, G1231, G13, G131, G1312, G23, G231, G31}

Each graph in cl(G) is the composition Gπ for a finite P call sequence π, e.g.,

G231 = G2; G3; G1

for π = 231 has f as both source and target, and contains one arc: u
↓→ u.

Size-Change Termination and Transition Invariants 27

Theorem 10. Program P is SCT terminating iff every idempotent G in cl(G)

has an arc z
↓→ z.

Proof. This is Theorem 4 from [27]. For “only if” (⇒), suppose P is size-change
terminating and that Gπ in cl(G) is idempotent: Gπ = Gπ ; Gπ. By Definition
5, the infinite call sequence πω = π, . . . , π, π, . . . has an infinitely descending
thread. Consider this thread’s position at the start of each π in πω . There are
finitely many variables, so the thread must visit some variable x infinitely often.
Thus there must be n, x such that πn has a thread from x to x containing
x

↓→ x. By Definition 6, arc x
↓→ x is in Gπn . Idempotence of Gπ implies Gπn =

Gπ; Gπ; . . . ; Gπ = Gπ, so x
↓→ x is in Gπ .

“If” (⇐): we show that if P is not size-change terminating, there exists an

idempotent G ∈ cl(G) without an arc z
↓→ z. Assuming P is not size-change

terminating, by Definition 5 there is an infinite call sequence π = τ1τ2 . . . such
that multipath Mπ = Gτ1 , Gτ2 , . . . has no infinitely descending thread. Define

h(k, �) = Gτk
; . . . ; Gτ�−1

for k, � ∈ IN with 0 < k < �. Define equivalence relation � on h’s domain by

(k, �) � (k′, �′) if and only if h(k, �) = h(k′, �′)

Relation � is of finite index since the closure set cl(G) is finite. By Ramsey’s
Theorem there exists an infinite set K ⊆ IN and fixed m, n ∈ IN such that
(k, �) � (m, n) for any k, � ∈ K with k < �. Expanding the definition of � gives

Gτk
; . . . ; Gτ�−1 = Gτm ; . . . ; Gτn−1

Let G◦ = h(m, n). By associativity of ;, p, q, r ∈ K, with p < q < r implies

G◦ = Gτp ; . . . ; Gτr−1

= (Gτp ; . . . ; Gτq−1); (Gτq ; . . . ; Gτr−1)
= G◦; G◦

so G◦ is idempotent (and so G◦ : f → f for some f).

If G◦ had an arc z
↓→ z, then the multipath Gτm , . . . , Gτn−1 would have a

descending thread from z to z. This would imply Mπ has an infinite descending
thread, violating the assumption about π. �

Theorem 11. The problem of deciding SCT termination is in pspace (as a
function of program size).

Proof. (Sketch) First, we argue that SCT termination is a path property in a
certain graph. Since the composition operator “ ; ” is associative, a graph G is
in cl(G) iff G = Gπ for some π. Thus by Theorem 10

P is size-change terminating iff there exists no call sequence π such that
Gπ is idempotent and Gπ contains no arc z

↓→ z.

28 M. Heizmann, N.D. Jones, and A. Podelski

This is a reachability problem in a directed graph (call it Γ). Each node of Γ is
a size-change graph G, and each arc is from Gπ to Gπ τ where π ∈ T ∗, τ ∈ T .
The number of nodes in Γ is the number of possible size-change graphs G for
program P .

A well-known result by Savitch is that existence of a path in a directed graph
with m nodes can be decided2 in space O(log2 m). (See [23] for the “divide-and-
conquer” proof.) The number of size-change graphs is bounded by 3p2

where p is
the number of variables in P . (Reasoning: between any two variables there may
be no arc, or one arc labeled by ↓, or one labeled by ↓=.) Thus the graph may, by
Savitch’s result, be searched using memory space O(log2(3p2

)). This is clearly
bounded by a polynomial in the number of variables of program P . �

[27] shows pspace to be a lower bound, so the problem is pspace-complete.

3 Transition Invariants (TI)

3.1 Programs Defined by Transitions

Following [31,28], in order to abstract away from the syntax of imperative pro-
grams we use transitions to formalize programs. A transition τ can be thought
of as a label or a statement.

Definition 12 (Transition-based program). We define a program to be a
triple

P = (Σ, T , ρ),

consisting of:

– a set of states Σ,
– a finite set of transitions T , and
– a function ρ that assigns to each transition a binary relation over states,

ρτ ⊆ Σ × Σ, for τ ∈ T .

The transition relation of P , denoted RP , comprises the transition relations ρτ

of all transitions τ ∈ T , i.e.,

RP =
⋃

τ∈T
ρτ .

A program P is terminating if its transition relation RP is well-founded. This
means there is no infinite computation

s1
τ1→ s2

τ2→ s3
τ3→ . . .

i.e., there is no sequence of states s1, s2, . . . and transitions τ1, τ2, . . . such that
for every i ∈ IN , the state pair (si, si+1) is contained in the transition relation ρτi .
2 A key point is that the entire graph Γ is not held in storage at any time, but just

the nodes currently being investigated. See [23] for the “divide-and-conquer” proof.

Size-Change Termination and Transition Invariants 29

States. Imperative programs in most references use a more concrete version of
states:

Σ = Loc × (Var → Value)

where Loc, Var are finite sets (of locations and variables), and Value is a perhaps
infinite set of values. Typical elements (perhaps decorated) are: � ∈ Loc, z ∈ Var
and v ∈ Value. A state in Σ has form s = (�, σ) where σ : Var → Value.

We only deal with one program at a time, so the objects P, Loc, Var, Value will
have fixed values. Letting Var = {z1, . . . , zm}, a state can be written as s = (�, σ)
or

s = (�, v1, . . . , vm)

Here � is the current location; v1, . . . , vm ∈ Value are the respective values of
variables z1, . . . , zm.

Extensional versus intensional representation. Program P ’s semantics is by Def-
inition 12 its transition relation RP ⊆ Σ × Σ, that is, a set of pairs of states
(s, s′), where s is the “current state” and s′ is the “next state”. Natural op-
erations on such sets include boolean operations ∪,∩, \ and set-formers. This
corresponds to an extensional view of semantics.

For practical uses (e.g., in a theorem prover) many writers use as alternative an
intensional view of semantics, and represent a set of state-pairs, i.e., a transition
relation, by a logic formula with implicit universal quantification over free logical
variables. The universe of discourse (for a given, fixed, program P): a formula
will always denote a subset of Σ×Σ. Formulas are built using logical operations
∨,∧,⇒,¬. These correspond exactly to ∪,∩,⊆ and Σ \ .

We follow the usual convention of naming values in s by unprimed logical vari-
ables, and values in s′ by primed logical variables. Logical variables are program
counters pc, pc′ and the variables of program P . Locations: the atomic formula
pc = � means that the control location of s is �; and pc′ = �′ means that the
control location of s′ is �′. Formula variables other than pc, pc′ are program vari-
ables ranging over Value. Formulas can represent state pair sets compactly, since
variables not occurring in a formula are simply not constrained (they range over
all of Value or Loc).

Example 13. Figure 3 expresses a transition-based program in the sense of Def-
inition 12, using an intensional representation, and comma to abbreviate con-
junction ∧. As we will see in Section 4, the program stems from translating the
functional program from Example 1.

3.2 Termination by Transition Invariants

In this section we give a brief description of terminology and results of [31]
restricted to termination ([31] also deals with general liveness properties and
fairness). We write r+ to denote the transitive closure of a relation r.

30 M. Heizmann, N.D. Jones, and A. Podelski

�1 �2

τ1

τ2

τ3

ρτ1 is pc = �1, pc′ = �2, x �= 0, x′ = x, y′ = y, u′ = x, v′ = y, w′ = y
ρτ2 is pc = �2, pc′ = �2, v > 0, x′ = x, y′ = y, u′ = u, v′ = v − 1, w′ = 2 ∗ w
ρτ3 is pc = �2, pc′ = �1, v = 0, x′ = u− 1, y′ = w, u′ = u, v′ = v, w′ = w

Fig. 3. Transition relation and corresponding control flow graph of a program P =

(Σ, T , ρ) where the set of states Σ is {�1, �2}×IN5, the set of transitions T is {τ1, τ2, τ3}
and the program’s transition relation RP (pc, x, y, u, v, w, pc′, x′, y′, u′, v′, w′) is ρτ1 ∨
ρτ2 ∨ ρτ3

Definition 14 (Transition invariant). Given a program P = (Σ, T , ρ), a
transition invariant T is a binary relation over states T that contains the tran-
sitive closure R+

P of the program’s transition relation RP , i.e.,

R+
P ⊆ T.

Definition 15 (Disjunctively well-founded relation). A relation T is dis-
junctively well-founded if it is a finite union of well-founded relations:

T = T1 ∪ · · · ∪ Tn

Theorem 16 (Proof rule for termination). A program P is terminating if
and only if there exists a disjunctively well-founded transition invariant for P .

As a consequence of the above theorem, we can prove termination of a program
P as follows.

1. Find a finite number of relations T1, . . . , Tn.
2. Show that the inclusion R+

P ⊆ T1 ∪ · · · ∪ Tn holds.
3. Show that each relation T1, . . . , Tn is well-founded.

Proof. This is Theorem 1 from [31]. “Only if” (⇒) is trivial: if P is terminating,
then both RP and R+

P are well-founded. Choose n = 1 and T1 = R+
P .

“If” (⇐): we show that if P is not terminating and T1∪· · ·∪Tn is a transition
invariant, then some Ti is not well-founded. Nontermination of P means there
exists an infinite computation:

s0
τ1→ s1

τ2→ s3
τ3→ . . .

Let choice function f satisfy

f(k, �) ∈ { Ti | (sk, s�) ∈ Ti }

for k, � ∈ IN with k < �. (The condition R+
P ⊆ T1∪· · ·∪Tn implies that f exists,

but does not define it uniquely.) Define equivalence relation � on f ’s domain by

(k, �) � (k′, �′) if and only if f(k, �) = f(k′, �′)

Size-Change Termination and Transition Invariants 31

Relation � is of finite index since the set of T ’s is finite. By Ramsey’s Theorem
there exists an infinite sequence of natural numbers k1 < k2 < . . . and fixed
m, n ∈ IN such that

(ki, ki+1) � (m, n) for all i ∈ IN.

Hence (ski , ski+1) ∈ Tmn for all i. This is a contradiction: Tmn is not
well-founded. �

In comparison to Theorem 10 the proof of Theorem 16 uses a weaker version
of Ramsey’s theorem. The weak version of Ramsey’s theorem states that ev-
ery infinite complete graph that is colored with finitely many colors contains a
monochrome infinite path.

Example 17. Consider the program P in Figure 3 and the binary relations
T1, . . . , T5 given by the five formulas below.

T1 : pc = f ∧ pc′ = f ∧ x > x′,

T2 : pc = g ∧ pc′ = g ∧ v > v′,

T3 : pc = g ∧ pc′ = g ∧ u > u′,

T4 : pc = f ∧ pc′ = g,

T5 : pc = g ∧ pc′ = f,

The union of these relation is a transition invariant for P , i.e., the inclusion R+
P ⊆

T1 ∪ · · · ∪ T5 holds. Since every Ti is well-founded, their union is a disjunctively
well-founded transition invariant and hence, by Theorem 16 the program P is
terminating.

3.3 Transition Predicate Abstraction (TPA)

Transition predicate abstraction [32] is a method to compute transition in-
variants, just as predicate abstraction is a method to compute invariants. The
method takes as input a selection of finitely many binary relation over states.
We call these relations transition predicates. For this section we fix a finite set of
transition predicates P . We usually refer to a transition predicate by the formula
that defines it.

Definition 18 (Set of abstract transitions T #
P). Given the set of transition

predicates P, the set of abstract transitions T #
P is the set that contains the

conjunction of every subset of transition predicates {p1, . . . pm} ⊆ P, i.e.,

T #
P = {p1 ∧ . . . ∧ pm | pi ∈ P , 0 ≤ m, 1 ≤ i ≤ m}

Clearly T #
P is closed under intersection, and the set of all binary relations over

states Σ × Σ is a member of T #
P (the case m = 0).

32 M. Heizmann, N.D. Jones, and A. Podelski

Example 19. Consider the following set of transition predicates.

P = {x = x′, x > x′, y > y′}

The set of abstract transitions T #
P is

{true, x = x′, x > x′, y > y′, x = x′ ∧ y > y′, x > x′ ∧ y > y′, false}

The abstract transition written as true is the set of all state pairs Σ × Σ and is
the empty conjunction of transition predicates. The abstract transition false is
the empty relation; e.g., the conjunction of x = x′ and x > x′ is false.

We next define a function that assigns to a binary relation T over states the
least (wrt. inclusion) abstract transition that is a superset of T .

Definition 20 (Abstraction function α). A set of transition predicates P
defines the abstraction function

α : 2Σ×Σ → T #
P

that assigns to a relation r ⊆ Σ × Σ the smallest abstract transition that is a
superset of r, i.e.,

α(r) =
∧

{p ∈ P | r ⊆ p}.

We note that α is extensive, i.e., the inclusion

r ⊆ α(r)

holds for any binary relation over states r ⊆ Σ × Σ.

�τ1 τ2
ρτ1 is pc = � ∧ pc′ = � ∧ x′ = x− 1

ρτ2 is pc = � ∧ pc′ = � ∧ x′ = x ∧ y′ = y − 1

Fig. 4. Transition relation and corresponding control flow graph of a program P =

(Σ, T , ρ) where the set of states Σ is {�} × IN × IN , the set of transitions T is {τ1, τ2}
and the program’s transition relation RP (pc, x, y, pc′, x′, y′) is ρτ1 ∨ ρτ2

Example 21. Application of the abstraction function α to the transition relations
ρ1 and ρ2 of the program in Figure 4 results in the following abstract transitions.

α(ρτ1) is x > x′

α(ρτ2) is x = x′ ∧ y > y′

We next present an algorithm that uses the abstraction α to compute (a set
of abstract transitions that represents) a transition invariant. The algorithm
terminates because the set of abstract transitions T #

P is finite.

Size-Change Termination and Transition Invariants 33

Algorithm (TPA)
Transition invariants via transition predicate abstraction.

Input: program P = (Σ, T , ρ)
set of transition predicates P
abstraction α defined by P (according to Def. 20)

Output: set of abstract transitions P# = {T1, . . . , Tn}
such that T1 ∪ · · · ∪ Tn is a transition invariant

P# := {α(ρτ) | τ ∈ T }
repeat

P# := P# ∪ {α(T ◦ ρτ) | T ∈ P#, τ ∈ T , T ◦ ρτ �= ∅}
until no change

Our notation P# for the set of abstract transitions computed by Algo-
rithm TPA stems from [32]. There, P# is called an abstract transition program.
In contrast to [32] we do not consider edges between the abstract transitions.

Theorem 22 (TPA). Let P# = {T1, . . . , Tn} be the set of abstract transi-
tions computed by Algorithm TPA. If every abstract relation T1, . . . , Tn is well-
founded, then program P is terminating.

Proof. The union of the abstract relations T1 ∪ · · · ∪Tn is a transition invariant.
If every abstract relation T1, . . . , Tn is well-founded, the union T1 ∪ · · · ∪ Tn is a
disjunctively well-founded transition invariant and by Theorem 16 the program
P is terminating. �

Example 23. Consider the program P in Figure 4 and the set of transition pred-
icates P in Example 19. The output of Algorithm TPA is

P# = {x > x′, x = x′ ∧ y > y′}

Both abstract transitions in P# are well-founded. Hence P is terminating.

4 Correctness Proofs and Abstractions

We have defined size-change termination for functional programs, and transition
invariants for transition-based programs. For the purpose of comparison, we now
restrict size-change termination to the transition-based programs that we obtain
from translating functional programs.

From now on, we deal only with tail-recursive functional programs where
all functions use a common variable name space (the latter condition is not a
proper restriction since we can always add redundant parameters, and rename
parameters if necessary to ensure uniqueness).

34 M. Heizmann, N.D. Jones, and A. Podelski

Under this restriction, the translation of a functional program into a
transition-based program P = (Σ, T , ρ) with the same termination behavior
is straightforward:

– the set of states Σ is the Cartesian product of the set of locations Loc and
the data domains for the function parameters; we have a location �f in Loc
for every function f,

– the set of transitions T contains a transition τc for each call c,
– the transition relation ρτc of the transition τc is defined by

ρτc = {((�f, v), (�g, w)) | E [[e1]]v = w1, . . . , E [[en]]v = wn}.

if the call c occurs in a function definition of the form

f(x1, . . . , xn) = . . . c : g(e1, . . . , en)

From now on we fix a transition-based program P which stems from the trans-
lation of a (tail-recursive) functional program. The size-change termination of P
is equivalent to the size-change termination of the original functional program.

Example 24. The translation-based program in Figure 3 is obtained by trans-
lating the functional program in Figure 1 after adding parameters in order to
obtain a common variable name space.

f(x,y,u,v,w) = if x=0 then y else 1: g(x,y,x,y,y)

g(x,y,u,v,w) = if v>0 then 2: g(x,y,u,v-1,2*w)

else 3: f(u-1,w,u,v,w)

Fig. 5. The functional program of Figure 1, modified to have a common name space

4.1 From Graphs to Transition Relations

Suppose size-change graph G safely describes call c as in Definition 3. Clearly
G expresses a conjunction of relations (each one either ↓ or ↓=) between some
parameters of source f and some parameters of target g. By the common name
space assumption, f and g have the same parameters. This section shows that
graph G defines an abstraction of c’s transition relation ρτc .

Since a graph is not a set of pairs of states (and not a formula either), we
devise a notation Φ(G) for the set of state pairs described by size-change graph
G. Therefore we define as a first step a class of binary relations that represent
the atomic pieces of information contained in a size-change graph (which are:
source, target, value decrease and strict value decrease).

Definition 25 (Set of size-change predicates PSCT). We call a binary re-
lation a size-change predicate if it is defined by one of the formulas

pc = �
pc′ = �
zi ≥ z′j
zi > z′j

Size-Change Termination and Transition Invariants 35

where the variable pc ranges over the set of program locations Loc, and zi and
zj are program variables. We use PSCT for the (finite) set of all size-change
predicates for the current program P .

As a second step, we define the relation Φ(G) to be a conjunction of these size-
change predicates (parallel to Definition 2).

Definition 26. Given a size-change graph G : � → �′ with arc set E, define the
binary relation over states Φ(G) ⊆ Σ × Σ by the following formula.

pc = � ∧ pc′ = �′ ∧
∧

{zi ≥ z′j | (zi, ↓=, zj) ∈ E} ∧
∧

{zi > z′j | (zi, ↓, zj) ∈ E}

Example 27. The binary relations over states assigned to the size-change graphs
of Figure 5 are the following.

Φ(G1) is pc = f ∧ pc′ = g∧ x ≥ x′∧ y ≥ y′∧ x ≥ u′∧ y ≥ v′∧ y ≥ w′

Φ(G2) is pc = g ∧ pc′ = g∧ x ≥ x′∧ y ≥ y′∧ u ≥ u′∧ v > v′

Φ(G3) is pc = g ∧ pc′ = f∧ u > x′∧ w ≥ y′∧ u ≥ u′∧ v ≥ v′∧ w ≥ w′

The inclusion RP ⊆ Φ(G1)∨Φ(G2)∨Φ(G3) means that the transition relation RP

is approximated by the set {G1, G2, G3} of size-change graphs. The inclusion is
strict, meaning that the approximation loses precision. An instance of precision
loss: the set PSCT does not contain any of the transition predicates x �= 0, v > 0,
v = 0 that account for the tests.

The following definition extends Definition 3 from a functional program to its
translation to a transition-based program P .

Definition 28. Let Gτ be the size-change graph assigned to the transition τ of
program P . We say that Gτ is safe for τ if the inclusion ρτ ⊆ Φ(Gτ) holds. A
set of graphs {Gτ | τ ∈ T } is a safe description of program P if Gτ is safe for
τ for every transition τ of P .

We now consider the composition of size-change graphs (Definition 6).

Lemma 29. The composition of the two size-change graphs G1 : � → �′ and
G2 : �′ → �′′ overapproximates the composition of the relations they define, i.e.,

Φ(G1) ◦ Φ(G2) ⊆ Φ(G1; G2).

Corollary 30. If Gτ is a size-change graph that is safe for τ , then for every
transition relation T and every size-change graph G such that G; Gτ is defined

T ⊆ Φ(G) implies T ◦ ρτ ⊆ Φ(G; Gτ)

Proof. ρτ ⊆ Φ(Gτ) by Definition 28, so T ◦ ρτ ⊆ Φ(G) ◦ Φ(Gτ) ⊆ Φ(G; Gτ) by
Lemma 29. �
Lemma 31. Let G be a size-change graph such that source and target of G

coincide. If G has an arc of form x
↓→ x then the relation Φ(G) is well-founded.

Proof. Let G be a size change graph with an an arc x
↓→ x. By Definition 26 the

relation Φ(G) is a subset of the relation x′ < x. Since x′ < x is well-founded, all
subsets are also well-founded. �

36 M. Heizmann, N.D. Jones, and A. Podelski

Remark: The converse of Lemma 31 is false, e.g., for the arc set {x ↓→ y, y
↓→ x}.

4.2 SCT and Disjunctive Well-Foundedness

Theorem 32 (Idempotence and well-foundedness). If every idempotent
size-change graph in the closure cl(G) of the set of size-change graphs G defines
a well-founded relation, i.e.,

∀G ∈ cl(G) : G; G = G =⇒ Φ(G) well-founded

then Φ(G) is well-founded for every graph in cl(G).

Proof. Let G ∈ cl(G) be a size-change graph.

Case 1: Source and target of G do not coincide.
Then there exist two different locations �, �′ such that Φ(G) ⊆ pc = �∧pc′ =
�′ and therefore Φ(G) ◦ Φ(G) = ∅ which implies that Φ(G) is well-founded.

Case 2: Source and target of G coincide.
Then Gn is defined for all n ∈ IN . The semigroup ({Gn | n ∈ N}, ;) is finite
and has therefore an idempotent element Gk (since every finite semigroup has
an idempotent element). By assumption Φ(Gk) is well-founded. By induction
over k and Lemma 29 the inclusion Φ(G)k ⊆ Φ(Gk) holds. Hence Φ(G)k is
well-founded and therefore also Φ(G) is well-founded (Reason: If a relation
r is not well-founded, then for all n ∈ N, rn is not well-founded.)

Therefore, for every G ∈ cl(G) the transition Φ(G) is well-founded. �

Since size-change termination is equivalent to the premise of Theorem 32, and its
conclusion can be expressed in terms of disjunctive well-foundedness, we obtain
the following statement directly.

Corollary 33 (SCT and disjunctive well-foundedness). Let G be a set of
size-change graphs that is a safe description of program P . If program P is size-
change terminating for a set of size-change graphs G that is a safe description
of P , then the relation defined by its closure cl(G)⋃

{Φ(G) | G ∈ cl(G)}

is a disjunctively well-founded transition invariant for P .

Proof. We first show, that the disjunction is a transition invariant, i.e.,

R+
P ⊆

⋃
{Φ(G) | G ∈ cl(G)}.

Let (s, s′) ∈ R+
P . By definition of R+

P there is a sequence of transition relations
ρτ1 , ρτ2 , . . . , ρτn such that (s, s′) is contained in the composition ρτ1◦ρτ2◦· · ·◦ρτn .

For every such sequence there is a size-change graph G ∈ cl(G) such that the
inclusion ρτ1 ◦ ρτ2 ◦ · · · ◦ ρτn ⊆ Φ(G) holds. This can be shown by induction

Size-Change Termination and Transition Invariants 37

over n, where the induction basis holds by Definition 28 and the induction step
follows from Corollary 30. Hence (s, s′) ∈ Φ(G) for some G ∈ cl(G), so (s, s′) ∈⋃
{Φ(G) | G ∈ cl(G)}.
Since P is size-change terminating for G, every idempotent size change-graph

G ∈ cl(G) contains an arc of form x
↓→ x (by Theorem 10, or Theorem 4

of [27]). By Lemma 31, for every idempotent size change-graph G ∈ cl(G) the
relation Φ(Gk) is well-founded. Hence by Theorem 32 for every size change-graph
G ∈ cl(G) the relation Φ(Gk) is well-founded. Therefore

⋃
{Φ(G) | G ∈ cl(G)}

is a disjunctively well-founded transition invariant for P . �

4.3 Size-Change Graphs and Transition Predicate Abstraction

Lemma 34. Let α be the abstraction function for the set of size-change predi-
cates PSCT . If the size-change graph G denotes a superset of a binary relation
over states T , then the size-change graph G denotes a superset of the abstract
transition α(T), i.e.

T ⊆ Φ(G) implies α(T) ⊆ Φ(G)

Proof. For every size-change graph G, the relation Φ(G) is a conjunction of
size-change predicates. Therefore the inclusion α(T) ⊆ Φ(G) holds if for every
p ∈ PSCT the inclusion Φ(G) ⊆ p implies the inclusion α(T) ⊆ p. Let p be a
size-change predicate. Let Φ(G) ⊆ p. Assume that the inclusion T ⊆ Φ(G) holds.
Then the inclusion T ⊆ p holds and by Definition 20 the inclusion α(T) ⊆ p
holds.

Corollary 35. Let α be the abstraction function for the set of size-change pred-
icates PSCT . The abstract transition α(ρτ) is a subset of the denotation of any
size-change graph Gτ that is safe for τ , formally

α(ρτ) ⊆ Φ(Gτ)

This inclusion can be strict in case Gτ is not the “best” description of ρτ . An
extreme example: Gτ has the empty set of arcs.

Lemma 36. Let cl(G) be the closure (Definition 8) for a set of size-change
graphs G that is a safe description of program P . Let P# be a set of abstract
transitions computed by Algorithm TPA for the set of size-change predicates
PSCT .

For every abstract transition T in P# there exists a size-change graph G in
cl(G) that contains T, formally

Φ(G) ⊇ T.

Proof. Let T ∈ P#. By Algorithm TPA there is a sequence of transitions
τ1, . . . , τ2 such that the equation

T = α(. . . α(α(ρτ1) ◦ ρτ2) · · · ◦ ρτn)

38 M. Heizmann, N.D. Jones, and A. Podelski

holds. Let Gτi be a graph that is safe for τi and G be a size-change graph defined
by the following equation.

G = Gτ1 ; . . . ; Gτn

The inclusion Φ(G) ⊇ T holds by induction, where the induction basis holds by
Definition 28 and Lemma 34 and the induction step follows from Corollary 30.

Theorem 37. Let G be a set of size-change graphs that is a safe description of
program P . Let P# be a set of abstract transitions computed by Algorithm TPA

for the set of size-change predicates PSCT . If P is size-change terminating for
G then P# defines a disjunctively well-founded transition invariant.

Proof. The output of Algorithm TPA P# defines a transition invariant for P . If
P is size-change terminating, then by Corollary 33 every element of {Φ(G) | G ∈
cl(G)} is well-founded. Hence by Lemma 36 every element of P# is well-founded.
Therefore

⋃
P# is a disjunctively well-founded transition invariant. �

5 Decision Problems for Termination Analyses

In this section, we categorize the base algorithm in the different termination
analyses by the decision problem that it solves, and then establish an formal
connection between the decision problems.

Part of the input of those decision problems will be a transition abstraction.
A transition abstraction fixes a set of abstract values T # and their meaning via
the denotation function γ. Each abstract value a denotes a relation over states,
i.e., γ(a) ⊆ Σ×Σ. The transition abstraction fixes also a distinguished abstract
value aτ for every transition τ of the given program. A termination analysis
starts with those values.

Programs, transition relations, states, etc. are as defined in Section 3.

Definition 38 (Transition Abstraction). Given a program P = (Σ, T , ρ), a
transition abstraction is a triple

(T #, γ, {aτ |τ ∈T })

consisting of:

1. a finite set T # of abstract values called abstract relations,
2. a denotation function γ that assigns to each abstract relation a relation over

the program’s states, i.e.,

a ∈ T # =⇒ γ(a) ⊆ Σ × Σ

3. a set of distinguished abstract values indexed by transitions τ of the program,
i.e.,

aτ ∈ T #, for τ ∈ T .

Size-Change Termination and Transition Invariants 39

The abstract relation for the transition τ must safely abstract the transition
relation defined by τ , formally

ρτ ⊆ γ(aτ)

for each transition τ in T .

A set X of abstract relations denotes their union, i.e.,

γ(X) =
⋃

{γ(a) | a ∈ X}, for X ⊆ T .

Example 39 (SCT). In order to rephrase size-change analysis as presented in
Section 2, one may use the transition abstraction where:

– the abstract relations a ∈ T # are size-change graphs G,
– the denotation function γ is the function Φ of Definition 26, i.e., a graph G

denotes the transition relation defined by the formula Φ(G),
– the distinguished abstract transitions aτ for transitions τ are exactly the

size-change graphs Gτ for calls τ in the set G fixed in Definition 5.

Since we translate the function Φ on size-change graphs to the denotation func-
tion γ, the safety required for the size-changes graphs Gτ translates directly to
the safety requirement for the aτ in Definition 38; see Definition 28.

Example 40 (TPA). In order to rephrase transition predicate abstraction as pre-
sented in Section 3.3, one may use the transition abstraction where:

– the abstract relations a ∈ T # are the abstract transitions p1 ∧ . . . ∧ pm,
which are conjunctions of transition predicates pj ∈ P , for the given set of
transition predicates P .

T # = {p1 ∧ . . . ∧ pm | p1, . . . , pm ∈ P , 0 ≤ m}

– the denotation function γ is essentially the identity function, i.e., the de-
notation of a conjunction of transition predicates is the intersection of the
transition relations they denote,

– the abstract transition aτ is the abstraction α applied to the transition re-
lation ρτ . This is the strongest abstraction transition that contains ρτ , or,
equivalently, is the conjunction of all transition predicates in P that con-
tain ρτ ; see Definition 20.

aτ = α(ρτ) (=
∧

{p ∈ P | ρτ ⊆ p})

5.1 Transformer on Abstract Relations

Given a transition τ of the program, we consider a function F#
τ that assigns

to each abstract relation a another abstract relation a′ = F#
τ (a). The idea is

that the function F#
τ abstracts the relational composition with the transition

relation ρτ (i.e., it abstracts the function Fτ such that Fτ (T) = T ◦ ρτ).

40 M. Heizmann, N.D. Jones, and A. Podelski

For better legibility, we write F#(a, τ) instead of F#
τ (a). We call F# a

(parametrized) abstract-relation transformer.
In this section, we fix a program P = (Σ, T , ρ) and a transition abstraction

(T #, γ, {aτ |τ ∈T }) defining a set of abstract relations, their denotation, and a
set of abstract relations for the transitions of the program.

Definition 41 (Abstract-relation transformer F#). Given a program P =
(Σ, T , ρ) and a transition abstraction (T #, γ, {aτ |τ ∈T }), an abstract-relation
transformer is a function

F# : T # × T → T #

such that
γ(F#(a, τ)) ⊇ γ(a) ◦ ρτ

In words, the application of F# to the abstract relation a and the transition τ
overapproximates the relational composition of the relation denoted by a with the
transition relation defined by τ .

Example 42 (Continuing Examples 39 and 40)
Continuing Example 39, where we use size-change graphs as abstract relations,
one may define the abstract-relation transformer as follows.

F#(G, τ) = G; Gτ

The safety of Gτ for the call/transition τ yields the safety requirement in Defi-
nition 41; see Definition 28, Lemma 29 and Corollary 30.

Continuing Example 40, where we use abstract transitions (i.e., conjunctions
of transition predicates) as abstract relations, one may define the abstract-
relation transformer by

F#(T, τ) = α(T ◦ ρτ),

where α is the abstraction function defined by the given set of transition predi-
cates; see Definition 20.

We next introduce an expression to denote a set of abstract relations. We call
it “the least fixpoint of the abstract-relation transformer F#” although, strictly
speaking, it is not a fixpoint of the function F#. (Instead, it is the fixpoint of a
functional that can be derived from F#. This functional ranges over the powerset
lattice generated by the abstract relations. The least fixpoint is the least fixpoint
of this functional above the set {aτ |τ ∈T }, i.e., the set of abstract relations aτ

for the transitions of the given program P . For notational economy we will not
formally define the lattice and the functional.)

Definition 43 (Least fixpoint of the abstract-relation transformer F#).
Given a program P = (Σ, T , ρ), a transition abstraction (T #, γ, {aτ |τ ∈T }), and
an abstract-relation transformer F#, the “least fixpoint of the abstract-relation
transformer F#”, written

lfp({aτ |τ ∈T }, F#),

is defined as the least set of abstract relations X such that

Size-Change Termination and Transition Invariants 41

– X contains the set of abstract relations aτ for each transition τ ,

X ⊇ {aτ |τ ∈T }

– and X is closed under application of the abstract-relation transformer for
every transition τ , i.e., the application of F# to an abstract relation a in X
and a transition τ is again an element of X, formally

X ⊇ {F#(a, τ) | a ∈ X, τ ∈ T }.

Lemma 44. The least fixpoint of the abstract-relation transformer F# can be
indexed by the sequences of transitions τ1, . . . , τn, i.e.,

lfp({aτ |τ ∈T }, F#) = {aτ1...τn | n ≥ 1, τ1, . . . , τn ∈ T }

where aτ1τ2 = F#(aτ1 , τ2), aτ1τ2τ3 = F#(aτ1τ2 , τ3), etc..

The following lemma states that we can use a transition abstraction and an
abstract-relation transformer to compute a transition invariant for the pro-
gram P .

Lemma 45 (Transition invariants via the abstract-relation trans-
former F#). Given a program P = (Σ, T , ρ) with transition relation RP , a
transition abstraction (T #, γ, {aτ |τ ∈T }), and an abstract-relation transformer
F#, the least fixpoint of the abstract-relation transformer F# denotes a transi-
tion invariant for P , i.e.,

R+
P ⊆ γ(lfp({aτ |τ ∈T }, F#)).

We next define a decision problem, and then characterize a specific class of
termination analyses as decision procedures for the problem.

Problem: Lfp Checking for Abstract Relations

Input:

– a program P = (Σ, T , ρ)
– a transition abstraction (T #, γ, {aτ |τ ∈T })
– an abstract-relation transformer F# : T # × T → T #

– a subset GOOD ⊆ T # such that every element of GOOD denotes
a well-founded relation

Property: lfp({aτ |τ ∈T }, F#) ⊆ GOOD

Theorem 46 (Lfp Checking for Abstract Relations and Termination).
The program P is terminating if the decision procedure Lfp Checking for

Abstract Relations answers yes.

42 M. Heizmann, N.D. Jones, and A. Podelski

This decision procedure is a semi-test for termination: a yes-answer is definite,
a no-answer is no.

Proof. If the procedure answers yes, the least fixpoint of the abstract-relation
transformer F# is not only a transition invariant (by Lemma 45) but it is also
disjunctively well-founded. Thus, Theorem 16 applies and P is terminating. �

Next, a complexity result. To make the statement simpler, we (reasonably) as-
sume henceforth that the number of abstract relations is greater than the number
of transitions, i.e., |T #| ≥ |T |. In the setting of Examples 39, 40, and 42, the
number of abstract relations is:

– (in the setting of SCT, as in Examples 39 and 42) exponential in the square
of the size of the program (to be precise, it is bound by 3p2

where p is the
number of program variables),

– (in the setting of TPA, as in Examples 40 and 42) exponential in the number
of transition predicates in P .

Theorem 47. Lfp Checking for Abstract Relations is decidable in time
polynomial in |T #|, and (by another algorithm) in space O(log2|T #|).

Proof. Consider a directed graph Γ . The nodes of Γ are the abstract relations in
T # plus two special nodes init and finso the graph Γ contains |T #| + 2 nodes.
Let a, a′ ∈ T #, we define that

– Γ contains an edge from a to a′ if and only if there is a τ ∈ T such that
F#(a, τ) = a′,

– Γ contains an edge from init to a if and only if a ∈ {aτ | τ ∈ T },
– and Γ contains an edge from a to fin if and only if a /∈ GOOD.

We conclude: Γ contains a path from init to a iff a ∈ lfp({aτ |τ ∈T }, F#). Fur-
ther, Γ contains a path from init to fin iff lfp({aτ |τ ∈T }, F#) � GOOD. For time:
the graph can be searched by, for example, Dijkstra’s algorithm. For space: a
well-known result by Savitch is that existence of a path in a directed graph with
n nodes can be decided in space O(log2 n). �

5.2 Composition of Abstract Relations

In Section 5.1, we used the function F# to abstract the relational composition
of relations with the transition relations ρτ for the program transitions τ . In this
section, we introduce a binary operator on abstract relations in order to abstract
the binary relational composition operator.

Definition 48 (Abstract composition ◦#). Given a program P = (Σ, T , ρ)
and a transition abstraction (T #, γ, {aτ |τ ∈T }), an abstract composition is a
binary operation on abstract relations,

◦# : T # × T # → T #

Size-Change Termination and Transition Invariants 43

such that
γ(a1 ◦# a2) ⊇ γ(a1) ◦ γ(a2).

In words, the abstract composition of two abstract relations a1 and a2 overap-
proximates the relational composition of the two relations denoted by a1 resp.
a2.

Example 49 (continuing Examples 39 and 40). In the setting of size-change ter-
mination, the composition operator on size-change graphs (written G1; G2) is an
abstract composition by Lemma 29 (it uses Φ for the denotation function γ).

In the setting of transition predicate abstraction, we can define the abstract
composition over abstract transitions T1 and T2 (i.e., conjunctions of transition
predicates) by T1 ◦# T2 = α(T1 ◦T2), where α is the abstraction function defined
by the given set of transition predicates; see Definition 20. Note that, in contrast
with the size-change setting, the abstract composition over abstract transitions
is in general not associative.

Definition 50 (Closure of an abstract composition). Given a program
P = (Σ, T , ρ), a transition abstraction (T #, γ, {aτ |τ ∈T }), and an abstract com-
position ◦#, the “closure of the abstract composition ◦#”, written

cl({aτ |τ ∈T }, ◦#)

is the smallest set of abstract relations X such that

– X contains the set of abstract relations aτ for the transitions τ ,

X ⊇ {aτ |τ ∈T }

– and X is closed under abstract composition, i.e., the abstract composition of
two abstract relations a1 and a2 in X is again an element in X:

X ⊇ {a1 ◦# a2 | a1 ∈ X, a2 ∈ X}.

The following lemma states (in analogy with Lemma 45) that we can use a
transition abstraction and an abstract composition over abstract relations to
compute a transition invariant for the program P .

Lemma 51 (Transition invariants via abstract composition ◦#). Given
a program P = (Σ, T , ρ) with transition relation RP , a transition abstraction
(T #, γ, {aτ |τ ∈T }), and an abstract composition ◦#, the closure of the abstract
composition denotes a transition invariant for P , i.e.,

R+
P ⊆ γ(cl({aτ |τ ∈T }, ◦#)).

In analogy to Section 5.1, we state a decision problem. In contrast with Sec-
tion 5.1, the input contains not an abstract-relation transformer F#, but an
abstract composition ◦#. It is checked if the closure of ◦# is a subset of GOOD.

This enables us to characterize a second class of termination analyses as de-
cision procedures for this problem.

44 M. Heizmann, N.D. Jones, and A. Podelski

Problem: Closure Checking for Abstract Relations

Input:

– a program P = (Σ, T , ρ)
– a transition abstraction (T #, γ, {aτ |τ ∈T })
– an abstract composition ◦# : T # × T # → T #

– a subset GOOD ⊆ T # such that every element of GOOD denotes
a well-founded relation

Property: cl({aτ | τ ∈ T }) ⊆ GOOD

Theorem 52 (Closure Checking for Abstract Relations and Termina-
tion). Program P terminating if the decision procedure Closure Checking

for Abstract Relations answers yes.

Proof. Analogous to Theorem 46. �

The next result investigates the complexity of the decision problem Closure

Checking for Abstract Relations .

Theorem 53. The problem Closure Checking for Abstract Relations

is ptime-complete in the number of transition relations |T #|.

Proof. First, the problem Closure Checking for Abstract Relations is
in ptime, since a straightforward bottom-up algorithm can compute and test
for well-foundedness all elements in cl({aτ | τ ∈ T }). (Remark: we count the
well-foundedness test a ∈ GOOD? as one step.)

Second, we show the problem is ptime-hard by reduction from a known
ptime-complete problem to Closure Checking for Abstract Relations.
The problem gen is a membership problem for the closure of an operation, de-
fined as follows. Given: A finite set W , a binary operation op on W, a subset
V ⊆ W , and w ∈ W . To decide: Is w ∈ cl(V, op)?

Given a gen instance (W, op, V, w), let P = (Σ, T , ρ) be a program such that

– the set of states is the empty set
– the set of transitions T is V
– the transition relation ρτ of every transition τ is the empty set.

Let (T #, γ, {aτ |τ ∈T }) be a transition abstraction such that

– the set of abstract relations is T # = W
– the denotation γ assigns to each abstract relation the empty set.
– the set of program transition relations is {aτ |τ ∈T } = V .

Size-Change Termination and Transition Invariants 45

Since every abstract relation denotes the empty relation, op = ◦# is trivially an
abstract composition. We choose GOOD = W\{w}. This is a valid choice since
every abstract relation denotes a well-founded relation.

Clearly w /∈ cl(V, op) if and only if the inclusion cl({aτ |τ ∈T }, op) ⊆ GOOD
holds. The complexity result follows since the negation of any ptime-complete
problem is also ptime-complete. �

Abstract-relation transformers F# versus abstract composition ◦#: Precision.
A termination analysis A has higher precision than a termination analysis B if
A returns a yes-answer whenever B does, and possibly strictly more often (a
yes-answer is definite in proving termination of the input program).

One might expect, by the complexity results above, that a termination analysis
based on abstract composition has higher precision than one based on abstract-
relation transformers (as a trade-off for the higher complexity). In fact, one can
always define a termination analysis based on abstract-relation transformers that
has higher precision than one based on abstract composition, sometimes strictly
higher.3 We distinguish two distinct causes for the difference in precision.

– Both the abstract relation transformer F#(a, τ) and the abstract compo-
sition a ◦# aτ define an abstraction of the relation γ(a) ◦ ρτ . However the
former can be strictly more precise than the latter, since the abstract com-
position has to be an abstraction of a superset of γ(a) ◦ γ(aτ). In fact, there
are cases of abstract-relation transformers F# with a yes-answer (proving
that the input program terminates) such that no abstract composition ◦#

exists with a yes-answer.
– A set of abstract relations X that contains all elements a◦# aτ where a ∈ X

can be strictly smaller than one that contains all elements a1 ◦# a2 where
a1 ∈ X and a2 ∈ X .

Even if we require the abstract-relation transformers F# to be defined
by F#(a, τ) = a ◦# aτ , there are cases where the Lfp Checking for Ab-

stract Relations returns a yes-answer but the Closure Checking for

Abstract Relations returns a no-answer.

Finally, a potential advantage of abstract composition above abstract-relation
transformers. The latter can be defined and constructed only once the input pro-
gram with its transitions τ is known. The former can be defined and constructed
in a pre-processing step, once the set of abstract relations T # is fixed.

5.3 Special Case: Associative Composition of Abstract Relations

In this section we investigate the special case where the abstract composition
◦# of abstract relations is associative. The example of size-change termination
falls into this case, i.e., the composition of size-change graphs is associative. We
will see that associativity has two consequences.
3 We discuss the change of setting and the resulting differences in the online version

of this paper [20].

46 M. Heizmann, N.D. Jones, and A. Podelski

– The decision problem Closure Checking for Abstract Relations can
be reduced to the decision problem Lfp Checking for Abstract Rela-

tions . We thus obtain a better upper bound for the complexity.
– The decision problem can be further reduced to a decision problem where

the inclusion in the question “cl({aτ | τ ∈ T }) ⊆ GOOD” is restricted to a
subset of abstract relations. The subset consists of idempotent elements a,
i.e., where a ◦# a = a. Thus, we can replace the input parameter GOOD by
a subset of GOOD (containing idempotent elements only), and reserve the
well-foundedness check for only those elements.

We recall that both of the above decision problems require the well-foundedness
of every relation denoted by an abstract relation a in GOOD.

Theorem 54. The closure of an associative abstract composition ◦# equals the
least fixpoint of the abstract-relation transformer F# defined by

F#(a, τ) = a ◦# aτ

i.e.,
lfp({aτ |τ ∈T }, F#) = cl({aτ | τ ∈ T }, ◦#).

Corollary 55. If the abstract composition ◦# is associative, Closure Check-

ing for Abstract Relations is decidable in space O(log2|T #|).

We note the correspondence to Theorem 11.

Theorem 56. If every idempotent element in the closure cl({aτ |τ ∈T }, ◦#) of
an associative abstract composition, then every element (idempotent or not)
denotes a well-founded relation.

Proof. We show that whenever some element of cl({aτ | τ ∈ T } denotes a
relation that is not well-founded, then cl({aτ | τ ∈ T } contains an idempotent
element that denotes a non-well-founded relation.

Let a ∈ T # be an abstract relation. We define the following notation recur-
sively for n ≥ 1.

an =

{
a if n = 1
an−1 ◦# a otherwise

γ(a)n =

{
γ(a) if n = 1
γ(a)n−1 ◦ γ(a) otherwise

Since (cl({aτ | τ ∈ T }), ◦#) is a finite semigroup, ({an | n ≥ 1}, ◦#) is also a fi-
nite semigroup. By stepwise induction and definition of an abstract composition,
we get that the inclusion

γ(a)n ⊆ γ(an)

holds for n ≥ 1.
A well-known result is that every finite semigroup has an idempotent element.

Let k ∈ IN be a natural number, such that ak is idempotent. Assume the relation
γ(a) is not well-founded. Then the relation γ(a)k and its superset γ(ak) are also
not well-founded. Hence the idempotent element ak denotes a relation that is
not well-founded. �

Size-Change Termination and Transition Invariants 47

This proves a slightly stronger result than Theorem 56: a sufficient condition is
associativity of the abstract composition on the elements of the closure.

In the decision problem we define below, one may obviously restrict the ele-
ments in the input parameter GOOD to idempotent elements.

Problem: Associative Closure Checking for Abstract Relations

Input:

– a program P = (Σ, T , ρ).
– a transition abstraction (T #, γ, {aτ |τ ∈T }).
– an associative abstract composition ◦#

– a subset GOOD ⊆ T # such that every element of GOOD denotes
a well-founded relation.

Property: {a ∈ cl({aτ | τ ∈ T }) | a is idempotent} ⊆ GOOD

Example 57. In the setting of size-change termination, where the transitions τ
are the calls, the abstract relations are the size-change graphs, the (associative!)
abstract composition is the composition operator “ ; ” of size-change graphs, we
choose GOOD to be the set of all idempotent size-change graphs G with an arc
z

↓→ z (the denotation of G is then a well-founded relation).

Theorem 58 (Associative Closure Checking for Abstract Relations
and Termination). Program P is terminating if the answer to the decision
problem Associative Closure Checking for Abstract Relations is yes.

Proof. by Theorem 52 (or Theorem 54 together with Theorem 46) and Theo-
rem 56. �

6 Discussion: Qualitative Differences

The research on concepts and methods based on size-change termination (SCT)
resp. transition invariants (TI) involves somewhat different assumptions. All are,
however, related to linear computational paths and to relations among first-order
values. This is in contrast to other approaches, for example Gödel’s higher-
order primitive recursive functions, and analyses of higher-order programs stud-
ied among others by Bohr and by Sereni [24,36,37]. In this section, we discuss
qualitative differences between SCT and TI.

Analysis principles. The SCT analysis traces flow of data in a well-founded
data set between single variables over all of a program’s transition sequences. It
reports termination if every infinite transition sequence would cause an infinitely
descending value flow between variables. A TI analysis, in contrast, focuses on
showing that the program’s overall state transition relation is well-founded; there
is no a-priori known well-founded data set in which to trace program data flow.

48 M. Heizmann, N.D. Jones, and A. Podelski

SCT models are uninterpreted. SCT program data may be any well-founded
set, not necessarily well-ordered and not fixed, e.g., to the integers or natural
numbers. Thus SCT analysis cannot conclude, e.g., that x < y implies x+1 ≤ y.
The TI frameworks do not explicitly mention a value domain, although practical
tools (based on RankFinder) search for ranking functions over the (positive or
negative) integers.

Intensionality/extensionality: size-change analysis is intensional: it works by
manipulating not semantic objects themselves, but rather a priori determined
syntactic objects that describe them: size-change graphs. TI analyses, in con-
trast, are formulated extensionally, in terms of direct manipulation of semantic
values, i.e., binary relations on states. In practice, formulas in first-order logic
are used to denote these relations.

Decidability: The size-change termination property is decidable, and. its com-
plexity is understood. The calculations in the SCT analysis are done according
to fixed combinatorial techniques known in advance: the definition of “ ; ” and
the recognition of in-place decreases z

↓→ z.
In contrast, a TI analysis addresses an undecidable verification problem. As al-

ready mentioned, the very motivation behind the work in [31] was to carry over
the ideas of [27] to verification methods in the style of software model check-
ing [3,4].4 A software model checker uses theorem provers and decision proce-
dures as oracles that ‘solve’ potentially undecidable problems to implement pred-
icate abstraction and counterexample-guided abstraction refinement (see [3,4]).

Parametrisation: SCT is a relatively rigid framework. It uses a generic set of
building blocks to define size-change graphs for every program. Thus, for exam-
ple, SCT never traces the flow of values that may increase. It is also insensitive
to tests in the program being analysed.

In contrast, the starting point of the TI analysis based on transition predicate
abstraction (TPA) is a set of predicates P that parametrizes the abstraction
function α. The TI analysis, if used together with counterexample-guided ab-
straction refinement, requires (in addition to testing well-foundedness) the ability
to compute a suitable approximation to the abstraction function α.

An example of reasoning based on abstraction: The generic class PSCT cap-
tures the expressivity of size-change graphs. Inspection of PSCT reveals that
comparisons can be made only between a current variable value and a next vari-
able value. Thus it is impossible to express relations between two current values,
as would be required to model tests in the program being analysed.

Acknowledgements. This work was partly supported by the German Research
Foundation (DFG) as part of the Transregional Collaborative Research Cen-
ter “Automatic Verification and Analysis of Complex Systems” (SFB/TR 14
4 By principle, software model checking, if based on predicate abstraction (or any other

abstraction of a program to a finite-state system), is unable to prove termination of

programs with executions of unbounded length.

Size-Change Termination and Transition Invariants 49

AVACS). The second author thanks the Alexander von Humboldt-Stiftung for
supporting a stimulating half-year stay at the Institut für Informatik at the
University of Freiburg.

References

1. Avery, J.: Size-change termination and bound analysis. In: Hagiya and Wadler [19],

pp. 192–207.

2. Ball, T., Majumdar, R., Millstein, T.D., Rajamani, S.K.: Automatic predicate

abstraction of C programs. In: PLDI, pp. 203–213 (2001)

3. Ball, T., Podelski, A., Rajamani, S.K.: Relative completeness of abstraction refine-

ment for software model checking. In: Katoen and Stevens [25], pp. 158–172

4. Ball, T., Rajamani, S.K.: The SLAM project: debugging system software via static

analysis. In: POPL, pp. 1–3 (2002)

5. Ben-Amram, A.M.: Size-change termination with difference constraints. ACM

Trans. Program. Lang. Syst. 30(3), 1–31 (2008)

6. Ben-Amram, A.M.: A complexity tradeoff in ranking-function termination proofs.

Acta Informatica 46(1), 57–72 (2009)

7. Ben-Amram, A.M.: Size-change termination, monotonicity constraints and ranking

functions. Logical Methods in Computer Science (2010)

8. Ben-Amram, A.M., Codish, M.: A SAT-based approach to size change termination

with global ranking functions. In: Ramakrishnan and Rehof [33], pp. 218–232

9. Ben-Amram, A.M., Lee, C.S.: Program termination analysis in polynomial time.

ACM Trans. Program. Lang. Syst. 29(1) (2007)

10. Ben-Amram, A.M., Lee, C.S.: Ranking functions for size-change termination II.

Logical Methods in Computer Science 5(2) (2009)

11. Berdine, J., Chawdhary, A., Cook, B., Distefano, D., O’Hearn, P.W.: Variance

analyses from invariance analyses. In: Hofmann and Felleisen [22], pp. 211–224

12. Choueiry, B.Y., Walsh, T. (eds.): SARA 2000. LNCS, vol. 1864. Springer, Heidel-

berg (2000)

13. Codish, M., Lagoon, V., Stuckey, P.J.: Testing for termination with monotonicity

constraints. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp.

326–340. Springer, Heidelberg (2005)

14. Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs for systems code. In:

Schwartzbach and Ball [35], pp. 415–426

15. Cook, B., Podelski, A., Rybalchenko, A.: Summarization for termination: No re-

turn! Journal of Formal Methods in System Design (2010)

16. Cousot, P.: Partial completeness of abstract fixpoint checking. In: Choueiry and

Walsh [12], pp. 1–25

17. Glenstrup, A.J., Jones, N.D.: Termination analysis and specialization-point inser-

tion in offline partial evaluation. ACM Trans. Program. Lang. Syst. 27(6), 1147–

1215 (2005)

18. Gotsman, A., Cook, B., Parkinson, M., Vafeiadis, V.: Proving that non-blocking

algorithms don’t block. In: POPL 2009: Proceedings of the 36th Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 16–

28. ACM, New York (2009)

19. Hagiya, M., Wadler, P. (eds.): FLOPS 2006. LNCS, vol. 3945. Springer, Heidelberg

(2006)

50 M. Heizmann, N.D. Jones, and A. Podelski

20. Heizmann, M., Jones, N.D., Podelski, A.: Size-change termination and transition

invariants (online version) (2010),

http://swt.informatik.uni-freiburg.de/staff/heizmann/SCTandTI.pdf

21. Hinze, R., Ramsey, N. (eds.): Proceedings of the 12th ACM SIGPLAN Interna-

tional Conference on Functional Programming, ICFP 2007, Freiburg, Germany,

2007, October 1-3. ACM Press, New York (2007)

22. Hofmann, M., Felleisen, M. (eds.): Proceedings of the 34th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL 2007, Nice,

France, January 17-19. ACM, New York (2007)

23. Jones, N.D.: Computability and Complexity from a Programming Perspective. In:

Foundations of Computing, 1st edn., MIT Press, Boston (1997)

24. Jones, N.D., Bohr, N.: Call-by-value termination in the untyped lambda-calculus.

Logical Methods in Computer Science 4(1) (2008)

25. Katoen, J.-P., Stevens, P. (eds.): TACAS 2002. LNCS, vol. 2280. Springer, Heidel-

berg (2002)

26. Kroening, D., Sharygina, N., Tsitovich, A., Wintersteiger, C.: Termination analysis

with compositional transition invariants. In: Touili, T., Cook, B., Jackson, P. (eds.)

CAV 2010. LNCS, vol. 6174, pp. 89–103. Springer, Heidelberg (2010)

27. Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program

termination. In: POPL 2001: Proceedings of the ACM SIGPLAN-SIGACT Sym-

posium on Principles of Programming Languages, vol. 28, pp. 81–92. ACM Press,

New York (2001)

28. Mannaand, Z., Pnueli, A.: Temporal verification of reactive systems: safety.

Springer, Heidelberg (1995)

29. Mogensen, T.Æ., Schmidt, D.A., Sudborough, I.H. (eds.): The Essence of Compu-

tation; Complexity, Analysis, Transformation. Essays Dedicated to Neil D. Jones.

LNCS, vol. 2566. Springer, Heidelberg (2002)

30. Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear rank-

ing functions. In: Steffen and Levi [38], pp. 239–251

31. Podelski, A., Rybalchenko, A.: Transition invariants. In: LICS 2004: Proceedings

of the 19th Annual IEEE Symposium on Logic in Computer Science, Washington,

DC, USA, pp. 32–41. IEEE Computer Society, Los Alamitos (2004)

32. Podelski, A., Rybalchenko, A.: Transition predicate abstraction and fair termina-

tion. In: POPL 20505: Proceedings of the ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, vol. 32, pp. 132–144. ACM, New York (2005)

33. Ramakrishnan, C.R., Rehof, J. (eds.): TACAS 2008. LNCS, vol. 4963. Springer,

Heidelberg (2008)

34. Schmidt, R.A. (ed.): CADE-22. LNCS, vol. 5663. Springer, Heidelberg (2009)

35. Schwartzbach, M.I., Ball, T. (eds.): Proceedings of the ACM SIGPLAN 2006 Con-

ference on Programming Language Design and Implementation, Ottawa, Ontario,

Canada, June 11-14. ACM, New York (2006)

36. Sereni, D.: Termination analysis and call graph construction for higher-order func-

tional programs. In: Hinze and Ramsey [21], pp. 71–84

37. Sereni, D., Jones, N.D.: Termination analysis of higher-order functional programs.

In: Yi [40], pp. 281–297

38. Steffen, B., Levi, G. (eds.): VMCAI 2004. LNCS, vol. 2937. Springer, Heidelberg

(2004)

39. Swiderski, S., Parting, M., Giesl, J., Fuhs, C., Schneider-Kamp, P.: Termination

analysis by dependency pairs and inductive theorem proving. In Schmidt [34],

pp.322–338

40. Yi, K. (ed.): APLAS 2005. LNCS, vol. 3780. Springer, Heidelberg (2005)

http://swt.informatik.uni-freiburg.de/staff/heizmann/SCTandTI.pdf

Using Static Analysis in Space: Why Doing so?

David Lesens

EADS Astrium Space Transportation, Route de Verneuil, 78133 France

david.lesens@astrium.eads.net

Abstract. This paper presents the point of view of an industrial com-

pany of the space domain on static analysis. It first discusses the

compatibility of static analysis with the standards applicable for the

development of critical embedded software in the European space do-

main. It then shows the practical impact of such a technology on the

software development process. After the presentation of some examples

of industrial use of static analysis, it concludes by envisaging the future

needs of industry concerning static analysis.

Keywords: Static analysis, industrial space software.

1 Introduction

The use of static analysis is today recognized by the research community as a
major potential contributor in the improvement of software engineering.

However, by nature, a commercial company is not philanthropic. It will in-
vest in a static analysis tool (and potentially on research programs aiming at
developing a static analysis tool, if existing tools do not fulfill the needs) only if
it has a positive return on investment.

The objective of this paper is to present the point of view of an industrial
company (whose field is the spatial activity) about static analysis:

– Why is static analysis important for critical embedded system? (surprisingly,
the answer may be not so obvious considering the constraints imposed by
the applicable standards)

– What is the current use of the static analysis in the European space domain?
– What are the possible prospects of static analysis in space applications, i.e.,

what are the expectations of the industrial world towards the academic one?

Generally, the practical reasons pushing the use of a technology may be ones of
the following:

– The development of the commercialized product (e.g. a space launcher) is
not possible without this technology. This is for instance the case for the
propulsion system (main driver of the launcher performance). Closer for
the computer science, a correct robustness of the onboard processor with
respect to its physical environment (vibration, temperature, radiation. . .)

R. Cousot and M. Martel (Eds.): SAS 2010, LNCS 6337, pp. 51–70, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

52 D. Lesens

is mandatory. Considering the software itself, static analysis is not really
an unavoidable technology (from years a lot of launchers are reaching space
without using it)

– The technology is imposed by the customer. For the general public, this
requirement may for instance be dictated by a fashion or the state of the
art (people prefer MP3 players, even if compact disks or vinyl records are
in fact of much higher quality). In the industrial domain, the state of the
art is described by the applicable standards. But if a standard may impose
the use of a technology, it may as well forbid it (or just authorize it without
imposing it).

– The technology allows a quantifiable gain for the industrial company in term
of costs or duration of the development. By using a static analysis tool, an
industrial company may wish to decrease its testing effort with the preserva-
tion of the same level of quality for its product. This financial gain brought
by static analysis may be not straightforward, especially in the case where
the applicable standards do not allow for instance replacing a complete V&V
(Verification and Validation) activity by a static analysis.

– The technology allows a quantifiable gain for the industrial company in term
of quality of the commercialized product. This criterion is not always the
major one in some domains. Indeed, it may be preferable (from a pure short
term commercial point of view) to be the first provider of a new product
(for instance a new smart-phone) with a medium quality than to be the
second one on the market, even with a higher quality. A company may even
not survive if its product is available too late. However, on other domains,
a failure of the system (annoying but generally tolerable for instance for a
smart-phone if it does not appear to often) may be catastrophic in term of
human life (e.g. for an aircraft or a nuclear plant), or in term of financial
loss (e.g. for an unmanned space launcher).

These criterions are often summarized by the formula “On Time, on cost, on
quality”.

This paper is organized in the following manner. After this introduction, Sect.
2 analyzes the compatibility between static analysis and the standards applicable
in the European space domain. Section 3 analyses more precisely the practical
impact of static analysis on the development. Section 4 presents some feedbacks
of use (in operational or research projects) of static analysis as performed at As-
trium Space Transportation. Finally, Sect. 5 will conclude by some perspectives
and some orientation wishes to the research community.

2 Static Analysis and the European Standards for Space

The objective of this section is to analyze the compatibility between an indus-
trial standard (in our case the European standard for space) with an approach
involving static analysis. The results of this analysis may certainly differ depend-
ing on the industrial used standards, but we assume that it will be only in a light
manner.

Using Static Analysis in Space: Why Doing so? 53

2.1 Principles of the ECSS

The European space industry has defined in the scope of ESA (the European
Space Agency) its own standards of development: the ECSS (European Com-
mittee for Space Standardization). The two main norms concerning the software
are the ECSS-E-ST-40C (Space engineering – Software) and the ECSS-Q-ST-
80C (Space product assurance – Software product assurance). In this section,
we will reference the versions [fSS09].

These standards, even if specific for space, do not of course completely dif-
fer from other standards for the development of critical software (such as the
DO178B or C for civil airborne systems), the expertise being equivalent. We may
roughly distinguish three types of activities:

– the development itself (composed by the elicitation of software related system
requirements and of the software requirements, by the software architecture,
by the design and by the code implementation)

– the verification1 (“to confirm that adequate specifications and inputs exist for
any activity, and that the outputs of the activities are correct and consistent
with the specifications and input”) which is formalized by several reviews
(system requirements review, preliminary design review, critical design re-
view, qualification review, acceptance review)

– and finally the validation (“to confirm that the requirements baseline func-
tions and performances are correctly and completely implemented in the final
product”)

These main activities are completed by the specific cases of reuse of an existing
piece of software and by the maintenance of the software.

Figure 1 depicts this development cycle, compatible with the classical V model
of development.

The next paragraphs of this section will discuss the potential contributions
of static analysis to these activities: mainly validation and verification but also
ISVV (Independent Software Verification and Validation) and software reuse.
The impact of static analysis on the development phase itself is not direct. How-
ever, the section 3 will discuss indirect impacts on the programming languages
or modeling languages choices.

2.2 Static Analysis for Validation

The paragraph 5.6.3.1.b of the ECSS-E-ST-40C specifies the following require-
ment: “Validation shall be performed by test”. This simple requirement may
cancel one of the most important arguments for the use of static analysis: de-
creasing the testing effort with the preservation of the same level of quality for

1 A reader more familiar with airborne systems will notice that this ECSS definition

differs from the DO178 definition. What is called “verification” by the ECSS is called

“validation” by the DO178 and vice-versa.

54 D. Lesens

Fig. 1. The Software development cycle according to the ECSS

the product. This argument may be true for some industries, but not for Euro-
pean space. Even if the industrial company is convinced that some tests may be
suppressed thanks to static analysis (and suppressing some tests is important
for reducing the costs), it is a priori not allowed by the standard.

This restriction is of course justified by the need to explicitly validate the
final software product, avoiding the possible errors due to the compilers and
/ or hardware design bugs. Thus, for instance for a piece of software with a
criticality level A (the highest level of criticality), the object code coverage on
the real hardware is required (paragraph 5.8.3.5.e of the ECSS-E-ST-40C).

However, the next paragraph of the standard (5.6.3.1.c) nuances the previous
requirement: “If it can be justified that validation by test cannot be performed,
validation shall be performed by either analysis, inspection or review of design”.
The good news (concerning the use of static analysis) is that alternative methods
to testing may be used, on the condition that “it can be justified that validation
by test cannot be performed”.

We have thus to more deeply analyze the validation tests which are required
on space software. In addition to the classical functional tests in front of each
requirement of the software technical specification, the paragraph 5.6.3.1.a.1 re-
quires “test procedures including testing with stress, boundary, and singular in-
puts” (Stress tests “evaluate [. . .] a software component at or beyond its required
capabilities”).

Can static analysis help validating functional requirements? Certainly yes!
The section 4.3 shows an example of use of model checking applied to the safety
software of a spacecraft, which has allowed detecting errors before starting the
test campaign.

Using Static Analysis in Space: Why Doing so? 55

As this validation is globally achievable with tests, the ECSS forbids replacing
completely tests by static analysis. The main validation mean remains test (in
order to validate at the same time the code, the compiler and the hardware).
Static analysis, in this case, may be considered as an additional not too expensive
activity increasing the confidence in the software (i.e. avoiding extra stress the
day before launch within the software development team).

Stress (“evaluating [. . .] a software component [. . .] beyond its required ca-
pabilities”) is an activity which may be less natural than functional testing in
the sense that the software shall be evaluated robust to preposterous inputs:
What is supposed to be the behavior of my software in case of inputs aiming at
the estimation of a negative altitude for a spacecraft? In this case, a reasonable
expectation would be the absence of run time errors: the part of the software
behaving strangely (e.g. computation of a negative altitude) shall not prevent
another part of the software behaving correctly (e.g. a telemetry warning the
ground control centre of the suspicious altitude computed by the software).

In this case, the large amount of possible preposterous may prevent any effi-
cient testing or review. Abstract interpretation may be then a good complement
to classical testing.

The section 4.2 shows such examples of application of abstract interpretation
on space software.

2.3 Static Analysis for Verification

Among the different criterions to be checked during the verification activity,
the paragraph 5.8.3.5 of ECSS-E-ST-40C highlights the following points (among
others):

– “The code implements safety, security [. . .]”
– “The effects of run-time errors are controlled”
– “There are no memory leaks”
– “Numerical protection mechanisms are implemented”
– “The supplier shall verify source code robustness (e.g. resource sharing, di-

vision by zero, pointers, run-time errors)”

But it is well known that “program testing may convincingly demonstrate the
presence of bugs, but can never demonstrate their absence” [Dij88]. This is par-
ticularly the case from the above mentioned list of bugs (safety, security, run-
time errors, memory leaks, numerical protection). These verifications are thus
supposed to be partially covered by reviews, which are well known to be very
costly (human resource is always costly) and not efficient (and also very boring
for the code reviewer, even if this argument is rarely taken into account by the
managers).

That is why ECSS-E-ST-40C recommends “using static analysis for the errors
that are difficult to detect at runtime” (paragraph 5.8.3.5.f).

56 D. Lesens

We can add to this list the proof of absence of loss of numerical accuracy
(ECSS-Q-ST-80C, paragraph 7.1.7: “Numerical accuracy shall be estimated and
verified”) which is also a particularly difficult task. Figure 2 shows a classical
example proposed by P. Cousot. Depending of the values of x and a, the value
of (x + a) − (x − a) can be very different from 2a.

double x, a; float y, z;

x = 1125899973951488.0;

a = 1.0;

y = (x+a); z = (x-a);

printf(”%f, ”, y-z);

// Computing result = 134217728.000000

x = 1125899973951487.0;

a = 1.0;

y = (x+a); z = (x-a);

printf(”%f”, y-z);

// Computing result = 0.000000

Fig. 2. Example of loss of numerical accuracy

Section 4.2 presents a result achieved with the Fluctuat tool on space software.

2.4 Static Analysis for ISVV

In order to increase the confidence in the space systems, the main customer
for space products in Europe (the European Space Agency) requires an ISVV
(Independent Software Verification and Validation). Independent means gener-
ally a team external to the contractors (or at least a team distinct from the
development team).

The ECSS-Q-ST-80C requires (paragraph 6.2.6.13) that

– “Independent software verification shall be performed by a third party.“
– “Independent software verification shall be a combination of reviews, inspec-

tions, analyses, simulations, testing and auditing.”
“(This requirement is applicable where the risks associated with the project
justify the costs involved)”.

The activity of ISVV differs largely from the classical V&V (Verification and
Validation) activity because the involved people have no a priori knowledge of
the product. It may thus be very difficult for the ISVV team to bring a real
added value to the classical V&V, for which the involved people have normally
a perfect mastery. That is why the ISVV activity often focuses itself in practice
(even if this focus is not required by the standard) on specific points such as for
instance the verification of absence of buffer overflowing or of data going out of

Using Static Analysis in Space: Why Doing so? 57

range. These activities are especially well adapted to be treated by automatic
static analysis tool. Indeed, using static analysis for the detection of run-time
errors would free human resource for activities with more added values.

2.5 Static Analysis for V&V of Reuse Software and Regression
Testing

Reusing an existing piece of code is often considered as a natural way to save
money (why not reusing a piece of code that has previously proved to work
correctly?). However, for critical software, reuse shall be carefully performed to
avoid any risk of inconsistence between reused and specifically developed code.
Indeed, a classical error consists in reusing a piece of code in a lightly different
context which makes the resulting system faulty (even if the initial piece of
code in its initial context was perfectly valid). The ECSS-Q-ST-80C (paragraph
6.2.7.8.a) requires thus that “Reverse engineering techniques shall be applied
to generate missing documentation and to reach the required verification and
validation coverage”.

In this case, as well as in the case of regression testing (“selective retesting of
a system or component to verify that modifications have not caused unintended
effects and that the system or component still complies with its specified require-
ments”), static analysis can be an important help because it is automatic and
exhaustive.

2.6 Conclusion on Static Analysis and Standards

A detailed analysis of the ECSS standards shows that the use of static analysis
is naturally accepted by the standard . . . if it does not imply the suppression
any other V&V activities. Except for some specific cases (ISVV, software reuse),
static analysis can of course be used as a way to improve the confidence on the
software, but without a direct reduction of cost achievable by the suppression of
testing. Improvement of the quality, yes; decrease of the direct costs, no!

3 Impact of Static Analysis on the Development Strategy

3.1 Link between Static Analysis and Development Strategy

After a check that static analysis is compatible with the applicable standards
for the domain (ECSS for space, DO for airborne systems, etc.), an industrial
company may decide to use it. According to the analysis performed in the previ-
ous section (Sect. 2), the added value of static analysis seems to be in the V&V
activities.

However, the context of application of static analysis may have a strong impact
on the return on investment:

58 D. Lesens

– Use of static analysis for ISVV or acceptance of the software: The software
has already been validated and it is not possible any more to modify it. The
static analysis technique shall then be able to deal with the used program-
ming language, design choices and coding style.

– Introduction of static analysis at the end of the development: The software
has been developed without taking into account the constraints needed by a
potential static analysis tool. However, before starting the formal validation,
the verification team proposes to use a static analysis tool. It is still possible
to perform light modification to the software (by adding some assertions in
the code for instance), but it is of course to late to modify the major choices
of technology for the development.

– Introduction of static analysis at the beginning of the development: Con-
sidering that static analysis will facilitate the V&V, it is decided to take
into account from the beginning the associated constraints. The gamble is
made that the induced extra costs (if any) will be compensated by the future
savings (i.e. that the return on investment will be positive). In this case, it
is possible to select the best adapted modeling or programming language,
design patterns and coding rules.

This context can barely be controlled by the contractor: if a company is required
to perform an ISVV, it has not the responsibility for the software development;
when a reuse policy is used, the major design choices are imposed2.

This section discusses the ideal case when the software development starts
from scratch (from a blank page). Do the design choices have an impact on the
efficiency of static analysis tools?

3.2 Static Analysis and Programming Language

Static analysis covers a wide range of techniques. The minimal analysis on any
piece of software, even the less critical ones, is of course performed by the com-
piler, which checks the syntax and the semantics of the programming language.
The level and thus interest of this minimal static analysis depends naturally
on the semantics of the selected programming language. If this assertion may
be considered very trivial from a scientific point of view, it may be of major
importance for an industrial development.

Let us for instance compare through a couple of examples the C programming
language3 and the Ada programming language4.

2 This is for instance the case for the development of Ariane 5 Mid Life Evolution. In

order to upgrade the upper stage of the launcher, the software controlling the lower

stage and developed in the 90’s shall be reused. This is a strong constraint on the

choice for a new Static Analysis tool.
3 C is today the language the most widely used for critical embedded system; the use

of Java is more important for non critical embedded system but is today very limited

for critical ones.
4 Ada is a language specialized for critical embedded software.

Using Static Analysis in Space: Why Doing so? 59

// An incorrect C program – An incorrect Ada program

// compiles without warning – does not compile

typedef enum { ok, nok } t ok nok; type t ok nok is (ok, nok) ;

typedef enum { off, on } t on off; type t on off is (off, on) ;

void main () { procedure Main is
t ok nok status = nok; status : t ok nok := nok;

begin
if(status == on) { if status = on then

lift off(); lift off;

} end if;
} end Main;

Fig. 3. Incorrect C and Ada programs. The C program is accepted by the C compiler

while the Ada version is rejected by the less permissive Ada compiler.

In the classical example of Fig. 3, two types (ok/nok and on/off) have been
defined. The programmer has mixed up the two types: the status of type ok/nok
is compared to on, which unfortunately has the same numerical value than nok.
The C program is accepted by the C compiler while the Ada version is rejected
by the less permissive Ada compiler.

The next more subtle example (Fig. 4) is extracted from [Bar03].

// An incorrect C program – An incorrect Ada program

// compiles without warning – does not compile

light = red ; light := red ;

if (light == green); if light = green

{ then;

Lift off() ; Lift off() ;

} end if;

Fig. 4. Incorrect C and Ada programs. The C program is accepted by the C compiler

while the Ada version is rejected by the less permissive Ada compiler.

The error comes from the semi-colon at the end of the condition. It is detected
by an Ada compiler but not directly by a C compiler (external syntax verification
tools may detect this error).

In these two examples, if the software decides the lift-off of a launcher (autho-
rized if the status is ok or if the light is green), the software developed in Ada
will safely abort the flight, whereas the software developed in C will authorize
the flight with possible very expensive consequences if either the launcher or its
launch pad are destroyed due to the default software.

More generally, the strongest the semantics of the programming language is,
the largest will be the number of errors detected by the compiler, and the MORE
efficient static analysis can be.

60 D. Lesens

The question which can be raised is then the following: Is it really useful to
spend a lot of effort and money to develop tools able to statically analyze a
programming language which is intrinsically subject to errors (such as C)? Or
shall we concentrate our efforts on the static analysis of “clean” programming
language (such as Ada)?

The answer to this question is not so straightforward first because even a
programming language with a strong semantics (such as Ada) can be in some
cases ambiguous and difficult to analyze. The example of Fig. 5 proposed by
[Cha01] shows an example of Ada code containing a function with a side effect.

procedure Side Effect is
X, Y, Z, R : Integer;
function F (X : Integer) return Integer is
begin

Z := 0;

return X + 1;

end F;

begin
X := 10;

Y := 20;

Z := 10;

R := Y / Z + F (X); – order dependency here

– R = 13 if L then R evaluation,

– constraint error if R then L

end Side Effect;

Fig. 5. Function with a side-effect. Depending of the order of evaluation, the program

may raise a constraint error.

Because of this side effect, the behavior of the program depends on the order
of evaluation of an addition. We can then imagine a successful test on a host
machine (a work station) and an incorrect one on the target machine (the em-
bedded processor). In order to avoid such problems, a possible approach would
be to simply forbid the use of side effect on a function (this is for instance the
choice of the SPARK Ada programming language), which may be a quite strong
constraint to the developer.

The second reason explaining the difficulty to choose a programming language
is that in a perfect world (i.e. a world where the programming language would
be selected only for its intrinsic qualities), it would be completely useless to
try developing more complex static analysis tools for programming languages
with a weak semantics; it would be sufficient (even if not trivial) to develop
static analysis tool only for programming languages with a strong semantics.
But in practice, one may select its programming language for other (very good)

Using Static Analysis in Space: Why Doing so? 61

reasons than intrinsic technical ones (such as the long term availability of the
technology, the availability of the compiler for the language and the hardware
target, performances restrictions (CPU, memory), request from the customer).

3.3 Static Analysis and Model Driven Engineering

The use of modeling techniques for describing on-board and ground space sys-
tems has been identified by many studies as an appropriate way to master the
complexity of software. Today, projects show an increasing interest for applying
a model-based approach at different levels:

– Representation of the software or system architecture (e.g. with AADL,
SysML, etc.);

– Representationof the softwareor systembehavior (e.g.withSCADE, Simulink,
SystemC, etc.);

– Representation of the implementation of the software and of the system (e.g.
with SCADE, UML, VHDL, etc.).

The use of a graphical model to describe in a more or less abstract way a piece
of software or more generally a system has two main advantages:

– The graphical syntax of the model may be more intuitive than a textual one
and may then greatly improved the communication between the develop-
ment teams (for instance between a system team, composed by non software
expert, and the software team)

– The strong semantics of the modeling language may greatly facilitate static
analysis

Static Analysis of Static Architecture. Some trivial analysis can for in-
stance be applied on class diagrams of HOOD (Hierarchic Object-Oriented De-
sign) or of UML (Unified Modeling Language) for interface checking. These
trivial analyses shall not be forgotten because the simplest analyses offer often
the highest return on investment.

However, even for some trivial analysis such as data flow analysis, the seman-
tics of the modeling language has a major impact on the interest of this analysis
for the developer.

Let us consider for instance the two examples of structure diagrams, respec-
tively described in SysML (Fig. 6) and in SCADE (Fig. 7):

These two models represent the same exchange of information between two
software blocks. SysML (respectively SCADE) is a modeling language intended
to be used at system level (respectively at software level). The system description
shown Fig. 6 is perfectly valid. But the same description at software level (Fig.
7) becomes not valid because there is an ambiguity about the order of execution
of the two blocks. The corrected SCADE model (which can generate code) is
shown on Fig. 8).

62 D. Lesens

Fig. 6. The architecture of a piece of software modeled in SysML diagram example

Fig. 7. The architecture of a piece of software modeled in SCADE diagram example

Fig. 8. The corrected SCADE model of the architecture

Using Static Analysis in Space: Why Doing so? 63

Static Analysis of Dynamic Behavior. Next to the analysis of the static
architecture of the model one is the analysis of the dynamic behavior of this
model. Here as well, the choice of the modeling language has a strong impact on
the results we can expect from a static analysis. This will be illustrated with a
single example (Fig. 9).

Fig. 9. An ambiguous UML model

This model is indeterminist, which can imply non predictable behavior (see
Fig. 10). The two diagrams (on the left and on the right) modeled in UML are
strictly equivalent (from a graphical point of view). However, the simulations of
these two models with the Rhapsody tool (from IBM Software) will give different
results:

– for the diagram on the left, the transition guarded by x > 2 is triggered,
– whereas for the diagram on the right, the transition guarded by y > 5 is

triggered.

This model is valid at system level (all the details of implementation have not
yet been frozen), but not at software level. For instance, the ECSS standards for
critical software require deterministic testing (tests which can be replayed); and
we naturally expect that the software will behave in operation as it has behaved
during test. For the generation of code for a piece of critical software, using an
indeterminist SysML is just not acceptable.

64 D. Lesens

Fig. 10. An non-deterministic simulation

The experiment on static analysis presented in Sect. 4.3 will concern system
analysis model. Static analysis can indeed help controlling the indeterminism.
However, static analysis does not allow directly suppressing this indeterminism.

3.4 Conclusion on the Impact of Static Analysis on the
Development Strategy

This section has shown that some choices in the development process (choice of a
modeling language with automatic code generation, or choice of a programming
language) have a direct potentially strong impact on the quality of the final
software product and on the costs. Moreover, these choices directly impact:

– The quality of the results we can expect from a static analysis
– The difficulty to develop a tool implementing this static analysis

From a pure technical point of view, the choices of development method for crit-
ical embedded systems should be oriented toward the most adapted languages,
i.e. with a strong semantics (such as SCADE or SPARK Ada). The develop-
ment of static analysis tool should thus also be oriented toward these languages.
From a more pragmatic point of view, it must unfortunately be noticed that for
instance SysML or C are widely used and may have thus potential better long
term availability than respectively SCADE or SPARK Ada. And static analysis
tools are of prime importance to mitigate the weak semantics of such languages.

4 Static Analysis at Astrium Space Transportation

Astrium Space Transportation is one of the main users and supporters of static
analysis tools in the European space domain. Now that the impacts of the stan-
dards on static analysis and the best design choices facilitating this static analy-
sis have been presented in the previous sections, this section provides some (non
exhaustive) examples of operational uses of static analysis and researches on
static analysis at Astrium Space Transportation. They illustrate 3 topics: type
checking, abstract interpretation and model checking.

Using Static Analysis in Space: Why Doing so? 65

4.1 Type Checking

In order to benefit from the most advanced verifications a compiler can provide,
Astrium Space Transportation has used the Ada programming language since
more than 20 years.

All the flight software benefit from the strong type checking the language pro-
vides. An important number of potential errors possible with other programming
languages (such as C) are just non conceivable (see example of Fig. 4).

The capability of Ada to perform run-time checks (in order to verify for in-
stance scalar out of specified bounds) is used during some testing activities (even
if not used directly during the flight itself for performance reasons).

An attempt to reinforce the type checking of Ada to avoid dangerous con-
struction is described Sect. 4.4.

Fig. 11. Ariane 5 lift-off (c© ESA-CNES-ARIANESPACE)

4.2 Abstract Interpretation

Polyspace Verifier for the Detection of Run Time Errors. In order to
increase the confidence Ada can intrinsically bring to the developer on the soft-
ware quality, Astrium Space Transportation has collaborated on one of the first
abstract interpretation tool: IABC (developed at INRIA). Its first assessment
on the Ariane 5 flight software has lead to the creation of the Polyspace Tech-
nologies company (now TheMathworks) and of the commercial tool Polyspace
Verifier.

Abstract interpretation is now used since more than 10 years in order to
automatically detect potential run-time errors on several Astrium Space Trans-
portation operational projects, such as Ariane 5 or the ARD ([LMR+98]).

66 D. Lesens

The ARD (Atmospheric Reentrance Demonstrator) is an “Apollo like” Cap-
sule which has been launched in 1998 by the Ariane 5 launcher in order to
demonstrate the mastering of reentry techniques in Europe. After a sub-orbital
trajectory with an apogee of 830 km, the ARD performed a 20 minutes atmo-
spheric reentry, starting from a velocity of 27000 km/h to a final splashdown
with a velocity of less than 20 km/h and a precision of impact less than 2 km
before parachute opening (for a targeted precision of 5 km) .

Fig. 12. Atmospheric Reentry Demonstrator (c© ESA)

The whole flight was under the control of the flight software (about 40,000
lines of ADA code). The Polyspace verifier tool detected 568 potential errors and
proved automatically that 81% of them are false alarms. With the definition of
specific coding rules (aiming at helping the static analysis without degrading the
software performances), the Polyspace Verifier tool was able to automatically
prove 90% of the potential errors. 64 errors remained to be manually proved,
which remains within an acceptable scope in terms of developer work load.

Astrée for the Detection of Run Time Errors. One major drawback of
Polyspace Verifier is the important number of false alarms (orange errors) which
can be raised by the tool on a very complex piece of code. In collaboration
with ENS, the Astrée tool has been assessed on the safety software of the ATV
(Automated Transfer Vehicle).

Launch in March 2008 by a special version of the Ariane 5 launcher, the
ATV (Automated Transfer Vehicle) docked itself to the ISS (International Space
Station) less than a month later, with an extraordinary precision and control.
In the meantime, the ATV has performed several demonstration approaches in
order to prove than this 20 metric tons vehicle could get into the ISS vicinity
without putting the station crew at risk.

The use of Polyspace Verifier on the ATV safety software was abandoned due
to the too important number of false alarms (and replaced by a manual analysis).
In the scope of a research project ([BCC+09]), Astrée was applied on the C code
generated from a SCADE model developed by retro-engineering from the initial
Ada code. After some updates of the model (especially the addition of a minimal
set of numerical protection), the tool proved the total absence of run-time error.

Using Static Analysis in Space: Why Doing so? 67

Fig. 13. Automated Transfer Vehicle (ATV) approaching the ISS (c© EADS Astrium /

Silicon Worlds)

However, Astrée is solely able to analyse C code, not Ada one. Thus, for the
time being (and as long as a version of Astrée for Ada is not available), whatever
the limitation of the Polyspace Verifier tool can be, it is still worth using it. As
long as the perfect abstract interpretation tool will not be available, Astrium
Space Transportation will still use Polyspace Verifier, even if not sufficient.

Fluctuat for the Analysis of Numerical Accuracy. Numerical accuracy
is of vital importance for the safety of a spacecraft (see Sect. 2). In the same
research project [BCC+09], Fluctuat has been assessed in collaboration with
CEA.

This study has shown that embedded space software are difficult to analyze,
due to non linearity (mainly in quaternion computation) and to complex fil-
ters (8th order filter in the case of the ATV safety software). In spite of these
difficulties:

– Fluctuat has confirmed the absence of default issued from manual analyses
– Fluctuat has also delivered additional results on global errors which were

not manually achievable.

4.3 Model Checking

Omega for the Verification of Functional System Properties. The de-
ployment of the SysML modeling language for the capture of system require-
ments allocated to the software is in progress at Astrium Space Transportation.
The benefits of SysML are very important because it facilitates the communica-
tion between teams with different fields of expertise:

– The team designing the spacecraft system (generally without expertise on
embedded software), which is responsible to deliver the computing needs

– The team developing the embedded software, fulfilling the system needs

68 D. Lesens

However, SysML has an important drawback (additionally to the complexity
of SysML, which can be mastered by defining strict modeling guidelines, as
described in [HM10]): the language is not formal (it is for instance unable to
master indeterminism, as shown in Fig. 10). In collaboration with IRIT and
Verimag, Astrium Space Transportation is currently studying the adaptation
of the Omega profile ([BML01]) to SysML in order to improve the quality of
the system requirements allocated to the software (thanks to a stronger formal
semantics and to formal proof).

SCADE Prover for the Verification of Functional Software Properties.
Model checking has been used by Astrium Space Transportation on the ATV
program [Les01].

The level of criticality of the software controlling the ATV mission is C ac-
cording to the ECSS-Q-ST-80C (major mission degradation), but the level of
criticality of the software ensuring the safety of the ISS is A (“loss of an in-
terfacing manned flight system”). In order to ensure the highest possible level
of quality for this particular software, Astrium Space Transportation has mod-
eled the system requirements allocated to the software in the SCADE modeling
language. Then, the most critical functional properties (for instance “in case of
failure of the nominal system, the safety system takes eventually the control of
the spacecraft”) have been formally and exhaustively verified by a proof engine.

4.4 Theorem Proving

In order to definitively prevent the errors due to some weakness of a program-
ming language (such as the ones described in Fig. 4 and 5), Astrium Space
Transportation is currently assessing the SPARK language.

SPARK is an annotated subset of ADA with some specific properties that
are designed to make static analysis both deep and fast. The annotations take
the form of special comments which are ignored by an ADA compiler but have
semantic meaning for SPARK support tool, the SPARK Examiner. Annota-
tions range in complexity from the description of data flows via global variables
through to full pre- and post-condition predicates suitable for the formal verifi-
cation of operations. A key property of SPARK is its complete lack of ambigu-
ity. The language rules of SPARK, enhanced by its annotations, ensure that a
source text can only be interpreted in one way by a legal ADA compiler. Com-
piler implementation freedoms such as sub-expression evaluation order, cannot
affect the way object code generated from a SPARK source behaves. For ex-
ample, a complete detection of parameter and global variable aliasing ensures
that SPARK parameters have pass-by-copy semantics even if the compiler ac-
tually passes them by reference. The removal of ambiguous language constructs
allows source-based static analysis of great precision and efficiency. Instead of
using static analysis techniques to look for errors we can use them to prove the
absence of certain classes of errors. This rather small linguistic difference masks
a hugely-significant practical difference: only by eliminating ambiguity can we
reach the goal of constructive, rather than retrospective, software verification.

Using Static Analysis in Space: Why Doing so? 69

Fig. 14. Moonlander (c© EADS ASTRIUM)

In parallel, Astrium Space Transportation is participating to the Hi-Lite
project ([HL]) in order to combine the benefits of theorem proving, abstract
interpretation and testing.

5 Conclusion

This paper has presented the point of view of an industrial company of the space
domain about static analysis. It has especially tried to highlight the specific
constraints an industrial company may have (such as applicable standards or
long term availability of technologies). Some uses of static analysis at Astrium
Space Transportation have also been presented (uses in operational projects or
only in research projects).

In the future, Astrium Space Transportation will develop spacecrafts (new
Ariane generation, space tourism, moon or Mars lander, see Fig. 14) with new
challenges:

– More autonomous system: auto-diagnostic, FDIR (Fault Detection, Isolation
and recovery)

– More critical software (rely on the software for safety concern, manned flight)
– Mastered costs (decrease of space budget dedicated for space)

For these projects, the classical V&V (mainly testing and review) required by
the ECSS standards will not be sufficient (even if always mandatory). Static
analysis will be for instance useful:

– To prove the absence of run-time error
– To prove the correct accuracy of numerical computation
– To evaluate the WCET (Worst Case Execution Time) for multi-threading

architecture and hardware with cache-memory (and potentially multi-core)
– To meet the RAMS (Reliability, Availability, Maintainability and Safety)

requirements
– To exhibit the correctness of functional properties (at both software and

system levels)

70 D. Lesens

Static analysis tools shall be adapted to the technologies of tomorrow (too per-
missive languages such as C should be definitively ruled out) and will need to
be compatible, in order to benefit from the synergy between reviews, testing,
formal method, abstract interpretation, theorem proving and model checking.

References

[Bar03] Barnes, J.: High Integrity Software. In: The SPARK Approach to Safety

and Security, Addison Wesley, Reading (2003)

[BCC+09] Bouissou, O., Conquet, E., Cousot, P., Cousot, R., Feret, J., Ghorbal,

K., Goubault, E., Lesens, D., Mauborgne, L., Miné, A., Putot, S., Rival,

X., Turin, M.: Space software validation using abstract interpretation. In:

Data System In Aerospace (DASIA 2009), Istambul, Turkey (May 2009)

[BML01] Bozga, M., Mounier, L., Lesens, D.: Model checking ariane-5 flight pro-

gram. In: Formal Methods for Industrial Critical Systems, FMICS 2001,

Paris, France (July 2001)

[Cha01] Chapman, R.: Spark and abstract interpretation - white paper (2001)

[Dij88] Dijkstra, E.W.: On the cruelty of really teaching computing science, The

University of Texas at Austin, USA (1988)

[fSS09] European Committee for Space Standardization. Ecss-e-st-40c and ecss-

q-st-80c (March 2009)

[HL] Hi-Lite. Hi-lite project, http://www.open-do.org/projects/hi-lite/

[HM10] Hiron, E., Miramont, P.: Process based on sysml for new launchers system

and software developments. In: Data System In Aerospace, DASIA 2010,

Budapest, Hungary (June 2010)

[Les01] Lesens, D.: Use of the formal method scade for the specification of safety

critical software for space application. In: Data System In Aerospace,

DASIA 2001, Nice, France (May 2001)

[LMR+98] Lacan, P., Monfort, J.N., Ribal, L.V.Q., Deutsch, A., Gonthier, G.: The

software reliability verification process. example of ariane 5. In: Data Sys-

tem In Aerospace, DASIA 1998 (1998)

http://www.open-do.org/projects/hi-lite/

Statically Inferring Complex Heap, Array,

and Numeric Invariants

Bill McCloskey1, Thomas Reps2,3,�, and Mooly Sagiv4,5,��

1 University of California; Berkeley, CA, USA
2 University of Wisconsin; Madison, WI, USA

3 GrammaTech, Inc.; Ithaca, NY, USA
4 Tel-Aviv University; Tel-Aviv, Israel

5 Stanford University; Stanford, CA, USA

Abstract. We describe Deskcheck, a parametric static analyzer that

is able to establish properties of programs that manipulate dynamically

allocated memory, arrays, and integers. Deskcheck can verify quantified

invariants over mixed abstract domains, e.g., heap and numeric domains.

These domains need only minor extensions to work with our domain

combination framework.

The technique used for managing the communication between do-

mains is reminiscent of the Nelson-Oppen technique for combining de-

cision procedures, in that the two domains share a common predicate

language to exchange shared facts. However, whereas the Nelson-Oppen

technique is limited to a common predicate language of shared equalities,

the technique described in this paper uses a common predicate language

in which shared facts can be quantified predicates expressed in first-order

logic with transitive closure.

We explain how we used Deskcheck to establish memory safety of

the thttpd web server’s cache data structure, which uses linked lists, a

hash table, and reference counting in a single composite data structure.

Our work addresses some of the most complex data-structure invariants

considered in the shape-analysis literature.

1 Introduction

Many programs use data structures for which a proof of correctness requires a
combination of heap and numeric reasoning. Deskcheck, the tool described in
this paper, is targeted at such programs. For example, consider a program that
uses an array, table, whose entries point to heap-allocated objects. Each object
has an index field. We want to check that if table[k] = obj, then obj.index = k. In
verifying the correctness of the thttpd web server [22], this invariant is required

� Supported, in part, by NSF under grants CCF-{0810053, 0904371}, by ONR under

grant N00014-{09-1-0510}, by ARL under grant W911NF-09-1-0413, and by AFRL

under grant FA9550-09-1-0279.
�� Supported, in part, by grants NSF CNS-050955 and NSF CCF-0430378 with addi-

tional support from DARPA.

R. Cousot and M. Martel (Eds.): SAS 2010, LNCS 6337, pp. 71–99, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

72 B. McCloskey, T. Reps, and M. Sagiv

even to prove memory safety. Formally, we write the following (ignoring array
bounds for now):

∀k:Z. ∀o:H. table[k] = o ⇒ (o.index = k ∨ o = null) (1)

We call this invariant Inv1. It quantifies over both heap objects and integers.
Such quantified invariants over mixed domains are beyond the power of most
existing static analyzers, which typically infer either heap invariants or integer
invariants, but not both.

Our approach is to combine existing abstract domains into a single abstract
interpreter that infers mixed invariants. In this paper, we discuss examples us-
ing a particular heap domain (canonical abstraction) and a particular numeric
domain (difference-bound matrices). However, the approach supports a wide va-
riety of domain combinations, including combinations of two numeric domains,
and a combination of the separation-logic shape domain [9] and polyhedra.

Our goal is for the combined domain to be more than the sum of its parts: to be
able to infer facts that neither domain could infer alone. As in previous research
on combining domains, communication between the two domains is the crucial
ingredient. The combined domain of Gulwani and Tiwari [15], based on the
Nelson-Oppen technique for combining decision procedures [20], shares equalities
between domains. Our technique also uses a common predicate language to share
facts; however, in our approach shared facts can be predicates from first-order
logic with transitive closure.

Approach. We assume that each domain being combined reasons about a distinct
collection of abstract “individuals” (heap objects, or integers, say). Every domain
is responsible for grouping its individuals into sets, called classes. A heap domain
might create a class of all objects belonging to a linked list, while an integer
domain may have a class of numbers between 3 and 10.

Additionally, each domain D exposes a set of n-ary predicates to other do-
mains. Every predicate has a definition, such as “R(o1, o2) holds if object o1

reaches o2 via next edges.” Only the defining domain understands the mean-
ing of its predicates. However, quantified atomic facts are shared between
domains: a heap domain D might share with another domain the fact that
(∀o1 ∈ C1, o2 ∈ C2. R(o1, o2)), where C1 and C2 are classes of list nodes. Other
domains can define their own predicates in terms of R. They must depend on
shared information from D to know where R holds because they are otherwise
ignorant of R’s semantics.

Chains of dependencies can exist between predicates in different domains. A
predicate P2 in domain D′ can refer to a predicate P1 in D. Then a predicate P3
in D can refer to P2 in D′. The only restriction is that dependencies be acyclic.
As transfer functions execute, atomic facts about predicates propagate between
domains along the dependency edges. This flexibility enables our framework to
reason precisely about mixed heap and numeric invariants.

A Challenging Verification Problem. We have applied Deskcheck to the cache
module of the thttpd web server [22]. We chose this data structure because it

Statically Inferring Complex Heap, Array, and Numeric Invariants 73

relies on several invariants that require combined numeric and heap reasoning.
We believe this data structure is representative of many that appear in systems
code, where arrays, lists, and trees are all used in a single composite data struc-
ture, sometimes with reference counting used to manage deallocation. Along with
Deskcheck, our model of thttpd’s cache is available online for review [18].

table

[3]
[2]
[1]
[0]

null

null

index = 3
rc = 0

index = 1

rc = 2

�
�

�
�

�
�

�
�

�
��

�

��� ���

maps
��

next	

Fig. 1. thttpd’s cache data structure

The thttpd cache maps files on disk to their contents in memory. Fig. 1
displays an example of the structure. It is a composite between a hash table
and a linked list. The linked list of cache entries starts at the maps variable and
continues through next pointers. These same cache entries are also pointed to by
elements of the table array. The rc field records the number of incoming pointers
from external objects (i.e., not counting pointers from the maps list nor from
table), represented by rounded rectangles. The reference count is allowed to be
zero.

Fig. 2 shows excerpts of the code to add an entry to the cache. Besides the
data structures already discussed, the variable free maps is used to track unused
cache entries (to avoid calling malloc and free). Our goal is to verify that
this code, as well as the related code for releasing and freeing cache entries, is
memory-safe. One obvious data-structure invariant is that maps and free maps
should point to acyclic singly linked lists of cache entries. However, there are
two other invariants that are more complex but required for memory safety.

Inv1 (from Eqn. (1)): When a cache entry e is freed, thttpd nulls out its hash
table entry via table[e.index] = null (this code is not shown in Fig. 2). If
the wrong element were overwritten, then a pointer to the freed entry would
remain in table, later leading to a segfault when accessed. Inv1 guarantees that
if table[i] = e, where e is the element being freed, then e.index = i, so the correct
entry will be set to null.

Inv2: This invariant relates to reference counting. The two main entry points to
the cache module are called map and unmap. The map call creates a cache entry
if it does not already exist and returns it to the caller. The caller can use the
entry until it calls unmap. The cache keeps a reference count of the number of
outstanding uses of each entry; when the count reaches zero, it is legal (although
not necessary) to free the entry. Outstanding references are shown as rounded

74 B. McCloskey, T. Reps, and M. Sagiv

1 Map * map(...)

2 { /* Expand hash table if needed */

3 check_hash_size();

4 m = find_hash(...);

5 if (m != (Map*)0) {

6 /* Found an entry */

7 ++m->refcount;

8 ...

9 return m;

10 }

11 /* Find a free Map entry

12 or make a new one. */

13 if (free_maps != (Map*)0) {

14 m = free_maps;

15 free_maps = m->next;

16 } else {

17 m = (Map*)malloc(sizeof(Map));

18 }

19 m->refcount = 1;

20 ...

21 /* Add m to hashtable */

22 if (add_hash(m) < 0) {

23 /* error handling code */

24 }

25 /* Put m on active list. */

26 m->next = maps;

27 maps = m;

28 ...

29 return m;

30 }

31 static int add_hash(Map* m)

32 { ...

33 int i = hash(m);

34 table[i] = m;

35 m->index = i;

36 ...

37 }

Fig. 2. Excerpts of the thttpd map and add hash functions

rectangles in Fig. 1. The cache must maintain the invariant that the number
of outstanding references is equal to the value of an entry’s reference count
(rc) field—otherwise an entry could be freed while still in use. We can write this
invariant formally as follows. Assuming that cache entries are stored in the entry
field of the caller’s objects (the ones shown by rounded rectangles), we wish to
ensure that the number of entry pointers to a given object is equal to its rc field.

Inv2
def= ∀o:H. o.rc = |{p:H | p.entry = o}| (2)

Verification. We give an example of how Inv1 is verified. §4.3 has a more detailed
presentation of this example. The program locations of interest are lines 34 and
35 of Fig. 2, where the hash table is updated. Recall that Inv1 requires that
if table[k] = e then e.index = k. After line 34, Inv1 is broken, although only
“locally” (i.e., at a single index position of table). As a first step, we parametrize
Inv1 by dropping the quantifier on k, allowing us to distinguish between index
positions at which Inv1 is broken and those where it continues to hold.

Inv1(k:Z) def= ∀o:H. table[k] = o ⇒ (o.index = k ∨ o = null)

After line 34 we know that Inv1(x) holds for all x �= i. Line 35 restores Inv1(i).
Neither domain fully understands the defining formula of Inv1: as we will

see, the variable table is understood only by the heap domain whereas the field
index is understood only by the integer domain. Consequently, we factor out the

Statically Inferring Complex Heap, Array, and Numeric Invariants 75

integer portion of Inv1 into a separate predicate, as follows.

Inv1(k:Z) def= ∀obj:H. table[k] = o ⇒ (HasIdx(o, k) ∨ o = null)

HasIdx(o:H, k:Z) def= o.index = k

Now Inv1 is understood by the heap domain and HasIdx is understood by the
integer domain.

Deskcheck splits the analysis effort between the heap domain and the nu-
meric domain. Line 34 is initially processed by the heap domain because it
assigns to a pointer location. However, the heap domain knows nothing about i,
an integer. Before executing the assignment, the integer domain is asked to find
an integer class containing i. Call this class Ni. Assume that all other integers
are grouped into a class N �=i. Then the heap domain essentially treats the as-
signment on line 34 as table[Ni] := m. Since the predicate HasIdx(m, i) is false
at this point, the assignment causes Inv1 to be falsified at Ni. Given information
from the integer domain that Ni and N �=i are disjoint, the heap domain can
recognize that remains true at N �=i.

Line 35 is handled by the integer domain because the value being assigned is
an integer. The heap domain is first asked to convert m to a class, Hm, so that
the integer domain knows where the assignment takes place. After performing
the assignment as usual, the integer domain informs the heap domain that (∀o ∈
Hm, n ∈ Ni. HasIdx(o, n)) has become true. The heap domain then recognizes
that Inv1 becomes true at Ni, restoring the invariant.

Limitations. It is important to understand the limitations of our work. The
most important limitation is that shared predicates, like Inv1 and HasIdx, must
be provided by the user of the analysis. Without shared predicates, our combined
domain is no more (or less) precise than the work of Gulwani et al. [14]. The
predicates that we supply in our examples tend to follow directly from the prop-
erties we want to prove, but supplying their definitions is still an obligation left to
the Deskcheck user. Another limitation, which applies to our implementation,
is that the domains we are combining sometimes require annotations to the code
being analyzed. These annotations do not affect soundness, but they may affect
precision and efficiency. We describe both the predicates and the annotations we
use for the thttpd web server in §5.

Two more limitations affect our implementation. First, it handles calls to func-
tions via inlining. Besides not scaling to larger codebases, inlining cannot handle
recursive functions. The use of inlining is not fundamental to our technique,
but we have not yet developed a more effective method of analyzing procedures.
We emphasize, though, that we do not require any loop invariants or procedure
pre-conditions or post-conditions from the user. All invariants are inferred by
abstract interpretation. We seed the analysis with an initially empty heap.

The final limitation is that our tool requires the user to manually translate
C code to a special analysis language similar to BoogiePL [7]. This step could
easily be automated, but we have not had time to do it.

76 B. McCloskey, T. Reps, and M. Sagiv

Contributions. The contributions of our work can be summarized as follows: (1)
We present a method to infer quantified invariants over mixed domains while
using separate implementations of the different domains. (2) We describe an
instantiation of Deskcheck based on canonical abstraction for heap properties
and difference constraints for numeric properties. We explain how this analyzer
is able to establish memory-safety properties of the thttpd cache. The system
is publicly available online [18]. (3) Along with the work of Berdine et al. [2],
our work addresses the most complex data-structure invariants considered in the
shape-analysis literature. The problems addressed in the two papers are comple-
mentary: Berdine et al. handle complex structural invariants for nests of linked
structures (such as “cyclic doubly linked lists of acyclic singly linked lists”),
whereas our work handles complex mixed-domain invariants for data structures
with both linkage and numeric constraints, such as the structure depicted in
Fig. 1.

Organization. §2 summarizes the modeling language and the domain-
communication mechanism on which Deskcheck relies. §4 describes how
Deskcheck infers mixed numeric and heap properties. §5 presents experimental
results. §6 discusses related work.

2 Deskcheck Architecture

2.1 Modeling of Programs

Programs are input to Deskcheck in an imperative language similar to Boo-
giePL [7]. We briefly describe the syntax and semantics, because this language is
used in all this paper’s examples. The syntax is Pascal-like. An example program
is given in Fig. 3. This program checks that each entry in a linked list has a data
field of zero; this field is then set to one.

Line 1 declares a type T of list nodes. Lines 3–5 define a set of uninterpreted
functions. Our language uses uninterpreted functions to model variables, fields,
and arrays uniformly. The next function models a field: it maps a list node to
another list node, so its signature is T → T. The data function models an integer
field of list nodes. And head models a list variable; it is a nullary function. Note
that an array a of type T would be written as a[int]:T. At line 8, cur is a
procedure-local nullary uninterpreted function (another T variable).

The semantics of our programs is similar to the semantics of a many-sorted
logic. Each type is a sort, and the type int also forms a sort. For each sort there
is an infinite, fixed universe of individuals. (We model allocation and deallocation
with a free list.) A concrete program state maps uninterpreted function names
to mathematical functions having the correct signature. For example, if UT is
the universe of T-individuals, then the semantics of the data field is given by
some function drawn from UT → Z.

Statically Inferring Complex Heap, Array, and Numeric Invariants 77

1 type T;

2

3 global next[T]:T; global data[T]:int; global head:T;

4

5 procedure iter()

6 cur:T;

7 { cur := head;

8 while (cur != null) {

9 assert(data[cur] = 0);

10 data[cur] := 1;

11 cur := next[cur];

12 }

13 }

Fig. 3. A program for traversing a linked list

2.2 Base Domains

Deskcheck combines the power of several abstract domains into a single com-
bined domain. In our experiments, we used a combination of canonical abstrac-
tion for heap reasoning and difference-bound matrices for numeric reasoning.
However, combinations using separation logic or polyhedra are theoretically pos-
sible.

Canonical abstraction [24] partitions heap objects into disjoint sets based on
the properties they do or do not satisfy. For example, canonical abstraction might
group together all objects reachable from a variable x but not reachable from
y . When two objects are grouped together, only their common properties are
preserved by the analysis. A canonical abstraction with many groups preserves
more distinctions between objects but is more expensive. Using fewer groups is
faster but less precise.

Canonical abstraction is a natural fit for Deskcheck because it already relies
on predicates. Each canonical name corresponds fairly directly to a class in the
Deskcheck setting. Deskcheck allows each domain to decide how objects
are to be partitioned into classes: in canonical abstraction we use predicates
to decide. We use a variant of canonical abstraction in which a summary node
summarizes 0 or more individuals [1] (rather than 1 or more as in most other
systems).

Our numeric domain is the familiar domain of difference-bound matrices. It
tracks constraints of the form t1 − t2 ≤ c, where t1 and t2 are uninterpreted
function terms such as f [x]. We use a summarizing numeric domain [12], which
is capable of reasoning about function terms as dimensions in a sound way.

The user is allowed to define numeric predicates. These predicates are defined
using a simple quantifier-free language permitting atomic numerical facts,
conjunction, and disjunction. A typical predicate might be Bounded(n) := n ≥

78 B. McCloskey, T. Reps, and M. Sagiv

0 ∧ n < 10. Similar to canonical abstraction, we use these numeric predicates
to partition the set of integers into disjoint classes. These integer classes permit
array reasoning, as explained later in §4.2.

2.3 Combining Domains

In the Deskcheck architecture, work is partitioned between n domains. Typ-
ically n = 2, although all of our work extends to an arbitrary number of base
domains. Besides the usual operations like join and assignment, these domains
must be equipped to share quantified atomic facts and class information.

Each domain is responsible for some of the sorts defined above. In our imple-
mentation, the numeric domain handles int and the heap domain handles all
other types. An uninterpreted function is associated with an abstract domain
according to the type of its range. In Fig. 3, next and head are handled by the
heap domain and data by the numeric domain. Assignments statements to un-
interpreted functions are initially handled by the domain with which they are
associated.

Predicates are also associated with a given domain. Each domain has its own
language in which its predicates are defined. Our heap domain supports univer-
sal and existential quantification and transitive closure over heap functions. Our
numeric domain supports difference constraints over numeric functions along
with cardinality reasoning. A predicate associated with one domain may refer to
a predicate defined in another domain, although cyclic references are forbidden.
The user is responsible for defining all predicates. The precision of an analy-
sis depends on a good choice of predicates; however, soundness is guaranteed
regardless of the choice of predicates.

Classes. A class, as previously mentioned, represents a set of individuals of a
given sort (integers, heap objects of some type, etc.). A class can be a singleton,
having one element, or a summary class, having an arbitrary number of elements
(including zero). Summary classes are written in bold, as in N �=i, to distinguish
them.

The grouping of individuals into classes may be flow-sensitive—we do not
assume that the classes are known prior to the analysis. At any time a domain is
allowed to change this grouping, in a process called repartitioning. Classes of a
given sort are repartitioned by the domain to which that sort is assigned. When
a domain repartitions its classes, other domains are informed as described below.

Semantics. Each domain Di can choose to represent its abstract elements how-
ever it desires. To define the semantics of a combined element 〈E1, E2〉, we require
each domain Di to provide a meaning function, γ̂i(Ei), that gives the meaning of
Ei as a logical formula. This formula may contain occurrences of uninterpreted
functions that are managed by Di as well as classes and predicates managed by
any of the domains.

We will define a function γ(〈E1, E2〉) that gives the semantics of a combined
abstract element. Instead of evaluating to a logical formula, this function returns

Statically Inferring Complex Heap, Array, and Numeric Invariants 79

a set of concrete states that satisfy the constraints of E1 and E2. A concrete state
is an interpretation that assigns values to all the uninterpreted functions used
by the program.

Naively, we could define γ(〈E1, E2〉) as the set of states that satisfy formulas
γ̂1(E1) and γ̂2(E2). However, these formulas refer to classes and predicates, which
do not appear in the state. To solve the problem, we let γ(〈E1, E2〉) be the set
of states satisfying γ̂1(E1) and γ̂2(E2) for some interpretation of predicates and
classes. We can state this formally using second-order quantification. Here, each
Pi is a predicate defined by D1 or D2. Each Ci is a class appearing in E1 or E2.
The number of classes, n(E1, E2), depends on E1 and E2.

γ(〈E1, E2〉) def= {S : S |= ∃P1. · · · ∃Pm. ∃C1. · · · ∃Cn(E1,E2). γ̂1(E1) ∧ γ̂2(E2)}

Typically, γ̂i(Ei) is the conjunction of three subformulas. One subformula gives
meaning to the predicates defined by Di and another gives meaning to the classes
defined by Di. The third subformula, the only one specific to Ei, gives meaning
to the constraints in Ei.

We can be more specific about the forms of these three subformulas. A sub-
formula defining a unary predicate P that holds when its argument is positive
would look as follows.

∀x. P(x) ⇐⇒ x > 0

In our implementation of the analysis, all predicate definitions must be given by
the user. Note that a predicate definition may refer to another predicate (possibly
one defined by another base domain). For example, the following predicate might
apply to heap objects, stating that their data field is positive.

∀o. Q(o) ⇐⇒ P(data[o])

A subformula that defines a class C containing the integers from 0 to n would
look as follows.

C = {x : 0 ≤ x < n}
Our implementation uses canonical abstraction [24] to decide how individuals
are grouped into classes. Therefore, the definition of a class will always have the
following form:

C = {x : P(x) ∧ Q(x) ∧ ¬R(x) ∧ · · · }
That is, the class contains exactly those object satisfying a set of unary predi-
cates and not satisfying another set of unary predicates. Such unary predicates
are called abstraction predicates. The user chooses which subset of the unary
predicates are abstraction predicates. In theory there can be one class for every
subset of the abstraction predicates, but in practice most of these classes are
empty and thus not used. Because each class is defined by the abstraction pred-
icates it satisfies (the non-negated ones), this subset of predicates is called the
class’s canonical name.

Subformulas that give meaning to the constraints in Ei are specific to the
domain Di. For example, an integer domain would include constraints like x−y ≤

80 B. McCloskey, T. Reps, and M. Sagiv

c. A heap domain might include constraints about reachability. Both domains
will often include quantified facts of the following form:

∀o ∈ C. Q(o)

A domain may quantify over a class defined by any of the domains and it may use
predicates from any of the domains. The predicate that appears may optionally
be negated. Facts like this may be exchanged freely between domains because
they are written in a common language of predicates and classes. To distinguish
the more domain-specific facts like x − y ≤ c from the ones exchanged between
domains, we surround them in angle brackets. A fact 〈 · 〉H is specific to a heap
domain and 〈 · 〉N is specific to a numeric domain.

3 Domain Operations

This section describes the partial order and join operation of the combined do-
main and also the transfer function for assignment. These operations make use
of their counterparts in the base domains as well as some additional functions
that we explain below.

3.1 Partial Order

We can define a very naive partial-order check for the combined domain as
follows.

〈EA
1 , EA

2 〉 � 〈EB
1 , EB

2 〉 ⇐⇒ (EA
1 �1 EB

1) ∧ (EA
2 �2 EB

2)

Here, we have assumed that �1 and �2 are the partial orders for the base
domains.

However, there are two problems with this approach. The first problem is
illustrated by the following example. (Assume that class C and predicate P are
defined by D1.)

EA
1 = ∀x ∈ C. P(x) EB

1 = true

EA
2 = true EB

2 = ∀x ∈ C. P(x)

If we work out γ(〈EA
1 , EA

2 〉) and γ(〈EB
1 , EB

2 〉), they are identical. Thus, we should
obtain 〈EA

1 , EA
2 〉 � 〈EB

1 , EB
2 〉. However, the partial-order check given above does

not, because it is not true that EA
2 �2 EB

2 .
To solve this problem, we saturate EA

1 and EA
2 before applying the base

domains’ partial orders. That is, we strengthen these elements by exchanging
any facts that can be expressed in a common language. (Note that EA

1 and EA
2

are individually strengthened but γ(〈EA
1 , EA

2 〉) remains the same; saturation is
a semantic reduction.) In the example, the fact ∀x ∈ C. P(x) is copied from EA

1

to EA
2 .

Statically Inferring Complex Heap, Array, and Numeric Invariants 81

Any fact drawn from the following grammar can be shared.

F ::= ∀x ∈ C. F | ∃x ∈ C. F | P(x, y, . . .) | ¬P(x, y, . . .) (3)

Here, C is an arbitrary class and P is an arbitrary predicate. All variables ap-
pearing in P(x, y, . . .) must be bound by quantifiers.

function Saturate(E1, E2):
F := ∅
repeat:

F0 := F
F := F ∪ Consequences1(E1) ∪ Consequences2(E2)
E1 := Assume1(E1, F)
E2 := Assume2(E2, F)

until F0 = F
return 〈E1, E2〉

Fig. 4. Implementation of combined-domain saturation

To implement sharing, each domain Di is required to expose an Assume i

function and a Consequences i function. Consequences i takes a domain ele-
ment and returns all facts of the form above that it implies. Assume i takes a
domain element E and a fact f of the form above and returns an element that
approximates E ∧ f . The pseudocode in Fig. 4 shows how facts are propagated.
They are accumulated via Consequences i and then passed to the domains with
Assume i. Because we require that the number of predicates and classes in any
element is bounded, this process is guaranteed to terminate.

We update the naive partial-order check as follows. If 〈EA
1

∗
, EA

2
∗〉 =

Saturate(EA
1 , EA

2), then

〈EA
1 , EA

2 〉 � 〈EB
1 , EB

2 〉 ⇐⇒ (EA
1

∗ �1 EB
1) ∧ (EA

2

∗ �2 EB
2)

Note that we only saturate the left-hand element; strengthening the right-hand
element is sound, but it does not improve precision.

This ordering is still too imprecise. The problem is that the A and B elements
may use different class names to refer to the same set of individuals. As an
example, consider the following.

EA
1 = ∀x ∈ C. P(x) EB

1 = ∀x ∈ C′. P(x)

EA
2 = (C = {x : x > 0}) EB

2 = (C′ = {x : x > 0})

It’s clear that C and C′ both refer to the same sets. Therefore, γ(〈EA
1 , EA

2 〉) is
equal to γ(〈EB

1 , EB
2 〉); the difference in naming between C and C′ is irrelevant

to γ because it projects out class names using an existential quantifier. However,
our naive partial-order check cannot discover the equivalence.

82 B. McCloskey, T. Reps, and M. Sagiv

To solve the problem, we rename the classes appearing in 〈EA
1 , EA

2 〉 so that
they match the names used in 〈EB

1 , EB
2 〉. This process is done in two steps: (1)

match up the classes in the A element with those in the B element, (2) rewrite
the A element’s classes according to step 1. In the example above, we get the
rewriting {C �→ C′} in step 1, which is used to rewrite EA

1 and EA
2 as follows.

EA
1 = ∀x ∈ C′. P(x) EB

1 = ∀x ∈ C′. P(x)

EA
2 = (C′ = {x : x > 0}) EB

2 = (C′ = {x : x > 0})

We only rewrite the A elements because rewriting may weaken the abstract
element and it is unsound to weaken the B elements in a partial order check.
Our partial order is sound with respect to γ, but it may be incomplete. Its
completeness depends on the completeness of the base domain operations like
MatchClasses i, and typically these operations are incomplete.

Recall that each class is managed by one domain but may still be referenced
by other domains. In the matching step, each domain is responsible for matching
its own classes. In our implementation, we match up classes according to their
canonical names. Then the rewritings for all domains are combined and every
domain element is rewritten using the combined rewriting. In the example above,
D2 defines classes C and C′, so it is responsible for matching them. But both
EA

1 and EA
2 are rewritten.

function 〈EA
1 , EA

2 〉 � 〈EB
1 , EB

2 〉:
〈EA

1 , EA
2 〉 := Saturate(EA

1 , EA
2)

R1 := MatchClasses1(EA
1 , EB

1)
R2 := MatchClasses2(EA

2 , EB
2)

EA
1

′ := Repartition1(E
A
1 , R1 ∪ R2)

EA
2

′ := Repartition2(E
A
2 , R1 ∪ R2)

return (EA
1

′ �1 EB
1) ∧ (EA

2
′ �2 EB

2)

Fig. 5. Pseudocode for combined domain’s partial order

Pseudocode that defines the partial-order check for the combined domain is
shown in Fig. 5. First, EA is saturated and its classes are matched to the classes
in EB. Each domain is required to expose a MatchClasses i operation that
matches the classes it manages. The rewritings R1 and R2 are combined and
then EA is rewritten via the Repartition i operations that each domain must
also expose. Finally, we apply each base domain’s partial order to obtain the
final result.

Statically Inferring Complex Heap, Array, and Numeric Invariants 83

3.2 Join and Widening

The join algorithm is similar to the partial-order check. We perform saturation,
rewrite the class names, and then apply each base domain’s join operation inde-
pendently. The difference is that join is handled symmetrically: both elements
are saturated and rewritten. Instead of matching the classes of EA to the classes
of EB, we allow both inputs to be repartitioned into a new set of classes that
may be more precise than either of the original sets of classes. Thus, we require
domains to expose a MergeClasses i operation that returns a mapping from
either element’s original classes to new classes.

function 〈EA
1 , EA

2 〉 � 〈EB
1 , EB

2 〉:
〈EA

1 , EA
2 〉 := Saturate(EA

1 , EB
2)

〈EB
1 , EB

2 〉 := Saturate(EB
1 , EB

2)

〈RA
1 , RB

1 〉 := MergeClasses1(E
A
1 , EB

1)
〈RA

2 , RB
2 〉 := MergeClasses2(E

A
2 , EB

2)

EA
1

′ := Repartition1(E
A
1 , RA

1 ∪ RA
2)

EA
2

′ := Repartition2(E
A
2 , RA

1 ∪ RA
2)

EB
1

′ := Repartition1(E
B
1 , RB

1 ∪ RB
2)

EB
2

′ := Repartition2(E
B
2 , RB

1 ∪ RB
2)

return 〈(EA
1

′ �1 EB
1

′), (EA
2

′ �2 EB
2

′)〉)

Fig. 6. Pseudocode for combined domain’s join algorithm

The pseudocode for join is shown in Fig. 6. First, EA and EB are saturated.
Then MergeClasses 1 and MergeClasses2 are called to generate four rewritings.
The rewriting RA

i describes how to rewrite the classes in EA that are managed
by Di into new classes. Similarly, RB

i describes how to rewrite the classes in EB

that are managed by Di. Finally, EA and EB are rewritten and the base domains’
joins are applied. When rewriting EA, we need both RA

1 and RA
2 because classes

managed by one base domain can be referenced by the other.
We must define a widening operation for the combined domain as well. The

widening algorithm is very similar to the join algorithm. Recall that the purpose
of widening is to act like a join while ensuring that fixed-point iteration will
terminate eventually. Due to the termination requirement, we make some changes
to the join algorithm.

The challenging part of widening is that some widenings that are “obviously
correct” may fail to terminate. Miné [19] describes how this can occur in an
integer domain. Widening typically works by throwing away facts, producing a

84 B. McCloskey, T. Reps, and M. Sagiv

less precise element, to reach a fixed point more quickly. The problem occurs if
we try to saturate the left-hand operand. Saturation will put back facts that we
might have thrown away, thereby defeating the purpose of widening. So to ensure
that a widened sequence terminates, we never saturate the left-hand operand.
The code is in Fig. 7.

function 〈EA
1 , EA

2 〉 ∇ 〈EB
1 , EB

2 〉:
〈EB

1 , EB
2 〉 := Saturate(EB

1 , EB
2)

R1 := MatchClasses1(EB
1 , EA

1)
R2 := MatchClasses2(EB

2 , EA
2)

EB
1

′ := Repartition1(E
B
1 , R1 ∪ R2)

EB
2

′ := Repartition2(E
B
2 , R1 ∪ R2)

return 〈(EA
1 ∇1 EB

1
′), (EA

2 ∇2 EB
2

′)〉

Fig. 7. Combined domain’s widening algorithm

This code is very similar to the code for the join algorithm. Besides avoiding
saturation of EA, we also avoid repartitioning EA. Our goal is to avoid any
changes to EA that might cause the widening to fail to terminate. Because we
do not repartition EA, we use MatchClasses i instead of MergeClasses i.

3.3 Assignment

Assignment in the combined domain must solve two problems. First, each base-
domain element must be updated to account for the assignment. Second, any
changes to the shared predicates and classes must be propagated between do-
mains. We simplify the matter somewhat by declaring that an assignment op-
eration cannot affect classes. That is, the set of individuals belonging to a class
is not affected by assignments. However, a predicate that once held over the
members of a class may no longer hold, and vice versa.

Base Facts. We deal with updating the base domains first, and we deal with
predicates later. We require each base domain to provide an assignment trans-
fer function to process assignments. An assignment operation has the form
f [e1, . . . , ek] := e, where f is an uninterpreted function and e, e1, . . . , ek are all
terms made up of applications of uninterpreted functions. The assignment trans-
fer function of domain Di is invoked as Assigni(Ei, f [e1, . . . , ek], e). Each unin-
terpreted function is understood by only one base domain; we use the transfer
function of the domain that understands f . The other domain is left unchanged.

Statically Inferring Complex Heap, Array, and Numeric Invariants 85

Assume that D1 understands f so that Assign 1 is invoked. The problem is
that any of e or e1, . . . , ek may use uninterpreted functions that are understood
by D2 and not by D1. In this case, D1 will not know the effect of the assignment.
To overcome this problem, we ask D2 to replace any “foreign” term appearing
in e and e1, . . . , ek with a class that is guaranteed to contain the individual to
which the term evaluates. Because classes have meaning to both domains, it is
now possible for D1 to process the assignment.

Replacement of foreign terms with classes must be done recursively, because
function applications may contain other function applications. The process is
shown in pseudocode in Fig. 8 via the TranslateFulli functions. The function
TranslateFull1 replaces any D2 terms with classes. When it sees a D2 function
application, it translates the arguments of the function application to terms
understood by D2 and then asks D2, via the Translate 2 function that it must
expose, to replace the entire application with a class.

As an example, consider the term f [c], where f is understood by D1 and c is
understood by D2. If we call TranslateFull1 on this term, then c is converted by
D2 to a class, say C, that contains the value of c. The resulting term is f [C],
which is understandable by D1. If, instead, we called TranslateFull2 on f [c], we
would again convert c to a class C. Then we would ask D1 to convert f [C] to a
class, say F , which must contain the value of f [x] for any x ∈ C. The result is a
class, say F , which is understood by D2.

Predicates. Besides returning an updated domain element, we require that the
Assign i transfer function return information about how the predicates defined
by Di were affected by the assignment. As an example, suppose that the assign-
ment sets x := 0 and predicate P is defined as P() := x ≥ 0. If the old value of x
was negative, then the assignment causes P to go from false to true. The other
domain should be informed of the change because it may contain facts about P
that need to be updated.

The changes are conveyed via two sets, U and C. The set C contains predicate
facts that may have changed. Its members have the form P(C1, . . . , Ck), where
each Ci is a class; this means that the truth of P(x1, . . . , xk) may have changed
if xi ∈ Ci for all i. If some predicate fact is not in C, then it is safe to assume
that its truth is not affected by the assignment.

The set U holds facts that are known to be true after the assignment. Its
members have same form as facts returned by Consequences i. For example, if
an assignment causes P to go from true to false for all elements of a class C0,
then C would contain P(C0) and U would contain ∀x ∈ C0. ¬P(x).

The Assign i transfer functions are required to return U and C. However,
when one predicate depends on another, Assign i may not know immediately
how to update it. For example, if D1 defines the predicate P() := x ≥ 0 and D2

defines Q() := ¬P(), then Assign 1 has no way to know that a change in x might
affect Q, because it is unaware of the definition of Q.

We use a post-processing step to update predicates like Q. We require
predicates to be stratified. A predicate in the jth stratum can depend
only on predicates in strata < j. Each domain must provide a function

86 B. McCloskey, T. Reps, and M. Sagiv

function TranslateFull1(E1, E2, f [e1, . . . , ek]):
if f ∈ D1:

for i ∈ [1..k]: e′i := TranslateFull1(E1, E2, ei)
return f [e′1, . . . , e

′
k]

else:
for i ∈ [1..k]: e′i := TranslateFull2(E1, E2, ei)
return Translate2(E2, f [e′1, . . . , e

′
k])

function TranslateFull2(E1, E2, f [e1, . . . , ek]):
defined similarly to TranslateFull1

function Assign(〈E1, E2〉, f [e1, . . . , ek], e):
〈E1, E2〉 := Saturate(E1, E2)

if f ∈ D1:
l := TranslateFull1(E1, E2, f [e1, . . . , ek])
r := TranslateFull1(E1, E2, e)
〈E′

1, U, C〉 := Assign1(E1, l, r)
E′

2 := E2

else:
l := TranslateFull2(E1, E2, f [e1, . . . , ek])
r := TranslateFull2(E1, E2, e)
〈E′

2, U, C〉 := Assign2(E2, l, r)
E′

1 := E1

j := 1
repeat:

〈E′
1, U, C〉 = PostAssign1(E1, E

′
1, j, U, C)

〈E′
2, U, C〉 = PostAssign2(E2, E

′
2, j, U, C)

j := j + 1
until j = num strata

return 〈E′
1, E

′
2〉

Fig. 8. Pseudocode for assignment transfer function. num strata is the total number

of shared predicates.

PostAssigni(Ei, E
′
i, j, U, C). Here, Ei is the domain element before the assign-

ment and E′
i is the element that accounts for updates to base facts and to

predicates in strata < j. U and C describe how predicates in strata < j are af-
fected by the assignment. The function’s job is to compute updates to predicates
in the jth stratum, returning new values for E′

i, U , and C. Fig. 8 gives the full
pseudocode. It assumes that variable num strata holds the number of strata.

Statically Inferring Complex Heap, Array, and Numeric Invariants 87

4 Examples

4.1 Linked Lists

We begin by explaining how we analyze the code in Fig. 3. Although analysis
of linked lists using canonical abstraction is well understood [24], this section
illustrates our notation. First, some predicates must be specified by the user.
These are standard predicates for analyzing singly linked lists with canonical
abstraction [24]. The definition formulas use two forms of quantification: tc for
irreflexive transitive closure and ex for existential quantification. All of these
predicates are defined in the heap domain.

1 predicate NextTC(n1:T, n2:T) := tc(n1, n2) next;

2 predicate HeadReaches(n:T) := head = n || NextTC(head, n);

3 predicate CurReaches(n:T) := cur = n || NextTC(cur, n);

4 predicate SharedViaHead(n:T) := ex(n1:T) head = n && next[n1] = n;

5 predicate SharedViaNext(n:T) :=

6 ex(n1:T, n2:T) next[n1] = n && next[n2] = n && n1 != n2;

The predicate in line 1 holds between two list nodes if the second is reachable
from the first via next pointers. The Reaches predicates hold when a list node
is reachable from head/cur. The Shared predicates hold when a node has two
incoming pointers, either from head or from another node’s next field; they are
usually false. These five predicates can constrain a structure to be an acyclic
singly linked list.

On entry to the iter procedure in Fig. 3, we assume that head points to
an acyclic singly linked list whose data fields are all zero. We abstract all the
linked-list nodes into a summary heap class L.

We describe the classes and shared predicates of the initial analysis state
graphically as follows. Nodes represent classes and predicates are attached to
these nodes.

L

HeadReaches

This diagram means that there is a single class, L, whose members satisfy the
HeadReaches predicate and do not satisfy the CurReaches, SharedViaHead, or
SharedViaNext predicates. The double circle means the node represents a sum-
mary class. We could write this state more explicitly as follows.

∀x ∈ L. HeadReaches(x) ∧ ¬CurReaches(x)
∧ ¬SharedViaHead(x) ∧ ¬SharedViaNext(x)

This state exactly characterizes the family of acyclic singly linked lists. Predicate
HeadReaches ensures that there are no unreachable garbage nodes abstracted by
L, and the two sharing predicates exclude the possibility of cycles. Note that no
elements are reachable from cur because cur is assumed to be invalid on entry
to iter.

88 B. McCloskey, T. Reps, and M. Sagiv

In addition to these shared predicate facts, each domain also records its own
private facts. In this case, we assume that the numeric domain records that the
data field of every list element is zero: 〈 ∀x ∈ L. data[x] = 0 〉N . The remainder
of the analysis is a straightforward application of canonical abstraction.

4.2 Arrays

In this section, we consider a loop that initializes to null an array of pointers
(Fig. 9). The example demonstrates how we abstract arrays. A similar loop is
used to initialize a hash table in the thttpd web server that we verify in §5.

1 type T;

2 global table[int]:T;

3

4 procedure init(n:int)

5 i:int;

6 { i := 0;

7 while (i < n) {

8 table[i] := null;

9 i := i+1;

10 }

11 }

Fig. 9. Initialize an array

Most of this code is analyzed straightforwardly by the integer domain. It easily
infers the loop invariant that 0 ≤ i < n. Only the update to table is interesting.

Just as the heap domain partitions heap nodes into classes, the integer domain
partitions integers into classes. We define predicates to help it determine a good
partitioning.

1 predicate Lt(x:int) = 0 <= x && x < i;

2 predicate Eq(x:int) = x = i;

3 predicate Gt(x:int) = i < x && x < n;

With these predicates, we obtain four integer classes via canonical abstraction,
Ilt, Ii, Igt, and X. The first three classes contain elements satisfying the three
predicates above, respectively. The last class contains all other integers (those
that are negative or ≥ n). Given these classes, we infer the following loop
invariant.

Ilt

Lt

Ii

Eq

Igt

Gt

〈 ∀x ∈ Ilt. table[x] = null 〉H

Statically Inferring Complex Heap, Array, and Numeric Invariants 89

The fact on the right is a private heap-domain fact but it can still refer to the
integer class Ilt. The ability of one domain to refer to another domain’s classes
is what enables mixed quantification in our system.

Using abstract interpretation, our analysis makes several passes over the loop
before it infers this invariant. We write Pn to denote the state resulting from
analyzing the nth iteration of the loop. In state P0, i = 0 and so Ilt is empty.
The fact 〈 ∀x ∈ Ilt. table[x] = null 〉H is vacuously true here, but our analysis
does not infer facts about empty classes, so it is not included in P0. However, it
is implied by P0 because Ilt is empty.

In state P1, where i = 1, Ilt is non-empty and 〈 ∀x ∈ Ilt. table[x] = null 〉H
is inferred from the assignment. To obtain a loop invariant, we join P0 and P1.
Our join algorithm recognizes that the fact 〈 ∀x ∈ Ilt. table[x] = null 〉H , which
is present in P1, is implied by P0 (because Ilt is empty there) and so it includes
this fact in the join result.

The assignment to table on line 8 of Fig. 9 proceeds as follows. Because
the function table is heap-defined while i is defined in the numeric domain,
the combined domain asks the numeric domain to “translate” i into a class.
Ideally, the translation should generate the smallest possible class containing
the value of i. In this case, the numeric domain can return the singleton class Ii,
because it knows that Ii satisfies the Eq predicate. Then the heap domain can
add 〈 ∀x ∈ Ii. table[x] = null 〉H to the analysis state.

The increment to i re-arranges the class structure (although this happens out-
side the assignment transfer function, which requires classes to remain constant).
The numeric domain materializes a new class for i + 1, which becomes Ii and
merges the existing Ii with Ilt. The resulting domain element implies the loop
invariant.

After the loop exits, the loop invariant implies that table is null at all indexes
in Ilt, which now includes all valid array indexes.

4.3 Numeric Predicates

We now show how Inv1 (Eqn. (1)) is established in thttpd. The code contains
the following variable definitions and predicates.

1 global table[int]:T, index[T]:int, size:int;

2 predicate HasIdx(e:T, x:int) := index[e] = x;

3 predicate Inv1(x:int) := all(e:T) table[x]=e => HasIdx(e, x) || e=null;

The intent is that table[k] = e should imply index[e] = k. Variable size is the size
of the table array. Note that HasIdx is defined in the numeric domain because it
references index, while Inv1 is defined in the heap domain.

The procedures of interest to us are those that add and remove elements from
the table. Our goal will be to prove that add preserves Inv1 and that remove,
assuming Inv1 holds initially, does not leave any dangling pointers.

1 procedure add(i:int)

2 o:T;

90 B. McCloskey, T. Reps, and M. Sagiv

3 { o := new T;

4 table[i] := o;

5 index[o] := i;

6 }

7 procedure remove(o:T)

8 i:int;

9 { i := index[o];

10 table[i] := null;

11 delete o;

12 }

Addition. Besides the predicates above, we create numeric predicates to partition
the integers into five classes: Ilt, Ii, Igt. Respectively, these are the integers
between 0 and i−1, equal to i, greater than i but less than size. As before, class
X holds the out-of-bounds integers.

Assume that upon entering the add procedure, we infer the following invariant
(recall that we treat all functions via inlining).

Ilt

Inv1

Ii

Inv1

Igt

Inv1

E
〈 ∀x ∈ Ii. table[x] = null 〉H

All existing T objects are grouped into the class E. table is unconstrained at Ilt

and Igtand we do not have any information about the HasIdx predicate.
Initially, Inv1 holds at Ii because table is null there. When table is updated in

line 4, Inv1 is potentially broken because index[o] may not be i. The assignment
on line 5 correctly sets index[o], restoring Inv1 at Ii.

The object allocated at line 3 is placed in a fresh class E′. We do not have
information about HasIdx for this new class. When line 4 sets table[i] := obj,
the assignment is initially handled by the heap domain because table is a heap
function. In order for Inv1 to continue to hold after line 4, we would need to
know that ∀x ∈ E′. ∀y ∈ Ii. HasIdx(x, y). But this fact does not hold because
E′ is a new object whose index field is undefined.

Inv1 is restored in line 5. The assignment is handled by the numeric domain.
Besides the private fact that 〈 ∀x ∈ E′. index[x] = i 〉N , it recognizes that
∀x ∈ E′. ∀y ∈ Ii. HasIdx(x, y). This information is shared with the heap domain
in the PostAssign i phase of the assignment transfer function. The heap domain
then recognizes that Inv1 has been restored at Ii. Thus, procedure add preserves
Inv1.

Removal. We use the same numeric abstraction used for procedure add. On entry
we assume that the object that o points to is contained in a singleton class E′.
All other T objects are in a class E. All table entries are either null or members
of E or E′. The verification challenge is to prove that 〈 ∀x ∈ (Ilt ∪ Igt). ∀y ∈
E′. table[x] �= y 〉H . Without this fact, after E′ is deleted, we might have pointers
from table to freed memory. These pointers might later be accessed, leading to
a segfault.

Statically Inferring Complex Heap, Array, and Numeric Invariants 91

Luckily, Inv1 implies the necessary disequality, as follows. We start by ana-
lyzing line 9. The integer domain handles this assignment and shares the fact
that ∀x ∈ E′. ∀y ∈ Ii. HasIdx(x, y) holds afterwards. Importantly, because
the integer domain knows that i is not in either Ilt or Igt, it also propa-
gates ∀x ∈ E′. ∀z ∈ (Ilt ∪ Igt). ¬HasIdx(x, z). We assume as a precondition
to remove that Inv1 holds of Ilt, Ii, and Igt. The contrapositives of the impli-
cations in these Inv1 facts, together with the negated HasIdx facts, imply that
〈 ∀x ∈ (Ilt ∪ Igt). ∀y ∈ E′. table[x] �= y 〉H .

The assignment on line 10 is straightforward to handle in the heap domain. It
recognizes that 〈 ∀x ∈ Ii. table[x] = null 〉H while preserving Inv1 at Ii(because
the definition of Inv1 has a special case for null). Finally, line 11 deletes E′,
Because the heap domain knows that 〈 ∀x ∈ (Ilt ∪ Ii ∪ Igt). ∀y ∈ E′. table[x] �=
y 〉H , there can be no dangling pointers.

4.4 Reference Counting

In this final example, we demonstrate the analysis of the most complex feature
of thttpd’s cache: reference counting. To analyze reference counting we have
augmented the integer domain in two ways.

The first augmentation allows the numeric domain to make statements about
the cardinality of a class. For each class C we introduce a numeric dimension #C,
called a cardinality variable. Thus, we can make statements like 〈 #C ≤ n+1 〉N .
This augmentation was described by Gulwani et al. [14]. Usually, information
about the cardinality of a class is accumulated as the class grows. The typical
class starts as a singleton, so we infer that #C = 1. As it is repeatedly merged
with other singleton classes, its cardinality increments by one. Often we can
derive relationships between the cardinality of a class and loop-iteration variables
as a data structure is constructed.

Besides cardinality variables, we also introduce cardinality functions. These
functions are private to the numeric domain. We give an example below in the
context of reference counting.

1 type T, Container;

2 global rc[T]:int, contains[Container]:T;

3

4 predicate Contains(c:Container, o:T) := contains[c] = o;

5 function RealRC(o:T) := card(c:Container) Contains(c, o); // see below

6 predicate Inv2(o:T) := rc[o] = RealRC[o];

There are two types here: Container objects hold references to T objects. Each
Container object has a contains field to some T object. Each T object records
the number of incoming contains edges in its rc field.

The heap predicate Contains merely exposes contains to the numeric domain.
The cardinality function RealRC is private to the numeric domain. RealRC [e]
equals the number of incoming contains edges to e. It equals the cardinality of
the set {c : Container | Contains(c, e)}. The Inv2 predicate holds if rc[e] equals
this value.

92 B. McCloskey, T. Reps, and M. Sagiv

Our goal is to analyze the functions that increment and decrement an object’s
reference count. We check for memory safety.

1 procedure incref(c:Container, o:T)

2 { assert(contains[c]=null);

3 rc[o]:=rc[o]+1;

4 contains[c]:=o;

5 }

6

7 procedure decref(c:Container)

8 o:T;

9 { o := contains[c];

10 contains[c]:=null;

11 rc[o]:=rc[o]-1;

12 if (rc[o]=0)

13 delete o;

14 }

Increment. When we start, we assume that class C′ holds the object pointed
to by c and E′ holds the object pointed to by o. Class E holds all the other T
objects and class C contains all the other Container objects. Then contains[c],
for any c ∈ C, points to an object from either E or E′, while contains[c′], for
c′ ∈ C′, is null. We also assume reference counts are correct, so Inv2 at E and
E′. This fact implies 〈 ∀x ∈ E′. RealRC [x] = rc[x] 〉N . The assignment on line
3 updates this fact to 〈 ∀x ∈ E′. RealRC [x] = rc[x]− 1 〉N and makes Inv2 false
at E′.

The assignment on line 4 is initially handled by the heap domain, which
recognizes that ∀x ∈ C′. ∀y ∈ E′. Contains(x, y) now holds. When this new fact
is shared with the numeric domain, it realizes that RealRC increases by 1 at E′,
thereby restoring Inv2 at E′ as desired.

Decrement. Analysis of lines 9, 10, and 11 are similar to incref. We assume
that the singleton class E′ holds the object pointed to by obj. Similarly, C′ holds
the object pointed to by c. Other Container objects belong to the class C and
other T objects belong to E. Line 10 breaks Inv2 at E′ and line 11 restores it.

However, lines 12 and 13 are different. After line 12, the numeric domain
recognizes that 〈 ∀x ∈ E′. rc[x] = 0 〉N holds. Therefore, it knows that 〈 ∀x ∈
E′. RealRC[x] = 0 〉N holds, based on the just-restored Inv2 invariant at E′.
Given the definition of RealRC , it is then able to infer ∀x ∈ (C ∪ C′). ∀y ∈
E′. ¬Contains(x, y). Therefore, when obj is freed at line 13, we know that there
are no pointers to it, which guarantees that there will be no accesses to this freed
object in the future.

5 Experiments

Our experiments were conducted on the caching code of the thttpd web server
discussed in §1. Interested readers can find our complete model of the cache,

Statically Inferring Complex Heap, Array, and Numeric Invariants 93

as well as the code for Deskcheck, online [18]. The web-server cache has four
entry-points. The map and unmap procedures are described in §1. Additionally,
the cleanup entry-point is called optionally to free cache entries whose reference
counts are zero; this happens in thttpd only when memory is running low.
Finally, a destroy method frees all cache entries regardless of their reference
count.

This functionality corresponds to 531 lines of C code, or 387 lines of code
in the modeling language described in §2.1. The translation from C was done
manually. The model is shorter because it elides the system calls for opening
files and reading them into memory; instead, it simply allocates a buffer to hold
the data. It also omits logging code and comments.

Our goal is to check that the cache does not contain any memory errors—that
is, the cache does not access freed memory or fail to free unreachable memory.
We also check that all array accesses are in bounds, that unassigned memory
is never accessed, and that null is never dereferenced. We found no bugs in the
code.

We verify the cache in the context of a simplified client. This client keeps a
linked list of ongoing HTTP connections, and each connection stores a pointer
to data retrieved from the cache. In a loop, the client calls either map, unmap,
or cleanup. When the loop terminates, it calls destroy. At any time, many
connections may share the same data.

All procedure calls are handled via inlining. There is no need for the user
to specify function preconditions or postconditions. Because our analysis is an
abstract interpretation, there is no need for the user to specify loop invariants
either. This difference distinguishes Deskcheck from work based on verification
conditions.

All of the invariants described in §1 appear as predicate definitions in the ver-
ification. In total, thirty predicates are defined. Fifteen of them define common
but important linked-list properties, such as reachability and sharing. These are
all heap predicates. Another ten predicates are simple numeric range properties
to define the array abstraction that is used to check the hash table. The final
five are a combination of heap and numeric predicates to check Inv1 and Inv2;
they are identical to the ones appearing in §4.3 and §4.4.

Deciding which predicates to provide to the analysis was a fairly simple pro-
cess. However, the entire verification process took several weeks because it was
intermingled with the development and debugging of Deskcheck itself. It is dif-
ficult to estimate the effort that would be required for future verification work
in Deskcheck.

The experiments were performed on a laptop with a 1.86 GHz Pentium M
processor and 1 GB of RAM (although memory usage was trivial). Tab. 1 shows
the performance of the analysis. The total at the bottom is slightly larger than
the sum of the entry-point times because it includes analysis of the client code as
well. We currently handle procedure calls via inlining, which increases the cost
of the analysis.

94 B. McCloskey, T. Reps, and M. Sagiv

Table 1. Analysis times of thttpd analysis

Entry-point Analysis time
map 28.23 s
unmap 9.08 s
cleanup 76.81 s
destroy 5.80 s
Total 123.47 s

1 procedure mmc_map(key:int):Buffer

2 m:Map;

3 b:Buffer;

4 {

5 check_hash_size();

6

7 m := find_hash(key);

8 if (m != null) {

9 Map_refcount[m] := Map_refcount[m]+1;

10 b := Map_addr[m];

11 return b;

12 }

13

14 @enable(free_maps);

15 if (free_maps != null) {

16 m := free_maps;

17 free_maps := Map_next[m];

18 Map_next[m] := null;

19 } else {

20 m := new Map;

21 Map_next[m] := null;

22 }

23 @disable(free_maps);

24

25 Map_key[m] := key;

26 Map_refcount[m] := 1;

27 b := new Buffer;

28 Map_addr[m] := b;

29

30 add_hash(m);

31

32 Map_next[m] := maps;

33 maps := m;

34

35 return b;

36 }

Fig. 10. Our model of the mmc map function from Fig. 2

Statically Inferring Complex Heap, Array, and Numeric Invariants 95

Annotations. Currently, we require some annotations from the user. These an-
notations never compromise the soundness of the analysis. Their only purpose
is to improve efficiency or precision. One set of annotations marks a predicate
as an abstraction predicate in a certain scope. There are 5 such scopes, mak-
ing for 10 lines of annotations. We also use annotations to decide when to split
an integer class into multiple classes. There are 14 such annotations. It seems
possible to infer these annotations with heuristics, but we have not done so yet.
All of these annotations are accounted for in the line counts above, as are the
predicate definitions.

To give an example of the sorts of annotations required, we present our model
of the mmc map function in Fig. 10. The C code for this function is in Fig. 2. Note
that all of our models are available online [18].

Virtually all of the code in Fig. 10 is a direct translation of Fig. 2 to our
modeling language. The only annotations are at lines 14 and 23. These annota-
tions temporarily designate free maps as an abstraction predicate. This means
that the node pointed to by free maps is distinguished from other nodes in the
canonical abstraction. Outside the scope of the annotations, every node reach-
able from the free maps linked list is represented by a summary node. Because
lines 16–18 remove the head of the list, it is necessary to treat this node sepa-
rately or else the analysis will be imprecise. These two annotations are typical
of all the abstraction-predicate annotations.

As a side note, a previous version of our analysis required loop invariants and
function preconditions and postconditions from the user. We used this version of
the analysis to check only the first two entry points, map and unmap. We found
the annotation burden to be excessive. These two functions, along with their
callees, required 1613 lines of preconditions, postconditions, and loop invariants.
Undoubtedly a more expressive language of invariants would allow for more con-
cise specifications, but more research would be required. This heavy annotation
burden motivated us to focus on inferring these annotations as we do now via
joins and widening.

6 Related Work

There are several methods for implementing or approximating the reduced prod-
uct [6], which is the most precise refinement of the direct product. Granger’s
method of local descending iterations [13] uses a decreasing sequence of reduc-
tion steps to approximate the reduced product. The method provides a way to
refine abstract states ; in abstract transformers, domain elements can only in-
teract either before or after transformer application. The open-product method
[5] allows domain elements to interact during transformer application. Reps et
al. [23] present a method that can implement the reduced product, for either
abstract states or transformers, provided that one has a sat-solver for a logic
that can express the meanings of both kinds of domain elements.

96 B. McCloskey, T. Reps, and M. Sagiv

Combining Heap and Numeric Abstractions. The idea to combine numeric and
pointer analysis to establish properties of memory was pioneered by Deutsch
[8]. His abstraction deals with may-aliases rather precisely, but loses almost all
information when the program performs destructive memory updates.

A general method for combining numeric domains and canonical abstraction
was presented by Gopan et al. [12] (and was subsequently broadened to a general
domain construction for functions [16]). A general method for tracking partition
sizes (along with a specific instantiation of the general method) was presented by
Gulwani at al. [14]. The work of Gopan et al. and Gulwani et al. are orthogonal
methods: the former addresses how to abstract values of numeric fields; the
latter addresses how to infer partition sizes. The present paper was inspired by
these two works and generalizes both of them in several ways. For instance, we
support more kinds of partition-based abstractions than the work of Gopan et
al. [12], which makes the result more general, and may allow more scalable heap
abstractions.

Gulwani and Tiwari [15] give a method for combining abstract interpreters,
based on the Nelson-Oppen method for combining decision procedures. Their
method also creates an abstract domain that is a refinement of the reduced
product. As in Nelson-Oppen, communication between domains is solely via
equalities, whereas in our method communication is in terms of classes and
quantified, first-order predicates.

Emmi et al. [11] handle reference counting using auxiliary functions and pred-
icates similar to the ones discussed in §4.4. As long as only a finite number of
sources and targets are updated in a single transition, they automatically gener-
ate the corresponding updates to their auxiliary functions. For abstraction, they
use Skolem variables to name single, but arbitrary, objects. Their combination
of techniques is specifically directed at reference counting; it supports a form
of universal quantification (via Skolem variables) to track the cardinality of ref-
erence predicates. In contrast, we have a parametric framework for combining
domains, as well as a specific instantiation that supports universal and existen-
tial quantification, transitive closure, and cardinality. Their analyzer supports
concurrency and ours does not. Because their method is unable to reason about
reachability, their method would not be able to verify our examples (or thttpd).

Reducing Pointer to Integer Programs. In [10,3,17], an initial transformation
converts pointer-manipulating programs into integer programs to allow integer
analysis to check the desired properties. These “reduction-based approaches”
uses various integer analyzers on the resulting program. For proving simple prop-
erties of singly linked lists, it was shown in [3] that there is no loss of precision;
however, the approach may lose precision in cases where the heap and integers
interact in complicated ways. The main problem with the approach is that the
proof of the integer program cannot use any quantification. Thus, while it can
make statements about the size of a local linked list, it cannot make a statement
about the size of every list in a hash table. In particular, Inv1 and Inv2 both lie
outside the capabilities of reduction-based approaches. Our approach alternates

Statically Inferring Complex Heap, Array, and Numeric Invariants 97

between the two abstractions, allows information to flow in both directions, and
can use quantification in both domains. Furthermore, the framework is paramet-
ric; in particular, it can use a separation-logic domain [9] or canonical abstrac-
tion [24] (and is not restricted to domains that can represent only singly linked
lists). Finally, proving soundness in our case is simpler.

Decision Procedures for Reasoning about the Heap and Arithmetic. One of the
challenging problems in the area of theorem proving and decision procedures is
to develop methods for reasoning about arithmetic and quantification.

Nguyen et al. [21] present a logic-based approach that involves providing an
entailment procedure. The logic allows for user-defined, well-founded inductive
predicates for expressing shape and size properties of data structures. Their
approach can express invariants that involve other numeric properties of data
structures, such as heights of trees. However, their approach is limited to separa-
tion logic, while ours is parameterized by the heap and numeric abstractions and
can be used in more general contexts. In addition, their approach cannot handle
quantified cardinality properties, such as the refcount property from thttpd:

∀v : v.rc = |{u : u.f = v}|.

Finally, their approach does not infer invariants, which means that a heavy
annotation burden is placed on the user. In contrast, our approach is based
on abstract interpretation, and can thus infer invariants of loops and recursive
procedures.

The logic of Zee et al. [26,25] also permits verification of invariants involving
pointers and cardinality. However, as above, this technique requires user-specified
loop invariants. Additionally, the logic is sufficiently expressive that user assis-
tance is required to prove entailment (similar to the partial order in an abstract
interpretation). Because the invariants that we infer are more structured, we
can prove entailment automatically. However, our abstraction annotations are
similar to the case-splitting information required by their analysis.

Work by Lahiri and Qadeer also uses a specialized logic coupled with the
verification-conditions approach. They use a decidable logic, so their is no need
for assistance in proving entailment. However, they still require manual loop
invariants.

Parameterized Model Checking. For concurrent programs, Clarke et al. [4] intro-
duce environment abstraction, along with model-checking techniques for formulas
that support a limited form of numeric universal quantification (the variable ex-
presses the problem size, à la parameterized verification) together with variables
that are universally quantified over non-numeric individuals (which represent
processes). Our methods should be applicable to broadening the mixture of nu-
meric and non-numeric information that can be used to model check concurrent
programs.

98 B. McCloskey, T. Reps, and M. Sagiv

References

1. Arnold, G.: Specialized 3-valued logic shape analysis using structure-based refine-

ment and loose embedding. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 204–220.

Springer, Heidelberg (2006)

2. Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P., Wies, T., Yang,

H.: Shape analysis for composite data structures. In: Damm, W., Hermanns, H.

(eds.) CAV 2007. LNCS, vol. 4590, pp. 178–192. Springer, Heidelberg (2007)

3. Bouajjani, A., Bozga, M., Habermehl, P., Iosif, R., Moro, P., Vojnar, T.: Programs

with lists are counter automata. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS,

vol. 4144, pp. 517–531. Springer, Heidelberg (2006)

4. Clarke, E., Talupur, M., Veith, H.: Proving Ptolemy right: The environment ab-

straction framework for model checking concurrent systems. In: Ramakrishnan,

C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 33–47. Springer, Heidel-

berg (2008)

5. Cortesi, A., Charlier, B.L., Hentenryck, P.V.: Combinations of abstract domains

for logic programming. SCP 38(1-3), 27–71 (2000)

6. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:

POPL, pp. 269–282 (1979)

7. DeLine, R., Leino, K.: BoogiePL: A typed procedural language for checking object-

oriented programs. Technical Report MSR-TR-2005-70, Microsoft Research (2005)

8. Deutsch, A.: Interprocedural alias analysis for pointers: Beyond k-limiting. In:

PLDI, pp. 230–241 (1994)

9. Distefano, D., O’Hearn, P., Yang, H.: A local shape analysis based on separation

logic. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp.

287–302. Springer, Heidelberg (2006)

10. Dor, N., Rodeh, M., Sagiv, M.: CSSV: towards a realistic tool for statically detect-

ing all buffer overflows in C. In: PLDI, pp. 155–167 (2003)

11. Emmi, M., Jhala, R., Kohler, E., Majumdar, R.: Verifying reference counting im-

plementations. In: TACAS (2009)

12. Gopan, D., DiMaio, F., Dor, N., Reps, T., Sagiv, M.: Numeric domains with

summarized dimensions. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS,

vol. 2988, pp. 512–529. Springer, Heidelberg (2004)

13. Granger, P.: Improving the results of static analyses programs by local decreasing

iteration. In: Shyamasundar, R.K. (ed.) FSTTCS 1992. LNCS, vol. 652, Springer,

Heidelberg (1992)

14. Gulwani, S., Lev-Ami, T., Sagiv, M.: A combination framework for tracking par-

tition sizes. In: POPL, pp. 239–251 (2009)

15. Gulwani, S., Tiwari, A.: Combining abstract interpreters. In: PLDI (2006)

16. Jeannet, B., Gopan, D., Reps, T.: A relational abstraction for functions. In: Hankin,

C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 186–202. Springer, Heidelberg

(2005)

17. Magill, S., Berdine, J., Clarke, E., Cook, B.: Arithmetic strengthening for shape

analysis. In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 419–

436. Springer, Heidelberg (2007)

18. McCloskey, B.: Deskcheck 1.0, http://www.cs.berkeley.edu/~billm/deskcheck

19. Miné, A.: A new numerical abstract domain based on difference-bound matrices. In:

Danvy, O., Filinski, A. (eds.) PADO 2001. LNCS, vol. 2053, pp. 155–172. Springer,

Heidelberg (2001)

http://www.cs.berkeley.edu/~billm/deskcheck

Statically Inferring Complex Heap, Array, and Numeric Invariants 99

20. Nelson, G., Oppen, D.: Simplification by cooperating decision procedures.

TOPLAS 1(2), 245–257 (1979)

21. Nguyen, H., David, C., Qin, S., Chin, W.-N.: Automated verification of shape and

size properties via separation logic. In: Cook, B., Podelski, A. (eds.) VMCAI 2007.

LNCS, vol. 4349, pp. 251–266. Springer, Heidelberg (2007)

22. Poskanzer, J.: thttpd - tiny/turbo/throttling http server,

http://acme.com/software/thttpd/

23. Reps, T., Sagiv, M., Yorsh, G.: Symbolic implementation of the best transformer.

In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 252–266.

Springer, Heidelberg (2004)

24. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic.

TOPLAS 24(3), 217–298 (2002)

25. Zee, K., Kuncak, V., Rinard, M.: Full functional verification of linked data struc-

tures. In: ACM Conf. Programming Language Design and Implementation, PLDI

(2008)

26. Zee, K., Kuncak, V., Rinard, M.: An integrated proof language for imperative

programs. In: PLDI, pp. 338–351 (2009)

http://acme.com/software/thttpd/

From Object Fields to Local Variables:

A Practical Approach to Field-Sensitive Analysis

Elvira Albert1, Puri Arenas1, Samir Genaim1,
German Puebla2, and Diana Vanessa Ramı́rez Deantes2

1 DSIC, Complutense University of Madrid (UCM), Spain
2 DLSIIS, Technical University of Madrid (UPM), Spain

Abstract. Static analysis which takes into account the value of data

stored in the heap is typically considered complex and computationally

intractable in practice. Thus, most static analyzers do not keep track of

object fields (or fields for short), i.e., they are field-insensitive. In this

paper, we propose locality conditions for soundly converting fields into

local variables. This way, field-insensitive analysis over the transformed

program can infer information on the original fields. Our notion of local-

ity is context-sensitive and can be applied both to numeric and reference

fields. We propose then a polyvariant transformation which actually con-

verts object fields meeting the locality condition into variables and which

is able to generate multiple versions of code when this leads to increasing

the amount of fields which satisfy the locality conditions. We have im-

plemented our analysis within a termination analyzer for Java bytecode.

1 Introduction

When data is stored in the heap, such as in object fields (numeric or references),
keeping track of their value during static analysis becomes rather complex and
computationally expensive. Analyses which keep track (resp. do not keep track)
of object fields are referred to as field-sensitive (resp. field-insensitive). In most
cases, neither of the two extremes of using a fully field-insensitive analysis or
a fully field-sensitive analysis is acceptable. The former produces too imprecise
results and the latter is often computationally intractable. There has been sig-
nificant interest in developing techniques that result in a good balance between
the accuracy of analysis and its associated computational cost. A number of
heuristics exist which differ in how the value of fields is modeled. A well-known
heuristics is field-based analysis, in which only one variable is used to model all
instances of a field, regardless of the number of objects for the same class which
may exist in the heap. This approach is efficient, but loses precision quickly.

Our work is inspired on a heuristic recently proposed in [3] for numeric fields.
It is based on analyzing the behaviour of program fragments (or scopes) rather
than the application as a whole, and modelling only those numeric fields whose
behaviour is reproducible using local variables. In general, this is possible when
two sufficient conditions hold within the scope: (a) the memory location where
the field is stored does not change, and (b) all accesses (if any) to such memory

R. Cousot and M. Martel (Eds.): SAS 2010, LNCS 6337, pp. 100–116, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

From Object Fields to Local Variables 101

location are done through the same reference (and not through aliases). In [3], if
both conditions hold, instructions involving the field access can be replicated by
equivalent instructions using a local variable, which we refer to as ghost variable.
This allows using a field-insensitive analysis in order to infer information on the
fields by reasoning on their associated ghost variables.

Unfortunately, the techniques proposed in [3] for numeric fields are not ef-
fective to handle reference fields. Among other things, tracking reference fields
by replicating instructions is problematic since it introduces undesired aliasing
between fields and their ghost variables. Very briefly, to handle reference fields,
the main open issues, which are contributions of this paper, are:

– Locality condition: the definition (and inference) of effective locality condi-
tions for both numeric and reference fields. In contrast to [3], our locality
conditions are context-sensitive and take must-aliasing context information
into account. This allows us to consider as local certain field signatures which
do not satisfy the locality condition otherwise.

– Transformation: an automatic transformation which converts object fields
into ghost variables, based on the above locality. We propose a combination
of context-sensitive locality with a polyvariant transformation which allows
introducing multiple versions of the transformed scopes. This leads to a
larger amount of field signatures which satisfy their locality condition.

Our approach is developed for object-oriented bytecode, i.e., code compiled for
virtual machines such as the Java virtual machine [10] or .NET. It has been
implemented in the costa system [4], a cost and termination analyzer for Java
Bytecode. Experimental evaluation has been performed on benchmarks which
make extensive use of object fields and some of them use common patterns in
object-oriented programming such as enumerators and iterators.

2 Motivation: Field-Sensitive Termination Analysis

Automated techniques for proving termination are typically based on analyses
which track size information, such as the value of numeric data or array indexes,
or the size of data structures. Analysis should keep track of how the size of the
data involved in loop guards changes when the loop goes through its iterations.
This information is used for determining (the existence of) a ranking function for
the loop, which is a function which strictly decreases on a well-founded domain at
each iteration of the loop. This guarantees that the loop will be executed a finite
number of times. For numeric data, termination analyzers rely on a value analysis
which approximates the value of numeric variables (e.g. [7]). Some field-sensitive
value analyses have been developed over the last years (see [11,3]). For heap-
allocated data structures, path-length [15] is an abstract domain which provides
a safe approximation of the length of the longest reference chain reachable from
the variables of interest. This allows proving termination of loops which traverse
acyclic data structures such as linked lists, trees, etc.

102 E. Albert et al.

class Iter implements Iterator {
List state;
List aux;

boolean hasNext() {
return (this.state != null);

}
Object next() {

List obj = this.state;
this.state = obj.rest;
return obj;

}
}
class Aux {

int f;
}
class List {

int data;
List rest;

}

class Test {
static void m(Iter x, Aux y, Aux z){

while (x.hasNext()) x.next();
y.f--;z.f--;

}
static void r(Iter x, Iter y, Aux z){

Iter w=null;
while (z.f > 0) {

if (z.f > 10) w=x else w=y;
m(w,z,z);

}
}
static void q(Iter x, Aux y, Aux z){

m(x,y,z);
}
static void s(Iter x, Iter y, Aux w, Aux z){

q(y,w,z);
r(x,y,z);

}
}

Fig. 1. Iterator-like example

Example 1. Our motivating example is shown in Fig. 1. This is the simplest
example we found to motivate all aspects of our proposal. By now, we focus
on method m. In object-oriented programming, the iterator pattern (also enu-
merator) is a design pattern in which the elements of a collection are traversed
systematically using a cursor. The cursor points to the current element to be
visited and there is a method, called next, which returns the current element and
advances the cursor to the next element, if any. In order to simplify the example,
the method next in Fig. 1 returns (the new value of) the cursor itself and not the
element stored in the node. The important point, though, is that the state field
is updated at each call to next. These kind of traversal patterns pose challenges
in static analysis and effective solutions are required (see [18]). The challenges
are mainly related to two issues: (1) Iterators are usually implemented using an
auxiliary class which stores the cursor as a field (e.g., the “state” field). Hence,
field-sensitive analysis is required; (2) The cursor is updated using a method call
(e.g., within the “next” method). Hence, inter-procedural analysis is required.

We aim at inferring that the while loop in method m terminates. This can be
proven by showing that the path-length of the structure pointed to by the cursor
(i.e., x.state) decreases at each iteration. Proving this automatically is far from
trivial, since many situations have to be considered by a static analysis. For
example, if the value of x is modified in the loop body, the analysis must infer
that the loop might not terminate since the memory location pointed to by
x.state changes (see condition (a) in Sec. 1). The path-length abstract domain,
and its corresponding abstract semantics, as defined in [15] is field-insensitive in

From Object Fields to Local Variables 103

the sense that the elements of such domain describe path-length relations among
local variables only and not among reference fields. Thus, analysis results do not
provide explicit information about the path-length of reference fields.

Example 2. In the loop in method m in Fig. 1, the path-length of x cannot be
guaranteed to decrease when the loop goes through its iterations. This is because
x might reach its maximal chain through the field aux and not state. However, the
path-length of x.state decreases, which in turn can be used to prove termination
of the loop. To infer such information, we need an analysis which is able to model
the path-length of x.state and not that of x. Namely, we need a field-sensitive
analysis based on path-length, which is one of our main goals in this paper.

The basic idea in our approach is to replace field accesses by accesses to the corre-
sponding ghost variables whenever they meet the locality condition which will be
formalized later. This will help us achieve the two challenges mentioned above:
(1) make the path-length analysis field-sensitive, (2) have an inter-procedural
analysis by using ghost variables as output variables in method calls.

3 A Simple Imperative Bytecode

We formalize our analysis for a simple rule-based imperative language [3] which
is similar in nature to other representations of bytecode [17,9]. A rule-based
program consists of a set of procedures and a set of classes. A procedure p with
k input arguments x̄ = x1, . . . , xk and m output arguments ȳ = y1, . . . , ym is
defined by one or more guarded rules. Rules adhere to this grammar:

rule ::= p(〈x̄〉, 〈ȳ〉) ←g, b1, . . . , bn

g ::= true | exp1 op exp2 | type(x,C)

b ::= x:=exp | x :=new C |x :=y .f | x .f :=y | q(〈x̄〉, 〈ȳ〉)
exp ::= null | aexp

aexp ::= x | n | aexp−aexp | aexp+aexp | aexp∗aexp | aexp/aexp
op ::= > | < | ≤ | ≥ | = | �=

where p(〈x̄〉, 〈ȳ〉) is the head of the rule; g its guard, which specifies conditions
for the rule to be applicable; b1, . . . , bn the body of the rule; n an integer; x and
y variables; f a field name, and q(〈x̄〉, 〈ȳ〉) a procedure call by value. The lan-
guage supports class definition and includes instructions for object creation, field
manipulation, and type comparison through the instruction type(x, C), which
succeeds if the runtime class of x is exactly C. A class C is a finite set of typed
field names, where the type can be integer or a class name. The key features of
this language which facilitate the formalization of the analysis are: (1) recursion
is the only iterative mechanism, (2) guards are the only form of conditional,
(3) there is no operand stack, (4) objects can be regarded as records, and the
behavior induced by dynamic dispatch in the original bytecode program is com-
piled into dispatch rules guarded by a type check and (5) rules may have multiple
output parameters which is useful for our transformation. The translation from
(Java) bytecode to the rule-based form is performed in two steps [4]. First, a

104 E. Albert et al.

1©hasNext(〈this〉, 〈r〉)←
s0:=this.state,
hasNext1(〈this, s0〉, 〈r〉).

2©hasNext1(〈this, s0〉, 〈r〉)←
s0 = null, r:=0.

3©hasNext1(〈this, s0〉, 〈r〉)←
s0 �= null, r:=1.

4©next(〈this〉, 〈r〉)←
obj:=this .state, s0:=obj.rest ,
this .state:=s0, r:=obj.

5©m(〈x, y, z〉, 〈〉)←
while(〈x〉, 〈〉),
s0:=y.f, s0:=s0−1, y.f :=s0,
s0:=z.f, s0:=s0−1, z.f :=s0.

6©while(〈x〉, 〈〉)←
hasNext(〈x〉, 〈s0〉),
m1(〈x, s0〉, 〈〉).

7©m1(〈x, s0〉, 〈〉)←
s0 �= null,
next(〈x〉, 〈s0〉),
while(〈x〉, 〈〉).

8©m1(〈x, y, z, s0〉, 〈〉)←
s0=null.

9©r(〈x, y, z〉, 〈〉)←
w:=null,
r1〈x, y, z, w〉, 〈〉).

10©r1(〈x, y, z, w〉, 〈〉)←
s0:=z.f,
r2(〈x, y, z, w, s0〉, 〈〉).

11©r2(〈x, y, z, w, s0〉, 〈〉)←
s0 > 0, s0:=z.f,
r3(〈x, y, z, w, s0〉, 〈〉).

12©r2(〈x, y, z, w, s0〉, 〈〉)←
s0 ≤ 0.

13©r3(〈x, y, z, w, s0〉, 〈〉)←
s0 > 10, w:=x,
r4(〈x, y, z, w〉, 〈〉).

14©r3(〈x, y, z, w, s0〉, 〈〉)←
s0 ≤ 10, w:=y,
r4(〈x, y, z, w〉, 〈〉).

15©r4(〈x, y, z, w〉, 〈〉)←
m(〈x, z, z〉, 〈〉),
r1(〈x, y, z, w〉, 〈〉).

16©q(〈x, y, z〉, 〈〉) ←
m(〈x, y, z〉, 〈〉).

17©s(〈x, y, z, w〉, 〈〉) ←
q(〈y, w, z〉, 〈〉),
r(〈x, y, z〉, 〈〉).

Fig. 2. Intermediate representation of running example in Fig. 1

control flow graph is built. Second, a procedure is defined for each basic block
in the graph and the operand stack is flattened by considering its elements as
additional local variables. For simplicity, our language does not include advanced
features of Java, but our implementation deals with full sequential Java byte-
code. The execution of rule-based programs mimics standard bytecode [10]. A
thorough explanation of the latter is outside the scope of this paper.

Example 3. Fig. 2 shows the rule-based representation of our running example.
Procedure m corresponds to method m, which first invokes procedure while as
defined in rules 6©− 8©. Observe that loops are extracted into separate procedures.
Upon return from the while loop, the assignment s0:=y.f pushes the value of
the numeric field y.f on the stack. Then, this value is decremented by one and
the result is assigned back to y.f . When a procedure is defined by more than one
rule, each rule is guarded by a (mutually exclusive) condition. E.g., procedure r2

is defined by rules 11© and 12©. They correspond to checking the condition of the
while loop in method r and are guarded by the conditions s0 > 0 and s0 ≤ 0.
In the first case, the loop body is executed. In the second case execution exits
the loop. Another important observation is that all rules have input and output
parameters, which might be empty. The analysis is developed on the intermediate
representation, hence all references to the example in the following are to this
representation and not to the source code.

4 Preliminaries: Inference of Constant Access Paths

When transforming a field f into a local variable in a given code fragment,
a necessary condition is that whenever f is accessed, using x.f , during the

From Object Fields to Local Variables 105

execution of that fragment, the variable x must refer to the same heap loca-
tion (see condition (a) in Sec. 1). This property is known as reference constancy
(or local aliasing) [3,1]. This section summarizes the reference constancy analysis
of [3] that we use in order to approximate when a reference variable is constant
at a certain program point. Since the analysis keeps information for each pro-
gram point, we first make all program points unique as follows. The k-th rule
p(〈x̄〉, 〈ȳ〉) ←g, bk

1 , . . . , b
k
n has n+1 program points. The first one, (k, 1), after the

execution of the guard g and before the execution of b1, until (k, n+1) after the
execution of bn. This analysis receives a code fragment S (or scope), together
with an entry procedure p(〈x̄〉, 〈ȳ〉) from which we want to start the analysis.
It assumes that each reference variable xi points to an initial memory location
represented by the symbol li, and each integer variable has the (symbolic) value
�num representing any integer. The result of the analysis associates each vari-
able at each program point with an access path. For a procedure with n input
arguments, the entry is written as p(l1, . . . , ln).

Definition 1 (access path). Given a program P with an entry p(l1, . . . , ln), an
access path � for a variable y at program point (k, j) is a syntactic construction
which can take the forms:

– �any. Variable y might point to any heap location at (k, j).
– �num (resp. �null). Variable y holds a numeric value (resp. null) at (k, j).
– li.f1. . .fh. Variable y always refers to the same heap location represented by

li.f1. . .fh whenever (k, j) is reached.

we use acc path(y, bk
j) to refer to the access path of y before instruction bk

j .

Intuitively, the access path li.f1. . .fh of y refers to the heap location which results
from dereferencing the i-th input argument xi using f1. . .fh in the initial heap.
In other words, variable y must alias with xi.f1. . .fn (w.r.t. to the initial heap)
whenever the execution reaches (k, j).

Example 4. Consider an execution which starts from a call to procedure m in
Fig. 2. During such execution, the reference x is constant. Thus, x always refers
to the same memory location within method m, which, in this case, is equal
to the initial value of the first argument of m. Importantly, the content of this
location can change during execution. Indeed, x is constant and thus x .state
always refers to the same location in the heap. However, the value stored at
x .state (which is in turn a reference) is modified at each iteration of the while
loop. In contrast, reference x .state.rest is not constant in m, since this .state
refers to different locations during execution. Reference constancy analysis is the
component that automatically infers this information. More concretely, applying
it to rules 1© − 3© w.r.t. the entry hasNext(l1), it infers that at program point
(1, 1) the variable this is constant and always refers to l1. Applying it to 4©, it
infers that: at program points (4, 1), (4, 3) and (4, 4) the variable this is constant
and always refers to l1; at (4, 2) variable obj is constant and always refers to
l1 .state; and at (4, 3), variable s0 is constant and always refers to l1 .state.rest .

106 E. Albert et al.

Clearly, references are often not globally constant, but they can be constant when
we look at smaller fragments. For example, when considering an execution that
starts from m, i.e., m(l1, l2, l3), then variable this in next and hasNext always
refers to the same heap location l1. However, if we consider an execution that
starts from s, i.e., s(l1, l2, l3, l4), then variable this in next and hasNext might
refer to different locations l1 or l2, depending on how we reach the corresponding
program points (through r or q). As a consequence, from a global point of view,
the accesses to state are not constant in such execution, though they are constant
if we look at each sub-execution alone. Fortunately, the analysis can be applied
compositionally [3] by partitioning the procedures (and therefore rules) of P
into groups which we refer to as scopes, provided that there are no mutual calls
between scopes. Therefore, the strongly connected components (SCCs) of the
program are the smallest scopes we can consider. In [3], the choice of scopes
directly affects the precision and an optimal strategy does not exist: sometimes
enlarging one scope might improve the precision at one program point and make
it worse at another program point. Instead, in this paper, due to the context-
sensitive nature of the analysis, information is propagated among the scopes and
the maximal precision is guaranteed when scopes are as small as possible, i.e.,
at the level of SCCs. In the examples, sometimes we enlarge them to simplify
the presentation. Moreover, we assume that each SCC has a single entry, this is
not a restriction since otherwise the analysis can be repeated for each entry.

Example 5. The rules in Fig. 2 can be divided into the following scopes: ShasNext =
{hasNext , hasNext1}, Snext ={next},Sm ={m,while,m1 }, Sr = {r, r1, r2, r3, r4},
Sq = {q} and Ss = {s}. A possible reverse topological order for the scopes of Ex. 5
is ShasNext , Snext , Sm, Sr, Sq and Ss. Therefore, compositional analysis starts from
ShasNext and Snext as explained in Ex. 4. Then, Sm is analyzed w.r.t. the initial
call m(l1, l2, l3), next, Sr w.r.t. r(l1, l2, l3) and so on. When the call from r to m
is reached, the analysis uses the reference constancy inferred for m and adapts it
to the current context. This way, the reference to state is proven to be constant,
as we have justified above. As expected, the analysis cannot guarantee that the
access to rest is constant.

In order to decide whether a field f can be considered local in a scope S, we have
to inspect all possible accesses to f in any possible execution that starts from
the entry of S. Note that these accesses can appear directly in S or in a scope
that is reachable from it (transitive scope). We use S∗ to refer to the union of
S and all other scopes reachable from S, and S(p) (resp. S(bk

j)) to refer to the
scope in which the procedure p (resp. instruction bk

j) is defined (resp. appears).
We distinguish between access for reading the field value from those that modify
its value. Given a scope S and a field signature f , the set of read (resp. write)
access paths for f in S, denoted R(S, f) (resp. W (S, f)), is the set of access paths
of all variables y used for reading (resp. modifying) a field with the signature f ,
i.e., x:=y.f (resp. y.f :=x), in S∗. Note that if S has calls to other scopes, for
each call bk

j ≡ q(〈w̄〉, 〈z̄〉) ∈ S such that S(q) �= S, we should adapt the read
(resp. write) access paths R(S(q), f) (resp. W (S(q), f)) to the calling context
by taking into account aliasing information. Let us see an example.

From Object Fields to Local Variables 107

Example 6. The read and write sets for f , state and rest w.r.t. the scopes of
Ex. 5 are:

R(Si, f) R(Si, state) R(Si, rest) W (Si, f) W (Si, state) W (Si, rest)

ShasNext {} {l1} {} {} {} {}
Snext {} {l1} {l1.state} {} {l1} {}
Sm {l2, l3} {l1} {�any} {l2, l3} {l1} {}
Sr {l3} {�any} {} {l3} {�any} {}
Sq {l2, l3} {l1} {�any} {l2, l3} {l1} {}
Ss {l3, l4} {�any} {�any} {l3, l4} {�any} {}

Note that in Sm, we have two different read access paths l2 and l3 to f . However,
when we adapt this information to the calling context from r, they become the
same due to the aliasing of the last two arguments in the call to m from r.
Instead, when we adapt this information to the calling context from q, they
remain as two different access paths. Finally, when computing the sets for Ss,
since we have a call to q followed by one to r, we have to merge their information
and assume that there are two different access paths for f that correspond to
those through the third and fourth argument of s.

5 Locality Conditions for Numeric and Reference Fields

Intuitively, in order to ensure a sound monovariant transformation, a field sig-
nature can be considered local in a scope S if all read and write accesses to it in
all reachable scopes (i.e., S∗) are performed through the same access path.

Example 7. According to the above intuition, the field f is not local in m since
it is not guaranteed that l2 and l3 (i.e., the access paths for the second and
third arguments) are aliased. Therefore, f is not considered as local in Sr (since
Sm ∈ S∗

r) and the termination of the while loop in r cannot be proven. However,
when we invoke m within the loop body of r, we have knowledge that they are
actually aliased and f could be considered local in this context.

As in [3], when applying the reference constancy analysis (and computing the
read and write sets), we have assumed no aliasing information about the argu-
ments in the entry to each SCC, i.e., we do not know if two (or more) input
variables point to the same location. Obviously, this assumption has direct con-
sequences on proving locality, as it happens in the example above. The following
definition introduces the notion of call pattern, which provides must aliasing
information and which will be used to specify entry procedures.

Definition 2 (call pattern). A call pattern ρ for a procedure p with n argu-
ments is a partition of {1, . . . , n}. We denote by ρi the set X ∈ ρ s.t. i ∈ X.

Intuitively, a call pattern ρ states that each set of arguments X ∈ ρ are guaran-
teed to be aliased. In what follows, we denote the most general call pattern as
ρ� = {{1}, . . . , {n}}, since it does not have any aliasing information.

108 E. Albert et al.

Example 8. The call pattern for m when called from r is ρ={{1}, {2, 3}}, which
reflects that the 2nd and 3rd arguments are aliased. The call pattern for m when
called from q is ρ� in which no two arguments are guaranteed to be aliased.

The reference constancy analysis [3] described in Sec. 4 is applied w.r.t. ρ� .
In order to obtain access path information (and read and write sets) w.r.t. a
given initial call pattern ρ, a straightforward approach is to re-analyze the given
scope taking into account the aliasing information in ρ. Since the analysis is
compositional, another approach is to reuse the read and write access paths
inferred w.r.t. ρ� and adapt them (i.e., rename them) to each particular call
pattern ρ. This is clearly more efficient since we can analyze the scope once and
reuse the results when new contexts have to be considered. In theory, re-analyzing
can be more precise, but in practice reusing the results is precise enough for our
needs. The next definition provides a renaming operation. By convention, when
two arguments are aliased, we rename them to have the same name of the one
with smaller index. This is captured by the use of min.

Definition 3 (renaming). Given a call pattern ρ and an access path � ≡
li.f1 . . . fn, ρ(�) is the renamed access path lk.f1 . . . fn where k = min(ρi). For
a set of access paths A, ρ(A) is the set obtained by renaming all elements of A.

Example 9. Renaming the set of access paths {l2, l3} obtained in Ex. 7 w.r.t. ρ
of Ex. 8 results in {l2}. This is because ρ(l2)=l2 and ρ(l3)=l2, by the convention
of min above. It corresponds to the intuition that when calling m from r, all
accesses to field f are through the same memory location, as explained in Ex. 7.

Renaming is used in the context-sensitive locality condition to obtain the read
and write sets of a given scope w.r.t. a call pattern, using the context-insensitive
sets. It corresponds to the context-sensitive version of condition (b) in Sec. 1.

Definition 4 (general locality). A field signature f is local in a scope S w.r.t.
a call pattern ρ, if ρ(R(S, f)) ∪ ρ(W (S, f)) = {�} and � �= �any.

Example 10. If we consider Sm w.r.t. the call pattern {{1}, {2, 3}} then f be-
comes local in Sm, since l2 and l3 refer to the same memory location and, there-
fore, it is local for Sr. Considering f local in Sr is essential for proving the
termination of the while loop in r. This is because by tracking the value of f we
infer that the loop counter decreases at each iteration. However, making f local
in all contexts is not sound, as when x and y are not aliased, then each field de-
creases by one, and when there are aliases, it decreases by two. Hence, in order to
take full advantage of context-sensitivity, we need a polyvariant transformation
which generates two versions for procedure m (and its successors).

An important observation is that, for reference fields, it is not always a good
idea to transform all fields which satisfy the general locality condition above.

Example 11. By applying Def. 4, both reference fields state and rest are local in
Snext . Thus, it is possible to convert them into respective ghost variables vs (for
state) and vr (for rest). Intuitively, rule 4© in Ex. 3 would be transformed into:

From Object Fields to Local Variables 109

next(〈this , vs , vr 〉, 〈vs , vr 〉) ← obj:=vs, s0:=vr, vs:=s0, r:=obj.

For which we cannot infer that the path-length of vs in the output is smaller than
that of vs in the input. In particular, the path-length abstraction approximates
the effect of the instructions by the constraints {obj=vs, s0=vr, v

′
s=s0, r=obj}.

Primed variables are due to a single static assignment. The problem is that the
transformation replaces the assignment s0:=obj.rest with s0:=vr. Such assign-
ment is crucial for proving that the path-length of vs decreases at each call to
next. If, instead, we transform this rule w.r.t. the field state only:

next(〈this , vs〉, 〈r , vs 〉)←obj :=vs , s0 :=obj .rest , vs :=s0 , r :=obj .
and the path-length abstraction approximates the effect of the instructions by
{obj=vs, s0<obj, v′s=s0, r=obj} which implies v′s<vs. Therefore, termination (of
the corresponding loop) can be proven relying only on the field-insensitive version
of path-length. Note that, in the second constraint, when accessing a field of an
acyclic data structure, the corresponding path-length decreases.

Now we introduce a locality condition which is more restrictive than that in
Def. 4, called reference locality. This condition is interesting because it only
holds for field accesses which perform heap updates, but it does not hold for
other cases. Thus, it often solves the problem of too aggressive transformation,
shown above. This is achieved by requiring that the field signature is both read
and written in the scope. Intuitively, this heuristics is effective for tracking the
references that are used as cursors for traversing the data structures and not
reference fields which are part of the data structure itself.

Definition 5 (reference locality). A field signature f is local in a scope S
w.r.t. a call pattern ρ, if ρ(R(S, f)) = ρ(W (S, f)) = {�} and � �= �any.

While reference locality is more effective than general locality for reference fields,
in the case of numeric fields, general locality is more appropriate than reference
locality. For example, numeric fields are often used to bound the loop iterations.
For these cases, reference locality is not sufficient, since the field is read but
not updated. Since numeric and reference fields can be distinguished by their
signature, we apply general locality to numeric fields and reference locality to
reference fields without problems. In what follows, we use locality to refer to
either general or reference locality, according to the corresponding field signature.

Example 12. Field rest is not local in Snext , according to Def. 5. Field state is
local in Snext and Sm, but not in ShasNext .

6 Polyvariant Transformation of Fields to Local Variables

Our transformation of object fields to local variables is performed in two steps.
First, we infer polyvariance declarations which indicate the (multiple) versions we
need to generate of each scope to achieve a larger amount of field signatures which
satisfy their locality condition. Then, we carry out a (polyvariant) transformation
based on the polyvariance declarations.

110 E. Albert et al.

We first define an auxiliary operation which, given a scope S and a call pattern
ρ, infers the induced call patterns to the external procedures.

Definition 6 (induced call pattern). Given a call pattern ρ for a scope S,
and a call bj

k = q(〈x̄〉, 〈ȳ〉) ∈ S such that S(q) �= S, the call pattern for S(q)
induced by bj

k, denoted ρ(bj
k), is obtained as follows:

(1) generate the tuple 〈�1, . . . , �n〉 where �i = ρ(acc path(bj
k, xi)); and

(2) i and h belong to the same set in ρ(bj
k) if and only if �i = �h �= �any.

The above definition relies on function acc path(a,s) defined in Def. 1.

Example 13. Consider the scope Sr and a call pattern ρ = {{1}, {2}, {3}}. The
call pattern induced by b15

1 ≡ m(〈x, z, z〉, 〈〉) is computed as follows: (1) using
the access path information, we compute the access paths for the arguments
〈x, z, z〉 which in this case are 〈l1, l3, l3〉; (2) ρ(b15

1) is defined such that i and j
are in the same set if the access paths of the i-th and the j-th arguments are
equal. Namely, we obtain ρ(b15

1) = {{1}, {2, 3}} as induced call pattern.

Now, we are interested in finding out the maximal polyvariance level which must
be generated for each scope. Intuitively, starting from the entry procedure, we
will traverse all reachable scopes in a top-down manner by applying the poly-
variance operator defined below. This operator distinguishes two sets of fields:

– Fpred is the set of field signatures which are local for the predecessor scope;
– Fcurr is the set of tuples which contain a field signature and its access path,

which are local in the current scope and not in the predecessor one.

This distinction is required since before calling a scope, the fields in Fcurr should
be initialized to the appropriate values, and upon exit the corresponding heap
locations should be modified. Those in Fpred do not require this initialization.
Intuitively, the operator works on a tuple 〈S,Fpred , ρ〉 formed by a scope identi-
fier S, a set of predecessor fields Fpred , and a call pattern ρ. At each iteration, a
polyvariance declaration of the form 〈S,Fpred ,Fcurr , ρ〉 is generated for the cur-
rent scope, where the local fields in Fcurr for context ρ are added. The operator
transitively applies to all reachable scopes from S.

Definition 7 (polyvariance). Given a program P with an entry procedure p
and call pattern ρ, the set of all versions in P is VP = Pol(〈S(p), ∅, ρ〉) s.t.

Pol(〈S,Fpred , ρ〉) = {〈S,Fpred ,Fcurr , ρ〉}
⋃

{Pol(〈S(q), F, ρ(bj
k)〉) | bk

j ≡ q(〈x̄〉, 〈ȳ〉) is external call in S}
where Fcurr and F are defined as follows:

– Fcurr ={〈f, �〉 | f is local in S w.r.t. ρ with an access path � and f /∈ Fpred},
– F = (Fpred ∪ {f | 〈f, �〉 ∈ Fcurr}) ∩ fields(S∗(q)) where fields(S∗(q)) is the

set of fields that are actually accessed in S∗(q).

Since there are no mutual calls between any scopes, termination is guaranteed.

From Object Fields to Local Variables 111

1. Given F={f |〈f, �〉∈Fcurr}, we let v̄={vf |f∈Fpred∪F} be a tuple of ghost

variable names.

2. Add arguments to internal calls: each head of a rule or a call

p(〈x̄〉, 〈ȳ〉) where p is defined in S is replaced by p·i(〈x̄ · v̄〉, 〈ȳ · v̄〉).
3. Transform field accesses: each access x.f is replaced by vf .

4. Handle external calls: let bk
j ≡ q(〈x̄〉, 〈ȳ〉) ∈ S such that S(q) �= S.

– Lookup the (unique) version 〈S(q),Fpred ∪ F, F ′, ρ(bk
j)}〉 of S(q) that

matches the calling context and has a unique identifier id.

– Let v̄′ = {vf |f ∈ Fpred ∪ F} ∪ {vf |〈f, �〉 ∈ F ′}.
Then, we transform bk

j as follows:

(a) Initialization: ∀〈f, lh.f1 . . . fn〉 ∈ F ′ we add an initialization state-

ment (before the call) vf :=xh.f1 . . . fn.f ;

(b) Call: we add the modified call q·id(〈x̄ · v̄′〉, 〈ȳ · v̄′〉)
(c) Recovery: ∀〈f, lh.f1 . . . fn〉 ∈ F ′ we add a recovering statement (after

the call) xh.f1 . . . fn.f :=vf ;

Fig. 3. Transformation of a Polyvariance Declaration with Identifier i

Example 14. The polyvariance declarations obtained by iteratively applying Pol
starting from Pol(〈Ss, ∅, {{1}, {2}, {3}, {4}}〉) are:

Id S FpredFcurr ρ

1 Ss ∅ ∅ {{1},{2},{3},{4}}
2 Sq ∅ {l1.state}{{1},{2},{3}}
3 Sr ∅ {l3.f} {{1},{2},{3}}
4 Sm{f} {l1.state}{{1},{2,3}}

Id S Fpred Fcurr ρ

5 Sm {state}∅ {{1},{2},{3}}
6 Snext {state}∅ {{1}}
7 ShasNext{state}∅ {{1}}

Each line defines a polyvariance declaration 〈S,Fpred ,Fcurr , ρ〉 as in Def. 7. The
first column associates to each version a unique Id that will be used when trans-
forming the program. The only scope with more than one version is Sm, which
has two, with identifiers 4 and 5. The call patterns in such versions are different
and in this case they result in different fields being local.

In general, the set of polyvariance declarations obtained can include some ver-
sions which do not result in further fields being local. Before materializing the
polyvariant program, it is possible to introduce a minimization phase (see,
e.g., [13]) which is able to reduce the number of versions without losing op-
portunities for considering fields local. This can be done using well-known algo-
rithms [8] for minimization of deterministic finite automata.

Given a program P and the set of all polyvariance declarations VP , we can
proceed to transform the program. We assume that each version has a unique
identifier (a positive integer as in the example above) which will be used in order
to avoid name clashing when cloning the code. The instrumentation is done by
cloning the original code of each specification in VP . The clone for a polyvariance
declaration 〈S,Fpred ,Fcurr , ρ〉 ∈ VP with identifier i is done using the algorithm
in Fig. 3. The four steps of the instrumentation work as follows:

112 E. Albert et al.

(1) This step generates new unique variable names v̄ for the local heap locations
to be tracked in the scope S. Since the variable name vf is associated to
the field signature f (note that in bytecode field signatures include class and
package information), we can retrieve it at any point we need it later.

(2) This step adds the identifier i, as well as the tuple of ghost variables (gen-
erated in the previous step) as input and output variables to all rules which
belong to the scope S in order to carry their values around during execution.

(3) This step replaces the actual heap accesses (i.e., read and write field accesses)
by accesses to their corresponding ghost variables. Namely, an access x.f is
replaced by the ghost variable vf which corresponds to f .

(4) Finally, we transform external calls(i.e., calls to procedures in other scopes).
The main point is to consider the correct version id for that calling context
by looking at the polyvariance declarations. Then, the call to q is replaced
as follows:

4a We first need to initialize the ghost variables which are local in S(q) but
not in S, namely the variables in F ′.

4b We add a call to q which includes the ghost variables v̄′.
4c After returning from the call, we recover the value of the memory loca-

tions that correspond to ghost variables which are local in S(q) but not
in S, i.e., we put their value back in the heap.

Note that in points 4a and 4c, it is required to relate the field access which
is known to be local within such call (say f) and the actual reference to it
in the current context. This is done by using the access paths as follows. If a
field f is local in S and it is always referenced through li.f1 . . . fn, then when
calling q(〈w̄〉, 〈z̄〉), the initial value of the corresponding ghost variable should
be initialized to wi.f1 . . . fn.f . This is because li refers to the location to which
the i-th argument points when calling q.

Example 15. Fig. 4 shows the transformed program for the declarations of Ex. 14.
For simplicity, when a scope has only one version, we do not introduce new names
for the corresponding procedures. Procedure next is not shown, it is as in Ex. 11.
Procedure hasNext now incorporates a ghost variable vs that tracks the value of
the corresponding state field. Note that r calls m·4 while q calls m·5. For version
4 of m, both f and state are considered local and therefore we have the ghost
variables vs and vf . Version 5 of m is not shown for lack of space, it is equivalent
to version 4 but without any reference to vf since it is not local in that context.
Now, all methods can be proven terminating by using a field-insensitive analysis.

In practice, generating multiple versions for a given scope S might be expensive
to analyze. However, two points should be noted: (1) when no accuracy is gained
by the use of polyvariance, i.e., when the locality information is identical for
all calling contexts, then the transformation behaves as monovariant; (2) when
further accuracy is achieved by the use of polyvariance, a context-sensitive, but
monovariant transformation can be preferred for efficiency reasons by simply
declaring as local only those fields which are local in all versions.

From Object Fields to Local Variables 113

s(〈x,y,z,w〉,〈〉) ←
vs:=y .state ,

q(〈y,w,z,vs〉,〈vs〉),
y .state:=vs ,vf :=z.f ,

r(〈x,y,z,vf 〉,〈vf 〉),
z.f :=vf .

q(〈x,y,z,vs〉,〈vs〉) ←
m·5(〈x,y,z,vs〉,〈vs〉).

r(〈x,y,z,vf 〉,〈vf 〉)←
w:=null,
r1〈x,y,z,w,vf 〉,〈vf 〉).

r1(〈x,y,z,w,vf 〉,〈vf 〉)←
s0:=z.f,
r2(〈x,y,z,w,s0,vf 〉,〈vf 〉).

r2(〈x,y,z,w,s0,vf 〉,〈vf 〉)←
s0 > 0,s0:=z.f,
r3(〈x,y,z,w,s0,vf 〉,〈vf 〉).

r2(〈x,y,z,w,s0,vf 〉,〈vf 〉)←
s0 ≤ 0.

r3(〈x,y,z,w,s0,vf 〉,〈vf 〉)←
s0 > 10,w:=x,
r4(〈x,y,z,w,vf 〉,〈vf 〉).

r3(〈x,y,z,w,s0,vf 〉,〈vf 〉)←
s0 ≤ 10,w:=y,
r4(〈x,y,z,w,vf 〉,〈vf 〉).

r4(〈x,y,z,w,vf 〉,〈vf 〉)←
vs:=x.state,
m·4(〈x,z,z,vs,vf 〉,〈vs,vf 〉),
x.state:=vs,
r1(〈x,y,z,w,vf 〉,〈vf 〉).

m·4(〈x,y,z,vs,vf 〉,〈vs,vf 〉)←
while·4(〈x,vs,vf 〉,〈vs,vf 〉),
s0:=vf ,s0:=s0 − 1,vf :=s0,
s0:=vf ,s0:=s0 − 1,vf :=s0.

while·4(〈x,vs,vf 〉,〈vs,vf 〉)←
hasNext(〈x,vs〉,〈s0,vs〉),
m1·4(〈x,s0,vs,vf 〉,〈vs,vf 〉).

m1·4(〈x,s0,vs,vf 〉,〈vs,vf 〉)←
s0 �= null,next(〈x,vs〉,〈s0,vs〉),
while·4(〈x,vs,vf 〉,〈vs,vf 〉).

m1·4(〈x,y,z,s0,vs,vf 〉,〈vs,vf 〉)←
s0 = null.

hasNext(〈this,vs〉,〈r,vs〉)←
s0:=vs,
hasNext1(〈this ,s0,vs〉,〈r,vs〉).

hasNext1(〈this ,s0,vs〉,〈r,vs〉)←
s0 = null,r:=0.

hasNext1(〈this ,s0,vs〉,〈r,vs〉)←
s0 �= null,r:=1.

Fig. 4. Polyvariant Transformation of Running Example (excerpt)

7 Experiments

We have integrated our method in costa [4], a cost and termination analyzer
for Java bytecode, as a pre-process to the existing field-insensitive analysis. It
can be tried out at: http://costa.ls.fi.upm.es. The different approaches can
be selected by setting the option enable field sensitive to: “trackable” for using
the setting of [3]; “mono local” for context-insensitive and monovariant transfor-
mation; and “poly local” for context-sensitive and polyvariant transformation.
In Table 1 we evaluate the precision and performance of the proposed tech-
niques by analyzing three sets of programs. The first set contains loops from
the JOlden suite [6] whose termination can be proven only by tracking reference
fields. They are challenging because they contain reference-intensive kernels and
use enumerators. The next set consists of the loops which access numeric field in
their guards for all classes in the subpackages of “java” of SUN’s J2SE 1.4.2. Al-
most all these loops had been proven terminating using the trackable profile [3].
Hence, our challenge is to keep the (nearly optimal) accuracy and comparable ef-
ficiency as [3]. The last set consists of programs which require a context-sensitive
and polyvariant transformation (source code is available in the website above).

For each benchmark, we provide the size of the code to be analyzed, given
as number of rules #R. Column #Rp contains the number of rules after the
polyvariant transformation which, as can be seen, increases only for the last set
of benchmarks. Column #L is the number of loops to be analyzed and #Lp the
same after the polyvariant transformation. Column Lins shows the number of
loops for which costa has been able to prove termination using a field-insensiti-
ve analysis. Note that, even if all entries correspond to loops which involve fields
in their guards, they can contain inner loops which might not and, hence, can
be proven terminating using a field-insensitive analysis. This is the case of many

114 E. Albert et al.

Table 1. Accuracy and Efficiency of four Analysis Settings in costa

Bench. #R #Rp #L #Lp Lins Ltr Lmono Lpoly Tins Otr Omono Opoly

bh 1759 1759 21 21 16 16 16 21 230466 1.54 1.25 1.50

em3d 1015 1015 13 13 1 3 3 13 17129 1.43 1.24 1.55

health 1364 1364 11 11 6 6 6 11 21449 2.23 1.65 2.00

java.util 593 593 26 26 3 24 24 24 17617 1.55 1.62 1.72

java.lang 231 231 14 14 5 14 13 13 2592 1.69 1.38 1.52

java.beans 113 113 3 3 0 3 3 3 3320 1.07 1.09 1.15

java.math 278 278 12 12 3 11 11 11 15761 1.07 1.05 1.12

java.awt 1974 1974 102 102 25 100 100 100 64576 1.25 1.21 1.55

java.io 187 187 4 4 2 4 4 4 2576 2.72 2.16 3.47

run-ex 40 61 2 3 0 0 1 3 300 1.28 1.25 2.24

num-poly 71 151 4 8 0 0 1 8 576 1.27 1.26 3.33

nest-poly 86 125 8 10 1 4 7 10 580 1.61 1.61 3.02

loop-poly 16 29 1 2 0 0 0 2 112 1.25 1.25 2.61

loops for benchmark bh. Columns Ltr , Lmono and Lpoly show the number of loops
for which costa has been able to find a ranking function using, respectively, the
trackable, mono local and poly local profiles as described above. Note that when
using the poly local option, the number of loops to compare to is #Lp since the
polyvariant transformation might increase the number of loops in #L.

As regards accuracy, it can be observed that for the benchmarks in the JOlden
suite, trackable and mono local behave similarly to a field-insensitive analysis.
This is because most of the examples use iterators. Using poly local, we prove
termination of all of them. In this case, it can be observed from column #Rp that
context-sensitivity is required, however, the polyvariant transformation does not
generate more than one version for any example. As regards the J2SE set, the
profile trackable is already very accurate since these loops contain only numeric
fields. Except for one loop in java.lang which involves several numeric fields, our
profiles are as accurate as trackable. All examples in the last set include many
reference fields and, as expected, the trackable does not perform well. Although
mono local improves the accuracy in many loops polyvariance is required to prove
termination. The profile poly local proves termination of all loops in this set.

We have tried to analyze the last set of benchmarks with the two other termi-
nation analyzers of Java bytecode publicly available, Julia [16] and AProVE [12].
Since polyvariance is required, Julia failed to prove termination of all of them.
AProVE could not handle them because they use certain library methods not
supported by the system. We have not been able to analyze the benchmarks
in the Java libraries because the entries are calls to library methods which we
could not specify as inputs to these systems. Something similar happens with
the JOlden examples, the entries correspond to specific loops and we have not
been able to specify them as input.

The next set of columns evaluate performance. The experiments have been
performed on an Intel Core 2 Duo 1.86GHz with 2GB of RAM. Column Tins

From Object Fields to Local Variables 115

is the total time (in milliseconds) for field-insensitive analysis, and the other
columns show the slowdown introduced by the corresponding field-sensitive anal-
ysis w.r.t. Tins . The overhead introduced by trackable and mono local is compa-
rable and, in most cases, is less than two. The overhead of poly local is larger
for the examples which require multiple versions and it increases with the size
of the transformed program in #Rp. We argue that our results are promising
since the overhead introduced is reasonable.

8 Conclusions and Related Work

Field sensitiveness is considered currently one of the main challenges in static
analyses of object-oriented languages. We have presented a novel practical ap-
proach to field-sensitive analysis which handles all object fields (numeric and ref-
erences) in a uniform way. The basic idea is to partition the program into frag-
ments and convert object fields into local variables at each fragment, whenever
such conversion is sound. The transformation can be guided by a context-sensitive
analysis able to determine that an object field can be safely replaced by a local
variable only for a specific context. This, when combined with a polyvariant trans-
formation, achieves a very good balance between accuracy and efficiency.

Our work continues and improves over the stream of work on termination anal-
ysis of object-oriented bytecode programs [3,12,2,15,14]. The heuristic of treating
fields as local variables in order to perform field-sensitive analysis by means of
field-insensitive analysis was proposed by [3]. However, there are essential differ-
ences between both approaches. The most important one is that [3] handles only
numeric fields and it is not effective to handle reference fields. A main problem
is that [3] replicates numeric fields with equivalent local variables, instead of
replacing them as we have to do to handle references as well, e.g., an instruction
like y.ref :=x is followed (i.e., replicated) by vref :=x. Replicating instructions,
when applied to reference fields, makes y.ref and vref alias, and therefore the
path-length relations of vref will be affected by those of y.ref . In particular, fur-
ther updates to y.ref will force losing useful path-length information about vref ,
since the abstract field update (see [15]) loses valuable path-length information
on anything that shares with y. Handling reference fields is essential in object-
oriented programs, as witnessed in our examples and experimental results.

Techniques which rely on separation logic in order to track the depth (i.e.,
the path-length) of data-structures [5] would have the same limitation as path-
length based techniques, if they are applied in a field-insensitive manner. This is
because the depth of a variable x does not necessarily decrease when the depth
of one of its field decreases (see Sec. 2). However, by applying these techniques
on our transformed programs, we expect them to infer the required information
without any modification to their analyses.

Acknowledgements. This work was funded in part by the Information & Com-
munication Technologies program of the European Commission, Future and
Emerging Technologies (FET), under the ICT-231620 HATS project, by the

116 E. Albert et al.

Spanish Ministry of Science and Innovation (MICINN) under the TIN-2008-
05624 DOVES project, the TIN2008-04473-E (Acción Especial) project, the
HI2008-0153 (Acción Integrada) project, the UCM-BSCH-GR58/08-910502 Re-
search Group and by the Madrid Regional Government under the S2009TIC-1465
PROMETIDOS project.

References

1. Aiken, A., Foster, J.S., Kodumal, J., Terauchi, T.: Checking and inferring local

non-aliasing. In: Proc. of PDLI 2003, pp. 129–140. ACM, New York (2003)

2. Albert, E., Arenas, P., Codish, M., Genaim, S., Puebla, G., Zanardini, D.: Termi-

nation Analysis of Java Bytecode. In: Barthe, G., de Boer, F.S. (eds.) FMOODS

2008. LNCS, vol. 5051, pp. 2–18. Springer, Heidelberg (2008)

3. Albert, E., Arenas, P., Genaim, S., Puebla, G.: Field-Sensitive Value Analysis by

Field-Insensitive Analysis. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS,

vol. 5850, pp. 370–386. Springer, Heidelberg (2009)

4. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Resource usage anal-

ysis and its application to resource certification. In: FOSAD 2007. LNCS, vol. 5705,

pp. 258–288. Springer, Heidelberg (2009)

5. Berdine, J., Cook, B., Distefano, D., O’Hearn, P.: Automatic termination proofs

for programs with shape-shifting heaps. In: Ball, T., Jones, R.B. (eds.) CAV 2006.

LNCS, vol. 4144, pp. 386–400. Springer, Heidelberg (2006)

6. Cahoon, B., McKinley, K.S.: Data flow analysis for software prefetching linked data

structures in Java. In: IEEE PaCT, pp. 280–291 (2001)

7. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables

of a program. In: Proc. POPL. ACM, New York (1978)

8. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and

Computation. Addison-Wesley, Reading (1979)

9. Lehner, H., Müller, P.: Formal translation of bytecode into BoogiePL. In: Bytecode

2007. ENTCS, pp. 35–50. Elsevier, Amsterdam (2007)

10. Lindholm, T., Yellin, F.: The Java Virtual Machine Specification. Addison-Wesley,

Reading (1996)

11. Miné, A.: Field-sensitive value analysis of embedded c programs with union types

and pointer arithmetics. In: LCTES (2006)

12. Otto, C., Brockschmidt, M., von Essen, C., Giesl, J.: Termination Analysis of Java

Bytecode by Term Rewriting. In: Waldmann, J. (ed.) International Workshop on

Termination, WST 2009, Leipzig, Germany (June 2009)

13. Puebla, G., Hermenegildo, M.: Abstract Multiple Specialization and its Application

to Program Parallelization. JLP 41(2&3), 279–316 (1999)

14. Rossignoli, S., Spoto, F.: Detecting Non-Cyclicity by Abstract Compilation into

Boolean Functions. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS,

vol. 3855, pp. 95–110. Springer, Heidelberg (2005)

15. Spoto, F., Hill, P., Payet, E.: Path-length analysis of object-oriented programs. In:

EAAI 2006. ENTCS. Elsevier, Amsterdam (2006)

16. Spoto, F., Mesnard, F., Payet, É.: A Termination Analyser for Java Bytecode based

on Path-Length. ACM TOPLAS (2010) (to appear)

17. Vallee-Rai, R., Hendren, L., Sundaresan, V., Lam, P., Gagnon, E., Co, P.: Soot -

a Java Optimization Framework. In: CASCON 1999, pp. 125–135 (1999)

18. Xia, S., Fähndrich, M., Logozzo, F.: Inferring Dataflow Properties of User Defined

Table Processors. In: Palsberg, J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp.

19–35. Springer, Heidelberg (2009)

Multi-dimensional Rankings, Program Termination,
and Complexity Bounds of Flowchart Programs

Christophe Alias1, Alain Darte1, Paul Feautrier1, and Laure Gonnord2

1 Compsys team, LIP, Lyon, France
UMR 5668 CNRS—ENS Lyon—UCB Lyon—Inria

{Firstname.Lastname}@ens-lyon.fr
2 LIFL - UMR CNRS/USTL 8022, INRIA Lille - Nord Europe

40 avenue Halley, 59650 Villeneuve d’Ascq, France
Laure.Gonnord@lifl.fr

Abstract. Proving the termination of a flowchart program can be done by ex-
hibiting a ranking function, i.e., a function from the program states to a well-
founded set, which strictly decreases at each program step. A standard method to
automatically generate such a function is to compute invariants for each program
point and to search for a ranking in a restricted class of functions that can be han-
dled with linear programming techniques. Previous algorithms based on affine
rankings either are applicable only to simple loops (i.e., single-node flowcharts)
and rely on enumeration, or are not complete in the sense that they are not guaran-
teed to find a ranking in the class of functions they consider, if one exists. Our first
contribution is to propose an efficient algorithm to compute ranking functions: It
can handle flowcharts of arbitrary structure, the class of candidate rankings it
explores is larger, and our method, although greedy, is provably complete. Our
second contribution is to show how to use the ranking functions we generate to
get upper bounds for the computational complexity (number of transitions) of the
source program. This estimate is a polynomial, which means that we can handle
programs with more than linear complexity. We applied the method on a collec-
tion of test cases from the literature. We also show the links and differences with
previous techniques based on the insertion of counters.

1 Introduction and Motivation

The problem of proving program correctness has been with us since the early days of
Computer Science. In a seminal paper [20], R. W. Floyd proposed what has become one
of the standard approaches: affix assertions to each program point and prove that they
are consequences of the assertions of its predecessors in the program control graph. The
assertions at the entry point of the program are its preconditions, the assertions at loop
entry points are invariants, while the assertions at its exit point must entail correctness,
according to some set of requirements. Constructing the required set of assertions is a
tedious and error-prone task. The automatic construction of invariants has been proved
to be intractable in the general case [6]. However, partial or conservative solutions can
be obtained by abstract interpretation methods [14].

At the same time, it was soon realized that this method proves only partial correct-
ness, i.e., that the program gives the correct result if and when it terminates. To prove

R. Cousot and M. Martel (Eds.): SAS 2010, LNCS 6337, pp. 117–133, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

118 C. Alias et al.

termination, one needs a variant or ranking function (a W-function in Floyd’s terminol-
ogy), i.e., a function from the states of the program to some well-founded set, which
strictly decreases at each program step. Of course, designing an algorithm for build-
ing ranking functions in all cases is not possible since it would give a solution to the
undecidable halting problem. However, this does not preclude the existence of partial
solutions, which, e.g., handle only programs (or approximated models) of a restricted
shape, or look for rankings in a restricted class of functions. Our first contribution is
to generalize previous work for generating ranking functions. We design an algorithm
with the following features:

– It can handle flowcharts of arbitrary structure.
– The class of rankings we consider is much larger: in the global ranking function we

generate, each program point can have its own multi-dimensional affine expression.
– Our algorithm is based on a greedy mechanism. Nevertheless, our technique is

provably complete, even for our larger class of ranking functions.
There are many variations on the above theme. For instance, as in [27], one may select
a set of cutpoints, with the property that their removal makes the flowchart acyclic. It
is then enough to exhibit a function, non increasing everywhere, that decreases and is
well-founded at each cutpoint. One may even proceed each flowchart cycle at a time.

Our second contribution is to show that the global ranking functions we generate can
be used to give upper bounds on the worst-case computational complexity (WCCC) of
the program execution, i.e., the number of transitions that can be made in an execution
trace. Obviously, if a program does not terminate, its WCCC is infinite. If the program
terminates and a one-dimensional ranking function exists, its value at program start is
an upper bound on the number of steps before termination since it decreases at least
by one at each program step. The situation is more complicated in the case of multi-
dimensional ranking functions but we show how the WCCC can be computed thanks
to counting techniques in polyhedra. Furthermore, our ranking algorithm has an addi-
tional important feature: It generates a multi-dimensional affine ranking function whose
dimension is minimal. This is important to get an accurate upper bound on the WCCC
of the flowchart program. To the best of our knowledge, our technique is the first one
that uses ranking functions to compute upper bounds on the number of iterations of
arbitrary loops (a particular case of the WCCC).

The rest of the paper is organized as follows. Section 2 gives some basic notations
and concepts: the program abstraction we use (integer interpreted automata) and the
class of ranking functions we consider. Section 3 presents our method for construct-
ing multi-dimensional affine ranking functions and states its completeness. Section 4
explains how we infer the computational complexity of the source program. Section 5
reports on our implementation through a collection of benchmarks from the literature.
Section 6 describes other approaches to the termination problem and WCCC evaluation.
We then conclude pointing to some unsolved problems and outlining future work.

2 Notations and Definitions

We write matrices with capital letters (as A) and column vectors in boldface (as x).
If x has dimension d, its components are denoted x[i], with 0 ≤ i < d. Thus, its i-th
component is x[i − 1]. Sets are represented with calligraphic letters such asW, K , etc.

Multi-dimensional Rankings, Program Termination, and Complexity Bounds 119

2.1 Integer Interpreted Automata

In the tradition of most previous work on program termination and static analysis, we
first transform the program to be analyzed into an abstraction: the associated integer
interpreted automaton. This is similar to the flowcharts used a long time ago to express
programs (see, e.g., Manna’s book [27]) until the advent of structured programming. In
fact, when one looks at real-life programs, many deviations from the strict structured
model can occur, including premature loop termination, exceptions, and even the occa-
sional goto. Reasoning with flowcharts abstracts the details of the syntax and semantics
of the source language, which can be dealt with by an appropriate preprocessor.

In our work, a program is represented by an affine (integer) interpreted automaton
(K , n, kinit,T) defined by:

– a finite set K of control points;
– n integer variables represented by a vector x of size n;
– an initial control point kinit ∈ K ;
– a finite set T of 4-tuples (k, g, a, k′), called transitions, where k ∈ K (resp. k′ ∈ K)

is the source (resp. target) control point, g : Zn �→ B = {true, false}, the guard, is a
logical formula expressed with affine inequalities Gx+ g ≥ 0, and a : Zn �→ Zn, the
action, assigns, to each variable valuation x, a vector x ′ of size n, expressed by an
affine expression x ′ = Ax + a. Here, G and A are matrices, g and a are vectors.

To represent non-determinism or to approximate non-affine or non-analyzable assign-
ments in the program, we may have to assign the value “?”, representing an arbitrary
integer, to a variable, but we will not elaborate on this point. This is equivalent to deal
with affine relations between x and x ′ instead of functions, see [1] for details.

Semantics. The set of states is K × Zn. A trace from (k0, x0) to (k, x) is a sequence
(k0, x0), (k1, x1), . . . , (kp, xp) such that kp = k, xp = x and for each i, 0 ≤ i < p, there
exists in T a transition (ki, gi, ai, ki+1) such that gi(xi) = true and xi+1 = ai(xi). Given
an initial valuation v, a state (k, x) is reachable from v iff (if and only if) there is a trace
from (kinit, v) to (k, x). A state (k, x) is reachable if there exists v ∈ Zn such that (k, x) is
reachable from v. The set of reachable states is denoted by R.

Invariants. The guard g in a transition t = (k, g, a, k′) gives a necessary condition on
variables x to traverse the transition t and to apply its corresponding action a. To get
the exact valuations x of variables for which the action a can be performed, one would
need to take into account the initial valuations and the successive conditions that led to
the control point k. We denote by Rk the set of possible valuations x of variables when
the control is in k:

Rk = {x ∈ Zn | (k, x) ∈ R}.

Then, there exists a trace containing the transition (k, g, a, k′) iff x ∈ Rk and g(x) is true.
Note that Rk does not depend on any initial valuation. More precisely, it is the union,
for all initial valuations v, of the set of vectors x such that (k, x) is reachable from v.

In practice, it is difficult to determine the set Rk exactly but it is possible to give over-
approximations, thanks to the notion of invariants. An invariant on a control point k is a
formula φk(x) that is true for all reachable states (k, x). It is affine if it is the conjunction

120 C. Alias et al.

of a finite number of affine conditions on program variables. The set Rk is then over-
approximated by the integer points within a polyhedron Pk. To compute invariants, we
rely on standard abstract interpretation techniques, widely studied since the seminal
paper of Cousot and Halbwachs [14]. These sets Pk represent all the information on
the values of variables that can be deduced from the program by state-of-the-art anal-
ysis techniques. Unlike [8,24] where the construction of invariants is coupled with the
termination proof or evaluation of iteration bounds, the invariantsPk are pre-computed
and are the inputs of the techniques developed in the next sections.

2.2 Termination and Ranking Functions

Invariants can only prove partial correctness of a program. The standard technique
for proving termination is to consider ranking functions to well-founded sets. A well-
founded set W is a set with a (total or partial) order 	 (we write a ≺ b if a 	 b and
a � b) such that there is no infinite descending chain, i.e., no infinite sequence (xi)i∈N
with xi ∈ W and xi+1 ≺ xi for all i ∈ N.

Definition 1. A ranking is a function ρ : K × Zn →W, from the automaton states to a
well-founded set (W,), whose values decrease at each transition t = (k, g, a, k′):

x ∈ Rk ∧ g(x) = true ∧ x ′ = a(x)⇒ ρ(k′, x ′) ≺ ρ(k, x) (1)

It is said affine if it is affine in the second parameter (the variables).

Definition 2. A ranking function is one-dimensional if its co-domain is (N,≤). It is k-
dimensional (or multi-dimensional of dimension k) if its co-domain is (Nk,	k), where
the order 	k is the standard lexicographic order on integer vectors.

Obviously, the existence of a ranking function implies program termination for any
valuation v at the initial control point kinit. A well-known property is that an integer
interpreted automaton terminates for any initial valuation if and only if it has a ranking
function. Furthermore, if it terminates and has bounded non-determinism, there is a
one-dimensional ranking function, which is not necessarily affine.

2.3 Illustrating Example

An example program is given in Fig. 1, with its corresponding automaton. The control
points are labelled for convenience, and transitions are depicted with arrows indexed by
g
a

(g is omitted when g = true). State names are assigned arbitrarily by our parser.

The C code features two nested loops, which do not fit into the structured program-
ming model, since the inner counter, y, is modified in the outer loop. The indet func-
tion abstracts non-determinism or an intractable test. The outcome of non-determinism
is that, in the corresponding automaton, both transitions out of state lbl5 have a true
guard. The right of Fig. 1 successively gives, assuming m > 0, the invariants as found
by Aspic (an abstract-interpretation based invariant generator, see Section 5), followed
by the bidimensional rankings and the corresponding WCCC computed by Rank, our
tool. The reader may care to check that these rankings are positive and lexicographi-
cally decrease along each transition. For instance, the first component of the ranking
function decreases from 2x + 3 at lbl5 to 2x + 2 at lbl6, then 2x + 3 at lbl10, but since x
is changed to x − 1 by the corresponding transition, the ranking has really decreased.

Multi-dimensional Rankings, Program Termination, and Complexity Bounds 121

y = 0;
x = m;
while(x>=0 && y>=0){
if(indet()){
while(y <= m && indet())
y++;

x--;
}
y--;

}

start

lbl4

lbl5

stop lbl6

lbl10

x := m; y := 0

0 � x ∧ 0 � yx < 0 ∨ y < 0

true

true

y � m

y := y + 1

x := x − 1

y := y − 1

lbl4 m ≥ x > 0,m ≥ y > 0
lbl5 m ≥ x ≥ 0,m ≥ y ≥ 0
lbl6 m ≥ x ≥ 0,m + 1 ≥ y ≥ 0

lbl10

{
m ≥ x ≥ −1,m + 1 ≥ y ≥ 0

2m ≥ x + y
start 2m + 4
lbl4 (2x + 3, 3y + 3)
lbl5 (2x + 3, 3y + 2)
lbl6 (2x + 2,m − y + 1)
lbl10 (2x + 3, 3y + 1)
wccc 5 + 7m + 4m2

Fig. 1. Illustrating example

3 Computing Affine Ranking Functions

This section gives an algorithm to build a multi-dimensional affine ranking function,
i.e., a ranking function ρ : K ×Zn → Nd, affine for the second parameter. The integer d
is the dimension of the ranking. Considering ranking functions with d > 1 is mandatory
to be able to prove the termination of programs that induce a number of transitions,
i.e., a trace length, more than linear in the program parameters. Furthermore, when a
d-dimensional ranking exists, the number of transitions can be bounded by a polyno-
mial, derived from the ranking, with a simpler method than by manipulating directly
polynomials of degree d. Considering rankings with a different affine function for each
control point also extends the set of programs whose termination can be determined,
compared for example to the technique of [13] (see more details in Section 3.2).

3.1 A Greedy Polynomial-Time Procedure

As explained in Section 2.1, in practice, the exact sets Rk are not necessarily available.
They are over-approximated by invariants Pk, with Rk ⊆ Pk, which are, in our case,
described by polyhedra. The conditions that a ranking function must satisfy are then
related to these invariants and not to the exact sets of reachable states.

A ranking function ρ of dimension d needs to satisfy two properties. First, as ρ has
co-domain Nd, it should assign a nonnegative integer vector to each relevant state:

x ∈ Pk ⇒ ρ(k, x) ≥ 0 (component-wise) (2)

Second, it should decrease on transitions. Let Qt be the polyhedron described by the
constraints of a transition t = (k, g, a, k′), i.e., x ∈ Pk, g(x) is true, and x ′ = a(x),
which can be built from matrices A and G, and vectors a and g (see Section 2.1). For an
automaton whose actions are general affine relations, Qt is directly given by the action
definitions. With Δt(ρ, x, x ′) = ρ(k, x) − ρ(k′, x ′), Inequality (1) then becomes:

(x, x ′) ∈ Qt ⇒ Δt(ρ, x, x ′) �d 0 (3)

which means Δt(ρ, x, x ′) � 0 and its first nonzero component is positive. It this compo-
nent is the i-th, the level of Δt(ρ, x, x ′) is i. A transition t is said to be (fully) satisfied by
the i-th component of ρ (or at dimension i) if the maximal level of all Δt(ρ, x, x ′) is i.

122 C. Alias et al.

To build a ranking ρ, the difficulty is to decide, for each transition t and for each
pair (x, x ′) ∈ Qt, what will be the level of Δt(ρ, x, x ′) and by which component of
ρ the transition t will be satisfied. A potentially exponential search, as in [8], should
be avoided. To address this issue, our algorithm uses the same greedy mechanism as
in [25,19,13]. The components of ρ are functions from K × Zn to N. We build them,
one after the other, from the first one to the last one. For a component σ of ρ and a
transition t not yet satisfied by one of the previous components of ρ, we consider the
constraint:

(x, x ′) ∈ Qt ⇒ Δt(σ, x, x ′) ≥ εt with 0 ≤ εt ≤ 1. (4)

and we select a ranking such that as many transitions as possible have εt = 1, i.e.,
are now satisfied. Surprisingly, despite this greedy approach, our technique is provably
complete (see Theorem 1), which means that if a multi-dimensional affine ranking ex-
ists, our algorithm finds one. Our algorithm can then be summarized as follows:

1: i = 0; T = T ; � Initialize T to the set of all transitions
2: while T is not empty do
3: Find a 1D affine function σ and values εt such that all inequalities (2) and (4) are satisfied

and as many εt as possible are equal to 1; � This means maximizing
∑

t∈T εt

4: Let ρi = σ ; i = i + 1; � σ defines the i-th component of ρ
5: If no transition t with εt = 1, return false � No multi-dimensional affine ranking.
6: Remove from T all transitions t such that εt = 1; � The transitions have level i
7: end while;
8: d = i; return true; � There is a d-dimensional ranking

For Line 3, any solution σ leading to εt > 0 can be multiplied by a suitable positive
constant to get a solution with εt = 1. Thus, for any solution maximizing

∑
t∈T εt, a

transition t has either εt = 0 or εt = 1. At each iteration of the while loop,σ is used as a
new component of the ranking ρ (Line 4). By construction, ρ is strictly decreasing at this
level for all transitions t with εt = 1. No need to consider them any longer, which means
that they are removed for building subsequent components (Line 6). If no transition is
removed, no ranking function is derived and the automaton may not terminate.

To find a suitable function σ at Line 3, we use linear programming. The set of in-
equalities that we need to solve are Inequalities (2) (with σ instead of ρ) and (4). The
standard method (used in [19,28,8]) is to rely on the affine form of Farkas lemma [30]:

Lemma 1 (Farkas lemma, affine form). An affine form φ : Rn → R with φ(x) =
c.x + c0 is nonnegative everywhere in a non-empty polyhedron {x | Ax + a ≥ 0} iff:

∃λ ∈ (R+)n, λ0 ∈ R+ such that φ(x) ≡ λ.(Ax + a) + λ0

The notation ≡ is a formal equality, which means that x can be eliminated and coeffi-
cients identified. In other words:

∃λ ∈ (R+)n, λ0 ∈ R+ such that c = λ.A and c0 = λ.a + λ0

We can now apply the affine form of Farkas lemma to Inequalities (2) (with σ instead
of ρ) and (4). With Pk = {x | Pkx + pk ≥ 0}, we transform Inequality (2) into:

∃λk ∈ (R+)n, λ0
k ∈ R

+ such that σ(k, x) ≡ λk.(Pkx + pk) + λ0
k (5)

Multi-dimensional Rankings, Program Termination, and Complexity Bounds 123

Similarly, with Qt = {y = (x, x ′) | Qt y + qt ≥ 0}, we transform Inequality (4) into:

∃μt ∈ (R+)n, μ0
t ∈ R+ s.t. Δt(σ, x, x ′) − 1 ≡ μt.(Qt y + qt) + μ0

t (6)

A substitution of (5) in (6) and an identification on each dimension of y leads to a set
of linear inequalities. Considering all inequalities obtained for all transitions t ∈ T and
maximizing

∑
t∈T εt (Line 3 of the algorithm) leads to the desired function σ.

Note: As we use linear programming, but not integer linear programming, we may
end up with a function σ with rational components. However, we can always multiply
it by a suitable integer to get a ranking function with integer values.

Example of Section 2.3 (Cont’d). Write σk(x, y) = ak x + bky + ck the 1st component
of the ranking. Consider any transition, e.g., lbl4 → lbl5. The non-increasing constraint
gives (a4 − a5)x+ (b4 − b5)y+ c4 − c5 ≥ 0. Letting x = 0 and y = m, and noticing that m
can be arbitrarily large, gives b4 ≥ b5. The same technique applied to all transitions of
a cycle shows that all bk (same for all ak) of a strongly connected component are equal:
let b this value. For the self-loop on lbl6, σ6(x, y) ≥ σ6(x, y+1) implies b ≤ 0. The cycle
lbl4 → lbl5 → lbl10 → lbl4 implies σ4(x, y) ≥ σ4(x, y−1), thus b ≥ 0. Hence, these two
cycles cannot be satisfied at the first dimension. However, the transitions lbl5 → lbl6
and lbl6 → lbl10 can be satisfied, disconnecting the two cycles and allowing them to be
satisfied separately by the 2nd component of ρ. Here, we have deliberately simplified
the problem by ignoring the positivity constraints and using qualitative reasoning for
analyzing the descent constraints. In our tool, linear programming replaces intuition.

3.2 Completeness

Since non-terminating programs exist, there is no hope of proving that a ranking func-
tion always exists. Moreover, there are terminating affine interpreted automata with no
multi-dimensional affine ranking. Thus, all we can prove is that, if a multi-dimensional
affine ranking exists, our algorithm finds one, i.e., it is complete for the class of multi-
dimensional affine rankings. Also, as the sets Rk are over-approximated by the invari-
ants Pk, completeness has to be understood with respect to these invariants, which
means that if the algorithm fails when an affine ranking exists, it is because invariants
are not accurate enough. In this section, we just sketch the completeness proof. The
proof itself, quite long and technical, can be found in the long version of this paper [2].

Theorem 1. If an affine interpreted automaton, with associated invariants, has a multi-
dimensional affine ranking function, then the algorithm of Section 3.1 finds one. More-
over, the dimension of the generated ranking is minimal.

There can be several reasons why a greedy algorithm could be incomplete. First, we
could make a bad choice when selecting the transitions that are satisfied at a given
dimension. However, there is no decision to make: if two transitions can be satisfied,
one by a functionσ1, the other by a functionσ2, both can be simultaneously satisfied by
the function σ1 + σ2. Second, enforcing that each transition is satisfied at the smallest
possible dimension could also be a bad decision. Third, keeping all pairs (x, x ′) in
Inequality (4) until the transition is fully satisfied, even those for which the ranking is

124 C. Alias et al.

decreasing for a previous dimension, could overconstrain the problem too. In particular,
asking that at least one transition is (fully) satisfied at each dimension (Line 5 of the
algorithm) could be too demanding. One could imagine situations where all transitions
are partially satisfied, but none is fully satisfied. Theorem 1 shows that this is not the
case. Despite all these greedy choices, the completeness is not lost.

To summarize the proof, we start from an affine ranking of dimension d, if one
exists. We show that there is an affine ranking of dimension d that fully satisfies at
least one transition. This proves that our algorithm does not abort and generates a one-
dimensional ranking σ. Then, we show that there is an affine ranking of dimension d
whose first component is σ. Finally, we show that there is an affine ranking of dimen-
sion d, whose first component is σ, and such that the d − 1 last components satisfy all
transitions not fully satisfied byσ. Iterating the process, this shows our algorithm termi-
nates and generates an affine ranking of dimension ≤ d, for any possible dimension d.

The knowledgeable reader may have noticed a similarity with the algorithm of [13].
However, as pointed out earlier, the class of ranking functions we consider is larger.
In our case, at each step of the construction, one component (i.e., dimension) σ of the
global ranking function ρ is defined, and each control point k can have a different affine
expression:σ(k, x) = λk.x+ck, where λk is a vector and ck a scalar. The algorithm in [13]
proceeds differently. At each step of the construction, instead of building a global rank-
ing function, it checks, for each transition, if there exists an affine expression decreasing
for this transition and non-increasing for all other transitions of the same strongly con-
nected component (SCC). All transitions for which this is possible are removed as well
as transitions that now do not belong to any SCC. One can prove that if this technique
succeeds, there is also a component σ, which is decreasing for all removed transitions,
non-increasing for other, of the form σ(k, x) = λ.x + ck, in other words a unique linear
part for all control points, plus some shifts (the ck), exactly as the loop scheduling tech-
nique of [18]. Such a restricted form is particularly useful when the automaton actions
define simple translations, as for the example of Section 2.3, because Farkas lemma is
then not needed. However, as the following examples show, this class of functions is
less powerful than general affine rankings. In other words, the algorithm of [13] is not
complete with respect to the class of all multi-dimensional affine rankings.

In the synthetic examples of Figure 2, to make the discussion simpler, we selected
the lower bounds for x and y so that these two variables are always nonnegative. The
two examples have then similar ranking functions: 2 + 3m and 0 for the start and stop
program points, and 2x + y + 1 for k1, x + y + 1 for k2 and k3 (for the second example).
They are thus proved to terminate with O(m) transitions in any execution trace. If the
same linear part is chosen in each SCC as previously explained (or equivalently if the
technique of [13] is applied to prove termination), the result is not as accurate. The
first component of the ranking cannot depend on y (due to the potentially-parametric
increases and decreases of y on the two transitions between k1 and k2), it is thus a
function of x only. For the first example, a two-dimensional ranking is generated (we get
x+1 for k1 and (x+1, y) for k2), thus the program is still proved to terminate but appears
to have a quadratic complexity. For the second example however, as x decreases on the
two transitions between k1 and k2, but increases on the self-loop on k3, no transition can
be satisfied at the first dimension, and the technique fails to prove termination.

Multi-dimensional Rankings, Program Termination, and Complexity Bounds 125

x = m;
y = m;
while(x>=2) {

x--; y = y+x;
while(y>=x && indet()) y--;
x--; y = y-x;

}

k1

init{
x := m

y := m

stop

x < 2

k2

{
x := x − 1
y := y + x − 1

x � 2

y := y − 1
y � x

{
x := x − 1
y := y − x + 1

x = m;
y = m;
while(x>=2) {

x--; y = y+x;
while(y>=x+1 && indet()) {
y--;
while(y>=x+3 && indet()) {
x++; y = y-2;

}
y--;

}
x--; y = y-x;

}

k1

init{
x := m

y := m

stop

x < 2

k2

{
x := x − 1
y := y + x − 1

x � 2

{
x := x − 1
y := y − x + 1

k3

y := y − 1

y := y − 1

y � x + 1

{
x := x + 1
y := y − 2

y � x + 3

Fig. 2. Examples requiring general affine ranking functions

4 Worst-Case Computational Complexity (WCCC)

As shown in the survey by Wilhelm et al. [33], the computation of a worst-case execu-
tion time (WCET) is a highly complex affair, as it has to take into account the program,
its data, and the processor on which it runs. Handling all these complexities is beyond
the scope of this paper. Our aim is to evaluate an abstract WCET, as would be observed
on a processor with a perfectly additive timing model, executing one automaton transi-
tion in unit time. We call this quantity the worst-case computational complexity of the
program (WCCC). Such an estimate can be useful, for example as a template with un-
known coefficients, to be fitted to actual measurements by a process of regression. It is
also standard in high-level synthesis to need an upper-bound on the number of loop iter-
ations (do loops as well as while loops), to enable scheduling optimizations at higher
levels. We thus define the WCCC as an upper bound on the number of transitions exe-
cuted, given an initial value of the counter variables. Note that the WCCC is significant
only up to constant factors. For example, if we eliminate a state by edge coalescing, the
semantics of the flowchart will not be materially changed, but the WCCC may decrease.

With this definition, one could over-approximate the WCCC of a terminating pro-
gram by the total number of reachable states (because a finite trace cannot contain twice
the same state), i.e., WCCC ≤

∑
k #R̃k or even more conservatively WCCC ≤

∑
k #P̃k

as Rk is itself over-approximated by Pk. 1 This is a very rough over-approximation but,
even worse, this technique can lead to an infinite WCCC, even for a terminating au-
tomaton, if some invariant Pk is unbounded. Rather, we can use the ranking function
itself to prune the invariant sets. Indeed, consider a trace (k0, x0), . . . , (kp, xp) in the
execution of the automaton. By definition of a ranking function, ρ(ki+1, xi+1) ≺ ρ(ki, xi).
Since ≺ is a strict order, it follows by transitivity that all ρ(ki, xi) are distinct in W.

1 Here, the notation S̃ means the integral points in a set S, and #S̃ denotes the cardinal of S̃.

126 C. Alias et al.

Hence, the length of the trace is bounded by the cardinal of the co-domain of ρ:

WCCC ≤ #
⋃

k

ρ(k, P̃k) ≤
∑

k

#ρ(k, P̃k) (7)

The first inequality is more accurate but harder to compute as it involves a union of sets.
So far, in our implementation, we use the second less accurate inequality.

Let us see how we can compute #ρ(k, P̃k) for a given control point k. To make no-
tations simpler, we drop the index k: we let ρ(k, x) = ρ(x) = Rx + r and P = Pk. To
compute #ρ(P̃), we can ignore the constant vector r. The number of different values
in ρ(P̃) is then the number of points in the image of a Z-polyhedron (intersection of
an integral lattice, here Zn, and a polyhedron, here P) by an affine function. If R is
injective, it is of course equal to the number of integral points in the invariant itself.
Otherwise, there are three issues: the fact that several points can have the same image
(thus the kernel of the mapping must be identified), the fact that some regular holes
can arise (sub-lattice of Zn) in the image of the polyhedron, and the fact that some ir-
regular holes can appear on its boundaries. Such problems have been widely studied in
the literature using various techniques related to Ehrhart polynomials [11,31]. So far,
we implemented a simpler over-approximation method, which normalizes R in such a
way that ρ(P̃) no longer contains regular holes. This way, a standard computation of
integral points can be applied. This normalization is done thanks to the Smith normal

form. We compute R = US V , where U and V are unimodular, S =

[
D 0
0 0

]
, and D is

a diagonal positive matrix of rank d (the rank of R). We compute V the polyhedron
obtained by projecting the polyhedron VP = {Vx | x ∈ P} on its d first components.
Actually, #Ṽ is a slight over-approximation of #ρ(P̃). Indeed, two vectors x and y in P̃
have the same image by ρ if and only if Vx and Vy have the same d first components.
The over-approximation comes from the fact that, in very specific cases, not all integral
vectors in V are obtained by projection of an integral vector in VP. The number of
integral vectors inV is then computed using Ehrhart polynomials.

It is important to minimize the rank of D because the WCCC will tend to be smaller if
the dimension ofV is smaller. This is why it is important to generate rankings of mini-
mal dimension as our algorithm does (Theorem 1). However, adding linearly-dependent
components to the ranking will simply add null rows at the bottom of the matrix S .
From this follows that the WCCC will be O(Mn), if M is an upper bound for all vari-
ables, since it is impossible to build more than n linear forms on n variables. This bound
cannot be improved, since with n variables, one can write a system of n perfectly nested
loops, which achieves the required complexity.

The factors affecting the precision of the WCCC, beside the union computation, are
the presence of non affine guards and of non affine domains. For example, the loop
for(j=1; j<m; j=2*j) has invariant 2 ≤ j < m (in the loop) and ranking j, which
gives a WCCC of m instead of the correct value log2 m. Such a WCCC cannot be ob-
tained by an affine technique, which grossly over-estimates the domain of j by a poly-
hedron. Another problem is that the invariant at a loop entry is often a coarse polyhedral
approximation of a union of more accurate invariants on each path in the loop. Imposing
the non-negative constraint (2) for such a control point is not necessary. It is enough to
impose it for one control point per circuit of the automaton where invariants are more

Multi-dimensional Rankings, Program Termination, and Complexity Bounds 127

accurate. Note also that, if one wants to count the number of loop traversals and not
the number of transitions, it is not necessary to extend the sum in (7) to all nodes. For
instance, if we include only one well-chosen state per loop, we will get a bound on the
total number of loop traversals in an execution of the program.

Example of Section 2.3 (Cont’d). Inequality (7) gives the upper bound:

WCCC ≤ #ρ(Pstart) + #ρ(Plbl4) + #ρ(Plbl5) + #ρ(Plbl6) + #ρ(Plbl10) + #ρ(Pstop)

Let us detail the computation of #ρ(Plbl4). ρ(Plbl4 , x, y,m) =

[
2 0 0
0 3 0

]
(x y m)T +

[
3
3

]

Here, the mapping is bijective, so it would be sufficient to count the integral points in

Plbl4 . But let us do the computation:

[
2 0 0
0 3 0

]
= U×D×V =

[
2 1
3 1

]
×
[

1 0 0
0 6 0

]
×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
−2 3 0
1 −1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦.
Projecting VPlbl4 along its first two dimensions amounts to consider the linear system:
{p1 = −2x+3y, p2 = x−y, 0 < x ≤ m, 0 < y ≤ m} and to eliminate every variable except
p1, p2 and m (the parameter). This gives the polyhedronV defined by the constraints
{1 ≤ p1 + 2p2 ≤ m, 1 ≤ p1 + 3p2 ≤ m}, whose number of points is an upper bound
for #ρ(P̃lbl4). The cardinal of Ṽ is computed thanks to Ehrhart polynomials [10] (see
Section 5). The result is, in general, a collection of polynomial formulas guarded by
affine constraints on the parameters. Here, we get: #ρ(Plbl4) ≤ #V = m2 as expected.
Applying the same process on the other control points, we finally obtain:

WCCC ≤ 1 + (m2) + (1 + 2m + m2) + (2 + 3m + m2) + (2m + m2) + 1= 5 + 7m + 4m2.

5 Implementation and Experimental Results

We have built a tool suite that converts a C program into an integer interpreted automa-
ton, constructs its invariants, tests its termination and, if successful, computes an upper
bound for its worst-case computational complexity WCCC.

The first tool, c2fsm, turns a C program into an integer interpreted automaton, doing
the relevant approximations when the program cannot be exactly translated. Our guide-
lines have been to consider only assignments to integer variables, and to give a variable
an undefined value unless it is expressed as an affine form of integer variables. This tool
also implements dead code elimination, useless variables elimination, and, as an option,
the selection of cutpoints and the elimination of other control points. Note that it may
be possible to extract flowcharts from binaries or assembly code, thus greatly extending
the scope of the method.

The second tool, Aspic ([21], http://laure.gonnord.org/aspic/), a public-
domain implementation of abstract acceleration [14], computes the invariants for every
control point of the obtained integer interpreted automaton. Compared to the standard
widening approach, this method computes a more precise reachability set for “acceler-
able” loops, which locally avoids the use of widening and globally increases precision.

The third tool, Rank, implements the method described in this paper. Starting from
the integer interpreted automaton and the invariants given by Aspic, Rank tries to prove
the termination of the program by computing (multidimensional affine) ranking func-
tions. In case of success, Rank computes the worst-case computational complexity of

http://laure.gonnord.org/aspic/

128 C. Alias et al.

the program. Also, in case of failure, Rank tries to exhibit a counterexample that causes
non-termination. The linear programs involved in the termination part are solved thanks
to the PIP tool (Parametric Integer Programming). The WCCC part requires counting
the number of points into a Z-polyhedron. This is done thanks to the Ehrhart polynomial
part of the Polylib library (http://icps.u-strasbg.fr/polylib). The final result
is a set of Ehrhart polynomials, guarded by affine predicates on program parameters.

On the web page http://www.ens-lyon.fr/LIP/COMPSYS/Tools/Ranking/, a
table of experimental results can be found. Examples were collected from the extent lit-
erature, and notably from http://www.eecs.qmul.ac.uk/~aziem/esop.html. In
all test cases we were able to prove termination, even for nondeterministic examples.
Nested loops are correctly handled, and we find multi-dimensional rankings for them.
WCCCs are returned by Rank as piecewise functions depending on the initial values of
the variables: the table only provides the most general term of these expressions.

We were also able to prove the termination of some classical sorting algorithms.
The rankings for these codes may seem of the wrong dimensions, but the additional
dimensions have constant values and the orders of magnitude of the WCCC are still as
expected, e.g., O(N2) for bubblesort. For heapsort, our algorithm finds an O(N2)
WCCC instead of the correct O(N log2 N), see Section 4 for an explanation.

Our tools are completely autonomous within the stated limitations on input pro-
grams. The precision of the results is strongly dependent on the quality of the invariants
and of the affine approximation of some (non affine) affectations in the C programs.
This is not a surprise as stated by Theorem 1: the quality of our technique is to be
understood with respect to the quality of invariants that are provided.

6 Related Work

Our work establishes connections with at least three different techniques. First, it brings
to the field of program termination, techniques primarily designed for scheduling and
optimizing do loops, in the context of automatic parallelization [17]. The fundamen-
tal difference is that, for program termination, each problem dimension corresponds
to an integer variable while, for automatic parallelization, it corresponds to a prede-
fined loop counter. In this sense, it has also some similarities with the seminal work of
Karp, Miller, and Winograd on systems of uniform recurrence equations [25]. Our al-
gorithm to generate ranking functions is inspired by the algorithm of Feautrier [19] and
its completeness [32] for scheduling affine loops. Counting techniques using Ehrhart
polynomials are also standard for optimizing loops [11].

Second, it extends the ranking techniques previously proposed to prove the termi-
nation of programs. Using ranking functions to prove correctness was first proposed in
[20]. Early approaches were semi-automatic: one had to guess ranking functions, and
then prove their correctness using some form of Hoare logic. Attempts to automate this
process started, first with one-dimensional linear rankings such as in [12,28], then with
multi-dimensional rankings such as in [13,8], and propositions to build some forms
of polynomial rankings followed [7,15]. Unlike ours, the techniques of Podelski and
Rybalchenko [28] and of Bradley, Manna, and Sipma [8] are designed for “single-path
linear loops”, i.e., programs abstracted by an automaton with a single node. [28] formu-
lates the constraints to get a one-dimensional ranking if it exists using Farkas lemma,

http://icps.u-strasbg.fr/polylib
http://www.ens-lyon.fr/LIP/COMPSYS/Tools/Ranking/
http://www.eecs.qmul.ac.uk/~aziem/esop.html

Multi-dimensional Rankings, Program Termination, and Complexity Bounds 129

while [8] gives a complete method to derive, for a single node, a multi-dimensional
ranking. It also tries to compute the invariants and the ranking functions simultaneously.
Unlike these two methods, the technique of Colón and Sipma [13] handle flowchart pro-
grams of arbitrary structure. As explained in Section 3.2, the rankings it can generate
correspond to a subclass of affine rankings where all control points within the strongly
connected component being considered have the same linear part. It is not complete for
the class of general multi-dimensional affine ranking functions, as the examples of Sec-
tion 3.2 demonstrate. Finally, none of these techniques has been designed or extended
to compute upper bounds on the WCCC, i.e., the maximal length of an execution trace.

To summarize, we extend previous work on affine ranking functions in several di-
rections. First, unlike [28,8], we are not limited to one loop, i.e., our automaton can
have an arbitrary number of vertices (as in reference [13]). As shown by the example of
Section 2.3, this is mandatory to analyze complex loops, either nested loops, or multi-
path simple loops that have been transformed into an automaton with several vertices
by path-sensitive analysis. Second, to decide at which dimension of the ranking func-
tion a transition decreases (it must be non-increasing for the previous components of
the ranking), the algorithm has_llrf in [8, Figure 2] is a potentially-exponential re-
cursive exploration. Since the algorithm is also potentially exhaustive, there is no need
to prove completeness. In contrast, as our algorithm is greedy, a completeness proof is
needed, which is also an order of magnitude more general since we deal with the much
larger space of all multi-dimensional affine ranking functions, not just one single lexi-
cographic function. Third, unlike previous papers, we are able to prove that we get the
smallest number of dimensions for each ranking function. In [7], the authors do notice
that they may have as many dimensions as the number of transitions. As explained in
Section 4, this dimension reduction is important for the computation of the WCCC.

In a different context, a large body of research followed the introduction of the size
change termination (SCT) principle in [26]. The difference in the two approaches are
first in semantics: the automaton represents a call graph instead of a control graph, and
the variables may be summary information about data structures, like the length of a list
or the size of a tree. More importantly, the relations between input and output variables
of a transition are restricted to one of the two forms x′ < y and x′ ≤ y. Attempts to relax
this restriction can be found in [3,4,5]. Once a set of size change relations has been
found, termination follows if one can combine them in such a way that one variable
at least is guaranteed to decrease. Such a combination can be interpreted as a ranking
function, albeit of a shape fairly different from ours. Algorithms are provided to derive
rankings, with a high complexity (at least in theory) due to their combinatorial nature.

Another trend of research has been started in [29] and pursued in [9]. Here, one uses
several (local) ranking relations, all of them well founded, the intuition being that each
relation proves termination of a part of the program. A consistency condition is neces-
sary: the transitive closure of the transition relation of the program must be included in
the union of all local ranking relations. The problem is how to find the local rankings,
and how to prove the consistency condition. It may be that we can help at least for the
first problem: apply our algorithm to cleverly chosen subsets of the automaton states, as
for example strongly connected components or loops. However, as pointed out in [24],
how to use local rankings (instead of global ones) for WCCC computations is not clear.

130 C. Alias et al.

The third and last connection with previous work is related to the WCCC compu-
tation. The method of Gulwani et al. [24,23] for proving termination and bounding
the complexity consists in creating counters – new variables which are incremented
when traversing some transitions – and asking an invariant generator for bounds on
the counter values. An elaborate system is proposed for selecting the transitions to be
counted, which necessitates repeated calls to the invariant generator. Our method is re-
lated to this work in the following way. After a first round of computation of ranking
functions, let us create a new counter which is reset to zero at the beginning of the pro-
gram and incremented at each transition satisfied by the first component of our ranking
(transitions t for which the variable εt of Section 3.1 is equal to 1). By construction, at
each control point, the sum of the counter value and the affine expression given by the
ranking is non-increasing, which provides an affine bound for this counter. We can con-
tinue in this way as the construction of ranking functions progresses and transitions are
removed, making sure that new counters are reset to zero at the entry to each program
fragment (i.e., on incoming transitions that were previously satisfied). If and when all
edges are satisfied, we have found a system of counters which meets the constraints of
Gulwani et al. Hence, our approach can be seen as a replacement for the counter place-
ment algorithm of [24]. Both techniques rely on abstract interpretation to build initial
invariants. Our technique is then guaranteed to find an adequate placement of coun-
ters if one exists, given these initial invariants, while the approach of Gulwani et al. is
dependent on the unavoidable approximations made in abstract interpretation to build
new invariants including the counters. Which method is best from the point of view of
practical complexity is difficult to ascertain, since we avoid calling the invariant gen-
erator many times, but at the price of having to solve much larger linear programming
problems. However, we point out that, in [24], counters are placed only on particular
transitions selected a priori, typically the back edges of the control-flow graph. But, in
the example of Section 2.3, both back edges (the self-loop on lbl6 and the transition
from lbl10 to lbl4) are traversed a quadratic number of times, so there is no transition
to place a linearly-bounded counter and the algorithm of [24] would fail. As our rank-
ing function shows, the “outer” counter should be placed either on the transition from
lbl5 to lbl6 or on the transition from lbl6 to lbl10. Or the graph must be transformed
as proposed in [23], but with a risk of complexity increase. We believe that our work
bridges the gap between techniques based on the placement of counters and the use of
abstract interpretation to bound them, and techniques based on global ranking functions
to derive complexity bounds.

7 Conclusion

7.1 Contributions

The first main contribution of this paper is the design of an algorithm for the construc-
tion of multi-dimensional affine ranking functions, which, in contrast to the combinato-
rial algorithm of [7], is greedy but nevertheless complete (with respect to the invariants
found and the class of ranking functions considered) and optimal in the dimension of
the ranking function. The algorithm makes no assumption on the shape of the source

Multi-dimensional Rankings, Program Termination, and Complexity Bounds 131

program, and can handle, with proper preprocessing (i.e., after the program is approx-
imated to fit into the affine interpreted automaton model), multiple loops of arbitrary
nesting patterns, premature termination and gotos, nondeterministic choices and val-
ues, exceptions, and affine guards of arbitrary structure. We also point out that, in case
of failure, our algorithm may exhibit a certificate of non termination in the form of an
execution trace which may not terminate. The computation of the worst-case computa-
tional complexity (WCCC) is delegated to a very comprehensive stand-alone algorithm.
This means that no arbitrary restrictions about the shape of loops and tests are neces-
sary. We can directly rely on existing methods and tools for counting integer points
within Z-polyhedra and images of Z-polyhedra by affine functions.

More generally, our work establishes a strong link with computation models, theo-
retical results, and tools developed by the community of automatic parallelization and
high-performance computing, which seem to be not so used (or partly re-discovered) in
the context of program termination. We believe that this connection can lead to further
fruitful advances in the solution of problems faced by both communities.

7.2 Future Work

There is nevertheless room for many improvements. The preprocessor we use for con-
verting a program into an interpreted automaton is somewhat brute force: any construct
that is not affine in integer variables is replaced by the bottom value, which is absorbing
(⊥ ⊕ x = ⊥ for most operators), and which prints as true in a guard and as a question
mark in an action. This can be improved by noticing that some operations, like modulo
and integer division, can be linearized by the introduction of fresh variables, or that a
bottom value may be constrained: for instance, a square is always non-negative. Also,
variables with a finite domain, like Booleans and enums, can be used to refine the states.
This may result in a large increase in the size of the automaton but has the direct benefit
of extending the class of ranking functions considered, as these do not need to be affine
anymore for such “unrolled” variables. Making sure that domains of integer variables
are “fat” (to use the terminology of [16]) increases the chance that an affine ranking
exists and improves the quality of the WCCC produced.

There is always room for improving an invariant constructor like Aspic. One may
for instance improve the acceleration algorithms and loops treatment, or use additional
abstract interpretation frameworks, like the congruences and lattices of [22]. It may also
be interesting to construct the invariants on demand, both to improve the accuracy and
to reduce the overhead of the method.

Last but not least, the power of the ranking algorithm can be increased in many
ways. For instance, imposing that ranking functions are nonnegative everywhere (see
Inequality (2)) is too strong a constraint. It is enough to impose it at a set of cut points.
If the automaton graph becomes acyclic when these cut points are removed, then ter-
mination is still guaranteed, notwithstanding the relaxed nonnegativity constraint. In a
way, eliminating all states but cutpoints before computing a ranking (path coalescing)
is equivalent to relaxing the positivity constraint, but it is obtained at the cost of a po-
tential increase in the number of transitions: if the eliminated state has n ingoing and m
outgoing transitions, its elimination will generate up to n × m transitions. We still need
to explore this trade-off and analyze its consequences on the WCCC computations.

132 C. Alias et al.

Research on the SCT paradigm has shown that ranking functions of a more complex
shape, like piecewise affine functions, are necessary in some cases. In our framework,
this means splitting the invariant of some state(s) by an affine constraint. How to choose
the states to split and the splitting predicate is left for future research.

A point we have not investigated is the termination of distributed programs. Our
algorithm fails when termination depends on a fairness hypothesis.

References

1. Alias, C., Darte, A., Feautrier, P., Gonnord, L.: Bounding the computational complexity of
flowchart programs with multi-dimensional rankings. Research Report 7235, INRIA (March
2010)

2. Alias, C., Darte, A., Feautrier, P., Gonnord, L., Quinson, C.: Program termination and worst-
time complexity with multi-dimensional affine ranking functions. Research Report 7037,
INRIA (November 2009)

3. Anderson, H., Khoo, S.C.: Affine-based size-change termination. In: Ohori, A. (ed.) APLAS
2003. LNCS, vol. 2895, pp. 122–140. Springer, Heidelberg (2003)

4. Ben-Amram, A.M.: Size-change termination with difference constraints. ACM Transactions
on Programming Languages and Systems (TOPLAS) 30(3), 1–31 (2008)

5. Ben-Amram, A.M.: Size change termination, monotonicity constraints, and ranking func-
tions. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 109–123. Springer,
Heidelberg (2009)

6. Blass, A., Gurevich, Y.: Inadequacy of computable loop invariants. ACM Transactions on
Computational Logic (TOCL) 2(1), 1–11 (2001)

7. Bradley, A.A., Manna, Z., Sipma, H.B.: The polyranking principle. In: Caires, L., Italiano,
G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp.
1349–1361. Springer, Heidelberg (2005)

8. Bradley, A.R., Manna, Z., Sipma, H.B.: Linear ranking with reachability. In: Etessami, K.,
Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 491–504. Springer, Heidelberg
(2005)

9. Chawdhary, A., Cook, B., Gulwani, S., Sagiv, M., Yang, H.: Ranking abstractions. In:
Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 81–92. Springer, Heidelberg (2008)

10. Clauss, P.: Counting solutions to linear and nonlinear constraints through Ehrhart polynomi-
als: Applications to analyze and transform scientific programs. In: International Conference
on Supercomputing (ICS 1996), pp. 278–285. ACM, New York (1996)

11. Clauss, P.: Handling memory cache policy with integer points counting. In: Lengauer, C.,
Griebl, M., Gorlatch, S. (eds.) Euro-Par 1997. LNCS, vol. 1300, pp. 285–293. Springer,
Heidelberg (1997)

12. Colón, M., Sipma, H.: Synthesis of linear ranking functions. In: Margaria, T., Yi, W. (eds.)
TACAS 2001. LNCS, vol. 2031, pp. 67–81. Springer, Heidelberg (2001)

13. Colón, M.A., Sipma, H.B.: Practical methods for proving program termination. In: Brinksma,
E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 442–454. Springer, Heidelberg
(2002)

14. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a
program. In: 5th ACM Symposium on Principles of Programming Languages (POPL 1978),
pp. 84–96. Tucson (January 1978)

15. Cousot, P.: Proving program invariance and termination by parametric abstraction, La-
grangian relaxation, and semidefinite programming. In: Cousot, R. (ed.) VMCAI 2005.
LNCS, vol. 3385, pp. 1–24. Springer, Heidelberg (2005)

Multi-dimensional Rankings, Program Termination, and Complexity Bounds 133

16. Darte, A., Khachiyan, L., Robert, Y.: Linear scheduling is nearly optimal. Parallel Processing
Letters 1(2), 73–81 (1991)

17. Darte, A., Robert, Y., Vivien, F.: Scheduling and Automatic Parallelization. Birkhauser, Basel
(2000) ISBN 0-8176-4149-1

18. Darte, A., Vivien, F.: Optimal fine and medium grain parallelism detection in polyhedral
reduced dependence graphs. International Journal of Parallel Programming 25(6), 447–496
(1997)

19. Feautrier, P.: Some efficient solutions to the affine scheduling problem, part II, multi-
dimensional time. International Journal of Parallel Programming 21(6), 389–420 (1992)

20. Floyd, R.W.: Assigning meaning to programs. In: Schwartz, J.T. (ed.) Symposium on Applied
Mathematics, vol. 19, pp. 19–32. A.M.S, Providence (1967)

21. Gonnord, L., Halbwachs, N.: Combining widening and acceleration in linear relation analy-
sis. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 144–160. Springer, Heidelberg (2006)

22. Granger, P.: Static analysis of linear congruence equalities among variables of a program.
In: Abramsky, S. (ed.) TAPSOFT 1991.LNCS, vol. 494, pp. 169–192. Springer, Heidelberg
(1991)

23. Gulwani, S., Jain, S., Koskinen, E.: Control-flow refinement and progress invariants for
bound analysis. In: ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI 2009), pp. 375–385. ACM, Dublin (2009)

24. Gulwani, S., Mehra, K.K., Chilimbi, T.: SPEED: Precise and efficient static estimation of
program computational complexity. In: 36th ACM Symposium on Principles of Program-
ming Languages (POPL 2009), pp. 127–139. Savannah (January 2009)

25. Karp, R.M., Miller, R.E., Winograd, S.: The organization of computations for uniform recur-
rence equations. Journal of the ACM 14(3), 563–590 (1967)

26. Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program termina-
tion. ACM SIGPLAN Notices 36(3), 81–92 (2001)

27. Manna, Z.: Mathematical Theory of Computing. McGraw-Hill, New York (1974)
28. Podelski, A., Rybalchenko, A.: In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS,

vol. 2937, pp. 239–251. Springer, Heidelberg (2004)
29. Podelski, A., Rybalchenko, A.: Transition invariants. In: Ganzinger, H. (ed.) IEEE Sympo-

sium on Logic in Computer Science (LICS 2004), pp. 32–41. IEEE Computer Society, Los
Alamitos (July 2004)

30. Schrijver, A.: Theory of linear and integer programming. Wiley, NewYork (1986)
31. Verdoolaege, S., Seghir, R., Beyls, K., Loechner, V., Bruynooghe, M.: Counting integer

points in parametric polytopes using Barvinok’s rational functions. Algorithmica 48(1), 37–
66 (2007)

32. Vivien, F.: On the optimality of Feautrier’s scheduling algorithm. Concurrency and Compu-
tation: Practice and Experience 15(11-12), 1047–1068 (2003); Euro-Par’02 Special Issue

33. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D., Bernat, G.,
Ferdinand, C., Heckmann, R., Mueller, F., Puaut, I., Puschner, P., Staschulat, J., Stenström,
P.: The determination of worst-case execution times—overview of the methods and survey
of tools. ACM Transactions on Embedded Computing Systems (TECS) 7(3), 1–53 (2008)

Deriving Numerical Abstract Domains via

Principal Component Analysis

Gianluca Amato, Maurizio Parton, and Francesca Scozzari

Università di Chieti-Pescara – Dipartimento di Scienze

Abstract. We propose a new technique for developing ad-hoc numerical

abstract domains by means of statistical analysis. We apply Principal

Component Analysis to partial execution traces of programs, to find out

a “best basis” in the vector space of program variables. This basis may

be used to specialize numerical abstract domains, in order to enhance

the precision of the analysis. As an example, we apply our technique to

interval analysis of simple imperative programs.

1 Introduction

Numerical abstract domains are widely used to prove properties of program
variables such as “all the array indexes are contained within the correct bounds”
or “division by zero cannot happen”. Moreover, numerical properties may help
other kind of analyses, such as termination analyses [6], timing analyses [15],
shape analyses [5], string cleanness analyses [10] and so on. Many numerical
abstract domains strive to trade the accuracy of convex polyhedra [9] for higher
speed (for instance, see the Octagon domain in [21]).

The precision of the analyses may often be improved with the use of special-
purpose abstract domains, such as the domains for the analysis of digital filters
[11], or the arithmetic-geometric progression abstract domain [12]. This idea may
be pushed further by devising domains not just for a class of applications, but
for a single program. For example, if we know the general form of the while-loop
invariants which occur in a program, domains able to express these invariants
should reach a higher precision than others.

In this paper we describe a family of ad-hoc domains and provide a fully
automatic mechanism which, starting from an approximation of the concrete
semantics of a program, selects the best domain in the family.

Consider the program in Figure 1, where the parameter x is the input and
y is a local variable, and its partial execution trace for the input x = 10 which
stops after 5 iterations of the while statement. Collecting the values for the
variables x and y at different program points (after each assignment), we obtain
the table in Figure 2. If we abstract this set of values using the box domain [7]
of Cartesian product of intervals, we get the shaded area in Figure 3, given by{

5 ≤ x ≤ 10
−10 ≤ y ≤ −5

R. Cousot and M. Martel (Eds.): SAS 2010, LNCS 6337, pp. 134–150, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Deriving Numerical Abstract Domains via Principal Component Analysis 135

xyline = function(x)

{

assume(x>=0)

y=-x

while(x>y) {

x= x-1

y= y+1

}

}

Fig. 1. The example

program xyline

x y
10 −10
9 −10
9 −9
8 −9
8 −8
7 −8
7 −7
6 −7
6 −6
5 −6
5 −5

Fig. 2. A partial ex-

ecution trace of the

example program

��

��

•
• •
• •
• •
• •
• •

x

y

Fig. 3. Representation of

the partial execution trace

and relative box abstraction

The key point is that the abstraction in the box domain depends on the coor-
dinate system we choose to draw the boxes. With the standard choice of (x, y)
as coordinate system, the box in Figure 3 is a very rough approximation of the
partial trace, but we can improve the precision by conveniently changing the
axes. For instance, consider a different coordinate system whose axes x′, y′ are
clockwise rotated by 30 degrees. The abstraction in this “rotated box domain”
is depicted in Figure 4. The two boxes in Figure 4 are incomparable as sets of
points, nonetheless the rotated box seems to fit better: for example, it has a
smaller area. The question is how to find a “best rotation”.

��

��

•
• •
• •
• •
• •
• •

x

y

x′

y′

��

��

Fig. 4. Abstraction with boxes ro-

tated by 30 degrees

��

��

•
• •
• •
• •
• •
• •

x

y

x′′

y′′

��

��

Fig. 5. Abstraction with boxes ro-

tated by 45 degrees

To this aim, we use a statistical tool called Principal Component Analysis
(PCA). The intuitive idea of PCA is to choose the axes maximizing the variance
of the collected values. More explicitly, PCA finds a new orthonormal coordinate
system such that the variance of the projection of the data points on the first axis
is the maximum among all possible directions, the variance of the projection of
the data points on the second axis is the maximum among all possible directions
which are orthogonal to the first axis, and so on. In our example, the greatest
variance is obtained by projecting the data points along the line y = −x. An
orthogonal coordinate system (x′, y′) with the first axis corresponding to this

136 G. Amato, M. Parton, and F. Scozzari

line may be obtained by a 45 degree clockwise rotation. The abstraction with
respect to the box domain in (x′′, y′′) is depicted in Figure 5, and in the original
coordinates it is given by: {

10 ≤ x− y ≤ 20
−1 ≤ x + y ≤ 0

It is worth noting that the while invariant in our example is x+y = 0, x−y ≥ 0,
and it may be expressed only in the domain of 45 degree rotated boxes. This
suggests that, using rotated boxes as abstract objects, an abstract interpreta-
tion based analyzer could infer this invariant. More generally, our intuition says
that, if we consider well-known numerical abstract domains and adapt them to
work with non-standard coordinate systems, we can improve the precision of the
analysis without much degradation of performance. In this paper we develop the
theoretical foundation and the implementation to validate this intuition, using
the box domain as a case study. In Section 6, we will show that our analysis
actually infers the invariant x + y = 0, x− y ≥ 0.

The paper is structured as follows. Section 2 introduces some notations.
Section 3 presents the abstract domains of parallelotopes, i.e. boxes w.r.t. non-
standard coordinate systems, while Section 4 gives the abstract operators.
Section 5 introduces PCA, used to automatically derive the “best coordinate
system”. Section 6 presents the prototype implementation we have developed in
the R programming language [23], and shows some experimental results. Finally,
in Section 8 we discuss ideas on future work.

2 Notations

Linear Algebra. We denote by R̄ the ordered field of real numbers extended
with +∞ and −∞. Addition and multiplication are extended to R̄ in the obvious
way, with the exception that 0 times ±∞ is 0. We use boldface for elements v
of R̄n. Given u, v ∈ R̄n, and a relation �� ∈ {<, >,≤,≥, =}, we write u �� v if
and only if ui �� vi for each i ∈ {1, . . . , n}. We denote by · the dot product on
R̄n, namely, u · v def= u1v1 + · · ·+ unvn.

If A = (aij) is a matrix, we denote by AT its transpose. If A is invertible,
A−1 denotes its inverse, and GL(n) is the group of n × n invertible matrices.
The identity matrix in GL(n) is denoted by In, and any A ∈ GL(n) such that
AAT = In is called an orthogonal matrix. Clearly, any 1 × n-matrix can be
viewed as a vector: in particular, we denote by ai∗ (respectively a∗j) the vector
given by the i-th row (respectively the j-th column) of any n × n-matrix A. If
A is orthogonal, then the vectors ai∗ are orthonormal (they have length 1 and
are orthogonal), and thus are linearly independent. The same holds for vectors
a∗j . The standard orthonormal basis of Rn is denoted by {e1, . . . , en}.

Abstract Interpretation. (See [8] for details). Given complete lattices (C,≤C)
and (A,≤A), respectively called the concrete domain and the abstract domain,

Deriving Numerical Abstract Domains via Principal Component Analysis 137

a Galois connection is a pair (α, γ) of monotone maps α : C → A, γ : A → C
such that αγ ≤A idA and γα ≥C idC . If αγ = idA, then (α, γ) is called a
Galois insertion. Given a monotone map f : C → C, the map f̃ : A → A is a
correct approximation of f if αf ≤ f̃α. The best correct approximation of f is
the smallest correct approximation fα of f . It is well-known that fα = αfγ.

Boxes. A set B ⊆ Rn is called a (closed) box if there are bounds m, M ∈ R̄n

such that
B = {x ∈ Rn | m ≤ x ≤ M} .

We denote such a box with 〈m, M 〉. Boxes are used to abstract subsets of Rn.
If Box is the set of all the boxes, a Galois insertion (αB, γB) : ℘(Rn) � Box may
be defined by letting αB(C) be the smallest box enclosing C and γB(B) = B.

Given two boxes 〈m, M〉, 〈m′, M ′〉 ∈ Box, we will use the following notation
for the standard box operations (see [7]):

– The abstract union operation 〈m, M〉 ∪B 〈m′, M ′〉 yields the smallest box
containing both 〈m, M〉 and 〈m′, M ′〉;

– The abstract intersection operation 〈m, M〉∩B〈m′, M ′〉 computes the great-
est box contained in both 〈m, M〉 and 〈m′, M ′〉;

– assignB(i, a, b) : Box → Box corresponds to the (linear) assignment “xi =
a ·x+b”, where x is a vector of n variables, i ∈ {1, . . . n}, a ∈ Rn and b ∈ R.
It is the best correct abstraction of the concrete operation assign(i, a, b) :
℘(Rn) → ℘(Rn) defined as the pointwise extension of:

assign(i, a, b)(x) def= y where yj =

{
xj if j �= i ,
(a · x) + b if j = i .

– testB(a, b, ��) : Box → Box corresponds to the then-branch of the if-statement
“if (a · x �� b)”, where ��∈ {<, >,≤,≥, =, �=}. It is the best correct ab-
straction of the concrete operation test(a, b, ��) : ℘(Rn) → ℘(Rn) defined
as:

test(a, b, ��)(C) def= C ∩ {x ∈ Rn | a · x �� b} .

The abstract operation testB(a, b, ��)(〈m, M 〉) computes the smallest box
which contains the intersection of 〈m, M 〉 and the set of points {x ∈ Rn |
a · x �� b}.

3 The Parallelotope Domains

Every choice of A ∈ GL(n) gives new coordinates in Rn, and boxes with respect
to this transformed coordinates are called parallelotopes. Thus, a parallelotope
is a box whose edges are parallel to the axes in the new coordinate system.
Remark that we are not restricting to orthogonal change of basis. This means
that we consider any invertible linear transformation, such as rotation, reflec-
tion, stretching, compression, shear or any combination of these. The aim of the
change of coordinate system is to fit the original data with a higher precision
than with standard boxes.

138 G. Amato, M. Parton, and F. Scozzari

Example 1. Consider the set C = {(u,−u) | u ≥ 0} ⊆ R2 corresponding to the
while invariant x+y = 0, x−y ≥ 0 of program in Figure 1. If we directly abstract
C in the box domain, we get αB(C) = 〈(0,−∞), (+∞, 0)〉, and γB(αB(C)) =
R+ × R−, with a sensible loss of precision. Let us consider a clockwise rotation
of 45 degrees, centered on the origin, of the standard coordinate system. The
matrix

A =
[
cos(−π

4) − sin(−π
4)

sin(−π
4) cos(−π

4)

]
=

[
1√
2

1√
2

− 1√
2

1√
2

]
transforms rotated coordinates into standard coordinates.

We want to abstract C with boxes on the rotated coordinate system. To this
aim, we first compute the rotated coordinates of the points in C, and then
compute the smallest enclosing box. Since the rotated coordinates are given
by A−1(x, y)T , we obtain:

αB(A−1C) = αB({A−1v | v ∈ C})

= αB

({[
1√
2
− 1√

2
1√
2

1√
2

][
u

−u

]
| u ∈ R+

})

= αB

({[
u
√

2
0

]
| u ∈ R+

})
= 〈(0, 0), (+∞, 0)〉 .

The axes in the rotated coordinate system are, respectively, the lines y = −x and
y = x in the standard coordinate system. It means that the box 〈(0, 0), (+∞, 0)〉
computed above may be represented algebraically in the standard coordinate
system as {

0 ≤ x + y ≤ 0
0 ≤ x− y ≤ +∞

More in general, using the matrix A, we may represent all the parallelotopes of
the form {

m1 ≤ x + y ≤ M1

m2 ≤ x− y ≤ M2

Thus, we have transformed a non-relational analysis into a relational one, where
the form of the relationships is given by the matrix A. If we concretize the box
by applying γB and using the matrix A to convert the result to the standard
coordinate system, we obtain AγBαB(A−1C) = C. Thus, we get a much better
precision than using standard boxes. We stress out that we need to choose A
cleverly, on the base of the specific data set, otherwise we may loose precision: for
example, if D = {(u, 0) | u ∈ R}, then γB(αB(D)) = D but AγBαB(A−1D) = R2.

It is worth noting that, if we prefer not to deal with irrational numbers, we
may choose the transformation matrix

A′ =
√

2 A =
[

1 1
−1 1

]
This corresponds to a 45 degree clockwise rotation followed by a scaling by

√
2

in all directions.

Deriving Numerical Abstract Domains via Principal Component Analysis 139

In order to define the abstract domains of parallelotopes, we use the same com-
plete lattice Box we used for the box domain, but equipped with a different
abstraction function, and different abstract operations.

Definition 1 (The Parallelotope Domains). Given A ∈ GL(n), we define
the maps γA : Box → ℘(Rn) and αA : ℘(Rn) → Box as

γA(〈m, M〉) def= AγB(〈m, M 〉) ,

αA(C) def= αB(A−1C) .

Using the above definition, it is easy to check that (αA, γA) is a Galois insertion.
Intuitively, the abstraction αA first projects the points into the new coordinate
system, then computes the standard box abstraction. The concretization map
γA performs the opposite process. Remark that, as a particular case, we have
αIn = αB and γIn = γB.

4 Abstract Operations on Parallelotopes

In this section we illustrate the main abstract operations on the Parallelotope
domains. We show that, in most cases, the abstract operators can be easily re-
covered by the corresponding operators on boxes. In all the operations, we ignore
the computational cost of computing the inverse of the matrix A. If A is orthog-
onal, the cost may be considered constant since A−1 = AT and we do not need
to compute the transpose: it is enough to consider specific algorithms which per-
forms transposition “on the fly” when needed. If A is not orthogonal, the inverse
may be computed with standard algorithms which have complexities between
quadratic and cubic. However, A−1 needs to be computed only once for the en-
tire execution of the abstract interpretation procedure, hence its computational
cost is much less relevant then the cost of the abstract operations.

4.1 Union and Intersection

Given B1, B2 ∈ Box, the best correct approximation of the concrete union is:

B1 ∪A B2
def= αA(γA(B1) ∪ γA(B2)) .

By replacing αA and γA with their definitions, A and A−1 cancel out and we
have that ∪A is the same as ∪B. The same holds for intersection.

Proposition 1 (Union and intersection). Given B1, B2 ∈ Box, we have that:

B1 ∪A B2 = B1 ∪B B2 B1 ∩A B2 = B1 ∩B B2

The computational complexity of both operations is O(n).

140 G. Amato, M. Parton, and F. Scozzari

4.2 Assignment

The abstract operation assignA(i, a, b) corresponds to the (linear) assignment
“xi = a·x+b”, where x is a vector of n variables, i ∈ {1, . . . n}, a ∈ Rn and b ∈ R.
We look for a constructive characterization of the best correct approximation,
defined as:

assignA(i, a, b) def= αA assign(i, a, b) γA .

Let us note that the concrete operation may be rewritten using matrix algebra
as assign(i, a, b)(x) = Zi,ax + bei where

Zi,a = I + ei · a′ with a′
j =

{
aj if j �= i,
ai − 1 if j = i.

This allows us to prove the following:

Theorem 1 (Assignment). Given 〈m, M〉 ∈ Box, we have that

assignA(i, a, b)(〈m, M〉) = 〈m′ + A−1bei, M ′ + A−1bei〉
where

m′ = inf
x∈〈m,M〉

(HT ei) · x M ′ = sup
x∈〈m,M〉

(HT ei) · x ,

and H = A−1Zi,aA. The complexity is O(n2).

Proof (Sketch). We may rewrite the abstract operator as:

αA(assign(i, a, b)(γA(〈m, M〉)))
= αB(A−1assign(i, a, b)(AγB(〈m, M〉))
= αB(A−1Zi,aA 〈m, M〉+ A−1bei) .

Let H = A−1Zi,aA and H 〈m, M〉 = 〈m′, M ′〉. For each i ∈ {1, . . . , n}, m′
i =

infx∈〈m,M〉(Hx) ·ei = infx∈〈m,M〉(HT ei) ·x. Since HT ei is the transpose of the
i-th row of H , we may compute infx∈〈m,M〉(HT ei) ·x using interval arithmetic.

4.3 Test

We want to find a constructive characterization of the best correct approximation
testA(a, b,≤) defined as:

testA(a, b,≤) def= αA test(a, b,≤) γA .

Given 〈m, M〉 ∈ Box, we have that

αA(test(a, b,≤)(γA(〈m, M〉)))
= αB(A−1test(a, b,≤)(A γB(〈m, M〉)))
= αB(A−1((A γB(〈m, M〉)) ∩ {x ∈ Rn | a · x ≤ b}))
= αB(γB(〈m, M〉) ∩ {A−1x ∈ Rn | a · x ≤ b})
= αB(γB(〈m, M〉) ∩ {x ∈ Rn | (AT a) · x ≤ b})
= αB(test(a, b,≤)(γB(〈m, M〉))) .

Deriving Numerical Abstract Domains via Principal Component Analysis 141

Hence, the abstract operator testA(a, b,≤) can be easily computed by using the
standard abstract operator on boxes, as testA(a, b,≤) = testB(AT a, b,≤).

Proposition 2 (Test). We have that

testA(a, b,≤) = testB(AT a, b,≤) .

The computational complexity is O(n2).

The complexity of the algorithm to compute testB(a, b,≤) is O(n). Thus, the
complexity of computing testA(a, b,≤) is O(n2), since we need to add the com-
plexity for computing AT a. However, the latter might be computed only once
in the analysis, and then memorized, in order to be reused every time we find
such a conditional.

It is easy to see that, in the general case, the abstract counterpart of the
operation test(a, b, ��) corresponding to the then-branch of the if-statement “if
(a · x �� b)”, where a ∈ Rn, b ∈ R and ��∈ {<, >,≤,≥, =, �=}, can be easily
recovered by the corresponding operator on boxes. The same holds for the else-
branch of the if-statement. For instance, the else-branch of “if (a · x ≤ b)” is
exactly the then-branch of “if (a · x > b)”.

4.4 On the Implementation of Abstract Operators

Correctness of the abstract operators in actual implementations strictly depends
on the exactness of matrix operations. The easiest way to ensure correctness
is to use rational arithmetic. Alternatively, we could estimate the error of the
floating point implementations of these operations, and use rounding to correctly
approximate the abstract operators on real numbers, following the approach in
[20].

Note that, although we have presented our domain as an abstraction of ℘(Rn),
we may apply the same construction to build an abstraction of ℘(Zn), in order
to analyze programs with integer variables. In this case, whenever A is an integer
matrix, we may perform almost all the computations on integers. In fact, observe
that A−1 is an integer matrix divided by an integer number d ∈ Z. Since all the
operations involved in assignA are linear, d may be factored out and only applied
at the end, before rounding the intervals to integer bounds.

5 Principal Component Analysis

Principal component analysis (PCA) is a standard technique in statistical analy-
sis which transforms a number of possibly correlated variables into uncorrelated
variables called principal components, ordered by the most to the least impor-
tant. Consider an n × m data matrix D on the field of real numbers. Each
row may be though of as a different instance of a statistical population, while
columns are attributes (see, for instance, the 11 × 2 matrix in Figure 2). Con-
sider a vector v ∈ Rm, which expresses a linear combination of the attributes of

142 G. Amato, M. Parton, and F. Scozzari

the population. The projection of the n rows of the matrix D onto the vector
v is given by Dv. Among the different choices of v, we are interested in the
ones which maximize the (sample) variance of Dv. We recall that the variance
of a vector u ∈ Rm is σ2

u = 1
m

∑m
i=1(ui − ū)2 where ū is the (empirical) mean

of u, i.e. ū = 1
m

∑m
i=1 ui. Any unit vector which maximizes the variance may

be chosen as the first principal component. This represents the axis which best
explains the variability of data. The search for the second principal component
is similar, looking for vectors v′ which are orthonormal to the first principal
component and maximize the variance of Dv′. In turn, the third principal com-
ponent should be orthonormal to the first twos, with maximal variance, and
so on.

From a mathematical point of view, principal component analysis finds an
orthogonal matrix that transforms the data to a new coordinate system. The
columns (called principal components) are ordered according to the variability
of the data that they are able to express. It turns out that the columns are
the eigenvectors of the covariance matrix of D, i.e. an n× n symmetric matrix
Q such that qij is the (sample) covariance of di∗ and dj∗. We recall that the
covariance of two vectors v, w ∈ Rm is σvw = 1

m

∑m
i=1(vi − v̄)(wi − w̄). The

columns are ordered according to the corresponding eigenvalues. However, prin-
cipal components are generally computed using singular value decomposition for
a greater accuracy.

Example 2. Consider the partial execution trace in Figure 2 as data matrix D.
If we perform the PCA on D, we get the principal components (1√

2
,− 1√

2
) and

(1√
2
, 1√

2
), corresponding to the change of basis matrix

A =

[
1√
2

1√
2

− 1√
2

1√
2

]

given in Example 1.

5.1 Orthogonal Simple Component Analysis

It is worth noting that small changes in the data cause small changes in the
principal components which, however, may cause a big loss in precision. This
depends on the interactions between the PCA and the parallelotope abstraction
function: If D is an unbounded set of points (in Rn), the bounds (in R̄) of the
minimum enclosing box of D are not continuous w.r.t. the change of basis matrix.

Example 3. We consider the 10× 2 matrix obtained removing the last line from
the table in Figure 2. If we perform the PCA, we get the change of basis matrix

S =
[

s1 s2

−s2 s1

]
=

⎡⎣ √
1
2 + 1

2
√

257

√
1
2 −

1
2
√

257

−
√

1
2 −

1
2
√

257

√
1
2 + 1

2
√

257

⎤⎦

Deriving Numerical Abstract Domains via Principal Component Analysis 143

��

��

���
���

���
���

��

		

Fig. 6. Bad precision with PCA

corresponding to a clockwise rotation of about 43 degrees. The principal com-
ponents are not very different from the previous ones, but now we are not able
to represent parallelotopes bounded by constraints on x + y and x − y. There-
fore, the invariant x + y = 0, x − y ≥ 0 cannot be represented directly. Since
the difference between the first principal component and the axis x + y = 0 is
unbounded, it is abstracted into −∞ ≤ s2x + s1y ≤ 0 and 0 ≤ s1x− s2y ≤ +∞,
which is the shaded area in Figure 6. This cause a serious loss of accuracy.

In order to overcome the difficulties outlined above, we need a way of “stabi-
lizing” the result of the PCA, so that it is less sensible to small changes in the
data. There are two possible approaches to this problem: we may remove outliers
(i.e., points which are very “different” from the others) by the execution trace
before computing the PCA, or refine the result of the PCA. In this paper, we
follow the second approach, since we prefer to maintain the whole set of original
data. Our idea is that, in many cases, we expect that optimal parallelotopes
which abstracts program states should contain only linear constraints with inte-
ger coefficients. This is obvious for programs with integer variables only (such as
Example 1), or when we are interested in properties described by integer values
(such as bounds of arrays, division by 0, etc. . .). Therefore, we would like to
minimally change the result of the PCA (the matrix A) in such a way that A−1

is an integer matrix. Of course, the new matrix is not going to be the matrix
with principal components anymore, but in this way we compensate for possible
deviations of the principal components with respect to the “optimal” vectors.

There are several procedures in the statistic literature for simplifying the
result of the PCA, in order to obtain integer matrices. In this paper we follow
the approach of the orthogonal simple component analysis, introduced in [1]. The
authors define a simplification procedure which transforms the result A of the
PCA in an integer matrix B such that the columns of B are orthogonal and the
angle between any column of A and the corresponding column of B is less then a
specified threshold θ. Note that, in the general case, matrix B is not orthogonal
because the columns of B are orthogonal but not orthonormal (i.e., their length
is not one). This is not a problem since our domains of parallelotopes do not
require matrices to be orthogonal. Note that, although B−1 may contain non-
integer elements, each row is exactly an integer vector multiplied by a rational.
Hence, it expresses integer constraints.

144 G. Amato, M. Parton, and F. Scozzari

6 Implementation

In order to investigate on the feasibility of the ideas introduced above, we have
developed a prototypical implementation for the intra-procedural analyses of a
simple imperative language. The analyses may be performed with either the
standard domain of boxes, the domains of parallelotopes, or with their com-
bination. In order to collect the partial execution traces, the program under
analysis is automatically augmented for recording the values of the variables at
every program point. The implementation automatically recovers partial execu-
tion traces starting from the input values (which may be randomly generated
or provided by the user), computes the orthogonal simple components, and per-
forms static analysis with the three domains. Program equations are solved with
a recursive chaotic iteration strategy on the weak topological ordering induced
by the program structure (see [4]). The analyzer uses the standard widening
[9] which extrapolates unstable bounds to infinity and the standard narrowing
which improves infinite bounds only.

The prototype has been written in R [23], a language and environment for
statistical computing. R is a functional language with call-by-value semantics,
powerful meta-programming features, vectors as primitive data types and a huge
library of built-in statistical functions. The benefits we got using R for devel-
oping our application were many. For example, thanks to the powerful meta-
programming features, it was easy to augment programs with instructions which
record the partial execution traces, and there was no need to implement a parser
for the static analyzer. Actually, code can be manipulated programmatically in
R, as in Lisp. Moreover, the vast library of statistical functions allowed us to
implement easily the PCA (just a function call was sufficient) and the simplifi-
cation procedure for obtaining the orthogonal simple components. Correctness
of abstract operators was ensured using rational arithmetic.

The main drawback of R, at least for our application, is speed. Since it only
supports call-by-value semantics, manipulating complex data structures may re-
quire several internal copy operations. For a prototype, this was deemed less
important then fast coding. However, this means that we cannot compare the
effective speed of the Parallelotope domains with the speed of octagons or polyhe-
dra, because all the standard implementations of the latter domains, in libraries
such as APRON [18] or PPL [2], are in C or C++.

6.1 Optimizing the Parallelotope Domains

Using the Parallelotope domains, we have occasionally experimented some prob-
lems in the bootstrap phase of the analysis. Consider the sample program start1
in Figure 7. If we perform the analyses with the standard box domain, we may
easily infer that, at the end of the function, both the variables x and y assume
the value 10. However, using the Parallelotope domain with the axes clockwise
rotated by 45 degrees, the analysis starts with the abstract state which covers the
entire R2. The assignment x = 10 has no effect: since there are no bounds on the
possible values for y, then nothing may be said about x+ y and x− y, even if we

Deriving Numerical Abstract Domains via Principal Component Analysis 145

start1 = function()

{

x=10

y=x

}

start2 = function(x)

{

y=10

x=y

}

cousot78 = function()

{

i=2

j=0

while (TRUE) {

if (i*i==4)

i=i+4

else {

j=j+1

i=i+2

} } }

Fig. 7. Example programs

know the value of x. Therefore, after the second assignment, we only know that
x− y = 0, loosing precision with respect to the standard box analysis, although
x = y = 10 may be expressed in the rotated domain as x + y = 20, x− y = 0.

The problem arises from the fact that assignments are naturally biased to-
wards the standard axes, since the left hand side is always a variable. At the
beginning of the analysis, when the abstract state does not contain any con-
straint, all constant assignments are lost, and this is generally unfavorable to
the precision of the analysis. For this reason, our analyzer initializes all the local
variables to zero, as done in many programming languages. Unfortunately, this
does not always solve the problem, due to the presence of input parameters.
Consider the program start2 in Figure 7. In this case, we assume that y = 0 at
the beginning of the function, but we cannot assume that x = 0, since this is a
parameter. However, our parallelotope (the 45 degree clockwise rotated boxes)
cannot express the fact that y = 0. Hence the abstract state at the beginning
of the function is the full space R2, and the result at the end of the function
is again x − y = 0. From the point of view of precision, an optimal solution to
this kind of problems would be to use the reduced product of the box domain
and Parallelotope domains. However, this may severely degrade performance. A
good trade-off could be to perform both analysis in parallel: at the end of each
abstract operations, we use the information which comes from one of the two
domains to refine the other, and vice versa. Given a box and a parallelotope, a
satisfactory and computationally affordable solution is to compute the smallest
parallelotope which contains the box, and then the intersection between the two
parallelotopes. The symmetric process can be used to refine the box. We have
adopted this solution in our analyzer (see [11,12] for a similar approach).

6.2 Experimental Evaluation

We applied the analyzer to different toy programs we collected from the lit-
erature. Although an exhaustive comparison of the speed and precision of the
domains of parallelotopes with other domains is outside the scope of this paper,
we present here some preliminary results. We considered the following programs:
bsearch: binary search over 100-element arrays, as appeared in [7]; xyline: the

146 G. Amato, M. Parton, and F. Scozzari

program Box Parallelotope combined Octagon

bsearch

1 ≤ lwb ≤ 100
1 ≤ upb ≤ 100
0 ≤ m ≤ 100

(−99 ≤ upb − lwb)
(−100 ≤ m − lwb)

0 ≤ upb − lwb as box+ptope
as box+ptope+
−99 ≤ m − lwb

bsearch* as above
0 ≤ upb − lwb

−101 ≤ −upb − lwb + 2m ≤ 50.5
(−50.5 ≤ m − lwb ≤ 74.75)

as box+ptope as above

xyline
−x + y ≤ 0
x + y = 0

as ptope as ptope

bsort
1 ≤ b ≤ +∞
0 ≤ j ≤ +∞
0 ≤ t ≤ +∞

as box

1 ≤ b ≤ 100
0 ≤ j ≤ 100
0 ≤ t ≤ 99
b + j ≤ 199
b + t ≤ 198
0 ≤ j − t
0 ≤ b − t

bsort* as above 1 ≤ b

1 ≤ b ≤ 100
0 ≤ j ≤ 100,
0 ≤ t ≤ 99
0 ≤ j − t

as above

cousot78
2 ≤ i
0 ≤ j

2 ≤ i + j
−i + j ≤ −2

as box+ptope as box+ptope

cousot78† as above −∞ ≤ −i + 2j ≤ −2 as box+ptope as box+ptope

Fig. 8. Results of the analyses for several programs and domains. Constraints in paren-

theses are not part of the result of the analyses, but may be inferred from them.

example program in Figure 1; bsort: bubblesort over 100-element arrays, which
is the first example program in [9]; cousot78: the program in Figure 7, which is
an instance of a skeletal program in [9].

All programs have at least one loop. For each program, we show the abstract
state inferred by the analyzer at the beginning of the loop. Since bsort has
two nested loops, we only show the abstract state for the outer one. In order to
compare our results to the Octagon domain [21], we have used the Interproc ana-
lyzer [17,18], enabling the option for guided analysis (see [13]). This has required
converting the sample programs from the R syntax to the syntax supported by
Interproc. For the parallelotope and combined domains, we have used a change
of basis matrix determined by orthogonal simple component analysis with an
accuracy threshold of cos π

4 . The only exception is cousot78†, where we have
used an accuracy of 0.98. For bsort and bsearch we have shown two different
results: the first one is for a standard analyses, while in the second one we have
instructed the tracer and analyzer not to consider the variables k and tmp re-
spectively. The variable k is the key for the binary search, while tmp is just a
temporary variable used to swap two elements of an array. Both are either com-
pared with array elements or assigned to/from array elements, but our analyzer
does not deal with arrays at all, nor does Interproc. Removing these variables by
the analysis helps the PCA procedure. This suggests a possible improvement, not
implemented yet, which is to automatically remove from the partial execution
traces those variables which are assigned to/from array elements, or compared
with them.

Deriving Numerical Abstract Domains via Principal Component Analysis 147

The results show that, in most cases, the domains of parallelotopes gives in-
teresting properties, which cannot be inferred by the corresponding results of the
box domain. In the bsort∗ case, the domain of parallelotopes does not yield any-
thing interesting, but its combination with standard boxes does: the combined
domains is able to prove (like Octagon) that all accesses to arrays are correct. In
most of the cases, Octagon was able to obtain more precise abstract states than
ours, but the theoretical complexity of its operations is greater. However, in the
bsearch* case we were able to obtain a property which cannot be represented
in Octagon, and cannot be inferred by the corresponding results. A practical
comparison of speed is not possible at the moment, since our implementation in
R is definitively slower than the APRON [18] library used in Interproc.

7 Related Work

The idea of parametrizing analyses for a single program, or a class of programs,
has been pursued in a few papers. The analysis for digital filters proposed in
[11] is an example of domains developed for a specific class of applications. The
same holds for the domain of arithmetic-geometric progressions [12], used to
determine restrictions on the value of variables, as a function of the program
execution time.

In our paper, we extend this idea and propose parametric domains which
may be specialized for a single program. The same approach can be found in the
domain of symbolic intervals [24], which depend on a total ordering of variables
in the program, and most importantly, in the domain of template polyhedra
[25], that is, domains of fixed form polyhedra. For each program, the authors fix
a matrix A and consider all the polyhedra of type Ax ≤ b. The choice of the
matrix is what differentiates template polyhedra from other domains, where the
matrix is fixed for all programs (such as intervals or Octagon) or varies freely
(such as polyhedra.)

However, in all these papers, the choice of the parameters is performed using
a syntactic inspection of the program. To the best of our knowledge, the present
work is the first attempt of inferring parameters on the base of partial execution
traces. Moreover, we try to be as conservative as possible, and reuse the operators
of the original abstract domains, instead of devising completely new operators.

There are also parametrization strategies applicable to almost all numeric
domains. For example, the accuracy of widening operators can be enhanced
through the adoption of intermediate thresholds [3], from a simple syntactic
analysis of the program (e.g., maximum size of arrays, constants declared in
the program). Moreover, the complexity of relational analyses can be reduced
by using packing, which partitions the set of all program variables into groups,
performs relational analyses within the partitions and non-relational analyses
between the partitions [3]. These strategies are orthogonal to our approach, and
can be applied to our domains as well.

148 G. Amato, M. Parton, and F. Scozzari

A different approach which exploits execution traces can be found in [16]. The
authors collect (probabilistic) execution traces, in order to directly derive linear
relationships between program variables, which hold with a given probability.
On the contrary, in our approach we use the information gathered from partial
execution traces as an input for a subsequent static analysis.

8 Conclusions and Future Work

We have presented a new technique for shaping numerical abstract domains
to single programs, by applying a “best” linear transformation to the space of
variable values. One of the main advantages of this technique is the ability to
transform non-relational analysis into relational ones, by choosing the abstract
domain which best fits for a single program. Moreover, this idea may be imme-
diately applied to any numerical abstract domain which is not closed by linear
transformations, such as octagons [21], bounded differences [19], simple congru-
ences [14]. It suffices to give specialized algorithms for the assignment operation.

We have realized a prototypical analyzer and, as an application, we have fully
developed our technique for the interval domain. The experimental evaluation
seems promising, but also shows that there is still space for many improvements.
We may choose specific program points where values are collected, such as a loop
entry point, in order to better focus the statistical analysis and we may use tech-
niques of code coverage, as in software testing, to improve the quality of execution
traces. Moreover, we may partition the set of values we apply PCA to. One idea
could be to partition the set of program variables into groups (variables used for
array indexes, variables for temporary storage, etc...) which are expected not to
be correlated, and perform PCA separately on each group (an idea similar to
packing [3]). In addition, we may partition the program code itself (for example
around loops), perform a different PCA on each partition, and change the ab-
stract domain appropriately when crossing partitions. In the extreme, we could
choose different parameters for each program point, like Sankaranarayanan et
al. [25] do for template polyhedra.

The use of linear transformations also suggests to combine PCA with differ-
ent approaches. We may infer the axes in the new coordinate system from both
the semantics and the syntax of the program. The analysis could vastly bene-
fit from the ability to express constraints occurring in the linear expressions of
the program, especially in loop guards and array accesses. However, the syntac-
tic approach alone is not recommended, since not all the interesting invariants
appear as expressions in the source code. For example, the cousot78 program
does not contain the expressions i+j, j-i or 2*j-i: nonetheless, the analysis
was able to prove invariants on these constraints (see Figure 8). To overcome
this limitation, we may use the probabilistic invariants found by the analysis in
[16] instead of using the syntax of the program.

Finally, writing the implementation in R has been useful for rapid prototyping,
but porting the code to a faster programming language, possibly within the
framework of well known libraries such as APRON [18] or PPL [2], would make it
available to a wider community, while improving performance.

Deriving Numerical Abstract Domains via Principal Component Analysis 149

References

1. Anaya-Izquierdo, K., Critchley, F., Vines, K.: Orthogonal simple compo-

nent analysis. In: Technical Report 08/11, The Open University (2008),

http://statistics.open.ac.uk/TechnicalReports/spca_final.pdf (last ac-

cessed 2010/03/26)

2. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: Toward a

complete set of numerical abstractions for the analysis and verification of hardware

and software systems. Science of Computer Programming 72(1-2), 3–21 (2008)

3. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,

D., Rival, X.: A static analyzer for large safety-critical software. In: Proceedings

of the ACM SIGPLAN 2003 Conference on Programming Language Design and

Implementation (PLDI 2003), San Diego, California, USA, June 7-14, pp. 196–207.

ACM Press, New York (2003)

4. Bourdoncle, F.: Efficient chaotic iteration strategies with widenings. In: Pottosin,

I.V., Bjørner, D., Broy, M. (eds.) FMP&TA 1993. LNCS, vol. 735, pp. 128–141.

Springer, Heidelberg (1993)

5. Chang, B.-Y.E., Rival, X.: Relational inductive shape analysis. In: Principles Of

Programming Languages, POPL 2008 SIGPLAN Not., vol. 43(1), pp. 247–260.

ACM, New York (2008)

6. Colóon, M.A., Sipma, H.B.: Synthesis of linear ranking functions. In: Margaria,

T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 67–81. Springer, Heidelberg

(2001)

7. Cousot, P., Cousot, R.: Static determination of dynamic properties of programs.

In: Proceedings of the Second International Symposium on Programming, Paris,

France, pp. 106–130. Dunod (1976)

8. Cousot, P., Cousot, R.: Abstract interpretation and applications to logic programs.

The Journal of Logic Programming 13(2-3), 103–179 (1992)

9. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables

of a program. In: POPL 1978: Proceedings of the 5th ACM SIGACT-SIGPLAN

Symposium on Principles of Programming Languages, pp. 84–97. ACM Press, New

York (January 1978)

10. Dor, N., Rodeh, M., Sagiv, M.: Cleanness checking of string manipulations in C

programs via integer analysis. In: Cousot, P. (ed.) SAS 2001. LNCS, vol. 2126, pp.

194–212. Springer, Heidelberg (2001)

11. Feret, J.: Static analysis of digital filters. In: Schmidt [26], pp. 33–48

12. Feret, J.: The arithmetic-geometric progression abstract domain. In: Cousot, R.

(ed.) VMCAI 2005. LNCS, vol. 3385, pp. 42–58. Springer, Heidelberg (2005)

13. Gopan, D., Reps, T.: Guided static analysis. In: Nielson and Filé [22], pp. 349–365

14. Granger, P.: Static analysis of arithmetical congruences. International Journal of

Computer Mathematics 32 (1989)

15. Gulavani, B.S., Gulwani, S.: A numerical abstract domain based on expression
abstraction and max operator with application in timing analysis. In: Gupta, A.,

Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 370–384. Springer, Heidelberg

(2008)

16. Gulwani, S., Necula, G.C.: Precise interprocedural analysis using random interpre-

tation. In: Principles Of Programming Languages, POPL 2005. SIGPLAN Not.,

vol. 40(1), pp. 324–337. ACM, New York (2005)

http://statistics.open.ac.uk/TechnicalReports/spca_final.pdf

150 G. Amato, M. Parton, and F. Scozzari

17. Jeannet, B.: Interproc Analyzer for Recursive Programs with Numerical

Variables. INRIA. Software and documentation are available at the fol-

lowing, http://pop-art.inrialpes.fr/interproc/interprocweb.cgi (last ac-

cessed: 2010-06-11)

18. Jeannet, B., Miné, A.: APRON: A library of numerical abstract domains for static

analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–

667. Springer, Heidelberg (2009)

19. Miné, A.: A new numerical abstract domain based on difference-bound matrices. In:

Danvy, O., Filinski, A. (eds.) PADO 2001. LNCS, vol. 2053, pp. 155–172. Springer,

Heidelberg (2001)

20. Minè, A.: Relational abstract domains for the detection of floating-point run-time

errors. In: Schmidt [26], pp. 3–17

21. Miné, A.: The octagon abstract domain. Higher-Order and Symbolic Computa-

tion 19(1), 31–100 (2006)

22. Nielson, H.R., Filé, G. (eds.): SAS 2007. LNCS, vol. 4634, pp. 249–264. Springer,

Heidelberg (2007)

23. R Development Core Team. R: A Language and Environment for Statistical Com-

puting. R Foundation for Statistical Computing, Vienna, Austria (2009)

24. Sankaranarayanan, S., Ivančić, F., Gupta, A.: Program analysis using symbolic

ranges. In: Nielson and Filé [22], pp. 366–383

25. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Scalable analysis of linear sys-

tems using mathematical programming. In: Cousot, R. (ed.) VMCAI 2005. LNCS,

vol. 3385, pp. 25–41. Springer, Heidelberg (2005)

26. Schmidt, D. (ed.): Programming Languages and Systems. ESOP 2004. LNCS,

vol. 2986. Springer, Heidelberg (2004)

http://pop-art.inrialpes.fr/interproc/interprocweb.cgi

Concurrent Separation Logic

for Pipelined Parallelization

Christian J. Bell, Andrew W. Appel, and David Walker

Princeton University, Computer Science Department,

35 Olden Drive, 08540-5233 Princeton, New Jersey

{cbell,dpw,appel}@cs.princeton.edu
http://www.cs.princeton.edu/

Abstract. Recent innovations in automatic parallelizing compilers are

showing impressive speedups on multicore processors using shared mem-

ory with asynchronous channels. We have formulated an operational se-

mantics and proved sound a concurrent separation logic to reason about

multithreaded programs that communicate asynchronously through chan-

nels and share memory. Our logic supports shared channel endpoints

(multiple producers and consumers) and introduces histories to over-

come limitations with local reasoning. We demonstrate how to transform

a sequential proof into a parallelized proof that targets the output of the

parallelizing optimization DSWP (Decoupled Software Pipelining).

1 Introduction

We have created an operational semantics and a concurrent separation logic
(CSL) to reason about the correctness of programs that share memory and use
buffered channels to synchronize processes. These channels can be used directly
by the programmer or automatically by a parallelizing compiler and are not re-
stricted to point-to-point communication; multiple producers and multiple con-
sumers may asynchronously access a channel. We have proved our CSL sound
with respect to the operational semantics. Furthermore, we demonstrate how
certain proofs of correctness for a sequential program can be used to generate
a related proof (that maintains the original specification) for the parallelized
output of an optimization.

CSL [10] is an extension of separation logic (SL), which is an extension of
Hoare logic. SL facilitates local reasoning about resources used by a program, so
that when analyzing a region of code, we may assume that actions made by the
rest of the program cannot interfere. This is encapsulated in the “frame rule”
of SL. Similarly, CSL facilitates local reasoning about resources in a concurrent
program so that we can analyze just one process while assuming that other
processes cannot interfere. CSL has already been used to reason about programs
that use critical sections and locks [10][7].

Our logic can be used in proofs about compilers. Leroy and others proved
correct compilers for sequential programs; Hobor et al. outlined how such proofs
can be extended to concurrent programs [9][7]. We have designed our logic to

R. Cousot and M. Martel (Eds.): SAS 2010, LNCS 6337, pp. 151–166, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.cs.princeton.edu/

152 C.J. Bell, A.W. Appel, and D. Walker

be capable of extending these certified compilers to handle programs that use
channels. Proofs in our logic can also be used in proof-carrying code frameworks.

1.1 Parallelizing Transformations

A parallelizing compiler attempts to optimize a program by automatically par-
titioning sequential code into multiple threads. A classic example of this is
the DOALL optimization, which parallelizes while-loops that have no loop-
carried dependencies by distributing the iterations among multiple threads.
While DOALL has had some success, particularly in scientific and numerical
computing, it is common for programs to have loop-carried dependencies, thus
many programs cannot benefit from DOALL.

Core 2

A
B

A
B

Core 1

A
B

A
B

(a) DOACROSS

Core 2

A
A
A
A

Core B

1
1
1
1

(b) DSWP

Fig. 1. Trace of DOACROSS vs.

DSWP. Arrows depict data flow,

control/data dependencies, and

communication latency.

Another optimization is DOACROSS,
which can handle loop-carried dependen-
cies. This optimization partitions iterations
among several threads, but also transmits
dependencies between the threads with the
hope that there is a significant task within
the loop that can overlap with other iter-
ations regardless of the dependency. Figure
1a shows an example trace of a loop where
each iteration is composed of tasks A and B;
A and B both depend on A, but A and B
do not depend on B. Because the dependen-
cies are transmitted bidirectionally between
threads, any latency in communication or an
iteration stalling will cause the entire compu-
tation to stall. Therefore, DOACROSS often
does not yield significant performance gains.

Pipelined parallelism identifies code that
can be partitioned into tasks that have acyclic dependencies. Tasks that produce
dependencies can run ahead of tasks that consume them, and tasks with no
dependencies between them run in parallel. Such parallelism is often leveraged
at the instruction level in hardware.

Decoupled Software Pipelining (DSWP) is a compiler optimization that lever-
ages pipelined parallelism [15][13], illustrated in Figure 1b. The dependencies are
communicated between threads using asynchronous channels, which can be im-
plemented as a shared queue in memory or in hardware [12]. Unlike DOACROSS,
communication latencies and stalls will only affect consuming threads, allowing
the producing threads to work ahead. DSWP is capable of a significant per-
formance increase: in the SPEC CINT2000 benchmark suite, DSWP yielded a
geometric mean speedup of 5.54 with a geometric mean of 17 threads [2].

In Section 2 we will show how to parallelize a wide class of programs. In
Section 4 we will show how to transform SL proofs of sequential programs into
CSL proofs of DSWP-parallelized programs.

Concurrent Separation Logic for Pipelined Parallelization 153

while c(p) (

b(p);
p:= a(p)

)

Fig. 3. Running example

while p �= nil (

t:= [p.val];
[p.val]:= t + 1;

p:= [p.next]
)

Fig. 4. Instance of running

example⎛⎜⎜⎜⎜⎝
produce d p;

while c(p) (

p:= a(p);

produce d p

)

consume d p’;

while c(p’) (

b(p’);
consume d p’

)

⎞⎟⎟⎟⎟⎠
Fig. 5. Parallelized while-program

2 Parallelizing a Program

a(p) b(p)
p

(a)

(b)

Fig. 2

To illustrate our operational semantics and CSL, we con-
sider the class of programs in Figure 3, where a(p) and b(p)
represent blocks of instructions that use at least variable p.
We assume operation a(p) does not depend on b(p), b(p) de-
pends only on a(p) exactly through variable p, and b(p) may
or may not depend on itself through variables other than
p; illustrated in Figure 2a. Figure 4 is an example of such
a program. The dependencies in Figure 2a also generalize
over more complicated dependencies such as in Figure 2b.
In practice, tasks a(p) and b(p) are significant computations.

This program is not a candidate for DOALL optimization
because of the loop-carried dependencies from a(p) to a(p) and possibly from
b(p) to b(p). However, because the dependency between a(p) and b(p) is in one
direction, we can apply DSWP to generating the program in Figure 5.

This parallelized program, where we have two processes communicating using
instructions produce and consume, computes the same values as Figure 3. To
send the value of expression e through channel d (pushing the value onto the
back of the channel’s queue), we write produce d e. To receive a value (from the
front of the channel’s queue) into variable x, we write consume d x.

3 CSL with Asynchronous Channels

Our logic is an extension of SL with channel endpoints and the heap as resources.
We treat channels as a way to transmit both values and resources. While a low-
level view of a program may simply see integers being sent through a channel,
in our logic those integers may have further meaning. For example, they can be
channel identifiers or pointers. When transmitting a pointer, we can bundle the

154 C.J. Bell, A.W. Appel, and D. Walker

knowledge that it is a pointer (with permission to dereference it) as a resource,
and send the resource along with the pointer value.

To control how the channels are used, we assign resource invariants to each
channel to act as a protocol, to which producing and consuming processes must
adhere. A resource invariant is a predicate that must always hold on the state of
the channel. Resource invariants were introduced to CSL by O’Hearn and have
been used to control how critical sections and locks are used [10][7]. Producers
use the resource invariant to determine which resources they must give up when
sending a value. Consumers use the resource invariant to determine which re-
sources they gain by receiving a value. For example, a resource invariant could
state that each value in the channel points to an integer: producers must show
that each value sent is such a pointer and give up the resource to dereference it,
and consumers use the resource invariant to show that each received value is a
valid pointer that can be dereferenced.

3.1 Channel Endpoint Histories

A main property of CSL is that we reason about the correctness of a process in-
dependently of all other processes. When a process sends a value to another pro-
cess through a channel, neither knows what the other has or will do to the value
beyond what the resource invariant states. This is enough for memory safety;
access to a shared pointer can be transferred between processes to prevent race
conditions. However, resource invariants cannot show that values transmitted by
a producing process are correctly summed by a consuming process. We also can-
not use them to ensure that every pointer sent through a channel is eventually
deallocated. Local reasoning in CSL prevents us from reasoning about these be-
haviors from the perspective of just one process. To overcome this limitation, we
delay such reasoning, by recording a history of the values transmitted through
each endpoint, until the processes synchronize.

Histories in Point-to-Point Communication. Consider two processes: a
producer and consumer. The producer sends 1 followed by 2, so its history is
[2, 1]. The consumer receives two values and stores them into variable x, then y.
Because the consumer cannot know what the producer sent, its history is simply
[y, x]. When the two processes join, we know that [2, 1] was sent and that [y, x]
was received, so [y, x] = [2, 1], or y = 2 and x = 1.

Histories with Multiple Producers and Consumers. We allow a channel
endpoint to be split among multiple producers or consumers. Each piece of an
endpoint records its own local history, and when all the pieces of an endpoint are
joined, the history is global. Recording histories through a piece of an endpoint
is trickier than recording the history in the full endpoint because the order in
which the processes send/receive from the channel is nondeterministic. For this
reason, we record sets of possible histories through each endpoint.

Concurrent Separation Logic for Pipelined Parallelization 155

A ::= dπH !

| dπH?

| A[p: d+= v]

| A[c: d+= v]

| PHist d H
| CHist d H
| e⇓v

Share π of the produce endpoint of channel d, with histories H
Share π of the consume endpoint of channel d, with histories H

A holds after appending v to d’s local produce histories

A holds after appending v to d’s local consume histories

The local produce histories of channel d are H
The local consume histories of channel d are H

The expression evaluates to value v
| e1 �→e2 | A1 ∗A2 | A1 −∗ A2 | A1 =⇒ A2 | e1 = e2 | emp | B

Fig. 6. Predicates

Consider the case of multiple processes producing through the same channel.
Each producer records the sequence of the values it sends, but not what other
producers send. When two of the processes join, we do not know the order of
one history with respect to the other. Thus the combined endpoint records all
possible orderings by interleaving the two histories; the actual order in which
the values were sent must be within this set. When a new value is subsequently
produced through the endpoint, it is appended to each history in the set.

When two sets of histories join, we compute the new set of histories by inter-
leaving every pair of histories from the two sets. We call this operation a merging
of the histories. Every history in a set of histories is a permutation of all other
histories in the set; merging preserves this behavior. For multiple consumers, we
record histories in the same way.

Example 1 (Multiple consumers). Assume we have one producing process and
two consuming processes, each with an initial set of histories equal to {nil} (none
have sent or received any values). The producer sends 1, 2, 3, then 4. Consumer
1 receives two values, w then x; consumer 2 receives one value, y; then they join
and one more value, z, is consumed. The resulting sets of histories are:

Producer Consumer 1 Consumer 2 After C1 & C2 join, then consume z
{[4, 3, 2, 1]} {[x, w]} {[y]} z::({[x, w]}� {[y]}) =

z::{[x, w, y], [x, y, w], [y, x, w]} =
{[z, x, w, y], [z, x, y, w], [z, y, x, w]}

The merged (�) consume histories cannot exactly reconstruct the order in which
the two consumers received values with respect to each other. They can show,
however, that z = 4 and z > x > w.

3.2 Predicate Logic

Figure 6 lists some predicates used in our logic. Metavariable A is a predicate
that ranges over formulae, e is an expression, H is a set of histories (each a list
of values), and d is a channel name. π is a fractional share of a resource that
ranges over [0, 1], where π > 0 grants permission for [shared] use of the resource

156 C.J. Bell, A.W. Appel, and D. Walker

and π = 0 does not. A value is either an integer or list of values. The predicates
in the last line are conventional: separating conjunction, separating implication,
implication, expression equality, no share of any resources, and a pure logical
formula. The logic has universal and existential quantification ranging over val-
ues. We use the forcing relation r; s |= A to state that predicate A holds under
environment s and exactly resources r (resources are defined in Section 5.1).
Predicate A1 entails A2 if ∀r, s. r; s |= A1 =⇒ r; s |= A2, written A1 � A2.

Predicates PHist/CHist hold for any resource if the produce/consume history
is exactly H . They are used as side conditions for some of the Hoare rules.

Channel endpoints interact with the separating conjunction as follows:

dπ1H1! ∗ dπ2H2! ⇐⇒ dπ1+π2(H1 � H2)!
dπ1H1? ∗ dπ2H2? ⇐⇒ dπ1+π2(H1 � H2)?

Example 2. Assume that Example 1 uses channel d and the two consumers have
permissions π1 and π2. Just before the consumers join, they have resources
dπ1{[x, w]}? and dπ2{[y]}? respectively. After joining, their resources are:

dπ1{[x, w]}? ∗ dπ2{[y]}? � dπ1+π2({[x, w]}� {[y]})?
� dπ1+π2{[x, w, y], [x, y, w], [y, x, w]}?

And after consuming into variable z, their resources are:

dπ1+π2(z::{[x, w, y], [x, y, w], [y, x, w]})?
� dπ1+π2{[z, x, w, y], [z, x, y, w], [z, y, x, w]}?

3.3 Resource Invariants

We use resource invariants to verify that values and resources are transmitted
through each channel according to protocol. The state of a channel is composed
of the resources r stored in the channel, the list of values lq queued in the
channel, and the list of previously consumed values lc (not a set of histories).
A resource invariant R holds on the state (r, lq, lc) of a channel only if r; . |=
R(lq, lc). Concatenating the queue lq and consume values lc of a channel together,
written lq@lc, yields the list of produced values for the channel. Channel resource
invariants must satisfy the predicate � R R-okay, specified as follows:

emp � R(nil, nil)
∀lq, lc. R(lq, lc) is closed and precise
∀lc. R(nil, lc) � emp

� R R-okay
Resource-Okay

The first premise states that the resource invariant must be satisfied and own
no resources for a channel that has not yet been used. The second ensures that
resources can be transferred between process environments and that the resource
invariant is sufficient to determine exactly what resources are transferred to and

Concurrent Separation Logic for Pipelined Parallelization 157

ι ::= ι1; ι2 | x:= e | x:= [e] | [x]:= e | while e ι | assert A

| [Γ1; A1] ι1 ‖ [Γ2; A2] ι2 | produce d e | consume d x | skip

Instruction sequencing, local variable assignment, fetch from heap, store into heap,

repeat ι until e is false, assert that predicate A holds, run two blocks of instructions in

parallel, produce a value, consume a value into a local variable, no-op.

Fig. 7. Instructions

from the channel. Finally, the third premise attaches resources only to values in
the queue and not the consume history to ensure that all resources can eventually
be extracted from the channel by consuming values.

Example 3. A resource invariant that specifies the first value produced/consumed
is 0 and that the values transmitted are strictly increasing:

R � λlq.λlc. match lq, lc with
| nil, nil ⇒ emp
| nil, v::nil ⇒ v = 0 ∧ emp
| nil, v1::v2::lc ⇒ v1 > v2 ∧R(nil, v2::lc)
| lq@v::nil, lc ⇒ R(lq, v::lc)

Example 4. A resource invariant for the parallelization of Figure 4 in Figure 5.
To pass permission to dereference p.val through the channel:

R � λlq.λlc. match lq, lc with
| nil, ⇒ emp
| v::l′q, ⇒ R(l′q, lc) ∗ v.val �→−

3.4 Instructions

In Figure 7, x is a program variable, ι is an instruction, A is a predicate, Γ is a set
of free variables, and d is the name of a channel. Instruction [Γ1; A1] ι1 ‖ [Γ2; A2] ι2
uses Γ and A to specify how variables and resources are split between processes
ι1 and ι2. We use assert to prove the partial correctness of programs.

3.5 Hoare Logic

A Hoare triple describes the precondition and postcondition of executing a com-
mand. If the precondition is met and the command terminates, then the postcon-
dition establishes the new state of the program. We give the Hoare triple rules
for our logic in Figure 8. FV (X) denotes the set of free variables in X , where
X ranges over instructions and predicates. The Hoare triple R̄; Γ �i {A} ι {B}
is composed of an instruction ι, precondition A, postcondition B, environment

158 C.J. Bell, A.W. Appel, and D. Walker

l �π H �
{

l ∈ H if π = 1

∃H ′. l ∈ H � H ′ if π �= 1

B � PHist d {nil} A � PHist d e::H
∀lq, lc. lq@lc �π H =⇒ B ∗ R̄[d](lq, lc) � R̄[d](e::lq , lc)

R̄; Γ �i {dπH ! ∗ (dπe::H ! −∗ B ∗ A)} produce d e {A} H-Produce

x ∈ Γ ∀v. B(v) � CHist d {nil} A � CHist d x::H
∀lq, v, lc. lc �π H =⇒

R̄[d](lq@v::nil, lc) � B(v) ∗ R̄[d](lq, v::lc)

R̄; Γ �i {dπH? ∗ (∀v. (dπH? ∗B(v))[c: d+= v] −∗ A[v/x])}
consume d x
{A}

H-Consume

R̄; Γ1 �i {A1} ι1 {B1} FV (A1) ⊆ Γ1 Γ1#Γ2

R̄; Γ2 �i {A2} ι2 {B2} FV (A2) ⊆ Γ2 Γ1 ∪ Γ2 ⊆ Γ

R̄; Γ �i {A1 ∗A2} [Γ1; A1] ι1 ‖ [Γ2; A2] ι2 {B1 ∗B2}
H-Parallel

x ∈ Γ

R̄; Γ �i {∃v. e �→v ∗ (e �→v −∗ A[v/x])} x:= [e] {A} H-Fetch

R̄; Γ �i {e1 �→− ∗ (e1 �→e2 −∗ A)} [e1]:= e2 {A}
H-Store

R̄; Γ �i {A} assert A {A} H-Assert
x ∈ Γ

R̄; Γ �i {A[e/x]} x:= e {A}
H-Assign

R̄; Γ �i {A} ι {B} FV (ι) ∩ FV (C) = ∅
∀d ∈ FV (ι). C � PHist d {nil} ∧ CHist d {nil}

R̄; Γ �i {A ∗ C} ι {B ∗ C} H-Frame

R̄; Γ �i {A ∧ e} i {A}
R̄; Γ �i {A} while e i {A ∧ ¬e} H-While

A � A′ B′ � B
R̄; Γ �i {A′} ι {B′}
R̄; Γ �i {A} ι {B}

H-Consequence

R̄; Γ �i {A} ι1 {B}
R̄; Γ �i {B} ι2 {C}

R̄; Γ �i {A} ι1;ι2 {B}
H-Seq

Fig. 8. Inference rules of the Hoare logic

Concurrent Separation Logic for Pipelined Parallelization 159

domain Γ , and a channel-indexed list of resource invariants R̄. We write Γ1#Γ2

if the two domains are disjoint. For any element X in our formal system, we
write X̄ to denote a list of such elements and X̄[i] to access the ith element.

H-Produce. Consider a program that produces pointers to nodes in a linked
list with the intention that the consumer only accesses the val member of each
node, such as in Figure 5. To execute produce d p and express that p.val �→−
is transferred to the channel (to eventually be transferred to a consumer), that
the produce histories are appended with p, and that the resource p.next �→− is
retained, we could use the Hoare triple and resource invariant:

R̄; Γ �i {d1H ! ∗ p.val �→− ∗ p.next �→−} produce d p {d1p::H ! ∗ p.next �→−}

R̄[d] � λlq.λlc. match lq, lc with
| nil, ⇒ emp
| v::l′q, ⇒ R(l′q, lc) ∗ v.val �→−

To prove this triple, we apply rules H-Produce and H-Consequence and prove
these side conditions:

∀lq, lc. lq@lc �1 H =⇒
(
p.val �→− ∗R(lq, lc) � R(p::lq, lc)

)
(1)

p.val �→− � PHist d {nil} (2)
d1p::H ! ∗ p.next �→− � PHist d p::H (3)(

d1H ! ∗ p.val �→−
∗ p.next �→−

)
�
(

d1H ! ∗
(
d1p::H ! −∗ (p.val �→−

∗ d1p::H ! ∗ p.next �→−)
)) (4)

These obligations are easy to prove for this example. (The antecedent in obliga-
tion 1 can be ignored because it is not needed to prove the consequent).

Rule H-Produce requires some permission (dπH !) to access the produce end-
point and implies that the post state will have histories H appended with the
value sent. The first judgement in H-Produce, B � PHist d {nil}, prevents the
resources B that are transferred to the channel from specifying histories for
the same channel. Judgement A � PHist d e::H prevents the postcondition from
specifying histories in addition to e ::H . These side conditions involving PHist
and CHist are necessary to prove soundness using our current model of histories.
They do not prevent channels from sending shares of themselves (with histories
{nil}) or shares and histories of other channels.

The third judgement requires that, for any state of the channel (the queue
lq and consumed values lc) such that the resource invariant holds, the invariant
remains satisfied after pushing e onto the back of the queue and adding resources
B to the channel. Its antecedent, lq@lc �π H , restricts the set of channel states
to those that support the local histories we have observed.

When π = 1, lq@lc �π H simplifies to lq@lc ∈ H (H contains all possible
orderings of produced values), and when π < 1, it implies that every value in H
is present in the list of produced values lq@lc. This constraint, although weak,
still has uses. For example, it allows producing a 0 to a channel with the resource

160 C.J. Bell, A.W. Appel, and D. Walker

invariant “all values must be 1 until a 0 is produced, at which point only 0’s can
be produced” if all we know is that a 0 appears in the local produce histories.

H-Consume. Consider the consumer process from the previous example pro-
gram, which consumes values that are pointers to nodes in a linked list, only
to dereference the val member of each node. To execute consume d p’, express
that p’.val �→− is received from the channel, and that the consume histories are
appended with p’, we could use the Hoare triple:

R̄; Γ, x �i {d1H?} consume d p’ {d1p’::H? ∗ p’.val �→−}

To prove this triple, we apply rules H-Consume and H-Consequence and prove:

∀lq, v, lc. lc �1 H =⇒
(
R(lq@v::nil, lc) � v.val �→− ∗R(lq, v::lc)

)
(5)

v.val �→− � CHist d {nil} (6)
d1p’::H? ∗ p’.val �→− � CHist d p’::H (7)

d1H? �
(

d1H? ∗
(
∀v. (d1H? ∗ v.val �→−)[c: d+= v]
−∗ (d1p’::H? ∗ p’.val �→−)[v/p’]

)) (8)

These particular obligations are also easy to prove. Obligation 8, although con-
voluted, can be deduced easily:

d1H? �
(

d1H? ∗
(
∀v. (d1H? ∗ v.val �→−)[c: d+= v]
−∗ (d1p’::H? ∗ p’.val �→−)[v/p’]

))
emp �

(
∀v. (d1H? ∗ v.val �→−)[c: d+= v]
−∗ (d1p’::H? ∗ p’.val �→−)[v/p’])

)
(d1H? ∗ v.val �→−)[c: d+= v] � (d1p’::H? ∗ p’.val �→−)[v/p’]

d1v::H? ∗ v.val �→− � d1v::H? ∗ v.val �→−

Rule H-Consume requires permission (dπH?) to access the consume endpoint.
The fourth judgement in H-Consume requires that, for all states of the channel
(the queue lq@v :: nil and consumed values lc) such that its resource invariant
holds, the invariant remains satisfied after popping v from the front of the queue,
recording it in the list of consumed values, and removing the resources B(v) tied
to the value. (B is a function from values to predicates). The antecedant, lc �π H ,
restricts the consumed values to those that are supported by the local consume
histories. Resources B(v) are transferred to the consuming process. Finally, the
local consume histories are appended with the consumed value.

4 Parallelized Program with Proof

Consider proofs of correctness for programs such as Figure 3 (and particularly
Figure 4) that follow the schema in Figure 9. We give an example instance of such

Concurrent Separation Logic for Pipelined Parallelization 161

R̄; Γ �ι

{C(nil, p) ∗ F (p) ∗D(nil)}
{∃h. C(h, p) ∗ F (p) ∗D(h)}
while c(p) (

{C(h, p) ∗ F (p) ∗D(h) ∧ c(p)}
b(p) ;

{C(h, p) ∗D(p::h) ∧ c(p) ∧ p⇓v}
p:= a(p)

{C(v::h, p) ∗ F (p) ∗D(v::h)}
{∃h. C(h, p) ∗ F (p) ∗D(h)}

)

{∃h. C(h, p) ∗ F (p) ∗D(h) ∧ ¬c(p)}

Fig. 9. While-program with proof

C(l, v) � plist lR v ∗ ∃l′. j = lR@l′

∧ (v �= nil ⇐⇒ v = hd l′)

∧ (F (v) −∗ list l′ nil)

F (v) � if v �= nil then v.val �→− else emp

D(l) � vlist l

plist l v � match l with | nil ⇒ emp

| x::nil ⇒ x.next �→v ∧ x �= nil

| w::x::l ⇒ w.next �→x ∗ plist x::l v
∧w �= nil

vlist l � match l with | nil ⇒ emp

| x::l′ ⇒ x.val �→− ∗ vlist l′ ∧ x �= nil

list l t � vlist l ∗ plist l t

Fig. 10

a proof in Figure 10 for the program in Figure 4. The example proof ensures that
the shape and order of the linked list is preserved, and holds for the properties:

R̄; Γ �i {C(h, p) ∗D(h) ∧ c(p) ∧ p⇓v}
p:= a(p)
{F (p) ∗D(h) ∗ C(v::h, p) ∧ c(v)}

(9)

R̄; Γ �i {C(h, p) ∗ F (p) ∗D(h) ∧ c(p)} b(p) {C(h, p) ∗D(p::h) ∧ c(p)} (10)

Furthermore, if the following properties hold, then we can construct a proof for
programs characterized by Figure 3 and optimized by DSWP:

R̄; Γ �i {C(h, p) ∧ c(p) ∧ p⇓v} p:= a(p) {F (p) ∗ C(v::h, p) ∧ c(v6)} (11)
R̄; Γ �i {F (p) ∗D(h) ∧ c(p)} b(p) {D(p::h) ∧ c(p)} (12)

FV(b(p)) ∩MV(p:= a(p)) = p (13)
FV(c(p)) ∩MV(p:= a(p)) = p (14)

FV(c(p)) ∩MV(b(p)) = ∅ (15)

Theorem 1. Given any program instance of Figure 3 with a (sequential) Sep-
aration Logic proof given by (9) and (10), and satisfying (11)-(15), there is a
Concurrent Separation Logic proof of the correctness of the parallelized program
instance in Figure 5.

Proof. See technical report[1].

The program in Figure 4, using the definitions in Figure 10, satisfies properties
9-15 and can be transformed into a parallelized proof. Such properties are fairly
typical for programs in the general schema of Figure 3. Our technique applies to
programs with a simple dependency structure, , which is a generalization
of more complicated structures:

162 C.J. Bell, A.W. Appel, and D. Walker

π ∈ Share � [0, 1] u ∈ Location
d ∈ ChannelName H ∈ HistorySet

Endpoint � { (π, H) : Share× HistorySet | π = 0 =⇒ H = {nil}}
r : { m : Location → option value,

p : ChannelName → option Endpoint,
c : ChannelName → option Endpoint}

∀x. f1(x)⊕ f2(x) = f3(x)

f1 ⊕f f2 = f3
Join-Function

π1 ⊕s π2 = π3

H1 � H2 = H3

(π1, H1)⊕e (π2, H2) = (π3, H3)
Join-Endpoint

r1.m ⊕f r2.m = r3.m
r1.p ⊕f r2.p = r3.p
r1.c⊕f r2.c = r3.c

r1 ⊕w r2 = r3
Join-World

Fig. 11. Channel Resources

5 Model and Operational Semantics

5.1 The Separation Algebra of Resources

A standard technique [3] for constructing a SL is to first construct a Separation
Algebra (SA) on the resources. Our CSL is based on the SA of worlds, which
are composed of three kinds of resources: the heap, produce endpoints, and
consume endpoints. Although the heap is not necessary to demonstrate a CSL for
channels, we include it to prove the correctness of parallelized pointer-programs,
where channels are used to synchronize access to shared memory and prevent
race conditions. We have formalized1 our SA following Dockins et al. [4].

A SA is a tuple, 〈E,⊕〉, where E is some type and ⊕ is a “join” relation
that satisfies functionality, associativity, commutativity, cancellation, self-join
(a⊕ a = b =⇒ a = b), and has a unit for each element (∀a.∃e. e⊕ a = a).

We first define worlds, r, as a record of the heap (m), produce endpoints
(p), and consume endpoints (c). These worlds and the join relation ⊕w (rule
Join-World in Figure 11) form a SA. Dockins et al. have shown how to construct
a SA for the heap and ⊕f ; we have constructed a SA for channel endpoints using
the same approach, using the fact that 〈Endpoint,⊕e〉 is a SA.

A Share is the set of rationals over [0, 1]. The relation ⊕s is the addition
operator, and share π = 0 is the unit for ⊕s. A channel endpoint equal to
Some (π, H) implies π > 0; None implies a share of 0. In our notation, the
produce history of channel d, in world r, is r.p(d).H; its share is r.p(d).π; the
consume history is r.c(d).H; and the consume share is r.c(d).π. (This notation
implies that r.p(d) �= None and r.c(d) �= None). We write r.m(u) = Some v if
the heap in world r contains value v at address u.

1 A Coq formalization of our SA is available at

http://www.cs.princeton.edu/~cbell/cslchannels/

http://www.cs.princeton.edu/~cbell/cslchannels/

Concurrent Separation Logic for Pipelined Parallelization 163

r; s |= dπH ! iff r.p(d) = Some (π, �H�s) ∧ ∀d′ �= d. r.p(d′
) = None

∧ ∀d. r.c(d) = None ∧ ∀l. r.m(l) = None

r; s |= dπH? iff r.c(d) = Some (π, �H�s) ∧ ∀d′ �= d. r.c(d′
) = None

∧ ∀d. r.p(d) = None ∧ ∀l. r.m(l) = None

r; s |= A[p: d+= v] iff ∃r′. r = r′[p: d+= v] ∧ r′; s |= A

r; s |= A[c: d+= v] iff ∃r′. r = r′[c: d+= v] ∧ r′; s |= A

r; s |= PHist d H iff r.p(d).H = �H�s

r; s |= CHist d H iff r.c(d).H = �H�s

r; s |= e1 �→e2 iff r.m(�e1�s) = Some �e2�s ∧ ∀l �= �e1�s. r.m(l) = None

∧ ∀d. r.p(d) = None ∧ r.c(d) = None

r; s |= A1 ∗ A2 iff ∃r1, r2. r1 ⊕ r2 = r ∧ r1; s |= A1 ∧ r2; s |= A2

r; s |= A1 −∗ A2 iff ∀r1, r2. r1; s |= A1 =⇒ r ⊕ r1 = r2 =⇒ r2; s |= A2

r; s |= A1 =⇒ A2 iff r; s |= A1 =⇒ r; s |= A2

r; s |= e1 = e2 iff �e1�s = �e2�s

r; s |= emp iff ∀l. r.m(l) = None ∧ ∀d. r.p(d) = None ∧ r.c(d)=None

Fig. 12. Predicate Formulae

A HistorySet is a nonempty set of histories. The merge function (�) satisfies
all the properties of a SA except self-join. Constructing a SA from the tuple of
two SAs is straightforward, but without the property of self-join for �, we must
add the condition that for any Endpoint (π, H), if the share empty (π = 0), then
the set of histories is {nil}.

5.2 Predicate Formulae

In Figure 12, we write �e�s to evaluate e within environment s, r[p: d+= v] to
append value v to the local produce histories of channel d in r, and r[c: d+= v]
to similarly update the local consume histories. An environment, s, is a finite
partial map from variables to values.

5.3 Operational Semantics

The machine state is the tuple S = (c̄, P̄), where c̄ is a channel-indexed list of
tuples which contain information about each channel’s state. Specifically, c̄[d] =
(R, r, lq, lc), where R is the resource invariant, r are the resources contained
within the queue, lq is the queue, and lc is the list of consumed values. P̄ is
a list of processes, where for any process k, P̄ [k] = (r, s, z), r are the process’
resources, s is its environment, and z is the current instruction. Stepping process
k from state S to state S′ is written as S →k S′.

164 C.J. Bell, A.W. Appel, and D. Walker

Our operational semantics use permissions to guarantee that programs are
well-synchronized, so that any process will get stuck if it attempts to access a
resource without permission. Crucially, two processes may not have permission
to mutate the same memory at the same time. Well-synchronized programs are
race free, and it is generally understood that such programs have equivalent
executions in both strong and weak memory models. Thus, while our operational
semantics define a strong memory model, using a weak memory model would
not change its behavior.

6 Soundness

We prove2 soundness for our logic using progress and preservation. In our proofs,
we consider only well-formed machine states S such that � S well-formed. A
well-formed machine state requires each channel state to satisfy its resource
invariant; that the resource invariant R for each channel is � R R-okay; that
each process is well-formed; and that no two processes share any of the same
environment variables. A process is well-formed only if its instructions have a
Hoare triple derivation and if the precondition of this triple is exactly satisfied
by the process’ current resources and environment.

For any machine-states S and S′,

Theorem 2 (Preservation). For all processes k, if � S well-formed and
S →k S′, then � S′ well-formed.

Theorem 3 (Progress). If � S well-formed, then for all processes k, there
either exists a state S′ such that S →k S′, or process k in S is halted.

7 Related Work

Ottoni informally proved that when parallelizing a program, if the dependencies
(the Program Dependency Graph) are preserved, then the generated program
is observationally equivalent [11]. Yet this is not enough for a certified compiler
because no implementation of the algorithm is proven.

Our CSL with channels was partially modeled after Concurrent C Minor [7];
specifically the style of resource invariants. There are close similarities between
our while-programs with channels and pi-calculus, enough so that our CSL is sim-
ilar to the logic proposed by Hoare and O’Hearn [6]. Turon et al. have extended
that work with multiple producers and consumers [14] independently from us.
Neither of these works have shared memory or an equivalent to histories, so are
not applicable to reasoning about the correctness of DSWP.

Hurlin shows how to parallelize a sequential program’s proof, using rewrite
rules on its derivation tree, for the DOALL optimization [8]. We demonstrate
how to prove a DSWP-parallelized program without using the proof’s derivation
tree, but we assume a proof structure that may not characterize all proofs.
2 Our proofs can be found at http://www.cs.princeton.edu/~cbell/cslchannels/

http://www.cs.princeton.edu/~cbell/cslchannels/

Concurrent Separation Logic for Pipelined Parallelization 165

8 Future Work and Conclusion

We have developed an operational semantics and CSL for asynchronous channels
and proved the logic sound. This logic features histories that are used to over-
come limitations in local reasoning and to prove the correctness of parallelized
programs in the presence of asynchronous communication. We demonstrated
how an existing proof of correctness (of a particular structure) for a sequen-
tial program can be used to generate a related proof for the parallelized output
of DSWP. By maintaining the preconditions and postconditions, we can prove
partial correctness of the optimization.

Our CSL and operational semantics are thus potential targets for an auto-
matic method of generating parallelized proofs for parallelizing optimizations.
Using such a method, we could prove that the optimization preserves all specified
behaviors of a program.

First class channels are unnecessary for our proofs about DSWP. Some sepa-
ration logics have first class objects [5][7], others do not permit passing objects
this way [10]. We would need allocation, deallocation, and a more complicated
definition of histories in order to support first class channels. The first two are
not possible in first-order logic, but we believe it is straightforward to add follow-
ing the approach used by Gotsman et al. and Hobor et al. The more complicated
history model requires histories to have shared pasts that, upon merging, would
retain their original ordering. For example, breaking the history {[123]} into
histories {[12]} and {[3]} would result in {[123]} upon re-merging rather than
{[123], [132], [312]}. (With such histories, side conditions involving PHist and
CHist could be dropped from the Hoare rules).

We are now investigating methods of manipulating an existing arbitrary proof
of a program using facts acquired from shape analysis, with the goal of eventually
proving the correctness of DSWP and other parallelizing optimizations.

Acknowledgements. This research is funded in part by NSF awards CNS-
0627650 and IIS-0612147. Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the authors and do not necessarily
reflect the views of the NSF.

References

1. Bell, C.J., Appel, A.W., Walker, D.: Concurrent Separation Logic for Pipelined

Parallelization (2010), http://www.cs.princeton.edu/cbell/cslchannels/

cslchannels_techreport.pdf

2. Bridges, M.J., Vachharajani, N., Zhang, Y., Jablin, T., August, D.I.: Revisiting

the Sequential Programming Model for Multi-Core. In: Proceedings of the 40th

IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 69–81

(December 2007)

3. Calcagno, C., O’Hearn, P., Yang, H.: Local actions and abstract separation logic.

In: Proceeding of the 22nd Annual IEEE Symposium on Logic in Computer Science

(LICS), pp. 353–367 (2008)

http://www.cs.princeton.edu/cbell/cslchannels/cslchannels_techreport.pdf
http://www.cs.princeton.edu/cbell/cslchannels/cslchannels_techreport.pdf

166 C.J. Bell, A.W. Appel, and D. Walker

4. Dockins, R., Hobor, A., Appel, A.W.: A Fresh Look at separation algebras and

Share Accounting. In: 7th Asian Symposium on Programming Languages and Sys-

tems. Springer ENTCS (December 2009)

5. Gotsman, A., Berdine, J., Cook, B., Rinetzky, N., Sagiv, M.: Local reasoning for

storable locks and threads. In: Shao, Z. (ed.) APLAS 2007. LNCS, vol. 4807, pp.

19–37. Springer, Heidelberg (2007)

6. Hoare, T., O’Hearn, P.: Separation Logic Semantics for Communicating Processes.

Electronic Notes in Theoretical Computer Science 212, 3–25 (2008)

7. Hobor, A.: Oracle Semantics. PhD thesis, Princeton University (October 2008)

8. Hurlin, C.: Automatic Parallelization and Optimization of Programs by Proof

Rewriting. In: Palsberg, J., Su, Z. (eds.) Static Analysis. LNCS, vol. 5673, pp.

52–68. Springer, Heidelberg (2009)

9. Leroy, X.: Formal certification of a compiler back-end, or: programming a compiler

with a proof assistant. In: 33rd ACM Symposium on Principles of Programming

Languages (POPL), pp. 42–54. ACM Press, New York (2006)

10. O’Hearn, P.W.: Resources, Concurrency, and Local Reasoning. Theoretical Com-

puter Science 375(1-3), 271–307 (2007)

11. Ottoni, G.: Global Multi-Threaded Instruction Scheduling: Technique and Initial

Results. PhD thesis, Princeton University (September 2008)

12. Rangan, R.: Pipelined Multithreading Transformations and Support Mechanisms.

PhD thesis, Princeton University (June 2004)

13. Rangan, R., Vachharajani, N., Vachharajani, M., August, D.I.: Decoupled software

pipelining with the synchronization array. In: Proceedings of the 13th Interna-

tional Conference on Parallel Architectures and Compilation Techniques (PACT)

(September 2004)

14. Turon, A., Wand, M.: A separation logic for the pi-calculus (2009), http://www.

ccs.neu.edu/home/turon/pi-sep-logic.pdf

15. Vachharajani, N., Rangan, R., Raman, E., Bridges, M.J., Ottoni, G., August, D.I.:

Speculative Decoupled Software Pipelining. In: Proceedings of the 16th Interna-

tional Conference on Parallel Architectures and Compilation Techniques (PACT)

(September 2007)

http://www.ccs.neu.edu/home/turon/pi-sep-logic.pdf
http://www.ccs.neu.edu/home/turon/pi-sep-logic.pdf

Automatic Abstraction for Intervals Using

Boolean Formulae

Jörg Brauer1 and Andy King2

1 Embedded Software Laboratory, RWTH Aachen University, Germany
2 Portcullis Computer Security, Pinner, UK

Abstract. Traditionally, transfer functions have been manually designed

for each operation in a program. Recently, however, there has been grow-

ing interest in computing transfer functions, motivated by the desire to

reason about sequences of operations that constitute basic blocks. This

paper focuses on deriving transfer functions for intervals — possibly the

most widely used numeric domain — and shows how they can be computed

from Boolean formulae which are derived through bit-blasting. This ap-

proach is entirely automatic, avoids complicated elimination algorithms,

and provides a systematic way of handling wrap-arounds (integer over-

flows and underflows) which arise in machine arithmetic.

1 Introduction

The key idea in abstract interpretation [6] is to simulate the execution of each
concrete operation g : C → C in a program with an abstract analogue f : D → D
where C and D are domains of concrete values and descriptions. Each abstract
operation f is designed to faithfully model its concrete counterpart g in the sense
that if d ∈ D describes a concrete value c ∈ C, sometimes written relationally
as d ∝ c [17], then the result of applying g to c is described by the action of ap-
plying f to d, that is, f(d) ∝ g(c). Even for a fixed set of abstractions, there are
typically many ways of designing the abstract operations. Ideally the abstract
operations should compute abstractions that are as descriptive, that is, as accu-
rate as possible, though there is usually interplay with accuracy and complexity,
which is one reason why the literature is so rich. Normally the abstract opera-
tions are manually designed up front, prior to the analysis itself, but there are
distinct advantages in synthesising the abstract operations from their concrete
versions as part of the analysis itself, in a fully automatic way.

1.1 The Drive for Automatic Abstraction

One reason for automation stems from operations that arise in sequences that
are known as blocks. Suppose that such a sequence is formed of n concrete
operations g1, g2, . . . , gn, and each operation gi has its own abstract counterpart
fi, henceforth referred to as its transfer function. Suppose too that the input to
the sequence c ∈ C is described by an input abstraction d ∈ D, that is, d ∝ c.

R. Cousot and M. Martel (Eds.): SAS 2010, LNCS 6337, pp. 167–183, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

168 J. Brauer and A. King

Then the result of applying the n concrete operations to the input (one after
another) is described by applying the composition of the n transfer functions to
the abstract input, that is, fn(. . . f2(f1(d))) ∝ gn(. . . g2(g1(c))). However, a more
accurate result can be obtained by deriving a single transfer function f for the
block gn ◦ . . . ◦ g2 ◦ g1 as a whole, designed so that f(d) ∝ gn(. . . g2(g1(c))). The
value of this approach has been demonstrated for linear congruences [11] in the
context of verifying bit-twiddling code [14]. Since blocks are program dependent,
such an approach relies on automation rather than human intervention.

Another compelling reason for automation is the complexity of the concrete
operations themselves. Even a simple concrete operation, such as increment by
one, is complicated by the finite nature of computer arithmetic: if increment
is applied to the largest integer that can be stored in a word, then the result
is the smallest integer that is representable. As the transfer function needs to
faithfully simulate concrete increment, then the corner case inevitably manifests
itself (if not in the transfer function itself then elsewhere [29]). The problem of
deriving transfer functions for low-level instructions, such as those of the x86,
is particularly acute [2] since these operations not only update registers and
memory locations, but also side effect status flags. Automatic abstraction offers
a way to potentially tame this complexity.

1.2 Specifying Extreme Values with Universal Quantifiers

Monniaux [20] recently addressed the vexing question of automatic abstraction
by focussing on template domains [28] which include, most notably, intervals
[7]. He showed that if the concrete operations are specified as piecewise linear
functions, then it is possible to derive transfer functions for blocks. The transfer
functions relate the values of variables on entry to a block to their values on exit.
To illustrate, suppose the variables x, y and z occur in a block and consider the
maximum value of x on exit from the block. Monniaux shows how quantification
can be used to specify the maximal output value of x in terms of the extreme
values that x, y and z can take on entry to the block. The specification states
that: the maximal output value of x is an upper bound on all the output values
of x that are feasible for the values of x, y and z that fall within their input
ranges. It also asserts that: the maximal output value of x is smaller than any
other upper bound on the output value of x. These requirements are naturally
formulated with universal quantification. Universal quantifier elimination is then
used to find a direct linear relationship between the maximal value of x on exit
and the ranges of x, y and z on entry; it is direct in that intermediate variables
that occur in the specification are removed. This construction is ingenious but
no polynomial elimination algorithm is known for piecewise systems, or is ever
likely to exist [3]. Indeed, this computational bottleneck remains a problem [21].

1.3 Finessing Universal Quantifiers with Boolean Formulae

This paper suggests that as an alternative to operating over piecewise linear
systems one can instead express the semantics of a basic block with a Boolean

Automatic Abstraction for Intervals Using Boolean Formulae 169

formula; an idea that is familar in model checking where it is colloquially referred
to as bit-blasting. Since Boolean formulae are more expressive than piecewise
linear formulae, one would expect universal quantifier elimination to be just as
difficult for Boolean formulae (or even harder since they are discrete). However,
this is not so. To illustrate, consider ∀x.f where f = (x ∨ ¬y) ∧ (¬x ∨ y ∨ ¬z).
Then ∀x.f = f [x �→ 0] ∧ f [x �→ 1] = (¬y) ∧ (y ∨ ¬z). Observe that ∀x.f can be
obtained directly from f by removing the x and ¬x literals from all the clauses
of f . This is no coincidence and holds for any formula f presented in CNF not
containing a vacuous clause that includes both x and ¬x [15]. This suggests
the following four step method for automatically deriving transfer functions for
intervals (and related domains [18,19]): First, use bit-vector logic to represent
the semantics of a block as a single CNF formula fblock (an excellent tutorial on
flattening bit-vector logic into propositional logic is given in [15, Chap. 6]). Thus
each n-bit integer variable is represented as a separate vector of n propositional
variables. Second, apply the specification of Monniaux [20, Sect. 3.2] to express
the maximal value (or conversely the minimal value) of an output bit-vector in
terms of the ranges on the input bit-vectors. This gives a propositional formula
fspec which is essentially fblock augmented with universal quantifiers. Third, the
universal quantifiers are removed from fspec to obtain fsimp – a simplification of
fspec. Thus although universal qualification is a hinderance for linear piecewise
functions, it is actually helps in a propositional formulation. Of course, fsimp is
just a formula and does not prescribe how to compute a transfer function. How-
ever, a transfer function can be extracted from fsimp by abstracting fsimp with
linear affine equations [13] which directly relate the output ranges to the input
ranges. This fourth step (which is analogous to that proposed for abstracting for-
mulae with congruences [14]) is the final step in the construction. Overall, this
new approach to computing transfer functions confers the following advantages:

– it is amenable to instructions whose semantics is presented as Boolean for-
mulae. The force of this is that propositional encodings are readily available
for instructions, due to the rise in popularity of SAT-based model checking.
Moreover, it is not obvious how to express the semantics of some (bit-level)
instructions with piecewise linear functions;

– it avoids the computational problems associated with eliminating variables
from piecewise linear systems;

– it distills transfer functions from Boolean formulae that are action systems
of guarded updates. The guards are systems of octagonal constraints [19]. A
guard tests whether a particular behaviour can arise, for example, whether an
operation wraps, and the update revises the ranges accordingly. One guarded
update might be applicable when an operation underflows and another when
it overflows, thus a transfer function is a system of guarded updates. The
updates are expressed with affine equations that specify how the extreme
values of variables at the end of the block relate to their extreme values on
entry into the block. The guards that are derived are optimal (for the class
of octagons) as are the update operations (for the class of affine equalities).
Once derived, a transfer function is evaluated using linear programming.

170 J. Brauer and A. King

2 Worked Examples

The ethos of our approach is to express the semantics of a block in the com-
putational domain of Boolean formulae. This concrete domain is rich enough to
allow the extreme values (ranges) of variables to be specified in a way that is
analogous to that of Monniaux [20]. However, in contrast to Monniaux, univer-
sal quantifier elimination is performed in the concrete setting, which is attrac-
tive computationally. Abstraction is then applied to synthesise guarded updates
from quantifier-free formulae. Thus, the approach of Monniaux is abstraction
then elimination, whereas ours is elimination then abstraction. We illustrate the
power of this transposition by deriving transfer functions for some illustrative
blocks of ATmega16 8-bit microcontroller instructions [1].

2.1 Deriving a Transfer Function for a Block

Consider deriving a transfer function for the sequence of instructions EOR R0 R1;
EOR R1 R0; EOR R0 R1 that constitutes a block. An instruction EOR R0 R1 stores
the exclusive-or of registers R0 and R1 in R0. The operands are unsigned. To spec-
ify the semantics of the block, let r0 and r1 denote 8-bit vectors of propositional
variables that will be used to represent the symbolic initial values of R0 and R1,
and likewise let r0′ and r1′ be bit-vectors of propositional variables that denote
their final values. Furthermore, let x[i] denote the ith element of the bit-vector x
where x[0] is the low bit. By introducing a bit-vector y to denote the intermedi-
ate value of R0 (which is akin to applying static single assigment) the semantics
of the block can be stated propositionally as:

ϕ(y) = (∧7
i=0y[i] ↔ r0[i]⊕ r1[i]) ∧

(∧7
i=0r1′[i] ↔ y[i]⊕ r1[i]) ∧ (∧7

i=0r0′[i] ↔ y[i]⊕ r1′[i])

where ⊕ denotes exclusive-or. Such formulae can be derived algorithmically by
composing formulae [5,14] – one formula for each instruction in the sequence.

The formula ϕ(y) specifies the relationship between the inputs r0 and r1 and
the outputs r0′ and r1′, but not a relationship between their ranges. This has to
be derived. To do so, let the bit-vectors r0� and r0u (resp. r1� and r1u) denote
the minimal and maximal values for r0 (resp. r1). To express these ranges in
propositional logic, define the formula:

x ≤ y = (x[7] ∧ ¬y[7]) ∨ (∨6
j=0(¬x[j] ∧ y[j] ∧ (∧7

k=j+1x[k] ↔ y[k])))

and for abbreviation let x ≤ y ≤ z = (x ≤ y) ∧ (y ≤ z). Moreover, let
φ = (r0� ≤ r0 ≤ r0u) ∧ (r1� ≤ r1 ≤ r1u) to express the requirement that
r0 and r1 are confined to their ranges. With r0 and r1 in range, let r0�

� and
r0�

u denote the resulting extreme values for r0′. This amounts to requiring that,
firstly, r0�

� and r0�
u are respectively lower and upper bounds on the range of

r0′. Secondly, any other lower and upper bounds on r0′, say, r0′
� and r0′

u, are
respectively less or equal to and greater or equal to r0�

� and r0�
u. Analogous

Automatic Abstraction for Intervals Using Boolean Formulae 171

requirements hold for the extreme values r1�
� and r1�

u of r1′. We impose the
first requirement with the formula θ(y) = ∀r0 : ∀r1 : ∀r0′ : ∀r1′ : θ′(y) where:

θ′(y) = (φ ∧ ϕ(y)) ⇒ (r0�
� ≤ r0′ ≤ r0�

u ∧ r1�
� ≤ r1′ ≤ r1�

u)

A quantifier-free version of θ(y) is then obtained by putting θ′(y) into CNF using
standard transformations [25]. This introduces fresh variables, denoted y′, and
thus we write the CNF formula as θ′′(y, y′). The intermediate variables of y and
y′ (which are existentially quantified) are then removed by repeatedly applying
resolution [15]. Those literals that involve variables in r0, r1, r0′ and r1′ are
then simply struck out to obtain the desired quantifier-free model θ(y, y′).

The second requirement is enforced by introducing other lower and upper
bounds on r0′ and r1′, namely, r0′

� and r0′
u, and r1′

� and r1′
u. The requirement

is formally stipulated as:

ψ(z) = ∀r0′
� : ∀r0′

u : ∀r1′
� : ∀r1′

u : ∀r0 : ∀r1 : ∀r0′ : ∀r1′ : ψ′(z)

where:

ψ′(z) = ((φ ∧ ϕ(z)) ⇒ (r0′
� ≤ r0′ ≤ r0′

u ∧ r1′
� ≤ r1′ ≤ r1′

u)) ⇒ κ

and κ = r0′
� ≤ r0�

� ∧ r0�
u ≤ r0′

u ∧ r1′
� ≤ r1�

� ∧ r1�
u ≤ r1′

u. As before, we
derive a quantifier-free version of ψ(z), namely ψ(z, z′), where z′ are the fresh
variables introduced in CNF conversion. To avoid accidental variable coupling
between θ(y, y′) and ψ(z, z′) we apply renaming (if necessary) to ensure that
(var(y) ∪ var(y′)) ∩ (var(z) ∪ var(z′)) = ∅ where var(o) denotes the set of
propositional variables in the object o.

Finally, the relationship between the bounds r0�, r0u, r1� and r1u and the
extrema r0�

� , r0�
u, r1�

� and r1�
u, is specified with the conjunction:

fsimp = θ(y, y′) ∧ ψ(z, z′)

The formula fsimp is free from universal quantifiers and, moreover, we can ab-
stract it using affine equations [13] to discover linear relationships between the
variables of S = {r0�

� , r0�
u, r1�

� , r1�
u, r0�, r0u, r1�, r1u} as desired. We regard

this abstraction operation, denoted αaff(fsimp, S), as a blackbox and defer pre-
sentation of the details to the following section. However, to state the outcome,
let 〈x〉 =

∑7
i=0 2ix[i] where x is an 8-bit vector of propositional variables. Then

αaff(fsimp, S) =
{
〈r0�

� 〉 = 〈r1�〉 ∧ 〈r0�
u〉 = 〈r1u〉 ∧

〈r1�
� 〉 = 〈r0�〉 ∧ 〈r1�

u〉 = 〈r0u〉

This shows that the ranges of R0 and R1 are swapped. Indeed, the sequence of
EOR instructions is a common idiom for exchanging the contents of two registers
without employing a third. The resulting transfer function can be realised with
four updates. For this example, it is difficult to see how range analysis can be
usefully performed without deriving a transfer function at this level of granular-
ity. Furthermore, it is not clear how such a transfer function could be derived
from a system of piecewise linear functions [20] since such systems cannot express
exclusive-or constraints.

172 J. Brauer and A. King

2.2 Deriving a Transfer Function for an Operation with Many
Modes

As a second example, consider computing a transfer function for the single oper-
ation ADD R0 R1 which calculates the sum of R0 and R1 and stores the result in
R0. We assume that the operands are signed and to interpret the value of such
a vector let 〈〈x〉〉 = (

∑6
i=0 2ix[i])− 27x[7] where x[7] is read as the sign bit. The

ADD R0 R1 instruction is interesting because it is an exemplar of an instruction
that can operate in one of three modes: it overflows (the sum exceeds 127); it
underflows (the sum is strictly less than -128); or it neither overflows nor under-
flows (it is exact). The semantics in these respective modes, can be expressed
with three Boolean formulae that are defined as follows:

ϕO(c) = ϕ(c) ∧ (¬r0[7] ∧ ¬r1[7] ∧ r0′[7])
ϕU (c) = ϕ(c) ∧ (r0[7] ∧ r1[7] ∧ ¬r0′[7])
ϕE(c) = ϕ(c) ∧ (¬r0[7] ∨ ¬r1[7] ∨ r0′[7]) ∧ (r0[7] ∨ r1[7] ∨ ¬r0′[7])

where c is a bit-vector that represents the intermediate carry bits and:

ϕ(c) =
(∧7

i=0 r0′[i] ↔ r0[i]⊕ r1[i]⊕ c[i]
)
∧

¬c[0] ∧
(∧6

i=0 c[i + 1] ↔ (r0[i] ∧ r1[i]) ∨ (r0[i] ∧ c[i]) ∨ (r1[i] ∧ c[i])
)

It is important to appreciate that the formulae that model an instruction need
to be prescribed just once for each instruction. Thus, the complexity is barely
more than that of bit-blasting.

The transfer functions for multi-modal operations are formulated as action
systems of guarded updates. Given a system of input intervals, which defines a
hypercube, the guards test whether an update is applicable and, if so, the corre-
sponding update is applied. The update maps the input intervals to the resulting
output intervals. An update is applicable if interval and guard constraints are
simultaneously satisfiable. The guards are formulated as octagonal constraints
[19] over the inputs to the (trivial) block, namely, S′ = {r0, r1}. Guards are
derived with an abstraction operator, denoted αoct(ϕi(c), S′), which discovers
the octagonal inequalities that hold in the formula ϕi(c) between the variables of
S′. This abstraction can be calculated automatically, though for reasons of con-
tinuity we defer the details until the following section. Applying this abstraction
to the three ϕi(c) formulae yields the guards:

αoct(ϕO(c), S′) =
{

128 ≤ 〈〈r0〉〉+ 〈〈r1〉〉 ≤ 254 ∧
1 ≤ 〈〈r0〉〉 ≤ 127 ∧ 1 ≤ 〈〈r1〉〉 ≤ 127

αoct(ϕU (c), S′) =
{
−256 ≤ 〈〈r0〉〉+ 〈〈r1〉〉 ≤ −129 ∧
−128 ≤ 〈〈r0〉〉 ≤ −1 ∧ −128 ≤ 〈〈r1〉〉 ≤ −1

αoct(ϕE(c), S′) =
{
−128 ≤ 〈〈r0〉〉+ 〈〈r1〉〉 ≤ 127 ∧
−128 ≤ 〈〈r0〉〉 ≤ 127 ∧ −128 ≤ 〈〈r1〉〉 ≤ 127

Guards are computed using perfect integers (the detail of which is explained
in the following section) rather than modulo 256. Hence the linear inequality

Automatic Abstraction for Intervals Using Boolean Formulae 173

〈〈r0〉〉+〈〈r1〉〉 ≤ 254 which follows from the positivity requirements on 〈〈r0〉〉 and
〈〈r1〉〉, namely, 1 ≤ 〈〈r0〉〉 ≤ 127 and 1 ≤ 〈〈r1〉〉 ≤ 127.

An affine update is computed for each mode ϕi(c) from the Boolean formula
fi,simp = θi(c, c′) ∧ ψi(d, d′) where θi(c, c′) and ψi(d, d′) are quantifier-free for-
mulae derived from ϕi(c) in an analogous way to before. As before, we desire
affine relationships over S = {r0�

� , r0�
u, r1�

� , r1�
u, r0�, r0u, r1�, r1u}, hence we

calculate αaff(fi,simp, S) which yields:

αaff(fO,simp, S) =

⎧⎨⎩ 〈〈r0�
� 〉〉 = 〈〈r0�〉〉 + 〈〈r1�〉〉 − 256 ∧

〈〈r0�
u〉〉 = 〈〈r0u〉〉 + 〈〈r1u〉〉 − 256 ∧

〈〈r1�
� 〉〉 = 〈〈r1�〉〉 ∧ 〈〈r1�

u〉〉 = 〈〈r1u〉〉

αaff(fU,simp, S) =

⎧⎨⎩ 〈〈r0�
� 〉〉 = 〈〈r0�〉〉 + 〈〈r1�〉〉 + 256 ∧

〈〈r0�
u〉〉 = 〈〈r0u〉〉 + 〈〈r1u〉〉 + 256 ∧

〈〈r1�
� 〉〉 = 〈〈r1�〉〉 ∧ 〈〈r1�

u〉〉 = 〈〈r1u〉〉

αaff(fE,simp, S) =

⎧⎨⎩ 〈〈r0�
� 〉〉 = 〈〈r0�〉〉 + 〈〈r1�〉〉 ∧

〈〈r0�
u〉〉 = 〈〈r0u〉〉 + 〈〈r1u〉〉 ∧

〈〈r1�
� 〉〉 = 〈〈r1�〉〉 ∧ 〈〈r1�

u〉〉 = 〈〈r1u〉〉

When coupled with the guards, this gives an action system of three guarded
updates reflecting the three distinct modes of operation.

To illustrate an application of the derived transfers function, suppose 〈〈r0〉〉
and 〈〈r1〉〉 are clamped to fall within given input range. Moreover, suppose the
range is expressed as the following system of inequalities:

r =
{
〈〈r0�〉〉 = −2 ∧ 〈〈r0u〉〉 = 5 ∧ 〈〈r0�〉〉 ≤ 〈〈r0〉〉 ≤ 〈〈r0u〉〉
〈〈r1�〉〉 = 1 ∧ 〈〈r1u〉〉 = 126 ∧ 〈〈r1�〉〉 ≤ 〈〈r1〉〉 ≤ 〈〈r1u〉〉

In addition to bound the extreme output values let:

r′ =
{
−128 ≤ 〈〈r0�

� 〉〉 ≤ 127 ∧ −128 ≤ 〈〈r0�
u〉〉 ≤ 127 ∧

−128 ≤ 〈〈r1�
� 〉〉 ≤ 127 ∧ −128 ≤ 〈〈r1�

u〉〉 ≤ 127

Now consider the overflow mode. Observe that the output value of 〈〈r0�
� 〉〉 can

be found by solving a linear programming problem that minimises 〈〈r0�
� 〉〉 sub-

ject to the linear system r ∧ αoct(ϕO(c), S′) ∧ αaff(fO,simp, S) ∧ r′. This gives
〈〈r0�

� 〉〉 = −128. By solving three more linear programming problems we can
likewise deduce 〈〈r0�

u〉〉 = −125, 〈〈r1�
� 〉〉 = 1 and 〈〈r1�

u〉〉 = 126. When repeating
this process for the underflow mode, we find that the system r∧αoct(ϕU (c), S′)∧
αaff(fU,simp, S)∧ r′ is infeasible, hence this guarded update is not applicable for
the given input range. However, the final mode is applicable (like the first) and
gives the extrema: 〈〈r0�

� 〉〉 = −1, 〈〈r0�
u〉〉 = 127, 〈〈r1�

� 〉〉 = 1 and 〈〈r1�
u〉〉 = 126.

More generally, evaluating a system of m guarded updates for a block that in-
volves n variables will require at most 2mn linear programs to be solved.

The overall result is obtained by merging the results from different modes, and
there is no reason why power sets could not be deployed to summarise the final
value of 〈〈r0〉〉 as [−128,−125]∪ [−1, 127] (with the understanding that adjacent
and overlapping intervals are merged for compactness).

174 J. Brauer and A. King

2.3 Deriving a Transfer Function for a Block with Many Modes

Consider the following non-trivial sequence of instructions:

1: INC R0; 2: MOV R1, R0; 3: LSL R1;
4: SBC R1, R1; 5: EOR R0, R1; 6: SUB R0, R1;

INC R0 increments R0; MOV R1, R0 copies the contents of R0 into R1; LSL R1
leftshifts R1 by one bit position setting the carry to the sign; SBC R1, R1 sub-
tracts R1, summed with the carry, from R1 and stores the result in R1; and
SUB R0, R1 subtracts R1 from R0 without considering the carry. (The net effect
of instructions 3 and 4 is to set all the lower bits of R1 to its sign bit, so that R1
contains either 0 or -1.)

Analogous to before, the sequence is bit-blasted using additional bit-vectors
w, x, y, and z to represent intermediate values of registers: w for the value of
R0 immediately after instruction 1 (and the value of R1 after instruction 2); x
for the value of R0 after instruction 5; y for the negation of R1 after instruction 5
which is then used in the following subtraction; and z for the carry bits that are
also used in subtract. With some simplification (needed to make the presentation
accessible) the semantics of the block can be expressed as:

ϕ(w, x, y, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
∧7

i=0w[i] ↔ (r0[i]⊕ ∧i−1
j=0r0[j])

)
∧(

∧7
i=0r1′[i] ↔ w[7]

)
∧(

∧7
i=0x[i] ↔ (w[i]⊕ r1′[i])

)
∧(

∧7
i=0y[i] ↔ (¬r1′[i]⊕ ∧i−1

j=0¬r1′[j])
)

∧
(¬z[0]) ∧(
∧6

i=0z[i + 1] ↔ (x[i] ∧ y[i]) ∨ (x[i] ∧ z[i]) ∨ (y[i] ∧ z[i])
)
∧(

∧7
i=0r0′[i] ↔ x[i]⊕ y[i]⊕ z[i]

)
For brevity, let vector u denote the concatenation of the vectors w, x, y and z
so as to write ϕ(u) for ϕ(w, x, y, z).

For the increment, there are two modes of operation depending on whether
it overflows or not. These can be expressed by: μO = (¬r0[7])∧ (∧6

i=0r0[i]) and
μE = ¬μO respectively. For the leftshift, there are two modes depending on
whether it overflows or not, as defined by the formulae ηO = w[7] and ηE = ¬ηO

respectively. For subtraction, there are again three modes according to whether
it overflows or underflows or does neither. These modes can be expressed as:
νU = (¬r0′[7]∧x[7]∧y[7]), νO = (r0′[7]∧¬x[7]∧¬y[7]) and νE = (¬νU)∧(¬νO).
All other instructions in the block are unimodal; indeed they neither overflow nor
underflow [1]. This gives twelve different mode combinations overall. However,
the following formulae are unsatisfiable:

μO ∧ ηO ∧ νO ∧ ϕ(u) μO ∧ ηO ∧ νE ∧ ϕ(u) μO ∧ ηE ∧ νU ∧ ϕ(u)
μO ∧ ηE ∧ νO ∧ ϕ(u) μO ∧ ηE ∧ νE ∧ ϕ(u) μE ∧ ηO ∧ νU ∧ ϕ(u)
μE ∧ ηO ∧ νO ∧ ϕ(u) μE ∧ ηE ∧ νU ∧ ϕ(u) μE ∧ ηE ∧ νO ∧ ϕ(u)

indicating these mode combinations are not feasible. Henceforth, only three
combinations needed to be considered when synthesising the action system.

Automatic Abstraction for Intervals Using Boolean Formulae 175

Hence let ϕ1(u) = μO ∧ ηO ∧ νU ∧ ϕ(u), ϕ2(u) = μE ∧ ηO ∧ νE ∧ ϕ(u) and
ϕ3(u) = μE ∧ ηE ∧ νE ∧ ϕ(u). The inputs to the block are S′ = {r0, r1} and
calculating guards for these combinations gives:

αoct(ϕ1(v), S′) = 127 ≤ 〈〈r0〉〉 ≤ 127 ∧ −128 ≤ 〈〈r1〉〉 ≤ 127
αoct(ϕ2(v), S′) = −128 ≤ 〈〈r0〉〉 ≤ −2 ∧ −128 ≤ 〈〈r1〉〉 ≤ 127
αoct(ϕ3(v), S′) = −1 ≤ 〈〈r0〉〉 ≤ 126 ∧ −128 ≤ 〈〈r1〉〉 ≤ 127

Note that all three guards impose vacuous constraints on 〈〈r1〉〉. This is because
R1 is written before it is read (which could be inferred prior to deriving the
transfer functions though this is not strictly necessary).

As before, the updates are computed for each ϕi(u) from three formulae
fi,simp = θi(u, u′) ∧ ψi(v, v′) where θi(u, u′) and ψi(v, v′) are quantifier-free and
derived from ϕi(u) as previously. Hence we calculate affine relationships over
S = {r0�

� , r0�
u, r1�

� , r1�
u, r0�, r0u, r1�, r1u} which yields:

αaff(f1,simp, S) = 〈〈r0〉〉� = 127 ∧ 〈〈r0〉〉u = 127 ∧
〈〈r0〉〉�

� = −128 ∧ 〈〈r0〉〉�
u = −128

αaff(f2,simp, S) = 〈〈r0〉〉�
� = −〈〈r0〉〉u − 1 ∧ 〈〈r0〉〉�

u = −〈〈r0〉〉� − 1
αaff(f3,simp, S) = 〈〈r0〉〉�

� = 〈〈r0〉〉� + 1 ∧ 〈〈r0〉〉�
u = 〈〈r0〉〉u + 1

Note that no affine constraints are inferred for r1�
� and r1�

u reflecting that R1 is
used merely to store an intermediate value (though combining affine equations
with congruences [14] would preserve some information pertaining to the final
value of R1). Note how ranges are swapped for the second mode since in this
circumstance R0 is negative. From the resulting action system, it can be seen
that the block overwrites R0 with the absolute value of (R0+ 1) subject to wrap
around (128 = −128 mod 256). To the best of our knowledge, no other approach
can derive a useful transfer function for a block such as this.

3 Abstracting Boolean Formulae

This section shows how to construct octagonal and affine abstractions of a given
Boolean formula ϕ(v) defined over a set of bit-vectors S = {x1, . . . , xn} of
size k and a single bit-vector v that identifies any intermediate variables. For
presentational purposes, we focus on deriving abstractions that relate the values
of 〈〈x1〉〉, . . . , 〈〈xn〉〉, though the construction for unsigned values is analogous.

3.1 Abstracting Boolean Formulae with Octagonal Inequalities

Let λ, μ ∈ {−1, 0, 1} and 1 ≤ i ≤ j ≤ n be fixed and consider the derivation of
an octagonal inequality λ〈〈xi〉〉 + μ〈〈xj〉〉 ≤ c� where c� ∈ Z. Since k is fixed it
follows −2k ≤ λ〈〈xi〉〉 + μ〈〈xj〉〉 ≤ 2k, hence the problem reduces to finding the
least −2k ≤ c� ≤ 2k such that if ϕ(v) holds then λ〈〈xi〉〉+μ〈〈xj〉〉 ≤ c� also holds.
To this end, let c� denote a bit-vector of size k + 2 and suppose φλ,μ,xi,xj (u) is
a propositional encoding of λ〈〈xi〉〉 + μ〈〈xj〉〉 ≤ c� where the sum is calculated

176 J. Brauer and A. King

to a width of k + 2 bits and ≤ is encoded as in Sect. 2.1, likewise operating on
vectors of size k + 2. In this formulation, the vector v denotes the intermediate
variables required for addition and negation. Since xi and xj are k-bit this
construction avoids wraps, hence φλ,μ,xi,xj (v) holds iff λ〈〈xi〉〉 + μ〈〈xj〉〉 ≤ c�

holds. Likewise, suppose that φ′
λ,μ,xi,xj

(v′) is a propositional formula that holds
iff λ〈〈xi〉〉+μ〈〈xj〉〉 ≤ c′ holds where c′ is k+2 bit-vector distinct from c�. Finally,
let κ denote a Boolean formula that holds iff c� ≤ c′ holds.

Single inequalities. With the formulae φλ,μ,xi,xj (v) and φ′
λ,μ,xi,xj

(v′) thus de-
fined, we can apply universal quantification to specify the least c� as the unique
value 〈〈c�〉〉 which satisfies θλ,μ,xi,xj (u, v) ∧ ψλ,μ,xi,xj (u′, v′) where:

θλ,μ,xi,xj (u, v) = ∀xi : ∀xj : (ϕ(u) ⇒ φλ,μ,xi,xj (v))

ψλ,μ,xi,xj (u′, v′) = ∀xi : ∀xj : ∀c′ : ((ϕ(u′) ⇒ φ′
λ,μ,xi,xj

(v′)) ⇒ κ)

and u and u′ are renamed apart so as to avoid cross-coupling. More generally,
the octagonal abstraction of ϕ(v) over the set S is given by:

αoct(ϕ(v), S) =

∧⎧⎨⎩λ〈〈xi〉〉 + μ〈〈xj〉〉 ≤ 〈〈c�〉〉

∣∣∣∣∣∣
∃λ, μ ∈ {−1, 0, 1} ∧
∃1 ≤ i ≤ j ≤ n ∧
θλ,μ,xi,xj (u, v) ∧ ψλ,μ,xi,xj (u

′, v′) holds

⎫⎬⎭
Note that in λ〈〈xi〉〉+μ〈〈xj〉〉 ≤ 〈〈c�〉〉 the symbols 〈〈xi〉〉 and 〈〈xj〉〉 denote variables
whereas 〈〈c�〉〉 is a value that is fixed by the formula θλ,μ,i,j(u, v)∧ψλ,μ,i,j(u′, v′).
Of course, as previously explained, quantifier-free versions of θλ,μ,i,j(u, v) and
ψλ,μ,i,j(u′, v′) can be obtained through CNF conversion and clause simplifica-
tion, hence αoct(ϕ(v), S) can be computed as well as specified. The resulting
octagonal abstraction is closed (though this is not necessary in our setting).

Many inequalities. Interestingly, many inequalities can be derived in a single call
to the solver. Let {(y1, z1), . . . , (ym, zm)} ⊆ S2 and {(λ1, μ1), . . . , (λm, μm)} ⊆
{−1, 0, 1}2, and consider the problem of finding the set {c�

1, . . . , c
�
m}⊆ [−2k, 2k−1]

of least values such that if ϕ(v) holds then λi〈〈yi〉〉 + μi〈〈zi〉〉 ≤ c�
i holds. This

problem can be formulated in an analogous way to before using bit-vectors
c�
1, . . . , c

�
m and c′1, . . . , c

′
m all of size k + 2. Furthermore, let κi be a proposi-

tional formula that holds iff c�
i ≤ c′i holds. Then the problem of simultaneously

finding all the c�
i amounts to solving θ(u, v1, . . . , vm)∧ψ(u′, v′

1, . . . , v
′
m) where:

θ(u, v1, . . . , vm) = ∀y1 : ∀z1 : . . . : ∀yk : ∀zk : (ϕ(u) ⇒
∧m

k=1 φλk,μk,yk,zk
(vk))

ψ(u, v′
1, . . . , v

′
m) = ∀y1 : ∀z1 : . . . : ∀yk : ∀zk :

∀c′1 : . . . : ∀c′m : ((ϕ(u′) ⇒
∧m

k=1 φ′
λk,μk,yk,zk

(v′
k)) ⇒

∧m
k=1 κk)

Notice that θ(u, v1, . . . , vm) ∧ ψ(u′, v′
1, . . . , v

′
m) involves one copy of ϕ(u) and

another of ϕ(u′) rather than m copies of both.

Automatic Abstraction for Intervals Using Boolean Formulae 177

Timings. The time required to bit-blast the blocks in Sect. 2 and then eliminate
the universal quantifiers were essentially non-measurable. The time required to
prove unsatisfiability or compute the guards for the various mode combinations
varied between 0.1s and 0.6s. Octagons were derived one inequality at a time
(rather than several together) using the Sat4J solver [16] on 2.6GHz MacBook
Pro. Incremental SAT solving would speedup the generation of octagons, as the
intermediate results used to derive one inequality could be used to infer another.

3.2 Abstracting Boolean Formulae with Affine Equalities

Affine equations [13,22] are related to congruences [11,23]; indeed the former
is a special case of the latter where the modulo is 0. This suggests adapting
an abstraction technique for formulae that discovers congruence relationships
between the propositional variables of a given formula [14]. In our setting, the
problem is different. It is that of computing an affine abstraction of a formula
ϕ(v) defined over a set of bit-vectors S. As before, we do not aspire to derive
relationships that involve intermediate variables v and we assume each xi is
signed.

Algorithm. Figure 1 gives an algorithm for computing αaff(ϕ(v), S). In what
follows, the n-ary vector x is defined as x = (〈〈x1〉〉, . . . , 〈〈xn〉〉). Affine equations
over S are represented with an augmented rational matrix [A | b] that we inter-
pret as defining the set {x ∈ [−2k−1, 2k−1]n | Ax = b}. The algorithm relies on
a propositional encoding for an affine disequality constraint (c1, . . . , cn) · x �= b
where c1, . . . , cn, b ∈ Q. To see that such an encoding is possible assume, with-
out loss of generality, that the disequality is integral and b is non-negative.
Then rewrite the disequality as (c+

1 , . . . , c+
n) · x �= b + (c−1 , . . . , c−n) · x where

(c+
1 , . . . , c+

n), (c−1 , . . . , c−n) ∈ Nn and N = {i ∈ Z | 0 ≤ i}. Let c+ =
∑n

i=1 c+
i and

c− =
∑n

i=1 c−i . Since each 〈〈xj〉〉 ∈ [−2k−1, 2k−1 − 1] it follows that computing
the sums (c+

1 , . . . , c+
n) · x and b + (c−1 , . . . , c−n) · x with a signed 1 + �log2(1 +

max(2kc+, b+2kc−))� bit representation is sufficient to avoid wraps, allowing the
disequality to be modelled exactly as a formula. In the algorithm, this formula
is denoted φ(w) where w is a vector of temporary variables used for carry bits
and intermediate sums.

Apart from φ(w), the abstraction algorithm is essentially the same as that
proposed for congruences [14] (with a proof of correctness carrying over too). The
algorithm starts with an unsatisfiable constraint 0 · x = 1 which is successively
relaxed by merging it with a series of affine systems that are derived by SAT
(or SMT) solving. The truth assignment θ is considered to be a mapping θ :
var(ϕ(v)∧φ(w)) → {0, 1} which, when applied to a k-bit vector of variables such
as xj , yields a binary vector. Such a binary vector can then be interpreted as a
signed number to give a value in the range [−2k−1, 2k−1−1]. This construction is
applied in lines 5-8 to find a vector (〈〈θ(x1)〉〉, . . . , 〈〈θ(xn)〉〉) ∈ [−2k−1, 2k−1−1]n

which satisfies both the disequality (a1, . . . , an) · x �= b and the formula ϕ(v).
The algorithm is formulated in terms of some auxiliary functions: row(M , i)

extracts row i from the matrix M where the first row is taken to be row 1 (rather

178 J. Brauer and A. King

(1) function affine(ϕ(v), {x1, . . . , xn})
(2) [A | b] := [0, . . . , 0 | 1];
(3) i := 0; r := 1;

(4) while i < r do

(5) (a1, . . . , an, b) := row([A | b], r − i);
(6) let φ(w) hold iff (a1, . . . , an) · x �= b holds;

(7) if ϕ(v) ∧ φ(w) has a satisfying truth assignment θ

(8) [A′ | b′] := [A | b] aff [Id | (〈〈θ(x1)〉〉, . . . , 〈〈θ(xn)〉〉)T];

(9) [A | b] := triangular([A′ | b′]);
(10) r := number of rows([A | b]);

(11) else i := i + 1;

(12) endwhile

(13) return [A | b]

Fig. 1. Calculating the affine closure of the Boolean formula ϕ(v)

than 0); triangular(M) puts M into an upper triangular form using Gaussian
elimination; and number of rows(M) returns the number of rows in M .

The rows of [A | b] are considered in reverse order. Each iteration of the
loop tests whether there exists a truth assignment of ϕ(v) that also satisfies
the φ(w) formula constructed from row r − i. If not, then every model of ϕ(v)
satisfies the affine equality (a1, . . . , an) · x = b represented by row r − i. Hence
the equality constitutes a description of the formula. The counter i is then in-
cremented to examine a row which, thus far, has not been considered. Con-
versely, if the instance is satisfiable, then the solution is represented as a matrix
[Id | (〈〈θ(x1)〉〉, . . . , 〈〈θ(xn)〉〉)T] which is merged with [A|b]. Merge is an O(n3)
operation [13] that yields a new summary [A′|b′] that enlarges [A|b] with the
freshly found solution. The next iteration of the loop will either relax [A|b] by
finding another solution, or verify that the row now describes ϕ(v). Triangular
form ensures that all rows beneath the one under consideration will never be
effected by the merge. At most n iterations are required since the affine systems
enumerated by the algorithm constitute an ascending chain over n variables [13].

Example. Consider ϕ(w, x) which is an encoding of 〈〈z〉〉 = 2(〈〈v〉〉 + 1) + 〈〈y〉〉
subject to the additional constraints that−32 ≤ 〈〈v〉〉 ≤ 31 and−32 ≤ 〈〈y〉〉 ≤ 31:

ϕ(w, x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(¬w[0]) ∧

(
∧6

i=0w[i + 1] ↔ (v[i]⊕ ∧i−1
j=0v[j])

)
∧

(¬x[0]) ∧(
∧6

i=0x[i + 1] ↔ (w[i] ∧ x[i]) ∨ (w[i] ∧ y[i]) ∨ (x[i] ∧ y[i])
)

∧(
∧7

i=0z[i] ↔ w[i]⊕ x[i]⊕ y[i]
)

∧
((v[7] ↔ v[6]) ∧ (v[6] ↔ v[5])) ∧ ((y[7] ↔ y[6]) ∧ (y[6] ↔ y[5]))

Suppose x1 = v, x2 = y and x3 = z. The solutions that are found in each
iteration are given in the left hand column. The [A|b] and [A′|b] are immediately
left and right of the equality. The arrow indicates the row under consideration.
The unsatisfiable case is first encountered in the final iteration. The algorithm
returns [2, 1,−1 | −2] and thus recovers 2〈〈v〉〉+ 〈〈y〉〉 − 〈〈z〉〉 = −2 from ϕ(v).

Automatic Abstraction for Intervals Using Boolean Formulae 179

(0, 0, 2)
[
0 0 0 1

]
 aff

⎡⎣1 0 0 0
0 1 0 0
0 0 1 2

⎤⎦ =

⎡⎣1 0 0 0
0 1 0 0
0 0 1 2 ←

⎤⎦
(−1, 0, 0)

⎡⎣1 0 0 0
0 1 0 0
0 0 1 2

⎤⎦ aff

⎡⎣1 0 0 −1
0 1 0 0
0 0 1 0

⎤⎦ =
[
2 0 −1 −2
0 1 0 0 ←

]

(0, 1, 3)
[
2 0 −1 −2
0 1 0 0

]
 aff

⎡⎣1 0 0 0
0 1 0 1
0 0 1 3

⎤⎦ =
[
2 1 −1 −2 ←

]
Timings. Computing affine abstractions for the feasible mode combinations in
the examples of the previous section took no longer than 0.4s per mode. Each
mode required no more than 5 SAT instances to be solved (which is considerably
fewer than that required for inferring bit-level congruences [14]) with the join
taking less than 5% of the overall runtime.

4 Applying Action Systems of Guarded Updates

Thus far we have derived transfer functions that are action systems of guarded
updates T = {(g1, u1), . . . , (gm, um)} where each guard gi is a system of octago-
nal constraints over a set of bit-vectors S′ = {xi | i ∈ [1, n]} and each update ui

is a system of affine constraints over S = {xi,�, xi,u, x′
i,�, x

′
i,u | i ∈ [1, n]}. In this

section we show that the application of such an action system can be reduced to
linear programming. To do so, we continue working with the assumption that S
and S′ are all k-bit and represent signed objects.

Thus consider applying T to a system of interval constraints over S′ of the
form c =

∧n
i=1 �i ≤ 〈〈xi〉〉 ≤ ui where {�1, u1, . . . , �n, un} ⊆ [−2k−1, 2k−1 − 1].

In particular, consider the application of the guarded update (gk, uk). Suppose
gk =

∧p
i=1 λi · x ≤ di where x is the n-ary vector x = (〈〈x1〉〉, . . . , 〈〈xn〉〉) and

each n-ary coefficient vector λi ∈ {−1, 0, 1}n has no more than two non-zero
elements and di ∈ Z. Furthermore, denote

x� = (〈〈x1,�〉〉, . . . , 〈〈xn,�〉〉) xu = (〈〈x1,u〉〉, . . . , 〈〈xn,u〉〉)
x′

� = (〈〈x′
1,�〉〉, . . . , 〈〈x′

n,�〉〉) x′
u = (〈〈x′

1,u〉〉, . . . , 〈〈x′
n,u〉〉)

Then uk can be written as uk =
∧q

i=1 μi,� ·x� +μi,u ·xu +μ′
i,� ·x′

� +μ′
i,u ·x′

u = fi

where each n-ary vector μi,�, μi,u, μ′
i,�, μ

′
i,u ∈ Zn and fi ∈ Z. To specify a linear

program, let ej denote the n-ary elementary vector (0, . . . , 0, 1, 0, . . . , 0) where
j − 1 zeros precede the one and n − j zeros follow it. Then the value of 〈〈x′

j,�〉〉
for any j ∈ [1, n] can be found by minimising ej · x′

� subject to:

P =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∧q
i=1 μi,� · x� + μi,u · xu + μ′

i,� · x′
� + μ′

i,u · x′
u = fi ∧∧n

i=1 ei · x� = �i ∧
∧n

i=1 ei · xu = ui ∧∧n
i=1 ei · x− ei · xu ≤ 0 ∧

∧n
i=1 ei · x� − ei · x ≤ 0 ∧∧n

i=1 ei · x′
u ≤ 2k−1 − 1 ∧

∧n
i=1−ei · x′

� ≤ 2k−1 ∧∧p
i=1 λi · x ≤ di

180 J. Brauer and A. King

We let �′j denote this minima. Conversely let u′
j denote the value found by

maximising ej · x′
u subject to P . Note that although P is bounded, it is not

necessarily feasible, which will be detected when solving the linear program (the
first stage of two-phase simplex amounts of deciding feasibility by solving the
so-called auxiliary problem [4]).

If P is feasible, the system of intervals generated for (gk, uk) is given by∧n
j=1 �′j ≤ 〈〈xj〉〉 ≤ u′

j . If infeasible, the unsatisfiable constraint ⊥ is output.
Merging the systems generated by all the guarded updates (using power sets of
intervals if desired) then gives the final output system of interval constraints.

Rationale. The rationale for evaluating transfer functions with linear program-
ming is the same as that which motivated deriving transfer functions with SAT:
efficient solvers are readily (even freely) available for both. Moreover, although
linear solvers have suffered problems relating to floats, steady progress has been
made on both speeding up exact solvers [9] and deriving safe bounds on optima
[24]. Thus soundness is no longer an insurmountable problem. We do not offer
timings for evaluating transfer functions, partly because the focus of this paper
(reflecting that of others [14,20,26]) is on deriving them; and partly because the
linear programs that arise from the examples are trivial by industrial standards.

Linear programming versus closure. Since the guards are octagonal one might
wonder whether linear programming could be replaced with a closure calculation
on octagons [19] that combines the interval constraints (which constitute a de-
generate form of octagon) with the guard, thereby refining the interval bounds.
These improved bounds could then be used to calculate the updates, without
using linear programming. To demonstrate why this approach is sub-optimal,
let c = (0 ≤ 〈〈r0〉〉 ≤ 1) ∧ (0 ≤ 〈〈r1〉〉 ≤ 1) and suppose the guard is the single
constraint g = 〈〈r0〉〉 + 〈〈r1〉〉 ≤ 1. The closure of c ∧ g would not refine the
upper bounds on 〈〈r0〉〉 and 〈〈r1〉〉. Thus if these values were substituted into the
update 〈〈r0�

u〉〉 = 〈〈r0u〉〉+〈〈r1u〉〉 then a maximal value of 2 would be derived for
〈〈r0�

u〉〉. This is safe but observe that maximising 〈〈r0�
u〉〉 subject to c ∧ g yields

the improved bound of 1, which illustrates why linear programming is preferable.

5 Related Work

The problem of computing transfer functions for numeric domains is as old as
the field itself, and the seminal paper on polyhedral analysis discusses different
ways to realise a transfer function for x := x × y [8, Sect. 4.2.1]. Granger [10]
lamented the difficulty of handcrafting best transformers for congruences, but
it took more than a decade before it was noticed that they can always be con-
structed for domains that satisfy the ascending chain condition [27]. The idea
is to reformulate each application of a best transformer as a series of calls to a
decision procedure such as a theorem prover. This differs from our work which
aspires to evaluate a transfer function without a complicated decision procedure.

Contemporaneously it was observed that best transformers can be computed
for intervals using BDDs [26]. The authors observe that if g : [0, 28 − 1] →

Automatic Abstraction for Intervals Using Boolean Formulae 181

[0, 28 − 1] is a unary operation on an unsigned byte, then its best transformer
f : D → D on D = {∅} ∪ {[�, u] | 0 ≤ � ≤ u < 28} can be defined through
interval subdivision. If � = u then f([�, u]) = g(�) whereas if � < u then
f([�, u]) = f([�, m−1]) f([m, u]) where m = #u/2n$2n and n = #log2(u−�+1)$.
Binary operations can likewise be decomposed. The 8-bit inputs, � and u, can be
represented as 8-bit vectors, as can the 8-bit outputs, so as to represent f with
a BDD. This permits caching to be applied when f is computed, which reduces
the time needed to compute a best transformer to approximately one day for
each 8-bit operation. The approach does not scale to wider words nor to blocks.

Our work builds on that of Monniaux [20] who showed how transfer functions
can be derived for operations over real-valued variables. His approach relies on
universal quantifier elimination algorithm which is problematic for piecewise lin-
ear functions. Universal quantifier elimination also arises in work on inferring
template constraints [12]. There the authors employ Farkas’ lemma to trans-
form universal quantification to existential quantification, albeit at the cost of
compromising completeness (Farkas’ lemma prevents integral reasoning).

The problem of handling limited precision arithmetic is discussed in [29].
Existing approaches are to: verify that no overflows arise using perfect numbers;
revise the concretisation map to reflect truncation [29]; or deploy congruences
[14,23] where the modulo is a power of two. Our work suggests handling wraps
in the generation of the transfer functions, which we think is natural.

6 Concluding Discussion

This paper advocates deriving transfer functions from Boolean formulae since
the elimination of universal quantifiers is trivial in this domain. Boolean formulae
are natural candidates for expressing arithmetic, logical and bitwise operations,
allowing transfer functions to be derived for blocks of code that would otherwise
only be amenable to the coarsest of approximation. The paper shows how to
distill transfer functions that are action systems of guarded updates, where the
guards are octagonal inequalities and the updates are linear affine equalities. This
formulation enables the application of a transfer function for a basic block to be
reduced to a series of linear programming problems. Although we have illustrated
the approach using octagons, there is no reason why richer classes of template
constraints [28] could not be deployed to express the guards. Moreover, linear
affine equalities could be substituted with polynomial equalities of degree at most
d [22], say, and correspondingly linear programming replaced with non-linear
programming. Thus the ideas presented in the paper generalise quite naturally.
Finally, the approach will only become more attractive as linear solvers and SAT
solvers continue to improve both in terms of efficiency and scalability.

Acknowledgements. We particularly thank David Monniaux for discussions at
VMCAI 2010 in Madrid that motivated writing up the ideas in this paper. We
thank Professor Stefan Kowalewski for his financial support that was necessary
to initiate our collaboration. This work was also supported, in part, by a Royal
Society industrial secondment and a Royal Society travel grant.

182 J. Brauer and A. King

References

1. Atmel Corporation. The Atmel 8-bit AVR Microcontroller with 16K Bytes of In-

system Programmable Flash (2009),

http://www.atmel.com/atmel/acrobat/doc2466.pdf

2. Balakrishnan, G.: WYSINWYX: What You See Is Not What You eXecute. PhD

thesis, Computer Sciences Department, University of Wisconsin, Madison, Wis-

consin, USA (August 2007)

3. Chandru, V., Lassez, J.-L.: Qualitative Theorem Proving in Linear Constraints.

In: Dershowitz, N. (ed.) Verification: Theory and Practice. LNCS, vol. 2772, pp.

395–406. Springer, Heidelberg (2004)

4. Chvátal, V.: Linear Programming. W. H. Freeman and Company, New York (1983)

5. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:

Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.

Springer, Heidelberg (2004)

6. Cousot, P., Cousot, R.: Abstract Interpretation: A Unified Lattice model for Static

Analysis of Programs by Construction or Approximation of Fixpoints. In: POPL,

pp. 238–252. ACM Press, New York (1977)

7. Cousot, P., Cousot, R.: Comparing the Galois Connection and Widening/Narrow-

ing Approaches to Abstract Interpretation. In: Bruynooghe, M., Wirsing, M. (eds.)

PLILP 1992. LNCS, vol. 631, pp. 269–295. Springer, Heidelberg (1992)

8. Cousot, P., Halbwachs, N.: Automatic Discovery of Linear Restraints Among Vari-

ables of a Program. In: POPL, pp. 84–97. ACM Press, New York (1978)

9. Edmonds, J., Manrras, J.-F.: Note sur les Q-matrices d’Edmonds. Recherche

Opérationnella 32(2), 203–209 (1997)

10. Granger, P.: Static Analysis of Arithmetical Congruences. International Journal of

Computer Mathematics 30(13), 165–190 (1989)

11. Granger, P.: Static Analyses of Congruence Properties on Rational Numbers. In:

Van Hentenryck, P. (ed.) SAS 1997. LNCS, vol. 1302, pp. 278–292. Springer, Hei-

delberg (1997)

12. Gulwani, S., Srivastava, S., Venkatesan, R.: Program Analysis as Constraint Solv-

ing. In: PLDI, pp. 281–292. ACM Press, New York (2008)

13. Karr, M.: Affine Relationships among Variables of a Program. Acta Informatica 6,

133–151 (1976)

14. King, A., Søndergaard, H.: Automatic Abstraction for Congruences. In: Barthe,

G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 197–213. Springer,

Heidelberg (2010)

15. Kroening, D., Strichman, O.: Decision Procedures. Springer, Heidelberg (2008)

16. Le Berre, D.: SAT4J: Bringing the power of SAT technology to the Java platform

(2010), http://www.sat4j.org/

17. Marriott, K.: Frameworks for Abstract Interpretation. Acta Informatica 30(2), 103–

129 (1993)

18. Miné, A.: A New Numerical Abstract Domain Based on Difference-Bound Matri-

ces. In: Danvy, O., Filinski, A. (eds.) PADO 2001. LNCS, vol. 2053, pp. 155–172.

Springer, Heidelberg (2001)

19. Miné, A.: The Octagon Abstract Domain. Higher-Order and Symbolic Computa-

tion 19(1), 31–100 (2006)

20. Monniaux, D.: Automatic Modular Abstractions for Linear Constraints. In: POPL,

pp. 140–151. ACM Press, New York (2009)

21. Monniaux, D.: Personal communication with Monniaux at VMCAI (January 2010)

http://www.atmel.com/atmel/acrobat/doc2466.pdf
http://www.sat4j.org/

Automatic Abstraction for Intervals Using Boolean Formulae 183

22. Müller-Olm, M., Seidl, H.: A Note on Karr’s Algorithm. In: Dı́az, J., Karhumäki,

J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 1016–1028.

Springer, Heidelberg (2004)

23. Müller-Olm, M., Seidl, H.: Analysis of Modular Arithmetic. ACM Trans. Program.

Lang. Syst. 29(5) (August 2007)

24. Neumaier, A., Shcherbina, O.: Safe Bounds in Linear and Mixed-Integer Linear

Programming. Math. Program. 99(2), 283–296 (2004)

25. Plaisted, D.A., Greenbaum, S.: A Structure-Preserving Clause Form Translation.

Journal of Symbolic Computation 2(3), 293–304 (1986)

26. Regehr, J., Reid, A.: HOIST: A System for Automatically Deriving Static Ana-

lyzers for Embedded Systems. ACM SIGOPS Operating Systems Review 38(5),

133–143 (2004)

27. Reps, T., Sagiv, M., Yorsh, G.: Symbolic Implementation of the Best Trans-

former. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 252–266.

Springer, Heidelberg (2004)

28. Sankaranarayanan, S., Sipma, H., Manna, Z.: Constraint based linear relations

analysis. In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 53–68. Springer,

Heidelberg (2004)

29. Simon, A., King, A.: Taming the Wrapping of Integer Arithmetic. In: Riis Nielson,

H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 121–136. Springer, Heidelberg

(2007)

Interval Slopes as a Numerical Abstract Domain

for Floating-Point Variables

Alexandre Chapoutot

LIP6 - Université Pierre et Marie Curie

4, place Jussieur F-75252 Paris Cedex 05 France

alexandre.chapoutot@lip6.fr

Abstract. The design of embedded control systems is mainly done with

model-based tools such as Matlab/Simulink. Numerical simulation is the

central technique of development and verification of such tools. Floating-

point arithmetic, which is well-known to only provide approximated re-

sults, is omnipresent in this activity. In order to validate the behaviors

of numerical simulations using abstract interpretation-based static anal-

ysis, we present, theoretically and with experiments, a new partially re-

lational abstract domain dedicated to floating-point variables. It comes

from interval expansion of non-linear functions using slopes and it is

able to mimic all the behaviors of the floating-point arithmetic. Hence

it is adapted to prove the absence of run-time errors or to analyze the

numerical precision of embedded control systems.

1 Introduction

Embedded control systems are made of a software and a physical environment
which aim at continuously interact with each other. The design of such systems
is usually realized with the model-based paradigm. Matlab/Simulink1 is one of
the most used tools for this purpose. It offers a convenient way to describe the
software and the physical environment in an unified formalism. In order to verify
that the control law, implemented in the software, fits the specification of the
system, several numerical simulations are made under Matlab/Simulink. Never-
theless, this method is closer to test-based method than formal proof. Moreover,
this verification method is strongly related to the floating-point arithmetic which
provides approximated results.

Our goal is the use of abstract interpretation-based static analysis [9] to vali-
date the design of control embedded software described in Matlab/Simulink. In
our previous work [3], we defined an analysis to validate that the behaviors given
by numerical simulations are close to the exact mathematical behaviors. It was
based on an interval abstraction of floating-point numbers which may produce
too coarse results. In this article, our work is focused on a tight representation of
the behaviors of the floating-point arithmetic in order to increase the precision
of the analysis of Matlab/Simulink models.

1 Trademarks of The MathworksTMcompany.

R. Cousot and M. Martel (Eds.): SAS 2010, LNCS 6337, pp. 184–200, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Interval Slopes as a Numerical Abstract Domain for Floating-Point Variables 185

To emphasize the poor mathematical properties of the floating-point arith-
metic, let us consider the sum of numbers given in Example 1 with a single
precision floating-point arithmetic. The result of this sum is −2.08616257.10−6

due to rounding errors, whereas the exact mathematical result is zero.

Example 1

0.0007 + (−0.0097) + 0.0738 + (−0.3122) + 0.7102 + (−0.5709) + (−1.0953)

+ 3.3002 + (−2.9619) + (−0.2353) + 2.4214 + (−1.7331) + 0.4121

Example 1 shows that the summation of floating-point numbers is a very ill-
conditioned problem [28, Chap. 6]. Indeed, small perturbations on the elements
to sum produce a floating-point result which could be far from the exact result.
Nevertheless, it is a very common operation in control embedded software. In
particular, it is used in filtering algorithms or in regulation processes, such as for
example in PID2 regulation. Remark that depending on the case, the rounding
errors may stay insignificant and the behaviors of floating-point arithmetic may
be safe. In consequence, a semantic model of this arithmetic could be used to
prove the behaviors of embedded control software using floating-point numbers.

The definition of abstract numerical domains for floating-point numbers is
usually based on rational or real numbers [13,24] to cope with the poor math-
ematical structure of the floating-point set. In consequence, these domains give
an over-approximation of the floating-point behaviors. This is because they do
not bring information about the kind of numerical instability appearing during
computations. We underline that our goal is not interested in computing the
rounding errors but the floating-point result. In others words, we want to com-
pute the bounds of floating-point variables without considering the numerical
quality of these bounds.

Our main contribution is the definition of a new numerical abstract domain,
called Floating-Point Slopes (FPS), dedicated to the study of floating-point num-
bers. It is based on interval expansion of non-linear functions named interval
slopes introduced by Krawczyk and Neumaier [20] and, as we will show in this
article, it is a partially relational domain. The main difference is that, in Propo-
sition 1, we adapt the interval slopes to deal with floating-point numbers. More-
over, we are able to tightly represent the behaviors of floating-point arithmetic
with our domain. A few cases studies will show the practical use of our domain.
Hence we can prove properties on programs taking into account the behaviors
of the floating-point arithmetic such that the absence of run-time errors or, by
combining it with other domains e.g. [4], the quality of numerical computations.

Content. In Section 2, we will present the main features of floating-point arith-
metic and we will also introduce the interval expansions of functions. We will
present our abstract domain FPS in Section 3 and the analysis of floating-point
programs in Section 4 before describing experimental results in Section 5. In
Section 6, we will reference the related work before concluding in Section 7.
2 PID stands for proportional-integral-derivative. It is a generic method of feedback

loop control widely used in industry.

186 A. Chapoutot

2 Background

We recall the main features of the IEEE754-2008 standard of floating-point arith-
metic in Section 2.1. Next in Section 2.2, we present some results from interval
analysis, in particular the interval expansion of functions.

2.1 Floating-Point Arithmetic

We briefly present the floating-point arithmetic, more details are available in
[28] and the references therein. The IEEE754-2008 standard [18] defines the
floating-point arithmetic in base 2 which is used in almost every computer3.

Floating-point numbers have the following form: f = s.m.2e. The value s
represents the sign, the value m is the significand represented with p bits and
the value e is the exponent of the floating-point number f which belongs into the
interval [emin, emax] such that emax = −emin +1. There are two kinds of numbers
in this representation. Normalize numbers for which the significand implicitly
starts with a 1 and denormalized numbers that implicitly starts with a 0. The
later are used to gain accuracy around zero by slowly degrading the precision.

The standard defines different values of p and emin: p = 24 and emin = −126
for the single precision and p = 53 and emin = −1022 for the double precision.
We call normal range the set of absolute real values in [2emin , (2 − 21−p)2emax]
and the subnormal range the set of numbers in [0, 2emin].

The set of floating-point numbers (single or double precision) is represented
by F which is closed under negation. A few special values represent special cases:
the values −∞ and +∞ to represent the negative or the positive overflow; and
the value NaN 4 represents invalid results such that

√
−1.

The standard defines round-off functions which convert exact real numbers
into floating-point numbers. We are mainly concerned by the rounding to the
nearest ties to even5 (noted fl), the rounding towards +∞ and rounding toward
−∞. The round-off functions follow the correct rounding property, i.e. the result
of a floating-point operation is the same that the rounding of the exact math-
ematical result. Note that these functions are monotone. We are interested in
this article by computing the range of floating-point variables rounded to the
nearest which is the default mode of rounding in computers.

A property of the round-off function fl is given in Equation (1). It characterizes
the overflow, i.e. the rounding result is greater than the biggest element of F and
the case of the generation of 0. This definition only uses positive numbers, using
the symmetry property of F, we can easily deduce the definition for the negative

3 It also defines this arithmetic in base 10 but it is not relevant for our purpose.
4 NaN stands for Not A Number.
5 The IEEE754-2008 standard introduces two rounding modes to the nearest with re-

spect to the previous IEEE754-1985 and IEEE754-1987 standards. These two modes

only differ when an exact result is in half-way of two floating-point numbers. In

rounding-to-nearest-tie-to-even mode, the floating-point number whose the least sig-

nificand bit is even is chosen. Note that this definition is used in all the other revisions

of the IEEE754 standard, see [28, Chap. 3.4] for more details.

Interval Slopes as a Numerical Abstract Domain for Floating-Point Variables 187

part. We denote by σ = 2emin−p+1 the smallest positive subnormal number and
the largest finite floating-point number by Σ = (2− 21−p)2emax .

∀x ∈ F, x > 0, fl(x) =

{
+0 if 0 < x ≤ σ/2

+∞ if x ≥ Σ
(1)

An underflow [28, Sect. 2.3] is detected when the rounding result is less than
2emin , i.e. the result is in the subnormal range.

The errors associated to a correct rounding is defined in Equation (2) and
it is valid for all floating-point numbers x and y except −∞ and +∞ (see [28,
Chap. 2, Sect. 2.2]). The operation % ∈ {+,−,×,÷} but it is also valid for the
square root. The relative rounding error unit is denoted by μ. In single precision,
μ = 2−24 and σ = 2−149 and in double precision, μ = 2−53 and σ = 2−1074.

fl(x " y) = (x " y)(1 + ε1) + ε2 with |ε1| ≤ μ and |ε2| ≤
1

2
σ (2)

If fl(x % y) is in the normal range or if % ∈ {+,−} then ε2 is equal to zero. If
fl(x % y) is in the subnormal range then ε1 is equal to zero.

Numerical instabilities in programs come from the rounding representation of
values and they also came from two problems due to finite precision:

Absorption. If |x| ≤ μ|y| then it happens that fl(x+y) = fl(y). For example, in
single precision, the result of fl(104− 10−4) is fl(104). In numerical analysis,
the solution avoid this phenomenon is to sort the sequence of numbers [17,
Chap. 4]. This solution is not applicable when the numbers to add are given
by a sensor measuring the physical environment.

Cancellation. It appears in the subtraction fl(x− y) if (|x− y|) ≤ μ(|x|+ |y|)
then the relative errors can be arbitrary big. Indeed, the rounding errors take
usually place in the least significant digits of floating-point numbers. These
errors may become preponderant in the result of a subtraction when the most
significant digits of two closed numbers cancelled each others. In numerical
analysis, subtraction of numbers coming from long computations are avoided
to limit this phenomena. We cannot apply this solution in embedded control
systems where some results are used at different instants of time.

2.2 Interval Arithmetic

We introduce interval arithmetic and in particular, the interval expansion of
functions which is an element of our abstract domain FPS.

Standard Interval Arithmetic. The interval arithmetic [27] has been defined
to avoid the problem of approximated results coming from the floating-point
arithmetic. It had also been used as the first numerical abstract domain in [9].

When dealing with floating-point intervals the bounds have to be rounded
to outward as in [24, Sect. 3]. In Example 2, we give the result of the interval
evaluation in single precision of a sum of floating-point numbers.

188 A. Chapoutot

Example 2. Using the interval domain for floating-point arithmetic [24, Sect. 3]
the result of the sum defined by

∑10
i=1 101 +

∑10
i=1 102 +

∑10
i=1 103 +

∑1000
i=1 10−3

is [11100, 11101.953]. The exact result is 11101 while the floating-point result is
11100 due to an absorption phenomena. The floating-point result and the exact
result are in the result interval but we cannot distinguish them any more.

A source of over-approximation is known in the interval arithmetic as the de-
pendency problem which is also known in static analysis as the non-relational
aspect. For example, if some variable has value [a, b], then the result of x− x is
[a− b, b− a] which is equal to zero only if a = b. This problem is addressed by
considering interval expansions of functions.

Notations. We denote by x a real number and by x a vector of real numbers.
Interval values are in capital letters X or denoted by [a, b] where a is the lower
bound and b is the upper bound of the interval. A vector of interval values will
be denoted by X. We denote by [f] the interval extension of a function f obtained
by substitution of all the arithmetic operations with their equivalent in interval.
The center of an interval [a, b] is represented by mid([a, b]) = a + 0.5× (b − a).

Extended Interval Arithmetic. We are interested in the computation of the
image of a vector of interval X by a non-linear function f : IRn → IR only
composed by additions, subtractions, multiplications and divisions and square
root. In order to reduce over-approximations in the interval arithmetic, some
interval expansions have been developed. The first one is based on the Mean-
Value Theorem and it is expressed as:

f(X) ⊆ f(z) + [f′](X)(X− z) ∀z ∈ X . (3)

The first-order approximation of the range of a function f can be defined thanks
to its first order derivative f′ over X. We can then approximate f(X) by a pair
(f(z), [f′](X)) that are the value of f at point z and the interval extension of f′

evaluated over X.
A second interval expansion has been defined by Krawczyk and Neumaier [20]

using the notion of slopes which reduced the approximation of the derivative
form. It is defined by the relation:

f(X) ⊆ f(z) + [F
z
](X)(X− z)

with F
z
(X) =

{
f(x)− f(z)

x − z
: x ∈ X ∧ z �= x

}
.

(4)

Then we can represent f(X) by a pair (f(z), [Fz](X)) that are the value of f in
the point z and the interval extension of the slope Fz(X) of f.

Note that the value z is constructed, in general, from the centers of the interval
variables appearing in the function f for both interval expansions.

An interesting feature is that we can inductively compute the derivative or
the slope of a functions using automatic differentiation techniques [1]. It is a

Interval Slopes as a Numerical Abstract Domain for Floating-Point Variables 189

semantic-based method to compute derivatives. In this context, we call indepen-
dent variables some input variables of a program with respect to which deriva-
tives are computed. We call dependent variables output variables whose deriva-
tives are desired. A derivative object represents derivative information, such as
a vector of partial derivatives like (∂e/∂x1, . . . , ∂e/∂xn) of some expression e
with respect to a vector x of independent variables. The main idea of automatic
differentiation is that every complicated function f, i.e. a program, is composed
by simplest elements, i.e. program instructions. Knowing the derivatives of these
elements with respect to some independent variables, we can compute the deriva-
tives or the slopes of f following the differential calculus rules. Furthermore, using
interval arithmetic in the differential calculus rules, we can guarantee the result.

We give in Table 1 the rules to compute derivatives or slopes with respect to
the structure of arithmetic expressions. We assume that we know the number
of independent variables in the programs and we denote by n this number. The
variable V ind represents the vector of independent variables with respect to which
the derivatives are computed. We denote by δi the interval vector of length n,
having all its coordinates equal to [0, 0] except the i-th element equals to [1, 1].
So, we consider that all the independent variables are assigned to a unique
position i in V ind and it is initially assigned with a derivative object equal to
δi. Following Table 1 where g and h represent variables with derivative object,
a constant value c has a derivative object equal to zero (the interval vector 0
has all its coordinates equal to [0, 0]). For addition and subtraction, the result
is the vector addition or the vector subtraction of the derivative objects. For
multiplication and division, it is more complicated but the rules come from the
standard rules of the composition of derivatives, e.g. (u×v)′ = u′×v +u×v′. A
proof of the computation rules6 for slopes can be found in [30, Sect. 1]. Note that
we can apply automatic differentiation for other functions, such as the square
root, using the rule of function composition, (f ◦ g)′(x) = f ′(g(x))g′(x).

These interval expansions of functions, using either (f(z), [f′](X)) the deriva-
tive form or (f(z), [fz](X)) the slope form, define a straightforward semantics of
arithmetic expressions which can be used to compute bounds of variables.

Table 1. Automatic differentiation rules for derivatives and slopes

Function Derivative arithmetic Slope arithmetic

c ∈ IR 0 0
g + h [g′](X) + [h′](X) [Gz](X) + [Hz](X)

g − h [g′](X)− [h′](X) [Gz](X)− [Hz](X)

g × h [g′](X)× h(X) + g(X)× [h′](X) [Gz](X)× h(X) + g(z)× [Hz](X)

g

h

[g′](X)× h(X)− [h′](X)× g(X)

h2(X)

[Gz](X)− [Hz](X)× g(z)
h(z)

h(X)
√

g
1

2

[g′](X)√
g(X)

[Gz](X)√
g(z) +

√
g(X)

6 In [20, Sect. 2], the authors went also into detail of the complexity of these operations.

190 A. Chapoutot

Remark 1. The difference in over-approximated result between the derivative
form and the slope form is in the multiplication and the division rules. In the
derivative form, we need to evaluate the two operands (g and h) using interval
arithmetic while we only need to evaluate one of them in the slope form. Note also
that we could have defined the multiplication by [Hz](X)×g(X)+h(z)× [Gz](X)
(the division has also two forms) but the two possible forms of slope are over-
approximations of f(X). Nevertheless, a possible way to choose between the two
forms is to keep the form which gives the smallest approximation of f(X).

x

f(x)
y = 9

4
x+ 5

2

y = 11
16

1
2−1

19
8

−1

− 1
4

(a) x ∈ [−1, 1/2]

x

f(x)

y = 3
2
x+ 1

y = 1

1
2

− 1
2

7
4

1
4

(b) x ∈ [−1/2, 1/2]

Fig. 1. Two examples of the interval expansion with slopes

In Figure 1, we give two graphical representations of interval slope expansion.
For this purpose, we want to compute the image of x by the function f(x) =
x(1 − x) + 1. We consider in Figure 1(a) that x ∈ [−1, 1/2] and we get as a
result that f(x) ∈ [−1, 19/8] which is an over-approximation of the exact result
[−1, 5/4]. The midpoint is −1/4 and the set of slopes is bounded by the interval
[0, 9/4]. The dashed lines represent the linear approximation of the image. In
Figure 1(b), we consider that x ∈ [−1/2, 1/2] and the result is f(x) ∈ [1/4, 7/4]
which is still an over-approximation of the exact result [1/4, 5/4]. In that case,
the midpoint is 0 and the set of slopes is bounded by the interval [0, 3/2]. Note
that the smaller the interval the better the approximation is.

Example 3 shows that we can encode with interval slopes the list of variables
contributing in the result of an arithmetic expression. In particular, the vector
composing the interval slope of the variable t represents the influence of the
variables a, b and c on the value of t. For example, we know that a modification
of the value of the variable a produce a modification of the result with the same
order of the modification on a because the slope associated to a is [1, 1]. But
a modification on the variable b by Δb will produce a modification on the t by
Δb ×Vc because the slope of b is equal to Vc.

Interval Slopes as a Numerical Abstract Domain for Floating-Point Variables 191

Example 3. Let t = a + b× c, we want to compute the interval slope [Tz](X) of
t. We consider that V ind = {a, b, c} and X is the interval vector of the values of
these variables. We suppose that the interval slope expansion of a, b and c are
(za, [Az](X) = δ1), (zb, [Bz](X) = δ2), and (zc, [Cz](X) = δ3) respectively. The
interval value associated to c is Vc i.e. Vc = zc + [Cz](X)(X− z).

[T
z
](X) = [A

z
](X) + zb[C

z
](X) + [B

z
](X) (zc + [C

z
](X)(X− z))

= ([1, 1], 0, 0) + zb × (0, 0, [1, 1]) + (0, [1, 1], 0) × Vc

= ([1, 1], [1, 1]× Vc, zb × [1, 1])

= ([1, 1], Vc, [zb, zb])

As seen in Example 3, interval slopes represent relations between the inputs
and the outputs of a function. By computing interval slopes, we build step by
step the set of variables related to arithmetic expressions in programs. In static
analysis, we can use this interval expansion to track the influence of the inputs
of a program on its outputs. Hence the choice of the set V ind of independent
variables is given by the set of the input variables of the program to analyse.
Moreover, we can add in V ind all the other variables which may influence output.

3 Floating-Point Slopes

We present in this section our new abstract domain FPS. In Section 3.1, we
adapt the computation rules of interval slopes to take into account floating-point
arithmetic. Next in Section 3.2, we define an abstract semantics of arithmetic
expressions over FPS values taking into account the behaviors of floating-point
arithmetic. And in Section 3.3, we define the order structure of the FPS domain.

3.1 Floating-Point Version of Interval Slopes

The definition of interval slope expansion in Section 2.2 manipulates real num-
bers. In case of floating-point numbers, we have to take into account the round-off
function and the rounding-errors.

We show in Proposition 1 that the range of a non-linear function f of floating-
point numbers can be soundly over-approximated by a floating-point slope. The
function f must respect the correct rounding, i.e. the property of Equation (2)
must hold. In other words, the result of an operation over set of floating-point
numbers is over-approximated by the result of the same operation over floating-
point slopes by adding a small quantity depending on the relative rounding error
unit μ and the absolute error σ.

Proposition 1. Let f : D ⊆ IRn → IR be an arithmetic operation of the form
g % h with % ∈ {+,−,×,÷} or √ , i.e. f respects the correct rounding. For all
X ⊆ D and z ∈ D, we have:

fl
(
f(X)

)
⊆ f(z)

(
1 + [−μ, μ]

)
+

[
−σ

2
,
σ

2

]
+ [F

z
](X)(X − z)

(
1 + [−μ, μ]

)
.

192 A. Chapoutot

Proof

fl
(
f(X)

)
= {f(x)(1 + εx) + ε̄x : x ∈ X} by Eq. (2)

⊆ f(X) + f(X){εx : x ∈ X}+ {ε̄x : x ∈ X}
⊆
(
f(z) + [F

z
](X)(X− z)

)
+ {ε̄x : x ∈ X} by Eq. (4)

+
(
f(z) + [F

z
](X)(X− z)

)
{εx : x ∈ X}

⊆ f(z)
(
1 + {εx : x ∈ X}

)
+ {ε̄x : x ∈ X}

+ [F
z
](X)(X− z)

(
1 + {εx : x ∈ X}

)
⊆ f(z)

(
1 + [−μ, μ]

)
+

[
−σ

2
,
σ

2

]
|εx| ≤ μ by Eq. (2)

+ [F
z
](X)(X− z)

(
1 + [−μ, μ]

)
|ε̄x| ≤

1

2
σ by Eq. (2)

$

Remark 2. As the floating-point version of slopes is based on μ and σ, we can
represent the floating-point behaviors depending of the hardware. For example,
extended precision7 is represented using the values μ = 2−64 and σ = 2−16446.
Furthermore following [2], we can compute the result of a double rounding8 with
μ = (211 + 2)2−64 and σ = (211 + 1)2−1086.

Proposition 1 shows that we can compute the floating-point range of a function
f, respecting the correct rounding, using interval slopes expansion. That is a set
of floating-point values can is represented by a pair:(

[f] (z)
(
1 + [−μ, μ]

)
+

[
−σ

2
,
σ

2

]
, [F

z
](X)

(
1 + [−μ, μ]

))
.

The first element is a small interval rounding to the nearest around f(z) for
which we have to take into account the possible rounding errors. The second
element is the interval slopes which have to take account of relative errors. Note
that this adaptation adds a very little overhead of computations compared to
the definition of interval slopes by Krawczyk and Neumaier.

3.2 Semantics of Arithmetic Operations

In this section, we define the abstract semantics of arithmetic operations over
elements of floating-point slopes domain in order to mimic the behaviors of the
floating-point arithmetic. We denote by I the set of intervals and by S = I×I|V

ind|

the set of slopes. An element s of S is represented by a pair (M,S) where M is
a floating-point interval and S is a vector of floating-point intervals. We denote
by 〈I,&I,⊥I,'I, I,(I〉 the lattice of intervals. First we define some auxiliary
functions before presenting the semantics of arithmetic expressions over FPS.

7 In some hardware, e.g. Intel x87, floating-point numbers may be encoded with 80

bits in registers, i.e. the significand is 64 bits long.
8 It may happen on hardware using extended precision. Results of computations are

rounded in registers and they are rounded again, with a less precision, in memory.

Interval Slopes as a Numerical Abstract Domain for Floating-Point Variables 193

The function ι defined in Equation (5) computes the interval value associ-
ated to a floating-point slopes (M,S). We assume that the values of independent
variables are kept in a separate interval vector VV ind . The notation mid(VV ind)
stands for the component-wise application of the function mid on all the com-
ponents of the vector VV ind . Note that · represents the scalar product.

ι
(
(M,S)

)
= M + S ·

(
VVind −mid(VVind)

)
(5)

The function κ defined in Equation (6) transforms an interval value [a, b]� asso-
ciated to the �-th independent variable into a floating-point slope.

κ
(
[a, b]�

)
=
(
[m, m], δ�

)
with m = mid([a, b]) (6)

This function κ is used in two cases: i) To initialize all the independent variables
at the beginning of an analysis. ii) In the meet operation, see Section 3.3.

We can detect overflows and generations of zero by using the function Φ
defined in Equation (7). We have two kinds or rules: total rules when we are
certain that a zero or an overflow occur and partial rules when a part of the
set described by a floating-point slope generates a zero or an overflow. With the
function ι we can determine for an element (M,S) ∈ S if (M,S) represents an
overflow or a zero. Hence we represent the finite precision of the floating-point
arithmetic. We denote by p∞ and by m∞ the interval vectors with all their
components equal to [+∞, +∞] and [−∞,−∞] respectively. We recall that σ is
the smallest denormalized and Σ is the largest floating-point numbers.

Φ(M, S) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

([0, 0], 0) if ι(M, S) %I [−σ
2
, σ

2
]

(M̃,0 ̇I S) if ι(M, S) $I]− σ
2
, σ

2
[�= ⊥I

and M̃ =

{
[0, 0] if M %I]− σ

2
, σ

2
[

[0, 0] I M otherwise

([+∞, +∞],p∞) if ι(M, S) %I]Σ, +∞]

(M̃,p∞ ̇I S) if ι(M, S) $I]Σ, +∞] �= ⊥I

and M̃ =

{
[+∞, +∞] if M %I]Σ, +∞]

[+∞, +∞] I M otherwise

([−∞,−∞],m∞) if ι(M, S) %I [−∞,−Σ[

(M̃,m∞ ̇I S) if ι(M, S) $I [−∞,−Σ[�= ⊥I

and M̃ =

{
[−∞,−∞] if M %I [−∞,−Σ[

[−∞,−∞] I M otherwise

(M, S) otherwise

(7)

Equation (7) is an adaptation of the rule defined in Equation (1) to deal with
FPS values. Furthermore, the abstract values (+∞,p∞) and (−∞,m∞) repre-
sent the special floating-point values +∞ and −∞ respectively. As in floating-
point arithmetic, the values (+∞,p∞) and (−∞,m∞) are absorbing elements.

An interesting feature of interval slopes is that we can mimic the absorption
phenomenon by setting to zero the interval slope of the absorbed operand. We
define the function ρ for this purpose. Indeed, an abstract value (M,S) already
supports partial absorption as M is computed with a rounding to the nearest but

194 A. Chapoutot

S have to be reduced to represent the absence of the influence of particular inde-
pendent variables. The reduction of an abstract value g = (Mg,Sg) compared to
an abstract value h = (Mh,Sh), denoted by ρ(g | h), is defined in Equation (8).

ρ(g | h) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

([0, 0], 0) if ι
(
Mg ,Sg

)
%I [μ, μ]× ι

(
Mh,Sh

)(
M̃g,0 ̇I Sg

)
if ι

(
Mg ,Sg

)
$I [μ, μ]× ι

(
Mh,Sh

)
�= ⊥I

and M̃g =

{
[0, 0] if Mg %I [μ, μ]× ι

(
Mh,Sh

)
[0, 0] I Mg otherwise(

Mg,Sg

)
otherwise

(8)

Equation (8) models the absorption phenomenon by explicitly setting to zero
the values of a slope. As mentioned in Section 2.2, a slope shows which variables
influence the computation of an arithmetic expression. But, absorption phenom-
ena induce that an operand does not influence the result of an addition or a
subtraction any more.

Using the functions Φ, ρ and ι, we inductively define on the structure of arith-
metic expressions the abstract semantics �.��

S
of floating-point slopes in Figure 2.

We denote by env� an abstract environment which associates to each program
variable a floating-point slope. For each arithmetic operation, we component-
wisely combine the elements of the abstract operands �g��

S
(env�) = (Mg,Sg) and

�h��
S
(env�) = (Mh,Sh). The element M is obtained using the interval arithmetic

with rounding to the nearest. The element S is computed using the definition
of the slope arithmetic defined in Table 1. We take into account of the possible
rounding errors in the result (M,S) following Proposition 1. In case of addition
and subtraction, according to the Equation (2), we do not consider absolute
error σ

2 which is always zero. Moreover, in case of addition or subtraction, we
handle the absorption phenomena using the function ρ, defined in Equation (8).
Finally, we check if a zero or an overflow is generated by applying the function
Φ defined in Equation (7).

Remark 3. The functions Φ and ρ make the arithmetic operations on floating-
point slopes non associative and non distributive as in floating-point arithmetic.

3.3 Order Structure

In this section, we define the order structure of the set S of floating-point slopes.
In particular, this structure is based on the lattice of intervals. We recall that
the set of slopes S = I× I|V

ind| and an element s of S is a pair (M,S).
We define a partial order, the join and the meet operations between elements

of S. All these operations are defined as a component-wise application of the
associated operations of the interval domain except the meet operation which
needs extra care. We denote by &̇I the component-wise application of the interval
order. We can define a partial order &S between elements of S with:

∀(Mg,Sg), (Mh,Sh) ∈ S, (Mg ,Sg) %S (Mh,Sh) ⇔ Mg %I Mh ∧ Sg %̇I Sh . (9)

Interval Slopes as a Numerical Abstract Domain for Floating-Point Variables 195

�g ± h��
S
(θ�

) = Φ
(
(M̃g ± M̃h)(1 + [−μ, μ]),

(
S̃g ± S̃h

)
(1 + [−μ, μ])

)
with (M̃g , S̃g) = ρ(g | h) and (M̃h, S̃h) = ρ(h | g)

�g × h��
S
(θ�

) = Φ
(
M,

(
Sg × ι(Mh,Sh) + Mg × Sh

)
(1 + [−μ, μ])

)
with M = (Mg ×Mh)(1 + [−μ, μ]) +

[σ

2
,
σ

2

]
� g

h

��

S

(θ�
) = Φ

(
M,

Sg − Sh
Mg

Mh

ι(Mh,Sh)
(1 + [−μ, μ])

)

with M =
Mg

Mh
(1 + [−μ, μ]) +

[σ

2
,
σ

2

]
,

0 �∈ ι(Mh,Sh) and 0 �∈ Mh

�√g��
S
(θ�

) = Φ

(
M,

(
Sg√

Mg +
√

ι(Mg ,Sg)

)
(1 + [−μ, μ])

)
with M =

(√
Mg (1 + [−μ, μ])

)
+

[
−σ

2
,
σ

2

]
,

Mg $I [−∞, 0] = ⊥I and ι(Mg ,Sg) $I [−∞, 0] = ⊥I

Fig. 2. Abstract semantics of arithmetic expressions on floating-point slopes

The join operation S over floating-point slopes is defined in Equation (10). We
denote by ̇I the component-wise application of the operation I.

∀(Mg,Sg), (Mh,Sh) ∈ S,
(
Mg ,Sg

)
 S

(
Mh, Sh

)
=
(
M, S

)
with M = Mg I Mh and S = Sg ̇I Sh (10)

There is no direct way to define the greatest lower bound of two elements of S.
Indeed, two abstract values may represent the same concrete value but without
being comparable. Hence we only have a join-semilattice structure. The meet
operation (S over floating-point slopes is defined in Equation (11). It may require
a conversion into interval value. We consider that the result of the meet operation
introduces a new independent variable at index �. We denote by �I the strict
comparison of intervals and by ⊥S the least element of S.

∀(Mg,Sg), (Mh,Sh) ∈ S,
(
Mg ,Sg

)
$S

(
Mh, Sh

)
=⎧⎪⎪⎪⎨⎪⎪⎪⎩

⊥S if ι(Mg,Sg) $I ι(Mh,Sh) = ⊥I

(Mg ,Sg) if ι(Mg,Sg) �I ι(Mh,Sh)

(Mh,Sh) if ι(Mh,Sh) �I ι(Mg,Sg)

κ
(
ι(Mh,Sh) $�

I ι(Mg ,Sg)
)

otherwise

(11)

Note on the Widening Operator. In order to enforce the convergence of the
fixpoint computation, we can define a widening operation ∇S over floating-point

196 A. Chapoutot

slopes values. An advantage of our domain is that we can straightforwardly use
the widening operations defined for the interval domain denoted by∇I. We define
the operator ∇S in Equation (12) using the widening operator between intervals.
The notation ∇̇I represents the component-wise application of ∇I between the
components of the interval slopes vector.

∀(Mg,Sg), (Mh,Sh) ∈ S,
(
Mg ,Sg

)
∇S

(
Mh,Sh

)
=
(
M, S

)
with M = Mg ∇I Mh and S = Sg ∇̇I Sh (12)

4 Analysis of Floating-Point Programs

The goal of the static analysis of floating-point programs using the floating-
point slopes domain is to give for each control point and for each variable an
over-approximation given by FPS of the reachable set of floating-point numbers.
An abstract environment env� associates to each variable v ∈ V a value of S. The
set V is made of the sets V ind and Vdep of independent and dependent variables.

The semantics of an assignment �v := e�� in the abstract environment env�

is the update of the value associated to v with the result of the evaluation of
the arithmetic expression e using the arithmetic operations over FPS given in
Figure 2. As the FPS domain is related to the interval domain we can straight-
forwardly use the semantics of tests given in [15] to refine the value of variables.
Note that the semantics of tests is related to the meet operation defined in
Equation (11) which may conserve some relations between variables.

We define in Equation (13) the concretization function γS between the join-
semilattice 〈V → S, &̇S〉, with &̇S the point-wise lifting comparison, and the
complete lattice 〈℘(V → F),⊆〉.

γS

(
v �→ (M, S)

)
=

⋃
u∈VVind

{
v �→ i ∈ I : I = M + S ·

(
u −mid

(
VVind

)) }
(13)

In Theorem 1, we state the soundness of the floating-point analysis using FPS do-
main with respect to the concrete floating-point semantics. The later is based on
the concrete semantics of floating-point expressions �e�, see [24] for its definition.

Theorem 1. If the set of concrete environments env is contained in the ab-
stract environment env� then we have for all instruction i representing either an
assignment or a test:

�i�(env) ⊆ γS

(�i��
(env�

)

)
.

5 Case Studies

In this section, we present experimental results of the static analysis of numeri-
cal programs using our floating-point slope domain. We based our examples on
Matlab/Simulink models which are block-diagrams. We present as examples a
second order linear filter and a square root computation with a Newton method.

Interval Slopes as a Numerical Abstract Domain for Floating-Point Variables 197

Out1
1

Unit Delay3

z

1

Unit Delay2

z

1

Unit Delay1

z

1

Unit Delay

z

1

Gain2

0.7

Gain1

0.7

Gain

1.2

Add

In1
1

(a) Simulink model (b) Temporal evolution of the output

Fig. 3. Second order linear filter

We first give a quick view of Matlab/Simulink models. In a block-diagram,
each node represents an operation and each wire represents a value evolving
during time. We consider a few operations such that arithmetic operations, gain
operation that is multiplication by a constant, conditional statement (called
switch9 in Simulink), and unit delay block represented by 1

z which acts as a
memory. We can hence write discrete-time models thanks to finite difference
equations, see [3] for further details.

The semantics of Simulink models is based on finite-time execution. In other
words, a Simulink model is implicitly embedded in a simulation loop modelling
the temporal evolution starting from t = 0 to a given final time tend. The body
of this loop follows three steps: i) evaluating the inputs, ii) computing the out-
puts, iii) updating the state variables i.e. values of the unit delay blocks. The
static analysis of Simulink models transforms the simulation loop into a fixpoint
computation. In its simple form, see [3] for further details, we add an extra time
instant to collect all the behaviors from tend to t = +∞.

Linear Filter. We applied the floating-point slope domain on a second order
linear filter defined by: yn = xn + 0.7xn−1 + xn−2 + 1.2yn−1 − 0.7yn−2 . The
block-diagrams of this filter is given in Figure 3(a). We consider a simulation
time of 25 seconds that is we unfold the simulation loop 25 times before making
unions. The input belongs into the interval [0.71, 1.35]. The output of the filter is
given in Figure 3(b). We consider, in this example, that V ind contains the input
and the four unit delay blocks that is there are five independent variables. The
gray area represents all the possible trajectories of the output corresponding of
the set of inputs. Hence we can bound the output, without using the widening
operator, by the interval [0.7099, 9.8269].

Newton Method. We applied our domain on a Newton algorithm which com-
putes the square root of a number a using the following iterative sequence:
9 This operation is equivalent to the conditional expression: if pc(e0) then e1 else e2.

The predicate pc has the form e0 " c where c is a given constant and " ∈ {≥, >, �=}.

198 A. Chapoutot

Out1
1

Subsystem4

In1

In2

Out1

Subsystem3

In1

In2

Out1

Subsystem2

In1

In2

Out1

Subsystem1

In1

In2

Out1

Subsystem

In1

In2

Out1

In2
2

In1
1

(a) Main model

Out1
1

Gain1

2

Gain

0.5

Divide

In2
2

In1
1

(b) Content of a subsystem

Fig. 4. Simulink model of the square root computation

xn+1 = xn

2 + a
2xn

. We want to compute x5 that is we consider the result of the
Newton method after five iterations. The Simulink model is given in Figure 4(a)
and in Figure 4(b), we give the model associated to one iteration of the algo-
rithm. In this case, the set V ind is only made of one element. For the interval
input [4, 8] with the initial value equals to 2, we have the result [1.8547, 3.0442].

6 Related Work

Numerical domains have been intensively studied. A large part of numerical
domains concern the polyhedral representation of sets. For example, we have
the domain of polyhedron [10] and the variants [32,25,31,29,8,22,21,6,7]. We also
have the numerical domains based on affine relations between variables [19,12] or
the domain of linear congruences [16]. In general, all these domains are based on
arithmetic with ”good” properties such that rational numbers or real numbers. A
notable exception is the floating-point versions of the octagon domain [24] and of
the domain of polyhedron [5]. These domains give a sound over-approximation of
the floating-point behaviors but they are not empowered to model the behaviors
of floating-point arithmetic as we do.

Our FPS domain is more general than numerical abstract domains made for
a special purpose. For example, we have the domain for linear filters [11] or for
the numerical precision [14] which provide excellent results. Nevertheless as we
showed in Section 5, we can apply this domain in various situations without
losing too much precision.

7 Conclusion

We presented a new partially relational abstract numerical domain called FPS
dedicated to floating-point variables. It is based on Krawczyk and Neumaier’s
work [20] on interval expansion of rational function using interval slopes. This
domain is able to mimic the behaviors of the floating-point arithmetic such that
the absorption phenomenon. We also presented experimental results showing the
practical use of this domain in various contexts.

We want to pursue the work on the FPS domain by refining the the meet
operation in order to keep relations between variables. Moreover we would like
to model more closely the behaviors of floating point arithmetic, for example by
taking into account the hardware instructions [26, Sect. 3].

Interval Slopes as a Numerical Abstract Domain for Floating-Point Variables 199

As an other future work, we want to apply FPS domain for the analyses of
the numerical precision by combining the FPS domain and domains defined in
[23,4]. An interesting direction should be to make an analysis of the numerical
precision by comparing results of the FPS domain and results coming from the
other numerical domain which bound the exact mathematical behaviors such
that [5]. Hence we can avoid the manipulation of complex abstract values to
represent rounding errors such as in [23,14,4].

Acknowledgements. The author deeply thanks O. Bouissou, S. Graillat, T. Hi-
laire, D. Massé and M. Martel for their useful comments on the earlier versions of
this article. He is also very grateful to anonymous referees who helped improving
this work.

References

1. Bischof, C.H., Hovland, P.D., Norris, B.: Implementation of automatic differentia-

tion tools. In: Partial Evaluation and Semantics-Based Program Manipulation, pp.

98–107. ACM Press, New York (2002)

2. Boldo, S., Nguyen, T.: Hardware-independant proofs of numerical programs. In:

NASA Formal Methods Symposium (2010)

3. Chapoutot, A., Martel, M.: Abstract simulation: a static analysis of Simulink mod-

els. In: International Conference on Embedded Systems and Software, pp. 83–92.

IEEE Press, Los Alamitos (2009)

4. Chapoutot, A., Martel, M.: Automatic differentiation and Taylor forms in static

analysis of numerical programs. Technique et Science Informatiques 28(4), 503–531

(2009) (in French)

5. Chen, L., Miné, A., Patrick, C.: A sound floating-point polyhedra abstract domain.

In: Ramalingam, G. (ed.) APLAS 2008. LNCS, vol. 5356, pp. 3–18. Springer, Hei-

delberg (2008)

6. Chen, L., Miné, A., Wang, J., Cousot, P.: Interval polyhedra: an abstract domain

to infer interval linear relationships. In: Palsberg, J., Su, Z. (eds.) Static Analysis.

LNCS, vol. 5673, pp. 309–325. Springer, Heidelberg (2009)

7. Chen, L., Miné, A., Wang, J., Cousot, P.: An abstract domain to discover interval

linear equalities. In: Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS,

vol. 5944, pp. 112–128. Springer, Heidelberg (2010)

8. Clarisó, R., Cortadella, J.: The Octahedron abstract domain. Science Computer

Programming 64(1), 115–139 (2007)

9. Cousot, P., Cousot, R.: Abstract Interpretation: a unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In: Principles

of Programming Languages, pp. 238–252. ACM, New York (1977)

10. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables

of a program. In: Principles of Programming Languages, pp. 84–97. ACM Press,

New York (1978)

11. Férêt, J.: Static analysis of digital filter. In: Schmidt, D. (ed.) ESOP 2004. LNCS,

vol. 2986, pp. 33–48. Springer, Heidelberg (2004)

12. Ghorbal, K., Goubault, E., Putot, S.: The zonotope abstract domain Taylor1+. In:

Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 627–633. Springer,

Heidelberg (2009)

200 A. Chapoutot

13. Goubault, E.: Static analyses of floating-point operations. In: Cousot, P. (ed.) SAS

2001. LNCS, vol. 2126, pp. 234–259. Springer, Heidelberg (2001)

14. Goubault, E., Putot, S.: Static analysis of numerical algorithms. In: Yi, K. (ed.)

SAS 2006. LNCS, vol. 4134, pp. 18–34. Springer, Heidelberg (2006)

15. Granger, P.: Improving the results of static analyses programs by local decreasing

iteration. In: Shyamasundar, R.K. (ed.) FSTTCS 1992. LNCS, vol. 652, pp. 68–79.

Springer, Heidelberg (1992)

16. Granger, P.: Static analysis of linear congruence equalities among variables of a

program. In: Abramsky, S. (ed.) CAAP 1991 and TAPSOFT 1991. LNCS, vol. 493,

pp. 169–192. Springer, Heidelberg (1991)

17. Higham, N.: Accuracy and stability of numerical algorithms, 2nd edn. Society for

Industrial and Applied Mathematics, Philadelphia (2002)

18. IEEE Task P754: IEEE 754-2008, Standard for Floating-Point Arithmetic. Insti-

tute of Electrical, and Electronic Engineers (2008)

19. Karr, M.: Affine relationships among variables of a program. Acta Informatica 6,

133–151 (1976)

20. Krawczyk, R., Neumaier, A.: Interval slopes for rational functions and associated

centered forms. SIAM Journal on Numerical Analysis 22(3), 604–616 (1985)

21. Laviron, V., Logozzo, F.: Subpolyhedra: a (more) scalable approach to infer linear

inequalities. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009. LNCS, vol. 5403,

pp. 229–244. Springer, Heidelberg (2009)

22. Logozzo, F., Fähndrich, M.: Pentagons: a weakly relational abstract domain for

the efficient validation of array accesses. In: Symposium on Applied Computing,

pp. 184–188. ACM, New York (2008)

23. Martel, M.: Semantics of roundoff error propagation in finite precision computa-

tions. Higher Order and Symbolic Computation 19(1), 7–30 (2004)

24. Miné, A.: Relational abstract domains for the detection of floating-point run-time

errors. In: Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 3–17. Springer,

Heidelberg (2004)

25. Miné, A.: The Octagon abstract domain. Journal of Higher-Order and Symbolic

Computation 19(1), 31–100 (2006)

26. Monniaux, D.: Compositional analysis of floating-point linear numerical filters. In:

Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 199–212.

Springer, Heidelberg (2005)

27. Moore, R.: Interval analysis. Prentice-Hall, Englewood Cliffs (1966)

28. Muller, J.M., Brisebarre, N., De Dinechin, F., Jeannerod, C.P., Lefèvre, V.,

Melquiond, G., Revol, N., Stehlé, D., Torres, S.: Handbook of floating-point arith-

metic. Birkhauser, Boston (2009)

29. Péron, M., Halbwachs, N.: An abstract domain extending difference-bound matri-

ces with disequality constraints. In: Cook, B., Podelski, A. (eds.) VMCAI 2007.

LNCS, vol. 4349, pp. 268–282. Springer, Heidelberg (2007)

30. Rump, S.: Expansion and estimation of the range of nonlinear functions. Mathe-

matics of Computation 65(216), 1503–1512 (1996)

31. Sankaranarayanan, S., Colon, M., Sipma, H., Manna, Z.: Efficient strongly rela-

tional polyhedral analysis. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006.

LNCS, vol. 3855, pp. 111–125. Springer, Heidelberg (2005)

32. Simon, A., King, A., Howe, J.: Two variables per linear inequality as an abstract do-

main. In: Leuschel, M. (ed.) LOPSTR 2002. LNCS, vol. 2664, pp. 71–89. Springer,

Heidelberg (2003)

A Shape Analysis for Non-linear Data Structures

Renato Cherini, Lucas Rearte, and Javier Blanco

FaMAF, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina

Abstract. We present a terminating shape analysis based on Separation

Logic for programs that manipulate non-linear data structures such as

trees and graphs. The analysis automatically calculates concise invariants

for loops, with a level of precision depending on the manipulations ap-

plied on each program variable. We report experimental results obtained

from running a prototype that implements our analysis on a variety of

examples.

1 Introduction

Shape Analysis is a form of static code analysis for imperative programs using
dynamic memory that attempts to discover and verify properties of linked data
structures such as lists, trees, heaps, etc. A shape analysis is intended not only to
report null-pointer dereferences or memory leaks, but also to analyze the validity
of non trivial properties about the shape of the dynamic structures in memory.

There exists in the literature a variety of shape analysis based on different the-
ories, for instance: 3-valued logic ([22,28]), monadic second order logic ([24,20]),
and Separation Logic ([12,4,25,11]). In particular the latter received recently
great attention due to the advantages of local reasoning enabled by their logi-
cal framework ([27,26]), which leads to modular analysis that can be relatively
easily extended to support large-scale programs ([7,3,6,33,15]), concurrent pro-
gramming ([16,31,9,8]) and object-oriented programming ([13,29]).

This family of shape analysis is based on a symbolic execution of the program
over abstract states specified by formulæ of a restricted subset of Separation
Logic, including predicates describing linear data structures, possibly combined
in intricate ways, such as linked lists, doubly linked lists, etc. In this article we
explore the possibility of extending the shape analysis of [12] to support non-
linear data structures such as trees and graphs. At a first glance, we can foresee
some difficulties:

– The use of a naive predicate to describe the structures, like the usual tree
predicate of Separation Logic, would lead to a unmanageable proliferation
of occurrences of predicates in formulæ, caused by the inherent multiple
recursion. In the case of graphs, there is no well established predicate in the
literature which adequately specifies them.

– Algorithms over trees and graphs are often more complex than their coun-
terparts on lists. Usually they involve intensive pointer manipulation and
nested control structures. Algorithms like the Schorr-Waite graph traversal

R. Cousot and M. Martel (Eds.): SAS 2010, LNCS 6337, pp. 201–217, 2010.
� Springer-Verlag Berlin Heidelberg 2010

202 R. Cherini, L. Rearte, and J. Blanco

are usually proposed as challenges for any new verification methodology.
Their complexity imposes strong requirements for precision in calculating
the loop invariants needed to verify interesting properties.

– Every particular path in the traverse of a structure is usually relevant to the
validity of interesting properties satisfied by a given algorithm. However the
multiple links of non-linear structure nodes triggers an exponential growth
of the number of paths in traversing such structures. This raises the need for
a balance between precision and abstraction to prevent an excessive growth
in the number of formulæ composing an abstract state.

The contribution of this article is a terminating shape analysis which, given a
precondition for a program, automatically computes a postcondition and invari-
ants for each program loop. This analysis adjusts the level of abstraction in
the computation of invariants, taking into account the information requirements
for the the manipulation applied to each variable. Thus, the calculated invari-
ants turn out to be compact and accurate enough in most practical cases. In
order to define the analysis we have introduced a linear recursive predicate for
the description of (families of) binary trees, leading to simple specifications of
partial data structures ocurring at intermediate points in the execution of an
iterative algorithm. This predicate can be easily adapted to deal with other data
structures, such as threaded trees, balanced trees, graphs, etc.

The article is organized as follows. In section 2 we adapt the semantic setting
from [12] to our purposes. First, we introduce the concrete memory model and
semantics that defines the programming language for algorithms manipulating
binary trees. Then we present an executable intermediate semantics that consid-
ers programs as abstract state transformers. Each abstract state consists of a set
of restricted formulæ of Separation Logic called Symbolic Heaps, representing
all concrete states which satisfy any of these formulæ. In section 3 we extend
this semantics by introducing an abstraction phase for computing loop invari-
ants, defining an executable and terminating abstract semantics. In section 4 we
briefly present an extension of our framework to the domain of graphs. In sec-
tion 5 we show the experimental results of our analysis on a variety of examples.
Finally, in section 6 we discuss the conclusions and related work.

2 Semantic Settings

2.1 Concrete Semantics

We assume the existence of a finite set Vars of program variables x, y, . . ., with
values in Locations∪{nil}. A state is a pair consisting of a (total) function Stack
from program variables to values, and a partial function Heap mapping allocated
memory adresses to triples of values (l, r, v), representing a binary tree node with
value v and links to left and right subtrees l and r respectively.

Values ⊇ Locations ∪ {nil} Heaps
.
= Locations ⇀f (Values, Values, Values)

Stacks
.
= Vars → Values States

.
= Stacks × Heaps

A Shape Analysis for Non-linear Data Structures 203

[[x]]e.s
.
= s.x

[[e]]e.s = v

(s, h), x := e � (s|x → v, h)

[[y]]e .s = l h.l.i = v

(s, h), x := y.i � (s|x → v, h)

[[y]]e.s = l [[e]]e.s = v l ∈ dom.h

(s, h), y.i := e � (s, h|l.i → v)

[[nil]]e.s
.
= nil

l /∈ dom.h

(s, h), new(x) � (s|x → l, h|l → (v1, v2, v3)

[[x]]e.s = l l ∈ dom.h

(s, h), free(x) � (s, h − l)

[[x]]e.s /∈ dom.h

(s, h), a(x) � �

Fig. 1. Concrete semantics of expressions and atomic commands

We use a simple imperative programming language with explicit heap manipu-
lation commands for lookup, mutation, allocation and disposing, given by the
following grammar, where x is a program variable, and 0 ≤ i ≤ 2:

e ::= x | nil | 0 | 1 . . . Expressions

eq ::= e = e | e �= e (In)Equalities

b ::= (eq ∧ . . . ∧ eq) ∨ . . . ∨ (eq ∧ . . . ∧ eq) DNF Boolean Expressions

a ::= x := e | x := x.i | x.i := e | new(x) | free(x) Atomic Commands

p ::= a | p; p | while b do p | if b then p else p Compound Commands

The concrete semantics is given by continuous functions [[p]]c : Dc → Dc for each
program p on the complete lattice Dc defined as the topped powerset of States,
i.e. Dc

.= P(States∪ {'}). The distinguished element ' represents an execution
that terminates abnormally with a memory fault. The order of the lattice is
given by set inclusion ⊆, taking ' as the top element and equating all sets that
contain it.

For each atomic command a we present a relation � ⊆ State × State ∪ {'}
in figure 1. Notation: We use a(x) to denote an atomic command that accesses the

heap cell x, period (.) for function application, f |x → v for the update of function at

x with new value v, dom.f and img.f for the domain and the image of a function

f respectively, and f − x for the elimination of x from the partial function f . The
relation � mimics the standard operational semantics for Separation Logic [27],
and can be easily extended to a function a� : Dc → Dc:

a�.S .= {σ′ | ∃σ ∈ S · σ, a � σ′ or (σ = σ′ = ')}

Thus concrete semantics for atomic command a is defined as [[a]]c = a�. This
semantics is extended to compound commands as usual:

[[p; p′]]c
.
= [[p′]]c ◦ [[p]]c

[[if b then p else p′]]c
.
= ([[p]]c ◦ filter.b) ∪ ([[p′]]c ◦ filter.¬ b)

[[while b do p]]c
.
= λS · filter.¬ b ◦ (μS′ · S ∪ ([[p]]c ◦ filter.b).S′)

where we use μ to denote the minimal fixed point operator, ◦ the functional
composition, and ¬ a meta-operation that transforms a boolean expression b in
its negation in disjunctive normal form. Function filter removes states that are
inconsistent with the truth value of boolean expression b of guarded commands.

204 R. Cherini, L. Rearte, and J. Blanco

s |= true always

s |= eq iff [[eq]]e.s
s |= Π1 ∧ Π2 iff s |= Π1 and s |= Π2

(s, h) |= emp iff h = ∅
(s, h) |= junk iff h �= ∅
(s, h) |= true always

(s, h) |= x �→ l, r, v iff h = {([[x]]e .s, ([[l]]e .s, [[r]]e.s, [[v]]e .s))}
(s, h) |= Σ1 ∗ Σ2 iff there exist h1, h2 such that h1 ∩ h2 = ∅ and h = h1 ∪ h2

and (s, h1) |= Σ1 and (s, h2) |= Σ2

(s, h) |= Π � Σ iff there exists v′ such that s|x′ → v′ |= Π and (s|x′ → v′, h) |= Σ
where x′ is the (sequence of) primed variable(s) in Π � Σ
and v′ is a (sequence of) fresh value(s).

Fig. 2. Semantics of Symbolic Heaps

2.2 Symbolic Heaps and Intermediate Semantics

In order to define intermediate semantics, it is necessary to extend the concrete
state model, assuming the existence of an infinite set Vars’ of primed variables.
These variables are implicitly existentially quantified in the semantics and are
intended to be used only in formulæ and not within the program text.

A symbolic heap Π � Σ consists of a formula Π of pure predicates about equal-
ities and inequalities of variables, and a formula Σ of spatial predicates about
the heap, according to the following grammar:

e ::= x | x′ | nil | 0 | 1 . . . Expressions

ms ::= {|e, e, . . . , e|} Multiset Expressions

Π ::= true | eq | Π ∧ Π Pure Predicates

Σ ::= emp | true | junk | v �→ e, e, e | trees.ms.ms | Σ ∗ Σ Heap Predicates

SH ::= Π � Σ Symbolic Heaps

where x ∈ Vars, x′ ∈ Vars’, v ∈ Vars ∪ Vars’, eq is defined as in the previ-
ous section, and the expressions ms represent constant multisets of expressions.
Notation: we use metavariables C,D, E ,F , . . . to denote multisets, � for the sum of

multisets, ∅ for the empty multiset, ⊕ for insertion of an item instance, � for deletion

of all item instances, ∈∈ for membership, and ∈/∈ for non-membership.

As symbolic heaps represent a fragment of Separation Logic, its semantics with
respect to concrete state model is mostly standard. We present it in figure 2,
except for trees predicate. We briefly discuss the spatial component; interested
reader should refer to [27] for more details. The predicate emp specifies that no
dynamic memory is allocated, whereas junk states there is garbage, consisting in
some allocated but inaccessible cell. The predicate true is valid in any heap and
it will be heavily used to indicate the possible existence of garbage. ‘Points-to’
predicate x �→ l, r, v specifies the heap consisting of a single memory cell with
address x and value (l, r, v). The spatial conjunction Σ1 ∗ Σ2 is valid if the heap
can be divided into two disjoint subheaps satisfying Σ1 and Σ2 respectively.

A Shape Analysis for Non-linear Data Structures 205

The predicate trees is intended to define (a family of) binary trees. More
generally, trees.C.D defines a family of possible partial trees with roots in C and
dangling pointers in D. On the one hand, a dangling pointer of a partial tree can
point to an internal node of another tree. On the other hand, a dangling pointer
can be shared by two or more partial trees. Thus, trees.C.D defines a binary
node structure which allows the possibility of sharing, but only restricted to the
heap cells mentioned by D. More precisely, trees.C.D is defined by the least
predicate satisfying the following equations of the standard Separation Logic:

trees.∅.∅ .
= emp

trees.∅.nil⊕D .
= trees.∅.D

trees.x⊕C.D .
= ((x = nil ∨ x∈∈D) ∧ trees.C.(x�D)) ∨

((x �= nil ∧ x∈/∈D) ∧ (∃l, r, v · x �→ l, r, v ∗ trees.l⊕ r⊕C.D))

The predicate trees is useful to specify the intermediate structures that occur
during loop iteration and it satisfies some nice syntactic properties. The possible
sharing is manageable due to the kind of formulæ that usually specify the pre-
conditions of interest. The relation to the standard predicate tree1 occurring in
the literature of Separation Logic, is quite straightforward:

Lemma 1. The following is a valid formula in Separation Logic:

trees.{|x, y, . . . , z|}.∅ ⇔ tree.x ∗ tree.y ∗ . . . ∗ tree.z

Analogously to the concrete semantics, the intermediate semantics is defined on
the lattice Da

.= P(SH ∪ '), where SH denotes the set of symbolic heaps. For
each atomic command a transition relation � ⊆ SH× SH ∪ {'} is defined:

Π � Σ, x := e � Π ′ ∧ x = e/x←x′ � Σ′ Π � Σ, new(x) � Π ′ � Σ′ ∗ x �→ e′

g = e|i → f

Π � Σ ∗ x �→ e, x.i := f � Π � Σ ∗ x �→ g
Π � Σ ∗ x �→ e, free(x) � Π � Σ

f = e.i/x ←x′

Π � Σ ∗ y �→ e, x := y.i � Π ′ ∧ x = f � Σ′ ∗ (y �→ e)/x←x′

Notation: we denote by e a triple of expressions, by e′ a triple of quantified fresh

variables, and by P/x ← y the syntactic substitution of y for x in P . In every case

Π ′ = Π/x←x′ , and Σ′ = Σ/x← x′ , where x′ ∈ Vars’ is a fresh variable.

Commands for mutation, lookup and disposing require that the pre-state ex-
plicitly indicates the existence of the cell to be dereferenced. To ensure this, we
define a function rearr.x : Da → Da that given a variable of interest x tries to
reveal the memory cell pointed to by x in every symbolic heap in certain abstract

1 This is defined as the least predicate that satisfies the equation

tree.x ⇔ (x = nil ∧ emp) ∨ (∃l, r, v · x �→ l, r, v ∗ tree.l ∗ tree.r)

206 R. Cherini, L. Rearte, and J. Blanco

Π � Σ � x = nil if (x ≡ nil) or (Π = Π ′ ∧ x = y and Π ′ � Σ � y = nil)
Π � Σ � x = y if (x ≡ y) or (Π = Π ′ ∧ x = z and Π ′ � Σ � z = y)

Π � Σ � x �= nil if (Π = Π ′ ∧ x �= nil) or (Σ = Σ′ ∗ y �→ e and Π � Σ � x = y)

or (Π = Π ′ ∧ z = nil and Π ′ � Σ � x �= z)

or (Π = Π ′ ∧ x = y and Π ′ � Σ � y �= nil)
Π � Σ � x �= y if (Π = Π ′ ∧ x �= y) or (Π = Π ′ ∧ x = z and Π ′ � Σ � z �= y)

or (Π � Σ � Cell(x) ∗ Cell(y) and Π � Σ � x �= nil ∨ y �= nil)
Π � Σ � x∈∈∅ never

Π � Σ � x∈∈{|e1, .., en|} if Π � Σ � x = ei for some i such that 1 ≤ i ≤ n
Π � Σ � x∈/∈∅ always

Π � Σ � x∈/∈{|e1, .., en|} if Π � Σ � x �= ei for every i such that 1 ≤ i ≤ n
Π � Σ � eq1 ∧ . . . ∧ eqn if Π � Σ � eq1 and . . . and Π � Σ � eqn

Π � Σ � eq1 ∨ . . . ∨ eqn if Π � Σ � eq1 or . . . or Π � Σ � eqn

Π � Σ � False if (Σ = Σ′ ∗ x �→ e and Π � Σ � x = nil)
or (Σ = Σ′ ∗ P (x) ∗ P (y) and Π � Σ � x = y ∧ x �= nil)

Π � Σ � Cell(x1) ∗ . . . ∗ Cell(xn) if Σ = Σ′ ∗ P (y1) ∗ . . . ∗ P (yn)

and Π � Σ′ � x1 = y1 ∧ . . . ∧ xn = yn

where P (x) ≡ x �→ e or (P (x) ≡ trees.x⊕C.D and Π � Σ′ � x∈/∈D)

Fig. 3. Syntactic Theorem Prover �

state. Function rearr.x applies rewrite rules to every Π � Σ until x �→ e occurs in
Σ; otherwise it returns {'} when no rule can be applied.

Rewrite rules try to reveal a memory cell through equalities of variables and
the unfolding of trees predicates:

Π � Σ � x = y
[Eq]

Π � Σ ∗ y �→ e =⇒ Π � Σ ∗ x �→ e

Π � Σ � x = y ∧ y �= nil ∧ y∈/∈D
[Unfold]

Π � Σ ∗ trees.y⊕C.D =⇒ Π � Σ ∗ x �→ l′, r′, v′ ∗ trees.l′ ⊕ r′ ⊕C.D

where l′, r′, v′ are fresh variables. The conditions for application of these rules
require the ability to decide on the validity of certain predicates, denoted by
�. In figure 3 we present a small and simple syntactic theorem prover that in
some circumstances allows to derive the validity of predicates like (in)equality of
expressions, (non-)membership in a multiset, etc. Notation: we use ≡ for syntactic

equality; x, y, z, xi, yi are variables in Var ∪ Var’.

Taking � defined analogously as in the previous section, we define the inter-
mediate semantics for an atomic command a as:

[[a(x)]]i
.= a(x)� ◦ rearr.x

The semantics of compound statements follows the same pattern as the concrete
semantics, leaving only the function filter.b to be defined. Recall that a program
guard b is a disjunction of terms eqs that are conjunctions of (in)equalities eq.
If b

.= eqs1 ∨ . . . ∨ eqsn we define the function filter.b as:

filter.b.S
.
= {� | � ∈ S} ∪

⋃
1≤i≤n

{Π ∧ eqsi � Σ | Π � Σ ∈ S and Π � Σ �� ¬eqsi}

A Shape Analysis for Non-linear Data Structures 207

Rewriting rules defining rearr represent valid semantic implications. But although
the algorithm for � is consistent, clearly it is not complete. Therefore, on some
circustamces rearr will not be able to reveal the existence of a particular mem-
ory cell with the consequence that certain executions of intermediate semantics
finish in {'}, even when there is no memory violation according to the concrete
semantics. To establish this, we need to define a relation between both semantics
using a concretization function γ : P(SH ∪ {'})→ P(States ∪ {'}):

γ.S
.=
{
{'} if ' ∈ S
{(s, h) | ∃Π � Σ ∈ S · (s, h) |= Π � Σ} otherwise

Extending the semantics |= for any predicate P of figure 3 in the obvious way,
we can prove the following results.

Lemma 2. (Soundness of =⇒)

1. If Π � Σ � P , then (s, h) |= Π � Σ implies (s, h) |= P for all s, h.
2. If Π � Σ =⇒ Π ′ � Σ′, then (s, h) |= Π � Σ implies (s, h) |= Π ′ � Σ′ for all s, h.

Theorem 3. The intermediate semantics is a sound over-approximation of the
concrete semantics: [[p]]c.(γ.S) ⊆ γ.([[p]]i.S) for all S ∈ P(SH ∪ {'}).

3 Abstract Semantics: The Analysis

The intermediate semantics is executable but has no mechanism to facilitate the
calculation of loop invariants and ensure termination. Generally, the execution
of a loop dereferencing a variable x generates states with a large number of
formulæ which contain an arbitrary number of terms of the form x′ �→ l′, r′, v′.
For example, the execution of the intermediate semantics on an algorithm that
iteratively uses variable p to run through a binary search tree (BST) on the
left link searching for its lowest value, starting from the expected precondition
{true � trees.{|x|}.∅}, generates statements of the form:

{p = x � trees.{|x|}.∅,
true � x �→ p, r′1, v

′
1 ∗ trees.{|p, r′1|}.∅,

true � x �→ l′1, r
′
1, v

′
1 ∗ l′1 �→ p, r′2, v

′
2 ∗ trees.{|p, r′1, r

′
2|}.∅,

true � x �→ l′1, r
′
1, v

′
1 ∗ l′1 �→ l′2, r

′
2, v

′
2 ∗ l′2 �→ p, r′3, v

′
3 ∗ trees.{|p, r′1, r

′
2, r

′
3|}.∅, . . .

To handle this situation, we define an abstraction function abs : Da → Da,
which aims at simplifying the formulæ of a state, replacing concrete information
about the shape of the heap by a more abstract but still useful one. The use of
such function is intended to facilitate the convergence of fixed-point computation
which represents the semantics of a loop. Our abstract semantics [[]]a applies the
function abs at the entry point and after each iteration of a loop. More precisely,
the only change with respect to the intermediate semantics is:

[[while b do p]]a
.= (λS · filter.¬ b ◦ (μS′ · abs.(S ∪ ([[p]]a ◦ filter.b).S′))) ◦ abs

208 R. Cherini, L. Rearte, and J. Blanco

Σ
.
= Σ′ ∗ trees.C.x⊕D ∗ trees.y⊕E .∅ Π � Σ � x = y

[AbsTree1]
Π � Σ =⇒ Π � Σ′ ∗ trees.C.D ∗ trees.E .∅

Π � Σ � x = y Π � Σ � Cell(e) ∨ e = nil for all e∈∈F
[AbsTree2]

Π � Σ ∗ trees.C.x⊕D ∗ T.y ⊕E .F =⇒ Π � Σ ∗ trees.C � E .D � F

Π � Σ ∗ trees.C.D =⇒ Π � Σ ∗ trees.nil�C.nil�D [AbsTree3]

Π � Σ � x = y
[AbsTree4]

Π � Σ ∗ trees.x⊕C.y ⊕D =⇒ Π � Σ ∗ trees.C.D

Σ
.
= Σ′ ∗ x �→ l, r, v ∗ trees.y ⊕C.∅ Π � Σ � l = y ∧ x �= r

[AbsArrow1]
Π � Σ =⇒ Π � Σ′ ∗ trees.{|x|}.{|r|} ∗ trees.C.∅

Σ
.
= Σ′ ∗ x �→ l, r, v ∗ T.y⊕C.D Π � Σ � l = y ∧ x∈/∈ r⊕D ∧ y∈/∈D

[AbsArrow2]
Π � Σ =⇒ Π � Σ′ ∗ trees.x⊕C.r⊕D

Fig. 4. Abstraction rules (first stage)

In this way, although the domain of abstract semantics remains P(SH ∪'), the
semantics of a cycle is calculated over a subset of states which, as we will see in
the following sections, ensure the convergence of fixed-point calculation.

The function abs is given by a set of rewriting rules. The more interesting
ones are presented in Figure 4. Notation: we use T.C.D to denote either a term

trees.C.D or a term x �→ l, r, v with C = {|x|} and D = {|l, r|}. The rules AbsArrow
abstract predicates ‘points-to’ into predicates trees, forgetting the number of
nodes that form the tree-like structure. The rules are presented for the left
link being completely analogous for the right one. The rules AbsTree1-2 combine
trees forgetting intermediate points between them. The conditions of application
prevent the formation of cycles within the structure thus preserving the tree-like
characteristic. The rules AbsTrees3-4 remove entry and outlet points which do
not provide relevant information about the heap.

Recalling the example above, if we apply rules AbsArrow1, AbsTree2 and Ab-
sTree4 in the second iteration of the fixed point calculation, we obtain the in-
variant:

{p = x � trees.{|x|}.∅, true � trees.{|x|}.{|p|} ∗ trees.{|p|}.∅}

3.1 Relevance of Variables and Abstraction

We begin by defining some terminology. We say that two terms T1.C.D and
T2.E .F of a symbolic heap form a chain link if there exists an x∈∈D such that
x∈∈E . A sequence of terms T1, T2, . . . , Tn is a chain if Ti and Ti+1 form a chain
link for all 1 ≤ i < n. The application of abstraction rules involves losing two
kinds of information about the heap: first, specific information on a cell refer-
enced by some variable; second, the information about the variable that defines

A Shape Analysis for Non-linear Data Structures 209

a link between two terms. For example both cases ocurr in rule AbsArrow1, for
x and y respectively. If an abstracted variable x (or y) is dereferenced at a later
point of execution, this data loss can result in the impossibility of continuing
a non-trivial analysis. This is either because it is not possible to reveal the cell
pointed to by x, since application conditions for rearr rules are not granted any-
more; or because the trace of the variable y as the midpoint of the tree-like
structure is lost.

In general, the shape analysis derived from Separation Logic apply abstrac-
tion rules when the variable defining a link is quantified, but a similar approach
is not adequate for our case. On the one side, it could become too strong as
we have discussed before. On the other hand, it could be too weak, resulting
in unnecessarily precise formulæ and therefore larger invariants. Keeping track
of a chain of two, three or more links do not seem a problem in the case of
linear structures. But in treating multilinked structures, given the many possi-
ble combinations, the number of formulæ needed to describe this chain grows
exponentially. Although from the standpoint of correctness this is not a prob-
lem, to keep reduced abstract states speeds up the analysis and enables better
understanding of the obtained invariants and postconditions.

The application of our abstraction rules is relative to a relevance level assigned
to each variable. The level of a variable at a certain point of execution depends
on the kind of commands involving it, which are intended to be executed after
this point.

The very simple static analysis relev is performed on a program, and returns
a function f : Var → Nat0 which assigns a value to each variable, encoding the
foreseen needed information for it. Considering a program as a semicolon sepa-
rated sequence of commands, relev updates a function f initialized in 0 for each
variable, according to:

relev.f.(x := e; ps) = (relev.f.ps |x → 0)↑y → 2 forall y ∈ e
relev.f.(x := y.i; ps) = (relev.f.ps |x → 0)↑y → 3

relev.f.(x.i := e; ps) = (relev.f.ps↑x → 4)↑y → 2 forall y ∈ e
relev.f.(free(x); ps) = relev.f.ps↑x → 3

relev.f.(new(x); ps) = relev.f.ps |x → 0

relev.f.(if b then ps1else ps2; ps) =

(relev.f.(ps1 ++ ps) max relev.f.(ps2 ++ ps))↑y → 2 forall y ∈ b
relev.f.(while b do ps1; ps) =

(relev.f.(ps1 ++ ps) max relev.f.ps)↑y → 2 forall y ∈ b
relev.f.ε = f

Notation: f |x → n is the function update previously presented, ε is the empty sequence,
++ denotes concatenation, and operators ↑and max are defined as:

(f ↑y → n).x
.
=

{
f.x if x �= y or f.x ≥ n
n otherwise

(f max g).x
.
=

{
f.x if f.x ≥ g.x
g.x otherwise

Thus, the relevance level of x in Π � Σ is given by the highest value according to
f within its equivalence class induced by terms x = y in Π . Level 1 is reserved
for variables of precondition and level -1 for quantified variables.

210 R. Cherini, L. Rearte, and J. Blanco

Π ∧ x = e � Σ =⇒ (Π � Σ)/x← e [EqElim] Π ∧ e1 �= e2 � Σ =⇒ Π � Σ [NeqElim]
when relev computes for x a value < 1 when no variable with relevance level

greater than 0 appears in e1, e2

Π � Σ ∗ trees.x′ ⊕C.∅ =⇒ Π � Σ ∗ trees.C.∅ ∗ true [Gb1]

Π � Σ ∗ T.x′ ⊕C.D =⇒ Π � Σ ∗ junk/true [Gb2]

Π � Σ ∗ trees.C.x′ ⊕D =⇒ Π � Σ ∗ true [Gb3]

Π � Σ ∗ trees.C.D ∗ trees.C.D =⇒ Π � Σ [Gb4]

Π � Σ ∗ x′ �→ y′, r, v ∗ T.y′ ⊕C.∅ =⇒ Π � Σ ∗ x′ �→ y′, r, v ∗ T.C.∅ ∗ true [ChBrk1]

Π � Σ ∗ x′ �→ y′, r, v ∗ T.y′ ⊕C.D =⇒ Π � Σ ∗ x′ �→ y′, r, v ∗ junk/true [ChBrk2]

Π � Σ ∗ trees.C.y′ ⊕D ∗ T.y′ ⊕E .F =⇒ Π � Σ ∗ trees.C.y′ ⊕D ∗ true [ChBrk3]

Π ∧ true � Σ =⇒ Π � Σ [Zero1] Π � Σ ∗ emp =⇒ Π � Σ [Zero2]

Π ∧ eq ∧ eq � Σ =⇒ Π ∧ eq � Σ [Idemp1]

Π � Σ ∗ true ∗ true =⇒ Π � Σ ∗ true [Idemp2]

Π � Σ ∗ junk ∗ junk/true =⇒ Π � Σ ∗ junk [Junk]

Fig. 5. Abstraction rules: second stage (top), third stage (bottom)

In our analysis, the relevance level required in each rule is parameterized,
allowing us to adjust the abstraction performed. Possibly different requirements
are impossed on variables being abstracted, depending on whether they define a
link or they occur only as an address of a ‘points-to’ term. Abstracting variables
with relevance level up to 2 in both cases, resulted in a safe choice to effectively
carry out our experiments. Some algoritms allow higher limits, allowing more
compact invariants and shorter execution times.

3.2 Quantified Variables and Termination

Quantified variables play a fundamental role in the completeness of the analysis
induced by [[]]a, since they can be used to generate an infinite set of formulæ
as the image of abs. The way to generate these formulæ is by forming chains
of terms Ti of arbitrary length, for which it is necessary to have an arbitrary
large number of links formed with quantified variables. In circumstances where
img.abs is infinite, the computation of the minimum fixed point that represents
the semantics of a cycle cannot be carried out effectively.

However, abs consists of a number of rules that limit the number of quantified
variables and ensures the finiteness of its image and therefore the convergence of
fixed point calculation. The analysis is organized in three stages, each of which
involve the exhaustive application of rewriting rules.

The first stage is defined by the abstraction rules previously presented (Fig. 4).
If the limit imposed over the relevance level of variables to be abstracted is

A Shape Analysis for Non-linear Data Structures 211

greater than zero, the application of these rules thereby limit the length of the
chains by removing a significant number of quantified variables, when it is pos-
sible to ensure the absence of cycles in the structure.

In a second stage, the top rules of Figure 5 are applied. Notation: with junk/true

we mean junk in the case that term T is a predicate ‘points-to’, and true if it is a predi-

cate trees. Essentially, these rules simplify the situations in which it is impossible
to ensure a tree-like structure, and therefore the rules of the first stage do not
apply. The rules ChBrk have the application condition x′, y′ /∈ Σ and prevent
the formation of arbitrarily long chains by removing links formed with irrelevant
quantified variables. Every Gb rule has the application condition x′ /∈ Π � Σ. The
rules Gb1-2 remove all chains that do not start with program variables. Rules
Gb3-4 bound chains starting with a term trees.C.D, either by eliminating terms
containing quantified variables among its outlets, or by eliminating multiples
ocurrences of a term, since they do not lead to an inconsistency only if C = D
and therefore trees.C.D = emp.

Finally, in the third stage the bottom rules of Figure 5 are applied. They col-
lect all garbage in one predicate junk or true, and delimit the number of pure
formulæ (along with rules EqElim and NeqElim of the previous stage). Further-
more, at this stage two or more formulæ differing only in the name of quantified
variables are reduced to one instance; and all inconsistent symbolic heaps that
can be detected sintactically (denoted Π � Σ � False in fig. 3) are eliminated.
As a consecuence, the number of chains that begin with a term x �→ l, r, v (x a
program variable) is bounded. In this way it is possible to prove:

Lemma 4. (Termination of abs)

1. img.abs is finite.
2. The set of abstraction rules is strongly normalizing, i.e. every sequence of

rewrites eventually terminates.

The abstraction rules are not confluent, i.e. the obtained normal form after a
terminating sequence of rewrites is not unique. The application order of the first
stage rules is relevant as AbsArrow rules loose information that could be necessary
to derive the application conditions of other rules. Our implementation obey
the presented order. However, we do not observe significant differences when
changing the application order in each stage.

The soundness of the rewriting rules of the previous section can be extended
to include the abstraction rules:

Lemma 5. (Soundness of =⇒)

If Π � Σ =⇒ Π ′ � Σ′, then (s, h) |= Π � Σ implies (s, h) |= Π ′ � Σ′ for all s, h

Previous results guarantee that the analysis given by the execution of the ab-
stract semantics is sound and always terminates.

Theorem 6. The abstract semantics is a sound over-approximation of the con-
crete semantics: [[p]]c.(γ.S) ⊆ γ.([[p]]a.S) for all S ∈ P(SH∪ {'}). Moreover, the
algorithm defined by [[]]a is terminating.

212 R. Cherini, L. Rearte, and J. Blanco

4 Managing Graphs

It is possible to use similar ideas to those underlying the predicate trees to
describe general graph structures that includes cycles and sharing. The new
predicate graph.C.D specifies with C the entry points of the graph, but unlike
trees uses the multiset D to account for the dangling pointers that could point to
nodes within the structure. Thus, these parameters resemble the ideas normally
used to reason about graph algorithms: while C represents the entry points of
paths to traverse, D realizes ‘already visited’ nodes. For a binary node graph,
the formal semantics of graph is given by the least predicate satisfying:

graph.∅.D .
= emp

graph.x⊕C.D .
= ((x = nil ∨ x∈∈D) ∧ graph.C.D) ∨

((x �= nil ∧ x∈/∈D) ∧ (∃l, r, v · x �→ l, r, v ∗ graph.l⊕ r⊕C.x⊕D))

To adapt our analysis to deal with graphs it is necessary to modify several
rewrite rules that define it, while others will remain intact. In the rearr phase,
rule Unfold must account for the differences in the definition of the predicate:

Π � Σ � y = x ∧ y �= nil ∧ y∈/∈D
[Unfold]

Π � Σ ∗ graph.y ⊕C.D =⇒ Π � Σ ∗ x �→ l′, r′, v′ ∗ graph.l′ ⊕ r′ ⊕C.x⊕D

Given the possible existence of cycles, the condition y ∈/∈D could not always be
derived. When rearr fail over a symbolic heap S because of this, it is replaced
by the set of symbolic heaps obtained by adding the hypothesis y ∈/∈D ∨ y ∈∈D.
More precisely, S is replaced by the semantically equivalent set filter.b.S, where
b

.
= (y �= e1 ∧ . . . ∧ y �= en) ∨ y = e1 ∨ . . . ∨ y = en given D = {|e1, . . . , en|}. Then

rearr is relaunched on the new (richer) state.
The rules for the abs phase should take into account the possibility of cycles

and sharing, plus the fact that a dangling pointer inD is not necessarily reachable
from some entry point anymore. The most relevant rewriting rules are presented
below:

Σ
.
= Σ′ ∗ x �→ l, r, v ∗ graph.y⊕ z⊕C.D Π ¦ Σ � l = y ∧ r = z

[AbsGraph1]
Π ¦ Σ =⇒ Π ¦ Σ′ ∗ graph.x⊕C.x	D

Σ
.
= Σ′ ∗ x �→ l, r, v ∗ graph.y⊕C.D Π ¦ Σ � l = y Π ¦ Σ � r = x ∨ r = nil

[AbsGraph2]
Π ¦ Σ =⇒ Π ¦ Σ′ ∗ graph.x⊕C.x	D

Π ¦ Σ ∗ graph.C.D =⇒ Π ¦ Σ ∗ graph.nil	C.nil	D [AbsGraph3]

Π ¦ Σ � x = y
[AbsGraph4]

Π ¦ Σ ∗ graph.x⊕C.y⊕D =⇒ Π ¦ Σ ∗ graph.C.y⊕D

Σ
.
= Σ′ ∗ x �→ l, r, v ∗ y �→ e ∗ z �→ f Π ¦ Σ � l = y ∧ r = z

[AbsArrow1]
Π ¦ Σ =⇒ Π ¦ Σ′ ∗ x �→ l, r, v ∗ graph.{|y, z|}.y	 z	{|e, f |}

Σ
.
= Σ′ ∗ x �→ l, r, v ∗ y �→ e Π ¦ Σ � l = y Π ¦ Σ � r = x ∨ r = nil

[AbsArrow2]
Π ¦ Σ =⇒ Π ¦ Σ′ ∗ x �→ l, r, v ∗ graph.{|y|}.y	{|e|}

A Shape Analysis for Non-linear Data Structures 213

Table 1. Results of the shape analysis over several examples

Algorithm Precondition / Postcondition Link Arrow Inv. Iter. Time

min/max true � trees.{|x|}.∅ 2 4 2 2 0.003

x = nil � emp
x �= nil � trees.{|x|}.∅

destroy true � trees.{|x|}.∅ 4 4 4 3 0.005

x = nil � emp
x �= nil � emp

search true � trees.{|x|}.∅ 2 4 4 3 0.006

x = nil � emp
x �= nil � trees.{|x|}.∅

insert true � t �→ x′, 0, 0 ∗ trees.{|x|}.∅ 3 3 12 4 0.036

true � t �→ x′, 0, 0 ∗ x′ �→ nil,nil, x′′

true � t �→ x′, 0, 0 ∗ trees.{|x|}.∅
toVine true � t �→ x′, 0, 0 ∗ trees.{|x|}.∅ 3 4 8 6 0.061

true � t �→ nil, 0, 0
true � t �→ x′, 0, 0 ∗ x′ �→ nil,nil, x′′

true � t �→ x′, 0, 0 ∗ trees.{|x|}.∅
delete true � t �→ x′, 0, 0 ∗ trees.{|x|}.∅ 3 2 14 5 0.142

true � t �→ nil, 0, 0
true � t �→ x′, 0, 0 ∗ trees.{|x|}.∅

Schorr-Waite r = x � trees.{|x|}.∅ 4 4 8 4 0.061

true � emp
x �= nil � trees.{|x|}.∅
r �= nil � trees.{|r|}.∅

Schorr-Waite r = x � graph.{|x|}.∅ 4 4 17 4 0.185

x �= nil � graph.{|x|}.∅
r �= nil � graph.{|r|}.∅
true � emp

5 Experimental Results

We implemented our analysis in Haskell, and conducted experiments on an Intel
Core Duo 1.86Ghz with 2GB RAM. In table 1 experimental results are presented
for a variety of iterative algorithms on binary search trees adapted from GNU
LibAVL [2], and an adaptation of Schorr-Waite traversal from [32].

Our implementation applies an abstraction phase on the final state to compact
the postcondition, treating every variable not occurring in the precondition as
a quantified one. Columns Link and Arrow represent the limits imposed over
relevance levels to abstract a variable that forms a chain link, and a variable
that occurs as an address of a “points-to” term, respectively. The column Inv.
contains the number of states making up the invariant of the main cycle and
the column Iter. the number of iterations needed to reach the fixed point. The
execution time is measured in seconds. In all cases the used memory did not
exceed the default allocation of 132 KB.

214 R. Cherini, L. Rearte, and J. Blanco

The insert and delete algorithms are the cases with a significant Arrow
limit. This is because they present a deep pointer manipulation after the main
loop, and therefore require a sufficiently precise invariant.

In the verification of the Schorr-Waite traversal over graphs, the computed
invariant is really concise, consisting of seventeen symbolic heaps whose spa-
tial part is some of the formulæ graph.{|r, p|}.∅, graph.{|p|}.∅, graph.{|r|}.∅, or
emp, where r and p are the variables used to traverse de graph. This is a good
example of the precision that our shape analysis is capable of achieving. Running
the analysis applying the abstraction rules on quantified variables only, gives an
invariant consisting of more than 180 formulæ.

We extended even more the analysis to deal with arrays of values, which
enables the verification of Cheney’s copying garbage collector algorithm from
[30]. This extension is not presented here due to lack of space. The prototype
implementation, code of examples and full results are available online [1].

6 Conclusions

Contributions. In this paper we introduced an abstract semantics that implicitly
define an analysis able to automatically verify interesting properties about the
shape of manipulated data structures, calculating loop invariants and postcon-
ditions. This semantics is an over-approximation of operational semantics on a
standard memory model, hence, it could report false memory faults or leaks.
Despite that, experiments show fitness between the computed abstract states
and those expected according to the concrete semantics. It would be desirable
to have a precise characterization of this relationship.

In order to define the analysis we have introduced novel linear predicates
trees and graph to describe graph-like structures with multiple entry and outlet
points. Good syntactic properties enable a simple caracterization of the abstrac-
tion phase. Preliminary experiments, based on variation of tree predicate and
abstraction rules, are promising in verifying sorting and balancing invariants on
BST trees and AVL trees.

The use of variable relevance level, although a very simple idea, introduces a
significant improvement in the compactness of loop invariants, without impair-
ing the necessary precision to obtain relevant postconditions. In some cases, a
dramatic reduction in the number of formulæ making up an abstract state is
achieved, making the entire process of analysis faster, and helping in the com-
putation of intuitively understandable and correct invariants. Also it enables us
to foresee a good behavior of the analysis on large-scale code. It would be in-
teresting to extend the concept of Bi-Abduction of [7] to our domain to support
incomplete specifications and procedure calls.

As a final consideration, by basing our analysis in [12] we inherit all advantages
of Separation Logic. Our rewrite rules are valid implications whose semantic
verification is quite simple, while symbolic execution rules derive directly from
Hoare triples. Thus, our analysis is intuitive and its correctness easily verifiable.

A Shape Analysis for Non-linear Data Structures 215

Related Work. The main related works are [7,3,33] that derive from [12]. Pro-
posed extensions implemented in SpaceInvader tool, aim at verifying real large-
scale code, supporting only linear structures possibly combined in intrincate ways.
Our work widen the domain of applicability of these methods by supporting non-
linear structures. The predecessor work [4] introduces Smallfoot tool, based in a
different kind of symbolic execution, although it supports binary trees. The tool
reduces the verification of Hoare triples to logical implications between symbolic
heaps but it does not compute loop invariants. The usual tree predicates seems ad-
equated to verified recursive programs. In [25,15] the analysis presented are very
similar to the ones in [12] both, in their technical aspects and their limitations.

Xisa tool [11] also uses Separation Logic to describe abstract states, but it
uses generalized inductive predicates in the form of structure invariant checkers
supplied by users. The fold and unfold of predicates guide automatic strategies
for materialization (rearr in this work) and abstraction. Extension of [10] adds
expressive power to specify certain relationships among summarized regions of
heaps, as ordering invariants, back and cross pointers, etc, and a case study of
item insertion in a red-black Tree is presented. The lack of examples impair the
assessment of complexity this tool can handle.

Verifast tool [18] is also based in Separation Logic, allowing the verification
of richly specified Hoare triples using inductive predicates for structures and
pure recursive functions over those datatypes. It generates verification conditions
discharged by a SMT Solver. No abstraction mechanism is provided, but loop
invariants and instruction guiding fold/unfold of predicates must be manually
annotated. It is able to verify a recursive implementation of binary trees library
and the composite pattern (with its underlying graph structure) [19].

PALE system [24,20] allows the verification of programs specified with as-
sertions in Weak Second-order Monadic Logic of Graph Types. Loops must be
annotated with invariants and verification conditions are discharged in MONA
tool [17]. The extension [14] enables a more efficient verification of algorithms
on tree-shaped structures.

The analysis of [21] uses shape graphs and grammar annotations to specify
non-cyclic data structures, discovering automatically descriptions for structures
occurring at intermediate execution points. The analysis verify Schorr-Waite
traversal and disposal on trees, and the construction of a binomial heap.

The parametric shape analysis of [28,5] based on 3-valued logic, together with
their implementation TVLA [22], is the most general, powerful and used frame-
work in the verification of shape properties on programs that involve complex
manipulations on dynamic structures. This framework should be instantiated for
each particular case through user defined intrumentation predicates that specify
the type of supported structures and forms of abstraction. The instance pre-
sented in [23] allows the verification of partial correctness (as our analysis) and
also termination of the Schorr-Waite tree traversal. Our proposal is less ambi-
tious since our analysis is specialized in trees and graphs. However our abstract
domains allow for high efficiency and precision in a wide class of algorithms, and
the analysis support local reasoning which has shown great potential to scale on
real large-scale programs as demonstrated in [7,33].

216 R. Cherini, L. Rearte, and J. Blanco

Acknowledgements. We are grateful to Dino Distefano for his encouragement to
write this article, to Miguel Pagano for many discussions, and to the anonymous
reviewers for their helpful comments for improving this work.

References

1. Details of experiments, http://cs.famaf.unc.edu.ar/~renato/seplogic.html

2. GNU LibAVL, http://www.stanford.edu/~blp/avl/

3. Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P.W., Yang, H.: Shape

analysis for composite data structures. In: Damm, W., Hermanns, H. (eds.) CAV

2007. LNCS, vol. 4590, pp. 178–192. Springer, Heidelberg (2007)

4. Berdine, J., Calcagno, C., O’Hearn, P.W.: Symbolic execution with separation

logic. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 52–68. Springer, Heidel-

berg (2005)

5. Bogudlov, I., Lev-Ami, T., Reps, T.W., Sagiv, M.: Revamping TVLA: Making

parametric shape analysis competitive. In: Damm, W., Hermanns, H. (eds.) CAV

2007. LNCS, vol. 4590, pp. 221–225. Springer, Heidelberg (2007)

6. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Beyond reachability: Shape

abstraction in the presence of pointer arithmetic. In: Yi, K. (ed.) SAS 2006. LNCS,

vol. 4134, pp. 182–203. Springer, Heidelberg (2006)

7. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape anal-

ysis by means of bi-abduction. In: Shao, Z., Pierce, B.C. (eds.) ACM SIGPLAN-

SIGACT 2009 Symposium on Principles of Programming Languages, pp. 289–300.

ACM, New York (2009)

8. Calcagno, C., Distefano, D., Vafeiadis, V.: Bi-abductive resource invariant syn-

thesis. In: Hu, Z. (ed.) APLAS 2009. LNCS, vol. 5904, pp. 259–274. Springer,

Heidelberg (2009)

9. Calcagno, C., Parkinson, M.J., Vafeiadis, V.: Modular safety checking for fine-

grained concurrency. In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634,

pp. 233–248. Springer, Heidelberg (2007)

10. Chang, B.-Y.E., Rival, X.: Relational inductive shape analysis. In: ACM

SIGPLAN-SIGACT 2008 Symposium on Principles of Programming Languages,

pp. 247–260. ACM, New York (2008)

11. Chang, B.-Y.E., Rival, X., Necula, G.C.: Shape analysis with structural invariant

checkers. In: Nielson, H.R., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 384–401.

Springer, Heidelberg (2007)

12. Distefano, D., O’Hearn, P.W., Yang, H.: A local shape analysis based on separation

logic. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp.

287–302. Springer, Heidelberg (2006)

13. Distefano, D., Parkinson, M.J.: jStar: towards practical verification for java. In:

Harris, G.E. (ed.) ACM SIGPLAN 2008 Conference on Object-Oriented Program-

ming, Systems, Languages, and Applications, pp. 213–226. ACM, New York (2008)

14. Elgaard, J., Møller, A., Schwartzbach, M.I.: Compile-time debugging of C programs

working on trees. In: Smolka, G. (ed.) ESOP 2000. LNCS, vol. 1782, pp. 182–194.

Springer, Heidelberg (2000)

15. Gotsman, A., Berdine, J., Cook, B.: Interprocedural shape analysis with sepa-

rated heap abstractions. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 240–260.

Springer, Heidelberg (2006)

http://cs.famaf.unc.edu.ar/~renato/seplogic.html
http://www.stanford.edu/~blp/avl/

A Shape Analysis for Non-linear Data Structures 217

16. Gotsman, A., Berdine, J., Cook, B., Sagiv, M.: Thread-modular shape analysis. In:

Ferrante, J., McKinley, K.S. (eds.) ACM SIGPLAN 2007 Conference on Program-

ming Language Design and Implementation, pp. 266–277. ACM, New York (2007)

17. Henriksen, J.G., Jensen, J.L., Jørgensen, M.E., Klarlund, N., Paige, R., Rauhe,

T., Sandholm, A.: Mona: Monadic second-order logic in practice. In: Brinksma,

E., Steffen, B., Cleaveland, W.R., Larsen, K.G., Margaria, T. (eds.) TACAS 1995.

LNCS, vol. 1019, pp. 89–110. Springer, Heidelberg (1995)

18. Jacobs, B., Piessens, F.: The verifast program verifier. Technical Report CW-520,

Department of Computer Science, Katholieke Universiteit Leuven, Belgium (Au-

gust. 2008)

19. Jacobs, B., Smans, J., Piessens, F.: Verifying the composite pattern using separa-

tion logic. In: SAVCBS Composite Pattern Challenge Track (2008)

20. Jensen, J.L., Jørgensen, M.E., Schwartzbach, M.I., Klarlund, N.: Automatic verifi-

cation of pointer programs using monadic second-order logic. In: ACM SIGPLAN

1997 Conference on Programming Language Design and Implementation, pp. 226–

236. ACM, New York (1997)

21. Lee, O., Yang, H., Yi, K.: Automatic verification of pointer programs using

grammar-based shape analysis. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444,

pp. 124–140. Springer, Heidelberg (2005)

22. Lev-Ami, T., Sagiv, S.: TVLA: A system for implementing static analyses. In:

Palsberg, J. (ed.) SAS 2000. LNCS, vol. 1824, pp. 280–301. Springer, Heidelberg

(2000)

23. Loginov, A., Reps, T.W., Sagiv, M.: Automated verification of the deutsch-schorr-

waite tree-traversal algorithm. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp.

261–279. Springer, Heidelberg (2006)

24. Møller, A., Schwartzbach, M.I.: The pointer assertion logic engine. In: ACM SIG-

PLAN 2001 Conference on Programming Language Design and Implementation.

ACM, New York (2001)

25. Nguyen, H.H., David, C., Qin, S., Chin, W.-N.: Automated verification of shape

and size properties via separation logic. In: Cook, B., Podelski, A. (eds.) VMCAI

2007. LNCS, vol. 4349, pp. 251–266. Springer, Heidelberg (2007)

26. O’Hearn, P.W., Reynolds, J.C., Yang, H.: Local reasoning about programs that

alter data structures. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 1–19.

Springer, Heidelberg (2001)

27. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:

17th IEEE Symposium on Logic in Computer Science, pp. 55–74. IEEE Computer

Society Press, Los Alamitos (2002)

28. Sagiv, S., Reps, T.W., Wilhelm, R.: Parametric shape analysis via 3-valued logic.

ACM Trans. Program. Lang. Syst. 24(3), 217–298 (2002)

29. Smans, J., Jacobs, B., Piessens, F.: Implicit dynamic frames: Combining dynamic

frames and separation logic. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS,

vol. 5653, pp. 148–172. Springer, Heidelberg (2009)

30. Torp-Smith, N., Birkedal, L., Reynolds, J.C.: Local reasoning about a copying

garbage collector. ACM Trans. Program. Lang. Syst. 30(4) (2008)

31. Villard, J., Lozes, É., Calcagno, C.: Proving copyless message passing. In: Hu, Z.

(ed.) APLAS 2009. LNCS, vol. 5904, pp. 194–209. Springer, Heidelberg (2009)

32. Yang, H.: Local reasoning for stateful programs. PhD thesis, Champaign, IL, USA,

Adviser-Uday S. Reddy (2001)

33. Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn,

P.W.: Scalable shape analysis for systems code. In: Gupta, A., Malik, S. (eds.)

CAV 2008. LNCS, vol. 5123, pp. 385–398. Springer, Heidelberg (2008)

Modelling Metamorphism by Abstract Interpretation

Mila Dalla Preda1, Roberto Giacobazzi1, Saumya Debray2,
Kevin Coogan2, and Gregg M. Townsend2

1 Dipartimento di Informatica, Università di Verona
{mila.dallapreda,roberto.giacobazzi}@univr.it

2 Department of Computer Science, University of Arizona
{debray,kpcoogan,gmt}@cs.arizona.edu

Abstract. Metamorphic malware apply semantics-preserving transformations to
their own code in order to foil detection systems based on signature matching.
In this paper we consider the problem of automatically extract metamorphic sig-
natures from these malware. We introduce a semantics for self-modifying code,
later called phase semantics, and prove its correctness by showing that it is an
abstract interpretation of the standard trace semantics. Phase semantics precisely
models the metamorphic code behavior by providing a set of traces of programs
which correspond to the possible evolutions of the metamorphic code during ex-
ecution. We show that metamorphic signatures can be automatically extracted by
abstract interpretation of the phase semantics, and that regular metamorphism can
be modelled as finite state automata abstraction of the phase semantics.

Keywords: Abstract interpretation, malware detection, metamorphic code, pro-
gram transformation, static analysis, security, semantics.

1 Introduction

Challenges and insights. Detecting and neutralizing computer malware, such as worms,
viruses, trojans, and spyware is a major challenge in modern computer security, involv-
ing both sophisticated intrusion detection strategies and advanced code manipulation
tools and methods. Traditional misuse malware detectors (also known as signature-
based detectors) are typically syntactic in nature: they use pattern matching to compare
the byte sequence comprising the body of the malware against a signature database [22].
Malware writers have responded by using a variety of techniques in order to avoid de-
tection: Encryption, oligomorphism with mutational decryptor patterns, and polymor-
phism with different encryption methods for generating an endless sequence of decryp-
tion patterns are typical strategies for achieving malware diversification. Metamorphism
emerged in the last decade as an effective alternative strategy to foil detectors. Metamor-
phic malware apply semantics-preserving transformations to modify its own code so that
one instance of the malware bears very little resemblance to another instance, in a kind
of body-polymorphism [23], even though semantically, their functionality is the same.
Thus, a metamorphic malware is a malware equipped with a metamorphic engine that
takes the malware, or parts of it, as input and morphs it to a syntactically different but se-
mantically equivalent variant in order to avoid detection. The quantity of metamorphic
variants possible for a particular piece of malware makes it impractical to maintain a

R. Cousot and M. Martel (Eds.): SAS 2010, LNCS 6337, pp. 218–235, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Modelling Metamorphism by Abstract Interpretation 219

signature set that is large enough to cover most or all of these variants, making standard
signature-based detection ineffective [6]. Existing malware detectors therefore fall back
on a variety of heuristic techniques, but these may be prone to false positives (where in-
nocuous files are mistakenly identified as malware) or false negatives (where malware
escape detection) at worst. The reason for this vulnerability to metamorphism lies upon
the purely syntactic nature of most exiting and commercial detectors. The key for identi-
fying metamorphic malware lies, instead, in a deeper understanding of their semantics.
Still a major drawback of existing semantics-based methods (e.g., see [13, 19]) relies
upon the a priori knowledge of the obfuscations used to implement the metamorphic
engine. Because of this, it is always possible for any expert malware writer to develop
alternative metamorphic strategies, even by simple modification of existing ones, able
to foil any given detection scheme.

Contributions. We proposes a different approach to metamorphic malware detection
based on the idea that extracting metamorphic signatures is approximating malware se-
mantics. A metamorphic signature is therefore any (possibly decidable) approximation
of the properties of code evolution. The semantics concerns here the way code changes,
i.e., the effect of instructions that modify other instructions. We face the problem of
determining how code mutates, yet catching properties of this mutation, without any a
priori knowledge about the implementation of the metamorphic transformations. Tradi-
tional static analysis techniques are not adequate for this purpose, as they typically as-
sume that programs do not change during execution. We therefore define a more general
semantics-based behavioral model, called phase semantics, that can cope with changes
to the program code at run time. The idea is to partition each possible execution trace
of a metamorphic program into phases, each collecting the computations performed by
a particular code variant. The sequence of phases (once disassembled) represents the
sequence of possible code mutations, while the sequence of states within a given phase
represents the behavior of a particular code variant. Abstract interpretation is then used
to extract the invariant properties of phases, which are properties of the generated pro-
gram variants. Abstract domains represent here properties of the code shape in phases.
We use the domain of finite state automata (FSA) for approximating phases and provide
a static semantics of traces of FSA as a computable abstraction of the phase semantics.
We introduce the notion of regular metamorphism as a further approximation obtained
by abstracting sequences of FSA into a single FSA. This abstraction provides an up-
per regular language-based approximation of any metamorphic behavior of a program.
This is particularly suitable to extract metamorphic signatures for engines implemented
themselves as FSA of basic code transformations, which correspond to the way most
classical metamorphic generators are implemented [16,20,25]. Our approach is general
and language independent, providing a systematic method for extracting approximate
metamorphic signatures from any metamorphic malware P , in such a way that checking
whether a given binary matches the metamorphic signature of P is decidable.

2 Background

Mathematical notation. Given two sets S and T , we denote with ℘(S) the powerset of
S, with S � T the set-difference between S and T , with S ⊂ T strict inclusion and

220 M. Dalla Preda et al.

with S ⊆ T inclusion. Let S⊥ be set S augmented with the undefined value ⊥, i.e.,
S⊥ = S ∪ {⊥}. 〈P,≤〉 denotes a poset P with ordering relation ≤, while a complete
lattice P , with ordering ≤, least upper bound (lub) ∨, greatest lower bound (glb) ∧,
greatest element (top)', and least element (bottom)⊥ is denoted by 〈P,≤,∨,∧,',⊥〉.
& denotes pointwise ordering between functions. If f : S → T and g : T → Q
then g ◦ f : S → Q denotes the composition of f and g, i.e., g ◦ f = λx.g(f(x)).
f : P → Q on posets is (Scott)-continuous when f preserves lub of countable chains
in P . f : C → D on complete lattices is additive (co-additive) when for any Y ⊆
C, f(∨CY) = ∨Df(Y) (f(∧CY) = ∧Df(Y)). Let A∗ be the set of finite sequences,
also called strings, of elements of A with ε the empty string, and with |ω| the length
of string ω ∈ A∗. We denote the concatenation of ω, ν ∈ A∗ as ω :: ν. We say that a
string s0 . . . sh is a subsequence of a string t0 . . . tn, denoted s0 . . . sh , t0t1 . . . tn, if
∃l ∈ [1, n] : ∀i ∈ [0, h] : si = tl+i.

Finite State Automata (FSA). An FSA M is a tuple (Q, δ, S, F, A), where Q is the set
of states, δ : Q×A → ℘(Q) is the transition relation, S ⊆ Q is the set of initial states,
F ⊆ Q is the set of final states and A is the finite alphabet of symbols. Let ω ∈ A∗,
function δ∗ : Q × A∗ → ℘(Q) denotes the extension of δ to strings: δ∗(q, ε) = {q}
and δ∗(q, ωs) =

⋃
q′∈δ∗(q,ω) δ(q′, s). A string ω ∈ A∗ is accepted by M if there exists

q0 ∈ S : δ∗(q0, ω)∩ F �= ∅. The language L (M) accepted by an FSA M is the set of
all strings accepted by M . Given an FSA M and a partition π over its states, the quotient
automaton M/π = (Q′, δ′, S′, F ′, A) is defined as follows: Q′ = {[q]π | q ∈ Q},
δ′ : Q′ × A → ℘(Q′) is the function δ′([q]π , s) =

⋃
p∈[q]π

{[q′]π | q′ ∈ δ(p, s)},
S′ = {[q]π | q ∈ S}, and F ′ = {[q]π | q ∈ F}. An FSA M = (Q, δ, S, F, A) can
be equivalently specified as a graph M = (Q, E, S, F) with a node q ∈ Q for each
automata state and a labeled edge (q, s, q′) ∈ E if and only if q′ ∈ δ(q, s).

Abstract Interpretation. Abstract interpretation is based on the idea that the behaviour
of a program at different levels of abstraction is an approximation of its (concrete) se-
mantics [8, 9]. The concrete program semantics is computed on the concrete domain
〈C,≤C〉, while approximation is encoded by an abstract domain 〈A,≤A〉. In abstract
interpretation abstraction is specified as a Galois connection (GC) (C, α, γ, A) , i.e., an
adjunction [8, 9], namely as an abstraction map α : C → A and a concretization map
γ : A → C such that: ∀a ∈ A, c ∈ C : α(c) ≤A a ⇔ c ≤C γ(a). Let A1 and
A2 be abstract domains of the concrete domain C: A1 is more precise than A2 when
γ2(A2) ⊆ γ1(A1). Given a GC (C, α, γ, A) and a concrete predicate transformer (se-
mantics) F : C → C, we say that F � : A → A is a sound approximation of F in A if
∀c ∈ C, α(F (c)) ≤A F �(α(c)). When α ◦ F = F � ◦ α, the abstract function F � is a
complete abstraction of F in A. While any abstract domain induces the canonical best
correct approximation α ◦ F ◦ γ of F : C → C in A, not all abstract domains in-
duce a complete abstraction [17]. The least fixpoint (lfp) of an operator F on a poset
〈P,≤〉, when it exists, is denoted by lfp≤F , or by lfpF when ≤ is clear. Any con-
tinuous operator F : C → C on a complete lattice C = 〈C,≤C ,∨C ,∧C ,'C ,⊥C〉
admits a lfp: lfp≤C F =

∨
n∈N

F i(⊥C), where for any i ∈ N and x ∈ C: F 0(x) = x;
F i+1(x) = F (F i(x)). If F � : A → A is a correct approximation of F : C → C on
〈A,≤A〉, then α(lfp≤C F) ≤A lfp≤AF �. Convergence can be ensured through widening

Modelling Metamorphism by Abstract Interpretation 221

Syntactic categories:
n, a ∈ N (naturals)
e ∈ E (expressions)
I ∈ I (instructions)
m ∈ M : N → N⊥ (memory map)
P ∈ M× N = P (programs)

Expressions:
e::= n | MEM[e] | MEM[e1] op MEM[e2] |

MEM[e1] op n
Instructions:
I ::= call e | ret | pop e | push e | nop |

MEM[e1] := e2 | input⇒ MEM[e] |
if e1 goto e2 | goto e | halt

Fig. 1. Syntax of an abstract assembly language

iterations along increasing chains [8]. A widening operator � : P × P → P approx-
imates the lub, i.e., ∀X, Y ∈ P : X ≤P (X�Y) and Y ≤P (X�Y), and it is such
that the increasing chain W i, where W 0 = ⊥ and W i+1 = W i�F (W i) is not strictly
increasing for ≤P . The limit of the sequence W i provides an upper fixpoint approxi-
mation of F on P , i.e., lfp≤P F ≤P limi→∞W i.

3 Modelling Metamorphism

Abstract assembly language. Executable programs make no fundamental distinction
between code and data. This makes it possible to modify a program by operating on a
memory location as though it contains data, e.g., by adding or subtracting some value
from it, and then interpreting the result as code and executing it. To model this aspect,
we define a program to be a pair P = (m, a), where m specifies the contents of a
memory (both code and data) and a denotes the entry point of P , namely the address of
the first instruction of P . Since a memory location contains a natural number that can
be interpreted either as data or as instruction1 we use an injective function encode :
I → N that, given an instruction I ∈ I, returns its binary encode(I) ∈ N, and a
function decode : N → I⊥ that given a natural number n returns I if encode(I) = n
otherwise⊥. Fig. 1 shows the syntax of our abstract assembly language, whose structure
is inspired from real assembly languages. A program state is a tuple 〈a,m, θ, I〉where m
is the memory map, a is the address of the next instruction to be executed, θ ∈ N∗ is the
stack and I ∈ N∗ is the input string. Let Σ = N⊥×M×N∗×N∗ be the set of program
states. The semantics of expressions is specified by a function E : E×M→ N:

E [[n]]m = n
E [[MEM[e]]]m = m(E [[e]]m)
E [[MEM[e1] op MEM[e2]]]m = E [[MEM[e1]]]m op E [[MEM[e2]]]m
E [[MEM[e1] op n]]m = E [[MEM[e1]]]m op n

and the semantics of instructions by a function I : I×Σ → Σ:

I[[call e]]〈a,m, θ, I〉 = 〈E [[e]]m,m, (a + 1) :: θ, I〉
I[[ret]]〈a,m, n :: θ, I〉 = 〈n,m, θ, I〉
I[[MEM[e1] := e2]]〈a,m, θ, I〉 = 〈a + 1,m[E [[e1]]m← E [[e2]]m], θ, I〉
I[[input⇒ MEM[e]]]〈a,m, θ, n :: I〉 = 〈a + 1,m[E [[e]]m← n], θ, I〉

1 For simplicity, we assume that each instruction occupies a single location in memory, because
the issues raised by variable-length instructions are orthogonal to the topic of this paper, and
do not affect any of our results.

222 M. Dalla Preda et al.

I[[if e1 goto e2]]〈a,m, θ, I〉 =
{
〈E [[e2]]m,m, θ, I〉 if E [[e1]]m �= 0
〈a + 1,m, θ, I〉 otherwise

I[[pop e]]〈a,m, n :: θ, I〉 = 〈a + 1,m[E [[e]]m ← n], θ, I〉
I[[goto e]]〈a,m, θ, I〉 = 〈E [[e]]m,m, θ, I〉
I[[push e]]〈a,m, θ, I〉 = 〈a + 1,m, E [[e]]m :: θ, I〉
I[[halt]]〈a,m, θ, I〉 = 〈⊥,m, θ, I〉
I[[nop]]〈a,m, θ, I〉 = 〈a + 1,m, θ, I〉

Let T : ℘(Σ) → ℘(Σ) be the transition relation between states, which is given by the
point-wise extension of T (〈a,m, θ, I〉) = I[[decode(m(a))]]〈a,m, θ, I〉. As usual [11],
the maximal finite trace semantics S[[P]] ∈ ℘(Σ∗) of P = (m, a) is given by the lfp of
FT [[P]] : ℘(Σ∗) → ℘(Σ∗) where Init [[P]] = {〈a,m, ε, I〉 | I is an input stream} and
FT [[P]](X) = Init [[P]] ∪ {σσiσj | σj ∈ T (σi), σσi ∈ X}.

Phase Semantics. Intuitively, a phase is a maximal sequence of states in an execution
trace that does not overwrite any memory location storing an instruction that is going
to be executed later in the same trace. Given an execution trace σ = σ0 . . . σn, we
can identify phase boundaries by considering the sets of memory locations modified
by each state σi = 〈ai,mi, θi, Ii〉 with i ∈ [0, n]: every time that a location aj , with
i < j ≤ n, of a future instruction is modified by the execution of state σi, then the
successive state σi+1 is a phase boundary, since it stores a modified version of the
code. We consider the set mod(σi) ⊆ N of memory locations that are modified by the
instruction executed in state σi:

mod(σi)=
{
{E [[e]]m} if decode(mi(ai)) ∈ {MEM[e] = e′,input⇒ MEM[e],pop e}
∅ otherwise

This allows us to formally define the phase boundaries and the phases of a trace.

Definition 1. The set of phase boundaries of σ = σ0 . . . σn ∈ Σ∗, where ∀i ∈ [0, n] :
σi = 〈ai,mi, θi, Ii〉, is: bound(σ) = {σ0}∪{σi |mod(σi−1)∩{aj | i ≤ j ≤ n} �= ∅}.
The set of phases of a trace σ ∈ Σ∗ is:

phases(σ) =
{

σi . . . σj

∣∣∣∣σ = σ0 . . . σi . . . σjσj+1 . . . σn,
σi, σj+1 ∈ bound(σ), ∀l ∈ [i + 1, j] : σl �∈ bound(σ)

}
Observe that, by definition, the memory map of the first state of a phase always spec-
ifies the code snapshot that is executed in the same phase. Hence, the sequence of the
initial states of the phases of a trace highlights the different code snapshots encountered
during code execution. In general, different executions of a program give rise to dif-
ferent sequences of code snapshots. A complete characterization of all code snapshots
of a self-modifying program can be obtained by organizing phases in a program evo-
lution graph. Here, each vertex is a code snapshot Pi corresponding to a phase, and an
edge Pi → Pj indicates that in some execution trace of the program, a phase with code
snapshot Pi can be followed by a phase with code snapshot Pj .

Modelling Metamorphism by Abstract Interpretation 223

Definition 2. The program evolution graph of a program P0 is G[[P0]] = (V, E):

V = {Pi = (mi, ai) | σ = σ0..σi..σn ∈ S[[P0]] : σi = 〈ai,mi, θi, Ii〉 ∈ bound(σ)}

E =
{

(Pi, Pj)
∣∣∣∣Pi = (mi, ai), Pj = (mj , aj), σ = σ0..σi..σj−1σj ..σn ∈ S[[P0]] :
σi = 〈ai,mi, θi, Ii〉, σj = 〈aj ,mj , θj , Ij〉, σi . . . σj−1 ∈ phases(σ)

}
A path in G[[P0]] is therefore a sequence of programs P0 . . . Pn such that for every i ∈
[0, n[we have that (Pi, Pi+1) ∈ E. Given a program P0 the set of all possible (finite)
paths of the program evolution graph G[[P0]] is the phase semantics of P0, denoted
SPh [[P0]]: SPh [[P0]] = {P0 . . . Pn | P0 . . . Pn is a path in G[[P0]]}.

P0 1: MEM[f] := 100 8: MEM[MEM[f]] := MEM[4]

2: input⇒ MEM[a] 9: MEM[MEM[f] + 1] := MEM[5]

3: if (MEM[a] mod 2) goto 7 10: MEM[MEM[f] + 2] := encode(goto 6)

4: MEM[b] := MEM[a] 11: MEM[4] := encode(nop)

5: MEM[a] := MEM[a]/2 12: MEM[5] := encode(goto MEM[f])

6: goto 8 13: MEM[f] := MEM[f] + 3

7: MEM[a] := (MEM[a] + 1)/2 14: goto 2

σ17σ0 σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10 σ11 σ12 σ13 σ14 σ15

P0 = (a0,m0)

σ16

P5 = (a5,m5) P6 = (a6,m6) P7 = (a7,m7) P8 = (a8,m8) P9 = (a9,m9)

Fig. 2. A metamorphic program P0 and the phases of one of its traces

Consider for instance the metamorphic program P0 of Fig. 2. The metamorphic engine
of P0, which is stored at memory locations from 8 to 13, writes a nop at memory lo-
cation 4 and copies the original content of this location to the free location identified
by MEM[f]; then it adds some goto instructions to preserve the original semantics. We
consider the execution trace σ = σ0σ1 . . . σ17 of program P0 corresponding to the input
sequence I = 7 :: 6, in particular σ = 〈1,m0, ε, 7 :: 6〉〈2,m1 = m0[f ← 100], ε, 7 ::
6〉〈3,m2 = m1[a ← 7], ε, 6〉〈7,m3 = m2, ε, 6〉〈8,m4 = m3[a ← 4], ε, 6〉〈9,m5 =
m4[100 ← encode(MEM[b] := MEM[a])], ε, 6〉 . . . 〈17,m17 = m16[a ← 3], ε, ε〉. Fig. 2
shows the considered execution trace σ where: the bold arrows denote the modifi-
cations of instructions that will be later executed, for example the bold arrow from
σ4 = 〈a4,m4, θ4, I4〉 to σ15 = 〈a15,m15, θ15, I15〉 means that location a15 is overwrit-
ten by the execution of instruction decode(m4(a4)) at state σ4, i.e., a15 ∈ mod(σ4);
and the black dots identify the states that are phase boundaries.

Fixpoint phase semantics. We introduce the notion of mutating transition, i.e., a tran-
sition between two states that leads to a state which is a phase boundary. We say that a
pair of states (σi, σj) is a mutating transition of P0, denoted (σi, σj) ∈ MT(P0), if there
exists a trace σ = σ0 . . . σiσj . . . σn ∈ S[[P0]] such that σj ∈ bound(σ). This allows

224 M. Dalla Preda et al.

us to define the code transformer T Ph : ℘(P) → ℘(P) that associates with each set
of programs the set of their possible metamorphic variants: Pj ∈ T Ph (Pi) means that
during execution program Pi can be transformed into program Pj .

Definition 3. T Ph : ℘(P) → ℘(P) is given by the point-wise extension of:

T Ph(P0) =
{

Pl

∣∣∣∣Pl = (ml, al), σ = σ0 . . . σl−1σl ∈ S[[P0]], σl = 〈al,ml, θl, Il〉,
(σl−1, σl) ∈ MT(P0), ∀i ∈ [0, l − 1[: (σi, σi+1) �∈ MT(P0)

}
T Ph can be extended to traces FT Ph [[P0]] : ℘(P∗) → ℘(P∗) as: FT Ph [[P0]](Z) = P0 ∪
{zPiPj | Pj ∈ T Ph(Pi), zPi ∈ Z}.

Theorem 1. lfp⊆FT Ph [[P0]] = SPh [[P0]].

A program Q is a metamorphic variant of a program P0, denoted P0 �Ph Q, if Q is an
element of at least one sequence in SPh [[P0]].

Correctness and completeness of phase semantics. We prove the correctness of phase
semantics by showing that it is a sound approximation of trace semantics, namely by
providing a pair of adjoint maps αPh : ℘(Σ∗) → ℘(P∗) and γPh : ℘(P∗) → ℘(Σ∗),
for which the fixpoint computation ofFT Ph [[P0]] approximates the fixpoint computation
of FT [[P0]]. Given σ = 〈a0,m0, θ0, I0〉 . . . σi−1σi . . . σn we define αPh as:

αPh(σ) = (m0, a0)αPh (σi . . . σn) s.t. σi ∈ bound(σ), ∀l ∈ [0, i− 1] : σl �∈ bound(σ)

Abstraction αPh observes only the states of a trace that are phase boundaries and it
can be lifted point-wise to ℘(Σ∗) giving rise to the GC (℘(Σ∗), αPh , γPh , ℘(P∗)). The
following result shows the correctness of the phase semantics.

Theorem 2. ∀X ∈ ℘(Σ∗) : αPh(X∪FT [[P0]](X)) ⊆ αPh (X)∪FT Ph [[P0]](αPh (X)).

The converse may not hold: αPh(X ∪FT [[P0]](X)) ⊂ αPh (X)∪FT Ph [[P0]](αPh (X)).
In fact, given X ∈ ℘(Σ∗), the concrete function FT [[P0]] makes only one transition
in T and this may not be a mutating transition, while the abstract function FT Ph [[P0]]
jumps directly to the next mutating transition. Even if the fixpoint of FT Ph [[P0]] is not
step-wise complete, it is complete at the fixpoint, as shown by the following theorem.

Theorem 3. αPh(lfp⊆FT [[P0]]) = lfp⊆FT Ph [[P0]].

4 Abstracting Metamorphism

Our model of metamorphic code behaviour is based on a very low-level representa-
tion of programs as memory maps that simply give the contents of memory locations
together with the address of the instruction to be executed next. While such a represen-
tation is necessary to precisely capture the effects of code self-modification, it is not a
convenient representation if we want to statically analyze the different code snapshots
encountered during a program’s execution. Our idea is to design an abstract interpre-
tation of phase semantics, namely to approximate the computation of phase semantics
on an abstract domain that captures properties of the evolution of the code, rather than

Modelling Metamorphism by Abstract Interpretation 225

of the evolution of program states, as usual in abstract interpretation. We have to: (1)
Define an abstract domain 〈A,&A〉 of code properties such that (℘(P∗), αA, γA, A);
(2) Define the abstract transition T A : ℘(A) → ℘(A) and FT A [[P0]] : A → A
such that lfp�AFT A [[P0]] = SA[[P0]]; (3) Prove that SA[[P0]] is a correct approxima-
tion of phase semantics SPh [[P0]], i.e., αA(lfp⊆FT Ph [[P0]]) &A SA[[P0]]. This proves
that SA[[P0]] is such that a program Q is a metamorphic variant of program P0 with
respect to A, denoted P0 �A Q, if SA[[P0]] approximates Q in the abstract domain A:
P0 �A Q ⇔ αA(Q) &A SA[[P0]]. In this sense, SA[[P0]] is an abstract metamor-
phic signature for P0. Abstract domains for code properties need to approximate prop-
erties of sequences of instructions. This can be achieved naturally by grammar-based,
constraint-based and finite state automata abstractions. In the following we propose to
abstract programs by a FSA describing the sequence of (possibly abstract) instructions
that may be disassembled from the given memory.

Phases as FSA. The most commonly used program representation is the control flow
graph. In this representation, the vertices contain the instructions to be executed, and
the edges represent possible control flow. For our purposes, it is convenient to consider
a dual representation where vertices correspond to program locations and abstract in-
structions label edges. Let MP denote the FSA-representation of a given program P
and let L (MP) be the language it recognizes. The idea is that for each sequence in
L (MP) the order of the instructions in the sequence corresponds to the execution or-
der of the corresponding concrete instructions in at least one run of the control flow
graph of P . Instructions are abstracted in order to provide a simplified alphabet. In
the rest of the paper, for the sake of simplicity, we consider function ι : I → I̊ de-
fined in Fig. 3. Let ρ : I × N → ℘(N) denote any sound control flow analysis that
determines the possible successors of a given instruction at a given location, namely

1 3

4

7

2 9

10111213

MEM[f]:=
100

input =>
MEM[a] MEM[a] mod 2

5 6

8

MEM[b]:=
MEM[a]

MEM[a]:=
MEM[a]/2

goto
MEM[MEM[f]]:=
 MEM[4]

MEM[MEM[f]+1]:=
 MEM[5]MEM[MEM[f]+2]:=

 encode(goto 6)
MEM[4]:=
encode(nop)

MEM[5]:=
encode(goto MEM[f])

MEM[f]:=
MEM[f] + 3

14

goto

α̊(P0)

ι(I) = I̊ =

⎧⎪⎪⎨⎪⎪⎩
call if I = call e
e1 if I = if e1 goto e2

goto if I = goto e
I otherwise

Edges(P = (m, a), QP , ρ)

EP = ∅
while QP = ∅

select b ∈ QP and QP = QP � {b}
I = decode(m(b))
for each c ∈ ρ(I, b) ∩QP

EP = EP ∪ {(b, ι(I), c)}
return EP

Fig. 3. FSA α̊(P0) corresponding to program P0 of Fig. 2, instruction abstraction ι : I → I̊ and
the algorithm that computes EP

226 M. Dalla Preda et al.

ρ(I, b) associates with instruction I stored at memory location b the set of locations of
its possible successors. Let F be the set of FSA over the alphabet I̊ of abstract instruc-
tions where every state is considered to be final. Each FSA in F is specified as a graph
M = (Q, E, S). We define function α̊ : P → F that associates with each program
P = (m, a) its corresponding FSA-representation as follows: α̊(P) = (QP , EP , {a})
where QP = {b | decode(m(b)) ∈ I} is the set of locations that store an instruction
of P , and the set of edges EP ⊆ QP × I̊×QP is computed by the algorithm Edges in
Fig. 3. This algorithm, given P = (m, a), starts by initializing EP to the empty set and
then for every memory location b that stores an instruction I it adds an edge labeled with
ι(I), whose source is the location b and whose destinations are the locations in ρ(I, b).
As an example, at the top of Fig. 3 we show the automaton α̊(P0) corresponding to pro-
gram P0 of Fig. 2. We say that π = a0[I̊0] . . . [I̊n−1]an[I̊n]an+1 is a path of automaton
M = (Q, E, S), denoted π ∈ Π(M), if a0 ∈ S and ∀i ∈ [0, n[: (ai, I̊i, ai+1) ∈ E.
Observe that even if the alphabet I̊ is unbounded (due to the unlimited number of pos-
sible expressions), the FSA-representation of every program uses only a finite subset of
alphabet I̊. By point-wise extension of function α̊ we obtain the GC (℘(P), α̊, γ̊, ℘(F)).
Note that abstraction ι defined above makes the FSA-representation of programs inde-
pendent (up to renaming) from program position.

Theorem 4. If P1 and P2 differ only in their memory position then α̊(P1) and α̊(P2)
are equivalent up to address renaming.

Abstract phase semantics as traces of FSA. Let αF : P∗ → F∗ be the extension of
α̊ : P → F to sequences: αF(ε) = ε and αF(P0P1 . . . Pn) = α̊(P0)αF(P1 . . . Pn). αF

can be lifted point-wise to ℘(P∗) and it gives rise to the GC (℘(P∗), αF, γF, ℘(F∗)).
In order to compute a correct approximation of the phase semantics on 〈℘(F∗),⊆〉,
we need to define an abstract transition relation T F : ℘(F) → ℘(F) on FSA that
correctly approximates T Ph : ℘(P) → ℘(P). One possibility is to define T F as the
best correct approximation of T Ph on ℘(F), namely T F = α̊ ◦ T Ph ◦ γ̊, and function
FT F [[P0]] : ℘(F∗) → ℘(F∗) as follows: FT F [[P0]](K) = α̊(P0) ∪ {kMiMj | kMi ∈
K, Mj ∈ T F(Mi)}. From T F correctness we have SF[[P0]] = lfpFT F [[P0]] correctness.

Theorem 5. αF(lfpFT Ph [[P0]]) ⊆ lfpFT F [[P0]] = SF[[P0]].

SF[[P0]] approximates phase semantics by abstracting programs with FSA, while the
transitions, i.e., the effect of the metamorphic engine, follow directly from T Ph and are
not approximated. For this reason SF[[P0]] is not computable in general. In the follow-
ing we introduce a static computable approximation of the transition relation on FSA
that allows us to obtain a static approximation S�[[P0]] of the phase semantics of P0 on
〈℘(F∗),⊆〉. S�[[P0]] may play the role of abstract metamorphic signature of P0. To this
end, we introduce the notion of limits of a path that approximates the notion of bounds
of a trace, and the notion of transition edge that approximates the notion of mutating
transition. Moreover, we assume to have access to the following sound program analy-
ses for P0:

– a stack analysis StackVal : N → ℘(N) that approximates the set of possible values
on the top of the stack when control reaches a given location (e.g. [1, 2]);

Modelling Metamorphism by Abstract Interpretation 227

– a memory analysis LocVal : N × N → ℘(N) that approximates the set of possible
values that can be stored in a memory location when the control reaches a given loca-
tion (e.g. [1, 2]).

These analyses allow us to define EVal : N × E → ℘(N), that approximates the
evaluation of an expression in a given point:

EVal(b, n) = {n}
EVal(b,MEM[e]) = {LocVal(b, l) | l ∈ EVal(b, e)}
EVal(b,MEM[e1] op MEM[e2]) = {n1 op n2 | i ∈ {1, 2} : ni ∈ EVal(b,MEM[ei])}
EVal(MEM[e] op n) = {n1 op n | n1 ∈ EVal(b,MEM[e])}
and a sound control flow analysis ρ : I× N → ℘(N):
ρ(call e, b) = ρ(goto e) = EVal(b, e)
ρ(ret, b) = StackVal(b)
ρ(if e1 goto e2, b) = {b + 1} ∪ EVal(b, e2)
ρ(halt, b) = ∅
ρ(I, b) = {b + 1} in all other cases

Moreover, we define write : I̊×N → ℘(N) approximating the set of locations that may
be modified by the execution of an abstract instruction memorized at a given location:

write(I̊ , b) =

⎧⎨⎩
EVal(b, e1) if I̊ = MEM[e1] := e2

EVal(b, e) if I̊ ∈ {input⇒ MEM[e],pop e}
∅ otherwise

We define the limits of a path π as the nodes that are reached by an edge labeled by an
abstract instruction that may modify the label of a future edge in π, namely an abstract
instruction that occurs later in the same path. Given a path π = a0[I̊0] . . . [I̊n−1]an we
have: limit(π) = {a0} ∪ {ai | write(I̊i−1, ai−1) ∩ {aj | i ≤ j ≤ n} �= ∅}.

Definition 4. A pair of program locations (b, c) is a transition edge of M = (Q, E, S),
denoted (b, c) ∈ TE(M), if there exists a ∈ S: π = a[I̊a] . . . [I̊b−1]b[I̊b]c ∈ Π(M) and
c ∈ limit(π).

In the FSA of Fig. 3 the transition edges are the dashed ones since the instructions
labeling these edges overwrite a location that is reachable in the future. Observe that
also the instructions labeling the edges from 8 to 9, from 9 to 10, and from 10 to 11 write
instructions in memory, but the locations that store these instructions are not reachable
when considering the control flow of P0.

In order to statically compute the set of possible FSA evolution of a given automaton
M = (Q, E, S) we need to statically execute the abstract instructions that may modify
an FSA. Algorithm EXE(M, I̊, b) in Fig. 4 returns the set Exe of all possible FSA that
can be obtained by executing instruction I̊ stored at location b of automaton M . The
algorithm starts by initializing Exe to the FSA M ′ that has the same states and edges
of M and whose possible initial states S′ are the nodes reachable through instruction I̊
stored at b in M . This ensures correctness when the execution of instruction I̊ does not
correspond to a real code mutation. Then if I̊ writes in memory we consider the set X
of locations that it can modify and the set Y of possible instructions that it can write,

228 M. Dalla Preda et al.

EXE(M, I̊, b) // M = (Q, E, S) is a FSA
Exe = {M ′ = (Q, E,S′) | S′ = {d | (b, I̊, d) ∈ E}}
if I̊ = MEM[e1] := e2

then X = write(I̊ , b)
Y = {n | n ∈ EVal(b, e2),decode(n) ∈ I}
Exe = Exe ∪NEXT(X, Y, M, b)

if I̊ = input⇒ MEM[e]

then X = write(I̊ , b)
Y = {n | n is an input ,decode(n) ∈ I}
Exe = Exe ∪NEXT(X, Y, M, b)

if I̊ = pop e

then X = write(I̊ , b)
Y = {n | n ∈ StackVal (b),decode(n) ∈ I}
Exe = Exe ∪NEXT(X, Y, M, b)

return Exe

NEXT(X, Y, M, b)
Next = ∅
while X = ∅

select aj from X and X = X � {aj}
Ê = E � {(aj , I̊j , c) | (aj , I̊j , c) ∈ E}
Next = Next ∪

⋃
n∈Y { M̂ = (Q̂, Ê, Ŝ) |

Q̂ = Q ∪ {aj} ∪ ρ(decode(n), aj)

Ê = Ê ∪ {(aj , ι(decode(n)), d) |
d ∈ ρ(decode(n), aj)}

Ŝ = {d | (b, I̊, d) ∈ E} }
return Next

Fig. 4. Algorithm for statically executing instruction I̊

and we add to Exe the set of all possible automata that can be obtained by writing an
instruction of Y in a memory location in X , i.e., NEXT(X, Y, M, b).

Let Succ(M) denote the possible evolutions of automaton M , namely the automata
that can be obtained by the execution of the abstract instruction labeling the first transi-
tion edge of a path of M :

Succ(M) =
{

M ′
∣∣∣∣a0[I̊0] . . . [I̊l−1]al[I̊l]al+1 ∈ Π(M), (al, al+1) ∈ TE(M),
∀i ∈ [0, l[: (ai, ai+1) �∈ TE(M), M ′ ∈ EXE(M, I̊l, al)

}
We can now define the static transition T � : ℘(F) → ℘(F). The idea is that the possible
static successors of an automaton M are all the automata in Succ(M) together with all
the automata M ′ that are different from M and that can be reached from M through
a sequence of successive automata that differ from M only in the entry point. This
ensures the correctness of T �, i.e., Ml ∈ T F(M0) ⇒ Ml ∈ T �(M0), even if between
M0 and Ml there are transition edges that do not correspond to any mutating transition.

Definition 5. Let M = (Q, E, S). T � : ℘(F) → ℘(F) is given by the point-wise
extension of:

T �(M) = Succ(M)∪

⎧⎨⎩ M ′

∣∣∣∣∣∣
MM1 . . . MkM ′ : M1 ∈ Succ(M), ∀i ∈ [1, k[:
Mi+1 ∈ Succ(Mi), M ′ = (Q′, E′, S′) ∈ Succ(Mk),
(E �= E′ ∨Q �= Q′), ∀j ∈ [1, k] : Mj = (Q, E, Sj)

⎫⎬⎭
This allows us to define function FT � [[P0]] : ℘(F∗) → ℘(F∗) that statically approxi-
mates the iterative computation of phase semantics on the abstract domain 〈℘(F∗),⊆〉
as follows: FT � [[P0]](K) = α̊(P0) ∪ {kMiMj | (Mi, Mj) ∈ T �, kMi ∈ K}. The
following result shows the correctness of S�[[P0]] = lfpFT � [[P0]].

Theorem 6. αF(lfpFT Ph [[P0]]) ⊆ lfpFT � [[P0]].

Modelling Metamorphism by Abstract Interpretation 229

2

3

4

5

6

7

 MEM[a] mod 2

T F

 input => MEM[a]

MEM[b] := MEM[a]

MEM[a] := MEM[a]/2

goto

 MEM[a] :=(MEM[a]+1)/2

goto

ME

M0

2

3

4

5

6

7

 MEM[a] mod 2

T F

 input => MEM[a]

nop

MEM[a] := MEM[a]/2

goto

 MEM[a] :=(MEM[a]+1)/2

goto

ME

M1

2

3

4

5

102

7

 MEM[a] mod 2

T F

 input => MEM[a]

nop

goto

goto

 MEM[a] :=(MEM[a]+1)/2

goto

ME

M2

100

101

MEM[b] := MEM[a]

MEM[a] := MEM[a]/2

goto

6

2

3

4

5

102

7

 MEM[a] mod 2

T F

input => MEM[a]

nop

goto

goto

 MEM[a] :=(MEM[a]+1)/2

goto

ME

M3

100

101

MEM[b] := MEM[a]

MEM[a] := MEM[a]/2

goto

6

M4

M0

entry-point=1
TE: (11,12)

M1

entry-point=12
TE: (12,13)

M2

entry-point=13
TE: (11,12)

M3

entry-point=12
TE: (12,13)

M4

1

MEM[f] := 100

1

MEM[f] := 100

1

MEM[f] := 100

1

MEM[f] := 100

2

3

4

5

102

7

 MEM[a] mod 2

T F

input => MEM[a]

nop

goto

goto

 MEM[a] :=(MEM[a]+1)/2

goto

ME

103

101

nop

MEM[a] := MEM[a]/2

goto

6

1

MEM[f] := 100

104

goto

100

MEM[b] : = MEM[a]

Fig. 5. Some metamorphic variants of program P0 of Fig. 2, where the metamorphic engine,
namely the instructions stored at locations from 8 to 14, is briefly represented by the box marked
ME. In the graphic representation of automata we omit to show the nodes that are not reachable.

In Fig. 5 we report a possible sequence of FSA that can be generated during the execu-
tion of program P0 of Fig. 2. In this case, thanks to the simplicity of the example, it is
possible to use the transition relation over FSA defined by T F.

5 Widening Phases for Regular Metamorphism

Regular metamorphism models the metamorphic behaviour as a regular language of
abstract instructions. This can be achieved by approximating sequences of FSA into a
single FSA, denoted W[[P0]]. W[[P0]] represents all possible (regular) program evolu-
tions of P0, i.e., it recognizes all the sequences of instructions that correspond to a run
of at least one metamorphic variant of P0. This abstraction is able to precisely model
metamorphic engines implemented as FSA of basic code replacement as well as it may
provide a regular language-based approximation for any metamorphic engine, by ex-
tracting the regular invariant of their behaviour.

It is known that FSA can be ordered according to the language they recognize:
M1 &F M2 if L (M1) ⊆ L (M2). Observe that &F is reflexive and transitive but
not antisymmetric and it is therefore a pre-order. Moreover, according to this ordering,
an unique least upper bound of two automata M1 and M2 does not always exist, since
there is an infinite number of automata that recognize the language L (M1) ∪L (M2).

230 M. Dalla Preda et al.

Given two automata M1 = (Q1, δ1, S1, F1, A1) and M2 = (Q2, δ2, S2, F2, A2), we
approximate their least upper bound as follows:

M1 	 M2 = (Q1 ∪Q2, δ̂, S1 ∪ S2, F1 ∪ F2, A1 ∪A2)

where δ̂ : (Q1 ∪ Q2) × (A1 ∪ A2) → ℘(Q1 ∪ Q2) is defined as δ̂(q, s) = δ1(q, s) ∪
δ2(q, s). FSA are 	-closed for finite sets, and the following result shows that 	 approx-
imates any upper bound with respect to the ordering&F.

Lemma 1. Given two FSA M1 and M2 we have: L (M1)∪L (M2) ⊆ L (M1 	 M2).

We can now define F�
T � [[P0]] : F → F as follows: F�

T � [[P0]](M) = α̊(P0) 	 M 	
({M ′ | M ′ ∈ T �(M)}). Observe that the set of possible successors of a given au-
tomaton M , i.e., T �(M), is finite since we have a (finite family of) successor for every
transition edge of M and M has a finite set of edges. Since FSA are 	-closed for fi-
nite sets, then F�

T � [[P0]] is well defined. Let ℘F (F∗) denote the domain of finite sets
of strings of FSA and let us define function αS : ℘F (F∗) → F as αS(M0 . . .Mk) =
	{Mi | 0 ≤ i ≤ k} and αS(K) = 	{αS(M0 . . . Mk) | M0 . . . Mk ∈ K}, with K ∈
℘F (F∗). Function αS is additive and it defines a GC (℘F (F∗), αS , γS , F). The fol-
lowing result shows that, when considering finite sets of sequences of FSA, F�

T � [[P0]]
correctly approximatesFT � [[P0]] on F.

Theorem 7. For any K ∈ ℘F (F∗) we have αS(FT � [[P0]](K)) &F F�
T � [[P0]](αS(K)).

The domain 〈F,&F〉 has infinite ascending chains, which means that, in general, the
fixpoint computation of F�

T � [[P0]] on F may not converge. A typical solution for this
situation is the use of a widening operator which forces convergence towards an upper
approximation of all intermediate computations along the fixpoint iteration, i.e., an ele-
ment in F which upper approximates the iterates of F�

T � [[P0]] . We refer to the widening
operation over FSA described by D’Silva [14]. Here the widening operator between two
FSA M1 = (Q1, E1, S1) and M2 = (Q2, E2, S2) over a finite alphabet A is formalized
in terms of an equivalence relation R ⊆ Q1×Q2 between states. R, also called widen-
ing seed, is used to define another equivalence relation≡R⊆ Q2×Q2 over the states of
M2, such that ≡R= R ◦ R−1. The widening between M1 and M2 is then given by the
quotient of M2 with respect to the partition induced by ≡R: M1�M2 = M2/≡R . By
changing the widening seed we obtain different widening operators. It has been proved
that convergence is guaranteed when the widening seed is the relation Rn ⊆ Q1 ×Q2

such that (q1, q2) ∈ Rn if q1 and q2 recognize the same language of strings of length
at most n [14]. When considering the widening seed Rn we have that two states q and
q′ of M2 are ≡Rn -equivalent if they recognize the same language of length at most n
that is recognized by a state r of M1, i.e., if ∃r ∈ Q1 : (r, q) ∈ Rn and (r, q′) ∈ Rn.
�n denotes the widening operator that uses Rn as widening seed. �n is well defined if
I̊ is finite. This can be achieved by considering expressions as terms and by applying
some of the standard methods for approximating them. The most straightforward one is
the depth-k string abstraction [24], while more refined expression abstractions can be
designed by considering graph-based or grammar-based term abstractions [3, 15]. For

Modelling Metamorphism by Abstract Interpretation 231

simplicity we consider here the depth-k term abstraction where expressions are repre-
sented as trees with leafs that are natural numbers denoting either a memory location
or a constant, and internal nodes are the operators constructing expressions, namely the
unary operator MEM or the binary operators op. We annotate each node with its depth,
namely with the length of the path from the root to the node. The depth-k abstraction,
given a tree representation of an expression, considers only the nodes with depth less or
equal to k and “cuts” the remaining nodes by approximating them with'. For example,
the depth-3 abstraction of expression MEM[(MEM[a] op MEM[b op MEM[c]]) op d]
is MEM[(MEM['] op MEM[']) op d]. Given k ∈ N, let ιk : I̊ → I̊k be the instruc-
tion abstraction that applies the depth-k abstraction to the expressions occurring in an
abstract instruction, and let αk : F → Fk be the function that abstracts the edge la-
bels of a FSA in F according to ιk. It is possible to show that (F, αk, γk, Fk) is a GC,
where γk(Mk) = 	{M ′ | αk(M ′) &F Mk}. This allows us to approximate the least
fixpoint of F�

T � [[P0]] on 〈Fk,&F〉 with the limit W[[P0]] of the following widening se-
quence: W0 = αk(α̊(P0)) and Wi+1 = Wi �n αk(F�

T � [[P0]](γk(Wi))). Let us refer
to W[[P0]] as the widened fixpoint of F�

T � [[P0]] and to W0W1, . . . as the widening se-
quence of F�

T � [[P0]]. From the correctness of �n and by Theorem 7, it follows that the
widening sequence W0W1 . . . converges to an upper-approximation of the least fixpoint
of FT � [[P0]], namely any automata modelling a possible static variant of P0 is approx-
imated by W[[P0]] i.e., . . . Mi . . . ∈ lfp⊆FT � [[P0]] ⇒ Mi &F W[[P0]]. Therefore
L (W[[P0]]) contains all the possible sequences of abstract instructions that can be ex-
ecuted by a metamorphic variant of P0. As a consequence, a program Q is a regular
(abstract) metamorphic variant of P0 if W[[P0]] recognizes all the sequences of abstract
instructions that correspond to the runs of Q up to address renaming: P0 �Fk

Q iff
there exists an address renaming ϑ such that ϑ(L (αk(α̊(Q)))) ⊆ L (W[[P0]]). The
language L (W[[P0]]) represents the regular metamorphic signature of P0 and the au-
tomaton W[[P0]] represents the mechanism of generation of the metamorphic variants
and therefore it provides a model of the metamorphic engine of P0. Fig. 6 (a) shows the
widened fixpoint W[[P0]] of program P0 in Fig. 2, where the widening seed is R2 and
k ≥ 3, This automaton recognizes any possible program that can be obtained during the
execution of P0. Note that, we may have false positives, as for example the sequences of
instructions along the bold path MEM[f] := 100;input ⇒ MEM[a];MEM[a] mod 2 =
0;MEM[b] := MEM[a];goto;MEM[b] := MEM[a];goto; . . . which is not a run of any of
the variants of P0. Regular metamorphism can easily cope with metamorphic trans-
formations commonly used by malware (e.g., Win95/Regswap, Win32/Ghost,
Win95/Zperm,Win95/Zmorph,Win32/Evol) such as: register swap that changes
the registers used by the program; code permutation that changes the order in which
instructions appear in memory while preserving their execution order through the inser-
tion of direct jumps; junk/nop insertion that inserts junk instructions and semantic-nops,
namely instructions that are not executed or that do not alter program functionality. Ob-
serve that all these transformations can be seen as special cases of code substitution. Let
P0 be a metamorphic malware: whenever a sequence s1 of instructions is substituted
with an equivalent one s2, we have that during the widened fixpoint computation a new
path containing sequence s2 is added to the widened fixpoint W[[P0]]. Therefore, by
correctness, W[[P0]] recognizes all the possible metamorphic variants of P0 obtained

232 M. Dalla Preda et al.

through code substitution. Of course it is possible to further abstract W[[P0]] in order
to address semantic-nop/junk insertion, permutation and register swap in a more effi-
cient way, namely in such a way that the resulting widened fixpoint is an automaton of
a reduced size. In semantic-nop insertion, the more precise is the static analysis used
for identifying (sequences of) instructions that are equivalent to nop, the smaller is
the widened fixpoint W[[P0]] that we obtain. In code permutation, a smaller FSA can
be obtained by performing goto-reduction, i.e., by folding nodes reachable by goto-
instructions. In register swapping it is sufficient to replace registers names (i.e., memory
locations) with uninterpreted symbols and then use unification to bind these uninter-
preted symbols to the actual register names (i.e., memory locations) as done in [5]. Let
us consider program P+

0 obtained by enriching the metamorphic engine of program
P0 of Fig. 2 with a code permutation and a transformation that substitutes instruction
MEM[e1] := e2 with the equivalent sequence push e1, pop e2. A possible evolution
is shown below, where ME denotes the metamorphic engine.

P
+
0 :
1 : goto 8
2 : if (MEM[a] mod 2) goto 11
3 : nop
4 : goto 100
5 : push MEM[a]/2
6 : pop a
7 : goto 12
8 : MEM[f] := 100
9 : input ⇒ MEM[a]

10 : goto 2
11 : MEM[a] := (MEM[a] + 1)/2
12 : ME
13 : goto 9

100 : push MEM[a]
101 : pop b
102 : goto 5

Fig. 6 (b) shows the FSA that represents an approximation of
all the possible evolutions of program P+

0 when k ≥ 3. This
FSA is obtained through widening with widening seed R2

and by applying the goto-reduction to handle permutation.
We can observe that every time that in the automaton in Fig. 6
(b) we have an edge labeled with MEM[e1] := e2 between
two states q and p, then we also have a path labeled with
push e2,pop e1 that connects q and p, and this precisely
captures the fact that the metamorphic engine implements
this substitution. The goto-reduction allows here to have a
reduced FSA, and the self-loop labeled with nopmakes clear
that the metamorphism could insert an unbounded number of
nop instructions.

MEM[a] mod 2

T F

 MEM[f] := 100

goto

 MEM[a] :=(MEM[a]+1)/2

goto

 input => MEM[a]

ME

goto

nop

MEM[b]:= MEM[a] goto

MEM[a]:=MEM[b]

nop

MEM[b] : = MEM[a]

MEM[a] : = MEM[a]/2

goto

MEM[a]:= MEM[a]/2

MEM[a]:= MEM[a]/2

 MEM[a] mod 2

F

 input => MEM[a]

MEM[b]: MEM[a]

MEM[a]:=MEM[a]/2

T

MEM[f]:=MEM[f]+3

 MEM[f]:= 100
push 100

pop f

nop

nop

MEM[b]:=MEM[a]

push MEM[a]
pop b

push MEM[a]

pop b

push MEM[a]/2

pop a

MEM[b]:=MEM[a]

push MEM[a]

pop b

MEM[a]:=(MEM[a]+1)/2

push (MEM[a]+1)/2

pop a

(a)

goto

(b)

ME

Fig 6. Widened phase semantics

6 Related Works and Discussion

In [13] the authors use trace semantics to characterize the behaviours of both the mal-
ware and the potentially infected program, and use abstract interpretation to “hide” their

Modelling Metamorphism by Abstract Interpretation 233

irrelevant behaviours. A program is infected by a malware if their behaviours are indis-
tinguishable up to a certain abstraction, which corresponds to some obfuscations. A
significant limitation of this work is that the knowledge of the obfuscation is essential
in order to derive abstractions. In [19] the authors model the malware M as a formula
in the new logic CTPL, which is an extension of CTL able to handle register renaming.
A program P is infected by M , if P satisfies the CTPL formula that models M . By
knowing the obfuscations used by malware M it is possible to design CTPL specifica-
tions that recognise several metamorphic variants of M . In [7] the idea is to model the
malware as a template that expresses the malicious intent. Also in this case the defini-
tion of the template is driven by the knowledge of the obfuscations commonly used by
malware. Some researchers have tried to detect metamorphic malware by modelling the
metamorphic engine as formal grammars and automata [25, 20, 16]. These works are
promising, but the design of the grammar and automata is based on the knowledge of
the metamorphic transformations used, and none of them provides a methodology for
extracting a grammar or an automata from a given metamorphic malware. To the best
of our knowledge, we are not aware of any work modelling metamorphism without any
a priori knowledge of the transformations used by the metamorphic engine. The only
other work we are aware of that formally addresses the analysis of self-modifying code
is the one of Cai et al. [4]. However, their goals and results are very different from ours:
Cai et al. propose a general framework based on Hoare logic to verify self-modifying
code, while we use program semantics and abstract interpretation to extract metamor-
phic signature from malicious self-modifying code. In this sense, our key contribution
relies upon the idea that abstract interpretation of phase semantics may provide useful
information about the way code changes, i.e., about the metamorphic engine itself. In-
terestingly, the language recognized by W[[P]] provides an upper-approximation of the
possible metamorphic variants of the original malware, while the automaton itself mod-
els the mechanism of generation of such variants, i.e., the metamorphic engine. With
our approach it is therefore possible to extract properties of the implementation of the
metamorphic engine by abstract interpretation of the phase semantics. It is clear that the
depth-k abstraction considered here for approximating the language of instructions to-
wards a finite alphabet for widening traces of FSA is for sake of simplicity. In general,
widening phases for taming the sequence of modified programs (FSA) generated by
metamorphism into a single FSA modeling regular metamorphism may require a notion
of higher-order widening on FSA, acting both at the level of the graph-structure of the
FSA, for approximating the language of instructions, and at the level of the instruction
set, for approximating the way a single instruction may be composed. The abstraction
of code layout may induce the abstraction of instructions, which itself can be solved by
means of FSA. This opens an interesting new field that may represent a future challenge
for abstract interpretation: the abstraction of code layout, where the code is the object of
abstraction and the way it is generated is the object of abstract interpretation. Of course
FSA provide just regular language-based abstractions of the metamorphic engine. More
sophisticated approximations, using for instance a la Cousot’s context free grammars
and set-constraint-based abstractions of sequences of binary instructions [10], may pro-
vide alternative and effective solutions for non-regular metamorphism.

234 M. Dalla Preda et al.

References

1. Balakrishnan, G., Gruian, R., Reps, T.W., Teitelbaum, T.: Codesurfer/x86-a platform for
analyzing x86 executables. In: Bodik, R. (ed.) CC 2005. LNCS, vol. 3443, pp. 250–254.
Springer, Heidelberg (2005)

2. Balakrishnan, G., Reps, T.W.: Analyzing memory accesses in x86 executables. In: Duester-
wald, E. (ed.) CC 2004. LNCS, vol. 2985, pp. 5–23. Springer, Heidelberg (2004)

3. Bruynooghe, M., Janssens, G., Callebaut, A., Demoen, B.: Abstract Interpretation: Towards
the Global Optimization of Prolog Programs. In: Proc. Symposium on Logic Programming,
pp. 192–204 (1987)

4. Cai, H., Shao, Z., Vaynberg, A.: Certified self-modifying code. In: Proc. ACM Conf. on
Programming Language Design and Implementation (PLDI 2007), pp. 66–77 (2007)

5. Christodorescu, M., Jha, S.: Static analysis of executables to detect malicious patterns. In:
Proc. USENIX Security Symp., pp. 169–186 (2003)

6. Christodorescu, M., Jha, S.: Testing malware detectors. In: Proc. ACM SIGSOFT Internat.
Symp. on Software Testing and Analysis (ISSTA 2004), pp. 34–44 (2004)

7. Christodorescu, M., Jha, S., Seshia, S.A., Song, D., Bryant, R.E.: Semantics-aware malware
detection. In: Proc. IEEE Security and Privacy 32–46 (2005)

8. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In: Proc. ACM Symp. on Principles
of Programming Languages (POPL 1977), pp. 238–252 (1977)

9. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: Proc. ACM
Symp. on Principles of Programming Languages (POPL 1979), pp. 269–282 (1979)

10. Cousot, P., Cousot, R.: Formal language, grammar and set-constraint-based program analysis
by abstract interpretation. In: Proc. ACM Conf. on Functional Programming Languages and
Computer Architecture, pp. 170–181 (1995)

11. Cousot, P.: Constructive design of a hierarchy of semantics of a transition system by abstract
interpretation. Theor. Comput. Sci. 277(1-2), 47–103 (2002)

12. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a pro-
gram. In: Proc. ACM Symp. on Principles of Programming Languages, POPL 1978 (1978)

13. Dalla Preda, M., Christodorescu, M., Jha, S., Debray, S.: A semantics-based approach to
malware detection. ACM Trans. Program. Lang. Syst. 30(5), 1–54 (2008)

14. D’Silva, V.: Widening for automata. Diploma Thesis, Institut Fur Informatick, Universitat
Zurich (2006)

15. Emami, M., Ghiya, R., Hendren, L.J.: Context-sensitive interprocedural points-to analysis in
the presence of function pointers. In: Proc. ACM Conf. Programming Language Design and
Implementation, pp. 242–256 (1994)

16. Filiol, E.: Metamorphism, formal grammars and undecidable code mutation. In: Proc. World
Academy of Science, Engineering and Technology (PWASET), vol. 20 (2007)

17. Giacobazzi, R., Ranzato, F., Scozzari, F.: Making abstract interpretations complete. J. of the
ACM. 47(2), 361–416 (2000)

18. Holzer, A., Kinder, J., Veith, H.: Using verification technology to specify and detect malware.
In: Moreno Dı́az, R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2007. LNCS,
vol. 4739, pp. 497–504. Springer, Heidelberg (2007)

19. Kinder, J., Katzenbeisser, S., Schallhart, C., Veith, H.: Detecting malicious code by model
checking. In: Julisch, K., Krügel, C. (eds.) DIMVA 2005. LNCS, vol. 3548, pp. 174–187.
Springer, Heidelberg (2005)

20. Qozah. Polymorphism and grammars. 29A E-zine (2009)
21. Singh, P., Lakhotia, A.: Static verification of worm and virus behaviour in binary executables

using model checking. In: Proc. IEEE Information Assurance Workshop (2003)

Modelling Metamorphism by Abstract Interpretation 235

22. Szor, P.: The Art of Computer Virus Research and Defense. Addison-Wesley Professional,
Reading (2005)

23. Ször, P., Ferrie, P.: Hunting for metamorphic. In: Proc. Virus Bulleting Conference, pp. 123–
144. Virus Bulletin Ltd. (2001)

24. Tamaki, H., Sato, T.: Program Transformation Through Meta-shifting. New Generation Com-
puting 1(1), 93–98 (1983)

25. Zbitskiy, P.: Code mutation techniques by means of formal grammars and automatons. Jour-
nal in Computer Virology (2009)

Small Formulas for Large Programs:

On-Line Constraint Simplification in
Scalable Static Analysis�

Isil Dillig��, Thomas Dillig, and Alex Aiken

Department of Computer Science,

Stanford University

{isil,tdillig,aiken}@cs.stanford.edu

Abstract. Static analysis techniques that represent program states as

formulas typically generate a large number of redundant formulas that

are incrementally constructed from previous formulas. In addition to

querying satisfiability and validity, analyses perform other operations on

formulas, such as quantifier elimination, substitution, and instantiation,

most of which are highly sensitive to formula size. Thus, the scalability

of many static analysis techniques requires controlling the size of the

generated formulas throughout the analysis. In this paper, we present

a practical algorithm for reducing SMT formulas to a simplified form
containing no redundant subparts. We present experimental evidence

that on-line simplification of formulas dramatically improves scalability.

1 Introduction

Software verification techniques have benefited greatly from recent advances in
SAT and SMT solving by encoding program states as formulas and determin-
ing the feasibility of these states by querying satisfiability. Despite tremendous
progress in solving SAT and SMT formulas over the last decade [1–8], the scala-
bility of many software verification techniques relies crucially on controlling the
size of the formulas generated by the analysis, because many of the operations
performed on these formulas are highly sensitive to formula size. For this reason,
much research effort has focused on identifying only those states and predicates
relevant to some property of interest. For example, predicate abstraction-based
approaches using counter-example guided abstraction refinement [9–11] attempt
to discover a small set of predicates relevant to verifying a property and only in-
clude this small set of predicates in their formulas. Similarly, many path-sensitive
static analysis techniques have successfully employed various heuristics to iden-
tify which path conditions are likely to be relevant for some property of interest.
� This work was supported by grants from NSF (CNS-050955, CCF-0430378) with

additional support from DARPA.
�� Supported by the Stanford Graduate Fellowship.

R. Cousot and M. Martel (Eds.): SAS 2010, LNCS 6337, pp. 236–252, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Small Formulas for Large Programs 237

For example, property simulation only tracks those branch conditions for which
the property-related behavior differs along the arms of the branch [12]. Other
path-sensitive analysis techniques attempt to improve their scalability by either
only tracking path conditions intraprocedurally or by heuristically selecting a
small set of predicates to track across function boundaries [13, 14].

All of these different techniques share one important underlying assumption
that has been validated by a large body of empirical evidence: Many program
conditions do not matter for verifying most properties of interest, making it
possible to construct much smaller formulas sufficient to prove the property.
If this is indeed the case, then one might suspect that even if we construct a
formula φ characterizing some program property P without being particularly
careful about what conditions to track, it should be possible to use φ to construct
a much smaller, equivalent formula φ′ for P since many predicates used in φ do
not affect P ’s truth value.

In this paper, we present a systematic and practical approach for simplifying
formulas that identifies and removes irrelevant predicates and redundant subex-
pressions as they are generated by the analysis. In particular, given an input
formula φ, our technique produces an equivalent formula φ′ such that no simpler
equivalent formula can be obtained by replacing any subset of the leaves (i.e.,
syntactic occurrences of atomic formulas) used in φ′ by true or false. We call
such a formula φ′ simplified.

Like all the afore-mentioned approaches to program verification, our interest
in simplification is motivated by the goal of generating formulas small enough
to make software verification scalable. However, we attack the problem from a
different angle: Instead of restricting the set of predicates that are allowed to
appear in formulas, we continuously simplify the constraints generated by the
analysis. This approach has two advantages: First, it does not require heuristics
to decide which predicates are relevant, and second, this approach removes all
redundant subparts of a formula in addition to filtering out irrelevant predicates.

To be concrete, consider the following code snippet:

enum op_type {ADD=0, SUBTRACT=1, MULTIPLY=2, DIV=3};

int perform_op(op_type op, int x, int y) {

int res;

if(op == ADD) res = x+y;

else if(op == SUBTRACT) res = x-y;

else if(op == MULTIPLY) res = x*y;

else if(op == DIV) { assert(y!=0); res = x/y; }

else res = UNDEFINED;

return res; }

The perform_op function is a simple evaluation procedure inside a calculator
program that performs a specified operation on x and y. This function aborts
if the specified operation is division and the divisor is 0. Assume we want to
know the constraint under which the function returns, i.e., does not abort. This
constraint is given by the disjunction of the constraints under which each branch

238 I. Dillig, T. Dillig, and A. Aiken

of the if statement does not abort. The following formula, constructed in a
straightforward way from the program, describes this condition:

op = 0 ∨ (op = 0 ∧ op = 1) ∨ (op = 0 ∧ op = 1 ∧ op = 2)∨
(op = 0 ∧ op = 1 ∧ op = 2 ∧ op = 3 ∧ y = 0)∨

(op = 0 ∧ op = 1 ∧ op = 2 ∧ op = 3)

Here, each disjunct is associated with one branch of the if statement. In each
disjunct, a disequality constraint of the form op �= 0, op �= 1, . . . states that the
previous branches were not taken, encoding the semantics of an else statement.
In the fourth disjunct, the additional constraint y �= 0 encodes that if this branch
is taken, y cannot be 0 for the function to return.

While this automatically generated constraint faithfully encodes the condi-
tion under which the function returns, it is far from concise. In fact, the above
constraint is equivalent to the much simpler formula:

op = 3 ∨ y = 0

This formula is in simplified form because it is equivalent to the original formula
and replacing any of the remaining leaves by true or false would not result in an
equivalent formula. This simpler constraint expresses exactly what is relevant to
the function’s return condition and makes no reference to irrelevant predicates,
such as op = 0, op = 1, and op = 2. Although the original formula corresponds
to a brute-force enumeration of all paths in this function, its simplified form
yields the most concise representation of the function’s return condition without
requiring specialized techniques for identifying relevant predicates.

The rest of the paper is organized as follows: Section 2 introduces preliminary
definitions. Section 3 defines simplified form and highlights some of its properties.
Section 4 presents a practical simplification algorithm, and Section 5 describes
simplification in the context of program analysis. Section 6 reports experimental
results, and Section 7 surveys related work. To summarize, this paper makes the
following key contributions:

– We present an on-line constraint simplification algorithm for improving SMT-
based static analysis techniques.

– We define what it means for a formula to be in simplified form and detail
some important properties of this form.

– We give a practical algorithm for reducing formulas to their simplified form
and show how this algorithm naturally integrates into the DPLL(T) frame-
work for solving SMT formulas.

– We demonstrate the effectiveness of our on-line simplification algorithm in
the context of a program verification framework and show that simplification
improves overall performance by orders of magnitude, often allowing analysis
runs that did not terminate within the allowed resource limits to complete
in just a few seconds.

Small Formulas for Large Programs 239

2 Preliminaries

Any quantifier-free formula φT in theory T is defined by the following grammar:

φT := true | false | AT | ¬AT | φ′
T ∧ φ′′

T | φ′
T ∨ φ′′

T

In the above grammar, AT represents an atomic formula in theory T , such as
the boolean variable x in propositional logic or the inequality a + 2b ≤ 3 in
linear arithmetic. Observe that the above grammar requires formulas to be in
negation normal form (NNF) because only atomic formulas may be negated.
While the rest of this paper relies on formulas being in NNF, this restriction is
not important since any formula may be converted to NNF using De Morgan’s
laws in linear time without increasing the size of the formula (see Definition 2).

Definition 1. (Leaf) We refer to each occurrence of an atomic formula AT or
its negation ¬AT as a leaf of the formula in which it appears.

It is important to note that different occurrences of the same (potentially negated)
atomic formula in φT form distinct leaves. For example, the two occurrences of
f(x) = 1 in f(x) = 1 ∨ (f(x) = 1 ∧ x + y ≤ 1) correspond to two distinct
leaves. Also, observe that leaves are allowed to be negations. For instance, in the
formula ¬(x = y), (x = y) is not a leaf; the only leaf of the formula is ¬(x = y).

In the rest of this paper, we restrict our focus to quantifier-free formulas in
theory T , and we assume there is a decision procedure DT that can be used
to decide the satisfiability of a quantifier-free formula φT in theory T . Where
irrelevant, we omit the subscript T and denote formulas by φ.

Definition 2. (Size) The size of a formula φ is the number of leaves φ contains.

Definition 3. (Fold) The fold operation removes constant leaves (i.e., true,
false) from the formula. In particular, Fold(φ) is a formula φ′ such that (i)
φ ⇔ φ′, (ii) φ′ is just true or false or φ′ mentions neither true nor false.

It is easy to see that it is possible to construct this fold operation such that it
reduces the size of the formula φ at least by one if φ contains true or false but
φ is not initially true or false.

3 Simplified Form

In this section, we first define redundancy and describe what it means for a
formula to be in simplified form. We then highlight some important properties
of simplified forms. Notions of redundancy similar to ours have been studied in
other contexts, such as in automatic test pattern generation and vacuity detec-
tion; see Section 7 for a discussion.

Definition 4. (φ+(L), φ−(L)) Let φ be a formula and let L be a leaf of φ. φ+(L)
is obtained by replacing L by true and applying the fold operation. Similarly,
φ−(L) is obtained by replacing L by false and folding the resulting formula.

240 I. Dillig, T. Dillig, and A. Aiken

Example 1. Consider the formula:

x = y︸ ︷︷ ︸
L0

∧ (f(x) = 1︸ ︷︷ ︸
L1

∨ (f(y) = 1︸ ︷︷ ︸
L2

∧ x + y ≤ 1︸ ︷︷ ︸
L3

))

Here, φ+(L1) is (x = y), and φ−(L2) is (x = y ∧ f(x) = 1).

Observe that for any formula φ, φ+(L) is an overapproximation of φ, i.e., φ ⇒
φ+(L), and φ−(L) is an underapproximation, i.e., φ−(L) ⇒ φ. This follows im-
mediately from Definition 4 and the monotonicity of NNF. Also, by construction,
the sizes of φ+(L) and φ−(L) are at least one smaller than the size of φ.

Definition 5. (Redundancy) We say a leaf L is non-constraining in formula
φ if φ+(L) ⇒ φ and non-relaxing if φ ⇒ φ−(L). Leaf L is redundant if L is
either non-constraining or non-relaxing.

The following corollary follows immediately from definition:

Corollary 1. If a leaf L is non-constraining, then φ ⇔ φ+(L), and if L is
non-relaxing, then φ ⇔ φ−(L).

Intuitively, if replacing a leaf L by true in formula φ results in an equivalent
formula, then L does not constrain φ; hence, we call such a leaf non-constraining.
A similar intuition applies for non-relaxing leaves.

Example 2. Consider the formula from Example 1. In this formula, leaves L0

and L1 are not redundant, but L2 is redundant because it is non-relaxing. Leaf
L3 is both non-constraining and non-relaxing, and thus also redundant.

Note that if two leaves L1 and L2 are redundant in formula φ, this does not
necessarily mean we can obtain an equivalent formula by replacing both L1 and
L2 with true (if non-constraining) or false (if non-relaxing). This is the case
because eliminating L1 may render L2 non-redundant and vice versa.

Definition 6. (Simplified Form) We say a formula φ is in simplified form if
no leaf mentioned in φ is redundant.

Lemma 1. If a formula φ is in simplified form, replacing any subset of the
leaves used in φ by true or false does not result in an equivalent formula.

Proof. The proof is by induction. If φ contains a single leaf, the property trivially
holds. Suppose φ is of the form φ1 ∨ φ2. Then, if φ has a simplification φ′

1 ∨ φ′
2

where both φ′
1 and φ′

2 are simplified, then either φ′
1 ∨ φ2 or φ1 ∨ φ′

2 is also
equivalent to φ. This is the case because (φ ⇔ φ′

1 ∨ φ′
2) ∧ (φ �⇔ φ′

1 ∨ φ2) ∧ (φ �⇔
φ1 ∨ φ′

2) is unsatisfiable. A similar argument applies if the connective is ∧. (

The following corollary follows directly from Lemma 1:

Corollary 2. A formula φ in simplified form is satisfiable if and only if it is
not syntactically false and valid if and only if it is syntactically true.

Small Formulas for Large Programs 241

This corollary is important in the context of on-line simplification in program
analysis because, if formulas are kept in simplified form, then determining sat-
isfiability and validity becomes just a syntactic check.

Observe that while a formula φ in simplified form is guaranteed not to con-
tain redundancies, there may still exist a smaller formula φ′ equivalent to φ.
In particular, a non-redundant formula may be made smaller, for example, by
factoring common subexpressions. We do not address this orthogonal problem
in this paper, and the algorithm given in Section 4 does not change the structure
of the formula.

Example 3. Consider the propositional formula (a∧ b)∨ (a∧ c). This formula is
in simplified form, but the equivalent formula a ∧ (b ∨ c) contains fewer leaves.

As this example illustrates, it is not possible to determine the equivalence of two
formulas by checking whether their simplified forms are syntactically identical.
Furthermore, as illustrated by the following example, the simplified form of a
formula φ is not always guaranteed to be unique.

Example 4. Consider the formula x = 1 ∨ x = 2 ∨ (1 ≤ x ∧ x ≤ 2) in the theory
of linear integer arithmetic. The two formulas x = 1 ∨ x = 2 and 1 ≤ x ∧ x ≤ 2
are both simplified forms that can be obtained from the original formula.

Lemma 2. If φ is a formula in simplified form, then NNF(¬φ) is also in sim-
plified form, where NNF converts the formula to negation normal form.

Proof. Suppose NNF(¬φ) was not in simplified form. Then, it would be possible
to replace one leaf, say L, by true or false to obtain a strictly smaller, but
equivalent formula. Now consider negating the simplified form of NNF(¬φ) to
obtain φ′ which is equivalent to φ. Note that the ¬L is a leaf in φ, but not in
φ′. Thus, φ could not have been in simplified form. (

Hence, if a formula is in simplified form, then its negation does not need to be
resimplified, an important property for on-line simplification in program analysis.
However, simplified forms are not preserved under conjunction or disjunction.

Lemma 3. For every formula φ, there exists a formula φ′ in simplified form
such that (i) φ ⇔ φ′, and (ii) size(φ′) ≤ size(φ).

Proof. Consider computing φ′ by checking every leaf L of φ for redundancy and
replacing L by true if it is non-constraining and by false if it is non-relaxing. If
this process is repeated until there are no redundant leaves, the resulting formula
is in simplified form and contains at most as many leaves as φ. (

The above lemma states that converting a formula to its simplified form never
increases the size of the formula. This property is desirable because, unlike other
representations like BDDs that attempt to describe the formula compactly, com-
puting a simplified form is guaranteed not to cause a worst-case blow-up. In the
experience of the authors, this property is crucial in program verification.

242 I. Dillig, T. Dillig, and A. Aiken

Fig. 1. The representation of the formula

from Example 1. The critical constraint at

each node is shown in red. Observe that the

critical constraint for L3 is false, making

L3 both non-constraining and non-relaxing.

The critical constraint of L2 implies its

negation; hence, L2 is non-relaxing.

4 Algorithm to Compute Simplified Forms

While the proof of Lemma 3 sketches a naive way of computing the simplified
form of a formula φ, this approach is suboptimal because it requires repeatedly
checking the satisfiability of a formula twice as large as φ until no more redundant
leaves can be identified. In this section, we present a practical algorithm to
compute simplified forms. For convenience, we assume formulas are represented
as trees; however, the algorithm is easily modified to work on directed acyclic
graphs, and in fact, our implementation uses DAGs to represent formulas. A
node in the tree represents either an ∧ or ∨ connective or a leaf. We assume
connectives have at least two children but may have more than two.

4.1 Basic Algorithm

Recall that a leaf L is non-constraining if and only if φ+(L) ⇒ φ and non-
relaxing if and only if φ ⇒ φ−(L). Since the size of φ+(L) and φ−(L) may be
only one less than φ, checking whether L is non-constraining or non-relaxing
using Definition 5 requires checking the validity of formulas twice as large as φ.

A key idea underlying our algorithm is that it is possible to check for re-
dundancy of a leaf L by checking the validity of formulas no larger than φ. In
particular, for each leaf L, our algorithm computes a formula α(L), called the
critical constraint of L, such that (i) α(L) is no larger than φ, (ii) L is non-
constraining if and only if α(L) ⇒ L, and (iii) L is non-relaxing if and only
if α(L) ⇒ ¬L. This allows us to determine whether each leaf is redundant by
determining the satisfiability of formulas no larger than the original formula φ.

Definition 7. (Critical constraint)

– Let R be the root node of the tree. Then, α(R) = true.
– Let N be any node other than the root node. Let P denote the parent of N

in the tree, and let S(N) denote the set of siblings of N . Let � denote ¬ if
P is an ∨ connective, and nothing if P is an ∧ connective. Then,

α(N) = α(P) ∧
∧

Si∈S(N)

�Si

Small Formulas for Large Programs 243

Intuitively, the critical constraint of a leaf L describes the condition under which
L will be relevant for either permitting or disallowing a particular model of φ.
Clearly, if the assignment to L is to determine whether φ is true or false for a
given interpretation, then all the children of an ∧ connective must be true if
this ∧ node is an ancestor of L; otherwise φ is already false regardless of the
assignment to L. Also, observe that L is not relevant in permitting or disallowing
a model of φ if some other path not involving L is satisfied because φ will already
be true regardless of the truth value of L. Hence, the critical constraint includes
the negation of the siblings at an ∨ connective while it includes the siblings
themselves at an ∧ node. The critical constraint can be viewed as a context
in the general framework of contextual rewriting [15, 16]; see Section 7 for a
discussion.

Example 5. Figure 1 shows the representation of the formula from Example 1
along with the critical constraints of each node.

Lemma 4. A leaf L is non-constraining if and only if α(L) ⇒ L.

Proof. (Sketch) Suppose α(L) ⇒ L, but L is constraining, i.e., the formula
γ = (φ+(L)∧¬φ) is satisfiable. Then, there must exist some model M of γ that
satisfies φ+(L) but not φ. For M to be a model of φ+(L) but not φ, it must (i)
assign all the children of any ∧ node that is an ancestor of L to true, (ii) it must
assign L to false, and (iii) it must assign any other children of an ∨ node that is
an ancestor of L to false. By (i) and (iii), such a model must also satisfy α(L).
Since α(L) ⇒ L, M must also satisfy L, contradicting (ii). The other direction
is analogous. (
Lemma 5. A leaf L is non-relaxing if and only if α(L) ⇒ ¬L.

Proof. Similar to the proof of Lemma 4.

We now formulate a simple recursive algorithm, presented in Figure 2, to reduce
a formula φ to its simplified form. In this algorithm, N is a node representing the
current subpart of the formula, and α denotes the critical constraint associated
with N . If C is some ordered set, we use the notation C<i and C>i to denote
the set of elements before and after index i in C respectively. Finally, we use the
notation � as in Definition 7 to denote ¬ if the current node is an ∨ connective
and nothing otherwise.

Observe that, in the algorithm of Figure 2, the critical constraint of each child
ci of a connective node is computed by using the new siblings c′k that have been
simplified. This is crucial for the correctness of the algorithm because, as pointed
out in Section 3, if two leaves L1 and L2 are both initially redundant, it does
not mean L2 stays redundant after eliminating L1 and vice versa. Using the
simplified siblings in computing the critical constraint of ci has the same effect
as rechecking whether ci remains redundant after simplifying sibling ck.

Another important feature of the algorithm is that, at connective nodes, each
child is simplified as long as any of their siblings change, i.e., the recursive
invocation returns a new sibling not identical to the old one. The following
example illustrates why this is necessary.

244 I. Dillig, T. Dillig, and A. Aiken

simplify(N , α)

– If N is a leaf:

• If α ⇒ N return true
• If α ⇒ ¬N return false
• Otherwise return N

– If N is a connective, let C denote the ordered set of children of N , and let C′

denote the new set of children of N .

• For each ci ∈ C:

αi = α ∧ (
∧

cj∈C>i
�cj) ∧ (

∧
c′

k
∈C′

<i
�c′k)

c′i = simplify(ci, αi)

C′ = C′ ∪ c′i

• Repeat the previous step until ∀i.ci = c′i
• If N is an ∧ connective, return

∧
c′i∈C′ c′i

• If N is an ∨ connective, return
∨

c′i∈C′ c′i

Fig. 2. The basic algorithm to reduce a formula N to its simplified form

Example 6. Consider the following formula: x = 1︸ ︷︷ ︸
L1

∧ (x ≤ 0︸ ︷︷ ︸
L2

∨x > 2︸ ︷︷ ︸
L3

∨x = 1︸ ︷︷ ︸
L4

)

︸ ︷︷ ︸
N

The simplified form of this formula is x ≤ 0 ∨ x > 2. Assuming we process
child L1 before N in the outer ∧ connective, the critical constraint for L1 is
computed as x ≤ 0 ∨ x > 2 ∨ x = 1, which implies neither L1 nor ¬L1. If we
would not resimplify L1 after simplifying N , the algorithm would (incorrectly)
yield x �= 1 ∧ (x ≤ 0 ∨ x > 2) as the simplified form of the original formula.
However, by resimplifying L1 after obtaining a simplified N ′ = (x ≤ 0 ∨ x > 2),
we can now simplify the formula further because the new critical constraint of
L1, (x ≤ 0 ∨ x > 2), implies x �= 1.

Lemma 6. The number of validity queries made in the algorithm of Figure 2 is
bound by 2n2 where n denotes the number of leaves in the initial formula.

Proof. First, observe that if any call to simplify yields a formula different from
the input, the size of this formula must be at least one less than the original
formula (see Lemma 3). Furthermore, the number of validity queries made in
formula of size k without any simplifications is 2k. Hence, the total number of
validity queries is bound by 2n + 2(n− 1) + . . . + 2 which is bound by 2n2. (

4.2 Making Simplification Practical

In the previous section, we showed that reducing a formula to its simplified
form may require making a quadratic number of validity queries. However, these
queries are not independent of one another in two important ways: First, all

Small Formulas for Large Programs 245

the formulas that correspond to validity queries share exactly the same set of
leaves. Second, the simplification algorithm given in Figure 2 has a push-and-pop
structure, which makes it possible to incrementalize queries. In the rest of this
section, we discuss how we can make use of these observations to substantially
reduce the cost of simplification in practice.

The first observation that all formulas whose satisfiability is queried during
the algorithm share the same set of leaves has a fundamental importance when
simplifying SMT formulas. Most modern SMT solvers use the DPLL(T) frame-
work to solve formulas [17]. In the most basic version of this framework, leaves
in a formula are treated as boolean variables, and this boolean overapproxi-
mation is then solved by a SAT solver. If the SAT solver generates a satisfying
assignment that is not a valid assignment when theory-specific information is ac-
counted for, the theory solver then produces (an ideally minimal) conflict clause
that is conjoined with the boolean overapproximation to prevent the SAT solver
from generating at least this assignment in the future. Since the formulas solved
by the SMT solver during the algorithm presented in Figure 2 share the same
set of leaves, theory-specific conflict clauses can be gainfully reused. In practice,
this means that after a small number of conflict clauses are learned, the problem
of checking the validity of an SMT formula quickly converges to checking the
satisfiability of a boolean formula.

The second important observation is that the construction of the critical con-
straint follows a push-pop stack structure. This is the case because the critical
constraint from the parent node is reused, and additional constraints are pushed
on the stack (i.e., added to the critical constraint) before the recursive call and
(conceptually) popped from the stack after the recursive invocation. This styl-
ized structure is important for making the algorithm practical because almost
all modern SAT and SMT solvers support pushing and popping constraints to
incrementalize solving. In addition, other tasks that often add overhead, such as
CNF construction using Tseitin’s encoding for the SAT solver, can also be incre-
mentalized rather than done from scratch. In Section 6, we show the expected
overhead of simplifying over solving grows sublinearly in the size of the formula
in practice if the optimizations described in this section are used.

5 Integration with Program Analysis

We implemented the proposed algorithm in the Mistral constraint solver [18]. To
tightly integrate simplification into a program analysis system, we designed the
interface of Mistral such that instead of giving a “yes/no” answer to satisfiability
and validity queries, it yields a formula φ′ in simplified form. Recall that φ is
satisfiable (valid) if and only if φ′ is not syntactically false (true); hence, in
addition to obtaining a simplified formula, the program analysis system can
check whether the formula is satisfiable by syntactically checking if φ′ is not
false. After a satisfiability query is made, we then replace all instances of φ with
φ′ such that future formulas that would be constructed by using φ are instead
constructed using φ′. This functionality is implemented efficiently through a

246 I. Dillig, T. Dillig, and A. Aiken

0.01

0.1

1

10

100

1000

10 100 1000 10000

Analysis time with online simplification
Analysis time without simplification

Fig. 3. Running times with and without simplification

shared constraint representation. Hence, Mistral’s interface is designed to be
useful for program analysis systems that incrementally construct formulas from
existing formulas and make many intermediary satisfiability or validity queries.
Examples of such systems include, but are not limited to, [10–13, 19, 20].

6 Experimental Results

In this section, we report on our experience using on-line simplification in the
context of program analysis. Since the premise of this work is that simplification
is useful only if applied continuously during the analysis, we do not evaluate
the proposed algorithm on solving off-line benchmarks such as the SMT-LIB. In
particular, the proposed technique is not meant as a preprocessing step before
solving and is not expected to improve solving time on individual constraints.

6.1 Impact of On-Line Simplification on Analysis Scalability

In our first experiment, we integrate Mistral into the Compass program verifi-
cation system. Compass [19] is a path- and context-sensitive program analysis
system for analyzing C programs, integrating reasoning about both arrays and
contents of the heap. Compass checks memory safety properties, such as buffer
overruns, null dereferences, casting errors, and uninitialized memory; it can also
check user-provided assertions. Compass generates constraints in the combined
theory of uninterpreted functions and linear integer arithmetic, and as typical of
many program analysis systems [13, 19–21], constraints generated by Compass
become highly redundant over time, as new constraints are obtained by com-
bining existing constraints. Most importantly, unlike other systems that employ
various (usually incomplete) heuristics to control formula size, Compass tracks
program conditions precisely without identifying a relevant set of predicates to
track. Hence, this experiment is used to illustrate that a program analysis system
can be made scalable through on-line simplification instead of using specialized
heuristics, such as the ones discussed in Section 1, to control formula size.

Small Formulas for Large Programs 247

In this experiment, we run Compass on 811 program analysis benchmarks,
totalling over 173,000 lines of code, ranging from small programs with 20 lines
to real-world applications, such as OpenSSH, with over 26,000 lines. For each
benchmark, we fix a time-out of 3600 seconds and a maximum memory of 4 GB.
Any run exceeding either limit was aborted and assumed to take 3600 seconds.

Figure 3 compares Compass’s running times on these benchmarks with and
without on-line simplification. The x-axis shows the number of lines of code for
various benchmarks and the y-axis shows the running time in seconds. Observe
that both axes are log scale. The blue (dotted) line shows the performance of
Compass without on-line simplification while the red (solid) line shows the per-
formance of Compass using the simplification algorithm presented in this paper
and using the improvements from Section 4.2. In the setting that does not use
on-line simplification, Mistral returns the formula unchanged if it is satisfiable
and false otherwise. As this figure shows, Compass performs dramatically better
with on-line simplification on any benchmark exceeding 100 lines. For exam-
ple, on benchmarks with an average size of 1000 lines, Compass performs about
two orders of magnitude better with on-line simplification, and can analyze pro-
grams of this size in just a few seconds. Furthermore, using on-line simplification,
Compass can analyze benchmarks with a few ten thousand lines of code, such as
OpenSSH, in the order of just a few minutes without employing any heuristics
to identify relevant conditions.

6.2 Redundancy in Program Analysis Constraints

This dramatic impact of simplification on scalability is best understood by con-
sidering how redundant formulas become when on-line simplification is disabled
when analyzing the same set of 811 program analysis benchmarks. Figure 4(a)
plots the size of the initial formula vs. the size of the simplified formula when
formulas generated by Compass are not continuously simplified. The x = y line
is plotted as a comparison to show the worst-case when the simplified formula

20

40

60

80

100

120

50 100 150 200 250 300 350 400 450 500

S
iz

e
of

 s
im

pl
ifi

ed
 fo

rm
ul

a

Size of initial formula

data
y=x

(a) Size of initial formula vs. size of simplified
formula in Compass without simplification

5

10

15

20

25

30

35

40

45

50

20 40 60 80 100 120 140 160 180 200

S
iz

e
of

 s
im

pl
ifi

ed
 fo

rm
ul

a

Size of initial formula

data
y=x

(b) Size of initial formula vs. size of simplified
formula in Saturn

Fig. 4. Reduction in the Size of Formulas

248 I. Dillig, T. Dillig, and A. Aiken

is no smaller than the original formula. As this figure shows, while formula sizes
grow very quickly without on-line simplification, these formulas are very redun-
dant, and much smaller formulas are obtained by simplifying them. We would
like to point out that the redundancies present in these formulas cannot be de-
tected through simple syntactic checks because Mistral still performs extensive
syntactic simplifications, such as detecting duplicates, syntactic contradictions
and tautologies, and folding constants.

To demonstrate that Compass is not the only program analysis system that
generates redundant constraints, we also plot in Figure 4(b) the original formula
size vs. simplified formula size on constraints obtained on the same benchmarks
by the Saturn program analysis system [13]. First, observe that the constraints
generated by Saturn are also extremely redundant. In fact, their average size after
simplification is 1.93 whereas the average size before simplification is 73. Second,
observe that the average size of simplified constraints obtained from Saturn is
smaller than the average simplified formula size obtained from Compass. This
difference is explained by two factors: (i) Saturn is significantly less precise than
Compass, and (ii) it adopts heuristics to control formula size.

The reader may not find it surprising that the redundant formulas generated
by Compass can be dramatically simplified. That is, of course, precisely the point.
Compass gains both better precision and simpler engineering from constructing
straightforward formulas and then simplifying them because it does not need
to heuristically decide in advance which predicates are important. But these
experiments also show that the formulas generated by Compass are not unusually
redundant to begin with: As the Saturn experiment shows, because analysis
systems build formulas compositionally guided by the structure of the program,
even highly-engineered systems like Saturn, designed without the assumption of
pervasive simplification, can construct very redundant formulas.

6.3 Complexity of Simplification in Practice

In another set of experiments, we evaluate the performance of our simplifica-
tion algorithm on over 93,000 formulas obtained from our 811 program analysis
benchmarks. Recall from Lemma 6 that simplification may require a quadratic
number of validity checks. Since the size of the formulas whose validity is checked
by the algorithm is at most as large as the original formula, the ratio of simpli-
fying to solving could, in the worst case, be quadratic in the size of the original
formula. Fortunately, with the improvements discussed in Section 4.2, we show
empirically that simplification adds sub-linear overhead over solving in practice.

Figure 5 shows a detailed evaluation of the performance of the simplification
algorithm. In all of these graphs, we plot the ratio of simplifying time to solving
time vs. size of the constraints. In graphs 5a and 5c, the constraints we simplify
are obtained from analysis runs where on-line simplification is enabled. For the
data in graphs 5b and 5d, we disable on-line simplification during the analy-
sis, allowing the constraints generated by the analysis to become much larger.
We then collect all of these constraints and run the simplification algorithm on
these much larger constraints in order to demonstrate that the simplification

Small Formulas for Large Programs 249

5

10

15

20

25

30

35

40

45

10 20 30 40 50 60 70

R
at

io
 o

f s
im

pl
ify

 ti
m

e
to

 s
ol

ve
 ti

m
e

Size of formula

data
y=x2

y=x
y=2.70log(x)

(a)

50

100

150

200

250

300

0 100 200 300 400 500 600

R
at

io
 o

f s
im

pl
ify

 ti
m

e
to

 s
ol

ve
 ti

m
e

Size of formula

data
y=x2

y=x
y=2.96log(x)

(b)

50

100

150

200

250

300

10 20 30 40 50 60

R
at

io
 o

f s
im

pl
ify

 ti
m

e
to

 s
ol

ve
 ti

m
e

Size of formula

data
y=x2

y=x
y=2.70log(x)

(c)

50

100

150

200

250

300

50 100 150 200 250 300 350 400 450

R
at

io
 o

f s
im

pl
ify

 ti
m

e
to

 s
ol

ve
 ti

m
e

Size of formula

data
y=x2

y=x
y=2.96log(x)

(d)

Fig. 5. Complexity of Simplification in Practice

algorithm also performs well on larger constraints with several hundred leaves.
In all of these graphs, the red (solid) line marks data points, the blue (lower
dotted) line marks the function best fitting the data, the green (middle dotted)
line marks y = x, and the pink (upper dotted) line marks y = x2. The top
two graphs are obtained from runs that employ the improvements described in
Section 4.2 whereas the two bottom graphs are obtained from runs that do not.
Observe that in graphs 5a and 5b, the average ratio of simplification to solve
time seems to grow sublinearly in formula size. In fact, from among the family
of formulas y = cx2, y = cx, and y = c · log(x), the data in figures 4a and 4b
are best approximated by y = 2.70 · log(x) and y = 2.96 · log(x) with asymptotic
standard errors 1.98% and 2.42% respectively. On the other hand, runs that do
not exploit the dependence between different implication queries exhibit much
worse performance, often exceeding the y = x line. These experiments show
the importance of exploiting the interdependence between different implication
queries and validate our hypothesis that simplifying SMT formulas converges
quickly to simplifying SAT formulas when queries are incrementalized. These
experiments also show that the overhead of simplifying vs. solving can be made
manageable since the ratio of simplifying to solving seems to grow very slowly
in the size of the formula.

250 I. Dillig, T. Dillig, and A. Aiken

7 Related Work

Finding simpler representations of boolean circuits is a well-studied problem in
logic synthesis and automatic test pattern generation (ATPG) [2, 22, 23]. Our
definition of redundancy is reminiscent of the concept of undetectable faults in
circuits, where pulling an input to 0 (false) or 1 (true) is used to identify re-
dundant circuitry. However, in contrast to the definition of size considered in
this paper, ATPG and logic synthesis techniques are concerned with minimizing
DAG size, representing the size of the circuit implementing a formula. As a result,
the notion of redundancy considered in this paper is different from the notion
of redundancy addressed by these techniques. In particular, in our setting, one
subpart of the formula may be redundant while another syntactically identical
subpart may not. In this paper, we consider different definitions of size and re-
dundancy because except for a few operations like substitution, most operations
performed on constraints in a program analysis system are sensitive to the “tree
size” of the formula, although these formulas are represented as DAGs internally.
Therefore, formulas we consider do not exhibit reconvergent fanout and every
leaf has exactly one path from the root of the formula. This observation makes
it possible to formulate an algorithm based on critical constraints for simplify-
ing formulas in an arbitrary theory. Furthermore, we apply this simplification
technique to on-line constraint simplification in program analysis.

The algorithm we present for converting formulas to simplified form can be
understood as an instance of a contextual rewrite system [15, 16]. In contex-
tual rewriting systems, if a precondition, called a context, is satisfied, a rewrite
rule may be applied. In our algorithm, the critical constraint can be seen as
a context that triggers a rewrite rule L → true if L is implied by the critical
constraint α, and L → false if α implies ¬L. While contextual rewriting systems
have been used for simplifying constraints within the solver [16], our goal is to
generate an equivalent (rather than equisatisfiable) formula that is in simplified
form. Furthermore, we propose simplification as an alternative to heuristic-based
predicate selection techniques used for improving scalability of program analysis
systems.

Finding redundancies in formulas has also been studied in the form of vacuity
detection in temporal logic formulas [24, 25]. Here, the goal is to identify vacu-
ously valid subparts of formulas, indicating, for example, a specification error.
In contrast, our focus is giving a practical algorithm for on-line simplification of
program analysis constraints.

The problem of representing formulas compactly has received attention from
many different angles. For example, BDDs attempt to represent propositional
formulas concisely, but they suffer from the variable ordering problem and are
prone to a worst-case exponential blow-up [26]. BDDs have also been extended to
other theories, such as linear arithmetic [27–29]. In contrast to these approaches,
a formula in simplified form is never larger than the original formula. Loveland
and Shostak address the problem of finding a minimal representation of formulas
in normal form [30]; in contrast, our approach does not require formulas to be
converted to DNF or CNF.

Small Formulas for Large Programs 251

Various rewrite-based simplification rules have also been successfully applied
as a preprocessing step for solving, usually for bit-vector arithmetic [31, 32].
These rewrite rules are syntactic and theory-specific; furthermore, they typi-
cally yield equisatisfiable rather than equivalent formulas and give no goodness
guarantees. In contrast, the technique described in this paper is not meant as a
preprocessing step for solving and guarantees non-redundancy.

The importance of on-line simplification of program analysis constraints has
been studied previously in the very different setting of set constraints [21]. Sim-
plification based on syntactic rewrite-rules has also been shown to improve the
performance of a program analysis system significantly in [33].

Finding redundancies in constraints has also been used for optimization of
code in the context of constraint logic programming (CLP) [34]. In this setting,
constraint simplification is used for improving the running time of constraint
logic programs; however, the simplification techniques considered there do not
work on arbitrary SMT formulas.

Acknowledgments

We thank David Dill for his valuable feedback on a draft of this paper and the
anonymous reviewers for their detailed and useful comments.

References

1. Een, N., Sorensson, N.: MiniSat: A SAT solver with conflict-clause minimization.

In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, Springer, Heidelberg

(2005)

2. Kim, J., Silva, J., Savoj, H., Sakallah, K.: RID-GRASP: Redundancy identification

and removal using GRASP. In: International Workshop on Logic Synthesis (1997)

3. Malik, S., Zhao, Y., Madigan, C., Zhang, L., Moskewicz, M.: Chaff: Engineering

an Efficient SAT Solver. In: DAC, pp. 530–535. ACM, New York (2001)

4. De Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,

Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg

(2008)

5. Dutertre, B., De Moura, L.: The Yices SMT Solver. Technical report, SRI (2006)

6. Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R.: The Math-

SAT 4 SMT Solver. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123,

pp. 299–303. Springer, Heidelberg (2008)

7. Barrett, C., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) CAV 2007.

LNCS, vol. 4590, pp. 298–302. Springer, Heidelberg (2007)

8. Bofill, M., Nieuwenhuis, R., Oliveras, A., Rodrıguez-Carbonell, E., Rubio, A.: The

Barcelogic SMT Solver. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123,

p. 294. Springer, Heidelberg (2008)

9. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided ab-

straction refinement for symbolic model checking. JACM 50(5), 752–794 (2003)

10. Henzinger, T., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL,

pp. 58–70. ACM, New York (2002)

11. Ball, T., Rajamani, S.: The SLAM project: debugging system software via static

analysis. In: POPL, NY, USA, pp.1–3 (2002)

12. Das, M., Lerner, S., Seigle, M.: ESP: Path-sensitive program verification in poly-

nomial time. ACM SIGPLAN Notices 37(5), 57–68 (2002)

252 I. Dillig, T. Dillig, and A. Aiken

13. Xie, Y., Aiken, A.: Scalable error detection using boolean satisfiability. In: POPL,

vol. 40, pp. 351–363. ACM, New York (2005)

14. Bugrara, S., Aiken, A.: Verifying the safety of user pointer dereferences. In: IEEE

Symposium on Security and Privacy, SP 2008, pp. 325–338 (2008)

15. Lucas, S.: Fundamentals of Contex-Sensitive Rewriting. LNCS, pp. 405–412.

Springer, Heidelberg (1995)

16. Armando, A., Ranise, S.: Constraint contextual rewriting. Journal of Symbolic

Computation 36(1), 193–216 (2003)

17. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theories:

From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL (T).

Journal of the ACM (JACM) 53(6), 977 (2006)

18. Dillig, I., Dillig, T., Aiken, A.: Cuts from proofs: A complete and practical tech-

nique for solving linear inequalities over integers. In: Bouajjani, A., Maler, O. (eds.)

CAV 2009. LNCS, vol. 5643, pp. 233–247. Springer, Heidelberg (2009)

19. Dillig, I., Dillig, T., Aiken, A.: Fluid Updates: Beyond Strong vs. Weak Updates. In:

Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 246–266. Springer, Heidelberg

(2010)

20. Babić, D., Hu, A.J.: Calysto: Scalable and Precise Extended Static Checking. In:

ICSE, pp. 211–220. ACM, New York (May 2008)

21. Faehndrich, M., Foster, J., Su, Z., Aiken, A.: Partial online cycle elimination in

inclusion constraint graphs. In: PLDI, p. 96. ACM, New York (1998)

22. Mishchenko, A., Chatterjee, S., Brayton, R.: DAG-aware AIG rewriting: A fresh

look at combinational logic synthesis. In: DAC, pp.532–535 (2006)

23. Mishchenko, A., Brayton, R., Jiang, J., Jang, S.: SAT-based logic optimization and

resynthesis. In: Proc. IWLS 2007, pp. 358–364 (2007)

24. Kupferman, O., Vardi, M.: Vacuity detection in temporal model checking. Inter-

national Journal on Software Tools for Technology Transfer 4(2), 224–233 (2003)

25. Armoni, R., Fix, L., Flaisher, A., Grumberg, O., Piterman, N., Tiemeyer, A.,

Vardi, M.: Enhanced vacuity detection in linear temporal logic. LNCS, pp. 368–

380. Springer, Heidelberg (2003)

26. Bryant, R.: Symbolic Boolean manipulation with ordered binary-decision diagrams.

ACM Computing Surveys (CSUR) 24(3), 293–318 (1992)

27. Bryant, R., Chen, Y.: Verification of arithmetic functions with BMDs (1994)

28. Clarke, E., Fujita, M., Zhao, X.: Hybrid decision diagrams overcoming the limita-

tions of MTBDDs and BMDs. In: ICCAD (1995)

29. Cheng, K., Yap, R.: Constrained decision diagrams. In: Proceedings of the National

Conference on Artificial Intelligence, vol. 20, p. 366 (2005)

30. Loveland, D., Shostak, R.: Simplifying interpreted formulas. In: Proc. 5th Conf. on

Automated Deduction (CADE), vol. 87, pp. 97–109. Springer, Heidelberg (1987)

31. Ganesh, V., Dill, D.: A decision procedure for bit-vectors and arrays. In: Damm,

W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, p. 519. Springer, Heidelberg

(2007)

32. Jha, S., Limaye, R., Seshia, S.: Beaver: Engineering an Efficient SMT Solver for Bit-

Vector Arithmetic. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643,

pp. 668–674. Springer, Heidelberg (2009)

33. Chandra, S., Fink, S.J., Sridharan, M.: Snugglebug: a powerful approach to weakest

preconditions. SIGPLAN Not. 44(6), 363–374 (2009)

34. Kelly, A., Marriott, A., Stuckey, P., Yap, R.: Effectiveness of Optimizing Compila-

tion for CLP (R). In: Proceedings of the 1996 Joint International Conference and

Symposium on Logic Programming, p. 37. The MIT Press, Cambridge (1996)

Compositional Bitvector Analysis for

Concurrent Programs with Nested Locks�

Azadeh Farzan and Zachary Kincaid

University of Toronto

Abstract. We propose a new technique to perform bitvector data flow

analysis for concurrent programs. Our algorithm works for concurrent

programs with nested locking synchronization. We show that this al-

gorithm computes precise solutions (meet over all paths) to bitvector

problems. Moreover, this algorithm is compositional: it first solves a lo-

cal (sequential) data flow problem, and then efficiently combines these

solutions leveraging reachability results on nested locks [6,7]. We have

implemented our algorithm on top of an existing sequential data flow

analysis tool, and demonstrate that the technique performs and scales

well.

1 Introduction

Writing concurrent software is difficult and error prone. In principle, static anal-
ysis offers an appealing way to mitigate this situation, but dealing with con-
currency remains a serious obstacle. Theory and practice of automatically and
statically determining dynamic behaviours of concurrent programs lag far be-
hind those for sequential programs. Enumerating all possible interleavings to
perform flow-sensitive analyses is infeasible. It is imperative to formulate com-
positional analysis techniques and proper behaviour abstractions to tame this
so-called interleaving explosion problem. We believe that the work presented in
this paper is a big step in this direction. We propose a compositional algorithm
to compute precise solutions for bitvector problems for a general and useful class
of concurrent programs.

Data flow analysis has proven to be a useful tool for debugging, maintain-
ing, verifying, optimizing, and testing sequential software. Bitvector analyses
(also known as the class of gen/kill problems) are a very useful subclass of data
flow analyses. Bitvector analyses have been very widely used in compiler opti-
mization. There are a number of applications for precise concurrent bitvector
analyses. To mention a few, reaching definitions analysis can be used for precise
slicing of concurrent programs with locks, which can be used as a debugging aid
for concurrent programs1. Both problems of race and atomicity violation detec-
tion can be formulated as variations of the reaching definitions analysis. Lighter
� See [5] for an extended version of this paper including proofs and further discussions.
1 Concurrent program slicing has been discussed previously [11], but to our knowledge

there is no method up until now that handles locks precisely.

R. Cousot and M. Martel (Eds.): SAS 2010, LNCS 6337, pp. 253–270, 2010.
� Springer-Verlag Berlin Heidelberg 2010

254 A. Farzan and Z. Kincaid

versions of information flow analyses may also be formulated as bitvector analy-
ses. Precision will substantially decrease the number false positives reported by
any of the above analyses.

There is an apparent lack of techniques to precisely and efficiently solve data
flow problems, and more specifically bitvector problems for concurrent programs
with dynamic synchronization primitives such as locks. The source of this diffi-
culty lies in the lack of a precise and efficient way to represent program paths.
Control flow graphs (CFG) are used to represent program paths for most static
analyses on sequential programs, but concurrent analogs to CFGs suffer major
disadvantages. Concurrent adaptations of CFGs mainly fall into two categories:
(1) Those obtained by taking the Cartesian product of CFGs for individual
threads, and removing inconsistent nodes. These product CFGs are far too large
(possibly even infinite) to be practical. (2) Those obtained by taking the union
of the CFGs for individual threads, adding inter-thread edges, and performing
a may-happen-in-parallel heuristic to get rid of infeasible paths. These union
CFGs may still have an abundance of infeasible paths and cannot be used for
precise analyses.

Bitvector problems have the interesting property that solving them precisely
is possible without analyzing whole program paths. The key observation is that,
in a forward may bitvector analysis, a fact f is true at a control location c
iff there exists a path to c on which f is generated and not subsequently killed;
what happens “before” f is generated is irrelevant. Therefore, bitvector problems
only require reasoning about partial paths starting at a generating transition.
For programs with only static synchronization (such co-begin/co-end), bitvector
problems can be solved with a combination of sequential reasoning and a light
concurrent predecessor analysis [9]. Under the concurrent program model in [9],
a fact f holds at a control location c if and only if the control location c′ at
which f is generated is an immediate concurrent predecessor of c. Therefore, it is
sufficient to only consider concurrent paths of length two to compute the precise
bitvector solution. Moreover, the concurrent predecessor analysis is very simple
for co-begin/coend synchronization.

Dynamic synchronization (which was not handled in [9]) reduces the number
of feasible concurrent paths in a program, but unfortunately makes their finite
representation more complex. This complicates data flow analyses, since a pre-
cise concurrent data flow analysis must compute the meet-over-all-feasible-paths
solution, and the analysis should only consider feasible paths (that are no longer
limited to paths of length two). Evidence of the degree of difficulty that dynamic
synchronization introduces is the fact that pairwise reachability (which can be
formulated as a bitvector problem) is undecidable for recursive programs with
locks. It is however decidable [7] if the locks are acquired in a nested manner
(i.e. locks are released in the reverse order that they were acquired). We use this
result to introduce sound and complete abstractions for the set of feasible con-
current paths, which are then used to compute the meet-over-all-feasible-paths
solution to the class of bitvector analyses.

Compositional Bitvector Analysis for Concurrent Programs 255

We propose a compositional (and therefore scalable) technique to precisely
solve bitvector analysis problems for concurrent programs with nested locks.
The analysis proceeds in three phases. In the first phase, we perform the sequen-
tial bitvector analysis for each thread individually. In the second phase, we use a
sequential data flow analysis to compute an abstract semantics for each thread
based on an abstract interpretation of sequential trace semantics. We then com-
bine the abstract semantics for each pair of threads to compute a second set
of data flow facts, namely those who reach concurrently. In the third phase, we
simply combine the results of the sequential and concurrent phases into a sound
and complete final solution for the problem. This procedure is quadratic in the
number of threads and exponential (in the worst case) in the number of shared
locks in the program; however, we do not expect to encounter even close to the
worst case in practice. In fact, in our experiments the running time follows a
growth pattern that almost matches that of sequential programs. Our approach
avoids the limitations typically imposed by concurrent adaptations of CFGs: it is
scalable and compositional, in contrast with the product CFG; and it is precise,
in contrast with union CFGs.

In this paper we discuss the class of intraprocedural forward may bitvector
analyses for a concurrent program model with nested locking as our main con-
tribution. Nested locks are a common programming practice; for example Java
synchronized methods and blocks syntactically enforce this condition. Due to
lack of space, all further discussions on the generalization of this case have been
included in an extended version of this paper, which includes discussions on back-
ward and interprocedural analyses, as well as an extension to a parameterized
concurrent program model.

We have implemented our algorithm on top of the C language front-end
CIL [18], which performs the sequential data flow analyses required by our al-
gorithm. We show through experimentation that this technique scales well and
has running time close to that of sequential analysis in practice.

Related Work. Program flow analysis was originally developed for sequential
programs to enable compiler optimizations [1]. Although the majority of flow
analysis research has been focused on sequential software [19,15,20], flow analysis
for concurrent software has also been studied. Flow-insensitive analyses can be
directly adapted into the concurrent setting. Existing flow-sensitive analyses
[14,16,17,21] have at least one of the following two restrictions: (a) the programs
they handle have extremely simplistic concurrency/synchronization mechanisms
and can be handled precisely using the union of control flow graphs of individual
programs, or (b) the analysis is sound but not complete, and solves the data flow
problem using heuristic approximations.

RADAR [2] attempts to address some of the problems mentioned above, and
achieves scalability and more precision by using a race detection engine to kill the
data flow facts generated and propagated by the sequential analysis. RADAR’s
degree of precision and performance depends on how well the race detection
engine works. We believe that although RADAR is a good practical solution,

256 A. Farzan and Z. Kincaid

it does not attempt to solve the real problem at hand, nor does it provide any
insights for static analysis of concurrent programs.

Knoop et al [9] present a bitvector analysis framework which comes closest to
ours in that it can express a variety of data flow analysis problems, and gives
sound and complete algorithms for solving them. However, it cannot handle
dynamic synchronization mechanisms (such as locks). This approach has been
extended for the same restricted synchronization mechanism to handle proce-
dures in [3,4,22] and generalizations of bitvector problems in [10,22].

Foundational work on nested locks appears in [6,7]. Recently, analyses based
on this work have been developed, including [8] and [12]. Notably, the authors
of [8] detect violations of properties that can be expressed as phase automata,
which is a more general problem than bitvector analysis. However, their method
is not tailored to bitvector analysis, and is not practically viable when a “full”
solution (a solution for every fact and every control location) to the problem is
required, which is often the case.

2 Preliminaries

A concurrent program CP is a pair (T ,L) consisting of a finite set of threads T
and a finite set of locks L. We represent each thread T ∈ T as a control flow
automaton (CFA). CFAs are similar to a control flow graphs, except actions
are associated with edges (which we will call transitions) rather than nodes.
Formally, a CFA is a graph (NT , ΣT) with a unique entry node sT and a function
stmtT : ΣT → Stmt that maps transitions to program statements. We assume
no two threads have a common node (transition), and refer to the set of all nodes
(transitions) by N (Σ). In the following, we will often identify transitions with
their corresponding program statements. CFA statements execute atomically, so
in practice we split non-atomic statements prior to CFA construction.

For each lock l ∈ L, we distinguish two synchronization statements acq(l) and
rel(l) that acquire and release the lock l, respectively. Locks are the only means
of synchronization in our concurrent program model. For a finite path π through
thread T starting at sT , we let Lock-SetT (π) denote the set of locks held by T
after executing π2.

A local run of thread T is any finite path starting at its entry node; we refer
to the set of all such runs by RT . A run of CP is a sequence ρ = t1 . . . tn ∈ Σ�

of transitions such that:

i) ρ projected onto each thread T (denoted by ρT), is a local run of T
ii) There exists no point p along ρ at which two threads T, T ′ hold the same lock

(�T, T ′, p.T �= T ′ ∧ Lock-SetT ((t1· · · tp)T) ∩ Lock-SetT ′((t1· · · tp)T ′) �= ∅).

We useRCP to denote the set of all runs of CP (justR when there is no confusion
about CP). For a sequence ρ = t1 . . . tn ∈ Σ� and 1 ≤ r ≤ s ≤ n we use ρ[r] to
denote tr, ρ[r, s] to denote tr . . . ts, and |ρ| to denote n.

2 Formally, Lock-SetT (π) = {l ∈ L | ∃i.πT [i] = acq(l) ∧ �j > i s.t . πT [j] = rel(l)}.

Compositional Bitvector Analysis for Concurrent Programs 257

A program CP respects nested locking if for every thread T ∈ T and for ev-
ery local run π of T , π releases locks in the opposite order it acquires them.
That is, there exists no l, l′ such that π contains a contiguous subsequence
acq(l); acq(l′); rel(l) when projected onto the the acquire and release transitions
of l and l′3.

From this point on, whenever we refer to a concurrent program CP, we assume
that it respects nested locking. Restricting our attention to programs that respect
nested locking allows us to keep reasoning about run interleavings tractable. We
will make critical use of this assumption in the following.

2.1 Locking Information

acq(l2);
acq(l1);

...
rel(l1);
a: ...

rel(l2);

acq(l1);
acq(l2);

...
rel(l2);
while (...) {

if (...) {
rel(l1);
acq(l1);

} else {
b: ... // gen "d"

}
}
c: ... // kill "d"

rel(l1);

Fig. 1. Locking information

Consider the example in Figure 1. We
would like to know whether the fact d
generated at the location b reaches the
location a (without being killed at loca-
tion c). If the thread on the right takes
the else branch in the first execution of
the loop, it will have to go through loca-
tion c and kill the fact d before the execu-
tion of the program can get to location a.
However, if the program takes the then
branch in the first iteration of the loop
and takes the else branch in the second
one, then execution can follow to a without having to kill d first. This exam-
ple shows that in general, the sorts of interleavings that we must consider in a
bitvector analysis can be quite complicated.

In [6] and [7], compositional reasoning approaches for programs that respect
nested locking were introduced, which are based on local locking information. We
quickly give an overview of this here. In the following, T ∈ T denotes a thread,
and ρ ∈ Σ�

T denotes a sequence of transitions of T (in practice, ρ will be a run
or a suffix of a run of T).

– Locks-HeldT (ρ, i) = {l ∈ L | ∀k ≥ i.l ∈ Lock-SetT (ρ[1, k])}: the set of locks
held continuously by T through ρ, starting no later than at position i.

– Locks-AcqT (ρ) = {l ∈ L | ∃k.ρ[k] = T :acq(l)}: the set of locks that are
acquired by T along ρ.

– fahT (ρ) (forward acquisition history): a partial function which maps each
lock l whose last acquire in ρ has no matching release, to the set of locks that
were acquired after the last acquisition of l (and is undefined otherwise)4.

– bahT (ρ, i) (backward acquisition history): a partial function which maps each
lock l that is held at ρ[i] and is released in ρ[i, |ρ|] to the set of locks that were
released before the first release of l in ρ[i, |ρ|] (and is undefined otherwise).

3 In the special case where l = l′, this condition implies that locks are not re-entrant.
4 Note that the domain of fahT (ρ) (denoted dom(fahT (ρ))) is exactly Lock-SetT (ρ).

258 A. Farzan and Z. Kincaid

We omit T subscripts for all of these functions when T is clear from the
context.

As observed in [6,7], a necessary and sufficient condition for pairwise reacha-
bility cannot be stated in terms of locksets (the “current” lock behaviour of each
thread). One needs to additionally consider the historical lock behaviour (fah
and bah) of each thread, which places ordering constraints on locking events.
This notion will be made more precise in Proposition 2; see [6,7] for more de-
tails. As an example of fah and bah, consider Figure 1. The run of the right
thread that starts at the beginning, enters the while loop, and takes the else
branch to end at b has forward acquisition history [l1 �→ {l2}]. If that run con-
tinues to loop, taking the then branch and then the else branch to end back at
b, that run has forwards acquisition history [l1 �→ {}]. The run of the left thread
that executes the entire code block has backwards acquisition history [l2 �→ {}]
at a and [l2 �→ {l1}; l1 �→ {}] between the acquire and release of l1.

2.2 Bitvector Data Flow Analysis

Let D be a finite set of data flow facts of interest. The goal of data flow analysis
is to replace the full semantics by an abstract version which is tailored to deal
with a specific problem. The abstract semantics is specified by a local semantic
functional �·�D : Σ → (℘(D) → ℘(D)) where for each transition t, �t�D denotes
the transfer function associated with t. �·�D gives abstract meaning to every
CFA transition (program statement) in terms of a transformation function from
a semi-lattice (℘(D),() (where (is ∪ or ∩) into itself. We will drop D and
simply use �t� when D is clear from the context. We extend �·� from transitions
to transition sequences in the natural way: �ε� = id, and �tρ� = �ρ� ◦ �t�.

Bitvector problems can be characterized by the simplicity of their local se-
mantic functional �·�: for any transition t, there exist sets gen(t) and kill(t)
(⊆ D) such that �t�(D) = (D ∪ gen(t)) \ kill(t). Equivalently, for any t, �t� can
decomposed into |D| monotone functions �t�i : B → B, where B is the Boolean
lattice ({ff, tt},⇒).

Our goal is to compute the concurrent meet-over-paths (CMOP) value of
transition5 t of CP, defined as

CMOP [t] =
�

ρt∈RCP

�ρ�D('D)

CMOP [t] is the optimal solution to the data flow problem. Note in particular
that only runs that respect the semantics of locking contribute to the solution.
This definition is not effective, however, since RCP may be infinite; the contri-
bution of this work is an efficient algorithm for computing CMOP [t].

5 For the CFA formulation of data flow analysis, data flow transformation functions

and solutions correspond to transitions rather than nodes.

Compositional Bitvector Analysis for Concurrent Programs 259

3 Concurrent Data Flow Framework

Fix a concurrent program CP with set of threads T , set of locks L, and a set of
data flow facts D with meet ∪ (bitvector problems that use ∩ for meet can be
solved using their dual problem). For a data flow fact d ∈ D, and for a transition
t, let �t�d denote �t�D projected onto d (defined by �t�d(p) = (p∨d ∈ gen(t))∧d /∈
kill(t)). Call a sequence π d-preserving if �π�d = id. In particular, the empty
sequence ε is d-preserving for any d ∈ D.

The following observation from [9] is the key to the efficient computation of
the interleaving effect. It pinpoints the specific nature of a semantic functional
for bitvector analysis, whose codomain only consists of constant functions and
the identity:

Lemma 1. [9] For a data flow fact d ∈ D, and a transition t of a concurrent
program CP, d ∈ CMOP [t] iff there exists a run t1· · · tnt ∈ RCP and there exists
k, (1 ≤ k ≤ n) such that �tk�d = consttt and for all m, (k < m ≤ n), we have
�tm�d = id.

Call such a run a d-generating run for t, and call tk the generating transition
of that run.

(a) (b)

Fig. 2. A witness run (a) and a normal witness run (b) for definition f reaching 7

This lemma restricts the possible interference within a concurrent program: if
there is any interference, then the interference is due to a single statement within
a parallel component. By interference, we mean any possible behaviour by other
threads that may change the set of facts that hold in a program location; in the
realm of the gen/kill problems, this may be in the form of a fact that sequentially
holds getting killed, or a fact that does not sequentially hold getting generated.
Consider the program in Figure 2(a). In a reaching definitions analysis, only
transition f (of T ′) can generate the “definition at f reaches” fact. For any
witness trace and any fact d, we can pinpoint a single transition that generates
this fact (namely, the last occurrence of a generating transition on that trace).

260 A. Farzan and Z. Kincaid

This is not true for data flow analyses which are not bitvector analyses. For
example, in a null pointer dereference analysis, witnesses may contain a chain of
assignments, no single one of which is “responsible” for the pointer in question
being null, but combined they make the value of a pointer null. Our algorithm
critically takes advantage of the simplicity of bitvector problems to achieve both
efficiency and precision, and cannot be trivially generalized to handle all data
flow problems.

Based on Lemma 1 and the observation from [7] that runs can be projected
onto runs with fewer threads, we get the following:

Lemma 2. For a data flow fact d ∈ D, and for a transition t of thread T , there
exists a d-generating run for t if and only if one of the following holds:

– There exists a local d-generating run for t (that is, a d-generating run consist-
ing only of transitions from T). Call such a run a single-indexed d-generating
run.

– There exists a thread T ′ (T �= T ′) such that there is a d-generating run π for
t consisting only of transitions from T and T ′ and such that the generating
transition of π belongs to T ′. Call such a run a double-indexed d-generating
run.

Thus, to determine whether d ∈ CMOP [t] (i.e. fact d may be true at t), it is
sufficient to check whether there is a single- or double-indexed d-generating run
to t. Therefore, the precise solution to the concurrent bitvector analysis problem
can be computed by only reasoning about concurrent programs with one or two
threads, so long as we consider each pair of threads in the system. The existence
of a single-indexed d-generating run to t can be determined by a sequential
bitvector data flow analysis, which have been studied extensively.

Here, we discuss a compositional technique for enumerating the double-indexed
d-generating runs. In order to achieve compositionality, we (1) characterize
double-indexed d-generating runs in terms of two local runs, and (2) provide
a procedure to determine whether two local runs can be combined into a global
run. First, we define for each thread T , each transition t of T , and each data
flow fact d ∈ D:

– PRT [t]d = {〈π, σ〉 | πσt ∈ RT ∧ �σ� = id}
– GRT [t]d = {〈π, σ〉 | πσ ∈ RT ∧ �σ[1]� = consttt ∧ �σ[2, |σ| − 1]� = id

∧σ[|σ|] = t}

Intuitively, PRT [t]d and GRT ′ [t′]d correspond to sets of local runs of threads
T and T ′ which can be combined (interleaved in a lock-valid way) to create a
global d-generating run to t. For example, in Figure 2(a), the definition at line f
reaches the use at line 7 (in a reaching-definitions analysis) since the local runs
π1σ1 of T and π2σ2 of T ′ can be combined into the run πσ (demonstrated in the
center) to create a double-indexed generating run. The following proposition is
the key to our compositional approach:

Compositional Bitvector Analysis for Concurrent Programs 261

Proposition 1. Assume a concurrent program CP with two threads T1 and T2.
There exists a double-indexed d-generating run to transition t1 of thread T1 if and
only if there exists a transition t2 of thread T2 such that there exists 〈π1, σ1〉 ∈
PRT1 [t1]d and 〈π2, σ2〉 ∈ GRT2 [t2]d and a run πσ ∈ RCP such that πT1 = π1,
πT2 = π2, σT1 = σ1 and σT2 = σ2.

Since PR and GR are sets of local runs, they can be computed locally and
independently, and checked whether they can be interleaved in a second phase.
However, PRT [t]d and GRT [t]d are (in the general case) infinite sets, so we need
to find finite means to represent them. In fact, we do not need to know about
all such runs: the only thing that we need to know is whether there exists a
d-generating run in one thread, and a d-preserving run in the other thread that
can be combined into a lock-valid run to carry the fact d generated in one thread
to a particular control location in the other thread. Proposition 2, a simple
consequence of a theorem from [6], provides a means to represent these sets with
finite abstractions.

Proposition 2. Let CP be a concurrent program, and let T1, T2 be threads of
CP. Let π1σ1 be a local run of T1 and let π2σ2 be a local run of T2. Then there
exists a run πσ ∈ RCP with πT1 = π1, πT2 = π2, σT1 = σ1, and σT2 = σ2 if and
only if:

– Lock-Set(π1) ∩ Lock-Set(π2) = ∅
– fah(π1) and fah(π2) are consistent6

– Lock-Set (π1σ1) ∩ Lock-Set (π2σ2) = ∅.
– fah(π1σ1) and fah(π1σ2) are consistent
– bah(π1σ1, |π1|) and bah(π2σ2, |π2|) are consistent
– Locks-Acq(σ1) ∩ Locks-Held(π2σ2, |π2|) = ∅ and

Locks-Acq(σ2) ∩ Locks-Held(π1σ1, |π1|) = ∅.

Observe that Proposition 2 states that one can check whether two local runs can
be interleaved into a global run by performing a few consistency checks on finite
representations of the local lock behaviour of the two runs. In other words, one
does not have to know what the runs are; one has to only know what the locking
information for the runs are. Therefore, we use this information as our finite
representation for the set of runs; more precisely, we use a quadruple consisting
of two forwards acquisition histories, a backwards acquisition history, and a set
of locks acquired to represent an abstract run7. Let P be the set of all such
abstract runs. We say that two run abstractions are compatible if they may be
interleaved (according to Proposition 2). We then define an abstraction function
α : Σ� ×Σ� → P that computes the abstraction of a run:

α(〈π, σ〉) = 〈fah(π), fah(πσ), bah(πσ, |π|), Locks-Acq(σ)〉
6 Histories h and h′ are consistent iff �	 ∈ dom(h), 	′ ∈ dom(h′).	 ∈ h′(′) ∧ 	′ ∈ h().
7 Note that for a run πσ, we can compute Lock-Set(π) as dom(fah(π)), Lock-Set(πσ)

as dom(fah(πσ)), and Locks-Held(πσ, |π|) as (dom(fah(π)) ∩ dom(fah(πσ))) \
Locks-Acq(σ).

262 A. Farzan and Z. Kincaid

For each transition t ∈ ΣT and data flow fact d, this abstraction function can be
applied to the sets PRT [t]d and GRT [t]d to yield the sets P̂RT [t]d and ĜRT [t]d,
respectively:

P̂RT [t]d = {α(〈π, σ〉) | 〈π, σ〉 ∈ PRT [t]d}
ĜRT [t]d = {α(〈π, σ〉) | 〈π, σ〉 ∈ GRT [t]d}

For example, the abstraction of the preserving run π1σ1 and the generating run
π2σ2 from Figure 2(a) are (in order):

〈[l1 �→ {}]︸ ︷︷ ︸
fah(π1)

, [l1, �→ {l2}]︸ ︷︷ ︸
fah(π1σ1)

, [l2 �→ {}]︸ ︷︷ ︸
bah(π1σ1,|π1|)

, {l2}︸︷︷︸
Locks-Acq(σ1)

〉

〈[l2 �→ {l1}]︸ ︷︷ ︸
fah(π2)

, [l2 �→ {}]︸ ︷︷ ︸
fah(π2σ2)

, [l2 �→ {}]︸ ︷︷ ︸
bah(π2σ2,|π2|)

, {l2}︸︷︷︸
Locks-Acq(σ2)

〉

The definitions of P̂R and ĜR, and Proposition 2 imply the following proposition:

Proposition 3. Assume a concurrent program CP with two threads T1 and T2.
There exists a double-indexed d-generating run to transition t1 of thread T1 if
and only if there exists a transition t2 of thread T2 such that there exists elements
of P̂RT1 [t1]d and ĜRT2 [t2]d which are compatible.

For a fact d and a transition t ∈ ΣT , the sets P̂RT [t]d and ĜRT [t]d are finite,
and therefore one can use Proposition 3 to provide a solution to the concurrent
bitvector problem, once P̂RT [t]d and ĜRT [t]d have been computed (we refer the
reader to an extended version of this paper [5] for the details of these computa-
tions). In the next section, we propose an optimization that provides the same
solution using a potentially much smaller subsets of these sets.

3.1 Normal Runs

The sets P̂RT [t]d and ĜRT [t]d may be large in practice, so we introduce the
concept of normal runs to replace P̂RT [t]d and ĜRT [t]d with smaller subsets
that are still sufficient for solving bitvector problems. Intuitively, normal runs
minimize the number of transitions between the generating transition and the
end of the (double-indexed) run. Consider the run in Figure 2(a): it is a witness
for definition at f reaching the use at 7, but it is not normal : Figure 2(b) pictures
a witness consisting of the same transitions (except h has been removed from the
end of σ2), which has a shorter σ component. Note that runs that are minimal
in this sense are indeed normal; the reverse, however, does not hold. We define
normal runs formally as follows:

Definition 1. Call a double-indexed d-generating run πσt (consisting of transi-
tions of threads T and T ′, where t is a transition of T) with generating transition
σ[1] (of thread T ′) normal if:

Compositional Bitvector Analysis for Concurrent Programs 263

– |σ| = 1 (that is, σ[1] is an immediate predecessor of t), or
– All of the following hold:

• The first T transition in σt is an acquire transition.
• The last T ′ transition in σ is a release transition.
• �i (1 ≤ i ≤ |σ|) such that after executing π(σ[1, i]), T frees all held locks.
• �i (1 < i ≤ |σ|) such that after executing π(σ[1, i]), T ′ frees all held

locks.

Note that if there are no locking operations in a run, then the generating tran-
sition is always an immediate predecessor of the t, since there are no synchro-
nization restriction to prevent this from happening. We show that it is sufficient
to consider only normal runs for our analysis, by proving that the existence of a
double-indexed d-generating run implies the existence of a normal double-index
d-generating run.

Lemma 3. Let t1· · · tn ∈ RT and let t′1· · · t′m ∈ RT ′ . If there is a run ρ = πσ
(ρ ∈ RCP) such that there exist 1 ≤ i ≤ n and 1 ≤ j ≤ m where:

πT = t1 . . . ti σT = ti+1 . . . tn
πT ′ = t′1 . . . t′j σT ′ = t′j+1 . . . t′m

Then, the following hold:

1. If t′j+1 is not an acquire transition, then ∃π′, σ′ such that π′σ′ ∈ RCP , and

π′
T = t1 . . . ti σ′

T = ti+1 . . . tn
π′

T ′ = t′1 . . . t′j+1 σ′
T ′ = t′j+2 . . . t′m

2. If t′m is not a release, then ∃σ′ such that πσ′ ∈ RCP is a valid run, and

π′
T = t1 . . . ti σ′

T = ti+1 . . . tn
π′

T ′ = t′1 . . . t′j σ′
T ′ = t′j+1 . . . t′m−1

Lemma 3 is a consequence of Lipton’s theory of reduction [13]. It is used to trim
the beginning of a d-preserving run if it does not start with an acquire (part 1)
and the end of a d-generating run if it does not end in a release (part 2). The
run in Figure 2(b) is obtained from the run in Figure 2(a) by an application of
Lemma 3.

Lemma 4. If there is a runπσ of concurrent program CP (consisting of two threads
T and T ′) such that πT = t1 . . . ti, σT = ti+1 . . . tn, πT ′ = t′1 . . . t′j and σT ′ =
t′j+1 . . . t′m, and if there exists k (j < k ≤ m) such that Lock-SetT ′(t′1 . . . t′k) = ∅,
then there exists a run π′σ′ of CP where

π′
T = t1 . . . ti σ′

T = ti+1 . . . tn
π′

T ′ = t′1 . . . t′k σ′
T ′ = t′k+1 . . . t′m

Similarly, if there exists k (j ≤ k ≤ m − 1) such that Lock-SetT ′(t′1 . . . t′k) = ∅,
then there exists a run πσ′ where σ′

T = σT and σ′
T ′ = ti+1 . . . tk.

264 A. Farzan and Z. Kincaid

Lemma 4 is a consequence of Proposition 2. It
is used to trim the beginning of d-preserving
runs and the end of d-generating runs. The fig-
ure to the right illustrates the application of
this lemma: thread T ′ holds no locks after exe-
cuting g, so transitions h, i, and j need not be
executed. The witness pictured for definition f
reaching 7 corresponds to the normal witness
obtained by removing the dotted box.

The following Proposition, which is a conse-
quence of Lemmas 3 and 4, implies that it is
sufficient to only consider normal runs for the
analysis. Therefore, we can ignore runs that are
not normal without sacrificing soundness.

Proposition 4. If there exists a double-indexed d-generating run of concurrent
program CP leading to a transition t, then there exists a normal double-indexed
d-generating run of CP leading to t.

Therefore, for any transition t and data flow fact d, we define normal versions
(subsets of these sets which contain only normal runs) of P̂RT [t]d and ĜRT [t]d
as follows:

– N̂PRT [t]d = {α(〈π, σ〉) | 〈π, σ〉 ∈ PRT [t]d ∧ (|σ| = 0∨
(�k.Lock-Set(π(σ[1, k])) = ∅ ∧ σ[1]is an acquire))}

– N̂GRT [t]d = {α(〈π, σ〉) | 〈π, σ〉 ∈ GRT [t]d
∧(|σ| = 1 ∨ �k.Lock-Set(π(σ[1, k])) = ∅)}

N̂PRT [t]d (N̂GRT [t]d) is a finite representation of sets of normal d-preserving
(generating) runs. In order to compute solutions for every data flow fact in D

simultaneously, we extend N̂PRT [t]d and N̂GRT [t]d to sets of data flow facts.
We define N̂PRT [t] to be a partial function that maps each abstract run ρ̂ to the
set of facts d for which there is a d-preserving run whose abstraction is ρ̂, and
is undefined if there is no concrete run to t whose abstraction is ρ̂. N̂GRT [t] is
defined analogously. We refer the reader to an extended version of this paper [5]
for more detailed information on N̂PR and N̂GR.

4 The Analysis

Here, we summarize the results presented in previous sections into a procedure
for the bitvector analysis of concurrent programs. The procedure is outlined in
Algorithm 1. Data flow facts reaching a transition t are computed in two different
groups as per Lemma 2: facts with single-indexed generating runs and facts with
double-indexed generating runs.

Compositional Bitvector Analysis for Concurrent Programs 265

Algorithm 1. Concurrent Bitvector Analysis
1: Compute Summaries and Helper Sets // see Algorithm 2
2: for each T ∈ T do
3: Compute MFPT // Single-indexed facts
4: for each t ∈ ΣT do
5: Compute NDIFT [t] // (Normal) double-indexed facts
6: CMOPT [t] := MFPT [t] ∪NDIFT [t]
7: end for
8: end for

On line 6, the facts from single- and double-indexed generating runs are com-
bined into the solution of the concurrent bitvector analysis. Facts from single-
indexed generating runs can be computed efficiently using well-known (maximum
fixed point) sequential data flow analysis techniques. It remains to show how to
to efficiently compute facts from double-indexed generating runs using the sum-
maries and helper sets which are computed at the beginning of the analysis.

A naive way to compute NDIF would involve iterating over all pairs of tran-
sitions from different threads to find compatible elements of N̂PR and N̂GR.
This would create an |Σ|2 factor in our algorithm, which can be quite large.
We avoid this by computing thread summaries for each thread T . The sum-
mary, NGenT , combines information about each transition in T that is relevant
for NDIF computation for other threads. More precisely, NGenT is a function
that maps each run abstraction p to the set of facts for which there is a generat-
ing run whose abstraction is p. Intuitively, NGenT groups together transitions
that have similar locking information so that they can be processed at once. This
speeds up our analysis significantly in practice.

Algorithm 2. Computing Summaries
1: for each T ∈ T do
2: Compute N̂GRT // Normal generating runs

3: NGenT := λρ̂.
⋃
{N̂GRT [t](ρ̂) | t ∈ ΣT ∧ ρ̂ ∈ dom(N̂GRT [t])}

4: Compute N̂PRT // Normal preserving runs
5: end for

The essential procedure for finding facts in NDIFT [t] is to: 1) find compatible
(abstract) runs ρ̂ ∈ dom(N̂PRT [t]) and ρ̂′ ∈ dom(NGen′

T), and 2) add facts
that are both preserved by ρ̂ and generated by ρ̂′. This procedure is elaborated
in Algorithm 3.

It remains to show how to compute N̂PR and N̂GR. Both of these sets
can be computed by a sequential data flow analysis. This analysis is based on an
abstract interpretation of sequential trace semantics suggested by the abstraction
function α. Best abstract transformers can derived from the definition α; more
detailed information can be found in the extended version of this paper.

266 A. Farzan and Z. Kincaid

Algorithm 3. Compute NDIF (concurrent facts from non-predecessors)
Input: Thread T , transition t ∈ ΣT

Output: NDIFT [t].
1: NDIFT [t] := ∅
2: for each T ′ = T in T do

3: for each ρ̂ ∈ dom(N̂PRT [t]) do

4: NDIFT [t] := NDIFT [t] ∪ {NGenT ′ [ρ̂′] ∩ N̂PRT [t](ρ̂) | compatible(ρ̂, ρ̂′)}
5: end for
6: end for
7: return NDIFT [t]

Complexity Analysis. The best known upper bound on the time complexity
of our algorithm is quadratic in the number of threads, quadratic in the size
of the domain, linear in the number of transitions in each thread, and double
exponential in the number of locks. We stress that this is a worst-case bound, and
we expect our algorithm to perform considerably better in practice. Programmers
tend to follow certain disciplines when using locks, which decreases the double
exponential factor in our algorithm. For example, allowing only constant-depth
nesting of locks reduces the factor to single exponential. In practice, locksets,
nesting depths, and consequently acquisition history sizes are very small (even if
the number of locks in the program is not very small); and the complexity of our
algorithm depends on the average size of acquisition histories, and not directly
on the number of locks. Our experimental results in Section 5 confirm that our
algorithm does indeed perform very well on real programs.

5 A Case Study

We implemented the intraprocedural version of our algorithm and evaluated its
performance on a nontrivial concurrent program. Our experiments indicate that
our algorithm scales well in practice; in particular, its performance appears to be
only weakly dependent on the number of threads. This is remarkable, considering
the program analysis community’s historical difficulties with multithreaded code.

The algorithm is implemented in OCaml, and is applicable to C programs
using the pthreads library for thread operations. We use the CIL program analysis
infrastructure for parsing, CFG construction, and sequential data flow analysis.
The algorithm is parameterized by a module that specifies the gen/kill sets
for each instruction, so lifting sequential bitvector analyses to handle threads
and locking is completely automatic. We implemented a reaching definitions
analysis module and instantiated our concurrent bitvector analysis with it; this
concurrent reaching definitions analysis was the subject of our evaluation.

We evaluated the performance of our algorithm on FUSE, a Unix kernel mod-
ule and library that allows filesystems to be implemented in userspace programs.
FUSE exposes parts of the kernel that are relevant to filesystems to userspace
programs, essentially acting as a bridge between userspace and kernelspace. We
analyzed the userspace portion.

Compositional Bitvector Analysis for Concurrent Programs 267

Table 1. Experimental Results for FUSE

Test |T | |N | |Σ| |D| |L| Time

5 avg 5 2568.1 3037.9 208.9 1.0 1.0

5 med 5 405.0 453.0 62.0 1.0 0.1

10 avg 10 4921.9 5820.1 401.6 1.3 1.8

10 med 10 988.5 1105.0 155.5 1.0 0.1

50 avg 50 24986.3 29546.0 2047.0 3.1 10.7

50 med 50 22628.5 26607.0 2022.5 3.0 4.6

200a 200 79985 94120 6861 6 36.4

200b 200 119905 142248 9515 4 116.5

full 425 218284 258219 17760 6 347.8

Since our implementation currently supports only intraprocedural analyses,
we inlined all of the procedures defined within FUSE and ignored calls to library
procedures that did not acquire or release locks. We did a type-based must-alias
analysis to create a finite version of the set of locks and shared variables. Some
procedures in the program had the (implicit) precondition that callers must hold
a particular lock or set of locks at each call site; these 35 procedures could not
be considered to be threads because they did not respect nested locking when
considered independently. Each of the remaining 425 procedures was considered
to be a distinct thread in our analysis. We divided these procedures into groups
of 5 procedures, and analyzed each of those separately (that is, we analyzed the
program consisting of procedures 1-5, 6-10, 11-15, etc). We repeated this process
with groups of 10, 50, 100, 200, and also analyzed the entire program. We present
mean and median statistics for the groups of 5, 10, 50, and 100 procedures. The
experiments were conducted on a 3.16 GHz Linux machine with 4GB of memory.

Table 1 presents the results of our experiments. The |T |, |N |, |Σ|, |D|, |L|,
and Time columns indicate number of threads, number of CFA nodes, number
of CFA transitions, number of data flow facts, number of locks, and running
time (in seconds), respectively. As a result of the inlining step, there was a very
large size gap between the smallest and the largest procedures that we analyzed,
which we believe accounts for the discrepancy between the mean and median
statistics.

Our thread summarization technique is a very effective optimization in prac-
tice. As an example, for a scenario with 123 threads, and a CFA size of approxi-
mately 200K (sum of the number of nodes and transitions), the analysis time is
50 seconds with summarization, while it is 930 seconds without summarization
– about 20 times slower.

In Figure 3(a), we observe that the running time of our algorithm appears
to grow quadratically in the number of threads in the program. However, the
dispersion is quite high, which suggests that the running time has a weak re-
lationship with the number of threads in the program. Indeed, the apparent
quadratic relationship can be explained by the fact that the points that contain
more threads also contain more total CFA transitions. Figure 3(b) shows the

268 A. Farzan and Z. Kincaid

running time of our algorithm as a function of total number of CFA transitions
in the program, which is a much tighter fit.

(a)

(b)

(c)

Fig. 3. Running time

Figure 3(c) shows the running
time of our algorithm as a func-
tion of the product of the num-
ber of CFA transitions and the
domain size of the program. This
relationship is interesting because
the time complexity of sequential
bitvector analysis is O(|Σ| · |D|).
Our results indicate that there is
a linear relationship between the
running time of our algorithm and
the product of the number of CFA
transitions and domain size of the
program, which suggests that our
algorithm’s running time is pro-
portional to |Σ| · |D| in practice.

Our empirical analysis is not
completely rigorous. In particu-
lar, our data points are not in-
dependent and our treatment of
memory locations is not conser-
vative. However, we believe that
the results obtained are promis-
ing and suggest that the algorithm
can be used as the basis for fur-
ther work on data flow analysis
for concurrent programs.

6 Application and Future Work

We discussed a number of very important applications of bitvector analysis in
Section 1. One of the most exciting applications of our precise bitvector frame-
work (in our opinion) is our ongoing work on studying more suitable abstractions
for concurrent programs. Intuitively, by computing the solution to reaching-
definitions analysis for a concurrent program, we can collect information about
how program threads interact. We are currently working on using this informa-
tion to construct abstractions to be used for more powerful concurrent program
analyses, such as computing state invariants for concurrent libraries. The preci-
sion offered by our concurrent bitvector analysis approach is quite important in
this domain, because it affects both the precision of the invariants that can be
computed, and the efficiency of their computation.

Compositional Bitvector Analysis for Concurrent Programs 269

References

1. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: principles, techniques, and tools.

Addison-Wesley Longman Publishing Co., Inc., Amsterdam (1986)

2. Chugh, R., Voung, J., Jhala, R., Lerner, S.: Dataflow analysis for concurrent pro-

grams using datarace detection. In: PLDI, pp. 316–326 (2008)

3. Esparza, J., Knoop, J.: An automata-theoretic approach to interprocedural data-

flow analysis. In: Thomas, W. (ed.) FOSSACS 1999. LNCS, vol. 1578, pp. 14–30.

Springer, Heidelberg (1999)

4. Esparza, J., Podelski, A.: Efficient algorithms for pre* and post* on interprocedural

parallel flow graphs. In: POPL, pp. 1–11 (2000)

5. Farzan, A., Kincaid, Z.: Compositional bitvector analysis for concurrent programs

with nested locks.Technical report, University of Toronto (2010),

http://www.cs.toronto.edu/~zkincaid/pub/cbva.pdf

6. Kahlon, V., Gupta, A.: On the analysis of interacting pushdown systems. In: POPL,

pp. 303–314 (2007)

7. Kahlon, V., Ivancic, F., Gupta, A.: Reasoning about threads communicating via

locks. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp.

505–518. Springer, Heidelberg (2005)

8. Kidd, N., Lammich, P., Touili, T., Reps, T.: A decision procedure for detecting

atomicity violations for communicating processes with locks. In: Păsăreanu, C.S.

(ed.) SPIN 2009. LNCS, vol. 5578, pp. 125–142. Springer, Heidelberg (2009)

9. Knoop, J., Steffen, B., Vollmer, J.: Parallelism for free: Efficient and optimal bitvec-

tor analyses for parallel programs. TOPLAS 18(3), 268–299 (1996)

10. Knoop, J.: Parallel constant propagation. In: Pritchard, D., Reeve, J.S. (eds.) Euro-

Par 1998. LNCS, vol. 1470, pp. 445–455. Springer, Heidelberg (1998)

11. Krinke, J.: Static slicing of threaded programs. SIGPLAN Not. 33(7), 35–42 (1998)

12. Lammich, P., Müller-Olm, M.: Conflict analysis of programs with procedures, dy-

namic thread creation, and monitors. In: Alpuente, M., Vidal, G. (eds.) SAS 2008.

LNCS, vol. 5079, pp. 205–220. Springer, Heidelberg (2008)

13. Lipton, R.J.: Reduction: a method of proving properties of parallel programs. ACM

Commun. 18(12), 717–721 (1975)

14. Masticola, S.P., Ryder, B.G.: Non-concurrency analysis. In: PPOPP, New York,

NY, USA, pp. 129–138 (1993)

15. Muchnick, S.S.: Advanced Compiler Design and Imlementation. Morgan Kauf-

mann, San Francisco (1997)

16. Naumovich, G., Avrunin, G.S.: A conservative data flow algorithm for detecting

all pairs of statements that happen in parallel. In: FSE, pp. 24–34 (1998)

17. Naumovich, G., Avrunin, G.S., Clarke, L.A.: An efficient algorithm for comput-

ing mhp information for concurrent java programs. In: ESEC/FSE-7, pp. 338–354

(1999)

18. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: Cil: Intermediate language

and tools for analysis and transformation of c programs. In: Horspool, R.N. (ed.)

CC 2002. LNCS, vol. 2304, pp. 213–228. Springer, Heidelberg (2002)

19. Nielson, F., Nielson, H.: Type and effect systems. In: Correct System Design, pp.

114–136 (1999)

http://www.cs.toronto.edu/~zkincaid/pub/cbva.pdf

270 A. Farzan and Z. Kincaid

20. Reps, T., Schwoon, S., Jha, S., Melski, D.: Weighted pushdown systems and their

application to interprocedural dataflow analysis. Sci. Comput. Program. 58(1-2),

206–263 (2005)

21. Salcianu, A., Rinard, M.: Pointer and escape analysis for multithreaded programs.

In: PPoPP (2001)

22. Seidl, H., Steffen, B.: Constraint-based inter-procedural analysis of parallel pro-

grams. In: Smolka, G. (ed.) ESOP 2000. LNCS, vol. 1782, pp. 351–365. Springer,

Heidelberg (2000)

Computing Relaxed Abstract Semantics w.r.t. Quadratic
Zones Precisely�

Thomas Martin Gawlitza1,�� and Helmut Seidl2

1 CNRS/VERIMAG
Thomas.Gawlitza@imag.fr

2 TU München, Institut für Informatik, I2, 85748 München, Germany
seidl@in.tum.de

Abstract. In the present paper we compute numerical invariants of programs
by abstract interpretation. For that we consider the abstract domain of quadratic
zones recently introduced byAdjé et al. [2]. We use a relaxed abstract semantics
which is at least as precise as the relaxed abstract semantics ofAdjé et al. [2].
For computing our relaxed abstract semantics, we present a practical strategy im-
provement algorithm for precisely computing least solutions of fixpoint equation
systems, whose right-hand sides use order-concave operators and the maximum
operator. These fixpoint equation systems strictly generalize the fixpoint equation
systems considered by Gawlitza and Seidl [11].

1 Introduction

In the present paper we develop a practical strategy improvement algorithm for pre-
cisely computing least solutions of systems of in-equations of the form

x ≥ f(x1, . . . ,xk),

where f is an arbitrary monotone and order-concave operator on R := R ∪ {−∞,∞}
and x,x1, . . . ,xk are variables that take values in R. If the operators can be imple-
mented through parametrized semidefinite programs, then we can implement the strat-
egy improvement step using semidefinite programming. We finally show how to apply
our techniques for computing a relaxed abstract semantics which is at least as precise as
the relaxed abstract semantics of Adjé et al. [2]. We emphasize that, in contrast to Adjé
et al. [2], we compute our relaxed abstract semantics precisely. Moreover, our algorithm
always terminates after at most exponentially many strategy improvement steps.

Costan et al. [6] introduced a general strategy iteration schema (also called pol-
icy iteration schema) for computing fixpoints of monotone self-maps f , where f =
mini∈I fi and, for every i ∈ I , the least fixpoint μfi of fi can be computed efficiently.
The f ′

is are the policies. Starting with an arbitrary policy fi0 , the policy is succes-
sively improved. The sequence of attained policies fik

results in a decreasing sequence
μfi0 > μfi1 > . . . > μfik

. Here, μg denotes the least fixpoint of a monotone self-map
g. The algorithm stops whenever μfik

is a fixpoint of f — not necessarily the least

� This work was partially funded by the ANR project ASOPT.
�� VERIMAG is a joint laboratory of CNRS, Université Joseph Fourier and Grenoble INP.

R. Cousot and M. Martel (Eds.): SAS 2010, LNCS 6337, pp. 271–286, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

272 T.M. Gawlitza and H. Seidl

one. Furthermore, this method does not necessarily reach a fixpoint after finitely many
steps, whenever I is infinite. The quality of the obtained fixpoint may also depend on
the initial policy fi0 . Costan et al. [6] showed how to use their framework for perform-
ing interval analysis without widening. Gaubert et al. [10] extended this work to the
following relational abstract domains: The zone domain [14], the octagon domain [15]
and in particular the template polyhedra domain [18]. Gawlitza and Seidl [11] presented
a practical strategy improvement algorithm for precisely computing least solutions of
systems of rational equations. Their strategy improvement algorithm enables them to
perform a precise template polyhedra analysis as well. It computes the least solution
of the abstract semantic equations — not just some solution. Their algorithm for sys-
tems of rational equations can also be applied for analyzing recursive stochastic games
[7–9, 20].

Recently, Adjé et al. [2] introduced a new abstract domain (called zones) for finding
subtle numerical invariants of programs by abstract interpretation. This domain con-
sists of linear and non-linear templates and thus generalizes the template polyhedra
domain of Sankaranarayanan et al. [18]. Adjé et al. [2] considered a relaxed abstract
semantics w.r.t. the new domain under the assumption that all templates are quadratic
(quadratic zones). Their relaxed abstract semantics is based on Shor’s semidefinite re-
laxation schema. The authors then solved the resulting fixpoint equations using their
policy iteration schema, i.e., they coupled policy iteration and semidefinite program-
ming. The policies in their approach are given by the Lagrange multipliers introduced
by Shor’s relaxation schema. This implies that there are potentially uncountably many
policies. Accordingly, their algorithm does not terminate in all cases. Moreover, even
if it terminates, the obtained solution is not necessarily the least solution. Still, the al-
gorithm seems to be quite useful in many cases as it can be stopped at any time with a
sound over-approximation of the least solution.

In the present paper we use the semidefinite dual of Shor’s relaxation schema (as
used by Adjé et al. [2]) for defining our relaxed abstract semantics. One consequence
is that our relaxed abstract semantics is at least as precise as the relaxed abstract se-
mantics used by Adjé et al. [2]. In addition it allows us to apply the strategy improve-
ment approach of Gawlitza and Seidl [11, 12, 13] which iterates over max-strategies.
Considering max-strategies instead of min-strategies (as done by Adjé et al. [2]) has
the advantage that there exist only finitely (to be more precise exponentially) many
max-strategies. We develop a strategy improvement algorithm which iterates over max-
strategies and returns precise least solutions at the latest after considering all max-
strategies. Each strategy improvement step can be realized by solving linearly many
semidefinite programming problems. Our strategy improvement algorithm can be ap-
plied to systems of order-concave equations with finite least solutions. The restriction to
finite least solutions, however, can be eliminated. The class of order-concave equations
strictly generalizes the class of rational equations introduced by Gawlitza and Seidl
[11]. Accordingly, the strategy improvement algorithm presented in the present paper
strictly generalizes the strategy improvement algorithm of Gawlitza and Seidl [11]. In
fact, for systems of rational LP-equations, it will perform the same strategy improve-
ment steps. Moreover, the SDP’s that have to be solved for each strategy improvement
step degenerate to linear programming problems in this case.

Computing Relaxed Abstract Semantics w.r.t. Quadratic Zones Precisely 273

2 Basics

Notations. The set of real numbers (resp. the set of rational numbers) is denoted by R
(resp. Q). The complete linear ordered set R∪{−∞,∞} is denoted by R. Additionally,
we set Q := Q∪{−∞,∞}. We call two vectors x, y ∈ R

n
comparable iff x ≤ y or y ≤

x holds. For f : X → R
m

with X ⊆ R
n

, we set dom(f) := {x ∈ X | f(x) ∈ Rm}
and fdom(f) := dom(f)∩Rn. We denote the i-th row (resp. j-th column) of a matrix A
by Ai· (resp. A·j). Accordingly, Ai·j denotes the component in the i-th row and the j-th
column. We also use this notation for vectors and functions f : X → Y k. SRn×n (resp.
SRn×n

+) denotes the set of symmetric matrices (resp. the set of positive semidefinite
matrices). The square root of a positive semidefinite matrix X is denoted by X

1
2 . ,

denotes the Löwner ordering of symmetric matrices, i.e., A , B iff B −A ∈ SRn×n
+ .

Tr(A) denotes the trace of a square matrix A ∈ Rn×n, i.e., Tr(A) =
∑n

i=1 Ai·i. The
inner product of two matrices A and B is denoted by A • B, i.e., A • B = Tr(A�B).
For A = (A1, . . . , Am) with Ai ∈ Rn×n for all i = 1, . . . , m, we denote the vector
(A1 •X, . . . , Am •X)� by A(X). For x ∈ Rn, the dyadic matrix X(x) is defined by
X(x) := (1, x�)�(1, x�). The standard base vectors of Rn are denoted by e1, . . . , en.

(Order-)Convex/(Order-)Concave Functions. A set X ⊆ Rn is called order-convex iff
λx + (1 − λ)y ∈ X holds for all comparable x, y ∈ X and all λ ∈ [0, 1]. It is called
convex iff this condition holds for all x, y ∈ X . A mapping f : X → Rm with X ⊆ Rn

order-convex is called order-convex (resp. order-concave) iff f(λx + (1 − λ)y) ≤
(resp. ≥) λf(x)+(1−λ)f(y) holds for all comparable x, y ∈ M and all λ ∈ [0, 1] (cf.
Ortega and Rheinboldt [17]). A mapping f : X → Rm with X ⊆ Rn convex is called
convex (resp. concave) iff f(λx+(1−λ)y) ≤ (resp. ≥) λf(x)+(1−λ)f(y) holds for
all x, y ∈ M and all λ ∈ [0, 1] (cf. Ortega and Rheinboldt [17]). Every convex (resp.
concave) function is order-convex (resp. order-concave). Note that f is (order-)concave
iff −f is (order-)convex. Note also that f is (order-)convex (resp. (order-)concave) iff
fi· is (order-)convex (resp. (order-)concave) for all i = 1, . . . , m. We extend the notion
of (order-)convexity/(order-)concavity to R

n → R
m

as follows: A mapping f : R
n →

R
m

is called (order-)convex (resp. (order-)concave) iff fdom(f) is (order-)convex and
f |fdom(f) is (order-)convex (resp. (order-)concave). Note that fdom(f) is order-convex

for all monotone mappings f : R
n → R

m
. In the following we are only concerned with

mappings f : R
n → R

m
which are monotone and order-concave.

Lemma 1. Every linear function is concave and convex. The operator ∨ is convex, but
not order-concave. The operator ∧ is concave, but not order-convex. (

Semidefinite Programming. We consider semidefinite programming problems (SDP
problems for short) of the form

sup{C •X | X ∈ SRn×n
+ ,A(X) = a,B(X) ≤ b},

where A = (A1, . . . , Am), a ∈ Rm, A1, . . . , Am ∈ SRn×n, B = (B1, . . . , Bk),
B1, . . . , Bk ∈ SRn×n, b ∈ Rk, and C ∈ SRn×n. The set {X ∈ SRn×n

+ | A(X) =
a,B(X) ≤ b} is called the feasible space. An element of the feasible space, is called
feasible solution.

274 T.M. Gawlitza and H. Seidl

For A = (A1, . . . , Am), A1, . . . , Am ∈ SRn×n, a ∈ Rm, B = (B1, . . . , Bk),
B1, . . . , Bk ∈ SRn×n, and C ∈ SRn×n we define the operator SDPA,a,B,C : R

k →
R which solves a parametrized SDP problem by:

SDPA,a,B,C(b) := sup{C •X | X ∈ SRn×n
+ ,A(X) = a,B(X) ≤ b}, b ∈ R

k

The SDP-operators generalize the LP-operators used by Gawlitza and Seidl [11, 13].

Lemma 2. SDPA,a,B,C is monotone and concave. If fdom(SDPA,a,B,C) �= ∅, then
SDPA,a,B,C(b) < ∞ for all b ∈ Rk. (

Proof. Let f := SDPA,a,B,C . The fact that f is monotone is obvious. Firstly, we
show that f(b) < ∞ holds for all b ∈ Rk, whenever fdom(f) �= ∅. For the sake of
contradiction assume that there exist b1, b2 ∈ Rk such that f(b1) ∈ R and f(b2) = ∞
hold. Note that Mi := {X ∈ SRn×n

+ | A(X) = a,B(X) ≤ bi} are convex for i = 1, 2.
Thus there exists some D ∈ SRn×n

+ such that C •D > 0 and M2+{λD | λ ∈ R≥0} ⊆
M2 hold. ThereforeA(D) = 0 and B(D) ≤ 0.

Let X1 ∈ SRn×n
+ with A(X1) = a and B(X1) ≤ b1. Then A(X1 + λD) =

A(X1) + λA(D) = a and B(X1 + λD) = B(X1) + λB(D) ≤ b1 hold for all λ > 0.
Thus f(b1) = ∞ — contradiction. Thus f(b) < ∞ holds for all b ∈ Rk, whenever
fdom(f) �= ∅.

In order to show that f is concave, we have to show that fdom(f) is convex and
that f |fdom(f) is concave. Assume that fdom(f) �= ∅. Thus f(b) < ∞ for all b ∈ Rk.
Let b1, b2 ∈ fdom(f), λ ∈ [0, 1], and b := λb1 + (1 − λ)b2. For all b′ ∈ Rk, let
M(b′) := {X ∈ SRn×n

+ | A(X) = a,B(X) ≤ b′}. In order to show that

λM(b1) + (1− λ)M(b2) ⊆ M(b) (1)

holds, let Xi ∈ M(bi), i = 1, 2, and X = λX1 + (1 − λ)X2. Thus Xi ∈ SRn×n
+ ,

A(Xi) = a, and B(Xi) ≤ bi for all i = 1, 2. Then X ∈ SRn×n
+ , A(X) = λA(X1) +

(1 − λ)A(X2) = a, B(X) = λB(X1) + (1 − λ)B(X1) ≤ λb1 + (1 − λ)b2 = b.
Therefore X ∈ M(b). Using (1), we finally get:

f(b) = sup{C •X | X ∈ M(b)}
≥ λ sup{C •X1 | X1 ∈ M(b1)}+ (1− λ) sup{C •X2 | X2 ∈ M(b2)}
= λf(b1) + (1− λ)f(b2) > −∞

Thus f is concave. (

The next example shows that the SDP-operator also includes the square root operator
as a special case:

Example 1. We set
√

b := sup{x ∈ R | x2 ≤ b} for all b ∈ R. Note that
√

b = −∞
holds for all b < 0. Moreover,

√
∞ = ∞. Let

A :=
((

1 0
0 0

))
, a := 1, B :=

((
0 0
0 1

))
, C :=

(
0 1

2
1
2 0

)
.

Computing Relaxed Abstract Semantics w.r.t. Quadratic Zones Precisely 275

For x, b ∈ R≥0, x2 ≤ b is equivalent to ∃b′.x2 ≤ b′ ≤ b. By the Schur complement
theorem (c.f. section 3, example 5 of [19], for instance), this is equivalent to

∃b′.
(

1 x
x b′

)
. 0, b′ ≤ b.

This is equivalent to ∃X ∈ SR2×2
+ .x = X1·2 = X2·1, A(X) = a, B(X) ≤ b. Thus,√

b = SDPA,a,B,C(b) holds for all b ∈ R. (

3 Solving Systems of Order-Concave Equations

Systems of Order-Concave Equations. Assume that a fixed set X of variables and a
domain D is given. We consider equations of the form x = e, where x ∈ X is a
variable and e is an expression over D. A system E of equations is a finite set {x1 =
e1, . . . ,xn = en} of equations, where x1, . . . ,xn are pairwise distinct variables. We
denote the set {x1, . . . ,xn} of variables occurring in E by XE . We drop the subscript,
whenever it is clear from the context.

The set of sub-expressions occurring in the right-hand sides of E is denoted by S(E).
For a k-ary function f , Sf (E) denotes the set of all f -sub-expressions (sub-expressions
of the form f(e1, . . . , ek)) occurring in the right-hand sides of E .

For a variable assignment ρ : X → D, an expression e is mapped to a value �e�ρ by
setting �x�ρ := ρ(x) and �f(e1, . . . , ek)�ρ := f(�e1�ρ, . . . , �ek�ρ), where x ∈ X, f is
a k-ary operator (k = 0 is possible; then f is a constant), for instance +, and e1, . . . , ek

are expressions. Let E be a system of equations. We define the unary operator �E� on
X → D by setting (�E�ρ)(x) := �e�ρ for all x = e ∈ E . A solution is a variable
assignment ρ such that ρ = �E�ρ holds. The set of solutions is denoted by Sol(E).

In the present paper, D will always be a complete lattice. Thus, assume in the fol-
lowing that D is a complete lattice. We denote the least upper bound and the greatest
lower bound of a set X by

∨
X and

∧
X , respectively. The least element

∨
∅ (resp.

the greatest element
∧
∅) is denoted by ⊥ (resp. '). Accordingly, we define the binary

operators∨ and∧ by x∨y :=
∨
{x, y} and x∧y :=

∧
{x, y} for x, y ∈ D, respectively.

For � ∈ {∨,∧}, we will also consider x1 � · · · � xk as the application of a k-ary op-
erator. This will cause no problems, since the binary operators ∨ and ∧ are associative
and commutative. An expression e (resp. an equation x = e) is called monotone iff all
operators occurring in e are monotone.

The set X → D of all variable assignments is a complete lattice. For ρ, ρ′ : X → D,
we write ρ
ρ′ (resp. ρ�ρ′) iff ρ(x) < ρ′(x) (resp. ρ(x) > ρ′(x)) holds for all x ∈ X.
For d ∈ D, d denotes the variable assignment {x �→ d | x ∈ X}. A variable assignment
ρ with ⊥
 ρ
 ' is called finite. A pre-solution (resp. post-solution) is a variable
assignment ρ such that ρ ≤ �E�ρ (resp. ρ ≥ �E�ρ) holds. The set of pre-solutions
(resp. the set of post-solutions) is denoted by PreSol(E) (resp. PostSol(E)). The
least fixpoint (resp. the greatest fixpoint) of an operator f : D → D is denoted by μf
(resp. νf), provided that it exists. Thus, the least solution (resp. the greatest solution)
of a system E of equations is denoted by μ�E� (resp. ν�E�), provided that it exists.
For a pre-solution ρ (resp. for a post-solution ρ), μ≥ρ�E� (resp. ν≤ρ�E�) denotes the

276 T.M. Gawlitza and H. Seidl

least solution that is greater than or equal to ρ (resp. the greatest solution that is less
than or equal to ρ). In our setting, Knaster-Tarski’s fixpoint theorem can be stated as
follows: Every system E of monotone equations over a complete lattice has a least
solution μ�E� and a greatest solution ν�E�. Furthermore, μ�E� =

∧
PostSol(E) and

ν�E� =
∨

PreSol(E).

Definition 1 (Order-Concave Equations). An expression e (resp. equation x = e)
over R is called basic order-concave expression (resp. basic order-concave equation) iff
�e� is monotone and order-concave and �e�ρ < ∞ holds for all ρ : X → R, whenever
fdom(�e�) �= ∅. An expression e (resp. equation x = e) over R is called order-concave
iff e = e1 ∨ · · · ∨ ek, where e1, . . . , ek are basic order-concave expressions. (

Note that by lemma 1 the class of systems of order-concave equations strictly subsumes
the class of systems of rational equations and even the class of systems of rational LP-
equations as defined by Gawlitza and Seidl [11, 13].

Example 2. By lemma 2 and example 1,
√
· is monotone and concave, and

√
x < ∞

holds for all x ∈ R. The least solution of the system E = {x = 1
2 ∨

√
x} of order-

concave equations is μ�E� = 1. (

Strategies. A ∨-strategy σ for E is a function that maps every expression e1 ∨ · · · ∨ ek

occurring in E to one of the immediate sub-expressions ej , j ∈ {1, . . . , k}. We denote
the set of all ∨-strategies for E by ΣE . We drop the subscript, whenever it is clear from
the context. For σ ∈ Σ the expression eσ is inductively defined by

(e1 ∨ · · · ∨ ek)σ := (σ(e1 ∨ · · · ∨ ek))σ, (f(e1, . . . , ek))σ := f(e1σ, . . . , ekσ),

where f �= ∨ is some operator. Finally, we set E(σ) := {x = eσ | x = e ∈ E}.

The Strategy Improvement Algorithm. We briefly explain the strategy improvement
algorithm (cf. Gawlitza and Seidl [13]). In the present paper we are going to compute
least solutions of systems of order-concave equations through our strategy improvement
algorithm. Systems of order-concave equations are in particular systems of monotone
equations over the complete linear ordered set R. For the sake of generality, we subse-
quently consider an arbitrary complete linear ordered set.

Our strategy improvement algorithm iterates over ∨-strategies. It maintains a cur-
rent ∨-strategy and a current approximate to the least solution. A so called strategy
improvement operator is used for determining a next, improved ∨-strategy. Whether or
not a ∨-strategy represents an improvement of the current ∨-strategy may depend on
the current approximate:

Definition 2 (Improvements). Let E be a system of monotone equations over a com-
plete linear ordered set. Let σ, σ′ ∈ Σ be ∨-strategies for E and ρ be a pre-solution of
E(σ). The ∨-strategy σ′ is called improvement of σ w.r.t. ρ iff the following conditions
are fulfilled: (1) If ρ /∈ Sol(E), then �E(σ′)�ρ > ρ. (2) For all ∨-expressions e ∈ S∨(E)
the following holds: If σ′(e) �= σ(e), then �eσ′�ρ > �eσ�ρ. A function P∨ which as-
signs an improvement of σ w.r.t. ρ to every pair (σ, ρ), where σ is a ∨-strategy and ρ is
a pre-solution of E(σ), is called ∨-strategy improvement operator. (

Computing Relaxed Abstract Semantics w.r.t. Quadratic Zones Precisely 277

In many cases, there exist several, different improvements of a ∨-strategy σ w.r.t. a
pre-solution ρ of E(σ). Accordingly, there exist several, different strategy improvement
operators. Under the assumption that the operator ∨ is only used in its binary version,
one is known as all profitable switches (see e.g. Björklund et al. [3, 4]). Carried over
to the case considered here, this means, that the ∨-strategy σ will be modified at any
∨-expression e1 ∨ e2 with �e1 ∨ e2�ρ > �σ(e1 ∨ e2)�ρ. According to definition 2
the selection at the other ∨-expressions must be preserved. The computation of this
improvement is realized through the strategy improvement operator P eager

∨ :

Definition 3 (The Strategy Improvement Operator P eager
∨). Let E be a system of

monotone equations over a complete linear ordered set, σ ∈ Σ and ρ ∈ PreSol(E(σ)).
The∨-strategy P eager

∨ (σ, ρ) is defined by

P eager
∨ (σ, ρ)(e1 ∨ e2) =

⎧⎨⎩e1 if �e1�ρ > �e2�ρ
e2 if �e1�ρ < �e2�ρ
σ(e1 ∨ e2) if �e1�ρ = �e2�ρ

, e1 ∨ e2 ∈ S∨(E). (

Lemma 3 (Properties of P eager
∨). Let E be a system of monotone equations over a

complete linear ordered set. The following statements hold:

1. �E(P eager
∨ (σ, ρ))�ρ = �E�ρ holds for all σ ∈ Σ and all ρ ∈ PreSol(E(σ)).

2. P eager
∨ is a ∨-strategy improvement operator. (

If ∨ is not only used in its binary version, we can think of σ′ = P eager
∨ (σ, ρ) as some

arbitrary improvement of σ w.r.t. ρ such that �E(σ′)�ρ = �E�ρ holds. Note that then
σ′ = P eager

∨ (σ, ρ) is not necessarily uniquely determined. However, this is not important
for the following results which refer to the strategy improvement operator P eager

∨ .
Now we can formulate the strategy improvement algorithm for computing least so-

lutions of systems of monotone equations over complete linear ordered sets. This al-
gorithm is parameterized with a ∨-strategy improvement operator P∨. The input is a
system E of monotone equations over a complete linear ordered set, a ∨-strategy σinit

for E , and a pre-solution ρinit of E(σinit). In order to compute the least and not just
some solution, we additionally claim that ρinit ≤ μ�E� holds:

Algorithm 1. The Strategy Improvement Algorithm

Parameter : A ∨-strategy improvement operator P∨

Input :

⎧⎨⎩
- A system E of monotone equations over a complete linear ordered set
- A ∨-strategy σinit for E
- A pre-solution ρinit of E(σinit) with ρinit ≤ μ�E�

Output : The least solution μ�E� of E
σ ← σinit; ρ ← ρinit;

while (ρ /∈ Sol(E)) {σ ← P∨(σ, ρ); ρ ← μ≥ρ�E(σ)�; }
return ρ;

Lemma 4. Let E be a system of monotone equations over a complete linear ordered
set. For i ∈ N, let ρi be the value of the program variable ρ and σi be the value of the
program variable σ in the strategy improvement algorithm (algorithm 1) after the i-th
evaluation of the loop-body. The following statements hold for all i ∈ N:

278 T.M. Gawlitza and H. Seidl

1. ρi ≤ μ�E�. 2. ρi ∈ PreSol(E(σi+1)).
3. If ρi < μ�E�, then ρi+1 > ρi. 4. If ρi = μ�E�, then ρi+1 = ρi. (

An immediate consequence of lemma 4 is the following: Whenever the strategy im-
provement algorithm terminates, it computes the least solution μ�E� of E .

In the following we are interested in solving systems of order-concave equations with
finite least solutions. We show that in this case our strategy improvement algorithm
terminates and returns the least solution at the latest after considering all strategies.
Moreover, we give an important characterization for μ≥ρ�E(σ)�.

Feasibility. As in [11–13] we need some notation of feasibility. However, here we have
to find a purely analytic criterion. From our notion of feasibility we expect that the
following two claims hold: (1) If ρ is a feasible pre-solution of the system E of basic
order-concave equations, then μ≥ρ�E� is the greatest finite pre-solution of E . (2) Fea-
sibility will be preserved by strategy improvement steps, i.e., if ρ is a feasible solution
of E(σ) and σ′ is an improvement of σ w.r.t. ρ, then ρ is also a feasible pre-solution of
E(σ′).

A simple notion of feasibility is the following (we restrict our considerations to finite
pre-solutions): A finite solution ρ of E is called feasible iff there exists some ρ′
ρ such
that ρ′
�E�ρ′ holds. A finite pre-solution ρ of E is called feasible iff μ≥ρ�E� is feasible.
This notion of feasibility ensures claim 1. However, claim 2 does not hold. But it almost
holds in the sense that it only fails to hold for degenerated cases. Moreover, also this
notion of feasibility guarantees at least that we compute an over-approximation of the
least solution, when we apply our method.

Before we fix the problem of this notion, we consider an example of a degenerated
case, where feasibility as defined above is not preserved by a strategy improvement
step.

Example 3. Consider the system E = {x1 = x2 + 1 ∧ 0,x2 = −1 ∨
√

x1} of order-
concave equations. Let σ1 = {−1 ∨

√
x1 �→ −1} and σ2 = {−1 ∨

√
x1 �→

√
x1} be

the two ∨-strategies for E . Let ρ = {x1 �→ 0,x2 �→ −1}. Obviously, ρ is a feasible
solution of E(σ1) = {x1 = x2+1∧0,x2 = −1}. The ∨-strategy σ2 is an improvement
of the ∨-strategy σ1 w.r.t. ρ. However, we can show that ρ = {x1 �→ 0,x2 �→ −1} is
not a feasible pre-solution of E(σ2) = {x1 = x2 + 1 ∧ 0,x2 =

√
x1}. We have ρ∗ :=

μ≥ρ�E(σ2)� = {x1 �→ 0,x2 �→ 0}. For any ρ′
 ρ∗, we have �E(σ2)�ρ′(x2) = −∞.
Thus ρ∗ is not a feasible solution and therefore ρ is not a feasible pre-solution.

The problem comes from the fact that we switch the strategy with x1 = 0, and there
exists no right derivative of

√
· at 0, and moreover ρ(x1) = ρ∗(x1). These cases are

degenerated cases. (

We now extend the notion of feasibility in order to deal with degenerated cases:

Definition 4 (Feasibility). Let E be a system of basic order-concave equations. A finite
solution ρ of E is called (E-)feasible iff there exists X1,X2 ⊆ X and some k ∈ N such
that the following statements hold:
1. X1 ∪X2 = X, and X1 ∩X2 = ∅.
2. There exists some ρ′
 ρ|X1 such that ρ′ ∪̇ ρ|X2 is a pre-solution of E , and ρ =

�E�k(ρ′ ∪̇ ρ|X2).

Computing Relaxed Abstract Semantics w.r.t. Quadratic Zones Precisely 279

3. There exists some ρ′
 ρ|X2 such that ρ′
 (�E�k(ρ|X1 ∪̇ ρ′))|X2 .

A finite pre-solution ρ of E is called (E-)feasible iff μ≥ρ�E� is a feasible finite solution
of E . A pre-solution ρ
 ∞ is called feasible iff e = −∞ for all x = e ∈ E with
�e�ρ = −∞, and ρ|X′ is a feasible finite pre-solution of {x = e ∈ E | x ∈ X′}, where
X′ := {x | x = e ∈ E , �e�ρ > −∞}.

A system E of basic order-concave equations is called feasible iff there exists a fea-
sible solution ρ of E . (

Example 4. We consider the system E = {x =
√

x} of basic order-concave equations.
For all x ∈ R, let x := {x �→ x}. We show that 0 is not a feasible solution of E . Let
x < 0. Thus x < 0. First we consider the case that X1 = {x} and X2 = ∅ hold. Then
0 �= −∞ = �E�kx for all k ≥ 1. We now consider the case that X1 = ∅ and X2 = {x}
hold. Then 0 �
 −∞ = �E�kx for all k ≥ 1. Thus the solution 0 is not feasible. 1
is a feasible solution, since 1

2
 �√x�1
2 holds. Thus, x is a feasible pre-solution for

all x ∈ (0, 1]. Note that 1 is the only feasible finite solution of E and additionally the
greatest finite pre-solution of E . (

Example 5. We continue example 3. We want to verify that our new notion of feasibil-
ity (definition 4) helps for this example, i.e., we again consider the system E(σ2) =
{x1 = x2 + 1 ∧ 0,x2 =

√
x1} of basic order-concave equations. We show that

ρ := {x1 �→ 0,x2 �→ 0} now is a feasible solution. Let X1 = {x2}, X2 = {x1}.
Then we have {x2 �→ −1}
 ρ|X1 , and ρ = �E(σ2)�{x1 �→ 0,x2 �→ −1} =
�E(σ2)�({x2 �→ −1} ∪̇ ρ|X2). We also have {x1 �→ −1}
 ρ|X2 and {x1 �→
−1}
 {x1 �→ 0} = (�E(σ2)�(ρ|X1 ∪̇ {x1 �→ −1}))|X2 . Thus ρ is a feasible so-
lution. Thus {x1 �→ 0,x2 �→ x} is a feasible pre-solution for all x ∈ [−1, 0]. The
pre-solution {x1 �→ −∞,x2 �→ −∞} is not feasible, since the right-hand sides evalu-
ate to −∞ under {x1 �→ −∞,x2 �→ −∞}. (

The following lemma is an immediate consequence of the definition:

Lemma 5. Let E be a system of basic order-concave equations and ρ be a feasible pre-
solution of E . Every pre-solution ρ′ of E with ρ ≤ ρ′ ≤ μ≥ρ�E� is feasible. (

Feasibility is preserved by performing strategy improvement steps:

Lemma 6. Let E be a system of order-concave equations, σ be a ∨-strategy for E , ρ be
a feasible solution of E(σ), and σ′ be an improvement of σ w.r.t. ρ. Then ρ is a feasible
pre-solution of E(σ′). (

Example 6. We again continue example 3. Obviously, ρ = {x1 �→ 0,x2 �→ −1} is a
feasible solution of E(σ1) = {x1 = x2 + 1 ∧ 0,x2 = −1}. The ∨-strategy σ2 is an
improvement of the ∨-strategy σ1 w.r.t. ρ. By lemma 6, ρ is also a feasible pre-solution
of E(σ2) = {x1 = x2 + 1 ∧ 0,x2 =

√
x1}. The fact that ρ is a feasible pre-solution of

E(σ2) is also shown in example 5. (

The above two lemmas ensure that our strategy improvement algorithm stays in the
feasible area, whenever it is started in the feasible area.

280 T.M. Gawlitza and H. Seidl

In order to start in the feasible area, we simply start the strategy improvement al-
gorithm with the system E ∨ −∞ := {x = e ∨ −∞ | x = e ∈ E}, the ∨-strategy
σinit = {e ∨ −∞ �→ −∞ | x = e ∈ E} and the feasible pre-solution −∞ of
(E ∨ −∞)(σinit).

It remains to develop a method for computing μ≥ρ�E� under the assumption that ρ is
a feasible pre-solution of the system E of basic order-concave equations. The following
lemma in particular states that for this purpose we in fact have to compute the greatest
finite pre-solution of E :

Lemma 7. Let E be a feasible system of basic order-concave equations. Assume that
e �= −∞ holds for all x = e ∈ E . There exists a greatest finite pre-solution ρ∗ of
E and ρ∗ is the only feasible solution of E . If ρ is a feasible pre-solution of E , then
ρ∗ = μ≥ρ�E�. (

Termination. Lemma 7 implies that our strategy improvement algorithm has to consider
each ∨-strategy at most once. Thus, we have shown the following theorem:

Theorem 1. Let E be a system of order-concave equations with μ�E�
 ∞. Assume
that we can compute the greatest finite pre-solution ρσ of each E(σ), provided that
E(σ) is feasible. Our strategy improvement algorithm computes μ�E� and performs at
most |Σ|+ |X| strategy improvement steps. (

Example 7. We consider the system E =
{
x = −∞∨ 1

2 ∨
√

x ∨ 7
8 +

√
x− 47

64

}
of

order-concave equations. We start with a strategy σ0 such that E(σ0) = {x = −∞}
holds and with the feasible solution ρ0 := {x �→ −∞} of E(σ0). Since ρ0 /∈ Sol(E),
we improve σ0 to a strategy σ1 w.r.t. ρ0. Necessarily, we get E(σ1) = {x = 1

2}.

Furthermore, ρ1 := μ≥ρ0�E(σ1)� = {x �→ 1
2}. Since

√
1
2 > 1

2 and 7
8 +

√
1
2 −

47
64 < 1

2

hold, we necessarily improve the strategy σ1 w.r.t. ρ1 to a strategy σ2 with E(σ2) =
{x =

√
x}. We get ρ2 := μ≥ρ1�E(σ2)� = {x �→ 1}, since Sol(E(σ2)) = {{x �→

−∞}, {x �→ 0}, {x �→ 1}, {x �→ ∞}}. Since 7
8 +

√
1− 47

64 > 7
8 +

√
1− 60

64 = 9
8 > 1,

we get E(σ3) = {x = 7
8 +

√
x− 47

64}. Finally we get ρ3 := μ≥ρ2�E(σ3)� = {x �→ 2}.

The algorithm terminates, because ρ3 solves E . Therefore ρ3 = μ�E�. (

4 Systems of SDP-Equations

We call a system of order-concave equations that, besides the ∨-operator, only uses the
SDP-operators a system of SDP-equations. Systems of SDP-equations generalize sys-
tems of rational LP-equations as introduced by Gawlitza and Seidl [11, 13]. In this sec-
tion we use our strategy improvement algorithm for solving Systems of SDP-equations.
Because of lemma 7, for that we have to develop a method for computing greatest finite
pre-solutions of systems of basic SDP-equations.

Let E be a system of basic SDP-equations, i.e., each equation of E is of the form x =
SDPA,a,B,C(x1, . . . ,xk). We replace every equation x = SDPA,a,B,C(x1, . . . ,xk)

Computing Relaxed Abstract Semantics w.r.t. Quadratic Zones Precisely 281

of E with the constraints

x ≤ C •Y, A(Y) = a, B(Y) ≤ (x1, . . . ,xk)�, Y . 0,

where Y is a symmetric matrix of fresh variables. We denote the resulting system of
constraints by CSDP(E). Then, we have:

Lemma 8. Let E be a system of basic SDP-equations with a greatest finite pre-solution
ρ∗. Then ρ∗(x) = sup {ρ(x) | ρ : XCSDP(E) → R, ρ ∈ Sol(CSDP(E))} holds for all
x ∈ XE . (

Because of Lemma 8, the greatest finite pre-solution ρ∗, provided that it exists, can be
computed by solving |X| SDP problems, each of which can be obtained from E in linear
time. In practice, this can be improved by solving the SDP problem

sup
{∑

x∈X ρ(x) | ρ : XCSDP(E) → R, ρ ∈ Sol(CSDP(E))
}

.

If this problem has an optimal solution, then it determines ρ∗. Moreover, if it has no
optimal solution, then any ε-optimal solution of the above SDP problem determines a
pre-solution of E that is ε-close to ρ∗. Let, for every ε > 0, ρε denote a pre-solution
of E that is determined by some ε-optimal solution of the above SDP problem. Then
limε→0 ρε = ρ∗. Since in many practical cases, we can anyway only approximate opti-
mal values of SDP problems, in a practical implementation it thus suffices to solve the
above SDP problem instead of the |X| SDP-problems mentioned in lemma 8.

Together with the result from section 3 we get the following result:

Theorem 2. Let E be a system of SDP-equations with μ�E�
∞. Our strategy improve-
ment algorithm returns μ�E� after performing at most |Σ|+ |X| strategy improvement
steps. Each strategy improvement step can be performed by solving linearly many SDP
problems, each of which can be constructed in linear time. (

Our techniques can be extended in order to get rid of the assumption that μ�E�
 ∞
holds. Basically, if the SDP problem that is solved for computing ρ∗(x) in lemma 8 is
unbounded, then we know that μ�E�(x) = ∞ holds. However, for simplicity, we do not
discuss these aspects in detail in the present paper.

5 Quadratic Zones and Relaxed Abstract Semantics

We consider statements of the form x := Ax + b and x�Ax + 2b�x ≤ c, where
A ∈ Rn×n (resp. A ∈ SRn×n), b ∈ Rn, c ∈ R, and x ∈ Rn denotes the vector
of program variables. Statements of the form x := Ax + b are called (affine) assign-
ments. Statements of the form x�Ax + 2b�x ≤ c are called (quadratic) guards. The
set of statements is denoted by Stmt. The collecting semantics �s� : 2R

n → 2R
n

of a
statement s ∈ Stmt is defined by

�x := Ax + b�X := {Ax + b | x ∈ X},
�x�Ax + 2b�x ≤ c�X := {x ∈ X | x�Ax + 2b�x ≤ c},

282 T.M. Gawlitza and H. Seidl

for X ⊆ Rn. A program G is a triple (N, E, st), where N is a finite set of control-
points, E ⊆ N × Stmt × N is the set of control-flow edges, and st ∈ N is the start
control-point. As usual, the collecting semantics V of a program G = (N, E, st) is the
least solution of the following constraint system:

V[st] ⊇ I V[v] ⊇ �s�(V[u]) for all (u, s, v) ∈ E

Here, the variables V[v], v ∈ N take values in 2R
n

. The set I ⊆ Rn is an initial set
of states. The components of the collecting semantics V are denoted by V [v] for all
v ∈ N .

According to the definitions of Adjé et al. [2], we define quadratic zones as follows:
A set P of templates p : Rn → R is a quadratic zone iff every template p ∈ P can be
written as p(x) = x�Apx + 2b�p x, where Ap ∈ SRn×n and bp ∈ Rn for all p ∈ P .

In the following we assume that P = {p1, . . . , pm} is a finite quadratic zone. We
assume w.l.o.g. that pi �= 0 holds for all i = 1, . . . , m. The abstraction α : 2R

n →
P → R and the concretization γ : (P → R) → 2R

n

are defined as follows:

γ(v) := {x ∈ Rn | ∀p ∈ P.p(x) ≤ v(p)}, v : P → R,

α(X) :=
∧
{v : P → R | γ(v) ⊇ X}, X ⊆ Rn.

As shown by Adjé et al. [2], α and γ form a Galois-connection. The elements from
γ(P → R) and the elements from α(2R

n

) are called closed. α(γ(v)) is called the
closure of v : P → R. Accordingly, γ(α(X)) is called the closure of X ⊆ Rn.

The abstract semantics �s�� : (P → R) → P → R of a statement s is defined by
�s�� := α◦ �s�◦γ. The abstract semantics V � of a program G = (N, E, st) is the least
solution of the following constraint system:

V�[st] ≥ α(I) V�[v] ≥ �s��(V�[u]) for all (u, s, v) ∈ E

Here, the variables V�[v], v ∈ N take values in P → R. The components of the abstract
semantics V � are denoted by V �[v] for all v ∈ N .

The problem of deciding, whether for a given quadratic zone P , a given v : P → Q,
a given p ∈ P , and a given q ∈ Q, α(γ(v))(p) ≤ q holds, is NP-hard (cf. Adjé et al. [2])
and thus intractable. Therefore we use the relaxed abstract semantics V R introduced
by Adjé et al. [2] which is based on Shor’s semidefinite relaxation schema. However, in
order to use our strategy improvement algorithm, we have to switch to the semi-definite
dual. This is in fact an advantage, since we gain additional precision through this step.

Definition 5 (�x := Ax + b�R). For an affine assignment x := Ax + b, we define the
relaxed abstract transformer �x := Ax + b�R : (P → R) → P → R by

�x := Ax + b�Rv (p) := sup{A(p)•X | ∀p′ ∈ P.Ap′•X ≤ v(p′), X . 0, X1·1 = 1}

for v : P → R and p ∈ P , where, for all p′ ∈ P ,

A(p) := A�ApA, b(p) := A�Apb + A�bp, c(p) := b�Apb + 2b�p b

A(p) :=
(

c(p) b�(p)
b(p) A(p)

)
, Ap′ :=

(
0 b�p′

bp′ Ap′

)
. (

Computing Relaxed Abstract Semantics w.r.t. Quadratic Zones Precisely 283

Definition 6 (�x�Ax + 2b�x ≤ c�R). For a quadratic guard x�Ax + 2b�x ≤ c, we
define the relaxed abstract transformer �x�Ax + 2b�x ≤ c�R : (P → R) → P → R
by

�x�Ax + 2b�x ≤ c�Rv (p)

:= sup{Ap•X | ∀p′ ∈ P.Ap′•X ≤ v(p′), Ã•X ≤ 0, X . 0, X1·1 = 1}

for v : P → R and p ∈ P , where, for all p′ ∈ P ,

Ã :=
(
−c b�

b A

)
, Ap′ :=

(
0 b�p′

bp′ Ap′

)
. (

Our relaxed abstract transformer is the semidefinite dual of the relaxed abstract trans-
former used by Adjé et al. [2]. Thus, by weak-duality, our relaxation is at least as precise
as the relaxation used by Adjé et al. [2]. For all statements s, �s�R is indeed a relaxation
of the abstract semantics �s��:

Lemma 9. The following statements hold for every statement s ∈ Stmt:
1. �s�� ≤ �s�R
2. For every i ∈ {1, . . . , m}, there exist A, a,B, C such that

�s�Rv (pi) = SDPA,a,B,C(v(p1), . . . , v(pm))

holds for all v : P → R. (
A relaxation of the closure operator is given by �x := x�R, i.e., α ◦ γ ≤ �x := x�R.

Relaxed Abstract Semantics. The relaxed abstract semantics V R of a program G =
(N, E, st) with initial states I is finally defined as the least solution of the following
constraint system over P → R:

VR[st] ≥ α(I) VR[v] ≥ �s�R(VR[u]) for all (u, s, v) ∈ E

Here, the variables VR[v], v ∈ N take values in P → R. The components of the
relaxed abstract semantics V R are denoted by V R[v] for all v ∈ N .

The relaxed abstract semantics is a safe over-approximation of the abstract seman-
tics. Moreover, if all templates and all guards are linear, the relaxed abstract semantics
is precise (cf. Adjé et al. [2]):

Lemma 10. V � ≤ V R. If all templates and all guards are linear, then V � = V R. (

Computing Relaxed Abstract Semantics. We now compute the relaxed abstract seman-
tics V R of a program G = (N, E, st) with initial states I . For that, we define C to be
the constraint system

xst,pi ≥ α(I)(pi) for all i = 1, . . . , m
xv,pi ≥ (�s�R(xu,p1 , . . . ,xu,pm)�)(pi) for all (u, s, v) ∈ E, i ∈ {1, . . . , m}

which uses the variables X = {xv,p | v ∈ N, p ∈ P}. The variable xv,pi contains the
value for the bound for pi at control-point v.

Because of lemma 9, from C we can construct a system E of SDP-equations with
μ�E� = μ�C� in linear time by introducing auxiliary variables. We have:

284 T.M. Gawlitza and H. Seidl

Lemma 11. V R[v](p) = μ�E�(xv,p) for all v ∈ N and all p ∈ P . (
Since E is a system of SDP-equations, by theorem 2, we can compute the least solution
μ�E� of E using our strategy improvement algorithm, whenever μ�E�
∞ holds. Thus
we have finally shown the following main result:

Theorem 3. Let V R be the relaxed abstract semantics of a program G = (N, E, st).
Assume that V R[v](p) < ∞ holds for all v ∈ N and all p ∈ P . We can compute
V R using our strategy improvement algorithm. Each strategy improvement step can by
performed by solving |N | · |P | SDP problems, each of which can be constructed in
polynomial time. The number of strategy improvement steps is exponentially bounded
by the number of merge points in the program G. (
Example 8. In order to give a complete picture of our method, we now discuss the
harmonic oscillator example of Adjé et al. [2] in detail. The program consists only of
the simple loop while (true) x := Ax, where x = (x1, x2)� ∈ R2 is the vector of

program variables and A =
(

1 0.01
−0.01 0.99

)
.We assume that I = [0, 1] × [0, 1] is the

set of initial states. The set of control-points just consists of st, i.e. N = {st}. The set
P = {p1, . . . , p5} is given by p1(x1, x2) = −x1, p2(x1, x2) = x1, p3(x1, x2) = −x2,
p4(x1, x2) = x2, p5(x1, x2) = 2x2

1 + 3x2
2 + 2x1x2. The abstract semantics is thus

finally given by the least solution of the following system of SDP-equations:

xst,p1 = −∞∨ 0 ∨ SDPA,a,B,C1(xst,p1 ,xst,p2 ,xst,p3 ,xst,p4 ,xst,p5)
xst,p2 = −∞∨ 1 ∨ SDPA,a,B,C2(xst,p1 ,xst,p2 ,xst,p3 ,xst,p4 ,xst,p5)
xst,p3 = −∞∨ 0 ∨ SDPA,a,B,C3(xst,p1 ,xst,p2 ,xst,p3 ,xst,p4 ,xst,p5)
xst,p4 = −∞∨ 1 ∨ SDPA,a,B,C4(xst,p1 ,xst,p2 ,xst,p3 ,xst,p4 ,xst,p5)
xst,p5 = −∞∨ 7 ∨ SDPA,a,B,C5(xst,p1 ,xst,p2 ,xst,p3 ,xst,p4 ,xst,p5)

Here

A =

⎛⎝⎛⎝1 0 0
0 0 0
0 0 0

⎞⎠⎞⎠ a = (1)

B =

⎛⎝⎛⎝ 0 −0.5 0
−0.5 0 0

0 0 0

⎞⎠ ,

⎛⎝ 0 0.5 0
0.5 0 0
0 0 0

⎞⎠ ,

⎛⎝ 0 0 −0.5
0 0 0

−0.5 0 0

⎞⎠ ,

⎛⎝ 0 0 0.5
0 0 0

0.5 0 0

⎞⎠ ,

⎛⎝0 0 0
0 2 1
0 1 3

⎞⎠⎞⎠
C1 =

⎛⎝ 0 −0.5 −0.005
−0.5 0 0
−0.005 0 0

⎞⎠ C2 =

⎛⎝ 0 0.5 0.005
0.5 0 0

0.005 0 0

⎞⎠
C3 =

⎛⎝ 0 0.005 −0.495
0.005 0 0
−0.495 0 0

⎞⎠ C4 =

⎛⎝ 0 −0.005 0.495
−0.005 0 0
0.495 0 0

⎞⎠
C5 =

⎛⎝0 0 0
0 1.9803 0.9802
0 0.9802 2.9603

⎞⎠

Computing Relaxed Abstract Semantics w.r.t. Quadratic Zones Precisely 285

In this example we have 35 = 243 different ∨-strategies. It is clear that the algorithm
will switch to the strategy that is given by the finite constants in the first step. At each
equation, it then can switch to the SDP-expression, but then, because it constructs a
strictly increasing sequence, it can never return to the constant. Summarizing, because
of the simple structure, it is clear that our strategy improvement algorithm will perform
at most 6 strategy improvement steps. In fact our prototypical implementation performs
4 strategy improvement steps on this example. (

6 Experimental Results

A prototypical implementation in OCaml 3.11.0 which uses CSDP 6.0.1 [5] can be
downloaded under http://www2.in.tum.de/˜gawlitza/sas10.html. It has been tested un-
der MacOS X 10.5.8 and Debian Linux. We considered the benchmark problems from
Adjé et al. [2]. The program oscillator is the implementation of an Euler integration
scheme for a harmonic oscillator. The program rotation rotates a higher-dimensional
sphere where the analyzer automatically verifies that it is invariant under rotation. The
program symplectic is a discretization of the differential equation ẍ + x = 0 which
starts at a position x ∈ [0, 1]. The program symplecticseu is similar but assumes a
threshold v ≥ 0.5 for the velocity v. For a detailed discussion of the significance of
these examples, see Adjé et al. [2]. In all these examples, the least fixpoint is reached
after very few iterations:

Example time (in seconds) number of improvement steps

filtre 0.16 3
oscillator 0.60 4
rotation 0.04 2
symplectic 0.53 4
symplecticseu 2.82 4

Furthermore the results for symplectic and symplecticseu are more precise than the
results obtained by the policy iteration method of Adjé et al. [2]. For symplectic, for
instance, we find: −1.2638 ≤ x ≤ 1.2638, and −1.2653 ≤ v ≤ 1.2653. For the other
examples we obtain the same results, but considerably faster.

7 Conclusion

We introduced systems of order-concave equations. This class is a natural and strict
generalization of systems of rational equations (studied by Gawlitza and Seidl [11, 13]).
We showed how the max-strategy improvement approach from Gawlitza and Seidl [11,
12] can be generalized to systems of order-concave equations — provided that the least
solution is finite. We thus proved that our algorithm allows to compute the relaxed
abstract semantics w.r.t. the abstract domain introduced by Adjé et al. [2]. For future
work, we are also interested in studying the use of other convex relaxation schemes in
order to deal with more general polynomial templates, a problem already posed by Adjé
et al. [2]. This would enable us to analyze not only programs with affine assignments
and quadratic guards precisely. Moreover, it remains to investigate further applications.

Acknowledgment. We thank S. Gaubert and D. Monniaux for valuable discussions.

286 T.M. Gawlitza and H. Seidl

References

[1] Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz,
I. (eds.): ICALP 2008, Part I. LNCS, vol. 5125, pp. 973–978. Springer, Heidelberg (2008)

[2] Adjé, A., Gaubert, S., Goubault, E.: Coupling policy iteration with semi-definite relaxation
to compute accurate numerical invariants in static analysis. In: Gordon, A.D. (ed.) ESOP
2010. LNCS, vol. 6012, pp. 23–42. Springer, Heidelberg (2010) ISBN 978-3-642-11956-9

[3] Björklund, H., Sandberg, S., Vorobyov, S.: Optimization on completely unimodal hyper-
cubes. Technichal report 2002-18, Department of Information Technology, Uppsala Uni-
versity (2002)

[4] Björklund, H., Sandberg, S., Vorobyov, S.: Complexity of Model Checking by Iterative Im-
provement: the Pseudo-Boolean Framework. In: Broy, M., Zamulin, A.V. (eds.) PSI 2003.
LNCS, vol. 2890, pp. 381–394. Springer, Heidelberg (2004)

[5] Borchers, B.: Csdp, a c library for semidefinite programming. In: Optimization Methods
and Software, vol. 11, p. 613. Taylor and Francis, Abington (1999)

[6] Costan, A., Gaubert, S., Goubault, E., Martel, M., Putot, S.: A Policy Iteration Algorithm
for Computing Fixed Points in Static Analysis of Programs. In: Etessami, K., Rajamani,
S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 462–475. Springer, Heidelberg (2005)

[7] Esparza, J., Gawlitza, T., Kiefer, S., Seidl, H.: Approximative methods for monotone sys-
tems of min-max-polynomial equations. In: Aceto et al. [1], pp. 698–710, ISBN 978-3-540-
70574-1

[8] Etessami, K., Yannakakis, M.: Recursive concurrent stochastic games. In: Bugliesi, M.,
Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 324–335.
Springer, Heidelberg (2006) ISBN 3-540-35907-9

[9] Etessami, K., Wojtczak, D., Yannakakis, M.: Recursive stochastic games with positive re-
wards. In: Aceto et al. [1], pp.711–723, ISBN 978-3-540-70574-1

[10] Gaubert, S., Goubault, E., Taly, A., Zennou, S.: Static analysis by policy iteration on rela-
tional domains. In: Nicola [16], pp. 237–252, ISBN 978-3-540-71314-2

[11] Gawlitza, T., Seidl, H.: Precise relational invariants through strategy iteration. In: Duparc,
J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 23–40. Springer, Heidelberg
(2007) ISBN 978-3-540-74914-1

[12] Gawlitza, T., Seidl, H.: Precise fixpoint computation through strategy iteration. In: Nicola
[16], pp. 300–315 (2007) ISBN 978-3-540-71314-2

[13] Gawlitza, T.M., Seidl, H.: Solving systems of rational equations through strategy iteration.
Technical report, TUM (2009)

[14] Miné, A.: A new numerical abstract domain based on difference-bound matrices. In: Danvy,
O., Filinski, A. (eds.) PADO 2001. LNCS, vol. 2053, pp. 155–172. Springer, Heidelberg
(2001) ISBN 3-540-42068-1

[15] Miné, A.: The octagon abstract domain. In: WCRE, p. 310(2001)
[16] De Nicola, R. (ed.): ESOP 2007. LNCS, vol. 4421. Springer, Heidelberg (2007) ISBN 978-

3-540-71314-2
[17] Ortega, J., Rheinboldt, W.: Iterative solution of nonlinear equations in several variables.

Academic Press, London (1970)
[18] Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Scalable analysis of linear systems using

mathematical programming. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 25–
41. Springer, Heidelberg (2005) ISBN 3-540-24297-X

[19] Todd, M.J.: Semidefinite optimization. Acta Numerica 10, 515–560 (2001)
[20] Wojtczak, D., Etessami, K.: Premo: An analyzer for probabilistic recursive models. In:

Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 66–71. Springer, Hei-
delberg (2007) ISBN 978-3-540-71208-4

Boxes: A Symbolic Abstract Domain of Boxes

Arie Gurfinkel and Sagar Chaki

Carnegie Mellon University

Abstract. Numeric abstract domains are widely used in program anal-

yses. The simplest numeric domains over-approximate disjunction by an

imprecise join, typically yielding path-insensitive analyses. This prob-

lem is addressed by domain refinements, such as finite powersets, which

provide exact disjunction. However, developing correct and efficient dis-

junctive refinement is challenging. First, there must be an efficient way

to represent and manipulate abstract values. The simple approach of us-

ing “sets of base abstract values” is often not scalable. Second, while a

widening must strike the right balance between precision and the rate

of convergence, it is notoriously hard to get correct. In this paper, we

present an implementation of the Boxes abstract domain – a refinement

of the well-known Box (or Intervals) domain with finite disjunctions. An

element of Boxes is a finite union of boxes, i.e., expressible as a proposi-

tional formula over upper- and lower-bounds constraints. Our implemen-

tation is symbolic, and weds the strengths of Binary Decision Diagrams

(BDDs) and Box. The complexity of the operations (meet, join, transfer

functions, and widening) is polynomial in the size of the operands. Em-

pirical evaluation indicates that the performance of Boxes is superior to

other existing refinements of Box with comparable expressiveness.

1 Introduction

Numeric abstract domains are widely used in Abstract Interpretation and Soft-
ware Model-Checking to infer numeric relationships between program variables.
To a large extent, the scalability of the most common domains, intervals, octagons,
and polyhedra, comes from the fact that they represent convex sets – i.e., conjunc-
tions of linear constraints. This inability to precisely represent disjunction (and
disjunctive invariants) is also their main limitation. It means that analyses depen-
dent on such domains are path-insensitive and produce a high-rate of false posi-
tives when applied to verification tasks. In practice, an analyzer based on such a
domain uses a disjunctive refinement to extend the base domain with disjunctions
(or a disjunctive completion [8] when all disjunctions are added), and thereby in-
crease its precision.

There are several standard ways to build a disjunctive refinement. The sim-
plest one is to allow a bounded number of disjuncts (e.g., [15,17,4,11,2,12]). This
is typically implemented via finite sets as abstract values (e.g., using {a, b} for
a∨b), splitting locations in the control flow graph (e.g., unrolling loops, duplicat-
ing join points, etc.), or a combination of the two. It has an easy implementation
based entirely on the abstract operations (i.e., image, widen, etc.) of the base
domain. However, it does not scale to a large number of disjuncts.

R. Cousot and M. Martel (Eds.): SAS 2010, LNCS 6337, pp. 287–303, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

288 A. Gurfinkel and S. Chaki

The finite powerset construction [1,2] represents disjunctions with finite sets
and does not bound the number of disjuncts. Most abstract operations easily
extend from the base domain. However, it does not scale to a large number of
disjuncts, and widening is notoriously hard to get right (see [2] for examples).

If the base domain is finite, like in predicate abstraction [10], Binary Decision
Diagrams (BDDs) [5] over the basis (i.e., predicates) of the base domain is the
natural choice for the completion. This approach easily scales to a large number
of disjuncts, which is particularly important for a “coarse” base domain. Addi-
tionally, the canonicity properties of BDDs eliminate redundant abstract values
with the same concretization (which are common with the other approaches).

In this paper, we present a new abstract domain, Boxes, that is a disjunc-
tive refinement of the well-known Box [7] (or Intervals) domain. That is, each
value of Boxes is a propositional formula over interval constraints. We make
several contributions. First, Boxes values are represented by Linear Decision Di-
agrams [6] (LDDs), a data structure developed by us in prior work. LDDs are
an extension of BDDs to formulas over Linear Arithmetic (LA), and are imple-
mented on top of the state-of-the-art BDD package [18]. Thus, Boxes enjoys all
of the advantages of a BDD-based disjunctive refinement, including canonicity
of representation and scalability to many disjuncts. This is especially important
since Box is very coarse. Boxes is not only more expressive than Box or a
BDD-based domain, but, in practice, can effectively replace either.

Second, we implement algorithms for image computation of transfer functions
for Boxes. Third, we develop a novel widening algorithm for Boxes, prove
its correctness, and implement it via LDDs. Our widening does not fit any of
the known widening schemes for disjunctive refinements, and is of independent
interest. Finally, we evaluate Boxes on an extensive benchmark against state-
of-the-art implementations [3] of Box and its finite powerset.

There has been a significant amount of research on extending BDDs to
formulas over LA, especially in the area of timed- and hybrid-verification
(e.g., [19,16,13,20]). In contrast, we concentrate on transfer functions common
in program analysis applications; to our knowledge, we are the first to consider
widening in this context; and, the first to conduct extensive evaluation of such
an approach to a program analysis task.

The rest of the paper is structured as follows. Section 2 gives a brief overview
of LDDs. Section 3 presents our abstract domain Boxes. Section 4 describes
widening. Section 5 compares Boxes with the finite powerset of Box. Section 6
presents our experimental results, and Section 7 concludes.

2 Linear Decision Diagrams

In this section, we briefly review Linear Decision Diagrams (LDDs) that are the
basis for our abstract domain. For more details see [6].

A decision diagram (DD) is a directed acyclic graph (DAG) in which non-
terminal nodes are labeled with decisions and terminal nodes are labeled with
values. LDD is a DD with non-terminal nodes labeled by LA constraints and two
terminal nodes representing true and false, respectively. LDDs are a natural
representation for propositional formulas over LA.

Boxes: A Symbolic Abstract Domain of Boxes 289

(a) (b) (c) (d)

x ≤ 1

x < 2

0

y < 1

y ≤ 3

1

1 2 3

1

2

3

x ≤ 1

x ≤ 5 A

BC

y ≤ 2

y ≤ 6 A

BC

Fig. 1. (a) An LDD and (b) its geometric interpretation; (c), (d) two LDDs

Example 1. An example of an LDD (x ≤ 1 ∨ x ≥ 2) ∧ (1 ≤ y ≤ 3) and its
geometric interpretation are shown in Fig. 1(a) and Fig. 1(b). Oval and boxed
nodes represent non-terminal and terminal nodes, respectively. Solid and dashed
edges represent high (true) and low (false) branches, respectively. (

Formally, an LDD over a fragment T of LA is a DAG with

– Two terminal nodes labeled by 0 and 1, respectively.
– Non-terminal nodes. Each non-terminal node u has two children, denoted

by H(u) and L(u), and is labeled with a T -atom (i.e., an atomic predicate),
denoted by C(u).

– Edges, high (u, H(u)) and low (u, L(u)), for every non-terminal node u.

We write attr(u) for (C(u), H(u), L(u)).
An LDD with a root node u represents the formula exp(u) over T defined by:

exp(u) �

⎧⎪⎨⎪⎩
false if u = 0
true if u = 1
ite(C(u), exp(H(u)), exp(L(u))) otherwise ,

(1)

where ite(a, b, c) � (a ∧ b) ∨ (¬a ∧ c).
For simplicity, we do not distinguish between a node u and exp(u).
Let V be a set of variables. We write UBQ for the set

{x � k | x ∈ V, k ∈ Q, �∈ {<,≤}} of rational1 upper bound constraints,
and IVQ for the set {x ∼ k | x ∈ V, k ∈ Q,∼∈ {<,≤, =,≥, >}} of rational
interval constraints. In this paper, we restrict LDDs to UBQ. This is sufficient
to represent any propositional formula over IVQ. For example, x ≤ 5 and x > 5
correspond to LDDs ite(x ≤ 5,1,0), and ite(x ≤ 5,0,1), respectively. For
(x ∼ k) ∈ IVQ, we write Var(x ∼ k) for x.

Let ,⊆ V × V be a total order on V . We extend it to UBQ in a natural way:

(x1 �1 k1) , (x2 �2 k2) iff (x1 , x2) ∨ ((x1 �1 k1) ⇒ (x2 �2 k2)) , (2)

and to LDD nodes:

u , v iff (v ∈ {0,1}) ∨ (u �∈ {0,1} ∧ C(u) , C(v)) . (3)

1 While we use rationals for ease of presentation, our results extend to integers.

290 A. Gurfinkel and S. Chaki

Table 1. Basic LDD operations. U is a set of variables.

Operation Semantics Complexity Operation Semantics Complexity

and(f, g) f ∧ g O(|f | · |g|) or(f, g) f ∨ g O(|f | · |g|)
ite(h, f, g) (h ∧ f) ∨ (¬h ∧ g) O(|h| · |f | · |g|) leq(f, g) f ⇒ g |f | · |g|
not(f) ¬f O(|f |) exist(U, f) ∃U · f O(|f | · 2|U|)

1: function leq (LDD f , LDD g)

2: if (f = g) ∨ (f = 0) ∨ (g = 1) then
3: return true

4: if (f = 1) ∨ (g = 0) then
5: return false

6: if C(f) � C(g) then v ← C(f)

7: else v ← C(g)

8: return leq(f |v , g|v) ∧ leq(f |¬v, g|¬v)

Require: fnPos and fnNeg map constraints into LDDs

1: function RC(var x, LDD f , fun fnPos, fun fnNeg)

2: if (f = 0) ∨ (f = 1) then return f

3: v ← C(f)

4: t ← RC(x, f |v , fnPos, fnNeg)

5: e ← RC(x, f |¬v, fnPos, fnNeg)

6: if x = Var(v) then return ite(v, t, e)

7: t ← and(fnPos(v), t)
8: e ← and(fnNeg(v), e)
9: return or(t, e)

Fig. 2. LDD algorithms: leq – decides implication, and RC replaces constraints

An LDD u is ordered w.r.t. , iff for every node v reachable from u, v , H(v) and
v , L(v). An LDD over UBQ is locally reduced iff the following five conditions
hold on every internal node u and v: (1) No duplicate nodes. attr(u) = attr(v) ⇒
u = v; (2) No redundant nodes. L(v) �= H(v); (3) Normalized labels. C(v) ∈ UBQ;
(4) Imply high. ¬(C(v) ⇒ C(H(v))); (5) Imply low. If C(v) ⇒ C(L(v)) then
H(v) �= H(L(v)).

For a fixed variable order, ROLDDs are canonical for propositional formulas
over IVQ. Specifically, if u and v represent semantically equivalent expressions
(exp(u) ⇔ exp(v)), then u = v. From here on, we fix a total order , on V and
say LDD to mean Reduced Ordered LDDs (ROLDD).

Like BDDs, LDDs provide polynomial time algorithms for the basic proposi-
tional operations: disjunction (union), conjunction (intersection), negation (com-
plement), and existential quantification (projection). These are summarized in
Table 1. Like BDDs, in the worst case, the size of an LDD is exponential in the
number of variables. In some implementations (e.g., in [6]) negation (¬f) is a
constant time operation. For completeness, the pseudo code for leq is shown in
Fig. 2. This, and all other DD algorithms in this paper, are implicitly memoized
– results of all intermediate operations are cached and reused as needed. For
an LDD f (or its corresponding ite-expression) and a constraint v ∈ UBQ, we
write f |v and f |¬v for, respectively, the positive and the negative cofactor of
f w.r.t. v. Let f [u/w] denote the result of the substitution of constraint w for
every occurrence of constraint u in f . Then, the cofactors are defined as follows:

f |v � f [u/true | v ⇒ u] f |¬v � f [u/false | u ⇒ v] . (4)

In this paper, we do not distinguish between propositional formulas over IVQ
the corresponding LDDs. For example, we write f ∧ (1 ≤ x ≤ 10) to mean an
LDD obtained by conjunction of an LDD for f and an LDD for 1 ≤ x ≤ 10.

Boxes: A Symbolic Abstract Domain of Boxes 291

3 The Boxes Abstract Domain

Let Rn be an n-dimensional real vector space. A set B ⊆ Rn is a rational box iff
it is expressible by a finite system of rational interval constraints. The set of all
rational boxes of Rn is denoted by Bn. The Box abstract domain [7] is a tuple
(Bn,⊆, ∅, Rn,1,∩), where ⊆ is the subset ordering, ∅ is the empty set, 1 is the
box hull (i.e., for any two boxes B1 and B2, B11B2 = B3 is the smallest rational
box s.t. B1∪B2 ⊆ B3), and ∩ is set intersection. Note that since Bn is not closed
under union, union is over-approximated by the box hull.

A set BS ⊆ Rn is a set of rational boxes iff there exist rational boxes B1, . . . ,Bk

such that BS =
⋃k

i=1 Bi. The set of all sets of rational boxes of Rn is denoted by
BSn. The Boxes abstract domain is a tuple (BSn,⊆, ∅, Rn,∪,∩), where ⊆ is the
subset ordering, ∅ is the empty set, and ∪ and ∩ are set union and intersection,
respectively. Boxes abstract domain is a disjunctive refinement of Box domain.
Since BSn is closed under union, intersection, (and complement) all basic oper-
ations are exact. In the rest of this section, we describe our implementation of
Boxes using LDDs.

Representation and basic operations. Let V = {x1, . . . , xn} be n variables, and
, be some total order on V . We assume that each variable is bound to a unique
dimension. We use x to denote an element of Rn. Implicitly, x is also a valuation
of V , where x(i) is the value of the variable bound to the ith dimension. Then,
there is a one-to-one correspondence between Reduced ,-Ordered LDDs over V
and rational boxes over Rn – each BS ∈ BSn corresponds to the unique LDD f
such that x ∈ BS ⇔ x |= exp(f). Thus, the domain Boxes is implemented by a
tuple (LDD(V), leq,0,1,or,and), where LDD(V) is the set of all LDDs over
V . All of the operations are linear in the size of their operands (see Table 1).
Note, however, that the size of an LDD over V is in the worst case exponential
in |V |. In the rest of this paper, we do not distinguish between a set of boxes
BS ⊆ Rn, a corresponding LDD, and a corresponding propositional formula.

In addition to the base operations described above, static analysis applica-
tions typically require operations to check for equality and satisfiability (non-
emptiness), to compute set-theoretic difference, projection (or unconstraining),
images of assignments and guards, and widening (e.g., see [9]). Except for the
last two, the operations follow easily from the existing LDD operations. Image
computation requires new (but simple) operations, and widening is the most
complex one. In the rest of the section, we summarize implementations of the
basic and image operations. Widening is deferred to Section 4.

Basic operations. LDDs are canonical for BSn, hence equality is a constant time
operation – two LDD nodes are equivalent iff they have the same attributes.
Similarly, satisfiability (and universality) are checked by comparing an LDD to
0 (and 1). Sometimes (e.g., [2]) it is useful to compute an over-approximation of
a set-theoretic difference of two abstract values. Boxes domain is closed under
complement and intersection, hence set-theoretic difference is computed exactly
using the equivalence: BS1 \ BS2 � BS1 ∩ ¬BS2, where BS1,BS2 ∈ BSn. Note

292 A. Gurfinkel and S. Chaki

that set-complement is also computed exactly via LDD negation. Projection of
a variable x is done via existential quantification exist (see last row of Table 1).

Guards and Assignments. Let c be an assignment or a guard. We write ||c|| for
the concrete semantics of c as a function from Rn to Rn. For example,

||xi ≤ 4||(BS) = {x | x ∈ BS ∧ x(i) ≤ 4} .

We write || · ||BS : LDD → LDD for an abstract transformer that over-
approximates ||·|| in BSn. That is, given an LDD f for a set of boxes BS, ||c||BS(f)
is an LDD representing the smallest set of boxes over-approximating ||c||(BS).

The simplest guard is k1 �1 xi �2 k2. The corresponding abstract transformer
just adds the appropriate constraint:

||k1 �1 xi �2 k2||BS(f) � f ∧ k1 �1 xi �2 k2 , (5)

where k1, k2 ∈ Q and �1, �2∈ {<,≤}. Either the lower bound (k1) or the upper
bound (k2) can be omitted. The simplest assignment is xi ← v where v is
a symbolic constant such that k1 �1 v �2 k2. The abstract transformer is
constructed by projecting away the current value of xi and assuming that xi is
in the same interval as v:

||xi ← v||BS(f) � ||k1 �1 xi �2 k2||BS(∃xi · f) , (6)

where k1, k2, �1, and �2 are as above.
For the next class of transformers, we introduce the function RC shown in

Fig. 2. RC takes a variable x, an LDD f , and two functions fnPos and fnNeg

that map constraints to LDDs, and returns an LDD obtained by replacing every
constraint u on x in f by fnPos(u) on the high-branch of u and by fnNeg(u)
on the low branch of u.

For example, let ID � λu · u and COMP � λu · ¬u be the identity and the
complement functions, respectively. Then, RC(x, f, ID,COMP) is an identity
function – every constraint on x is replaced by itself.

Transfer functions implemented with RC are shown in Table 2, where the
columns are: 1st – the command, 2nd – assumptions made, 3rd – the implemen-
tation as a call to RC, and 4th and 5th – fnPos and fnNeg functions used by
RC, respectively. Throughout, we assume that a, a1, a2, k1, k2 ∈ Q, and x and y
are two distinct variables. Furthermore, for the guard (the last row), we require
that constraints on x precede those on y in the diagram ordering. This is not a
limitation – any guard can be rewritten to satisfy this restriction.

The transfer function for x ← x + a · y is implemented with xpy (see Fig. 3):

||x ← x + a · y||BS(f) � xpy(f, x, a, y) . (7)

The intuition behind xpy is to traverse the DD and reduce the transfer function
to a simpler one as soon as a bound for either x or y is found. There are two
cases based on whether x , y or y , x.

Example 2. As a simple example, consider applying the transfer function to LDD
f shown in Fig. 1(c). Here, we assume that x , y, and A, B, and C are sub-
diagrams that do not contain x. Note that f is equivalent to:

(x ≤ 1 ∧A) ∨ (1 < x ≤ 5 ∧B) ∨ (5 < x ∧ C) (8)

Boxes: A Symbolic Abstract Domain of Boxes 293

Table 2. Abstract transformers; v is a symbolic constant bounded by k1 � v � k2, t1
is a1 · x + k1, and t2 is a2 · x + k2

Action Assume Implementation fnPos(z � b) fnNeg(z � b)

x ← x + v RC(x, f, fnPos, fnNeg) x � b + k2 ¬(x � b + k1)

x ← a · x a > 0 RC(x, f, fnPos, fnNeg) x � a · b ¬(x � a · b)
x ← a · x a < 0 RC(x, f, fnPos, fnNeg) a · b � x ¬(a · b � x)

x ← a · y a > 0 RC(y,∃x · f, fnPos, fnNeg) (z � b) ∧ ¬(z � b) ∧
(x � a · b) ¬(x � a · b)

x ← a · y a < 0 RC(y,∃x · f, fnPos, fnNeg) (z � b) ∧ ¬(z � b) ∧
(a · b � x) ¬(a · b � x)

a1 · x + a1 > 0 let g = RC(x, f, fnPos, fnNeg)in (z � b) ¬(z � b) ∧
a2 · y � k (a2 · y � k − a1 · b)

a2 < 0 RC(y, g, fnPos, fnNeg) (z � b) ∧ ¬(z � b)
(a1 · x � k − a2 · b)

The transformer distributes over disjunction. First, compute x ← a · y on the
sub-diagrams A, B, and C, to get:

A′ = ||x ← a · y||(A) B′ = ||x ← a · y||(B) C′ = ||x ← a · y||(C) . (9)
Second, update the results to reflect the bounds on x in A, B, and C:

||x ← x + va||(A′) ∨ ||x ← x + vb||(B′) ∨ ||x ← x + vc||(C′) , (10)
where va ≤ 1, 1 < vb ≤ 5, and 5 < vc.

Alternatively, lets apply the same transformer to LDD g shown in Fig. 1(d).
Here, we assume y , x, and A, B, and C are sub-diagrams that do not contain
y. g is equivalent to:

(y ≤ 2 ∧A) ∨ (2 < y ≤ 6 ∧B) ∨ (6 < y ∧ C) (11)
In each disjunct the value of y is known:

A′ = ||x ← x + va||(A) B′ = ||x ← x + vb||(B) C′ = ||x ← x + vc||(C) ,

where va ≤ 2 · a, 2 · a < vb ≤ 6 · a, and 6 · a < v6. The final result is: ite(y ≤
2, A′, ite(y ≤ 6, B′, C′)). (

Finally, an abstract transformer for a linear assignment x ← a1 · x1 + · · · +
an · xn + v is computed as a sequence of simpler transformers. For example
||x ← a · y + b · z + k||BS is reduced to

||x ← k||BS ◦ ||x ← x + a · y||BS ◦ ||x ← x + b · z||BS . (12)

Theorem 1. Let c be an action of the form above, and f be the LDD corre-
sponding to BS = {B1, . . . ,Bk}. Then, ||c||BS(f) is equivalent to ∪k

i=1||c||B(Bi),
where || · ||B : Bn → Bn is the abstract transformer of Box.

Proof. (Sketch) For simplest transformers, the result follows trivially. The rest
are equivalent to applying || · ||B to each 1-path of f . (

Join and Box Hull of Boxes. Figure 4 presents algorithms for two other opera-
tions on LDDs. BoxJoin(f, g) returns f 1 g, while BoxHull(f, g) returns the
box hull of f and g. BoxHull invokes BoxJoin as a subroutine. The complexity
of both algorithms is in O(|f | · |g|).

294 A. Gurfinkel and S. Chaki

Require: x = y
1: function xpy(LDD f , var x, Q a, var y)

2: if x � y then return xpy1(f, x, a, y,true)

3: else return xpy2(f, x, a, y,true)

4: function xpy1(LDD f , var x, Q a, var y, cons c)
5: if f = 0 ∨ f = 1 then return f

6: u← C(f)

7: if x � Var(u) then
8: if c = true then return f

9: return ||x ← a · y + v||BS(f), where v |= c

10: if x = Var(u) then
11: t ← xpy1(f, x, a, y, c)
12: e ← xpy1(f, x, a, y, c)
13: return ite(u, t, e)

14: Assert u is x � b
15: t ← ||x ← a · y||BS(f |u)

16: t ← ||x ← x + v||BS(t), where v |= (c ∧ v � b)
17: e ← xpy1(f |¬u, x, a, y,¬(u[x/v]))

18: return or(t, e)

19: function xpy2(LDD f , var x, Q a, var y, cons c)
20: if f = 0 ∨ f = 1 then return f

21: u← C(f)

22: if y � Var(u) then
23: if c = true then return exist(x, f)

24: return ||x ← x + v||BS(f), where v |= c

25: if y = Var(u) then
26: t ← xpy2(f, x, a, y, c)
27: e ← xpy2(f, x, a, y, c)
28: return ite(u, t, e)

29: Assert u is y � b
30: t ← ||x ← x + v||BS(f |u), where v |= (c ∧ v � a · b)
31: e ← xpy2(f |¬u, x, a, y,¬(v � a · b))
32: return ite(u, t, e)

Fig. 3. Algorithm to compute abstract transfer function for x ← x + a · y

1: function BoxHull (LDD f)

2: if (f = 0) ∨ (f = 1) then
3: return f

4: fh ← BoxHull(H(f))

5: fl ← BoxHull(L(f))

6: if L(f) = 0 then
7: return ite(C(f), fh,0)

8: if H(f) = 0 then
9: return ite(C(f), 0, fl))

10: return BoxJoin(C(f) ∧ fh, fl)

Require: f and g are singletons.

1: function BoxJoin (LDD f , LDD g)

2: if (f = g) ∨ (f ∈ {0, 1}) ∨ (g ∈ {0, 1}) then
3: return or(f, g)

4: if C(g) � C(f) then return BoxJoin(g, f)

5: u← C(f)

6: if (f |u = 0) ∧ (g|u = 0) then
7: return ite(u,0, BoxJoin(L(f), L(g)))

8: if (f |¬u = 0) ∧ (g|¬u = 0) then
9: return ite(C(g),BoxJoin(H(f),H(g)),0)

10: return BoxJoin(f |u = 0 ? L(f) : H(f), g)

Fig. 4. Algorithms to compute a box hull and a box join (�) of LDDs

4 Widening

In static analysis, widening is used to ensure that the analysis always termi-
nates, even in the presence of infinite ascending chains in the underlying ab-
stract domain [9]. Let D̂ = (D,&,⊥,', ,() be an abstract domain. An oper-
ation ∇d : D × D → D is a widening for D̂ iff it satisfies two conditions: (1)
over-approximation: x & y ⇒ (x y) & (x∇d y), and (2) stabilization: for every
increasing sequence x1 & x2 · · · , the (widening) sequence

y1 = x1 , yi = yi−1∇d(yi−1 xi) , for i > 1 (13)

stabilizes, i.e., ∃k · yk = yk+1.
In this section, we describe a widening for Boxes. We proceed in stages.

First, we introduce a new domain construction STEP(D̂), called step (function)
construction, that lifts a domain D̂ to (step) functions from R to D. Second,
we give a procedure to lift a widening ∇d of D̂ to a widening ∇s of STEP(D̂).
Finally, we show that n-dimensional Boxes are step constructions of (n − 1)-
dimensional Boxes and implement ∇s on top of LDDs.

Boxes: A Symbolic Abstract Domain of Boxes 295

(a) (b) (c)

a

F1

b

F2

f

c

G1

b

G2

d

G3

b

G4

g

a∇d c

P1

b

P2

b∇d d

P3

b

P4

p

a∇d c

H1

b∇d d

H2

b∇d d

H3

b∇d d

H4

h

P1

P2
Q1

1 2

1

2

P2
Q2

Q3

1 2

1

2

Fig. 5. Example of a widening

Step function construction. A function f : R → D is a step function if it can be
written as a finite combination of intervals. That is,

f(x) = (v1 (f1(x)) · · · (vn (fn(x)) , (14)

where vi ∈ D, and there exists a partitioning F1, . . . , Fn of R by intervals such
that fi(x) = ' if x ∈ Fi and fi(x) = ⊥ otherwise. A step function f induces an
equivalence relation ≡f on R:

x ≡f y ⇔ ∀z · ((x ≤ z ≤ y) ∨ (y ≤ z ≤ x)) ⇒ f(x) = f(z) . (15)

We write [x]f for the equivalence class of x w.r.t. ≡f . Note that the index of ≡f

is finite and the equivalence classes are naturally ordered: [x] ≤ [y] ⇔ x ≤ y. We
assume the classes are enumerated, so the ≤-least equivalence class is first, the
next one is second, etc. For step functions f , g, we write ≡f,g for the relation:

x ≡f,g y ⇔ (x ≡f y) ∧ (x ≡g y) , (16)

and [x]f,g for the corresponding equivalence class of x.
The set of all step functions from R to a domain D̂, denoted R→s D, forms

an abstract domain STEP(D̂) � (R→s D, &̇, ⊥̇, '̇, ̇, (̇). The dot above an
operator denotes pointwise extension, e.g., f &̇ g � ∀x ∈ R · f(x) & g(x).

One-dimensional Boxes is STEP({true, false}) – the step construction ap-
plied to the Boolean domain. Similarly, n-dimensional Boxes is a step construc-
tion of (n− 1)-dimensional Boxes. Since the Boolean domain is finite – it’s join
and widening coincide. Thus, to get a widening for Boxes, we only need to show
how to lift a widening from a base domain to its step construction. We use 1-
and 2-dimensional Boxes for examples in the rest of this section.

Lifting widening to STEP(D̂). Clearly, the pointwise extension ∇̇d, of the widen-
ing ∇d of D̂, is not a widening of STEP(D̂). As a counterexample, the divergent
sequence {(0 ≤ x ≤ i)}∞i=1 of Boxes values is it’s own pointwise widening se-
quence. Let us examine this in more detail.

Example 3. Let f and g be step functions as illustrated in Fig. 5(a). Each func-
tion is shown as a partitioning of the number line with the value above and the
name below the line, respectively. Thus, f has two partitions F1 and F2 with

296 A. Gurfinkel and S. Chaki

values a, and b, respectively. We assume that lower case letters represent distinct
elements of some domain D̂, ordered alphabetically. Note that G1 = F1 and F2

is refined by G2, G3, and G4. Consider p = f ∇̇d g as shown in Fig. 5(a) and
compare to f . Clearly, p is on a divergent path. In it, partition F2 is split into
three parts, but both P2 and P4 have the same value as F2. Thus, they can be
refined again. A way to ensure convergence is to assign to P2 and P4 the value
of P3, as shown by h in Fig. 5(a). This is the intuition for our approach. (

In summary, pointwise widening f ∇̇d g diverges whenever it refines a partition
in f without updating its value. Thus, to guarantee convergence, we assign to
the offending partition a value of its neighbor that refines the same partition of
f . The formal definition is given below:

Definition 1. Let D̂ = (D,&,⊥,', ,() be an abstract domain with a widening
∇d. Let f, g ∈ R→s D be two step functions s.t. f &̇ g, and [y1], . . . , [yn] be the
equivalence classes of ≡f,g enumerated by their natural order ≤. Then, the step
widening, ∇s, for STEP(D̂) is defined as follows:

(f ∇s g)(x) �
n⊔

i=1

(vi (hi(x)) , (17)

where n is the index of ≡f,g, hi(x) = ' if x ∈ [yi] and hi(x) = ⊥ otherwise, and

vi �

⎧⎪⎨⎪⎩
f(yi) ∇d g(yi) if f(yi) �= g(yi) or [yi]f,g = [yi]f
f(yi) ∇d g(yi+1) else if i < n and [yi+1]f,g ⊆ [yi]f
f(yi) ∇d g(yi−1) otherwise

(18)

Example 4. Consider two sets of boxes BS1 = {P1,P2} and BS2 = {Q1,P2}
shown in Fig 5(b), where

P1 = (0 ≤ x ≤ 1) ∧ (2 ≤ y ≤ 3) P2 = (2 ≤ x ≤ 3) ∧ (1 ≤ y ≤ 2)
Q1 = (0 ≤ x ≤ 1.5) ∧ (1.5 ≤ y ≤ 3) .

The result of BS1∇s BS2 is shown in Fig. 5(c). Note that even though BS1 and
BS2 have the same box hull (shown by a doted frame), their widening is larger.
This shows that widening makes it very hard to analytically compare difference
in precision between Boxes and Box. (

Theorem 2. The operator ∇s defined in Def. 1 is a widening on STEP(D̂).

Proof. Over-approximation. Let h = f ∇s g. We show that for any i ∈ [1, n],
h(yi) 2 g(yi). Based on (18) there are 3 cases. In case 1, h(yi) = f(yi)∇d g(yi) 2
g(yi). In case 2, [yi+1]f,g ⊆ [yi]f ⇒ f(yi) = f(yi+1). Also, f &̇ g ⇒ f(yi) =
f(yi+1) & g(yi+1). Finally, h(yi) = f(yi)∇d g(yi+1) 2 f(yi) = g(yi). In case 3,
we have [yi−1]f,g ⊆ [yi]f , from which the results follows as in case 2..

Stabilization. Let f : R→s D be a step function, and {fi}∞i=1 be an infinite
sequence defined as follows:

f1 � f , fi � fi−1∇s gi , for i > 1 , (19)

Boxes: A Symbolic Abstract Domain of Boxes 297

where {gi}∞i=1 is any sequence of step function such that fi−1 &̇ gi. We show that
the sequence stabilizes, i.e., for some k, fk =̇ fk+1.

We write ≡i for ≡fi and [x]i for [x]fi . For i ≥ 1, let ≡≤i be the equivalence
relation: x ≡≤i y ⇔ ∀1 ≤ j ≤ i · x ≡j y, and [·]≤i be its equivalence classes.

Let T = (V, E) be a tree with V � (0, R) ∪ {(i, [x]≤i) | i ≥ 1, x ∈ R} and

E � {((0, R), (1, [x]≤1)) | x ∈ R} ∪
{((i, [x]≤i), (j, [x]≤j)) | j > i ∧ fj(x) �= fi(x) ∧ ∀i < k < j · fi(x) = fk(x)} .

That is, T is a tree of refined equivalence classes with edges corresponding to
differences in fi’s. Let Ti be the subtree of T restricted to the nodes (j, X)
where j ≤ i. Then the leaves of Ti correspond to fi, i.e., (i, [x]≤i) is a leaf iff
fi(x) �= fi−1(x). T is finitely-branching because all edges from an equivalence
class at level i only go to equivalence classes at some other level j, and there are
finitely many classes at each level. Formally,
((i, [x]≤i), (j, [x]≤j)) ∈ E ∧ ((i, [y]≤i), (k, [y]≤k)) ∈ E ∧ ([x]≤i = [y]≤i) ⇒ j = k

which follows from cases 2 and 3 of (18).
Suppose {fi}∞i=1 is not stable. Then, T is infinite. By König’s lemma, there

is an infinite path π = (0, R), (1, [x]≤1), (i2, [x]≤i2), . . . in T . By Def. 1, for any
consecutive nodes (ik, [x]≤ik

) and (ik+1, [x]≤ik+1) on π, there is a d ∈ D, s.t.
fik+1(x) = fik

(x)∇d d. This contradicts that ∇d is a widening. (

Widening for Boxes. Recall that 1-dimensional Boxes are step functions into
{true, false}. Thus, ∇s where∇d = ∨ is a widening for them. Widening,∇n

bs for
n-dimensional Boxes is defined recursively by letting ∇n

bs be ∇s parameterized
by ∇d = ∇n−1

bs . We write ∇bs when the dimension is clear or irrelevant.

Theorem 3. The operation ∇bs is a widening for Boxes.

We now describe our implementation of ∇bs with LDDs. It is not hard to show
that the last two cases of (18) are equivalent to vi+1 and vi−1, respectively.
That is, the value of the partition i is either a widening of the corresponding
partitions of the arguments, or the value of an adjacent partition. Thus, if we
assume that the step functions are given as a linked list of partitions, ∇s is
computable by a recursive traversal of this list. Conveniently, this is how Boxes

are represented by LDDs. For example, in Fig. 1(c) the low edges form the linked
list of partitions of dimension x. However, there are no back-edges, and it is hard
to access the value of the “previous” partition. We overcome this problem by
sending the value of the “current” partition down the recursion chain.

Our algorithm WR implementing f ∇n
bs g is shown in Fig. 6. The inputs are

LDDs f and g, a variable x bound to dimension n, and an LDD h representing
the value of “previous” partition or nil. When the dimension of f and g is not
known apriori, f ∇bs g is implemented by WR(f, g, x,nil), where x is the ,-least
variable of f and g, and h is nil since the algorithm starts at the first partition.
This is done by Widen shown in Fig. 6. The WR proceeds exactly as the simple
recursive algorithm described above. Comments indicate which lines correspond
to the three cases of (18).

298 A. Gurfinkel and S. Chaki

Require: leq(f, g)

1: function Widen (LDD f , LDD g)

2: if (f = 0) ∨ (f = g) ∨ (g = 1) then
3: else return g

4: if C(f) � C(g) then return WR(f, g,Var(C(f)),nil)
5: else return WR(f, g,Var(C(g)),nil)

6: function WR (LDD f , LDD g, Var x, LDD h)

7: if f = g then
8: if (Var(C(f)) = x) ∧ (h = nil) then return h � (case 3)

9: return g � (case 1)

10: if (Var(C(f)) = x) ∧ (Var(C(g)) = x) then return Widen(f, g) � (case 1)

11: if C(f) � C(g) then v ← C(f)

12: else v ← C(g)

13: t ←WR(f |v, g|v, x,nil)
14: e ←WR(f |¬v, g|¬v, x,nil)
15: if v = C(f) then
16: if (g|v = f |v) ∧ (h = nil) then
17: return ite(v, h, e) � (case 3)

18: else
19: return ite(v, t, e) � (case 1)

20: if g|v = f |v then return e � (case 2)

21: return ite(v, t,WR(f |¬v, g|¬v, x, t)) � (case 1)

Fig. 6. Widening for Boxes

Theorem 4. Algorithm Widen implements ∇bs in time O(|f | · |g|).

5 Boxes and Finite Powerset of Box

The finite powerset of Box [1,2], which we call PowerBox, is the main al-
ternative to Boxes as a refinement of Box. An advantage of a finite powerset
construction is its applicability to any base domain. However, this makes it hard
(if not impossible) to leverage the power of domain-specific data structures.
In contrast, our Boxes implementation is based on a specific data-structure –
LDDs – but does not extend to other base domains. In the rest of the section, we
compare the two domains analytically. Results of extensive empirical evaluation
are presented in Section 6.

Finite powerset construction. Let D̂ = (D,&,⊥,', ,() be an abstract domain.
For any S ⊆ D, let Ω(S) be the set of the &-maximal elements of S, and S ⊆fn D

mean that S is a finite subset of D. The finite powerset domain over D̂ is:

D̂P = (PΩ
fn(D̂),&P , ∅, Ω(D), P ,(P) , (20)

where PΩ
fn(D̂) � {S ⊆fn D | Ω(S) = S}, S1&P S2 iff ∀d1 ∈ S1 ·∃d2 ∈ S2 ·d1 & d2,

S1 P S2 � Ω(S1 ∪ S2), and S1 (P S2 � Ω({s1 (s2 | s1 ∈ S1 ∧ s2 ∈ S2}).

Comparing Representation. Boxes and PowerBox differ in their element rep-
resentation. Let ϕ be a Boolean formula over IVQ. PowerBox represents ϕ by
its (unshared) DNF, while Boxes represents ϕ by its BDD. Thus, there exists
a ϕ whose PowerBox representation is exponentially bigger than its Boxes

representation, and vice versa. Of course, deciding between a DNF or a BDD
representation of a Boolean formula is a long-standing open problem.

Boxes: A Symbolic Abstract Domain of Boxes 299

Comparing Basic Operations. The ⊆ operation of Boxes is exact, while the
corresponding &P operation of PowerBox is not. For example, let S1 =
{0 ≤ x < 2} and S2 = {0 ≤ x < 1, 1 ≤ x < 2} be elements of Power-

Box. Then, (S1 �&P S2), but S1 ⊆ S2. The complexity of the operations in both
domains is polynomial in the sizes of the representations of their arguments.
Complexities of the LDD operations used by Boxes are shown in Table 1. For
PowerBox, most expensive operations are Ω and meet ((P). Ω is quadratic
and has no analogue in Boxes. (P has the same complexity, relative to the size
of its arguments, as and. The complexity of join (P) is similar to or, but is
more efficient if irreducibility of the result is not required.

Comparing Widening. Bagnara et al. [2] suggest three schemes to extend a widen-
ing from the base domain (in this case, Box) to the finite powerset (i.e., Boxes):
k-bounded, connector, and certificate-based. Our widening does not fit any of
these categories. It does not bound the number of disjuncts apriori, and hence is
not k-bounded. It does not compute certificates, or a box hull of its arguments,
and hence is not certificate-based. It is close in spirit to connector-widening, but
is not itself based on widening of a base-domain. Thus, our widening is not easily
comparable to any of the suggestions of [2]. Note that extending a PowerBox

widening to Boxes is difficult. One possibility is to convert between a Boxes

and a PowerBox value, apply PowerBox widening, and convert the value
back. But, this involves an exponential blowup – number of paths in an LDD is
exponential in its size. The alternative is to adapt PowerBox widening algo-
rithm to work directly on an LDD. This is non-trivial.

In summary, it is not obvious which of Boxes and PowerBox is superior.
In Section 6, we present empirical evidence that suggests that in practice the
Boxes domain does scale better.

6 Experiments

To evaluate Boxes, we implemented a simple abstract interpreter, IRA, on top
of the LLVM compiler infrastructure [14]. For every function of a given program,
IRA computes invariants over all SSA variables at all loop heads using a given
abstract domain. We compared four abstract domains: LDD Boxes – the domain
described here; LDD Box – Box implemented with LDDs using BoxJoin and
the standard widening instead of or and Widen, respectively; PPL Box – Box

implemented by Rational Box class of PPL [3]; and, PPL Boxes – PowerBox

implemented by Pointset Powerset<Rational Box> of PPL. For LDD-based
domains, we used dynamic variable ordering.

The benchmark. We applied IRA to 25 open source programs, including mplayer,
CUDD, and make, with over 16K functions in total. All experiments were ran
on a 2.8GHz quad-core Pentium machine. Running time and memory for each
function was limited to 1 minute and 512MB, respectively. Here, we report on
the 5,727 functions which at least one domain required 2 or more seconds to
analyse. The first two columns of Table 3(a) summarize key characteristics of the
benchmark: on average there are 238 variables and 7 loop heads per function.

300 A. Gurfinkel and S. Chaki

Table 3. (a) Benchmark summary: Vars – # of variables; Loop – # of loop heads;

Invariant Sizes: DD – # of nodes in a DD, Path – # of paths, Box – # of elements

in a PPL Boxes value. (b) Summary of the experimental results: %S – % Solved, T –

total time, %B – % time in basic ops, %I – % time in image, %∇ – time in widen.

Vars Loop DD Path Box

MIN 9 0 1 0 1

MAX 9,052 241 87,692 2.15E09 7,296

AVG 238 7 1,011 2.46E08 802

STDEV 492 12 3,754 5.75E08 761

MEDIAN 97 3 149 5,810 589

Domain %S T(m) %B %I %∇
LDD Box 99.8 4 77 23 0

PPL Box 96.1 117 86 14 0

LDD Boxes 87.9 118 61 38 1

PPL Boxes 14.2 201 95 1 3

(a) (b)

The last 3 columns summarize the size of the invariants computed as either
LDDs, number of paths in a LDD, or number of elements in a PowerBox

value. Note that the large standard deviations indicate that the benchmark was
quite heterogeneous. Overall, Table 3(a) shows that our analysis was non-trivial.

The results. Our experimental results are summarized in Table 3(b). The first two
columns show the percentage of (the 5,727) functions analyzed successfully, and
the time taken, respectively. The time includes only the cost of abstract domain
operations, and only counts the successful cases for the corresponding domain.
Each Box domain solved over 90% of the cases. Surprisingly, LDD Box was
significantly faster. We conjecture that this is due to the large number of tracked
variables in our benchmark. The size of an LDD Box value is proportional to
the number of bounded variables (dimensions), whereas that size of PPL Box

value is proportional to the, much larger, number of tracked variables.
Our LDD Boxes domain did quite well, solving close to 90% of the cases.

PPL Boxes domain did not scale at all: solved under 20% and took almost
double the time of LDD Boxes.

The last three columns of Table 3(b) break down the time between the basic
(&,(,) domain operations (Basic), image computation (Image), and widening
(Widen). Again, both Box domains perform similarly, with Basic being the most
expensive, while Widen is negligible. For LDD Boxes, the time is divided more
evenly between Basic and Image, with a non-negligible Widen. For PPL Boxes,
the time is dominated by Basic, and Widen is also significant.

Fig. 7(a) compares LDD Box (the fastest and least precise analysis) and LDD
Boxes. Clearly, additional expressivity of LDD Boxes costs additional (often,
several orders of magnitude) complexity. Fig. 7(b) compares PPL Boxes and
LDD Boxes (only successful cases for PPL are shown). Here, LDD Boxes is
several orders of magnitude faster.

In order to understand whether the increased expressivity of LDD Boxes

yields more precise results, and to evaluate the effectiveness of our widening, we
measured the number of times widening points are visited during the analysis.
We conjecture that a very aggressive (and, thus, imprecise) widening results
in a very quick convergence and, hence, few repeated applications of widening.
Fig. 7(c) compares LDD Box and LDD Boxes. In all but 23 cases, analysis

Boxes: A Symbolic Abstract Domain of Boxes 301

(a) (b)

(c) (d)

1

10

100

1000

104

W
id

en
in

gs
L
D

D
B

o
x
e
s

1 3 10 30 100

Widenings LDD Box

Widenings LDD Box vs LDD Boxes

1

3

10

30

100

W
id

en
in

gs
L
D

D
B

o
x
e
s

1 3 10 30

Widenings PPL Boxes

Widenings PPL Boxes vs LDD Boxes

0.01

0.1

1

10

C
P

U
T

im
e

L
D

D
B

o
x
e
s

0.01 0.1 1 10

CPU Time LDD Box

CPU LDD Box vs LDD Boxes

0.001

0.01

0.1

1

10

C
P

U
T

im
e

L
D

D
B

o
x
e
s

1 3 10 30

CPU Time PPL Boxes

CPU PPL Boxes vs LDD Boxes

Fig. 7. Running time: (a) LDD Box vs. LDD Boxes; (b) PPL Boxes vs. LDD Boxes.

Number of widenings: (c) LDD Box vs. LDD Boxes; (d) PPL Boxes vs. LDD Boxes.

with LDD Boxes visits widening points as many (and often significantly more)
times than LDD Box. In the remaining 23 cases, LDD Boxes converges faster
– often, before the widening is ever applied2 – but to a more precise invariant.

Fig. 7(d) compares LDD Boxes and PPL Boxes (on the cases where PPL
Boxes was successful). In most cases, both domains converge after similar num-
ber of iterations. In general, the convergence rate is within a factor of 2. We
conjecture that this indicates that our widening is similar in its precision to the
finite powerset widening used by PPL Boxes.

Overall, our evaluation indicates that LDDs provide a solid backbone for
implementing Box and its disjunctive refinements. LDD Box is competitive
with PPL Box, and scales much better as the number of variables increases. The
performance degradation when moving from Box to its disjunctive refinement
is milder for LDDs than for PPL. Finally, LDD Boxes performs better than
PPL Boxes, while maintaining a similar precision level.

7 Conclusion

In this paper, we presented Boxes, a symbolic abstract domain that weds disjunc-
tive refinement of Box with BDDs. Boxes is implemented on top of LDDs, an
extension of BDDs to linear arithmetic. We present a novel widening algorithm for

2 In IRA, we delay widening until the 3rd iteration of a loop.

302 A. Gurfinkel and S. Chaki

Boxes that is different from known schemes for implementing widening for dis-
junctive refinements. Empirical evaluation indicates that Boxes is more scalable
than existing implementations of the finite powerset of Box.

An area of future work is to study applicability and scalability of Boxes in
a practical software verification setting. In particular, Boxes offers a promising
platform for combining model-checking and abstract interpretation as in [12].
Another direction is to extend the approach to weakly-relational domains. The
main challenge is developing an effective and efficient widening.

Acknowledgements. We thank Ofer Strichman for numerous insightful discussions.

References

1. Bagnara, R.: A Hierarchy of Constraint Systems for Data-Flow Analysis of Con-

straint Logic-Based Languages. Science of Computer Programming 30(1-2), 119–

155 (1988)

2. Bagnara, R., Hill, P.M., Zaffanella, E.: Widening Operators for Powerset Domains.

International Journal on Software Tools for Technology Transfer (STTT) 8(4),

449–466 (2006)

3. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: Towards

A Complete Set of Numerical Abstractions for The Analysis and Verification of

Hardware and Software Systems. Science of Computer Programming 72(1-2), 3–21

(2008)

4. Beyer, D., Henzienger, T.A., Theoduloz, G.: Configurable Software Verification:

Concretizing the Convergence of Model Checking and Program Analysis. In:

Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 504–518.

Springer, Heidelberg (2007)

5. Bryant, R.E.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE

Transactions on Computers (TC) 35(8), 677–691 (1986)

6. Chaki, S., Gurfinkel, A., Strichman, O.: Decision Diagrams for Linear Arithmetic.

In: FMCAD 2009 (2009)

7. Cousot, P., Cousot, R.: Static Determination of Dynamic Properties of Programs.

In: Proceedings of the 2nd Internaitional Symposium on Programming (ISOP

1976), pp. 106–130 (1976)

8. Cousot, P., Cousot, R.: Systematic Design of Program Analysis Frameworks. In:

Proceedings of the 6th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-

gramming Langauges (POPL 1979), pp. 269–282 (1979)

9. Cousot, P., Cousot, R.: Abstract Interpretation Frameworks. Journal of Logic and

Computation (JLC) 2(4), 511–547 (1992)

10. Graf, S., Säıdi, H.: Construction of Abstract State Graphs with PVS. In: Grumberg,

O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

11. Gulavani, B.S., Chakraborty, S., Nori, A.V., Rajamani, S.K.: Automatically Re-

fining Abstract Interpretations. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS

2008. LNCS, vol. 4963, pp. 443–458. Springer, Heidelberg (2008)

12. Gurfinkel, A., Chaki, S.: Combining Predicate and Numeric Abstraction for Soft-

ware Model Checking. In: FMCAD 2008, pp. 127–135 (2008)

13. Larsen, K.G., Pearson, J., Weise, C., Yi, W.: Clock Difference Diagrams. Nord. J.

Comput. 6(3), 271–298 (1999)

Boxes: A Symbolic Abstract Domain of Boxes 303

14. Lattner, C., Adve, V.: LLVM: A Compilation Framework for Lifelong Program

Analysis & Transformation. In: CGO 2004 (2004)

15. Mauborgne, L., Rival, X.: Trace Partitioning in Abstract Interpretation Based

Static Analyzers. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 5–20.

Springer, Heidelberg (2005)

16. Møller, J.B., Lichtenberg, J., Andersen, H.R., Hulgaard, H.: Difference Decision

Diagrams. In: Flum, J., Rodŕıguez-Artalejo, M. (eds.) CSL 1999. LNCS, vol. 1683,

pp. 111–125. Springer, Heidelberg (1999)

17. Sankaranarayanan, S., Ivancic, F., Shlyakhter, I., Gupta, A.: Static Analysis in

Disjunctive Numerical Domains. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp.

3–17. Springer, Heidelberg (2006)

18. Somenzi, F.: CU Decision Diagram Package,

http://vlsi.colorado.edu/~fabio/CUDD

19. Strehl, K., Thiele, L.: Symbolic Model Checking of Process Networks Using Interval

Diagram Techniques. In: ICCAD 1998, pp. 686–692 (1998)

20. Wang, F.: Efficient Data Structure for Fully Symbolic Verification of Real-Time

Software Systems. In: Schwartzbach, M.I., Graf, S. (eds.) TACAS 2000. LNCS,

vol. 1785, pp. 157–171. Springer, Heidelberg (2000)

http://vlsi.colorado.edu/~fabio/CUDD

Alternation for Termination

William R. Harris1, Akash Lal2, Aditya V. Nori2, and Sriram K. Rajamani2

1 University of Wisconsin; Madison, WI, USA
2 Microsoft Research India; Bangalore, India

Abstract. Proving termination of sequential programs is an important problem,
both for establishing the total correctness of systems and as a component of prov-
ing more general termination and liveness properties. We present a new algo-
rithm, TREX, that determines if a sequential program terminates on all inputs.
The key characteristic of TREX is that it alternates between refining an over-
approximation and an under-approximation of each loop in a sequential program.
In order to prove termination, TREX maintains an over-approximation of the set
of states that can be reached at the head of the loop. In order to prove non-
termination, it maintains an under-approximation of the set of paths through the
body of the loop. The over-approximation and under-approximation are used to
refine each other iteratively, and help TREX to arrive quickly at a proof of either
termination or non-termination.

TREX refines the approximations in alternation by composing three different
program analyses: (1) local termination provers that can quickly handle intricate
loops, but not whole programs, (2) non-termination provers that analyze one cycle
through a loop, but not all paths, and (3) global safety provers that can check
safety properties of large programs, but cannot check liveness properties. This
structure allows TREX to be instantiated using any of the pre-existing techniques
for proving termination or non-termination of individual loops.

We evaluated TREX by applying it to prove termination or find bugs for a set
of real-world programs and termination analysis benchmarks. Our results demon-
strate that alternation allows TREX to prove termination or produce certified ter-
mination bugs more effectively than previous techniques.

1 Introduction

Proving termination of sequential programs is an important problem, both for establish-
ing total correctness of systems and as a component for proving other liveness prop-
erties [12]. However, proving termination efficiently for general programs remains an
open problem. For an illustration of the problem, consider the example program shown
in Fig. 1, and in particular the loop L2 on lines 8–16. This loop terminates on all inputs,
but for an analysis to prove this, it must derive two important facts: (1) the loop has
an invariant d > 0 and (2) under this invariant, the two paths through the loop cannot
execute together infinitely often. Existing analyses can discover one or the other of the
above facts, but not both.

Some analyses construct a proof of termination in the form of a lexicographic linear
ranking function (LLRF) [4]. These analyses can prove termination of L2 by construct-
ing a valid LLRF if they are given d > 0 as a loop invariant. However, LLRF-based

R. Cousot and M. Martel (Eds.): SAS 2010, LNCS 6337, pp. 304–319, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Alternation for Termination 305

1 void f(int d) {
2 int x, y, k, z := 1;
3 ...
4 L1:
5 while (z < k) { z := 2 * z; }
6 ...
7 L2:
8 while (x > 0 && y > 0) {
9 if (*) {

10 P1: x := x - d;
11 y := *;
12 z := z - 1;
13 } else {
14 y := y - d;
15 }
16 }
17 }

1 void main() {
2 if (*) {
3 f(1);
4 } else {
5 f(2);
6 }
7 }

Fig. 1. Example illustrating the effect of alternation

tools have been designed to analyze only loops with affine assignments and conditions,
and are unable to handle pointers, or perform inter-procedural, whole program analysis
(which is required to establish the desired invariant).

Techniques that construct a transition invariant (TI) as proofs, such as TERMINA-
TOR [10], can handle arbitrary programs with procedures and pointers, but are ham-
pered by the way they construct a proof of termination. To illustrate this, consider how
TERMINATOR analyzes loop L2. TERMINATOR first attempts to prove termination of
L2 by analyzing it in isolation from the rest of the program. However, TERMINATOR

fails, as it is not aware of the additional fact that whenever the loop is reached, the
invariant d > 0 holds. It thus generates a potential counterexample that may demon-
strate that the loop does not always terminate. A counterexample to termination is a
“lasso”, which consists of a “stem” sequence of statements that executes once followed
by a “cycle” sequence of statements that may then be executed infinitely often. For the
example, TERMINATOR may generate a lasso with the stem “ d := 1; z := 1”
that leads to L2, followed by the cycle “assume (x > 0); assume(y > 0);
x := x - d; y := *; z := z - 1” that executes infinitely often. If TERMI-
NATOR ignores the stem, it cannot prove that the cycle will not execute infinitely often.
Thus, it uses the state of the program after executing the stem, “d = 1, z = 1”, to
construct a new cycle “assume(d = 1); assume (z = 1); assume (x >
0); assume(y > 0); x := x - d; y := *; z := z - 1” whose be-
haviors under-approximate those of the original cycle. In the under-approximation, the
conditions d = 1 and z = 1 are assumed to hold at the beginning of every iteration of
the loop (see Section 3.4 of [10] for a discussion).

In this way, TERMINATOR constructs an under-approximation of the counterexam-
ple cycle in the hope that it can at least find a proof of termination for the under-
approximation. With the added assumptions at the head of the cycle, it can find multiple
proofs that the under-approximation eventually terminates. One such proof establishes
that the expression z−1 is both bounded from below by 0 and must decrease through ev-
ery iteration of the cycle. TERMINATOR then attempts to validate z−1 as a proof of ter-
mination of the entire loop by determining if there are any paths over which z−1 is not
bounded and decreasing. There are, as the value of z is not bounded over the executions

306 W.R. Harris et al.

of the loop. Thus TERMINATOR will find another counterexample to z − 1 as a proof
of termination. For instance, it may find a trace that executes loop L1 once, reaches
L2 with state d = 1, z = 2, and executes the same cycle as the previous counterex-
ample. Similarly to how TERMINATOR handled the last counterexample, it constructs
an under-approximate cycle “assume(d = 1); assume(z = 2); assume(x
> 0); assume(y > 0); x := x - d; y := *; z := z - 1;” and at-
tempts to prove its termination. Similar to the last counterexample, it determines that
z−2 is bounded from below by 0 and decreases each time through the loop. Again, this
fact does not hold for all paths through the loop, so TERMINATOR will iterate again on
another counterexample. In this way, TERMINATOR will converge on a proof of termi-
nation slowly, if at all.

To address these shortcomings in existing techniques, we propose TREX, a novel
approach to proving termination of whole programs. TREX addresses the shortcom-
ings of LLRF-based techniques and TERMINATOR with an algorithm that alternates
between refining an over and under-approximation of the program. TREX analyzes
loops in the program one at a time. For each loop L, it simultaneously maintains an
over-approximation as a loop invariant for L (which is a superset of the states that can
be reached at the loop-head) and an under-approximation as a subset of all the paths
through L.

TREX first applies a loop termination prover to try to prove that no set of paths in
the under-approximation can execute together infinitely often. If the loop termination
prover can prove this, then it produces a certificate of the proof. TREX then checks if the
certificate is a valid proof that no set of paths in the entire loop may execute infinitely
often. If so, then the certificate demonstrates that the loop terminates on all inputs.
If not, then TREX adds to the under-approximation paths that invalidate the certificate.
TREX then reanalyzes the program using the new, expanded under-approximation. This
technique is similar to those employed in TERMINATOR.

If TREX fails to prove that paths in the under-approximation do not execute infinitely
often, then it applies a non-termination prover to find a sufficient condition for non-
termination. This sufficient condition is a precondition under which the loop will not
terminate. TREX then queries a safety prover to search for a program input that reaches
the loop and satisfies this precondition. If the safety prover finds such an input, then the
input is a true counterexample to termination. If the safety prover determines that the
loop precondition is unreachable, then the negation of the precondition is an invariant
for the loop. TREX conjoins this predicate to its existing invariant and reanalyzes the
program using the new, strengthened over-approximation. This technique is novel to
TREX.

In this way, TREX composes three analyzes for three distinct problems: (1) efficient
local termination provers that can analyze a loop represented as a finite sets of paths,
(2) non-termination provers that analyze a single trace, and (3) safety provers that prove
global safety properties of programs. This composition allows each analysis to improve
the performance of the other. The composition allows TREX to apply a loop termination
prover that produces a lexicographic linear ranking functions (LLRF) as a certificate
of termination. Using LLRFs as certificates, as opposed to TIs, improves the perfor-
mance of the safety prover in validating certificates. The non-termination prover allows

Alternation for Termination 307

LLRF-based loop termination provers to reason about loops that cannot be proved ter-
minating when analyzed in isolation. Finally, the safety prover directs the search of the
non-termination prover in finding counterexamples to termination. Using this approach,
TREX is able to prove termination or non-termination of programs that are outside the
reach of existing techniques, including the example in Fig. 1. §2 gives an informal dis-
cussion as to how TREX handles this example.

The contributions of this paper are as follows:

1. We present TREX, a novel algorithm for proving termination of whole pro-
grams. TREX simultaneously maintains over and under-approximations of a loop
to quickly find proofs of termination or non-termination. This allows it to com-
pose several program analyses that until now were disparate: termination provers
for multi-path loops, non-termination provers for cycles, and global safety provers.

2. We present an empirical evaluation of TREX. We evaluated TREX by applying it
to a set of systems drivers and benchmarks for termination analysis, along with
versions both that we injected with faults. The results of our evaluation demon-
strate that TREX’s use of alternation allows it to quickly prove that programs either
always terminate or produce verified counterexamples to their termination.

The rest of this paper is organized as follows. In §2, we illustrate by example how
TREX proves termination or non-termination for an example program. In §3, we review
known results on which TREX builds. In §4, we give a formal presentation of the TREX

algorithm. In §5, we present an empirical evaluation of TREX. In §6 we discuss related
work, and in §7 we conclude.

2 Overview

We now informally present the TREX algorithm. We first describe the core algorithm
for deciding if a single loop in a single-procedure program terminates under all program
inputs, and then illustrate the algorithm using a set of examples. If the program contains
nested loops, function calls, and pointers, the algorithm can be extended. We present
such extensions in §4.2.

To analyze a loop L, TREX maintains two key pieces of information: (i) a loop in-
variant O of L, and (ii) U , which is a subset of the set of all paths that can execute in
the body of loop L. Note that paths in U can be obtained by concatenating arbitrarily
many paths through L. The overapproximation O is initialized to a weak invariant such
as true, and U is initialized to an empty set of paths. TREX analyzes each loop iter-
atively. In each iteration, it first attempts to find a certificate that proves that no set of
paths in U can execute together infinitely often, assuming the loop invariant O.

First, suppose that TREX cannot find a proof certificate. Then TREX finds a path τ
that is a concatenation of paths in U such that no proof of termination of τ exists. It
then uses a non-termination prover [14] to derive a loop precondition ϕ such that if the
program reaches L in a state σ ∈ ϕ, then it will then execute τ infinitely often. TREX

calls a safety prover to determine if some initial program state σI can reach such a σ
along an execution trace. If so, then the trace, combined with τ , is a witness that the
loop does not always terminate. If a safety prover determines that no such states σI and

308 W.R. Harris et al.

σ exist, then TREX strengthens the over-approximation of O with the knowledge that
ϕ can never hold at the head of the loop L.

Now, suppose that TREX does find a proof certificate for the under-approximation.
TREX then checks to see if the certificate is valid for all paths in L. If the certificate is
not valid, then TREX finds a path τ over the body of L that invalidates the certificate,
and expands U to include τ . TREX then performs another refinement step using the
strengthened over-approximation or expanded under-approximation. In this way, the
under-approximation U is used to find potentially non-terminating cycles, and if such
cycles are unreachable, this information is used to refine the over-approximation O.
Dually, if the certificate for U is not a valid certificate for all the paths through L with
the over-approximation O, this information is used to expand U . We now illustrate the
advantages of this approach using a set of examples.

Alternation Between Over and Under-approximations. Because TREX simultaneously
maintains over and under-approximations of a loop, it can often quickly find proofs that
the loop terminates, even when the proofs rely on program behavior that is not local to
the loop. For example, consider loop L2 from Fig. 1. Recall from §1 that existing termi-
nation provers may have difficulty proving termination of L2. A technique that relies on
a fixed over-approximation may not be able to discover automatically the needed loop
invariant d > 0, but a technique that relies solely on under-approximations may strug-
gle to find a proof of termination for the loop, as it is misled by information gathered
along a trace leading to the loop.

TREX handles this example by alternating between over and under-approximations.
It first tries to prove termination of the loop with an over-approximation that the loop
can be reached in any state, and is unable to find such a proof. TREX thus generates
a potential counterexample to termination in the form of a cycle through the loop:
assume(x > 0 && y > 0); y := y - d. It then applies a non-termination
prover to this cycle to find a sufficient condition ϕ such that if execution reaches the loop
in a state that satisfies ϕ, then the subsequent execution will not terminate. The non-
termination prover determines that such a sufficient condition is the predicate d ≤ 0.
TREX then queries a safety prover to decide if the condition d ≤ 0 at L2 is reachable,
but the safety prover determines that d ≤ 0 is in fact unreachable. Thus TREX refines
the over-approximation of the loop to record that all states reachable at line 4 are in
¬(d ≤ 0) ≡ d > 0. TREX then applies a loop termination prover to the loop un-
der this stronger over-approximation. Such a technique quickly proves that L2 always
terminates.

Using LLRFs as Certificates for Termination Proofs. Existing techniques for proving
termination of programs produce a transition invariant (TI) as a certificate of proof of
termination, while existing termination provers for loops produce lexicographic linear
ranking functions (LLRF). TREX is parametrized to use either TIs or LLRFs as cer-
tificates in proving termination of whole programs. This implies that it can construct a
set of LLRFs that serves as a proof of termination for a whole program. While TIs are
more expressive than LLRF’s in that they can be used to encode proofs of termination
for more loops than LLRFs, LLRFs can often be constructed faster, and the loss of ex-
pressiveness typically does not matter in practice. We find that in practice, using LLRFs

Alternation for Termination 309

as certificates instead of TIs results in an acceptable loss of expressiveness while allow-
ing significant gains in performance, both in finding the certificate and in validating
candidate certificates.

To gain an intuition for the advantage of using LLRFs, consider again in Fig. 1 the
loop L2. Recall that L2 is problematic for an analysis that constructs a TI using under-
approximations. However, suppose that an analysis based on constructing TIs was given
d > 0 as a loop invariant. The analysis could then analyze the loop in isolation and
would eventually find a TI that proves termination. However, the best known approach
to TI synthesis constructs proofs one at a time for single paths through potentially mul-
tiple iterations of the loop. For each path, the analysis then attempts to validate the
constructed proof using an expensive safety check. However, if an LLRF-based anal-
ysis is given the loop invariant d > 0, and both the paths “x := x - d; y :=

*; z := z - 1”, and “y := y - d” through the loop, it can prove termination
of the loop by solving a single linear constraint system. Furthermore, the validation of
resulting LLRF is considerably simpler.

1 int d = 1;
2 int x;
3

4 if(*) d := d - 1;
5 if(*) foo();
6 ...
7 //k such conditionals
8 //without decrements of d.
9 ...

10 if(*) foo();
11 if(*) d := d - 1;
12

13 while (x > 0) {
14 x := x - d;
15 }

Fig. 2. Example to illustrate detecting
non-termination

Proving Non-termination. Finally, TREX can
find non-terminating executions efficiently. For
the program in Fig. 2, suppose that the function
foo has p paths through its body. There are thus
O(2kpk) different lassos in the program that end
with the cycle at lines 13–15. Of these, only the
lassos with stems that include the decrements to
d at lines 4 and 11 lead to non-termination. The
current best known technique for finding termina-
tion bugs, TNT [14], searches the program for las-
sos in an arbitrary manner. Thus TNT may only
find such a bug by enumerating the entire space of
lassos.

TREX can provide TNT with a goal-directed search strategy for finding termination
bugs. For the program in Fig. 2, TREX first analyzes the loop at lines 13–15, and is
unable to prove termination of the loop. It next attempts to find an execution for which
the loop does not terminate. However, instead of applying TNT to one of the lassos in
the program to verify it as a complete witness to non-termination, TREX applies TNT
to the sole path through the loop to derive a sufficient condition for non-termination.
For the example, TNT determines that if the loop is reached in a state that satisfies
d < 0, then execution of the loop will not terminate. TREX then queries a safety prover
to determine if a state that satisfies d < 0 is reachable at the head of the loop. Suppose
that the function foo does not modify d. Modular safety checkers such as SMASH [11]
can use knowledge about the target set of states d < 0 to build a safety summary for
foo which states that d is not modified by foo. TREX uses such a prover to quickly
find a path that reaches the loop head in a state that satisfies d < 0. It is the path that
decrements d at lines 4 and 11.

310 W.R. Harris et al.

3 Preliminaries

TREX builds on existing work on proving termination and non-termination. We recall
some preliminaries and definitions from previous work.

3.1 Termination Certificates

TREX is parametrized by the certificates that it uses to prove termination of individual
loops. A certificate typically defines a measure μ that is bounded below by zero, (i.e.
μ ≥ 0) and decreases on every iteration of the loop. Previous work shows how to find
such measures automatically using lexicographic linear ranking functions and transition
invariants. The exact details of these certificates are not important for an understanding
of TREX, but for the sake of completeness, their definitions are given in [15].

3.2 Proving Non-termination

Recent work [14] addresses a dual problem to proving termination, that of proving non-
termination of a given path through a program. Let a pair of paths (τstem , τcycle) be a
lasso. The problem of proving non-termination is to determine if it is possible for τstem
to execute once followed by infinite consecutive executions of τcycle . [14] establishes
that (τstem , τcycle) is non-terminating if and only if there exists a recurrent set of states
defined as follows:

Defn 1. For a lasso (τstem , τcycle), a recurrent set ϕ is a set of states such that (i) ϕ
is reachable from the beginning of the program over τstem ; and (ii) For every state
σ ∈ ϕ, there is a state σ′ ∈ ϕ such that σ′ can be reached from σ by executing τcycle .

In this work, we introduce the notion of a partial recurrent set, which is a relaxation of
a recurrent set.

Defn 2. A set of states ϕ is a partial recurrent set for a sequence of statements τ if it
satisfies clause (ii) of Defn. 1, with τ in place of τcycle .

One can reduce the problem of finding a recurrent set for a given lasso to solving a non-
linear constraint system [14]. This is the approach implemented by TNT. The TNT
technique relies on a constraint template to guide the constraint solving, and gives a
heuristic for iteratively refining the template until a recurrent set is found. In practice,
if a recurrent set exists, then it typically can be found with a relatively small template.
TNT can be easily extended to find a partial recurrent set as well.

4 Algorithm

We now formally present the TREX algorithm, given in Fig. 3. We first describe TREX

for single-procedure programs without pointers, function calls, or nested loops. We
describe in §4.2 an enhancement of TREX that deals with pointers, function calls, and
nested loops. TREX attempts to prove termination or non-termination of each loop in
isolation. When TREX analyzes each loop L, it maintains an over-approximation O,

Alternation for Termination 311

TREX (P)
Input: Program P
Returns: Termination if P terminates on all inputs,

NonTermination(τstem , τcycle) if P may execute τstem

once, and then execute τcycle infinitely many times.

1: for each loop L in the program do
2: O := true // Initialize over-approximation.
3: U := { } // Initialize under-approximation.
4:
5: loop
6: result := GetCertificate(O, U)

7: if (result = Termination(C)) then
8: result ′ := CheckValidity(C,O, L)

9: if (result ′ = Valid) then
10: break // Analyze next program loop.
11: else if (result ′ = Invalid(τ)) then
12: U = U ∪ {τ}
13: continue
14: end if
15: else if (result = Cycle(τcycle)) then
16: ϕ = PRS(τcycle)

17: if Reachable(ϕ) then
18: τstem := SafetyTrace(ϕ)

19: return NonTermination(τstem , τcycle)

20: else
21: O := O \ ϕ
22: continue
23: end if
24: end if
25: end loop
26: end for

Fig. 3. The TREX algorithm

which is a superset of the set of states reachable at the loop head of L, and an under-
approximation U , which is a subset of the paths through the loop body. At lines 2 and
3, O is initialized to true (denoting all states), and U is initialized to the empty set
of program paths. We use LO to denote the loop L with each path prefixed with an
assumption that O holds, and similarly for UO.

The core of the TREX algorithm iterates through the loop in lines 5-25 of Fig. 3.
Inside this loop, TREX refines the over-approximation O to smaller sets of states, adds
more paths to the under-approximation U , and tries to prove either termination or non-
termination of the loop L. At line 6, TREX calls GetCertificate to find a certificate of
proof for the under-approximation U .

First, suppose that the call GetCertificate(O, U) returns Termination(C). In this
case, GetCertificate has found a proof C that no set of paths in U execute together

312 W.R. Harris et al.

infinitely often under invariant O. In this case, TREX checks if C is a valid certifi-
cate for the entire loop LO by calling the function CheckValidity in line 8. The call
CheckValidity(C, O, L) returns Valid if the certificate C is a valid proof of termina-
tion for the loop LO. In this case, TREX determines that L terminates, and analyzes the
next loop. Otherwise, CheckValidity returns Invalid(τ), where τ ∈ L+ \ U is a path
such that C does not prove that a cycle of τ will not execute infinitely often. In this
case, TREX adds the path τ to the under-approximation U and continues to iterate.

Now suppose that GetCertificate does not find a certificate for UO and returns
Cycle(τcycle). Here, τcycle ∈ U+ is a trace formed by concatenating some sequence
of paths through U . At line 16, TREX calls PRS , which computes for τcycle a partial
recurrent set ϕ. If σJ ∈ ϕ, then executing τcycle from σJ results in a state σF ∈ ϕ.
Thus if ϕ is reachable from a program input σI , then program P will not terminate on
σI . On line 17, TREX calls a safety prover to determine if such a σI exists. If so, then
the safety prover produces a trace τstem along with an initial state that reaches ϕ. TREX

then presents the lasso (τstem , τcycle) as a true counterexample to termination. Other-
wise, has determined that ϕ is unreachable. Note that although TREX derived ϕ using
an under-approximation of the set of paths through the loop, TREX checked if ϕ was
reachable in the original program and determined that it was not. Thus TREX refines
the over-approximation O by removing from O the set of states ϕ. TREX then performs
another iteration in search of a definite proof of or counterexample to termination.

4.1 Sub-procedures Called by TREX

1 //x is an input variable
2 int x;
3

4 int main() {
5 while (x > 0) {
6 if(*) foo();
7 else foo();
8 }
9 }

10

11 void foo() {
12 x--;
13 }

Fig. 4. Example illustrating interproce-
dural analysis

The TREX algorithm, as presented in Fig. 3,
depends on four procedures: Reachable ,
CheckValidity , GetCertificate , and PRS .
Definitions of Reachable and PRS are standard.
Reachable answers a safety query for a program,
and thus can be implemented using any static
analysis tool or model checker that provides
either a proof of safety or counterexample trace.
TREX assumes that if Reachable answers a
safety query, then the answer is definite, i.e., if it
returns true, then the target is indeed reachable in
the program, and if it returns false, then the target
cannot be reached under any input. SMASH [11]
is a safety prover that satisfies these requirements
and we use it in our implementation of TREX.

Because reachability in programs is undecidable, Reachable may not always terminate,
in which case TREX does not terminate. PRS constructs a partial recurrent set
for an execution trace. The implementation of such a procedure that is used in our
implementation of TREX is described in [14].

Procedures GetCertificate, and CheckValidity can be instantiated to compute and
validate any certificate of a termination proof, such as TIs or LLRFs. The work in [9]
gives instantiations of these procedures for TIs. If the procedures are instantiated to use
TIs, then the resulting version of TREX is similar to TERMINATOR, modulo the fact

Alternation for Termination 313

that TREX uses counterexamples to refine an over-approximation of each loop, while
TERMINATOR does not attempt to maintain an over-approximation.Furthermore, TREX

can be instantiated to use LLRFs to reason about programs, given suitable definitions
of GetCertificate and CheckValidity . In [15], we give novel implementations of such
functions.

4.2 Handling Nested Loops, Function Calls and Pointers

For TREX to reason about nested loops, function calls, and pointers, it is necessary
that its sub-procedures reason about these features. The procedures Reachable and
CheckValidity depend primarily on a safety prover. In the context of safety, handling
nested loops and function calls is a well-studied problem, and our safety checker sup-
ports such features. However, the procedures GetCertificate and PRS must be ex-
tended from their standard definitions to handle such features. Both procedures take
as input a finite set of paths. The current state-of-the-art techniques for implementing
GetCertificate and PRS can only reason about paths defined over a fixed set of vari-
ables and linear updates to those variables. They cannot reason about program state-
ments that manipulate pointers, because pointer dereferences introduce non-linear be-
havior. Thus to apply such techniques, an analysis must first rewrite program paths that
perform pointer manipulations to a semantically equivalent form expressed purely in
terms of linear updates.

TREX rewrites program paths to satisfy this condition by following a strategy used
in symbolic-execution tools, and also by TERMINATOR, which is to concretize the val-
ues of pointers. Note that all paths added to U are produced by CheckValidity , which
takes as input an entire program, as opposed to a single loop. Thus if CheckValidity
determines that a certificate is not valid for an entire loop L, then it produces a counter-
example in the form of a lasso (τstem , τcycle), where τcycle is a path through the loop
and τstem is a path up to the loop. In the absence of pointer dereferences, function
calls, or nested loops, τcycle is directly added to U . In the presence of pointer derefer-
ences, TREX rewrites the cycle before adding it to U as follows: for an instruction *p
= *q + 5 where p and q point to scalar variables x and y respectively during the
execution of τstem , TREX replaces the instruction with x = y + 5. This amounts to
under-approximating the behavior of paths through a loop by assuming that the aliasing
conditions of τstem hold in every iteration of the loop.

TREX reasons about function calls and nested loops by in-lining instructions along
the path τcycle before adding the path to U . For example, suppose that we apply
TREX to the program in Fig. 4. In the course of analysis, TREX expands an under-
approximation of the loop in lines 5–8 by adding a path through the loop, which goes
through the function foo. To find a certificate for a new proof of termination that in-
cludes this path, TREX applies GetCertificate to this path, which only looks at the
instructions in the path: assume(x > 0); x = x - 1. GetCertificate produces
an LLRF x. TREX then applies CheckValidity , which uses an interprocedural safety
analysis to verify that x is indeed a ranking function for the entire loop, i.e., in all
executions of the program, the value of x decreases on every iteration of the loop.

314 W.R. Harris et al.

4.3 Limitations of TREX

If TREX terminates, then it produces a proof of termination or a valid counterexample
that witnesses non-termination. However, TREX may not terminate for the following
reasons: (i) the underlying safety prover or non-termination prover may not terminate;
or (ii) the main loop in Fig. 3 lines 5–25 may not terminate. The main loop may not ter-
minate because finding the termination proof or non-termination witness may require
TREX to reason about program features beyond what are supported by the loop ter-
mination and non-termination provers used by TREX. Such program features include
non-linear arithmetic or manipulating recursive data-structures. Proving termination in
the latter case is addressed in [3]. It would be interesting to instantiate TREX with the
prover presented in [3], provided that a corresponding non-termination prover could be
derived.

5 Experiments

We empirically evaluated TREX over a set of experiments designed to determine if:

– TREX can prove termination and find bugs for programs explicitly designed to be
difficult to analyze for termination. To this end, we applied TREX to several hand-
crafted benchmarks.

– TREX can prove termination and find bugs for real-world programs. To this end,
we applied TREX to several drivers for the Windows Vista operating system.

To evaluate TREX, we implemented the algorithm described in §4, instantiated with
the LLRF-based termination prover described in [15] and the non-termination prover
described in §3.2. We also compared TREX with the current state of the art in proving
termination. The only other termination prover that we are aware of that can analyze
arbitrary C programs is TERMINATOR. We did not have access to the implementation of
TERMINATOR discussed in [10], so we reimplemented it using the description provided
in that work. We refer to this implementation as R-TERMINATOR. To allow for a fair
comparison, the implementations of both TREX and R-TERMINATOR use the same
safety prover, SMASH [11]. All experiments were performed on a machine with an
AMD Athlon 2.2 GHz processor and 2GB RAM.

5.1 Micro-benchmarks

We first evaluated if TREX could find difficult termination bugs in small program snip-
pets. To do so, we first applied R-TERMINATOR and TREX to the loop shown in Fig. 5,
based on the program in Fig. 1. R-TERMINATOR did not find the bug in this loop: as
described in §1, it successively tries as proofs of termination ranking functions ci−z for
different constants ci. TREX found this bug within 5 seconds, requiring 1 alternation.
This example thus indicates that for a non-terminating loop with variables spurious to
proving termination, z in Fig. 1, the spurious variables can cause R-TERMINATOR not
to find a proof of termination or non-termination.

Alternation for Termination 315

Table 1. Results of applying TREX to Windows drivers snippets. The timeout (T/O) limit was set
to 500 seconds.

Name Num Buggy TREX R-TERMINATOR TREX

Loops Loops #NT #TC Time (s) #TC Time (s) speedup

01 3 0 0 3 13.8 4 32.1 2.3
02 3 1 1 2 15.3 5 48.0 3.1
03 1 1 1 0 7.9 1 5.9 0.7
04 1 0 0 1 3.1 1 12.3 3.9
05 1 0 0 1 6.4 1 8.8 1.4
06 1 0 0 1 3.0 2 13.8 4.6
07 2 0 0 2 10.2 2 11.8 1.2
08 2 0 0 2 9.4 2 11.0 1.2
09 2 1 – – T/O – T/O –
10 1 0 0 1 2.5 2 10.3 4.1

int x,d,z;
d=0; z=0;

while(x > 0) {
z ++;
x = x - d;

}

Fig. 5. A non-
terminating loop

Next, we applied TREX and R-TERMINATOR on snippets of
code extracted from real Windows Vista drivers, the same used in
[2]. The results of the experiments are given in Tab. 1. For each
driver snippet, Tab. 1 reports the number of loops, the number of
buggy (non-terminating) loops, the number of times that TREX

called a non-termination prover during analysis (#NT), the number
of times TREX called a termination prover (#TC), the time taken
by TREX, and similarly for R-TERMINATOR. In general, TREX

was significantly faster than R-TERMINATOR. In most cases, the
speedup was caused directly by the fact that TREX uses LLRF’s as
termination certificates, whereas R-TERMINATOR uses TI’s. By us-

ing LLRF’s, TREX needs to construct fewer certificates during analysis, and thus needs
to query a safety prover fewer times in order to validate certificates.

For these programs, TREX called its non-termination prover at most once. In each
case, the call verified that the loop is indeed non-terminating. Program “02” highlights
the advantage of applying a non-termination prover in this way. When analyzing program
“02,” R-TERMINATOR constructed and failed to validate multiple candidate termination
certificates obtained by under-approximating the behavior of cycles. R-TERMINATOR

eventually could not construct a new candidate and reported a possible termination bug.
When applied to program “02,” TREX failed to find a proof of termination, but then
immediately alternated to apply a non-termination prover, which quickly found a verified
termination bug. Finally, note that program “09” has a complicated loop about which
neither TREX nor R-TERMINATOR can find a proof, and thus time out.

The original driver snippets contain relatively few termination bugs. Thus to fur-
ther measure TREX’s ability to find bugs, we modified each driver snippet that had no
termination bug as follows. We introduced variables “inc1, inc2, ...”, and code that non-
deterministically initializes them to 0 or 1. We then replaced increment or decrement
statements of the form “x = x ± 1”, with “x = x ± incn”, where a different “n” is used
for each increment statement. The results are given in Table 2. Note that our modifi-
cation did not always introduce a termination bug, as in some cases, the increment or
decrement was irrelevant to the termination argument for the loop.

In general, TREX and R-TERMINATOR analyze these loops in similar amounts of
time. In cases where TREX completed in less time than R-TERMINATOR, it was typ-
ically because R-TERMINATOR produced and then failed to validate more candidate

316 W.R. Harris et al.

Table 2. Results of experiments over driver snippets modified to contain termination bugs

Name Num Buggy TREX R-TERMINATOR

Loops Loops # NT # TCs Time (s) # TCs Time (s)
01 3 0 0 3 22.3 3 19.9
04 1 1 1 0 4.9 1 5.4
05 1 1 1 0 7.1 1 9.1
06 1 1 1 1 9.7 2 12.1
07 2 0 0 2 7.6 2 9.8
08 2 1 1 1 8.1 1 7.4
10 1 1 1 0 9.8 0 4.4

termination certificates. In such cases, R-TERMINATOR would typically choose as a
ranking function a variable “x”, where a statement such as “x = x - 1” had been mod-
ified to “x = x - inc” and “inc” was initialized to 1 on some but not all paths through
the loop. R-TERMINATOR would only discover later in its analysis, after an expensive
safety query, that “x” need not always decrease. In contrast, TREX did not choose “x”
as a ranking function in this case because it never considers the concrete values of the
“inc” variables while trying to find a ranking function. We believe that the difference in
performance between TREX and R-TERMINATOR would increase for when applied to
larger programs containing bugs as described above. This is because it typically takes
less time to answer a non-termination query than it does safety query, as the former is a
local property of a loop while the latter is a global property of a program.

int x1,x2, ..., xn;
int d1,d2, ..., dn;
d1 = d2 = ... = dn = 1;

while(x1 > 0 && x2 > 0
&& ... && xn > 0) {

if(*) x1 = x1 - d1;
else if(*) x2 = x2 - d2;
...
else xn = xn - dn;

}

n TREX #NT #TC Num.
Time (s) Alts.

1 9.9 1 1 2
2 11.9 2 2 4
3 27.7 3 3 6
4 97.4 4 4 8
5 396.6 5 5 10

(a) (b)

Fig. 6. (a) A family of loops requiring significant alternation to analyze. (b) TREX results.

A Micro-benchmark Forcing Alternation. We evaluated the performance of TREX

when analyzing loops for which multiple alternations are required to find a proof of
termination or a bug. Consider the class of loops defined in Fig. 6. Each value of n
defines a loop. To prove such a loop terminating, TREX must perform 2n alternations
between searching for an LLRF to prove the loop terminating and searching for a PRS
to prove the loop non-terminating. The results of applying TREX to the loops defined
by n ∈ [1, 5] are given in Fig. 6(b). TREX found a proof of termination in each case.
The results indicate that alternation between the LLRF search and PRS search scales
quite well for up to 6 alternations, but that performance begins to degrade rapidly when
the analysis requires more than 8 alternations. In practice, this is not an issue, as most
loops require less than 3 alternations to analyze.

Alternation for Termination 317

We also applied R-TERMINATOR to these programs, but R-TERMINATOR timed
out in each case. In its analysis, R-TERMINATOR under-approximates cycles in or-
der to produce the xi as candidates for proofs of termination. However, when R-
TERMINATOR applies a safety prover to validate these candidates, the safety prover
does not terminate. This is because the safety prover, based on predicate abstraction,
uses a weakest precondition operator to find predicates relevant to its analysis. In the
safety queries made by R-TERMINATOR, these predicates are not sufficient: the safety
prover needs an additional predicate di > 0 to establish that some xi decreases each
time through the loop. In contrast, TREX uses a non-termination prover to find that
di ≤ 0, and thus establishes that di > 0 as a loop invariant. Thus when TREX makes a
subsequent call to the safety prover, the call terminates.

We evaluated TREX’s ability to find bugs for such a loop. For the loop defined by
n = 5, we injected a fault that initialized d3 = 0. For this loop, TREX found the
resulting termination bug using 5 alternations in 22.2 seconds.

Table 3. Results of experiments over Windows Drivers. Time out was set to 1 hour.

Name LOC #Loops TREX Time (s) R-TERMINATOR Time (s)
Driver-1 0.8K 2 80 85
Driver-2 2.3K 4 1128 2400
Driver-3 3.0K 10 54 120
Driver-4 5.3K 17 945 T/O
Driver-5 6.0K 24 24 T/O
Driver-6 6.5K 16 68 62

5.2 Windows Drivers

We applied TREX to complete Windows Drivers to evaluate its ability to analyze pro-
grams of moderate size that manipulate pointers and contain multiple procedures. The
drivers were chosen randomly from the Microsoft’s Static Driver Verifier regression
suite. We could not directly compare TREX to R-TERMINATOR over the drivers used
in [10], as these were not available. The results of the evaluation are given in Table 3.
The drivers used are well-tested, and thus we did not find any bugs in them. However,
the results show that TREX is faster than R-TERMINATOR in most cases. Similar to the
micro-benchmarks presented in §5.1, this is because R-TERMINATOR produced many
more termination certificates, resulting in more safety queries.

6 Related Work

TREX brings together threads of work in proving termination that were disparate up
to now. Our work shares the most in common with TERMINATOR [10]. TERMINATOR

iteratively reasons about under-approximations of a program to construct a proof of ter-
mination. TREX simultaneously refines under and over-approximations of a program.

TREX relies on an analysis that proves termination of loops represented as a set of
guarded linear transformations of program variables. Many existing techniques prove
termination of such loops by constructing linear ranking functions [2,4,5,6,7,16]. Such
techniques are efficient, but can only be applied to a restricted class of loops and cannot

318 W.R. Harris et al.

reason about the contexts in which loops execute. In this work, we show how all such
techniques can be brought be bear in analyzing general programs, provided they can be
extended to generate counterexample traces on failure. In [15], we describe how to do
this based on the technique of [4].

The technique of [4], while constructing a termination proof, uses constraint solving
to find a loop invariant that is used to prove termination. It would be interesting to see
how this can be used inside TREX that additionally uses a safety prover to generate
invariants. We leave this as future work.

TREX also relies on techniques that prove that a given lasso does not terminate [14].
TREX applies such a technique to simultaneously search for counterexamples to termi-
nation and to guide the search for a proof of termination. TREX can also be used as a
search strategy for finding non-termination bugs. The search strategy proposed in [14]
simply enumerates potential cycles using symbolic execution. [8] gives a method for
deriving a sufficient precondition for a loop to terminate. However, this approach does
not lend well to refinement if the computed precondition is not met. TREX applies [14]
iteratively to derive a sufficient precondition for termination that is guaranteed to be a
true precondition of a loop.

Multiple safety provers [1,11,13] demonstrate that alternating between over and un-
der approximations is more effective for proving safety properties than an analysis
based exclusively on one or the other. For these provers, an over-approximation of the
program is an abstraction of its transition relation, and the under-approximation is a
set of tests through the program. The abstraction directs test generation, while the tests
guide which parts of the abstraction are refined. TREX demonstrates that the insight of
maintaining over and under approximations can be applied to prove termination prop-
erties of programs as well. However, for TREX, the over-approximation maintained is
an invariant for a loop under analysis, and the under-approximation is a set of con-
crete paths through the loop. The invariant directs what new paths through the loop are
considered, and the concrete paths guide the refinement of the loop invariant.

7 Conclusion

Safety provers that simultaneously refine under and over-approximations of a program
can often prove safety properties of programs effectively. In this work, we have shown
that the same refinement scheme can be applied to prove termination properties of pro-
grams. We derived an analysis based on this principle, implemented it, and applied it
to a set of termination analysis benchmarks and real-world systems code. Our results
demonstrate that alternation between approximations significantly improves the effec-
tiveness and performance of termination analysis.

References

1. Beckman, N.E., Nori, A.V., Rajamani, S.K., Simmons, R.J.: Proofs from tests. In: ISSTA,
pp. 3–14 (2008)

2. Berdine, J., Chawdhary, A., Cook, B., Distefano, D., O’Hearn, P.: Variance analyses from
invariance analyses. In: POPL, pp. 211–224. ACM, New York (2007)

Alternation for Termination 319

3. Berdine, J., Cook, B., Distefano, D., O’Hearn, P.W.: Automatic termination proofs for pro-
grams with shape-shifting heaps. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144,
pp. 386–400. Springer, Heidelberg (2006)

4. Bradley, A.R., Manna, Z., Sipma, H.B.: Linear ranking with reachability. In: Etessami, K.,
Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 491–504. Springer, Heidelberg
(2005)

5. Bradley, A.R., Manna, Z., Sipma, H.B.: The polyranking principle. In: Caires, L., Italiano,
G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp.
1349–1361. Springer, Heidelberg (2005)

6. Bradley, A.R., Manna, Z., Sipma, H.B.: Termination analysis of integer linear loops. In:
Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 488–502. Springer,
Heidelberg (2005)

7. Chawdhary, A., Cook, B., Gulwani, S., Sagiv, M., Yang, H.: Ranking abstractions. In:
Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 148–162. Springer, Heidelberg
(2008)

8. Cook, B., Gulwani, S., Lev-Ami, T., Rybalchenko, A., Sagiv, M.: Proving conditional termi-
nation. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 328–340. Springer,
Heidelberg (2008)

9. Cook, B., Podelski, A., Rybalchenko, A.: Abstraction refinement for termination. In: Hankin,
C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 87–101. Springer, Heidelberg (2005)

10. Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs for systems code. In: PLDI, pp.
415–426 (2006)

11. Godefroid, P., Nori, A.V., Rajamani, S.K., Tetali, S.D.: Compositional must program analy-
sis: Unleashing the power of alternation. In: POPL, pp. 43–56 (2010)

12. Gotsman, A., Cook, B., Parkinson, M., Vafeiadis, V.: Proving that non-blocking algorithms
don’t block. In: POPL, pp. 16–28 (2009)

13. Gulavani, B.S., Henzinger, T.A., Kannan, Y., Nori, A.V., Rajamani, S.K.: SYNERGY: a new
algorithm for property checking. In: FSE, pp. 117–127 (2006)

14. Gupta, A., Henzinger, T.A., Majumdar, R., Rybalchenko, A., Xu, R.-G.: Proving non-
termination. In: POPL, pp. 147–158 (2008)

15. Harris, W.R., Lal, A., Nori, A.V., Rajamani, S.K.: Alternation for Termination. Technical
Report MSR-TR-2010-61, Microsoft Research India (May 2010)

16. Tiwari, A.: Termination of linear programs. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS,
vol. 3114, pp. 70–82. Springer, Heidelberg (2004)

Interprocedural Analysis with Lazy Propagation

Simon Holm Jensen1,�, Anders Møller1,�,��, and Peter Thiemann2

1 Aarhus University, Denmark
{simonhj,amoeller}@cs.au.dk
2 Universität Freiburg, Germany

thiemann@informatik.uni-freiburg.de

Abstract. We propose lazy propagation as a technique for flow- and
context-sensitive interprocedural analysis of programs with objects and
first-class functions where transfer functions may not be distributive. The
technique is described formally as a systematic modification of a variant
of the monotone framework and its theoretical properties are shown. It
is implemented in a type analysis tool for JavaScript where it results in
a significant improvement in performance.

1 Introduction

With the increasing use of object-oriented scripting languages, such as JavaScript,
program analysis techniques are being developed as an aid to the programmers [7,
8, 29, 27, 2, 9]. Although programs written in such languages are often relatively
small compared to typical programs in other languages, their highly dynamic
nature poses difficulties to static analysis. In particular, JavaScript programs
involve complex interplays between first-class functions, objects with modifiable
prototype chains, and implicit type coercions that all must be carefully modeled
to ensure sufficient precision.

While developing a program analysis for JavaScript [14] aiming to statically
infer type information we encountered the following challenge: How can we obtain
a flow- and context-sensitive interprocedural dataflow analysis that accounts for
mutable heap structures, supports objects and first-class functions, is amenable
to non-distributive transfer functions, and is efficient and precise? Various di-
rections can be considered. First, one may attempt to apply the classical mono-
tone framework [18] as a whole-program analysis with an iterative fixpoint al-
gorithm, where function call and return flow is treated as any other dataflow.
This approach turns out to be unacceptable: the fixpoint algorithm requires
too many iterations, and precision may suffer because spurious dataflow ap-
pears via interprocedurally unrealizable paths. Another approach is to apply the
IFDS technique [23], which eliminates those problems. However, it is restricted
to distributive analyses, which makes it inapplicable in our situation. A further

� Supported by The Danish Research Council for Technology and Production,
grant no. 274-07-0488.

�� Corresponding author.

R. Cousot and M. Martel (Eds.): SAS 2010, LNCS 6337, pp. 320–339, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Interprocedural Analysis with Lazy Propagation 321

consideration is the functional approach [26] which models each function in the
program as a partial summary function that maps input dataflow facts to out-
put dataflow facts and then uses this summary function whenever the function is
called. However, with a dataflow lattice as large as in our case it becomes difficult
to avoid reanalyzing each function a large number of times. Although there are
numerous alternatives and variations of these approaches, we have been unable
to find one in the literature that adequately addresses the challenge described
above. Much effort has also been put into more specialized analyses, such as
pointer analysis [10], however it is far from obvious how to generalize that work
to our setting.

As an introductory example, consider this fragment of a JavaScript program:

function Person(n) { this.setName(n); }
Person.prototype.setName = function(n) { this.name = n; }
function Student(n,s) { Person.call(this, n);

this.studentid = s.toString(); }
Student.prototype = new Person;
var x = new Student("John Doe", 12345);
x.setName("John Q. Doe");

The code defines two “classes” with constructors Person and Student. Person
has a method setName via its prototype object, and Student inherits setName
and defines an additional field studentid. The call statement in Student in-
vokes the super class constructor Person.

Analyzing the often intricate flow of control and data in such programs re-
quires detailed modeling of points-to relations among objects and functions and
of type coercion rules. TAJS is a whole-program analysis based on the monotone
framework that follows this approach, and our first implementation is capable
of analyzing complex properties of many JavaScript programs. However, our
experiments have shown a considerable redundancy of computation during the
analysis that causes simple functions to be analyzed a large number of times.
If, for example, the setName method is called from other locations in the pro-
gram, then the slightest change of any abstract state appearing at any call site
of setName during the analysis would cause the method to be reanalyzed, even
though the changes may be entirely irrelevant for that method. In this paper,
we propose a technique for avoiding much of this redundancy while preserving,
or even improving, the precision of the analysis. Although our main applica-
tion is type analysis for JavaScript, we believe the technique is more generally
applicable to analyses for object-oriented languages.

The main idea is to introduce a notion of “unknown” values for object fields
that are not accessed within the current function. This prevents much irrelevant
information from being propagated during the fixpoint computation. The anal-
ysis initially assumes that no fields are accessed when flow enters a function.
When such an unknown value is read, a recovery operation is invoked to go back
through the call graph and propagate the correct value. By avoiding to recover
the same values repeatedly, the total amortized cost of recovery is never higher

322 S.M. Jensen, A. Møller, and P. Thiemann

than that of the original analysis. With large abstract states, the mechanism
makes a noticeable difference to the analysis performance.

Lazy propagation should not be confused with demand-driven analysis [13].
The goal of the latter is to compute the results of an analysis only at specific pro-
gram points thereby avoiding the effort to compute a global result. In contrast,
lazy propagation computes a model of the state for each program point.

The contributions of this paper can be summarized as follows:

– We propose an ADT-based adaptation of the monotone framework to pro-
gramming languages with mutable heap structures and first-class functions
and exhibit some of its limitations regarding precision and performance.

– We describe a systematic modification of the framework that introduces
lazy propagation. This novel technique propagates dataflow facts “by need”
in an iterative fixpoint algorithm. We provide a formal description of the
method to reason about its properties and to serve as a blueprint for an
implementation.

– The lazy propagation technique is experimentally validated: It has been im-
plemented into our type analysis for JavaScript, TAJS [14], resulting in a
significant improvement in performance.

In the full version of the paper [15], we also prove termination, relate lazy propa-
gation with the basic framework—showing that precision does not decrease, and
sketch a soundness proof of the analysis.

2 A Basic Analysis Framework

Our starting point is the classical monotone framework [18] tailored to pro-
gramming languages with mutable heap structures and first-class functions. The
mutable state consists of a heap of objects. Each object is a map from field
names to values, and each value is either a reference to an object, a function, or
some primitive value. Note that this section contains no new results, but it sets
the stage for presenting our approach in Section 3.

2.1 Analysis Instances

Given a program Q, an instance of the monotone framework for an analysis of
Q is a tuple A = (F, N, L, P, C, n0, c0, Base, T) consisting of:

F : the set of functions in Q;
N : the set of primitive statements (also called nodes) in Q;
L: a set of object labels in Q;
P : a set of field names (also called properties) in Q;
C: a set of abstract contexts, which are used for context sensitivity;
n0 ∈ N and c0 ∈ C: an initial statement and context describing the entry of Q;
Base: a base lattice for modeling primitive values, such as integers or booleans;

Interprocedural Analysis with Lazy Propagation 323

T : C ×N → AnalysisLattice → AnalysisLattice: a monotone transfer function for
each primitive statement, where AnalysisLattice is a lattice derived from the
above information as detailed in Section 2.2.

Each of the sets must be finite and the Base lattice must have finite height. The
primitive statements are organized into intraprocedural control flow graphs [19],
and the set of object labels is typically determined by allocation-site abstrac-
tion [16, 5].

The notation fun(n) ∈ F denotes the function that contains the statement
n ∈ N , and entry(f) and exit(f) denote the unique entry statement and exit
statement, respectively, of the function f ∈ F . For a function call statement
n ∈ N , after (n) denotes the statement being returned to after the call. A location
is a pair (c, n) of a context c ∈ C and a statement n ∈ N .

2.2 Derived Lattices

An analysis instance gives rise to a collection of derived lattices. In the following,
each function space is ordered pointwise and each powerset is ordered by inclu-
sion. For a lattice X , the symbols ⊥X , &X , and X denote the bottom element
(representing the absence of information), the partial order, and the least upper
bound operator (for merging information). We omit the X subscript when it is
clear from the context.

An abstract value is described by the lattice Value as a set of object labels, a
set of functions, and an element from the base lattice:

Value = P(L)× P(F)× Base

An abstract object is a map from field names to abstract values:

Obj = P → Value

An abstract state is a map from object labels to abstract objects:

State = L → Obj

Call graphs are described by this powerset lattice:

CallGraph = P(C ×N × C × F)

In a call graph g ∈ CallGraph, we interpret (c1, n1, c2, f2) ∈ g as a potential
function call from statement n1 in context c1 to function f2 in context c2.

Finally, an element of AnalysisLattice provides an abstract state for each con-
text and primitive statement (in a forward analysis, the program point immedi-
ately before the statement), combined with a call graph:

AnalysisLattice = (C ×N → State)× CallGraph

In practice, an analysis may involve additional lattice components such as an
abstract stack or extra information associated with each abstract object or field.
We omit such components to simplify the presentation as they are irrelevant to
the features that we focus on here. Our previous paper [14] describes the full
lattices used in our type analysis for JavaScript.

324 S.M. Jensen, A. Møller, and P. Thiemann

solve
(
A
)

where A = (F, N, L, P, C, n0, c0, Base, T):
a := ⊥AnalysisLattice

W := {(c0, n0)}
while W = ∅ do

select and remove (c, n) from W
Ta(c, n)

end while
return a

Fig. 1. The worklist algorithm. The worklist contains locations, i.e., pairs of a context
and a statement. The operation Ta(c, n) computes the transfer function for (c, n) on
the current analysis lattice element a and updates a accordingly. Additionally, it may
add new entries to the worklist W . The transfer function for the initial location (c0, n0)

is responsible for creating the initial abstract state.

2.3 Computing the Solution

The solution to A is the least element a ∈ AnalysisLattice that solves these
constraints:

∀c ∈ C, n ∈ N : T (c, n)(a) & a

Computing the solution to the constraints involves fixpoint iteration of the trans-
fer functions, which is typically implemented with a worklist algorithm as the
one presented in Figure 1. The algorithm maintains a worklist W ⊆ C × N
of locations where the abstract state has changed and thus the transfer func-
tion should be applied. Lattice elements representing functions, in particular
a ∈ AnalysisLattice, are generally considered as mutable and we use the notation
Ta(c, n) for the assignment a := T (c, n)(a). As a side effect, the call to Ta(c, n)
is responsible for adding entries to the worklist W , as explained in Section 2.4.
This slightly unconventional approach to describing fixpoint iteration simplifies
the presentation in the subsequent sections.

Note that the solution consists of both the computed call graph and an ab-
stract state for each location. We do not construct the call graph in a prelim-
inary phase because the presence of first-class functions implies that dataflow
facts and call graph information are mutually dependent (as evident from the
example program in Section 1).

This fixpoint algorithm leaves two implementation choices: the order in which
entries are removed from the worklist W , which can greatly affect the number of
iterations needed to reach the fixpoint, and the representation of lattice elements,
which can affect both time and memory usage. These choices are, however, not
the focus of the present paper (see, e.g. [17, 19, 12, 3, 28]).

2.4 An Abstract Data Type for Transfer Functions

To precisely explain our modifications of the framework in the subsequent sec-
tions, we treat AnalysisLattice as an imperative ADT (abstract data type) [20]
with the following operations:

Interprocedural Analysis with Lazy Propagation 325

– getfield : C ×N × L× P → Value
– getcallgraph : () → CallGraph
– getstate : C ×N → State
– propagate : C ×N × State → ()
– funentry : C ×N × C × F × State → ()
– funexit : C ×N × C × F × State → ()

We let a ∈ AnalysisLattice denote the current, mutable analysis lattice element.
The transfer functions can only access a through these operations.

The operation getfield(c, n, �, p) returns the abstract value of the field p in the
abstract object � at the entry of the primitive statement n in context c. In the
basic framework, getfield performs a simple lookup, without any side effects on
the analysis lattice element:

a.getfield(c ∈ C, n ∈ N, � ∈ L, p ∈ P):
return u(�)(p) where (m, _) = a and u = m(c, n)

The getcallgraph operation selects the call graph component of the analysis lat-
tice element:

a.getcallgraph():
return g where (_, g) = a

Transfer functions typically use the getcallgraph operation in combination with
the funexit operation explained below. Moreover, the getcallgraph operation
plays a role in the extended framework presented in Section 3.

The getstate operation returns the abstract state at a given location:

a.getstate(c ∈ C, n ∈ N):
return m(c, n) where (m, _) = a

The transfer functions must not read the field values from the returned abstract
state (for that, the getfield operation is to be used). They may construct param-
eters to the operations propagate , funentry, and funexit by updating a copy of
the returned abstract state.

The transfer functions must use the operation propagate(c, n, s) to pass in-
formation from one location to another within the same function (excluding re-
cursive function calls). As a side effect, propagate adds the location (c, n) to the
worklist W if its abstract state has changed. In the basic framework, propagate
is defined as follows:

a.propagate(c ∈ C, n ∈ N , s ∈ State):
let (m, g) = a
if s �& m(c, n) then

m(c, n) := m(c, n) s
W := W ∪ {(c, n)}

end if

The operation funentry(c1, n1, c2, f2, s) models function calls in a forward analy-
sis. It modifies the analysis lattice element a to reflect the possibility of a function

326 S.M. Jensen, A. Møller, and P. Thiemann

call from a statement n1 in context c1 to a function entry statement entry(f2) in
context c2 where s is the abstract state after parameter passing. (With languages
where parameters are passed via the stack, which we ignore here, the lattice is
augmented accordingly.) In the basic framework, funentry adds the call edge
from (c1, n1) to (c2, f2) and propagates s into the abstract state at the function
entry statement entry(f2) in context c2:

a.funentry(c1 ∈ C, n1 ∈ N , c2 ∈ C, f2 ∈ F , s ∈ State):
g := g ∪ {(c1, n1, c2, f2)} where (_, g) = a
a.propagate(c2, entry(f2), s)
a.funexit(c1, n1, c2, f2, m(c2, exit(f2)))

Adding a new call edge also triggers a call to funexit to establish dataflow from
the function exit to the successor of the new call site.

The operation funexit(c1, n1, c2, f2, s) is used for modeling function returns.
It modifies the analysis lattice element to reflect the dataflow of s from the exit
of a function f2 in callee context c2 to the successor of the call statement n1

with caller context c1. The basic framework does so by propagating s into the
abstract state at the latter location:

a.funexit(c1 ∈ C, n1 ∈ N , c2 ∈ C, f2 ∈ F , s ∈ State):
a.propagate(c1, after (n1), s)

The parameters c2 and f2 are not used in the basic framework; they will be used
in Section 3. The transfer functions obtain the connections between callers and
callees via the getcallgraph operation explained earlier. If using an augmented
lattice where the call stack is also modeled, that component would naturally be
handled differently by funexit simply by copying it from the call location (c1, n1),
essentially as local variables are treated in, for example, IFDS [23].

This basic framework is sufficiently general as a foundation for many analyses
for object-oriented programming languages, such as Java or C#, as well as for
object-based scripting languages like JavaScript as explained in Section 4. At
the same time, it is sufficiently simple to allow us to precisely demonstrate the
problems we attack and our solution in the following sections.

2.5 Problems with the Basic Analysis Framework

The first implementation of TAJS, our program analysis for JavaScript, is based
on the basic analysis framework. Our initial experiments showed, perhaps not
surprisingly, that many simple functions in our benchmark programs were ana-
lyzed over and over again (even for the same calling contexts) until the fixpoint
was reached.

For example, a function in the richards.js benchmark from the V8 collection
was analyzed 18 times when new dataflow appeared at the function entry:

TaskControlBlock.prototype.markAsRunnable = function () {
this.state = this.state | STATE_RUNNABLE;

};

Interprocedural Analysis with Lazy Propagation 327

Most of the time, the new dataflow had nothing to do with the this object or the
STATE_RUNNABLE variable. Although this particular function body is very short,
it still takes time and space to analyze it and similar situations were observed
for more complex functions and in other benchmark programs.

In addition to this abundant redundancy, we observed – again not
surprisingly – a significant amount of spurious dataflow resulting from inter-
procedurally invalid paths. For example, if the function above is called from
two different locations, with the same calling context, their entire heap struc-
tures (that is, the State component in the lattice) become joined, thereby losing
precision.

Another issue we noticed was time and space required for propagating the
initial state, which consists of 161 objects in the case of JavaScript. These objects
are mutable and the analysis must account for changes made to them by the
program. Since the analysis is both flow- and context-sensitive, a typical element
of AnalysisLattice carries a lot of information even for small programs.

Our first version of TAJS applied two techniques to address these issues: (1)
Lattice elements were represented in memory using copy-on-write to make their
constituents shared between different locations until modified. (2) The lattice
was extended to incorporate a simple effect analysis called maybe-modified : For
each object field, the analysis would keep track of whether the field might have
been modified since entering the current function. At function exit, field values
that were definitely not modified by the function would be replaced by the
value from the call site. As a consequence, the flow of unmodified fields was
not affected by function calls. Although these two techniques are quite effective,
the lazy propagation approach that we introduce in the next section supersedes
the maybe-modified technique and renders copy-on-write essentially superfluous.
In Section 4 we experimentally compare lazy propagation with both the basic
framework and the basic framework extended with the copy-on-write and maybe-
modified techniques.

3 Extending the Framework with Lazy Propagation

To remedy the shortcomings of the basic framework, we propose an extension
that can help reducing the observed redundancy and the amount of informa-
tion being propagated by the transfer functions. The key idea is to ensure that
the fixpoint solver propagates information “by need”. The extension consists of
a systematic modification of the ADT representing the analysis lattice. This
modification implicitly changes the behavior of the transfer functions without
touching their implementation.

3.1 Modifications of the Analysis Lattice

In short, we modify the analysis lattice as follows:

1. We introduce an additional abstract value, unknown. Intuitively, a field p of
an object has this value in an abstract state associated with some location in

328 S.M. Jensen, A. Møller, and P. Thiemann

a function f if the value of p is not known to be needed (that is, referenced)
in f or in a function called from f .

2. Each call edge is augmented with an abstract state that captures the data
flow along the edge after parameter passing, such that this information is
readily available when resolving unknown field values.

3. A special abstract state, none, is added, for describing absent call edges and
locations that may be unreachable from the program entry.

More formally, we modify three of the sub-lattices as follows:

Obj = P →
(
Value↓unknown

)
CallGraph = C ×N × C × F → (State↓none)

AnalysisLattice =
(
C ×N → (State↓none)

)
× CallGraph

Here, X↓y means the lattice X lifted over a new bottom element y. In a call graph
g ∈ CallGraph in the original lattice, the presence of an edge (c1, n1, c2, f2) ∈ g
is modeled by g′(c1, n1, c2, f2) �= none for the corresponding call graph g′ in the
modified lattice. Notice that ⊥State is now the function that maps all object
labels and field names to unknown, which is different from the element none.

3.2 Modifications of the Abstract Data Type Operations

Before we describe the systematic modifications of the ADT operations we mo-
tivate the need for an auxiliary operation, recover , on the ADT:

recover : C ×N × L× P → Value

Suppose that, during the fixpoint iteration, a transfer function Ta(c, n) invokes
a.getfield(c, n, �, p) with the result unknown. This result indicates the situation
that the field p of an abstract object � is referenced at the location (c, n), but
the field value has not yet been propagated to this location due to the lazy
propagation. The recover operation can then compute the proper field value by
performing a specialized fixpoint computation to propagate just that field value
to (c, n). We explain in Section 3.3 how recover is defined.

The getfield operation is modified such that it invokes recover if the desired
field value is unknown, as shown in Figure 2. The modification may break mono-
tonicity of the transfer functions, however, the analysis still produces the correct
result [15].

Similarly, the propagate operation needs to be modified to account for the lat-
tice element none and for the situation where unknown is joined with an ordinary
element. The latter is accomplished by using recover whenever this situation oc-
curs. The resulting operation propagate ′ is shown in Figure 3.

We then modify funentry(c1, n1, c2, f2, s) such that the abstract state s is
propagated “lazily” into the abstract state at the primitive statement entry(f2)
in context c2. Here, laziness means that every field value that, according to a,
is not referenced within the function f2 in context c2 gets replaced by unknown
in the abstract state. Additionally, the modified operation records the abstract

Interprocedural Analysis with Lazy Propagation 329

a.getfield ′(c ∈ C, n ∈ N , 	 ∈ L, p ∈ P):
if m(c, n) = none where (m, _) = a then

v := a.getfield(c, n, 	, p)

if v = unknown then
v := a.recover (c, n, 	, p)

end if
return v

else
return ⊥Value

end if

Fig. 2. Algorithm for getfield ′(c, n, 	, p). This modified version of getfield invokes
recover in case the desired field value is unknown. If the state is none according to
a, the operation simply returns ⊥Value.

a.propagate ′(c ∈ C, n ∈ N , s ∈ State):
let (m,g) = a and u = m(c, n)

s′ := s
if u = none then

for all 	 ∈ L, p ∈ P do
if u()(p) = unknown∧ s()(p) = unknown then

u()(p) := a.recover (c, n, 	, p)

else if u()(p) = unknown ∧ s()(p) = unknown then
s′()(p) := a.recover (c, n, 	, p)

end if
end for

end if
a.propagate(c, n, s′)

Fig. 3. Algorithm for propagate ′(c, n, s). This modified version of propagate takes into
account that field values may be unknown in both a and s. Specifically, it uses recover
to ensure that the invocation of propagate in the last line never computes the least
upper bound of unknown and an ordinary field value. The treatment of unknown values
in s assumes that s is recoverable with respect to the current location (c, n). If the
abstract state at (c, n) is none (the least element), then that gets updated to s.

state at the call edge as required in the modified CallGraph lattice. The resulting
operation funentry ′ is defined in Figure 4. (Without loss of generality, we assume
that the statement at exit(f2) returns to the caller without modifying the state.)
As consequence of the modification, unknown field values get introduced into the
abstract states at function entries.

The funexit operation is modified such that every unknown field value appear-
ing in the abstract state being returned is replaced by the corresponding field
value from the call edge, as shown in Figure 5. In JavaScript, entering a function
body at a functions call affects the heap, which is the reason for using the state
from the call edge rather than the state from the call statement. If we extended
the lattice to also model the call stack, then that component would naturally be
recovered from the call statement rather than the call edge.

330 S.M. Jensen, A. Møller, and P. Thiemann

a.funentry ′(c1 ∈ C, n1 ∈ N , c2 ∈ C, f2 ∈ F , s ∈ State):
let (m,g) = a and u = m(c2, entry(f2))

// update the call edge
g(c1, n1, c2, f2) := g(c1, n1, c2, f2) � s
// introduce unknown field values
s′ := ⊥State

if u = none then
for all 	 ∈ L, p ∈ P do

if u()(p) = unknown then
// the field has been referenced
s′()(p) := s()(p)

end if
end for

end if
// propagate the resulting state into the function entry
a.propagate ′(c2, entry(f2), s

′)
// propagate flow for the return edge, if any is known already
let t = m(c2, exit(f2))

if t = none then
a.funexit ′(c1, n1, c2, f2, t)

end if

Fig. 4. Algorithm for funentry ′(c1, n1, c2, f2, s). This modified version of funentry
“lazily” propagates s into the abstract state at entry(f2) in context c2. The abstract
state s′ is unknown for all fields that have not yet been referenced by the function being
called according to u (recall that ⊥State maps all fields to unknown).

a.funexit ′(c1 ∈ C, n1 ∈ N , c2 ∈ C, f2 ∈ F , s ∈ State):
let (_, g) = a and ug = g(c1, n1, c2, f2)

s′ := ⊥State

for all 	 ∈ L, p ∈ P do
if s()(p) = unknown then

// the field has not been accessed, so restore its value from the call edge state
s′()(p) := ug()(p)

else
s′()(p) := s()(p)

end if
end for
a.propagate ′(c1, after(n1), s

′)

Fig. 5. Algorithm for funexit ′(c1, n1, c2, f2, s). This modified version of funexit restores
field values that have not been accessed within the function being called, using the value
from before the call. It then propagates the resulting state as in the original operation.

Figure 6 illustrates the dataflow at function entries and exits as modeled
by the funexit ′ and funentry ′ operations. The two nodes n1 and n2 represent
function call statements that invoke the function f . Assume that the value of
the field p in the abstract object �, denoted �.p, is v1 at n1 and v2 at n2 where
v1, v2 ∈ Value. When dataflow first arrives at entry(f) the funentry ′ operation
sets �.p to unknown. Assuming that f does not access �.p it remains unknown

Interprocedural Analysis with Lazy Propagation 331

n1

after (n1)

ug1 ug2

n2

after (n2)

entry(f)

exit(f)

f

Fig. 6. A function f being called from two different statements, n1 and n2 appearing
in other functions (for simplicity, all with the same context c). The edges indicate
dataflow, and each bullet corresponds to an element of State with ug1 = g(c, n1, c, f)

and ug2 = g(c, n2, c, f) where g ∈ CallGraph .

throughout f , so funexit ′ can safely restore the original value v1 by merging the
state from exit(f) with ug1 (the state recorded at the call edge) at after (n1).
Similarly for the other call site, the value v2 will be restored at after(n2). Thus,
the dataflow for non-referenced fields respects the interprocedurally valid paths.
This is in contrast to the basic framework where the value of �.p would be v1 v2

at both after (n1) and after(n2). Thereby, the modification of funexit may –
perhaps surprisingly – cause the resulting analysis solution to be more precise
than in the basic framework even for non-unknown field values. If a statement in
f writes a value v′ to �.p it will no longer be unknown, so v′ will propagate to
both after(n1) and after (n2). If the transfer function of a statement in f invokes
getfield ′ to obtain the value of �.p while it is unknown, it will be recovered by
considering the call edges into f , as explained in Section 3.3.

The getstate operation is not modified. A transfer function cannot notice the
fact that the returned State elements may contain unknown field values, because
it is not permitted to read a field value through such a state.

Finally, the getcallgraph operation requires a minor modification to ensure
that its output has the same type although the underlying lattice has changed:

a.getcallgraph ′():
return {(c1, n1, c2, f2) | g(c1, n1, c2, f2) �= none} where (_, g) = a

To demonstrate how the lazy propagation framework manages to avoid certain
redundant computations, consider again the markAsRunnable function in Sec-
tion 2.5. Suppose that the analysis first encounters a call to this function with
some abstract state s. This call triggers the analysis of the function body, which
accesses only a few object fields within s. The abstract state at the entry location
of the function is unknown for all other fields. If new flow subsequently arrives
via a call to the function with another abstract state s′ where s & s′, the intro-
duction of unknown values ensures that the function body is only reanalyzed if
s′ differs from s at the few relevant fields that are not unknown.

332 S.M. Jensen, A. Møller, and P. Thiemann

3.3 Recovering Unknown Field Values

We now turn to the definition of the auxiliary operation recover . It gets invoked
by getfield ′ and propagate ′ whenever an unknown element needs to be replaced
by a proper field value. The operation returns the desired field value but also,
as a side effect, modifies the relevant abstract states for function entry locations
in a.

The key observation for defining recover(c, n, �, p) where c ∈ C, n ∈ N , � ∈ L,
and p ∈ P is that unknown is only introduced in funentry ′ and that each call
edge – very conveniently – records the abstract state just before the ordinary field
value is changed into unknown. Thus, the operation needs to go back through
the call graph and recover the missing information. However, it only needs to
modify the abstract states that belong to function entry statements.

Recovery is a two phase process. The first phase constructs a directed multi-
rooted graph G the nodes of which are a subset of C ×F . It is constructed from
the call graph in a backward manner starting from (c, n) as the smallest graph
satisfying the following two constraints, where (m, g) = a:

– If u(�)(p) = unknown where u = m(c, entry(fun(n)))
then G contains the node (c, fun(n)).

– For each node (c2, f2) in G and for each (c1, n1) where g(c1, n1, c2, f2) �= none:
• If ug(�)(p) = unknown ∧ u1(�)(p) = unknown where ug = g(c1, n1, c2, f2)

and u1 = m(c1, entry(fun(n1))) then G contains the node (c1, fun(n1))
with an edge to (c2, f2),

• otherwise, (c2, f2) is a root of G.

The resulting graph is essentially a subgraph of the call graph such that every
node (c′, f ′) in G satisfies u(�)(p) = unknown where u = m(c′, entry(f ′)). A node
is a root if at least one of its incoming edges contributes with a non-unknown
value. Notice that root nodes may have incoming edges.

The second phase is a fixpoint computation over G:

// recover the abstract value at the roots of G
for each root (c′, f ′) of G do

let u′ = m(c′, entry(f ′))
for all (c1, n1) where g(c1, n1, c

′, f ′) �= none do
let ug = g(c1, n1, c

′, f ′) and u1 = m(c1, entry(fun(n1)))
if ug(�)(p) �= unknown then

u′(�)(p) := u′(�)(p) ug(�)(p)
else if u1(�)(p) �= unknown then

u′(�)(p) := u′(�)(p) u1(�)(p)
end if

end for
end for
// propagate throughout G at function entry nodes
S := the set of roots of G
while S �= ∅ do

select and remove (c′, f ′) from S

Interprocedural Analysis with Lazy Propagation 333

let u′ = m(c′, entry(f ′))
for each successor (c2, f2) of (c′, f ′) in G do

let u2 = m(c2, entry(f2))
if u′(�)(p) �& u2(�)(p) then

u2(�)(p) := u2(�)(p) u′(�)(p)
add (c2, f2) to S

end if
end for

end while

This phase recovers the abstract value at the roots of G and then propagates
the value through the nodes of G until a fixpoint is reached. Although recover
modifies abstract states in this phase, it does not modify the worklist. After this
phase, we have u(�)(p) �= unknown where u = m(c′, entry(f ′)) for each node
(c′, f ′) in G. (Notice that the side effects on a only concern abstract states at
function entry statements.) In particular, this holds for (c, fun(n)), so when
recover(c, n, �, p) has completed the two phases, it returns the desired value
u(�)(p) where u = m(c, entry(fun(n))).

Notice that the graph G is empty if u(�)(p) �= unknown where u = m(c,
entry(fun(n))) (see the first of the two constraints defining G). In this case, the
desired field has already been recovered, the second phase is effectively skipped,
and u(�)(p) is returned immediately.

Figure 7 illustrates an example of interprocedural dataflow among four func-
tions. (This example ignores dataflow for function returns and assumes a fixed
calling context c.) The statements write1 and write2 write to a field �.p, and
read reads from it. Assume that the analysis discovers all the call edges before
visiting read . In that case, �.p will have the value unknown when entering f2 and
f3, which will propagate to f4. The transfer function for read will then invoke
getfield ′, which in turn invokes recover . The graph G will be constructed with
three nodes: (c, f2), (c, f3), and (c, f4) where (c, f2) and (c, f3) are roots and
have edges to (c, f4). The second phase of recover will replace the unknown value
of �.p at entry(f2) and entry(f2) by its proper value stored at the call edges and
then propagate that value to entry(f3) and finally return it to getfield ′. Notice
that the value of �.p at, for example, the call edges, remains unknown. How-
ever, if dataflow subsequently arrives via transfer functions of other statements,
those unknown values may be replaced by ordinary values. Finally, note that
this simple example does not require fixpoint iteration within recover , however
that becomes necessary when call graphs contain cycles (resulting from programs
with recursive function calls).

The modifications only concern the AnalysisLattice ADT, in terms of which all
transfer functions of an analysis are defined. The transfer functions themselves
are not changed. Although invocations of recover involve traversals of parts of
the call graph, the main worklist algorithm (Figure 1) requires no modifications.

334 S.M. Jensen, A. Møller, and P. Thiemann

entry(f2)

call2

entry(f3)

call3

write1

call1

entry(f4)

read

write2

f1

f2

f4

f3

Fig. 7. Fragments of four functions, f1 . . . f4. As in Figure 6, edges indicate dataflow
and bullets correspond to elements of State. The statements write1 and write2 write to
a field 	.p, and read reads from it. The recover operation applied to the read statement
and 	.p will ensure that values written at write1 and write2 will be read at the read
statements, despite the possible presence of unknown values.

4 Implementation and Experiments

To examine the impact of lazy propagation on analysis performance, we ex-
tended the Java implementation of TAJS, our type analyzer for JavaScript [14],
by systematically applying the modifications described in Section 3. As usual in
dataflow analysis, primitive statements are grouped into basic blocks. The im-
plementation focuses on the JavaScript language itself and the built-in library,
but presently excludes the DOM API, so we use the most complex benchmarks
from the V81 and SunSpider2 benchmark collections for the experiments.

Descriptions of other aspects of TAJS not directly related to lazy propaga-
tion may be found in the TAJS paper [14]. These include the use of recency

1 http://v8.googlecode.com/svn/data/benchmarks/v1/
2 http://www2.webkit.org/perf/sunspider-0.9/sunspider.html

Interprocedural Analysis with Lazy Propagation 335

Table 1. Performance benchmark results

Iterations Time (seconds) Memory (MB)
LOC Blocks basic basic+ lazy basic basic+ lazy basic basic+ lazy

richards.js 529 478 2663 2782 1399 5.6 4.6 3.8 11.05 6.4 3.7
benchpress.js 463 710 18060 12581 5097 33.2 13.4 5.4 42.02 24.0 7.8
delta-blue.js 853 1054 ∞ ∞ 63611 ∞ ∞ 136.7 ∞ ∞ 140.5
cryptobench.js 1736 2857 ∞ 43848 17213 ∞ 99.4 22.1 ∞ 127.9 42.8
3d-cube.js 342 545 7116 4147 2009 14.1 5.3 4.0 18.4 10.6 6.2
3d-raytrace.js 446 575 ∞ 30323 6749 ∞ 24.8 8.2 ∞ 16.7 10.1
crypto-md5.js 296 392 5358 1004 646 4.5 2.0 1.8 6.1 3.6 2.7
access-nbody.js 179 149 551 523 317 1.8 1.3 1.0 3.2 1.7 0.9

abstraction [4], which complicates the implementation, but does not change the
properties of the lazy propagation technique.

We compare three versions of the analysis: basic corresponds to the basic
framework described in Section 2; basic+ extends the basic version with the copy-
on-write and maybe-modified techniques discussed in Section 2.5, which is the
version used in [14]; and lazy is the new implementation using lazy propagation
(without the other extensions from the basic+ version).

Table 1 shows for each program, the number of lines of code, the number of ba-
sic blocks, the number of fixpoint iterations for the worklist algorithm (Figure 1),
analysis time (in seconds, running on a 3.2GHz PC), and memory consumption.
We use ∞ to denote runs that require more than 512MB of memory.

We focus on the time and space requirements for these experiments. Regarding
precision, lazy is in principle more precise than basic+, which is more precise
than basic. On these benchmark programs, however, the precision improvement
is insignificant with respect to the number of potential type related bugs, which
is the precision measure we have used in our previous work.

The experiments demonstrate that although the copy-on-write and maybe-
modified techniques have a significant positive effect on the resource require-
ments, lazy propagation leads to even better results. The results for richards.js
are a bit unusual as it takes more iterations in basic+ than in basic, however the
fixpoint is more precise in basic+.

The benchmark results demonstrate that lazy propagation results in a signif-
icant reduction of analysis time without sacrificing precision. Memory consump-
tion is reduced by propagating less information during the fixpoint computation
and fixpoints are reached in fewer iterations by eliminating a cause of redundant
computation observed in the basic framework.

5 Related Work

Recently, JavaScript and other scripting languages have come into the focus of
research on static program analysis, partly because of their challenging dynamic
nature. These works range from analysis for security vulnerabilities [29, 8] to
static type inference [7, 27, 1, 14]. We concentrate on the latter category, aiming
to develop program analyses that can compensate for the lack of static type

336 S.M. Jensen, A. Møller, and P. Thiemann

checking in these languages. The interplay of language features of JavaScript,
including first-class functions, objects with modifiable prototype chains, and
implicit type coercions, makes analysis a demanding task.

The IFDS framework by Reps, Horwitz, and Sagiv [23] is a powerful and
widely used approach for obtaining precise interprocedural analyses. It requires
the underlying lattice to be a powerset and the transfer functions to be dis-
tributive. Unfortunately, these requirements are not met by our type analysis
problem for dynamic object-oriented scripting languages. The more general IDE
framework also requires distributive transfer functions [25]. A connection to our
approach is that fields that are marked as unknown at function exits, and hence
have not been referenced within the function, are recovered from the call site in
the same way local variables are treated in IFDS.

Sharir and Pnueli’s functional approach to interprocedural analysis can be
phrased both with symbolic representations and in an iterative style [26], where
the latter is closer to our approach. With the complex lattices and transfer
functions that appear to be necessary in analyses for object-oriented scripting
languages, symbolic representations are difficult to work with, so TAJS uses the
iterative style and a relatively direct representation of lattice elements. Further-
more, the functional approach is expensive if the analysis lattice is large.

Our analysis framework encompasses a general notion of context sensitivity
through the C component of the analysis instances. Different instantiations of C
lead to different kinds of context sensitivity, including variations of the call-string
approach [26], which may also affect the quality of interprocedural analysis. We
leave the choice of C open here; TAJS currently uses a heuristic that distinguishes
call sites that have different values of this.

The introduction of unknown field values subsumes the maybe-modified tech-
nique that we used in the first version of TAJS [14]: a field whose value is unknown
is definitely not modified. Both ideas can be viewed as instances of side effect
analysis. Unlike, for example, the side effect analysis by Landi et al. [24] our
analysis computes the call graph on-the-fly and we exploit the information that
certain fields are found to be non-referenced for obtaining the lazy propagation
mechanism. Via this connection to side effect analysis, one may also view the
unknown field values as establishing a frame condition as in separation logic [21].

Combining call graph construction with other analyses is common in pointer
alias analysis with function pointers, for example in the work of Burke et al. [11].
That paper also describes an approach called deferred evaluation for increasing
analysis efficiency, which is specialized to flow insensitive alias analysis.

Lazy propagation is related to lazy evaluation (e.g., [22]) as it produces values
passed to functions on demand, but there are some differences. Lazy propagation
does not defer evaluation as such, but just the propagation of the values; it
applies not just to the parameters but to the entire state; and it restricts laziness
to data structures (values of fields).

Lazy propagation is different from demand-driven analysis [13]. Both ap-
proaches defer computation, but demand-driven analysis only computes results
for selected hot spots, whereas our goal is a whole-program analysis that infers

Interprocedural Analysis with Lazy Propagation 337

information for all program points. Other techniques for reducing the amount
of redundant computation in fixpoint solvers is difference propagation [6] and
use of interprocedural def-use chains [28]. It might be possible to combine those
techniques with lazy propagation, although they are difficult to apply to the
complex transfer functions that we have in type analysis for JavaScript.

6 Conclusion

We have presented lazy propagation as a technique for improving the perfor-
mance of interprocedural analysis in situations where existing methods, such as
IFDS or the functional approach, do not apply. The technique is described by a
systematic modification of a basic iterative framework. Through an implemen-
tation that performs type analysis for JavaScript we have demonstrated that it
can significantly reduce the memory usage and the number of fixpoint iterations
without sacrificing analysis precision. The result is a step toward sound, precise,
and fast static analysis for object-oriented languages in general and scripting
languages in particular.

Acknowledgments. The authors thank Stephen Fink, Michael Hind, and
Thomas Reps for their inspiring comments on early versions of this paper.

References

1. Anderson, C., Giannini, P., Drossopoulou, S.: Towards type inference for
JavaScript. In: Black, A.P. (ed.) ECOOP 2005. LNCS, vol. 3586, pp. 428–452.
Springer, Heidelberg (2005)

2. Artzi, S., Kiezun, A., Dolby, J., Tip, F., Dig, D., Paradkar, A.M., Ernst, M.D.:
Finding bugs in dynamic web applications. In: Proc. International Symposium on
Software Testing and Analysis, ISSTA 2008. ACM, New York (July2008)

3. Atkinson, D.C., Griswold, W.G.: Implementation techniques for efficient data-flow
analysis of large programs. In: Proc. International Conference on Software Main-
tenance, ICSM 2001, pp. 52–61 (November 2001)

4. Balakrishnan, G., Reps, T.W.: Recency-abstraction for heap-allocated storage. In:
Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 221–239. Springer, Heidelberg (2006)

5. Chase, D.R., Wegman, M., Kenneth Zadeck, F.: Analysis of pointers and struc-
tures. In: Proc. ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 1990 (June 1990)

6. Fecht, C., Seidl, H.: Propagating differences: An efficient new fixpoint algorithm for
distributive constraint systems. In: Hankin, C. (ed.) ESOP 1998. LNCS, vol. 1381,
p. 90. Springer, Heidelberg (1998)

7. Furr, M., An, Jong hoon (David), Foster, J.S., Hicks, M.W.: Static type inference
for Ruby. In: Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009.
LNCS, vol. 5867, Springer, Heidelberg (2009)

338 S.M. Jensen, A. Møller, and P. Thiemann

8. Guha, A., Krishnamurthi, S., Jim, T.: Using static analysis for Ajax intrusion
detection. In: Proc. 18th International Conference on World Wide Web, WWW
2009 (2009)

9. Heidegger, P., Thiemann, P.: Recency types for analyzing scripting languages. In:
D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 200–224. Springer, Heidel-
berg (2010)

10. Hind, M.: Pointer analysis: haven’t we solved this problem yet? In: Proc. ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis For Software Tools and En-
gineering, PASTE 2001, pp. 54–61 (June 2001)

11. Hind, M., Burke, M.G., Carini, P.R., Choi, J.-D.: Interprocedural pointer alias
analysis. ACM Transactions on Programming Languages and Systems 21(4), 848–
894 (1999)

12. Horwitz, S., Demers, A., Teitebaum, T.: An efficient general iterative algorithm for
dataflow analysis. Acta Informatica 24(6), 679–694 (1987)

13. Horwitz, S., Reps, T., Sagiv, M.: Demand interprocedural dataflow analysis. In:
Proc. 3rd ACM SIGSOFT Symposium on Foundations of Software Engineering,
FSE 1995 (October 1995)

14. Jensen, S.H., Møller, A., Thiemann, P.: Type analysis for JavaScript. In: Palsberg,
J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 238–255. Springer, Heidelberg
(2009)

15. Jensen, S.H., Møller, A., Thiemann, P.: Interprocedural analysis with lazy prop-
agation. Technical report, Department of Computer Science, Aarhus University
(2010), http://cs.au.dk/~amoeller/papers/lazy/

16. Jones, N.D., Muchnick, S.S.: A flexible approach to interprocedural data flow anal-
ysis and programs with recursive data structures. In: Proc. 9th ACM Symposium
on Principles of Programming Languages, POPL 1982 (January 1982)

17. Kam, J.B., Ullman, J.D.: Global data flow analysis and iterative algorithms. Jour-
nal of the ACM 23(1), 158–171 (1976)

18. Kam, J.B., Ullman, J.D.: Monotone data flow analysis frameworks. Acta Informat-
ica 7, 305–317 (1977)

19. Kildall, G.A.: A unified approach to global program optimization. In: Proc. 1st
ACM Symposium on Principles of Programming Languages. In: POPL 1973 (Oc-
tober 1973)

20. Liskov, B., Zilles, S.N.: Programming with abstract data types. ACM SIGPLAN
Notices 9(4), 50–59 (1974)

21. O’Hearn, P.W., Reynolds, J.C., Yang, H.: Local reasoning about programs that
alter data structures. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS,
vol. 2142, p. 1. Springer, Heidelberg (2001)

22. Jones, S.L.P.: The Implementation of Functional Programming Languages. Pren-
tice Hall, Englewood Cliffs (1987)

23. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis
via graph reachability. In: Proc. 22th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 1995, pp. 49–61 (January
1995)

24. Ryder, B.G., Landi, W., Stocks, P., Zhang, S., Altucher, R.: A schema for interpro-
cedural modification side-effect analysis with pointer aliasing. ACM Transactions
on Programming Languages and Systems 23(2), 105–186 (2001)

http://cs.au.dk/~amoeller/papers/lazy/

Interprocedural Analysis with Lazy Propagation 339

25. Sagiv, S., Reps, T.W., Horwitz, S.: Precise interprocedural dataflow analysis with
applications to constant propagation. Theoretical Computer Science 167(1&2),
131–170 (1996)

26. Sharir, M., Pnueli, A.: Two approaches to interprocedural dataflow analysis. In:
Program Flow Analysis: Theory and Applications, pp. 189–233. Prentice-Hall, En-
glewood Cliffs (1981)

27. Thiemann, P.: Towards a type system for analyzing JavaScript programs. In: Sagiv,
M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 408–422. Springer, Heidelberg (2005)

28. Tok, T.B., Guyer, S.Z., Lin, C.: Efficient flow-sensitive interprocedural data-flow
analysis in the presence of pointers. In: Mycroft, A., Zeller, A. (eds.) CC 2006.
LNCS, vol. 3923, pp. 17–31. Springer, Heidelberg (2006)

29. Xie, Y., Aiken, A.: Static detection of security vulnerabilities in scripting languages.
In: Proc. 15th USENIX Security Symposium (August 2006)

Verifying a Local Generic Solver in Coq

Martin Hofmann1, Aleksandr Karbyshev2, and Helmut Seidl2

1 Institut für Informatik, Universität München

hofmann@ifi.lmu.de
2 Fakultät für Informatik, Technische Universität München

{aleksandr.karbyshev,seidl}@in.tum.de

Abstract. Fixpoint engines are the core components of program anal-

ysis tools and compilers. If these tools are to be trusted, special at-

tention should be paid also to the correctness of such solvers. In this

paper we consider the local generic fixpoint solver RLD which can be

applied to constraint systems x � fx, x ∈ V , over some lattice D where

the right-hand sides fx are given as arbitrary functions implemented in

some specification language. The verification of this algorithm is chal-

lenging, because it uses higher-order functions and relies on side effects

to track variable dependences as they are encountered dynamically dur-

ing fixpoint iterations. Here, we present a correctness proof of this al-

gorithm which has been formalized by means of the interactive proof

assistant Coq.

1 Introduction

A generic solver computes a solution of a constraint system x 2 fx,x ∈ V , over
some lattice D, where the right-hand side fx of each variable x is given as a
function of type (V → D) → D implemented in some programming language.
A local generic solver, when started with a set X ⊆ V of interesting variables,
tries to determine the values for the X of a solution of the constraint system by
touching as few variables as possible.

Local generic solvers are a convenient tool for the implementation of efficient
frameworks for program analyses. They have first been proposed for the analy-
sis of logic programs [3, 5, 6, 7] and model-checking [10], but recently have also
attracted attention in interprocedural analyzers of imperative programs [1, 14].
One particularly simple instance RLD of a local generic solver has been included
into the textbook on Program Analysis and Optimization [15], although without
any proof of correctness of the algorithm.

Efficient solvers for constraint systems exploit that often right-hand side func-
tions query the current variable assignment only for few variables. A generic
solver, however, must consider right-hand sides as black boxes which cannot be
preprocessed for variable dependences before-hand. Therefore, efficient generic
solvers rely on self-observation to detect and record variable dependences on-the-
fly during evaluation of right-hand sides. The local generic solver TD by van
Hentenryck [3] as well as the solver RLD add a recursive descent into solving

R. Cousot and M. Martel (Eds.): SAS 2010, LNCS 6337, pp. 340–355, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Verifying a Local Generic Solver in Coq 341

variables before reporting their values. Both self-observation through side-effects
and the recursive evaluation make these solvers intricate in their operational be-
havior and therefore their design and implementation are error-prone.

In fact, during experimentation with tiny variations of the solver RLD we
found that many seemingly correct algorithms and implementations are bogus.
In view of the application of such solvers in tools for deriving correctness prop-
erties, possibly of safety critical systems, it seems mandatory to us to have full
confidence into the applied software.

The first issue in proving any generic solver correct is which kind of functions
safely may be applied as right-hand sides of constraints. In the companion pa-
per [8] we therefore have presented a semantical property of purity. The notion of
purity is general enough to allow any function expressed in a pure functional lan-
guage without recursion, but also allows certain forms of (well-behaved) stateful
computation. Purity of a function f allows f to be represented as a strategy tree.
This means that the evaluation of f on a variable assignment σ can be considered
as a sequence of variable look-ups followed by local computations and ending in
an answer value.

It is w.r.t. this representation that we prove the local generic solver RLD
correct. Related formal correctness proofs have been provided for variants of
Kildall’s algorithm for dataflow analysis [13, 11, 2, 4] This fixpoint algorithm is
neither generic nor local. It also exploits variable dependences which, however,
are explicitly given through the control-flow graph.

All theorems and proofs are formalized by means of the interactive theorem
prover Coq [12].

2 The Local Generic Solver RLD

One basic idea of the algorithm RLD is that, as soon as the value of variable
y is requested during reevaluation of the right-hand side fx, the algorithm does
not naively return the current value for y. Instead, it first tries to get a better
approximation of it, thus reducing the overall number of iterations and compu-
tations performed. This idea is similar to that of the algorithm TD.

Both algorithms also record the variable dependencies (x,y) (w.r.t. the cur-
rent variable assignment) as they are encountered during evaluation of the right-
hand side fx as a side-effect. The main difference between the two algorithms
lies in how they behave when a variable x changes its value. While the algorithm
TD recursively destabilizes all variables which also indirectly depend on x, the
algorithm RLD only destabilizes the variables which immediately (locally) are
influenced by x, and triggers the reevaluation of these variables at once.

The algorithm RLD maintains the following data structures.

1. Finite map σ, storing current values of variables. We track only finite number
of observed variables, since the overall size of set V can be tremendously
large. We define the auxiliary function

342 M. Hofmann, A. Karbyshev, and H. Seidl

σ⊥ x =

{
σ x if x ∈ dom(σ),
⊥ otherwise

that returns a current value of σ x if it is defined; otherwise, it returns ⊥.
2. Finite set stable ⊆ V . Intuitively, if variable x is marked as stable then either

x is already solved, i.e., a computation for x has completed and σ gives a
solution for x and all those variables x transitively depends on, or x is called
and it is in the call stack of solve function and its value is being processed.

3. Finite map infl, where dependencies between variables are stored. More ex-
actly, infl x returns an overapproximation of a set of variables y, for which
evaluation of fy on the current σ⊥ depends on x. Again, we track only finite
number of observed variables and define the auxiliary function

infl[] x =

{
inflx if x ∈ dom(infl),
[] otherwise.

The structures have initial values: σ = ∅, stable = ∅, infl = ∅.
The algorithm RLD proceeds as follows (see Fig. 1). The function solve all

is called for a list X of interesting variables from the initial state (with σ = ∅,
stable = ∅, infl = ∅). The function solve all calls recursively solve x for every
x ∈ X .

The function solve when called for some variable x first checks whether x
is already in the set stable. If so, the function returns; otherwise, the algorithm
marks x as being stable and tries to satisfy a constraint σ x 2 fx σ. For that,
it reevaluates a value of the right-hand side fx, and calculates the least upper
bound new of the result together with the old value of σ x. If the value of new is
strictly larger than the old value, the function solve updates the value of σ for
x. Since the value of σ x has changed, all constraints of variables y dependent
on x may not be satisfied anymore. Hence the function solve destabilizes all
the variables from work = infl[] x, i.e., subtracts work from the set stable. Then
value inflx is reset to empty and solve all work is recursively called.

We mention, that the right-hand side fx is not evaluated directly on the func-
tion σ, but by using an auxiliary stateful function λy.eval(x,y), allowing firstly
to get better values for variables the variable x depends on. Once eval(x,y) is
called, it first calls solve y and then adds x to infly. The latter reflects the fact
that the value of x possibly depends on the value of y. Only after recording the
variable dependence (x,y), the current value of y is returned.

Our goal is to prove that the algorithm RLD is a local generic solver for any
(possibly infinite) constraint system S = (V, f) where right-hand sides fx are
pure.

3 Systems of Constraints

Instead of reasoning about an algorithm which modifies a global state by side-
effecting functions as in Fig. 1, we prefer to reason about the denotational se-
mantics of such an algorithm, i.e., about the corresponding purely functional
program where the global state is explicitly threaded through the program.

Verifying a Local Generic Solver in Coq 343

function eval(x : V , y : V) =
solve(y);
infly ← infly ∪ {x};
σ⊥ y

function eval rhs(x : V) =

fx(λy.eval(x, y))

function extract work(x : V) =
let work = infl[] x in
stable← stable \ work; inflx← [];

work

function solve(x : V) =

if x ∈ stable then ()

else
stable ← stable ∪ {x};
let cur = eval rhs(x) in
let new = σ⊥ x � cur in
if new � σ⊥ x then ()

else
σ x← new;

let work = extract work(x) in
solve all(work)

end

end

function solve all(work : 2V) =
foreach x ∈ work do solve(x)

begin
σ = ∅; stable = ∅; infl = ∅;
solve all(X);

(σ⊥, stable)
end

Fig. 1. The recursive solver tracking local dependencies (RLD)

Assume D = (D, ,&) is a lattice consisting of the carrier D equipped with
the partial ordering & and the least upper bound operation . A pair (V, f) is
a constraint system, where V is a set of variables and f is a functional of type

f : V → (V →MD) →MD,

that for every x ∈ V returns a corresponding right-hand side fx : (V →MD) →
MD. Here, the monad constructor M when applied to a set D, returns a com-
putation resulting in a value from D. In our application, we assume MD to be a
state transformer monad defined by S → (D×S) for some set S of states where
f is assumed to be polymorphic in S.

This means that right-hand sides may have side effects onto the global state
and that they can be applied to variable assignments whose evaluation them-
selves may have side effects. What we assume, however, is that the side effects

344 M. Hofmann, A. Karbyshev, and H. Seidl

of the evaluation of a call fx σ only are attributed to side-effects incurred by the
evaluation of the function σ. This property is not captured by polymorphism in
a state alone [8]. It is guaranteed, however, by the notion of purity introduced
in [8]. If the function fx is pure in the sense of [8], then fx is representable by
means of a strategy tree. This means that the evaluation of fx on a variable
assignment consists of a sequence of variable look-ups followed by some local
computation leading to further look-ups and so on until eventually a result is
produced.

3.1 Strategy Trees

Definition 1. For a given set of values D and a set of variables V we define
the set T (V, D) of strategy trees inductively by:

– if a ∈ D then Answ(a) ∈ T (V, D);
– if x ∈ V and c : D → T (V, D) is a total function then Quest(x, c) ∈ T (V, D).

Let τ be a mapping from V →MD. By means of the monad operations return :
D →MD and bind : MD → (D →MD) →MD we define the function

�·� : T (V, D) → (V →MD) →MD

recursively by:

�Answ(a)� τ = return a ,
�Quest(x, c)� τ = bind (τ x) (fun a → �c a� τ) .

Recall that for state transformer monads, the monad operations return : D →
MD and bind : MD → (D →MD) →MD are defined by:

return a = fun s → (a, s) ,
bind m f = fun s → let (a, s1) = m s in f a s1 .

Therefore, the function �·� is given by:

�Answ(a)� τ = fun s → (a, s) ,
�Quest(x, c)� τ = fun s → let (a, s1) = τ x s in �c a� τ s1 .

The evaluation of a strategy tree thus formalizes the stateful evaluation of the
pure function represented by this tree.

Moreover, if τ does not depend on the state and has no effect on the state,
i.e., is of the form

τ = return ◦ σ = fun x → return (σ x)

for some function σ : V → D, then for all states s and trees r ∈ T (V, D)

�r� τ s = (a, s)

Verifying a Local Generic Solver in Coq 345

holds, for some a ∈ D. Therefore, we define the function

�·�∗ : T (V, D) → (V → D) → D

by:
�r�∗ σ = fst(�r� (return ◦ σ) ()) .

In our application, the solver not only evaluates pure functions, i.e., strategy
trees, but also records the variables accessed during this evaluation. In order
to reason about the sequence of accessed variables together with their values,
we instrument the evaluation of strategy trees by additionally taking a list of
already visited variables together with their values and returning updated list
for the rest computations. For the state transformer monad this instrumented
evaluation is defined by:

�Answ(a)�′ τ l = return (a, l) ,
�Quest(x, c)�′ τ l = bind (τ x) (fun a → �c a�′ τ (l @ [(x, a)])) ,

or, again instantiated for state transformer monads,

�Answ(a)�′ τ l = fun s → ((a, l), s) ,
�Quest(x, c)�′ τ l = fun s → let (a, s1) = τ x s in �c a�′ τ (l @ [(x, a)]) s1 ,

where l : (V ×D) list.
Then for every strategy tree r, mapping τ : V →MD and list l1 : (V ×D) list

�r� τ s = (a, s′) iff �r�′ τ l1 s = ((a, l2), s′) ,

for some a ∈ D and l2 : (V × D) list. Moreover, if τ = return ◦ σ for some
σ : V → D, then for all states s

�r�′ τ [] s = ((a, l), s)

holds, for some a ∈ D and l : (V ×D) list.
Now assume that we are given a mapping t : V → T (V, D). Relative to this

mapping and an assignment σ : V → D we define

traceσ r = l , where �r�′ (return ◦ σ) [] () = ((, l),), r ∈ T (V, D) ,

dept,σ x = {y | (y,) ∈ traceσ(t x)} .

Moreover, we define dept,σ(X) =
⋃

x∈X dept,σ x. Intuitively, the function dept,σ

applied to a variable x and a variable assignment σ returns a set of variables that
x directly depends on relative to σ, i.e., a set of those variables which values are
required to evaluate the strategy tree for the right-hand side of x. The relation

Dept,σ = {(x,y) | y ∈ dept,σ x}

is also called a dependence graph for the variable assignment σ. Let Dep+
t,σ be

a transitive closure of the relation Dept,σ and Dep∗t,σ = Dep+
t,σ ∪ {(x,x) | x ∈

V } be a reflexive and transitive closure of Dept,σ and denote dep∗t,σ x = {y |
Dep∗t,σ(x,y)} and dep∗t,σ(X) =

⋃
x∈X dep∗t,σ x.

346 M. Hofmann, A. Karbyshev, and H. Seidl

3.2 Solutions

Definition 2. Let S = (V, f) be a constraint system over the lattice D and X ⊆
V . We say that a variable assignment σ : V → D is a solution of the constraint
system S, if for every x ∈ V , σ x 2 d whenever (d, ()) = fx(return◦σ) () holds.
For the latter statement, we also write σ x 2 fx σ.

Definition 3. A partial function

A : (V → T (V, D))× 2V → (V → D)× 2V

is (the denotational semantics of) a local solver if it takes as input a pair (t, X)
of a strategy function t and a set X ⊆ V of interesting variables and, whenever it
terminates, returns a pair (σ, X ′) consisting of a variable assignment σ : V → D
together with a set X ′ ⊆ V such that the following holds:

1. X ⊆ X ′ and dep∗t,σ(X ′) ⊆ X ′;
2. σ x 2 �t x�∗ σ holds for every x ∈ X ′.

In particular, this means that σ restricted to X ′ is a solution of the constraint
system (X ′, f |X′).

4 Functional Implementation with Explicit State Passing

In the functional implementation of algorithm RLD, the global state is made
explicit, and passed into function calls by means of a separate parameter. Ac-
cordingly, the modified state together with the computed value (if there is any)
are jointly returned. The type of a state is

type state = 2V × (V ⇀ D)× (V ⇀ V list) .

The three components correspond to the set stable, the finite (partial) map σ,
and the finite (partial) map infl, respectively.

To facilitate the handling of the state we introduce the following auxiliary
functions:

– The function get : state → V → D implements the function σ⊥;
– The function set : V → D → state → state when applied to x updates the

current value of σ x;
– The function get stable : state → 2V extracts the set stable from the

current state;
– The function is stable : V → state → bool checks whether a given variable

x is in the set stable;
– The function add stable : V → state → state adds a given variable to the

set stable;
– The function rem stable : V → state → state removes a given variable from

the set stable;
– The function get infl : V → state → V list implements the function infl[];

Verifying a Local Generic Solver in Coq 347

let rec eval x y = fun s →
let s = solve y s in
let s = add infl y x in
(get y s, s)

and eval rhs x = fun s →�tx� (eval x) s

and solve x = fun s →
if is stable x s then s
else

let s = add stable x s in
let (new val, s) = eval rhs x s in
let cur val = get s x in
let new val = cur val � new val in
if new val � cur val then s
else

let s = set x new val s in
let (work, s) = extract work x s in
solve all work s

and solve all work = fun s →
match work with
| []→ s
| x :: xs→ solve all xs (solve x s) in

let s init = (∅, ∅, ∅) in
let s = solve all X s init in
(get s, get stable s)

Fig. 2. Functional implementation of RLD

– The function add infl : V → V → state → state applied to variables x and
y adds the pair (y,x) to infl;

– The function rem infl : V → state → state applied to the variable x sets
the list infl[] x in the current state to [].

The auxiliary function extract work : V → state → (V list× state) applied to a
variable x determines the list w of variables immediately influenced by x, resets
inflx to [], and subtracts w from the set stable as follows:

let extract work x = fun s →
let w = get infl x s in
let s = rem infl x s in
let s = fold left (fun s y → rem stable y s) s w in
(w, s)

Using the auxiliary functions �·� for strategy trees, the mutually recursive func-
tions eval, eval rhs, solve and solve all of the algorithm are then given in
Fig. 2.

348 M. Hofmann, A. Karbyshev, and H. Seidl

Given a list of interesting variables X ⊆ V the algorithm calls the function
solve all from the initial state s init = (∅, ∅, ∅).

From now on, RLD refers to this functional implementation. We prove:

Theorem 4. The algorithm RLD is a local generic solver.

5 Proof of Theorem 4

The proof consists of four main steps:

1. We instrument the functional program, introducing auxiliary data struc-
tures — ghost variables.

2. We implement the instrumented program in Coq.
3. We provide invariants for the instrumented program.
4. We prove these invariants jointly by induction on number of recursive calls.

5.1 Instrumentation

In order to express the invariants necessary to prove the correctness of the al-
gorithm, we introduce additional components into the state which do not affect
the operational behavior of the algorithm but record auxiliary information. The
auxiliary data structures appear in the program as ghost variables, i.e., variables
which are not allowed to appear in case distinctions and may not be written
into ordinary structures. Thus, they do not influence the “control flow” of the
program. We distinguish:

– the set called of variables which are currently processed;
– the set queued of variables which have been destabilized, i.e., removed from

the set stable by the algorithm and not yet been reevaluated.

Accordingly, the type state in the instrumented program is given by:

type state = 2V × 2V × (V ⇀ D)× (V ⇀ V list)× 2V .

The five components correspond to the sets stable and called, the finite (partial)
map σ, the finite (partial) map infl, and the set queued, respectively.

Also, we require the following auxiliary functions:

– The function add called : V → state → state adds a given variable to the
set called;

– The function rem called : V → state → state removes a given variable from
the set called;

– The function add queued : V → state → state adds a given variable to the
set queued;

– The function rem queued : V → state → state removes a given variable from
the set queued.

Verifying a Local Generic Solver in Coq 349

(*...*)

and eval rhs x = fun s →�tx�′ (eval x) [] s

and solve x = fun s →
if is stable x s then s
else

let s = rem queued x s in
let s = add stable x s in
let s = add called x s in
let ((new val,), s) = eval rhs x s in
let s = rem called x s in
let cur val = get s x in
let new val = cur val � new val in
if new val � cur val then s
else

let s = set x new val s in
let (work, s) = extract work x s in
solve all work s

Fig. 3. Instrumented implementation of the functions eval rhs and solve

In the instrumented implementation, we also replace the evaluation �·� for strat-
egy trees with �·�′ which additionally returns the list of accessed variables to-
gether with their respective values. Also, the function extract work for a given
x additionally removes the list w of variables influenced by x from the set called
and adds it to the set queued of the current state.

The instrumented functions eval rhs and solve are given in Fig. 3. The
functions eval and solve all remain unchanged.

It is intuitively clear that the instrumentation does not alter the relevant
behavior of the algorithm and that therefore the subsequent verification of the
instrumented version also establishes the correctness of the original one. We now
sketch two ways for making this rigorous; neither of them is part of the formal
verification, though, which operates entirely on the instrumented version. For
the rest of this section let us used primed notation, e.g. state′, solve′ etc. for
the instrumented versions, leaving the unprimed ones for the original version.

We can define a simulation relation ∼⊆ state × state′ as the graph of the
projection from state′ to state. We define a lifted relation M(∼) ⊆MX×M′X
for any X by

f M(∼) f ′ ≡ ∀s, s′, s1, s
′
1, x, x′. f(s) = (x, s1) ∧ f ′(s′) = (x′, s′1)∧

s ∼ s′ =⇒ s1 ∼ s′1 ∧ x = x′ .

Two functions f : X →MY and f ′ : X →M′Y are related if f(x) M(∼) f ′(x)
holds for all x ∈ X . It is then a straightforward consequence from the definitions
that each component of the algorithm is related to its primed (instrumented)
version and thus that they yield equal results when started in related states and
after discarding the instrumentation.

350 M. Hofmann, A. Karbyshev, and H. Seidl

Alternatively, we can modify the verification of the instrumented version to
yield a direct verification of the original version by existentially quantifying the
instrumentation components in all invariants. When showing that such existen-
tially quantified invariants are indeed preserved, one opens the existentials in
the assumption yielding a fixed but arbitrary instrumentation of the starting
state; one then updates this instrumentation using the above updating functions
rem queued, add stable etc. and uses the resulting instrumentation as existen-
tial witness for the conclusion. The remaining proof obligation then follows step
by step the verification of the instrumented version. See [9] for a formal account
of this proof-transforming procedure in the context of Hoare logic.

5.2 Implementation in Coq

Coq accepts the definition of a recursive function only if it is provably termi-
nating. Since the algorithm RLD is generic, we neither make any assumptions
concerning the lattice D (e.g., w.r.t. finiteness of ascending chains), nor assume
finiteness of the set of variables V . Accordingly, termination of the algorithm
cannot be guaranteed. Therefore, our formalization of the algorithm in Coq

relies on the representation of partial functions through their function graphs.
The mutual recursive definition of these relations exactly mimics the functional
implementation of the algorithm.

We define the following relations (see appendix):

– for every x,y ∈ V , s, s′ : state, d ∈ D, EvalRel(x,y, s, s′, d) holds iff the call
eval x y s terminates and returns the value (d, s′);

– for every x ∈ V , t ∈ T (D, T), s, s′ : state, d ∈ D, l, l′ : (V × D) list,
Wrap Eval x(x, t, s, s′, d, l, l′) holds iff the call �t�′ (eval x) l s terminates
and returns the value ((d, l′), s′);

– for every x ∈ V , s, s′ : state, d ∈ D, l′ : (V ×D) list, Eval rhs(x, s, s′, d, l′)
holds iff the call eval rhs x s terminates and returns the value ((d, l′), s′);

– for every x ∈ V , s, s′ : state, Solve(x, s, s′) holds iff the call solve x s
terminates and returns the value s′;

– for every work ⊆ V , s, s′ : state, SolveAll(work, s, s′) holds iff the call
solve all work s terminates and returns the value s′.

The defined predicates relate states before the call and after termination of the
corresponding functions. Therefore, they can be used to reason about properties
of the algorithm, even if its termination is not guaranteed.

5.3 Invariants

Given a variable assignment σ we inductively define relation valid ⊆ (V ×D) list×
(V → D) as follows:

– valid([], σ);
– for any x ∈ V , d ∈ D and l : (V × D) list, if valid(l, σ) and d = σ x then

valid((x, d)::l, σ);

Verifying a Local Generic Solver in Coq 351

and relation legal ⊆ (V ×D) list× T (V, D) inductively by:

– legal([], r) for any r ∈ T (V, D);
– for any x ∈ V , d ∈ D, l : (V ×D) list and c : D → T (V, D), if legal(l, c(d))

then legal((x, d)::l, Quest(x, c)).

Intuitively, valid(l, σ) holds iff the path l agrees with the variable assignment σ,
and legal(l, r) means that one can walk along the path l in the tree r, for every
(x, d) from l using a value d as an argument of a corresponding continuation
function. For example, one can show by induction that traceσ r is valid for σ and
is legal in r, i.e., valid(traceσ r, σ) and legal(traceσ r, r) hold for any r ∈ T (V, D)
and given variable assignment σ.

Given a strategy tree r and a path l legal in r we can define a function
subtree(l, r) recursively as follows:

– if l = [] then subtree(l, r) = r;
– if l = (x, d)::vs and r = Quest(x, c) then subtree(l, r) = subtree(vs, c(d)).

We have that subtree(traceσ r, r) = Answ(a) holds for every tree r ∈ T (V, D) and
variable assignment σ.

We prove by induction on length of a path the following lemma.

Lemma 5. For any given r ∈ T (V, D), a path l : (V × D) list and a variable
assignment σ : V → D, the following is equivalent:

– l = traceσ r;
– valid(l, σ), legal(l, r), subtree(l, r) = Answ(a), for some a ∈ D, hold. (

From now on, for simplicity, we denote get infl as infl[] and get as σ⊥. States
s and s′ denote a state before a call of some function and a state after the call
terminates, respectively. Structures stable, called, queued and infl are components
of the state s, primed structures are components of the state s′. Let t : V →
T (V, D) be a given strategy function. We denote a tree tx by tx. We say that
variable x is solved in the state s if x ∈ stable \ called. We treat lists as sets in
the formulae below.

We define:

I0(s) ≡ called ⊆ stable ∧ queued ∩ stable = ∅ ,

I1(s, s′) ≡ stable′ ⊇ stable ∧ called′ ⊆ called ∧ queued′ ⊆ queued .

We call a state s (a transition from s to s′) consistent if I0(s) (respectively,
I1(s, s′)) holds. The formula

Iσ(s, s′) ≡ ∀z ∈ V. σ⊥ s′ z 2 σ⊥ s z

expresses that the variable assignment in the state s′ returns larger values than
that in the state s. The formula

Iσ,infl(s, s′) ≡ ∀z ∈ V. (σ⊥ s′ z & σ⊥ s z =⇒ infl[] z s ⊆ infl[] z s′)∧
(σ⊥ s′ z �& σ⊥ s z =⇒ infl[] z s ⊆ stable′ \ called′)

352 M. Hofmann, A. Karbyshev, and H. Seidl

relates structures σ and infl. It expresses for every variable z the following. If
the value of z did not increase, then infl′ contains more dependencies; otherwise,
all the variables influenced by z in s are solved in s′. The formula

Idep(x, s) ≡ ∀z ∈ dept,(σ⊥ s) x. z ∈ stable ∪ queued ∧ x ∈ infl[] z s .

expresses that for every variable z influencing x, this dependency is stored in
the state s. The formula

Icorr(s) ≡ ∀x ∈ stable \ called. σ⊥ s x 2 �tx�∗(σ⊥ s) ∧ Idep(x, s)

defines the correctness of the state s. This means that for every variable x which
is solved in s, the constraint σ x 2 fx σ is satisfied for x and dependencies of
x are treated correctly. The most difficult part of the proof was to determine
invariants for the main functions of the algorithm which are sufficiently strong
to prove its correctness. The most complicated invariant refers to the function
�·�′(evalx). The formula

I�·�′(evalx)(x, r, s, s′, d, vlist, vlist′) ≡
x ∈ stable ∧ I0(s) ∧ Icorr(s) ∧ (∀(y, v) ∈ vlist.y ∈ stable) =⇒
I0(s′) ∧ I1(s, s′) ∧ vlist ⊆ vlist′ ∧ (∀(y, v) ∈ vlist′.y ∈ stable)∧
Iσ(s, s′) ∧ Iσ,infl(s, s′) ∧ Icorr(s′)∧[
x ∈ called ∧ (∀(y, v) ∈ vlist.x ∈ infl[] y s)∧
valid(vlist, σ⊥ s) ∧ legal(vlist, tx) ∧ subtree(vlist, tx) = r =⇒(

x ∈ called′ =⇒
valid(vlist′, σ⊥ s′) ∧ legal(vlist′, tx) ∧ subtree(vlist′, tx) = Answ(d)∧
(∀(y, v) ∈ vlist′.x ∈ infl[] y s′) ∧ Idep(x, s′)

)
∧(

x /∈ called′ =⇒ x ∈ stable′ \ called′)]
relates the arguments vlist and s with the result value ((d, vlist′), s′) of the call
whenever it terminates. It proceeds recursively on the tree r, taking as a param-
eter a list vlist of already visited variables together with their new values. The
function �·�′ (evalx) is called for a stable variable x and applied to a partial
path vlist of stable variables and an initial consistent correct state s. As a result
it returns a value d and a longer path vlist′, which extends vlist, of stable visited
variables, together with a consistent correct state s′. The formula states that
values σ x of all variables x grew, and infl changes according to changes in σ. It
distinguishes the case where x ∈ called. Then if vlist is a valid and legal path in
tx leading to the subtree r and if x ∈ called′ then the result path vlist′ is again
valid and legal in tx and leads to an answer d and all the dependencies of x are
recorded. Note that by lemma 5 this implies that vlist′ is a trace in tx by σ′. If
x ∈ called and x /∈ called′ then it was reevaluated and solved during a recursive
call for some variable y of r. It does not matter which value d is returned in
this case since x is solved in s′ and the corresponding constraint is satisfied and

Verifying a Local Generic Solver in Coq 353

will be preserved after the sequent update of σ x. In the case x /∈ called we can
deduce that x is solved in s′ using I1(s, s′). The formula

Ieval rhs(x, s, s′, d, l′) ≡
x ∈ called ∧ I0(s) ∧ Icorr(s) =⇒
I0(s′) ∧ I1(s, s′) ∧ Iσ(s, s′) ∧ Iσ,infl(s, s′) ∧ Icorr(s′)∧[
x ∈ called′ =⇒ d = �tx�∗(σ⊥ s′) ∧ l′ = traceσ tx ∧
(∀(y, v) ∈ vlist′.x ∈ infl[] y s′) ∧ Idep(x, s′)

]
relates the arguments x and s of the call of eval rhs x s with the result state
s′ whenever it terminates. If the input state s is consistent and correct then so
is the state s′. In the case when x stays called we have that d is a value of the
right-hand side of x on σ′ and l′ is a trace in tx by σ′. In the case x /∈ called′

the variable x is processed during some intermediate recursive call and is solved
in s′. The formula

Isolve(x, s, s′) ≡
I0(s) ∧ Icorr(s) =⇒
I0(s′) ∧ I1(s, s′) ∧ Iσ(s, s′) ∧ Iσ,infl(s, s′) ∧ Icorr(s′)∧[
x ∈ stable =⇒ s = s′

]
∧[

x /∈ stable =⇒ stable′ ⊇ stable ∪ {x} ∧ queued′ ⊆ queued \ {x}
]

relates arguments x and s with the result state s′ of the call of solve x s
whenever it terminates. If the state s is consistent and correct then so is s′. In
the case x ∈ stable the state does not change. If x /∈ stable then eventually x is
solved in s′ and is removed from the set queued. The formula

Isolve all(w, s, s′) ≡
I0(s) ∧ Icorr(s) =⇒
I0(s′) ∧ I1(s, s′) ∧ Iσ(s, s′) ∧ Iσ,infl(s, s′) ∧ Icorr(s′)∧
(w ∪ stable \ called ⊆ stable′ \ called′) ∧ (queued′ ⊆ queued \ w)

relates the arguments w and s with the result state s′ of the call solve all w s
whenever it terminates. It states that all the variables solved in s together with
the variables from w are solved in s′ and none of the variables from w is in
queued′. We note that although w = inflx (for a corresponding x) may contain
invalid dependencies, i.e., variables not dependent on x on the current σ, Icorr(s′)
states that inflx is appropriately recomputed.

By induction on number of unfoldings of definitions we prove in Coq that
the formulae Ieval, I�·�′(evalx), Ieval rhs, Isolve and Isolve all are invariants of
corresponding functions in the following sense.

Theorem 6. For all states s, s′ : state the following is true:

– for every x,y ∈ V , d ∈ D, EvalRel(x,y, s, s′, d) implies Ieval(x,y, s, s′, d);
– for every x ∈ V , r ∈ T (D, T), d ∈ D, l, l′ : (V ×D) list,

Wrap Eval x(x, r, s, s′, d, l, l′) implies I�·�′(evalx)(x, r, s, s′, d, l, l′);

354 M. Hofmann, A. Karbyshev, and H. Seidl

– for every x ∈ V , d ∈ D, l′ : (V × D) list, Eval rhs(x, s, s′, d, l′) implies
Ieval rhs(x, s, s′, d, l′);

– for every x ∈ V , Solve(x, s, s′) implies Isolve(x, s, s′);
– for every w ∈ V list, SolveAll(w, s, s′) implies Isolve all(w, s, s′). (

5.4 Putting Things Together

Having verified the invariants, we now prove that theorem 4 holds, i.e., that RLD
is a local solver. Let s init be an initial state with stable = called = queued =
σ = infl = ∅. Assume that RLD applied to (t, X) terminates and let s′ be the
state returned by the call solve allX s init. According to the definition 3, we
have to show that:

1. X ⊆ stable′ and dep∗t,(σ⊥ s′)(stable
′) ⊆ stable′;

2. σ⊥ s′ x 2 �tx�∗(σ⊥ s′) holds for every x ∈ stable′.

By theorem 6, implication Isolve all(X, s init, s′) holds; and its premise is true,
inasmuch as both I0(s init) and Icorr(s init) hold. Therefore, we have I1(s init,
s′), and hence called′ = queued′ = ∅. From (X ∪ stable \ called ⊆ stable′ \
called′) we conclude, that X ⊆ stable′. From Icorr(s′) it follows, that ∀x ∈
stable′. σ⊥ s′ x 2 �tx�∗(σ⊥ s′) and dept,(σ⊥ s′)(stable

′) ⊆ stable′ hold. Hence we
have dep∗t,(σ⊥ s′)(stable

′) ⊆ stable′ and the statement of theorem 4 follows. (

6 Conclusion

We have presented the outline of a proof that the algorithm RLD is a local
generic solver. By that, we enabled the inclusion of this algorithm into the trusted
code base of a verified program analyzer. Since the solver can be applied to con-
straint systems where right hand sides of variables are arbitrary pure functions,
this enables the design and implementation of flexible and general verified ana-
lyzer frameworks.

The extended version of this paper will provide further verified properties of
the algorithm RLD, such as sufficient conditions for its termination as well as
sufficient conditions for returning fragments not of any but of the least solution
of the given constraint system. In practical applications such as the analyzer
Goblint it is often convenient to allow more than one constraint for a variable.
Therefore, it would be also interesting to provide formalized correctness proofs
also for corresponding extension of RLD.

References

1. Backes, M., Laud, P.: Computationally sound secrecy proofs by mechanized flow

analysis. In: ACM Conference on Computer and Communications Security, pp.

370–379 (2006)

2. Cachera, D., Jensen, T.P., Pichardie, D., Rusu, V.: Extracting a data flow analyser

in constructive logic. In: Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 385–

400. Springer, Heidelberg (2004)

Verifying a Local Generic Solver in Coq 355

3. Le Charlier, B., Van Hentenryck, P.: A universal top-down fixpoint algorithm.

Technical Report CS-92-25, Brown University, Providence, RI 02912 (1992)

4. Coupet-Grimal, S., Delobel, W.: A uniform and certified approach for two static

analyses. In: Filliâtre, J.-C., Paulin-Mohring, C., Werner, B. (eds.) TYPES 2004.

LNCS, vol. 3839, pp. 115–137. Springer, Heidelberg (2006)

5. Fecht, C.: Gena - a tool for generating prolog analyzers from specifications. In:

Mycroft, A. (ed.) SAS 1995. LNCS, vol. 983, pp. 418–419. Springer, Heidelberg

(1995)

6. Fecht, C., Seidl, H.: Propagating differences: An efficient new fixpoint algorithm for

distributive constraint systems. In: Hankin, C. (ed.) ESOP 1998. LNCS, vol. 1381,

pp. 90–104. Springer, Heidelberg (1998)

7. Fecht, C., Seidl, H.: A faster solver for general systems of equations. Sci. Comput.

Program. 35(2), 137–161 (1999)

8. Hofmann, M., Karbyshev, A., Seidl, H.: What is a pure functional? In: Abram-

sky, S., Gavoille, C., Kirchner, C., der Heide, F.M.a., Spirakis, P.G. (eds.)

ICALP 2010. LNCS, vol. 6199, pp. 199–210. Springer, Heidelberg (2010),

http://dx.doi.org/10.1007/978-3-642-14162-1_17

9. Hofmann, M., Pavlova, M.: Elimination of ghost variables in program logics. In:

Barthe, G., Fournet, C. (eds.) TGC 2007 and FODO 2008. LNCS, vol. 4912, pp.

1–20. Springer, Heidelberg (2008)

10. Jorgensen, N.: Finding fixpoints in finite function spaces using neededness analysis

and chaotic iteration. In: LeCharlier, B. (ed.) SAS 1994. LNCS, vol. 864, pp. 329–

345. Springer, Heidelberg (1994)

11. Klein, G., Nipkow, T.: Verified bytecode verifiers. Theor. Comput. Sci. 3(298),

583–626 (2003)

12. The Coq development team. The Coq proof assistant reference manual. TypiCal

Project (formerly LogiCal), Version 8.2-bugfix (2009)

13. Nipkow, T.: Verified bytecode verifiers. In: Honsell, F., Miculan, M. (eds.) FOS-

SACS 2001. LNCS, vol. 2030, pp. 347–363. Springer, Heidelberg (2001)

14. Seidl, H., Vojdani, V.: Region analysis for race detection. In: Palsberg, J., Su, Z.

(eds.) SAS 2009. LNCS, vol. 5673, pp. 171–187. Springer, Heidelberg (2009)

15. Seidl, H., Wilhelm, R., Hack, S.: Übersetzerbau: Analyse und Transformation.

Springer, Heidelberg (2010)

http://dx.doi.org/10.1007/978-3-642-14162-1_17

Thread-Modular

Counterexample-Guided Abstraction Refinement

Alexander Malkis1, Andreas Podelski1, and Andrey Rybalchenko2

1 University of Freiburg
2 TU München

Abstract. We consider the refinement of a static analysis method called

thread-modular verification. It was an open question whether such a

refinement can be done automatically. We present a counterexample-

guided abstraction refinement algorithm for thread-modular verification

and demonstrate its potential, both theoretically and practically.

1 Introduction

The static analysis of multi-threaded programs has been and still is an active re-
search topic [1,3,4,5,6,8,10,11,13,14,16,17,18,27,28,29,30,35]. The fundamental
problem that we address in this paper is often described by state explosion: the
state space of a program increases exponentially in the number of its threads. As
a consequence, no static analysis method scales (i.e., is polynomial) in the num-
ber of threads. While this problem has been successfully circumvented by some
methods in some practical instances, we still need to investigate the principles
of potential solutions (“why do they work when they do work”).

The scheme of counterexample-guided abstraction refinement has received
a lot of interest, in particular in its possible extensions from sequential to
concurrent programs. Sophisticated extensions of the CEGAR scheme, as e.g.
in [3, 5, 13, 14], have shown considerable success on practical examples. In this
paper, we present a static analysis method based on yet another extension of
the CEGAR scheme and investigate its principles. The distinguishing point of
our extension lies exactly in its principles. The resulting static analysis method
scales in the number of threads for a specific class of programs. As we will see,
the programs in this class are rather general and many programs encountered
in practice are likely to fall into this class. Thus, in many cases we are likely to
obtain a principled reason for why our method succeeds on a particular example
under consideration.

Another viewpoint leading to our static analysis method lies in the thread-
modular proof method [11,23,27,28]. In previous work, we have shown that the
proof method can be refined (manually) such that it becomes complete. Since
the refinement does not work by enlarging the abstract domain (which is the
basis of known refinement schemes [7, 31, 32, 33]), the questions were left open
whether such a refinement can be done automatically, guided by the analysis
of spurious counterexamples, and whether the resulting static analysis can be

R. Cousot and M. Martel (Eds.): SAS 2010, LNCS 6337, pp. 356–372, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Thread-Modular Counterexample-Guided Abstraction Refinement 357

global x = y = turn = 0

A: x := 1; A: y := 1;

B: turn := 1; B: turn := 0;

C: while(y and turn); C: while(x and not turn);

critical critical
D: x := 0; goto A; D: y := 0; goto A;

Fig. 1. Peterson’s mutual exclusion algorithm

efficient, in theory and/or in practice. In this paper, we give a positive answer
to these questions.

The technical contribution of this paper consists of:

– An algorithm that takes the spurious counterexample produced by thread-
modular abstraction and extracts the information needed for the subsequent
refinement. The algorithm exploits the regularities of data structures for
(unions of) Cartesian products and their operations (Cartesian products
underly the abstract domain of our static analysis).

– A thread-modular counterexample-guided abstraction refinement that auto-
mates the fine-tuning of an existing static analysis related to the thread-
modular proof method. Previously, this fine-tuning was done manually.

– A static analysis method for multi-threaded programs that scales polyno-
mially in the number of threads for a specific class of programs. To the
best of our knowledge, this is the first static analysis for which such a prop-
erty is known, besides the thread-modular proof method which, however,
can produce only local proofs (Owicki-Gries proofs without auxiliary state
variables [8, 11, 20, 27, 28]).

– An implementation and an experimental evaluation indicating that the the-
oretical complexity guarantees can be realized in practice.

2 Illustration

In this section we provide a high level illustration of our abstraction refinement
algorithm. Using the Peterson’s protocol [34] for mutual exclusion and a spurious
counterexample produced by thread-modular verification approach we show the
refinement computed by our procedure.

See Fig. 1 for a program implementing the protocol. We want to prove the
mutually exclusive access to the location labeled D, i.e., that D is not simulta-
neously reachable by both processes.

The thread-modular approach interleaves the computation of reachable pro-
gram states for each thread with the application of Cartesian abstraction among
the computed sets. For our program the reachability computation traverses the
following executions of the first and second thread, respectively (where each
tuple represents a valuation of the program variables x, y, turn, pc1, and pc2):

358 A. Malkis, A. Podelski, and A. Rybalchenko

(0, 0, 0, A, A), (0, 1, 0, A, B), (0, 1, 0, A, C), (0, 1, 0, A, D), (1, 1, 0, B, D) ,

(0, 0, 0, A, A), (1, 0, 0, B, A), (1, 0, 1, C, A), (1, 1, 1, C, B), (1, 1, 0, C, C) .

The last states of the executions above, i.e., the states (1, 1, 0, B, D) and
(1, 1, 0, C, C), have equal valuations of the global variables and hence are subject
to Cartesian abstraction, which weakens the relation between the valuations of
local variables of individual threads. The application of Cartesian abstraction
on this pair produces the following set of states:

{(1, 1, 0)} × {B, C} × {D, C} = {(1, 1, 0, B, D), (1, 1, 0, B, C),
(1, 1, 0, C, D), (1, 1, 0, C, C)} .

The subsequent continuation of the reachability computation discovers that the
first thread can reach an error state (1, 1, 0, D, D) by making a step from the
state (1, 1, 0, C, D). That is, the thread modular approach discovers a possibly
spurious counterexample to the mutual exclusion property of our program.

The feasibility of the counterexample candidate is checked by a standard back-
wards traversal procedure starting from the reached error state (1, 1, 0, D, D).
This check discovers that (1, 1, 0, C, D) is the only state that can be reached back-
wards from (1, 1, 0, D, D). That is, the counterexample is spurious and needs to
be eliminated.

Now we apply our refinement procedure to refine the thread modular ap-
proach. First, our procedure discovers that the application of Cartesian abstrac-
tion on the pair of states (1, 1, 0, B, D) and (1, 1, 0, C, C) produced the state
(1, 1, 0, C, D), since

(1, 1, 0, C, D) ∈ {(1, 1, 0)} × {B, C} × {D, C} ,

and identifies it as a reason for the discovery of the spurious counterexample. Sec-
ond, the Cartesian abstraction used by the thread modular approach is refined
by adding (1, 1, 0, B, D) (or, alternatively (1, 1, 0, C, C)) to the so-called excep-
tion set [24]. The states in the exception set are excluded from the Cartesian
abstraction, thus refining it. As a result, the discovered spurious counterexam-
ple is eliminated since (1, 1, 0, C, D) becomes unreachable. As in the existing
counterexample guided abstraction refinement schemes, we proceed by apply-
ing the thread modular approach, however now it is refined by the exception
set {(1, 1, 0, B, D)}.

In addition to the above counterexample, the thread modular approach also
discovers a spurious counterexample that reaches the error state (1, 1, 1, D, D).
Our refinement procedure detects that the application of Cartesian abstraction
on a state (1, 1, 1, D, B) leads to this counterexample. Thus, the abstraction is
refined by extending the exception set with the state (1, 1, 1, D, B).

Finally, the thread modular approach refined with the resulting exception
set {(1, 1, 0, B, D), (1, 1, 1, D, B)} proves the program correct. In Section 5, we
present a detailed description of how our refinement method computes exception
sets.

Thread-Modular Counterexample-Guided Abstraction Refinement 359

3 Preliminaries

Now we define multithreaded programs, multithreaded Cartesian abstraction
and exception sets. We combat state space explosion in the number of threads,
so we keep the internal structure of a thread unspecified.

An n-threaded program is given by sets Glob, Loc, →i (for 1 ≤ i ≤ n), init,
where each→i is a subset of (Glob×Loc)2 (for 1 ≤ i ≤ n) and init ⊆ Glob×Locn.

The components of the multithreaded program mean the following:
– The set of shared states Glob contains valuations of global variables
– The set of local states Loc contains valuations of local variables including

the program counter (without loss of generality let all threads have equal
sets of local states)

– →i is the transition relation of the ith thread (1 ≤ i ≤ n).
– init is the set of initial program states.

If the program size |Glob| + |Loc| +
∑n

i=1|→i| + |init| is finite, the program is
called finite-state.

The elements of States = Glob×Locn are called program states, the elements
of Glob× Loc are called thread states.

The program is equipped with the interleaving semantics: if a thread makes a
step, then it may change its own local variables and the global variables but may
not change the local variables of another thread; a step of the whole program is
a step of some of the threads. The post operator maps a set of states to the set
of their successors:

post : 2States → 2States ,

S �→ {(g′, l′) | ∃ (g, l) ∈ S, i ∈ Nn : (g, li) →i (g′, l′i) and ∀ j �= i : lj = l′j} ,

where Nn is the set of first n positive integers and the lower indices denote
components of a vector. The verification goal is to show that any computation
that starts in an initial state stays within the set of safe states, formally:⋃

k≥0

postk(init) ⊆ safe .

Thread-modular reasoning can prove the same properties as abstract fixpoint
checking in the following setup [23, 22]:

D = P(States) is the concrete domain, ordered by inclusion,
D# = (P(Glob × Loc))n is the abstract domain, least upper bound is the
componentwise union,

αmc : D → D# , S �→ ({(g, li) | (g, l) ∈ S})ni=1 ,
γmc : D# → D , T �→ {(g, l) | ∀ i ∈ Nn : (g, li) ∈ Ti} ,

are the abstraction and concretization maps which form the multithreaded
Cartesian Galois connection. Interestingly, the Owicki-Gries proof method with-
out auxiliary variables [27] can prove exactly the same properties [20].

360 A. Malkis, A. Podelski, and A. Rybalchenko

A := lfp check(E) (piv , B) := cex check(A, E)

E := extract(A, E, piv , B)

Fig. 2. TM-CEGAR: topmost level. The function lfp check tries to compute an in-

ductive invariant by generating the sequence A by abstract fixpoint iteration where

E tunes the interpretation of elements of A. In case an error state occurs in A, the

function cex check determines the reason for the error occurrence. It determines the

smallest iterate index piv such that the interpretation of Apiv has erroneous descen-

dants later in A. The function extract looks at the way Apiv was constructed, at those

states in the concretization of this iterate that have erroneous successors, and tunes

the parameters starting from Epiv .

Given a set of states E ⊆ States, the exceptional Galois connection

αE : D → D, S �→ S \ E ,
γE : D → D, S �→ S ∪ E .

can be used to parameterize any abstract interpretation. In particular, the pa-
rameterized multithreaded Cartesian Galois connection

(αmc,E, γmc,E) = (αmc ◦ αE , γE ◦ γmc)

allows arbitrary precise polynomial-time analysis by a clever choice of the
exception set E [24].

How to find a suitable exception set in acceptable time automatically? The
remainder of the article deals with this question.

4 Algorithm

Now we show TM-CEGAR, a thread-modular counterexample-guided
abstraction refinement loop, that, given a multithreaded program and a set of
error states, proves or refutes nonreachability of error states from the initial ones.

The computation of TM-CEGAR on a particular multithreaded program is
a sequence of refinement phases, such that within each refinement phase, pre-
viously derived exception sets are used for the fixpoint iteration and a new
exception set is computed. A refinement phase corresponds to one execution of
the CEGAR loop.

TM-CEGAR operates on two sequences A = (Ai)i≥1 ∈ D#ω and E =
(Ei)i≥1 ∈ Dω. The sequence A is filled by the iterates of the abstract fixpoint
computation, where each iterate Ai has a different interpretation which depends
on Ei (i ≥ 1).

The topmost level of TM-CEGAR is given in Fig. 2 (variables printed in bold
face are sequences). Initially, the sequence of parameters E consists of empty

Thread-Modular Counterexample-Guided Abstraction Refinement 361

In: E

A1 := αmc,E1(init); i := 1

Ai+1 := Ai � post
#
E ,i(Ai)

no error and

Ai or Ei still unstablei := i + 1

“safe”
Ai and Ei stable and

no error

Out: A

error

Fig. 3. The lfp check function. The function post
#
E ,i is an abstract transformer whose

precision is tuned by particular elements from E. An error state is detected when

γmc,Ei(Ai) ⊆ safe. Stability of Ai and Ei means that (Ei−1, Ai−1) = (Ei, Ai).

sets. Let’s fix a refinement phase, assuming that the sequence of parameters has
already been constructed previously. Using parameters from E, we construct
the sequence of iterates A in the function lfp check. Assuming abstract fixpoint
computation has found error states in some iterate of A, the function cex check
examines A to find the earliest states in A that are ancestors of the found
error states. In case these earliest states don’t contain initial ones, but lie in
the interpretation of some iterate Apiv , the interpretations of Apiv and of all
subsequent iterates are tuned by changing the parameters from Epiv onwards.

4.1 Abstract Reachability Analysis

The abstract fixpoint computation in Fig. 3 generates the sequence of iterates
A based on the sequence of parameters E.

The lfp check function generates the first element of A as an abstraction of
the initial states, parameterized by the first parameter: A1 = αmc,E1(init). The
subsequent iterates are computed by taking the join of the current iterate with
an approximation of post, applied to the current iterate. The approximation of
post is tuned by E:

post#E,i = αmc,Ei+1 ◦ post ◦ γmc,Ei .

The computation of iterates stops in two cases:
– Either the concretizations of the iterates remain in the safe states and no

more grow, which happens when the sequences A and E get stable after
some index;

– Or the concretization of some iterate contains an error state.
In the first case, TM-CEGAR has proven correctness of the program and thus

exits immediately.
In the second case both sequences A and E are analyzed.
To optimize lfp check, notice that the new and the old sequences of param-

eters share a common prefix (empty prefix in the worst case): say, E1 . . . Ej

362 A. Malkis, A. Podelski, and A. Rybalchenko

In: A, E

piv := min{j ≤ i | posti−j (γmc,Ej (Aj)) ⊆ safe}

Out: (piv , γmc,Epiv (Apiv) ∩ prei−piv (unsafe))

Spurious error trace

“unsafe”

Real error trace

Fig. 4. The high-level view of the cex check function. The set unsafe is States \ safe.

A real error trace is detected when piv = 1 ∧ posti−1(init) ⊆ safe. A spurious error is

detected when (piv = 1 ∧ posti−1(init) ⊆ safe) ∨ piv > 1.

remained the same for some j ≥ 1. Then A1 . . . Aj remain the same and don’t
have to be recomputed in the next refinement phase. This optimization doesn’t
have any influence on the asymptotic runtime, but is a great help in practice.

4.2 Checking Counterexample for Spuriousness

The cex check function assumes that error states are found in concretization of
the iterate Ai and determines the earliest ancestors of those error states in A.

To implement the high-level description of cex check in Fig. 4, we compute
the precise ancestors of the error states inside the concretizations of the iterates
backwards. For that, we construct bad regions Badpiv , . . . , Badi as follows:

Badi := γmc,Ei(Ai) \ safe ,

Badj−1 := pre(Badj) ∩ γmc,Ej−1(Aj−1) for j ≤ i

until the bad region gets empty. The smallest iterate number piv for which the
bad region is nonempty is called pivot. If pivot is 1 and there are initial states in
Bad1, the program has an error trace. Otherwise the error detection was due to
the coarseness of the abstraction; another abstraction has to be chosen for the
pivot iterate and subsequent iterates.

4.3 Refine: Extract New Exception Set

Once a pivot iterate number piv is found, the exception set Epiv has to be
enlarged to exclude more states from approximation. It is not obvious how to
do that. We first specify requirements to the extract function, and then show
the best known way of satisfying those requirements. Implementation variants
of extract are discussed afterwards.

Requirements to extract. The precondition of extract is that ∅ �= Badpiv ⊆
γmc,Epiv (Apiv), and
– neither the interpretation of the previous iterate, namely, γmc,Epiv−1(Apiv−1),
– nor the successors of that interpretation

Thread-Modular Counterexample-Guided Abstraction Refinement 363

intersect Badpiv . (Otherwise forward search would hit error states one iterate
earlier or Badpiv−1 were nonempty.)

The postconditions imposed on the output of Ẽ of extract are:
– γ

mc,Ẽpiv
◦ α

mc,Ẽpiv
◦ post ◦ γmc,Epiv−1(Apiv−1) doesn’t intersect Badpiv and

– Epiv ⊆ Ẽpiv ⊆ Epiv ∪ post(γmc,Epiv−1(Apiv−1)) and
– Ẽk = Ek for k < piv and
– Ẽk = Epiv for k > piv .

The first postcondition ensures that no error trace starting at position piv and
ending at position i would occur in lfp check in the next refinement round.
The second postcondition makes certain that previous spurious counterexamples
starting at the pivot position would not reappear and that no new overapprox-
imation is introduced. The third postcondition provides sufficient backtracking
information for the next refinement phases. The last postcondition saves future
computation time, intuitively, conveying the already derived knowledge to the
future refinement phases; it may be relaxed, as we will see when discussing algo-
rithm variants. The postconditions establish a monotonously growing sequence
of parameters, and guarantee that the next sequence of interpretations of iterates
is lexicographically smaller than the previous one, ensuring progress.

Implementation of extract. We gradually reduce the extraction problem to
simpler subproblems.

First, we choose a set ΔE ⊆ post(γmc,Epiv−1(Apiv−1)) such that γmc,ΔE ◦
αmc,ΔE ◦post◦γmc,Epiv−1(Apiv−1) doesn’t intersect Badpiv . Then we let Ẽk = Ek

for k < piv and Ẽk = ΔE ∪ Epiv for k ≥ piv .
To choose such ΔE, we divide Apiv−1, post(γmc,Epiv−1(Apiv−1)) and Badpiv

into smaller elements of the abstract and concrete domains, such that the shared
state within each small element is constant g ∈ Glob:

A(g) = ({(g, l) ∈ (Apiv−1)i})n
i=1 ,

P (g) = {(g, l) ∈ post(γmc,Epiv−1(Apiv−1))} ,
B(g) = {(g, l) ∈ Badpiv} .

Then
Apiv−1 =

⊔
g∈Glob A

(g)
piv−1 ,

post(γmc,Epiv−1(Apiv−1)) =
⋃

g∈Glob P (g) ,

Badpiv =
⋃

g∈Glob B(g) .

For each g ∈ Glob, we have to find an exception set Δ(g) ⊆ P (g) such that
γmc,ΔE(g) ◦αmc,ΔE(g)(P (g)) doesn’t intersect B(g). After having found such sets,
we let ΔE =

⋃
g∈Glob ΔE(g).

Assume we have fixed g ∈ Glob and want to find Δ(g) as above. To do that,
it suffices to solve a similar problem for the standard Cartesian abstraction:

αc : P(Locn) → (P(Loc))n , S �→ (πi(S))n
i=1 ,

γc : (P(Loc))n → P(Locn) , ((Ti)n
i=1) �→

∏n
i=1 Ti ,

364 A. Malkis, A. Podelski, and A. Rybalchenko

γc(Ã)

P̃

B̃

(a) Input

γc(Ã)

P̃

B̃

(b) Projection

γc(Ã)

P̃

B̃
ΔẼ

(c) Result

Fig. 5. Internals of extract(A, E , piv , B)

where πi projects a set of tuples to the ith component and index c means Carte-
sian. Namely, we are given a tuple Ã ∈ (P(Loc))n and sets P̃ , B̃ ⊆ Locn

such that B̃ ∩ (γc(Ã) ∪ P̃) = ∅, and we want to find ΔẼ ⊆ P̃ such that
B̃ ∩ γc ◦ αc(γc(Ã) ∪ (P̃ \ΔẼ)) = ∅.

To solve this problem, we take the representation of B̃ as a union of products,
say, B̃ =

⋃m
j=1 B̃(j) where B̃(j) =

∏n
i=1 B̃

(j)
i (1 ≤ j ≤ m). Then we solve the

problem for each B(j) instead of B̃ separately, and then take the union of the
results.

So now let j ∈ Nm be fixed and let B̃ =
∏n

i=1 B̃i be a Cartesian product such
that B̃ ∩ (γc(Ã) ∪ P̃) = ∅, as depicted on an example in Fig. 5a. We want to
find ΔẼ ⊆ P̃ such that B̃ ∩ γc ◦ αc(γc(Ã) ∪ (P̃ \ΔẼ)) = ∅. Since B̃ and γc(Ã)
are products that don’t intersect, there is a dimension i ∈ Nn such that B̃i and
Ãi are disjoint (where Ã = (Ãi)n

i=1). In example on Fig. 5b, this is the vertical
dimension i = 2. We let ΔẼ = {p ∈ P̃ | pi ∈ Bi}, as in Fig. 5c.

Notice that P̃ \ ΔẼ has no points whose ith component occurs as the ith

component of a point of B̃. Thus the projections of two sets B̃ and of γc ◦
αc(γc(Ã) ∪ P̃ \ΔẼ) onto the ith component are disjoint. Thus the two sets are
disjoint.

Variants of extract. Now we discuss another way of satisfying the stated
postcondition of extract as well as a variant of those postconditions.

It turns out that taking not just one dimension in which B̃i and Ãi are disjoint,
but all such dimensions (and solving the problem for each of the dimensions, and
taking the union of the results), creates slightly larger sets on many examples,
but saves future refinement phases in general. We call this variant of extract
the eager variant. The total runtime is decreased by a factor between 1 and 2,
so we optionally use this variant in practice.

We may avoid more future refinement steps by creating exception sets not only
for the iterate number piv , but also for as many iterate numbers between piv
and i as possible, using, e.g., Badpiv till Badi for B. This optimization requires
a relaxed postcondition of extract. However, the effect of this optimization was
insignificant on all the examples.

Thread-Modular Counterexample-Guided Abstraction Refinement 365

5 Applying TM-CEGAR to Peterson’s Protocol

In Section 2 we have sketched the main steps of TM-CEGAR on Peterson’s
protocol. Now we show the computation in more detail.

In the initial refinement phase, the sequence of exception sets E contains
empty sets only. The procedure lfp check starts with the iterate

A1 = ({(0, 0, 0, A)}, {(0, 0, 0, A)}) ,

where each tuple represents a valuation of program variables x , y, turn, pc. The
lfp check computation arrives at iterates (we skip A2, A3 as well as uninterest-
ing states not having shared parts (1, 1, 0) or (1, 1, 1))

A4 = ({(1, 1, 0)} × {B} ∪ {(1, 1, 1)} × {C} ∪ . . .,
{(1, 1, 0)} × {B, C} ∪ {(1, 1, 1)} × {B} ∪ . . .),

A5 = ({(1, 1, 0)} × {B, C} ∪ {(1, 1, 1)} × {C, D} ∪ . . . ,
{(1, 1, 0)} × {B, C, D} ∪ {(1, 1, 1)} × {B, C} ∪ . . .),

A6 = ({(1, 1, 0)} × {B, C, D} ∪ {(1, 1, 1)} × {C, D} ∪ . . . ,
{(1, 1, 0)} × {B, C, D} ∪ {(1, 1, 1)} ∪ {B, C, D} ∪ . . .).

The iterate A6 is the earliest one whose concretization γmc,E6(A6) contains error
states, in this case (1, 1, 0, D, D) and (1, 1, 1, D, D). The forward computation
detects those error states and hands A over to cex check.

Notice that possible predecessors of the detected error states, namely,
(1, 1, 0, C, D) and (1, 1, 1, D, C), are in the concretization of A5. However, those
states have no predecessors at all, thus the pivot iterate is 5. So cex check re-
turns piv = 5 and B = {(1, 1, 0, C, D), (1, 1, 1, D, C)} and hands those values
over to extract.

Procedure extract considers shared states (1, 1, 0) and (1, 1, 1) separately.
For shared state (1, 1, 0), cex check is given the tuple Ã = ({B}, {B, C})

(obtained from A4) and sets P̃ = {B}×{B, C, D}∪{(C, C)} (obtained from the
successors of the concretization of A4), B̃ = {(C, D)} (obtained from B). Notice
that B̃ consists of one point only, which is trivially a product. Since Ã2∩π2(B̃) =
{B, C}∩{D} = ∅, extract can choose ΔẼ = {p ∈ P̃ | p2 ∈ π2(B̃)} = {(B, D)}.

For shared state (1, 1, 1), extract chooses ΔẼ = {(D, B)} analogously.
Thus the generated exception set is {(1, 1, 0, B, D), (1, 1, 1, D, B)}, which

extract assigns to E5, E6, E7, E8, The exceptions sets before the pivot,
namely, E1 till E4, remain empty.

The next forward computation proceeds as the previous one till and including
the iterate 4, and the iterate 5 is smaller than the previous one:

A5 = ({(1, 1, 0)} × {B, C} ∪ {(1, 1, 1)} × {C} ∪ . . .,
{(1, 1, 0)} × {B, C} ∪ {(1, 1, 1)} × {B, C} ∪ . . .).

The abstract fixpoint computation terminates at iterate 8 without finding an
error state:

366 A. Malkis, A. Podelski, and A. Rybalchenko

A8 =({(0, 0, 0, A), (0, 0, 1, A), (0, 1, 0, A), (0, 1, 1, A), (1, 0, 0, B)}
∪ {(1, 0, 1), (1, 1, 0)}× {B, C, D} ∪ {(1, 1, 1)} × {B, C},
{(0, 0, 0, A), (0, 0, 1, A)} ∪ {(0, 1, 0)} × {B, C, D} ∪ {(0, 1, 1, B), (1, 0, 0, A)}
∪ {(1, 0, 1, A)} ∪ {(1, 1, 0)} × {B, C} ∪ {(1, 1, 1)} × {B, C, D})

Its concretization γmc,E8(A8) is an inductive invariant that contains no state of
the form (, , , D, D), so mutual exclusion is proven.

6 Parallel Mutex Loop

Now we will describe a practically interesting infinite class of programs. We
show that TM-CEGAR can verify the programs of the class in polynomial time.
We also show that our implementation can cope with the class better than the
state-of-the-art tool SPIN.

The most basic synchronization primitive, namely, a binary lock, is widely
used in multithreaded programming. For example, Mueller in Fig. 2 in [25]
presents a C function that uses binary locks from the standard Pthreads li-
brary [2,19], through calls to pthread mutex lock and pthread mutex unlock.
The first function waits until the lock gets free and acquires it in the same
transition, the second function releases the lock. Since we care about the state
explosion problem in the number of threads only, we abstract away the shared
data and replace the local operations by skip statements which change control
flow location only.

Our class is defined by programs in Fig. 6. In a program of the class, each of
n threads executes a big loop (a variant of the class in which threads have no
loops but are otherwise the same has the same nice properties), inside of a loop
a lock is acquired and released m times, allowing k − 1 local operations inside
each critical section. E.g. for the example of Mueller we have k = 3, m = 1, an
unspecified n. This class extends the class presented in [24] by allowing variably
long critical sections.

The property to be proven is mutual exclusion: no execution should end in a
state in which some two threads are in their critical sections.

For a human, it might seem trivial that mutual exclusion holds. However,
given just the transition relation of the threads, verification algorithms do have
problems with the programs of the class. In fact, Flanagan and Qadeer [11] have
shown a very simple program of this class that cannot be proven by thread-
modular verification. Actually, it can be shown that no program of the class has
a thread-modular proof.

6.1 Polynomial Runtime

Now we will show that our algorithm proves the correctness of mutex programs
in polynomial time.

Thread-Modular Counterexample-Guided Abstraction Refinement 367

bool lck=0⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

while(true) {
Q0 : acquire lck ;

R0,0 :

. . . critical

R0,k−2 :

R0,k−1 : release lck ;

Q1 : acquire lck ;

R1,0 :

. . . critical
R1,k−2 :

R1,k−1 : release lck ;

.

.

.

Qm−1 : acquire lck ;

Rm−1,0 :

. . . critical
Rm−1,k−2 :

Rm−1,k−1 : release lck ;

}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

‖ · · · ‖

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

while(true) {
Q0 : acquire lck ;

R0,0 :

. . . critical

R0,k−2 :

R0,k−1 : release lck ;

Q1 : acquire lck ;

R1,0 :

. . . critical
R1,k−2 :

R1,k−1 : release lck ;

.

.

.

Qm−1 : acquire lck ;

Rm−1,0 :

. . . critical
Rm−1,k−2 :

Rm−1,k−1 : release lck ;

}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 6. Schema for programs consisting of n concurrent threads with m critical sec-

tions per thread such that each critical section has k control locations. The statement

“acquire lck” waits until lck = 0 and sets it to 1. The statement “release lck” sets

lck to 0. This class admits polynomial, efficient, precise and automatic thread-modular

verification.

Theorem 1. The runtime of TM-CEGAR on a program from the mutex class
is polynomial in the number of threads n, number of critical sections m and size
of the critical section k.

Proof. Let C = {Rj,l | j < m and l < k} be the critical local states, N = {Qj |
j < m} the noncritical local states and Loc = C ∪̇N the local states of a thread.
A state (g, l) is an error state iff

∃ i, j ∈ Nn : i �= j and ai ∈ C and aj ∈ C .

For the proof of polynomial complexity we choose an eager version of extract,
which is simpler to present. The eager version creates symmetrical exception sets
for symmetrical inputs of extract: if interchanging two threads doesn’t change
the input of extract, the output is also stable under thread swapping.

The CEGAR algorithm needs mk refinement phases. In each phase, a new
critical location is discovered. More specifically, in phases jk (j < m), the lo-
cations Qj and Rj,0 are discovered. In phases jk + r (j < m and 1 ≤ r < k),
the location Rj,r is discovered. In each phase at least one new location is dis-
covered because the set of error states has no predecessors and backtracking is
not necessary. At the same time, no more than one critical location per phase

368 A. Malkis, A. Podelski, and A. Rybalchenko

is discovered: due to symmetry, when a new critical location of one thread is
discovered, so it happens for all the threads. Since this critical location is new, it
is not in the current exception set, thus it gets subjected to Cartesian abstrac-
tion, which leads to tuples with n critical locations (because of symmetry). Then
the error states are hit and the exception set is enlarged. The eager version of
extract produces, simplifying, all tuples where one component is critical and
might include the new location (and the critical locations of the previous critical
sections) and the other components are noncritical. This new exception set turns
out to be equal to the current set of successors in their critical sections (if it were
not, the difference between the successors and the exception set had at least one
critical location, and, by symmetry, at least n, which would lead to error states
after approximation). Subtracting the exception set from the successor set pro-
duces only tuples of noncritical locations, which get abstracted to a product of
noncritical locations.

We just provide the central computation result, namely the exception set for
each phase jk + r ((j < m and r < k) or (j = m and r = 0)); for details on
intermediate exception sets, see [21]. We are interested in asymptotic behavior
and thus show the derived exception set for large parameter values n ≥ 3, m ≥ 1
and k ≥ 2 (for smaller values the exception sets are simpler).

Let B(U, V) be the union over n-dimensional products in which exactly ex-
actly one component set is V and the remaining are U . Now
E1 = ∅ and
Ep(k+1)+2+l = {1} × (B({Qp′ | p′ < p}, {Rp′,l′ | p′ < p ∧ l′ < k}) ∪
B({Qp′ | p′ ≤ p}, {Rp′,l′ | p′ ≤ p ∧ l′ ≤ min{l, k − 1}})), whose maximized form
is
{1} × (B({Qp′ | p′ < p}, {Rp′,l′ | (p′ < p ∧ l′ < k) ∨ (p′ ≤ p ∧ l′ ≤
min{l, k − 1})}) ∪ B({Qp′ | p′ ≤ p}, {Rp′,l′ | p′ ≤ p ∧ l′ ≤ min{l, k − 1}})) for
p < j and l ≤ k as well as for p = j and l < r,
the ultimate exception set is Ej(k+1)+1+r .

This representation is maximized: if some product is a subset of restriction of
Ep(k+1)+2+l to shared part 0 (resp. to shared part 1), it is a subset of some of the
products in the above representation for shared part 0 (resp. for shared part 1).

Since each exception set has a polynomial-size maximized form, each refine-
ment phase is polynomial-time by [24]. The number of refinement phases is also
polynomial, so the total runtime is polynomial. (

6.2 Experiments

We have implemented TM-CEGAR in OCAML and ran tests on a 3MHz Intel
machine.

We compared TM-CEGAR to the existing state-of-the-art tool SPIN 5.2.4
[15]. For comparison, we have fixed k = 1 locations per critical section and
m = 3 critical sections per thread, then we measured the runtimes of TM-
CEGAR and SPIN in dependency on the number of threads n. We encoded
the mutual exclusion property for SPIN by a variable which is incremented on

Thread-Modular Counterexample-Guided Abstraction Refinement 369

e0

e1

e3

e4

e6

e-1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 #threads

sec. SPIN

TM-CEGAR

Fig. 7. SPIN vs. TM-CEGAR for 3 critical sections with one location each. Here e ≈ 2.7
is the basis of natural logarithms. SPIN ran in exponential time O(3.2n), requiring 1892

seconds for 14 threads. TM-CEGAR needed only polynomial time O(n5), requiring

around a second for 14 threads.

m \ n 1 10 20 30 40 50 60 70

1 0 0.30 6.94 46.72 185.51 553.47 1363.07 2912.25

3 0 10.90 235.36 1571.93 6085.92 17778.27 42848.10 90483.99

5 0 35.64 790.79 5260.06 20744.28 60610.99 147084.53 310593.29

7 0 80.29 1820.60 12276.20 48708.02 142755.15 346740.45 736117.10

9 0.01 150.52 3455.05 23538.67 94063,06 276296.15 671723.67 1432164.26

Fig. 8. Runtimes on the locks class for critical sections of size k = 9, a variable number

of threads n and a variable number of critical sections m

acquires and decremented on releases, the property to be checked is that the value
of this variable never exceeds one. The runtimes of SPIN and TM-CEGAR are
depicted in Fig. 7 on a logarithmic scale.

SPIN fails at 15 threads, exceeding the 1 GB space bound, even if the most
space-conserving switches are used (if default switches are used, SPIN runs out of
space for 12 threads already after 12 seconds). Compared to that, TM-CEGAR
has a tiny runtime, requiring around a second for 14 threads.

Fig. 8 demonstrates the behavior of TM-CEGAR on large examples. Of course,
it is infeasible to wait for the completion of the algorithm on very large instances
in practice. But we were astonished to see that TM-CEGAR requires negligibly
small space. For example, after running for 3.4 days on the instance n = 100
threads, m = 9 critical sections of size k = 1, TM-CEGAR consumed at most
100MB; while after running for half a month on the instance n = 80, k = m = 7,
it consumed only 150MB.

7 Related Work

Our work builds upon the thread-modular analysis to the verification of concur-
rent programs [11], which is based on an adaptation on the Owicki-Gries proof
method [28] to finite state systems.

370 A. Malkis, A. Podelski, and A. Rybalchenko

In this paper we address the question of improving the precision of thread
modular analysis automatically, thus overcoming the inherent limitation of [11]
to local proofs. We automate our previous work on exception sets [24] (which
requires user interaction) by exploiting spurious counterexamples.

An alternative approach to improve the precision of thread modular analysis
introduces additional global variables that keep track of relations between valu-
ations of local variables of individual threads [5]. As in our case, this approach
is guided by spurious counterexamples. In contrast, our approach admits a com-
plexity result on a specific class of programs for which the analysis is polynomial
in the number of threads. Identifying a similar result for the technique in [5] is
an open problem.

Keeping track of particular correlations between threads can be dually seen as
losing information about particular threads [9,12]. Formally connecting CEGAR-
TM with locality-based abstractions as well as the complexity analysis for the
latter is an open problem.

Extensions for dealing with infinite-state systems (in rely-guarantee fashion)
are based on counterexample-guided schemes for data abstraction [13]. While
our method takes a finite-state program as input, we believe it can be combined
with predicate abstraction over data to deal with infinite-state systems.

8 Conclusion

In this paper, we have presented the following contributions.

– An algorithm that takes the spurious counterexample produced by thread-
modular abstraction and extracts the information needed for the subsequent
refinement. The algorithm exploits the regularities of data structures for
(unions of) Cartesian products and their operations.

– A thread-modular counterexample-guided abstraction refinement that auto-
mates the fine-tuning of an existing static analysis related to the thread-
modular proof method. Previously, this fine-tuning was done manually.

– A static analysis method for multi-threaded programs that scales polynomi-
ally in the number of threads, for a specific class of programs. To the best
of our knowledge, this is the first static analysis for which such a property
is known, besides the thread-modular proof method which, however, can
produce only local proofs.

– An implementation and an experimental evaluation indicating that the the-
oretical complexity guarantees can be realized in practice.

So far, we have concentrated on the state-explosion problem for multi-threaded
programs, the concrete algorithms assume a finite-state program as an input.
The assumption is justified if, e.g., one abstracts each thread. Doing so in a
preliminary step may be too naive. Thus, an interesting topic for future work is
the interleaving of thread-modular abstraction refinement with other abstraction
refinement methods, here possibly building on the work of, e.g., [13, 14].

Thread-Modular Counterexample-Guided Abstraction Refinement 371

References

1. Bouajjani, A., Esparza, J., Touili, T.: A generic approach to the static analysis

of concurrent programs with procedures. Int. J. Found. Comput. Sci. 14(4), 551

(2003)

2. Bradford Nichols, J.P.F., Buttlar, D.: Pthreads programming. O’Reilly & Asso-

ciates, Inc, Sebastopol (1996)

3. Chaki, S., Clarke, E.M., Kidd, N., Reps, T.W., Touili, T.: Verifying concurrent

message-passing C programs with recursive calls. In: Hermanns, H., Palsberg, J.

(eds.) TACAS 2006. LNCS, vol. 3920, pp. 334–349. Springer, Heidelberg (2006)

4. Clarke, E.M., Talupur, M., Veith, H.: Environment abstraction for parameter-

ized verification. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS,

vol. 3855, pp. 126–141. Springer, Heidelberg (2005)

5. Cohen, A., Namjoshi, K.S.: Local proofs for global safety properties. In: Damm,

W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 55–67. Springer, Hei-

delberg (2007)

6. Cousot, P., Cousot, R.: Invariance proof methods andanalysis techniques for par-

allel programs. In: Automatic Program Construction Techniques, pp. 243–271.

Macmillan, Basingstoke (1984)

7. Cousot, P., Ganty, P., Raskin, J.-F.: Fixpoint-guided abstraction refinements. In:

Nielson and Filé [26], pp. 333–348

8. de Roever, W.-P.: A compositional approach to concurrency and its applications.

Manuscript (2003)

9. Esparza, J., Ganty, P., Schwoon, S.: Locality-based abstractions. In: Hankin, C.,

Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 118–134. Springer, Heidelberg

(2005)

10. Flanagan, C., Freund, S.N., Qadeer, S., Seshia, S.A.: Modular verification of mul-

tithreaded programs. Theor. Comput. Sci. 338(1-3), 153–183 (2005)

11. Flanagan, C., Qadeer, S.: Thread-modular model checking. In: Ball, T., Rajamani,

S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 213–224. Springer, Heidelberg (2003)

12. Ganty, P.: The Fixpoint Checking Problem: An Abstraction Renement Perspec-

tive. PhD thesis, Université Libre de Bruxelles (2007)

13. Henzinger, T.A., Jhala, R., Majumdar, R.: Race checking by context inference.

In: Pugh, W., Chambers, C. (eds.) PLDI, pp. 1–13. ACM, New York (2004)

14. Henzinger, T.A., Jhala, R., Majumdar, R., Qadeer, S.: Thread-modular ab-

straction refinement. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS,

vol. 2725, pp. 262–274. Springer, Heidelberg (2003)

15. Holzmann, G.: The Spin model checker: Primer and reference manual. Addison-

Wesley, Reading ISBN 0-321-22862-6, http://www.spinroot.com

16. Jones, C.B.: Tentative steps toward a development method for interfering pro-

grams. ACM Trans. Program. Lang. Syst. 5(4), 596–619 (1983)

17. Kahlon, V., Sankaranarayanan, S., Gupta, A.: Semantic reduction of thread inter-

leavings in concurrent programs. In: Kowalewski, S., Philippou, A. (eds.) TACAS.

LNCS, vol. 5505, pp. 124–138. Springer, Heidelberg (2009)

18. Lal, A., Reps, T.W.: Reducing concurrent analysis under a context bound to

sequential analysis. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123,

pp. 37–51. Springer, Heidelberg (2008)

19. Leroy, X.: Pthreads linux manual pages,

http://www.digipedia.pl/man/pthread_mutex_init.3thr.html

http://www.spinroot.com
http://www.digipedia.pl/man/pthread_mutex_init.3thr.html

372 A. Malkis, A. Podelski, and A. Rybalchenko

20. Malkis, A.: Cartesian Abstraction and Verification of Multithreaded Programs.

PhD thesis, Albert-Ludwigs-Universität Freiburg (2010)

21. Malkis, A., Podelski, A.: Refinement with exceptions. Technical report (2008),

http://www.informatik.uni-freiburg.de/ alexmalk/

refinementWithExceptions techrep.pdf

22. Malkis, A., Podelski, A., Rybalchenko, A.: Thread-modular verification and Carte-

sian abstraction. In: Presentation at TV 2006 (2006)

23. Malkis, A., Podelski, A., Rybalchenko, A.: Thread-modular verification is Carte-

sian abstract interpretation. In: Barkaoui, K., Cavalcanti, A., Cerone, A. (eds.)

ICTAC 2006. LNCS, vol. 4281, pp. 183–197. Springer, Heidelberg (2006)

24. Malkis, A., Podelski, A., Rybalchenko, A.: Precise thread-modular verification.

In: Nielson and Filé [26], pp. 218–232

25. Mueller, F.: Implementing POSIX threads under UNIX: Description of work in

progress. In: Proceedings of the 2nd Software Engineering Research Forum, Mel-

bourne, Florida (November 1992)

26. Nielson, H.R., Filé, G. (eds.): SAS 2007. LNCS, vol. 4634. Springer, Heidelberg

(2007)

27. Owicki, S.S.: Axiomatic Proof Techniques For Parallel Programs. PhD thesis,

Cornell University, Department of Computer Science, TR 75-251 (July 1975)

28. Owicki, S.S., Gries, D.: An axiomatic proof technique for parallel programs I.

Acta Inf. 6, 319–340 (1976)

29. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software.

In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107.

Springer, Heidelberg (2005)

30. Qadeer, S., Wu, D.: Kiss: keep it simple and sequential. In: PLDI 2004, pp. 14–24.

ACM, New York (2004)

31. Giacobazzi, F.S.R., Ranzato, F.: Making abstract interpretations complete.

JACM (2000)

32. Ranzato, F., Rossi-Doria, O., Tapparo, F.: A forward-backward abstraction re-

finement algorithm. In: Logozzo, F., Peled, D., Zuck, L. D. (eds.) VMCAI 2008.

LNCS, vol. 4905, pp. 248–262. Springer, Heidelberg (2008)

33. Ranzato, F., Tapparo, F.: Generalized strong preservation by abstract interpre-

tation. J. Log. Comput. 17(1), 157–197 (2007)

34. Shankar, A.U.: Peterson’s mutual exclusion algorithm (2003),

http://www.cs.umd.edu/~shankar/712-S03/mutex-peterson.ps

35. Vineet Kahlon, F.I., Gupta, A.: Reasoning about threads communicating via

locks. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp.

505–518. Springer, Heidelberg (2005)

http://www.informatik.uni-freiburg.de/~alexmalk/refinementWithExceptions_techrep.pdf
http://www.informatik.uni-freiburg.de/~alexmalk/refinementWithExceptions_techrep.pdf
http://www.cs.umd.edu/~shankar/712-S03/mutex-peterson.ps

Generating Invariants for Non-linear Hybrid

Systems by Linear Algebraic Methods

Nadir Matringe2, Arnaldo Vieira Moura3, and Rachid Rebiha1,3,�

1 Faculty of Informatics, University of Lugano, Switzerland

rachid.rebiha@lu.unisi.ch
2 Institue de Mathematiques de Jussieu Université Paris 7-Denis Diderot, France

nadir.matringe@univ-jussieu.fr
3 Institute of Computing, University of Campinas, SP.Brasil

arnaldo@ic.unicamp.br

Abstract. We describe powerful computational methods, relying on lin-

ear algebraic methods, for generating ideals for non-linear invariants of

algebraic hybrid systems. We show that the preconditions for discrete

transitions and the Lie-derivatives for continuous evolution can be viewed

as morphisms and so can be suitably represented by matrices. We reduce

the non-trivial invariant generation problem to the computation of the

associated eigenspaces by encoding the new consecution requirements as

specific morphisms represented by matrices. More specifically, we estab-

lish very general sufficient conditions that show the existence and allow

the computation of invariant ideals. Our methods also embody a strat-

egy to estimate degree bounds, leading to the discovery of rich classes of

inductive, i.e. provable, invariants. Our approach avoids first-order quan-

tifier elimination, Grobner basis computation or direct system resolution,

thereby circumventing difficulties met by other recent techniques.

1 Introduction

Hybrid systems [1] exhibit both discrete and continuous behaviors, as one of-
ten finds when modeling digital system embedded in analog environments. Most
safety-critical systems (e.g. aircraft, automobiles, chemicals and nuclear power
plants, biological systems) operate semantically as non-linear hybrid systems.
As such, they can only be adequately modeled by means of non linear arith-
metic over the real numbers involving multivariate polynomials and fractional
or transcendental functions. Some verification approaches for treating such mod-
els are based on the powerful Abstract Interpretation framework [2, 3] and so
also on inductive invariant generation methods [4], combined with the reduc-
tion of safety-critical properties to invariant properties. More recent approaches
have been constraint-based [5, 6, 7, 8, 9]. In these cases, a candidate invari-
ant with a fixed degree and unknown parametric coefficients, i.e., a template
form, is proposed as the target invariant to be generated. The conditions for in-
variance are then encoded, resulting in constraints on the unknown coefficients
� List of authors in alphabetic order.

R. Cousot and M. Martel (Eds.): SAS 2010, LNCS 6337, pp. 373–389, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

374 N. Matringe, A.V. Moura, and R. Rebiha

whose solutions yield invariants. One of the main advantage of such constraint-
based approaches is that they are goal-oriented. But, on the other hand, they
still require the computation of several Grobner Bases [10] or require first-order
quantifier elimination [11]. But, on the other hand, known algorithms for those
problems are, at least, of double exponential complexity. SAT Modulo Theory
decision procedures and polynomial systems [12, 6] could also, eventually, lead to
decision procedures for linear theories and decidable systems. Such ideas strive
to generate linear or polynomial invariants over hybrid systems that exhibit
affine or polynomial systems as continuous evolution modes. Nonetheless, de-
spite tremendous progress over the years [5, 13, 14, 6, 8, 9, 15], the problem
of invariant generation for hybrid systems remains very challenging for both
non-linear discrete systems as well as non-linear differential systems with non
abstracted local and initial conditions.

In this work we use hybrid automata as computational models for hybrid
systems. A hybrid automaton describes the interaction between discrete tran-
sitions and continuous dynamics, the latter being governed by local differential
equations. We present new methods for the automatic generation of non-linear
invariants for non-linear hybrid systems. These methods give rise to more efficient
algorithms, with much lower complexity in space and time. First, we extend and
generalize our previous work on invariant generation for hybrid systems [16, 17].
To do so, we provide methods to generate non trivial basis of provable invariants
for local continuous evolution modes described by non linear differential rules.
These invariants can provide precise over-approximations of the set of reachable
states in the continuous state space. As a consequence, they can determine which
discrete transitions are possible and can also verify if a given property is fulfilled
or not. Next, in order to generate invariants for hybrid systems we complete and
extend our previous work on non linear invariant generation for discrete pro-
grams [18]. The contribution and novelty in our paper clearly differ from those
in [5] as their constraint-based techniques are based on several Grobner Basis
(or Syzygy Basis[19]) computations and on solving non linear problems for each
location. Nevertheless, they introduce a useful formalism to treat the problem,
and we start from similar definitions for hybrid systems, inductive invariants and
consecution conditions.

We then propose methods to identify suitable morphisms to encode the re-
laxed consecution requirements. We show that the preconditions for discrete
transitions and the Lie-derivatives for continuous evolutions can be viewed as
morphisms over a vector space of terms, with polynomially bounded degrees,
which can be suitably represented by matrices. The relaxed consecution require-
ments are also encoded as morphisms represented by matrices. By so doing,
we do not need to start with candidate invariants that generate intractable
solving problems. Moreover, our methods are not constraint-based. Rather, we
automatically identify the needed degree of a generic multivariate polynomial,
or fractional, as a relaxation of the consecution condition. The invariant basis
are, then, generated by computing the Eigenspace of another matrix that is
constructed. We identify the needed approximations and the relaxations of the

Generating Invariants for Non-linear Hybrid Systems 375

consecution conditions, in order to guaranteed sufficient conditions for the ex-
istence and computation of invariants. Moreover, the unknown parameters that
are introduced are all fixed in such a way that certain specific matrices will have
a non null kernel, guaranteeing a basis for non-trivial invariants.

To summarize our contributions: (i) we reduce the non-trivial invariant gen-
eration problem to the computation of associated eigenspaces; (ii) we propose a
computational method of lower complexity than the mathematical foundations
of previous methods (e.g., Grobner basis computation, quantifier elimination,
cylindrical algebraic decomposition, Syzygy basis computation); (iii) we han-
dle non-linear hybrid systems, extended with parameters and variables that are
functions of time. We note that the latter conditions are still not treated by other
state-of-the-art invariant generation methods; (iv) we introduce a more general
form of approximating consecution, called fractional and polynomial consecu-
tion; (v) we bring very general sufficient conditions guaranteeing the existence
and allowing the computation of invariant ideals for situations not treated in the
present literature on invariant generation; and (vi) our algorithm incorporates
a strategy for estimating optimal degree bounds for candidate invariants, thus
being able to compute basis for ideals of non-trivial non-linear invariants.

In Section 2 we introduce ideals of polynomials, inductive assertions and al-
gebraic hybrid systems. In Section 3 we present new forms of approximating
consecution for non-linear differential systems. In Section 4, we discuss mor-
phisms suitable to handle non-linear differential rules and show how to generate
invariants for differential rules. In Section 5 we introduce a strategy that can be
used to choose the degree of invariants. Section 6 presents some experiments. In
Section 7, we show how to generate ideals for global invariants by taking into ac-
count the ideal basis of local differential invariants, together with those derived
from the discrete transition analysis and the initial constraints. We present our
conclusions in Section 8.

In this writing, we strive to precede the most important proofs by sketches.
Full proofs, more details and examples can be found in [20, 21].

2 Algebraic Hybrid Systems and Inductive Assertions

Let K[X1, .., Xn] be the ring of multivariate polynomials over the set of vari-
ables {X1, .., Xn}. An ideal is any set I ⊆ K[X1, .., Xn] which contains the null
polynomial and is closed under addition and multiplication by any element in
K[X1, .., Xn]. Let E ⊆ K[X1, .., Xn] be a set of polynomials. The ideal generated
by E is the set of finite sums (E) = {

∑k
i=1 PiQi | Pi ∈ K[X1, . . . , Xn], Qi ∈

E, k ≥ 1}. A set of polynomials E is said to be a basis of an ideal I if I = (E).
By the Hilbert basis theorem, we know that all ideals have a finite basis.

Notationally, as is standard in static program analysis, a primed symbol x′

refers to next state value of x after a transition is taken. We may also write
ẋ for the derivative dx

dt . We denote by Rd[X1, .., Xn] the ring of multivariate
polynomials over the set of real variables {X1, .., Xn} of degree at most d. We
write V ect(v1, ..., vn) for the vectorial space generated by the basis v1, ..., vn.

376 N. Matringe, A.V. Moura, and R. Rebiha

Definition 1. A hybrid system is described by a tuple 〈V, Vt, L, T , C,S, l0, Θ〉,
where V = {a1, .., am} is a set of parameters, Vt = {X1(t), .., Xn(t)} where
Xi(t) is a function of t, L is a set of locations and l0 is the initial location. A
transition τ ∈ T is given by 〈lpre, lpost, ρτ 〉, where lpre and lpost name the pre-
and post- locations of τ , and the transition relation ρτ is a first-order assertion
over V ∪ Vt ∪ V ′ ∪ V ′

t . Also, Θ is the initial condition, given as a first-order
assertion over V ∪ Vt, and C maps each location l ∈ L to a local condition C(l)
denoting an assertion over V ∪Vt. Finally, S associates each location l ∈ L to a
differential rule S(l) corresponding to an assertion over V ∪ {dXi/dt|Xi ∈ Vt}.
A state is any pair from L× R|V |. (

Definition 2. A run of a hybrid automaton is an infinite sequence (l0, κ0) →
· · · → (li, κi) → · · · of states where l0 is the initial location and κ0 |= Θ. For
any two consecutive states (li, κi) → (li+1, κi+1) in such a run, the condition
describes a discrete consecution if there exists a transition 〈q, p, ρi〉 ∈ T such
that q = li, p = li+1 and 〈κi, κi+1〉 |= ρi where the primed symbols refer to
κi+1. Otherwise, it is a continuous consecution condition and we must have
q ∈ L, ε ∈ R and a differentiable function φ : [0, ε) → R|V ∪Vt| such that the
following conditions hold: (i) li = li+1 = q; (ii) φ(0) = κi, φ(ε) = κi+1; (iii)
During the time interval [0, ε), φ satisfies the local condition C(q) and the local
differential rule S(q). That is, for all t ∈ [0, ε) we must have φ(t) |= C(q) and
〈φ(t), dφ(t)/dt〉 |= S(q). A state (�, κ) is reachable if there is a run and some
i ≥ 0 such that (�, κ) = (�i, κi). (

Definition 3. Let W be a hybrid system. An assertion ϕ over V ∪ Vt is an
invariant at l ∈ L if κ |= ϕ whenever (l, κ) is a reachable state of W . (

Definition 4. Let W be a hybrid system and let D be an assertion domain. An
assertion map for W is a map γ : L → D. We say that γ is inductive if and
only if the following conditions hold:

1. Initiation: Θ |= γ(l0);
2. Discrete Consecution: for all 〈li, lj , ρτ 〉 ∈ T we have γ(li) ∧ ρτ |= γ(lj)′;
3. Continuous Consecution: for all l ∈ L, and two consecutive states (l, κi)

and (l, κi+1) in a possible run of W such that κi+1 is obtained from κi ac-
cording to the local differential rule S(l), if κi |= γ(l) then κi+1 |= γ(l).
Note that if γ(l) ≡ (Pγ(X1(t), .., Xn(t)) = 0)∀t ∈ [0, ε) where Pγ is a mul-
tivariate polynomial in R[X1, .., Xn] such that it has null values on the tra-
jectory (X1(t), ..., Xn(t)) during the time interval [0, ε) (which do not im-
plies that Pγ is the null polynomial) then C(l)∧ (Pγ(X1(t), .., Xn(t)) = 0) |=
(d(Pγ(X1(t), .., Xn(t))/dt = 0) during the local time interval. (

Hence, if γ is an inductive assertion map then γ(l) is an invariant at l for W .

3 New Continuous Consecution Conditions

Now we show how to encode differential continuous consecution conditions. Con-
sider a hybrid automaton W . Let l ∈ L be a location which could, eventually, be

Generating Invariants for Non-linear Hybrid Systems 377

in a circuit, and let η be an assertion map such that η(l) ≡ (Pη(X1(t), .., Xn(t)) =
0), where Pη is a multivariate polynomial in R[X1, .., Xn]. We have dPη

dt =
∂Pη(X1,...,Xn)

∂X1

dX1(t)
dt + · · ·+ ∂Pη(X1,...,Xn)

∂Xn

dXn(t)
dt .

Definition 5. For a polynomial P in Rd[X1, .., Xn], we define the polynomial
DP of Rd[Y1, .., Yn, X1, .., Xn]:

DP (Y1, .., Yn, X1, .., Xn) = ∂P (X1,..,Xn)
∂X1

Y1 + ... + ∂P (X1,..,Xn)
∂Xn

Yn.

Hence, dPη/dt = DPη (Ẋ1, .., Ẋn, X1, .., Xn). Now, let (l, κi) and (l, κi+1) be two
consecutive configurations in a run. Then we can express local state continuous
consecutions as C(l)∧ (Pη(X1(t), .., Xn(t)) = 0) |= (dPη(X1(t), .., Xn(t)/dt = 0).

Definition 6. Let W be a hybrid automaton, l ∈ L a location and let η be
an algebraic inductive map with η(l) ≡ (Pη(X1(t), .., Xn(t)) = 0) for all t in
the time interval of mode l (so, Pη has a null value over the local trajectory
(X1(t), .., Xn(t))). We identify the following notions to encode continuous con-
secution conditions:

– η satisfies a differential Polynomial-scale consecution at l if and only if there
exist a multivariate polynomial T such that C(l) |= dPη/dt − TPη = 0. We
say that Pη is a polynomial-scale and a T -scale differential invariant.

Differential Polynomial-scale consecution encode the fact that the numerical
value of the Lie derivative of the polynomial Pη associated with assertion η(l)
is given by T times its numerical value throughout the time interval [0, ε]. In
[16, 17] we proposed methods for T -scale invariant generation where T is a con-
stant (constant-scaling) or null (strong-scaling). As can be seen, the consecution
conditions are relaxed when going from strong to polynomial scaling. Also, the
T polynomials or can be understood as template multiplicative factors. In other
words, they are polynomials with unknown coefficients. In the next section, we
consider polynomial-scale consecution and then we could extend the methods to
fractional-scale consecution conditions, as is done in Section 7 for discrete steps.
In later sections we show how to combine these conditions with others induced
by discrete transitions. In [20], [21] one can find more details on how to handle
other constraints associated to locations.

Theorem 1. (Soundness) Let P be a continuous function and let
S = [Ẋ1(t) = P1(X1(t), .., Xn(t)), .., Ẋn(t) = Pn(X1(t), .., Xn(t)] be a differential
rule, with initial condition (x1, .., xn). Any polynomial which is a P -scale differ-
ential invariant for these initial conditions is actually an inductive invariant.

Consider polynomial-scale consecution, the system [ẋ = ax(t); ẏ = ay(y) +
bx(t)y(t)] could be cited as counter-example for completeness as its invariants
are not P -scale differential invariant.

4 Handling Non-linear Differential Systems

Invariant generation for continuous time evolution is one of the main challenging
step in static analysis and verification of hybrid systems. That is why we first re-
strict the analysis to differential system which appear in locations. We consider a

378 N. Matringe, A.V. Moura, and R. Rebiha

non linear differential system of the form: [Ẋ1(t)=P1(X1(t), .., Xn(t)); ..; Ẋn(t)=
Pn(X1(t), .., Xn(t))], with the Pi’s in R[X1, .., Xn].We have the following lemma.

Lemma 1. Let Q ∈ R[X1, .., Xn] such that DQ(P1, .., Pn, X1, .., Xn) = TQ with
T in R[X1, .., Xn]. Then Q is a T -scale invariant. (

If P ∈ R[X1, .., Xn] is of degree r and the maximal degree of the Pi’s is d, then
the degree of DP (P1, .., Pn, X1, .., Xn) is r + d − 1. Hence, T must be searched
in the subspace of R[X1, .., Xn], which is of degree at most r + d− 1− r = d− 1.
Transposing the situation to linear algebra, consider the morphism

D :
{

Rr[X1, . . . , Xn] → Rr+d−1[X1, . . . , Xn]
P �→ DP (P1, . . . , Pn, X1, . . . , Xn).

Let MD be its matrix in the canonical basis of Rr[X1, ., Xn] and Rr+d−1[X1, .., Xn].

Example 1. Consider the following differential rules: [ẋ = x2 + xy + 3y2 +
3x + 4y + 4 ; ẏ = 3x2 + xy + y2 + 4x + y + 3]. In this example we write
P1(x, y) = x2 +xy +3y2 +3x+4y+4 and P2(x, y) = 3x2 +xy + y2 +4x+ y +3.
We consider the associated morphism D from R2[x, y] to R3[x, y]. Using the basis
B1 = (x2, xy, y2, x, y, 1) of R2[x, y] and B2 = (x3, x2y, xy2, y3, x2, xy, y2, x, y, 1)
of R3[x, y], we define the matrix MD. To do so, we compute D(P) for all ele-
ments P in the basis (x2, xy, y2, x, y, 1) and we express the results in the ba-
sis (x3, x2y, xy2, y3, x2, xy, y2, x, y, 1). Hence, to get the first column of MD we
first consider P (x, y) = x2, the first element of B1, and we compute D(P) =
DP (P1, P2, x, y) which is expressed in B2 as

D(x2
) = 2 x3

+ 2 x2y+ 6 xy2
+ 0 y3

+ 6 x2
+ 8 xy+ 0 y2

+ 8 x+ 0 y+ 0 ×1

MD =

⎛⎜⎜⎜⎜⎜⎜⎝
2 2 6 0 6 8 0 8 0 0

3 2 2 3 4 7 4 3 4 0
0 6 2 2 0 8 2 0 6 0
0 0 0 0 1 1 3 3 4 4
0 0 0 0 3 1 1 4 1 3
0 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠

�

.

(

Choosing a generic T in Rd−1[X1, .., Xn], we define the associated morphism

T :
{

Rr[x1, . . . , xn] → Rr+d−1[x1, . . . , xn]
P �→ TP.

Denote by LT its matrix in the canonical basis, obtained as in the computa-
tion of MD. If T is a generic template in Rd−1[X1, .., Xn], call t1, .., tv(d−1) its
coefficients where v(d− 1) is the dimension of Rd−1[X1, .., Xn]. Then LT ’s coef-
ficients are in {t1, .., tv(d−1)} and it has a natural block decomposition. We will
call M(pol) the set of such matrices. Now let Q ∈ R[X1, .., Xn] be a T -scale
invariant for a given differential system defined by P1, .., Pn ∈ R[X1, .., Xn].
Then (DQ(P1, .., Pn, X1, .., Xn) = TQ) ⇔ D(Q) = T (Q) ⇔ ((D − T)(Q) =
0R[X1,..,Xn]) ⇔ (Q ∈ Ker(MD − LT)). So, a T -scale invariant is nothing else
than a vector in the kernel of MD − LT .

Generating Invariants for Non-linear Hybrid Systems 379

Theorem 2. There is a polynomial-scale invariant for the differential system if
and only if there exists a matrix LT in M(pol), corresponding to a polynomial
T of Rd−1[x1, .., Xn], such that Ker(MD −LT) is not reduced to zero. And, any
vector in the kernel of MD − LT will give a T -scale differential invariant. (

Now notice that MD−LT with a non trivial kernel is equivalent to it having rank
strictly less than the dimension v(r) of Rr[x1, . . . , xn]. By a classical theorem [22],
this is equivalent to the fact that each v(r)×v(r) sub-determinant of MD−LT is
equal to zero. Those determinants are polynomials with variables (t1, .., tv(d−1)),
which we will denote by E1(t1, ..., tv(d−1)), ..., Es(t1, ..., tv(d−1)).

Theorem 3. There is a non trivial T -scale invariant if and only if the polyno-
mials (E1, .., Es) admit a common root, other than the trivial one (0, ..., 0). (

This theorem provides us with important existence results. But there is a more
practical way to get invariant ideals without computing common roots. Consider
initial values given by unknown parameters (x1(0) = u1, . . . , xn(0) = un). The
initial step defines a linear form on Rr[x1, . . . , xn], namely Iu : P �→ P (u1, ..., un).
Hence, initial values correspond to a hyperplane of Rr[X1, .., Xn] given by the
kernel Iu, which is {Q ∈ Rr[X1, .., Xn]|Q(u1, . . . , un) = 0}.

Theorem 4. Let Q be in Rr[X1, .., Xn]. Then Q is an inductive invariant for
the differential system with initial values (u1, .., un) if and only if there exists a
matrix LT �= 0 in M(pol), corresponding to T in Rd−1[X1, .., Xn], such that Q is
in the intersection of Ker(MD −LT) and the hyperplane Q(u1, . . . , un) = 0. (

Now, if Dim(Ker(MD − LT)) ≥ 2 then Ker(MD − LT) would intersect any
initial (semi-)hyperplane.

Corollary 1. There are non-trivial invariants for any given initial values if
and only if there exists a matrix LT in M(pol) such that Ker(MD − LT) has
dimension at least 2. (

Also, we have (Dim(Ker(MD−LT)) ≥ 2) if and only if we also have Rank(MD−
LT) ≤ Dim(Rr[X1, .., Xn])−2. Further, we also show how to assign values to the
coefficients of T in order to guarantee the existence and generation of invariants.

Example 2. (Running example) Consider the following differential rules with
P1 = x2 + 2xy + x and P2 = xy + 2y2 + y:

[ẋ(t) = x2(t) + 2x(t)y(t) + x(t) ; ẏ(t) = x(t)y(t) + 2y2(t) + y(t)]. (1)

Step 1: We build matrix MD−LT . The maximal degree of the systems is d = 2
and the T -scale invariant will be of degree r = 2. Then, T is of degree d− 1 = 1
and we write t1, t2, t3 for its unknown coefficients, (i.e. the canonical form is
T (x, y) = t1x + t2y + t3. Using the basis (x2, xy, y2, x, y, 1) of R2[x, y] and the
basis (x3, x2y, xy2, y3, x2, xy, y2, x, y, 1) of R3[x, y], the matrix MD − LT is:

380 N. Matringe, A.V. Moura, and R. Rebiha

MD − LT =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 − t0 0 0 0 0 0
4 − t1 2 − t0 0 0 0 0
−t2 4 − t1 2 − t0 0 0 0
0 0 4 − t1 0 0 0
2 0 0 1 − t0 0 0
0 2 − t2 0 2 − t1 1 − t0 0
0 0 2 − t2 0 2 − t1 0
0 0 0 1 − t2 0 −t0
0 0 0 0 1 − t2 −t1
0 0 0 0 0 −t2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Step 2: Now the unknown ti’s are given values so as to guarantee the existence
of invariants. Our algorithm proposes to fix t1 = 2, t2 = 4 and t3 = 2 to get
T (x, y) = 2x + 4y + 2. Matrix MD −LT has its second and third columns equal
to zero. So, the rank of MD − LT is less than 4 and its kernel has dimension at
least 2. Any vector in this kernel will be a T -scale differential invariant.

Step 3: Now, Corollary 1 applies to MD−LT . So, there will always be invariants,
whatever the initial values. We compute and output the basis of Ker(MD−LT):

Polynomial scaling continuous evolution
T(x,y) = 2 x + 4 y + 2
Module of degree 6 and rank 2 and Kernel of dimension 4
{{0, 1, 0, 0, 0, 0}, {0, 0, 1, 0, 0, 0}}

The vectors of the basis are interpreted in the canonical basis of R2[x, y]:

Basis of invariant Ideal
{x y, y^2}

We have an ideal for non trivial inductive invariants and we search for one of
the form axy + by2. If the system has initial conditions x(0) = λ and y(0) = μ,
then aλμ + bμ2 = 0, and μxy − λy2 = 0 is an invariant for all μ and λ. (

5 Obtaining Optimal Degree Bounds

In order to guarantee the existence of non-trivial invariants of degree r, we need
a polynomial T such that Ker(MD − LT) �= 0. First, define T as a polynomial
with parameterized coefficients. We can then build a decision procedure to assign
values to the coefficients of T in such a way that Ker(MD − LT) �= 0. The
pseudo code depicted in Algorithm 1 illustrates this strategy. Algorithm 1 is in a
standard form, but its contribution relies on very general sufficient conditions for
the existence and the computation of invariants. From the differential rules, we
obtain matrix MD (see line 8) with real entries. We can then define degree bounds
for matrices LT that can be used to approximate the consecution requirements
(see line 9). As we recall from Section 4, Ker(MD − LT) �= 0 is equivalent to
having MD−LT with rank strictly less than the dimension v(r) of Rr[x1, . . . , xn].
We then reduce the rank of MD − LT by assigning values of terms in MD

to parameters in LT (see line 10). Next, we determine whether the obtained
matrix M̄ has a trivial kernel by first computing its rank and then checking

Generating Invariants for Non-linear Hybrid Systems 381

Algorithm 1. Ideal Inv Gen(r, P1, ..., Pn, X1, ..., Xn)
/*Guessing the degree bounds.*/
Data: r is the degree for the set of invariants we are looking for, P1, ..Pn are

the n polynomials given by the considered differential rules, and

X1, ..Xn ∈ Vt are functions of time.

Result: BInv , a basis of ideal of invariants.

begin
int d1

Template T2

Matrix MD, LT3

d ←− Max degree({P1, ..., Pn})4

/*d is the maximal degree of Pi’s*/5

if d >= 2 then6

T ←− Template Canonical Form(d− 1)7

MD ←− Matrix D(r, r + d− 1, P1, ..., Pn)8

LT ←− Matrix L(r, r + d− 1, T)9

M̄ ←− Reduce Rank Assigning Values(MD − LT)10

if Rank(M̄) >= Dim(Rr[X1, .., Xn]) then11

return Ideal Inv Gen(r + 1, P1, ..., Pn, X1, ..., Xn)12

/*We need to increase the degree r of candidates invariants.*/13

else14

return Nullspace Basis(M̄)15

/*There exists an ideal of invariants that we can compute*/16

else17

... /*We refer to our previous work for strong and constant scaling.*/18

end

if (Rank(M̄) < Dim(Rr[X1, .., Xn])) holds (see line 11). By so doing, we can
increase the degree r of invariants until Theorem 2 (or Corollary 1) applies or
until stronger hypotheses occur, e.g. if all v(r)× v(r) sub-determinants are null.
Then, we compute and output the basis of the nullspace of matrix M̄ in order to
construct an ideal basis for non trivial invariants (see Nullspace Basis, line 15).
We can directly see that if there is no ideal for non-trivial invariants for a value
ri then we conclude that there is no ideal of non-trivial invariants for all degrees
k ≤ ri. This could guide other constraint-based techniques, since checking for
invariance with a template of degree less or equal to ri will not be necessary. In
case there is no ideal for invariants of degree r (see line 12), we first increment
the value of r by 1 before the recursive call to Ideal Inv Gen.

We thus showed how to reduce the invariant generation problem to the prob-
lem of computing a kernel basis for polynomial mappings. For the latter, we use
well-known state-of-the-art algorithms, e.g. that Mathematica provides. These
algorithms calculate the eigenvalues and associated eigenspaces of M̄ when it is
a square matrix. When M̄ is a rectangular matrix, we can use its singular value
decomposition (SVD). A SVD of M̄ provides an explicit representation of its

382 N. Matringe, A.V. Moura, and R. Rebiha

rank and kernel by computing unitary matrices U and V and a regular diagonal
matrix S such that M̄ = USV . We compute the SVD of a v(r + d − 1) × v(r)
matrix M̄ by a two step procedure. First, reduce it to a bi-diagonal matrix,
with a cost of O(v(r)2v(r + d− 1)) flops. The second step relies on an iterative
method, as is also the case for other eigenvalue algorithms. In practice, however,
it suffices to compute the SVD up to a certain precision, i.e. up to a machine
epsilon. In this case, the second step takes O(v(r)) iterations, each using O(v(r))
flops. So, the overall cost is O(v(r)2v(r + d − 1)) flops. For the implementation
of the algorithm we could rewrite Corollary 1 as follow.

Corollary 2. Let M̄ = U · S · V be the singular value decomposition of matrix
M̄ described just above. There will be a non trivial T -invariant for any given
initial condition if and only if the number of non-zero elements in matrix S
is less than v(r) − 2, where v(r) is the dimension of Rr[x1, . . . , xn]. Moreover,
the orthonormal basis for the nullspace obtained from the decomposition directly
gives an ideal for non-linear invariants.

It is important to emphasize that eigenvectors of M̄ are computed after the
parameters of LT have been assigned. When the differential system has several
variables and none or few parameters, M̄ will be over the reals and there will be
no need to use the symbolic version of these algorithms.

6 Examples and Experimental Results

By reducing the problem to Linear Algebra, we are able to combine it with new
optimization techniques, as illustrated in the following examples. Depending on
the form of the monomials present in the system, we may be able to find T and
a vector X such that X ∈ Ker(MD−LT) without defining T as a template, i.e.
without using a polynomial with unknown coefficients for scaling consecution.
The idea is to directly obtain a suitable T by factorization. For instance, we can
identify the following large classes of systems where the methods apply.

Example 3. Let s ∈ N be a positive and consider the following differential rules:⎡⎢⎣ ẋ1(t) =
∑s

k=0 akx1(t)k+1x2(t)k · · ·xn(t)k

...
ẋn(t) =

∑s
k=0 akx1(t)k · · ·xn−1(t)kxn(t)k+1

⎤⎥⎦ . (2)

This differential system contains parameters and variables that are time func-
tions. We denote the polynomials thus P1 =

∑s
k=0 akxk+1

1 xk
2 . . . xk

n; . . . ; Pn =∑s
k=0 akxk

1 . . . xk
n−1x

k+1
n . Let D be the morphism associated with (2) and let MD

be its matrix in the canonical basis. Then, it is immediate that DP (xi) = Pi.
Now, for this particular class of Pi’s, we see that DP (xi) = xiT , where T =∑s

k=0 akxk
1xk

2 . . . xk
n−1x

k
n. This means that if T is the morphism associated to

multiplication by T , we have DP (xi) = T (xi) for each i. Let LT be its matrix in
the canonical basis. We deduce that V ect(x1, .., xn) ⊂ Ker(MD − LT). Hence,

Generating Invariants for Non-linear Hybrid Systems 383

Table 1. Examples and Experimental Results

(a) Linear algebraic problems and consecution approximations

Aprox.Consec. Lin. Algeb. Prob. Existence Conditions
Strong nullspaces Ker(MD) �= ∅ or (see [16]) ∃(Q1, .., Qn) ∈

Syz(P1, .., Pn), s.t ∂iQj = ∂jQi

Lambda eigenspaces Ker(MD) ≥ 2 for any init. cond., and Ker(MD) �= ∅
otherwise.

Polynomial nullspaces Ker(MD − LT) ≥ 2 for any init. cond., and Ker(MD −
LT) �= ∅ otherwise.

(b) Experimental results: Basis of invariant ideals obtained automatically by our pro-

totype Ideal Inv Gen written in Mathematica

Differential Syst. Scal. CPU/s
From [20] Example 6. Poly. 1.12

From [20] Example 6, system (9). Pol. 0.04

From [17] Example 1, system (3). Poly. 0.34

Example 3, systems 2. Poly. 98.49

From [20] Example 7, system (11). Poly. 0.43

From [20] Example 8. Lamb. 2.48

From [20] Example 2, system (6). Str. 0.02

Human Blood Glucose Metabolism (Type I diabetic patient) [6] Lamb. 0.04

[15, 23], Example 4, air traffic management systems. Str. 1.29

[20] Example 4, system (8). Lamb. 0.03

[20, 16], Generalization to dimension n of the rotational motion of a rigid body. Str. 15.90

Example 4, system 4. Str. 1.04

for n ≥ 2, the space Ker(MD − LT) has dimension greater than 2, and we can
apply our existence theorem for invariants, given any initial values. We can then
search for an invariant of the form a1x1 + · · ·+anxn. Given the initial conditions
(x1(0) = λ1, . . . , xn(0) = λn), a vector (a1 · · · an)� is such that the polynomial
a1x1 + · · ·+ anxn is an invariant for (2) whenever it belongs to the kernel of the
linear form with matrix (λ1, . . . , λn). Summarizing, with polynomial scaling, any
polynomial Q = a1x1 + · · ·+ anxn with (a1 · · · an)� in the kernel of (λ1, . . . , λn)
is an invariant for (2). (

Example 4. In order to handle air traffic management systems [15, 23] automat-
ically, we consider the given differential system:

[ẋ1 = a1cos(ωt + c) ; ẋ2 = a2sin(ωt + c)]. (3)

This models the system satisfied by one of the two airplanes. We introduce the
new variables d1 and d2 to handle the transcendental functions, axiomatizing
them by differential equations, so that d1 and d2 satisfy

[ḋ1 = −a1/a2ωd2 ; ḋ2 = a2/a1ωd1]. (4)

If D is the morphism associated to this system, it is immediate that D(a2
2d

2
1) =

−2a1a2ωd1d2 whereas D(a2
1d

2
2) = 2a1a2ωd1d2. From [16, 17], it implies that

V ect(a2
2d

2
1+a2

1d
2
2) ⊂ Ker(D) and so a2

2d
2
1+a2

1d
2
2 is a strong-scale invariant (i.e. a

T -scale invariant where T is null) for the system. But ẋ1 = d1 = [a1/(a2ω)]ḋ2 and
ẋ2 = d2 = [−a2/(a1ω)]ḋ1. Therefore, there exist constants c1 and c2, determined

384 N. Matringe, A.V. Moura, and R. Rebiha

by the initial values, such that x1 = a1/a2ωd2+c1 and x2 = d2 = −a2/a1ωd1+c2.
This implies that (a2x1−k1)2 +(a1x2−k2)2 = 0, with k1 = a2c1 and k2 = a1c2,
is an invariant of the first system. Hence the two airplanes, at least for some
lapse of time, follow an elliptical path. (

Table 1(a) summarizes the type of linear algebraic problems associated with each
consecution approximation. The last column gives some existential results that
could be reused by any constraint-based approach or reachability analysis. In
Table 1(b) we list some experimental results.

7 Handling Algebraic Discrete Transition Systems

In this section we treat discrete transitions by extending and adapting our pre-
vious work on loop invariant generation for discrete programs [21, 18]. We also
consider discrete transitions that are part of connected components and circuits,
thus generalizing the case for simple propagation. We recall that Vk denotes the
subspace of R[X1, .., Xn] of degree at most k.

Definition 7. Let τ = 〈li, lj , ρτ 〉 be a transition in T and let η be an algebraic
inductive map with η(li) ≡ (Pη(X1, .., Xn) = 0) and η(lj) ≡ (P ′

η(X1, .., Xn) = 0).

– We say that η satisfies a Fractional-scale consecution for τ if and only if
there exists a multivariate fractional T

Q such that ρτ |= (Pη(X ′
1, .., X

′
n) −

T
QPη(X1, .., Xn) = 0). We also say that Pη is a T

Q -scale discrete invariant.
– We say that η satisfies a Polynomial-scale consecution for τ if and only if

there exists a multivariate polynomial T such that ρτ |= (Pη(X ′
1, .., X

′
n) −

TPη(X1, .., Xn) = 0). We also say that Pη is a polynomial-scale and a T -
scale discrete invariant.

7.1 Discrete Transition with Polynomial Systems

Consider an algebraic transition system: ρτ ≡ [X ′
1 = P1(X1, .., Xn), ..., X ′

n =
Pn(X1, .., Xn)], where the Pi’s are in R[X1, .., Xn]. We have the following T -
scale discrete invariant characterization.

Theorem 5. A polynomial Q in R[X1, .., Xn] is a T -scale discrete invariant for
polynomial-scale consecution with parametric polynomial T ∈ R[X1, ..., Xn] for
τ if and only if Q(P1(X1, .., Xn), .., Pn(X1, .., Xn)) = T (X1, .., Xn)Q(X1, .., Xn).

If Q ∈ R[X1, .., Xn] is of degree r and the maximal degree of the Pi’s is d, then
we are looking for a T of degree e = dr − r. Write its ordered coefficients as
λ0, ..., λs, with s + 1 being the number of monomials of degree inferior to e. Let
M be the matrix, in the canonical basis of Vr and Vdr, of the morphism M from
Vr to Vdr given by Q(X1, .., Xn) �→ Q(P1(X1, .., Xn), .., Pn(X1, .., Xn). Let L be
the matrix, in the canonical basis of Vr and Vdr, of the morphism L from Vr

to Vdr given by P �→ TP . Matrix L will have a very simple form: its non zero
coefficients are the λi’s, and it has a natural block decomposition. Now let Q ∈

Generating Invariants for Non-linear Hybrid Systems 385

R[X1, .., Xn] be a T -scale discrete invariant for a transition relation defined by the
Pi’s. Then Q(P1(X1, .., Xn), .., Pn(X1, .., Xn)) = T (X1, .., Xn)Q(X1, .., Xn) ⇔
M (Q) = L (Q) ⇔ (M − L)(Q) = 0R[X1,..,Xn]) ⇔ (Q ∈ Ker(M − L)). A T -
scale discrete invariant is nothing else than a vector in the kernel of M −L. Our
problem is equivalent to finding a L such that M − L has a non trivial kernel.

Theorem 6. Consider M as described above. Then, (i) there will be a T -scale
discrete invariant if and only if there exists a matrix L (corresponding to P �→
TP) such that M − L has a nontrivial kernel. Further, any vector in the ker-
nel of M − L will give a T -scale invariant polynomial; (ii) there will be a non
trivial inductive invariant if and only if there exists a matrix L such that the
intersection of the kernel of M −L and the hyperplane given by the initial values
is not zero. The invariants correspond to vectors in the intersection; and (iii) if
dim(Ker(M − L)) ≥ 2, then the basis of Ker(M − L) is a basis for non trivial
inductive invariants, whatever the initial conditions.

Example 5. (Running example) Let’s consider the following transition:

τ = 〈li, lj , ρτ ≡ [x′ = xy + x ; y′ = y2]〉.

Step 1: We build matrix M −L. The maximal degree of the system ρτ is d = 2
and the T -scale invariant will be of degree r = 2. Then, T is of degree e = dr−r =
2 and we write λ0, ..., λ5 as its ordered coefficients i.e. its canonical form is T =
λ0x

2 +λ1xy+λ2y
2 +λ3x+λ4y+λ5. Consider the associated morphisms M and

L from R2[x, y] to R4[x, y]. Using the basis C1 = (x2, xy, y2, x, y, 1) of R2[x, y]
and the basis C2 = (x4, yx3, y2x2, y3x, y4, x3, x2y, xy2, y3, x2, xy, y2, x, y, 1) of
R4[x, y], our algorithm compute the matrix M − L as

M − L =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−λ0 0 0 0 0 0
−λ1 −λ0 0 0 0 0

1 − λ2 −λ1 −λ0 0 0 0
0 1 − λ2 −λ1 0 0 0
0 0 1 − λ2 0 0 0

−λ3 0 0 −λ0 0 0
2 − λ4 −λ3 0 −λ1 −λ0 0

0 1 − λ4 −λ3 −λ2 −λ1 0
0 0 −λ4 0 −λ2 0

1 − λ5 0 0 −λ3 0 −λ0
0 −λ5 0 1 − λ4 −λ3 −λ1
0 0 −λ5 0 1 − λ4 −λ2
0 0 0 1 − λ5 0 −λ3
0 0 0 0 −λ5 −λ4
0 0 0 0 0 1 − λ5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Step 2: We then reduce the rank of M − L by assigning values to the λi’s.
Our procedure fixes λ0 = λ1 = λ3 = 0, λ2 = λ5 = 1 and λ4 = 2, so that
T (x, y) = y2 + 2y + 1. The first column of M − L becomes zero and the second
column is equal to the fourth. Hence, the rank of M − L is less than 4 and its
kernel has dimension at least 2. Any vector in this kernel will be a T -invariant.

Step 3: Now matrix M −L satisfies the hypotheses of Theorem 6(iii). So, there
will always be invariants, whatever the initial values. We compute the basis of
Ker(M − L):

386 N. Matringe, A.V. Moura, and R. Rebiha

Polynomial scaling discrete step
T(x,y) = y^2 + 2 y + 1
Module of degree 6 and rank 3 and Kernel of dimension 3
{{1, 0, 0, 0, 0, 0}, {0, 1, 0, -1, 0, 0}, {0, 0, 1, 0, -2, 1}}

The vectors of the basis are interpreted in the canonical basis C1 of R2[x, y]:

Basis of invariant Ideal
{x^2, x y - x, y^2 - 2 y + 1}

We thus obtained an ideal of non trivial inductive invariants. In other words, for
all G1, G2, G3 ∈ R[x, y], (G1(x, y)(x2)+G2(x, y)(xy−x)+G3(x, y)(y2−2y+1) =
0) is an inductive invariant. For instance, consider the initial step (y = y0, x = 1).
A possible invariant is y0(1− y0)x2 + xy − x + y2 − 2y + 1 = 0. (

7.2 Discrete Transition with Fractional Systems

We now want to deal with transition systems ρτ of the following type:

[X ′
1 = P1(X1, .., Xn)/Q1(X1, .., Xn), .., X ′

n = Pn(X1, .., Xn)/Qn(X1, .., Xn)],

where the Pi’s and Qi’s belong to R[X1, .., Xn] and Pi is relatively prime to
Qi. One need to relax the consecution conditions to fractional-scale as soon as
fractions appear in the transition relation.

Theorem 7. (F -scale invariant characterization) A polynomial Q in R[X1, ..,
Xn] is a F -scale invariant for fractional discrete scale consecution with a para-
metric fractional F ∈ R(X1, .., Xn) for τ if and only if Q

(
P1
Q1

, .., Pn

Qn

)
= FQ.

Let d be the maximal degree of the Pi’s and Qi’s, and let Π be the least
common multiple (lcm) of the Qi’s. Further, suppose that we are looking for
a F -invariant Q of degree r. Let M be the morphism of vector spaces Q �→
ΠrQ(P1/Q1, .., Pn/Qn) from Vr to Vnrd, and let M be its matrix in a canonical
basis. Let T be a polynomial in Vnrd−r, let L denote the morphism of vector
spaces Q �→ TQ from Vr to Vnrd, with L its matrix in a canonical basis. As we
show in the following theorem, our problem is equivalent to finding a L such
that M − L has a non trivial kernel.

Theorem 8. Consider M and L as described above. Then, (i) there exists F -
scale invariants (with F is of the form T/Πr) if and only if there exists a matrix
L such that Ker(M − L) �= ∅. In this situation, any vector in the kernel of
M −L will give a F -scale discrete invariant; (ii) we have a non trivial invariant
if and only if there exists a matrix L such that the intersection of the kernel of
M − L and the hyperplane given by the initial values is not zero, the invariants
corresponding to vectors in the intersection; and (iii) we will have a non-trivial
invariant for any non-trivial initial value if there exists a matrix L such that the
dimension of Ker(M − L) is at least 2.

Generating Invariants for Non-linear Hybrid Systems 387

Example 6. Consider the system

ρτ ≡ [x′
1 = x2/(x1 + x2) ; x′

2 = x1/(x1 + 2x2)].

We are looking for a F -scale invariant polynomial of degree two. The lcm of
(x1 + x2) and (x1 + 2x2) is their product, so that M is given by: [Q ∈ V2 �→
[(x1 +x2)(x1 +2x2)]2Q(x1/(x1 +x2), x2/(x1 +2x2))]. As both x2/(x1 +x2) and
x1/(x1 +2x2) have “degree” zero, [(x1 +x2)(x1 +2x2)]2Q(x2/(x1 +x2), x1/(x1 +
2x2)) will be a linear combination of degree four, if it is non null. Hence,
M has values in V ect(x4

1, x
3
1x2, x

2
1x

2
2, x1x

3
2, x

4
2). For T and Q in V2 to verify

[(x1+x2)(x1+2x2)]2Q(x2/(x1+x2), x1/(x1+2x2)) = TQ, as the left member is in
V ect(x4

1, x
3
1x2, x

2
1x

2
2, x1x

3
2, x

4
2), T must be of the form λ0x

2
1+λ1x1x2+λ2x

2
2 and Q

of the form a0x
2
1+a1x1x2+a3x

2
2. We see that we can take Q in V ect(x2

1, x1x2, x
2
2),

and similarly for T . Then both M , L : (Q �→ TQ) will be morphisms from
V ect(x2

1, x1x2, x
2
2) in V ect(x4

1, x
3
1x2, x

2
1x

2
2, x1x

3
2, x

4
2). In the corresponding canon-

ical basis, the matrix M − L is

M − L =

⎛⎜⎜⎜⎝
−λ0 0 1
−λ1 1 − λ0 2

1 − λ2 3 − λ1 1 − λ0
4 2 − λ2 −λ1
4 0 −λ2

⎞⎟⎟⎟⎠ .

Taking λ0 = 1, λ1 = 3 and λ2 = 2 cancels the second column and So, will have
kernel equal to V ect(0, 1, 0). Now, Theorem 8(iii) applies to M − L:

Fractional scaling discrete step
T(x,y) / Q(x,y) = 1 / ((x + y) (x + 2 y))^2
Module of degree 3 and rank 1 and Kernel of dimension 2
{{0, 1, 0}}
Basis of invariant Ideal
{ x y }

It was clear from the beginning that the corresponding polynomial x1x2 is
1/[(x1 + x2)(x1 + 2x2)]2-scale invariant. For instance it is an invariant for the
initial values (0, 1). Moreover, it clearly never cancels x1 + x2 and x1 + 2x2,
because they are of the form (a, 0) or (0, b) with a and b strictly positive. (

We thus generated a basis of a vectorial space which describes invariants for
each location, transitions and initial conditions. A global invariant would be any
invariant which is in the intersection of these three vector spaces. In this way, we
avoid the definition of a single isomorphism for the whole hybrid system. Instead,
we generate the basis for each separate consecution condition. To compute the
basis of global invariants, we could use the following theorem. It proposes to
multiply all the elements of each computed basis. By so doing, we also avoid
the heavy computation of ideal intersections This approach is a sound, but not
complete, way of computing ideals for global hybrid invariants, and it has a lower
computational complexity.

Theorem 9. Let W be a hybrid system and let l be one of its locations. Let
I = {I1, ..., Ik} a set of ideals in R[X1, ..., Xn] such that Ij = (f (j)

1, ..., f
(j)
nj)

388 N. Matringe, A.V. Moura, and R. Rebiha

where j ∈ [1, k]. Let �(I1, ..., Ik) = {δ1, ..., δn1n2...nk
} be such that all elements

δi in �(I1, ..., Ik) are formed by the product of one element from each ideal in
I. Assume that the Ij ’s are collections of invariant ideals associated to S(l), its
differential rule, C(l), its local conditions, and all invariant ideals generated con-
sidering all incoming transitions at l. Then �(I1, ..., Ik) is a non-trivial invariant
ideal for location l.

8 Conclusions

Our methods reduce the non-trivial non-linear invariant generation problem to
linear algebra problems. They display lower complexities than the mathematical
foundations of the previous approaches that use Grobner basis calculation or
quantifier elimination. Our algorithm is capable of computing basis for ideals of
non trivial invariants for non linear hybrid systems. It also embodies a strategy to
estimate degree bounds which allow for the discovery of rich classes of inductive
invariants. Moreover, we provide very general sufficient conditions allowing the
existence and computation of invariant ideals. These conditions could be directly
used by any constraint-based invariant generation method [6, 5, 9, 8] or by any
analysis methods based on over-approximations and reachability [24, 15, 25].

References

[1] Henzinger, T.: The theory of hybrid automata. In: Proceedings of the 11th Annual

IEEE Symposium on Logic in Computer Science (LICS 1996), New Brunswick,

New Jersey, pp. 278–292 (1996)

[2] Cousot, P., Cousot, R.: Abstract interpretation and application to logic programs.

Journal of Logic Programming 13(2-3), 103–179 (1992)

[3] Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In: Conf.

Record of the 4th Annual ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, Los Angeles, California, pp. 238–252. ACM Press,

New York (1977)

[4] Manna, Z.: Mathematical Theory of Computation. McGrw-Hill, New York (1974)

[5] Sankaranarayanan, S., Sipma, H., Manna, Z.: Constructing invariants for hybrid

system. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 539–

554. Springer, Heidelberg (2004)

[6] Gulwani, S., Tiwari, A.: Constraint-based approach for analysis of hybrid systems.

In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 190–203. Springer,

Heidelberg (2008)

[7] Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier cer-

tificates (2004)

[8] Tiwari, A.: Generating box invariants. In: Proc. of the 11th Int. Conf. on Hybrid

Systems: Computation and Control HSCC (2008)

[9] Sankaranarayanan, S., Dang, T., Ivancic, F.: Symbolic model checking of hy-

brid systems using template polyhedra. In: Ramakrishnan, C.R., Rehof, J. (eds.)

TACAS 2008. LNCS, vol. 4963, pp. 188–202. Springer, Heidelberg (2008)

Generating Invariants for Non-linear Hybrid Systems 389

[10] Buchberger, B.: Symbolic computation: Computer algebra and logic. In: Proceed-

ings of the 1st Int. Workshop on Frontiers of Combining Systems, pp. 193–220

(1996)

[11] Weispfenning, V.: Quantifier elimination for real algebra - the quadratic case and

beyond. Applicable Algebra in Engineering, Communication and Computing 8(2),

85–101 (1997)

[12] Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of

large non-linear arithmetic constraint systems with complex boolean structure.

JSAT 1(3-4), 209–236 (2007)

[13] Tiwari, A., Khanna, G.: Nonlinear systems: Approximating reach sets. In: Alur,

R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 600–614. Springer,

Heidelberg (2004)

[14] Rodriguez-Carbonell, E., Tiwari, A.: Generating polynomial invariants for hybrid

systems. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 590–

605. Springer, Heidelberg (2005)

[15] Platzer, A., Clarke, E.M.: Computing differential invariants of hybrid systems

as fixedpoints. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp.

176–189. Springer, Heidelberg (2008)

[16] Matringe, N., Moura, A.V., Rebiha, R.: Morphisms for non-trivial non-linear in-

variant generation for algebraic hybrid systems. In: Majumdar, R., Tabuada, P.

(eds.) HSCC 2009. LNCS, vol. 5469, pp. 445–449. Springer, Heidelberg (2009)

[17] Matringe, N., Moura, A.V., Rebiha, R.: Morphisms for analysis of hybrid systems.

In: ACM/IEEE Cyber-Physical Systems CPSWeek 2009, Second International

Workshop on Numerical Software Verification (NSV 2009) Verification of Cyber-

Physical Software Systems, San Francisco, CA, USA (2009)

[18] Matringe, N., Moura, A.V., Rebiha, R.: Endomorphisms for non-trivial non-linear

loop invariant generation. In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H.

(eds.) ICTAC 2008. LNCS, vol. 5160, pp. 425–439. Springer, Heidelberg (2008)

[19] Sankaranarayanan, S.: Automatic invariant generation for hybrid systems using

ideal fixed points. In: HSCC 2010: Proc. of the 13th ACM Int. Conf. on Hybrid

Systems: Computation and Control, pp. 221–230. ACM, New York (2010)

[20] Matringe, N., Vieira-Moura, A., Rebiha, R.: Morphisms for non-trivial non-linear

invariant generation for algebraic hybrid systems. Technical Report TR-IC-08-32,

Institute of Computing, University of Campinas (November 2008)

[21] Matringe, N., Vieira-Moura, A., Rebiha, R.: Endomorphism for non-trivial semi-

algebraic loop invariant generation. Technical Report TR-IC-08-31, Institute of

Computing, University of Campinas (November 2008)

[22] Lang, S.: Algebra. Springer, Heidelberg (January 2002)

[23] Tomlin, C., Pappas, G.J., Sastry, S.: Conflict resolution for air traffic manage-

ment: a study in multiagent hybrid systems. IEEE Transactions on Automatic

Control 43(4), 509–521 (1998)

[24] Piazza, C., Antoniotti, M., Mysore, V., Policriti, A., Winkler, F., Mishra, B.:

Algorithmic Algebraic Model Checking I: Challenges from Systems Biology. In:

Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 5–19.

Springer, Heidelberg (2005)

[25] Ramdani, N., Meslem, N., Candau, Y.: Reachability of uncertain nonlinear systems

using a nonlinear hybridization. In: Egerstedt, M., Mishra, B. (eds.) HSCC 2008.

LNCS, vol. 4981, pp. 415–428. Springer, Heidelberg (2008)

Linear-Invariant Generation

for Probabilistic Programs:

Automated Support for Proof-Based Methods

Joost-Pieter Katoen1, Annabelle K. McIver2,�,
Larissa A. Meinicke2,�, and Carroll C. Morgan3,�

1 Software Modeling and Verification Group, RWTH Aachen University, Germany
2 Dept. Computer Science, Macquarie University, NSW 2109 Australia

3 School of Comp. Sci. and Eng., Univ. New South Wales, NSW 2052 Australia

Abstract. We present a constraint-based method for automatically gen-

erating quantitative invariants for linear probabilistic programs, and we

show how it can be used, in combination with proof-based methods,

to verify properties of probabilistic programs that cannot be analysed

using existing automated methods. To our knowledge, this is the first

automated method proposed for quantitative-invariant generation.

Keywords: Probabilistic programs, quantitative program logic, verifi-

cation, invariant generation.

1 Introduction

Verification of sequential programs rests typically on the pioneering work of
Floyd, Hoare and Dijkstra [13, 18, 11] in which annotations are associated with
control points in the program. For probabilistic programs, quantitative annota-
tions are needed to reason about probabilistic program correctness [25, 8, 27].
We generalise the method of Floyd, Hoare and Dijkstra to probabilistic programs
by making the annotations real- rather than Boolean-valued expressions in the
program variables [25, 27]. As is well known, the crucial annotations are those
used for loops, the loop invariants. Thus in particular we focus on real-valued,
quantitative invariants: they are random variables whose expected value is not
decreased by iterations of the loop [29].

One way of finding annotations is to place them speculatively on the program,
as parametrised formula containing only first-order unknowns, and then to use
a constraint-solver to solve for parameter-instantiations that would make the
associated “verification conditions” true [5, 30, 6, 28, 14]. Such approaches are
referred to as being constraint-based.

Our main contribution in this paper is to generalise the constraint-based
method of Colón et al. [5] to probabilistic programs. We demonstrate our gener-
alisation on a number of small-but-intricate probabilistic programs, ones whose

� We acknowledge the support of the Australian Research Council Grant DP0879529.

R. Cousot and M. Martel (Eds.): SAS 2010, LNCS 6337, pp. 390–406, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Linear-Invariant Generation for Probabilistic Programs 391

analyses appear to be beyond other automated techniques for probabilistic pro-
grams at this stage. We discuss this in Sec. 7.

We begin in the next section with an overview of our approach.

2 Overall Summary of the Approach

For qualitative (non-probabilistic) programs, Boolean annotations are called as-
sertions; and the associated verification condition for assertions P and Q sep-
arated by a program path path prog (that does not pass through other annota-
tions) is that they must satisfy the Hoare triple [18]

{P} path prog {Q} or equivalently P ⇒ wp.path prog.Q ,

where wp refers to Dijkstra’s weakest-precondition semantics of programs [11].
In either formulation, this condition requires that whenever the precondition P
holds before the execution of path prog, the postcondition Q holds after.

In the constraint-based method of Colón et al. [5], assertions for linear pro-
grams –programs with real-valued program variables in which expressions occur-
ring in both conditionals and assignment expressions must be linear in the pro-
gram variables– are found by speculatively annotating a program with Boolean
expressions of the particular linear form a1x1 + . . . + anxn + an+1 ≤ 0, where
a1, . . . , an+1 are parameters and x1, . . . , xn are program variables. The verifica-
tion conditions associated with these annotations are then expressed as a set of
polynomial constraints over the annotation-parameters and solved (for those un-
known parameters) using off-the-shelf SAT solvers. This process yields Boolean
annotations, that is assertions, from which program correctness can subsequently
be inferred.

For probabilistic programs our real-valued (not Boolean) annotations are
called expectations (rather than assertions), and the verification condition
{P} path prog {Q} is now interpreted as follows: if path prog takes some initial
state σ to a final distribution δ′ on states, then the expected value of post-
expectation Q over δ′ is at least the (actual) value of pre-expectation P over
σ. Using the quantitative wp semantics whose definition appears at Fig. 1, this
condition is equivalently written as P ≤ wp.path prog.Q. When there is no prob-
ability, quantitative wp is in fact isomorphic to ordinary (qualitative) wp [27].

Example 1. Consider a slot machine with three dials and two symbols, hearts (♥)
and diamonds (♦), on each one. The state of the machine is the configuration of
the dials: a mapping from dials d1, d2 and d3 to suits. The semantics of program
flip that spins the dials independently so that they come to rest on each of the
suits with equal probability,

flip := (d1 := ♥ 1
2
⊕ d1 := ♦); (d2 := ♥ 1

2
⊕ d2 := ♦); (d3 := ♥ 1

2
⊕ d3 := ♦) ,

is then a function that maps each initial state to a single distribution δ′ in
which the probability of being in a slot-machine state is 1

8 for each. If all.x is

392 J-.P. Katoen et al.

the expression x=d1=d2=d3 and [·] is the function that takes false to 0 and
true to 1, then we have for example that the expected value of [all.♥] over δ′,
wp.flip.[all.♥] = 1

8 , is the probability of reaching final state all.♥. This means
that the probabilistic Hoare triple {1/8} flip {[all.♥]} holds.

In general, a post-expectation may be any real-valued expression in the program
variables, as the following example shows.

Example 2. Again with flip, a post-expectation Q may be used to represent the
winnings assigned to each final configuration of suits. For instance, we could have
Q := 1×[all.♥] + 1

2×[all.♦] to represent that a gamer wins the whole jackpot if
there are three hearts, a half if there are three diamonds, and nothing otherwise.
Pre-expectation wp.flip.Q then represents a mapping from initial configurations
of the slot machine to the least fraction of the jackpot the gamer can expect
to win from that configuration. For the above Q, we have that wp.flip.Q is a
mapping from each state to the value 3

16 , that is 6×1
8×0 + 1

8×1 + 1
8×

1
2 .

Our first main technical contribution is to show how to determine the
verification conditions for a probabilistic program annotation. To do this we
must identify the appropriate notion of execution paths between annotations:
this is because it doesn’t make sense to speak of some annotation P ’s “being
true here” when P is a real-valued expression over the program variables (rather
than a Boolean predicate). The principal problem is paths through decision
points, e.g. conditionals, where the truth (or falsity) of the Boolean condition
cannot determine a “dead path” in the way that Colón does: we are not able to
formulate a notion of “probably dead.” Thus we explain in Sec. 4 below how,
by imposing an extra condition on the program annotation, we can avoid this
problem. For now we concentrate on the special case of annotating a single loop.

A single loop, loop := while G do body od, is annotated as follows

{I}; while G do {[G]×I}; body od; {[¬G]×I} ,

where I is some expectation. Such annotations are verifiable (i.e. valid) just
when the expected value of I does not decrease after an iteration of the loop
body, that is

[G]×I ≤ wp.body.I . (1)

In this situation we refer to I as a quantitative invariant (or invariant) of the
loop [29, 27]. In the case that the loop terminates (i.e. it terminates with prob-
ability 1), and indeed all of our examples in this paper are terminating, we may
reason that if (1) holds so does the probabilistic Hoare triple {I} loop {[¬G]×I}.1

Example 3. The behaviour of a gamer that plays the slot-machine described
earlier (at least once) until the dials show all hearts or all diamonds is represented
by program

init : flip;
loop : while ¬(all.♥ ∨ all.♦) do flip od .

1 Quantitative invariants may also be used to reason about loops that terminate with

some probability between 0 and 1 (see [27]).

Linear-Invariant Generation for Probabilistic Programs 393

If the potential winnings are again described by Q (from Ex. 2), we can use
the invariant I := 3

4×[¬(all.♥ ∨ all.♦)] + 1×[all.♥] + 1
2×[all.♦] to calculate the

gamer’s expected winnings. (Playing the machine costs nothing in this simplistic
example.) Since I is an invariant of loop, which terminates, and Q equals [all.♥∨
all.♦]× I, we have that {I} loop {Q} holds. Thus the gamer can expect to win
at least wp.init.I = 6×1

8×
3
4 + 1

8×1+ 1
8×

1
2 = 3

4 of the jackpot. (Half the time the
loop will terminate showing all hearts and the gamer will win the whole jackpot,
and half the time it will terminate with all diamonds and he will win half.)

Our second main technical contribution is to identify in Sec. 5.1 a class
of probabilistic programs and parametrised expectations for which machine-
solvable verification conditions can readily be extracted. As for Colón et al. [5]
the class of probabilistic programs that our method works for is the set of linear
probabilistic programs : the set of linear qualitative programs that may also con-
tain discrete probabilistic choices made with a constant probability. Using our
parametrised expectations it is possible to express invariants like I from Ex. 3.

Our third main technical contribution is to show in Sec. 5.2 how to
convert our verification conditions on parametrised annotations to the same form
as those generated by Colón et al. [5], so that they can be machine-solved in much
the same way. Since this verification-condition translation is an equivalence, our
method is both correct and fully general. That is, it can be used to find all
parameter solutions that make an annotation valid, and no others.

3 Probabilistic Programs

Probabilistic programs with nondeterministic and discrete probabilistic choices
can be written using the probabilistic guarded command language (pGCL); in
Fig. 1 we set out its syntax and wp semantics. Non-negative real-valued functions
that are bounded above by some constant are referred to as expectations, and
written as expressions in the program variables. For a probabilistic program prog
and expectation Q, wp.prog.Q represents the least expected value of Q in the final-
state of prog (as an expression on the initial value of the program variables). This
semantics is dual to an operational-style interpretation of program execution,
where from an initial state σ the result of a computation is a set of probability
distributions over final states; it is dual because wp.prog.Q evaluated at σ is
exactly the minimal expected value of Q over any of the result distributions.
When Q is of the form [R] for some Boolean expression R, then wp is in fact just
the least probability that the final state will satisfy R, as in Example 1 above;
but it can be more generally applied, as in Example 2.

Probabilistic guarded commands are scaling, c∗wp.prog.Q=wp.prog.(c∗Q), and
monotonic, Q1≤Q2⇒wp.prog.Q1≤wp.prog.Q2, for all expectations Q,Q1,Q2 and
constants c [27]. Scaling, for example, is essentially linearity of expected values.

4 Probabilistic Program Annotations

If we imagine a program as a flowchart, a program annotation associates predi-
cates with arcs and conventionally has the interpretation that a predicate is true

394 J-.P. Katoen et al.

prog wp.prog.Q

Identity skip Q
Assignment x := E Q[x\E]

Composition prog1; prog2 wp.prog1.(wp.prog2.Q)

Cond. choice if G then prog1 [G]×wp.prog1.Q + [¬G]×wp.prog2.Q
else prog2 fi

Nondet. choice prog1 � prog2 wp.prog1.Q � wp.prog2.Q
Prob. choice prog1 p⊕ prog2 p∗wp.prog1.Q + (1−p)∗wp.prog2.Q
While-loop while G do body od (μX · [G]×wp.body.X + [¬G]×Q)

x is a program variable; E is an expression in the program variables; prog{1,2}
and body are probabilistic programs; G is a Boolean-valued expression in the program

variables; p is a constant probability in [0, 1]; and Q is an expectation (represented as a

real-valued expression in the program variables). We write Q[x\E] to mean expression

Q in which free occurrences of x have been replaced by expression E.

For expectations (interpreted as real-valued functions), scalar multiplication ∗, multi-

plication, ×, addition, +, subtraction, −, minimum, �, and the comparison (such as

≤ and <) between expectations are defined by the usual pointwise extension of these

operators (as they apply to the real numbers). Multiplication and scalar multiplication

have the highest precedence, followed by addition, subtraction, minimum and finally

the comparison operators. Operators of equal precedence are evaluated from the left.

μ is the least fixed point operator w.r.t. the ordering ≤ between expectations.

Function [·] takes Boolean expression false to 0 and true to 1. For {0, 1}-valued func-

tions, operation ≤ has the same meaning as implication over predicates, and × and �
represent conjunction, and addition over disjoint predicates is equivalent to disjunction.

Fig. 1. Probabilistic program notation and weakest-precondition semantics

of the program state whenever its associated arc is traversed during execution.
Our generalisation of qualitative program annotations is to replace predicates
(Boolean-valued expressions over the program variables) with expectations.

In order to specify verification conditions on these annotations, we impose
restrictions on the program annotations that we allow: first, as for the qualitative
case, there must be at least one annotation along any cyclic program path. This is
so that verification conditions only involve cycle-free program fragments. Second,
we assume that there is an annotation at the beginning and end of the program
so that we can reason about the correctness of the whole. The third restriction
is made so that we can reason about the branching behaviour of probabilistic
programs. We require that if there is any “interior” annotation on a while-loop,
conditional, nondeterministic or probabilistic choice, i.e. one following its choice
point but occurring before the two choices rejoin, then the choice point itself
must have three “immediate” annotations as well: one at its entry, and one
at each of its (two) exits. Thus if we consider the flowchart generated by the
annotated program fragment

{P}; prog1; if G then prog2; {Q}; prog3 else prog4 fi; {R} , (2)

Linear-Invariant Generation for Probabilistic Programs 395

we see that the conditional “if G” has an interior annotation Q — and so we
must augment (2) with further annotations S, T, U as follows:

{P}; prog1; {S}; if G then {T }; prog2; {Q}; prog3 else {U}; prog4 fi; {R} , (3)

The S annotation is just before the choice point “if G”; the T annotation is
just after its true exit; and the U annotation is just after its (implied) false exit.
Loops and the other kinds of choice statements are similarly annotated.

A program annotation is valid when it satisfies the following verification
conditions:

– For every pair (P, Q) of annotations separated by a program path prog that
does not contain annotations, if P does not appear just before a choice-point
with an interior annotation then {P} path prog {Q} holds. For example, for
(3) we must have that {P} prog1 {S}, {T } prog2 {Q}, {Q} prog3 {R} and
{U} prog4 {R} hold.

– Annotations appearing just before choice-points with interior annotations
must be treated differently. In the case of program (3) for instance, it makes
no sense to give a meaning to the Hoare triple {S} “G is true” {T }. For
annotation S in (3) we require that the “special” constraint S ≤ [G]×T +
[¬G]×U –that does not involve program execution at all– holds. Choice-
point annotations on nondeterministic and probabilistic choices and while-
loops must satisfy similar constraints. For example, annotation P in frag-
ment {P}; ({Q}; prog1 ({R}; prog2) must satisfy P ≤ Q (R. Likewise, for
{P}; ({Q}; prog1 p⊕ {R}; prog2) we must have P ≤ p∗Q + (1−p)∗R.

Theorem 1. Given a valid annotation of a terminating probabilistic program
prog such that the first annotation is P and the last is Q, we have that prog
satisfies the probabilistic Hoare triple {P} prog {Q}.
Proof. By structural induction over program texts.

For example, if (3) terminates and the annotation is valid then the probabilistic
Hoare triple {P} prog1; if G then prog2; prog3 else prog4 fi {R} holds.

4.1 The Special Case of Loops

In this paper we deal only with single-loop programs (mostly) and the conditions
above require that a loop be annotated (at least) with an expectation just before
the loop, one just before the loop body (the true branch of the loop conditional)
and one just after the loop (the false branch). For loop := while G do body od, this
amounts to the following annotation, {I}; while G do {J}; body od; {K}, which
is valid if

{J} body {I} and special constraint I ≤ [G]×J + [¬G]×K

holds. We simplify this further by taking J to be [G]×I and K to be [¬G]×I so
that the special constraint is satisfied by construction — we need only find an I
so that {[G]×I} body {I}. Such an I is referred to as a quantitative invariant.

396 J-.P. Katoen et al.

5 Constraint-Solving for Quantitative Annotations

Given a “linear probabilistic program” annotated with parametrised real-valued
expressions that are “propositionally linear” (the definitions for which appear in
the following section), we show how to extract a set of polynomial constraints
that are sufficient and necessary to show that the annotation is valid. Once we
have the constraints we are able to apply constraint solvers to solve for the
annotation parameters.

5.1 Linear Probabilistic Programs and Parametrised Annotations

An expression E on a given state space is linear if it is a linear combination of
the program variables. A predicate P is a linear constraint if it is an inequality or
a strict inequality between linear expressions. A linear assertion is then a finite
conjunction of linear constraints. Finally, for any natural-valued constants M and
N , and linear constraints Pmn, Boolean expression (

∧
m : [1..M]

∨
n : [1..N] Pmn)

is said to be a propositionally linear predicate with conjunctive-degree M and
disjunctive-degree N .

A quantitative expression of the form
∑

m : [1..M][
∧

n : [1..N] Pmn]×Qm, where
M and N are naturals, each Pmn is a linear constraint and Qm is a linear expres-
sion, is referred to as a propositionally linear expression with additive-degree M
and conjunctive-degree N . Such an expression is written in disjoint normal form
if for all i, j : [1..M] where i �= j, we have (

∧
n : [1..N] Pin)∧(

∧
n : [1..N] Pjn) = false.

Lemma 1. Any propositionally linear expression is semantically equivalent to
another propositionally linear expression in disjoint normal form. (See App. C
for proof.)

A probabilistic program is said to be linear if the variables are real-valued, all
of the guards are linear constraints, and updates are linear expressions.

To find valid quantitative annotations for a program with variables x1, . . . , xX ,
we parametrise each annotation with a propositionally linear expression∑

m : [1..M][
∧

n : [1..N] α(j,mn,1)x1 + . . . + α(j,mn,X)xX + β(j,mn) 6 0]
× (γ(j,m,1)x1 + . . . + γ(j,m,X)xX + δ(j,m))

containing free real-valued variables α(j,mn,x), β(j,mn), γ(j,m,x) and δ(j,m), in
which each occurrence of 6 is instantiated to either < or ≤.

To ensure that each annotation P is an expectation (a real-valued expression
bounded below by 0 and above by some real number) we require 0≤P≤1. Re-
stricting each annotation to be bounded above by 1 instead of an arbitrary upper
bound does not limit our method because programs satisfy scaling (Sec. 3) so
that if prog is correctly annotated with expectations P , Q, etc., then the modi-
fied annotation in which P is replaced by c∗P , Q is replaced by c∗Q etc. is also
valid for any non-negative constant c.

Linear-Invariant Generation for Probabilistic Programs 397

5.2 Constructing Machine-Solvable Constraints

For qualitative programs the verification conditions for a linear program anno-
tated with linear constraints can be formulated as Boolean expressions on linear
constraints. After rewriting these expressions in conjunctive normal form (as
propositionally linear predicates), Colón et al. [5] showed how it was possible to
use Motzkin’s Transposition theorem [15] to reduce each (universally quantified)
finite disjunction of linear constraints to an existentially quantified polynomial
formula over the annotation parameters.2

For probabilistic programs, the verification conditions for a program annota-
tion are of one of the five possible forms (Sec. 4):

0 ≤ P ≤ 1 (4)
P ≤ wp.path prog.Q (5)
R ≤ [G]×S + [¬G]×T or R ≤ S (T or R ≤ p∗S + (1−p)∗T (6)

where P , Q, R, S and T are annotations, G is a Boolean expression in the pro-
gram variables, p is a constant in [0, 1], and path prog is a loop- and annotation-
free program fragment occurring in the program. For linear probabilistic pro-
grams, G must be a linear constraint, and sub-program path prog must also be
linear. By parametrisation the annotations are propositionally linear.

To convert each constraint of the form (4–6) to machine-solvable form we must
first formulate each of them as a finite Boolean expression on linear constraints.
We can then use Colón et al.’s method to convert these to polynomial formulae
over the annotation parameters. We start by showing how this novel first step
is performed and then we recount Motzkin’s transposition theorem.

Equivalence translation to a finite Boolean expression. This translation
occurs in two stages. First we convert each expression of the form (4–6) to
inequalities between propositionally linear expressions. This first step is made
possible by the following observations:

Lemma 2. Let S and T be any propositionally linear expressions, G a linear
constraint, p a constant expression, x a program variable, and E a linear ex-
pression. We have that [G] × S, S (T and p∗S are semantically equivalent to
propositionally linear expressions; ¬G may be expressed as a linear constraint;
S + T and S[x\E] are propositionally linear. (See App. C for proof.)

Using these observations we immediately have that constraints of the form
(4) and (6) can be translated to inequalities between propositionally linear
expressions. For (5), we may use them to show by structural induction that
wp.path prog.Q may be evaluated to a propositionally linear expression.

2 To be precise, Colón et al. [5] used a specialisation of this theorem, Farkas’ lemma,

since they did not consider parametrised forms of invariants that could include strict

inequalities.

398 J-.P. Katoen et al.

In the second step we convert each of these inequalities between proposition-
ally linear expressions to finite Boolean expressions over linear constraints (which
may then be translated to conjunctive normal form):

Lemma 3. Any inequality Qa ≤ Qb between non-negative propositionally linear
expressions can be equivalently formulated as a finite Boolean expression over
linear constraints.

Proof. First rewrite Qa and Qb in disjoint normal form (Lem. 1) as proposition-
ally linear expressions [Pa1]×Qa1 + · · · + [PaM]×QaM , and [Pb1]×Qb1 + · · · +
[PbK]×QbK , where each Pam, Pbk are linear assertions and Qam,Qbk are linear
expressions. Then Qa ≤ Qb if and only if for all m : [1..M] and k : [1..K] we have
Pam ∧ Pbk ⇒ (Qam −Qbk ≤ 0) and Pam ∧ (

∧
k : [1..K] ¬Pbk) ⇒ (Qam ≤ 0).

Equivalence translation using Motzkin’s transposition theorem. Motz-
kin’s Transposition theorem can be used to equivalently represent any (univer-
sally quantified) propositionally linear predicate as a conjunction of existentially
quantified constraints. Since the linear constraints in our propositionally linear
predicate contain unknown coefficients, the constraints derived from Motzkin’s
Transposition theorem are polynomial, and not linear.

Theorem 2. Motzkin’s Transposition Theorem Given the set of linear, and
strict linear, inequalities over real-valued variables x1, ..., xn

S :=

⎡⎢⎣α(1,1)x1 + . . .+ α(1,n)xn + β1 ≤ 0
...

...
...

α(m,1)x1 + . . .+ α(m,n)xn + βm ≤ 0

⎤⎥⎦

T :=

⎡⎢⎣α(m+1,1)x1 + . . .+ α(m+1,n)xn + βm+1 < 0
...

...
...

α(m+k,1)x1 + . . .+ α(m+k,n)xn + βm+k < 0

⎤⎥⎦ ,

in which α(1,1), ..., α(m+k,n) and β1, ..., βm+k are real-valued, we have that S and
T simultaneously are not satisfiable (i.e. they have no solution in x) if and only
if there exist non-negative real numbers λ0, λ1, . . . , λm+k such that either

0 =
∑m+k

i=1 λiα(i,1), . . . , 0 =
∑m+k

i=1 λiα(i,n), 1 = (
∑m+k

i=1 λiβi)− λ0 ,

or at least one coefficient λi for i in the range [m+1 . . .m+k] is non-zero and

0 =
∑m+k

i=1 λiα(i,1), . . . , 0 =
∑m+k

i=1 λiα(i,n), 0 = (
∑m+k

i=1 λiβi)− λ0 .

Proof. This is a geometric rephrasing of the theorem as it appears in a standard
reference [15, p.268].

Linear-Invariant Generation for Probabilistic Programs 399

5.3 Solving Constraints and Heuristics

Constraint solving. Our generated constraints are of the same form as those
generated by Colón et al. [5] for qualitative programs, and may therefore be
solved using exactly the same tools and techniques applicable there.

A survey of techniques for solving constraints is given by Bockmayr and
Weispfenning [2]. Colón et al. [5] used, for example, REDLOG’s3 [12] imple-
mentation of quantifier-elimination algorithms for polynomial constraints. In
addition to quantifier-elimination techniques, other methods such as factorisa-
tion and root finding were employed.

Quantifier-elimination implementations are exponential in complexity, which
limits the size of annotation-generation problems that may be addressed using
this approach. In our examples from Sec. 6 –which are of a small size– we solved
our constraints using REDLOG.

Heuristics. In practice it may not be possible automatically to solve con-
straints when the program size is large or the parametrised invariants have either
additive- or conjunctive- degree greater than say two or three or, even if we can,
still the output of quantifier-elimination procedures might be unreadable. Colón
et al. [5] encountered similar problems for trying to generate “k-linear inductive
assertions” for values of k greater than one. As in [5] we recommend, where pos-
sible, (i) reducing the size of a problem by guessing values of certain parameters,
and (ii) decomposing the task into finding structurally smaller invariants and
(iii) finding invariants for sub-programs separately. Other suggestions (such as
polynomial factorisation) may be found in [5].

To illustrate (ii), we have for instance that for linear assertion P and proposit-
ionally linear expression J the expression I := [P]×J is an invariant of the loop
while G do body od if [P] is invariant and 0 ≤ I ≤ 1 and [G]×I ≤ wp.body.J
holds. This method of decomposing the problem –although often applicable– is
not complete. That is, there exist loop invariants of the form [P]×J , where P
is a linear assertion and J is a linear expression, such that [P] on its own is not
invariant.

Example 4. Consider program x, y := 1, 1; while y < N do (y := 2y 1/2⊕ x :=
0) od, in which N is a positive constant. Although [x = 1 ∧ 0 ≤ y ≤ 2N] isn’t
an invariant of the loop since x is not guaranteed to remain at the value 1,
[x = 1 ∧ 0 ≤ y ≤ 2N]×y is, since transitions that set x to 0 are balanced by y’s
doubling in value.

5.4 Soundness and Completeness

Theorem 3. For any linear probabilistic program annotated with propositionally
linear expressions, our method is correct and fully general. That is, it can be used
to find all parameter solutions that make the annotation valid, and no others.

3 Available from http://redlog.dolzmann.de/.

http://redlog.dolzmann.de/

400 J-.P. Katoen et al.

init : x,n := 0, 0;
loop : while n < N do
body : (x := x + 1 p⊕ skip); n := n + 1

od

Variables x and n are of type N, constant N : N, and constant p : [0, 1]. To verify that

the expected final value of x is at least p×N we must show that wp.(init; loop).x ≥ pN ,

which is implied by the discovered loop invariant [0≤x≤ n∧n≤N]×(αx−pαn+pαN),

where 0 ≤ α ≤ 1/N .

Fig. 2. Binomial update

Proof. This follows from the fact that our translation of the annotation verifica-
tion conditions to machine-solvable form (as defined in Sec. 4) is an equivalence.

This means, for instance, that our method can be used to find all propositionally
linear invariants of a chosen degree for a single (i.e. un-nested) loop.

6 Three Examples

We will now use the invariant-generation method set out on the preceding sec-
tions together with proof-based techniques to analyse three simple, terminating4,
probabilistic programs. The Boolean and natural-valued variables are interpreted
more generally as reals (with Boolean value true represented by real-value 1 and
false by 0), so that we can apply our approach.

6.1 Example One: Binomial Update

The program in Fig. 2 sets variable x to a value between 0 and constant N
according to the binomial distribution with parameter p. We use our invariant-
generation method to find invariants of loop for calculating lower-bounds on the
final expected value of x.

We first search for invariants for loop of the form I := [αx + βn + γ ≤ 0],
that we can use to describe upper and lower bounds on the values of program
variables x and n. In other words, we search for parameters α, β and γ that
make the following program annotation valid:

{I}; while n<N do {[n<N]×I}; (x := x+1 p⊕skip); n := n+1 od; {[n≥N]×I} .

Solving for the constraints on the parameters, we find that [0 ≤ x], [x ≤ n] and
[n ≤ N + 1] are invariants.5 Next, we search for quantitative invariants for loop

4 In each case a separate (and very simple) argument can be used to show that the

programs terminate with probability 1.
5 Invariant [n ≤ N] cannot be generated since –although n only takes natural values

in the context of the program– we are solving constraints over the reals, and not the

natural numbers.

Linear-Invariant Generation for Probabilistic Programs 401

of the form I := J×(αx + βn + γ). where J := [0 ≤ x ∧ x ≤ n ∧ n ≤ N]. Since
J is invariant it suffices to show that for all values of x and n we have

0 ≤ I and I ≤ 1 and [n < N]×(αx+βn+γ) ≤ wp.body.(αx+βn+γ) (7)

where wp.body.(αx+βn+γ) can be evaluated to αx+βn+pα+β +γ. Using the
result of this wp-calculation, constraints (7) may then be equivalently formulated
as the following finite Boolean expressions on linear constraints:

0 ≤ x ∧ x ≤ n ∧ n ≤ N ⇒ (0 ≤ αx + βn + γ) (8)
0 ≤ x ∧ x ≤ n ∧ n ≤ N ⇒ (αx + βn + γ ≤ 1) (9)

n < N ⇒ (0 ≤ pα + β) . (10)

To translate (8), (9) and (10) into a set of existentially quantified constraints that
can be used as inputs to a SAT-solver, we use Motzkin’s Theorem. Condition
(10) for instance, which holds if the strict linear inequalities[

0x + n + −N < 0
0x + 0n + pα + β < 0

]
are not satisfiable, is equivalent (by Motzkin’s Theorem) to the following poly-
nomial constraints:

∃λ0, λ1, λ2 ·⎛⎜⎜⎝
λ0 ≥ 0 ∧ λ1 ≥ 0 ∧ λ2 ≥ 0 ∧
0 = λ10 + λ20 ∧
0 = λ1 + λ20 ∧
1 = −λ1N + λ2(pα + β)− λ0

⎞⎟⎟⎠ ∨

⎛⎜⎜⎜⎜⎝
λ0 ≥ 0 ∧ λ1 ≥ 0 ∧ λ2 ≥ 0 ∧
(λ1 �= 0 ∨ λ2 �= 0) ∧
0 = λ10 + λ20 ∧
0 = λ1 + λ20 ∧
0 = −λ1N + λ2(pα + β)− λ0

⎞⎟⎟⎟⎟⎠
Simplifying this constraint reveals that parameters α, β and γ must satisfy
pα + β ≥ 0. This condition is satisfied, for example, if β = −pα and γ = pα.
Assuming that β = −pα and γ = pα holds, we have that (8) and (9) hold if N
is positive and 0 < α ≤ 1/N . Consequently, for positive N and α : (0, 1/N] we
have that

J×(αx − pαn + pαN) (11)

is invariant. Assuming N is positive, (11) can be used to calculate a lower bound
on the expected value of x produced by the binomial program. We have

wp.(init; loop).(αx)
≥ wp.(init; loop).([n ≥ N]×J×αx) “αx ≥ [n ≥ N]×J×αx; monotonicity”

= wp.init.(wp.loop.([n ≥ N]× I)) “simplify; sequential composition”

≥ wp.init.I “loop terminates and I is invariant; monotonicity”

= [0 ≤ N]× pαN “calculate”

= pαN . “we have assumed that N is positive”

From scaling (Sec. 3), a lower bound of the least expected value of x (i.e. (1/α)×
αx) that may be produced by the Binomial program is pN (i.e. (1/α)× pαN).

402 J-.P. Katoen et al.

init : x := p; b := true;
loop : while b do

b := false 1/2⊕ true;
if b then

x := 2x; if x ≥ 1 then x := x−1 else skip fi
elseif x ≥ 1/2 then x := 1

else x := 0 fi
od

Variable x is of type R and b of type B. This program sets x to 1 with probability at

least p, a fact verified by establishing wp.(init; loop).[x = 1] ≥ p, which follows from

the discovery of the loop invariant [0≤x≤1]×x.

Fig. 3. Generating a biased coin from a fair one

6.2 Example Two: Generating a Biased Coin from a Fair One

The program in Fig. 3 (which appears in [19, Ch4]) uses a stream of fair coin flips
to generate a (single) biased coin. To verify that on termination it correctly sets x
to 1 with probability (at least) p, we need to determine that p ≤ wp.loop.[x = 1].
We used our techniques to discover that [0 ≤ x ≤ 1]×x is an invariant of loop, and
then additional reasoning to show that it implies correctness. First, it simplifies
to the post-expectation on termination (because on exiting the loop x takes only
the values 0 or 1); next substituting values for the initialisation x := p yields
the required lower bound.6 Details of the generating constraints are set out in
App. A.

6.3 Example Three: Uniform Distribution; Nested Loops

Cryptographic applications often require a variable to be chosen uniformly from
some interval [0 . . .N]; in practice this must be achieved using a fair coin as
above, and the program in Fig. 4 is an example. Intuitively its inner loop sets g
uniformly to some interval [0 . . . c] where c is the smallest power of 2 exceeding
N (i.e. 2�log2 N�); the function of the outer loop is to repeat the process from
scratch until g lies in the required interval [0 . . . N].

To verify this program we use the above technique to generate automatically a
linear invariant for the inner loop. We then use that invariant to reason manually
about the effect of the outer loop. In the conclusion we suggest ways in which
we might be able to extend our method so that this (manual) reasoning could
be automated as well.

Verifying this program thus requires the combination of automated invariant
generation and interactive proof, and in this section we sketch how it was done.

Interactive proof: First, we make an assumption that the inner loop correctly
sets g uniformly within [0 . . . c]; this is formalised by the set of (parametrised)
Hoare triples

{1/c} init2; loop2 {[g = k]} , 0 ≤ k ≤ c . (12)
6 It can be in fact be shown that this bound on the expected value of x is tight.

Linear-Invariant Generation for Probabilistic Programs 403

init1 : n, g := 1, N ;

loop1 : while g ≥ N do
init2 : n, g := 1, 0;
loop2 : while n < N do n := 2n; (g := 2g 1/2⊕ g := 2g + 1) od

od

n and g are both variables of type N and N is a constant positive natural num-

ber. This program uniformly sets g to a value in [0..N), verified by establishing

wp.init1; loop1.[g = k] ≥ 1/N , implied by the invariant (for the outer loop) [g = k]+[g ≥
N]× (1/N).

Fig. 4. Uniform distribution

With this assumption we are able to use the wp-calculus directly to verify that
[g = k] + [g ≥ N] × d (for d ≤ 1/N) is an invariant of the outer loop, loop1,
and that is sufficient to verify the whole program; the details are set out at App.
B. That leaves us with the problem of establishing (12) ; we use our automated
invariant generation technique to find invariants to do so.

Automatic invariant generation for the inner-loop analysis: First we considered
the special case of (12) where k = 0 and searched for loop2 invariants of the form
I := [g = 0 ∧ J] × (αn + γ), where J := 1 ≤ n ≤ c, and we needed that [J] is
an invariant of loop2. This gave us [g = 0 ∧ 1 ≤ n ≤ c] × n/c as an invariant,
which is sufficient for the special case. To generalise this, we then searched for
loop2 invariants of the form [αn + β < g ≤ γn + δ ∧ J]× dn, and we found that
for any α and dc = 1, [αn− 1 < g ≤ αn ∧ J]× dn is also invariant, from which
we can derive our result. Details are set out in App. B.

7 Alternative Automated Methods

Markov decision processes (MDP’s) are a natural candidate for an operational
model for probabilistic programs. Analysis of quantitative properties relative to
Markov decision processes are available via probabilistic model checking. Exam-
ples include PRISM [17] (supporting PCTL model checking) and LiQuor [4]
(supporting LTL). Whilst the invariant technique produces general statements
about program behaviour, model checking is restricted to the verification of par-
ticular instances: for the generation of a biased coin from a fair coin, it can be
checked whether eventually the probability that x equals 1 is p, for a given p.
One cannot check that for any p this property holds.

Recent developments using abstraction refinement increase the potential for
generality. In particular PASS [16] and a SAT-based extension of PRISM [24]
both compute sound approximations of the underlying MDP, with the former
yielding over approximations, and the latter computing both upper- and lower
bounds. In neither case does it appear that the methods could feasibly be used
to treat the examples in this paper, however. In particular the analysis of loops
by the extension of PRISM tends to be extremely costly, and do not perform
well when the variables can take real values [23].

404 J-.P. Katoen et al.

Testing for language equivalence between probabilistic programs over finite
integer datatypes has been exploited by the tool APEX [26], but again this would
not be able to treat the examples that use real-valued variables straightforwardly.

Abstract interpretation methods [7] have also been applied to probabilistic
programs [9, 10]. As for non-probabilistic abstract interpretation methods, these
might –in contrast to constraint-based methods– only produce “approximate
answers”.

Finally, none of PASS, SAT-based PRISM, APEX nor the probabilistic ab-
stract interpretation methods generate quantitative loop invariants.

8 Aims and Conclusions

We have defined a constraint-based method for generating propositionally linear
annotations for linear probabilistic programs, and demonstrated it using a num-
ber of realistic (but small) probabilistic programs. We have primarily focused
on generating invariants for loops. As for other constraint-based methods, the
program-size and the size of the parametrised invariants is constrained to small-
to-medium sized problem instances by the capabilities of current constraint-
solving tools.

Once found, quantitative invariants can be used to prove very general prop-
erties of probabilistic programs. Practical experience in automating proofs in
HOL [20, 3] has shown that some of the quantitative invariants crucial to proof
are not at all obvious; the development of an automated assistant for invariant
discovery to augment interactive proofs is one of the main motivations for this
work. Our third example in Sec. 6.3 is typical of how invariant generation can
enhance an interactive proof session. It also suggests that propositionally linear
annotations are unlikely to be sufficient in themselves for proving all properties
of interest: recall that we used a set of discovered linear annotations to approx-
imate the inner loop behaviour. On the other hand, this suggests a method in
which sets of annotation pairs could be used more generally to abstract from
program behaviour. For us that implies the following hierarchical method: first
linear invariants are discovered for inner loops, and then used to abstract the
loops’ behaviour as sets of annotations. The analysis of all the enclosing loop(s)
can then proceed as outlined in this paper, but with the inner loops summarised
by their sets of annotations. That is our next step.

Beyond that, we would also like to build tool support for our approach. This
would involve, among other tasks, the mechanisation of weakest-precondition
calculations involving propositionally linear expressions over probabilistic pro-
grams. Earlier mechanisations of the quantitative logic for pGCL (e.g. [20]) sug-
gest that this task is feasible.

Finally, it wouldbe interesting to considerwhether other advances in constraint-
based invariant generation methods, such as [31, 6, 21] could be adapted to gen-
erate polynomial forms of quantitative invariants.

The Appendices A, B and C to this paper may be found online [22].

Linear-Invariant Generation for Probabilistic Programs 405

References

[1] Probabilistic Systems Group, http://www.cse.unsw.edu.au/~carrollm/probs

[2] Bockmayr, A., Weispfenning, V.: Solving numerical constraints. In: Robinson, A.,

Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, ch.12. vol. I, pp.

751–842. Elsevier Science, Amsterdam (2001)

[3] Celiku, O.: Mechanized Reasoning for Dually-Nondeterministic and Probabilistic

Programs. PhD thesis, TUCS (2006)

[4] Ciesinski, F., Baier, C.: LiQuor: A tool for qualitative and quantitative linear time

analysis of reactive systems. In: Quantitative Evaluation of Systems (QEST), pp.

131–132. IEEE Computer Society Press, Los Alamitos (2006)

[5] Colón, M., Sankaranarayanan, S., Sipma, H.: Linear invariant generation using

non-linear constraint solving. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003.

LNCS, vol. 2725, pp. 420–432. Springer, Heidelberg (2003)

[6] Cousot, P.: Proving program invariance and termination by parametric abstrac-

tion, Lagrangian relaxation and semidefinite programming. In: Cousot, R. (ed.)

VMCAI 2005. LNCS, vol. 3385, pp. 1–24. Springer, Heidelberg (2005)

[7] Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In: Principles

of Programming Languages (PoPL), pp. 238–252. ACM, New York (1977)

[8] den Hartog, J., de Vink, E.P.: Verifying probabilistic programs using a Hoare like

logic. Int. J. Found. Comput. Sci. 13(3), 315–340 (2002)

[9] Di Pierro, A., Wiklicky, H.: Concurrent constraint programming: towards proba-

bilistic abstract interpretation. In: Gabbrielli, M., Pfenning, F. (eds.) Principles

and Practice of Declarative Programming (PPDP), pp. 127–138. ACM, New York

(2000)

[10] Di Pierro, A., Wiklicky, H.: Measuring the precision of abstract interpretations. In:

Lau, K. (ed.) LOPSTR 2000. LNCS, vol. 2042, pp. 147–164. Springer, Heidelberg

(2001)

[11] Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Englewood Cliffs

(1976)

[12] Dolzmann, A., Sturm, T.: REDLOG: computer algebra meets computer logic.

SIGSAM Bull. 31(2), 2–9 (1997)

[13] Floyd, R.W.: Assigning meanings to programs. In: Schwartz, J.T. (ed.) Mathemat-

ical Aspects of Computer Science. Proc. Symp. Appl. Math., vol. 19, pp. 19–32.

American Mathematical Society, Providence (1967)

[14] Gulwani, S., Srivastava, S., Venkatesan, R.: Program analysis as constraint solving.

Programming Language Design and Implementation (PLDI) 43(6), 281–292 (2008)

[15] Hazewinkel, M.: Encyclopedia of Mathematics. Springer, Heidelberg (2002)

[16] Hermanns, H., Wachter, B., Zhang, L.: Probabilistic CEGAR. In: Gupta, A., Ma-

lik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 162–175. Springer, Heidelberg (2008)

[17] Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for auto-

matic verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.)

TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)

[18] Hoare, C.A.R.: An axiomatic basis for computer programming. Communications

of the ACM 12(10), 576–580 (1969)

[19] Hurd, J.: Formal Verification of Probabilistic Algorithms. PhD thesis, University

of Cambridge (2002)

[20] Hurd, J., McIver, A.K., Morgan, C.C.: Probabilistic guarded commands mecha-

nised in HOL. Theoretical Computer Science 346(1), 96–112 (2005)

http://www.cse.unsw.edu.au/~carrollm/probs

406 J-.P. Katoen et al.

[21] Kapur, D.: Automatically generating loop invariants using quantifier elimination.

In: Deduction and Applications (2005)

[22] Katoen, J.P., McIver, A.K., Meinicke, L.A., Morgan, C.C.: Linear-invariant gen-

eration for probabilistic programs: automated support for proof-based methods.

Draft of this paper including its appendices [1, Katoen:10] (2010)

[23] Kattenbelt, M.: Private communication (2010)

[24] Kattenbelt, M., Kwiatkowska, M., Norman, G., Parker, D.: Abstraction refinement

for probabilistic software. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009.

LNCS, vol. 5403, pp. 182–197. Springer, Heidelberg (2009)

[25] Kozen, D.: Semantics of probabilistic programs. Jnl. Comp. Sys. Sciences 22, 328–

350 (1981)

[26] Legay, A., Murawski, A.S., Ouaknine, J., Worrell, J.: On automated verification

of probabilistic programs. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008.

LNCS, vol. 4963, pp. 173–187. Springer, Heidelberg (2008)

[27] McIver, A.K., Morgan, C.C.: Abstraction, Refinement and Proof for Probabilistic

Systems. Monographs in Computer Science. Springer, Heidelberg (2004)

[28] Monniaux, D.: Abstract interpretation of probabilistic semantics. In: Palsberg, J.

(ed.) SAS 2000. LNCS, vol. 1824, pp. 322–339. Springer, Heidelberg (2000)

[29] Morgan, C.C.: Proof rules for probabilistic loops. In: Jifeng, H., Cooke, J., Wal-

lis, P. (eds.) BCS-FACS 7th Refinement Workshop, Workshops in Computing.

Springer, Heidelberg (1996)

[30] Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear

ranking functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937,

pp. 239–251. Springer, Heidelberg (2004)

[31] Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Non-linear loop invariant genera-

tion using Gröbner bases. In: Principles of Programming Languages (PoPL), pp.

318–329. ACM, New York (2004)

Abstract Interpreters for Free

Matthew Might

University of Utah, Salt Lake City, Utah, USA

might@cs.utah.edu

http://matt.might.net/

Abstract. In small-step abstract interpretations, the concrete and ab-

stract semantics bear an uncanny resemblance. In this work, we present

an analysis-design methodology that both explains and exploits that re-

semblance. Specifically, we present a two-step method to convert a small-

step concrete semantics into a family of sound, computable abstract inter-

pretations. The first step re-factors the concrete state-space to eliminate

recursive structure; this refactoring of the state-space simultaneously de-

termines a store-passing-style transformation on the underlying concrete

semantics. The second step uses inference rules to generate an abstract

state-space and a Galois connection simultaneously. The Galois connec-

tion allows the calculation of the “optimal” abstract interpretation. The

two-step process is unambiguous, but nondeterministic: at each step,

analysis designers face choices. Some of these choices ultimately influ-

ence properties such as flow-, field- and context-sensitivity. Thus, under

the method, we can give the emergence of these properties a graph-

theoretic characterization. To illustrate the method, we systematically

abstract the continuation-passing style lambda calculus to arrive at two

distinct families of analyses. The first is the well-known k-CFA family

of analyses. The second consists of novel “environment-centric” abstract

interpretations, none of which appear in the literature on static analysis

of higher-order programs.

1 Introduction: Can We Get Two for the Price of One?

In small-step abstract interpretation [4,5,16], there is often a tight correspon-
dence between the concrete and abstract semantics. When one implements a
small-step interpreter and then a small-step static analyzer, the correspondence
is so obvious that there is a “nagging sense” of duplicated effort—large tracts
of code for the analyzer and the interpreter end up looking almost identical.
Suffering this déjà vu long enough leads one to ask:

Is there a principled method for constructing a sensible abstract inter-
pretation of a small-step concrete semantics automatically?

As we will demonstrate, the answer is yes : for any given small-step concrete se-
mantics, there exist “natural” abstract interpretations, and there is a procedure
an analysis designer can execute to construct these analyses.

R. Cousot and M. Martel (Eds.): SAS 2010, LNCS 6337, pp. 407–421, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

408 M. Might

By applying our method to the concrete semantics for continuation-passing
style, we end up discovering both known analyses (like k-CFA) and unknown
analyses (which take a fundamentally different approach to abstraction of envi-
ronments and closures). Choice points in the method also end up (quite unex-
pectedly) providing graph-theoretic explanations for the emergence of properties
such as flow-, field- and context-sensitivity (Section 6).

An additional benefit of the method is pedagogical: it adds a more formal
dimension to the art of analysis design. One can teach a student what abstract
interpretation is, and what Galois connections are, but this knowledge doesn’t
make a student an analysis designer any more than rote knowledge of the syntax
of Java makes her a programmer. She is still left with the question of how to
design a static analysis. The method described in this work provides one answer
to that question: it constitutes a process students can follow to go from a concrete
semantics to an abstract interpreter.

1.1 An Example to Illustrate Correspondence and Redundancy

A brief example informally illustrates the degree to which the abstract semantics
resemble the concrete semantics. We point out this resemblance to encourage
the idea that the abstract semantics might be synthesized from the concrete
semantics. Consider the concrete rule for Move in a register machine:

([[var := var ′]] : stmt , env , heap) ⇒ (stmt , env [var �→ env(var ′)], heap).

The transition moves to the next statement, and updates the environment in
the process. Contrast this concrete rule with the “abstract” rule for Move:

([[var := var ′]] : stmt , ênv , ĥeap) � (stmt , ênv [var �→ ênv(var ′)], ĥeap).

This rule is suspiciously similar to the concrete one. In fact, the rules are so sim-
ilar that presenting them both in a technical paper begs charges of redundancy.
Implementing them both in code looks like the “copy-and-paste” anti-pattern.

With other rules, the correspondence is less direct. Consider the concrete rule
for pointer assignment:

([[*var := var ′]] : stmt , env , heap) ⇒ (stmt , env , heap[env(var) �→ env(var ′)]),

and its abstract counterpart:

â ∈ ênv(var)

([[*var := var ′]] : stmt , ênv , ĥeap) � (stmt , ênv , ĥeap [â �→ ênv(var ′)]).

In contrast with the concrete rule, the abstract rule is nondeterministic—there
is one subsequent state for each possible abstract address to which the machine
may write. The abstract rule also changed from functional extension to join for
updating the heap. Staring at the similarities, it feels like there should be a
principled method that can figure out where to introduce the nondeterminism
and where to swap functional extension for join.

Abstract Interpreters for Free 409

1.2 The Two-Step Method: Snipping and Trickling

We will describe a process for converting a small-step concrete semantics into a
parameterized abstract semantics. At high level, the process has two steps:

1. The first step snips recursive structure out of concrete state-space. While
state-spaces with recursive structure can be abstracted, it’s much easier to
abstract state-spaces without recursive structure. To perform the “snip,” we
view the concrete state-space as a dependence graph. Snipping selectively
cuts cycle-forming edges in this graph. Each cut induces a corresponding
store-passing-style transformation [17] of the concrete semantics.

2. The second step trickles abstraction up the concrete state-space, starting
with the leaves of the DAG left over from the snipping operation. The de-
signer must choose a specific abstraction for these leaves. Then, to automate
remainder of the process, we recursively apply inference rules that form Ga-
lois connections [5]. A Galois connection inference rule has the form, “If the
structures X and Y form a Galois connection, the structure F (X, Y) is also a
Galois connection,” for some functor F . Consequently, these inference rules
“trickle up” abstraction from the leaves of the concrete state-space. Once
the rules infer a top-level Galois connection between concrete and abstract
states, we can calculate the “optimal” abstract interpretation.1

The rationale for these two steps comes from an observation on the design of
abstract interpretations—finite abstract state-spaces are easier to work with,
because no widening is necessary in order to achieve termination. Yet, in order
for a small-step semantics to describe a Turing-complete system, the state-space
for the small-step semantics must have infinite size. Thus, the motivation for the
two-step process is to effect a systematic compaction from an infinite to a finite
state-space.

The first step (snipping) exposes the source of the unboundedness of the
concrete state-space; it then isolates this unboundedness to the leaf nodes in
a dependence graph over the state-space. The second step (trickling) starts by
abstracting these leaf nodes into finite sets. Because the snipped concrete state-
space lacks recursion, if the abstractions on these leaves are finite, the resulting
abstract state-space is also finite.

2 Continuation-Passing-Style λ-Calculus

For the sake of grounding our discussion in specific examples, we’ll look at the
continuation-passing style λ-calculus (CPS). We will gradually transform the
1 The word optimal has to be qualified: optimal under what constraints? With Galois

connections [5], the calculated analysis is optimal with respect to the specific ab-

straction embodied by the Galois connection. Every Galois connection implies many

sound analyses, but only one of these is the most precise, and this analysis can be

calculated by composing the concretization function with the concrete semantics

and again with the abstraction function. That is, the optimal analysis appears to

concretize the input, run the exact semantics, and then abstract the output.

410 M. Might

concrete semantics for CPS into several abstract interpreters. The grammar for
(pure) CPS is conveniently small:

f, e ∈ Exp ::= Var + Lam

lam ∈ Lam ::= (λ (v1 . . . vn) call)
v ∈ Var is a set of identifiers

call ∈ Call ::= (f e1 . . . en).

A textbook concrete (small-step) state-space (Σ) for pure CPS is also simple:

ς ∈ Σ = Call× Env
ρ ∈ Env = Var ⇀ Clo

clo ∈ Clo = Lam× Env .

And, the small-step transition relation, (⇒) ⊆ Σ ×Σ needs but one rule:

([[(f e1 . . . en)]], ρ) ⇒ (call , ρ′′), where
(lam , ρ′) = E(f, ρ)

lam = [[(λ (v1 . . . vn) call)]]
ρ′′ = ρ′[vi �→ E(ei, ρ)],

where the argument evaluator E : Exp × Env ⇀ Clo evaluates an expression in
the context of an environment:

E(v, ρ) = ρ(v)
E(lam , ρ) = (lam , ρ).

3 A Näıve Attempt: “Throw Hats on Everything”

At first glance, it appears that the only change between concrete and abstract
semantics is typographical: hats appear on all of the abstract domains (and
the ranges of some functions become, somewhat mysteriously, power domains).
Inspired by this observation, we can try it with the domains for continuation-
passing style, to arrive at an abstract state-space Σ̂:

ς̂ ∈ Σ̂ = Call× Ênv

ρ̂ ∈ Ênv = Var → P
(
Ĉlo

)
ĉlo ∈ Ĉlo = Lam× Ênv .

But, there is an obvious problem with this “abstract” state-space: it’s infinite, be-
cause closures contain environments, and environments contain closures. More-
over, a structural abstraction function defined on the concrete state-space isn’t

Abstract Interpreters for Free 411

well-founded; there is always the possibility (in theory) that it will encounter an
infinite closure, such as clo∞:

clo∞ = (lam , [v �→ {clo∞}]).

Abstract interpreters typically operate over finite state-spaces in order to guar-
antee termination. For infinite abstract state-spaces, widening can accelerate and
guarantee convergence, but a widening operator has to be defined on a case-by-
case basis. Constructing an appropriate widening operator is not a process that
can be fully mechanized; it requires creativity and intuition. And, in this case,
there is no obvious widening operator.

Instead of widening, we choose to eliminate recursion from the state-space
through an automatable process called “snipping the knots.” Once recursion is
eliminated from the concrete state-space, we can systematically transform it into
an abstract state-space, starting with its leaves and abstracting upward.

4 Step 1: Snipping the Knots with Store-Passing Style

Recursive structures pose problems with well-foundedness for mathematicians.
Because they are difficult to abstract “directly,” they also pose a problem for ab-
stract interpretation. Yet, in computer programming, recursive structures—even
infinitely recursive structures—are neither uncommon nor troublesome. Every
first-year computer science student knows how to build recursive data struc-
tures: pointers.

If we view a semantics as an interpreter, then we can exploit this freshman
insight to eliminate recursion from mathematical structures as well—we can in-
troduce a store and pointers into a small-step semantics. Specifically, we can use
an off-the-shelf store-passing style transformation of the concrete semantics [17],
and then thread recursive structure through the store.

To prepare for store-passing style, we represent the concrete definition of the
state-space as a graph with edges from uses to definitions of each set (Figure 1).
For example, in CPS, we add edges from the node Σ to the node Call and to the
node Env , because the definition of the set Σ2 refers to both Call and Env ; for
the same reason, we add edges from the node Clo to the node Lam and to the
node Env .3 Once in dependence-graph form, we must choose a set of edges to
“snip” in order to eliminate cycles from the graph.

To eliminate cycles in the concrete state-space for CPS (Figure 1), we can
snip this graph in either of two places: we can snip the edge from the node Clo
2 Σ = Call× Env .
3 The observant reader might wonder why we omit dependence edges between syntax

nodes, e.g., from Lam to Call and vice versa. In fact, we could add them. However,

we will only operate on programs of finite size, and on subterms of the original pro-

gram. As a result, syntax never contributes to the unboundedness of the concrete

state-space; hence, there is no reason to snip these edges. If we used a substitution-

/reduction-based concrete semantics, which could introduce new terms during exe-

cution, then we would have to add and snip these edges as well.

412 M. Might

Call

Σ

�
�������

��

Clo

��

�� Env

��

Lam Var

Call

Store

�� ���
��

��
��

��
Σ

���
��

��
��

��

��

��

Clo

��

��Addr Env

��

��

Lam Var

Fig. 1. A dependence graph of the concrete state-space for CPS before a snip (left)

and after snipping the Env → Clo edge (right). After the snip, there are no longer

cycles in the dependence graph.

to the node Env , or we can snip the edge from the node Env to the node Clo.
It doesn’t matter whether we snip one edge or both; the final result will still
be a sound abstract interpretation. Snipping the Env → Clo edge will end up
giving us k-CFA [18,19]. Snipping the Clo → Env edge will end up giving us a
novel and interesting hierarchy of control-flow analyses which, to the author’s
knowledge, has not appeared elsewhere.

4.1 Making a Snip

To make a snip, we need to add a store to the concrete state-space, and then
thread this store through the transition relation. To snip an edge going from a
set A to a set B, we redirect the snipped edge from its original target to a newly
created (infinite) set of addresses Addr . We then add the original target to the
range of the store Store, so that:

σ ∈ Store = Addr ⇀ B.

Before performing a standard store-passing style transformation on the seman-
tics, the store is made a component of each state.

4.2 Option 1: Snipping Env → Clo

Snipping the Env → Clo edge of the CPS semantics and applying the näıve,
mechanical store-passing transform to the concrete semantics yields the state-
space dependence graph in Figure 1 and the following state-space:

ς ∈ Σ = Call× Env × Store
ρ ∈ Env = Var ⇀ Addr

clo ∈ Clo = Lam× Env
σ ∈ Store = Addr ⇀ Clo
a ∈ Addr is an infinite set of addresses,

Abstract Interpreters for Free 413

and a new transition rule:

([[(f e1 . . . en)]], ρ, σ) ⇒ (call , ρ′′, σ′′), where
((lam , ρ′), σ′

0) = E((f, ρ), σ)
lam = [[(λ (v1 . . . vn) call)]]

a1, . . . , an �∈ dom(σ′
0)

ρ′′ = ρ′[vi �→ ai]
(cloi, σ

′
i) = E((ei, ρ), σ′

i−1)
σ′′ = σ′

n[ai �→ cloi],

where the argument evaluator E : (Exp×Env)×Store ⇀ (Clo×Store) evaluates
an expression in the context of an environment and a store, to return a value
and a store:

E((v, ρ), σ) = (σ(ρ(v)), σ)
E((lam , ρ), σ) = ((lam , ρ), σ).

Cleaning up with useless-variable elimination. Applying useless-variable
elimination [20] to the transformed semantics (again treating the semantics like
an interpreter) picks up on the fact that the argument evaluator never modifies
the store, which leads to a cleaner transition relation:

([[(f e1 . . . en)]], ρ, σ) ⇒ (call , ρ′′, σ′), where
(lam , ρ′) = E(f, ρ, σ)

lam = [[(λ (v1 . . . vn) call)]]
a1, . . . , an �∈ dom(σ)

ρ′′ = ρ′[vi �→ ai]
cloi = E(ei, ρ, σ)

σ′ = σ[ai �→ cloi],

where the argument evaluator E : Exp×Env ×Store ⇀ Clo evaluates an expres-
sion in the context of an environment and a store to return a value:

E(v, ρ, σ) = σ(ρ(v))
E(lam , ρ, σ) = (lam , ρ).

4.3 Option 2: Snipping Clo → Env

The other option for eliminating recursion is to snip the Clo → Env edge. This
snip leads to a family of analyses with a character unlike any in the published
literature on higher-order flow analysis.

414 M. Might

Snipping this edge and performing the store-passing transform leads to the
following state-space dependence diagram:

Call

Addr Σ

���
�����

���

��

��
Clo

��

��

Store

�����������
�� Env

��

��

Lam Var

and the state-space:

ς ∈ Σ = Call× Env × Store
ρ ∈ Env = Var ⇀ Clo

clo ∈ Clo = Lam×Addr
σ ∈ Store = Addr ⇀ Env
a ∈ Addr is an infinite set of addresses,

and the following transition rule:

([[(f e1 . . . en)]], ρ, σ) ⇒ (call , ρ′′, σ′), where
a �∈ dom(σ)

σ′ = σ[a �→ ρ]
(lam , a′) = E(f, a, σ′)

lam = [[(λ (v1 . . . vn) call)]]
cloi = E(ei, a, σ′)
ρ′′ = (σ(a′))[vi �→ cloi],

where the argument evaluator E : Exp × Addr × Store ⇀ Clo evaluates an
expression in the context of an environment’s address and a store to return a
value:

E(v, a, σ) = σ(a)(v)
E(lam , a, σ) = (lam , a).

4.4 Optional Snips

Of course, one can also snip non-cycle-forming edges. Under the next stage in
the method (trickle-up abstraction), these optional snips manifest themselves as
knobs that tune some well-known properties such as field-sensitivity (if one snips

Abstract Interpreters for Free 415

the Env → Var edge) and flow-sensitivity (if one snips the Σ → Call edge). Yet
other snips (such as the Clo → Lam edge) create knobs for tuning the precision
and speed of the analysis which don’t appear anywhere in the literature.

Finally, we point out that one can snip as many or as few edges in the depen-
dence graph as desired, so long as the resulting dependence graph is acyclic.

5 Step 2: Trickling Up Abstraction

Once snips have eliminated recursive structure from the concrete state-space (Σ),
we need (1) an abstract state-space (Σ̂), and (2) a Galois connection between
the concrete state-space and the abstract state-space (P (Σ) −−−→←−−−

α

γ
P(Σ̂)). Once

we have the Galois connection, a foundational result by the Cousots [5] enables
us to calculate an “optimal” small-step abstract transition relation: (�) = α ◦
(⇒) ◦ γ.

5.1 Abstracting the Leaves of the State-Space Dependence Graph

To generate the abstract state-space, we focus initially on the leaves of the
dependence graph for the concrete state-space. We require that the analysis
designer choose a finite set Â for each leaf node A; these finite sets will become
the leaves of the abstract state-space. For each concrete leaf set A, the analysis
designer must also specify an extraction function η : A → Â that maps a concrete
element to an abstract element. Once the extraction function is fixed, we can
automate the synthesis of the abstract state-space with inference rules that build
structural Galois connections.

It is straightforward to convert an extraction function into a Galois connection
[13]. Specifically, given a surjective map η : A → Â, the structure (P (A),⊆) −−−→←−−−

α

γ

(P(Â),⊆), where:

α(S) = {η(a) : a ∈ S}

γ(Ŝ) =
{
a : â ∈ Ŝ and η(a) = â

}
,

forms a Galois connection.
In practice, snipping and store-passing style transforms will leave an infinite

leaf node in the form of the set of addresses. In this case, the extraction function
on addresses fixes the polyvariance and the context-sensitivity of the analysis [9].

5.2 Recursively Constructing the Abstract State-Space

To synthesize the abstract state-space automatically, we will utilize inference
rules. These inference rules will build up structural Galois connections. In partic-
ular, these rules will take the Galois connections defined on leaves, and percolate
them up to a top-level Galois connection over sets of states.

Most of the inference rules have the form “if structures X1, X2, . . . , Xn are
Galois connections, then F (X1, X2, . . . , Xn) is also a Galois connection (for some
functor F).”

416 M. Might

Example 1. Given Galois connections (A,&A) −−−→←−−−
α

γ
(Â,&Â) and (B,&B) −−−→←−−−

α′

γ′

(B̂,&B̂), the product Galois connection is the structure (A × B,&A×B) −−−−→←−−−−
α′′

γ′′

(Â× B̂,&Â×B̂), where:

α′′(a, b) = (α(a), α′(b))

γ′′(â, b̂) = (γ(a), γ′(b)).

For the sake of mechanizing the process, we phrase the definitions of structural
Galois connections as inference rules taking us from less-structured Galois con-
nection to a more-structured one; for example:

(A,&A) −−−→←−−−
α

γ
(Â,&Â) (B,&B) −−−→←−−−

α′

γ′
(B̂,&B̂)

(A×B,&A×B) −−−−→←−−−−
α′′

γ′′
(Â× B̂,&Â×B̂).

5.3 Galois Inference Rules

In this work, we use the inference rules sketched in Figure 2 in addition to
the “standard” structural Galois connections found in Nielson et al. [13]. (For
brevity, we omit defining new concretization and abstraction maps in each rule.)

(P (A),�1) −−−−−→←−−−−−
λS.S

λS.S
(P(A),�1) (power identity)

(P (A),�1) −−−→←−−−
α

γ
(P(Â),�2) (P (B),�′

1) −−−→←−−−
α′

γ′
(P(B̂),�′

2)

(P (A×B),�′′
1) −−−−→←−−−−

α′′

γ′′
(P(Â× B̂),�′′

2)
(power product)

(P (Y),�1) −−−→←−−−
α

γ
(P(Ŷ),�2)

(P (X → Y),�′′
1) −−−→←−−−

α′

γ′
(P(X → Ŷ),�′′

2)
(image)

(P (X),�1) −−−→←−−−
α

γ
(X̂,�2)

(P (X),�1) −−−→←−−−
α′

γ′
(P(X̂),�′

2)
(power lift)

(P (X),�1) −−−→←−−−
α

γ
(P(X̂),�2) (P (Y),�′

1) −−−→←−−−
α′

γ′
(P(Ŷ),�′

2)

(P (X × Y),�′′
1) −−−−→←−−−−

α′′

γ′′
(P(X̂ × Ŷ),�′′

2)
(function)

Fig. 2. Structural inference rules for generating an abstract-state space. Once a

designer specifies a Galois connection over the leaves of the concrete state-space,

these inference rules construct an abstract state-space and corresponding abstrac-

tion/concretization functions.

Abstract Interpreters for Free 417

5.4 Synthesizing an Abstract Interpretation for CPS (Option 1)

Returning to the CPS semantics in which we snipped the Env → Clo edge and
defining an extraction function on addresses η : Addr → Âddr , we can recursively
apply inference rules for Galois connections that lead us to a Galois connection
(P (Σ),⊆) −−−→←−−−

α

γ
(P(Σ̂),&P(Σ̂)) for the top-level state-space:

ς̂ ∈ Σ̂ = Call× Ênv × Ŝtore

ρ̂ ∈ Ênv = Var ⇀ Âddr

ĉlo ∈ Ĉlo = Lam× Ênv

σ̂ ∈ Ŝtore = Âddr ⇀ Ĉlo

â ∈ Âddr is a finite set of addresses.

The function α : P (Σ) → P(Σ̂) encodes the synthesized abstraction map:

α {(call , ρ, σ)} = {(call , α(ρ), α(σ))}
α(ρ) = λv.α(ρ(v))

α(σ) = λâ.
⊔

α(a)=â

α(σ(a))

α(lam , ρ) = {(lam , α(ρ))}
α(a) = η(a).

Because we have a Galois connection, we can calculate an approximation of the
“optimal” abstract transition relation, (�) ⊆ Σ̂ × Σ̂:

ς̂︷ ︸︸ ︷
([[(f e1 . . . en)]], ρ̂, σ̂) �

ς̂′︷ ︸︸ ︷
(call , ρ̂′′, σ̂′) , where

(lam , ρ̂′) ∈ Ê(f, ρ̂, σ̂)
lam = [[(λ (v1 . . . vn) call)]]

âi = âlloc(vi, ς̂)
ρ̂′′ = ρ̂′[vi �→ âi]

σ̂′ = σ̂ [âi �→ Ê(ei, ρ̂, σ̂)],

where the argument evaluator Ê : Exp×Env × Ŝtore ⇀ Ĉlo evaluates an expres-
sion in the context of an environment and a store to return a value:

Ê(v, ρ̂, σ̂) = σ̂(ρ̂(v))

Ê(lam , ρ̂, σ̂) = {(lam , ρ̂)} .

We also introduced the abstract address-allocation function âlloc : Var × Σ̂ →
Âddr . (The concrete semantics selected addresses nondeterministically from out-
side the domain of the store.) According to Might’s A Posteriori Soundness The-
orem [9], any abstract address allocator leads to a sound abstract interpretation.

418 M. Might

Example 2. For example, a simple, monovariant address allocator chooses the
variable itself for the abstract address:

Âddr = Var

âlloc(v, ς̂) = v,

which leads to an abstract interpretive formulation of 0CFA.

5.5 Synthesizing an Abstract Interpretation for CPS (Option 2)

Recall that the other option for eliminating recursion is to snip the Clo → Env
edge. This snip leads to a family of analyses with a character unlike any in the
published literature on higher-order flow analysis.

Snipping this edge and synthesizing an abstraction leads to the following
abstract state-space:

ς̂ ∈ Σ̂ = Call× Ênv × Ŝtore

ρ̂ ∈ Ênv = Var ⇀ Ĉlo

ĉlo ∈ Ĉlo = Lam× Âddr

σ̂ ∈ Ŝtore = Âddr → P
(
Ênv

)
â ∈ Âddr is an finite set of addresses,

and the following transition rule:

ς̂︷ ︸︸ ︷
([[(f e1 . . . en)]], ρ̂, σ̂) �

ς̂′︷ ︸︸ ︷
(call , ρ̂′′, σ̂′) , where

â = âlloc(ς̂)
σ̂′ = σ̂ [â �→ ρ̂]

(lam , â′) ∈ Ê(f, â, σ̂′)
lam = [[(λ (v1 . . . vn) call)]]

ĉloi = Ê(ei, â, σ̂′)

ρ̂′′ = (σ̂(â′))[vi �→ ĉloi],

where the argument evaluator Ê : Exp × Âddr × Ŝtore → P(Ĉlo) evaluates an
expression in the context of an environment’s address and a store to return a
value:

Ê(v, â, σ̂) = {ρ̂(v) : ρ̂ ∈ σ̂(a)}
Ê(lam , â, σ̂) = {(lam , a)} .

Abstract Interpreters for Free 419

6 Flow-Sensitivity, Field-Sensitivity and
Context-Sensitivity

We mentioned earlier that snipping different edges could lead to different knobs
for tuning the precision of the analysis. Properties such as flow-, field- and
context-sensitivity emerge as the result of extra snips in the original depen-
dence graph, and their degree can be tuned by the extraction function required
to form the Galois connection.

Flow-sensitivity. Consider, for example, snipping the Σ → Call edge in the
CPS semantics. That is, instead of a state having the structure ς = (call , . . .),
it will have the structure ς ′ = (acall , . . . , σ), where call = σ(acall). Thus, call
sites become addressable values, and to abstract, one must define an extraction
function. This extraction function on addresses of call sites creates a concrete leaf
node that, under the second step, maps to “abstract call sites.” If all concrete
call sites abstract to the same abstract call site, i.e. η(acall) = â0 for all call site
addresses acall , then the optimal analysis becomes completely flow-insensitive.
If, on the other hand, the extraction function is the identity function, then
the optimal analysis is completely flow-sensitive. The nature of the abstraction
from concrete to abstract call sites precisely captures the flow-sensitivity of the
resulting analysis.

Field-sensitivity. In higher-order languages, environments play the role of struc-
tures. Thus, for CPS, field-sensitivity manifests as the degree to which variables
in a given environment have the same abstract address. To create a Galois con-
nection that tunes this parameter, we need only snip the Env → Var edge in
the concrete dependence graph. Once again, a singleton extraction map leads to
field-insensitivity, and an identity extraction map leads to field-sensitivity.

Context-sensitivity and polyvariance. The term polyvariance refers to the num-
ber of abstractions (variants) for a given variable (or allocation site). Monovari-
ant analyses like 0CFA have only one abstract address for each variable. Typ-
ically, context-sensitivity determines polyvariance by carving up the abstract
variants of a variable according the contexts in which it is bound. Thus, to tune
polyvariance, snip the Env → Clo edge in the concrete state-space graph, and
adjust the extraction function for the resulting Galois connection.

7 Related Work

This work draws most directly on three lines of research: abstract interpreta-
tion [4], formal semantics [17] and Galois connections [5]. The programmatic
transformation of formal semantics dates to work by Reynolds [15]. More recent
work by Danvy et al. has shown that formal semantics are highly amenable to
program transformations and that it is possible to automatically convert deno-
tational semantics into operational semantics and vice versa [2,3,1,6,7,8]. These
techniques, combined with ours, should permit the mechanizable construction of
static analyzers for a wider variety of formal semantics paradigms.

420 M. Might

The Cousots’ foundational work on Galois connections marks the earliest at-
tempts to mechanize the process of constructing an abstract interpretation [5].
Given a Galois connection X −−−→←−−−

α

γ
X̂, it is possible to calculate the optimal

abstract image of a concrete function f : X → X as f̂ = α ◦ f ◦ γ. Our work
advances the Cousots’ original work by automating the construction of the Ga-
lois connection itself using inference rules. There have been additional attempts
to automate parts of the process of constructing an abstraction; most recently,
work by Qian et al. has focused on constructing minimal abstractions that lead
to completeness [14].

Our running example on the abstraction of continuation-passing style lambda
calculus is an instance of the long line of work on higher-order control-flow
analysis [19]. The first family of analyses we derived corresponds to universal
framework for k-CFA-like analyses [12]. The second family of analyses we de-
rived is difficult to place in relation to existing analyses. To begin, it is the
only analysis which does not abstract the range of environments. This gives it
the unique feature that variable look-up in such an analysis yields exactly one
abstract closure. It also opens up the prospect of using techniques such as ab-
stract counting directly on environment addresses in order to perform must-alias
analysis [10,11].

8 Summary and Conclusion

We have presented a two-step method for converting a small-step concrete se-
mantics into an abstract interpretation. The first step eliminates recursive struc-
ture from the concrete state-space by snipping edges in the dependence graph
of the concrete state-space; the second step trickles abstraction up the leaves of
the newly re-factored concrete state-space. Inference rules over structural Galois
connections synthesize the abstract state-space, and a Galois connection between
concrete and abstract states at the same time. The synthesized Galois connec-
tion also determines the optimal abstract interpretation. By snipping additional
edges in the concrete dependence graph, these snips turn into knobs for tuning
flow-, field- and context-sensitivity under abstraction. The immediate payoff of
this method in our work was (1) a re-affirmation that k-CFA is, in some sense
a fundamental technique, and (2) a new family of analyses based on a novel
abstraction of environments.

References

1. A functional correspondence between evaluators and abstract machines. ACM

Press, New York (2003)

2. Ager, M., Danvy, O., Midtgaard, J.: A functional correspondence between monadic

evaluators and abstract machines for languages with computational effects. Theo-

retical Computer Science 342(1),149–172 (2005)

3. Ager, M.S., Danvy, O., Midtgaard, J.: A functional correspondence between call-

by-need evaluators and lazy abstract machines. Processing Letters 90(5), 223–232

(2004)

Abstract Interpreters for Free 421

4. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In: Conference

Record of the Fourth ACM Symposium on Principles of Programming Languages

pp. 238–252. ACM Press, New York (1977)

5. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:

POPL 1979: Proceedings of the 6th ACM SIGACT-SIGPLAN Symposium on Prin-

ciples of Programming Languages, pp. 269–282. ACM Press, New York (1979)

6. Danvy, O., Millikin, K.: A rational deconstruction of landin’s secd machine with

the j operator. Logical Methods in Computer Science 4(4) (November 2008)

7. Danvy, O., Millikin, K.: Refunctionalization at work. Science of Computer Pro-

gramming 74(8), 534–549 (2009)

8. Midtgaard, J.: Transformation, Analysis, and Interpretation of Higher-Order Pro-

cedural Programs. PhD thesis, University of Aarhus (2007)

9. Might, M., Manolios, P.: A posteriori soundness for non-deterministic abstract

interpretations. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009. LNCS,

vol. 5403, pp. 260–274. Springer, Heidelberg (2009)

10. Might, M., Shivers, O.: Improving flow analyses via γcfa: Abstract garbage collec-

tion and counting. In: ICFP 2006: Proceedings of the Eleventh ACM SIGPLAN

International Conference on Functional Programming, pp. 13–25. ACM, New York

(2006)

11. Might, M., Shivers, O.: Exploiting reachability and cardinality in higher-order flow

analysis. Journal of Functional Programming, Special Double Issue 18(5-6), 821–

864 (2008)

12. Nielson, F., Nielson, H.R.: Infinitary control flow analysis: a collecting semantics for

closure analysis. In: POPL 1997: Proceedings of the 24th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, pp. 332–345. ACM, New

York (1997)

13. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis, Cor-

rected ed. Springer, Heidelberg (October 1999)

14. Qian, J., Zhao, L., Cai, G., Gu, T.: Automatic construction of complete ab-

straction by abstract interpretation. In: ICIS 2009: Proceedings of the 2009

Eigth IEEE/ACIS International Conference on Computer and Information Sci-

ence, Washington, DC, USA, pp. 927–932. IEEE Computer Society, Los Alamitos

(2009)

15. Reynolds, J.C.: Definitional interpreters for higher-order programming languages.

In: ACM 1972: Proceedings of the ACM Annual Conference, pp. 717–740. ACM,

New York (1972)

16. Schmidt, D.A.: Abstract interpretation of small-step semantics. In: Selected papers

from the 5th LOMAPS Workshop on Analysis and Verification of Multiple-Agent

Languages, London, UK, pp. 76–99. Springer, Heidelberg (1997)

17. Scott, D., Strachey, C.: Towards a formal semantics, pp. 197–220 (1966)

18. Shivers, O.: Control flow analysis in Scheme. In: Proceedings of the ACM SIGPLAN

1988 Conference on Programming Language Design and Implementation, vol. 23,

pp. 164–174. ACM, New York (July 1988)

19. Shivers, O. G.: Control-Flow Analysis of Higher-Order Languages. PhD thesis,

Carnegie Mellon University (1991)

20. Wand, M., Siveroni, I.: Constraint systems for useless variable elimination. In:

POPL 1999: Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, pp. 291–302. ACM, New York (1999)

Points-to Analysis as a

System of Linear Equations

Rupesh Nasre and Ramaswamy Govindarajan

Department of Computer Science and Automation,

Indian Institute of Science, Bangalore, India

{nasre,govind}@csa.iisc.ernet.in

Abstract. We propose a novel formulation of the points-to analysis as

a system of linear equations. With this, the efficiency of the points-to

analysis can be significantly improved by leveraging the advances in so-

lution procedures for solving the systems of linear equations. However,

such a formulation is non-trivial and becomes challenging due to vari-

ous facts, namely, multiple pointer indirections, address-of operators and

multiple assignments to the same variable. Further, the problem is ex-

acerbated by the need to keep the transformed equations linear. Despite

this, we successfully model all the pointer operations. We propose a novel

inclusion-based context-sensitive points-to analysis algorithm based on

prime factorization, which can model all the pointer operations. Experi-

mental evaluation on SPEC 2000 benchmarks and two large open source

programs reveals that our approach is competitive to the state-of-the-art

algorithms. With an average memory requirement of mere 21MB, our

context-sensitive points-to analysis algorithm analyzes each benchmark

in 55 seconds on an average.

1 Introduction

Points-to analysis enables several compiler optimizations and remains an im-
portant static analysis technique. Enormous growth of code bases in proprietary
and open source software systems demands scalability of static analyses over bil-
lions of lines of code. Several points-to analysis algorithms have been proposed
in literature that make this research area rich in content [1,26,5,2,18].

A points-to analysis is a method of statically determining whether two pointers
may point to the same location at runtime. The two pointers are then said
to be aliases of each other. For analyzing a general purpose C program, it is
sufficient to consider all pointer statements of the following forms: address-of
assignment (p = &q), copy assignment (p = q), load assignment (p = ∗q) and
store assignment (∗p = q) [25].

A flow-insensitive analysis ignores the control flow in the program and, in
turn, assumes that the statements could be executed in any order. A context-
sensitive analysis takes into consideration the calling context of a statement
while computing the points-to information. Storing complete context information
can exponentially blow up the memory requirement and increase analysis time,
making the analysis non-scalable for large programs.

R. Cousot and M. Martel (Eds.): SAS 2010, LNCS 6337, pp. 422–438, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Points-to Analysis as a System of Linear Equations 423

It has been established that flow-sensitivity does not add a significant precision
over a flow-insensitive analysis [16]. Therefore, we consider context-sensitive flow-
insensitive points-to analysis in this paper.

A flow-insensitive points-to analysis iterates over a set of constraints obtained
from points-to statements until it reaches a fixpoint. We observe that this phe-
nomenon is similar in spirit to obtaining a solution to a system of linear equa-
tions. Each equation defines a constraint on the feasible solution and a linear
solver progressively approaches the final solution in an iterative manner. Sim-
ilarly, every points-to statement forms a constraint on the feasible points-to
information and every iteration of a points-to analysis refines the points-to in-
formation obtained over the previous iteration. We exploit this similarity to map
the input source program to a set of linear constraints, solve it using a standard
linear equation solver and unmap the results to obtain the points-to informa-
tion. As we show in the next section, a naive approach of converting points-to
statements into a linear form faces several challenges due to (i) the distinction
between �-value and r-value in points-to statements, (ii) multiple dereferences of
a pointer and (iii) the same variable defined in multiple statements. We address
these challenges with novel mechanisms based on prime factorization of integers.

Major contributions of this paper are as below.

– A novel representation using prime factorization to store points-to facts.
– We transform points-to constraints into a system of linear equations without

affecting precision.
– We show the effectiveness of our approach by comparing it with state-of-

the-art context-sensitive algorithms using SPEC 2000 benchmarks and two
large open source programs (httpd and sendmail). On an average, our method
computes points-to information in 55 seconds using 21 MB memory proving
competitive to other methods.

2 Points-to Analysis

In the following subsection, we describe a simple method to convert a set of
points-to statements into a set of linear equations. Using it as a baseline, we
discuss several challenges that such a method poses. Consequently, in Section 2.2,
we introduce our novel transformation that addresses all the discussed issues and
present our points-to analysis algorithm (Section 2.3). Later, we extend it for
context-sensitivity using an invocation graph based approach (Section 2.4) and
prove its soundness in the next section.

2.1 A First-Cut Approach

Consider the set of C statements given in Figure 1(a). Let us define a transfor-
mation that translates &x into x− 1 and ∗kx into x + k, where k is the number
of ’∗’s used in dereferencing. Thus, ∗x is transformed as x + 1, **x as x + 2
and so on. A singleton variable without any operations is copied as it is, thus,

424 R. Nasre and R. Govindarajan

a = &y
p = &a
b = *p
c = b

11*17*23*...

a = y − 1
p = a − 1
b = p + 1
c = b

 0 −1 1 0 0 a −1
 −1 1 0 0 0 y −1

 c
 0 0 0−1 1 b 0
 0 0 −1 1 0 p = 1

(c)(b)(a)

23

(d)

11 17

253187

1

(12−−16) (18−−22) (24−−28)

(188−−192) (254 −− 258)

(2−−6)

...

...

...
Fig. 1. (a, b, c) Example to illustrate points-to analysis as a system of linear equations.

(d) Lattice over the compositions of primes guaranteeing five levels of dereferencing.

x translates to x. The transformed program now looks like Figure 1(b). This
becomes a simple linear system of equations that can be written in matrix form
AX = B as shown in Figure 1(c).

This small example illustrates several interesting aspects. First, the choices of
transformation functions for ’∗’ and ’&’ are not independent, because ’∗’ and ’&’
are complementary operations by language semantics, which should be carried to
the linear transformation. Second, selecting k = 0 is not a good choice because we
lose information regarding the address-of and dereference operations, resulting
in loss of precision in the analysis. Third, every row in matrix A has at most two
1s, i.e., every equation has at most two unknowns. All the entries in matrices A
and B are 0, 1 or −1.

Solving the above linear system using a solver yields the following parameter-
ized result: y = r, a = r− 1, p = r− 2, b = r− 1, c = r− 1.

From the values of the variables, we can quickly conclude that a, b and c
are aliases. Further, since the value of p is one smaller than that of a, we say
that p points to a, and in the same manner, a points to y. Thus, our analysis
computes all the points-to information obtained using Andersen’s analysis, and
is thus sound: y→ {}, a→ {y}, p→ {a}, b→ {y}, c→ {y}.

Next, we discuss certain issues with this approach.

Imprecise analysis. Note that our solver also added a few spurious points-
to pairs: p→ {b, c}. Therefore, the first-cut approach described above gives an
imprecise result.

Cyclic dependences. Note that each constraint in the above system of equa-
tions is of the form ai − aj = bij where bij ∈ {0, 1,−1}. We can build a con-
straint graph G = (V, E, w) where

V = {a1, ..., an} ∪ {a0}, w(ai, aj) = bija, w(a0, ai) = 0 and
E = {(ai, aj) : ai − aj = bij is a constraint}∪{(a0, a1), ..., (a0, an)}.

The above linear system has a feasible solution iff the corresponding constraint
graph has no cycle with negative weight [3]. A linear solver would not output
any solution for a system with a cycle. Our algorithm uses appropriate variable
renaming that allows a standard linear solver to solve such equations.

Points-to Analysis as a System of Linear Equations 425

Inconsistent equations. The above approach fails for multiple assignments
to the same variable. For instance, a = &x, a = &y is a valid program fragment.
However, a = x− 1, a = y− 1 does not form a consistent equation system unless
x = y. This issue is discussed in the context of bug-finding [12].

Nonlinear system of equations. One way to handle inconsistent equations is
to multiply the constraints having the same unknown to generate a non-linear set
of equations. Thus, a = &x and a = &y would generate a non-linear constraint
(a− x + 1)(a− y + 1) = 0. However, non-linear analysis is often more expensive
than a linear analysis. Further, maintaining integral solutions across iterations
using standard techniques is a difficult task.

Equations versus inequations. The inclusion-based analysis semantics for a
points-to statement a = b imply points-to-set(a) ⊇ points-to-set(b). Transform-
ing the statement into an equality a− b = 0 instead of an inequality can be
imprecise, as equality in mathematics is bidirectional. It is easy to verify, how-
ever, that if a set of constraints contains each �-value at most once and this holds
across iterations of the analysis, the solution sets obtained using inequalities and
equalities would be the same. We exploit this observation in our algorithm.

Dereferencing. As per our first-cut approach, transformations of points-to
statements a = &b and ∗a = b would be a = b− 1 and a + 1 = b respectively.
According to the algebraic semantics, the above equations are equivalent, al-
though the two points-to statements have different semantics. This necessitates
one to take care of the store constraints separately.

2.2 The Modified Approach

We solve the issues with the above approach with a modified mechanism. Our
approach is iterative, and in each iteration, it goes through four major steps,
viz., preprocessing, solving the linear system of equations, post-processing and
evaluating special constraints. We illustrate it using the following example.

a = &x; b = &y; p = &a; c = ∗p; ∗p = b; q = p; p = ∗p; a = b.

Pre-processing. First, we move store constraints from the set of equations to
a set of generative constraints (as they generate more linear equations) that are
processed specially. We proceed with the remaining non-store constraints.

Second, all constraints of the form v = e are converted to v = vi−1 ⊕ e. Here,
vi−1 is the value of the variablev obtained in the last iteration. Initially, v = v0 ⊕ e.
This transformation ensures monotonicity required for a flow-insensitive points-to
analysis. The operator⊕ would be concretized shortly. v0 is a constant, since it is
already computed from the previous iteration.

Next, we assign unique prime numbers from a select set P to the right-hand
side expression in each address-of constraint. We defer the definition of P to a
later part of this subsection. Let &x, &y and &a be assigned arbitrary prime num-
bers, say &x = 17; &y = 29; and &a = 101. The addresses of the remaining vari-
ables (b, p, q, c) are assigned a special sentinel value χ. Further, all the variables

426 R. Nasre and R. Govindarajan

of the form v and vi are assigned an initial r-value of χ. Thus, x, y, a, b, c, p, q
and x0, y0, a0, b0, c0, p0, q0 equal χ. We keep two-way maps of variables to their
r-values and addresses. This step is performed only once in the analysis. In the
rest of the paper, the term “address of a variable” refers to the prime number
assigned to it by our static analysis.

Next, the dereference ∗q in every load statement p = ∗q is replaced by ex-
pression qi−1 + 1 where i is the current iteration. Therefore, c = ∗p becomes
c = c0 ⊕ (p0+1) and p = ∗p becomes p = p0 ⊕ (p0 + 1). Note that by generating
different versions of the same variable in this manner, we remove cyclic depen-
dences altogether, since variables vi’s are not dependent on any other variable
as they are never defined explicitly in the constraints. The renaming is only
symbolic and appears only for exposition purposes. Since values from only the
previous iteration are required, we simply make a copy vcopy for each variable v
at the start of each iteration.

Last, we rename multiple occurrences of the same variable as an �-value in
different constraints to convert it to an SSA-like form. For each such renamed
variable v′, we store a constraint of the form v = v′ in a separate merging con-
straint set. Thus, assignments to a in a = x0 and a = b0 are replaced as a = x0
and a′ = b0 and the constraint a = a′ is added to the merging constraints set.
The constraints now look as follows.

Linear constraints: a = a0 ⊕&x; b = b0 ⊕&y; p = p0 ⊕&a;
c = c0 ⊕ (p0 + 1); q = q0 ⊕ p; p′ = p0 ⊕ (p0 + 1); a′ = a0 ⊕ b.
Generative constraints: ∗p = b.
Merging constraints: a = a′; p = p′.

Substituting the r-values and the primes for the addresses of variables, we get
a = χ⊕ 17, b = χ⊕ 29, p = χ⊕ 101, c = χ⊕ (χ + 1),
q = χ⊕ p, p′ = χ⊕ (χ + 1), a′ = χ⊕ b.

χ and ⊕. We unfold the mystery behind the values of χ and ⊕ now. The
rationale behind replacing the address of every address-taken variable with a
prime number is to have a non-decomposable element defining the variable. We
make use of prime factorization of integers to map a value to the corresponding
points-to set. The first trivial but important observation towards this goal is
that any pointee of any variable has to appear as address taken in at least
one of the constraints. Therefore, the only pointees any pointer can have would
exactly be the address-taken variables. Thus, a composition v = vi ⊕ vj ⊕ ...
of the primes vi, vj, ... representing address-taken variables defines the pointer
v pointing to all these address-taken variables. The composition is defined by
operator ⊕ and it defines a lattice over the finite set of all the pointers and
pointees (Figure 1(d)). The top element ' defines a composition of all address-
taken variables (v0 ⊕ v1 ⊕ ...⊕ vn) and the bottom element ⊥ defines the empty
set. Since we use prime factorization, ⊕ becomes the multiplication operator
× and χ is the identity element, i.e., 1. The reason behind using ⊕ and χ as

Points-to Analysis as a System of Linear Equations 427

placeholders is that it is possible to use an alternative lattice with different
⊕ and χ and achieve an equivalent transformation (as long as the equations
remain linear). Since every positive integer has a unique prime factorization, we
guarantee that the value of a pointer uniquely identifies its pointees. For instance,
if a→ {x, y} and b→ {y, z, w}, then we can assign primes to &x, &y, &z, &w
arbitrarily as &x = 11, &y = 19, &z = 5, &w = 3 and the values of a and b would
be calculated as a = 11× 19 = 209 and b = 19× 5× 3 = 285. Since, 209 can
only be factored as 11× 19 and 285 does not have any other factorization than
19× 5× 3, we can obtain the points-to sets for pointers a and b from the factors.

Unfortunately, prime factorization is not known to be polynomial [19]. There-
fore, for efficiency reasons, our implementation keeps track of the factors explic-
itly. We use a prime-factor-table for this purpose. The prime-factor-table stores
all the prime factors of a value. We initially store all the primes p corresponding
to the address-taken variables as p = p× 1.

Thus, the system of equations now becomes
Linear constraints: a = 17; b = 29; p = 101; c = 2; q = p; p′ = 2; a′ = b.
Generative constraints: ∗p = b. Merging constraints: a = a′; p = p′.

Solving the system. Solving the above system of equations using a standard
linear solver gives us the following solution.

a = 17, b = 29, p = 101, c = 2, q = 101, p′ = 2, a′ = 29.

Post-processing. Interpreting the values in the above solution obtained using a
linear solver is straightforward except for those of c and p′ (2 is not chosen to be
one of the primes.). In the simple case, a value v + k denotes kth dereference of v.
To find v, our method checks each value ϑ in (v + k), (v + k− 1), (v + k− 2), ...
in the prime factor table. For the first ϑ that appears in the prime factor ta-
ble, v = ϑ and k′ = v + k− ϑ represents the level of dereferencing. We obtain
the prime factors of ϑ from the table, which would correspond to the addresses
of variables, reverse-map the addresses to their corresponding variables, then
obtain the r-values of the variables from the map whose prime factors would
denote the points-to set we want for expression v + k. Another level of reverse
mapping-mapping would be required for k = 2 and so on. We explain derefer-
encing method (Algorithm 3) later. Note that since our method can handle
only a limited number of dereferences (k), the number of iterations required in
the dereferencing step is also limited (and is typically small). Therefore, in the
example, the value 2 of the variables c and p′ is represented as 1 + 1 where the
second 1 denotes a dereference and the first 1 is the value of the variable being
dereferenced. In this case, since v = 1, which is the sentinel χ, its dereference
results in an empty set and thus, both c and p′ are assigned a value of 1.

Selection of primes. In general, a value ϑ may be interpreted as v1 + k1 as well
as v2 + k2, if the values v1 and v2 happen to be close to each other. To avoid this
ambiguity, the ranges (v1...v1 + k) and (v2...v2 + k) must be non-overlapping for a
fixed k. This is accomplishedby careful selection of the prime numbers representing

428 R. Nasre and R. Govindarajan

the address-taken variables. Our analysis selects primes offline and guarantees
that a certain k number of dereferences will never overlap with one another. In
fact, we define our method for upto k levels of dereferencing. Our prime number
set P is also defined for a specific k. More specifically, for any prime numbers
p ∈ P, the products of any one1 or more p are distance more than k apart. Thus,
|pi − pj| > k and |pi ∗ pj − pl ∗ pm| > k and |pi ∗ pj ∗ pl − pm ∗ pn ∗ po| > k and
so on. Note that P needs to be computed only once, offline. Also, typically, the
number of dereferences in real-world programs is very small (< 5). The lattice
for the prime number set P chosen for k = 5 is shown in Figure 1(d). Here, the
bracketed values, e.g., (12,13,...,16) denote possible dereferencings of a variable
which is assigned the value 11.

The next step is to merge the points-to sets of renamed variables, i.e., evaluating
merging constraints. This changes a and p as a = 17× 29 and p = 101× 1 = 101.

After merging, we discard all the renamed variables.
Thus, at the end of the first iteration, the points-to set contained in the values

is: x → {}, y → {}, a → {x, y}, b → {y}, c → {}, p → {a}, q → {a}.

Evaluating special constraints: The final step is to evaluate the generative
constraints and generate more linear constraints. In the first iteration, the store
constraint ∗p = b generates the copy constraint a = b which already exists in the
system. Thus, no new linear constraints are generated. Note that the generative
constraints set is retained as more constraints may need to be added in fur-
ther iterations. At the end of each iteration, our algorithm checks if any variable
value is changed since the last iteration. If yes, then another iteration is required.

Subsequent iterations. The constraints, ready for iteration number two, are
Linear constraints: a = a1 ×&x; b = b1 ×&y; p = p1 ×&a;
c = c1 × (p1 + 1); q = q1 × p; p′ = p1 × (p1 + 1); a′ = a1 × b.
Generative constraints: ∗p = b.
Merging constraints: a = a′; p = p′.

Here, v1 is the value of the variable v obtained in iteration 1. Thus the constraints
to be solved by the linear solver are:

a = 17× 29× 17, b = 29× 29, p = 101× 101, c = 101 + 1, q = 101× p,
p′ = 101× (101 + 1), a′ = 17× 29× b.

The linear solver offers the following solution.
a = 17× 29× 17, b = 29× 29, p = 101× 101, c = 102, q = 101× 101× 101,
p′ = 101× 102, a′ = 17× 29× 29× 29.

The solver returns each value as an integer (e.g., 8381) and not as factors (e.g.,
17× 29× 17). Our analysis finds the prime factors using the prime-factor-table.

Post-processing over the values starts with pruning the powers of the values
containing repeated prime factors as they do not add any additional points-to
information to the solution. Thus,

a = 17× 29, b = 29, p = 101, c = 102, q = 101, p′ = 101× 102, a′ = 17× 29.

1 Product of one number is the number itself.

Points-to Analysis as a System of Linear Equations 429

The next step is to dereference variables to obtain their points-to sets. Since, 17,
29, and 101 are directly available in prime factor table, the values of a, b, p, q, a′

do not require a dereference. In case of c, 102 is not present in prime factor
table, so the next value 101 is searched for, which indeed is present in the table.
Thus, (102− 101) dereferences are done on 101. Further, 101 reverse-maps to
&a and a forward-maps to the r-value 17× 29. Hence c = 17× 29, suggesting
that c points to x and y.

The value of p′ is an interesting case. The solution returned by the solver
(10302) is neither a prime number, nor a short offset from the product of primes.
Rather, it is a product of a prime and a short offset of the prime. We know that
it is the value of variable p′ whose original value was p1 = 101. This original
value is used to find out the points-to set contained in value 10302. To achieve
this, our method (always) divides the value obtained by the solver by the original
value of the variable. Thus, we get 10302/101 = 102. Our method then applies
the dereferencing algorithm on 102 to get its points-to set, which, as explained
above for c, computes the value 17× 29 corresponding to the points-to set {x, y}.
This updates p′ to 101× 17× 29.

It should be emphasized that our method never checks a number for primality.
After prime-factor-table is initially populated with statically defined primes as
a multiple of self and unity, a lookup in the table suffices for primality testing.

The next step is to evaluate the merging set to obtain the following.
a = 17× 29× 17× 29, p = 101× (101× 17× 29),

which on pruning gives a = 17× 29, p = 17× 29× 101.
Thus, at the end of the second iteration, the points-to sets are
x→ {}, y→ {}, a→ {x, y}, b→ {y}, c→ {x, y}, p→ {a, x, y}, q→ {a}.

Executing the final step of evaluating the generative constraints, we obtain two
additional linear constraints: x = b, y = b.

Following the same process, at the end of the third iteration we get x = 29, y = 29,
a = 17× 29, b = 29, c = 17× 29, p = 17× 29× 101, q = 17× 29× 101 which
corresponds to the points-to set
x→ {y}, y→ {y}, a→ {x, y}, b→ {y}, c→ {x, y}, p→ {a, x, y}, q→ {a, x, y}
and no new linear constraints are added.

The fourth iteration makes no change to the values of the variables suggesting
that a fixpoint solution is reached.

2.3 The Algorithm

Our points-to analysis is outlined in Algorithm 1. To avoid clutter, we have
removed the details of pruning of powers, which is straightforward. The analysis
assumes availability of the set of constraints C and the set of variables V used in
C. An important data structure is the prime-factor-table which is implemented
as a hash-table mapping a key to a set of prime numbers that form the factors
of the key. Insertion of the tuple (a × b, a, b) assumes existence of a and b in
the table (our analysis guarantees that) if a or b is not unity, and is done by
combining the prime factors for a and b ∈ P from the table.

430 R. Nasre and R. Govindarajan

Algorithm 1. Points-to analysis as a system of equations
Require: set C of points-to constraints, set V of variables
Ensure: each variable in V has a value indicating its points-to set

for all v ∈ V do
v = 1

end for
for each constraint c in C do

5: if c is an address-of constraint a = &b then
address-of(b) = nextprime()
prime-factor-table.insert(a× address-of(b), a, address-of(b))
a = a× address-of(b);
C.remove(c)

10: else if c is a store constraint ∗a = b then
generative-constraints.add(c)
C.remove(c)

else if c is a load constraint a = ∗b then
c = constraint(a = b + 1)

15: end if
end for

repeat
for all v ∈ V do

20: vcopy = v
end for
for all c ∈ C of the form v = e do

renamed = defined(v)
if renamed == 0 then

25: c = constraint(v = vcopy × e)
else

c = constraint(vrenamed = vcopy × e)

merge-constraints.add(constraint(v = vrenamed))
end if

30: ++defined(v)
end for
V = linear-solve(C)
for all v ∈ V do

v = interpret(v, vcopy, V, prime-factor-table) {Algo. 3}
35: end for

for all c ∈ merging-constraints of the form v1 = v2 do
prime-factor-table.insert(v1 × v2, v1, v2)
v1 = v1 × v2

end for
40: for all c ∈ generative-constraints of the form ∗a = b do

S = get-points-to(a, prime-factor-table) {Algo. 2}
for all s ∈ S do

C.add(constraint(s = b))
end for

45: end for
until V == set(vcopy)

Algorithm 2. Finding points-to set
Require: Value v, prime-factor-table
1: S = {}
2: P = get-prime-factors(v, prime-factor-table)
3: for all p ∈ P do
4: S = S∪ reverse-lvalue(p)
5: end for
6: return S

Points-to Analysis as a System of Linear Equations 431

Algorithm 3. Interpreting values
Require: Value v, Value vcopy, set of variables V, prime-factor-table

if v == 1 then
return v

else if v ∈ prime-factor-table then
return v

5: else if v/vcopy ∈ prime-factor-table then
prime-factor-table.insert(v, vcopy, v/vcopy)
return v

else
v = v/vcopy

10: k = 1
while (v − k) /∈ prime-factor-table do

++k
end while
v = (v − k)

15: for i = 1 to k do
S = get-points-to(v, prime-factor-table) {Algo. 2}
prod = 1
for all s ∈ S and s �= 1 do

r = reverse-lvalue(s)
20: prod = prod × r

prime-factor-table.insert(prod, prod/r, r)
end for
v = prod

end for
25: end if

return v × vcopy

The important step of interpreting the solution is done in Lines 33–35 using
Algorithm 3. The algorithm checks for an entry of a variable’s value in the prime-
factor-table to see if it is a valid composition of primes. Both Algorithms 1 and
3 make use of Algorithm 2 for computing points-to set of a pointer. It finds the
prime factors of the r-value of the pointer (Line 2) followed by an unmapping
from the primes to the corresponding variables (Line 4).

At the end of Algorithm 1, the r-values of variables in V denote their computed
points-to sets. C is no longer required.

Implementation issue. Similar to other works on finding linear relationships
among program variables [4,22], our analysis suffers from the issue of large values.
Since we store points-to set as a multiplication of primes, the resulting values
quickly go beyond the integer range of 64 bits. Hence we are required to use an
integer library (GNU MP Bignum Library [13]) that emulates integer arithmetic
over large unsigned integers.

2.4 Context-Sensitive Analysis

We extend Algorithm 1 for context-sensitivity using an invocation graph based
approach [7]. It enables us to disallow non-realizable interprocedural execution
paths. We handle recursion by iterating over the cyclic call-chain and computing
a fixpoint of the points-to tuples. Our analysis is field-insensitive, i.e., we assume
that any reference to a field inside a structure is to the whole structure.

432 R. Nasre and R. Govindarajan

3 Soundness and Precision

Soundness implies that our algorithm identifies every points-to fact identified by
an inclusion-based analysis. Precision implies that our analysis does not compute
a (proper) superset of the information compared to an inclusion-based analysis.

We first prove three properties of the solution to the system of linear equations.

Property 1: Feasibility.
Proof: By renaming the variable occurring in multiple assignments as a′, a′′, ...,
we guarantee at most one definition per variable. Further, all constants involved
in the equations are positive. Thus, there is no negative weight cycle in the
constraint graph — in fact, there is neither a cycle nor a negative weight. This
guarantees a feasible solution to the system.

Property 2: Uniqueness.
Proof: A variable attains a unique value if it is defined exactly once. Our ini-
tialization of all the variables to the value of χ = 1 followed by the variable
renaming assigns a unique value to each variable. For instance, let the system
have only one constraint: a = b. In general, this system has infinite number of
solutions because b is not restricted to any value. In our analysis, we initialize
both (a and b) to 1.

Property 3: Integrality.
Proof: We are solving (and not optimizing) a system of equations that involves
only addition, subtraction and multiplication over positive integers (vi and con-
stants). Further, each equation is of the form v = vi × e where both vi and e
are integral. Hence the system guarantees an integral solution.

We now prove soundness and precision of our analysis.

Lemma 1.1: The analysis in Algorithm 1 is monotonic.
Proof: Every address-taken variable is represented using a distinct prime num-
ber. Second, every positive integer has a unique prime factorization. Thus, our
representation does not lead to a precision loss. Multiplication by an integer
corresponds to including addresses represented by its prime factors. Division by
an integer maps to the removal of the unique addresses represented by its prime
factors. Multiplying the equations by vcopy in iteration i (Lines 25 and 27) thus
ensures encompassing the points-to set computed in iteration i− 1. The only
division is done in Algorithm 3 (Line 9) (which is guaranteed to be without a
remainder and hence no information loss), but the product is restored in Line 26.
Thus, no points-to information is ever killed and we guarantee monotonicity.

Lemma 1.2: Address-of statements are transformed safely.

Points-to Analysis as a System of Linear Equations 433

Proof: The effect of address-of statement is computed by assigning the prime
number of the address-taken variable to the r-value of the destination variable
(Lines 5–9 of Algorithm 1).

Lemma 1.3: Variable renaming is sound.
Proof: Per constraint based semantics, statements a = e1, a = e2, ..., a = en
mean a ⊇ e1, a ⊇ e2, ..., a ⊇ en which implies a ⊇ (e1 ∪ e2 ∪ ... ∪ en). Renaming
gives a′ = e1, a′′ = e2, ..., a′n = en adds constraints a′ ⊇ e1, a′′ ⊇ e2, ..., a′n ⊇ en
which implies (a′ ∪ a′′ ∪ ... ∪ a′n) ⊇ (e1 ∪ e2 ∪ ... ∪ en). Merging the variables as
a = a′, a = a′′, ..., a = a′n adds constraint a ⊇ (a′ ∪ a′′ ∪ ... ∪ a′n). By transitivity
of ⊇, a ⊇ (e1 ∪ e2 ∪ ... ∪ en). Thus, variable renaming is sound.

Corollary 1.1: Copy statements are transformed safely.

Lemma 1.4: Store statements are transformed safely.
Proof: We define a points-to fact f to be realizable by a constraint c if eval-
uation of c may result in the computation of f. f is strictly-realizable by c
if for the computation of f, evaluation of c is a must. For the sake of con-
tradiction, assume that there is a valid points-to fact a→ {x} that is strictly-
realizable by the store constraint a = ∗p and that does not get computed in
our algorithm. Since the store statement, added to the generative constraint
set, adds copy constraints a = b, a = c, a = d, ... where p→ {b, c, d, ...} at the
end of an iteration after points-to information computation and interpreta-
tion is done, the contradiction means that x /∈ (∗b ∪ ∗c ∪ ∗d ∪ ...). This implies,
(x /∈ ∗b) ∧ (x /∈ ∗c) ∧ (x /∈ ∗d) ∧ This suggests that the pointee x propagates
to the pointer a via some other constraints, implying that the points-to fact
a→ {x} is not strictly-realizable by a = ∗p, contradicting our hypothesis.

Lemma 1.5: Decomposing an r-value of p into its prime factors, unmapping the
addresses as the primes to the corresponding variables, and mapping the vari-
ables to their r-values corresponds to a pointer dereference ∗p.

Lemma 1.6: Load statements are transformed safely.
Proof: For a k-level dereference ∗kv in a load statement, every ’*’ adds 1 to
v’s r-value. Thus, for a unique v + k, the evaluation involves k dereferences.
Lines 15–24 of Algorithm 3 do exactly this, and by Lemmas 1.3 and 1.5, load
statements compute a safe superset.

Theorem 1: The analysis is sound with respect to an inclusion-based analysis
for a dereferencing level k.
Proof: From Lemma 1.1—1.6 and Corollary 1.1.

Lemma 2.1: Address-of statements are transformed precisely.

434 R. Nasre and R. Govindarajan

Proof: Address of every address-taken variable is represented using a distinct
prime value. Further, in Lines 5–9 of Algorithm 1, for every address-of state-
ment a = &b, the only primes that a is multiplied with are the addresses of bs.

Lemma 2.2: Variable renaming is precise.
Proof: Since each variable is defined only once and by making use of Lemma 1.3
a = (e1 ∪ e2 ∪ ... ∪ en).

Lemma 2.3: Copy statements are transformed precisely.
Proof: From Lemma 2.2 and since for a transformed copy statement a = acopy × b,
only the primes computed as the points-to set of a so far (i.e., acopy) and those of
b are included. This inclusion is guaranteed to be unique due to the uniqueness
of prime factorization. Thus, a does not point to any spurious variable address.

Lemma 2.4: Store statements are transformed precisely.
Proof: For the sake of contradiction, assume that a points-to fact a→ {x} is
computed spuriously by evaluating a store constraint a = ∗p in Algorithm 1.
This means at least one of the following copy constraints computed the fact:
a = b, a = c, a = d, ... where p→ {b, c, d, ...}. Thus, at least one of the copy con-
straints is imprecise. However, Lemma 2.3 falsifies the claim.

Lemma 2.5: Load statements are transformed precisely.
Proof: Number of dereferences denoted by v + k is the same as that denoted by
∗kv. By Lemma 1.5 and 2.3 and by the observation that Algorithm 3 does not
include any extra pointee in the final dereference set.

Theorem 2: The analysis is precise with respect to an inclusion-based analysis
for a dereferencing level k.
Proof: From Lemma 2.1–2.5.

Theorem 3: Our analysis computes the same information as an inclusion-based
points-to analysis.
Proof: Immediate from Theorems 1 and 2.

4 Experimental Evaluation

We evaluate the effectiveness of our approach using 16 SPEC C/C++ bench-
marks and two large open source programs, namely httpd and sendmail. For
solving equations, we use C++ language extension of CPLEX R© solver from
IBM ILOG toolset [17]. We compare our approach, referred to as linear, with
the following implementations.

– anders: This is the base Andersen’s algorithm[1] that uses a simple iterative
procedure over the points-to constraints to reach a fixpoint solution. The
underlying data structure used is a sorted vector of pointees per pointer. We
extend it for context-sensitivity.

Points-to Analysis as a System of Linear Equations 435

– bloom: The bloom filter method uses an approximate representation for stor-
ing both the points-to facts and the context information using a bloom fil-
ter. As this representation results in false-positives, the method is approxi-
mate and introduces some loss in precision. For our experiments, we use the
medium configuration [23] which results in roughly 2% of precision loss for
the chosen benchmarks.

– bdd : This is the Lazy Cycle Detection(LCD) algorithm implemented using
Binary Decision Diagrams (BDD) from Hardekopf and Lin [14]. We extend
it for context-sensitivity.

Analysis time. The analysis times in seconds required for each benchmark by
different methods are given in Table 1. The analysis time is composed of reading
an input points-to constraints file, applying the analysis over the constraints and
computing the final points-to information as a fixpoint.

From Table 1, we observe that anders goes out of memory (OOM) for three
benchmarks: gcc, perlbmk and vortex. For these three benchmarks linear obtains
the points-to information in 1–3 minutes. Further comparing the analysis time
of anders, bdd and bloom with those of linear, we find that linear takes con-
siderably less time for most of the benchmarks. The average analysis time per
benchmark is lower for linear by a factor of 20 when compared to bloom and by
30 when compared to bdd. Only in the case of sendmail, mesa, twolf and ammp,
the analysis time of bloom is significantly better. It should be noted here that
bloom has 2% precision loss in these applications [23] compared to anders, bdd
and linear. Last, the analysis time of linear is 1–2 orders of magnitude smaller
than anders, bdd or bloom, especially for large benchmarks (gcc, perlbmk, vortex
and eon). We believe that the analysis time of linear can be further improved
by taking advantage of sharing of tasks across iterations and by exploiting prop-
erties of simple linear equations in the linear solver.

Memory. Memory requirement in KB for the benchmarks is given in Table 1.
anders goes out of memory for three benchmarks: gcc, perlbmk and vortex, sug-
gesting a need for a scalable points-to analysis. bloom, bdd and linear success-
fully complete on all benchmarks. Similar to the analysis time, our approach
linear outperforms anders and bloom in memory requirement especially for large
benchmarks. The bdd method, which is known for its space efficiency, uses the
minimum amount of memory. On an average, linear consumes 21MB requiring
maximum 69MB for gcc. This is comparable to bdd ’s average memory require-
ment of 12MB and maximum of 23MB for gcc. This small memory requirement
is a key aspect that allows our method to scale better with program size.

Query time. We measured the amount of time required to answer an alias query
alias(p, q). The answer is a boolean value depending upon whether pointers p
and q have any common pointee. linear uses a GCD-based algorithm to answer
the query. If GCD(p, q) is 1, the pointers do not alias; otherwise, they alias.
anders uses a sorted vector of pointees per pointer that needs to be traversed
to find a common pointee. We used a set of nP2 queries over the set of all n

436 R. Nasre and R. Govindarajan

Table 1. Time(seconds) and memory(KB) required for context-sensitive analysis

Benchmark KLOC Time(sec) Memory(KB)

anders bloom bdd linear anders bloom bdd linear

gcc 222.185 OOM 10237.7 17411.208 196.62 OOM 113577 23776 68492

httpd 125.877 17.45 52.79 47.399 76.5 225513 48036 12656 27108

sendmail 113.264 5.96 25.35 117.528 84.76 197383 49455 14320 27940

perlbmk 81.442 OOM 2632.04 5879.913 101.69 OOM 54008 17628 29864

gap 71.367 144.18 152.1 330.233 89.53 97863 31786 11116 22784

vortex 67.216 OOM 1998.5 4725.745 68.32 OOM 23486 16248 18420

mesa 59.255 1.47 10.04 21.732 58.25 8261 20702 15900 18680

crafty 20.657 20.47 46.9 154.983 45.79 15986 4095 7620 16888

twolf 20.461 0.60 5.13 27.375 23.96 1594 12656 9280 15920

vpr 17.731 29.70 88.83 199.510 47.82 50210 8901 10252 10612

eon 17.679 231.17 1241.6 2391.831 106.47 385284 87814 26864 38908

ammp 13.486 1.12 15.19 54.648 19.59 5844 5746 9964 9976

parser 11.394 55.36 145.78 618.337 55.22 121588 16201 12888 14016

gzip 8.618 0.35 1.81 6.533 2.1 1447 1205 8232 11868

bzip2 4.650 0.15 1.35 4.703 1.62 519 878 7116 10244

mcf 2.414 0.11 5.04 32.049 3.4 220 1413 6192 8336

equake 1.515 0.22 1.1 4.054 0.92 161 1494 6288 12992

art 1.272 0.17 2.4 7.678 1.26 42 637 6144 9756

average — — 925.76 1779.75 54.66 — 26783 12360 20711

pointers in the benchmark programs. Since it simply involves a small number of
number-crunching operations, linear outperforms anders (offset by the cost of
emulating large integer arithmetic). We found that the average query time for
linear is 0.85ms compared to 1.496ms for anders.

5 Related Work

The area of points-to analysis is rich in literature. See [16] for a survey. We men-
tion only the most relevant related work in this section.

Points-to analysis. Most scalable algorithms proposed are based on unifica-
tion [26][10]. Steensgaard[26] proposed an almost linear time algorithm that has
been shown to scale to millions of lines of programs. However, precision of unifi-
cation based approaches has always been an issue. Inclusion based approaches [1]
that work on subsumption of points-to sets rather than a bidirectional similar-
ity offer a better precision at the cost of theoretically cubic complexity. Several
techniques [2][15][21][27] have been proposed to improve upon the original work
by Andersen. [2] extracts similarity across points-to sets while [27] exploits simi-
larity across contexts to make brilliant use of Binary Decision Diagrams to store
information in a succinct manner. The idea of bootstrapping [18] first reduces the
problem by partitioning the set of pointers into disjoint alias sets using a fast and
less precise algorithm (e.g., [26]) and later running more precise analysis on each

Points-to Analysis as a System of Linear Equations 437

of the partitions. To address the analysis cost of a completely context-sensitive
analysis, approximate representations were introduced to trade off precision for
scalability. [5] proposed one level flow, [20] unified contexts, while [23] hashed
contexts to alleviate the need to store complete context information. Various
enhancements have also been made for the inclusion-based analyses: online cycle
elimination [9] to break dependence cycles on the fly and offline variable substi-
tution [24] to reduce the number of pointers tracked during the analysis.

Program analysis using linear algebra. An important use of linear algebra
in program analysis has been to compute affine relations among program vari-
ables [22]. [4] applied abstract interpretation for discovering equality or inequal-
ity constraints among program variables. [11] proposed an SML based solver
for computing a partial approximate solution for a general system of equations
used in logic programs. Another area where analyses based on linear systems has
been used is in finding security vulnerabilities. [12] proposed a context-sensitive
light-weight analysis modeling string manipulations as a linear program to detect
buffer overrun vulnerabilities. [6] presented a tool CSSV to find string manipu-
lation errors. It converts a program written in a restricted subset of C into an
integer program with assertions. A violation of an assertion signals a possible
vulnerability. Recently, [8] proposed Newtonian Program Analysis as a generic
method to solve iterative program analyses using Newton’s method.

6 Conclusion

In this paper, we proposed a novel approach to transform a set of points-to con-
straints into a system of linear equations using prime factorization. We overcome
the technical challenges by partitioning our inclusion-based analysis into a lin-
ear solver phase and a post-processing phase that interprets the resulting values
and updates points-to information accordingly. The novel way of representing
points-to information as a composition of primes allows us to keep the equations
linear in every iteration. We show that our analysis is sound and precise with
respect to an inclusion-based analysis for a fixed dereference level. Using a set of
16 SPEC 2000 benchmarks and two large open source programs, we show that
our approach is not only feasible, but is also competitive to the state of the art
solvers. More than the performance numbers reported here, the main contribu-
tion of this paper is the novel formulation of points-to analysis as a linear system
based on prime factorization. In future, we would like to apply enhancements
proposed for linear systems to our analysis and improve the analysis time.

References

1. Andersen, L.O.: Program analysis and specialization for the C programming lan-

guage. PhD Thesis, DIKU, University of Copenhagen (1994)

2. Berndl, M., Lhoták, O., Qian, F., Hendren, L., Umanee, N.: Points-to analysis

using BDDs. In: PLDI, pp. 103–114 (2003)

438 R. Nasre and R. Govindarajan

3. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to algorithms. McGraw

Hill, New York

4. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables

of a program. In: POPL, pp. 84–96 (1978)

5. Das, M.: Unification-based pointer analysis with directional assignments. In: PLDI,

pp. 35–46 (2000)

6. Dor, N., Rodeh, M., Sagiv, M.: Cssv: towards a realistic tool for statically detecting

all buffer overflows in c. In: PLDI (2003)

7. Emami, M., Ghiya, R., Hendren, L.J.: Context-sensitive interprocedural points-to

analysis in the presence of function pointers. In: PLDI, pp. 242–256 (1994)

8. Esparza, J., Kiefer, S., Michael, L.: Newtonian program analysis. In: ICALP (2008)

9. Fähndrich, M., Foster, J.S., Su, Z., Aiken, A.: Partial online cycle elimination in

inclusion constraint graphs. In: PLDI (1998)

10. Fähndrich, M., Rehof, J., Das, M.: Scalable context-sensitive flow analysis using

instantiation constraints. In: PLDI (2000)

11. Fecht, C., Seidl, H.: An even faster solver for general systems of equations. In: SAS,

pp. 189–204 (1996)

12. Ganapathy, V., Jha, S., Chandler, D., Melski, D., Vitek, D.: Buffer overrun detec-

tion using linear programming and static analysis. In: CCS, pp. 345–354 (2003)

13. GNU-MP-Integer-Library, http://gmplib.org/

14. Hardekopf, B., Lin, C.: The ant and the grasshopper: fast and accurate pointer

analysis for millions of lines of code. In: PLDI, pp. 290–299 (2007)

15. Heintze, N., Tardieu, O.: Ultra-fast aliasing analysis using CLA: a million lines of

C code in a second. In: PLDI, pp. 254–263 (2001)

16. Hind, M., Pioli, A.: Which pointer analysis should i use? In: ISSTA, pp. 113–123

(2000)

17. ILOG-Toolkit, http://www.ilog.com/

18. Kahlon, V.: Bootstrapping: a technique for scalable flow and context-sensitive

pointer alias analysis. In: PLDI, pp. 249–259 (2008)

19. Knuth, D.: The Art of Computer Programming. Seminumerical Algorithms, vol. 2.

Addison-Wesley, Reading (1997)

20. Lattner, C., Lenharth, A., Adve, V.: Making context-sensitive points-to analysis

with heap cloning practical for the real world. In: PLDI, pp. 278–289 (2007)

21. Lhotak, O., Hendren, L.: Scaling Java points-to analysis using spark. In: CC (2003)

22. Müller-Olm, M., Seidl, H.: Precise interprocedural analysis through linear algebra.

In: POPL, pp. 330–341 (2004)

23. Nasre, R., Rajan, K., Ramaswamy, G., Khedker, U.P.: Scalable context-sensitive

points-to analysis using multi-dimensional bloom filters. In: Hu, Z. (ed.) APLAS

2009. LNCS, vol. 5904, pp. 47–62. Springer, Heidelberg (2009)

24. Rountev, A., Chandra, S.: Off-line variable substitution for scaling points-to anal-

ysis. In: PLDI, pp. 47–56 (2000)

25. Rugina, R., Rinard, M.: Pointer analysis for multithreaded programs. In: PLDI,

pp. 77–90 (1999)

26. Steensgaard, B.: Points-to analysis in almost linear time. In: POPL, pp. 32–41

(1996)

27. Whaley, J., Lam, M.S.: An efficient inclusion-based points-to analysis for strictly-

typed languages. In: Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS,

vol. 2477, p. 180. Springer, Heidelberg (2002)

http://gmplib.org/
http://www.ilog.com/

Strictness Meets Data Flow

Tom Schrijvers1 and Alan Mycroft2

1 Dept. of Computer Science, K.U. Leuven

Celestijnenlaan 200A, 3001 Heverlee, Belgium

tom.schrijvers@cs.kuleuven.be
2 Computer Laboratory, University of Cambridge

JJ Thomson Avenue, Cambridge CB3 0FD, UK

http://www.cl.cam.ac.uk/users/am

Abstract. Properties of programs can be formulated using various tech-

niques: dataflow analysis, abstract interpretation and type-like inference

systems. This paper reconstructs strictness analysis (establishing when

function parameters are evaluated in a lazy language) as a dataflow anal-

ysis by expressing the dataflow properties as an effect system. Strict-

ness properties so expressed give a clearer operational understanding

and enable a range of additional optimisations including implicational
strictness. At first order strictness effects have the expected principality

properties (best-property inference) and can be computed simply.

1 Introduction

Fosdick and Osterweil [3] introduced the notion of path expressions for data flow
analysis. A path expression is a regular expression that summarises a program’s
control graph in terms of events of interest on program variables, branches,
sequences and loops.

This paper adapts the idea of path expressions to strictness analysis for lazy
functional languages such as Haskell [5]. In this setting, the events of interest
are evaluations of (potentially) lazy values. What sets our approach apart from
traditional forms of strictness analysis based on boolean functions [2,7] or pro-
jections [9], is the combination with data flow information available in path
expressions.

The combination of strictness and data flow information enables two addi-
tional forms of optimisation in addition to those based on conventional strict-
ness and absence information. Firstly, it also captures implicational strictness
between variables: whenever variable y is evaluated, then x has already been
evaluated. Secondly, the path information reveals whether particular optimisa-
tions would apply to some but not all paths. Hence, it guides inlining to expose
optimisation opportunities.

Lazy functional languages only evaluate expressions when required to progress
the computation. This is similar to call-by-name in Algol60 or normal order
evaluation in the lambda-calculus but with the additional ‘laziness’ requirement
that repeated requests to evaluate the same expression only evaluate it once

R. Cousot and M. Martel (Eds.): SAS 2010, LNCS 6337, pp. 439–454, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.cl.cam.ac.uk/users/am

440 T. Schrijvers and A. Mycroft

and make its value available immediately to subsequent requests. The standard
implementation of a value is therefore a pointer to a thunk; multiple references
to the same value become copies of this pointer. The thunk has two states: an
unevaluated state (in which the payload is a pointer to code to compute the value
and change the thunk’s state) and an evaluated state in which the payload holds
the value. GHC represents the is-evaluated flag by one of two code pointers;
before evaluation the flag is the thunk (which does then not need storing in the
payload, and which stores its result in payload offset zero), afterwards it is a
simple “load payload offset zero” code sequence. Causing a thunk to move into
evaluated state is called forcing it.

There are two costs borne by lazy languages which their eager counterparts
do not pay. Firstly, a thunk which is created but inevitably later evaluated
is pointless waste of resources. Classical strictness optimisation detects this at
compile time, typically to create a pre-evaluated thunk when the expression-to-
be-suspended appears and to optimise away the is-evaluated test at references
to the value. (Unboxing optimisations remove the heap allocation too.) Secondly,
the is-evaluated tests on thunks are repeated on repeated references to a value.
For a single variable these can often be removed at control flow points which
are dominated by a force operation, but a contribution of this work is that this
can be generalised to consider dependencies between the evaluation state of two
different variables—we call this ‘implicational strictness’.

2 Type-and-Effect System

Source Language. We consider a first-order functional language (see Figure 1),
where a program p consists of a sequence of potentially recursive function def-
initions f(x1, . . . , xk) = e. Expressions e are variables x, function application
f(e1, . . . , ek), integer (natural number) literals n, constructor application succ(e)
and case elimination case(e1, e2, x → e3) (where either e2 is returned if e1 eval-
uates to 0, or e3 is returned if e1 evaluates to succ(x)).

Types and Effects. Figure 1 lists the syntax for types and effects. Value types τ
consist so far only of the type Nat of naturals;1 function types are of the form
τ1, . . . , τk

φ−→ τ where τi are the argument types, τ the return type, and φ its
effect.

An effect φ is either a parameter xi denoting the effect of evaluating the
ith function argument xi (variables bound by case are effectively eager), the
constant 0 for non-terminating programs, the constant 1 for effect-free programs,
the sequential composition of effects φ1 ·φ2 and non-deterministic choice of effects
φ1 + φ2. By abuse of notation, a name xi denotes both a source-level variable
and its associated effect.
1 This means that, not counting effects, all variables and functions have exactly one

type, so we do not need to introduce polymorphic types to discuss the principality

of inference for types containing effects.

Strictness Meets Data Flow 441

Source Language

programs p ::= d1 · · · dm

definitions d ::= f(x1, . . . , xk) = e

expressions e ::= x
| f(e1, . . . , ek)

| n
| succ(e)
| case(e1, e2, x → e3)

Types and Effects

effects φ, ψ ::= xi

| 0

| 1

| φ1 · φ2

| φ1 + φ2

value types τ ::= Nat

function types σ ::= τ1, . . . , τk
φ−→ τ

φ1 + φ2 ≡ φ2 + φ1 (1)

(φ1 + φ2) + φ3 ≡ φ1 + (φ2 + φ3) (2)

(φ1 · φ2) · φ3 ≡ φ1 · (φ2 · φ3) (3)

φ + φ ≡ φ (4)

φ + 0 ≡ φ (5)

0 · φ ≡ 0 (6)

φ · 0 ≡ 0 (7)

φ · 1 ≡ φ (8)

1 · φ ≡ φ (9)

φ3 · (φ1 + φ2) ≡ φ3 · φ1 + φ3 · φ2 (10)

(φ1 + φ2) · φ3 ≡ φ1 · φ3 + φ2 · φ3 (11)

x · φ · x ≡ x · φ (12)

Fig. 1. Syntax and Equivalence Laws

Operational Semantics. Figure 2 lists the small-step operational semantics of
our language, inspired by Launchbury’s big-step semantics [6] for lazy evalua-

tion. The judgement ρ; e
φ
 ρ′; e′ denotes a small step from expression e and

environment ρ to expression e′ and environment ρ′. Values n do not reduce.
An environment ρ is a map from variables to unevaluated expressions (denoted
x �→ e) or evaluated values (denoted x = n). An expression e is an evaluated nat-
ural number n in ρ, denoted e

ρ
= n, iff e is n, or e is a variable x and (x = n) ∈ ρ;

otherwise e is unevaluated in ρ, denoted e � ρ=.
Rule (Var1) evaluates one step of unevaluated variable x, while rule (Var2)

recognises that x has been fully evaluated and issues effect x. Subsequent occur-
rences of x are handled by rule (Var3). Rule (App) for function call is note-
worthy: it replaces the call by the function body, and updates the environment
with mappings from the formal arguments to the actual arguments. Following
Launchbury, we assume that a renamed-apart copy of the function definition
(including internal case bindings) is used to avoid name capture.

Not listed in the figure is the usual context rule, with context C ::= succ(·) |
case(·, e2, x → e3):

(Context)

ρ; e
φ
 ρ′; e′

ρ; C[e]
φ
 ρ′; C[e′]

The trace φ of a single step is either 1 or an x (for some variable x). The

transitive closure judgement ρ; e
φ
∗ ρ′; e′ sequences the effects φ1, . . . , φn of its

constituent steps into a string φ1 · . . . · φn. Note that 0 and + effects only arise

442 T. Schrijvers and A. Mycroft

ρ; e
φ
 ρ′; e′

(Var1)

ρ; e
φ
 ρ′

; e′

ρ[x �→ e]; x
φ
 ρ′

[x �→ e′]; x
(Var2)

ρ[x �→ n]; x
x ρ[x = n]; n

(Var3)

ρ; x
1

 ρ; n
if (x = n) ∈ ρ (Succ)

ρ; succ(n)
1

 ρ; n + 1

(App)

ρ; f(e1, . . . , ek)
1 ρ[x1 �→ e1, . . . , xk �→ ek]; e

if f(x1, . . . , xk) = e

(Case2)

ρ; case(0, e2, x → e3)
1 ρ; e2

(Case3)

ρ;case(n + 1, e2, x → e3)
1

 ρ[x = n]; e3

Fig. 2. Small-Step Operational Semantics

in the type-and-effect system, not through evaluation. Because the semantics
does not garbage collect the local variables introduced by rule (App), we write
φ|{x1,...,xn} to project φ onto a set of variables of interest {x1, . . . , xn}. This is
needed to express effect system soundness (Section 2.4).

Effect Algebra. In addition to syntactic equivalence, equivalence of effects is
governed by a number of laws, listed in Figure 1. These are the forms and
equality laws for regular languages (operators + and · with units 0 and 1 and
with · distributing over +) over alphabet {x1, . . . , xk}, but with the additional
equation (12) expressing the fact that repeated elements later (but not earlier)
in a sequence are redundant.

This last law is motivated by the meaning of the parameters: xi denotes that
xi is evaluated at the latest at this point. Once the effect has taken place, xi

is definitely in evaluated form. The conservative approximation lies in the fact
whether xi is evaluated at this point, or has already been evaluated before.
Hence, in xi ·xi we know that xi is evaluated at the latest at the first occurrence
of xi. The second occurrence is thus redundant, because we know that xi is
already evaluated before it. In summary, we conclude that xi · xi ≡ xi.

Definition 1 (Disjunctive Normal Form). The Disjunctive Normal Form
φn of any effect φ is the effect obtained after exhaustive rewriting with the AC
rewrite system comprised of the equivalence laws (4)–(12) interpreted as left-to-
right rewrite rules. We also denote the DNF of φ as dnf (φ).

Strictness Meets Data Flow 443

0

y x x y x y 1

1+x 1+y 1+x y1+y x x+y x+x yx+y x y+x yy+y x x y+y x

1+x+yx+y+x yx+y+y x 1+x+x y1+x+y x 1+y+x yy+x y+y x 1+y+y xx+x y+y x 1+x y+y x

1+x+y+x y1+x+y+y x 1+y+x y+y x1+x+x y+y xx+y+x y+y x

1+x+y+x y+y x

Fig. 3. The 32 different effects involving the two variables x and y

The Disjunctive Normal Form (DNF) is a non-deterministic choice of sequential
compositions. Each effect has a DNF that is unique modulo associativity and
commutativity. All equivalent effects have the same DNF.

Number of Distinct Effects. The number of distinct effects over a finite set of
parameters is finite. For instance, the set of different effects over two parameters
contains 32 elements (see Figure 3). The lines in the figure denote the “subeffect”
relation, which is explained later.

The basic building blocks for effects are all permutations of k variables with
0 ≤ k ≤ n; there are

∑n
k=0

n!
k! such building blocks for n variables. Note that the

permutation of length 0 denotes the effect 1. For instance, for n = 1 there are 2
building blocks: 1 and x1. For n = 2 there are 5: 1, x1, x2, x1 · x2 and x2 · x1.

These building blocks are combined into effects with the + operator; this
yields 2

∑n
k=0

n!
k! distinct effect terms that range over n parameters. Note that if

none of the building blocks is selected, we obtain the effect 0. For instance, for
n = 1 there are 4 distinct effects, and for n = 2 there are 32 distinct effects.

Definition 2 (Chaos). We define the chaos effect X∗ ranging over a set of
parameters X = {x1, . . . , xn} as

X∗ = (1 + x1 + . . . xn) · . . . · (1 + x1 + . . . xn)︸ ︷︷ ︸
n times

Bitvector Representation. The observation about the composition of effects from
building blocks suggests a bitvector representation b̄ for effects where bit bi

denotes whether the ith building block is present or not. The ordering of building

444 T. Schrijvers and A. Mycroft

x1 1 φ

0 0 0

0 1 1

1 0 x1

1 1 x1 + 1

x1 + 1

1

������
x1

������

0

�������
������

Fig. 4. The effect domain ranging over a single effect variable x1

blocks in the bitvector representation may be chosen arbitrarily. Figure 4 lists
the distinct effects for n = 1 with their bitvector representation.

Subeffects. Effects have a natural (partial) ordering—the subeffect ordering.

Definition 3. The subeffecting relation <: is the minimal relation that satisfies
(up to ≡) the following axiom:

φ1 <: φ1 + φ2

We say that φ1 is a subeffect of φ1 + φ2.

Note that this relation is indeed a partial order. For instance, the reflexivity
property φ1 <: φ1 follows from choosing φ2 ≡ 0. The minimal element is 0
and the maximal element is chaos X∗. The subeffect lattice for a single variable
x1 is shown in Figure 4. The least upper bound and greatest lower bound
(operators on this lattice are defined in the usual manner. Observe that they
correspond to bitwise or ∨ and bitwise and ∧ on the bit vector representation.

The <: relation and (and operations are lifted pointwise to function types:

τ̄
φ1−→ τ <: τ̄

φ2−→ τ iff φ1 <: φ2

(τ̄
φ1−→ τ) ((τ̄

φ2−→ τ) = τ̄
φ1�φ2−−−−→ τ

and (later) to environments Γ .

2.1 Type-and-Effect Inference System

The expression typing judgement is of the form Γ � e : τ & φ, and denotes that
expression e has type τ and its evaluation has effect φ with respect to the type
environment Γ . In the first-order language there are separate syntactic variable
names for values (x) and functions (f). Type assumptions Γ contain constraints

such as x : τ & φ and f : τ1, . . . , τk
φ−→ τ .

Figure 5 lists the rules for the type-and-effect system. Rule (Var) looks up
the type of a function argument in the type environment and returns the effect
corresponding to that argument. Rule (App) makes sure that the types of the
arguments match the function typing in the environment.

Rules (Lit) and (Succ) cover the predefined constants. Note that to model
standard implementation of arithmetic, the succ data constructor is strict in its
argument e: the effect of evaluating succ(e) is the effect of evaluating e.

Strictness Meets Data Flow 445

Γ � e : τ & φ
(Var)

Γ � x : τ & φ
if (x : τ & φ) ∈ Γ

(Lit)

Γ � n : Nat & 1
(Succ)

Γ � e : Nat & φ

Γ � succ(e) : Nat & φ

(App)

Γ � ei : τi & φi (i ∈ 1..k)

Γ � f(e1, . . . , ek) : τ & φ[φi/xi]
if (f : τ1, . . . , τk

φ−→ τ) ∈ Γ

(Case)

Γ � e1 : Nat & φ1 Γ � e2 : τ & φ2 Γ [x : Nat & 1] � e3 : τ & φ3

Γ � case(e1, e2, x → e3) : τ & φ1 · (φ2 + φ3)

Γ � f(x̄) = e
(Def)

Γ [x̄ : τ̄ & x̄] � e : τ & φ

Γ � f(x̄) = e
if (f : τ̄

φ−→ τ) ∈ Γ

Γ � d̄
(Prog)

Γ � d1 · · · Γ � dn

Γ � d1 · · · dn

Fig. 5. Type-and-Effect Inference Rules

A function definition f(x̄) = e is well-typed w.r.t. environment Γ , denoted
Γ � f(x̄) = e, if the function’s typing is recorded in the environment and the
function’s body is well-typed w.r.t. that typing (Rule (Def)). A program d̄ is
well-typed w.r.t. environment Γ , denoted Γ � d̄, if all its definitions are well-
typed (Rule (Prog)).

2.2 Principality

Theorem 1 (Unique Non-Recursive Function Typing). For any Γ , there

is at most one typing f : τ̄
φ−→ τ such that Γ, f : τ̄

φ−→ τ � f(x̄) = e, if f is not
recursive, i.e., e does not contain a call f(ē).

Note that due to our restricted setting with only one type Nat there is in fact
exactly one such function typing.

Recursive functions admit multiple typings that differ in their effect. For in-
stance, f(x1) = f(x1) admits typings f : Nat

φ−→ Nat for any effect φ. Similarly,
f(x1, x2) = case(x1, x2, y → f(y, x2)) has well-typings x1 · (x2 + φ) for any φ.
The cause of these multiple typings is the (Def) rule, which defines a recursive
function’s well-typing in terms of itself, i.e., as a fixpoint. Any fixpoint is a valid
solution. This issue of self-reference also exists in traditional dataflow analysis.
Usually, in that context, the analysis domain naturally has a lattice structure
and the least (sometimes greatest) fixpoint in that lattice is the preferred one.
We follow the same approach.

446 T. Schrijvers and A. Mycroft

If two different well-typings are possible, then their greatest lower bound is
also a well-typing.

Lemma 1. For all environments Γ1, Γ2 and programs d̄, if Γ1 � d̄ and Γ2 � d̄,
then Γ1 (Γ2 � d̄.

As the lattice is finite, it follows that there is a unique minimal well-typing: the
principal type.

Corollary 1 (Principality). For all environments Γ1, Γ2 and programs d̄, if
Γ1 � d̄ and Γ2 � d̄, then there exists an environment Γ such that Γ <: Γ1 and
Γ <: Γ2 and Γ � d̄.

In contrast to the data-flow-analysis approach that we follow, effect systems
typically have a coercion rule:

(Coerce)

Γ, e : τ1 & φ1

Γ � e : τ2 & φ2

if τ1 <: τ2 and φ1 <: φ2

but this is unnecessary here because (i) effects can express non-deterministic
choice using +, and (ii) in the first-order setting, subeffecting only applies co-
variantly and thus all coercions in a judgement can be pushed to the root of the
proof tree and thus merged into the <: of principality.

2.3 Connection to Traditional Type Inference

The type-and-effect system we have defined has the property that type inference
can be done first, followed by effect inference. Type, or type-and-effect, inference
can be explained in terms of reconstructing information removed by erasure
operators. Erasure of types, and reconstructing types without effects is standard.
So we now consider an erasure operator which removes effects from expression
types-and-effects and from function types yielding traditional types (which in our
case are simple types but could equally be Hindley-Milner polymorphic types),
and state various results. Effect erasure is defined as follows:

ε(τ & φ) = ε(τ) ε(Nat) = Nat ε(τ̄
φ−→ τ) = τ̄ → τ

and lifted to environments Γ as usual.

Results. A well-typing (�) in the type-and-effect system is also a traditional
well-typing (�T). Conversely, a well-traditional-typing always has a well-typing
in the type-and-effect system (i.e. the type-and-effect system is a conservative
extension).

Theorem 2 (Conservative Extension)

(∀e, Γ, τ) ε(Γ) �T e : ε(τ) ⇔ (∃φ) Γ � e : τ & φ

Strictness Meets Data Flow 447

2.4 Effect System Soundness

We have presented a semantics and an effect system for our simple language and
now address their consistency. To establish soundness, we show an enriched form
of progress and preservation lemmas,2 after an auxiliary definition.

Definition 4 (Compatible Environments). A typing environment Γ is com-
patible with an evaluation environment ρ iff Γ = tenv(ρ) where

tenv(ρ) = {x : Nat& x | (x �→ e) ∈ ρ} ∪ {x : Nat& 1 | (x = n) ∈ ρ}

Progress expresses that a well-typed non-value expression is never stuck.

Lemma 2 (Progress)

(∀ρ1, e1, τ, φ1) tenv(ρ1) � e1 : τ & φ1 ⇒ (∃ρ2, e2, φ2) ρ1; e1

φ2 ρ2; e2

where e1 is not a value.

The preservation lemma expresses that the types and effects before and after an
evaluation step are related appropriately: the type is the same and the original
effect subsumes the concatenation of the evaluation trace and the new effect.

Lemma 3 (Preservation)

(∀ρ1, ρ2, e1, e2, τ, φ1, φ2) tenv(ρ1) � e1 : τ & φ1 ∧ ρ1; e1

φ2 ρ2; e2

⇒ (∃φ3) tenv(ρ2) � e2 : τ & φ3 ∧ (φ2 · φ3)|dom(ρ1) <: φ1

3 Inference Algorithm

Figure 6 lists our first-order inference algorithm. The inference judgement for
expressions is of the form Γ �A e : τ & φ | C, which denotes that type τ and
effect φ are inferred for expression e with respect to environment Γ and with Γ
and τ subject to a set C of type equality constraints of the form τ = τ ′.3

The type-and-effect information in the inference algorithm are essentially in-
dependent. The type-related part of the algorithm corresponds to traditional
type inference as discussed earlier.

The effect inference for expressions is fairly straightforward. A composite ex-
pression’s effect is a composite effect, composed from the components’ effects.
Note that in each case the minimal effect of an expression is returned.

The hardest part of effect inference takes place for a function definition. For
recursive calls during the inference of the function body, we use a meta-effect
γ as a place-holder. The body’s inference returns an effect φ for the function that

2 The traditional lemmas are recovered through effect erasure.
3 |= C denotes that C is satisfiable, usually established by unification.

448 T. Schrijvers and A. Mycroft

Γ �A e : τ & φ | C

(Var)

(x : τ & φ) ∈ Γ

Γ �A x : τ & φ | true
(Lit)

Γ �A n : Nat & 1 | true

(Succ)

Γ �A e : τ & φ | C

Γ �A succ(e) : Nat & φ | C ∧ τ = Nat

(App)

f : τ1, . . . , τk
φ−→ τ ∈ Γ Γ �A ei : τ ′

i & φi (i ∈ 1..k) | Ci

Γ �A f(e1, . . . , ek) : τ & φ[φi/xi] | C̄ ∧ τ̄ = τ̄ ′

(Case)

Γ �A e1 : τ1 & φ1 | C1

Γ �A e2 : τ2 & φ2 | C2 Γ [x : Nat & 1] �A e3 : τ3 & φ3 | C3

Γ �A case(e1, e2, x → e3) : τ2 & φ1 · (φ2 + φ3) | C1 ∧ C2 ∧ C3 ∧ τ1 = Nat ∧ τ2 = τ3

Γ1 �A f(x̄) = e : Γ2

(Def)

Γ [f : Nat
γ−→ Nat, x̄ : Nat & x̄] �A e : τ & φ | C

|= C ∧ τ = Nat

Γ �A f(x̄) = e : Γ, f : Nat
ψ−→ Nat

if ψ = lfp(λγ.φ)

�A d̄ : Γ

(Prog)

∅ �A d1 : Γ1 · · · Γn−1 �A dn : Γn

�A d1 · · · dn : Γn

Fig. 6. Syntax-Directed Inference Algorithm

potentially mentions γ. In order to obtain a proper effect for the function, the
equation φ <: γ must be solved. The least solutions of this inequation is obtained
as the least fixpoint of μγ.φ, starting from 0. The number of iterations needed
to obtain the least fixpoint is bounded from above by the number of distinct
variable permutations, but may be much smaller in practice.

Example 1. Consider the functiondefinitiong(x1, x2) = case(x1, x2, y → g(y, x2))
with effect equation x1 · (x2 + φ[1/x1, x2/x2]) <: φ. We obtain the least fixpoint
in two steps, and confirm it in the third step:

φ0 ≡ 0
φ1 ≡ x1 · (x2 + φ0[1/x1, x2/x2]) ≡ x1 · x2

φ2 ≡ x1 · (x2 + φ1[1/x1, x2/x2]) ≡ x1 · x2

Strictness Meets Data Flow 449

3.1 Properties

Theorem 3 (Soundness & Completeness wrt. the Inference System).
If �A d̄ : Γ , then Γ � d̄, for any program d̄ and environment Γ . If Γ � d̄, then
�A d̄ : Γ ′, for any program d̄ and environment Γ and for some Γ ′.

Theorem 4 (Principality). If Γ � d̄ and �A d̄ : Γ ′, then Γ ′ <: Γ for any
program d̄ and environments Γ, Γ ′.

Theorem 5 (Termination). The inference algorithm terminates for any pro-
gram d̄.

4 Optimisations

A number of different optimisations are possible.

4.1 Standard Strictness Analysis and Optimisations

Our strictness domain is more expressive than the Boolean expressions used in
traditional strictness analysis. The abstraction relation α maps our effects to
Boolean expressions.

α(1) = 1 α(φ1 · φ2) = α(φ1) ∧ α(φ2) α(xi) = xi

α(0) = 0 α(φ1 + φ2) = α(φ1) ∨ α(φ2)

Moreover α(φ[φ′/x]) = α(φ)[α(φ′)/x].

Lemma 4 (Well-definedness). Equivalent effects abstract to equivalent boolean
functions:

(∀φ1, φ2) φ1 ≡ φ2 ⇒ α(φ1) ≡ α(φ2)

The converse does not hold. Consider φ1 = 1 + x1 and φ2 = 1. While φ1 �≡ φ2,
we do have that α(φ1) ≡ α(φ2) ≡ 1. Hence, the α mapping is an abstraction
because it loses information.

Theorem 6 (Complete abstraction). Given program d̄ and writing �S for
standard boolean strictness inference using boolean functions, then �S d̄ : α(Γ) ⇔
�A d̄ : Γ .

The following two optimisations are enabled by standard strictness analysis.
Eager Evaluation. If a function is strict in an argument, then that argument

may be evaluated before the function call. A function is strict in argument
xi if α(φ[0/xi]) ≡ 0. Since 0 is the only effect φ for which α(φ) = 0, we can
equally check argument strictness by testing φ[0/xi] ≡ 0.

Loop Detection. As in traditional strictness, if an expression e has effect 0,
then its evaluation does not terminate. Hence, it may be replaced by loop():

– If loop is defined as loop() = loop(), the transformed code should run
in constant space, whereas e may not.

– Alternatively, defining loop() = error("loop!"), using a Haskell fea-
ture, transforms the code to abort evaluation and report non-termination
to the programmer.

450 T. Schrijvers and A. Mycroft

4.2 Inlining to Expose Standard Strictness Optimisation

If a function is not strict in an argument, standard strictness optimisations do
not apply. However, not being strict in an argument may mean either that the
function never evaluates its argument or only sometimes evaluates it. In the
latter case, there are one or more branches that do not evaluate the argument
and one or more that do evaluate it. Inlining and floating the actual arguments
into the branches, may effectively enable standard strictness optimisations. Our
effects can be useful for guiding inlining.

For instance, if f(x1) = e has effect 1, this means that inlining of f will
not uncover any opportunities for strictness optimisation, while 1 + x1 promises
opportunities for parameter x1.

Example 2. The function f(x1, x2) = case(x1, 0, y → x2) has type

f : Nat, Nat
x1·(1+x2)−−−−−−→ Nat

which provides no direct opportunity for strictness optimisation of x2. However,
after inlining, strictness optimisation can be applied to the second branch of f .

Note that in general inlining of a single function f may not be sufficient to
uncover optimisation opportunities. Take f to be defined as f(x1) = g(x1) where
g has the effect 1 + x1 to illustrate this point. In the worse case, we may need
to inline successively all the functions in the program to expose a strictness
optimisation opportunity guaranteed by the typing.

4.3 Absent Argument Optimisation

If a function does not use (i.e. evaluate) its argument, then the argument is
effectively dead code. So instead of the actual argument, the caller may provide
a dummy argument or even no argument at all, i.e. an absent argument [9].

A function of type f : τ1, . . . , τk
φ−→ τ does not evaluate its ith argument

(on any path which can return) if xi �∈ φ. For instance, a function of type
f : Nat 1−→ Nat does not evaluate its argument. Hence, the function definition
can be rewritten from f(. . . , xi−1, xi, xi+1, . . .) = e to f(. . . , xi−1, xi+1) = e,
and likewise the ith argument may be dropped from all calls in the program.
It is important to do Loop Detection Optimisation first (which replaces paths,
including possible references to xi on them, which can never return with loop()),
consider e.g. f(x) = case(x, f(x), y → f(x)).

Note that absent argument information is not present in the traditional strict-
ness domain. There we have that α(1) = 1 = α(1 + x1).

4.4 Implicational Strictness

A standard optimisation exploits the explicit intraprocedural data flow and
avoids consecutive evaluation of the same variable. For instance, the second oc-
currence of x in case(x, case(x, e1, y → e3), z → e4), is known to have been eval-
uated already. So the expression can be replaced with case(x, case#(x, e1, y →

Strictness Meets Data Flow 451

e3), z → e4), where case# does not force its argument (i.e. reads the payload of
its discriminant directly):

(Case#)

ρ; case#(e1, e2, x → e3)
1 ρ; case(n, e2, x → e3)

if e1
ρ
= n

For now, we leave case# stuck at unevaluated expressions, but come back to
this issue later. Bolingbroke and Peyton Jones [1] show how this availability op-
timisation is easily implemented using a straightforward common-subexpression
elimination in a strict core language.

Traditionally, this optimisation does not work across procedure boundaries,
because the data flow within a function definition is hidden. Our new strict-
ness domain exposes the relative evaluation order of function arguments across
procedure boundaries; this information enables the interprocedural form of the
optimisation. Consider a function f(x, y) with effect 1 + x · y; this has two re-
turning control-flow paths, one evaluating neither variable and one evaluating y
after x. While f is not strict in x or y (nor jointly strict in x and y as in arms of
a conditional) we do know that, given a call f(e1, e2), then whenever e2 is eval-
uated the thunk for e1 will already have been forced. This allows us to optimise
a call f(x, case(x, 0, z → z)), logically f(x, x− 1), to f(x, case#(x, 0, z → z))

Hence we are interested in partial order information “is-always-evaluated-
before”. Each effect φ defines a partial order ≺φ on the set of effect variables X
as follows.

Definition 5 (Variable Evaluation Order). We say that a variable x1 must4

be evaluated before variable x2 with respect to effect φ in DNF, denoted x1 ≺φ x2,
iff (with x �= x1, x �= x2)

x1 ≺x·φ x2 = x1 ≺φ x2 x1 ≺1 x2 = true
x1 ≺x1·φ x2 = true x1 ≺0 x2 = true
x1 ≺x2·φ x2 = false x1 ≺φ1+φ2 x2 = x1 ≺φ1 x2 ∧ x1 ≺φ2 x2

For effects φ that are not in DNF, the relation is defined as:

x1 ≺φ x2 = x1 ≺dnf (φ) x2

For instance, the effect x1 ·x2 +x1 ·x3 captures the following order information:

≺ x1 x2 x3

x1 − Y Y
x2 N − N
x3 N N −

as does x1 · (x2 + x3). Note that in the case of 0 we can choose the variable
evaluation order arbitrarily.

It is important to note that ≺φ does not respect ≡ (and hence is not a con-
gruence for terms not in DNF), due to the behaviour of 0. For example, suppose
4 Only paths which can terminate are considered.

452 T. Schrijvers and A. Mycroft

we have code f with one path which evaluates first x and then y. This has ef-
fect φ = x · y and so x ≺φ y holds, but not y ≺φ x. Suppose now there is a
definite loop before, or more problematically after, this code. Now its effect is
φ′ = 0 = φ · 0 = 0 ·φ and note that both x ≺φ′ y and y ≺φ′ x hold. This appears
paradoxical, in that code which evaluates x first and then y and then loops can
be deduced to evaluate y before x! The resolution is that only paths which can
return a result are considered by the ≺φ relation; and using an incorrect order of
evaluation on non-terminating paths does not matter (save for an implementa-
tion effect we explore in the next section). This effect also occurs if the code has
multiple paths; the effect of 0 is to remove guaranteed non-terminating paths
from consideration in the overall effect.

4.5 Transformation Soundness

There is a subtlety concerning the path 0 which we noted above. 0 represents
a path which can never return, the archetypal example being a function call
loop() given a definition loop() = loop(). While 0 behaves as an identity for
+ and a (left and right) zero for · these algebraic properties which are fine for
analysis need care when being used for optimisation.

This is related to partial versus total correctness: given function f(x, y) having
effect x ≺φ y should not be simply read as “x is always evaluated before y”, but
more properly should be read as “x is always evaluated before y whenever f
returns”.

While the exact behaviour of code on non-terminating paths is not in gen-
eral interesting, we must be careful that data-representation errors do not oc-
cur (these could replace non-termination with memory faults, or even seem-
ingly valid answers). Consider again optimising a call f(x, case(x, 0, z → z))
to f(x, case#(x, 0, z → z)) when we know f(x, y) has effect φ and we have
x ≺φ y. The problem is that f could have a definition such as f(x, y) =
case(y, f(x, y), z→f(x, y)) which would cause the potentially unevaluated thunk
for x in the second argument of the call to be discriminated by case#. While this
is clearly not a problem for unboxed values such as small integers and booleans
(since the question is which of two infinite loops are taken), for values repre-
sented as pointers to code or to data this can spell memory errors or branches
to arbitrary locations.

Formally, we model the issue with (i) an erroneous effect Err, that is generated
when case# encounters an unevaluated expression, and (ii) a non-deterministic
value n.

(Err)

ρ; case#(e1, e2, x → e3)
Err ρ; case(n, e2, x → e3)

if e ρ= n (∀n)

A transformation that introduces case# necessarily (by soundness) avoids the
(Err) transition on all terminating derivations (non-0 paths). Otherwise a
change in semantics can be observed: the Err effect shows up in the trace
of the transformed program, but not the original program. For non-terminating
derivations, we distinguish between fragile and robust implementations.

Strictness Meets Data Flow 453

Fragile implementations distinguish between the erroneous transition (e.g. yield-
ing a crash) and non-termination. This is modelled by the supplementary law
Err · 0 �≡ 0 overriding the more general φ · 0 ≡ 0. Thus any (Err) transition,
whether for a terminating or non-terminating derivation, violates the soundness
of the optimisation. There are various ways to avoid (Err) on the 0 path for
fragile implementations (e.g. dropping the “right zero” law), but we prefer to
avoid the 0 path itself, analogous to traditional dataflow analysis, by adding
a dummy return node to every loop that otherwise would not have one. The
downside of avoiding the (Err) transition is of course the reduced opportunity
for optimisations, which is why we turn to robust implementations.

Robust implementations are still modelled by Err ·0 ≡ 0, and (Err) transitions
in non-terminating derivations are not observable. This is for instance possible
by ensuring that the payload of an unevaluated thunk is always interpretable as
a value of its result type; hence the non-deterministic value n in rule (Err).

5 Related Work

Jensen [4] presents a strictness analysis based on strictness logic. His strictness
language is perhaps the closest to ours, with polymorphic variables α and con-
ditional strictness φ2?φ1 similar to respectively our parameters x and sequential
composition φ1 ·φ2. However, as it lacks branching (+) and 0, our novel optimi-
sations do not apply.

We have only considered flat data, i.e. the natural numbers, where forcing the
value also forces the component. Wadler [8] shows one way to extend strictness
analysis to non-flat domains. A similar technique would apply to our domain.

Wansbrough [10] annotates function types with polymorphic “usage” annota-
tions to identify thunks which are encountered at most once; these can be opti-
mised to remove the “is-evaluated” test. It is appealing to speculate whether an
extended effect system can capture this property too.

6 Conclusion and Future Work

We have expressed strictness as effects in a type-and-effect system which both
adds insight into strictness properties and provides additional strictness optimi-
sation opportunities.

There is a natural extension of our type-and-effect system to higher-order and
polymorphic types (we need effect variables and an effect binding construct so
that λx.x has effect ∀α.α

x−→
x

α). With a subtyping rule, similar to (Coerce) in
Section 2.2, the system becomes a conservative extension of polymorphic types,
however it remains unclear whether the type-and-effect system has principal
types, necessary for a type inference algorithm.

Acknowledgements. Tom Schrijvers gratefully acknowledges funding for visiting
the University of Cambridge from the Fund for Scientific Research – Flanders.
The authors thank the anonymous reviewers for their helpful comments.

454 T. Schrijvers and A. Mycroft

References

1. Bolingbroke, M.C., Peyton Jones, S.L.: Types are calling conventions. In: Haskell

2009: Proceedings of the 2nd ACM SIGPLAN Symposium on Haskell, pp. 1–12.

ACM, New York (2009)

2. Burn, G.L., Hankin, C.L., Abramsky, S.: The theory of strictness analysis for higher

order functions. In: On Programs as Data Objects, New York, NY, USA, pp. 42–62.

Springer, Heidelberg (1985)

3. Fosdick, L.D., Osterweil, L.J.: Data flow analysis in software reliability. ACM Com-

put. Surv. 8(3), 305–330 (1976)

4. Jensen, T.P.: Inference of polymorphic and conditional strictness properties. In:

POPL 1998: Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, pp. 209–221. ACM, New York (1998)

5. Peyton Jones, S. (ed.): Haskell 98 Language and Libraries – The Revised Report

(2003)

6. Launchbury, J.: A natural semantics for lazy evaluation. In: POPL 1993: Proceed-

ings of the 20th ACM SIGPLAN-SIGACT Symposium on Principles of Program-

ming Languages, pp. 144–154. ACM, New York (1993)

7. Mycroft, A.: Abstract interpretation and Optimising Transformations for Applica-

tive Programs. PhD thesis, University of Edinburgh (1981)

8. Wadler, P.: Strictness analysis on non-flat domains (by abstract interpretation over

finite domains). In: Abstract Interpretation. Ellis Horwood (1987)

9. Wadler, P., Hughes, R.J.M.: Projections for strictness analysis. In: Kahn, G. (ed.)

FPCA 1987. LNCS, vol. 274, pp. 385–407. Springer, Heidelberg (1987)

10. Wansbrough, K.: Simple polymorphic usage analysis. Technical Report UCAM-

CL-TR-623, Cambridge University Computer Laboratory (March 2005)

Automatic Verification of Determinism
for Structured Parallel Programs

Martin Vechev1, Eran Yahav1, Raghavan Raman2, and Vivek Sarkar2

1 IBM T.J. Watson Research Center
{mtvechev,eyahav}@us.ibm.com

2 Rice University
{raghav,vsarkar}@rice.edu

Abstract. We present a static analysis for automatically verifying determinism
of structured parallel programs. The main idea is to leverage the structure of the
program to reduce determinism verification to an independence property that can
be proved using a simple sequential analysis. Given a task-parallel program, we
identify program fragments that may execute in parallel and check that these
fragments perform independent memory accesses using a sequential analysis.
Since the parts that can execute in parallel are typically only a small fraction
of the program, we can employ powerful numerical abstractions to establish that
tasks executing in parallel only perform independent memory accesses. We have
implemented our analysis in a tool called DICE and successfully applied it to
verify determinism on a suite of benchmarks derived from those used in the high-
performance computing community.

1 Introduction

One of the main difficulties in parallel programming is the need to reason about possible
interleavings of concurrent operations. The vast number of interleavings makes this task
difficult even for small programs, and impossible for any sizeable software.

To simplify reasoning about parallel programs, it is desirable to reduce the number
of interleavings that a programmer has to consider [19,4]. One way to achieve that is
to require parallel programs to be deterministic. Informally, determinism means that
for a given input state, the parallel program will always produce the same output state.
Determinism is an attractive correctness property as it abstracts away the interleavings
underlying a computation.

In this paper, we present a technique for automatic verification of determinism. A
key feature of our approach is that it uses sequential analysis to establish indepen-
dence of statements in the parallel program. The analysis works by applying simple
assume-guarantee reasoning: the code of each task is analyzed sequentially, under the
assumption that all memory locations the task accesses are independent from locations
accessed by tasks that may execute in parallel. Then, based on the sequential proofs
produced in the first phase, the analysis checks whether the independence assumption
holds: for each pair of statements that may execute in parallel, it (conservatively) checks
that their memory accesses are independent. Our analysis does not assume any a priori
bounds on the number of heap allocated objects, the number of tasks, or sizes of arrays.

R. Cousot and M. Martel (Eds.): SAS 2010, LNCS 6337, pp. 455–471, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

456 M. Vechev et al.

Our approach can be viewed as automatic application of the Owicki/Gries method,
used to check independence assertions. The restricted structure of parallelism limits the
code for which we have to perform interference checks and enables us to use powerful
(and costly) numerical domains.

Because in our language arrays are heap allocated objects, our analysis combines
information about the heap with information about array indices. We leverage advanced
numerical domains such as Octagon [23] and Polyhedra [7] to establish independence
of array accesses. We show that tracking the relationships between index variables in
realistic parallel programs requires such rich domains.

There has been a large volume of work on establishing independence of statements in
the context of automatic parallelization (e.g.,[17,2,24]). These techniques were intended
to be part of a parallelizing compiler, and their emphasis is on efficiency. Hence, they
usually try to detect common patterns via simple structural conditions. In contrast, our
focus is on verification and we use precise (and often expensive) abstract domains.

Our work can be viewed as a case study in using numerical domains for establishing
determinism in realistic parallel programs. We show that proving determinism requires
abstractions that are quite precise and are able to capture linear inequalities between
array indices, as well as establish that different array cells point to different objects.

We implemented our analysis in a tool called DICE based on the Soot [36] analysis
framework. DICE uses the Apron [15] numerical library to provide advanced numerical
domains (specifically, the octagon and polyhedra domains). Our tool takes as input a
normal Java program annotated with structured parallel constructs and automatically
checks whether the program is deterministic. In the case where the analysis fails to
prove the program as deterministic, DICE provides a description of (abstract) shared
locations that potentially lead to non-determinism.

Related Work. Recently, there has been growing interest in dynamically checking deter-
minism [5,33]. The main weakness of such dynamic techniques is that they may miss
executions where determinism violations occur. Other approaches have also explored
building deterministic programs by construction, both in the language [10,4] and via
dynamic mechanisms such as modifying the scheduler [8,28]. A related property that
has gained much attention over the years is race-freedom (e.g., [13,27,22,34,25,27,11]).
However, race-freedom and determinism are not comparable properties: a parallel pro-
gram can be race-free but not deterministic or deterministic but not race-free.

Main Contributions. The main contributions of this paper are:

– We present a static analysis that can prove determinism of structured parallel
programs. Our analysis works by analyzing each task sequentially, computing as-
sertions using a numerical domain and checking whether the computed assertions
indeed imply determinism.

– We implemented our analysis in a tool called DICE based on Soot [36] and the
Apron [15] numerical library. The analysis handles Java programs augmented with
structured parallel constructs.

– We evaluated DICE on a set of parallel programs that are variants of the well-known
Java JGF benchmarks [9]. Our analysis managed to prove five of the eight bench-
marks as deterministic.

Automatic Verification of Determinism for Structured Parallel Programs 457

2 Overview

In this section, we informally describe our approach with a simple Java program aug-
mented with structured parallel constructs.

2.1 Motivating Example

Fig. 1 shows the method update which is a simplified and normalized code fragment
from the SOR benchmark program. The SOR program uses parallel computation to apply
the method of successive over-relaxation for solving a system of linear equations. For
this program, we would like to establish that it is deterministic.

1 void update(final double[][] G, final int start, final int last,
2 final double c1, final double c2, final int nm, final int ps) {
3 finish foreach (tid: [start,last]) {
4 int i = 2 * tid - ps;
5 double[] Gi = G[i]; {R:({AG}, {idx = 2*tid - ps}) }
6 double[] Gim1 = G[i - 1]; {R:({AG}, {idx = 2*tid - ps - 1}) }
7 double[] Gip1 = G[i + 1]; {R:({AG}, {idx = 2*tid - ps + 1}) }
8 for (int j=1; j<nm; j++)
9 double tmp1 = Gim1[j] {R:({AGim1}, {1 ≤ idx < nm})}

10 double tmp2 = Gip1[j] {R:({AGip1}, {1 ≤ idx < nm})}
11 double tmp3 = Gi[j-1] {R:({AGi}, {0 ≤ idx < nm - 1})}
12 double tmp4 = Gi[j+1] {R:({AGi}, {2 ≤ idx < nm + 1})}
13 double tmp5 = Gi[j]; {R:({AGi}, {1 ≤ idx < nm})}
14 Gi[j] = {W:({AGi}, {1 ≤ idx < nm})}
15 c1 * (tmp1 + tmp2 + tmp3 + tmp4) + c2 * tmp5
16 }
17 }

Fig. 1. Example (normalized) code extracted from the SOR benchmark

This program is written in Java with structured parallel constructs. The foreach (var :
[l,h]) statement spawns child tasks in a loop, iterating on the value range between l and
h. Each loop iteration spawns a separate task and passes a unique value in the range
[l, h] to that task via the task local variable var. A similar construct, called invokeAll,
is available in the latest Java Fork-Join framework [18].

In addition to foreach, our language also supports constructs such as fork, join,
async and finish. These are basic constructs with similar counterparts in languages
such as X10 [6], Cilk [3] and the Java Fork-Join framework [18]. The semantics of
finish { s } statement is that the task executing the finish must block and wait at the
end of this statement until all descendant tasks created by this task in s (including their
recursively created children tasks), have terminated.

In Fig. 1, tasks are created by foreach in the range of [start, last]. Each task spawned
by the foreach loop is given a unique value for tid. This value is then used to compute
an index for accessing a two-dimensional array G[][]. Because foreach is preceded by
the finish construct, the main task which invoked the foreach statement cannot proceed
until all concurrently executing tasks created by foreach have terminated.

458 M. Vechev et al.

Limitations. Our analysis currently does not handle usage of synchronization constructs
such as monitors, locks or atomic sections.

2.2 Establishing Determinism by Independence

Our analysis is able to automatically verify determinism of this example by showing that
statements that may execute in parallel either access disjoint locations or read from the
same location. Our approach operates in two steps: (i) analyzing each task sequentially
and computing an over-approximation of its memory accesses; (ii) checking indepen-
dence of memory accesses that may execute in parallel.

Computing an Over-approximation of Memory Accesses. The first step in our approach
is to compute an over-approximation of the memory locations read/written by every
task at a given program point. To simplify presentation, we focus on the treatment of
array accesses. The treatment of object fields is similar and simpler and while we do
not present the details here, our analysis also handles that case.

In our programming language, arrays are heap-allocated objects: to capture infor-
mation about what array locations are accessed, our abstract representation combines
information about the heap with information about array indices.

Fig. 2. Example of the array
G[][] in SOR with three tasks
with tids 1,2,3 accessing it

Fig. 2 shows the array G[][] of our running exam-
ple where three tasks with task identifiers (tid) 1,2,
and 3 access the array. In the figure, we subscript local
variables with the task identifier of the task to which
they belong. Note that the only columns being written
to are Gi1, Gi2, Gi3. Columns which are accessed by
two tasks are always only read, not written. The 2D
array is represented using one-dimensional arrays.

A key aspect of our approach is that we use simple
assume/guarantee reasoning to analyze each task sepa-
rately, via sequential analysis. That is, we compute an
over-approximation of accessed memory locations for
a task assuming that all other tasks that may execute in
parallel only perform independent accesses.

Fig. 1 shows the results of our sequential analysis
computing symbolic ranges for array accesses. For ev-
ery program label in which an array is being accessed,
we compute a pair of heap information, and array index range. The heap information
records what abstract locations may be pointed to by the array base reference. The array
index range records what indices of the array may be accessed by the statement via con-
straints on the idx variable. In this example, we used the polyhedra abstract domain to
abstract numerical values, and the array index range is generally represented as a set of
linear inequalities on local variables of the task.

For example, in line 5 of the example, the array base G may point to a single abstract
location AG, and the statement only reads a single cell in the array at index 2∗ tid−ps.
Note that the index expression uses the task identifier tid. It is often the case in our
programs that accessed array indices depend on the task identifier. Furthermore, the

Automatic Verification of Determinism for Structured Parallel Programs 459

coefficient for tid in this constraint is 2 and thus, this information could not have
been represented directly in the Octagon numerical domain. In Section 6, we will see a
variety of programs, where some can be handled by Polyhedra and some by Octagon.

Checking Independence. Next, we need to establish that array accesses of parallel tasks
are independent. The only write access in this code is the write to Gi[j] in line 14. Our
analysis therefore has to establish that for different values of tid (i.e., different tasks),
the write in line 14 does not conflict with any of the read/write accesses made by other
parallel tasks.

For example, we need to prove that when two different tasks identifiers tid1 �= tid2

execute the write access in line 14, they will access disjoint locations. Our analysis can
only do that if the pointer-analysis is precise enough to establish the fact that G[2 ∗
tid1 − ps] �= G[2 ∗ tid2 − ps] when tid1 �= tid2. In this example program, we can
indeed establish this fact automatically based on an analysis that tracks how the array G
has been initialized. Generally, of course, the fact that cells of an array point to disjoint
objects is hard to establish and may require expensive analyses such as shape analysis.

1 void update(final double[][] B, final double[][] C) {
2 finish {
3 asynch {
4 for (int i=1;i <=n; i++) {
5 double tmp1 = C[2*i]; {R:({AC}, {2 ≤ idx ≤ 2*n})}
6 B[i] = tmp1; {W:({AB}, {1 ≤ idx ≤ n})}
7 }
8 }
9 asynch {

10 for (int j=n;j <=2*n; j++) {
11 double tmp2 = C[2*j+1]; {R:({AC}, {2*n+1 ≤ idx ≤ 4*n+1})}
12 B[j] = tmp2; {W:({AB}, {n ≤ idx ≤ 2*n})}
13 }
14 }
15 }
16 }

Fig. 3. A simple example for parallel accesses to shared arrays

2.3 Reporting Potential Sources of Non-determinism

When independence of memory accesses cannot be established, our approach reports
the shared memory locations that could not be established as independent.

Consider the simple example of Fig. 3. This example captures a common pattern
in parallel applications where different parts of a shared array are updated in parallel.
Applying our approach to this example, yields the ranges shown in the figure. Here, we
used polyhedra analysis and a simple points-to analysis. Our simple points-to analysis
is precise enough to establish two separate abstract locations for B and C. Checking the
array ranges, however, shows that the write of line 6 overlaps with the write of line 12
on the array cell with index n. For this case, our analysis reports that the program is po-
tentially non-deterministic due to conflicting access on the abstract locations described
by ({AB}, {idx == n}).

460 M. Vechev et al.

In some cases, such failures may be due to imprecision of the analysis. In Section 6,
we discuss the abstractions required to prove determinism of several realistic programs.

3 Concrete Semantics

We assume a standard concrete semantics which defines a program state and evaluation
of an expression in a program state. The semantic domains are defined in a standard
way in Table 1, where TaskIds is a set of unique task identifiers, VarIds is a set of local
variable identifiers, and FieldId is a set of (instance) field identifiers.

Table 1. Semantic Domains

L� ⊆ objs� an unbounded set of dynamically allocated objects
v� ∈ Val = objs� ∪ {null} ∪� values
pc� ∈ PC = TaskIds ⇀ Labs program counters
ρ� ∈ Env� = TaskIds × VarIds ⇀ Val environment
h� ∈ Heap� = objs� × FieldId ⇀ Val heap
A� ⊆ L� array objects

A program state is a tuple: σ = 〈pc�
σ, L�

σ, ρ�
σ, h�

σ, A�
σ〉 ∈ ST �, where ST � = PC ×

2objs�

× Env� × Heap� × 2objs�

.
A state σ keeps track of the program counter for each task (pc�

σ), the set of allocated
objects (L�

σ), an environment mapping local variables to values (ρ�
σ), a mapping from

fields of allocated objects to values (h�
σ), and a set of allocated array objects (A�

σ).
We assume that program statements are labeled with unique labels. For an assign-

ment statement at label l ∈ Labs, we denote by lhs(l) the left hand side of the assign-
ment, and by rhs(l) the right hand side of the assignment.

We denote Tasks(σ) = dom(pc�
σ) to be the set of task identifiers in state σ, such

that for each task identifier, pc�
σ assigns a value. We use enabled(σ) ⊆ dom(pc�

σ) to
denote the set of tasks that can make a transition from σ.

3.1 Determinism

Determinism is generally defined as producing observationally equivalent outputs on
all executions starting from observationally equivalent inputs.

In this paper, we establish determinism of parallel programs by proving that shared
memory accesses made by statements in different tasks are independent. This is a
stronger condition which sidesteps the need to define “observational equivalence”, a
notion that is often very challenging to define for real programs.

In the rest of the paper, we focus on the treatment of array accesses. The treatment
of shared field accesses is similar (and simpler).

Definition 1 (Accessed array locations in a state). Given a state σ ∈ ST �, we define
W �

σ : TaskIds → 2(A�×�) which maps a task identifier to the memory location to be

Automatic Verification of Determinism for Structured Parallel Programs 461

written by the statement at label pcσ(t). Similarly, we define R�
σ : TaskIds → 2(A�×�)

mapping a task identifier to the memory location to be read by the statement at pcσ(t):

R�
σ(t) = {(ρ�

σ(t, a), ρ�
σ(t, i)) | pc�

σ(t) = l ∧ rhs(l) = a[i]}
W �

σ(t) = {(ρ�
σ(t, a), ρ�

σ(t, i)) | pc�
σ(t) = l ∧ lhs(l) = a[i]}

RW �
σ(t) = R�

σ(t) ∪ W �
σ(t)

Note that R�
σ(t), W �

σ(t) and RW �
σ(t) are always singleton or empty sets.

Definition 2 (Conflicting Accesses). Given two shared memory accesses in states σ1, σ2 ∈
ST �, performed respectively by task identifiers t1 and t2, we say that the two shared
accesses are conflicting, denoted by (σ1, t1) � (σ2, t2) when: t1 �= t2 and W �

σ1
(t1) ∩

RW �
σ2

(t2) �= ∅ or W �
σ2

(t2) ∩ RW �
σ1

(t1) �= ∅.

Next, we define the notion of a conflicting program. A program that is not conflicting
is said to be conflict-free.

Definition 3 (Conflicting Program). Given the set of all reachable program states
RS ⊆ ST �, we say that the program is conflicting iff there exists a state σ ∈ RS
such that t1, t2 ∈ Tasks(σ), mhp(RS, σ, t1, pc�

σ(t1), t2, pc�
σ(t2)) = true and (σ, t1) �

(σ, t2).

Informally, the above definition says that a program is conflicting if and only if there
exists a state from which two tasks can perform memory accesses that conflict. Similar
definition is provided by Shacham et. al [35]. However, our definition is more strict
as we do not allow even atomic operations to conflict (recall that we currently do not
handle atomic operations).

In the above definition we used the predicate mhp : 2ST � ×ST �×TaskIds×Labs×
TaskIds × Labs ⇀ Bool. The predicate mhp(S, σ, t1, l1, t2, l2) evaluates to true if t1
and t2 may run in parallel from state σ.

Computing mhp. The computation of the mhp is parametric to our analysis. That is,
we can consume an mhp of arbitrary precision. For instance, we can define mhp(S,
σ, t1, l1, t2, l2) to be true iff t1, t2 ∈ enabled(σ) and t1 �= t2.

We can also define less precise (more abstract) variants of mhp. For example, mhp(S,

σ, t1, l1, t2, l2) = true iff ∃σ′ ∈ S, t1, t2 ∈ enabled(σ′), t1 �= t2 such that pc�
σ′(t1) =

l1 and pc�
σ′(t2) = l2. As the mhp depends on S and not on σ, we can write the mhp

as mhp(S, t1, l1, t2, l2). This less precise definition only talks at the level of labels and
may be preferable for efficiency purposes. When the set S is assumed to be all reachable
programs states, we write mhp(t1, l1, t2, l2).

In this paper, we use the structure of the parallel program to compute the mhp pre-
cisely, but in cases where we consider general Java programs with arbitrary concur-
rency, we can also use more expensive techniques [26].

3.2 Pairwise Semantics

Next, we abstract away the relationship between the different tasks and define semantics
that only tracks each task separately, rather than all tasks simultaneously.

462 M. Vechev et al.

We define the projection σ|t of a state σ on a task identifier t asσ|t=〈pc|t, L, ρ|t, h, A〉,
where:

– pc|t is the restriction of pc to t
– ρ|t is the restriction of ρ to t

Given a state σ ∈ ST �, we can now define the program state for a single task t via

σ|t = 〈pc, L, ρ, h, A〉 ∈ Σ, where ST �
pw = (PC × 2objs�

×Env� ×Heap� × 2objs�

).
For S ⊆ ST �:

αpw(S) =
⋃
σ∈S

{σ|t | t ∈ Tasks(σ)}

Next, we adjust our definition of a conflicting program.

Definition 4 (Pairwise-Conflicting Program). Given the set of all reachable program
states RSpw ⊆ ST �

pw, we say that the program is pairwise conflicting when there
exists σpw

1 , σpw
2 ∈ RSpw such that for some t1 ∈ Tasks(σpw

1), t2 ∈ Tasks(σpw
2),

mhp(RSpw, t1, pc�
σpw
1

(t1), t2, pc�
σpw
2

(t2)) = true and (σpw
1 , t1) � (σpw

2 , t2).

Note that in this definition of a conflicting program, we use Definition 2 with two states
σpw

1 and σpw
2 , while in Definition 3, we used it only with a single state.

Assuming the mhp predicate computes identical results in Definition 3 and Defini-
tion 4, we now have the following simple theorem:

Theorem 1. Any conflicting program is pairwise-conflicting.

Of course, due to losing precision with the pairwise semantics, it could be the case that
a program is pairwise-conflicting but not conflicting.

4 Abstract Semantics

The pairwise semantics tracks a potentially unbounded set of memory locations ac-
cessed by each task. In this section, we use standard abstract domains to represent sets
of locations in a bounded way. We represent sets of objects using standard points-to
abstractions, and ranges of array cells using numerical abstractions on array indices.
Next, we abstract the semantics of Section 3.2.

4.1 Abstract State

Our abstraction is parametric on both the heap abstraction αh and the numerical abstrac-
tion αn. In the following, we assume an abstract numerical domain ND = 〈NC,�ND〉
equipped with operations �ND and �ND , where NC is a set of numerical constraints
over the primitive variables in VarIds, and do not go into further details about the par-
ticular abstract domain.

Definition 5. An abstract program state σ is a tuple 〈pc, La, ρa, ha, Aa, nc〉 ∈ STa,

where STa = PC × 2objs × Env × Heap × 2objs × (TaskIds → 2NC) such that:

Automatic Verification of Determinism for Structured Parallel Programs 463

– La ⊆ objs is a bounded set of abstract objects, and Aa ⊆ La is a set of abstract
array objects.

– ρa : TaskIds × V arIds → 2AV al maps a task identifier and a variable to its
abstract values.

– ha : objs×FieldId → 2AV al map an abstract location and a field identifier to their
abstract values.

– nc : TaskIds → 2NC maps a task to a set of numerical constraints, capturing
relationship between local numerical variables of that task.

An abstract program state is a sound representation of a concrete pairwise program state
σpw = 〈pc�, L�, ρ�, h�, A�〉 when:

– pc = pc�.

– for all o ∈ L�, αh(o) ∈ La.

– for all o1, o2 ∈ L�, f ∈ FieldId, if h�(o1, f) = o2 then αh(o2) ∈ ha(αh(o1), f).
– dom(ρ) = dom(ρ�)
– for all task references (t, r) ∈ dom(ρ�), if v = ρ�(t, r) then αh(v) ∈ ρa(t, r).
– Let TLt = {(pr0, v0)...(prn, vn)} be the set of primitive variable-value pairs, such

that for all pairs (pri, vi) ∈ TLt, (t, pri) ∈ dom(ρ�). Then αn(TLt) �ND nc(t).
Next, we define the accessed array locations in an abstract state:

Definition 6 (Accessed array locations in an abstract state). Given an abstract state
σ ∈ STa, we define Wσ : TaskIds → 2(AV al×VarIds) which maps a task identifier to
the memory location to be written by the statement at label pcσ(t). Similarly, we define
Rσ : TaskIds → 2(AV al×VarIds) mapping a task identifier to the memory location to be
read by its statement at pcσ(t).

Rσ(t) = {(ρσ(t, a), i) | pcσ(t) = l ∧ rhs(l) = a[i]}
Wσ(t) = {(ρσ(t, a), i) | pcσ(t) = l ∧ lhs(l) = a[i]}
RWσ(t) = Rσ(t) ∪ Wσ(t)

Note that Rσ, Wσ and RWσ are always singleton or empty sets. We use Dσ(t).B and
Dσ(t).I to denote the first and second components of the entry in the singleton set D,
where D can be one of R, W or RW . If Dσ(t) is empty, then Dσ(t).B and Dσ(t).I
also return the empty set. Next, we define the notion of conflicting accesses:

Definition 7 (Abstract Conflicting Accesses). Given two shared memory accesses in
states σ1, σ2 ∈ STa, performed respectively by task identifiers t1 and t2, we say that
the two shared accesses are conflicting, denoted by (σ1, t1) �abs (σ2, t2) when:

– Wσ1(t1).B ∩RWσ2(t2).B �= ∅ and (Wσ1 (t1).I = RWσ2(t2).I)�ND AS �= ⊥ or

– Wσ2(t2).B ∩ RWσ1(t1).B �= ∅ and (Wσ2 (t2).I = RWσ1(t1).I) �ND AS �= ⊥

where AS = ncσ1(t1) �ND ncσ2(t2) �ND (t1 − t2 ≥ 1)

464 M. Vechev et al.

The definition uses the meet operation �ND of the underlying numerical domain to
check whether the combined constraints are satisfiable. If the result is not empty (e.g.
not ⊥), then this indicates a potential overlap between the array indices. The constraint
of the kind (W.I = RW.I) corresponds to the property we are trying to refute, namely
that the indices are equal. In addition, we add the global constraint that requires that
task identifiers are distinct. The reason why we write that constraint as (t1 − t2 ≥ 1) as
opposed to (t1 − t2 > 0) is that the first form is precisely expressible in both Octagon
and Polyhedra, while the second form is only expressible in Polyhedra. We assume that
primitive variables from two different tasks have distinct names.

The definition of abstract conflicting accesses leads to a natural definition of ab-
stract pairwise conflicting program based on Definition 4. Due to the soundness of our
abstraction it follows that if we establish the program as abstract (pairwise) conflict
free, then it is (pairwise) conflict free under the concrete semantics.

In the next section, we describe our implementation which is based on a sequential
analysis of each task, computing the reachable abstract states of a task in the absence
of interference from other tasks. We then (conservatively) check that tasks perform
independent memory accesses. When tasks may be performing conflicting memory ac-
cesses, the sequential information computed may be invalid, and our analysis will not
be able to establish determinism of the program. When tasks are only performing non-
conflicting memory accesses, the information we compute sequentially for each task is
stable, and we can use it to establish the determinism of the program.

5 Implementation

We implemented our analysis as a tool based on the Soot framework [36]. This allows
us to potentially use many of the existing analyses already implemented in Soot, such
as points-to analyses. The input to our tool is a Java program with annotations that
denote the code of each task. In fact, as our core analysis is based purely on the Jimple
intermediate representation produced by the Soot front end, as long as it knows what
code each task executes, the analysis is applicable to standard concurrent Java programs.

The complete analysis works as follows:

Step 1: Apply Heap Abstraction. First, we apply the SPARK flow-insensitive pointer
analysis on the whole program [20]. We note that flow-insensitive analysis is sound
in the presence of concurrency, but as we will see later, the pointer analysis may be
imprecise in most cases and hence we compute additional heap information (see the
UniqueRef invariant later).

Step 2: Apply Numerical Abstraction. Second, for each task, we apply the appropriate
(sequential) numerical analysis. Our numerical analysis uses the Java binding of the
Apron library [15]. We initialized the environment of the analysis only with variables
of integer type. As real variables cannot be used as array indices, they are ignored by
the analysis. Currently, we do not handle casting from real to integer variables. How-
ever in our benchmarks we have not encountered such cast operations. The numerical
constraints contain only variables of integer type.

Automatic Verification of Determinism for Structured Parallel Programs 465

Step 3: Compute MHP. Third, we compute the mhp predicate. In the annotated Java
code that we consider, this is trivially computed as the annotations denote which tasks
can execute in parallel and given that parallel tasks don’t use any synchronization con-
structs internally, it implies that all statements in two parallel tasks can also execute in
parallel. When analyzing standard Java programs which use synchronization primitives
such as monitors, one can use an off-the-shelf MHP analysis (cf. [21,26]).

Step 4: Verify Conflict-Freedom. Finally, we check whether the program is conflict-free:
for each pair of abstract states from two different tasks, we check whether that pair is
conflict-free according to Definition 7. In our examples, it is often the case that the same
code is executed by multiple tasks. Therefore, in our implementation, we simply check
whether the abstract states of a single task are conflict-free with themselves. To perform
the check, we make sure that local variables are appropriately renamed (the underlying
abstract domain provides methods for this operation). Parameter variables that are com-
mon to all tasks that execute the same code maintain their name under renaming and
are distinguished by special names. Note that our analysis verifies conflict-freedom be-
tween tasks in a pairwise manner, and does not make any assumption on the number of
tasks in the system (thus also handling programs with an unbounded number of tasks).

5.1 Reference Arrays

Many parallel programs use reference arrays, usually multi-dimensional primi-
tive arrays (e.g. int A[][]) or reference arrays of standard objects such as
java.lang.String. In Jimple (and Java bytecodes), multi-dimensional arrays are
represented via a hierarchy of one-dimensional arrays. Accesses to a k-dimensional ar-
ray is comprised of k accesses to one-dimensional arrays. In many of our benchmarks,
parallel tasks operate on disjoint portions of a reference array. However, often, given an
array int A[][], each parallel task accesses a different outer dimension, but accesses
the internal array int A[] in the same way. For example, task 1 can write to A[1][5],
while task 2 can write to A[2][5]): the outer dimension (e.g. 2) is different, but the
inner dimension (e.g. 5) is the same. The standard pointer analysis fails to establish that
A[1][5] and A[2][5] are disjoint, and hence our analysis fails to prove determinism.

UniqueRef Global Invariant. However, in all of our benchmarks, the references
inside reference arrays never alias. This is common among scientific computing bench-
marks as they have a pre-initialization phase where they fill up the array, and there-
after, only the primitive values in the array are modified. To capture this, on startup,
we perform a simple global analysis to establish that all writes of reference variables
to cells in the reference array are only assigned to once with a fresh object, either a
newly allocated object or a reference obtained as a result of a library call such as
java.lang.String.substring that returns a fresh reference. While this simple
treatment suffices for all of our benchmarks, general treatment of handling references
inside objects may require more elaborate heap analysis.

Once we establish this invariant, we can either refine the pointer analysis information
(to know that the inner dimensions of an array are distinct), or we can use the invariant
directly in the analysis. In almost all of our benchmarks, we used this invariant directly.

466 M. Vechev et al.

Table 2. Experimental Results

Benchmark Description LOC Vars Domain Iter Time (s) Widen PA Result
CRYPT IDEA encryption 110 180 Polyhedra 439 54.8 No No �
SOR Successive over-

relaxation
35 21 Polyhedra 72 0.41 Yes No �

LUFACT LU Factorization 32 22 Octagon 57 1.94 Yes No �
SERIES Fourier coeffi-

cient analysis
67 14 Octagon 22047 55.8 No No �

MOLDYN1 Molecular 85 18 Octagon 85 24.6 No No �
MOLDYN2 dynamics 137 42 Polyhedra 340 2.5 Yes Yes �
MOLDYN3 simulation 31 8 Octagon 78 0.32 Yes No �
MOLDYN4 50 10 Polyhedra 50 1.01 No No �
MOLDYN5 37 18 Polyhedra 37 0.34 No No �
SPARSE Sparse matrix

multiplication
29 17 Polyhedra 45 0.2 Yes Yes ✗

RAYTRACER 3D Ray Tracer - - - - - - - ✗

MONTECARLO Monte Carlo sim-
ulation

- - - - - - - ✗

6 Evaluation

To evaluate our analysis, we selected the JGF benchmarks used by the HJ suite [1].
These benchmarks are modified versions of the Java JGF benchmarks [9]. As currently
our numerical analysis is intra-procedural, we have slightly modified these benchmarks
by inlining some of the function calls. The code for all benchmarks is available in [1].

Our analysis works on the Jimple intermediate representation, which is a three-
address code representation for Java. Working at the Jimple level enables us to use
standard analyses implemented in Soot, such as the Spark points-to analysis [20]. How-
ever, Jimple creates a large number of temporary variables, resulting in many more
variables than the original Java source. This may lead to a larger number of numerical
constraints compared to the ones arising when analyzing the program at the source level
as in the case of the Interproc analyzer [16].

Analysis of some of our benchmarks required the use of widening. We used the
LoopFinder API provided by Soot to identify loops and applied a basic widening
strategy which only widens at the head of the loop and does so every k’th iteration,
where k is a parameter to the analysis.

All of our experiments were conducted using a Java 1.6 runtime running on a 4-core
Intel(R) Xeon(TM) CPU 3.80GHz processor with 5GB.

6.1 Results

Table 2 summarizes the results of our analysis. The columns indicate the benchmark
name and description, lines of code for the analyzed program, the number of integer-
valued variables used in the analysis, the numerical domain used, the number of itera-
tions it took for the analysis to reach a fixed point, the combined time of the numerical

Automatic Verification of Determinism for Structured Parallel Programs 467

analysis and verification checking (pointer analysis time is not included even if used),
whether the analysis needed widening to terminate, whether we used Spark pointer
analysis (note that we almost always use the UniqueRef invariant as the programs make
heavy use of multi-dimensional arrays), and the result of the analysis where � de-
notes that it successfully proved determinism, and ✗ denotes that it failed to do so. As
mentioned earlier, in our benchmarks, it is easy to pre-compute the mhp predicate and
determine which tasks can run in parallel. That is, there is no need to perform numeri-
cal analysis on tasks that can never run in parallel with other tasks. Therefore, the lines
of code in the table refer only to the relevant code that may run in parallel and is an-
alyzed by the numerical analysis. The actual applications contain many more lines of
code (in the range of thousands), as they need to pre-initialize the computation, but such
initialization code never runs in parallel with other tasks.

Applying the analysis. For every benchmark, we first attempted to verify determinism
with the simplest available configuration: e.g. Octagon domain without widening or
pointer analysis. If the analysis did not terminate within 10 minutes, or failed to prove
the program deterministic, then we tried adding widening and/or changing the domain
to Polyhedra and/or performing pointer analysis. Usually, we did not find the need for
using Spark. Instead, we almost always rely on the UniqueRef invariant.

For five of the benchmarks, the analysis managed to prove determinism, while it
failed to do so for three benchmarks. Next, we elaborate on the details.

CRYPT involves reading and updating multiple shared one-dimensional arrays. This
is a computationally intensive benchmark and its intermediate representation contains
many variables. When we used the Octagon domain without widening, the analysis
did not terminate and the size of the constraints kept growing. Even after applying our
widening strategy (widening at the head of the loop) with various frequencies (e.g. the
parameter k mentioned earlier), we still could not get the analysis to terminate. Only af-
ter applying very aggressive widening: in addition to every loop head, to widen at some
points in the loop body, did we get the analysis to terminate. But even when it termi-
nated, the analysis was unable to prove determinism. The key reason is that the program
computes array indices for each task based on the task identifier via statements such as
ixi = 8∗tidi, where ixi is the index variable and tidi is the task identifier variable. Such
constraints cannot be directly expressed in the Octagon domain. However, by using the
Polyhedra domain, the analysis managed to terminate without widening. It managed
successfully to capture the simple loop exit constraint ixi ≥ k (even with the loop body
performing complicated updates). It also managed to successfully preserve constraints
such as ix1 = 8 ∗ tid1. As a result, the computed constraints were precise enough to
prove the program deterministic, which is the result that we report in the table.

In SOR, without widening, both Octagon and Polyhedra failed to terminate. With
widening, Octagon failed to prove determinism due to the use of array index expressions
such as ixi = 2 ∗ tidi − v, where tidi is the task identifier variable and v is a parameter
variable. Constraints, such as ii = k ∗ tidi, where k > 1 cannot be expressed in the
Octagon domain and hence the analysis fails. Using Polyhedra with widening quickly
succeed in proving determinism.

468 M. Vechev et al.

Without widening and with Octagon, the analysis did not terminate in LUFACT. How-
ever, with widening and Octagon, the analysis quickly reached a fixed point. The SERIES

benchmark succeeds only with Octagon and required no widening but it took the longest
to terminate.

MOLDYN contains a sequence of five blocks where only the tasks inside each block
can run in parallel and tasks from different blocks cannot run in parallel. Interestingly,
each block of tasks can be proved deterministic by using different configurations of do-
main, widening and pointer analysis. In Table 2, we show the result for each block as a
separate row in the table. In the first block, tasks execute straight line code and deter-
minism can be proved only with Octagon and no widening. In the second block, tasks
contain loops and require Polyhedra, widening and pointer analysis. Without widening,
both Octagon and Polyhedra do not terminate. With widening, Octagon terminates, but
fails. The problem is that the array index variable ixi is computed with the statement
ixi = k ∗ tidi, where k is a constant and k > 1. The Octagon domain cannot accurately
represent abstract elements with such constraints. We used the pointer analysis to es-
tablish that references loaded from two different arrays are distinct, but we could have
also computed that with the UniqueRef invariant. Tasks in the third block succeed with
Octagon but also required widening. Tasks in the fourth and fifth blocks do not need
widening (there are no loops), but require Polyhedra as they are using constraints such
as ixi = k ∗ tidi, where k > 1.

In SPARSE, the Polyhedra fails as the tasks use array indices obtained from other
arrays, e.g. A[B[i]], where the values of B[i] are initialized on startup. The analysis
required widening to terminate, but is unable to establish anything about B[i] and hence
cannot prove independence of two different array accesses A[j] and A[k], where j and
k come from some B[i].

In RAYTRACER, analysis fails as the program involves non-linear constraints and also
uses atomic sections, which our analysis currently does not handle.

As mentioned, our analysis is intra-procedural. However, unlike the other bench-
marks, MONTECARLO makes many nested calls and it would have been very error-prone
to try and inline all of these nested calls. To handle such cases, in the future, we plan to
extend our analysis to handle procedures.

6.2 Summary

In summary, in all cases where the analysis was successful in proving determinacy, it
finished in under a minute. Different benchmarks could be proved with different com-
bination of domain (Octagon or Polyhedra) and widening (to widen or not). In fact,
the suite exercised all four combinations. In general, we did not find that we needed
expensive pointer analysis, and it was sufficient to have the simple invariant that all ar-
rays contain unique references, which was easily verifiable for our benchmarks (but in
general may be a very hard problem). In cases where we failed, the program was using
features that we do not currently handle such as: non-linear constraints, atomic sections,
procedure calls or required maintaining scalar invariants over arrays (e.g. that integers
inside an array are distinct). In the future, we plan to address these issues. This would
also allow us to handle the full Java JGF benchmarks [9], where many benchmarks
make use of such features.

Automatic Verification of Determinism for Structured Parallel Programs 469

7 Related Work

Recent papers by Burnim and Sen [5] and Sadowski et. al [33] focus on checking deter-
minism dynamically. The first work focuses on user-defined notion of observationally
equivalent states while the second paper checks for absence of conflicts. While both
of these works are only able to dynamically test for determinism, our work focus on
statically proving determinism.

There is a vast literature on dependence analysis for automatic parallelization (see
e.g., [24, Sec. 9.8]). The focus of these analyses is on efficiently identifying indepen-
dent loop iterations that can be performed in parallel. In contrast, our work focuses on
verifying determinism of parallel programs. This usually involves dependence checking
between tasks that may execute in parallel (and not necessarily in a loop). As we focus
on verification, we can employ precise (and often expensive) numerical domains.

There is a large volume of work on dependence analysis for heap-manipulating pro-
grams (e.g., [14]), which at the end boils down to having a sufficiently precise heap ab-
straction (e.g., [29]). The current task-parallel applications we are dealing with mostly
involve numerical computations over arrays. For such programs, simple heap abstrac-
tions were sufficient for establishing determinism. In the future, we plan to integrate
more advanced heap abstractions into our analysis framework.

In [31,32], Rugina and Rinard present an analysis framework for computing sym-
bolic bounds on pointer, array indices, and accesses memory regions. In order to sup-
port challenging features such as pointer arithmetic, their analysis framework requires
an expensive flow-sensitive and context-sensitive pointer analysis [30] as a preceding
phase. In our (simpler) setting, this is not required.

In [12], Ferrera presents a static analysis for establishing determinism of concurrent
programs. The idea is to record for each variable what thread wrote it. This instrumented
concrete semantics is then abstracted to an abstract semantics that records separately
the value written to a variable by each thread. Determinism is established by comparing
(abstract) states and showing that for each variable, its value is only determined by
a single thread. The paper does not handle arrays, dynamic memory allocation, and
assumes a bounded number of threads. Further, Ferrera’s analysis is based on concurrent
executions and therefore has to consider all possible interleavings. In contrast, using
basic assume-guarantee reasoning, our analysis reduces the problem to a sequential
analysis.

8 Conclusion

We present a static analysis for automatically verifying determinism of structured par-
allel programs. Our approach uses sequential analysis to establish that tasks that may
execute in parallel only perform non-conflicting memory accesses. Our sequential anal-
ysis combines information about the heap with information about array indices to show
that memory accesses are non-conflicting. We show that in realistic programs, estab-
lishing that accesses are non-conflicting requires powerful numerical domains such as
Octagon and Polyhedra. We implemented our approach in a tool called DICE and ap-
plied it to verify determinism of several non-trivial benchmark programs. In the future,
we plan to extend our analysis to handle general Java programs.

470 M. Vechev et al.

Acknowledgements. We thank the anonymous reviewers for their helpful comments
that improved the paper, and Antoine Mine for helping us with using Apron.

References

1. Dojo: Ensuring determinism of concurrent systems, https://researcher.ibm.com/
researcher/view_project.php?id=1337

2. Banerjee, U. K. Dependence Analysis for Supercomputing. Kluwer Academic Publishers,
Norwell (1988)

3. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou, Y.: Cilk:
an efficient multithreaded runtime system. In: PPoPP, pp. 207–216 (October 1995)

4. Bocchino, R., Adve, V., Adve, S., Snir, M.: Parallel programming must be deterministic by
default. In: First USENIX Workship on Hot Topics in Parallelism (HOTPAR 2009) (2009)

5. Burnim, J., Sen, K.: Asserting and checking determinism for multithreaded programs. In:
ESEC/FSE 2009, pp. 3–12. ACM, New York (2009)

6. Charles, P., Grothoff, C., Saraswat, V.A., Donawa, C., Kielstra, A., Ebcioglu, K., von Praun,
C., Sarkar, V.: X10: an object-oriented approach to non-uniform cluster computing. In:
OOPSLA, pp. 519–538 (October 2005)

7. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a
program. In: Conference Record of the Fifth Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, Tucson, Arizona, pp. 84–97. ACM Press, New
York (1978)

8. Devietti, J., Lucia, B., Ceze, L., Oskin, M.: Dmp: deterministic shared memory multipro-
cessing. In: ASPLOS ’09: Proceeding of the 14th International Conference on Architectural
Support for Programming Languages and Operating Systems, pp. 85–96. ACM Press, New
York (2009)

9. Edinburgh Parallel Computing Centre. Java grande forum benchmark suite, http://
www2.epcc.ed.ac.uk/computing/research_activities/java_grande/
index_1.html

10. Edwards, S.A., Tardieu, O.: Shim: a deterministic model for heterogeneous embedded sys-
tems. In: EMSOFT 2005: Proceedings of the 5th ACM International Conference on Embed-
ded Software, pp. 264–272. ACM, New York (2005)

11. Feng, M., Leiserson, C.E.: Efficient detection of determinacy races in cilk programs. In:
SPAA 1997: Proceedings of the Ninth Annual ACM Symposium on Parallel Algorithms and
Architectures, pp. 1–11. ACM, New York (1997)

12. Ferrara, P.: Static analysis of the determinism of multithreaded programs. In: Proceedings
of the Sixth IEEE International Conference on Software Engineering and Formal Methods
(SEFM 2008). I. C. Society, Los Alamitos (November 2008)

13. Flanagan, C., Freund, S.N.: Fasttrack: efficient and precise dynamic race detection. In: PLDI
2009: Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, pp. 121–133. ACM, New York (2009)

14. Horwitz, S., Pfeiffer, P., Reps, T.: Dependence analysis for pointer variables. In: PLDI 1989:
Proceedings of the ACM SIGPLAN 1989 Conference on Programming language Design and
Implementation, pp. 28–40. ACM, New York (1989)

15. Jeannet, B., Mine, A.: Apron: A library of numerical abstract domains for static analysis.
In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–667. Springer,
Heidelberg (2009)

16. Lalire, G., Argoud, M., Jeannet, B.: The interproc analyzer, http://pop-art.
inrialpes.fr/interproc/interprocweb.cgi

https://researcher.ibm.com/researcher/view_project.php?id=1337
https://researcher.ibm.com/researcher/view_project.php?id=1337
http://www2.epcc.ed.ac.uk/computing/research_activities/java_grande/index_1.html
http://www2.epcc.ed.ac.uk/computing/research_activities/java_grande/index_1.html
http://www2.epcc.ed.ac.uk/computing/research_activities/java_grande/index_1.html
http://pop-art.inrialpes.fr/interproc/interprocweb.cgi
http://pop-art.inrialpes.fr/interproc/interprocweb.cgi

Automatic Verification of Determinism for Structured Parallel Programs 471

17. Lamport, L.: The parallel execution of do loops. ACM Commun. 17(2), 83–93 (1974)
18. Lea, D.: A java fork/join framework. In: JAVA 2000: Proceedings of the ACM 2000 Confer-

ence on Java Grande, pp. 36–43. ACM, New York (2000)
19. Lee, E.A.: The problem with threads. Computer 39(5), 33–42 (2006)
20. Lhoták, O., Hendren, L.: Scaling java points-to analysis using spark. In: Hedin, G. (ed.) CC

2003. LNCS, vol. 2622, pp. 153–169. Springer, Heidelberg (2003)
21. Li, L., Verbrugge, C.: A practical MHP information analysis for concurrent java programs.

In: Eigenmann, R., Li, Z., Midkiff, S.P. (eds.) LCPC 2004. LNCS, vol. 3602, pp. 194–208.
Springer, Heidelberg (2005)

22. Marino, D., Musuvathi, M., Narayanasamy, S.: Literace: effective sampling for lightweight
data-race detection. In: PLDI 2009, pp. 134–143. ACM, New York (2009)

23. Miné, A.: The octagon abstract domain. Higher Order Symbol. Comput. 19(1), 31–100
(2006)

24. Muchnick, S.S.: Advanced compiler design and implementation. Morgan Kaufmann Pub-
lishers Inc., San Francisco (1997)

25. Naik, M., Aiken, A., Whaley, J.: Effective static race detection for java. In: PLDI 2006:
Proceedings of the 2006 ACM SIGPLAN Conference on Programming Language Design
and Implementation, pp. 308–319. ACM, New York (2006)

26. Naumovich, G., Avrunin, G.S., Clarke, L.A.: An efficient algorithm for computing MHP
information for concurrent Java programs. In: Proceedings of the Joint 7th European Soft-
ware Engineering Conference and 7th ACM SIGSOFT Symposium on the Foundations of
Software Engineering, pp. 338–354 (September 1999)

27. O’Callahan, R., Choi, J.-D.: Hybrid dynamic data race detection. In: PPoPP 2003: Proceed-
ings of the Ninth ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, pp. 167–178. ACM, New York (2003)

28. Olszewski, M., Ansel, J., Amarasinghe, S.: Kendo: efficient deterministic multithreading in
software. In: ASPLOS 2009, pp. 97–108. ACM, New York (2009)

29. Raza, M., Calcagno, C., Gardner, P.: Automatic parallelization with separation logic. In:
Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 348–362. Springer, Heidelberg (2009)

30. Rugina, R., Rinard, M.: Automatic parallelization of divide and conquer algorithms. In:
PPoPP 1999: Proceedings of the seventh ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pp. 72–83. ACM, New York (1999)

31. Rugina, R., Rinard, M.: Symbolic bounds analysis of pointers, array indices, and accessed
memory regions. In: PLDI 2000: Proceedings of the ACM SIGPLAN 2000 Conference on
Programming Language Design and Implementation, pp. 182–195. ACM, New York (2000)

32. Rugina, R., Rinard, M.C.: Symbolic bounds analysis of pointers, array indices, and accessed
memory regions. ACM Trans. Program. Lang. Syst. 27(2), 185–235 (2005)

33. Sadowski, C., Freund, S.N., Flanagan, C.: SingleTrack: A dynamic determinism checker for
multithreaded programs. In: Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 394–409.
Springer, Heidelberg (2009)

34. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.: Eraser: a dynamic data
race detector for multithreaded programs. ACM Trans. Comput. Syst. 15(4), 391–411 (1997)

35. Shacham, O., Sagiv, M., Schuster, A.: Scaling model checking of dataraces using dynamic
information. In: PPoPP 2005, pp. 107–118. ACM Press, New York (2005)

36. Vallee-Rai, R., Hendren, L., Sundaresan, V., Lam, P., Gagnon, E., Co, P.: Soot - a java opti-
mization framework. In: Proceedings of CASCON 1999, pp. 125–135 (1999)

Author Index

Aiken, Alex 236

Albert, Elvira 100

Alias, Christophe 117

Allen Emerson, E. 1

Amato, Gianluca 134

Appel, Andrew W. 151

Arenas, Puri 100

Bell, Christian J. 151

Blanco, Javier 201

Brauer, Jörg 167

Chaki, Sagar 287

Chapoutot, Alexandre 184

Cherini, Renato 201

Coogan, Kevin 218

Dalla Preda, Mila 218

Darte, Alain 117

Debray, Saumya 218

Dillig, Isil 236

Dillig, Thomas 236

Fähndrich, Manuel 2

Farzan, Azadeh 253

Feautrier, Paul 117

Gawlitza, Thomas Martin 271

Genaim, Samir 100

Giacobazzi, Roberto 218

Goldberg, Benjamin 6

Gonnord, Laure 117

Govindarajan, Ramaswamy 422

Gurfinkel, Arie 287

Harris, William R. 304

Heizmann, Matthias 22

Hofmann, Martin 340

Jensen, Simon Holm 320

Jones, Neil D. 22

Karbyshev, Aleksandr 340

Katoen, Joost-Pieter 390

Kincaid, Zachary 253

King, Andy 167

Lal, Akash 304

Lesens, David 51

Malkis, Alexander 356

Matringe, Nadir 373

McCloskey, Bill 71

McIver, Annabelle K. 390

Meinicke, Larissa A. 390

Might, Matthew 407

Møller, Anders 320

Morgan, Carroll C. 390

Moura, Arnaldo Vieira 373

Mycroft, Alan 439

Nasre, Rupesh 422

Nori, Aditya V. 304

Parton, Maurizio 134

Podelski, Andreas 22, 356

Puebla, German 100

Rajamani, Sriram K. 304

Raman, Raghavan 455

Ramı́rez Deantes, Diana Vanessa 100

Rearte, Lucas 201

Rebiha, Rachid 373

Reps, Thomas 71

Rybalchenko, Andrey 356

Sagiv, Mooly 71

Sarkar, Vivek 455

Schrijvers, Tom 439

Scozzari, Francesca 134

Seidl, Helmut 271, 340

Thiemann, Peter 320

Townsend, Gregg M. 218

Vechev, Martin 455

Walker, David 151

Yahav, Eran 455

	Title Page
	Preface
	Organization
	Table of Contents
	Time of Time
	Static Verification for Code Contracts
	Code Contracts
	Verification Steps
	Heap Abstraction
	Abstract Interpretation Fixpoints
	Weakest Precondition Analysis

	Conclusion
	References

	Translation Validation of Loop Optimizations and Software Pipelining in the TVOC Framework
	Introduction
	Validating Global Optimizations in TVOC
	Validating Loop Optimizations
	Validating Software Pipelining
	A Gentle Introduction to Software Pipelining
	Validating a Software Pipeline
	Future Work: Validating Pipelining That Uses Hardware Support

	Conclusion
	References

	Size-Change Termination and Transition Invariants
	Introduction
	Size-Change Termination (SCT)
	A Running Example
	Some Size-Change Definitions
	Composition of Size-Change Graphs
	A Closure Algorithm to Decide the SCT Property

	Transition Invariants (TI)
	Programs Defined by Transitions
	Termination by Transition Invariants
	Transition Predicate Abstraction (TPA)

	Correctness Proofs and Abstractions
	From Graphs to Transition Relations
	SCT and Disjunctive Well-Foundedness
	Size-Change Graphs and Transition Predicate Abstraction

	Decision Problems for Termination Analyses
	Transformer on Abstract Relations
	Composition of Abstract Relations
	Special Case: Associative Composition of Abstract Relations

	Discussion: Qualitative Differences
	References

	Using Static Analysis in Space: Why Doing so?
	Introduction
	Static Analysis and the European Standards for Space
	Principles of the ECSS
	Static Analysis for Validation
	Static Analysis for Verification
	Static Analysis for ISVV
	Static Analysis for V&V of Reuse Software and Regression Testing
	Conclusion on Static Analysis and Standards

	Impact of Static Analysis on the Development Strategy
	Link between Static Analysis and Development Strategy
	Static Analysis and Programming Language
	Static Analysis and Model Driven Engineering
	Conclusion on the Impact of Static Analysis on the Development Strategy

	Static Analysis at Astrium Space Transportation
	Type Checking
	Abstract Interpretation
	Model Checking
	Theorem Proving

	Conclusion
	References

	Statically Inferring Complex Heap, Array, and Numeric Invariants
	Introduction
	Deskcheck Architecture
	Modeling of Programs
	Base Domains
	Combining Domains

	Domain Operations
	Partial Order
	Join and Widening
	Assignment

	Examples
	Linked Lists
	Arrays
	Numeric Predicates
	Reference Counting

	Experiments
	Related Work
	References

	From Object Fields to Local Variables: A Practical Approach to Field-Sensitive Analysis
	Introduction
	Motivation: Field-Sensitive Termination Analysis
	A Simple Imperative Bytecode
	Preliminaries: Inference of Constant Access Paths
	Locality Conditions for Numeric and Reference Fields
	Polyvariant Transformation of Fields to Local Variables
	Experiments
	Conclusions and Related Work
	References

	Multi-dimensional Rankings, Program Termination, and Complexity Bounds of Flowchart Programs
	Introduction and Motivation
	Notations and Definitions
	Integer Interpreted Automata
	Termination and Ranking Functions
	Illustrating Example

	Computing Affine Ranking Functions
	A Greedy Polynomial-Time Procedure
	Completeness

	Worst-Case Computational Complexity (WCCC)
	Implementation and Experimental Results
	Related Work
	Conclusion
	Contributions
	FutureWork

	References

	Deriving Numerical Abstract Domains via Principal Component Analysis
	Introduction
	Notations
	The Parallelotope Domains
	Abstract Operations on Parallelotopes
	Union and Intersection
	Assignment
	Test
	On the Implementation of Abstract Operators

	Principal Component Analysis
	Orthogonal Simple Component Analysis

	Implementation
	Optimizing the Parallelotope Domains
	Experimental Evaluation

	Related Work
	Conclusions and Future Work
	References

	Concurrent Separation Logic for Pipelined Parallelization
	Introduction
	Parallelizing Transformations

	Parallelizing a Program
	CSL with Asynchronous Channels
	Channel Endpoint Histories
	Predicate Logic
	Resource Invariants
	Instructions
	Hoare Logic

	Parallelized Program with Proof
	Model and Operational Semantics
	The Separation Algebra of Resources
	Predicate Formulae
	Operational Semantics

	Soundness
	Related Work
	Future Work and Conclusion
	References

	Automatic Abstraction for Intervals Using Boolean Formulae
	Introduction
	The Drive for Automatic Abstraction
	Specifying Extreme Values with Universal Quantifiers
	Finessing Universal Quantifiers with Boolean Formulae

	Worked Examples
	Deriving a Transfer Function for a Block
	Deriving a Transfer Function for an Operation with Many Modes
	Deriving a Transfer Function for a Block with Many Modes

	Abstracting Boolean Formulae
	Abstracting Boolean Formulae with Octagonal Inequalities
	Abstracting Boolean Formulae with Affine Equalities

	Applying Action Systems of Guarded Updates
	Related Work
	Concluding Discussion
	References

	Interval Slopes as a Numerical Abstract Domain for Floating-Point Variables
	Introduction
	Background
	Floating-Point Arithmetic
	Interval Arithmetic

	Floating-Point Slopes
	Floating-Point Version of Interval Slopes
	Semantics of Arithmetic Operations
	Order Structure

	Analysis of Floating-Point Programs
	Case Studies
	Related Work
	Conclusion
	References

	A Shape Analysis for Non-linear Data Structures
	Introduction
	Semantic Settings
	Concrete Semantics
	Symbolic Heaps and Intermediate Semantics

	Abstract Semantics: The Analysis
	Relevance of Variables and Abstraction
	Quantified Variables and Termination

	Managing Graphs
	Experimental Results
	Conclusions
	References

	Modelling Metamorphism by Abstract Interpretation
	Introduction
	Background
	Modelling Metamorphism
	Abstracting Metamorphism
	Widening Phases for Regular Metamorphism
	Related Works and Discussion
	References

	Small Formulas for Large Programs: On-Line Constraint Simplification in Scalable Static Analysis
	Introduction
	Preliminaries
	Simplified Form
	Algorithm to Compute Simplified Forms
	Basic Algorithm
	Making Simplification Practical

	Integration with Program Analysis
	Experimental Results
	Impact of On-Line Simplification on Analysis Scalability
	Redundancy in Program Analysis Constraints
	Complexity of Simplification in Practice

	Related Work
	References

	Compositional Bitvector Analysis for Concurrent Programs with Nested Locks
	Introduction
	Preliminaries
	Locking Information
	Bitvector Data Flow Analysis

	Concurrent Data Flow Framework
	Normal Runs

	TheAnalysis
	A Case Study
	Application and Future Work
	References

	Computing Relaxed Abstract Semantics w.r.t. Quadratic Zones Precisely
	Introduction
	Basics
	Solving Systems of Order-Concave Equations
	Systems of SDP-Equations
	Quadratic Zones and Relaxed Abstract Semantics
	Experimental Results
	Conclusion
	References

	{\sc Boxes}: A Symbolic Abstract Domain of Boxes
	Introduction
	Linear Decision Diagrams
	The {\sc Boxes} Abstract Domain
	Widening
	{\sc Boxes} and Finite Powerset of {\sc Box}
	Experiments
	Conclusion
	References

	Alternation for Termination
	Introduction
	Overview
	Preliminaries
	Termination Certificates
	Proving Non-termination

	Algorithm
	Sub-procedures Called by TREX
	Handling Nested Loops, Function Calls and Pointers
	Limitations of TREX

	Experiments
	Micro-benchmarks
	Windows Drivers

	Related Work
	Conclusion
	References

	Interprocedural Analysis with Lazy Propagation
	Introduction
	A Basic Analysis Framework
	Analysis Instances
	Derived Lattices
	Computing the Solution
	An Abstract Data Type for Transfer Functions
	Problems with the Basic Analysis Framework

	Extending the Framework with Lazy Propagation
	Modifications of the Analysis Lattice
	Modifications of the Abstract Data Type Operations
	Recovering Unknown Field Values

	Implementation and Experiments
	Related Work
	Conclusion
	References

	Verifying a Local Generic Solver in Coq
	Introduction
	The Local Generic Solver RLD
	Systems of Constraints
	Strategy Trees
	Solutions

	Functional Implementation with Explicit State Passing
	Proof of Theorem 4
	Instrumentation
	Implementation in Coq
	Invariants
	Putting Things Together

	Conclusion
	References

	Thread-Modular Counterexample-Guided Abstraction Refinement
	Introduction
	Illustration
	Preliminaries
	Algorithm
	Abstract Reachability Analysis
	Checking Counterexample for Spuriousness
	Refine: Extract New Exception Set

	Applying TM-CEGAR to Peterson’s Protocol
	Parallel Mutex Loop
	Polynomial Runtime
	Experiments

	Related Work
	Conclusion
	References

	Generating Invariants for Non-linear Hybrid Systems by Linear Algebraic Methods
	Introduction
	Algebraic Hybrid Systems and Inductive Assertions
	New Continuous Consecution Conditions
	Handling Non-linear Differential Systems
	Obtaining Optimal Degree Bounds
	Examples and Experimental Results
	Handling Algebraic Discrete Transition Systems
	Discrete Transition with Polynomial Systems
	Discrete Transition with Fractional Systems

	Conclusions
	References

	Linear-Invariant Generation for Probabilistic Programs: Automated Support for Proof-Based Methods
	Introduction
	Overall Summary of the Approach
	Probabilistic Programs
	Probabilistic Program Annotations
	The Special Case of Loops

	Constraint-Solving for Quantitative Annotations
	Linear Probabilistic Programs and Parametrised Annotations
	Constructing Machine-Solvable Constraints
	Solving Constraints and Heuristics
	Soundness and Completeness

	Three Examples
	Example One: Binomial Update
	Example Two: Generating a Biased Coin from a Fair One
	Example Three: Uniform Distribution; Nested Loops

	Alternative Automated Methods
	Aims and Conclusions
	References

	Abstract Interpreters for Free
	Introduction: Can We Get Two for the Price of One?
	An Example to Illustrate Correspondence and Redundancy
	The Two-Step Method: Snipping and Trickling

	Continuation-Passing-Style λ-Calculus
	ANa\"{ı}ve Attempt: “Throw Hats on Everything”
	Step 1: Snipping the Knots with Store-Passing Style
	Making a Snip
	Option 1: Snipping $Env → Clo$
	Option 2: Snipping $Clo → Env$
	Optional Snips

	Step 2: Trickling Up Abstraction
	Abstracting the Leaves of the State-Space Dependence Graph
	Recursively Constructing the Abstract State-Space
	Galois Inference Rules
	Synthesizing an Abstract Interpretation for CPS (Option 1)
	Synthesizing an Abstract Interpretation for CPS (Option 2)

	Flow-Sensitivity, Field-Sensitivity and Context-Sensitivity
	Related Work
	Summary and Conclusion
	References

	Points-to Analysis as a System of Linear Equations
	Introduction
	Points-toAnalysis
	A First-Cut Approach
	The Modified Approach
	The Algorithm
	Context-Sensitive Analysis

	Soundness and Precision
	Experimental Evaluation
	Related Work
	Conclusion
	References

	Strictness Meets Data Flow
	Introduction
	Type-and-Effect System
	Type-and-Effect Inference System
	Principality
	Connection to Traditional Type Inference
	Effect System Soundness

	Inference Algorithm
	Properties

	Optimisations
	Standard Strictness Analysis and Optimisations
	Inlining to Expose Standard Strictness Optimisation
	Absent Argument Optimisation
	Implicational Strictness
	Transformation Soundness

	Related Work
	Conclusion and Future Work
	References

	Automatic Verification of Determinism for Structured Parallel Programs
	Introduction
	Overview
	Motivating Example
	Establishing Determinism by Independence
	Reporting Potential Sources of Non-determinism

	Concrete Semantics
	Determinism
	Pairwise Semantics

	Abstract Semantics
	Abstract State

	Implementation
	Reference Arrays

	Evaluation
	Results
	Summary

	Related Work
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

