

Lecture Notes in Computer Science 6343
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK

Josef Kittler, UK

Alfred Kobsa, USA

John C. Mitchell, USA

Oscar Nierstrasz, Switzerland

Bernhard Steffen, Germany

Demetri Terzopoulos, USA

Gerhard Weikum, Germany

Takeo Kanade, USA

Jon M. Kleinberg, USA

Friedemann Mattern, Switzerland

Moni Naor, Israel

C. Pandu Rangan, India

Madhu Sudan, USA

Doug Tygar, USA

Advanced Research in Computing and Software Science

Subline of Lectures Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, University of Freiburg, Germany

Benjamin C. Pierce, University of Pennsylvania, USA

Bernhard Steffen, University of Dortmund, Germany

Madhu Sudan, Microsoft Research, Cambridge, MA, USA

Deng Xiaotie, City University of Hong Kong

Jeannette M. Wing, Carnegie Mellon University, Pittsburgh, PA, USA

Nancy A. Lynch
Alexander A. Shvartsman (Eds.)

Distributed
Computing
24th International Symposium, DISC 2010
Cambridge, MA, USA, September 13-15, 2010
Proceedings

13

Volume Editors

Nancy A. Lynch
Massachusetts Institute of Technology
Computer Science and Artificial Intelligence Laboratory
77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA
E-mail: lynch@theory.csail.mit.edu

Alexander A. Shvartsman
University of Connecticut, Computer Science and Engineering
371 Fairfield Way, Unit 2155, Storrs, CT 06269, USA
E-mail: aas@cse.uconn.edu

Library of Congress Control Number: 2010933792

CR Subject Classification (1998): C.2.4, C.2, H.4, D.2, H.3, I.2.11

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-15762-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-15762-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

DISC, the International Symposium on DIStributed Computing, is an interna-
tional forum on the theory, design, analysis, implementation and application of
distributed systems and networks. DISC is organized in cooperation with the
European Association for Theoretical Computer Science (EATCS).

This volume contains the papers presented at DISC 2010, the 24th Interna-
tional Symposium on Distributed Computing, held on September 13–15, 2010 in
Cambridge, Massachusetts. The volume also includes the citation for the 2010
Edsger W. Dijkstra Prize in Distributed Computing, jointly sponsored by DISC
and PODC (the ACM Symposium on Principles of Distributed Computing),
which was presented at PODC 2010 in Zurich to Tushar D. Chandra, Vassos
Hadzilacos, and Sam Toueg for their work on failure detectors.

There were 135 papers submitted to the symposium (in addition there were 14
abstract-only submissions). The Program Committee selected 32 contributions
out of the 135 full-paper submissions for regular presentations at the sympo-
sium. Each presentation is accompanied by a fifteen-page paper in this volume.
Every submitted paper was read and evaluated by at least three members of the
Program Committee. The committee was assisted by more than 120 external re-
viewers. The Program Committee made its final decisions during the electronic
meeting held on June 18–29, 2010. Revised and expanded versions of several
selected papers will be considered for publication in a special issue of the journal
Distributed Computing.

The program also included three invited lectures by Rachid Guerraoui (EPFL,
Switzerland), Barbara Liskov (MIT, USA), and Nitin Vaidya (University of Illi-
nois, USA).

The Best Student Paper Award was presented to François Bonnet for the
paper “Anonymous Asynchronous Systems: the Case of Failure Detectors,” co-
authored with Michel Raynal.

The Program Committee also considered over 30 papers for brief announce-
ments among the papers that generated substantial interest from the mem-
bers of the committee, but that could not be accepted for regular presenta-
tions. This volume contains 14 invited brief announcements. Each two-to-three
page announcement presents ongoing work or recent results, and it is expected
that these results will appear as full papers in other conference proceedings or
journals.

VI Preface

There were three workshops co-located with DISC this year: the 2nd Work-
shop on Theoretical Aspects of Dynamic Distributed Systems on September 12th,
and the 2nd Workshop on the Theory of Transactional Memory and the 6th In-
ternational Workshop on Foundations of Mobile Computing on September 16th.

September 2010 Nancy Lynch
Alexander Shvartsman

Symposium Organization

DISC, the International Symposium on Distributed Computing, is an annual
forum for the presentation of research on all aspects of distributed comput-
ing. It is organized in cooperation with the European Association for Theoret-
ical Computer Science (EATCS). The symposium was established in 1985 as a
biennial International Workshop on Distributed Algorithms on Graphs (WDAG).
The scope was soon extended to cover all aspects of distributed algorithms and
WDAG came to stand for International Workshop on Distributed AlGorithms,
becoming an annual symposium in 1989. To reflect the expansion of its area of in-
terest, the name was changed to DISC (International Symposium on DIStributed
Computing) in 1998, opening the symposium to all aspects of distributed com-
puting. The aim of DISC is to reflect the exciting and rapid developments in
this field.

Program Chairs

Nancy Lynch MIT, USA
Alexander Shvartsman University of Connecticut, USA

Program Committee

Marcos K. Aguilera Microsoft Research Silicon Valley, USA
Soma Chaudhuri Iowa State University, USA
Bogdan Chlebus University of Colorado Denver, USA
Gregory Chockler IBM Research, Israel
Rui Fan The Technion, Israel
Pascal Felber University of Neuchatel, Switzerland
Paola Flocchini University of Ottawa, Canada
Pierre Fraigniaud CNRS and Univ. Paris Diderot, France
Petr Kuznetsov TU Berlin/Deutsche Telekom Lab., Germany
Dariusz Kowalski University of Liverpool, UK
Fabian Kuhn University of Lugano, Switzerland
Victor Luchangco Sun Microsystems Labs, USA
Yoram Moses The Technion, Israel
Peter Musial University of Puerto Rico Rio Piedras, USA
Michel Raynal IRISA, France
Andrea Richa Arizona State University, USA
Paul Spirakis Research Acad. Computer Tech. Inst., Greece
Robbert van Renesse Cornell University, USA
Jennifer Welch Texas A&M University, USA
Shmuel Zaks The Technion, Israel

VIII Symposium Organization

Steering Committee

Antonio Fernandez Anta Universidad Rey Juan Carlos, Spain
Chryssis Georgiou University of Cyprus
Idit Keidar The Technion, Israel
Andrzej Pelc University of Quebec, Canada
Sergio Rajsbaum UNAM, Mexico
Nicola Santoro (Chair) Carleton University, Canada
Gadi Taubenfeld IDC Herzliya, Israel

Local Organization

Tigran Anotnyan University of Connecticut, USA
Seda Davtyan University of Connecticut, USA
Nancy Lynch MIT, USA
Peter Musial University of Puerto Rico Rio Piedras, USA
Nicolas Nicolaou University of Connecticut, USA
Alexander Shvartsman University of Connecticut, USA
Ealine Sonderegger University of Connecticut, USA
Therese Smith University of Connecticut, USA

External Reviewers

Ittai Abraham
Dan Alistarh
Zakia Asad
James Aspnes
Balasingham Balamohan
Leonid Barenboim
Alysson Bessani
Martin Biely
Paolo Boldi
Borzoo Bonakdarpour
Armando Castaneda
Claris Castillo
Jeremie Chalopin
Ching-Lueh Chang
Ioannis Chatzigiannakis
Hana Chockler
Vicent Cholvi
Hyun-Chul Chung
Alejandro Cornejo
Andrzej Czygrinow
Jurek Czyzowicz
Luke Dalesandro

Shantanu Das
Peleg David
Seda Davtyan
Xavier Defago
Carole Delporte
Partha Dutta
Michael Elkin
Faith Ellen
Yuval Emek
Michael Fischer
Michele Flammini
Dimitris Fotakis
Juan Garay
Leszek Gasieniec
Cyril Gavoille
Chryssis Georgiou
Seth Gilbert
Sarunas Girdzijauskas
Noam Gordon
Maria Gradinariu Potop-Butucaru
Vincent Gramoli
Fabiola Greve

Symposium Organization IX

Rachid Guerraoui
Tim Harris
Avinatan Hassidim
Danny Hendler
Maurice Herlihy
Ted Herman
Ezra Hoch
Prasad Jayanti
Colette Johnen
Michal Kapalka
Idit Keidar
Barbara Keller
Roger Keller
Majid Khabbazian
Marek Klonowski
Kishori Konwar
Amos Korman
Miroslaw Korzeniowski
Adrian Kosowski
Rastislav Kralovic
Geetika T. Lakshmanan
Hyunyoung Lee
Vasiliki Liagkou
Andrzej Lingas
Yung-Hsiang Lu
Dahlia Malkhi
Yishay Mansour
Virendra Marathe
Euripides Markou
Maged Michael
Othon Michail
Alessia Milani
Sayan Mitra
Neeraj Mittal
Mark Moir
Angelo Monti
Luca Moscardelli
Thomas Moscibroda
Miguel Mosteiro
Chet Murthy
Georgios Mylonas
Gil Neiger
Calvin Newport

Nicolas Nicolaou
Sotiris Nikoletseas
Nikos Ntarmos
Doron Nussbaum
Edusmildo Orozco
Humberto Ortiz-Zuazaga
Rotem Oshman
Panagiota Panagopoulou
Andrzej Pelc
Dmitri Perelman
Mia Persson
Frank Petit
Giuseppe Prencipe
Vivien Quema
Torvald Riegel
Etienne Riviere
Peter Robinson
Mariusz Rokicki
Jared Saia
Livia Sampaio
Srikanth Sastry
Christian Scheideler
Stefan Schmid
Nir Shavit
Therese Smith
Elaine Sonderegger
Mike Spreitzer
Yannis Stamatiou
Aaron Sterling
Adi Suissa
Gilles Tredan
Yih-Kuen Tsay
Mark Tuttle
Julian Velev
Ymir Vigfusson
Saira Viqar
Marko Vukolic
Jiaqi Wang
Roger Wattenhofer
Prudence Wong
Masafumi Yamashita
Piotr Zielinsky

X Symposium Organization

Sponsoring Organizations

European Association for
Theoretical Computer Science

Computer Science Department of the
University of Puerto Rico Rio Piedras

Booth Engineering Center for
Advanced Technology at UCONN

VeroModo, Inc.

DISC 2010 acknowledges the use of the EasyChair system for handling submis-
sions, managing the review process, and helping compile these proceedings.

Table of Contents

The 2010 Edsger W. Dijkstra Prize in Distributed Computing 1

Invited Lecture I: Consensus (Session 1a)

The Power of Abstraction (Invited Lecture Abstract) 3
Barbara Liskov

Fast Asynchronous Consensus with Optimal Resilience 4
Ittai Abraham, Marcos K. Aguilera, and Dahlia Malkhi

Transactions (Session 1b)

Transactions as the Foundation of a Memory Consistency Model 20
Luke Dalessandro, Michael L. Scott, and Michael F. Spear

The Cost of Privatization . 35
Hagit Attiya and Eshcar Hillel

A Scalable Lock-Free Universal Construction with Best Effort
Transactional Hardware . 50

Francois Carouge and Michael Spear

Window-Based Greedy Contention Management for Transactional
Memory . 64

Gokarna Sharma, Brett Estrade, and Costas Busch

Shared Memory Services and Concurrency
(Session 1c)

Scalable Flat-Combining Based Synchronous Queues 79
Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir

Fast Randomized Test-and-Set and Renaming . 94
Dan Alistarh, Hagit Attiya, Seth Gilbert, Andrei Giurgiu, and
Rachid Guerraoui

Concurrent Computing and Shellable Complexes . 109
Maurice Herlihy and Sergio Rajsbaum

XII Table of Contents

Brief Announcements I (Session 1d)

Hybrid Time-Based Transactional Memory . 124
Pascal Felber, Christof Fetzer, Patrick Marlier, Martin Nowack, and
Torvald Riegel

Quasi-Linearizability: Relaxed Consistency for Improved
Concurrency . 127

Yehuda Afek, Guy Korland, and Eitan Yanovsky

Fast Local-Spin Abortable Mutual Exclusion with Bounded Space 130
Hyonho Lee

Wireless Networks (Session 1e)

What Is the Use of Collision Detection (in Wireless Networks)? 133
Johannes Schneider and Roger Wattenhofer

Deploying Wireless Networks with Beeps . 148
Alejandro Cornejo and Fabian Kuhn

Distributed Contention Resolution in Wireless Networks 163
Thomas Kesselheim and Berthold Vöcking

A Jamming-Resistant MAC Protocol for Multi-Hop Wireless
Networks . 179

Andrea Richa, Christian Scheideler, Stefan Schmid, and Jin Zhang

Brief Announcements II (Session 1f)

Simple Gradecast Based Algorithms . 194
Michael Ben-Or, Danny Dolev, and Ezra N. Hoch

Decentralized Network Bandwidth Prediction . 198
Sukhyun Song, Pete Keleher, Bobby Bhattacharjee, and
Alan Sussman

Synchronous Las Vegas URMT Iff Asynchronous Monte Carlo
URMT . 201

Abhinav Mehta, Shashank Agrawal, and Kannan Srinathan

Invited Lecture II: Best Student Paper (Session 2a)

Foundations of Speculative Distributed Computing
(Invited Lecture Extended Abstract) . 204

Rachid Guerraoui

Table of Contents XIII

Anonymous Asynchronous Systems: The Case of Failure Detectors 206
François Bonnet and Michel Raynal

Consensus and Leader Election (Session 2b)

The Computational Structure of Progress Conditions 221
Gadi Taubenfeld

Scalable Quantum Consensus for Crash Failures . 236
Bogdan S. Chlebus, Dariusz R. Kowalski, and Micha�l Strojnowski

How Much Memory Is Needed for Leader Election . 251
Emanuele G. Fusco and Andrzej Pelc

Leader Election Problem versus Pattern Formation Problem 267
Yoann Dieudonné, Franck Petit, and Vincent Villain

Mobile Agents (Session 2c)

Rendezvous of Mobile Agents in Directed Graphs . 282
Jérémie Chalopin, Shantanu Das, and Peter Widmayer

Almost Optimal Asynchronous Rendezvous in Infinite Multidimensional
Grids . 297

Evangelos Bampas, Jurek Czyzowicz, Leszek G ↪asieniec,
David Ilcinkas, and Arnaud Labourel

Exclusive Perpetual Ring Exploration without Chirality 312
Lélia Blin, Alessia Milani, Maria Potop-Butucaru, and
Sébastien Tixeuil

Drawing Maps with Advice . 328
Dariusz Dereniowski and Andrzej Pelc

Invited Lecture III: Wireless Networks (Session 3a)

Network-Aware Distributed Algorithms: Challenges
and Opportunities in Wireless Networks
(Invited Lecture Summary) . 343

Nitin Vaidya

Connectivity Problem in Wireless Networks . 344
Dariusz R. Kowalski and Mariusz A. Rokicki

XIV Table of Contents

Computing in Wireless and Mobile Networks
(Session 3b)

Trusted Computing for Fault-Prone Wireless Networks 359
Seth Gilbert and Dariusz R. Kowalski

Opportunistic Information Dissemination in Mobile Ad-hoc Networks:
The Profit of Global Synchrony . 374

Antonio Fernández Anta, Alessia Milani, Miguel A. Mosteiro, and
Shmuel Zaks

Brief Announcements III (Session 3c)

Failure Detectors Encapsulate Fairness . 389
Scott M. Pike, Srikanth Sastry, and Jennifer L. Welch

Automated Support for the Design and Validation of Fault Tolerant
Parameterized Systems - A Case Study . 392

Francesco Alberti, Silvio Ghilardi, Elena Pagani, Silvio Ranise, and
Gian Paolo Rossi

On Reversible and Irreversible Conversions . 395
Mitre C. Dourado, Lucia Draque Penso, Dieter Rautenbach, and
Jayme L. Szwarcfiter

A Decentralized Algorithm for Distributed Trigger Counting 398
Venkatesan T. Chakaravarthy, Anamitra R. Choudhury,
Vijay K. Garg, and Yogish Sabharwal

Flash-Log – A High Throughput Log . 401
Mahesh Balakrishnan, Philip A. Bernstein, Dahlia Malkhi,
Vijayan Prabhakaran, and Colin Reid

New Bounds for Partially Synchronous Set Agreement 404
Dan Alistarh, Seth Gilbert, Rachid Guerraoui, and Corentin Travers

Modeling Issues and Adversity (Session 3d)

It’s on Me! The Benefit of Altruism in BAR Environments 406
Edmund L. Wong, Joshua B. Leners, and Lorenzo Alvisi

Beyond Lamport’s Happened-Before: On the Role of Time Bounds in
Synchronous Systems . 421

Ido Ben-Zvi and Yoram Moses

On the Power of Non-spoofing Adversaries . 437
H.B. Acharya and Mohamed Gouda

Table of Contents XV

Implementing Fault-Tolerant Services Using State Machines: Beyond
Replication . 450

Vijay K. Garg

Self-stabilizing and Graph Algortihms (Session 3e)

Low Communication Self-stabilization through Randomization 465
Shay Kutten and Dmitry Zinenko

Fast Self-stabilizing Minimum Spanning Tree Construction: Using
Compact Nearest Common Ancestor Labeling Scheme 480

Lélia Blin, Shlomi Dolev, Maria Gradinariu Potop-Butucaru, and
Stephane Rovedakis

The Impact of Topology on Byzantine Containment in Stabilization 495
Swan Dubois, Toshimitsu Masuzawa, and Sébastien Tixeuil

Minimum Dominating Set Approximation in Graphs of Bounded
Arboricity . 510

Christoph Lenzen and Roger Wattenhofer

Brief Announcements IV (Session 3f)

Sharing Memory in a Self-stabilizing Manner . 525
Noga Alon, Hagit Attiya, Shlomi Dolev, Swan Dubois,
Maria Gradinariu, and Sébastien Tixeuil

Stabilizing Consensus with the Power of Two Choices 528
Benjamin Doerr, Leslie Ann Goldberg, Lorenz Minder,
Thomas Sauerwald, and Christian Scheideler

Author Index . 531

The 2010 Edsger W. Dijkstra Prize in
Distributed Computing

The ACM-EATCS Edsger W. Dijkstra Prize in Distributed Computing was cre-
ated to acknowledge outstanding papers on the principles of distributed com-
puting whose significance and impact on the theory or practice of distributed
computing have been evident for at least a decade.

The Prize is sponsored jointly by the ACM Symposium on Principles of Dis-
tributed Computing (PODC) and the EATCS Symposium on Distributed Com-
puting (DISC). This award is presented annually, with the presentation taking
place alternately at PODC and DISC.

The 2010 Dijkstra Prize Committee, composed of Nancy Lynch (Co-Chair),
Alexander Shvartsman (Co-Chair), James Anderson, James Aspnes, Pierre Fraig-
niaud, Rachid Guerraoui, and Maurice Herlihy, has selected

Tushar D. Chandra, Vassos Hadzilacos, and Sam Toueg,

to receive the 2010 Edsger W. Dijkstra Prize in Distributed Computing for the
following two outstanding papers:

Tushar D. Chandra and Sam Toueg. Unreliable Failure Detectors for
Reliable Distributed Systems, Journal of the ACM, 43(2):225-267, 1996.
(The first version appearing in the Proceedings of the 10th ACM Sym-
posium on Principles of Distributed Computing, 1991.)

Tushar D. Chandra, Vassos Hadzilacos and Sam Toueg. The Weakest
Failure Detector for Solving Consensus, Journal of the ACM, 43(4):685-
722, 1996. (The first version appearing in the Proceedings of the 11th
ACM Symposium on Principles of Distributed Computing, 1992.)

This pair of papers has had a deep impact on research in distributed comput-
ing. The work introduces and defines the notion of (unreliable) failure detectors
in a distributed system, establishing a theory of failure detectors grounded on
a general and precise framework. These papers have greatly influenced how one
can reason about and deal with failures in distributed systems.

A failure detector is defined as an abstraction that provides each process
with information about failures. The information may have different levels of
accuracy and completeness, leading to different failure detectors, each precisely
defined by properties relating the pattern of actual failures to the information
provided by the failure detector. This modular approach separates definition
from use and implementation, and leads to an elegant framework for developing
algorithms and failure detector implementations, and for understanding the fail-
ure information and synchrony needed to solve distributed problems. The work
has identified, in particular, the weakest failure detector for solving the consensus
problem in an asynchronous system subject to failures. This work has been very

N.A. Lynch and A.A. Shvartsman (Eds.): DISC 2010, LNCS 6343, pp. 1–2, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 M.K. Aguilera and M. Raynal

influential. It has led to the development of new failure-detector-based protocols
for solving consensus; to the definition of new failure detectors to tackle other
distributed computing problems; to the study of various weak forms of partial
synchrony as a means to obtain failure information; to the specification of the
quality-of-service of failure detection; to the formulation of lower bounds of fail-
ure information needed to solve problems; and to a better understanding of the
inherent hardness of solving distributed computing problems in the presence of
failures. The failure detector approach has been adopted by the community to
tackle many distributed problems, including group membership, atomic commit,
various broadcast types, reliable communication, set agreement, mutual exclu-
sion, transactional-memory contention management, leader election, and dining
philosophers.

To summarize, this pioneering work introduces a general and elegant frame-
work and theory for failure detectors; it establishes failure detectors as a first-
class abstraction; and it proposes an approach to investigate problems based on
this abstraction. The proposed approach has broadened the scope of research in
distributed computing, leading to the study and understanding of an impressive
variety of fundamental problems in distributed systems subject to failures.

Dr. Marcos K. Aguilera Prof. Michel Raynal
Microsoft Research Silicon Valley IRISA, University of Rennes
USA France

The Power of Abstraction
(Invited Lecture Abstract)

Barbara Liskov

Massachusetts Institute of Technology

Abstraction is at the center of much work in Computer Science. It encompasses finding
the right interface for a system as well as finding an effective design for a system im-
plementation. Furthermore, abstraction is the basis for program construction, allowing
programs to be built in a modular fashion. This talk will discuss how the abstraction
mechanisms we use today came to be, how they are supported in programming lan-
guages, and some possible areas for future research.

N.A. Lynch and A.A. Shvartsman (Eds.): DISC 2010, LNCS 6343, p. 3, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Fast Asynchronous Consensus
with Optimal Resilience

Ittai Abraham, Marcos K. Aguilera, and Dahlia Malkhi

Microsoft Research Silicon Valley

Abstract. We give randomized agreement algorithms with constant ex-
pected running time in asynchronous systems subject to process failures,
where up to a minority of processes may fail. We consider three types
of process failures: crash, omission, and Byzantine. For crash or omis-
sion failures, we solve consensus assuming private channels or a public-
key infrastructure, respectively. For Byzantine failures, we solve weak
Byzantine agreement assuming a public-key infrastructure and a broad-
cast primitive called weak sequenced broadcast. We show how to obtain
weak sequenced broadcast using a minimal trusted platform module.
The presented algorithms are simple, have optimal resilience, and have
optimal asymptotic running time. They work against a sophisticated ad-
versary that can adaptively schedule messages, processes, and failures
based on the messages seen by faulty processes.

1 Introduction

In the consensus problem, each process starts with some initial value and must
make an irrevocable decision on one of the initial values, such that all correct
processes decide on the same value. The challenge lies in solving consensus in the
presence of faulty processes. In this paper we consider asynchronous message-
passing systems, where processes communicate by sending messages, and there
are no bounds on message delays or on the relative speed of processes. In such
a system, consensus cannot be solved [21], but it can be solved if processes need
to terminate only with probability one [3].

Chor, Merritt, and Shmoys [11] gave an algorithm that solves consensus with
probability one in constant expected time, in a system with crash failures and
n ≥ 3+

√
5

2 f+1 ≈ 2.62f+1, where n is the number of processes and f is the
maximum number of faulty processes. Subsequently, Attiya and Welch [2] gave
an algorithm based on an observation of Gafni, which works with the opti-
mal resiliency of n ≥ 2f+1, but the algorithm requires a message-independent
adversary—one that acts independently of the content of messages.

Our first result is an algorithm that works in a system with n ≥ 2f+1 and a
rather sophisticated adversary that can adaptively schedule messages, processes,
and failures based on the message contents seen by faulty processes. The algo-
rithm relies on private channels. It uses a secret sharing scheme and a simple
binding gather primitive, explained in Section 4.

N.A. Lynch and A.A. Shvartsman (Eds.): DISC 2010, LNCS 6343, pp. 4–19, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Fast Asynchronous Consensus with Optimal Resilience 5

Theorem 1. Consensus can be solved by an algorithm with constant expected running
time in an asynchronous system with private channels, a sophisticated adversary, and
n ≥ 2f+1 processes, where f processes may crash.

Our result for crash failures can be easily extended to (general) omission failures,
assuming the presence of a public-key infrastructure (PKI). Roughly speaking,
a PKI provides a public-key cryptographic system in which each process pi has
a secret decryption function Di and secret signing function Si, and all processes
know the public encryption function Ej and the public one-way signature veri-
fication function Vj of all other processes pj . Except with negligible probability,
signatures cannot be forged and encrypted messages cannot be decrypted by a
party that does not have the secret signing or decryption functions. A PKI can
be implemented under suitable cryptographic assumptions. By using a PKI, we
require the adversary to be computationally bounded and our algorithms have a
negligible probability of not terminating due to the adversary breaking the PKI.

Theorem 2. Consensus can be securely implemented by an algorithm with constant
expected running time in an asynchronous system with a computationally-bounded so-
phisticated adversary, a public-key infrastructure, and n ≥ 2f+1 processes, where f
processes may experience omission failures.

Our next result concerns Byzantine failures, and it builds upon our result for
omission failures. A simple partitioning argument shows that Byzantine agree-
ment (consensus) cannot be solved with 2f+1 ≤ n ≤ 3f , even with a PKI.
Hence, we augment the system with a primitive called weak sequenced broad-
cast. Roughly speaking, weak sequenced broadcast is a broadcast that ensures
that (a) messages from a given sender are delivered by correct processes in the
same order; this is an ordering per-sender, similar to FIFO broadcast, and (b)
if the sender is correct then eventually all processes will receive all its messages.
We show one way to implement weak sequenced broadcast by using a minimal
trusted platform module, a component which is becoming standard.

Even with weak sequenced broadcast, Byzantine agreement cannot be solved
with 2f+1 ≤ n ≤ 3f , because correct processes may decide a value that is not
one of their initial values, even if their initial values are all the same, violating the
Validity property of Byzantine agreement. So we require the Validity property
to hold only if all processes are correct, and therefore we solve weak Byzantine
agreement [26]. The algorithm has constant expected running time in a system
with weak sequenced broadcast and n ≥ 2f+1. It borrows from the approach of
Feldman and Micali [18,19] based on verifiable secret sharing (VSS). Using weak
sequenced broadcast, we can implement several building blocks like sequenced
broadcast (which we define later) and VSS. We are not aware of other work for
asynchronous systems with Byzantine failures and n ≥ 2f+1.

Theorem 3. Weak Byzantine agreement can be securely implemented by an algorithm
with constant expected running time in an asynchronous system with a computationally-
bounded sophisticated adversary, a public-key infrastructure, weak sequenced broad-
cast, and n ≥ 2f+1 processes, where f processes may be Byzantine.

6 I. Abraham, M.K. Aguilera, and D. Malkhi

Weak sequenced broadcast itself may be implemented in many ways, one
of which is demonstrated here by using a minimal trusted platform module
(TPM). The TPM has a register which can be updated only by invoking guarded
functions of the module, and stores a private key which is used for signing the
register value upon request. This system model is useful when one can trust the
hardware platform but the system is otherwise vulnerable (say, to malware). But
in some other settings, the hardware of some machines may not be trusted. In
this case, we can use an external service to aid in implementing weak sequenced
broadcast, e.g., using a public certification authority [22] or other means.

All the algorithms we present have optimal resilience and asymptotically opti-
mal (constant) expected running time. They are based on a suitable combination
of known techniques as we explain below. Due to space limitations, the proofs
of our results are omitted; they will be included in the full version.

Related work. Our work touches one of the most active areas of research in
distributed computing, and it is therefore beyond our scope to cover all related
work. Below, we cover the most relevant results and we refer the reader to [28,2]
for an extensive treatment.

Byzantine failures. There have been proposals to solve Byzantine agree-
ment in a system with n ≥ 2f+1 using strong primitives such as an append-only
log [12] or trusted increment [27]. The append-only log is similar to weak se-
quenced broadcast. However, these works differ from ours because they consider
partially synchronous systems, that is, the liveness of the algorithms is con-
ditional on eventual synchrony. In contrast, we consider a fully asynchronous
system and provide randomized algorithms that terminate with probability one
(except for a negligible probability that the cryptosystem is broken). Our imple-
mentation of weak sequenced broadcast using TPM’s is similar to the scheme by
[25]. A formal specification of TPM’s is given in [31]. The idea of using strong
primitives to boost the resilience of Byzantine agreement algorithms has been
suggested in the wormhole approach of Correia et al [13]. Our solution for the
Byzantine case uses a simple asynchronous VSS protocol for n ≥ 2f+1, which is
based on zero knowledge and weak sequenced broadcast. Our asynchronous VSS
protocol is similar to the PVSS protocol of [30] (but they have not considered
asynchronous VSS or use weak sequenced broadcast). Other asynchronous VSS
protocols work only for n ≥ 3f+1 [9,6].

A public-key infrastructure has often been used for reaching agreement. In
synchronous systems with Byzantine failures, Dolev and Strong [15] show how
to solve terminating reliable broadcast for n ≥ f+1. Katz and Koo [24] show
how to solve Byzantine agreement for n ≥ 2f+1 in constant expected time [24]
(also see [17]). Our asynchronous randomized probabilistic agreement primitive
is similar to the leader based approach of [24]. In asynchronous systems, [8] shows
how to solve Byzantine agreement for n ≥ 3f+1 in constant expected time with
asymptotically optimal message complexity.

Without computational assumptions, Byzantine agreement with probability
one in an asynchronous system is given by Ben-Or [3] for n ≥ 5f+1 and by

Fast Asynchronous Consensus with Optimal Resilience 7

Bracha [5] for n ≥ 3f+1. However, these algorithms take expected exponential
time for decision. Our solution is based on the approach of [3].

Algorithms for solving Byzantine agreement in constant expected time are
given by Feldman and Micali [18,19] for n ≥ 3f+1 for the synchronous model and
n ≥ 4f+1 for the asynchronous model [17]. For n ≥ 3f+1 and an asynchronous
model, [9,29] solve Byzantine agreement with probability 1− ε and, conditional
on success, processes terminate in constant expected number of rounds, while [1]
solves Byzantine agreement with probability one termination and a polynomial
expected running time. If n ≤ 3f , randomized Byzantine agreement is impossible
in an asynchronous system even with a PKI. It is also impossible in a synchronous
system without a PKI [20]. [4] solves Byzantine agreement in expected constant
rounds in an asynchronous system with n ≥ 5f+1. This protocol has O(log n)
communication complexity per message; however, it assumes a trusted dealer and
does not obtain optimal resilience. Our solution, like those of [18,11,19,9,29,1],
require polynomial communication complexity per message.

Benign failures. [11] addresses the problem of solving consensus in con-
stant expected time with crash or omission failures. There are algorithms for
synchronous systems and n ≥ 2f+1, and for asynchronous systems and n ≥
3+

√
5

2 f+1. An algorithm for asynchronous systems and n ≥ 2f+1 is given in
[2] using a get-core primitive suggested by Gafni, but this algorithm requires a
message-independent adversary. Our solutions use a similar structure and prim-
itives as [11,2]. The main differences are the following: (1) to handle stronger
adversaries we need a stronger binding gather primitive; (2) we use probabilistic
agreement to solve multi-valued consensus while [11,2] use a common coin to just
solve binary consensus; (3) to handle stronger adversaries, we use verifiable se-
cret sharing; (4) we give an algorithm that tolerates Byzantine failures. For asyn-
chronous systems, it is conjectured that the protocol of [1] solves consensus for
n ≥ 3f+1 in constant expected time (without a PKI) for a message-dependent
adversary and omission failures. Our work differs because we give algorithms
for asynchronous systems and n ≥ 2f+1. Consensus can also be solved with
n ≥ 2f+1 in partially synchronous systems [14,16], or in systems with failure
detectors [10].

2 Model

We consider a system with n processes denoted p1, . . . , pn that can communi-
cate with each other via point-to-point messages. The system is asynchronous
meaning that there are no bounds on message delays or on the relative speed
of processes. Processes have access to a source of uniformly random bits. The
system is subject to process failures, and we consider several possibilities:

1. Crash failures. A process may fail by crashing, that is, it stops taking
steps. Communication between every pair of processes is reliable. More precisely,
the following properties are satisfied for every processes pi and pj :
– Integrity. If pi receives a message m from pj exactly k times by time t then

pj sent m to pi at least k times before time t.

8 I. Abraham, M.K. Aguilera, and D. Malkhi

– No Loss. If pj does not crash and pi sends m to pj exactly k times by time
t then pj eventually receives m from pi at least k times.

2. Omission failures. A faulty process may experience omission failures, in
which it fails to send or receive messages. More precisely, for every processes pi

and pj , the Integrity property above holds, but the No Loss property is guaran-
tees to hold only if pi and pj are not faulty.

3. Byzantine failures. A faulty process may behave arbitrarily, including
deviating from its code. The Integrity and No Loss properties hold for every
pair of correct processes pi and pj . If pi or pj is Byzantine, neither property may
hold.

If a process never becomes faulty we say that it is correct.
Power of adversary. When designing fault-tolerant algorithms, we often as-

sume that an intelligent adversary has some control of the system: it may be
able to control the occurrence and the timing of process failures, the message
delays, and the scheduling of processes. Adversaries may have limitations on
their computing power and on the information that they can obtain from the
system. Different algorithms are designed to defeat different types of adversaries.
The simplest adversary is the message-oblivious adversary, which cannot look
at the internal state of processes or the contents of messages. Our algorithms
can defeat a stronger adversary, called the sophisticated adversary, which we
now describe. At any point in the execution, the adversary may choose to make
a process faulty, provided that at most f < n/2 processes are faulty. A faulty
process may not exhibit faulty behavior immediately: with Byzantine failures, a
faulty process may continue to behave well for a while; with omission failures,
a faulty process may continue to handle messages without loss; with crash fail-
ures, a faulty process may continue to execute for a while. The adversary has
full knowledge of the internal state of a faulty process. In particular, it knows all
the messages that it sends and receives. With this information, at any time in
the execution, the adversary can dynamically select which process takes the next
step and which message this process receives (if any). The adversary, however,
operates under the following restrictions: the final schedule must fair, mean-
ing that all correct processes take infinitely many steps, and the messages sent
and received must satisfy the Integrity and No Loss property according to the
type of failure considered (crash, omission, or Byzantine) as described above.
In some cases, we consider a computationally-bounded adversary, which has the
additional requirement that its computation is limited to polynomially-bounded
functions.

3 Problem

We are interested in solving consensus and probabilistic agreement, which we
now define.

Consensus. Each process starts with some initial value and must decide on a
single value. In the classical consensus problem, the following must hold:

Fast Asynchronous Consensus with Optimal Resilience 9

– Validity. If a correct process decides on a value v then v is one of the initial
values.

– Agreement. No two correct processes decide differently.
– Termination. Every correct process eventually decides.

Consensus cannot be solved in an asynchronous system subject to failures [21],
so we consider the following weakening of termination:

– Termination with probability one. With probability one, all correct processes
eventually decide.

We are interested in fast algorithms, which we define to be algorithms in which
correct processes decide in constant expected time.

For a system with Byzantine failures, we consider a weakening of consensus
called weak Byzantine agreement, obtained by replacing the validity property
with the following:

– No-Failure Validity. If all processes are correct and a correct process decides
on a value v then v is one of the initial values.1

Probabilistic agreement. Probabilistic agreement is a variant of consensus
in which processes may decide different values with some probability smaller
than one. More precisely, we require the Validity and Termination properties as
defined above, as well as the following:

– Uncertain agreement. With probability at least ρ > 0, no two correct pro-
cesses decide differently.

Here ρ > 0 is some constant. For practical purposes it should be large, say 1/3.
For a system with Byzantine failures, we consider a variant called certified

probabilistic agreement, in which the initial value of a process (whether correct
or Byzantine) is certified by some computationally unforgeable means, as we later
explain. Algorithms will use this certification to provide the validity property.

Cryptographic primitives. The use of cryptography in algorithms can create
a negligible probability of failure of the algorithm, including non-termination,
due to the adversary breaking the cryptographic primitives by randomly guess-
ing keys. Technically, we say that an algorithm securely implements consensus
(instead of “implements consensus”) to indicate this negligible probability of
failure.

4 Binding Gather

Our fast algorithms for benign failures are based on a simple primitive called
binding gather. All correct processes invoke binding gather(v) with some input
value v, and the primitive returns as output a set of values, such that the fol-
lowing holds:
1 This property implies the standard validity property of weak Byzantine agree-

ment [26], which states that if all processes are correct and they have the same
initial value v then no correct process decides on a value other than v.

10 I. Abraham, M.K. Aguilera, and D. Malkhi

– Validity. Every value in every output set is the input value of some process.
– Binding Commonality. There exists some value v such that v is in every

output set, and v can be determined by an external observer when the first
process outputs its set.

– Termination. All correct processes eventually output some non-empty set of
values.

A value that is in every output set is called a common value. The binding gather
primitive is easy to implement in a system with crash or omission failures using
three asynchronous rounds of a full-information protocol (Section 6.3 extends
the primitive and implementation to Byzantine failures):

Round 1. pi sends its input to all, waits for n−f values, and stores it in set seeni.
Round 2. pi sends set seeni to all, waits for n−f sets, and stores their union

in set seenmorei.
Round 3. pi sends set seenmorei to all, waits for n−f sets, and returns the

union of these sets.

By using another round of a full-information protocol (a total of four rounds),
we can ensure that there exists a set of n−f common values. A similar three
round protocol called get-core appeared in [2]: it obtains a set of n−f com-
mon values where each common value has the first and third properties of
binding gather but does not provide Binding Commonality, a property needed
against sophisticated adversaries. If we used get-core, a sophisticated adversary
could influence which values appear in the common set, and this would break
our running time guarantees.

5 Algorithms for Crash Failures

We now present algorithms for consensus and probabilistic agreement that toler-
ate crash failures and terminate in constant expected time, assuming n ≥ 2f+1.
The algorithm for consensus uses probabilistic agreement as a building block, so
we start with the latter.

5.1 Fast Probabilistic Agreement

The fast algorithm for probabilistic agreement is similar to the algorithms in
[18,24], except that we use binding gather to make it work for n ≥ 2f+1 with
crash failures. Each process pi starts with an initial value vi. The rough idea
of the algorithm is that each process pi picks a random rank for itself (a rank
is a number) and sends to all a message containing its rank and vi. A process
collects n−f such pairs and calls binding gather to share its set of n−f pairs.
Binding gather will return a set of such sets, with the property that at least one
set C of n−f pairs is returned to every process. Each process looks at all pairs
in all sets that it gets from binding gather, finds the largest rank, and decides
on the value associated with that rank. If the ranks are uniformly random, the
true largest rank M will be in C with probability at least (n−f)/n ≥ 1/2, which

Fast Asynchronous Consensus with Optimal Resilience 11

will cause all processes to pick M and hence decide on the same value. One
technicality is that the ranks need to be picked from a bounded interval, and
there is a probability that two different processes pick the same rank. We must
choose the interval to be large enough (0 . . .n4−1) so that this collision happens
with probability less than 1/n2. The algorithm is given in Figure 1.

Process pi has initial value vi and executes the following code:

1. ranki := random number between 0 and n2 − 1
2. send (ranki, vi) to all
3. wait to receive (rankj , vj) from n−f processes j
4. Ri := set of received (rankj , vj)’s
5. Vi := ∪binding-gather(Ri) (* binding-gather outputs a set of sets; flatten it out to Vi *)
6. max rank := max{rank : (rank, ∗) ∈ Vi}
7. choose v such that (max rank, v) ∈ Vi

8. decide(v)

Fig. 1. Fast algorithm for probabilistic agreement with crash failures, n ≥ 2f+1, and
a message-oblivious adversary

Process pi has initial value vi and executes the following code:

(* part 1: send values and shares *)
1. ri1, . . . , rin := pick n random numbers between 0 and n4 − 1
2. for j = 1..n do dealer-shareij(rij)
3. for j, k = 1..n do fork sharejk() (* run share protocol; it may not return if dealer crashes, so fork *)
4. wait for shareji to return for n−f distinct j’s, and let Si be the set of those j’s

(* processes in Si are those that contribute to pi ’s rank *)
5. send (Si, vi, i) to all
6. wait to receive (Sj , vj , j) from n−f processes; let Ji be the set of such messages

(* Ji has data of processes whose rank can be retrieved *)

(* part 2: gather *)
7. bigJ := ∪binding-gather(Ji) (* binding-gather outputs a set of sets; flatten it *)
8. P := {j : (∗, ∗, j) ∈ bigJ} (* P contains processes whose rank can be retrieved *)
9. for each (S, v, j) ∈ bigJ do (Sj , vj) := (S, v) (* extract Sj and vj *)

(* part 3: recover secrets *)
10. for each j, k = 1..n do fork { wait for sharejk to return; rjk := recoverjk() }

(* sharejk or recoverjk may not return, so do in background *)
11. for each j ∈ P do
12. wait for recoverkj to return for all k ∈ Sj

13. rankj :=
∑

k∈Sj
rkj mod n4 (* recover j’s rank *)

(* part 4: choose winner and decide *)
14. winner := argmaxj{rankj : j ∈ P} (* winner is process with highest rank *)
15. decide(vwinner)

Fig. 2. Fast algorithm for probabilistic agreement with crash failures, n ≥ 2f+1, and
a sophisticated adversary

This algorithm works with the simple message-oblivious adversary, but it does
not quite work with the sophisticated adversary: after the adversary learns the
largest rank M , it can coordinate the execution of binding gather to ensure that
C does not include M . To solve this problem, we use secret sharing to hide the
values of the ranks from the adversary until the common value of binding gather
has been determined.

12 I. Abraham, M.K. Aguilera, and D. Malkhi

The full algorithm is given in Figure 2. It uses binding gather and n2 copies
of the secret sharing primitives denoted dealer-shareij , shareij , and reconstructij

where i, j = 1..n The protocol has four parts. In the first part, pi picks n random
values ri1, . . . , rin. The idea is that we want to hide pi’s rank from pi itself,
because pi could be a faulty process that the adversary has access to. We use
the idea in Feldman and Micali’s protocol [18]: each process will pick a uniform
random value between 0 and n4−1 and pi’s rank will be the sum of n−f such
values (modulo n4), which is also uniformly distributed. Thus, the random value
rij that pi picks is pi’s contribution to the rank of pj . Process pi then uses secret
sharing to distribute shares of the rij ’s to all processes. It then waits to receive
shares of rji for n−f values of j; we let Si denote those values of j. Intuitively, Si

are those j’s that will contribute to the rank of pi. Process pi then sends (Si, vi, i)
to all, where vi is its initial input; other processes will use Si to reconstruct the
rank of pi later, and vi to decide in case pi is the process with the highest
rank. Finally, pi waits for such triples (Sj , vj , j) from n−f processes, and stores
them in Ji. Intuitively, Ji has the data (Sj , vj) of processes whose rank can be
retrieved: they did not crash too early in the protocol. In the second part of the
algorithm, pi calls binding gather with its set Ji, and obtains a bunch of such
sets from other processes, and puts all the triples (Sj , vj , j) obtained in a big set
bigJ. At this point, the common set C of binding gather has been determined, by
definition of binding gather, and with probability at least (n−f)/n− 1/n ≥ 1/3
(assuming f ≥ 1), C includes the process with largest rank and such a process is
unique. Process pi then unravels bigJ to extract a set P of processes and for each
j ∈ P , extracts their values of Sj and vj . In the third part, processes recover the
random numbers and add them together to produce the rank of each process in
P . A process may not be able to recover rkj (i.e., return from recoverkj) since
process pk may have crashed before returning from dealer-sharekj . However, this
does not happen for j ∈ P and k ∈ Sj : for those values of j and k, pj sent a
done message and completed sharekj by definition of P and Sj . Therefore, for
all j ∈ P , pi can retrieve the rank of pj by adding together the appropriate r∗j ’s
mod n4. This is stored in variable rankj . Finally, in part 4, process pi picks the
process in P with largest rank and decides on the value of that process.

5.2 Fast Consensus

Our consensus algorithm is obtained by modifying Ben-Or’s algorithm [3], which
is a binary consensus algorithm in which the processes’ initial values must be 0
or 1. The key idea of Ben-Or’s protocol is that, if all processes start a round with
the same estimate, then they all decide in that round. If there is no decision, at
the end of the round some processes will set their estimate to a random bit in the
hope that, if they are very lucky, processes will all end up with the same bit and
therefore will decide in the next round. If all n processes pick a bit randomly,
the probability that they will pick the same bit is exponentially small in n. As a
result, the expected number of rounds until decision is exponentially large in n.

We modify Ben-Or’s algorithm so that, at the end of each round, instead of
using a random coin, processes use an instance of probabilistic agreement to set

Fast Asynchronous Consensus with Optimal Resilience 13

Code for each process pi with initial value vi:

1. k := 0
2. while true do
3. k := k + 1

(* phase 1 *)
4. send (REPORT, k, vi) to all
5. wait to receive (REPORT, k, ∗) from n−f processes

(* phase 2 *)
6. if all received (REPORT, k, w) are for the same w
7. then send (PROPOSAL , k, w) to all
8. else send (PROPOSAL , k, ?) to all

9. wait to receive (PROPOSAL , k, ∗) from n−f processes

10. if received some (PROPOSAL , k, w) with w �= ? then vi := w
11. if all received (PROPOSAL , k, w) are for the same w then decide w

(* phase 3 *)
12. vi := probabilistic-agreement(k, vi) (* run k-th instance of probabilistic agreement with input vi *)

Fig. 3. Algorithm for consensus and n ≥ 2f+1, which uses probabilistic agreement
as a subroutine. By using a fast probabilistic agreement algorithm, we obtain a fast
consensus algorithm.

their estimate (there is an instance of probabilistic agreement per round). The
rationale is that probabilistic agreement has a high (constant) probability that
processes will pick the same value and hence decide in the next round. As a re-
sult, the expected number of rounds until decision is constant. There is another
more subtle difference between our algorithm and Ben-Or’s. To ensure agree-
ment, in Ben-Or’s algorithm a process does not change its estimate to a random
value at the end of a round if it believes another process may have decided. In
our algorithm, all processes unconditionally change their estimate to the deci-
sion value of probabilistic agreement. Doing so does not jeopardize agreement
because if a process decides v in a round, all processes will start probabilistic
agreement with v and hence will decide v (in probabilistic agreement). Another
difference between the algorithms is that our algorithm is not restricted to binary
consensus: initial values can come from any domain.

Our complete algorithm is shown in Figure 3. Each process maintains an
estimate of the decision in variable vi, which is initially the process initial value.
Processes proceed in rounds k = 1, 2, . . ., where each round has three phases. In
phase 1 of round k, a process sends a (report, k, vi) message with its estimate
vi to all, waits to receive n−f reports of round k, and checks whether a majority
of processes reported the same estimate w. If so, in phase 2, a process sends a
(propose, k, w) message to all, otherwise it sends a (propose, k, ?), where “?”
is a special value. There can be either 0 or 1 proposals different from ? in phase
2, because this proposal must have been reported in phase 1 by a majority of
processes. Processes wait for n−f proposals of round k. If all of them are for
the same value w �= ? then the process decides on w. If one of them is for a
value w �= ? then the process changes its estimate vi to w. In phase 3, processes
executes a new instance of probabilistic agreement using vi as its initial value,
and then changes vi to the decision.

14 I. Abraham, M.K. Aguilera, and D. Malkhi

This algorithm can be easily extended to handle omission failures: we use the
PKI to implement a private reliable send mechanism. Briefly, for p to send a
message m to q privately and reliably, it performs the following. p encrypts and
sends (m, q) to all processes and waits to receive acknowledgements from f+1
processes; a process that receives (m, q) from p sends an acknowledgement to p
and forwards m to q.

6 Algorithms for Byzantine Failures Using Weak
Sequence Broadcast

We now consider an asynchronous system with Byzantine failures, where n ≥
2f+1. In this setting, it is easy to show that consensus (with probability one
termination) cannot be solved even if processes have access to a public-key in-
frastructure. We therefore consider solutions that use weak sequenced broadcast
as a primitive, described in Section 6.1. We show that this primitive can be
implemented with a minimal TPM. Because the minimal TPM can be imple-
mented in a system with crash failures, it follows that deterministic consensus
is still impossible, even if processes have weak sequenced broadcast (otherwise,
processes could solve consensus in a system with crash failures). Thus, as be-
fore, we have to resort to randomized solutions that guarantee termination with
probability one minus a negligible probability due to the use of cryptography.
Using sequenced broadcast, we show how to implement probabilistic agreement
with Byzantine failures, and then how to implement weak Byzantine agreement.

6.1 Sequenced Broadcast and Weak Sequenced Broadcast

Roughly speaking, sequenced broadcast is a type of broadcast that ensures, for a
given sender pi, that all processes deliver the messages of that sender in the same
order. This provides an ordering per sender of messages, similar to FIFO broad-
cast [23].2 This is useful because it prevents the problem of equivocation [12], in
which a Byzantine process can send different values to different processes. In a
system with n ≥ 3f+1, equivocation can be avoided using Bracha’s broadcast
algorithm [5], but here we are concerned about systems with n ≥ 2f+1.

We shall consider two versions of sequenced broadcast, where the stronger
version ensures that all correct processes deliver the same set of messages, and the
weaker version does not. More precisely, we define weak sequenced broadcast in
terms of two primitives, sbcast and sdeliver. We are interested in the k-th message
broadcast by a process, and the k-th message delivered from p by another process.
To make this explicit, when a process p broadcasts m as its k-th message, we
will say that p sbcasts(k, m). We note that k is determined by the order in which
the process calls sbcast, and so it is not a real parameter; we make k explicit just
to make it simpler to match a broadcast with its deliver in algorithms. When a
process q delivers m as its k-th message from p, we will say that q sdelivers(k, m)
2 FIFO broadcast is defined for systems with crash failures. Sequenced broadcast can

be seen as an extension of FIFO broadcast to systems with Byzantine failures.

Fast Asynchronous Consensus with Optimal Resilience 15

from p. We assume that messages broadcast by correct processes are unique,
which can be ensured via sequence numbers. Weak sequenced broadcast satisfies
the following properties:
– Integrity. If processes p and q are correct, and q sdelivers (k, m) from p then

p previously sbcasts(k, m).
– Validity. If correct process p sbcasts(k, m) then eventually all correct pro-

cesses sdeliver(k, m) from p.
– FIFO Agreement: If two correct processes sdeliver (k, m) and (k, m′) from

the same process q then m = m′.
Weak sequenced broadcast allows one correct process to deliver a message

from a sender, and another correct process not to. This is not allowed in sequenced
broadcast, which provides an additional Agreement property similar to reliable
broadcast [23]:
– Agreement. If a correct process sdelivers (k, m) then eventually all correct

processes sdeliver (k, m).
It is easy to implement sequenced broadcast using weak sequenced broadcast.

We now explain how to implement weak sequenced broadcast using a minimal
TPM. The TPM has a secret TPM signing key and provides each process pi with
a private set of registers PCRk (Platform Configuration Registers) initialized to
zero [31]. The TPM allows a process to modify a PCR register only by using
the tpm-extend(k, v) function, which sets PCRk := hash(PCRk · v). Function
tpm-quote(k) allows pi to sign (i,PCRk) using the TPM secret key. There are
many PCR registers, but we only use PCR1.

To sbcast(m), process pi calls tpm-extend(1, m), and then calls tpm-quote(1) to
obtain a TPM signature s on (i,PCR1). Next, pi sends m and s to all using FIFO-
send (FIFO-send can be implemented using sequence numbers). Each process pj

keeps a vector Hj [i] with the hash of the sequence of messages that pj has seen
from pi for every i. When pj receives (m, s) from pi, it updates Hj [i] to mimic
the way the TPM of pi updates PCR1. Then pj checks whether s is a valid
signature on (i, Hj[i]). If so, pj sdelivers m, otherwise it ignores m.

The key reason why the algorithm works is that a process cannot set its PCR1
any way it wants, because hash is a one-way hash function. Once a process
extends PCR1 for k-th time using message m, it is restricted to send m as its
k-th messages to all processes, otherwise m is rejected by correct processes.

6.2 Verifiable Secret Sharing

Our probabilistic agreement algorithm relies on VSS. We now give a simple
VSS implementation for a system with Byzantine failures and n ≥ 2f+1 using
sequenced broadcast, and the cryptographic primitives of encryption, signature,
and zero-knowledge proofs of knowledge. Roughly speaking, it works as follows.
The dealer chooses a degree f polynomial g(x) and sends via sequenced broadcast
a message 〈E1(g(1)), · · · , En(g(n))〉 where Ei(g(i)) is an encryption of the share
of player i using player i’s public encryption scheme. The dealer then provides a
zero-knowledge proof that the message sent is indeed an appropriate encryption

16 I. Abraham, M.K. Aguilera, and D. Malkhi

of a degree f polynomial. A player that is convinced by the proof sends an
acknowledgement via sequenced broadcast and the share phase ends once n−f
acknowledgements are received. The algorithm is given in Figure 4.

Code for process pi:
1. procedure dealer-share(vi) { for the dealer process }
2. choose a random polynomial g of degree f such that g(0) = vi

3. sbcast(1, 〈E1(g(1)), · · · , En(g(n))〉) Ej(·) encrypts using pj ’s public key *)
4. do an interactive constant-round zero-knowledge proof with each process on the statement that

E1(g(1)), . . . , En(g(n)) is an encryption of a degree f polynomial

5. procedure share() { for all processes }
6. wait to sdeliver(1, 〈EG1, . . . , EGn〉) from dealer (* if dealer is correct EGj = Ej(g(j)) *)
7. fork {
8. participate in constant-round zero-knowledge proof with dealer that e1, . . . , en is an encryption of

a degree f polynomial
9. if process is convinced of zero-knowledge proof
10. then sbcast(2, DONE) (* if necessary sbcast an empty messages so we can sbcast(2, . . .) *)
11. }
12. wait until sdeliver(2, DONE) from n−f processes

13. procedure recover(): { for all processes }
14. send (i, g(i)) to all
15. wait to receive (j, gj) from n−f processes where Ej(gj) = EGj (* gj must match encrypted values

broadcast by dealer *)
16. find degree polynomial g of degree f going through the n−f values (j, gj) gotten in line 15
17. return g(0)

Fig. 4. Algorithm for securely implementing verifiable secret sharing and n ≥ 2f+1
using sequenced broadcast in a system with Byzantine failures.

6.3 Binding Gather with Certified Values

We now extend the definition of binding gather for a system with Byzantine
failures. Clearly, we cannot require that Byzantine processes do anything, so we
modify its properties as follows:

– Validity. Every value in every output set of a correct process is the input
value of some process.

– Binding Commonality. The exists some value v such that v is in the output
set of every correct process, and v can be determined by an external observer
when the first correct process outputs its set.

– Termination. All correct processes eventually output some value.

(The italics indicate differences with respect to the definition in Section 4.)
Even with these weaker requirements, there is still a problem with the Validity
property: no implementation can provide this property, because if a Byzantine
process acts correctly except that it changes its initial value to a bogus value,
then this bogus value could appear in the output of correct processes.

To address this problem, we use the notion of certified values, which is sim-
ilar to external validity [7]. Roughly speaking, a value v is certified if there is
a legitimacy test that can be applied to v such that bogus values from Byzan-
tine process cannot pass the test. For example, we may require a value to have
signatures from f+1 processes, and the test verifies that the signatures are valid.

Fast Asynchronous Consensus with Optimal Resilience 17

More precisely, we define a certification scheme as a set Cert of values and a set
of Boolean procedures checki(v), one for each process pi, such that a byzantine
process cannot generate a value in Cert unless it is given that value (e.g., it
receives the value from a correct process). Intuitively, values in Cert are the
certified values and each checki(v) is a way for process pi to check if v ∈ Cert.
We require two properties: (a) if v �∈ Cert then checki(v) must return false;
and (b) if v ∈ Cert then there is a time after which checki(v) returns true (it
may return false for a finite period until pi sees evidence from other processes
that v ∈ Cert). Since we rely on cryptographic primitives, we allow a negligible
probability that properties (a) and (b) are violated.

By using certification schemes, we can provide a stronger validity condition.
For example, with Byzantine agreement, we can require that initial values be
certified, where the certification scheme is a parameter of the problem. Thus,
each process has an unforgeable initial value and we can design algorithms that
use the checki procedures to ignore bad values and ensure that correct processes
decide on one of the initial values.

Similarly, we define binding gather with certified values via the three properties
of binding gather with the requirement that initial values must be certified.
Certification schemes are particularly useful in the composition of algorithms,
when the input of an algorithm is an unforgeable output of another algorithm,
as we demonstrate with probabilistic agreement and weak Byzantine agreement.

It is easy to implement binding gather with certified values, by using the same
algorithm of Section 4 except that processes use sequenced broadcast to send
values, and they ignore values that do not pass the certification check.

6.4 Fast Probabilistic Agreement with Certified Values

We now describe an algorithm for probabilistic agreement. To satisfy the Validity
property of probabilistic agreement, we need to assume that initial values are
certified according to some certification scheme, as in Section 6.3. We denote the
certification test procedures by checkInputi.

The algorithm for probabilistic agreement with Byzantine failures is similar
to the one of Section 5.1, except that we replace send-to-all with the sequenced
broadcast primitive (Section 6.1), we use the verifiable secret sharing algorithm
for Byzantine failures (Section 6.2), and we use binding gather with certified
values (Section 6.3). Furthermore, the algorithm accepts a message only if it is
delivered by sequenced broadcast, and the value it carries has passed the secret
sharing phase and the certification test of checkInputi.

6.5 Fast Weak Byzantine Agreement

The algorithm for weak Byzantine agreement is similar to the algorithm for
consensus and crash failures of Section 5.2. The differences are that we use the
probabilistic agreement algorithm with certified values of Section 6.4, using a
certification check that we will explain below. In addition, we replace send-to-
all with sequenced broadcast. We must also check that messages received from

18 I. Abraham, M.K. Aguilera, and D. Malkhi

processes follow the protocol. To do so, when a process sbcasts a message m,
it must attach a proof that m follows the algorithm. This proof consists of
the messages that the process sdelivered that causes it to send m, where those
messages themselves must carry proofs that they are legitimate. Thus, in the end,
each message m will contain a history of the execution that justifies m. When a
process waits to receive n−f messages, it ignores messages with incorrect proofs.
At the end of each round, a process calls probabilistic agreement with certified
values using the input 〈vi, Pi〉, where Pi is a proof that vi is legitimate. The
certification test checkInputi used in probabilistic agreement is the function that
verifies that vi is legitimate according to Pi.

Acknowledgments

We would like to thank Sergey Yekhanin for helpful discussions and insights on
the binding gather protocol.

References

1. Abraham, I., Dolev, D., Halpern, J.Y.: An almost-surely terminating polynomial
protocol for asynchronous byzantine agreement with optimal resilience. In: ACM
Symposium on Principles of Distributed Computing, pp. 405–414. ACM, New York
(2008)

2. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations and Ad-
vanced Topics, 2nd edn. John Wiley Interscience, Chichester (March 2004)

3. Ben-Or, M.: Another advantage of free choice (extended abstract): Completely
asynchronous agreement protocols. In: ACM Symposium on Principles of Dis-
tributed Computing, pp. 27–30. ACM, New York (1983)

4. Berman, P., Garay, J.A.: Randomized distributed agreement revisited. In: FTCS,
pp. 412–419 (1993)

5. Bracha, G.: An asynchronous [(n - 1)/3]-resilient consensus protocol. In: ACM
Symposium on Principles of Distributed Computing, pp. 154–162. ACM, New York
(1984)

6. Cachin, C., Kursawe, K., Lysyanskaya, A., Strobl, R.: Asynchronous verifiable se-
cret sharing and proactive cryptosystems. In: CCS ’02: Proceedings of the 9th
ACM Conference on Computer and Communications Security, pp. 88–97. ACM,
New York (2002)

7. Cachin, C., Kursawe, K., Petzold, F., Shoup, V.: Secure and efficient asynchronous
broadcast protocols. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 524–
541. Springer, Heidelberg (2001)

8. Cachin, C., Kursawe, K., Shoup, V.: Random oracles in constantipole: practical
asynchronous byzantine agreement using cryptography (extended abstract). In:
ACM Symposium on Principles of Distributed Computing, pp. 123–132. ACM,
New York (2000)

9. Canetti, R., Rabin, T.: Fast asynchronous byzantine agreement with optimal re-
silience. In: ACM Symposium on Theory of Computing, pp. 42–51. ACM, New
York (1993)

10. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. Journal of the ACM 43(2), 225–267 (1996)

Fast Asynchronous Consensus with Optimal Resilience 19

11. Chor, B., Merritt, M., Shmoys, D.B.: Simple constant-time consensus protocols in
realistic failure models. J. ACM 36(3), 591–614 (1989)

12. Chun, B.-G., Maniatis, P., Shenker, S., Kubiatowicz, J.: Attested append-only
memory: making adversaries stick to their word. In: SOSP ’07: Proceedings of
twenty-first ACM SIGOPS symposium on Operating systems principles, pp. 189–
204. ACM, New York (2007)

13. Correia, M., Neves, N.F., Lung, L.C., Veŕıssimo, P.: Low complexity byzantine-
resilient consensus. Distrib. Comput. 17(3), 237–249 (2005)

14. Dolev, D., Dwork, C., Stockmeyer, L.: On the minimal synchronism needed for
distributed consensus. J. ACM 34(1), 77–97 (1987)

15. Dolev, D., Strong, H.R.: Polynomial algorithms for multiple processor agreement.
In: ACM Symposium on Theory of Computing, pp. 401–407. ACM, New York
(1982)

16. Dwork, C., Lynch, N.A., Stockmeyer, L.: Consensus in the presence of partial
synchrony. J. ACM 35(2), 288–323 (1988)

17. Feldman, P.: Asynchronous byzantine agreement in constant expected time (copy
availbale from M. Ben-Or) (1989) (unpublished)

18. Feldman, P., Micali, S.: Optimal algorithms for byzantine agreement. In: ACM
Symposium on Theory of Computing, pp. 148–161 (1988)

19. Feldman, P., Micali, S.: An optimal probabilistic protocol for synchronous byzan-
tine agreement. SIAM J. Comput. 26(4), 873–933 (1997)

20. Fischer, M.J., Lynch, N.A., Merritt, M.: Easy impossibility proofs for distributed
consensus problems. Distributed Computing 1(1), 26–39 (1986)

21. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty processor. J. ACM 32(2), 374–382 (1985)

22. Haber, S., Stornetta, W.S.: How to time-stamp a digital document. Journal of
Cyptology 3(2), 99–111 (1991)

23. Hadzilacos, V., Toueg, S.: A modular approach to fault-tolerant broadcasts and re-
lated problems. Technical Report 94-1425, Computer Science Department, Cornell
University, Ithaca, New York (May 1994)

24. Katz, J., Koo, C.-Y.: On expected constant-round protocols for byzantine agree-
ment. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 445–462. Springer,
Heidelberg (2006)

25. Kotla, R., Roy, I.: Personal Communication (2010)
26. Lamport, L.: The weak byzantine generals problem. J. ACM 30(3), 668–676 (1983)
27. Levin, D., Douceur, J.R., Lorch, J.R., Moscibroda, T.: Trinc: small trusted hard-

ware for large distributed systems. In: NSDI’09: Proceedings of the 6th USENIX
symposium on Networked systems design and implementation, pp. 1–14. USENIX
Association, Berkeley (2009)

28. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers, Inc., San
Francisco (1996)

29. Patra, A., Choudhary, A., Rangan, C.P.: Simple and efficient asynchronous byzan-
tine agreement with optimal resilience. In: PODC, pp. 92–101. ACM, New York
(2009)

30. Stadler, M.: Publicly verifiable secret sharing. In: Maurer, U.M. (ed.) EURO-
CRYPT 1996. LNCS, vol. 1070, pp. 190–199. Springer, Heidelberg (1996)

31. http://www.trustedcomputinggroup.org/resources/tpm_main_specification

(February 2010)

http://www.trustedcomputinggroup.org/resources/tpm_main_specification

Transactions as the Foundation of a Memory
Consistency Model�

Luke Dalessandro1, Michael L. Scott1, and Michael F. Spear2

1 Department of Computer Science, University of Rochester
2 Department of Computer Science and Engineering, Lehigh University

Abstract. We argue that traditional synchronization objects, such as
locks, conditions, and atomic/volatile variables, should be defined in terms
of transactions, rather than the other way around. A traditional critical
section, in particular, is a region of code, bracketed by transactions, in
which certain data have been privatized. We base our memory model on
the notion of strict serializability (SS), and show that selective relax-
ation of the relationship between program order and transaction order
can allow the implementation of transaction-based locks to be as efficient
as conventional locks. We also show that condition synchronization can
be accommodated without explicit mention of speculation, opacity, or
aborted transactions. Finally, we compare SS to the notion of strong iso-
lation (SI), arguing that SI is neither sufficient for transactional sequen-
tial consistency (TSC) nor necessary in programs that are transactional
data-race free (TDRF).

1 Introduction

Transactional Memory (TM) attempts to simplify synchronization by raising
the level of abstraction. Drawing inspiration from databases, it allows the pro-
grammer to specify that a block of code should execute atomically, without
specifying how that atomicity should be achieved. (The typical implementation
will be based on speculation and rollback.) In comparison to lock-based syn-
chronization, TM avoids the possibility of deadlock, and—at least to a large
extent—frees the programmer from an unhappy choice between the simplicity of
coarse-grain locking and the higher potential concurrency of fine-grain locking.

Unfortunately, for a mechanism whose principal purpose is to simplify the
programming model, TM has proven surprisingly resistant to formal definition.
Difficult questions—all of which we address in this paper—include the following.
�Does the programmer need to be aware of speculation and rollback? What
happens if a transaction attempts to perform an operation that cannot be rolled
back? �What happens when the same data are accessed both within and out-
side transactions? Does the answer depend on races between transactional and
nontransactional code? �Can transactions be added to a program already con-
taining locks—that is, can the two be used together? � How does one express
� This work was supported in part by NSF grants CNS-0615139, CCF-0702505, and

CSR-0720796; and by financial support from Intel and Microsoft.

N.A. Lynch and A.A. Shvartsman (Eds.): DISC 2010, LNCS 6343, pp. 20–34, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Transactions as the Foundation of a Memory Consistency Model 21

condition synchronization, given that activities of other threads are not supposed
to be visible to an already-started transaction?

Answers to these questions require a memory model—a set of rules that gov-
ern the values that may be returned by reads in a multithreaded program. It
is generally agreed that programmers in traditional shared-memory systems ex-
pect sequential consistency—the appearance of a global total order on memory
accesses, consistent with program order in every thread, and with each read re-
turning the value from the most recent write to the same location [17]. We posit
that transactional programmers will expect transactional sequential consistency
(TSC)—SC with the added restriction that accesses of a given transaction be
contiguous in the total execution order. However, just as typical multiprocessors
and parallel programming languages provide a memory model weaker than SC
(due to its implementation cost), typical transactional systems can be expected
to provide a model weaker than TSC. How should this model be defined?

Several possibilities have been suggested, including strong isolation (SI) (a.k.a.
strong atomicity) [4,28], single lock atomicity (SLA) [14, 1st edn., p. 20][23], and
approaches based on ordering-based memory models [10], linearizability [11,26],
and operational semantics [1,24]. Of these, SLA has received the most attention.
It specifies that transactions behave as if they acquired a single global mutual
exclusion lock.

Several factors, however, make SLA problematic. First, it requires an underly-
ing memory model to explain the behavior of the equivalent lock-based program.
Second, it leads to arguably inappropriate semantics for programs that have
transactional-nontransactional data races, that mix transactions with fine-grain
locks, or that contain infinite loops in transactions. Third—and perhaps most
compelling—it defines transactions in terms of the mechanism whose complexity
we were supposedly attempting to escape.

We have argued [30] that ordering-based memory models such as those of
Java [20] and C++ [5] provide a more attractive foundation than locks for TM.
Similar arguments have been made by others, including Grossman et al. [10],
Moore and Grossman [24], Luchangco [18], Abadi et al. [1], and Harris [12]. Our
model is based on the strict serializability (SS) of database transactions. We
review it in Section 2.

In Section 3 we show how locks and other traditional synchronization mecha-
nisms can be defined in terms of transactions, rather than the other way around.
By making atomicity the fundamental unifying concept, SS provides easily un-
derstood (and, we believe, intuitively appealing) semantics for programs that
use a mix of synchronization techniques. In Section 4 we note that selective
strict serializability (SSS), also from our previous work, can eliminate the need
for “unnecessary” fences in the implementation of lock and volatile operations,
allowing those operations to have the same code—and the same cost—as in tra-
ditional systems, while still maintaining a global total order on transactions. In
section 5 we show how to augment SS or SSS with condition synchronization
(specifically, the retry primitive of Harris et al. [15]) without explicit mention of
speculation or aborted transactions. Finally, in Section 6, we compare SS to the

22 L. Dalessandro, M.L. Scott, and M.F. Spear

notion of strong isolation (SI), arguing that SI is both insufficient to guarantee
TSC for arbitrary programs, and unnecessary in programs that are TDRF. We
conclude in Section 7.

2 The Basic Transactional Model

As is customary [9], we define a program execution to be a set of thread histories,
each of which comprises a totally ordered sequence of reads, writes, and other
operations—notably external actions like input and output. The history of a
given thread is determined by the program text, the semantics (not specified
here) of the language in which that text is written, the input provided at run
time, and the values returned by reads (which may be set by other threads).
An execution is said to be sequentially consistent (SC) if there exists a total
order on reads and writes, across all threads, consistent with program order in
each thread, such that each read returns the value written by the most recent
preceding write to the same location.

An implementation maps source programs to sets of target executions con-
sisting of instructions on some real or virtual machine. The implementation is
correct only if, for every target execution, there exists an equivalent program
execution—one that performs the same external actions, in the same order.

Given the cost of sequential consistency on target systems, relaxed consistency
models differentiate between synchronization operations and ordinary memory
accesses (reads and writes). Operations within a thread are totally ordered by
program order <p. Synchronization operations across threads are partially or-
dered by synchronization order <s, which must be consistent with program
order. The irreflexive transitive closure of <p and <s, known as happens-before
order (<hb), provides a global partial order on operations across threads.

Two ordinary memory accesses, performed by different threads, are said to
conflict if they access the same location and at least one of them is a write. An
execution is said to have a data race if it contains a pair of conflicting accesses
that are not ordered by <hb. A program is said to be data-race free (DRF) with
respect to <s if none of its sequentially consistent executions has a data race.

Relaxed consistency models differ in their choice of <s and in their handling
of data races. In all models, a read is permitted to return the value written by
the most recent write to the same location along some happens-before path.
If the program is data-race free, any topological sort of <hb will constitute a
sequentially consistent execution.

For programs with data races, arguably the simplest strategy is to make the
behavior of the entire program undefined. Boehm et al. [5] argue that any at-
tempt to define stronger semantics for C++ would impose unacceptable im-
plementation costs. For managed languages, an at-least-superficially attractive
approach is to allow a read to return either (1) the value written by the most re-
cent write to the same location along some happens-before path or (2) the value
written by a racing write to that location (one not ordered with the read under
<hb). As it turns out, this strategy is insufficiently strong to preclude circular

Transactions as the Foundation of a Memory Consistency Model 23

reasoning. To avoid “out of thin air” reads, and ensure the integrity of the virtual
machine, the Java memory model imposes an additional causality requirement,
under which reads must be incrementally explained by already-justified writes
in shorter executions [20].

2.1 Transactional Sequential Consistency

Our transactional memory model builds on the suggestion, first advanced by
Grossman et al. [10] and subsequently adopted by others [1,24,30], that <s be
defined in terms of transactions. We extend thread histories to include begin txn
and end txn operations, which we require to appear in properly nested pairs.
We use the term “transaction” to refer to the contiguous sequence of operations
in a thread history beginning with an outermost begin txn and ending with the
matching end txn.

Given experience with conventional parallel programs, we expect that (1) races
in transactional programs will generally constitute bugs, and (2) the authors of
transactional programs will want executions of their (data-race-free) programs
to appear sequentially consistent, with the added provision that transactions
occur atomically. This suggests the following definition:

A program execution is transactionally sequentially consistent (TSC) iff there
exists a global total order on operations, consistent with program order in each
thread, that explains the execution’s reads (in the sense that each read returns
the value written by the most recent write to the same location), and in which the
operations of any given transaction are contiguous. An implementation (system)
is TSC iff for every realizable target execution there exists an equivalent TSC
program execution.

Similar ideas have appeared in several previous studies. TSC is equivalent to
the strong semantics of Abadi et al. [1], the StrongBasic semantics of Moore and
Grossman [24], and the transactional memory with store atomicity described by
Maessen and Arvind [19]. TSC is also equivalent to what Larus and Rajwar
called strong isolation [14, 1st edn., p. 27], but stronger than the usual meaning
of that term, which does not require a global order among nontransactional
accesses [4,6].

2.2 Strict Serializability

In the database world, the standard ordering criterion is serializability, which
requires that the result of executing a set of transactions be equivalent to some
execution in which the transactions take place one at a time, and any transactions
executed by the same thread take place in program order. Strict serializability
(SS) imposes the additional requirement that if transaction A completes before
B starts (in the underlying implementation), then A must occur before B in
the equivalent serial execution. The intent of this definition is that if external
(non-database) operations allow one to tell that A precedes B, then A must
serialize before B. We adopt strict serializability as the synchronization order for
transactional memory, equating non-database operations with nontransactional

24 L. Dalessandro, M.L. Scott, and M.F. Spear

memory accesses, and insisting that such accesses occur between the transactions
of their respective threads, in program order. In our formulation:

Program order, <p, is a union of per-thread total orders, and is specified
explicitly as part of the execution. In a legal execution, the operations performed
by a given thread are precisely those specified by the sequential semantics of the
language in which the source program is written, given the values returned by
the execution’s input operations and reads. Because (outermost) transactions
are contiguous in program order, <p also orders transactions of a given thread
with respect to one another and to the thread’s nontransactional operations.

Transaction order, <t, is a total order on transactions, across all threads.
It is consistent with <p, but is not explicitly specified. For convenience, if a ∈ A,
b ∈ B, and A <t B, we will sometimes say a <t b.

Strict serial order, <ss, is a partial order on memory accesses induced by
<p and <t. Specifically, it is a superset of <t that also orders nontransactional
accesses with respect to preceding and following transactions of the same thread.
Formally, for all accesses a and c in a program execution, we say a <ss c iff at
least one of the following holds: (1) a <t c; (2) ∃ a transaction A such that
(a ∈ A ∧ A <p c); (3) ∃ a transaction C such that (a <p C ∧ c ∈ C); (4) ∃ an
access b such that a <ss b <ss c.

We say a memory access b intervenes between a and c iff a <p b ∨ a <ss b
and b <p c ∨ b <ss c. Read r is then permitted to return the value written by
write w if r and w access the same location l, w <p r ∨ w <ss r, and there is no
intervening write of l between w and r. Depending on the choice of programming
language, r may also be permitted to return the value written by w if r and w
are incomparable under both <p and <ss. Specifically, in a Java-like language, a
read should be permitted to see an incomparable but causally justifiable write.

An execution with program order <p is said to be strictly serializable (SS) if
there exists a transaction order <t that together with <p induces a strict serial
order <ss that (together with <p) permits all the values returned by reads in the
execution. A TM implementation is said to be SS iff for every realizable target
execution there exists an equivalent SS program execution.

In a departure from nontransactional models, we do not include all of program
order in the global <ss order. By adopting a more minimal connection between
program order and transaction order, we gain the opportunity (in Section 4) to
relax this connection as an alternative to relaxing the transaction order itself.

2.3 Transactional Data-Race Freedom

As in traditional models, two ordinary memory accesses are said to conflict if
they are performed by different threads, they access the same location, and at
least one of them is a write. A legal execution is said to have a data race if
it contains, for every possible <t, a pair of conflicting accesses that are not
ordered by the resulting <ss. A program is said to be transactional data-race
free (TDRF) if none of its TSC executions has a data race. It is easy to show [7]
that any execution of a TDRF program on an SS implementation will be TSC.

Transactions as the Foundation of a Memory Consistency Model 25

class lock
Boolean held := false
void acquire()

while true
atomic

if not held
held := true
return

void release()
atomic

held := false

class condition(lock L)
class tok

Boolean ready := false
queue〈tok〉 waiting := []
void wait()

t := new tok
waiting.enqueue(t)
while true

L.release()
L.acquire()
if t.ready return

void signal()
t := waiting.dequeue()
if t != null

t.ready := true
void signal all()

while true
t := waiting.dequeue()
if t = null return
t.ready := true

Fig. 1. Reference implementations for locks and condition variables. Lock L is assumed
to be held when calling condition methods

3 Modeling Locks and Other Traditional Synchronization

One often sees attempts to define transactions in terms of locks. Given a memory
consistency model based on transactions, however, we can easily define locks in
terms of transactions. This avoids any objections to defining transactions in
terms of the thing they’re intended to supplant. It’s also arguably simpler, since
we need a memory model anyway to define the semantics of locks.

Our approach stems from two observations. First, any practical implemen-
tation of locks requires some underlying atomic primitive(s) (e.g., test-and-set
or compare-and-swap). We can use transactions to model these, and then define
locks in terms of a reference implementation. Second, a stream of recent TM
papers has addressed the issue of publication [23] and privatization [14,21,34],
in which a program uses transactions to transition data back and forth between
logically shared and private states, and then uses nontransactional accesses for
data that are private. We observe that privatization amounts to locking.

3.1 Reference Implementations

Fig. 1 shows reference implementations for locks and condition variables. Similar
implementations can easily be written for volatile (atomic) variables, monitors,
semaphores, conditional critical regions, etc. Note that this is not necessarily how
synchronization mechanisms would be implemented by a high-quality language
system. Presumably the compiler would recognize calls to acquire, release, etc.,
and generate semantically equivalent but faster target code.

By defining traditional synchronization in terms of transactions, we obtain
easy answers to all the obvious questions about how the two interact. Suppose,
for example, that a transaction attempts to acquire a lock (perhaps new trans-
actional code calls a library containing locks). If there is an execution prefix in
which the lock is free at the start of the transaction, then acquire will perform
a single read and write, and (barring other difficulties) the transaction can oc-
cur. If there is no execution prefix in which the lock is free at the start of the

26 L. Dalessandro, M.L. Scott, and M.F. Spear

Initially v = w = 0

Thread 1 Thread 2
1: atomic
2: v := 1

3: while (v �= 1) { }
4: w := 1

5: while (w �= 1) { }

Fig. 2. Reproduced from Figure 2 of Shpeisman et al. [27]. If transactions have the
semantics of lock-based critical sections, then this program, though racy, should ter-
minate successfully.

transaction, then (since transactions appear in executions in their entirety, or
not at all) there is no complete (terminating) execution for the program. If there
are some execution prefixes in which the lock is available and others in which it
is not, then the one(s) in which it is available can be extended (barring other
difficulties) to create a complete execution. (Note that executions enforce safety,
not liveness—more on this in Section 5.) The reverse case—where a lock-based
critical section contains a transaction—is even easier: since acquire and release
are themselves separate transactions, no actual nesting occurs.

Note that in the absence of nesting, only acquire and release—not the bodies
of critical sections themselves—are executed as transactions; critical sections
protected by different locks can therefore run concurrently. Interaction between
threads can occur within lock-based critical sections but not within transactions.

3.2 Advantages with Respect to Lock-Based Semantics

Several researchers, including Harris and Fraser [13] and Menon et al. [22,23], have
suggested that lock operations (and similarly volatile variable accesses) be treated
as tiny transactions. Their intent, however, was not to merge all synchronization
mechanisms into a single formal framework, but simply to induce an ordering be-
tween legacy mechanisms and any larger transactions that access the same locks
or volatiles. Harris and Fraser suggest that it should be possible (as future work) to
develop a unified formal model reminiscent of the Java memory model. The recent
draft TM proposal for C++ includes transactions in the language’s synchronizes-
with and happens-before orders, but as an otherwise separate mechanism; nesting
of lock-based critical sections within transactions is explicitly prohibited [3].

Menon et al., by contrast, define transactions explicitly in terms of locks. Un-
fortunately, as noted in a later paper from the same research group (Shpeisman
et al. [27]), this definition requires transactions to mimic certain unintuitive (and
definitely non-atomic) behaviors of lock-based critical sections in programs with
data races. One example appears in Fig. 2; others can be found in Luchangco’s
argument against lock-based semantics for TM [18]. By making transactions fun-
damental, we avoid any pressure to mimic the problems of locks. In Fig. 2, for
example, we can be sure there is no terminating execution. If, however, we were
to replace Thread 1’s transaction with a lock-based critical section (L.acquire();
v = 1; while (w != 1) { }; L.release();), the program could terminate successfully.

Transactions as the Foundation of a Memory Consistency Model 27

3.3 Practical Concerns

Volos et al. [33] describe several “pathologies” in the potential interaction of
transactions and locks. Their discussion is primarily concerned with implementa-
tion-level issues on a system with hardware TM, but some of these issues apply to
STM systems as well. If traditional synchronization mechanisms are implemented
literally as transactions, then our semantics will directly obtain, and locks will
interact in a clear and well-defined manner with other transactions. If locks are
implemented in some special, optimized fashion, then the implementation will
need to ensure that all possible usage cases obey the memory model. Volos et
al. describe an implementation that can be adapted for use with STM systems
based on ownership records. In our NOrec system [8], minor modifications to
the acquire operation would allow conventional locks to interact correctly with
unmodified transactions.

4 Improving Performance with Selective Strictness

A program that accesses shared data only within transactions is clearly data-race
free, and will experience TSC on any TM system that guarantees that reads see
values consistent with some <t. A program P that sometimes accesses shared
data outside transactions, but that is nonetheless TDRF, will experience TSC on
any TM system S that similarly enforces some <ss. Transactions in P that begin
and end, respectively, a region of data-race-free nontransactional use are referred
to as privatization and publication operations, and S is said to be privatization
and publication safe with respect to SS.

Unfortunately, many existing TM implementations are not publication and
privatization safe, and modifying them to be so imposes nontrivial costs [21].
In their paper on lock-based semantics for TM, Menon et al. note that these
costs are particularly egregious under single lock atomicity (SLA), which forces
every transaction to be ordered with respect to every other [23]. Their weaker
models (DLA, ALA, ELA) aim to reduce the cost of ordering (and in particular
publication safety) by neglecting to enforce it in questionable cases (e.g., for
empty transactions, transactions with disjoint access sets, or transactions that
share only an anti-dependence).

We can define each of these weaker models in our ordering-based framework,
but the set of executions for a program becomes much more difficult to define,
and program behavior becomes much more difficult to reason about. As noted by
Harris [14, Chap. 3] and by Shpeisman et al. [27], orderings become dependent
on the precise set of variables accessed by a transaction—a set that may depend
not only on program input and control flow, but also on optimizations (e.g., dead
code elimination) performed by the compiler.

Rather than abandon the global total order on transactions, we have pro-
posed [30] an optional relaxation of the ordering between nontransactional ac-
cesses and transactions. Specifically, we allow a transaction to be labeled as
acquiring (privatizing), releasing (publishing), both, or neither.

28 L. Dalessandro, M.L. Scott, and M.F. Spear

Selective strict serial order, <sss, is a partial order on memory accesses.
Like strict serial order, it is consistent with transaction order. Unlike strict serial
order, it orders nontransactional accesses only with respect to preceding acquir-
ing transactions and subsequent releasing transactions of the same thread (and,
transitively, transactions with which those are ordered). Formally, for all accesses
a, c, we say a <sss c iff at least one of the following holds: (1) a <t c; (2) ∃ an ac-
quiring transaction A such that (a ∈ A ∧ A <p c); (3) ∃ a releasing transaction
C such that (a <p C ∧ c ∈ C); (4) ∃ an access b such that a <sss b <sss c.

Note that for any given program <sss will be a subset of <ss—typically a
proper one—and so a program that is TDRF with respect to SS will not nec-
essarily be TDRF with respect to SSS. This is analogous to the situation in
traditional ordering-based memory models, where, for example, a program may
be DRF1 but not DRF0 [9].

A transactional programming language will probably want to specify that
transactions are both acquiring and releasing by default. A programmer who
knows that a transaction does not publish or privatize data can then add an
annotation that permits the implementation to avoid the cost of publication
and privatization safety. Among other things, on hardware with a relaxed mem-
ory consistency model, identifying a transaction as (only) privatizing will allow
the implementation to avoid an expensive write-read fence. The designers of the
C++ memory model went to considerable lengths—in particular, changing
the meaning of trylock operations—to avoid the need for such fences before
acquiring a lock [5]. Given SSS consistency in Fig. 1, we would define the trans-
action in lock.acquire to be (only) acquiring, and the transaction in lock.release
to be (only) releasing. Similarly, a get (read) operation on a volatile variable
would be acquiring, and a put (write) operation would be releasing.

5 Condition Synchronization and Forward Progress

For programs that require not only atomicity, but also condition synchronization,
traditional condition variables will not suffice: since transactions are atomic,
they cannot be expected to see a condition change due to action in another
thread. One could release atomicity, effectively splitting a transaction in half
(as in the punctuated transactions of Smaragdakis et al. [29]), but this would
break composability, and require the programmer to restore any global invariants
before waiting on a condition. One could also limit conditions to the beginning
of the transaction [13], but this does not compose.

Among various other alternatives, the most popular appears to be the retry
primitive of Harris et al. [15]. The construct “if (! desired condition) retry” in-
structs a speculation-based implementation of TM to roll the current thread
back to the beginning of its current transaction, and then deschedule it until
something in the transaction’s read set has been written by another thread.
While the name “retry” clearly has speculative connotations, it can also be in-
terpreted (as Harris et al. do in their operational semantics) as controlling the
conditions under which the surrounding transaction is able to perform its one

Transactions as the Foundation of a Memory Consistency Model 29

and only execution. We therefore define retry, for our ordering-based semantics,
to be equivalent to while (true) { }.

At first glance, this definition might seem to allow undesirable executions. If
T1 says atomic {f := 1} and T2 says atomic {if (f != 1) retry}, we would not want
to admit an execution in which T2 “goes first” and waits forever. But there is no
such execution! Since transactions appear in executions in their entirety or not
at all, T2’s transaction can appear only if T1’s transaction has already appeared.
The programmer may think of retry in terms of prescience (execute this only
when it can run to completion) or in terms of, well, re-trying; the semantics
just determine whether a viable execution exists. It is possible, of course, that
for some programs there will exist execution prefixes1 such that some thread(s)
are unable to make progress in any possible extension; these are precisely the
programs that are subject to deadlock (and deadlock is undecidable).

Because our model is built on atomicity, rather than speculation, it does not
need to address aborted transactions. An implementation based on speculation
is simply required to ensure that such transactions have no visible effects. In
particular, there is no need for the opacity of Guerraoui and Kapa�lka [11]; it is
acceptable for the implementation of a transaction to see an inconsistent view of
memory, so long as the compiler and run-time system “sandbox” its behavior.

5.1 Progress

Clearly an implementation must realize only target executions equivalent to
some program execution. Equally clearly, it need not realize target executions
equivalent to every program execution. Which do we want to require it to realize?

It seems reasonable to insist, for starters, that threads do not stop dead for
no reason. Consider some realizable target execution prefix M and an equivalent
program execution prefix E. If, for thread T, the next operation in program
order following T ’s subhistory in E is nontransactional, we might insist that
the implementation be able to extend M to M+ in such a way that T makes
progress—that is, that M+ be equivalent to some extension E+ of E in which
T ’s subhistory is longer.

For transactions, which might contain retry or other loops, appropriate goals
are less clear. Without getting into issues of fairness, we cannot insist that a
thread T make progress in a given implementation just because there exists
a program execution in which it makes progress. Suppose, for example, that
flag f is initially 0, and that both T1 and T2 have reached a transaction read-
ing if (f < 0) retry; f := 1. Absent other code accessing f, one thread will block
indefinitely, and we may not wish to dictate which this should be.

Intuitively, we should like to preclude implementation-induced deadlock. As
a possible strategy, consider a realizable target execution prefix M with corre-
sponding program execution prefix E, in which each thread in some nonempty
set {Ti} has reached a transaction in its program order, but has not yet executed
that transaction. If for every extension E+ of E there exists an extension E++

1 We assume that even in such a prefix, transactions appear in toto or not at all.

30 L. Dalessandro, M.L. Scott, and M.F. Spear

of E+ in which at least one of the Ti makes progress, then the implementation
is not permitted to leave all of the Ti blocked indefinitely. That is, there must
exist a realizable extension M+ of M equivalent to some extension E′ of E in
which the subhistory of one of the Ti is longer.

5.2 Inevitability

If transactions are to run concurrently, even when their mutual independence
cannot be statically proven, implementations must in general be based on specu-
lation. This then raises the problem of irreversible operations such as interactive
I/O. One option is simply to outlaw these within transactional contexts. This is
not an unreasonable approach: locks and privatization can be used to make such
operations safe.

If irreversible operations are permitted in transactions, we need a mechanism
to designate transactions as inevitable (irrevocable) [32,35]. This can be a static
declaration on the transaction as a whole, or perhaps an executable statement.
Either way, irreversibility is simply a hint to the implementation; it has no impact
on the memory model, since transactions are already atomic.

In our semantics, an inevitable transaction’s execution history is indistin-
guishable from an execution history in which a thread (1) executes a privatizing
transaction that privatizes the whole heap, (2) does all the work nontransaction-
ally, and then (3) executes a publishing transaction. This description formalizes
the oft-mentioned lack of composability between retry and inevitability.

5.3 orElse and abort

In the paper introducing retry [15], Harris et al. also proposed an orElse con-
struct that can be used to pursue an alternative code path when a transaction
encounters a retry. In effect, orElse allows a computation to notice—and explicitly
respond to—the failure of a speculative computation.

Both basic transactions and the retry primitive can be described in terms of
atomicity: “this code executes all at once, at a time when it can do so correctly.”
The orElse primitive, by contrast, “leaks” information—a failure indication—out
of a transaction that “doesn’t really happen,” allowing the program to do some-
thing else instead. We have considered including failed transactions explicitly in
program executions or, alternatively, imposing liveness-style constraints across
sets of executions (“execution E is invalid because transaction T appears in some
other, related execution”), but both of these alternatives strike us as distinctly
unappealing. In the balance, our preference is to leave orElse out of TM. Its effect
can always be achieved (albeit without composability or automatic roll-back) by
constructs analogous to those of Section 3.

In a similar vein, consider the oft-proposed abort primitive, which abandons
the current transaction (with no effect) and moves on to the next operation in
program order. Shpeisman et al. observe that this primitive can lead to logical
inconsistencies if its transaction does not contribute to the definition of data-race
freedom [27]. In effect, abort, like orElse, can be used to leak information from

Transactions as the Foundation of a Memory Consistency Model 31

an aborted transaction. Shpeisman et al. conclude that aborted transactions
must appear explicitly in program executions. We argue instead that aborts
be omitted from the definition of TM. Put another way, orElse and abort are
speculation primitives, not atomicity primitives. If they are to be included in
the language, it should be by means of orthogonal syntax and semantics.

6 Strong Isolation

Blundell et al. [4] observed that hardware transactional memory (HTM) designs
typically exhibit one of two possible behaviors when confronted with a race be-
tween transactional and non-transactional accesses. With strong isolation (SI)
(a.k.a. strong atomicity), transactions are isolated both from other transactions
and from concurrent nontransactional accesses; with weak isolation (WI), trans-
actions are isolated only from other transactions.

Various papers have opined that STMs instrumented for SI result in more
intuitive semantics than WI alternatives [25,28], but this argument has generally
been made at the level of TM implementations, not user-level programming
models. From the programmer’s perspective, we believe that TSC is the reference
point for intuitive semantics—and SS and SSS systems provide TSC behavior
for programs that are correspondingly TDRF. At the same time, for a language
that assigns meaning to racy programs, SS and SSS permit many of the results
cited by proponents of SI as unintuitive. This raises the possibility that SI may
improve the semantics of TM for racy programs.

It is straightforward to extend any ordering-based transactional memory
model to one that provides SI. We do this for SS in the technical report ver-
sion of this paper[7], and explore the resulting model (SI-SS) for example racy
programs. We note that SI-SS is not equivalent to TSC; that is, there are racy
programs that still yield non-TSC executions. One could imagine a memory
model in which the racy programs that do yield TSC executions with SI are
considered to be properly synchronized. Such a model would authorize program-
mers to write more than just TDRF code, but it would be a significantly more
complicated model to reason about: one would need to understand which races
are bugs and which aren’t.

An additional complication of any programmer-centric model based on strong
isolation is the need to explain exactly what is meant by a nontransactional
access. Consider Fig. 3. Here x is an unsigned long long and is being assigned
to nontransactionally. Is this a race under a memory model based on SI? The
problem is that Thread 2’s assignment to x may not be a single instruction. It is
possible (and Java in fact permits) that two 32 bit stores will be used to move
the 64 bit value. Furthermore, if the compiler is aware of this fact, it may arrange
to execute the stores in arbitrary order. The memory model now must specify
the granularity of protection for nontransactional accesses.

While SS and SSS do not require a strongly isolated TM implementation,
they do not exclude one either. It may seem odd to consider using a stronger
implementation than is strictly necessary, particularly given its cost, but there

32 L. Dalessandro, M.L. Scott, and M.F. Spear

Thread 1 Thread 2
1: atomic
2: r := x x := 3ull

Fig. 3. Is this a correct program under an SI-based memory model?

are reasons why this may make sense. First, SS with happens-before consistency
for programs with data races is not trivially compatible with undo-log-based
TM implementations [27]. These implementations require SI instrumentation to
avoid out-of-thin-air reads due to aborted transactions. Indeed, two of the ma-
jor undo-log STMs, McRT [2] and Bartok [16], are strongly isolated for just this
reason. Second, as observed by Grossman et al. [10], strong isolation enables se-
quential reasoning. Given a strongly isolated TM implementation, all traditional
single-thread optimizations are valid in a transactional context, even for a lan-
guage with safety guarantees like Java. Third, SI hardware can make it trivial
to implement volatile/atomic variables.

With these observations in mind, we would not discourage development of
strongly isolated HTM. For STM, we note that a redo-log based TM implemen-
tation with a hash-table write set permits many of the same compiler optimiza-
tions that SI does, and, as shown by Spear et al. [31], can provide performance
competitive with undo logs. Ultimately, we conclude that SI is insufficient to
guarantee TSC for racy programs, and unnecessary to guarantee it for TDRF
programs. It may be useful at the implementation level for certain STMs, and
certainly attractive if provided by the hardware “for free,” but it is probably not
worth adding to an STM system if it adds significant cost.

7 Conclusions

While it is commonplace to speak of transactions as a near-replacement for locks,
and to assume that they should have SLA semantics, we believe this perspective
both muddies the meaning of locks and seriously undersells transactions. Atom-
icity is a fundamental concept, and it is not achieved by locks, as evidenced
by examples like the one in Figure 2. By making atomic blocks the synchro-
nization primitive of an ordering-based memory consistency model, we obtain
clear semantics not only for transactions, but for locks and other traditional
synchronization mechanisms as well.

In future work, we hope to develop a formal treatment of speculation that
is orthogonal to—but compatible with—our semantics for TM. We also hope
to unify this treatment with our prior work on implementation-level sequential
semantics for TM [26].

It is presumably too late to adopt a transaction-based memory model for Java
or C++, given that these languages already have detailed models in which other
operations (monitor entry/exit, lock acquire/release, volatile/atomic read/write)
serve as synchronization primitives. For other languages, however, we strongly
suggest that transactions be seen as fundamental.

Transactions as the Foundation of a Memory Consistency Model 33

References

1. Abadi, M., Birrell, A., Harris, T., Isard, M.: Semantics of Transactional Memory
and Automatic Mutual Exclusion. In: SIGPLAN Symp. on Principles of Program-
ming Languages (January 2008)

2. Adl-Tabatabai, A.R., Lewis, B.T., Menon, V., Murphy, B.R., Saha, B., Shpeisman,
T.: Compiler and Runtime Support for Efficient Software Transactional Memory.
In: SIGPLAN Conf. on Programming Language Design and Implementation (June
2006)

3. Adl-Tabatabai, A.R., Shpeisman, T. (eds.): Draft Specification of Transaction Lan-
guage Constructs for C++. Transactional Memory Specification Drafting Group,
Intel, IBM, and Sun, 1.0 edn. (August 2009)

4. Blundell, C., Lewis, E.C., Martin, M.M.K.: Subtleties of Transactional Memory
Atomicity Semantics. IEEE Computer Architecture Letters 5(2) (November 2006)

5. Boehm, H.J., Adve, S.V.: Foundations of the C++ Concurrency Memory Model.
In: SIGPLAN Conf. on Programming Language Design and Implementation (June
2008)

6. Dalessandro, L., Scott, M.L.: Strong Isolation is a Weak Idea. In: 4th SIGPLAN
Workshop on Transactional Computing (February 2009)

7. Dalessandro, L., Scott, M.L., Spear, M.F.: Transactions as the Foundation of a
Memory Consistency Model. Tech. Rep. TR 959, Dept. of Computer Science, Univ.
of Rochester (July 2010)

8. Dalessandro, L., Spear, M.F., Scott, M.L.: NOrec: Streamlining STM by Abolishing
Ownership Records. In: SIGPLAN Symp. on Principles and Practice of Parallel
Programming (January 2010)

9. Gharachorloo, K., Adve, S.V., Gupta, A., Hennessy, J.L., Hill, M.D.: Programming
for Different Memory Consistency Models. Journal of Parallel and Distributed
Computing 15, 399–407 (1992)

10. Grossman, D., Manson, J., Pugh, W.: What Do High-Level Memory Models Mean
for Transactions? In: SIGPLAN Workshop on Memory Systems Performance and
Correctness (October 2006)

11. Guerraoui, R., Kapa�lka, M.: On the Correctness of Transactional Memory. In:
SIGPLAN Symp. on Principles and Practice of Parallel Programming (February
2008)

12. Harris, T.: Language Constructs for Transactional Memory (invited keynote ad-
dress). In: SIGPLAN Symp. on Principles of Programming Languages (January
2009)

13. Harris, T., Fraser, K.: Language Support for Lightweight Transactions. In: Intl.
Conf. on Object-Oriented Programming, Systems, Languages, and Applications
(October 2003)

14. Harris, T., Larus, J.R., Rajwar, R.: Transactional Memory, 2nd edn. Morgan &
Claypool, San Francisco (2010) (first edition, by Larus and Rajwar only, 2007)

15. Harris, T., Marlow, S., Jones, S.P., Herlihy, M.: Composable Memory Transactions.
In: SIGPLAN Symp. on Principles and Practice of Parallel Programming (June
2005)

16. Harris, T., Plesko, M., Shinnar, A., Tarditi, D.: Optimizing Memory Transactions.
In: SIGPLAN Conf. on Programming Language Design and Implementation (June
2006)

17. Lamport, L.: How to Make a Multiprocessor Computer that Correctly Executes
Multiprocess Programs. IEEE Trans. on Computers C-28(9), 241–248 (1979)

34 L. Dalessandro, M.L. Scott, and M.F. Spear

18. Luchangco, V.: Against Lock-Based Semantics for Transactional Memory (brief
announcement). In: ACM Symp. on Parallelism in Algorithms and Architectures
(June 2008)

19. Maessen, J.W.: Arvind: Store Atomicity for Transactional Memory. Electronic
Notes in Theoretical Computer Science 174(9), 117–137 (2007)

20. Manson, J., Pugh, W., Adve, S.: The Java Memory Model. In: SIGPLAN Symp.
on Principles of Programming Languages (January 2005)

21. Marathe, V.J., Spear, M.F., Scott, M.L.: Scalable Techniques for Transparent Pri-
vatization in Software Transactional Memory. In: Intl. Conf. on Parallel Processing
(September 2008)

22. Menon, V., Balensiefer, S., Shpeisman, T., Adl-Tabatabai, A.R., Hudson, R., Saha,
B., Welc, A.: Single Global Lock Semantics in a Weakly Atomic STM. In: 3rd
SIGPLAN Workshop on Transactional Computing (February 2008)

23. Menon, V., Balensiefer, S., Shpeisman, T., Adl-Tabatabai, A.R., Hudson, R.L.,
Saha, B., Welc, A.: Practical Weak-Atomicity Semantics for Java STM. In: ACM
Symp. on Parallelism in Algorithms and Architectures (June 2008)

24. Moore, K.F., Grossman, D.: High-Level Small-Step Operational Semantics for
Transactions. In: SIGPLAN Symp. on Principles of Programming Languages (Jan-
uary 2008)

25. Schneider, F.T., Menon, V., Shpeisman, T., Adl-Tabatabai, A.R.: Dynamic Op-
timization for Efficient Strong Atomicity. In: Intl. Conf. on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (October 2008)

26. Scott, M.L.: Sequential Specification of Transactional Memory Semantics. In: 1st
SIGPLAN Workshop on Transactional Computing (June 2006)

27. Shpeisman, T., Adl-Tabatabai, A.R., Geva, R., Ni, Y., Welc, A.: Towards Transac-
tional Memory Semantics for C++. In: ACM Symp. on Parallelism in Algorithms
and Architectures (August 2009)

28. Shpeisman, T., Menon, V., Adl-Tabatabai, A.R., Balensiefer, S., Grossman, D.,
Hudson, R.L., Moore, K.F., Saha, B.: Enforcing Isolation and Ordering in STM.
In: SIGPLAN Conf. on Programming Language Design and Implementation (June
2007)

29. Smaragdakis, Y., Kay, A., Behrends, R., Young, M.: Transactions with Isolation
and Cooperation. In: Intl. Conf. on Object-Oriented Programming, Systems, Lan-
guages, and Applications (October 2007)

30. Spear, M.F., Dalessandro, L., Marathe, V.J., Scott, M.L.: Ordering-Based Seman-
tics for Software Transactional Memory. In: Intl. Conf. on Principles of Distributed
Systems (December 2008)

31. Spear, M.F., Dalessandro, L., Marathe, V.J., Scott, M.L.: A Comprehensive Con-
tention Management Strategy for Software Transactional Memory. In: SIGPLAN
Symp. on Principles and Practice of Parallel Programming (February 2009)

32. Spear, M.F., Silverman, M., Dalessandro, L., Michael, M.M., Scott, M.L.: Imple-
menting and Exploiting Inevitability in Software Transactional Memory. In: 2008
Intl. Conf. on Parallel Processing (September 2008)

33. Volos, H., Goyal, N., Swift, M.: Pathological Interaction of Locks with Transactional
Memory. In: 3rd SIGPLAN Workshop on Transactional Computing (February 2008)

34. Wang, C., Chen, W.Y., Wu, Y., Saha, B., Adl-Tabatabai, A.R.: Code Generation
and Optimization for Transactional Memory Constructs in an Unmanaged Lan-
guage. In: Intl. Symp. on Code Generation and Optimization (March 2007)

35. Welc, A., Saha, B., Adl-Tabatabai, A.R.: Irrevocable Transactions and Their Ap-
plications. In: ACM Symp. on Parallelism in Algorithms and Architectures (June
2008)

The Cost of Privatization�

Hagit Attiya1,2 and Eshcar Hillel1

1 Department of Computer Science, Technion
2 Ecole Polytechnique Federale de Lausanne (EPFL)

Abstract. Software transactional memory (STM) guarantees that a transaction,
consisting of a sequence of operations on the memory, appears to be executed
atomically. In practice, it is important to be able to run transactions together with
nontransactional legacy code accessing the same memory locations, by support-
ing privatization. Privatization should be provided without sacrificing the paral-
lelism offered by today’s multicore systems and multiprocessors.

This paper proves an inherent cost for supporting privatization, which is lin-
ear in the number of privatized items. Specifically, we show that a transaction
privatizing k items must have a data set of size at least k, in an STM with invis-
ible reads, which is oblivious to different non-conflicting executions and guaran-
tees progress in such executions. When reads are visible, it is shown that Ω(k)
memory locations must be accessed by a privatizing transaction, where k is the
minimum between the number of privatized items and the number of concurrent
transactions guaranteed to make progresss, thus capturing the tradeoff between
the cost of privatization and the parallelism offered by the STM.

1 Introduction

Software transactional memory (STM) is an attractive paradigm for programming par-
allel applications for multicore systems. STM aims to simplify the design of parallel
systems, as well as improve their performance with respect to sequential code by ex-
ploiting the scalability opportunities offered by multicore systems. An STM supports
transactions, each encapsulating a sequence of operations applied on a set of data items;
an STM guarantees that if any operation takes place, they all do, and that if they do, they
appear to do so atomically, as one indivisible operation.

In practice, some operations cannot, or simply are preferred not to be executed within
the context of a transaction. For example, an application may be required to invoke ir-
revocable operations, e.g., I/O operations, or use library functions that cannot be instru-
mented to execute within a transaction. Strong atomicity [19,22,28] guarantees isolation
and consistent ordering of transactions in the presence of non-transactional memory ac-
cesses. Supporting strong atomicity is crucial both for interoperability with legacy code
and in order to improve performance.

A simple solution is to make each nontransactional operation a (degenerate) trans-
action, but this means that nontransactional operations incur the overhead associated
with a transaction. Although compiler optimizations can reduce this cost in some

� This research is supported in part by the Israel Science Foundation (grant number 953/06).
The full version of this paper [4] contains additional results, proofs and illustrations.

N.A. Lynch and A.A. Shvartsman (Eds.): DISC 2010, LNCS 6343, pp. 35–49, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

36 H. Attiya and E. Hillel

situations [27, 3], they do not alleviate it completely. Thus, STMs seek to improve per-
formance by supporting uninstrumented nontransactional operations [30,14], which are
executed as is, typically as a single access to the shared memory.

Many recent STMs [24, 31, 21, 23, 20, 11, 8, 13, 9] provide strong atomicity by sup-
porting privatization [30, 28], thereby allowing to “isolate” some items making them
private to a process; the process can thereafter access them nontransactionally, with-
out interference by other processes. It is commonly assumed that privatizing a set of
items simply involves disabling all shared references to those items [20, 31, 9], e.g., by
nullifying these references. However, it has been claimed that privatization is a major
source of overhead for transactional memories [33], and that supporting uninstrumented
nontransactional operations can seriously limit their parallelism [7].

Consider, for example, the linked-list depicted in Figure 1, in which every node
points to a root item. Every root item points to some disjoint subgraph, such as a a
tree, and is the only path to items in the subgraph. Throughout the paper we consider
a workload in which one transaction privatizes all root items and their subgraphs, and
other transactions read all the nodes of the linked list but write only to one root item that
is pointed from the list. In this workload, the hope is that a constant amount of work,
e.g., nullifying the head of the linked-list, will suffice for privatizing the whole linked
list; afterwards, all items in the rooted trees can be accessed by the privatizing process
with simple (uninstrumented) reads and writes to the shared memory.

This paper proves that in many important workloads, including the linked list pre-
sented above, the hope to combine efficient privatizing transactions with uninstrumented
nontransactional reads, cannot be realized, unless parallelism is compromised. Specif-
ically, the privatizing transaction must incur an inherent cost, linear in the number of
data items that are privatized and later accessed with uninstrumented reads.

Our lower bounds do not apply to overly sequential STMs, which achieve efficient
privatization by using a single global lock and allowing only one transaction to make
progress at each time [24, 8], thereby significantly reducing the throughput. We make
a fairly weak progress assumption (Property 1), requiring the STM to allow concurrent
progress of nonconflicting transactions: a transaction can abort or block only due to a
conflicting pending transaction.

A key factor in many efficient STMs is not having to track the data sets of other
transactions, especially if they are not conflicting. We capture this feature by assuming
that the STM is oblivious, namely, a transaction does not distinguish between noncon-
flicting transactions (Property 2). A simple example is provided by STMs using a global

� ��

head

Fig. 1. In this example, the privatizing transaction sets the head to NULL and privatizes the dark
items and their subgraphs. Other transactions write to the dark items; each transaction writes to a
different one.

The Cost of Privatization 37

clock or counter [26,25,10], or a decentralized clock [5], in which a transaction cannot
tell whether a process p executes a transaction that writes to item x or a transaction that
writes to item y, unless it accesses either x or y; it can observe that the clock or a counter
has increased, but this happens in both cases. A less-immediate example is the behavior
of TLRW [11] for so-called slotted threads. Several other STMs [23,8,31,13,9] are also
oblivious. (A detailed discussion appears in Section 5.)

Our first main result further assumes that reads do not write to the memory (invisible
reads) and shows that a transaction privatizing k items must have a data set of size
Ω(k) (Theorem 1 in Section 3). In an oblivious STM with invisible reads, transactions
are unaware of, and hence, unaffected by, read-read conflicts. In the linked-list example
this means that, for every process, the execution of other transactions appears only to
write to a single item (either the head of the list or an item pointed by the links).

Our second main result removes the assumption of invisible reads, and shows an
Ω(k) lower bound on the number of shared memory accesses performed by a privatiz-
ing transaction, where k is the minimum between the number of privatized items and
the level of parallelism, i.e., the number of transactions guaranteed to make progress
concurrently (Theorem 2 in Section 4). The proof is more involved and relies on the
assumption that the STM provides a significant level of parallelism. This lower bound
explains why the quiescence mechanism [9, 30, 23], for example, must compromise
parallelism in order to support efficient privatization.

Obliviousness generalizes disjoint-access parallelism [18], and our lower bounds
hold also for disjoint-access parallel STMs (see [4]).

Our proofs only assume a weak safety property that requires a nontransactional read
of a data item, where no nontransactional write precedes the read, to return the value
written by an earlier committed transaction, or the initial value, if no such transac-
tion commits. This property follows from parameterized opacity [14], regardless of the
memory model imposed on nontransactional reads and writes.

2 Preliminaries

A transaction is a sequence of operations executed by a single process on a set of
data items shared with other transactions; each item is initialized to some initial value.
The collection of data items accessed by a transaction is the transaction’s data set; in
particular, the items written by the transaction are its write set, and the items read by
the transaction are its read set.

A software implementation of transactional memory (STM) provides data represen-
tation for transactions and data items using base objects, and algorithms, specified as
primitive operations (abbreviated primitives) on the base objects, which asynchronous
processes have to follow in order to execute the operations of transactions. In addition
to ordinary read and write primitives, we allow arbitrary read-modify-write primitives,
including CAS. A primitive is nontrivial if it may change the value of the object, e.g.,
a write or CAS; otherwise, it is trivial, e.g., a read. An access to base object o is the
application of a primitive to o.

An event is a computation step by a process consisting of local computation and the
application of a primitive to base objects, followed by a change to the process’s state,

38 H. Attiya and E. Hillel

according to the results of the primitive. A configuration is a complete description of
the system at some point in time, i.e., the state of each process and the state of each
shared base object. In the unique initial configuration, every process is in its initial state
and every base object contains its initial value.

Two executions α1 and α2 are indistinguishable to a process p, if p goes through the
same sequence of state changes in α1 and in α2; in particular, this implies that p goes
through the same sequence of events.

2.1 STM Properties

The consistency condition assumed by all our results is that if a transaction writing to an
item t a value other than the initial value, commits, then a later nontransactional read of t
returns a value that is different from the initial value; vice versa, if no transaction writing
to t commits and no nontransactional write changes t then a nontransactional read of t
returns the initial value. This condition is satisfied by parameterized opacity [14] and
hence our lower bounds hold for parameterized opacity as well.

A transaction blocks if it takes an infinite number of steps without committing or
aborting. Our progress condition requires a transaction to commit if it has no nontrivial
conflict1 with any pending transaction; that is, a transaction can abort or block only due
to a nontrivial conflict with such a transaction. A transaction T is logically committed
in a configuration C if T does not abort in any infinite extension from C.

Property 1 (l-progressive STM). An STM is l-progressive, l ≥ 0, if a transaction T
aborts or blocks in a solo execution (of all the transaction or a suffix of it) after an
execution α that contains l or less incomplete transactions, only due to a nontrivial
conflict with an incomplete logically committed transaction.

Note that a transaction that must commit according to this definition becomes log-
ically committed at some point, e.g., right before it commits. Property 1 means that,
in the absence of conflicts, the STM must ensure parallelism. This property (for any
k ≥ 1) is satisfied by weakly progressive STMs [16], in which a transaction must com-
mit if it does not encounter conflicts, and by obstruction-free STMs [17], in which a
transaction commits when it runs by itself for long enough, implying that it must not
abort or block if it runs solo after an execution without nontrivial conflicts.

An �-independent execution contains � ≥ 0 transactions, each executed by a dif-
ferent process, pi1 , . . . , pi�

, running solo until it is logically committed, on data sets
without nontrivial conflicts. An STM is oblivious if a transaction running solo after
an �-independent execution, without nontrivial conflicts with the pending transactions,
behaves in a manner that is independent of the data sets of the pending transactions.

Property 2 (Oblivious STM). An STM is oblivious if for any pair of �-independent
executions α1 and α2, each containing � transactions executed by the same processes
pi1 , . . . , pi�

, in the same order, if some transaction T executed by a process p does not
have nontrivial conflicts with the transactions in α1 and α2, then α1T and α2T are
indistinguishable to p.

1 A conflict occurs when two operations access the same data item; the conflict is nontrivial if
one of the operations is a write.

The Cost of Privatization 39

An STM has invisible reads, if an execution of any transaction is indistinguishable
from the execution of a transaction writing the same values to the same items, while
omitting all read operations. More formally, consider an execution α that includes a
transaction T of process p with write set W and read set R, and consider a transaction
T ′ of process p writing the same values to W in the same order as in T, but with an
empty read set. In STMs with invisible reads there is an execution α′ that includes T ′

instead of T, such that α′ is indistinguishable to all other processes from α.

2.2 Privatization

An STM may contain transactions that privatize a set of data items. Rather than getting
into the details of what privatization means, we only state a property that is naturally
expected out of any notion of privatization, as it guarantees isolation when accessing
the shared memory with nontransactional operations.

We assume uninstrumented nontransactional read operations, which simply read a
fixed base object. The base object might depend on the process and the item, e.g., a
private (local) copy of the item, but the process applies no manipulation on the value
and simply returns the value written in the base object as the value of the item.

Process pj privatizes item ti when pj commits a transaction privatizing ti. The pri-
vate base object that process pj associates with a data item ti, after privatizing the item,
is denoted mj

i . Uninstrumented nontransactional write operations can be defined anal-
ogously (although they are not used in our proofs).

Property 3 (Privatization-safe STM). An STM with uninstrumented nontransactional
operations is privatization safe if after process pj privatizes item ti, no process ph �= pj

applies a nontrivial primitive to the base object mj
i .

Previous work [20] informally assumed that a transaction privatizing a region must
conflict with other transaction accessing this region.

Indeed, it can be easily shown that a weakly progressive STM cannot support pri-
vatization if the read set of every writing transaction is empty, unless the privatizing
transaction accesses all the items it privatizes. If there is an item the privatizing transac-
tion does not access, then a transaction writing to this item executed after the privatizing
transaction completes, is unaware of the privatization, and may access private locations.

We first show that in a privatization-safe STM, a transaction applies a nontrivial
primitive (e.g., writes) to a base object associated with a privatized item, only after it is
already logically committed.

An STM is eager if there exists a configuration C such that a transaction T is the only
pending transaction in C, T is not logically committed, and a process p executing T ap-
plies a nontrivial primitive to a base object associated with an item that another process
privatizes. It is simple to show that a 1-progressive eager STM is not privatization-safe
(see [4]). Note that assuming uninstrumented nontransactional operations implies that
the mapping of each privatized item to the corresponding base object is static. In the
sequel, we assume that a privatization-safe STM is not eager.

40 H. Attiya and E. Hillel

3 Privatization with Invisible Reads

The next theorem shows that in an oblivious STMs supporting privatization, the data
set of a privatizing transaction must contain all privatized items. The proof proceeds by
creating a scenario in which a privatizing transaction misses the up-to-date value of a
privatized item; some care is needed in order to argue about each item separately.

Theorem 1. For any privatization-safe STM that is 1-progressive, oblivious and with
invisible reads, there is a privatization workload in which transactions have nonempty
read sets, for which there is an execution where the size of the data set of a transaction
privatizing k items is Ω(k).

Proof. Consider two processes p0 and p1: p0 executes a transaction T0 that privatizes
the items t1, . . . tk. For p1, consider a transaction T ′

1 with an arbitrary read set, writing
to an item u that is never accessed by T0.

Consider the execution α′ = I
′
1T0, such that in I

′
1, p1 executes a prefix of the trans-

action T ′
1 until it is logically committed (see Figure 2(a)). I

′
1 is indistinguishable to p0

from an execution in which p1 executes a transaction that only writes to u until it is
logically committed. After I

′
1, there is no incomplete transaction that has a conflict with

T0, and since the STM is 1-progressive, T0 commits when executed after I
′
1.

Assume, by way of contradiction, that the data set of T0 does not include some item
ti that it privatizes when executed after I

′
1. Consider the execution α = I1T0, such that

in I1, p1 executes a prefix of a transaction T1 with the same read set as T ′
1 and writing

to the item ti a value different than its initial value, and T1 is logically committed after
I1 (see Figure 2(b)). It can be shown (see [4]) that ti is not in the data set of T0 also
when executed after I1.

Since the reads are invisible I1 is indistinguishable to p0 from an execution with no
nontrivial conflicts, and since the STM is oblivious, T0 commits also when executed
after I1 in α. Let m1, . . . , mk be the base objects that are private to p0 after α (we omit
the superscript 0). Since the STM is 1-progressive T1 commits when completed after α.
Since T1 is logically committed after I1, it writes to ti. Consider the execution I1T0J1,
such that J1 is the suffix of the execution of T1 until it commits (see Figure 2(c)).

Lemma 1. p1 modifies the state of mi in J1.

Proof. We first show that p1 does not modify mi in the first part of its transaction in α.
Assume that p1 applies a nontrivial primitive to mi in some step when executing I1 in
α, and let τ be the first such step. Let Î1 be the prefix of I1 preceding τ . I1 is the shortest
prefix of T1 after which T1 is logically committed. Hence, T1 is not logically committed
after Î1, and it is the only transaction that is pending after Î1. In a solo execution of T0

after Î1, T0 is committed, making mi private to p0. Since the STM is not eager, p1 does
not apply τ after Î1.

A similar argument shows that p1 does not apply nontrivial primitive to mi in α′.
Next, we argue that p0 does not modify the state of mi in α. Otherwise, a nontransac-

tional, uninstrumented read operation, to ti of p0 after α′ returns a value that is not the
initial value of mi, whereas no committed transaction writes to ti in α′, contradicting
our correctness condition. The executions of T0 after I1 and I

′
1 are indistinguishable,

The Cost of Privatization 41

p1 executing T
′
1

I
′
1

p0 executing T0

(a) The execution α′.

p1 executing T1

I1

p0 executing T0

(b) The execution α.

p1 executing T1

I1

p0 executing T0

J1

p1 completes T1

(c) The execution α extended with the suffix of T1.

Fig. 2. The executions used in the proof of Theorem 1. A dotted line indicates that the transaction
is logically committed.

since the STM is oblivious and since T0 does not access neither u nor ti. We have shown
that p1 accesses mi neither in α nor in α′, and hence, p0 does not successfully apply a
nontrivial primitive to mi also in α.

If p1 does not modify the state of mi also in J1, then a nontransactional read by p0
to ti after I1T0J1 returns the initial value of mi, since reads are uninstrumented. This
contradicts our correctness condition since T1, which writes to ti a value that is different
from the initial value of mi, commits before the nontransactional read of p0.

Therefore, p1 applies a nontrivial primitive to mi in J1 after the execution of T0, in
contradiction to privatization safety.

The proof allows T1 and T ′
1 to have non-empty read sets. Since the reads are invisible,

this looks to p0 as if they have empty read sets. Note however, that p1 does read from
the memory and distinguishes its execution of T1 and T ′

1 from executing a transaction
with an empty read set. Thus, the result does not follow from the trivial lower bound
for transactions with empty read sets.

4 Privatization with Visible Reads

A similar lower bound holds also for STMs with visible reads, assuming they ensure
some degree of parallelism. The cost is stated in terms of low-level accesses by the
privatizing transaction, rather than in terms of the high-level aspects of the transaction.
Some key ideas in the proof are similar to the proof of Theorem 1; however, the techni-
cal details are more involved, in order to handle visible reads.

Theorem 2. For any privatization-safe STM that is l-progressive and oblivious there
is a privatization workload in which update transactions have nonempty read sets, for
which there is an execution where a transaction privatizing m items accesses Ω(k) base
objects, where k = min{l, m}.

The proof of this theorem is quite involved technically, so we outline it for the linked-list
workload of Figure 1; a detailed proof sketch appears in Appendix A.

42 H. Attiya and E. Hillel

We have k updating transactions traverse the nodes of a linked list, while each trans-
action writes to a different item pointed by the list that is not read by other transactions;
so these transactions have only trivial conflicts. Later, a transaction by another process,
privatizing all items pointed by the linked list, is shown to miss the up-to-date value of
the privatized items, unless it accesses many base objects.

Since reads are visible, however, it is difficult to hide the updating transaction from
the privatizing transaction. The challenge is to create an execution in which an updating
transaction runs long enough to guarantee that it will eventually commit—even after
the privatizing transaction commits, and even if the privatizing transaction writes to an
item it reads—but not long enough to become visible to the privatizing transaction.

The privatizing transaction may write to an item in the read set of an updating trans-
action (e.g., the head of the list), thus invalidating its read set. Hence, to guarantee that
an updating transaction eventually commits in the execution constructed, the updating
transaction runs until it is logically committed, before the privatizing transaction starts.

It may seem that, at this point, the privatizing transaction does not need to access
many objects to observe a conflict with the updating transactions, and it can abort or
at least block until the conflicts are resolved. However, the obliviousness and non-
eagerness of the STM can be used to “hide” the updating transactions from the pri-
vatizing transaction, by swapping the updating transactions with other confusing trans-
actions, accessing a completely disjoint linked list; the confusing transactions also have
only trivial conflicts among them. Due to obliviousness, these confusing transactions
are indistinguishable from the original updating transactions.

We start with an execution in which the confusing transactions run one after the
other; this execution is k-independent. Then, we swap confusing transactions with up-
dating transactions. Swapping is done inductively: Each inductive step swaps one con-
fusing transaction with an updating transaction by the same process; that is, at each
step one additional process executes the updating transaction instead of the confusing
transaction, and incurs an access to at least one additional base object by the privatiz-
ing transaction. This yields an execution in which the privatizing transaction accesses
many objects, implying the lower bound.

Progressiveness is used to ensure that if at some point the privatizing transaction
observes a conflict, the updating transaction causing the conflict may run to completion.
This also ensures that the privatizing transaction runs to completion.

A technical challenge in the proof is in deciding which transaction to swap next, so
as not to lose the accesses by the privatizing transaction that appear in the execution we
have created so far. Specifically, we need to pick a transaction T such that swapping
it is invisible to the privatizing transaction in its execution prefix, at least during the
memory accesses incurred due to previous swaps. This is done by letting T be the last
transaction to modify the next location seen by the privatizing transaction, so that future
swaps will not overwrite locations T writes to and that are accessed by the privatizing
transaction in its execution prefix. (This is the purpose of Item 5 maintained in the
inductive construction; see Appendix A.)

Reducing the cost of privatization by restricting parallelism: The lower bound, stated
as the minimum between the number of privatized items and the level of parallelism,
indicates that one way to reduce the cost associated with privatization, is to limit the

The Cost of Privatization 43

parallelism offered by the STM. We next show how this tradeoff can be exploited, by
sketching a “counter-example” STM, which is a variant of RingSTM [31]. The variant,
called VisibleRingSTM, reduces the cost of privatization while limiting parallelism.

RingSTM is oblivious and privatization-safe, but not progressive; privatizing k items
accesses O(c) base objects, where c is the number of concurrent transactions. RingSTM
represents transactions’ read and write sets as Bloom filters [6]. Transactions commit by
enqueuing a Bloom filter onto a global ring; the Bloom filter representing the read set
of a transaction is only for its internal use. During validation, a transaction T checks for
intersections between the read set of T and the write sets of other logically committed
transactions in the ring, and aborts in case of a conflict. In the commit phase, T ensures
that a write-after-write ordering is preserved. This is done by checking for intersections
between the write set of T and the write sets of other logically committed transactions
in the ring. RingSTM is not l-progressive, for any l, since a transaction blocks until all
concurrent logically committed transactions are completed.

In VisibleRingSTM, the read set Bloom filter is visible to other transactions, like the
filter of the write set. In the commit phase, T ensures that a write-after-read ordering is
preserved, in addition to the write-after-write ordering, as in RingSTM. This is done by
checking for intersections between the write set of T and the (visible) read sets of other
logically committed transactions in the ring (in addition to checking for intersections
with the write sets of these transactions). Intersection between the read set of T and
the write set of another transaction is checked by validation. There is no need to check
for intersection between read sets, as these are trivial conflicts that should not interfere.
Finally, waiting for all logically committed transactions to complete (at the end of the
commit phase) is removed in VisibleRingSTM, as the write-after-read and write-after-
write ordering ensure that all the concurrent conflicting transactions have completed.

In VisibleRingSTM, a transaction aborts only due to read-after-write conflicts with
other logically committed transactions, and blocks after it is logically committed only
due to write-after-write or write-after-read conflicts with other logically committed
transactions. A privatizing transaction accesses the c ring entries of concurrent logi-
cally committed transactions, the items in its data set and the global ring index.

The cost of a privatizing transaction can be bounded by O(c0), for any c0 > 1, by
using a ring of size c0; thus, a privatizing transaction needs to access at most c0 ring
entries. In order to commit, a transaction scans the ring for an empty entry. When there
are at most c0 concurrent transactions, it will find an empty entry, become logically
committed, and continue as in VisibleRingSTM. This STM is (c0 − 1)-progressive,
but a transaction blocks in executions with more than c0 concurrent transactions (even
if they are not conflicting). Thus, the cost of privatization is reduced by limiting the
progress of concurrent transactions.

5 Related Work

Many STMs supporting privatization are oblivious [8, 31, 23, 11, 13, 9] because they
avoid the cost of tracking the read sets of other transactions, especially if they are not
conflicting. The visibility of reads is not induced by the obliviousness of the STM:
Some oblivious STMs use invisible reads [8, 31, 23], making their read set nonexistent

44 H. Attiya and E. Hillel

for other transactions. Other STMs, e.g., [9], use partially visible reads [21], implying
that other transactions cannot determine which transaction exactly is reading the item.
Some oblivious STMs even use visible reads, e.g., [13], however, their execution is
unaffected by trivial, read-read conflicts. Our lower bounds hold for all these STMs.

TLRW [11] uses read locks, making reads visible. The lock contains a byte per each
slotted reader, and a reader-count that is modified by other, unslotted readers. Slotted
readers only write to their slot when reading, so they are unaware of other reads, while
unslotted processes read and write to a common counter, and their execution is affected
by other reads to the same item (read-read conflict). Therefore, TLRW is oblivious
when restricted to slotted readers, and, as predicted by our lower bound, the number of
locations accessed by a privatizing transaction is linear in the number of slotted readers.

Our lower bounds indicate that providing efficient privatization requires to compro-
mise parallelism. Inspecting many STMs supporting privatization, e.g., [13, 9, 24, 8, 21,
31, 23], reveals that they limit parallelism, in one way or another.

In explicit privatization [29], the application explicitly annotates privatizing trans-
actions, and the STM implementation can be optimized to handle such transactions
efficiently; this approach is error-prone and places additional burden on the program-
mer, which STM tries to avoid in the first place [20]. In implicit privatization [21], the
STM implementation is required to handle all transactions as if they are potentially
privatizing items; this incurs excessive overhead for all transactions.

Some experiments [33,12,29] tested techniques used to support implicit privatization
in implementations with invisible reads. The results show a significant impact on the
scalability and performance relative to STMs supporting explicit privatization; in some
cases, the performance degrades to be worse than in sequential code.

Parameterized opacity [14] is a framework for describing the interaction between
transactions and nontransactional operations, extending opacity [15], and parameter-
ized by a memory model for the semantics of nontransactional operations. Guerraoui
et al. [14, Theorem 1] prove that parameterized opacity cannot be achieved for mem-
ory models that restrict the order of some pair of read or write operations to different
variables. They also show that if operations on different variables can be reordered,
then parameterized opacity with uninstrumented operations requires RMW primitives
when writing inside a transaction. Their results assume that items are accessed non-
transactionally, without a preceding privatization transaction. These results indicate the
implications of not privatizing, while our results show the cost of privatization.

They also present an uninstrumented STM that guarantees parameterized opacity
with respect to memory models that do not restrict the order of any pair of read or write
operations; it uses a global lock, and is not weakly progressive. In the full version of
this paper [4], we show that a 1-progressive, oblivious uninstrumented STM, cannot
achieve opacity parameterized with respect to any memory model. This indicates that
a privatizing transaction must precede nontransactional accesses to data items, unless
parallelism is compromised.

Private transactions [9] attempt to combine the ease of use of implicit privatiza-
tion with the efficiency benefits of explicit privatization. A private transaction inserts
a quiescing barrier that waits till all active transactions have completed; thus other,
non-privatizing transactions avoid the overhead of privatization. The barrier accesses

The Cost of Privatization 45

an array whose size is proportional to the maximal parallelism, demonstrating again the
tradeoff between parallelism and privatization cost, in oblivious STMs.

Static separation [2] is a discipline in which each data item is accessed either only
transactionally or only nontransactionally. In order to privatize items, the transaction
copies them to a private buffer, trivially demonstrating our lower bound. Dynamic sep-
aration [1] allows data to change access modes without being copied, simply by setting
a protection mode in the item. Dynamic separation requires the programmer to access
all items to become unprotected, i.e., privatized, as is indicated by our lower bound.

6 Discussion

This paper studies the theoretical complexity of privatization that allows uninstrumented
nontransactional reads, and shows an inherent cost, linear in the number of privatized
items. Privatizing transactions in STMs with invisible reads must have a data set of
size k, where k is the number of privatized items. A more involved proof shows that
even with visible reads, the privatizing transaction must access Ω(k) memory locations,
where k is the minimum between the number of privatized items and the number of con-
current transactions that make progress. Both results assume that the STM is oblivious
to different non-conflicting executions and guarantees progress in such executions. The
specific assumptions needed to prove the bounds indicate that limiting the parallelism or
tracking the data sets of other transactions are the price to pay for efficient privatization.

The privatization problem is informally characterized by two subproblems: The de-
layed cleanup problem [19], in which transactional writes interfere with nontransac-
tional operations, and the doomed transaction problem [32], in which transactional
reads of private data lead to inconsistent state. Our definition of privatization safety
(Property 3) formalizes the first problem; our results show that this problem by itself is
an impediment to the efforts to provide efficient privatization.

As discussed in Section 5, some STMs maintain visible reads, yet they are obliv-
ious [9, 13]. SkySTM [20] has visible reads, and it avoids the cost of the privatizing
transaction by not being oblivious; it makes transactions with trivial read-read conflicts
visible to each other. Since SkySTM is not oblivious, our lower bounds do not hold for
it. SkySTM, however, demonstrates the alternative cost of not being oblivious, since
any writing transaction—not only privatizing transactions—writes to a number of base
objects that is linear in the size of its data set, not just the write set. It remains an interest-
ing open question whether this is an inherent tradeoff, or whether there is an STM such
that a privatizing transaction accesses O(1) base objects, and any writing transaction
writes to a number of base objects that is linear in the size of its write set.

Strong privatization safety [20] further guarantees that no primitive (including a
read) is applied to a private location of a process that completed a privatizing trans-
action. It formalizes the other problem with privatization, of doomed transactions, and
it would be interesting to investigate the cost of supporting it.

Acknowledgements. We thank Keren Censor Hillel, Panagiota Fatourou, Petr Kuznetsov,
Alessia Milani, and Michael Spear for helpful comments.

46 H. Attiya and E. Hillel

References

1. Abadi, M., Birrell, A., Harris, T., Hsieh, J., Isard, M.: Implementation and use of transactional
memory with dynamic separation. In: CC ’09, pp. 63–77 (2009)

2. Abadi, M., Birrell, A., Harris, T., Isard, M.: Semantics of transactional memory and auto-
matic mutual exclusion. In: POPL ’08, pp. 63–74 (2008)

3. Abadi, M., Harris, T., Mehrara, M.: Transactional memory with strong atomicity using off-
the-shelf memory protection hardware. In: PPoPP’09, pp. 185–196 (2009)

4. Attiya, H., Hillel, E.: The cost of privatization. Technical Report CS-2010-11, Department
of Computer Science, Technion. (2010)

5. Avni, H., Shavit, N.: Maintaining consistent transactional states without a global clock.
In: Shvartsman, A.A., Felber, P. (eds.) SIROCCO 2008. LNCS, vol. 5058, pp. 131–140.
Springer, Heidelberg (2008)

6. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. ACM Com-
mun. 13(7), 422–426 (1970)

7. Cascaval, C., Blundell, C., Michael, M., Cain, H.W., Wu, P., Chiras, S., Chatterjee, S.: Soft-
ware transactional memory: why is it only a research toy? ACM Commun. 51(11), 40–46
(2008)

8. Dalessandro, L., Spear, M.F., Scott, M.L.: NOrec: Streamlining STM by abolishing owner-
ship records. In: PPoPP ’10 (2010)

9. Dice, D., Matveev, A., Shavit, N.: Implicit privatization using private transactions. In:
TRANSACT ’10 (2010)

10. Dice, D., Shalev, O., Shavit, N.: Transactional locking II. In: Dolev, S. (ed.) DISC 2006.
LNCS, vol. 4167, pp. 194–208. Springer, Heidelberg (2006)

11. Dice, D., Shavit, N.: TLRW: Return of the read-write lock. In: SPAA ’10 (2010)
12. Dragojevic, A., Felber, P., Gramoli, V., Guerraoui, R.: Why STM can be more than a Re-

search Toy. Technical Report LPD-REPORT-2009-003, EPFL (2009)
13. Gottschlich, J.E., Vachharajani, M., Jeremy, S.G.: An efficient software transactional mem-

ory using commit-time invalidation. In: CGO’10 (2010)
14. Guerraoui, R., Henzinger, T., Kapalka, M., Singh, V.: Transactions in the jungle. In: SPAA

’10, pp. 275–284 (2010)
15. Guerraoui, R., Kapalka, M.: On the correctness of transactional memory. In: PPoPP ’08, pp.

175–184 (2008)
16. Guerraoui, R., Kapalka, M.: The semantics of progress in lock-based transactional memory.

In: POPL ’09, pp. 404–415 (2009)
17. Herlihy, M., Luchangco, V., Moir, M.: Obstruction-free synchronization: Double-ended

queues as an example. In: ICDCS ’03, p. 522 (2003)
18. Israeli, A., Rappoport, L.: Disjoint-access parallel implementations of strong shared memory

primitives. In: PODC ’94, pp. 151–160 (1994)
19. Larus, J.R., Rajwar, R.: Transactional Memory. Morgan & Claypool, San Francisco (2006)
20. Lev, Y., Luchangco, V., Marathe, V.J., Moir, M., Nussbaum, D., Olszewski, M.: Anatomy of

a scalable software transactional memory. In: TRANSACT ’09 (2009)
21. Marathe, V.J., Spear, M.F., Scott, M.L.: Scalable techniques for transparent privatization in

software transactional memory. In: ICPP ’08, pp. 67–74 (2008)
22. Martin, M., Blundell, C., Lewis, E.: Subtleties of transactional memory atomicity semantics.

IEEE Comput. Archit. Lett. 5(2), 17 (2006)
23. Menon, V., Balensiefer, S., Shpeisman, T., Adl-Tabatabai, A.-R., Hudson, R.L., Saha, B.,

Welc, A.: Practical weak-atomicity semantics for Java STM. In: SPAA ’08, pp. 314–325
(2008)

The Cost of Privatization 47

24. Olszewski, M., Cutler, J., Steffan, J.G.: JudoSTM: A dynamic binary-rewriting approach to
software transactional memory. In: PACT ’07, pp. 365–375 (2007)

25. Riegel, T., Felber, P., Fetzer, C.: A lazy snapshot algorithm with eager validation. In: Dolev,
S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 284–298. Springer, Heidelberg (2006)

26. Riegel, T., Fetzer, C., Felber, P.: Time-based transactional memory with scalable time bases.
In: SPAA ’07, pp. 221–228 (2007)

27. Schneider, F.T., Menon, V., Shpeisman, T., Adl-Tabatabai, A.-R.: Dynamic optimization for
efficient strong atomicity. SIGPLAN Not. 43(10), 181–194 (2008)

28. Shpeisman, T., Menon, V., Adl-Tabatabai, A.-R., Balensiefer, S., Grossman, D., Hudson,
R.L., Moore, K.F., Saha, B.: Enforcing isolation and ordering in STM. SIGPLAN Not. 42(6),
78–88 (2007)

29. Spear, M.F., Dalessandro, L., Marathe, V.J., Scott, M.L.: Ordering-based semantics for soft-
ware transactional memory. In: Baker, T.P., Bui, A., Tixeuil, S. (eds.) OPODIS 2008. LNCS,
vol. 5401, pp. 275–294. Springer, Heidelberg (2008)

30. Spear, M.F., Marathe, V.J., Dalessandro, L., Scott, M.L.: Privatization techniques for soft-
ware transactional memory. Technical Report Tr 915, Dept. of Computer Science, Univ. of
Rochester (2007)

31. Spear, M.F., Michael, M.M., von Praun, C.: RingSTM: scalable transactions with a single
atomic instruction. In: SPAA ’08, pp. 275–284 (2008)

32. Wang, C., Chen, W.-Y., Wu, Y., Saha, B., Adl-Tabatabai, A.-R.: Code generation and opti-
mization for transactional memory constructs in an unmanaged language. In: CGO ’07, pp.
34–48 (2007)

33. Yoo, R.M., Ni, Y., Welc, A., Saha, B., Adl-Tabatabai, A.-R., Lee, H.-H.S.: Kicking the tires
of software transactional memory: why the going gets tough. In: SPAA ’08, pp. 265–274
(2008)

A More Details for the Proof of Theorem 2

We sketch the proof for a workload similar to the linked list of Figure 1; after the proof,
we discuss how it can be extended to other scenarios.

Theorem 2. For any privatization-safe STM that is l-progressive and oblivious there
is a privatization workload in which update transactions have nonempty read sets, for
which there is an execution where a transaction privatizing m items accesses Ω(k) base
objects, where k = min{l, m}.

Sketch of proof. Consider the scenario described in Figure 1: Let r0, r1, . . . , rk be the
nodes of the linked list (with r0 being the head node); each node ri, 1 ≤ i ≤ k points
to an item ti. We consider k + 1, k ≥ 1, processes p0, . . . , pk. Process p0 executes
a transaction T0 that privatizes the linked list, including the items t1, . . . tk. For every
process pi, 1 ≤ i ≤ k, we consider a transaction Ti that traverses the nodes of the
list and then writes to ti a value different than its initial value; namely, its read set is
{r0, r1, . . . , ri}, and its write set is {ti}.

For the proof, we take another linked list with the same structure that is not connected
to the first list in any way. This list contains k + 1 nodes r′0, r

′
1, . . . , r

′
k and k items

t′1, . . . , t
′
k. T0 does not access this list at all; however, for every process pi, 1 ≤ i ≤ k,

we consider another transaction, Ti
′, that traverses the nodes of the second list and then

writes to t′i; namely, its read set is {r′0, r′1, . . . , r′i}, and its write set is {t′i}.

48 H. Attiya and E. Hillel

A process p reads from a process q via a base object o in an execution α if p accesses
o, and o was last modified by q. Process p reads from a set of processes P in an execution
α if for every process q ∈ P , there is a base object o such that p reads from q via o in α.

Consider the following execution α0β0γ0: α0 is I
′
1 . . . I

′
k, such that pi executes in I

′
i ,

a prefix of the transaction Ti
′ and Ti

′ is logically committed after I
′
i ; β0 is the empty

execution interval; and γ0 is a solo execution of T0 by p0 to completion.
For every �, 0 < � ≤ k, we show how to perturb α�−1β�−1γ�−1 to obtain an execu-

tion α�β�γ�, such that

1. p0 executes T0 to successful completion in β�γ�.
2. p0 reads from all processes in P�, a subset of {p1, . . . , pk} of size (at least) �, in

α�β�.
3. There is a subset Q� of P�, where every process pj ∈ Q� executes Ij , a prefix of the

transaction Tj , in α�, such that Tj is logically committed after Ij , and pj completes
Tj in β�.

4. Every process pj , {p1, . . . , pk} \Q�, executes I
′
j in α�.

5. For every process pj from which p0 does not read in α�β�γ�, αj
� is a k-independent

execution, in which pj executes Ij instead of I
′
j , and all other processes take the

same steps as in α�; in αj
� , pj does not modify any base object o, such that, in α�β�

p0 reads o from a process ph, h < j.

For � = k, we get an execution α�β�γ�, such that p0 reads from k different processes in
Pk (Condition 2). The theorem follows since p0 accesses k different base objects,

The proof is by induction on �. The base case is straightforward (see [4]). For
the induction step, assume an execution α�−1β�−1γ�−1 satisfies the above conditions.
Consider the subset V�−1 of {p1, . . . , pk} \ P�−1 from which p0 does not read in
α�−1β�−1γ�−1. If V�−1 is empty then p0 reads from all the processes and the theorem
holds. Otherwise, one of the processes in V�−1 is used to construct the next step.

Pick an arbitrary process pj ∈ V�−1 and consider the execution αj
�−1, in which pj

executes Ij instead of I
′
j , and other processes take the same steps as in α�.

The execution αj
�−1 is k-independent, since all the transactions are nonconflict-

ing. Since the STM is oblivious, αj
�−1 is a valid execution, and since the STM is k-

progressive Tj is logically committed in αj
�−1. Since the STM is oblivious, αj

�−1 is
indistinguishable to every process in {p1, . . . , pk} \ {pj} from α�−1. Furthermore, the
inductive assumption implies that pj does not modify in αj

�−1 any base object o, if in
α�−1β�−1 p0 reads o from a process ph, h < j. Thus, p0 reads the same values as in the
execution of β�−1, and there is an execution αj

�−1β
j
�−1γ

j
�−1 such that βj

�−1 and β�−1

are indistinguishable, and p0 runs solo in γj
�−1.

Assume that p0 does not read from pj also in αj
�−1β

j
�−1γ

j
�−1. Then p0 takes the same

steps in γj
�−1 and γ�−1 and T0 is committed in αj

�−1β
j
�−1γ

j
�−1. Let m1, . . . , mk be the

base objects that are private to p0 after αj
�−1β

j
�−1γ

j
�−1.

The pending transactions in the execution αj
�−1β

j
�−1γ

j
�−1 are not conflicting. Since

the STM is k-progressive and Tj is logically committed after Ij , it commits (writing to

tj) when executed solo after αj
�−1β

j
�−1γ

j
�−1. Consider the execution αj

�−1β
j
�−1γ

j
�−1Jj ,

The Cost of Privatization 49

such that Jj is the execution of Tj until it commits. In a manner similar to Lemma 1, we
show that pj must modify the state of mj in Jj (see [4]). Therefore, pj applies a nontriv-
ial primitive to mj in some step during Jj , which is pending after the execution of T0,

in contradiction to privatization safety. Thus, p0 must read from pj in αj
�−1β

j
�−1γ

j
�−1.

Let sj be the number of steps until p0 reads from pj for the first time in γj
�−1. Pick a

process pj�
such that sj�

is the smallest, and if sj�
= sh�

then j� > h�.
Let the execution interval α� be αj�

�−1. The execution interval β� is β�−1 extended

with the first sj�
− 1 steps of p0 in γj�

�−1, then a solo execution of pj�
completing Tj�

,

and finally, the sj�
step of p0 from γj�

�−1, which reads from pj�
. Since Tj�

is logically
committed in α�, and the STM is k-progressive, Tj�

commits in β�. The execution
interval γ� is defined as a solo execution of p0 completing T0.

It remains to verify the conditions hold for α�β�γ�.

1. T0 completes successfully as there is no incomplete conflicting transaction after
α�β�, and the STM is k-progressive.

2. By the induction assumption, p0 reads from at least � − 1 processes, P�−1, in
α�−1β�−1, not including pj�

that was chosen in the last iteration. The executions
α�−1 and α� are indistinguishable to all the processes ph, for h < j�. Further-
more, since the STM is oblivious, α�−1 and α� are indistinguishable to all the
processes ph, for h > j�. Hence, p0 reads from at least the same � − 1 processes
in α�β�−1. In addition, p0 reads from pj�

in α�β�. Thus, P� ⊇ P�−1
.
∪ {pj�

}, and
|P�| ≥ |P�−1|+ 1 ≥ �.

3. By the induction assumption, Q�−1 is a subset of P�−1, such that every process
ph ∈ Q�−1 executes Ih in α�−1, and completes Th in β�−1. Only pj�

is in Q� \
Q�−1, and it executes Ij�

in α� and completes Tj�
in β�. Since α�−1 and α� are

indistinguishable to all the processes in {p1, . . . , pk} \ {pj�
}, and since only pj�

switched from I
′
j�

in α�−1 to Ij�
in α�, all the processes ph ∈ Q� \ {pj�

} execute
Ih in α� and complete Th in β�−1, which is the prefix of β�.

4. By the induction assumption, every process ph ∈ {p1, . . . , pk} \Q�−1, executes I
′
h

in α�−1. Since only pj�
∈ {p1, . . . , pk} \ Q�−1 switched from I

′
j�

in α�−1 to Ij�

in α�, and since pj�
/∈ {p1, . . . , pk} \ Q�, every process ph ∈ {p1, . . . , pk} \ Q�

executes I
′
h in α�.

5. Assume, by way of contradiction, that for some j, pj modifies in αj
� the base object

o, which in α�β� p0 reads from ph, h < j. Denote by σ the step during α�β�, in
which p0 reads from ph. There is a step, σ′, which is either σ or follows σ during
α�β�, in which p0 reads from ph�′ ∈ Q�, since p0 always reads from a process in
Q� in the last step of α�β�. Consider the iteration, �′, in which ph�′ was chosen to
switch from Th�′

′ to Th�′ . Since the STM is oblivious, the executions α�′−1 and α�′

are indistinguishable to the processes in {p1, . . . , pk} \ {ph�′}. Process pj should
have been chosen in the iteration �′, since if σ′ follows σ, then sj < sh�′ , otherwise,
σ′ is σ, i.e., h = h�′ and j > h�′ .

The proof holds for every workload in which the updating transaction Ti does not read
any item from {t1, . . . tk} \ {ti}.

A Scalable Lock-Free Universal Construction
with Best Effort Transactional Hardware

Francois Carouge and Michael Spear

Lehigh University
{frc309,spear}@cse.lehigh.edu

Abstract. The imminent arrival of best-effort transactional hardware
has spurred new interest in the construction of nonblocking data struc-
tures, such as those that require atomic updates to k words of mem-
ory (for some small value of k). Since transactional memory itself (TM)
was originally proposed as a universal construction for crafting scal-
able lock-free data structures, we explore the possibility of using this
emerging transactional hardware to implement a scalable, unbounded
transactional memory that is simultaneously nonblocking and compat-
ible with strong language-level semantics. Our results show that it is
possible to use this new hardware to build nonblocking TM systems that
perform as well as their blocking counterparts. We also find that while
the construction of a lock-free TM is possible, correctness arguments are
complicated by the many caveats and corner cases that are built into
current transactional hardware proposals.

1 Introduction

Transactional Memory (TM) [12] was initially proposed as a hardware mecha-
nism to support lock-free programming. The subsequent development of Software
Transactional Memory (STM) [21] continued this focus on nonblocking progress.
Indeed, it was two nonblocking algorithms, the obstruction-free DSTM [11] and
lock-free FSTM [10] that reinvigorated STM research in the past decade. How-
ever, as processors hit the heat wall and vendors embraced parallelism across the
entire spectrum of products, the urgent need for low-latency STM algorithms
led to a flurry of research into lock-based designs. Roughly speaking, lock-based
STM algorithms are easier to design and implement, and with careful design
(and OS support) are resilient to preemption [4] and priority inversion. Some
lock-based STM algorithms are even livelock-free [25, 3, 20]. These results have
not stopped exploration into nonblocking STM, and two recent obstruction-free
STM designs show how a blocking system can be made nonblocking [16, 27]
without much overhead.

The prospect of integrating STM into high-level languages presents a further
complication. If data is to be used both transactionally and nontransactionally,
then an STM implementation may introduce races between active or committing
transactions and concurrent nontransactional code [24, 28, 18]. These races are

N.A. Lynch and A.A. Shvartsman (Eds.): DISC 2010, LNCS 6343, pp. 50–63, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Scalable Lock-Free Universal Construction 51

implementation artifacts; they affect race-free code because the STM implemen-
tation does not provide strong correctness guarantees. While some STM designs
are privatization-safe [25, 3, 17, 6, 15], solutions to the “privatization” problem
appear to require blocking, either at transaction boundaries [24, 17, 18, 19], or
during the execution of transactional [15,6], or even nontransactional [22] code.

Two recent innovations provide hope that these obstacles can be overcome.
First, “single-CAS” STM (SCSTM) algorithms [20,25,3] show that it is possible
to construct scalable lock-based systems that are privatization-safe, livelock-free,
and whose blocking behavior is both localized and easy to characterize. Secondly,
interest in bounded or “best-effort” hardware support for transactional memory
(BETM) promises to extend common instruction-set architectures with features
to facilitate lock-free programming. It has been shown that a simple hardware
extension called alert-on-update (AOU) [26] can make a traditional (weak se-
mantics) STM implementation obstruction-free. However, the AOU proposal
ignored implementation details, whereas BETM proposals do not. Given the
weaker guarantees of BETM, we explore the creation of lock-free STM imple-
mentations that are scalable and provide strong semantics.

Our results are mixed. While using BETM is relatively easy, arguing about
the correctness of a BETM algorithm is more difficult, as it requires knowledge of
the underlying hardware, careful programming to avoid corner cases, and a mix
of transactional and nontransactional accesses to metadata and program data.
Assuming that we have not missed any causes of spurious aborts in the BETM
systems we considered, we have made three SCSTM algorithms obstruction-free
or lock-free without sacrificing performance or safety. The result is strong: using
very little of what BETM offers, we can build algorithms that are lock-free,
provide strong semantics, and scale well.

This paper is organized as follows. In Sections 2 and 3 we describe the hard-
ware and software foundations of our new lock-free construction. We then present
our lock-free construction in 4. In Section 5, we evaluate our nonblocking algo-
rithms through simulation. We conclude in Section 6.

2 Background: Best Effort Transactional Hardware

Recent BETM systems from Sun Microsystems (the “Rock” processor [5]) and
AMD (the “advanced synchronization facility” proposal [7], or ASF) embody
a significant compromise: whereas previous HTM systems attempt to transpar-
ently support long-running transactions with large memory footprints, these
best-effort systems provide limited guarantees. In exchange, BETMs are imple-
mentable in modern instruction set architectures. We briefly summarize the key
attributes below:
– Capacity: BETMs limit the amount of data that can be accessed within

a transaction. In ASF, transactions that speculatively access four locations
or fewer will not fail due to capacity (the upper bound is not specified); in
Rock, the L1 cache manages speculative loads, and a 32-entry store queue
bounds the number of speculative writes. A software fallback is required if
these resources are insufficient.

52 F. Carouge and M. Spear

– Mixed-Mode Access:A transaction can execute “nonspeculative” loads and
stores to lines that have not been accessed speculatively by the same trans-
action. These accesses can cause concurrent transactions in other processors
to abort, but do not result in conflicts that cause the caller to abort. In ASF,
nonspeculative stores occur immediately, which slightly alters the processor
memory model. In Rock, nonspeculative stores are buffered in the 32-entry
store queue, and do not occur until the transaction commits or aborts.

– Progress: BETM detects conflicts at the granularity of cache lines, using
the “requester wins” model. Since “requester wins” resolves conflicts in favor
of the most recent access to a location, it is prone to livelock [1]: from the
moment transaction T speculatively accesses line X until it commits, any
concurrent incompatible access from another processor will cause T to abort.

– Forbidden Instructions: BETM forbids certain instructions within a trans-
action. System calls are never allowed, and Rock also forbids floating point
divide and certain control flow patterns.

– Forbidden Events: BETM transactions cannot survive a context switch. In
addition, hardware exceptions and asynchronous interrupts cause the active
transaction to abort. Particularly problematic are TLB misses and page
faults. In Rock, some TLB misses can cause a hardware transaction to abort,
and the TLB miss may need to be triggered outside of the transactional
region before retrying. Page faults also cause hardware transactions to abort,
with Rock requiring the fault to be re-created outside of the transaction
before retrying.

To summarize, BETM transactions are limited in terms of the number of lo-
cations they can access speculatively, the number of locations they can access
nonspeculatively, and the instructions they can execute. Interrupts and excep-
tions cause transactions to abort, and it is likely that there are undocumented
reasons why a transaction in isolation may spuriously abort. Transactions that
perform speculative stores are prone to livelock, and in general some form of con-
tention management or software fallback is recommended. Nonetheless, we will
show that BETM can be used to create a scalable, nonblocking, privatization-
safe, unbounded STM.

3 Background: Single-CAS STM

The software foundation for our lock-free construction is the concept of Single-
CAS STM (SCSTM). Example implementations of SCSTM include JudoSTM
[20], RingSTM [25], and TMLLazy/NOrec [3]. These blocking algorithms are
characterized by (1) livelock-freedom, (2) strong semantics, and (3) a simple
linearizability condition [13].

3.1 SCSTM Behavior

Figure 1 presents a template for SCSTM algorithms. Specific SCSTM algorithms
can be thought of as instantiations of this code using different metadata for

A Scalable Lock-Free Universal Construction 53

conflict detection. The general behavior of SCSTM algorithms is very simple:
concurrent updates are mediated via a single monotonically increasing counter.
This counter serves both as a lock that protects shared memory when a trans-
action is finalizing its writes, and as a flag that is polled by in-progress trans-
actions to determine when it is necessary to perform intermediate correctness
checks (“validation”).

TMBegin:
1 create_checkpoint()
2 // wait if global lock is held
3 while ((my_ts = global_ts) & 1)
4 spin()

TMReadWord(addr):
1 // check for buffered write
2 if (writes.contains(addr))
3 return writes.lookup(addr)
4 // read from shared memory
5 tmp = *addr
6 // check for new commits...
7 // if found, validate, then
8 // re-read location
9 while (my_ts != global_ts)

10 TMValidate()
11 tmp = *addr
12 // log address for future
13 // validation
14 readset.add(addr, tmp)
15 return tmp

TMWriteWord(addr, val):
1 // record store in private buffer
2 writes.insert(addr, val)
3 // log address so it’s easy to
4 // announce set of modifications
5 // at commit time
6 writeset.add(addr)

TMAbort():
1 reset_per_thread_metadata()
2 restore_checkpoint()

TMEnd:
1 // read-only fastpath
2 if (writes.empty())
3 reset_per_thread_metadata();
4 return
5 // acquire global lock before
6 // committing. Only attempt
7 // to get lock when tx is
8 // known to be in a valid state
9 while (!CAS(global_ts, my_ts, my_ts+1)

10 TMValidate()
11 // announce set of changes
12 publish_writeset()
13 // update main memory
14 for <addr, val> in writes
15 *addr = val
16 // release lock
17 global_ts++
18 reset_per_thread_metadata();

TMValidate():
1 while (true)
2 // wait if writeback is in progress
3 tmp = global_ts
4 if (tmp & 1)
5 spin()
6 continue
7 // ensure reads still valid
8 if (!all_reads_still_valid())
9 TMAbort()

10 // must re-validate if another
11 // transaction committed
12 if global_ts == tmp
13 my_ts = tmp
14 return

Fig. 1. Generic pseudocode for Single-CAS STM algorithms

Transactions buffer all updates to shared memory, and then commit by incre-
menting the counter to odd, optionally publishing some metadata describing the
changes they are making to memory, committing their writes to memory, and
then incrementing the counter again to even. Every read operation first checks
for a pending local write, and then if no such write exists, performs a read from
main memory. After reads, the global counter is polled to check if any new trans-
actions have committed, possibly invalidating this transaction. If any are found,
the transaction validates its entire read set and aborts if any reads have been
invalidated by another transaction’s commit.

A transaction only blocks when another transaction is in the process of com-
mitting. When writing transaction T is ready to commit (line 9 of TMEnd), its
my_ts field stores the even value of the global counter (global_ts) at the last

54 F. Carouge and M. Spear

time that T performed a validation. Clearly, at that time T ’s reads and writes
were all valid, or else T would have aborted. If T can atomically increment
global_ts from my_ts to one greater, then it is sure no other writer transac-
tion R committed in the interim. For R to have committed first, it would have
had to increment global_ts, which would have ensured that T ’s increment of
global_ts would fail. If T cannot successfully increment global_ts, then it
re-validates (and thus updates its local my_ts) before trying again.

The code in Figure 1 is general enough to describe NOrec, RingSTM, and
TMLLazy: In TMLLazy, no readset or writeset is maintained, and calls to
TMValidate are be replaced with calls to TMAbort. In RingSTM, the writeset
is a signature that is published by appending it to a global list, and TMValidate
intersects the per-thread readset (also a signature) with new entries on the
list. In NOrec, no writeset is maintained, so TMValidate iterates through the
{address, value} pairs in the readset, making sure that each address still holds
the expected value.

3.2 SCSTM Properties

In SCSTM, an in-flight transaction only blocks when another transaction is per-
forming writeback (lines 11–15 of TMEnd). During writeback, reads and commits
cannot be guaranteed an atomic view of metadata or shared memory, and thus
threads wait until the lock is released (TMBegin lines 3–4, and TMValidate lines
3–6, called from TMReadWord and TMEnd).

By virtue of its single lock and commit-time validation protocol, SCSTM is
livelock-free. The argument for livelock freedom in SCSTM is simple: a trans-
action only aborts if it fails a validation, and it only validates when the global
counter is updated. Since the global counter is only updated when a transaction
commits, the chain of events leading to an abort always begins with a transaction
committing [25].

The single lock also serves to completely serialize the commit phase of writ-
ing transactions. On architectures with nonfaulting loads, the combination of
polling on every read, validating whenever any transaction commits, and com-
pletely serializing writeback leads to privatization safety [24]. When nonfaulting
loads are unavailable, privatization safety requires some additional measures to
handle OS reclamation of memory in the middle of a concurrent TMReadWord op-
eration [14,8]. Thus SCSTM provides at least “ELA” semantics in the taxonomy
of Menon et al. [18].

4 The Lock-Free Transformation

We next make SCSTM nonblocking using BETM. Our approach resembles that
proposed by Spear et al. [26], where Alert-On-Update (AOU) was used to inter-
rupt a thread while it held the lock protecting an idempotent critical section. The
main differences in our technique center around the use of BETM. Specifically,
previous work assumed an idealized TM in which the only cause of transactional

A Scalable Lock-Free Universal Construction 55

aborts is transaction conflicts. We consider all published causes of BETM aborts,
which makes our construction considerably more complex, but also realistic.

4.1 Making Stealing Safe

Our goal is to allow multiple threads to perform the same writeback operation
simultaneously, and interrupt any partial writebacks when one thread completes
the full writeback. This means that after a transaction has made global_ts odd
on TMEnd line 9, any thread can perform the rest of the commit operation on
that transaction’s behalf.

To make writeback stealable, we must first make the list of pending writes
visible. There are two means to provide this; either we can superimpose a pointer
over the global_ts variable, such that an odd least significant bit indicates
that the remaining bits are a pointer to the writeset (and any other needed
metadata, such as “next_ts”, the value to which global_ts must be set after
writeback), or else we can use a hardware transaction to perform a multiword
store. We use the former option for NOrec and TMLLazy, since TMEnd line 12
is a no-op, and the latter for RingSTM, since line 12 of TMEnd must be atomic
with line 9.

Secondly, we must ensure that the result of multiple threads performing over-
lapping portions of the writeback simultaneously remains correct. In Spear’s
AOU work, writeback was done on a per-object basis, with at most one thread
performing writes to an object at any time [26]. Since in SCSTM the entire
write set is protected by a single counter, such an approach does not make sense
for large write sets. Instead, we use a hash-based write log [20] to ensure that
every address in the log is unique. We also require that no two addresses in the
log overlap. This property is provided differently for type-safe and non-type-safe
languages.

With these requirements in place, the writeback operation can be done in any
order, and any number of {address, value} pairs in the write log can be written
back multiple times, so long as (a) every pair is written back at least once and (b)
as soon as one thread increments global_ts to even (TMEnd line 17), all helping
immediately stops. If all writeback were performed using BETM speculative
stores, this second property would be simple. However, with “requester wins”
conflict detection, using BETM for writeback would rapidly lead to livelock.
Instead, we use BETM to monitor to the global_ts and immediately interrupt
a writeback, and then perform the writeback using nonspeculative stores.

Figure 2 presents the lock-free writeback code, assuming that when odd,
global_ts represents a pointer to all needed metadata. To make SCSTM non-
blocking, we replace the spin() codes (TMBegin line 4; line 5 of TMValidate)
with calls to TMStealWriteBack, and replace TMEnd lines 14–15 with a call to
TMStealWriteBack. The HW_LIMIT field addresses capacity constraints, and is
discussed in the next section.

The use of TMStealWriteBack preserves privatization safety, livelock-freedom,
and correctness. The argument is straightforward: in SCSTM, these properties
are all preserved by the following pair of invariants: an in-flight transaction never

56 F. Carouge and M. Spear

TMStealWriteBack:
1 // start BETM transaction 14 c = metadata->done_already
2 BETM_BEGIN 15 // do writeback, starting at c
3 // if global_ts changes, this 16 for <a, v> in metadata->writeset[c..end]
4 // thread returns to line 2 17 *a = v
5 BETM_LOAD(x, global_ts) 18 if ((++c % HW_LIMIT) == 0)
6 // writeback may be finished 19 metadata->done_already = c
7 if ((x & 1) == 0) 20 // compute new global_ts value
8 BETM_COMMIT 21 n = metadata->next_ts
9 return 22 BETM_COMMIT

10 // global_ts is a pointer 23 // nontransactionally update global_ts
11 metadata = x & ~1 24 // with CAS. must use counted pointer
12 // metadata->done_already estimates 25 CAS(global_ts, x, n + 2)
13 // how much writeback is complete

Fig. 2. Lock-free writeback

performs a read of shared data while write-back is in progress and the commit
of writing transactions is serialized. In SCSTM, these invariants are preserved
via blocking. In our constructions, the invariants still hold, but the blocking is
replaced by assisting with write-back.

4.2 Ensuring Progress via HW LIMIT

In Figure 2, the entire writeback operation is performed using nonspeculative
stores issued from within a transaction. By using nonspeculative stores, per-
forming writeback simultaneously in multiple threads will not prevent progress.
However, BETM transactions have limits that must be managed. Specifically,
they can access a limited amount of memory and they cannot survive excep-
tions or interrupts. Our approach is to break the writeback into small pieces,
and then use the done_already field to track how much of the writeback is
complete. The HW_LIMIT field dictates how many writes are performed before
updating done_already. We discuss constraints on its size below:

First, since BETM transactions cannot execute for longer than a quantum, we
must not attempt more writes than can be reasonably finished in that time. Of
greater practical concern, in virtualized environments with high I/O interrupt
frequencies, HW_LIMIT must be small enough that a bundle of writes can be
completed between interrupts.

The next danger occurs when the speculative region performs an instruction
that causes an abort; if there is no mechanism to prevent the offending instruc-
tion from re-occurring when the region is restarted, then an infinite loop can
occur. In a BETM such as Rock, where page faults and some TLB misses can
cause aborts that must be handled by the user code, an abort handler will be
required to update the TLB or simulate a page fault in nontransactional code. In
ASF, where a page-fault will be handled automatically before the region restarts,
this is not a concern. Additionally, in both systems the speculative region must
not perform prohibited instructions, such as division, far calls, system calls, and
some other function calls. This condition clearly holds in our code, which only
performs loads, stores, and read-only traversal of a data structure.

A Scalable Lock-Free Universal Construction 57

Lastly, BETM may limit nonspeculative writes within a transaction. On Rock,
stores may be issued to at most 32 locations from within a hardware transaction.
Thus if the entries in the writesetmap to more than 31 locations (we reserve one
for done_already), the speculative region is guaranteed to abort. In addition to
the store buffer, the TLB introduces limitations. Suppose that a processor has T
entries in its TLB. If each variable in the writeset is located on a different page
of memory, then if the TLB capacity is fewer than 31 entries, a tighter bound
is required if TLB misses can cause aborts. In the worst case, if the instruction
and data caches share a TLB, and every interesting memory element with a
size greater than a single word happens to span a page boundary, the following
restrictions would apply (note that we assume the page size is larger than the
word size):
– Two TLB entries must be reserved for the code pages holding the TMSteal

WriteBack function.
– Two TLB entries must be reserved for the data pages holding the stack.
– The data pages holding writeset portion being written-back require two

TLB entries.
– One TLB entry must be reserved for the data page holding the metadata

object.
Thus if we attempt to write to more than T−7 pages, the region may abort due to
a TLB miss, and repeated attempts to execute the region will continue to abort
due to TLB misses (caused by writes to different pages). If we generalize the size
of the store buffer to a constant MAX_STORES, then the total number of stores
that can be guaranteed to succeed is HW_LIMIT = min(T-7, MAX_STORES). In
practice, however, if multiple updates are performed to the same page and/or
cache line, this limit may be exceeded without aborting the region.1

To overcome this limitation without being overly conservative, we use a lazy
counter, done_already. When a transaction logically commits (the CAS on line
9 of TMEnd succeeds), it installs a pointer that indicates both the writeset
and a count of the number of writeset entries that have already been written
back. TMStealWriteBack updates this count with its local progress after every
HW_LIMIT stores. If a thread is executing TMStealWriteBack in isolation and
its writeback aborts due to a hardware limitation, when the region restarts it
resumes writeback at the last value of done_already. This ensures progress and
avoids infinite loops, since at least HW_LIMIT stores were performed before the
abort, and will not be performed again.

If TMStealWriteBack is executed by multiple threads, it is possible for the
value of done_already to decrease. However, we observe that once all threads
observe the value v in done_already, then the first v elements will not be written
again, and that done_already will only hold values greater than v from that
point until one thread completes writeback. Thus the writeback will ultimately
succeed, though the worst-case bound completion time depends both on the

1 These assumptions are conservative. Modern machines have large pages and sepa-
rate instruction/data TLBs. Explicit alignment of data structures can decrease the
number of reserved TLB entries from 7 to as low as 2.

58 F. Carouge and M. Spear

number of threads (T) and the size of the writeset (W). This bound could
be improved by making the value of c persist from one writeback attempt to
the next, and updating it to max(c, metadata->done_already) within each
attempt. Doing so would require additional common-case code to ensure that
the value of x has not changed; for example, if thread 1 performs K writes,
then delays and another thread both completes the writeback and installs a new
writeset to be written back, then thread 1 cannot resume at the Kth element.

There are two other properties that our approach provides. First, existing lim-
its on HW_LIMIT ensure that context switches during writeback will not force the
entire writeback to restart; this is particularly important if writeback of an ex-
tremely large dataset could take longer than a quantum to complete. Second, the
writeback could be parallelized by partitioning the writeset and protecting each
partition with a different lock [9]. As long as a thread’s call to TMStealWriteBack
does not return until all partitions of the writeback have been performed, the
behavior is indistinguishable from that of a single-lock writeback, but with the
added benefit of parallel writeback. In the limit case, we could set the partition
size to HW_LIMIT, and simplify the code significantly. We do not evaluate such
an implementation in this paper.

4.3 ABA Safety

The code in Figure 2 can admit an “ABA” problem on line 25. Specifically,
when global_ts equals some value V and two threads T1 and T2 both execute
TMStealWriteBack, it is possible that T1 pauses between lines 22 and 25. It
has done all of the writeback, but it has not halted writeback in any helper
threads (such as T2). If T2 then also performs the writeback, executes line 25,
and then commits a new transaction that re-uses the same location as its “meta-
data” object, then when T1 awakes and issues its CAS, it can “clean up” from
an in-flight writeback that it has mistaken for the writeback it previously per-
formed. We avoid this problem by attaching a counter to the global_ts pointer
and using a wide CAS. Techniques using garbage collection are equally appli-
cable. However, the use of a hardware transaction does not would only provide
obstruction-freedom.

Since RingSTM requires a multiword atomic update in order to commit, we
are already limited to producing an obstruction-free version since a BETM-based
nonblocking multiword update is only obstruction-free. That being the case,
when making RingSTM nonblocking we make the writeback obstruction-free, by
removing lines 23–25 and inserting the statement BETM_STORE(global_ts, n+2)
before line 22.

5 Evaluation

We evaluate our algorithms using the ASF extensions to PTLSim [29]. PTLSim
faithfully models the AMD64 instruction set architecture, with extensions to
support ASF. Previous studies have found PTLSim to be sufficiently accurate
when compared to real hardware [2].

A Scalable Lock-Free Universal Construction 59

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 1 2 3 4

T
hr

ou
gh

pu
t (

10
00

 T
x/

se
c)

Threads

TMLLazy
TMLLazy (lock-free)

NOrec
NOrec (lock-free)

Ring
Ring (obs-free)

(a) RBTree (no blocking)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 1 2 3 4

T
hr

ou
gh

pu
t (

10
00

 T
x/

se
c)

Threads

TMLLazy
TMLLazy (lock-free)

NOrec
NOrec (lock-free)

Ring
Ring (obs-free)

(b) RBTree (with blocking)

Fig. 3. RBTree workloads with 8-bit keys and an equal insert/lookup/remove ratio

For this work, we made TMLLazy and NOrec lock-free. Since we use a writ-
ing hardware transaction to achieve atomic multiword updates in RingSTM, it
is only obstruction-free. Our codes do not use the parallel writeback optimiza-
tion discussed in Section 4.2, and our algorithms use a hard-coded value of 16
for HW_LIMIT. Our RingSTM, NOrec, and TMLLazy codes are based on their
published implementations, which are more optimized than the pseudocode in
Figure 1.

We first evaluate the cost of our nonblocking algorithms in comparison to
their nonblocking counterparts. Figure 3(a) depicts a Red-Black Tree experi-
ment, using 8-bit keys. In each trial, we perform 100K transactions per thread,
using an equal mix of inserts, lookups, and deletes. The maximum number of
locations written by a single transaction is 33. Our first finding, which we do not
show, is that it is extremely easy to livelock hardware transactions that perform
writes. In Ring (obs-free), we used a writing hardware transaction to commit
transactions. Initially we had each thread execute a fixed no-op loop whenever
its hardware transaction aborted. At three threads this lead to two orders of
magnitude slowdown; the hardware transaction to effect a commit would abort
98K times per 67 transactions. To avoid this behavior, we added exponential
backoff. Note that backoff was never needed for stealable writeback.

Regarding performance, we see that the cost of lock freedom in TMLLazy is
negligible, as is the cost of obstruction freedom in RingSTM. For NOrec, the cost
of lock freedom seems higher. We attribute this to two causes: first, we note that
NOrec’s scalability on the simulator is much better than previously reported for
this workload [3, 23]. Secondly, we observed that NOrec steals writeback much
more frequently than the other systems. In Ring, transactions validate before
helping, and in TMLLazy they abort and roll back before helping; in NOrec
they must help with writeback before validating, since validation uses the actual
values instead of the value of global_ts (TMLLazy) or signature (RingSTM).
We conjecture that making stealing less aggressive, by introducing a small delay
before attempting to steal writeback, would mitigate this effect.

Secondly, we consider the impact of preemption. For these tests, we introduced
a delay between lines 12 and 13 of TMEnd. The delay occurs on randomly selected

60 F. Carouge and M. Spear

writing transactions (roughly once per 32 commits), and consists of a loop exe-
cuting 8K no-ops. This simulates the effect of preemption during the write-back
phase. In our blocking implementations, this delay prevents any progress in any
other thread, since the committing thread holds the lock; we expect dampened
scalability. For nonblocking implementations, a concurrent transaction should
not block when the committer experiences a delay; instead, the concurrent trans-
action should steal the writeback and then continue.

Figure 3(b) depicts the behavior for our algorithms with and without the
nonblocking transformation. The fact of delays in the commit protocol immedi-
ately results in lower single-thread throughput, and the artificial blocking also
substantially limits the scalability of the lock-based STM implementations. By
stealing writeback, our nonblocking algorithms overcome fact that some trans-
actions block while holding locks. This, in turn, leads to higher throughput at all
thread levels for the nonblocking code, when compared to its lock-based coun-
terpart.

6 Conclusions and Future Work

In this paper we considered the construction of lock-free STM, and showed how
to make single-CAS STM obstruction-free (and in some cases lock-free) through
the use of simple best-effort transactional hardware (BETM). Our results in-
dicate that the cost of nonblocking progress guarantees is negligible, and the
nonblocking systems are immune to pathologies such as preemption and live-
lock. Our algorithms provide the first scalable, lock-free TM implementations
with strong semantics.

We hope that this research will encourage further consideration of how much
must be guaranteed to make BETM useful. In our algorithm, transactions ex-
ecuting only one speculative load, no speculative stores, and 16 nonspeculative
stores, were sufficient to build a privatization-safe lock-free STM. Looking for-
ward, questions include:

1. In virtualized or I/O-intensive environments, will parameters like
HW_LIMIT need to be dynamically adjusted?

2. Do aborted BETM transactions know immediately that they have aborted,
or can they continue to execute nonspeculative stores for any duration af-
ter their abort? What impact would such “zombie” transactions or delayed
stores have on our algorithms?

3. What unspecified sources of aborts can be overcome in practice? Are there
any undocumented sources of aborts (we imagine branch misprediction is a
possibility) that would break our progress guarantees?

Additionally, we hope that successive refinements of BETM will improve ease-of-
use and performance. Clearly support for both speculative and nontransactional
accesses is critical to progress. In our opinion, a platform in which very few
locations can be accessed, but transactions are guaranteed to succeed if they are
retried enough times in succession, is very appealing.

A Scalable Lock-Free Universal Construction 61

Acknowledgments. We thank our reviewers for many helpful suggestions, and
Victor Luchangco for his advice during the preparation of our final manuscript.
Stephan Diestelhorst, Dave Dice, and Hagit Attiya gave feedback on early drafts
of this paper. We are also grateful to Martin Pohlack and Stephan Diestelhorst
for their continued assistance with the ASF toolchain, and Dave Dice for his
help understanding the Rock processor. We also thank Michael Scott, Luke Da-
lessandro, and Torvald Riegel.

References

1. Bobba, J., Moore, K., Volos, H., Yen, L., Hill, M., Swift, M., Wood, D.: Performance
Pathologies in Hardware Transactional Memory. In: Proc. of the 34th Intl. Symp.
on Computer Architecture, San Diego, CA (June 2007)

2. Christie, D., Chung, J.W., Diestelhorst, S., Hohmuth, M., Pohlack, M., Fetzer,
C., Nowack, M., Riegel, T., Felber, P., Marlier, P., Riviere, E.: Evaluation of
AMD’s Advanced Synchronization Facility within a Complete Transactional Mem-
ory Stack. In: Proc. of the EuroSys2010 Conf., Paris, France (April 2010)

3. Dalessandro, L., Spear, M.F., Scott, M.L.: NOrec: Streamlining STM by Abolishing
Ownership Records. In: Proc. of the 15th ACM SIGPLAN Symp. on Principles and
Practice of Parallel Programming, Bangalore, India (January 2010)

4. Dice, D., Shalev, O., Shavit, N.: Transactional Locking II. In: Proc. of the 20th
Intl. Symp. on Distributed Computing, Stockholm, Sweden (September 2006)

5. Dice, D., Lev, Y., Moir, M., Nussbaum, D.: Early Experience with a Commercial
Hardware Transactional Memory Implementation. In: Proc. of the 14th Intl. Conf.
on Architectural Support for Programming Languages and Operating Systems,
Washington, DC (March 2009)

6. Dice, D., Shavit, N.: TLRW: Return of the Read-Write Lock. In: Proc. of the 4th
ACM SIGPLAN Workshop on Transactional Computing, Raleigh, NC (February
2009)

7. Diestelhorst, S., Hohmuth, M.: Hardware Acceleration for Lock-Free Data Struc-
tures and Software-Transactional Memory. In: Proc. of the Workshop on Exploit-
ing Parallelism with Transactional Memory and other Hardware Assisted Methods,
Boston, MA (April 2008)

8. Felber, P., Fetzer, C., Riegel, T.: Dynamic Performance Tuning of Word-Based
Software Transactional Memory. In: Proc. of the 13th ACM SIGPLAN Symp. on
Principles and Practice of Parallel Programming, Salt Lake City, UT (February
2008)

9. Fernandes, S., Cachopo, J.: A Scalable and Efficient Commit Algorithm for the
JVSTM. In: Proc. of the 5th ACM SIGPLAN Workshop on Transactional Com-
puting, Paris, France (April 2010)

10. Fraser, K., Harris, T.: Concurrent Programming Without Locks. ACM Trans. on
Computer Systems 25(2) (2007)

11. Herlihy, M.P., Luchangco, V., Moir, M., Scherer III, W.N.: Software Transactional
Memory for Dynamic-sized Data Structures. In: Proc. of the 22nd ACM Symp. on
Principles of Distributed Computing, Boston, MA (July 2003)

12. Herlihy, M.P., Moss, J.E.B.: Transactional Memory: Architectural Support for
Lock-Free Data Structures. In: Proc. of the 20th Intl. Symp. on Computer Ar-
chitecture, San Diego, CA (May 1993)

62 F. Carouge and M. Spear

13. Herlihy, M.P., Wing, J.M.: Linearizability: a Correctness Condition for Concurrent
Objects. ACM Trans. on Prog. Languages and Systems 12(3), 463–492 (1990)

14. Hudson, R.L., Saha, B., Adl-Tabatabai, A.R., Hertzberg, B.: A Scalable Transac-
tional Memory Allocator. In: Proc. of the 2006 Intl. Symp. on Memory Manage-
ment, Ottawa, ON, Canada (June 2006)

15. Lev, Y., Luchangco, V., Marathe, V., Moir, M., Nussbaum, D., Olszewski, M.:
Anatomy of a Scalable Software Transactional Memory. In: Proc. of the 4th ACM
SIGPLAN Workshop on Transactional Computing, Raleigh, NC (February 2009)

16. Marathe, V., Moir, M.: Toward High Performance Nonblocking Software Trans-
actional Memory. In: Proc. of the 13th ACM SIGPLAN Symp. on Principles and
Practice of Parallel Programming, Salt Lake City, UT (February 2008)

17. Marathe, V.J., Spear, M.F., Scott, M.L.: Scalable Techniques for Transparent Pri-
vatization in Software Transactional Memory. In: Proc. of the 37th Intl. Conf. on
Parallel Processing, Portland, OR (September 2008)

18. Menon, V., Balensiefer, S., Shpeisman, T., Adl-Tabatabai, A.R., Hudson, R., Saha,
B., Welc, A.: Practical Weak-Atomicity Semantics for Java STM. In: Proc. of
the 20th ACM Symp. on Parallelism in Algorithms and Architectures, Munich,
Germany (June 2008)

19. Ni, Y., Welc, A., Adl-Tabatabai, A.R., Bach, M., Berkowits, S., Cownie, J., Geva,
R., Kozhukow, S., Narayanaswamy, R., Olivier, J., Preis, S., Saha, B., Tal, A.,
Tian, X.: Design and Implementation of Transactional Constructs for C/C++. In:
Proc. of the 23rd ACM SIGPLAN Conf. on Object Oriented Programming Systems
Languages and Applications, Nashville, TN, USA (October 2008)

20. Olszewski, M., Cutler, J., Steffan, J.G.: JudoSTM: A Dynamic Binary-Rewriting
Approach to Software Transactional Memory. In: Proc. of the 16th Intl. Conf. on
Parallel Architecture and Compilation Techniques, Brasov, Romania (September
2007)

21. Shavit, N., Touitou, D.: Software Transactional Memory. In: Proc. of the 14th
ACM Symp. on Principles of Distributed Computing, Ottawa, ON, Canada (Au-
gust 1995)

22. Shpeisman, T., Menon, V., Adl-Tabatabai, A.R., Balensiefer, S., Grossman, D.,
Hudson, R.L., Moore, K., Saha, B.: Enforcing Isolation and Ordering in STM. In:
Proc. of the 2007 ACM SIGPLAN Conf. on Programming Language Design and
Implementation, San Diego, CA (June 2007)

23. Spear, M.: Lightweight, Robust Adaptivity for Software Transactional Memory.
In: Proc. of the 22nd ACM Symp. on Parallelism in Algorithms and Architectures,
Santorini, Greece (June 2010)

24. Spear, M.F., Dalessandro, L., Marathe, V.J., Scott, M.L.: Ordering-Based Seman-
tics for Software Transactional Memory. In: Proc. of the 12th Intl. Conf. On Prin-
ciples Of DIstributed Systems, Luxor, Egypt (December 2008)

25. Spear, M.F., Michael, M.M., von Praun, C.: RingSTM: Scalable Transactions with
a Single Atomic Instruction. In: Proc. of the 20th ACM Symp. on Parallelism in
Algorithms and Architectures, Munich, Germany (June 2008)

26. Spear, M.F., Shriraman, A., Dalessandro, L., Dwarkadas, S., Scott, M.L.: Non-
blocking Transactions Without Indirection Using Alert-on-Update. In: Proc. of
the 19th ACM Symp. on Parallelism in Algorithms and Architectures, San Diego,
CA (June 2007)

A Scalable Lock-Free Universal Construction 63

27. Tabba, F., Wang, C., Goodman, J.R., Moir, M.: NZTM: Nonblocking Zero-
Indirection Transactional Memory. In: Proc. of the 2nd ACM SIGPLAN Workshop
on Transactional Computing, Portland, OR (August 2007)

28. Wang, C., Chen, W.Y., Wu, Y., Saha, B., Adl-Tabatabai, A.R.: Code Generation
and Optimization for Transactional Memory Constructs in an Unmanaged Lan-
guage. In: Proc. of the 2007 Intl. Symp. on Code Generation and Optimization,
San Jose, CA (March 2007)

29. Yourst, M.: PTLsim: A Cycle Accurate Full System x86-64 Microarchitectural
Simulator. In: Proc. of the 2007 IEEE Intl. Symp. on Performance Analysis of
Systems and Software, San Jose, CA (April 2007)

Window-Based Greedy Contention Management
for Transactional Memory

Gokarna Sharma1, Brett Estrade2, and Costas Busch1

1 Department of Computer Science, Louisiana State University,
Baton Rouge, LA 70803, USA
{gokarna,busch}@csc.lsu.edu

2 Department of Computer Science, University of Houston,
501 Philip G. Hoffman Hall, Houston, TX 77204, USA

estrabd@cs.uh.edu

Abstract. We consider greedy contention managers for transactional
memory for M × N execution windows of transactions with M threads
and N transactions per thread. Assuming that each transaction has du-
ration τ and conflicts with at most C other transactions inside the win-
dow, a trivial greedy contention manager can schedule them within τCN
time. In this paper, we explore the theoretical performance boundaries of
this approach from the worst-case perspective. Particularly, we present
and analyze two new randomized greedy contention management algo-
rithms. The first algorithm Offline-Greedy produces a schedule of length
O(τ · (C + N log(MN))) with high probability, and gives competitive
ratio O(log(MN)) for C ≤ N log(MN). The offline algorithm depends
on knowing the conflict graph which evolves while the execution of the
transactions progresses. The second algorithm Online-Greedy produces a
schedule of length O(τ · (C log(MN) + N log2(MN))), with high prob-
ability, which is only a O(log(NM)) factor worse, but does not require
knowledge of the conflict graph. Both of the algorithms exhibit compet-
itive ratio very close to O(s), where s is the number of shared resources.
Our algorithms provide new tradeoffs for greedy transaction scheduling
that parameterize window sizes and transaction conflicts within the win-
dow.

1 Introduction

Multi-core architectures present both an opportunity and challenge for multi-
threaded software. The opportunity is that threads will be available to an un-
precedented degree, and the challenge is that more programmers will be exposed
to concurrency related synchronization problems that until now were of concern
only to a selected few. Writing concurrent programs is difficult because of the
complexity of ensuring proper synchronization. Conventional lock based syn-
chronization suffers from well known limitations, so researchers considered non-
blocking transactions as an alternative. Software Transactional Memory (STM)
[22,13,14] systems use lightweight and composable in-memory software transac-
tions to address concurrency in multi-threaded systems ensuring safety all the
time [10,11].

N.A. Lynch and A.A. Shvartsman (Eds.): DISC 2010, LNCS 6343, pp. 64–78, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Window-Based Greedy Contention Management for Transactional Memory 65

In transactional memory (TM) systems, a contention management strategy
is responsible for the system as a whole to make progress [13,18]. If transaction
T discovers that it conflicts with another transaction T ′ (because they share a
resource), it has two choices, it can give T ′ a chance to finish by aborting itself,
or it can proceed by forcing T ′ to abort; the aborted transaction then retries
again until it eventually commits. To solve this scheduling problem efficiently,
T will consult the contention manager module for which choice to make. Of
particular interest are greedy contention managers where a transaction starts
again immediately after every abort. Several (greedy) contention managers have
been proposed in the literature [3,9,7,5,21]. However, most contention managers
have been assessed only experimentally by specific benchmarks [18]. There is a
small amount of work in the literature which analyzes formally the performance
of contention managers [3,9,7,21].

The competitive ratio results are not encouraging. For example in [3] the au-
thors give an O(s) competitive ratio bound, where s is the number of resources.
When the number of resources s increases, the performance degrades linearly. A
difficulty in obtaining tight bounds is that the algorithms studied in [3,9,7,5,21]
apply to the one-shot scheduling problem, where each thread issues a single trans-
action. One-shot problems are directly related with vertex coloring, where the
problem of determining the chromatic number of a graph is reduced to finding
an optimal time schedule for the one-shot problem. Since it is known that com-
puting an optimal coloring given complete knowledge of the graph is a very hard
problem to approximate, the one-shot problem is very hard to approximate too
[15].

In order to obtain alternative and improved formal bounds, we propose to
investigate the performance of program executions in windows of transactions
(see Fig. 1a), which has the potential to overcome some of the limitations of the
coloring reduction in certain circumstances. A M ×N window W consists of M
threads with an execution sequence of N different transactions per thread. The
execution window W can be viewed as a collection of N one-shot transaction sets
with M concurrent transactions in each set. Let C denote the maximum number
of conflicting transactions for any transaction in the window. If we assume that
all transactions have the same duration τ , then a straightforward upper bound
for the makespan of the window is τ ·min(CN, MN), since τCN follows from the
observation that each transaction in a thread may be delayed at most C times
by its conflicting transactions, and τMN follows from the serialization of the
transactions. The competitive ratio of the makespan using the one-shot analysis
results is bounded by O(sN). Using the one-shot Algorithm RandomizedRounds
provided in [21] N times, the completion time is in the worst case O(τCN log M).

In this paper, we show that we can obtain better results by utilizing the win-
dow representation. We present a family of randomized greedy algorithms where
transactions are assigned priorities values, such that for some random initial in-
terval in the beginning of the window W each transaction is in low priority mode
and then after the random period expires the transactions switch to high prior-
ity mode. In high priority mode the transaction can only be aborted by other

66 G. Sharma, B. Estrade, and C. Busch

N1 2 3 4

N1 2 3 4

N1 2 3 4

N1 2 3 4

N1 2 3 4

N

M

(a) Before execution

N1 2 3 4

N1 2 3 4

N

N1 2 3 4

N

N’

N

M

Randomization interval

1 2 3 4

1 2 3 4

(b) After execution

Fig. 1. Execution window model for transactional memory

high priority transactions. The random initial delays have the property that the
conflicting transactions are shifted inside their window and their execution times
may not coincide (see Fig. 1b). The benefit is that conflicting transactions can
execute at different time slots and potentially many conflicts are avoided. The
benefits become more apparent in scenarios where the conflicts are more frequent
inside the same column transactions and less frequent between different column
transactions.

Contributions: We propose the contention measure C within the window to al-
low more precise statements about the worst-case complexity bound of any con-
tention management algorithm. We give two window-based randomized greedy
algorithms for the contention management in any execution window W . For
simplicity, we assume that each transaction has the same duration τ (this as-
sumption can be removed). Our first algorithm Offline-Greedy gives a schedule of
length O(τ · (C + N log(MN))) with high probability, and improves on one-shot
contention managers from a worst-case perspective. The algorithm is offline in
the sense that it uses explicitly the dynamic conflict graph of the transactions
at each time step of execution to resolve the conflicts. Our second algorithm
Online-Greedy produces a schedule of length O(τ · (C log(MN) + N log2(MN)))
with high probability, which is only a factor of O(log(MN)) worse in comparison
to Offline-Greedy. The benefit of the online algorithm is that does not need to
know the conflict graph of the transactions to resolve the conflicts. The online
algorithm uses as a subroutine a variation of algorithm RandomizedRounds [21].

We also give a third algorithm Adaptive-Greedy which is the adaptive version
of the previous algorithms which achieves similar worst-case performance and
adaptively guesses the value of the contention measure C. The technique we use
for the analysis of these algorithms is similar to the one used by Leighton et
al. [16] to analyze an online packet scheduling problem.

An advantage of our algorithms is that if the conflicts in the window are
bounded by C ≤ N log(MN) then the upper bounds we have obtained are
within poly-logarithmic factors from optimal, since N is a trivial lower bound

Window-Based Greedy Contention Management for Transactional Memory 67

in execution time. This is an improvement over the trivial approach of using N
one-shot executions. We also show that the offline algorithm is O(s+log(MN))-
competitive and the online algorithm is O(s · log(MN)+log2(MN))-competitive
(for any choice of C).

Outline of Paper: The rest of the paper is organized as follows: In Section 2, we
discuss the related work. We present the transactional memory model in Section
3. We present and formally analyze an offline randomized greedy algorithm in
Section 4. The online version of the randomized greedy algorithm is given in
Section 5. In Section 6, we describe the adaptive version of the aforementioned
algorithms. Section 7 concludes the paper.

2 Related Work

Transactional Memory (TM) has been proposed in the early nineties as an alter-
native implementation of mutual exclusion that avoids many of the drawbacks
of locks e.g., deadlock, reliance on the programmer to associate shared data with
locks, priority inversion, and failures of threads while holding locks [14]. In 2003,
Dynamic STM (DSTM) [13] was proposed for dynamic-sized data structures
which uses a contention manager module as an independent module to resolve
conflicts between two transactions and ensure progress. DSTM is a practical
obstruction-free1 STM system that seeks advice from the contention manager
module to either wait or abort an transaction at the time of conflict.

As TM has been gaining attention, several contention managers are available
in the literature [3,9,7,5,21]. Most of them have been assessed by specific bench-
marks only and not analytically. A comparison of contention managers based
on different benchmarks can be found in [18,19,17,20,7,8]. They observed that
the choice of the best contention manager varies with the complexity of the
considered benchmark. The more detailed analysis of the performance of differ-
ent contention managers in complex benchmarks has recently been studied by
Ansari et al. [1]. From all the aforementioned references, one can notice that the
coordination cost and the overhead involved in contention management is very
high.

The first formal analysis of the performance of a contention manager was
given by Guerraoui et al. [9] by presenting the Greedy contention manager which
decides in favor of old transactions using timestamps and proving that it achieves
O(s2) competitive ratio in comparison to the optimal off-line schedulers for M
concurrent transactions that share s objects. They argue that the bound holds
for any algorithm which ensure that at any point in time at least one transaction
is running uninterrupted until it commits, which is called the pending commit
property. Later, Guerraoui et al. [7] studied the impact of transaction failures
on contention management. They presented the algorithm FTGreedy and proved
the O(ks2) competitive ratio when some running transaction may fail at most k

1 A synchronization mechanism is obstruction-free if any thread runs itself for a long
time makes progress [12].

68 G. Sharma, B. Estrade, and C. Busch

times and then eventually commits. Attiya et al. [3] improved the result of [9] to
O(s), and the result of [7] to O(ks), which are significant improvements over the
competitive ratio of Greedy. They also proved the matching lower bound of Ω(s)
for the competitive ratio for deterministic work-conserving algorithms which
schedule as many transactions as possible (by choosing a maximal independent
set of transactions).

Recently, Schneider and Wattenhofer [21] presented a deterministic algorithm
CommitBounds with competitive ratio Θ(s) for M concurrent transactions us-
ing s shared resources and a randomized algorithm RandomizedRounds with
makespan O(C log M), for the one-shot problem of a set of M transactions in
separate threads with C conflicts (assuming unit delays for transactions). While
previous studies showed that contention managers Polka [18] and SizeMatters [17]
exhibit good overall performance for variety of benchmarks, this work showed
that they may perform exponentially worse than RandomizedRounds from a
worst-case perspective. Another recent proposal for the contention management
is Serializer [5], which resolves a conflict by removing a conflicting transaction T
from the processor core where it was running, and scheduling it on the processor
core of the other transaction to which it conflicted with. It is O(M)-competitive
and in fact, it ensures that two transactions never conflict more than once.

On the other side, TM schedulers [6,23,2,4] offer an alternative approach to
boost the TM performance. TM scheduler is, basically, a software component
which decides when a particular transaction executes. One proposal in this ap-
proach is Adaptive Transaction Scheduling (ATS)2 [23] scheduler. Restart [6] sched-
uler is another recent proposal whose worst case performance is very sensitive to
the accuracy of the prediction of the future conflicts. In [6] they also propose a
scheduler called Shrink which predicts the future accesses of a based on the past
accesses, and dynamically serializes transactions based on the prediction to pre-
vent conflicts. The ATS, Restart and Shrink schedulers are O(M)-competitive in
the worst-case. Steal-On-Abort [2] is the yet another proposal where the aborted
transaction is given to the opponent transaction and queued behind it, pre-
venting the two transactions from conflicting again. Recently, Attiya et al. [4]
proposed the BIMODAL scheduler which alternates between writing epochs where
it gives priority to writing transactions and reading epochs where it gives priority
to transactions that have issued only reads so far. It achieves O(s) competitive
ratio on bimodal3 workloads with equi-length transactions.

3 Execution Window Model

Consider M threads P = {P1, · · · , PM}. We consider a model that is based
on a M × N execution window W consisting of a set of transactions T (W) =
{(T11, · · · , T1N), (T21, · · · , T2N), . . . , (TM1, · · · , TMN)}, where each thread Pi

2 ATS measures adaptively the contention intensity of a thread, when the contention
intensity increases beyond a threshold, it serializes the transactions.

3 A workload containing only early-write and read-only transactions (see [4] for de-
tails).

Window-Based Greedy Contention Management for Transactional Memory 69

issues N transactions Ti1, · · · , TiN in sequence, so that Tij is issued as soon
as Ti(j−1) has committed. If N = 1 then this is similar to the one-shot TM
model, that uses one transaction per thread.

Transactions share a set of s shared resources R = {R1, . . . , Rs}. Each trans-
action is a sequence of actions that is either a read or write to some shared
resource R. A transaction after it is issued it either commits or aborts. A trans-
action that has been issued but not committed is said to be pending. Concurrent
write-write actions or read-write actions to shared objects by two or more trans-
actions cause conflicts between transactions. If a transactions conflicts then it
either aborts, or it may commit and force to abort all other conflicting transac-
tions. In a greedy schedule, if a transactions aborts it then immediately restarts
and attempts to commit again.

The makespan of a schedule for the transactions is defined as the duration from
the start of the schedule, i.e., the time when the first transaction is issued, until
all transactions have committed. The makespan of the transaction scheduling
algorithm for the sequences of transactions can be compared to the makespan
of an optimal off-line scheduling algorithm, denoted makespanopt to provide a
competitive ratio. Each transaction Tij has execution time duration τij which is
greater than 0. When we describe our algorithms we assume that all transactions
have the same duration τ = τij . We also assume that the execution time advances
synchronously for all threads, where each time step corresponds to a period of
duration τ . We also assume that and all transactions inside the execution window
are correct, i.e., there are no faulty transactions4. Our results can be extended
by relaxing these assumptions. In Section 7, we describe the impact that variable
time durations for the transactions have to the performance of our algorithms.

3.1 Conflict Graph

Consider a set of k transactions T = {T1, . . . , Tk}. Let R(Ti) denote the set
of resources used by transaction Ti. We can write R(Ti) = Rw(Ti) ∪ Rr(Ti),
where Rw(Ti) are the resources which are to be written by Ti and Rr(Ti) are
the resources to be read by Ti.

Definition 1 (Transaction Conflict). Two transactions Ti and Tj conflict if
at least one of them writes on a common resource, that is, there is a resource R
such that R ∈ (Rw(Ti) ∩R(Tj)) ∪ (R(Ti) ∩Rw(Tj)) (we also say that R causes
the conflict).

Definition 2 (Conflict Graph). The conflict graph G = (T , E) has nodes the
transactions, and (Ti, Tj) ∈ E for any two transactions Ti, Tj that conflict.

Let δ(Ti) denote the degree of node Ti in G. We denote C = maxi δ(Ti). Let
γ(Rj) denote the number of transactions that write Rj . Let γmax = maxj γ(Rj).

4 A transaction is called faulty when it encounters an illegal instruction producing a
segmentation fault or experiences a page fault resulting to wait for a long time for
the page to be available [7].

70 G. Sharma, B. Estrade, and C. Busch

Let λ(Ti) = |{R : R ∈ R(Ti) ∧ (γ(R) ≥ 1)}|, denote the number of resources
that can be the cause of conflicts to transaction Ti. Let λmax = maxi λ(Ti). Note
that C ≤ λmax · γmax, and, C ≥ γmax.

Assuming that there is one transaction per thread, the conflict graph can be
used to obtain a simple greedy schedule of the transactions as follows. Compute
a C + 1 vertex coloring of the conflict graph. All transactions of same color can
commit simultaneously. The transactions can be scheduled in a greedy manner
by giving a different priority to each transaction color. This produces a greedy
schedule of length Makespan = τ · (C + 1). Since C ≤ λmax · γmax, we have
that makespan ≤ τ · (λmax ·γmax +1). Further, since C ≥ γmax, makespanopt ≥
τ ·γmax. Since λmax ≤ s, the competitive ratio of the schedule is λmax+1 = O(s).

4 Offline Algorithm

We present the Algorithm Offline-Greedy (Algorithm 1), which is an offline greedy
contention resolution algorithm that it uses the conflict graph explicitly to resolve
conflicts of transactions. In addition to M and N , we assume that each thread
Pi knows Ci, which denotes the maximum number of transactions that any
transaction in Pi conflicts with; namely, using the conflict graph G(T (W)), Ci =
maxj δ(Tij). Note that C = maxi Ci.

Time is measured in discrete time steps, where each time step represents the
duration τ of the transactions. We divide time into frames, which are time peri-
ods of duration Θ(τ · ln(MN)) (namely, each frame consists of Φ = Θ(ln(MN))
time steps). Then, each thread Pi is assigned an initial random time period con-
sisting of qi frames, where qi is chosen randomly, independently and uniformly,
from the range [0, αi − 1], where αi = Ci/ ln(MN). Each transaction has two
priorities: low or high. Transaction Tij is initially in low priority. Transaction
Tij switches to high priority in the first time step of frame Fij = qi + (j − 1)
(this is the assigned frame for Tij) and remains in high priority thereafter until
it commits. In the analysis, we show that with high probability each transaction
commits in its assigned frame.

The priorities are used to resolve conflicts. A high priority transaction may
only be aborted by another high priority transaction. A low priority transaction
is always aborted if it conflicts with a high priority transaction. Let Gt denote the
conflict graph of transactions at time step t which evolves while the execution of
the transactions progresses. Note that the maximum degree of Gt is bounded by
C, but the effective degree between high priority transactions is lower. At each
time step t we select to commit a maximal independent set of transactions in
Gt. We first select a maximal independent set IH of high priority transactions,
then remove this set and its neighbors from Gt, and then select a maximal
independent set IL of low priority transactions from the remaining conflict graph.
The transactions that commit are IH ∪ IL.

The intuition behind the algorithm is as follows. Consider a thread i and its
first transaction in the window Ti1. According to the algorithm, Ti1 becomes
high priority in the beginning of frame Fi1. Because qi is chosen at random

Window-Based Greedy Contention Management for Transactional Memory 71

Algorithm 1. Offline-Greedy
Input: A M × N window W of transactions with M threads each with N

transactions; Each thread Pi knows Ci, the maximum number of
transactions in W that any transaction in Pi conflicts with; Each
transaction has same duration τ ;

Divide time into frames consisting of Φ = 1 + (e2 + 2) ln(MN) time steps;
Each thread Pi chooses a random number qi ∈ [0, αi − 1] for αi = Ci/ ln(MN);
Each transaction Tij is assigned to frame Fij = qi + (j − 1);
foreach time step t = 0, 1τ, 2τ, 3τ, . . . do

Phase 1: Priority Assignment
foreach transaction Tij do

if t < Fij · τΦ then Priority(Tij) ← 1 (low); else
Priority(Tij) ← 0 (high);

Phase 2: Conflict Resolution
begin

Let Gt be the conflict graph at time t;
Compute GH

t and GL
t , the subgraphs of Gt induced by high and low

priority nodes, respectively;
Compute IH ← I(GH

t), maximal independent set of nodes in graph GH
t ;

Q ← low priority nodes adjacent to nodes in IH ;
Compute IL = I(GL

t \ Q), maximal independent set of nodes in graph
GL

t after removing Q nodes;
Commit IH ∪ IL;

among Ci/ ln(MN) positions it is expected that Ti1 will conflict with at most
O(ln(MN)) transactions in its assigned frame Fi1 which become simultaneously
high priority in Fi1. Since a time frame contains Φ = Θ(ln(MN)) time steps,
transaction Ti1 and all its high priority conflicting transactions will be able
to commit by the end of time frame Fi1, using the conflict resolution graph.
The initial randomization period of qi · Φ frames will have the same effect to
the remaining transactions of the thread i, which will also commit within their
assigned frames.

4.1 Analysis of Offline Algorithm

We study the makespan of Algorithm Offline-Greedy. According to the algorithm,
when a transaction Tij is issued, it will be in low priority until the respective
frame Fij starts. As soon as Fij starts, the transaction Tij will begin executing
in high priority (if it didn’t commit already). Let A denote the set of conflicting
transactions with Tij in the conflict graph G(T (W)). Let A′ ⊆ A denote the
subset of conflicting transactions with Tij which become high priority during
frame Fij (simultaneously with Tij).

Lemma 1. If |A′| ≤ Φ− 1 then transaction Tij will commit in frame Fij .

72 G. Sharma, B. Estrade, and C. Busch

Proof. Due to the use of the high priority independent sets in the conflict graph
Gt, if in time t during frame Fij transaction Tij does not commit, then some
conflicting transaction in A′ must commit. Since there are at most Φ − 1 high
priority conflicting transactions, and the length of the frame Fij is at most Φ,
Tij will commit by the end of frame Fij .

We show next that it is unlikely that |A′| > Φ−1. We use the following Chernoff
bound:

Lemma 2 (Chernoff Bound 1). Let X1, X2, . . . , Xn be independent Poisson
trials such that, for 1 ≤ i ≤ n, Pr(Xi = 1) = pri, where 0 < pri < 1. Then, for
X =

∑n
i=1 Xi, μ = E[X] =

∑n
i=1 pri, and any δ > e2, Pr(X > δμ) < e−δμ.

Lemma 3. |A′| > Φ− 1 with probability at most (1/MN)2.

Proof. Let Ak ⊆ A, where 1 ≤ k ≤ M , denote the set of transactions of thread
Pk that conflict with transaction Tij . We partition the threads P1, . . . , PM into
3 classes Q0, Q1, and Q2, such that:

– Q0 contains every thread Pk which either |Ak| = 0, or |Ak| > 0 but the
positions of the transactions in Ak are such that it is impossible to overlap
with Fij for any random intervals qi and qk.

– Q1 contains every thread Pk with 0 < |Ak| < αi, and at least one of the
transactions in Ak is positioned so that it is possible to overlap with frame
Fij for some choices of random intervals qi and qk.

– Q2 contains every thread Pk with αi ≤ |Ak|. Note that |Q2| ≤ Ci/αi =
ln(MN).

Let Yk be a random binary variable, such that Yk = 1 if in thread Pk any of the
transactions in Ak becomes high priority in Fij (same frame with Tij), and Yk = 0
otherwise. Let Y =

∑M
k=1 Yk. Note that |A′| = Y . Denote prk = Pr(Yk = 1).

We can write Y = Z0 + Z1 + Z2, where Z� =
∑

Pk∈Q�
Yk, for 0 ≤ � ≤ 2. Clearly,

Z0 = 0. and Z2 ≤ |Q2| ≤ ln(MN).
Recall that for each thread Pk there is a random initial interval with qk frames,

where qk is chosen uniformly at random in [0, αk−1]. Given the random choice of
Pk, 0 < prk ≤ |Ak|/αi < 1, since there are |Ak| < αi conflicting transactions in
Ai and there are at least αi random choices for the relative position of transaction
Tij . Consequently,

μ = E[Z1] =
∑

Pk∈Z1

prk ≤
∑

Pk∈Z1

|Ak|
αi

=
1
αi
·
∑

Pk∈Z1

|Ak| ≤
Ci

αi
≤ ln(MN).

By applying a Chernoff bound we obtain that Pr(Z1 > (e2 +1)μ) < e−(e2+1)μ <
e−2 ln(MN) = (MN)−2. Since Y = Z0 + Z1 + Z2, and Z2 ≤ ln(MN), we obtain
Pr((|A′| = Y) > ((e2 + 2)μ = Φ− 1)) < (MN)−2, as needed.

Lemma 4. All transactions commit by the end of their assigned frames with
probability at least 1− (MN)−1.

Window-Based Greedy Contention Management for Transactional Memory 73

Proof. From Lemmas 1 and 3, Φ time steps do not suffice to commit transaction
Tij within its assigned frame Fij with probability at most (NM)−2 (we call this
a bad event). Considering all the MN transactions in the window a bad event for
any of them occurs with probability at most MN · (MN)−2 = (MN)−1. Thus,
with probability at least 1− (MN)−1, all transactions will commit within their
assigned frames.

Since C = maxi Ci, the makespan bound of the algorithm follows immediately
from Lemma 4.

Theorem 1 (Makespan of Offline-Greedy). Algorithm Offline-Greedy produces
a schedule of length O(τ ·(C+N log(MN))) with probability at least 1−(MN)−1.

Since in the conflict graph G(T (W)), C ≤ λmax ·γmax, we have that makespan =
O(τ · (λmax · γmax + N log(MN))). Further, since C ≥ γmax, and τ ·N is a lower
bound on the schedule length, makespanopt ≥ τ ·max(γmax, N). Therefore, the
competitive ratio of the schedule is O(λmax + log(MN)) = O(s + log(MN)).

Corollary 1 (Competitive Ratio of Offline-Greedy). The makespan of the
schedule produced by Algorithm Offline-Greedy has competitive ratio O(s +
log(MN)) with probability at least 1− (MN)−1.

5 Online Algorithm

We present Algorithm Online-Greedy algorithm (Algorithm 2), which is online in
the sense that it does not depend on knowing the dependency graph to resolve
conflicts. In addition to M and N , we assume that each thread Pi knows Ci. This
algorithm is similar to Algorithm 1 with the difference that in the conflict reso-
lution phase we use as a subroutine a variation of Algorithm RandomizedRounds
proposed by Schneider and Wattenhofer [21]. The makespan of the online algo-
rithm is slightly worse than the offline algorithm, since the duration of the frame
is now Φ′ = O(τ · log2(MN)).

There are two different priorities associated with each transaction under this
algorithm. The pair of priorities for a transaction is given as a vector 〈π(1), π(2)〉,
where π(1) represents the Boolean priority value low or high (with respective
values 1 and 0) as described in Algorithm 1, and π(2) ∈ [1, M] represents the ran-
dom priorities used in Algorithm RandomizedRounds. The conflicts are resolved
in lexicographic order based on the priority vectors, so that vectors with lower
lexicographic order have higher priority.

When a transaction T is issued, it starts to execute immediately in low priority
(π(1) = 1) until the respective randomly chosen time frame F starts where it
switches to high priority (π(1) = 0). Once in high priority, the field π(2) will
be used to resolve conflicts with other high priority transactions. A transaction
chooses a discrete number π(2) uniformly at random in the interval [1, M] on
start of the frame Fij , and after every abort. In case of a conflict of T with
another high priority transaction K which has higher π(2) value than T , then T
proceeds and K aborts. The procedure abort(T, K) aborts transaction K.

74 G. Sharma, B. Estrade, and C. Busch

Algorithm 2. Online-Greedy
Input: A M × N window W of transactions with M threads each with N

transactions; Each thread Pi knows Ci, the maximum number of
transactions in W that any transaction in Pi conflicts with; Each
transaction has same duration τ ;

Output: A greedy execution schedule for the window of transactions W ;

Divide time into frames of Φ′ = 16e · Φ ln(MN) time steps, where
Φ = 1 + (e2 + 2) ln(MN);
Each thread Pi chooses a random number qi ∈ [0, αi − 1] for αi = Ci/ ln(NM);
Each transaction Tij is assigned to frame Fij = qi + (j − 1);
Associate pair of priorities 〈π(1)

ij , π
(2)
ij 〉 to each transaction Tij ;

foreach time step t = 0, 1τ, 2τ, 3τ, . . . do
Phase 1: Priority Assignment
foreach transaction Tij do

if t < Fij · τΦ′ then Priority π
(1)
ij ← 1 (low); else Priority

π
(1)
ij ← 0 (high);

Phase 2: Conflict Resolution
if π

(1)
ij == 0 (Tij has high priority) then
On (re)start of transaction Tij ;
π

(2)
ij ← random integer in [1, M];

On conflict of transaction Tij with high priority transaction Tkl;
if π

(2)
ij < π

(2)
kl then abort(Tij , Tkl); else abort(Tkl, Tij);

5.1 Analysis of Online Algorithm

In the analysis given below, we study the makespan and the response time of
Algorithm Online-Greedy. The analysis is based on the following adaptation of
the response time analysis of a one-shot transaction problem with algorithm
RandomizedRounds [21]. It uses the following Chernoff bound:

Lemma 5 (Chernoff Bound 2). Let X1, X2, . . . , Xn be independent Poisson
trials such that, for 1 ≤ i ≤ n, Pr(Xi = 1) = pri, where 0 < pri < 1. Then, for
X =

∑n
i=1 Xi, μ = E[X] =

∑n
i=1 pri, and any 0 < δ ≤ 1, Pr(X < (1 − δ)μ) <

e−δ2μ/2.

Lemma 6. (Adaptation from Schneider and Wattenhofer [21]) Given
a one-shot transaction scheduling problem with M transactions, the time span a
transaction T needs from the moment it is issued until commit is 16e(dT +1) log n
with probability at least 1− 1

n2 , where dT is the number of transactions conflicting
with T .

Proof. Consider the respective conflict graph G of the one-shot problem. Let NT

denote the set of conflicting transactions for T (these are the neighbors of T in G).
Let dT = |NT | ≤ M . Let yT denote the random priority number choice of T in

Window-Based Greedy Contention Management for Transactional Memory 75

range [1, M]. The probability that for transaction T no transaction K ∈ NT has
the same random number is:

Pr(�K ∈ NT |yT = yK) =
(

1− 1
M

)dT

≥
(

1− 1
M

)M

≥ 1
e
.

The probability that yT is at least as small as yK for any transaction K ∈ NT is
1

dT +1 . Thus, the chance that yT is smallest and different among all its neighbors
in NT is at least 1

e(dT +1) . If we conduct 16e(dT +1) lnn trials, each having success
probability 1

e(dT +1) , then the probability that the number of successes Z is less
than 8 lnn becomes: Pr(Z < 8 · ln n) < e−2·lnn = 1

n2 , using the Chernoff bound
of Lemma 5.

Lemma 7. In Algorithm Online-Greedy all transactions commit by the end of
their assigned frames with probability at least 1− 2(MN)−1.

Proof. According to the algorithm, a transaction Tij becomes high priority
(π(1)

ij = 0) in frame Fij . When this occurs the transaction will start to com-
pete with other transactions which became high priority during the same frame.
Lemma 3 from the analysis of Algorithm 1, implies that the effective degree of
Tij with respect to high priority transactions is dT > Φ − 1 with probability
at most (MN)−2 (we call this bad event-1). From Lemma 6, if dT ≤ Φ − 1,
the transaction will not commit within 16e(dT + 1) log n ≤ Φ′ time slots with
probability at most (MN)−2 (we call this bad event-2). Therefore, Tij does not
commit in Fij when either bad event-1 or bad event-2 occurs, which happens
with probability at most (MN)−2 + (MN)−2 = 2(MN)−2. Considering now all
the MN transactions, the probability of failure is at most 2(MN)−1. Thus, with
probability at least 1− 2(MN)−1, every transaction Tij commits during the Fij

frame.

The makespan and competitive ratios follow immediately from Lemma 7.

Theorem 2 (Makespan of Online-Greedy). Algorithm Online-Greedy produces
a schedule of length O(τ · (C log(MN) + N log2(MN))) with probability at least
1− 2(MN)−1.

Corollary 2 (Competitive Ratio of Online-Greedy). The makespan of the
schedule produced by Algorithm Online-Greedy has competitive ratio O(s ·
log(MN) + log2(MN)) with probability at least 1− 2(MN)−1.

6 Adaptive Algorithm

A limitation of Algorithms 1 and 2 is that the values Ci need to be known in
advance for each window W . We present the Algorithm Adaptive-Greedy (Algo-
rithm 3) in which each thread can guess the individual values of Ci. The algo-
rithm works based on the exponential back-off strategy used by many contention
managers developed in the literature such as Polka.

76 G. Sharma, B. Estrade, and C. Busch

Algorithm 3. Adaptive-Greedy
Input: An M × N execution window W with M threads each with N

transactions, where C is unknown;
Output: A greedy execution schedule for the window of transactions;

Code for thread Pi;
begin

Initial contention estimate Ci ← 1;
repeat

Online-Greedy(Ci, W);
if bad event then

Ci ← 2 · Ci ;

until all transactions are committed ;

Each thread Pi starts with assuming Ci = 1. Based on the current estimate
Ci, the thread attempts to execute Algorithm 2, for each of its transactions
assuming the window size M ×N . Now, if the choice of Ci is correct then each
transaction of the thread in the window W of the thread Pi should commit by
the end of the respective assigned frame that it becomes high priority. Thus, all
transactions of thread Pi should commit within the time estimate of Algorithm 2
which is Li = O(τ · (Ci log(MN)+N log2(MN))). However, if during Li thread
Pi is unable to commit one of its transactions within its assigned frame (we call
this a bad event), then thread Pi will assume that the choice of Ci is incorrect,
and will start over again with the remaining transactions assuming C′

i = 2Ci.
Eventually thread Pi will guess the right value of Ci for the window W , and
all its transactions will commit within their respective time frames. It is easy
to that the correct choice of Ci will be reached by a thread Pi within log Ci

iterations. The total makespan is asymptotically the same as with Algorithm 2.

7 Conclusions

We considered greedy contention managers for transactional memory for M ×N
windows of transactions with M threads and N transactions per thread and
present three new algorithms for contention management in transactional mem-
ory from a worst-case perspective. These algorithms are efficient, adaptive, and
improve on the worst-case performance of previous results. These are the first
such results for the execution of sequences of transactions instead of the one-shot
problem considered in the literature. Our algorithms present new trade-offs in
the analysis of greedy contention managers for transactional memory.

When we consider variable time durations for the transactions, in the
makespan bounds expressions in Theorems 1 and 2 of our algorithms we can
replace the parameter τ with τmax, which is the maximum duration of any trans-
action in the window. The impact is that in the competitive ratio in Corollaries
1 and 2 there will appear an additional factor τmax/τmin, where τmin is the min-
imum duration of any transaction in the window. In the algorithms, the basic

Window-Based Greedy Contention Management for Transactional Memory 77

time step duration is changed from τ to τmax. Note that with variable time
delays the transactions are not perfectly aligned when they enter a frame. In
Offline-Greedy, this doesn’t cause a problem when we compute the independent
sets. On the other hand, we need to modify Online-Greedy so that when a high-
priority transaction aborts, it always gives the right of way to the transaction
that aborted it.

With this work, we are left with some issues for future work. The other aspect
is to explore alternative algorithms where the randomization does not occur at
the beginning of each window but rather during the execution of the algorithm
by inserting random periods of low priority between the subsequent transactions
in each thread. One may also consider the dynamic expansion and contraction
of the execution window to preserve the contention measure C. This will result
to more practical algorithms with good performance guarantees.

References

1. Ansari, M., Kotselidis, C., Lujan, M., Kirkham, C., Watson, I.: On the performance
of contention managers for complex transactional memory benchmarks. In: ISPDC
’09: Proceedings of the 8th International Symposium on Parallel and Distributed
Computing (2009)

2. Ansari, M., Luján, M., Kotselidis, C., Jarvis, K., Kirkham, C., Watson, I.: Steal-on-
abort: Improving transactional memory performance through dynamic transaction
reordering. In: Seznec, A., Emer, J., O’Boyle, M., Martonosi, M., Ungerer, T. (eds.)
HiPEAC 2009. LNCS, vol. 5409, pp. 4–18. Springer, Heidelberg (2009)

3. Attiya, H., Epstein, L., Shachnai, H., Tamir, T.: Transactional contention manage-
ment as a non-clairvoyant scheduling problem. Algorithmica 57(1), 44–61 (2010)

4. Attiya, H., Milani, A.: Transactional scheduling for read-dominated workloads. In:
Abdelzaher, T., Raynal, M., Santoro, N. (eds.) OPODIS 2009. LNCS, vol. 5923,
pp. 3–17. Springer, Heidelberg (2009)

5. Dolev, S., Hendler, D., Suissa, A.: CAR-STM: scheduling-based collision avoidance
and resolution for software transactional memory. In: PODC ’08: Proceedings of
the Twenty-Seventh ACM Symposium on Principles of Distributed Computing,
pp. 125–134. ACM, New York (2008)

6. Dragojević, A., Guerraoui, R., Singh, A.V., Singh, V.: Preventing versus curing:
avoiding conflicts in transactional memories. In: PODC ’09: Proceedings of the
28th ACM Symposium on Principles of Distributed Computing, pp. 7–16. ACM,
New York (2009)

7. Guerraoui, R., Herlihy, M., Kapalka, M., Pochon, B.: Robust Contention Man-
agement in Software Transactional Memory. In: SCOOL ’05: Proceedings of the
OOPSLA 2005 Workshop on Synchronization and Concurrency in Object-Oriented
Languages (2005)

8. Guerraoui, R., Herlihy, M., Pochon, B.: Polymorphic contention management. In:
Fraigniaud, P. (ed.) DISC 2005. LNCS, vol. 3724, pp. 303–323. Springer, Heidelberg
(2005)

9. Guerraoui, R., Herlihy, M., Pochon, B.: Toward a theory of transactional contention
managers. In: PODC ’01: Proceedings of the Twenty-Fourth Annual Symposium
on Principles of Distributed Computing (2005)

78 G. Sharma, B. Estrade, and C. Busch

10. Harris, T., Fraser, K.: Language support for lightweight transactions. In: OOPSLA
’03: Proceedings of the International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pp. 388–402 (2003)

11. Harris, T., Marlow, S., Peyton-Jones, S., Herlihy, M.: Composable memory trans-
actions. In: PPoPP ’05: Proceedings of the Tenth ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pp. 48–60 (2005)

12. Herlihy, M., Luchangco, V., Moir, M.: Obstruction-free synchronization: Double-
ended queues as an example. In: ICDCS ’03: Proceedings of the 23rd International
Conference on Distributed Computing Systems, pp. 522–529 (2003)

13. Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.N.: Software transactional
memory for dynamic-sized data structures. In: PODC ’03: Proceedings of the
Twenty-Second Annual Symposium on Principles of Distributed Computing, pp.
92–101. ACM, New York (2003)

14. Herlihy, M., Moss, J.E.B.: Transactional memory: Architectural support for lock-
free data structures. In: ISCA ’93: Proceedings of the 20th Annual International
Symposium on Computer Architecture. pp. 289–300 (1993)

15. Khot, S.: Improved inapproximability results for maxclique, chromatic number
and approximate graph coloring. In: FOCS ’01: Proceedings of the 42nd IEEE
Symposium on Foundations of Computer Science, pp. 600–609 (2001)

16. Leighton, F.T., Maggs, B.M., Rao, S.B.: Packet routing and job-shop scheduling
in O(congestion + dilation) steps. Combinatorica 14, 167–186 (1994)

17. Ramadan, H.E., Rossbach, C.J., Porter, D.E., Hofmann, O.S., Bhandari, A.,
Witchel, E.: Metatm/txlinux: Transactional memory for an operating system. IEEE
Micro. 28(1), 42–51 (2008)

18. Scherer III, W.N., Scott, M.L.: Advanced contention management for dynamic
software transactional memory. In: PODC ’05: Proceedings of the Twenty-Fourth
Annual ACM Symposium on Principles of Distributed Computing, pp. 240–248
(2005)

19. Scherer III, W.N., Scott, M.L.: Contention management in dynamic software trans-
actional memory. In: CSJP ’04: Proceedings of the ACM PODC Workshop on Con-
currency and Synchronization in Java Programs, St. John’s, NL, Canada (2004)

20. Scherer III, W.N., Scott, M.L.: Randomization in STM contention management
(POSTER). In: PODC ’05: Proceedings of the 24th ACM Symposium on Principles
of Distributed Computing, Las Vegas, NV (2005)

21. Schneider, J., Wattenhofer, R.: Bounds on contention management algorithms. In:
Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 441–451.
Springer, Heidelberg (2009)

22. Shavit, N., Touitou, D.: Software transactional memory. In: PODC ’95: Proceedings
of the Fourteenth Annual ACM Symposium on Principles of Distributed Comput-
ing, pp. 204–213. ACM, New York (1995)

23. Yoo, R.M., Lee, H.H.S.: Adaptive transaction scheduling for transactional mem-
ory systems. In: SPAA ’08: Proceedings of the Twentieth Annual Symposium on
Parallelism in Algorithms and Architectures, pp. 169–178 (2008)

Scalable Flat-Combining Based
Synchronous Queues

Danny Hendler1, Itai Incze2, Nir Shavit2,3, and Moran Tzafrir2

1 Ben-Gurion University
2 Tel-Aviv University
3 Sun Labs at Oracle

Abstract. In a synchronous queue, producers and consumers handshake
to exchange data. Recently, new scalable unfair synchronous queues were
added to the Java JDK 6.0 to support high performance thread pools.

This paper applies flat-combining to the problem of designing a syn-
chronous queue algorithm. We first use the original flat-combining algo-
rithm, a single “combiner” thread acquires a global lock and services the
other threads’ combined requests with very low synchronization over-
heads. As we show, this single combiner approach delivers superior per-
formance up to a certain level of concurrency, but unfortunately does
not continue to scale beyond that point.

In order to continue to deliver scalable performance as concurrency
increases, we introduce a new parallel flat-combining algorithm. The
new algorithm dynamically adds additional concurrently executing flat-
combiners that coordinate their work. It enjoys the low coordination
overheads of sequential flat combining, with the added scalability that
comes with parallelism.

Our novel unfair synchronous queue using parallel flat combining
exhibits scalability far and beyond that of the JDK 6.0 algorithm: it
matches it in the case of a single producer and consumer, and is superior
throughout the concurrency range, delivering up to 11 (eleven) times the
throughput at high concurrency.

1 Introduction

This paper presents a new highly scalable design of an unfair synchronous queue,
a fundamental concurrent data structure used in a variety of concurrent program-
ming settings.

In many applications, one or more producer threads produce items to be con-
sumed by one or more consumer threads. These items may be jobs to perform,
keystrokes to interpret, purchase orders to execute, or packets to decode. As
noted in [7], many applications require “poll” and “offer” operations which take
an item only if a producer is already present, or put an item only if a consumer is
already waiting (otherwise, these operations return an error). The synchronous
queue provides such a “pairing up” of items, without buffering; it is entirely sym-
metric: Producers and consumers wait for one another, rendezvous, and leave

N.A. Lynch and A.A. Shvartsman (Eds.): DISC 2010, LNCS 6343, pp. 79–93, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

80 D. Hendler et al.

in pairs. The term “unfair” refers to the fact that the queue is actually a pool
[5]: it does not impose an order on the servicing of requests, and permits starva-
tion. Previous synchronous queue algorithms were presented by Hanson [3], by
Scherer, Lea and Scott [8,7,9] and by Afek et al. [1]. A survey of past work on
synchronous queues can be found in [7].

New scalable implementations of synchronous queues were recently introduced
by Scherer, Lea, and Scott [7] into the Java 6.0 JDK, available on more than 10
million desktops. They showed that the unfair version of a synchronous queue
delivers scalable performance, both in general and when used to implement the
JDK’s thread pools.

In a recent paper [4], we introduced a new synchronization paradigm called flat
combining (FC). At the core of flat combining is a low cost way to allow a single
“combiner” thread at a time to acquire a global lock on the data structure, learn
about all concurrent access requests by other threads, and then perform their
combined requests on the data structure. This technique has the dual benefit
of reducing the synchronization overhead on “hot” shared locations, and at the
same time reducing the overall cache invalidation traffic on the structure. The
effect of these reductions is so dramatic, that in a kind of “anti-Amdahl’s law”
effect, they outweigh the loss of parallelism caused by allowing only one combiner
thread at a time to manipulate the structure.

This paper applies the flat-combining technique to the synchronous queue
implementation problem. We begin by presenting a scalable flat-combining im-
plementation of an unfair synchronous queue using the technique suggested in
[4]. As we show, this implementation outperforms the new Java 6.0 JDK imple-
mentation at all concurrency levels (by a factor of up to 3 on a Sun Niagara
64 way multicore). However, it does not continue to scale beyond some point,
because in the end it is based on a single sequentially executing combiner thread
that executes the operations of all others.

Our next implementation, and the core result in this paper, is a synchronous
queue based on parallel flat-combining, a new flat combining algorithm in which
multiple instances of flat combining are executed in parallel in a coordinated
fashion. The parallel flat-combining algorithm spawns new instances of flat-
combining dynamically as concurrency increases, and folds them as it decreases.
The key problem one faces in such a scheme is how to deal with imbalances: in
a synchronous queue one must “pair up” requests, without buffering the imbal-
ances that might occur. Our solution is a dynamic two level exchange mechanism
that manages to take care of imbalances with very little overhead, a crucial prop-
erty for making the algorithm work at both high and low load, and at both even
and uneven distributions. We note that a synchronous queue, in particular a
parallel one, requires a higher level of coordination from a combiner than that of
queues, stacks, or priority queues implemented in our previous paper [4], which
introduced flat combining. This is because the lack of buffering means there is
no “slack”: the combiner must actually match threads up before releasing them.

As we show, our parallel flat-combining implementation of an unfair syn-
chronous queue outperforms the single combiner, continuing to improve with

Scalable Flat-Combining Based Synchronous Queues 81

infrequently, new records are CASed
by threads to head of list, and old ones are
removed by combiner head

1

Thread G

4

request request request request request
age/actage/actage/actage/actage/act

Thread FThread A Thread CThread B

lock

combiner’s private
stack

publication list

thread writes push or pop request and
spins on local record

2 thread acquires lock,
becomes combiner,
updates count

3 combiner traverses list,
performs collecting requests
into stack and matching them to
other requests along the list

count

Fig. 1. A synchronized-queue using a single combiner flat-combining structure. Each
record in the publication list is local to a given thread. The thread writes and spins on
the request field in its record. Records not recently used are once in a while removed
by a combiner, forcing such threads to re-insert a record into the publication list when
they next access the structure.

the level of concurrency. On a Sun Niagara 64 way multicore, it reaches up to
11 times the throughput of the JDK implementation at 64 threads.

The rest of this paper is organized as follows. We outline the basic sequen-
tial flat-combining algorithm and describe how it can be used to implement
a synchronous queue in Section 2. In Section 3, we describe our parallel FC
synchronous queue implementation. Section 4 reports on our experimental eval-
uation. We conclude the paper in Section 5 with a short discussion of our results.

2 A Synchronous Queue Using Single-Combiner
Flat-Combining

In a previous paper [4], we showed how given a sequential data structure D,
one can design a (single-combiner) flat combining (henceforth FC) concurrent
implementation of the structure. For presentation completeness, we outline this
basic sequential flat combining algorithm in this section and describe how we use
it to implement a synchronous queue. Then, in the next section, we present our
parallel FC algorithm that is based on running multiple dynamically maintained
instances of this basic algorithm in a two level hierarchy.

As depicted in Figure 1, to implement a single instance of FC, a few structures
are added to a sequential structure D: a global lock, a count of the number of
combining passes, and a pointer to the head of a publication list. The publication
list is a list of thread-local records of a size proportional to the number of threads
that are concurrently accessing the shared object. Though one could implement
the list in an array, the dynamic publication list using thread local pointers is
necessary for a practical solution: because the number of potential threads is
unknown and typically much greater than the array size, using an array one
would have had to solve a renaming problem [2] among the threads accessing it.

82 D. Hendler et al.

This would imply a CAS per location, which would give us little advantage over
existing techniques.

Each thread t accessing the structure to perform an invocation of some method
m on the shared object executes the following sequence of steps. We describe only
the ones important for coordination so as to keep the presentation as simple as
possible. The following then is the single combiner algorithm for a given thread
executing a method m:

1. Write the invocation opcode and parameters (if any) of the method m to be
applied sequentially to the shared object in the request field of your thread
local publication record (no need to use a load-store memory barrier). The
request field will later be used to receive the response. If your thread local
publication record is marked as active continue to step 2, otherwise continue
to step 5.

2. Check if the global lock is taken. If so (another thread is an active combiner),
spin on the request field waiting for a response to the invocation (one can add
a yield at this point to allow other threads on the same core to run). Once in
a while, while spinning, check if the lock is still taken and that your record
is active. If your record is inactive proceed to step 5. Once the response is
available, reset the request field to null and return the response.

3. If the lock is not taken, attempt to acquire it and become a combiner. If you
fail, return to spinning in step 2.

4. Otherwise, you hold the lock and are a combiner.
– Increment the combining pass count by one.
– Traverse the publication list (our algorithm guarantees that this is done

in a wait-free manner) from the publication list head, combining all non-
null method call invocations, setting the age of each of these records to
the current count, applying the combined method calls to the structure
D, and returning responses to all the invocations.

– If the count is such that a cleanup needs to be performed, traverse the
publication list from the head. Starting from the second item (as we
explain below, we always leave the item pointed to by the head in the
list), remove from the publication list all records whose age is much
smaller than the current count. This is done by removing the record and
marking it as inactive.

– Release the lock.
5. If you have no thread local publication record allocate one, marked as active.

If you already have one marked as inactive, mark it as active. Execute a store-
load memory barrier. Proceed to insert the record into the list by repeatedly
attempting to perform a successful CAS to the head. If and when you succeed,
proceed to step 1.

Records are added using a CAS only to the head of the list, and so a simple wait
free traversal by the combiner is trivial to implement [5]. Thus, removal will not
require any synchronization as long as it is not performed on the record pointed
to from the head: the continuation of the list past this first record is only ever
changed by the thread holding the global lock. Note that the first item is not an

Scalable Flat-Combining Based Synchronous Queues 83

anchor or dummy record, we are simply not removing it. Once a new record is
inserted, if it is unused it will be removed, and even if no new records are added,
leaving it in the list will not affect performance.

The common case for a thread is that its record is active and some other
thread is the combiner, so it completes in step 2 after having only performed a
store and a sequence of loads ending with a single cache miss. This is supported
by the empirical data presented later.

Our implementation of the FC mechanism allows us to provide the same clean
concurrent object-oriented interface as used in the Java concurrency package
[6] and similar C++ libraries [13], and the same consistency guarantees. We
note that the Java concurrency package supports a time-out capability that
allows operations awaiting a response to give up after a certain elapsed time.
It is straightforward to modify the push and pop operations we support in our
implementation into dual operations and to add a time-out capability. However,
for the sake of brevity, we do not describe the implementation of these features
in this extended abstract.

To access the synchronous queue, a thread t posts the respective pair
<PUSH,v> or <POP,0> to its publication record and follows the FC algorithm.
As seen in Figure 1, to implement the synchronous queue, the combiner keeps
a private stack in which it records push and pop requests (and for each also
the publication record of the thread that requested them). As the combiner
traverses the publication list, it compares each requested operation to the top
operation in the private stack. If the operations are complementary, the combiner
provides the requestor and the thread with the complementary operation with
their appropriate responses, and releases them both. It then pops the operation
from the top of the stack, and continues to the next record in the publication
list. The stack can thus alternately hold a sequence of pushes or a sequence of
pops, but never a mix of both.

In short, during a single pass over the publication list, the combiner matches
up as best as possible all the push and pop pairs it encountered. The opera-
tions remaining in the stack upon completion of the traversal are in a sense the
“overflow” requests of a certain type, that were not serviced during the current
combining round and will remain for the next.

In Section 4 a single instance of the single combiner FC algorithm is shown to
provide a synchronous queue with superior performance to the one in JDK6.0,
but it does not continue to scale beyond a certain number of threads. To over-
come this limitation, we now describe how to implement a highly scalable gen-
eralization of the FC paradigm using multiple concurrent instances of the single
combiner algorithm.

3 Parallel Flat Combining

In this section we provide a description of the parallel flat combining algorithm.
We extend the single combiner algorithm to multiple parallel combiners in the
following way. We use two types of flat combining coordination structures, de-
picted in Figure 2. The first is a dynamic FC structure that has the ability to

84 D. Hendler et al.

head of
dynamic
FC publication
list

Thread G Thread FThread A Thread CThread B

3rd combiner
node

Thread A

request
age/act

request
age/act

request
age/act

request
age/act

tstamp
count

request
age/act

request
age/act

request
age/act

request
age/act

request
age/act

2nd combiner
node

1st combiner
node

tstamp
count

tstamp
count

head of
exchange
FC publication
list

2nd combiner 3rd combiner1st combiner

request
age/act

request
age/act

request
age/act

list of extra
requests

request
age/act

list of extra
requests

lock

count

Fig. 2. A synchronized-queue based on parallel flat combining. There are two main
interconnected elements: the dynamic FC structure and the exchange FC structure.
As can be seen, in this example there are three combiner sublists with approximately
4 records per sublist. Each of the combiners also has a record in the exchanger FC
structure.

split the publication list into shorter sublists when its length passes a certain
threshold, and collapse publication sublists if their lengths go below a certain
threshold. The second is an exchange single combiner FC structure that imple-
ments a synchronous queue in which each request can involve a collection of
several push or pop requests.

Each of the multiple combiners that operate on sublists of the dynamic FC
structure may fail to match all its requests and be left with an “overflow” of oper-
ations of the same type. The exchange FC structure is used for trying to match
these overflows. The key technical challenge of the new algorithm is to allow
coordination between the two levels of structures: multiple parallel dynamically-
created single combiner sublists, and the exchange structure that deals with
their overflows. Any significant overhead in this mechanism will result in a per-
formance deterioration that will make the scheme as a whole work poorly.

Each record in the dynamic flat combining publication list is augmented with
a pointer (not shown in Figure 2) to a special combiner node that contains the
lock and other accounting data associated with the sublist currently associated
with the record; the request itself is now also a separate request structure pointed
to by the publication record (this structural change is not depicted in Figure 2).
Initially there is a single combiner node and the initial publication records are
added to the list starting with this node and point to it.

Scalable Flat-Combining Based Synchronous Queues 85

Each thread t performing an invocation of a push or a pop starts by accessing
the head of the dynamic FC publication list and executes the following sequence
of steps:
1. Write the invocation opcode of the operation and its parameters (if any) to

a newly created request structure. If your thread local publication record
is marked as active, continue to step 3., otherwise mark it as active and
continue to step 2.

2. Publication record is not in list: count the number of records in the sublist
pointed to by the currently first combining node in the dynamic FC struc-
ture. If less than the threshold (in our case 8, chosen statically based on
empirical testing), set the combiner pointer of your publication record to
this combining node, and try to CAS yourself into this sublist. Otherwise:
– Create a new combiner node, pointing to the currently first combiner

node.
– Try to CAS the head pointer to point to the new combiner node.

Repeat the above steps until your record is in the list and then proceed to
step 3.

3. Check if the lock associated with the combiner node pointed at by your
publication record is taken. If so, proceed similarly to step 2. of the single
FC algorithm: spin on your request structure waiting for a response and,
once in while, check if the lock is still taken and that your publication record
is active. If your response is available, reset the request field to null and
return the response. If your record is inactive, mark it as active and proceed
to step 2; if the lock is not taken, try to capture it and, if you succeed,
proceed to step 4.

4. You are now a combiner in your sublist: run the combiner algorithm using a
local stack, matching pairs of requests in your sublist. If, after a few rounds of
combining, there are leftover requests in the stack that cannot be matched,
access the exchanger FC structure, creating a record pointing to a list of
excess request structures and add it to the exchanger’s publication list using
the single FC algorithm. The excess request structures are no longer pointed
at from the corresponding records of the dynamic FC list.

5. If you become a combiner in the exchanger FC structure, traverse the ex-
changer publication list using the single combiner algorithm. However, in
this single combiner algorithm, each request record points to a list of over-
flow requests placed by a combiner of some dynamic list, and so you must
either match (in case of having previously pushed counter-requests) or push
(in other cases) all items in each list before signaling that the request is
complete. This task is simplified by the fact that the requests will always be
all pushes or all pops (since otherwise they would have been matched in the
dynamic list and never posted to the exchange).

In our implementation we chose to split lists so that they contain approximately
8 threads each (in Figure 2 the threshold is 4). Making the lengths of the sublists
and thresholds vary dynamically in a reactive manner is a subject for further
research. For lack of space, detailed pseudo-codes of our algorithms are not
presented in this extended abstract and will appear in the full paper.

86 D. Hendler et al.

3.1 Correctness

Though there is no obvious way to specify the “rendezvous” property of syn-
chronous queues using a sequential specification, it is straightforward to see that
our implementation is linearizable to the next closest thing, an object whose his-
tories consist of a sequence of pairs consisting of a push followed by a pop of the
matching value (i.e. push, pop, push, pop...). This follows immediately because
each thread only leaves the structure after the flat combiner has matched it to
a complementary concurrent operation, and we can linearize the operations at
the point of the release of the first of them by the flat combiner.

In terms of robustness, our flat combining implementation is as robust as any
global lock based data structure: in both cases a thread holding the lock could
be preempted, causing all others to wait. 1

4 Performance Evaluation

For our experiments we used two machines. The first is an Oracle 64-way Ni-
agara II multicore machine with 8 SPARC cores that multiplex 8 hardware
threads each, and share an on chip L2 cache. The second is an Intel Nehalem
8-way machine, with 4 cores that each multiplex 2 hardware threads. We ran
benchmarks in Java using the Java 6.0 JDK. In the figures we will refer to these
two architectures respectively as SPARC and INTEL.

Our empirical evaluation is based on comparing the relative performance of
our new flat combining implementations to the most efficient known synchronous
queue implementations: the current Java 6.0 JDK java.util.concurrent im-
plementation of the unfair synchronous queue, and the recently introduced
Elimination-Diffraction trees of Afek et al. [1].

The JDK algorithm, due to Scherer, Lea, and Scott [7], was recently added
to Java 6.0 and was reported to provide a three fold improvement over the Java
5.0 unfair synchronous queue implementation. The JDK implementation uses a
lock-free linked list based stack in the style of Treiber [12] in order to queue
either producer requests or consumer requests but never both at the same time.
Whenever a request appears, the queue is examined - if it is empty or has nodes
which have the same type of requested operation, the request is enqueued using
a CAS to the top of the list. Otherwise, the requested operation at the top of
the stack is popped using a CAS operation on the head end of the list.

This JDK version must provide the option to park a thread (i.e. context switch
it out) while it waits for its chance to rendezvous in the queue. A park operation
is costly and involves a system call. This, as our graphs show, hurts the JDK
algorithm’s performance. To make it clear that the performance improvement
we obtain relative to the JDK synchronous queue is not a result of the park calls,
we implemented a version of the JDK algorithm with the parks neutralized, and
use it in our comparison.
1 On modern operating systems such as SolarisTM , one can use mechanisms such

as the schetdl command to control the quantum allocated to a combining thread,
significantly reducing the chances of it being preempted.

Scalable Flat-Combining Based Synchronous Queues 87

Fig. 3. A Synchronous Queue Benchmark with N consumers and N producers. The
graphs show throughput, average CAS failures, average CAS successes, and L2 cache
misses (all but the throughput are logarithmic and per operation). We show the
throughput graphs for the JDK6.0 algorithm with parks, to make it clear that re-
moving the parks helps performance in this benchmark.

The Elimination-Diffracting tree [1] (henceforth called ED-Tree), recently in-
troduced by Afek et al., is a distributed data structure that can be viewed as a
combination of an elimination-tree [10] and a diffracting-tree [11]. ED-Trees are
randomized data-structures that distribute concurrent thread requests onto the
nodes of a binary tree consisting of balancers (see [11]).

We compared the JDK and an ED-Tree based implementation of a synchronous
queue to two versions of flat combining based synchronous queues, an FC syn-
chronous queue using a single FC mechanism (denoted in the graphs as FC sin-
gle), and our dynamic parallel version denoted as FC parallel. The FC parallel
threshold was set to spawn a new combiner sublist for every 8 new threads.

4.1 Producer-Consumer Benchmarks

Our first benchmark, whose results are presented in Figure 3, is similar to the
one in [7]. Producer and consumer threads continuously push and pop items
from the queues. In the throughput graph in the upper lefthand corner, one
can clearly see that both FC implementations outperform JDK’s algorithm even
with the park operations removed. Thus, in the remaining sections, we will no
longer compare to the inferior JDK6.0 algorithm with parks.

88 D. Hendler et al.

Fig. 4. Concurrent Synchronous Queue implementations with N consumers and 1 pro-
ducer configuration: throughput, average CAS failures, average CAS successes, and L2
cache misses (all but throughput are logarithmic and per operation). Again, we show
the throughput graphs for the JDK6.0 algorithm with parks, to make it clear that
removing the parks helps performance in this benchmark.

As can be seen, the FC single version throughput exceeds the JDK’s through-
put by almost 80% at 16 threads, and remains better as concurrency levels grow
up to 64. However, because there is only a single combiner, the FC single algo-
rithm does not continue to scale beyond 16 threads. On the other hand, the FC
parallel version is the same as the JDK up to 8 threads, and from 16 threads
and onwards it continues to scale, reaching peak performance at 48 threads. At
64 threads, the FC parallel algorithm is about 11 times faster than the JDK.

The explanation for the performance becomes clear when one examines the
other three graphs in Figure 3. The numbers of both successful and failed CAS
operations in the FC algorithms are orders of magnitude lower (the scale is loga-
rithmic) than in the JDK, as is the number of L2 cache misses. The gap between
the FC parallel and the FC single and JDK continues to grow as its overall
cache miss levels are consistently lower than their, and its CAS levels remain an
order of magnitude smaller then theirs as parallelism increases. The low cache
miss rates of the FC parallel when compared to FC single can be attributed to
the fact that the combining list is divided and is thus shorter, having a better
chance of staying in cache. This explains why the FC parallel algorithm contin-
ues to improve while the others slowly deteriorate as concurrency increases. At
the highest concurrency levels, however, FC parallel’s throughput also starts to

Scalable Flat-Combining Based Synchronous Queues 89

decline, since the cost incurred by a combiner thread that accesses the exchange
increases as more combiner threads contend for it.

Since the ED-Tree algorithm is based on a static tree (that is, a tree whose
size is proportional to the number of threads sharing the implementation rather
than the number of threads that actually participate in the execution), it in-
curs significant overheads and has the worst performance among all evaluated
algorithms in low concurrency levels.

However, for larger numbers of threads, the high parallelism and low con-
tention provided by the ED-Tree allow it to significantly scale up to 16 threads,
and to sustain (and even slightly improve) its peak performance in higher concur-
rency levels. Starting from 16 threads and on, the performance of the ED-Tree
exceeds that of the JDK and it is almost 5-fold faster than the JDK for 64
threads.

Both FC algorithms are superior to the ED-Tree in all concurrency levels.
Since ED-Tree is highly parallel, the gap between its performance and that of
FC-single decreases as concurrency increases, and at 64 threads their perfor-
mance is almost the same. The FC-parallel implementation, on the other hand,
outperforms the ED-Tree implementation by a wide margin in all concurrency
levels and provides almost three times the throughput at 48 threads.

Also here, the performance differences becomes clearer when we examine CAS
and cache miss statistics (see Figure 3). Similarly to the JDK, the ED-Tree
algorithm performs a relatively high number of successful CAS operations but,
since its operations are spatially spread across the nodes of the tree, it incurs a
much smaller number of failed CAS operations. The number of cache misses it
incurs is close to that of FC-single implementation, yet is about 10-fold higher
than FC-parallel implementation at high concurrency levels.

Figure 5-(a) shows the throughput on the Intel Nehalem architecture. As can
be seen, the behavior is similar to that on SPARC up to 8 threads (recall that
the Nehalem has 8 hardware threads): the FC-single algorithm performs better
than the FC-parallel, and both FC algorithms significantly outperform the JDK
and ED-Tree algorithms. The cache miss and CAS rate graphs, not shown for
lack of space, provide a similar picture.

Our next benchmark, in Figure 4, has a single producer and multiple con-
sumers. This is not a typical use of a synchronous queue since there is much
waiting and little possibility of parallelism. However, this benchmark, introduced
in [7], is a good stress test. In the throughput graph in Figure 4, one can see that
the imbalance in the single producer test stresses the FC algorithms, making the
performance of the FC parallel algorithm more or less the same as that of the
JDK. However, we find it encouraging that an algorithm that can deliver up to
11 times the performance of the JDK in the balanced case, delivers comparable
performance when there is a great imbalance among producers and consumers.

What is the explanation for this behavior? In this benchmark there is a fun-
damental lack of parallelism even as the number of threads grows: in all of the
algorithms, all of the threads but 2 - the producer and its previously matched
consumer – cannot make progress. Recall that FC wins by having a single low

90 D. Hendler et al.

Fig. 5. (a) Throughput on the Intel architecture; (b) Decreasing request arrival rate
on SPARC; (c) Decreasing request arrival rate on Intel; (d) Burst test throughput:
SPARC; (e) Intel burst test throughput; (f) Worst-case vs. optimum distribution of
producers and consumers.

overhead pass over the list service multiple threads. With this in mind, consider
that in the single FC case, for every time a lock is acquired, about two requests
are answered, and yet all the threads are continuously polling the lock. This ex-
plains the high cache invalidation rates, which together with a longer publication
list traversed each time, explains why the single FC throughput deteriorates.

For the parallel FC algorithm, we notice that its failed CAS and cache miss
rates are quite similar to those of the JDK. The parallel FC algorithm keeps
cache misses and failed CAS rates lower than the single FC because threads are
distributed over multiple locks and after failing as a combiner a thread goes to

Scalable Flat-Combining Based Synchronous Queues 91

the exchange. In most lists no combining takes place, and requests are matched
at the exchange level (an indication of this is the successful CAS rate which is
close to 1), not in the lists. Combiners accessing the exchange take longer to
release their list ownership locks, and therefore cause other threads less cache
misses and failed CAS operations. The exchange itself is again a single combiner
situation (only accessed by a fraction of the participating threads) and thus with
less overhead. The result is a performance very similar to that of the JDK.

4.2 Performance as Arrival Rates Change

In earlier benchmarks, the data structures were tested at very high arrival rates.
These rates are common to some uses of concurrent data structures, but not to all.

Figures 5-(b) and 5-(c) show the change in throughput of the various algo-
rithms as the method call arrival rates change when running on 64 threads on
SPARC, or on 8 threads on Intel, respectively. In this benchmark, we inject a
“work” period between calls a thread makes to the queue. The work consists of
a loop which is measured to take a specific amount of time.

On SPARC, at all work levels, both FC implementations perform better or
the same as the JDK, and on the Nehalem, where the cost of a CAS operation is
lower, they converge to a point with JDK winning slightly over the FC parallel
algorithm. The ED-Tree is the worst performer on Nehalem. On SPARC, on
the other hand, ED-Tree is consistently better than JDK and FC single and its
performance surpasses that of FC parallel as the amount of work added between
operations exceeds 500 nanoseconds.

In Figures 5-(d) an 5-(e) we stress the FC implementations further. We show
a burst test in which a longer “work period” is injected frequently, after every
50 operations. This causes the nodes on the combining lists to be removed fre-
quently, thus putting more stress onto the combining allocation algorithm. Again
this slows down the FC algorithms, but, as can be seen, they still perform well.2

4.3 The Pitfalls of the Parallel Flat Combining Algorithm

The algorithmic process used to create the parallel combining lists is another
issue that needs further inspection.

Since the exchange shared by all sublists is at its core a simple flat combining
algorithm, its performance relies on the fact that on average not many of the
requests are directed to it because of an imbalance in the types of operations on
the various sublists. This raises the question of what happens at the best case -
when every combiner enjoys an equal number of producers and consumers, and
the worst case - in which each combiner is unfortunate enough to continuously
have requests of the same type.

Figure 5-(f) compares runs in which the combining lists are prearranged for the
worst and best cases prior to execution. As can be seen, the worst case scenario
2 Due to the different speeds of the SPARC and INTEL machines, different “work

periods” were required in the tests on the two machines in order to demonstrate the
effect of bursty workloads.

92 D. Hendler et al.

performance is considerately poor compared to the average and optimal ones. In
cases were the number of combiners is even (16, 32, 48, 64 threads), performance
solely relies on the exchange, and at one point it is worse than the JDK - this is
most likely due to the overhead introduced by the parallel FC algorithm prior
to the exchange algorithm. When the number of combiners is odd, there is a
combiner which has both consumers and producers, which explains the gain in
performance at 8, 24, 40, and 56 threads when compared to their successors.
This yields the “saw” like pattern seen in the graph. Unsurprisingly, the regular
run (denoted as “average”) is much closer to the optimum.

In summary, our benchmarks show that the parallel flat-combining synchronous
queue algorithm has the potential to deliver in the most common cases scalability
beyond that achievable using fastest prior algorithms, and in the exceptional
worst cases, under stress, they continue to deliver comparable performance.

5 Discussion

We presented a new parallel flat combining algorithm and used it to implement
synchronous queues. The full code of our Java based implementation is available
at http://mcg.cs.tau.ac.il/projects/parallel-flat-combining

We believe that, apart from providing a highly scalable implementation of
a fundamental data structure, our new parallel flat combining algorithm is an
example of the potential for using multiple instances of flat combining in a data
structure to allow continued scaling of the overhead-reducing properties provided
by the flat combining technique. Applying the parallel flat combining paradigm
to additional key data-structures is an interesting venue for future research.

Acknowledgments

We thank Doug Lea for allowing us to use his Sun Niagara 2 multicore machine.
We also thank the anonymous reviewers for their many helpful comments.

References

1. Afek, Y., Korland, G., Natanzon, M., Shavit, N.: Scalable producer-consumer pools
based on elimination-diffraction trees. In: Euro-Par ’10 (June 2010) (to appear)

2. Attiya, H., Bar-Noy, A., Dolev, D., Peleg, D., Reischuk, R.: Renaming in an asyn-
chronous environment. J. ACM 37(3), 524–548 (1990)

3. Hanson, D.R.: C interfaces and implementations: techniques for creating reusable
software. Addison-Wesley Longman Publishing Co., Inc., Boston (1996)

4. Hendler, D., Incze, I., Shavit, N., Tzafrir, M.: Flat combining and the
synchronization-parallelism tradeoff. In: SPAA ’10: Proceedings of the Twenty
Third annual ACM Symposium on Parallelism in Algorithms and Architectures,
pp. 355–364 (2010)

5. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan
Kaufmann, NY (2008)

Scalable Flat-Combining Based Synchronous Queues 93

6. Lea, D.: util.concurrent.ConcurrentHashMap in java.util.concurrent the Java
Concurrency Package,
http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/jsr166/-src/

main/java/util/concurrent/

7. Scherer III, W.N., Lea, D., Scott, M.L.: Scalable synchronous queues. ACM Com-
mun. 52(5), 100–111 (2009)

8. Scherer III., W.N.: Synchronization and concurrency in user-level software systems.
PhD thesis, Rochester, NY, USA, Adviser-Scott, Michael L (2006)

9. Scherer III, W.N., Scott, M.L.: Nonblocking concurrent data structures with con-
dition synchronization. In: Guerraoui, R. (ed.) DISC 2004. LNCS, vol. 3274, pp.
174–187. Springer, Heidelberg (2004)

10. Shavit, N., Touitou, D.: Elimination trees and the construction of pools and stacks.
Theory of Computing Systems 30, 645–670 (1997)

11. Shavit, N., Zemach, A.: Diffracting trees. ACM Trans. Comput. Syst. 14(4),
385–428 (1996)

12. Treiber, R.K.: Systems programming: Coping with parallelism. Technical Report
RJ 5118, IBM Almaden Research Center (April 1986)

13. Tzafrir, M.: C++ multi-platform memory-model solution with java orientation,
http://groups.google.com/group/cpp-framework

http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/jsr166/-src/main/java/util/concurrent/
http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/jsr166/-src/main/java/util/concurrent/
http://groups.google.com/group/cpp-framework

Fast Randomized Test-and-Set and Renaming�

Dan Alistarh1, Hagit Attiya1,2,
Seth Gilbert3, Andrei Giurgiu1, and Rachid Guerraoui1

1 Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
2 Technion, Haifa, Israel

3 National University of Singapore

Abstract. Most people believe that renaming is easy: simply choose a name at
random; if more than one process selects the same name, then try again. We high-
light the issues that occur when trying to implement such a scheme and shed new
light on the read-write complexity of randomized renaming in an asynchronous
environment. At the heart of our new perspective stands an adaptive implemen-
tation of a randomized test-and-set object, that has poly-logarithmic step com-
plexity per operation, with high probability. Interestingly, our implementation is
anonymous, as it does not require process identifiers. Based on this implemen-
tation, we present two new randomized renaming algorithms. The first ensures a
tight namespace of n names using O(n log4 n) total steps, with high probabil-
ity. This significantly improves on the complexity of the best previously known
namespace-optimal algorithms. The second algorithm achieves a namespace of
size k(1 + ε) using O(k log4 k/ log2(1 + ε)) total steps, both with high prob-
ability, where k is the total contention in the execution. It is the first adaptive
randomized renaming algorithm, and it improves on existing deterministic solu-
tions by providing a smaller namespace, and by lowering step complexity.

1 Introduction

Names, or identifiers, are instrumental for efficiently solving a variety of problems that
arise in distributed systems. And yet, in many cases, names are not available. Partici-
pants may be anonymous, or may wish to hide their true identity for reasons of privacy.
Alternatively, participants may have names, but they may be taken from a very large
namespace. For example, nearly every networked device has an ethernet address, and
yet the namespace is so large as to reduce the usefulness of such names. Thus, a signifi-
cant amount of research (e.g., [1–5]) has analyzed the feasibility and complexity of the
renaming problem in a crash-prone distributed system.

Unfortunately, renaming in a fault-prone system can be expensive, if not impossi-
ble. For example, wait-free tight renaming—where the namespace exactly matches the
set of n participants—is impossible for deterministic algorithms that tolerate crash fail-
ures [4–6]. Even loose renaming, where the namespace is of size (2n− 1), can be quite
expensive, as the best known solutions require at least Θ(n3) total steps [2, 7].

� The work of Dan Alistarh is supported by the Swiss NCCR MICS project. The work of Hagit
Attiya is supported in part by the Israel Science Foundation (grant number 953/06).

N.A. Lynch and A.A. Shvartsman (Eds.): DISC 2010, LNCS 6343, pp. 94–108, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Fast Randomized Test-and-Set and Renaming 95

Yet in practice, most people believe that renaming is relatively easy: simply choose
a name at random; if more than one process selects the same name, then try again.
Several subtle problems occur when trying to implement such a scheme:

– How are processes scheduled? If the processes are scheduled in a synchronous
fashion, then resolving contention among processes may not be difficult. However,
in an asynchronous system, processes can be scheduled in any order. Worse, for a
strong (adaptive) adversarial scheduler, which we consider in this paper, the choice
of a schedule may depend on the random choices being made by the processes.
Thus the random choices made by the processes are not entirely independent in the
usual sense.

– From how big a namespace should the name be chosen? If the namespace is large,
say Θ(n2), where n is the number of participants, then such schemes are trivial.
However, when the namespace is smaller—e.g., (1+ ε)n, for some 0 < ε < 1—the
efficiency is less clear. And when the namespace is tight, i.e., of size precisely n,
then some participants may have to retry repeatedly in order to find a free name.

– How does a participant claim a name? How does a participant determine whether
its chosen name is unique? Effectively, when more than one participant selects
the same name, participants must agree on which participant wins the name. Such
agreement must be fault-tolerant, i.e., succeed even if processes fail; and it must be
irrevocable, meaning that once a participant is assigned a name, it cannot later be
forced to abandon it. The simple solution would be to run a distributed consensus
algorithm to agree on which process owns each name. However, asynchronous,
wait-free deterministic consensus is impossible [8], and the randomized version is
inherently expensive, requiring Ω(n2) total steps [9].

In this paper, we present two efficient randomized renaming algorithms for an asyn-
chronous, fault-prone system subject to a strong, adaptive adversary.

The key building block for both algorithms is a new efficient implementation of a
randomized test-and-set object. This algorithm answers the question of how a process
can claim a name: a test-and-set object allows multiple processes to compete (for exam-
ple, for a name), ensuring that there will be exactly one winner. The algorithm, which
we call RatRace, is more efficient than consensus [9]: if there are k competitors, the
total step complexity for a test-and-set is O(k log2 k) read/write operations, with high
probability. Of note, the RatRace algorithm is adaptive: the step complexity depends
on k, the actual number of competitors (not on n, the total number of possible com-
petitors). The algorithm efficiently combines the idea of a randomized splitter tree, first
used in [10], with the tournament tree algorithm by Afek et al. [11]. Our renaming al-
gorithms rely on both the adaptivity and anonymity properties of this implementation.
Given the power of test-and-set to simplify coordination in a distributed system, and the
efficiency of our solution, we expect that the RatRace algorithm may well be useful in
other settings as well.

Tight Renaming. Our first renaming algorithm, called ReShuffle, produces unique names
from a tight namespace of n names, using O(n log4 n) total steps (reads and writes),
with high probability. The algorithm uses a simple random process to compete for

96 D. Alistarh et al.

names: each process repeatedly chooses a name at random, and attempts to claim it
via a randomized test-and-set, stopping when it wins a name.

While the scheme is surprisingly simple, its analysis is rendered non-trivial by the
fact that the scheduling and the failure pattern are controlled by the strong, adaptive
adversary. For example, the adversary may look at a process’s random choices prior
to deciding whether it should be scheduled to perform a read or write operation. So
the adversary might attempt to delay each process that chooses an unclaimed name
until there are several other processes competing for the same name; since only one
process can win, the adversary can, in this way, create a significant number of wasted
steps. Since the schedule depends on the random choices, we cannot treat the processes’
random steps as being uncorrelated, as needed for a standard analysis. We overcome this
difficulty by carefully assessing the number of extra steps that the algorithm has to take
because of adversarial scheduling or crashes.

Our algorithm improves significantly on the total step complexity of previous ran-
domized or deterministic namespace-optimal implementations [7, 12], which have at
least Θ(n3) total step complexity. It guarantees unique names in a range from 1 to n in
every execution, and terminates with probability 1.

Adaptive Renaming. Our second renaming algorithm, called AdaptiveSearch, is the
first randomized adaptive renaming solution. That is, the algorithm’s namespace and
complexity depend on k, the number of processes competing, rather than n, the total
number of possible participants. Given any constant ε > 0, the AdaptiveSearch al-
gorithm ensures unique names from a namespace of size k(1 + ε), where k is the total
contention in the current execution, using O(k log4 k/ log2(1+ε)) total steps, both with
high probability. The main idea behind the algorithm is that processes try to acquire a
name in intervals of increasing size; we prove that contention in intervals towards the
edge of the namespace is low enough so that each process is successful with high prob-
ability. The algorithm improves on the adaptive deterministic solutions known so far
by providing a smaller namespace than is otherwise feasible, and by improving the to-
tal step complexity. (The most efficient adaptive algorithm to date [13] has total step
complexity O(k2), and renames in (8k − log k − 1) names.)

Discussion. Both algorithms are within logarithmic factors from the immediate lower
bound of Ω(n) (or Ω(k)) on the total step complexity of renaming. They also have the
interesting property that they do not require unique process identifiers at the beginning
of the execution—as such, the algorithms are anonymous.

Also of note, the ReShuffle algorithm is the first randomized algorithm to attain
tight renaming with total step complexity less than Θ(n2). Since Ω(n2) is known to
be the (tight) lower bound for the step complexity of randomized consensus [9], our
algorithm yields the first clear separation in terms of complexity between randomized
tight renaming and randomized consensus in asynchronous shared-memory.

The impossibility of wait-free renaming in a namespace smaller than (2n − 1) [4,
5] is circumvented by the use of randomization. There exist infinite length executions
of infinitesimal probability weight, in which the algorithms do not terminate. Also,
note that our test-and-set implementation cannot solve consensus for more than two
processes, which is why it is not subject to the Ω(n2) lower bound shown in [9].

Fast Randomized Test-and-Set and Renaming 97

Roadmap. In Section 2, we present the model and the problem statement, while Sec-
tion 3 presents a detailed account of related work. Section 4 presents the implemen-
tation of adaptive test-and-set. Based on this, we introduce the ReShuffle algorithm in
Section 5, and analyze its complexity. Section 6 presents the adaptive renaming imple-
mentation. We conclude in Section 7, stating some limitations of our approach, together
with a host of open problems. Due to space constraints, some of the proofs have been
deferred to the full version of this paper [14].

2 Model and Problem Statement

We assume an asynchronous shared memory model with n processes, t < n of which
may fail by crashing. Let M be the size of the space of initial identifiers that processes
in the system may have1. For the adaptive algorithm, we consider k to denote total
contention, i.e. the total number of processes that take steps during a certain execu-
tion. We assume that processes know n, but do not know k. Processes communicate
through multiple-writer-multiple-reader atomic registers. Our algorithms are random-
ized, in that the processes’ actions may depend on random local coin flips. We assume
that the process failures and the scheduling are controlled by a strong adaptive adver-
sary. In particular, the adversary knows the results of the random coin flips that the
processes make and can adjust the schedule and the failure pattern accordingly.

In this context, the renaming problem requires that each correct process should even-
tually return a name, and the names returned should be unique. The size of the resulting
namespace should only depend on n and on t. Note that, in our algorithms, we relax the
assumption of unique initial identifiers, made in the original problem statement [6]. We
assume t ≤ n− 1, hence our solutions are wait-free. The complexity of our solutions is
measured in terms of total steps (reads and writes, including random coin flips).

In the following, we say that an event happens “with high probability” (whp) if it
occurs with probability ≥ 1 − 1/nc, with c ≥ 1 constant. In the case of the adaptive
algorithms, the probability bound is at least≥ 1−1/kc, with c ≥ 1. Note that the failure
probability in the adaptive case may be tuned to depend on n, at the cost of increased
complexity (i.e., a log n factor).

3 Related Work

Our test-and-set implementation re-uses ideas from the efficient randomized collect al-
gorithm of Attiya et al. [10] and from the wait-free implementation of randomized test-
and-set by Afek et al. [11]. We make use of the splitter object, originally introduced
in [2], and its randomized version introduced in [10]. Overall, the structure of RatRace
is similar to the adaptive algorithm for mutual exclusion by Anderson et al. [15], al-
though the problem and the fault model we analyze are different. We use the two-
process randomized test-and-set algorithm by Tromp and Vitànyi [16] as a building
block.

1 Note that some earlier work (e.g., [12]), uses n to denote the total number of identifiers that
processes may have, which may also be seen as the maximum total number of processes in the
system. They use k for the maximum number of processes that may participate in an execution
(which we denote by n).

98 D. Alistarh et al.

The renaming problem has been introduced by Attiya et al. [6]. In the original pa-
per, the authors present a wait-free solution using (2n − 1) names in an asynchronous
message-passing system, and show that at least (n + 1) names are required in the wait-
free case. The lower bound was improved to (2n − 2) in a landmark paper by Herlihy
and Shavit [4]. Recent work by Rajsbaum and Castañeda [5] shows that deterministic
wait-free renaming may be possible for≤ (2n−2) names for specific parameter values.

The complexity of deterministic shared-memory renaming implementations has been
an active research topic. Burns and Peterson [17], Borowski and Gafni [18], Ander-
son and Moir [2], Moir and Garay [3] were among the first to propose wait-free, one-
shot, deterministic algorithms into a namespace of size (2n− 1). These solutions have
very high total step complexity; for some, the total step complexity is exponential
(e.g. [3, 17]). Anderson and Moir [1] propose a variant of renaming that attains a tight
namespace of n names using stronger set-first-zero objects. Note that their algorithm
could be rephrased using our one-shot test-and-set implementation, although it would
have at least total Θ(n3) total step complexity.

Later work analyzed adaptive renaming algorithms, in which the step complexity
and the size of the namespace depend only on total contention k, not on the maximum
number of participating processes n. The first adaptive algorithm was introduced by
Attiya and Fouren [19]. They achieve a namespace of (6k − 1) names, with a total
complexity of O(k2 log k). Afek and Merritt [7] build on the previous algorithm in
order to achieve adaptive wait-free (2k−1)-renaming with total step complexity O(k3).

In a recent paper, Chlebus and Kowalski [13] improve the complexity bounds for de-
terministic renaming by providing a non-adaptive implementation with local step com-
plexity roughly O(log n logM), renaming into a namespace of size O(n). The local
step complexity of their algorithm is better than that of ReShuffle, although we achieve
a tight namespace of n names, and comparable total step complexity. They also in-
troduce an adaptive implementation with O(k) local step complexity, which achieves
renaming in 8k − log k − 1 names, and show the first non-trivial deterministic lower
bound on step complexity, of (1 + min (k − 2, log2r

M
2T)), where r is the number of

shared registers used by the algorithm, and T is the size of the target namespace to re-
name into. One of the advantages of the algorithms from this reference is that they use
little total memory O(n log(M/n)). In comparison, our algorithms pre-allocate O(n2)
memory, and use O(n polylog n) total memory, without assuming any bound M on the
initial namespace.

Ellen et al. [20] analyze the complexity of long-lived adaptive renaming (i.e., pro-
cesses may release their names) in shared-memory, under various synchrony assump-
tions. Their asynchronous algorithm ensures Θ(k) overhead for acquiring a new name,
although assumes that stronger LL/SC primitives are available; hence their results are
not directly comparable with ours. This reference also contains an excellent overview
of prior work on renaming.

The feasibility of randomized renaming in an asynchronous system has been first
considered by Panconesi et al. [21]. They present a wait-free solution that ensures a
namespace of size n(1 + ε) for ε > 0, with expected O(M log2 n) total step complex-
ity, using only single-writer multiple-reader registers. This solution is shown to work
against a strong adaptive adversary. Their strategy is similar to that of this paper: they

Fast Randomized Test-and-Set and Renaming 99

introduce a one-shot test-and-set implementation, and processes obtain names based on
which test-and-set they manage to acquire. Note that their test-and-set implementation
is not adaptive, which is why the complexity of the solution depends on M . More-
over, the namespace they obtain is not tight. Interestingly, a strategy similar to that of
ReShuffle is mentioned in this reference (Section 4.1), but is considered “too hard to
analyze.” Note that our adaptive algorithm uses a different strategy than that of this
reference, although the bounds on the namespace size look similar.

The second paper to analyze randomized renaming is by Eberly et al. [12]. The
authors obtain a tight non-adaptive renaming algorithm based on the randomized wait-
free implementation of test-and-set by Afek et al. [11]. Their algorithm is long-lived,
and is shown to have amortized step complexity of O(n log n) per process. However, a
simple analysis shows that their algorithm has average-case total step complexity of at
least Θ(n3), even if processes do not release their names.

4 An Adaptive Test-and-Set Implementation

We start by presenting an adaptive one-shot implementation of a randomized adaptive
test-and-set object. The object exports a single Test-and-Set operation, whose sequen-
tial specification is provided in Figure 1.

Note that one-shot test-and-set cannot be implemented deterministically wait-free in
asynchronous shared memory, since it has consensus number 2 (see [22] for details). We
present an efficient randomized implementation that guarantees the desired properties
with probability 1, and is linearizable, following the definition in [23]. Our implemen-
tation is adaptive, in that the complexity of an operation depends on the total contention
k at the object, and not on n, the total number of processes.

4.1 The RatRace Algorithm

The RatRace implements the one-shot test-and-set object as defined above. Any oper-
ation on the object has step complexity O(log2 k) per process with high probability,
where k denotes the total contention at the object. The algorithm pre-allocates O(n3)
memory, and uses O(k) memory with high probability. A sketch of the algorithm’s
structure can be found in Figure 3.

Algorithm Structure. We begin from the randomized splitter object, as previously de-
fined in [10]. Recall that the randomized splitter object is defined as follows: a process
entering the splitter returns either stop, left, or right. If only one process enters the split-
ter, it is guaranteed to stop. If two or more processes enter the splitter, then zero or
one processes stop, and the remaining processes each get a return value of left or right,
independently and uniformly at random.

We build a binary tree of randomized splitters, of height 3 logn, which we call the
primary tree. Each process starts the algorithm at the root splitter in the primary tree;
if it does not manage to acquire the current splitter, it goes either left or right, each
with probability 1/2, until it manages to acquire a splitter. If a process reaches a leaf of

100 D. Alistarh et al.

the primary tree without having acquired a splitter, it accesses a backup grid, which we
describe below. To simplify the exposition, assume that, in this execution, all processes
either obtained randomized splitters in the first tree, or crashed.

Once it managed to obtain a splitter, the process tries to work its way up back to
the root, through a series of three-process “tournaments,” one at each splitter node.
Each splitter in the primary tree has associated with it a three-player “tournament,”
which is played between the owner of the splitter and the winners of the three-player
test-and-sets corresponding to the two child nodes of the splitter. A three-player test-
and-set is decided as follows: the two child nodes play each other, and the owner of the
current splitter plays the winner of the first match. Each two-player match is decided
using the randomized two-process test-and-set algorithm of Tromp and Vitànyi [16].
(Alternatively, we could use a randomized consensus algorithm with n = 2, e.g. [24],
although the properties stay the same.) Note that the matches are decided in a wait-free
manner, since a process wins automatically if the opponent does not show up.

The Backup Grid. The backup grid is an n× n grid of deterministic splitters, identical
to that of Anderson and Moir [1], where the two children of a splitter are the splitter
to its right, and the one below. Each process starts the backup algorithm at the top
left splitter. As such, the structure guarantees that any correct process that accesses it
eventually acquires a deterministic splitter. Just as in the previous case, once a process
acquires a splitter, it tries to backtrack to the entry point through a series of three-player
test-and-sets. The winner of the test-and-set at the entry splitter is also the winner of the
backup grid.

Decision. The winner of the three-player test-and-set at the root of the primary tree
plays the winner of the entry splitter in the backup grid. The winner of this last match
returns winner. Every process that loses in a three-player test-and-set returns loser.

Linearization. In order to maintain the linearization guarantees of the test-and-set ob-
ject, a process that loses a three-player test-and-set writes true to a multi-writer-multi-
reader Resolved register associated with the root of the primary tree, before returning
loser. Processes read the register as the first step in their Test-and-Set invocation: if
they read true, they automatically return loser.

4.2 Analysis of the RatRace Algorithm

It is relatively straightforward to check that the RatRace algorithm guarantees the cor-
rectness properties of the test-and-set object as stated in Section 4, therefore we omit
the proof from this extended abstract. Termination with probability 1 is ensured since
we use wait-free elements and the two-process test-and-set algorithm of [16], which
terminates with probability 1. We next focus on the linearizability of the implementa-
tion, and on its performance in terms of total step complexity. Our first result shows that
our implementation is linearizable, in the sense of Herlihy and Wing [23]. The proof
is based on the observation that, before a loser indication is returned by RatRace, a
potential winner has to take at least one step in the algorithm.

Fast Randomized Test-and-Set and Renaming 101

Variable:1

Value , a binary MWMR atomic2

register, initially ⊥
procedure Test-and-Set()3

if Value = ⊥ then4

Value ← 15

return winner6

else7

return loser8

Fig. 1. Sequential specification of a one-
shot test-and-set object

Shared:1

TS[], a vector of n RatRace objects2

procedure rename(n)3

List ← {1, 2, . . . , n}4

while true do5

try ← element uniformly at6

random from List
res ← TS[try].test-and-set()7

if res ← winner then return try8

else List ← List \ {try}9

Fig. 2. The ReShuffle algorithm

Lemma 1 (Linearization). The RatRace algorithm is linearizable: for every execution
of RatRace, there exists a total order over all the complete Test-and-Set operations to-
gether with a subset of the incomplete Test-and-Set operations such that every opera-
tion is immediately (atomically) followed by a response, and the sequence of operations
given by that total order is consistent with a sequential execution of a test-and-set ob-
ject, i.e. the order respects the real-time order of non-overlapping operations.

We now analyze the performance of RatRace. Let k denote the number of processes
that enter the RatRace in an execution E , i.e. the total contention. The next result states
that, with high probability, every process acquires a splitter in the primary tree. As
a consequence of this fact, for the rest of the performance analysis, we will assume
that all processes acquire nodes in the primary tree, since the backup case is extremely
unlikely. We provide the intuition for why this holds; an exact proof follows from the
analysis in [10], Lemma 8.

Lemma 2. The probability that there exists a process p that does not acquire a ran-
domized splitter in the primary tree of the RatRace object is at most 1/n.

Proof (Sketch). Let q be a process that does not manage to acquire any splitter in the
primary tree. Hence, q did not manage to acquire the leaf splitter it reached. Since
a process always acquires a splitter if it accesses it alone, this implies that another
process q′ accessed the same leaf splitter. However, the leaf splitter is accessed by q as
a consequence of 3 logn random choices of bits. Hence process q′ must have performed
the exact same random choices. Since the choices are independent, the probability that
this occurs is (1/2)3 log n = 1/n3. Hence the probability that there exists a process that
performs exactly the same random choices as q is at most 1/n2. By the union bound, it
follows that the probability that there exists a process p that “falls off” the primary tree
is at most 1/n. ��

Let the active primary tree denote the minimum subtree of the primary tree containing
all splitters that are acquired in the execution. The second result bounds the number of
nodes in the active primary tree, and shows that the tree is well balanced, with high
probability. The proof is similar to that of Lemma 2. For a complete argument, please

102 D. Alistarh et al.

Resolved?

1/2 1/2

1/2
Height = 3logn

1/2 1/2

Fig. 3. Structure of the RatRace protocol. A process first checks the Resolved register, and then
walks down the randomized splitter tree trying to acquire a splitter. In this figure, the process
followed the solid path and acquired a splitter. Next, the process works its way back up the tree,
participating in three-player tournaments at each node (the dotted path). If it loses along this path,
then it marks the Resolved register and returns loser. Otherwise, if it wins the root tournament,
it plays the winner from the backup grid (not shown here). The winner of this last match returns
winner.

see reference [10], Lemma 11. Note that this lemma also bounds the space complexity
the primary tree.

Lemma 3. The number of nodes in the active primary tree is at most 7k, and its height
is at most 3 log k, both with high probability.

Next, we look at the read-write complexity of the two-process test-and-set algorithm
of Tromp and Vitànyi [16] that we use to decide the two-process games. The following
bounds follow from an analysis of the algorithm.

Lemma 4. The randomized two-process test-and-set algorithm of [16] has expected
constant read-write complexity, and performs less than α log k reads and writes with
high probability, for a constant α > 1.

Proof (Sketch). Please recall that the algorithm of [16] is composed of asynchronous
“rounds” of computation, and performs a constant number, say β, of reads and writes
per round. In every round, the probability of success is 1/2. Thus, the expected step
complexity is constant. The probability that the algorithm performs at least 2β log k
total steps is at most 1/k2β , from which the claim follows. ��

The next result analyzes the total step complexity of RatRace.

Lemma 5. The RatRace algorithm uses O(log2 k) steps per process, with high proba-
bility. Hence, the total step complexity is O(k log2 k), with high probability.

Proof. Without loss of generality, we analyze the number of steps performed by a win-
ning process. First note that, by Lemma 2, it is enough to bound the complexity in
the case where the process only accesses the primary tree. By Lemma 3, a process

Fast Randomized Test-and-Set and Renaming 103

performs O(log k) steps, with high probability, when going down the tree in order to
acquire a randomized splitter, since each splitter has constant step complexity. When
climbing back up, the process may play up to O(log k) three-player test-and set games.
By Lemma 4, we obtain that the process performs up to O(log2 k) steps, with high
probability. ��

5 A Randomized Algorithm for Tight Renaming

In this section, we present ReShuffle, a randomized algorithm which ensures tight re-
naming using O(n log4 n) total steps, with high probability. The pseudocode of the
algorithm can be found in Figure 2.

5.1 The ReShuffle Algorithm

The n processes share n test-and-set objects, each implemented using the RatRace
algorithm. These shared objects are numbered from 1 to n. Computation proceeds in
local phases. In each phase, the process chooses uniformly at random a test-and-set
from 1 to n that it has not chosen previously, and competes in it. If the process wins the
test-and-set (i.e., the chosen RatRace instance returns winner), then it takes the number
associated with the test-and-set as a name and returns. Otherwise, if it lost the test-
and-set, the process marks the current test-and-set as lost, and tries again in the next
phase.

5.2 Analysis of ReShuffle

In this section, we analyze the correctness of the algorithm and its performance guar-
antees. First, note that name uniqueness is satisfied trivially, since a process stops after
it has won its first test-and-set, and no two processes may win the same test-and-set ob-
ject. We first show termination with probability 1. The proof is based on the observation
that if a process accesses all n test-and-set objects, it will certainly win one of them,
and hence terminate. The latter claim is based on the linearizability of our test-and-set
implementation.

Lemma 6 (Termination). With probability 1, each correct process eventually returns
from ReShuffle.

The next Theorem provides precise bounds for the total step complexity of ReShuffle.
This is the main technical result of this paper. Due to space restrictions, we only provide
a detailed sketch of the proof in this extended abstract.

Theorem 1 (Complexity). The total step complexity of ReShuffle is O(n log4 n) with
high probability.

Proof (Sketch). The first idea in the proof is to consider the total number of Test-and-Set
calls (or accesses) that the processes perform as part of ReShuffle. We will consider
all the accesses in their linearization order over all n test-and-set objects. Note that
such an order exists, and is coherent at each object, because each test-and-set object

104 D. Alistarh et al.

is linearizable (by Lemma 1), and thus the objects are composable (or local [23]). We
will show that the algorithm performs O(n log2 n) total accesses in any execution, with
high probability. To simplify the exposition, we modify the algorithm so that processes
always pick the next test-and-set to access uniformly at random, without discarding test-
and-set objects that have been accessed previously. ReShuffle can be seen as a slightly
more efficient version of this scheme, in which a process receives immediately a loser
indication if its random choice indicates a test-and-set object that it has accessed before.

Fix a constant α > 4. We show that if the algorithm performs more than αn log2 n
total Test-and-Set accesses during an execution, then, with high probability, each test-
and-set object is accessed at least once. Since every such test-and-set object will have a
unique, distinct winner, we conclude that the algorithm terminates after αn log2 n total
accesses, with high probability.

A tempting, yet unsuccessful approach to bound the total number of calls before
each test-and-set is accessed once would be to use the well-known coupon collector
process [25, 26], which guarantees that n distinct coupons will be discovered using
O(n log n) independent random trials. Note, however, that the strong adversary controls
the scheduling of the trials, which causes this simple version of the analysis to fail. Our
analysis takes this factor into account, and proves that, even though the adversary may
re-order calls using its knowledge of the processes’ random choices, all the objects are
accessed after O(n log2 n) random calls.

Let U to be the number of test-and-set objects that have not been accessed by any
process, at a certain point in the execution. We split the execution into phases. For 1 ≤
i ≤ log n, we define phase i as the time interval in which n/2i−1 ≥ U > n/2i. (Recall
that we consider the linearized execution.) We prove that, by performing αn log n total
test-and-set accesses, the algorithm progresses for at least one phase, with high proba-
bility. Also, the number of processes that take steps in phase i or later is at most n/2i,
with high probability.

We proceed by induction. In this sketch of proof, we only consider the induction
step (the base case is similar). Assume that the claim holds at all phases ≤ i, and
we prove that it also holds at phase i + 1. First note that, if the adversary schedules
at most αn log n processes to access test-and-set objects during phase i + 1, then the
processes will make at most n/2i + αn log n total random choices during this phase.
This is because, by the induction step, there are at most n/2i processes that have not
terminated up to phase i + 1, and each of them might make a random choice in this
phase prior to accessing a test-and-set object. Also, for every access of a test-and-set
that the adversary schedules, at most one more choice is made.

We will show that, since these choices are uniformly random, it is extremely im-
probable that the adversary finds αn log n random choices made in this phase, which
it can schedule without allowing the algorithm to move to the next phase. Let Di be
the set of test-and-set objects accessed prior to the beginning of phase i + 1. Notice
that the algorithm stays in phase i + 1 after αn log n total accesses if there exist 1) a
set C of αn log n random choices made during this phase, and 2) a set S of less than
n/2i+1 test-and-set objects not in Di, such that all the choices in C are made on test-
and-set objects from S, or on the n(1 − 2i) test-and-set objects in Di. (Note that this

Fast Randomized Test-and-Set and Renaming 105

formulation slightly increases the power of the adversary by allowing it to “see” all the
(n/2i + αn log n) random choices made in the phase when choosing the schedule.)

To bound the probability that the algorithm fails to move to phase i + 2, we first
fix a selection C of αn log n random choices from this phase, and a set S of less than
n/2i+1 objects not in Di. The probability that all the choices in C fall in S or in Di is

at most
(
1− 1/2i+1

)αn log n
. Using the Bernoulli inequality, we obtain an upper bound

of (1/n)αn/2i+1

on this probability.
On the other hand, there are at most 2n/2i+1

possible choices for the set S. Also,

there are at most
(

n/2i+αn log n
αn log n

)
ways in which to select the set C. Using the union

bound, after some calculation, we obtain that the probability that the algorithm stays

in phase i + 1 after αn log n accesses is at most (1/n)(α−4)n/2i+1

. Since we analyze
only the first log n phases, we obtain that the algorithm moves to phase i + 2 with high
probability for 1 ≤ i ≤ log n. This concludes the induction step for the first part of the
claim.

For the second part, let T1, T2, . . . , Tn/2i+1 be n/2i+1 test-and-set objects newly ac-
cessed by the algorithm in this phase, which were just shown to exist with high proba-
bility. From the properties of test-and-set, it follows that, for every Tj , 1 ≤ j ≤ n/2i+1,
there exists a process qj that accesses Tj , but never returns loser from it, i.e. either wins
Tj or crashes in Tj . All qj’s must be distinct: a process stops taking steps after winning
a test-and-set, and cannot crash in two test-and-sets. Since we consider the accesses in
the linearization order, i.e. the winners are the first processes to return from the object,
it follows that, with high probability, the processes qj never take steps in the next phase,
as required by the second part of the claim.

To conclude, notice that the second part of the claim proves that all processes return
or crash by the end of phase log n. This implies that the algorithm performs a total
of O(n log2 n) test-and-set accesses, with high probability, before each process termi-
nates. A test-and-set access costs at most O(log2 n) steps per process, since repeated
accesses by the same process do not add to the complexity of the object. We obtain that
the total step complexity is O(n log4 n), with high probability. This concludes the proof
of Theorem 1. ��

6 A Randomized Adaptive Algorithm

In this section, we present a new adaptive randomized renaming algorithm, which we
call AdaptiveSearch. Given a constant ε > 0, the algorithm guarantees unique names, a
namespace of size min(k(1+ε), n) with high probability, and has O(k log4 k/ log2(1+
ε)) total step complexity, with high probability.

6.1 The AdaptiveSearch Algorithm

As in the previous algorithm, each process p attempts to choose a name from a vec-
tor of n test-and-set objects. We assume that processes share n adaptive test-and-set
objects, implemented through the RatRace algorithm, which are numbered from left
to right. Since the contention is not known, each process starts with an estimate kest

106 D. Alistarh et al.

of contention, initially 1, which is increased as needed. Computation proceeds in local
phases. In a phase, process p tries to win a randomly chosen test-and-set between 1 and
kest for 3 log kest/ log(1+ ε/4) times. If it does not succeed by the end of a phase, then
the process multiplies kest by a constant factor (1 + ε/4) > 1, and tries again in the
next iteration. Once it succeeds in winning a test-and-set, the process takes the name
associated with that test-and-set and returns. We enforce the name returned to be within
a namespace of 1 to n as follows: once a process detects that kest is larger than n, it
starts to run the ReShuffle algorithm on the n test-and-set instances.

6.2 Analysis of AdaptiveSearch

In this section, we prove the correctness of AdaptiveSearch and its performance guar-
antees. Note that name uniqueness is ensured since no two processes may win the same
test-and-set object. Also, AdaptiveSearch ensures termination with probability 1, since
we run ReShuffle as a backup. Let k be the contention in the current execution. In this
analysis, we assume that the namespace parameter ε is less than two (a similar argument
holds for ε ≥ 2).
The first lemma provides an upper bound on the generated namespace with high prob-
ability.

Lemma 7 (Namespace). AdaptiveSearch solves renaming in a namespace from 1 to
k(1 + ε), with high probability. The maximum size of the namespace is n.

Proof (Sketch). We consider a process p that obtains a name larger than k(1 + ε), and
show that the probability that this occurs is very low. First, note that p’s estimate of
contention kest when it obtained the name must have been at least k(1 + ε). Let k� be
the last estimate on contention that process p tried which had the property that k� < k.
By definition, it follows that k/(1+ ε/4) ≤ k� < k. Since ε < 2, we obtain that process
p tried to obtain a random name in a namespace of size at least 1, 2, . . . , k(1 + ε/4) for
at least 3 log k(1 + ε/4)/ log(1 + ε/4) times, and did not succeed.

Next, we notice that, since at most k processes participate in the algorithm, there are
at least kε/4 test-and-set objects that are not accessed throughout the entire execution.
This follows since, for any test-and-set object that is accessed, there exists at least one
process that either wins it or crashes while executing the object, and a process stops
taking steps once it acquired a test-and-set. Therefore, irrespective of the adversarial
schedule, each process has probability at least (ε/4)/(1 + ε/4) to access a test-and-
set that is not accessed by another process in the current execution. Also, in this case,
the process stops accessing new test-and-set objects. We bound the probability that
process p fails to acquire a name within a namespace of size at least kε/4 + 1 after
3 log(k(1 + ε/4))/ log(1 + ε/4) independent trials. After some calculation, we obtain
that this probability is at most (1/k)3 . Therefore, with high probability, every process
chooses a name between 1 and k(1 + ε). ��

The next result provides an upper bound on the total step complexity of the algorithm.

Lemma 8 (Complexity). The AdaptiveSearch algorithm takes O(k log4 k/ log2(1 +
ε/4)) total steps with high probability.

Fast Randomized Test-and-Set and Renaming 107

Proof. We analyze the total number of steps performed by a process p. By Lemma 7,
every process runs for at most log1+ε/4 k(1 + ε) local phases, with high probability.
In each of these phases, the process performs at most O(log k(1 + ε)/ log(1 + ε/4))
test-and-set accesses. In turn, each test-and-set is accessed by at most O(k) distinct
processes, which implies that one test-and-set access, implemented using the RatRace
algorithm, will cost O(log2 k) steps per process, with high probability. We thus obtain
that the total step complexity is bounded by O(k log4 k/ log2(1 + ε/4)). ��

7 Future Work

Our algorithms outline a new approach for solving renaming efficiently in an asyn-
chronous system. One direction for future work is to improve the local (per-process)
step complexity of our algorithms, which may be super-linear in some executions of
the ReShuffle algorithm (AdaptiveSearch has poly-logarithmic local step complexity,
with high probability). This, together with a multiple-use version of RatRace, would
allow our algorithms to be turned into efficient long-lived renaming algorithms. An-
other direction would be to study the lower bounds on the complexity of randomized
renaming—we suspect that the lower bound threshold for total step complexity is super-
linear. A third direction would be to study whether tight adaptive renaming can be
achieved efficiently using randomization. It could also be interesting to study whether
our approach may be applied to obtain efficient solutions to the well-known Do-All and
Write-All (e.g., [27–29]) problems.

References

1. Anderson, J.H., Moir, M.: Using local-spin k-exclusion algorithms to improve wait-free ob-
ject implementations. Distrib. Comput. 11(1), 1–20 (1997)

2. Moir, M., Anderson, J.H.: Fast, long-lived renaming (extended abstract). In: Tel, G., Vitányi,
P.M.B. (eds.) WDAG 1994. LNCS, vol. 857, pp. 141–155. Springer, Heidelberg (1994)

3. Moir, M., Garay, J.A.: Fast, long-lived renaming improved and simplified. In: Babaoğlu,
Ö., Marzullo, K. (eds.) WDAG 1996. LNCS, vol. 1151, pp. 287–303. Springer, Heidelberg
(1996)

4. Herlihy, M., Shavit, N.: The topological structure of asynchronous computability.
J. ACM 46(2), 858–923 (1999)

5. Castañeda, A., Rajsbaum, S.: New combinatorial topology upper and lower bounds for re-
naming. In: PODC ’08: Proceedings of the Twenty-Seventh ACM Symposium on Principles
of Distributed Computing, pp. 295–304. ACM, New York (2008)

6. Attiya, H., Bar-Noy, A., Dolev, D., Peleg, D., Reischuk, R.: Renaming in an asynchronous
environment. Journal of the ACM 37(3), 524–548 (1990)

7. Afek, Y., Merritt, M.: Fast, wait-free (2k-1)-renaming. In: PODC ’99: Proceedings of the
Eighteenth Annual ACM Symposium on Principles of Distributed Computing, pp. 105–112.
ACM, New York (1999)

8. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one
faulty process. J. ACM 32, 374–382 (1985)

9. Attiya, H., Censor, K.: Tight bounds for asynchronous randomized consensus. J. ACM 55(5),
1–26 (2008)

108 D. Alistarh et al.

10. Attiya, H., Kuhn, F., Plaxton, C.G., Wattenhofer, M., Wattenhofer, R.: Efficient adaptive
collect using randomization. Distrib. Comput. 18(3), 179–188 (2006)

11. Afek, Y., Gafni, E., Tromp, J., Vitányi, P.M.B.: Wait-free test-and-set (extended abstract). In:
Segall, A., Zaks, S. (eds.) WDAG 1992. LNCS, vol. 647, pp. 85–94. Springer, Heidelberg
(1992)

12. Eberly, W., Higham, L., Warpechowska-Gruca, J.: Long-lived, fast, waitfree renaming with
optimal name space and high throughput. In: Kutten, S. (ed.) DISC 1998. LNCS, vol. 1499,
pp. 149–160. Springer, Heidelberg (1998)

13. Chlebus, B.S., Kowalski, D.R.: Asynchronous exclusive selection. In: PODC ’08: Proceed-
ings of the Twenty-Seventh ACM Symposium on Principles of Distributed Computing, pp.
375–384. ACM, New York (2008)

14. Alistarh, D., Attiya, H., Giurgiu, A., Gilbert, S., Guerraoui, R.: Fast randomized test-and-set
and renaming, https://infoscience.epfl.ch/record/149943

15. Anderson, J.H., Kim, Y.-J.: Adaptive mutual exclusion with local spinning. In: Herlihy, M.P.
(ed.) DISC 2000. LNCS, vol. 1914, pp. 29–43. Springer, Heidelberg (2000)

16. Tromp, J., Vitányi, P.: Randomized two-process wait-free test-and-set. Distrib. Com-
put. 15(3), 127–135 (2002)

17. Burns, J.E., Peterson, G.L.: The ambiguity of choosing. In: PODC ’89: Proceedings of the
Eighth Annual ACM Symposium on Principles of Distributed Computing, pp. 145–157.
ACM, New York (1989)

18. Borowsky, E., Gafni, E.: Immediate atomic snapshots and fast renaming. In: PODC ’93: Pro-
ceedings of the Twelfth Annual ACM Symposium on Principles of Distributed Computing,
pp. 41–51. ACM, New York (1993)

19. Attiya, H., Fouren, A.: Adaptive and efficient algorithms for lattice agreement and renaming.
SIAM J. Comput. 31(2), 642–664 (2001)

20. Brodsky, A., Ellen, F., Woelfel, P.: Fully-adaptive algorithms for long-lived renaming. In:
Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 413–427. Springer, Heidelberg (2006)

21. Panconesi, A., Papatriantafilou, M., Tsigas, P., Vitányi, P.M.B.: Randomized naming using
wait-free shared variables. Distributed Computing 11(3), 113–124 (1998)

22. Herlihy, M.: Wait-free synchronization. ACM Trans. Programming Languages and Sys-
tems 13, 123–149 (1991)

23. Herlihy, M., Wing, J.M.: Linearizability: A correctness condition for concurrent objects.
ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

24. Aspnes, J., Waarts, O.: Randomized consensus in expected o(nlog2n) operations per pro-
cessor. SIAM J. Comput. 25(5), 1024–1044 (1996)

25. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms and
Probabilistic Analysis. Cambridge University Press, New York (2005)

26. Motwani, R., Raghavan, P.: Randomized algorithms. Cambridge University Press, New York
(1995)

27. Georgiou, C., Russell, A., Shvartsman, A.A.: The complexity of synchronous iterative do-
all with crashes. In: Welch, J.L. (ed.) DISC 2001. LNCS, vol. 2180, pp. 151–165. Springer,
Heidelberg (2001)

28. Kowalski, D.R., Shvartsman, A.A.: Writing-all deterministically and optimally using a non-
trivial number of asynchronous processors. In: SPAA ’04: Proceedings of the Sixteenth An-
nual ACM Symposium on Parallelism in Algorithms and Architectures, pp. 311–320. ACM,
New York (2004)

29. Georgiou, C., Shvartsman, A.A.: Do-All Computing in Distributed Systems: Cooperation in
the Presence of Adversity. Springer, Heidelberg (2008)

https://infoscience.epfl.ch/record/149943

Concurrent Computing and Shellable Complexes

Maurice Herlihy1 and Sergio Rajsbaum2

1 Brown University,
Computer Science Department,

Providence, RI 02912
mph@cs.brown.edu�

2 Instituto de Matemáticas, Universidad Nacional Autónoma de México
Ciudad Universitaria, D.F. 04510

Mexico
rajsbaum@math.unam.mx��

Abstract. Roughly speaking, a simplicial complex is shellable if it can
be constructed by gluing a sequence of n-simplexes to one another along
(n − 1)-faces only. Shellable complexes have been studied in the combi-
natorial topology literature because they have many nice properties.

It turns out that many standard models of concurrent computation
can be captured either as shellable complexes, or as the simple union of
shellable complexes. We consider general adversaries in the synchronous,
asynchronous, and semi-synchronous message-passing models, as well as
asynchronous shared memory augmented by consensus and set agreement
objects.

We show how to exploit their common shellability structure to de-
rive new and remarkably succinct tight (or nearly so) lower bounds on
connectivity of protocol complexes and hence on solutions to the k-set
agreement task in these models.

1 Introduction

For models of concurrent computation in which processes may fail by crashing,
computations can be characterized as a simplicial complex, a geometric structure
constructed by “gluing together” simplexes in a regular manner [14]. Informally,
a complex is k-connected if it has no “holes” in dimension k or lower. It is known
that if the complex corresponding to every such computation is k-connected, then
one cannot solve (k + 1)-set agreement [9,10,14].

Roughly speaking, a simplicial complex is shellable if it can be constructed by
gluing a sequence of n-simplexes to one another along (n−1)-faces only. Shellable
complexes have been studied in the combinatorial topology literature [2,16] be-
cause they have many nice combinatorial properties.

We show how to exploit these nice combinatorial properties of shellable com-
plexes to derive new and remarkably succinct lower bounds both on the connec-
tivity of the associated complexes, and on solutions to the k-set agreement task
in these models, running against general adversaries.
� Supported by NSF 000830491.

�� Supported by UNAM-PAPIIT.

N.A. Lynch and A.A. Shvartsman (Eds.): DISC 2010, LNCS 6343, pp. 109–123, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

110 M. Herlihy and S. Rajsbaum

We use a round-by-round model of computation, where processes act in a
sequence of (sometimes asynchronous) rounds. The advantage of the round-by-
round approach is that we can treat connectivity as an invariant established in
the first round and preserved in later rounds. Understanding the computational
power of a model splits into two tasks: analyzing the connectivity of the single-
round complex (usually straightforward) and then analyzing how multiple rounds
compose (usually not so straightforward).

The principal technical contribution of this paper, expressed in Theorems 4
and 5, is a proof that if the single-round complex is shellable, then multi-round
compositions preserve connectivity under certain easily-checkable conditions.
These are theorems of combinatorial topology, independent of any model of
computation.

We then show that for many classical models of computation, each single-
round complex is indeed shellable, so it becomes a straightforward exercise to
derive tight (or nearly tight) bounds on when and if one can solve k-set agree-
ment. For asynchronous shared-memory models in which processes have access
to “black-box” objects that solve consensus or k-set agreement, matters are a
little more complicated. We show that the one-round complex, while not itself
shellable, is a simple union of shellable complexes, with a shellable nerve (ex-
plained below), and the same consequences follow. Moreover, our results apply
not just to the usual wait-free or t-resilient failure models, but to general adver-
sary schedulers that can cause certain subsets of processes to fail, perhaps in a
non-uniform way.

Here is a summary of our contributions. We are the first to draw the connec-
tion between the topological notion of shellability and concurrent computation.
This connection yields remarkably succinct lower bounds on the complexity (or
possibility) of solutions to k-set agreement in a variety of models. While bounds
are well-known for the wait-free and t-resilient failure models, we are the first to
generalize these bounds to general adversaries1.

Naturally, our results build on a long chain of predecessors. Combinatorial
Topology was first used to analyze wait-free asynchronous shared-memory sys-
tems [4,14,18]. The round-by-round approach has been used before many times,
in particular to unify and simplify the analysis of different models of compu-
tation [5,17]. Herlihy, Rajsbaum, and Tuttle [12,13] showed that connectivity
arguments for message-passing models could be cast into a common framework.
They introduced the notion of pseudospheres, and later proposed the notion of
an absorbing sequence, a notion similar to but not identical with shellability. We
extend that approach by encompassing both shared-memory models and general
adversaries.

Junqueira and Marzullo [15] introduced the core/survivor-set formalism for
characterizing general adversaries used here, and derived the first lower bounds
for synchronous consensus against such an adversary. Delporte-Gallet et al. [7]
were the first to prove several important lower bounds on k-set agreement in

1 Except for the asynchronous shared read-write model, where we proved the same
bound using model-specific techniques [11]

Concurrent Computing and Shellable Complexes 111

asynchronous shared memory against an adversary. Herlihy and Rajsbaum [11]
gave the first direct application of combinatorial topology to the asynchronous
read-write memory model against an adversary.

These results illustrate the power and continuing usefulness of topological
methods for analyzing concurrent computation. Using a few well-known concepts
from Combinatorial Topology, such as connectivity, nerves, and shellability, we
have imposed a common framework on a collection of heretofore unrelated mod-
els of computation, resulting in remarkably succinct proofs, not only of known
results in each of these models, but also of new, previously-unknown results that
extend classical wait-free and t-resilient bounds to general adversaries.

Some have argued that while techniques from topology may be required as a
foundation, most other results can be derived from simulations and reductions,
such as the BG-simulation [6]. We disagree. The topological approach, with its
powers of abstraction and vast armory of prior results, has shown that it can
abstract away from model-dependent detail to provide a concise mathematical
framework unifying many classical models. Simulations and reductions, however
clever, are good at transforming the details of one particular model to another’s,
but have not, so far, demonstrated the same ability to reveal the “deep structure”
common to these disparate models of computation.

2 Model

We consider systems where processes can fail by crashing. It is convenient to
think of crashes as being controlled by an adversary that attempts to keep
the protocol running for as long possible, perhaps forever. Adversaries are a
natural way to extend the classical wait-free and t-faulty models of computation.
Following Junqueira and Marzullo [15], we specify an adversary in terms its cores
and survivor sets. A core C for adversary A is a set of processes such that (1)
in every execution, some process in C does not fail, and (2) C is minimal: for
every proper subset C′ of C, there is an execution in which every process in
C′ fails. A survivor set S for adversary A is a set of processes such that (1) in
some execution, the set of processes that do not fail is exactly S, and (2) S is
minimal: for every proper subset S′ of S, there is no execution in which the set
of processes that do not fail is exactly S′. An adversary’s cores and survivor sets
are dual properties: each can be derived from the other.

An adversary is not uniquely characterized by its set of cores (or survivor sets).
For example, Delporte-Gallet et al. [7] characterize an adversary by specifying
all possible non-faulty sets, not just the minimal ones. For the range of models
considered here, however, our results imply that the circumstances under which
an adversary admits a protocol for k-set agreement (and hence for any colorless
task [7,11]) are determined only by the adversary’s minimum core size.

A simplicial complex is a finite set V along with a collection of subsets K of V
closed under containment. An element of V is called a vertex of K, and is usually
denoted with vector notation: u, v, w. Each set in K is called a simplex, usually
denoted by lower-case Greek letters: σ, τ, We sometimes abuse notation by

112 M. Herlihy and S. Rajsbaum

using σ to refer both to a simplex, and to the complex consisting of σ and its
subsets. The dimension dim σ of a simplex σ is |σ| − 1. A maximal simplex in K
is called a facet of K, and Facets(K) denotes the set of facets of K. A complex is
pure if all its facets have the same dimension. For a pure complex K of dimension
n, the codimension codim σ of a simplex σ ∈ K is n−dim σ. We sometimes omit
mention of K when it is clear from context.

We usually add one or more labels to vertexes, λ : V → D, where D is an
arbitrary domain. In particular, we have a set Π of process ids, and a label
id : V → Π associating each vertex with a process id. Typically, each simplex is
well-colored by these ids: if u, v ∈ σ and u �= v, then id(u) �= id(v).

A simplex ρ is between two simplexes τ and σ if τ ⊆ ρ ⊆ σ. We use [τ, σ] to
denote the set of simplexes between τ and σ.

Protocols and tasks are modeled as follows. A vertex v is a pair consisting
of a process ID and a process state, a k-dimensional simplex σ is a set of k + 1
vertexes labeled with distinct process IDs and process states compatible in the
sense there is some execution in which those processes end up with those states.
Each possible initial state of the system is given by an input simplex, assigning
an input value to each process. Together, all possible input simplexes make up
the task’s input complex. An output simplex and the task’s output complex are
defined similarly. A relation Δ carries each input simplex to a set of output
simplexes. It associates with each initial state of the system the corresponding
set of legal final states. Δ must be order-preserving: for σ ∈ I, if σ′ ⊆ σ, then
Δ(σ′) ⊆ Δ(σ).

The duality of cores and survivor sets implies that if c is the minimum core
size, and s the max survivor size size, then c = n− s + 1, implying that:

Lemma 1. If I is an input complex and A an adversary with minimum core
size c, then for any simplex σ ∈ I such that codim σ < c, ids(σ) contains a
survivor set for A.

Any protocol has an associated protocol complex P , in which each vertex is
labeled with a process id and that process’s final state (called its view). Each
simplex thus corresponds to an equivalence class of executions that “look the
same” to the processes at its vertexes. For 0 ≤ m ≤ n, we understand P(σ) for
a given input simplex σ, where ids(σ) contains a survivor set, to be the complex
generated by all executions starting in σ in which only the processes in ids(σ)
take part (the rest fail before taking any steps).

A complex K is k-connected if every continuous map of the k-sphere to K can
be extended to a continuous map of the (k + 1)-disk. (Informally, if it has no
“holes” in dimensions k or less.) By convention, a complex is (−1)-connected if
and only if it is nonempty, and every complex is k-connected for k < −1. Thus,
a complex is 0-connected if it is path-connected. As a special case, a complex is
contractible if it can be continuously deformed to a single point. A contractible
complex is k-connected for all k. For our purposes, it suffices to know that a
single simplex is contractible, as is any cone, a complex where every n-simplex
shares a common vertex.

Concurrent Computing and Shellable Complexes 113

The following Nerve Theorem [3] is a powerful tool for establishing the connec-
tivity of a complex from the connectivity of its components. Informally, it says
that if we can decompose a complex into components that each has a “simple”
topology, then the topology of the complex as a whole is determined by how the
components intersect. More precisely, let K be a finite complex, I a finite index
set, and {Ki|i ∈ I} a set of complexes that cover K. The nerve N (Ki|i ∈ I) is
the complex with vertex set I, where a subset J ⊂ I is a simplex if ∩j∈JKj is
non-empty.

Theorem 1. Suppose each intersection

LJ =
⋂
j∈J

Kj

is either empty or (k − |J |+ 1)-connected. Then K is k-connected if and only if
the nerve N (Ki|i ∈ I) is k-connected.

A pseudosphere [13] is a combinatorial structure in which each process from a
set of processes is independently assigned a value from a set of values.

Definition 1. Let σ = (s0, . . . , sm) be a simplex and U0, . . . , Um be a sequence
of finite sets. In the pseudosphere complex ψ(σ; U0, . . . , Um), each vertex is a pair
〈si, ui〉, where si is a vertex of σ and ui ∈ Ui. Vertexes 〈si0 , ui0〉, . . . , 〈si�

, ui�
〉

span a simplex if and only if the si are distinct. We use ψ(σ; U) as shorthand
for ψ(σ; U, . . . , U).

A simplicial complex X is shellable [16, ch. 12] if its facets can be arranged in a
linear order φ0, . . . , φt, called a shelling order, in such a way that the subcomplex
(∪k−1

i=0 φi) ∩ φk is pure and (dim φk − 1)-dimensional, for 0 < k ≤ t.

Theorem 2. If X is shellable, and every facet has dimension at least k, then
X is (k − 1)-connected.

The following alternative formulation for shellability [16, Prop. 12.2], while less
concise, is easier to use in proofs. Let K be a simplicial complex with facets
φ0, . . . , φt. This sequence is a shelling order if and only if, for 0 ≤ i < j ≤ t,
there exists φk, 0 ≥ k < j, such that φi ∩ φj ⊆ φk ∩ φj , and |φj \ φk| = 1.

Pseudospheres are perhaps the most basic examples of shellable complexes.
Suppose we are given a pseudosphere ψ(σ; U0, . . . , Un), where σ = {s0, . . . , sn},
and each Ui has a reflexive partial order �i. These partial orders �i on the
elements of each Ui induce a canonical order on pseudosphere facets as follows.

Definition 2. First, we define a canonical partial order. For facets φ, φ′ of
ψ(σ; U0, . . . , Un), where

φ = {〈s0, u0〉, . . . , 〈sn, un〉}
φ′ = {〈s0, u

′
0〉, . . . , 〈sn, u′

n〉} ,

let φ � φ′ if, for 0 ≤ i ≤ n, ui �i u′
i. The canonical order ≤ is any linear

extension of �.

Theorem 3. Any pseudosphere ψ(σ; U0, . . . , Un) is shellable.

114 M. Herlihy and S. Rajsbaum

3 Carrier Maps and Shellable Complexes

Definition 3. A carrier map M : C → D carries one pure complex to another
by mapping each simplex in the domain C to a subcomplex of the codomain D,
such that

For all σ, σ′ ∈ C, M(σ) ∩M(σ′) =M(σ ∩ σ′) (1)

We decompose computations into a sequence of rounds. Each round is defined
by a carrier map that carries the complex representing the system state before
the round to the complex after the round. Our impossibility results require
showing that the carrier map preserves a particular level of connectivity. When
we examine a round, we do not need to consider all executions permitted by the
model, only the “worst-case” ones that preserve connectivity.

Informally, each model of computation defines its own carrier map. Formally,
since each such map has a distinct range and domain, it is convenient to treat
them below as separate maps.

Theorem 4. LetM : X → † be a carrier map such that for each simplex σ ∈ X ,
M(σ) is (�− codim σ − 1)-connected. If X is shellable with facets of dimension
at least n, then M(X) is (�− 1)-connected.

Proof. Because X is shellable, X = ∪t
i=0φi, where φ0, . . . , φt is a shelling order

on the facets of X . To show that M(X) = ∪t
i=0M(φi) is (� − 1)-connected, we

argue by induction on t.
For the base case for t, because φ0 is a facet of X of codimension 0,M(φ0) is

(�− 1)-connected.
For the induction step for t, let

K =
t−1⋃
i=0

M(φi), and L =M(φt),

and assume K is (� − 1)-connected. Because φt is a facet of X , L = M(φt) is
(�− 1)-connected by the induction hypothesis for �.

By the properties of shellable complexes,

K ∩ L =

(
t−1⋃
i=0

M(φi)

)
∩M(φt) =

t−1⋃
i=0

(M(φi) ∩M(φt))

=
t−1⋃
i=0

M(φi ∩ φt) =
⋃
i∈I

M(φ̃i)

where
{
φ̃i|i ∈ I

}
is a set of (dim φk − 1)-faces of φt for some non-empty index

set I. Each φ̃i has codimension 1 in X .
We now use the Nerve Theorem to compute the connectivity of K∩L. Because

the φ̃j are faces of φt, ⋂
j∈J

M(φ̃j) =M(
⋂
j∈J

φ̃i) =M(φ̃J)

Concurrent Computing and Shellable Complexes 115

where φ̃J is a (dim φt − |J |)-dimensional face of φt. It has codimension |J | in
C�+1, soM(φ̃J) is (�− |J | − 1)-connected.

To apply the Nerve Theorem, note that each M(φ̃J) is ((k − 1) − |J | + 1)-
connected. The M(φ̃j) subcomplexes cover K ∩ L, and the intersection of any
k is non-empty. It follows that their nerve has |I| vertexes, of which any k form
a simplex, so the nerve contains the (k − 1)-skeleton of an |I|-simplex, which
is (k − 2)-connected. It follows from the Nerve Theorem that K ∩ L is (k − 2)-
connected.

Since K and L are (k−1)-connected, and their intersection is (k−2)-connected,
their union K ∪ L =M(X) is (k − 1)-connected by a further application of the
Nerve Theorem.

Theorem 5. Consider a sequence of complexes and carrier maps

C0
R0−−−−→ C1

R1−−−−→ · · · Rr−−−−→ Cr+1.

If, for all 0 ≤ i ≤ r, and σ ∈ Ci, Ri(σ) is shellable with facets of dimension at
least (k− codimσ), then the composition Rr(· · ·R0(σ) · · ·) is (k− codim σ− 1)-
connected.

Proof. For brevity, let R∗
� (·) denote the composition R�(· · ·Rr(·) · · ·), for 1 ≤

� ≤ r.
We argue by reverse induction on r. By hypothesis, for every σ ∈ Cr, Rr(σ)

is a shellable complex with facets of dimension at least (k − codim σ), and is
therefore (k − codim σ − 1)-connected by Theorem 2.

For the induction step, assume that for every τ ∈ C�+1, R∗
�+1(τ) is (k −

codim τ − 1)-connected. From Theorem 4, replacingM(·) with R∗
�+1(·), A with

R�(σ), and � with k−codim σ, it follows thatR∗
� (σ) is (k−codim σ−1)-connected.

4 Asynchronous Message-Passing

We consider a set of n+1 asynchronous, crash-prone processes that communicate
by sending messages. In each round, each process sends its state to every other
process, waits until it has received messages sent in that round from a survivor
set, and undergoes a state transition. Because the model is asynchronous, a
message m sent from p to q in round r may not be delivered in that round.
Messages are delivered in FIFO order, meaning that when m is delivered, all
previously undelivered messages sent from p to q are delivered at the same time.

Let A be an adversary with minimal core size c. Denote the set of faces of σ
of codimension less than c by

Fc−1(σ) = {τ |τ ⊆ σ and |σ \ τ | < c} .

Here is the one-round carrier map for this model:

Ra(σ) =

{
ψ(σ; Fc−1(σ)) if σ contains a survivor set, and
∅ otherwise.

116 M. Herlihy and S. Rajsbaum

Theorem 6. For any input simplex σ containing a survivor set,Ra(σ) is shellable
with facets of dimension at least (c− codim σ − 1).

Proof. This property is non-trivial when codim σ < c, and Ra(σ) is a pseudo-
sphere, which is shellable by Theorem 3. Because it is a pseudosphere over σ,
each facet has dimension dim σ. Because n ≥ c− 1, dim σ ≥ c− codim σ − 1.

Corollary 1. For r > 0, the r-round protocol complex starting from any input
simplex is (c− 2)-connected.

Corollary 2. The adversary A does not admit an asynchronous message-passing
protocol for (c− 1)-set agreement.

The adversary A does admit an asynchronous message-passing protocol for c-set
agreement: pick a core C of size c, have them broadcast their values, and every
process waits until it hears a value from a process in C.

5 Synchronous Message-Passing

We consider a set of n+1 synchronous, crash-prone processes that communicate
by sending messages. In each round, each process sends its state to every other
process. If a process crashes, only a subset of its messages may be delivered in
that round. The adversary A determines which sets of processes can crash. As
before, let c be the size of a minimal core for A.

We wish to derive a lower bound on the number of rounds needed to solve k-set
agreement against A in this model. We know that k-set agreement is impossible
while the protocol complex is (k−1)-connected, so the question can be rephrased:
for how many rounds can A keep the protocol complex (k − 1)-connected? We
assume that n > 2k.

We consider sets of executions in which exactly k < c processes fail in each
round. By Lemma 1, such executions are all permitted by A.

Let Gk(σ) = {τ |τ ⊆ σ and dim τ = n− k}, the set of faces of σ of dimension
n− k. Here is the one-round carrier map for this model:

Rs(σ) =

{⋃
τ∈Gf(σ) ψ(τ, [τ, σ]) if codim σ ≤ k, and
∅ otherwise.

We order the facets of Rs(σ) as follows. First, order faces of σ by reverse
inclusion: if α ⊃ β, then α ≺ β. Order facets of single pseudosphere ψ(τ, [τ, σ])
using the canonical order induced by the reverse inclusion order on the labels.

Second, order the simplexes in Gk(σ). Each simplex τ in Gk(σ) is labeled with
n− k + 1 out of (dim σ + 1) IDs. Construct a signature for each τ in Gk(σ) by
concatenating its process IDs in ascending order. Index the simplexes τ0, . . . , τt

of Gk(σ) in increasing lexicographical order by signature.
Finally, order facets of ψ(τi, [τi, σ]) before facets of ψ(τj , [τi, σ]) if i < j. Let

φ0, . . . , φt be the resulting order.

Concurrent Computing and Shellable Complexes 117

Theorem 7. For any input simplex σ containing a survivor set,Rs(σ) is shellable
with facets of dimension at least (k − codim σ).

Proof. All facets of Rs(σ) have dimension n− k, which is at least (k− codim σ)
if n > 2k.

If φi and φj are facets where i < j, we need to construct a φk, k < j, such
that φi ∩ φj ⊆ φk ∩ φj , and |φj \ φj | = 1. If φi and φj are facets of the same
pseudosphere, then we use the construction from Theorem 3.

Suppose φi and φj are facets of different pseudospheres, respectively ψ(τi,
[τi, σ]) and ψ(τj , [τj , σ]).

Suppose φj \φi contains a vertex 〈t�, σ�〉 where σ� is a proper face of σ. Relabel
that simplex with σ:

φk = (φj \ {〈t�, σ�〉}) ∪ {(t�, σ)}).

It is easy to check that φk satisfies the shellability conditions.
Finally, suppose every vertex in φj \φi is labeled with σ. Because i < j, τi \ τj

contains a vertex t� and τj \ τi contains a vertex tm, such that id(t�) < id(tm).
Replace these vertexes in τj and φj :

τk = (τj \ {t�}) ∪ {tm} and φk = (φj \ {〈t�, σ〉}) ∪ {〈sm, σ〉}

Because every vertex in φk is labeled either with σ or a simplex containing τi∪τj ,
φk is a facet of ψ(τk, [τk, σ]), and hence a facet of Rs(σ). It is easy to check that
τk < τj , hence the condition φk < φj is satisfied, as well as the rest of the
shellability conditions.

Corollary 3. For r ≤ �c− 1/k�, the r-round protocol complex starting from
any input simplex is k-connected.

Corollary 4. If n ≥ 2k, the adversary A does not admit a synchronous message-
passing protocol for k-set agreement in fewer than

⌊
c−1

k

⌋
+ 1 rounds.

This bound is tight: A does permit a synchronous message-passing protocol
for k-set agreement that takes �c/k� rounds. Divide the processes in a core C
of minimal size c into k groups of size at most �c/k�. Each group performs
consensus among its members, which takes �c/k� rounds. The others wait for
some member of C to complete its protocol, and chooses that value.

6 Asynchronous Shared Memory

We consider a set of n+1 asynchronous, crash-prone processes that communicate
though a two-dimensional array m[·, ·], indexed by round number and by process
ID. In round r, each Pi writes its state to m[r, i], waits until the set of processes
that have written to row r includes a survivor set, and then takes an atomic
snapshot of that row. Gafni and Rajsbaum [8] show that this round-by-round
model is equivalent to one in which process simply share a read-write memory.

118 M. Herlihy and S. Rajsbaum

Let σ be an n-simplex where each vertex is labeled with a distinct process ID.
A survivor chain for σ is a sequence of faces of σ, σ0, . . . , σk such that ids(σ0)
contains a survivor set for A, and σ0 ⊂ · · · ⊂ σk = σ. We denote the set of
survivor chains for σ by Chains(σ).

For a survivor chain σ = σ0 ⊂ · · · ⊂ σk, and Pi ∈ Π , let σi be the suffix of σ
of sets containing Pi. The round map is defined by:

Rm(σ) =
⋃

σ∈Chains(σ)

ψ(σ; σ0, . . . , σn).

Theorem 8. For any input simplex σ containing a survivor set, Rm(σ) is
shellable with facets of dimension at least (c− codim σ − 1).

Proof. Each facet has dimension dim σ ≥ c− codim σ − 1.
Let σ = {s0, . . . , sm}. Index facets φi = {〈s0, η0〉, . . . , 〈sm, ηm〉}, and φj =

{〈s0, θ0〉, . . . , 〈sm, θm〉}, in any total order such that if each η� ⊇ θ�, for 0 ≤ � ≤
m, then i ≤ j.

Suppose |φj \ φi| contains a vertex 〈s�, θ�〉 where θ� ⊂ σ. Construct φk by
relabeling that vertex with σ. Note that φk ∈ Rm(σ) because replacing any
element of a survivor chain with σ is still a survivor chain. Every label of φk is
a superset of the corresponding label of φj , so k < j, and |φj \ φk| = 1.

Corollary 5. For r > 0, the r-round protocol complex starting from any input
simplex is (c− 2)-connected.

Corollary 6. The adversary A does not admit an asynchronous shared-memory
protocol for (c− 1)-set agreement.

We show elsewhere [11] that A admits an asynchronous shared-memory protocol
for c-set agreement.

7 Semi-synchronous Message-Passing

In this model, processes exchange messages, but the time between two consec-
utive process steps is at least c1 and at most c2, and the time to deliver a
message is at most d. The values c1, c2, and d are known constants, and we
define C = c2/c1. Failures are controlled by an adversary with minimal core size
c. We wish to derive a lower bound on the time needed to solve k-set agree-
ment against A in this model. For how long can A keep the protocol complex
(k − 1)-connected?

We first consider fast executions where each round takes exactly time d. All
messages sent during a round are delivered at the very end of that round (at
multiples of time d). All processes take steps in lock-step as quickly as possible (at
multiples of time c1). The interval between process steps is called a microround,
and there are μ = �d/c1� microrounds per round. Each message is labeled with
the microround in which it was sent. The view of a process Pi at the end of a
round is a map f : Π → [0, μ], where f(Pj) is the microround of the last message

Concurrent Computing and Shellable Complexes 119

received from Pj (or 0 if no message was received). View f dominates view f ′,
written f ≥ f ′, if for 0 ≤ i ≤ n, f(Pi) ≥ f ′(Pi).

We consider sets of executions in which exactly k < c processes fail in each
round. By Lemma 1, such executions are all permitted by A.

A failure pattern is a function F mapping each process to the microround μj

in which it fails, or to μ if it does not fail. At the end of the round, there are a
number of views consistent with F , since a process Pj failing in microround μj

will send its last message to Pi either in microround μj or μj − 1. We define [F]
to be the set of possible views produced by F :

f(Pi) =
{

F (Pi)− 1 or F (Pi) if Pi fails
μ otherwise

As before, let Gk(σ) = {τ |τ ⊆ σ and dim τ = n− k}, the set of faces of σ of
dimension n − k. For τ ⊆ σ, let FP (τ) be the set of failure patterns in which
the processes in τ do not fail.

Here is the one-round carrier map for this “fast” execution:

Rss(σ) =

{⋃
τ∈Gf(σ)

⋃
F∈FP (τ) ψ(τ, [F]) if codim σ ≤ k, and

∅ otherwise.

We order the facets of this complex as follows. First, we partially order the
facets φ, φ′ of each ∪F∈FP (τ)ψ(τ, [F]). If, for every pair of matching vertexes
〈ti, f〉 ∈ φ and 〈ti, f

′〉 ∈ φ′, and every Pi ∈ Π , f(Pi) ≥ f ′(Pi), then φ � φ′.
Second, order the simplexes in Gk(σ) as in Section 5. Finally, order facets of

∪F∈FP (τi)ψ(τi, [F]) before facets of ∪F∈FP (τi)ψ(τi, [F]) if i < j. Let φ0, . . . , φt

be the resulting order.

Theorem 9. For any input simplex σ containing a survivor set, Rss(σ) is
shellable with facets of dimension at least (k − codim σ).

Proof. Given φi, φj , i < j, we construct φk satisfying the shelling condition. A
vertex 〈t�, f�〉 ∈ φj is minimal (maximal) at Pj if, for every vertex 〈tm, fm〉 ∈ φj ,
f�(Pj) ≤ fm(Pj) (f�(Pj) ≥ fm(Pj)). Because views in φj can have only two
possible values for each Pj , each vertex is either minimal, maximal, or both.

If φj \ φi contains a vertex 〈t�, f�〉 minimal for some Pj , construct φk by
replacing f� with f ′

�, which agrees with f� except that f ′
�(Pj) = f�(Pj) + 1. If no

vertex in φj \ φi is minimal for any Pj , then for each Pj , some vertex in φj ∩ φi

has a view that assigns f�(Pj)−1 to Pj . It follows that for each Pj , every vertex
in φi assigns either f�(Pj)− 1 or f�(Pj)− 2 to Pj .

If φi, φj are both elements of ∪F∈FP (τ)ψ(τ, [F]), then j < i, a contradiction.
Otherwise, suppose φi ∈ ψ(τi, [Fi]) and φj ∈ ψ(τj , [Fj]). Because i < j, τi \ τj

contains a vertex t� and τj \ τi contains a vertex tm, such that id(t�) < id(tm).
Replace these vertexes in τj and φj :

τk = (τj \ {t�}) ∪ {tm}
φk = (φj \ {〈t�, [Fj]〉}) ∪ {〈sm, [Fj]〉}

120 M. Herlihy and S. Rajsbaum

It is easy to check that the condition φk is a facet of ψ(τk, [τk, σ]) is satisfied, as
well as the rest of the shellability conditions.

We can compose this single-round execution
⌊

c−1
k

⌋
times before we use up our

“failure budget.”

Corollary 7. For r ≤
⌊

c−1
k

⌋
, the r-round “fast” protocol complex starting from

any input simplex is (k − 1)-connected, hence it cannot solve k-set agreement.

By a standard construction [13], an r-round “fast” execution that takes time
rd can be “stretched” so that after time rd + Cd − ε, there is one process that
cannot decide.

Theorem 10. The adversary A does not admit a k-set agreement protocol that
runs in time less than

(⌊
c−1

k

⌋
− 1
)
d + Cd.

Proof. By a standard construction [13], an r-round “fast” execution that takes
time rd can be “stretched” as follows: at the end of round r, fail all processes
but P , and run P as slowly as possible, (taking steps at multiples of time c2).
At time rd + Cd, P will time out, but at time rd + Cd − ε, this execution
is indistinguishable to P from the corresponding “fast” execution in which it
is about to receive the next round of messages. The result follows by setting
r =

⌊
c−1

k

⌋
.

This result is almost tight.

Theorem 11. The adversary A admits a semisynchronous message-passing pro-
tocol for k-set agreement that runs in time 2

⌊
c−1

k

⌋
d + Cd.

Proof. Divide a core C of minimal size c into k groups of size at most �c/k�. The
members of each of these groups perform consensus among themselves, using the
protocol of Attiya, Lynch, Dolev, and Stockmeyer [1], each of which takes time
2
⌊

c−1
k

⌋
+ Cd. Every other process waits until some member of C completes its

protocol, and chooses that value.

8 Asynchronous Set Agreement Memory

We now consider an asynchronous round-by-round model of computation, against
a general adversary, in which the processes can solve k-set agreement (or con-
sensus, if k = 1) in a single round.

For example, given an adversary A with a minimal core C of size c, it is
enough for the members of C to solve k-set agreement wait-free in one round.
For example, c-set agreement with read-write memory is trivial: each process in
C writes its input to shared memory, and the rest wait and choose any such
value. Given wait-free “black box” objects that permit m processes to solve �-
set agreement, dividing C into groups of m that share a single object yields a
protocol for k-set agreement where k = � ·

⌊
c
m

⌋
+ min(�, c mod m).

Concurrent Computing and Shellable Complexes 121

Theorem 5 can be generalized to encompass cases where the single-round
complex is not itself shellable, but can be expressed as the union of shellable
complexes having a shellable nerve. We assume dim σ > k. Let vals(σ) be the
set of input values for input n-simplex σ, and valsk(σ) the set of subsets of
vals(σ) of size exactly k. For each set K ∈ valsk(σ), the set of executions in
which the values chosen are a subset of K is PK(σ) = ψ(σ, K). Here is the
one-round carrier map for this model:

Pk(σ) =

{⋃
K∈valsk(σ) PK(σ) if σ contains a survivor set, and
∅ otherwise.

In general, this complex is not shellable, but it is covered by shellable subcom-
plexes, and this covering has a shellable nerve.

Let Pr
k(·) denote the r-round composition of Pk(·). For K ∈ valsk(σ), let

K = Pk(σ) KK = PK(σ) LJ =
⋂

K∈J

KK

Kr = Pr
k(σ) Kr

K = Pr−1
k (KK) Lr

J = Pr−1
k (LJ)

The KK cover K, and the Kr
K cover Kr .

Lemma 2. The nerve complexesN (KK |K∈valsk(σ)) and N (Kr
K |K ∈ valsk(σ))

are isomorphic.

Proof. It is enough to show that ∩K∈JKK �= ∅ if and only if ∩K∈JK′
K �= ∅. The

complex

LJ =
⋂

K∈J

KK =
⋂

K∈J

ψ(σ, K) = ψ(σ,
⋂

K∈J

K)

is non-empty if and only if ∩K∈JK is non-empty. The complex

L′J =
⋂

K∈J

K′
K =

⋂
K∈J

Pr−1
k (KK) = Pr−1

k (
⋂

K∈J

ψ(σ, K)) = Pr−1
k (ψ(σ,

⋂
K∈J

K))

is also non-empty if and only if ∩K∈JK is non-empty.

Lemma 3. The nerve complex N (ψ(σ, K)|K ∈ valsk(σ)) is shellable.

Proof. Order the subsets of vals(σ) by sorting each set and comparing them
lexicographically.

Each vertex of the nerve is associated with ψ(σ, U), where U ∈ valsk(σ). Each
edge is associated with

ψ(σ, U) ∩ ψ(σ, V) = ψ(σ, U ∩ V),

where U ∩ V is non-empty, and so on. It easier to reason about the barycentric
subdivision of the nerve, where each facet has has the form φ =

{
τ0, . . . , τk−1

}
,

where τ0 ⊂ · · · ⊂ τk−1.

122 M. Herlihy and S. Rajsbaum

Here is the shelling order. Given simplexes φi =
{
τ0
i , . . . , τk−1

i

}
, where τ0

i ⊂
· · · ⊂ τk−1

i , φj =
{
τ0
j , . . . , τk−1

j

}
, where τ0

j ⊂ · · · ⊂ τk−1
j , we order them by

top-down lexicographic order: φi < φj if there exists 0 ≤ q ≤ k − 1 such that
τq
i = τq

j for � < q ≤ k − 1, and τ �
i < τ �

j .
Given φi < φj , we construct a φk satisfying the shellability conditions. Let �

be the largest index such that τ �
i < τ �

j . If � = k − 1, the maximal value, then
τ �
j = τ �−1

j ∪ {y}, and there must exist x < y such that x �∈ τ �−1
j . Otherwise,

τ �
j consists of the k − 1 least elements of U , contradicting the assumption that

τ �
i < τ �

j . Construct φk by replacing y with x:

φq
k =

{
(φk−1

j \ {y}) ∪ {x} if q = k − 1
φq

j otherwise.

Otherwise, if � < k − 1,

φ�+1
j = φ�+1

i = φ�−1 ∪ {y, z} , φ�
j = φ�−1 ∪ {z} , φ�

i = φ�−1 ∪ {y}

where, because φi < φj , y < z. Construct φk by replacing z with y:

φq
k =

{
(φ�

j \ {z}) ∪ {y} if q = �

φq
j otherwise.

In both cases, it is easy to check that φk < φj , φi ∩ φj ⊂ φk, and |φj \ φk| = 1.

Corollary 8. The nerve complex N (Kr
K |K ∈ valsk(σ)) is (k − 2)-connected.

Lemma 4. If σ contains a survivor set, then for r ≥ 0, Pr(σ) is (k − 2)-
connected.

Proof. By induction on r. For the base case, when r = 0, Pr
k(σ) = σ, which is

contractible.
For the induction hypothesis, assume Pr−1(σ) is (k − 1)-connected. For each

K ∈ valsk(σ), KK = PK(σ) = ψ(σ, K) is shellable with facets of dimension
dim σ, and by Theorem 4, each K′

K = Pr−1(KK) is (dim σ − 1)-connected. For
each J ⊆ valsk(σ), LJ = ∩K∈JKK = ψ(σ,∩K∈JK) is either shellable with facets
of dimension dim σ or empty, and by Theorem 4, each L′J = ∩K∈JPr−1(PK(σ))
is either (dim σ − 1)-connected or empty, hence ((k − 1)− |J |+ 1)-connected.

The Nerve Theorem implies that Pr(σ) = ∪K∈valsk(σ)K′
K is (k−1)-connected

if and only if the nerve complex N (K′
K |K ∈ valsk) is (k − 1)-connected, which

is true by Corollary 8.

Corollary 9. A does not permit a (k − 1)-set agreement protocol.

Since A permits a single-round k-set agreement protocol by hypothesis, this
result implies that the “set consensus power” of such a model is established in
the first round.

Concurrent Computing and Shellable Complexes 123

References

1. Attiya, H., Dwork, C., Lynch, N., Stockmeyer, L.: Bounds on the time to reach
agreement in the presence of timing uncertainty. J. ACM 41(1), 122–152 (1994)

2. Björner, A.: Shellable and Cohen-Macaulay partially ordered sets. Transactions of
the American Mathematical Society 260(1), 159–183 (1980)

3. Björner, A.: Topological methods, pp. 1819–1872. MIT Press, Cambridge (1995)
4. Borowsky, E., Gafni, E.: Generalized FLP impossibility result for t-resilient asyn-

chronous computations. In: STOC ’93: Proceedings of the Twenty-Fifth Annual
ACM Symposium on Theory of Computing, pp. 91–100. ACM, New York (1993)

5. Borowsky, E., Gafni, E.: A simple algorithmically reasoned characterization of wait-
free computations (extended abstract). In: PODC ’97: Proceedings of the Sixteenth
Annual ACM Symposium on Principles of Distributed Computing, pp. 189–198.
ACM, New York (1997)

6. Borowsky, E., Gafni, E., Lynch, N., Rajsbaum, S.: The BG distributed simulation
algorithm. Distributed Computing 14(3), 127–146 (2001)

7. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Tielmann, A.: The disagree-
ment power of an adversary: extended abstract. In: Proceedings of the 28th ACM
Symposium on Principles of Distributed Computing, pp. 288–289. ACM, New York
(2009)

8. Gafni, E., Rajsbaum, S.: Distributed programming with tasks. Technical Report
100001, UCLA Computer Science Department, Los Angeles, CA, USA, november
(2009)

9. Herlihy, M., Rajsbaum, S.: Set consensus using arbitrary objects (preliminary ver-
sion). In: PODC ’94: Proceedings of the Thirteenth Annual ACM Symposium on
Principles of Distributed Computing, pp. 324–333. ACM, New York (1994)

10. Herlihy, M., Rajsbaum, S.: Algebraic spans. Mathematical Structures in Computer
Science 10(4), 549–573 (2000)

11. Herlihy, M., Rajsbaum, S.: The topology of shared-memory adversaries. In: PODC
’10: Proceedings of the Fourteenth Annual ACM Symposium on Principles of Dis-
tributed Computing (to appear, 2010)

12. Herlihy, M., Rajsbaum, S., Tuttle, M.: An axiomatic approach to computing the
connectivity of synchronous and asynchronous systems. Electron. Notes Theor.
Comput. Sci. 230, 79–102 (2009)

13. Herlihy, M., Rajsbaum, S., Tuttle, M.R.: Unifying synchronous and asynchronous
message-passing models. In: PODC ’98: Proceedings of the Seventeenth Annual
ACM Symposium on Principles of Distributed Computing, pp. 133–142. ACM,
New York (1998)

14. Herlihy, M., Shavit, N.: The topological structure of asynchronous computability.
J. ACM 46(6), 858–923 (1999)

15. Junqueira, F., Marzullo, K.: Designing algorithms for dependent process failures.
In: Future Directions in Distributed Computing, pp. 24–28 (2003)

16. Kozlov, D.: Combinatorial Algebraic Topology. Springer, Heidelberg (2007)
17. Moses, Y., Rajsbaum, S.: A layered analysis of consensus. SIAM J. Comput-

ing 31(4), 989–1021 (2002)
18. Saks, M., Zaharoglou, F.: Wait-free k-set agreement is impossible: The topology of

public knowledge. SIAM J. Comput. 29(5), 1449–1483 (2000)

Brief Announcement:
Hybrid Time-Based Transactional Memory�

Pascal Felber2, Christof Fetzer1, Patrick Marlier2,
Martin Nowack1, and Torvald Riegel1

1 Technische Universität Dresden, Germany
first.last@inf.tu-dresden.de

2 Université de Neuchâtel, Switzerland
first.last@unine.ch

Abstract. Transactional Memory (TM) is a speculative shared-memory synchro-
nization mechanism used to speed up concurrent programs. Most current TM im-
plementations are software-based (STM) and incur noticeable overheads for each
transactional memory access. Hardware TM proposals (HTM) address this issue
but typically suffer from other restrictions such as limits on the number of data
locations that can be accessed in a transaction. In this paper, we introduce new
hybrid TM algorithms that can execute HTM and STM transactions concurrently
and can thus provide good performance over a large spectrum of workloads. The
algorithms belong to the class of time-based TM designs and exploit the ability of
some HTMs to have both transactional and non-transactional memory accesses
within a transaction to decrease the transactions’ runtime overhead, abort rates,
and hardware capacity requirements.

Introduction. Current software transactional memory implementations have a rela-
tively large performance overhead. While there is certainly room for further optimiza-
tions, it is believed by many that only hardware transactional memory (HTM) imple-
mentations can have a sufficiently good performance for TM to become widely adopted
by developers.

Of the many published HTMs, designs such as AMD’s Advanced Synchronization
Facility (ASF) that have been proposed by industry for possible inclusion in high-
volume microprocessors have low complexity and provide best-effort HTM in the sense
that only a subset of all reasonable transactions are expected to be supported by hard-
ware. They have several limitations (e. g., their capacity, that is the number of cache
lines that can be accessed in a transaction, can be as low as four) and have to be com-
plemented with software fallback solutions that execute in software the transactions
that cannot run in hardware. It is therefore desirable to develop hybrid TM (HyTM) in
which multiple hardware and software transactions can run concurrently.

In this paper, we introduce two novel HyTM algorithms that use ASF as HTM. These
algorithms use two state-of-the-art time-based STM algorithms, LSA [3] and NOrec [2],
for software transactions. LSA and NOrec focus on different workloads in their opti-
mizations but are both lock-based designs. NOrec uses a single lock and provides better

� This work is supported in part by the European Commission FP7 VELOX project (ICT-
216852).

N.A. Lynch and A.A. Shvartsman (Eds.): DISC 2010, LNCS 6343, pp. 124–126, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Brief Announcement: Hybrid Time-Based Transactional Memory 125

performance for low thread counts because it does not have to pay the runtime over-
heads associated with accessing multiple locks. In contrast, LSA uses an array of locks
and is expected to provide better scalability with large thread counts or frequent but
disjoint commits of software transactions. Therefore, both algorithms are of practical
interest depending on the target architecture and workload.

Advanced Synchronization Facility. AMD’s ASF is a proposal of hardware exten-
sions for x86_64 CPUs. It essentially provides hardware support for the speculative
execution of regions of code. These speculative regions are similar to transactions in
that they take effect atomically. We have shown in previous work [1] that ASF can be
used as an efficient pure HTM in a TM software stack. The HyTM algorithms that we
introduce in this paper are based on ASF, use the same software stack, and provide the
same guarantees as the respective STMs.

Most previous HyTM proposals have assumed HTMs in which every memory access
inside a transaction is speculative, i. e., it is transactional, isolated from other threads
until transaction commit, and will be rolled back on abort. In contrast, ASF uses se-
lective annotation, which means that memory accesses inside transactions have to be
explicitly marked as being speculative and are non-speculative otherwise. Selective an-
notation requires more work on the compiler side, but allows the TM to use the limited
speculative accesses, and thus precious ASF capacity, only where necessary. We make
heavy use of this feature to improve the efficiency of our HyTM algorithms by decreas-
ing the runtime overhead, abort rates, and HTM capacity requirements of hardware
transactions.

Speculative accesses always have the granularity of a cache line. Non-speculative
loads are allowed to read state that is speculatively updated in the same speculative
region, but non-speculative stores must not overlap with previous speculative accesses.

The ordering guarantees that ASF provides for mixed speculative and non-specula-
tive accesses are important for the correctness of our algorithms. In short, aborts are
instantaneous with respect to the program order of instructions in speculative regions.
A consequence is that memory lines are monitored early for conflicting accesses. Fur-
ther, atomic instructions such as compare-and-set or fetch-and-increment retain their
ordering guarantees.

HyLSA and HyNOrec Algorithms. LSA is a lock-based STM with time-based val-
idation. To improve on previous HyTM extensions for this class of STMs, we wanted
to decrease the number of memory locations that have to be read speculatively. This re-
duces the hardware capacity needed to successfully run transactions using ASF, and thus
increases overall performance. In HyLSA, software transactions execute the LSA algo-
rithm. Hardware transactions follow a similar algorithm with the following changes.

HyTM loads first perform an ASF-protected read of the lock associated with the
memory location. This lets ASF immediately monitor the lock for subsequent changes
and will lead to an abort if the lock is updated by another thread. If the lock is free, the
transaction uses an ordinary nonspeculative load operation to read the target value.

HyTM stores proceed as loads, first monitoring the lock and verifying that it is not
acquired. The transaction then starts monitoring the lock for writes and reads, which
effectively ensures eager detection of conflicts with concurrent transactions. Finally,
the updated memory location is speculatively written to.

126 P. Felber et al.

Upon commit, a HyTM update transaction firsts acquires a unique commit time-
stamp from the global time base, speculatively writes all updated locks, and finally tries
to commit the hardware transaction. ASF allows us to acquire the commit timestamp
using a nonspeculative atomic-increment of a global counter, which makes this algo-
rithm feasible because otherwise the speculative access to the counter would lead to an
excessive number of aborts.

Our second HyTM is based on NOrec. Roughly speaking, NOrec differs from LSA in
that it uses a single (global) versioned lock and relies on value-based validation in addi-
tion to time-based validation. The previous proposal [2] for a HyTM version of NOrec
adds a second versioned lock that is used by software transactions to abort hardware
transactions. We implemented this proposal but it did not perform well due to unnec-
essary aborts of hardware transactions. With the changes described next, performance
and scalability increased significantly.

First, in the previous proposal, software transactions had to acquire the main and sec-
ond locks atomically using a small hardware transaction. However, we can modify these
locks separately and nonspeculatively. This both decreases the number of conflicts on
these locations and avoids depending on guaranteed progress of hardware transactions
in the STM part.

Second, hardware transactions are validated constantly because any update to specu-
latively accessed memory locations will abort the transaction. Thus, a hardware transac-
tion does a conservative form of value-based validation, and is thus consistent whenever
no (software) transaction is writing back its tentative updates. To guarantee consistency,
HyTM load and store operations therefore only have to wait until the global lock is free.
This second optimization allows for software transactions to commit without aborting
nonconflicting hardware transactions (as in the previous proposal).

Evaluation. We evaluated our algorithms using a near-cycle-accurate simulator with
eight x86 CPU cores on a single socket, extended to support ASF. We compiled bench-
marks using the Dresden TM Compiler [1]. For each transaction, the compiler creates a
hardware and a software TM code path, and the HyTM decides at runtime when starting
or restarting a transaction which code path is to be executed. We compared pure HTM
implementations with our two HyTM algorithms.

Our early evaluation results indicate that HTM performs best when its capacity is
sufficient to handle all transactions. However, when capacity is not sufficient, HyTM
algorithms are more efficient. As expected, HyNOrec has lower overhead than HyLSA,
but the latter seems to scale better with large thread counts. These results are encourag-
ing and indicate that ASF provides a sound basis for implementing efficient HyTM.

References

1. Christie, D., Chung, J.W., Diestelhorst, S., Hohmuth, M., Pohlack, M., Fetzer, C., Nowack, M.,
Riegel, T., Felber, P., Marlier, P., Riviere, E.: Evaluation of AMD’s Advanced Synchronization
Facility Within a Complete Transactional Memory Stack. In: EuroSys 2010 (2010)

2. Dalessandro, L., Spear, M.F., Scott, M.L.: NOrec: streamlining STM by abolishing ownership
records. In: PPoPP 2010 (2010)

3. Felber, P., Fetzer, C., Riegel, T.: Dynamic Performance Tuning of Word-Based Software
Transactional Memory. In: PPoPP 2008 (2008)

Brief Announcement: Quasi-Linearizability:
Relaxed Consistency for Improved Concurrency

Yehuda Afek, Guy Korland, and Eitan Yanovsky

Computer Science Department
Tel-Aviv University, Israel

afek@cs.tau.ac.il, guy.korland@cs.tau.ac.il, eitanyan@post.tau.ac.il

Abstract. Many linearizable and optimized concurrent algorithms are
available for known algorithms and data structures, such as, Queue, Tree,
Stack, Counter and HashTable. However, sometimes these implementa-
tions are used in a more relaxed environment, provided as part of larger
design pattern where a relaxed linearizability suffices rather than a strict
one.

Here we provide a quantitative definition of limited non-determinism,
a notion we call Quasi Linearizability. Roughly speaking an implementa-
tion of an object is quasi linearizable if each run of the implementation
is at a bounded “distance” away from some linear run of the object.

Linearizability[2] is a useful and intuitive consistency correctness condition that
is widely used to reason and prove common data structures implementations.
Intuitively it requires each run to be equivalent in some sense to a serial run of
the algorithm. This imposes strong synchronization requirements that in many
cases result in limited scalability and synchronization bottlenecks. In order to
overcome this limitation, more relaxed consistency conditions have been intro-
duced. But, the semantics of these relaxed conditions is less intuitive and the
results are usually unexpected from a layman point of view. In this paper we offer
a relaxed version of linearizability that preserves some of the intuition, provides
a flexible way to control the level of relaxation and supports the implementation
of more concurrent and scalable data structures.

For example, SEDA[4], the motivating and initiating reason for the current
research is a common design pattern for highly concurrent servers, which is heav-
ily based on thread pools. Such thread pools are composed from two elements
(i) a set of threads ready to serve tasks and (ii) a task queue from which the
threads take their tasks. Such a queue, which is not part of the server logic in a
highly concurrent system, can become by itself a bottleneck limiting the overall
SEDA system utilization. However, thread pool does not really need a strict
FIFO queue, what is really required is a “fair” queue that does not allow one
task to by pass another by too much.

The above example as well as other examples have motivated us to provide a
quantitative definition of the limited non-determinism that an application may
allow. We define a consistency condition with an upper bound on the amount of
non-determinism. Each operation must be linearizable at some bounded distance

N.A. Lynch and A.A. Shvartsman (Eds.): DISC 2010, LNCS 6343, pp. 127–129, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

128 Y. Afek, G. Korland, and E. Yanovsky

from its strict linearization point. For example, it is okay to dequeue t even if a
task that has been enqueued k−1 places “before” it, has not yet been dequeued.
Our definition is strong and flexible enough to define at the same time (continuing
the above example) that a dequeue that returns empty may not be reodered,
i.e., it has to be in its strict linearizable order.

We start by defining quasi linearizable history and then define what a quasi-
linearizable data structure is.

Definition 1. – For each event e in a sequential history H, we define H [e] to
be its index in the history.

– Let Events(H) be the set of all the events in H.
– Let Distance(H ′, H) be the distance between two histories H and H ′ which

is a permutation of H, to be maxe∈Events(H){|H ′[e]−H [e]|}.
– Let Objects(H) be the set of all the objects that participate in H.

Definition 2. Object domain The set of all possible operations that may op-
erate on the object. We distinguish between operations that have different argu-
ments or returned results. For example for an object O =stack, Domain(O) =
{< O.push(x), void >, < O.pop(), x > |x ∈ X} ∪ {< O.pop(), φ >} (X is the set
of all the possible elements in the stack).

Definition 3. History domain Let H be a history, Domain(H) =⋃
O∈Objects(H) Domain(O).

A sequential history H |D, is the projection of history H on a subset D of the
events, i.e., H after removing from it all the events which are not in D. H |O =
H |Domain(O).

Definition 4. Q-Quasi Linearizable history We need a way to measure the
Quasi Linearizable property of a history, for that we use a function that we name
the quasi linearization factor. It is a set of functions, each operating on a subset
of a history domain, defining that subset “quasi factor” by specifying an upper
bound on the relative movement allowed among the members of the subset in
order to make it a legal sequential history. We denote the quasi linearization
factor by Q and specify D = {d1, d2, . . .}1 as the set containing the subsets of the
domain that Q assigns a specific bound to. Each upper bound can be a function
by itself that depends on different system parameters such as number of threads,
or hardware parameters, we denote the possible bounds set as FN which is the
set of all functions into N2. Formally, a history H is Q-Quasi Linearizable if it
has an extension H ′ and there is a sequential history S′ and a legal sequential
history S such that:

1. Q : D → FN (Quasi linearization factor). 3

2. Complete(H ′) is a prefix of some history which is equivalent to S′.
3. If method invocation m0 precedes method invocation m1 in H, then the same

is true in S′.
1 D ⊂ Powerset(Domain(H))
2 F N={f |f is a function and Range(f) = N}
3 d1, d2, . . . are not necessarily disjoint sets.

Quasi-Linearizability: Relaxed Consistency for Improved Concurrency 129

4. S is a permutation of S′ and ∀i: Distance(S′|di, S|di) ≤ Q(di)

We notice that a linearizable history H has Q-quasi-linearizable factor 0, i.e.,
Q(Domain(H)) = 0.

Definition 5. Q-quasi linearizable object; An object implementation A is
Quasi Linearizable with Q if for every history H of any run of A (not necessarily
sequential), H is Q-Quasi-Linearizable history.

As an example we offer a simple quasi linearizable queue that has some fixed
bound on the order of it’s enqueue operations. Formally, the queue implementa-
tion satisfies (Q({< enq(x), void > |x ∈ X}) = k, Q({< deq(), x > |x ∈ X} ∪ {<
deq(), null >} = 0)-Quasi Linearizable queue implementation. The idea is to
spread the contention of the dequeue method by allowing to dequeue an element
which is not at the head of the queue, but not more than k places away from the
head. We change the dequeue operation to pick a random index between 0 and k
(the quasi factor), if the picked index is larger than 0 it iterates over the list from
the head to the item at the specified index, it attempts to dequeue it by doing a
single CAS which attempts to mark it as deleted. If failed it retries a few times
and eventually falls back to the scenario as if index 0 is picked. If it succeeds, this
is the dequeued item. We evaluated the performance of our new algorithms on a
multicore machine. At low quasi factor our implementation performs similar to
the Michael and Scott[3] queue, however at higher quasi factores (>5) it has a
better speedup.

This model can be used to specify a more relaxed concurrent model for other
known data structures, such as stack, heap etc’, and allow a more concurrent
implementation of these. In the full version of this paper[1] we show other exam-
ples of quasi linearizable implementation as well. Also we can easily show that
Bitonic Counting Network is Q-Quasi, Q(Dinc = {< O.getAndInc(), n > |n ∈
N}) ≤ N ∗W (where N is the number of working threads and W is the network
width).

Acknowledgements. This paper was supported in part by grants from Sun Mi-
crosystems, Intel Corporation, as well as a grant 06/1344 from the Israeli Science
Foundation and European Union grant FP7-ICT-2007-1 (project VELOX).

References

1. Afek, Y., Korland, G., Yanovsky, E.: Quasi-linearizability: relaxed consistency for
improved concurrency, http://www.cs.tau.ac.il/research/guy.korland/

2. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

3. Michael, M.M., Scott, M.L.: Simple, fast, and practical non-blocking and blocking
concurrent queue algorithms. In: PODC ’96: Proceedings of the Fifteenth Annual
ACM Symposium on Principles of Distributed Computing, pp. 267–275. ACM, New
York (1996)

4. Welsh, M., Culler, D., Brewer, E.: Seda: an architecture for well-conditioned, scalable
internet services. SIGOPS Oper. Syst. Rev. 35(5), 230–243 (2001)

http://www.cs.tau.ac.il/research/guy.korland/

Brief Announcement: Fast Local-Spin Abortable
Mutual Exclusion with Bounded Space

Hyonho Lee

Department of Computer Science
University of Toronto, Toronto, ON, Canada, M5S 3G4

hlee@cs.toronto.edu

Introduction. Abortable mutual exclusion is a variant of classical mutual exclu-
sion, in which a process performing a trying protocol to enter the critical section
(CS) is allowed to stop waiting for the CS to become available, by performing
an abort protocol that takes a bounded number of steps.

In the distributed shared memory and cache-coherent models, the cost for a
process to access its own shared memory or cache is considered to be much
less than the cost to access memory located remotely. Hence, in these models,
counting only remote memory accesses (RMAs) is a good measure of the time
complexity of an algorithm. To achieve a bounded number of RMAs, each process
accesses only its own local memory or cache during busy-waiting. Such algorithms
are called local-spin.

Scott [4] presented the first local-spin abortable mutual exclusion algorithms.
In his algorithms, waiting processes form a queue and, when no processes abort,
each invocation performs only a constant number of RMAs in the trying protocol,
even under high contention. However, Scott’s algorithms use unbounded space,
and there is no bound on the number of RMAs an invocation may perform, even
if only two processes can abort. Jayanti [3] presented the first local-spin abortable
mutual exclusion algorithm with bounded space. In his algorithm, waiting pro-
cesses form a tree and each invocation performs Θ(min {logN, k}) RMAs, where
N is the number of processes and k is the contention. Danek and Lee [1] presented
another local-spin abortable mutual exclusion algorithm in which each invocation
performs Θ(log N) RMAs. It uses only registers, whereas the previous algorithms
use more powerful primitives such as compare and swap or LL/SC.

Summary of Results. We present a new local-spin abortable mutual ex-
clusion algorithm for the cache-coherent model. It is based on a queue, uses
bounded space, performs a bounded number of RMAs per invocation in the
worst case, and performs O(k2) RMAs per invocation if at most k processes
abort concurrently.

We first define an object type, S-HAD, from which it is easy to construct a
local-spin abortable mutual exclusion algorithm. S-HAD is a sequence of records,
each owned by a different process. It supports three operations: Append, which
appends a record at the end of the sequence, Delete, which deletes a record
from the sequence, and Head, which checks whether a record is at the head of
the sequence. Only the process that owns a record can perform these operations
with that record.

N.A. Lynch and A.A. Shvartsman (Eds.): DISC 2010, LNCS 6343, pp. 130–132, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Fast Local-Spin Abortable Mutual Exclusion with Bounded Space 131

To enter the CS, a process Appends a new record to an S-HAD object and
then keeps performing Head until its record is at the head of the sequence. If
the process wants to exit from the CS or abort, it Deletes its record.

We give two wait-free implementations of an S-HAD object in which each pro-
cess performs O(N2) RMAs between beginning a call to Append and completing
its subsequent call to Delete. Hence, the resulting abortable mutual exclusion al-
gorithms have O(N2) RMA complexity. Our first implementation uses unbounded
space and the second improves it to have O(N2) space complexity.

We represent an S-HAD object by an intree of records, each with a pointer
to a previously appended record and a flag that indicates whether the record is
in the S-HAD sequence or has been logically deleted. The root of the tree is a
dummy record, which is never deleted. All records in the S-HAD sequence are
on the same path to the root and the one that is closest to the root is at the
head of the sequence. There is also a fetch and store (or swap) object, Tail
that initially points to the root. To perform Append(R), a process atomically
reads Tail and updates Tail to point to R. Hence, Tail always points to the
record that was appended most recently.

During Head(R), if R points to a logically deleted record R′, then R’s pointer
is set to where R′ points. Note that different processes may perform such pointer
updates simultaneously. Pointer updates are performed until R points to a non-
deleted record, which is the root if and only if R is at the head of the S-HAD
sequence. During Delete(R), a process first sets R’s flag to indicate that R is
logically deleted and then repeatedly performs pointer updates as in Head.

We prove that, if a process owns a record R and also owns an ancestor of
R, then some record R′ from R upto but not including that ancestor is either
still in the S-HAD sequence, or has been logically deleted but its owner is still
performing Delete(R′). This implies that the tree has O(N2) height and a
process performs O(N2) RMAs between a call to Append and completing its
subsequent call to Delete. Moreover, if O(k) processes perform Delete con-
currently, then a process performs O(k2) RMAs in this period. In particular,
if there are no aborts, then the resulting mutual exclusion algorithm performs
O(1) RMAs per invocation.

In our first implementation, each time a process performs Append, it uses
a new record. Deleted records are not deallocated. Thus, it uses unbounded
space. Our second implementation uses only O(N2) records. It achieves this by a
new, wait-free memory reclamation method that generalizes reference counting.

The reference counter (rc) of a record stores an upper bound on the num-
ber of pointers in shared memory that point to it. A record can be deallo-
cated only when its rc is zero. To avoid incrementing the rc of a record that
has been deallocated, a process can use double compare and swap to simul-
taneously verify that some other pointer still points there [2]. Unfortunately,
double compare and swap is not usually available. Valois [5] presented a
reference counting method using fetch and add, but our algorithm combined
with his method has θ(N4) RMA complexity.

132 H. Lee

In our new memory reclamation method, each record has two counters in
addition to an rc: a proactive counter (pc), which is stored together with its
pointer in a single variable, and a distributed reference counter (dc), which is
stored together with its rc in a single variable. They are used to keep track
of pointers that have been read and may be written to shared memory in the
future. A pc stores the number of times its associated pointer has been read
since it was last updated. The value of a pointer’s pc is transferred to the dc

of the record it pointed to after the pointer is updated. The sum of the pc’s of
all records that point to R plus the dc of R is at most the number of times a
pointer to R has been read minus the number of times a pointer to R has been
overwritten. When a new record is created, its rc and dc are initialized to one
and its pc is initialized to zero.

Before writing a pointer to a record, a process must read a pointer to that
record and then increment its rc. When a process reads a pointer, it also incre-
ments its pc at the same time, using fetch and add. When a pointer to R is
overwritten to point to another record or to NIL, the pointer’s pc is also read
and set to zero at the same time, using fetch and store. Then it atomically
adds the value it read from the pointer’s pc to R’s dc and decrements both R’s
rc and R’s dc, using fetch and add.

A record R can be deallocated only after both its rc and dc have been set to
zero and its owner has finished Delete(R). To ensure this, when a process sets
both R’s rc and R’s dc to zero and when R’s owner finishes Delete(R), they
perform test and set on a variable, done, in record R. If a process sees that
done was already set, it updates R’s pointer to NIL and then deallocates R.
Note that this pointer update may cause another record’s rc and dc to become
zero. This is handled recursively.

Acknowledgments. I thank my advisor Professor Faith Ellen for numerous
helpful suggestions during the writing of this paper.

References

1. Danek, R., Lee, H.: Brief Announcement: Local-Spin Algorithms for Abortable Mu-
tual Exclusion and Related Problems. In: Taubenfeld, G. (ed.) DISC 2008. LNCS,
vol. 5218, pp. 512–513. Springer, Heidelberg (2008)

2. Detlefs, D.L., Martin, P.A., Moir, M., Steele Jr., G.L.: Lock-Free Reference Count-
ing. In: The 20th Annual ACM Symposium on Principles of Distributed Computing,
pp. 190–199 (2001)

3. Jayanti, P.: Adaptive and Efficient Abortable Mutual Exclusion. In: Proceedings of
the 22th Annual ACM Symposium on Principles of Distributed Computing (July
2003)

4. Scott, M.L.: Non-blocking Timeout in Scalable Queue-based Spin Locks. In: The
21st Annual Symposium on Principles of Distributed Computing (July 2002)

5. Valois, J.D.: Lock-Free Linked Lists Using Compare-and-Swap. In: Proceedings of
the Fourteenth Annual ACM Symposium on Principles of Distributed Computing,
pp. 214–222 (1995)

What Is the Use of Collision Detection
(in Wireless Networks)?

Johannes Schneider and Roger Wattenhofer

Computer Engineering and Networks Laboratory,
ETH Zurich, 8092 Zurich, Switzerland

Abstract. We show that the asymptotic gain in the time complexity
when using collision detection depends heavily on the task by investi-
gating three prominent problems for wireless networks, i.e. the maximal
independent set (MIS), broadcasting and coloring problem. We present
lower and upper bounds for all three problems for the Growth-Bounded
Graph such as the Unit Disk Graph. We prove that the benefit of col-
lision detection ranges from an exponential improvement down to no
asymptotic gain at all. In particular, for the broadcasting problem our
deterministic algorithm is running in time O(D log n). It is an exponen-
tial improvement over prior work, if the diameter D is polylogarithmic
in the number of nodes n, i.e. D ∈ O(logc n) for some constant c.

1 Introduction

When studying distributed algorithms for wireless networks, the algorithm de-
signer usually chooses between two models. The popular radio network model
buys into worst-case thinking: Concurrent transmissions cancel each other be-
cause of interference, usually to a degree such that a potential receiver cannot
even sense that there has been a message collision. On the other hand, the local
model is used to abstract away from media access issues, allowing the nodes to
concurrently communicate with all neighbors.

Clearly, the local model is too optimistic. The radio network model, however,
often is too pessimistic. Most wireless devices can distinguish at least four states:
(i) either the wireless node is transmitting itself and is therefore not capable of
noticing any other communication, or it is silently listening, usually allowing it to
differentiate between the other three states: (ii) the media is free because nobody
is transmitting, (iii) at least one node is transmitting and the message can be
decoded, and (iv) more than one node is transmitting but no message can be
decoded. In the last case the listening node can sense that there are transmissions
happening, e.g. there is energy on the channel in a wireless network. This model
is called the collision detection model.

Furthermore, many algorithms for wireless networks are designed for gen-
eral graphs. This model does not capture the nature of (somewhat) circular
transmission ranges of wireless devices. Therefore, within the wireless comput-
ing community the so-called Unit Disk Graph (UDG) and variations of it, e.g.
the Quasi Unit Disk Graph, have been widely adopted. In the UDG two nodes

N.A. Lynch and A.A. Shvartsman (Eds.): DISC 2010, LNCS 6343, pp. 133–147, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

134 J. Schneider and R. Wattenhofer

are adjacent if their distance is at most 1. We use a generalized model of these
geometric graphs, i.e. Growth-Bounded Graphs (GBG), which restrict the size of
an independent set in the neighborhood of a node. Interestingly, we show that
the lower bound for general graphs without collision detection for deterministic
broadcasting can be adapted to GBG without any asymptotic change. The lower
bound for randomized algorithms can be adapted as well yielding no asymptotic
change already for graphs of polylogarithmic diameter (in the number of nodes
n). Thus, the choice of the GBG model does not seem to render the problem
more simple.

We make the same assumptions about the graph, wake-up, topology etc. in
both models. In particular, we assume that an estimate of n is known. Without an
estimate of n a transmission takes Ω(n

log n) in the radio network model, yielding a
clear advantage for algorithms employing collision detection. For an overview of
lower and upper bounds see Table 1. All in all, an advantage of collision detection
is that it allows to design fast deterministic algorithms giving reliable bounds on
the time complexity. For example, our MIS algorithm is asymptotically optimal,
and also considerably faster (i.e. a factor of log n/ log log n) than the best possible
MIS algorithm for the radio network model. For broadcasting, our deterministic
algorithm can be exponentially faster than the best deterministic counter part in
the radio network model. For coloring, the current lower and upper bound show
that there cannot be an asymptotic gain for randomized algorithms for graphs
of maximal degree Δ ∈ Ω(log2 n).

Table 1. Comparison of deterministic (det.) and randomized (ra.) algorithms with/
without collision detection for various problems in GBG

Upper and Lower Bounds
Problem With Collision Detection Without
MIS O(log n) det. [This paper] O(log2 n) ra. [14]

Ω(log n) [This paper] Ω(log2 n/ log log n)[9]
Δ + 1 Col. O(Δ + log2 n) ra. [16] O(Δ + log2 n) ra. [16]

Ω(Δ + log n) [This paper] Ω(Δ + log n) [This paper]
Broadcast O(D log n) det. [This paper] O(n log n) [10] det.

Ω(D + log n) [This paper] Ω(n logn/D n) det. [10][This paper]

2 Related Work

The MIS problem has been studied in many types of graphs using many dif-
ferent models, e.g. the UDG and its generalization the GBG [12] or geometric
radio networks (GRN), e.g. [5]. In the weaker GRN model nodes are positioned
in the plane and each node knows its coordinates by a GPS device or some
other means (and sometimes also the coordinates of its neighbors or a bound on
the distances). A node v is connected to all other nodes within some distance
dist(v). Often the distance is equal for all nodes, e.g. [5], and thus connectivity

What Is the Use of Collision Detection (in Wireless Networks)? 135

is the same (up to a scaling factor) as for UDG. In the message passing model,
where all nodes can exchange messages at the same time (without collisions),
an asymptotically optimal MIS algorithm was stated in [15] needing O(log∗ n)
communication rounds for GBG. We extend this algorithm in several ways in
this paper. If collisions can occur, but may not be detected, in [14] a randomized
algorithm taking time O(log2 n) was given, which is optimal up to a factor of
O(log log n)[9]. It even works for arbitrary wake-up, i.e. nodes do not share global
time.

For the well-studied broadcasting problem under the assumption of unknown
topology and conditional (also called non-spontaneous) wake-up, i.e. a node can
perform any computation only after detecting some activity (e.g. receiving the
message or detecting energy on the channel) an optimal randomized algorithm
was given in [10] running in O(D · log(n/D) + log2 n) assuming collisions (but
no detection) in general (undirected) graphs. In the deterministic case in the
same paper an algorithm is described requiring O(n · log2 D) steps, which is
optimal up to factor of O(log D) [3]. We extend the lower bound for deterministic
algorithms[10] as well as the Ω(D · log(n/D)) bound for randomized algorithms
[13] to GBG. The Ω(log2 n) lower bound[1] cannot be extended in the same
manner as discussed in Section 5.

In [2] it was shown how to broadcast a message of size O(k) in time O(k ·D)
by using collision detection to forward a message bit by bit in arbitrary graphs.
In the same paper the currently fastest deterministic algorithm for arbitrary
message size also using collision detection was given taking time O(n ·D). Thus
for the crucial class of GBG in the area of wireless networks our algorithm
is an exponential improvement for graphs of polylogarithmic diameter. In [8]
broadcasting is discussed with and without collision detection using “advice”,
i.e. each node is given some number of bits containing arbitrary information
about the network. It is shown that for graphs, where constant broadcasting
time is possible, O(n) bits of advice suffice to achieve optimal broadcasting time
without collision detection, whereas o(n) bits are not enough (even with collision
detection at hand). In case of GRN only a constant number of bits is sufficient.

[5] assumes a GRN, where every node can detect collisions and knows its
position. This allows to assign nodes into grid cells, which is the key to achieve
asymptotically optimal broadcasting time of Θ(D + log n).

In [11] an O(n) time deterministic algorithm for the problem of leader election
with collision detection for arbitrary networks was given. In [19] a randomized
leader election protocol is given for single-hop networks running in expected time
O(log log n). In [4] deterministic algorithms for consensus and leader election
were studied for single-hop networks, i.e. the underlying graph forms a clique.
With collision detection both tasks can be performed in Θ(log n), whereas with-
out collision detection time Ω(n) is required. As in this paper (see Algorithm
Asynchronous MIS), round coding was used to synchronize rounds. For single-
hop networks time Ω(k(log n)/ log k) [7] is needed by any deterministic algorithm
until k stations out of n transmit using collision detection.

136 J. Schneider and R. Wattenhofer

3 Model and Definition

Communication among nodes is done in synchronized rounds. In every round a
node v can either listen or transmit. A listening node v can successfully receive
a message in round i, if exactly one neighbor u ∈ N(v) was transmitting in
round i. We say a node v detected transmission (dT) in round i, if the node was
listening in round i, if it has at least one transmitter in its neighborhood N(v).

We assume that n is known and all nodes have unique IDs from the interval
[1, n] using the same number of bits, i.e. small IDs have a prefix with 0s such
that all IDs have equal length.1 All our algorithms are shown to work in case
of asynchronous wake-up, i.e. each node wakes-up at an unknown point in time.
Only after its wake-up it is able to follow ongoing communication. The time
complexity of an algorithm denotes the number of rounds until a solution has
been computed for all nodes, i.e. it denotes the time from the wake-up of the
last node until all nodes have computed a solution. For broadcasting we focus
on conditional (or non-spontaneous) wake-up, where nodes wake-up and can
perform computations (and transmissions) only after they detected transmission
for the first time.

A set S is a maximal independent set (MIS), if any two nodes u, v ∈ S have
hop distance at least 2 and every node v ∈ V \ S is adjacent to a node u ∈ S. A
MIS S of maximum cardinality is called a maximum independent set. We model
the communication network using undirected growth-bounded (also known as
bounded-independence) graphs(GBG):

Definition 1. A graph G = (V, E) is growth-bounded if there is a polynomial
bounding function f(r) such that for each node v ∈ V , the size of a MaxIS in
the neighborhood N r(v) is at most f(r), ∀r ≥ 0.

In particular, this means that for a constant c the value f(c) is also a constant.
A subclass of GBGs are (Quasi)UDGs, which have f(r) ∈ O(r2).

We denote by log(j) n the binary logarithm taken j times recursively. Thus
log(1) n = log n, log(2) n = log log n, etc. To improve readability we assume that
log(j) n is an integer for any j. The term log∗ n denotes how often one has to
take the logarithm to get down to 1, i.e. log(log∗ n) n ≤ 1.

4 MIS Algorithm

We present an algorithm containing the most essential ideas assuming simulta-
neous wake-up of all nodes in Section 4.1. In Section 4.2 we show how to extend
the algorithm to allow for arbitrary wake-up times.

4.1 MIS, Synchronous Wake-Up

In our deterministic algorithm a node performs a sequence of competitions against
neighbors. After a competition a node might immediately compete again or it
1 A polynomial bound nc of the number of nodes n and IDs chosen from the range

[1, nc], would yield the same asymptotic run time for all our algorithms.

What Is the Use of Collision Detection (in Wireless Networks)? 137

might drop out and wait for a while or it might join the MIS. During a compe-
tition a node transmits a value in a bit by bit manner, i.e. one bit per round only.

Since messages cannot be exchanged in parallel among interfering nodes, it
looks like one communication round of a competition in the local model requires
potentially Δ + 1 rounds in the collision detection model. However, concurrent
communication despite interference is possible, if a node v transmits its value
rj
v (with r0

v := IDv) bit by bit (line 8 to 14), to get value rj+1
v which is used

to update its state and for the next competition. In case bit k of rj
v is 1, node

v transmits otherwise it listens. It starts from the highest order bit of rj
v and

proceeds bit by bit down to bit 0. As soon as it detected a transmission for
the first time, say for bit l, node v sets its value rj+1

v to l (line 11) and does
not transmit for the remaining bits. If it has never detected a transmission
while communicating rj

v, its result is log(j) n. For example, consider the first
competition of three nodes u, v, w, which form a triangle. Let IDu be 1100, IDv

be 1001 and IDw be 1101. Initially, all assume to have have highest ID, i.e. result
r1
u = r1

v = r1
w = 4. In the first round all nodes transmit. In the second u and w

transmit. Node v detects a transmission and sets its result to 1 and waits. In the
third round no node transmits and in the fourth round w transmits and node u
sets its result to 3, while w keeps its (assumed) result 4.

After each competition the states are updated in parallel (see algorithm Up-
date State). A node starts out as undecided and competes against all undecided
neighbors. For the first competition, which is based on distinct IDs, we can be
sure that when node v transmitted its whole ID, i.e. has result r1

v = log n, no
other node u ∈ N(v) has the same result r1

v = r1
u = log n, since IDs differ. Thus,

node v joins the MIS and informs its neighbors. All nodes in the MIS and their
neighbors remain quiet and do not take part in any further competitions. For any
competition j > 1 several nodes might be able to transmit their whole result bit
by bit without detecting a transmission, e.g. rj+1

u = rj+1
v = log(j) n for two ad-

jacent nodes u, v. In this case, node v changes its state to marked M . A marked
node is on its way into the MIS but it will not necessarily join. A neighbor of
a marked node remains quiet for a while. More precisely, the algorithm can be
categorized into stages (lines 3 to 17), consisting of f(2) + 1 phases (lines 4 to
13), being composed of a sequence of log∗ n+2 competitions. A node changes its
state from undecided to some other state within a phase. An M node changes
back to undecided after a phase (line 16). A neighbor of a marked node, i.e. an
NM node, changes back to undecided after a stage (line 18) and competes again
in the next stage.

In order to update the state of neighbors of nodes having joined the MIS or
having become M , two rounds are reserved. One round is used by M nodes to
signal their new presence (line 4 in Algorithm Update State) and the other by
MIS nodes (line 7). All other nodes listen during these rounds and update their
states if required (lines 10 and 11).

Theorem 1. The total time to compute a MIS is in O(f(f(2) + 2) logn) =
O(log n) and messages of one bit are sufficient.

The proof for Algorithm MIS can be found in the technical report [17].

138 J. Schneider and R. Wattenhofer

Algorithm MIS

For each node v ∈ V
1: State sv := undecided
2: for l:=1 to f(f(2) + 2) by 1 do
3: for i:=0 to f(2) by 1 do
4: r0

v := IDv

5: for j:=1 to log∗ n + 2 by 1 do
6: rj

v := log(j) n
7: for k:=0 to log(j) n by 1 do
8: if sv = undecided then
9: if (Bit k of rj−1

v = 1) ∧(rj
v = log(j) n) then transmit

10: else if (Detected transmission) ∧(rj
v = log(j) n) then rj

v := k
11: end if
12: end if
13: end for
14: Update state sv

15: end for
16: if sv = M then sv := undecided end if
17: end for
18: if sv = NM then sv := undecided end if
19: end for

4.2 MIS, Asynchronous Wake-Up

Unfortunately, asynchronism introduces some difficulties. For instance, if a node
wakes up and transmits without having any information about the state of its
neighbors then it might disturb and corrupt an ongoing computation of a MIS.
Therefore, all nodes inform their neighbors concurrently about their state and
current activity. We guarantee a synchronous execution of Algorithm MIS with-
out disturbance of woken-up nodes by using a schedule repeating after six rounds
(see Algorithm Asynchronous MIS).

The idea is that nodes involved in a computation (or in a MIS) transmit periodi-
cally and thereby, force woken-up neighbors to wait. More precisely, upon wake-up
a node listens until no neighbor has transmitted for 7 rounds. If a node has detected
transmission for two consecutive rounds it knows that there is a neighbor in the
MIS. A node executes Algorithm MIS by iterating the six round schedule as soon as
it has not detected transmission for 7 rounds. A node transmits in the first round, if
it executes or is about to execute Algorithm MIS (during round 3 of the schedule).
This ensures that for a node v either a neighbor starts executing Algorithm MIS
concurrently with v or it waits until v has completed the algorithm. In the second
and fourth round no transmissions occur. A node transmits in the fifth and sixth,
if it is in the MIS. The schedule is iterated endlessly in order that nodes in the MIS
continuously inform woken-up neighbors about their presence. This prevents them
from attempting to join the MIS.

Let tMIS denote the time Algorithm (synchronous) MIS takes for computing
a MIS when all nodes start synchronously.

What Is the Use of Collision Detection (in Wireless Networks)? 139

Algorithm Update State

For each node v ∈ V
1: if (sv = undecided) ∧ (rj

v = log(j) n) then
2: if j = 1 then
3: sv := MIS
4: Wait 1 round and transmit
5: else
6: sv := M
7: Transmit and wait 1 round
8: end if
9: else

10: if (Detected transmission) ∧(sv = undecided) then sv := NM end if
11: if Detected transmission then sv := NMIS end if
12: end if

Asynchronous MIS

Upon wake-up:
1: Listen until no transmission detected for 7 consecutive rounds
2: if ever detected transmission for 2 consecutive rounds then sv := NMIS else

sv := executing; SixRoundSchedule() end if

SixRoundSchedule():
3: loop forever
4: if sv = executing then Transmit else Sleep end if
5: Sleep
6: if sv = executing then Execute 1 step in Algorithm MIS (Section 4.1) else

Sleep end if
7: Sleep
8: if sv = MIS then Transmit twice else Sleep two rounds end if
9: end loop

Theorem 2. Algorithm Asynchronous MIS computes a MIS in time O(tMIS).

Proof. If a set of nodes U ⊆ V start Algorithm MIS synchronously and are not
disturbed by any node w /∈ U interfering the computation then a correct MIS is
computed (see Analysis Algorithm MIS). A node v computing a MIS transmits
a message at least every six rounds, since a neighbor u ∈ N(v) must not start
Algorithm MIS if it detected transmission within seven rounds, it cannot start
a computation if it woke-up while v is active. Consider an arbitrary pair u, v
of neighboring nodes, e.g. u ∈ N(v) that are awake but not executing Algo-
rithm MIS. If node v has not detected a transmission for seven rounds, it starts
transmitting a message periodically every six rounds and executes Algorithm
MIS. Any neighbor of v, i.e. u, that does not start at the same time, detects a
transmission from v and waits.

If a node v detects two consecutive transmissions a neighbor must be in the
MIS and does not take part in any new computation of a MIS. In case, it detects

140 J. Schneider and R. Wattenhofer

transmissions (but non-consecutive) ones, some neighbor u ∈ N(v) is executing
Algorithm MIS. Thus within time O(tMIS) a node w ∈ (N(u) ∪ u) ⊆ N2(v)
within distance 2 from v joins the MIS. Since the size of a maximum indepen-
dent set within distance 2 is bounded by f(2) (see Model Section) within time
O(f(2)tMIS) = O(tMIS) node v is in the MIS or it has a neighbor in the MIS.

4.3 Broadcast Algorithm

Our deterministic algorithm iterates the same procedure, i.e. the same schedule,
using a fixed number of rounds. First, the current set of candidates (rounds 1
and 2) for forwarding the message is determined. A candidate is a node having
the message and also having a neighbor lacking it. Second, some candidates are
selected using a leader election algorithm, i.e. by computing a MIS. Finally, the
chosen nodes transmit the message to all their neighbors without collision. If
all nodes in the MIS transmitted the message concurrently, then no node might
receive the message. This is because any node can be adjacent to more than one
node in the MIS and suffer from a collision if all of them transmit concurrently.
For that reason we must select subsets of the nodes in the MIS and let the nodes
in each subset transmit in an assigned round. Explicitly constructing such sets
is difficult in a distributed manner because a node in the MIS is unaware of the
identities of the other nodes in the MIS. However, we can use the combinatorial
tool of so called (n, k)-strongly selective families[6] of sets F = {F0, F1, ..., Fm−1}
with Fi ⊆ V , which yield a direct transmission schedule of length |F| = m for
each node in the MIS, such that every node out of the given set of k nodes can
transmit to all its neighbors without collision. A node v transmits in round i if
v ∈ Fi.

An essential point for making fast progress is that we distinguish between
nodes that have (just) received the message and never participated in a leader
election and nodes that have the message and already did so. The former ones,
i.e. new candidates, are preferred for forwarding the message, since, generally,
they have more neighbors lacking the message.

More precisely, in our deterministic Algorithm DetBroadcast (see Table 2) a
node lacking the message (state LackMsg) that receives the message immediately
joins the computation of leaders, i.e. of a MIS, in the next execution of the
schedule by switching to state CompMIS. After it has participated in the leader
election once, it switches to state HaveMsg if it has not become a leader. If it
has become a leader, i.e. is in the MIS, it transmits the message and exits. A
node can only reattempt to become a leader, i.e. switch back to state CompMIS,
in case no neighbor of it has just received the message, i.e. changed from state
LackMsg to CompMIS.

Next, we show that all neighbors of a candidate get the message within loga-
rithmic time.

Theorem 3. Any candidate v ends the algorithm in time O(log n).

Proof. For any node v at most f(2) nodes u ∈ N2(v) are in state CompMIS in
round tM +3, i.e. after the execution of the MIS algorithm. This follows from the

What Is the Use of Collision Detection (in Wireless Networks)? 141

Table 2. Algorithm DetBroadcast, where dT stands for (has) detected transmission
and returns true, if a node has listened and detected a transmission.

Schedule State sv = CompMIS sv = HaveMsg sv = LackMsg

Round 1 Transmit Listen
2 Listen if dT then Transmit

if not dT then exit

3
Transmit if not dT then Sleep

sv := CompMIS

FOR i=1..tMIS

3 + i
Compute step i of Sleep
Algorithm MIS

ENDFOR
still round If not joined MIS then
tMIS + 3 sv := HaveMsg

FOR i=1..|F|

3 + tM + i
if v ∈ Fi then Sleep if received msg then
Transmit msg sv := CompMIS

ENDFOR
still 3 + tM + |F| sv = HaveMsg

correctness of the MIS algorithm and the definition of GBG. For the existence
of a strongly related (n, f(2)) family of size O(f(2)2 log n), we refer to [6]. The
time to compute a MIS is O(f(f(2)+2) logn) as shown in Theorem 1. Thus one
execution of the schedule takes time O((f(f(2) + 2) + f(2)2) log n).

Either a candidate v is computing a MIS itself or at least one neighbor u ∈
N(v) does so. Assume neighbor u participates in computing a MIS S0, joins
the MIS and transmits. At least a subset of the neighbors U ⊆ N(u) receives
the message for the first time and any candidate w ∈ U participates in the
next computation of a MIS S1. Assume at least one candidate w ∈ U exists,
i.e. |U | > 0, and a neighbor x ∈ N(w) joins the MIS. Note that x /∈ N(u),
since u transmitted the message to all its neighbors w ∈ N(u). Therefore, all
nodes w ∈ N(u) have changed to state HaveMsg before the computation of
S1. Therefore, some node x ∈ N(w) \ N(u) receives the message for the first
time and participates in the next computation of a MIS S2. Assume a node
y ∈ N(x) ∩ x joins the MIS. This node y is not adjacent to u, i.e. y /∈ N(u),
because no nodes N(u) ∩ N(x) participate together with y since all neighbors
N(x) changed to state HaveMsg before the computation of S2. Thus node y
is independent of all nodes in the MIS S0 that transmitted and also any prior
nodes that transmitted. Therefore node v gets a transmitting (independent) node
with three computations of a MIS within distance 4. The maximum size of any
independent set is bounded by f(4) within distance 4. Therefore within time
O((f(f(2) + 2) + f(2)2)f(4) log n) = O(log n) all neighbors of node v must have
received the message and therefore node v cannot be a candidate any more.

Theorem 4. Algorithm DetBroadcast finishes in time O(D log n) for a GBG.

142 J. Schneider and R. Wattenhofer

Proof. Due to Theorem 3 any neighbor of a node having the message also receives
it within time O(log n). Therefore, within time O(D log n) any node receives the
message.

5 Lower Bounds For MIS, Coloring and Broadcasting
With Collision Detection

To begin with, we present two lower bounds. One showing that indeed Ω(Δ)
colors and time is needed to color a GBG and one that shows that for any Δ, i.e.
also Δ ∈ O(1), time Ω(log n) is needed even to make a successful transmission
with high probability, i.e. 1−1/n. The second lower bound implies a bound on the
MIS and the same techniques imply an Ω(log n) lower bound for broadcasting.

Theorem 5. Any (possibly randomized) algorithm requires time Ω(Δ) (in ex-
pectation) to compute a Δ + 1 coloring with high probability in a GBG (with or
without collision detection).

In the proof we use an argument based on information theory. Essentially, any
node must figure out the identities of the nodes in its neighborhood. We show
that the amount of possibly shared information about the neighborhood with
Ω(Δ) communication rounds is not sufficient to narrow down the options of
distinct neighborhoods sufficiently.

Proof. Let the disconnected graph G consist of a clique C of Δ nodes and some
other arbitrary subgraph such that no node v ∈ C is adjacent to a node u /∈ C. To
color the clique C, any algorithm requires Δ + 1 colors. We restrict the possible
choices of

(
n

Δ+1

)
cliques as follows. We pick (Δ + 1)/2 sets S0, S1..., S(Δ+1)/2−1,

each consisting of 4 nodes, i.e. |Si| = 4.(We assume that 4(Δ + 1) ≤ n.) The
algorithm gets told all the sets Si and that out of every set Si consisting of four
nodes, two nodes are in the clique C. However, it is unknown to the algorithm
which two nodes out of the four are actually chosen. The algorithm must reserve
two of the Δ + 1 colors for each set Si, i.e. the (unknown) nodes in the set.
Assume (without loss of generality) that the algorithm assigns colors 2i and
2i + 1 to the chosen nodes of set Si.

Assume an algorithm could compute a correct coloring in time Δ/c0 for some
constant c0 ≥ 6. Within Δ/c0 rounds at most Δ/c0 out of the Δ + 1 nodes in the
clique can transmit without collision. Assume that even if there is a collision due
to some transmitters, say u, v, w, in a round i, all nodes in the clique receive one
message of the same node, say all nodes receive v’s message.(Note, that more infor-
mation about the neighborhood can only benefit a node.) Additionally, any node
can detect whether there was 0,1 or more than 1 transmitter in its neighborhood.
For an upper bound assume a node v ∈ C gets to know Δ/c0 of its neighbors, i.e.
receives one message of each of these Δ/c0 nodes, and additionally, it receives two
bits of information in each round, i.e. one of the values {0, 1, > 1} can be encoded
by two bits of information, e.g. bits 11 correspond to > 1 transmitters, bits 10 cor-
respond to 1 transmitter and bits 00 correspond to none. Thus, in total a node v

What Is the Use of Collision Detection (in Wireless Networks)? 143

gets to know at most 2Δ/c0 bits. Observe that every node gets the same informa-
tion, i.e. bits. The transmitted information is used to figure out, which two nodes
of each set Si are actually in the clique C in order to get a correct coloring. Since
the algorithm is supposed to know already Δ/c0 nodes, at least for (1−1/c0)Δ/2
leftover sets Si no node of the set transmitted its identity. Therefore the algorithm
can use the 2Δ/c0 bits to figure out the identities of the (1− 1/c0)Δ nodes of the
(1−1/c0)Δ/2 leftover sets Si. Thus, any algorithm must decide on how many bits
it spends on determining the two nodes out of the four possible in each set that
are actually in its neighborhood. On average, it can use (2Δ/c0)

(1−1/c0)Δ/2 = 4/(c0 − 1)
bits per set. For c0 = 9 for at least half all sets Si the algorithm can use at most
1 bit. Assume set S0 consists of nodes {a, b, c, d}. Any node in the set S0 must
make a decision, which of the two colors {0, 1}, it chooses based on its ID and a
single bit. Assume node a decides in favor of color 1 given it received bit 0, i.e.
col(a|0) = 1. Then all other nodes in the set must decide to pick color 0 if they
receive bit 0, i.e. col(b|0) = 0, col(c|0) = 0 and col(d|0) = 0. If not, consider a
node x ∈ S0 that also decides in favor of color 1. In this case, if a and x are cho-
sen to be in the clique C, both are adjacent and choose the same color. Thus the
coloring is incorrect. Assume all nodes receive bit 1 and assume col(a|1) = 0 then
col(b|1) = 1, col(c|1) = 1 and col(d|1) = 1. Thus, if out of the set S0, nodes b, c
are chosen then both decide on the same color, whatever the given bit is, i.e. they
both pick color 0 if the given bit is 0 and color 1 if the bit is 1. If col(a|1) = 1
then col(b|1) = 0, col(c|1) = 0 and col(d|1) = 0 and nodes b, c decide on color
0 whatever the given bit is. Thus the coloring cannot be correct. Randomization
can not increase the amount of exchanged information. Thus, in the end any al-
gorithm must also decide on whether to choose color {0, 1} based on a single bit.
Through a case enumeration one can see that it is not possible to correctly guess
the right colors with probability more than 1/4. Assume col(a|0) = 1 with proba-
bility p≥ 1

2
≥ 1/2. Then all other nodes in the set must decide to pick color 0 with

probability p≥ 1
2

to have a chance higher than 1/4 of a correct coloring. Using the
same reasoning as for the deterministic case a maximum probability of 1/4 for a
correct coloring of a single set using only one bit follows. Since for at least half
of all (1 − 1/c0)Δ/2 sets Si with unknown nodes we can use at most one bit, we
expect at least 3/4(1− 1/c0)Δ/4 to be colored incorrectly.

Theorem 6. There exists a graph such that for any Δ > 1, any (possibly ran-
domized) algorithm using collision detection requires time Ω(log n) to compute
a MIS (in expectation).

Proof. Consider a (disconnected) graph where every node has degree 1, i.e. a
single neighbor. Assume every node v ∈ V knows that its degree in the network
is one but it is unaware of the identity of its neighbor u. Consider a sequence of
log n

8 rounds. For every node v ∈ V we can calculate the probability that node v

transmits in round 0 ≤ i < log n
8 given that it has not yet received a message but

transmitted itself or listened without detecting any transmission by its neighbor
for rounds 0 ≤ j < i. There must exist a set U of n7/8 nodes such that for every
round i with i ∈ [0, log n

8 − 1] all nodes in U transmit either with probability

144 J. Schneider and R. Wattenhofer

p≥ 1
2

at least 1
2 or with probability p< 1

2
less than 1

2 , since a node has only two
choices in each round (transmit or not). Thus, out of n nodes on average at least
n/2

log n
8 ≥ n7/8 must decide to transmit (and listen) in the same rounds for all

log n
8 rounds. Consider an arbitrary pair u, v ∈ U and assume they are adjacent.

The chance of a transmission from u to v or the other way around is at most
(1−p< 1

2
)·p< 1

2
+p≥ 1

2
·(1−p≥ 1

2
) ≤ 1

2 for one round, since any term p·(1−p) can be
at most 1/4. After all log n

8 rounds the probability is at most 1− 1

4
log n

8
≤ 1− 1

n1/4 .

Assume, we randomly create n7/8/2 pairs of nodes from the set U , such that the
two nodes from each pair are adjacent. We expect for n7/8/2/n1/4 = n5/8/2 pairs
that no message is exchanged. Thus the nodes from these pairs must make the
decision, whether to join or not to join the MIS based on the same information.
Let U1 ⊆ U be all nodes that decide to join the MIS with probability at least
1/2 if they have never received a message, i.e. transmitted in the same rounds
as their neighbor(s), and let all other nodes be in set U2 = U \ U1. Either U1
or U2 is of size at least |U |/2. Assume it holds for U1. If we pick pair after pair
then the probability that both nodes are taken from U1 is at least 1/16 for a
pair independent of all previously picked pairs as long as at most |U1|/4 ≥ |U |/8
pairs have been chosen, i.e. for the remaining nodes in U1 holds |U1| ≥ |U |/4.
Thus, we expect |U |/8/16 = |U |/128 pairs to have both nodes in the same set
U1 or U2. The chance that both join for a pair in U1 is p≥ 1

2
p≥ 1

2
≥ 1/4 or none

does for a pair in U2 is (1 − p< 1
2
)(1 − p< 1

2
) ≥ 1/4. Thus, 1/4 of all the pairs

having transmitted in the same round and being from the same set U1 or U2
either both join the MIS or not in expectation. The probability that at least half
of the expected n5/8/2/128/4 = n5/8/1024 pairs transmit in the same rounds,
i.e. do not exchange a message, and both nodes from the pair join the MIS or
both do not join is larger than 1−1/nc for some arbitrary large constant c using
a Chernoff bound. Thus the probability that the algorithm finishes in time less
than log n/8 is at most 1/nc.

The argument for the deterministic case is analogous, i.e. an equally large set
(as in the randomized case) of nodes must transmit in the same rounds and it is
not possible that all pairs correctly decide to join the MIS or not for all possible
choices of neighborhoods. More precisely, consider three nodes u, v, w that all
transmit in the same round (given their only neighbor is also one of u, v, w). If in
a graph G1 u, v are adjacent then either u or v must join the MIS without having
received a message from its neighbor, i.e. v is unaware whether its neighbor is
u, v or w. Assume u joins the MIS then v cannot join. If in a graph G2 v, w are
adjacent then both transmit the same sequence and since v does not join w has
to. Now if in a third graph u, w are adjacent then both join the MIS violating
the independence condition of a MIS.

Observe that the above theorem even holds for synchronous wake-up. Since one
can compute a MIS from a coloring in constant time, the lower bound also holds
for the MIS. More precisely, for the graph in the above proof with Δ = 1 one can
compute a MIS from a Δ+1 coloring by putting all nodes with color 0 in the MIS.

What Is the Use of Collision Detection (in Wireless Networks)? 145

Corollary 7. Any (possibly randomized) algorithm using collision detection re-
quires time Ω(log n) to compute a coloring in GBG (in expectation).

For broadcasting with conditional wake-up a lower bound of D is trivial. A lower
bound of Ω(log n) for networks of diameter two can be proven using the same
idea as for the proof of Theorem 6.

Theorem 8. There exists a graph such that for any Δ > 1, any (possibly ran-
domized) algorithm using collision detection requires time Ω(log n) to make a
transmission among all nodes with probability 1− 1

n .

Proof. Assume the following network of diameter two. The source is adjacent to
two nodes and these two nodes in turn are adjacent to all other nodes. Consider
a sequence of log n

2 rounds. For every node v ∈ V and every round i we can
calculate the probability that node v transmits in round 0 ≤ i < log n

2 given
that it has received the message (and possibly other information). There must
exist two nodes u, v such that for all log n

2 rounds either they both send with
probability at least 1

2 or less than 1
2 given they received the same information,

since any node has only these two options and we have that n > 2
log n

2 . Thus the
chance of a successful transmission of either u or v to its neighbor is at most 1

2
for one round and at most 1− 1

2
log n

2
= 1− 1√

n
after log n

2 ∈ Ω(log n) rounds.

6 Lower Bound for Broadcasting without Collision
Detection in GBG

The lower bounds for randomized [13] as well as for deterministic [10] algorithms
for general graphs can be adapted to GBG. Both rely on constructing a graph
with layers L0, L1, ..., LΩ(D), where nodes Li in layer i are independent and
they are at distance i from the source, i.e. broadcast initiator. In [10] the graph
consists of two alternating layers consisting of a single node in layer i that is
connected to all nodes Li+1 in layer i + 1. Only a subset Wi+1 ⊆ Li+1 of the
nodes in layer i+1 is connected to the single node in layer i+2. In the lower bound
graph in [13] the nodes in layer i are connected to some nodes Wi+1 ⊆ Li+1 in
layer Li−1 and Li+1. There are no fixed layers of single nodes. The difficulty
for the algorithm is figuring out the number of nodes in Li. If it knows the
number |Li| it can transmit with probability 1/|Li|, yielding an O(1) algorithm
to get to the next layer. However, in [13] one could also use the same topology
as in [10], i.e. every second layer consists only of a single node. Though this
allowed the algorithm to pass every second layer in one round by transmitting
with probability 1 for the other half of the layers the algorithm is unaware of
the number of nodes in a layer.

For GBGs it is not possible for a node v in layer i to have an arbitrary number
of independent nodes in layer i+1. Thus, we assume that all nodes in layer i form
a clique. Therefore, a node in layer i knows all the successful transmissions that
occurred in layer i. However, by elongating any protocol P by a factor of 4, the

146 J. Schneider and R. Wattenhofer

nodes in layer i in a general graph also know all successful transmissions in layer
i. The idea is to let all layers with single nodes repeat their received message
to the other layers. Since a single node is adjacent to two layers, it might face
a collision if a node from each of its adjacent layers transmits concurrently and
thus is not able to tell any layer if the transmission was successful. Thus, we
repeat 8 rounds in a round robin fashion. Any node in layer i executes one
step of the algorithm in round t if 2i mod 8 = t mod 8.2 Any node in layer i
transmits in round t if 2i− 1 mod 8 = t mod 8 and if it received a message in
the previous round. Thus a node in layer i having transmitted the message in
round t knows that some node in layer i transmitted without collision, if and
only if it detects transmission in round t + 1.

Thus, we have arrived at the following proposition:

Proposition 1. Any deterministic broadcasting algorithm takes time
Ω(n logn/D n) and any randomized broadcasting algorithm takes time Ω(D log n

D)
for GBG.

The lower bound of Ω(log2 n) [1] cannot be extended in the same manner. The
lower bound graph consists of two layers L1 and L2, where nodes within a layer
are independent. In particular, layer L2 consists of Ω(log n) nodes. Each node
l in L2 is connected to some set Hl of nodes in L1. There are Ω(log n) sets H
and in some round exactly one node from each set Hl must transmit in order
that all nodes in L2 receive the message. In GBG this is not the case, since in
L2 some nodes are adjacent, i.e. by definition of a GBG at most f(2) nodes in
L2 can be independent. Thus, a node in L2 having received the message might
forward it to other nodes in L2 and it might be sufficient that for only f(2) out
of all Ω(log n) sets H from L1 a node transmit to its neighbor in layer L2.

References

1. Alon, N., Bar-Noy, A., Linial, N., Peleg, D.: A lower bound for radio broadcast. J.
Comput. Syst. Sci. 43(2) (1991)

2. Chlebus, B., Gcasieniec, L., Gibbons, A., Pelc, A., Rytter, W.: Deterministic broad-
casting in unknown radio networks. In: Symp. on Discrete Algorithms, SODA
(2000)

3. Clementi, A.E.F., Monti, A., Silvestri, R.: Distributed broadcast in radio networks
of unknown topology. Theor. Comput. Sci. 302(1-3) (2003)

4. Czyzowicz, J., Gasieniec, L., Kowalski, D.R., Pelc, A.: Consensus and mutual ex-
clusion in a multiple access channel. In: Int. Symposium on Distributed Computing,
DISC (2009)

5. Dessmark, A., Pelc, A.: Broadcasting in geometric radio networks. Journal of Dis-
crete Algorithms 5 (2007)

6. Erdoes, P., Frankl, P., Fiiredi, Z.: Families of finite sets in which no set is covered
by the union of r others. Israel J. of Math. 51 (1985)

2 Note, that all nodes having the message are synchronized, i.e have global clocks, if
the message includes the current time t.

What Is the Use of Collision Detection (in Wireless Networks)? 147

7. Greenberg, A.G., Winograd, S.: A lower bound on the time needed in the worst
case to resolve conflicts deterministically in multiple access channels. J. ACM 32(3)
(1985)

8. Ilcinkas, D., Kowalski, D.R., Pelc, A.: Fast radio broadcasting with advice. Theor.
Comput. Sci. 411(14-15) (2010)

9. Jurdziński, T., Stachowiak, G.: Probabilistic Algorithms for the Wakeup Problem
in Single-Hop Radio Networks. In: Bose, P., Morin, P. (eds.) ISAAC 2002. LNCS,
vol. 2518, pp. 535–549. Springer, Heidelberg (2002)

10. Kowalski, D.R., Pelc, A.: Broadcasting algorithms in radio networks with unknown
topology. In: Distributed Computing, vol. 18 (2005)

11. Kowalski, D.R., Pelc, A.: Leader election in ad hoc radio networks: A keen ear
helps. In: ICALP (2) (2009)

12. Kuhn, F., Moscibroda, T., Nieberg, T., Wattenhofer, R.: Fast Deterministic Dis-
tributed Maximal Independent Set Computation on Growth-Bounded Graphs. In:
Fraigniaud, P. (ed.) DISC 2005. LNCS, vol. 3724, pp. 273–287. Springer, Heidelberg
(2005)

13. Kushilevitz, E., Mansour, Y.: An omega(d log(n/d)) lower bound for broadcast in
radio networks. In: Symp. on Principles of Distributed Computing (PODC) (1993)

14. Moscibroda, T., Wattenhofer, R.: Maximal Independent Sets in Radio Networks.
In: Symp. on Principles of Distributed Computing, PODC (2005)

15. Schneider, J., Wattenhofer, R.: A Log-Star Distributed Maximal Independent Set
Algorithm for Growth-Bounded Graphs. In: Symp. on Principles of Distributed
Computing PODC (2008)

16. Schneider, J., Wattenhofer, R.: Coloring Unstructured Wireless Multi-Hop Net-
works. In: Symp. on Principles of Distributed Computing, PODC (2009)

17. Schneider, J., Wattenhofer, R.: What Is the Use of Collision Detection (in Wireless
Networks). TIK Technical Report 322 (2010),
ftp://ftp.tik.ee.ethz.ch/pub/publications/TIK-Report-322.pdf

18. Tobagi, F.A., Kleinrock, L.: Packet Switching in Radio Channels: Part II - The
Hidden Terminal Problem in Carrier Sense Multiple Access and the Busy Tone
Solution. COM 23(12) (1975)

19. Willard, D.E.: Log-logarithmic selection resolution protocols in a multiple access
channel. SIAM Journal on Computing 15 (1986)

ftp://ftp.tik.ee.ethz.ch/pub/publications/TIK-Report-322.pdf

Deploying Wireless Networks with Beeps

Alejandro Cornejo1 and Fabian Kuhn2

1 Massachusetts Institute of Technology
2 University of Lugano

Abstract. We present the discrete beeping communication model, which
assumes nodes have minimal knowledge about their environment and severely
limited communication capabilities. Specifically, nodes have no information
regarding the local or global structure of the network, do not have access to
synchronized clocks and are woken up by an adversary. Moreover, instead on
communicating through messages they rely solely on carrier sensing to exchange
information. This model is interesting from a practical point of view, because it is
possible to implement it (or emulate it) even in extremely restricted radio network
environments. From a theory point of view, it shows that complex problems (such
as vertex coloring) can be solved efficiently even without strong assumptions on
properties of the communication model.

We study the problem of interval coloring, a variant of vertex coloring spe-
cially suited for the studied beeping model. Given a set of resources, the goal
of interval coloring is to assign every node a large contiguous fraction of the
resources, such that neighboring nodes have disjoint resources. A k-interval col-
oring is one where every node gets at least a 1/k fraction of the resources.

To highlight the importance of the discreteness of the model, we contrast it
against a continuous variant described in [17]. We present an O(1) time algo-
rithm that with probability 1 produces a O(Δ)-interval coloring. This improves
an O(log n) time algorithm with the same guarantees presented in [17], and ac-
centuates the unrealistic assumptions of the continuous model. Under the more
realistic discrete model, we present a Las Vegas algorithm that solves O(Δ)-
interval coloring in O(log n) time with high probability and describe how to
adapt the algorithm for dynamic networks where nodes may join or leave. For
constant degree graphs we prove a lower bound of Ω(log n) on the time re-
quired to solve interval coloring for this model against randomized algorithms.
This lower bound implies that our algorithm is asymptotically optimal for con-
stant degree graphs.

1 Introduction

Communication models face the unavoidable tension between their practicality and
their potential for designing interesting yet provably correct algorithms. With enough
assumptions concerning the knowledge of the deployment environment and the commu-
nication capabilities of the devices used, it is not difficult to design efficient and elegant
distributed algorithms. However, it is often difficult (if not impossible) to translate these
algorithms to the real world. On the other hand, communication models which are clut-
tered with physical details encumber designing algorithms, and makes it significantly
more complicated to prove correctness or efficiency.

N.A. Lynch and A.A. Shvartsman (Eds.): DISC 2010, LNCS 6343, pp. 148–162, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Deploying Wireless Networks with Beeps 149

This motivates the study of models such as the discrete beeping model considered
in the present paper. This model makes little demands on the communication devices,
nodes need only be able to do carrier sensing and differentiate between silence and
the presence of a jamming signal. Carrier-sensing can typically be done much more
reliably and requires significantly less energy and other resources than transmitting and
receiving actual messages , see e.g. [7]. Besides requiring reliable carrier sensing, we
make almost no assumptions. In particular, we do not assume knowledge of the local
or global structure of the network or synchronized clocks. Further, we assume that an
adversary controls when processors are woken up.

We show that even such a “weak” model allows for interesting algorithms for non-
trivial tasks. In particular we focus on the problem of interval coloring, a variant of
classic vertex coloring. Given a set of resources, the goal of interval coloring is to as-
sign each node a large contiguous fraction of the resources such that neighboring nodes
have disjoint resources. A k-interval coloring is one where every node gets at least a
1/k fraction of the resources. Similar to vertex coloring, interval coloring is a useful
building block to establish a reliable Medium Access Layer (MAC), as it can be used
to e.g. compute time or frequency division multiple access (TDMA or FDMA) sched-
ules that avoid conflict between potentially interfering nodes. In some sense, interval
coloring is even better suited for these tasks than standard graph coloring. While in a
standard coloring, every node gets assigned a single color (a single slot or frequency),
in an interval coloring, we can assign larger intervals to certain nodes (e.g. to nodes
with a small degrees). An interval then corresponds to multiple consecutive colors in a
standard coloring context.

Moreover, by relying exclusively on carrier sensing, the beeping model becomes
specially well-suited for coordination tasks in wireless networks for various reasons, for
example: � Most prior work [1, 3, 4, 9, 11, 14, 18, 24, 25] on coloring assumes some
existing infrastructure to reliably exchange messages. If used as a building block to e.g.
compute a TDMA schedule, these algorithms suffer from a chicken-and-egg problem;
such colorings cannot be computed without a reliable MAC layer, however to achieve
a reliable MAC layer one first needs to compute a coloring. A coloring algorithm for
the beeping model would not suffer from this problem, since the model makes almost
no assumptions on the communication infrastructure. � The presence of a signal can be
reliably detected by carrier sensing at lower receiving power than would be required to
correctly decode a message. Hence, carrier sensing can be used to communicate more
energy efficiently and over larger distances than when transmitting regular messages.
For example, by default the NS2 [26] simulator uses a carrier sensing range that is more
than twice as large as the transmission range. Therefore, the beeping model (carrier
sensing) can directly be used to compute a 2-hop interval coloring of the communication
graph (for regular transmission), a necessity when using the coloring for a MAC layer
that avoids hidden terminal collisions. � Although IEEE 802.11 and Bluetooth share the
same frequency spectrum, they use incompatible modulation and encoding schemes.
However since carrier sensing only detects the presence of a signal, it is potentially
possible for a IEEE 802.11 radio to detect the presence of a Bluetooth jamming signal
and vice versa. Therefore, algorithms for the beeping model could be used to allow these

150 A. Cornejo and F. Kuhn

two seemingly incompatible devices to agree on a non-conflict transmission schedule
thereby allowing them to coexist in a non-destructive fashion.

Contributions. We assume that there is a common globally known period length T .
This is a parameter of the algorithms which captures the number of resources to be
shared (e.g. the number of available frequencies in FDMA). The paper has three main
contributions.

First, we significantly improve a result from [17] for a continuous variant of the
beeping model. The authors of [17] describe an algorithm that solves O(Δ)-interval
coloring in O(log n) periods is described in [17]. Specifically they assign every node
v a Ω(1/dmax(v)) fraction of the resources, where dmax(v) is the largest degree in the
1-neighborhood of v. We describe a simpler algorithm that improves the results of [17]
by computing an interval coloring with the same properties in a constant number of
periods. Our result highlights the unrealistic assumptions behind the continuous model.

Second, we give a discrete variant of the beeping model and describe a Las Vegas
randomized interval coloring algorithm for the discrete model. The algorithm computes
a O(Δ)-interval coloring in O(log n) periods with probability 1− 1

n . Furthermore, we
describe how to adapt the algorithm to work in a dynamic graph setting where nodes
can join and leave arbitrarily. A new node obtains an interval at most O(log n) periods
after joining the network, and a node only recomputes its interval if the size of its
neighborhood becomes drastically smaller. The correctness proof of both the static and
dynamic versions of the algorithm rely on a balls and bins analysis.

Finally, for a local broadcast model with constant size messages, we prove a lower
bound of Ω(log n) time against randomized algorithms that solveO(Δ)-vertex coloring
(orO(Δ)-interval coloring). For the discrete beeping model this implies a lower bound
of Ω(log n) periods for constant-degree graphs and Ω(log n/Δ) for general graphs.
Moreover, if we restrict the number of beeps per period toO(1) it yields a lower bound
of Ω(log n/ log Δ) for general graphs.

Related Work. Using carrier sensing for distributed computation is not novel. Schei-
deler et al. [21] considered a model where in addition to sending and receiving mes-
sages, nodes can perform physical carrier sensing, and described how to approximate
the minimum dominating set problem under this model. Flury and Wattenhofer [7]
demonstrate how to use carrier sensing as an elegant and efficient way for coordina-
tion in practice.

Our beeping model is a discretized variant of the desynchronization model first in-
troduced by [6]. Degesys et al. [6] considered only complete graphs, and proved the
eventual convergence of a biologically inspired algorithm DESYNC to a ‘desynchro-
nized state’ and conjectured a running time of O(n2). Degesys and Nagpal [5] exper-
imentally studied the performance of DESYNC in multi-hop topologies. They proved
that a desynchronized state exists for 2-colorable graphs and Hamiltonian graphs, and
posed the open problem of proving that a desynchronized state exists for all graphs.
Later Motskin et al. [17] studied interval coloring under the same desynchronization
model. In addition to assuming the continuous variant of the model, [17] assumes that
nodes have knowledge of their own degree and that they are able to exchange this in-
formation to compute the maximum neighbor degree over their 1-hop neighbors. It is

Deploying Wireless Networks with Beeps 151

not clear how nodes should obtain the maximum degree among their neighbors without
reliably transmitting messages. Further, as we show in Section 4, their assumptions are
too strong and allow for constant time solutions. This motivates studying the strictly
weaker discrete beeping model.

Coloring the nodes of a graph is one of the most fundamental combinatorial op-
timization problems in computer science and has therefore been widely studied, also
in a distributed context. The work on distributed coloring algorithms started with the
seminal work of Linial [14] and includes a large number of papers (see e.g. [1, 3, 4,
9, 11, 13, 18, 24, 25]). The best bounds are known for randomized algorithm and they
are O(

√
log n + log Δ) for (Δ + 1)-colorings (i.e., the number of colors needed by

the sequential greedy algorithm) andO(
√

log n) forO(Δ)-colorings [11, 25]. Interest-
ing in the context of TDMA schemes for wireless networks might be [12] where it is
shown how to compute a coloring where each node with degree d obtains an Ω(1/d)-
fraction of the colors in a single communication round (i.e., nodes just need to learn the
identifiers of all neighbors). Coloring in unstructured radio networks (with collisions)
was considered by [16], where a randomized algorithm to compute O(Δ)-colorings in
O(Δ log n) rounds is described (later improved in [23] toO(Δ+ log Δ log n) rounds).
In addition to the theoretical work on distributed coloring, there are many papers that
describe some variant of coloring in order to compute TDMA schedules or similar MAC
schemes (see e.g. [2, 8, 10, 15, 19, 20, 27]).

2 Model and Definitions

We consider a wireless network model that is as primitive as possible. In contrast to
standard communication models, nodes cannot exchange messages reliably (message
passing) or unreliably (unstructured radio networks), instead nodes rely entirely on car-
rier sensing. At any particular time, a node can be in beeping or listening mode. When a
node is listening, it can only distinguish between silence or the presence of one or more
beeps. This model is weaker than collision detection since nodes cannot distinguish be-
tween a single beep and a collision of two or more beeps. Moreover, a beep conveys
less information than a bit, and although one could conceive coding schemes to encode
bit messages using beeps, this would require additional overhead and be susceptible to
collisions, thus we focus on different techniques.

We assume that nodes wake up asynchronously and the wake-up pattern is deter-
mined by an adversary. Upon waking up, a node does not know anything about the
structure of the communication network, not even an estimate of its size. Similarly,
nodes do not know their neighbors in the communication network or have an estimate
of the size of this set. Furthermore, nodes do not have unique identifiers and the struc-
ture of the communication network is not restricted in any way (e.g. by requiring it to
be a unit disk graph, a bounded independence graph, or any other special type of graph
considered in the wireless networks literature [22]). Every node has access to a local
clock, where the local clock of every node advances at the same rate and has no drift,
however we do not assume clocks to be synchronized.

The communication network is modeled as an undirected graph G = (V, E), |V | =
n, where the set V of nodes of G represents the set of wireless devices. There is an

152 A. Cornejo and F. Kuhn

edge {u, v} ∈ E if and only if u can listen to a beep emitted by v and viceversa. For
a node u ∈ V , let N(u) :=

{
v ∈ V

∣∣ {u, v} ∈ E
}

be the set of neighbors of u, and let
d(u) = |N(u)| be its degree. We denote by Δ = maxv∈V d(v) the maximum degree of
the graph. A phase refers to a time point (in the continuous model) or a time slot (in the
discrete model) measured relative to the beginning of the last period. We will use phases
to capture the time at which different beeps are heard with respect to the local clock of
each node. Given a set S of phases, we define S[a, b] to be the subset of phases in the
range [a, b] in S. To correctly account for ranges that cross the period boundary, we give
a formal definition. Let τ be the period length (in the continuos model the period length
is T time units, while in the discrete model the period length is Q time slots), and let
x = a mod τ and y = b mod τ . If x ≤ y, S[a, b] = {p ∈ S | x ≤ p ≤ y}, otherwise
S[a, b] = {p ∈ S | p ≥ x ∨ y ≥ p}.

If tu represents the time of occurrence of some event with respect to node u we use
t̊u to represent the time of occurrence of the event in a global reference frame. For
example, consider neighboring nodes u and v, and suppose that node u executes some
event eu at local time tu which is instantaneously observed by node v at local time tv.
Since we do not assume synchronized clocks, then in general tu �= tv, however t̊u = t̊v.

We say that an event happens almost surely if it happens with probability one, an
event happens with high probability if it occurs with probability at least 1 − 1

n . Let
U(a, b) denote the continuous uniform distribution in the range [a, b] and U[a..b] denote
the discrete uniform distribution in the range [a..b].

We believe the model described is simple enough to be implemented or simulated in
real hardware. However it is still complex enough to allow for the design of interesting
algorithms with strong theoretical guarantees. We consider two variants of the basic
model, a continuous version and a discrete version.

Discrete Model. Time is divided into slots of length μ, where μ depends on the physical
characteristics of the wireless devices and of the communication medium. There is a
known integer Q > 0 that denotes the number of slots per period, and is related to the
number of resources available. Hence, the period length is T = Qμ. Although we do
not assume synchronized clocks, we assume that slots boundaries are synchronized, i.e.,
all nodes start new slots at the same time. Note that at the cost of small constant factors
and more technical arguments, all results obtained in this paper can also be achieved in
a model with unsynchronized slot boundaries.

In each slot s, each node v can either listen or beep for the whole duration of s. If a
beep is emitted by node u at slot s, it is heard by any neighboring node v ∈ N(u) that
is in listening mode in slot s. In particular the operation listen[m] puts the node in
listening mode for the next m slots and returns the set of slots where it detected a beep.
The operation beep emits a beep for the duration of the current slot.

Continuous Model. All nodes share some period length T and a beep can be infinitely
short (i.e., a unit impulse function). If a beep is emitted by node u at time t, it is heard
by any neighboring node v ∈ N(u) that is in listening mode at time t. In particular
the operation listen(δ) puts the node in listening mode for the next δ units of time
and returns the set of time points where it detected beeps. The operation beep emits an
infinitely short beep. We discuss the shortcomings of this variant in Section 4.

Deploying Wireless Networks with Beeps 153

3 Interval Coloring

One of the central motivations behind vertex coloring in distributed environments is to
use it as a building block for MAC protocols. In this setting the number of colors used
translates to the number of communication channels used, and thus fewer colors imply
higher throughput. In general we are interested in efficient (polylog or better) algorithms
that produce vertex colorings withO(Δ) colors, where Δ is the maximum degree. How-
ever, most known distributed algorithms for coloring are based on the assumption that
there is already an infrastructure to reliably transmit messages with neighboring nodes,
which makes them unsuitable for MAC protocols. This motivates studying coloring in
the beeping model. We focus on interval coloring, a variant of vertex coloring specially
well suited for the beeping model.

Given an ordered set of resources, an interval coloring assigns each node an interval
(contiguous fraction) of resources such that neighboring nodes do not share resources. A
k interval coloring is one where every node gets at least a 1/k fraction of the resources.

In particular, we focus on the case where the set of resources to be shared is time (i.e.
computing a TDMA schedule). The discrete beeping model assumes all nodes agree on
a period of length T , which is composed of Q slots of length μ where slot boundaries are
synchronized. However, the lack of synchronized clocks implies the periods of different
nodes are not aligned, and hence the first slot of a period for node u could be in the
middle of the period for node v. Therefore, although nodes agree on the set of resources
to be shared (Q time slots), they do not agree on an ordering of these resources. To
sidestep this problem we will require interval coloring to output a tuple 〈pv, Iv〉 for each
node v, where pv is the offset with respect to the period start of node v, and Iv is the
interval length. These tuples should be such that for every pair of neighbors {u, v} ∈ E,
the intervals [p̊v − Iv, p̊v] and [p̊u − Iu, p̊u] are disjoint for every period. Analogous to
O(Δ)-vertex colorings, we are interested in O(Δ)-interval colorings, where each node
gets assigned at least a Ω(1/Δ) fraction of the resources.

Hardness of Interval Coloring. Discrete interval coloring is strongly related to vertex
coloring. For each node v let 〈pv, Iv〉 be the tuple output by an interval coloring at node
v. The definition of interval coloring implies that for any two neighbors u and v it holds
that p̊v �= p̊u. Therefore, we can define a valid vertex coloring by assigning to each
node v the color cv = p̊v (mod Q). Observe that if Q ∈ Θ(Δ), this is a O(Δ)-vertex
coloring. Hence, even in executions where all nodes have either synchronized clocks or
wakeup at the same time, a O(Δ)-interval coloring is at least as hard as O(Δ)-vertex
coloring.

4 Continuous Interval Coloring

We essentially use the same model as Motskin et al. [17], and adhering to it we also
assume each node v knows its own degree d(v) and the maximum degree of its 1-hop
neighbors dmax(v). Motskin et al. [17] described a randomized algorithm that solves
continuous interval coloring and terminates with high probability in a logarithmic num-
ber of periods. In contrast, we present a randomized algorithm that solves the same

154 A. Cornejo and F. Kuhn

problem but terminates almost surely in a constant number of periods. While describing
the algorithm we expose the flaws of this model that make such an algorithm possible.

Algorithm Description. Since nodes can emit an infinitely short beep at any point in
time, then if two nodes choose to beep at random times in the interval [0, T], their
beeps will collide with probability zero (i.e. the probability that two samples from a
continuous uniform distribution are equal is zero). We will exploit this property with the
greedy algorithm BEEPFIRST, described in detail in Algorithm 1. Informally speaking,
the BEEPFIRST algorithm searches for the first available time where a node can beep
while respecting a buffer of size bv around existing beeps. To ensure that no two nodes
choose the same time to beep, the buffer size and starting time are randomized with a
continuous variable.

More precisely, the algorithm has a parameter ε ∈ (0, 1) which affects the size of
the resulting intervals. In the initialization state, each node v sets its interval length to
Iv = (1−ε)T/2(dmax(v)+1) and chooses εv ∈ U[0, ε] to randomize its start time and
set its buffer length to bv = (1 − εv)T/2(d(v) + 1).

In the searching state, nodes listen for one full time period T recording the phases
at which beeps are heard. If a node hears no beeps in this first period it sets pv = 0
and goes to the stable state. Otherwise nodes search for the first phase pv such that (i)
in the previous period no other node beeped in the interval [pv − bv, pv + bv], and (ii)
in this period no other node beeps on the interval [pv − bv, pv]. Once such a phase is
found, nodes beep to reserve it and listen for whatever remains of the period, switching
to the stable state. Once a node becomes stable, it remains stable thereafter, beeping at
the same phase every period.

Algorithm 1. BEEPFIRST running at node v

1: εv ← U(0, ε)
 Initialize
2: Iv ← (1 − ε) T

2(dmax(v)+1)
, bv ← (1 − εv) T

2(d(v)+1)

3: listen(εv) (* randomized start time *)
4: S ← listen(T)
 Search
5: pv ← 0
6: while ∃ beep in S[pv − bv, pv + bv] do
7: tv ← pv

8: pv ← bv+ time of last beep in S[pv − bv, pv + bv]
9: S ← S ∪ listen(pv − tv)

10: end while
11: beep, listen(T − pv)
 Stable
12: loop
13: listen(pv), beep, listen(T − pv)
14: end loop

For each node v in the searching state, the separation between beeps heard by v is at
most 2bv, otherwise it would have exited the search state. Assume in a period node v
hears at most one beep from each neighbor (the same result can be proved without this
assumption with a slightly more technical argument). Therefore node v hears at most

Deploying Wireless Networks with Beeps 155

d(v) beeps in one period, which means that after time d(v)2bv < T in the searching
state node v finds a proper phase to beep and enters the stable state.

Lemma 1. The searching state of BEEPFIRST lasts less than one period.

By construction node v will select pv = 0 or pv = pu+bv where pu is the phase of node
u. However, recall that both the starting time and the buffer length are randomized using
a continuous probability distribution. Therefore, with probability one, no two nodes will
ever select the same phase. (The same argument is used by Motskin et al. [17] to prove
that neighbors “pick the exact same start time with probability 0”.) Which is captured
by the following proposition.

Proposition 2. Given a pair of nodes u and v (where u �= v) at any point during the
execution of BEEPFIRST almost surely p̊u �= p̊v .

From Proposition 2 it follows that given two neighboring nodes, one selects an earlier
phase than the other. This fact can be leveraged to show that the intervals produced by
BEEPFIRST do not overlap.

Lemma 3. Let u and v be two neighboring nodes in a stable state of BEEPFIRST, then
their intervals do not overlap (p̊u /∈ [p̊v − Iv, p̊v + Iv]).

We can tie Lemmas 1 and 3 together in the following theorem.

Theorem 4. The BEEPFIRST algorithm computes a O(Δ)-interval coloring almost
surely in O(1) time.

Observe that if instead of setting the interval length in the initialization phase, we de-
layed it until the stable phase by setting it to the largest value such that [pv−Iv, pv +Iv]
does not contain any beeps, we would get a slightly stronger result which does not
require knowledge of dmax(v). The BEEPFIRST algorithm hints at two flaws in this
model (i) It assumes knowledge of d(v) and dmax(v), where neither is trivial to com-
pute. (ii) The algorithm’s correctness relies on computation with arbitrary real numbers
and sampling from continuous probability distributions.

5 Discrete Interval Coloring

We now turn our attention to a more realistic model where beeps occur at discrete times
and have a minimum length, thus the probability distributions involved are discrete and
finite. We present a Las Vegas randomized algorithm for O(Δ)-interval coloring that
terminates with high probability in O(log n) periods. This requires Q ≥ Δ and in
particular we assume Q = κΔ where κ is a large enough constant (κ ≥ 3/η suffices,
for η to be fixed later).

Algorithm Description. The JITTERANDJUMP algorithm relies on three key insights:
(i) The number of beeps heard by a node is a good estimate of its degree. (ii) By adding
a small random jitter to every beep, neighboring nodes which beep at the same slot
can detect the collision with constant probability. (iii) If a node jumps into a random

156 A. Cornejo and F. Kuhn

slot which is surrounded by “enough” empty slots it finds a non-overlapping interval
assignment with constant probability.

The detail pseudo-code is presented in Algorithm 2, in the following paragraphs
we give an informal description. All nodes executing are initially uncolored, and they
become colored when they believe to have found a non-overlapping interval. Except for
the first period (where nodes listen without beeping), all nodes beep once per period.
Therefore in a single period a node can hear at most two beeps per neighbor, and it
follows that if d̃v is the number of beeps observed by node v during a period, then
1 ≤ d̃v ≤ 2d(v).

To resolve collisions, if node v has decided to beep at the slot pv, it chooses at random
jitterv ∈ U[0..1], and beeps at pv + jitterv instead. If a colored node detects a beep
one slot before, or two slots after its own beep, it becomes uncolored.

Each node v sets the buffer length bv = η Q

d̃v+1
to a fraction of the period proportional

to its degree estimate, where η is a sufficiently small constant (we will show that any
η ≤ 1/16 suffices). Using the information collected in the previous period, node v
computes a set of free slots Fv . A free slot s ∈ Fv is one where no beep was heard in
the bv +2 slots preceeding it, and the bv +1 following it. An uncolored node v selects a
slot pv to beep uniformly at random from the set of free slots Fv . If after beeping node
v determines no other node is in the interval [pv − bv, pv] it becomes colored.

Algorithm 2. JITTERANDJUMP running at node v

1: coloredv ← false
2: S ← listen[Q]
3: d̃v ← max(|S|, 1)
4: bv ← η Q

d̃v+1

5: loop
6: if not coloredv then
7: Fv ← {p | S ∪ {pv} [p − bv − 2, p + bv + 1] = ∅}
8: pv ← UFv

9: end if
10: jitterv ← U[0..1]
11: S ← listen[pv + jitterv − 1] ∪ beep ∪ listen[Q − pv − jitterv]
12: Iv ← max s s.t. S[pv − s, pv] = ∅
13: d̃v ← max(|S|, 1)
14: bv ← η Q

d̃v

15: if S[pv − bv, pv + bv] = ∅ then
16: coloredv ← true
17: else if S[pv − 1, pv + 2] �= ∅ then
18: coloredv ← false
19: end if
20: end loop

Two neighboring nodes are colliding if they beep at the same slot. Every period,
each nodes selects independently at random a jitter which affects where they beep. It is
possible to show that two collided nodes will detect the collision and become uncolored
with constant probability (proof omitted).

Deploying Wireless Networks with Beeps 157

Lemma 5. If neighboring nodes u and v collide in JITTERANDJUMP, they become
uncolored in the next period with probability at least 1

2 .

By adjusting κ and η appropriately, it is possible to guarantee that the number of free
slots observed by each node is a constant fraction of the number of slots.

Proposition 6. If κ ≥ 4/η and η ≤ 1/3 then |Fv| ≥ (1 − 3η)Q for every node v.

We have already established that the degree estimate is an upper bound on the real
degree; we also show that with constant probability it is a lower bound on the number
of uncolored nodes. To do so we use the following result concerning the classical balls
and bins problem (proof omitted).

Theorem 7. When placing m balls randomly into n bins, if n ≥ m ≥ 12 then with
probability more than 1

2 the number of occupied bins is at least m
4 .

Using this result we can prove the following lemma.

Lemma 8. With probability 1
2 the number of beeps observed by a node is at least a

quarter of the number of its uncolored neighbors.

Proof. Fix node v and let P ⊆ N(v) be its uncolored neighbors. We want to show

P
[
d̃v > |P |/4

]
≥ 1

2 .

Each node u ∈ P beeps at random in Fu and if κ ≥ 4/η then from Proposition 6
|Fu| ≥ (1 − 3η)Q = (1 − 3η)κΔ. If we let η ≤ 1/16 then κ ≥ 1/(1 − 3η) and thus
|Fu| ≥ Δ.

On the other hand, the probability of collisions (and a lower degree estimate d̃v) is
increased if ∀u, w ∈ P Fu = Fv . In other words, if |P | ≤ Δ beeps are randomly
distributed in |Fv| ≥ Δ slots, and assuming enough beeps theorem 7 implies that with
probability 1

2 the number of occupied slots is |P |/4.

To argue termination we partition nodes into good and bad nodes. Informally, a good
node is one which, modulo the jitter, continues to beep at the same slot in the rest of the
execution.

Definition 1. Node v is good if it is colored and there does not exist a neighboring
node u ∈ N(v) with a phase pu such that |p̊u − p̊v| ≤ 1; otherwise v is bad.

By definition, once a node becomes good no neighboring node is colliding with it.
Since nodes listen before beeping and always beep at slots which were previously un-
occupied, it is not surprising that once a node becomesgood it remainsgood thereafter
(proof omitted).

Lemma 9. Once a node is good, it remains good for the rest of the execution.

We classify bad nodes further as colored and uncolored. First we consider the easier
case of colored bad nodes.

Lemma 10. A colored bad node becomes good or uncolored with probability≥ 1
2 .

158 A. Cornejo and F. Kuhn

Proof. Fix a colored bad node v. Since it is bad and uncolored, then by definition a
nonempty set of its neighbors P ⊆ N(v) beep at the same slot as u.

If all nodes in P are uncolored, then they all jump to a random slot and node v be-
comes good. Otherwise there exists a colored node u ∈ P . However by Lemma 5 with
probability 1

2 in the next period both nodes detect the collision and become uncolored.

Now we consider uncolored bad nodes.

Lemma 11. An uncolored bad node becomes good with probability≥ 1
2e−

16η
1−3η .

Proof. Fix an uncolored bad node v. Let Bu be the event that node u choses to beep
in the interval [pv − bv, pv + bv]. In other words, Bu is the event that node u interferes
with the beep of node v. By definition P [Bu] ≤ 2bv

|Fu| , and from Proposition 6 |Fu| ≥
Q(1− 3η) and thus P [Bu] ≤ 2bv

Q(1−3η) ≤
2η

d̃v(1−3η)
.

Let Gv be the event that node v becomes good. Node v becomes good unless a
nonempty subset of its (uncolored) neighbors pick a slot that interferes with its beep.
Hence P [Gv] =

∏
u∈P P [¬Bu] where P ⊆ N(v) are the uncolored neighbors of v.

Let Pv be the event that the number of beeps observed by v is at least one quarter of
the number of its uncolored neighbors, that is d̃v ≥ |P |/4. We show that conditioned
on Pv, node v becomes good with constant probability.

P [Gv |Pv] =
∏
u∈P

P [¬Bu|Pv] =
∏
u∈P

(1 − P [Bu|Pv]) ≥
(

1 − 8η

|P |(1 − 3η)

)|P |
≥ e

− 16η
1−3η

Where the last inequality holds for sufficiently small η ≤ 1
16 . Finally from Lemma 8

we have P [Pv] ≥ 1
2 , hence P [Gv] ≥ P [Gv|Pv] P [Pv] ≥ 1

2e−
16η

1−3η .

From Lemmas 10 and 11, after two periods a bad node becomes good with constant
probability. Therefore the probability that a node remains bad drops off exponentially
with the number of periods. Using standard arguments one can show that a bad node
becomes good with high probability after 6

e
− 16η

1−3η

log n ∈ O(log n) rounds.

We now show that each node is assigned a “large” fraction of the slots.

Lemma 12. Let v be a good node, then Iv ≥ η Q
2dmax(v)+1 .

Proof. Consider the period when v became colored. By construction in that period
node v observed no beeps in the interval [pv − bv, pv], thus Iv ≥ η Q

d̃v+1
in that period.

Fix a node u ∈ N(v). Node u will only select to beep in phases that respect a buffer
of size bu +2 = η Q

d̃u+1
+2 before the beep of node v. So independent of the jitter, node

v will never observe a beep of u within within bu of its phase. Finally, since ∀u ∈ V it
holds that d̃u ≤ 2dmax(v), and hence Iv ≥ η Q

2dmax(v)+1 in all subsequent periods.

This leads to our main theorem.

Theorem 13. The JITTERANDJUMP algorithm computes a O(Δ)-interval coloring
with high probability in O(log n) periods.

Deploying Wireless Networks with Beeps 159

5.1 Dynamic Graphs

We turn our attention to dynamic graphs, where nodes and edges are added and removed
throughout the execution. Adding nodes or edges is analogous to waking up, which is
already handled gracefully by JITTERANDJUMP. However this is not the case for node
or edge removals. In particular, once the algorithm has stabilized to an O(Δ)-interval
coloring, the interval of each node is not guaranteed to increase, even if sufficiently
many nodes leave and the new maximum degree becomes Δ′ Δ.

A natural solution would be to go back to an uncolored state when the degree es-
timate falls below a certain threshold. However, colliding nodes can cause the degree
estimate to drop artificially, even when no nodes or edges are removed. Moreover in
some cases, the colliding nodes are not aware of each other and can remain collided
forever despite jittering. For example in a star graph, from the center’s perspective the
spokes may be colliding, but the spokes have no means of detecting the collision.

Algorithm description (modifications to JITTERANDJUMP). Regardless of the state,
each node v picks a second phase p′v at random from the free slots Fv . As before, node
v will beep at pv + jitterv, but additionally also beep at p′v. Let Sv(i) be the set of slots
where node v heard a beep in period i. We define d∗v(i) = maxj∈[i−r,i]) |Sv(j)| as the
maximum number of beeps over a moving window of the last r periods. At period i we
update the degree estimate by taking the maximum of the current beep count and d∗v(i)
(d̃v = max(d̃v, d∗v(i))). Finally, if d∗v(i) < d̃v

16 we set d̃v = d∗v(i) and uncolor node v.
Since nodes beep twice at every period then for every period i, Sv(i) ≤ 4d(v). In

executions where the degree estimate doesn’t decrease, the analysis of Section 5 still
holds, albeit with slightly different constants. To prove correctness we need to show
that with sufficiently high probability the degree estimate will decreases if and only if
the degree drops by a large enough factor.

From proposition 6 the number of free slots is |Fv| ≥ (1 − 3η)Q = (1 − 3η)κΔ,
and since κ ≥ 1

1−3η then |Fv| ≥ Δ. Given that a node v has d(v) neighbors, and
each neighbor beeps at least once per period in a random slot (at most twice), we are
interested in the probability that the beeps observed account for a constant fraction of
the neighbors. This is essentially the same scenario described by lemma 8 which can be
viewed as an occupancy problem. Using theorem 7 we can show that with probability
at least 1

2 the number of beeps observed is at least d(v)/4.
Hence, at every period i we have |Sv(i)| ≥ d(v)/4 with probability ≥ 1

2 . Since
the degree estimate is computed using the information of the last r periods, the degree
estimate decreases only if in the last r periods the beep count observed was below
d̃v/16. However, unless the real degree has decreased by a constant factor, this happens
with probability less than 1

2
r
. On the other hand, if the real degree decreases by a large

enough factor, the degree count observed for the next r periods will be at most four
times the real degree, which will cause the degree estimate to decrease with certainty
after r periods.

Finally,y setting r ∈ O(log 1/ε) the same argument used before can be used to prove
the algorithm described computes an Ω(T/Δ)-interval coloring in O(log 1/ε) periods
with probability 1− ε.

160 A. Cornejo and F. Kuhn

6 Lower Bound

We consider a stronger model, namely standard synchronous local broadcast with mes-
sages of constant size. During each slot a node sends a message of constant size and
receives the set of messages sent by its neighbors. Assume every node v knows its own
degree d(v), the maximum degree Δ and the size of the network n, but does not have
unique IDs. All nodes start the execution (wakeup) simultaneously.

The rest of this section is devoted to proving the following theorem.

Theorem 14. Under the model described, in less than O(log n) slots it is impossible
to compute a O(Δ)-interval coloring or a O(Δ)-vertex coloring with high probability.

Proof. Let Gi =(Bi, Ei) be a graph on four vertices, with vertex set Bi = {ai, bi, ci, di}
and edge set Ei = {(ai, bi), (bi, ci), (ci, di), (ai, ci), (bi, di)}. Define G as the cycle
graph generated by pasting together n/4 copies of Gi, where ∀i ∈ [0, n

4 −1] we connect
component Gi with component Gi+1 mod n

4
by adding the edge (di, a(i+1 mod n

4)). G
is a 4-regular graph of size n and inside every component Gi the vertices bi and ci have
the same closed neighborhood.

Let sk
u be the state of node u at slot k, and let mk

u be the message sent by node u in
slot k. Regardless of its state, a node can only choose to send a message amongst a set
of constant size of possible messages, let c be the size of this set.

Consider a component Bi, and assume the states of bi and ci are identical at slot k.
Since their closed neighborhood is identical, if they send the same message at slot k,
they will receive the same set of messages and remain in identical states at slot k + 1.
Formally, if sk

bi
= sk

ci
and mk

bi
= mk

ci
then sk+1

bi
= sk+1

ci
.

Moreover, if bi and ci are in the same state at slot k, they choose what to send
according to the same probability distribution, in particular let pi (where i ∈ [1, c])
be the probability of sending the ith message. By definition

∑c
i=1 pi = 1, and thus by

Cauchy-Schwarz we have
∑c

i=1 p2
i ≥ 1

c
We prove a lower bound on the probability that bi and ci remain in the same state in

the next slot:

P
[
sk+1

bi
= sk+1

ci
| sk

bi
= sk

ci

]
≥ P

[
mk

bi
= mk

ci
| sk

bi
= sk

ci

]
=

c∑
i=1

p2
i ≥

1
c

Therefore, if nodes bi and ci start at the same state (s0
bi

= s0
ci

) the probability that they

remain in the same state after � slots is P
[
s�

bi
= s�

ci
| s0

bi
= s0

ci

]
≥ 1

c

�
. If we let � =

logc
n
4 then P

[
s�

bi
= s�

ci
| s0

bi
= s0

ci

]
≥ 4

n , and thus P
[
s�

bi
�= s�

ci
| s0

bi
= s0

ci

]
≤ 1− 4

n .
Since there are no unique identifiers, initially all nodes have the same state (∀u, v ∈

V , s0
u = s0

v), and the probability that after � slots every component Bi has s�
bi
�= s�

ci
is:

P
[
∀Bi, s

�
bi
�= s�

ci

]
=

n/4∏
i=1

P
[
s�

bi
�= s�

ci

]
≤
(

1− 4
n

)n
4

≤ 1
e

Therefore there exists a pair of neighboring nodes that remain in the same state after
� slots with constant probability.

P
[
∃(u, v) ∈ E s.t. s�

u = s�
v

]
≥ P

[
∃Bi s.t. s�

bi
= s�

ci

]
= 1−P

[
∀Bi, s

�
bi
�= s�

ci

]
≥ 1−1

e

Deploying Wireless Networks with Beeps 161

Moreover, since G is a 4-regular graph, it should ensure interval lengths of size
Ω(Q/4) ∈ Ω(Q). Finally, if two nodes in the same state select intervals of size Ω(Q)
slots out of a total of Q slots, the probability that they select overlapping intervals is
greater than a constant. Therefore with constant probability after Ω(log n) slots there is
a pair of neighboring nodes which do not have an O(Δ)-interval coloring.

Observe that if instead of solving interval coloring we were considering vertex color-
ing, the probability that two neighboring nodes select the same color out of Δ available
colors is also a constant, and thus with constant probability a pair of neighboring nodes
select the same color. Which concludes the proof.

In light of the upper bound of O(log n) periods presented in Section 5, the previous
bound is asymptotically tight for constant degree graphs. Since each period has Q ≥
Δ slots this implies a lower bound of Ω(log n/Δ) periods for general graphs. If we
additionally assume each node beeps at mostO(1) times per period, the same argument
yields a lower bound of Ω(log n/ logΔ) periods for general graphs, since for each node
the probability of beeping in the same slot as a neighbor is 1/κΔ.

References

1. Awerbuch, B., Goldberg, A.V., Luby, M., Plotkin, S.A.: Network decomposition and local-
ity in distributed computation. In: Proc. of 30th Symposium on Foundations of Computer
Science (FOCS), pp. 364–369 (1989)

2. Balasundaram, B., Butenko, S.: Graph domination, coloring and cliques in telecommunica-
tions. In: Resende, M.G.C., Pardalos, P.M. (eds.) Handbook of Optimization in Telecommu-
nications, pp. 865–890. Springer, Heidelberg (2006)

3. Barenboim, L., Elkin, M.: Distributed (Δ + 1)-coloring in linear (in Δ) time. In: Proc. of
the 41st ACM Symposium on Theory of Computing, STOC (2009)

4. Barenboim, L., Elkin, M.: Deterministic distributed vertex coloring in polylogarithmic time.
In: Proc. 29th ACM Symposium on Principles of Distributed Computing, PODC (2010)

5. Degesys, J., Nagpal, R.: Towards desynchronization of multi-hop topologies. In: Proc. 2nd
IEEE Conference Self-Adaptive and Self-Organizing Systems (SASO), pp. 129–138 (2008)

6. Degesys, J., Rose, I., Patel, A., Nagpal, R.: Desync: self-organizing desynchronization and
TDMA on wireless sensor networks. In: Proc. 6th Conference on Information Processing in
Sensor Networks (IPSN), p. 20 (2007)

7. Flury, R., Wattenhofer, R.: Slotted programming for sensor networks. In: Proc. 9th Confer-
ence on Information Processing in Sensor Networks, IPSN (2010)

8. Gandham, S., Dawande, M., Prakash, R.: Link scheduling in sensor networks: Distributed
edge coloring revisited. In: Proc. of 24th IEEE Conference on Computer Communications
(INFOCOM), pp. 2492–2501 (2005)

9. Goldberg, A.V., Plotkin, S.A., Shannon, G.E.: Parallel symmetry-breaking in sparse graphs.
SIAM Journal on Discrete Mathematics 1(4), 434–446 (1988)

10. Herman, T., Tixeuil, S.: A distributed TDMA slot assignment algorithm for wireless sensor
networks. In: Proc. of 1st Int. Workshop on Algorithmic Aspects of Wireless Sensor Net-
works, pp. 45–58 (2004)

11. Kothapalli, K., Onus, M., Scheideler, C., Schindelhauer, C.: Distributed coloring in
o(
√

log n) bit rounds. In: Proc. of 20th IEEE Parallel and Distributed Processing Sympo-
sium, IPDPS (2006)

162 A. Cornejo and F. Kuhn

12. Kuhn, F.: Local multicoloring algorithms: Computing a nearly-optimal TDMA schedule in
constant time. In: Proc. of 26th Symp. on Theoretical Aspects of Computer Science, STACS
(2009)

13. Kuhn, F.: Weak Graph Coloring: Distributed Algorithms and Applications. In: Proc. of 21st
ACM Symposium on Parallelism in Algorithms and Architectures, SPAA (2009)

14. Linial, N.: Locality in distributed graph algorithms. SIAM Journal on Computing, 193–201
(1992)

15. Mecke, S.: MAC layer and coloring. In: Wagner, D., Wattenhofer, R. (eds.) Algorithms for
Sensor and Ad Hoc Networks, pp. 63–80 (2007)

16. Moscibroda, T., Wattenhofer, R.: Coloring unstructured radio networks. In: Proc. 17th ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 39–48 (2005)

17. Motskin, A., Roughgarden, T., Skraba, P., Guibas, L.: Lightweight coloring and desynchro-
nization for networks. In: Proc. 28th IEEE Conference on Computer Communications, IN-
FOCOM (2009)

18. Panconesi, A., Srinivasan, A.: On the complexity of distributed network decomposition. Jour-
nal of Algorithms 20(2), 581–592 (1995)

19. Ramanathan, S.: A unified framework and algorithm for channel assignment in wireless net-
works. Wireless Networks 5, 81–94 (1999)

20. Rhee, I., Warrier, A., Min, J., Xu, L.: DRAND: Distributed randomized TDMA schedul-
ing for wireless ad-hoc networks. In: 7th ACM Symp. on Mobile Ad Hoc Networking and
Computing (MOBIHOC), pp. 190–201 (2006)

21. Scheideler, C., Richa, A., Santi, P.: An o(log n) dominating set protocol for wireless ad-hoc
networks under the physical interference model. In: Proc. 9th ACM Symposium on Mobile
Ad Hoc Networking and Computing (MOBIHOC), pp. 91–100 (2008)

22. Schmid, S., Wattenhofer, R.: Algorithmic models for sensor networks. In: Proc. 14th Work-
shop on Parallel and Distributed Real-Time Systems, WPDRTS (2006)

23. Schneider, J., Wattenhofer, R.: A log-star distributed maximal independent set algorithm for
growth-bounded graphs. In: Proc. of 27th ACM Symposium on Principles of Distributed
Computing, PODC (2008)

24. Schneider, J., Wattenhofer, R.: Coloring unstructured wireless multi-hop networks. In: Proc.
28th ACM Symposium on Principles of Distributed Computing (PODC), pp. 210–219 (2009)

25. Schneider, J., Wattenhofer, R.: A new technique for distributed symmetry breaking. In: Proc.
29th ACM Symposium on Principles of Distributed Computing, PODC (2010)

26. USC/ISI. Network Simulator 2 (NS2), http://www.isi.edu/nsnam/ns/
27. Zhang, X., Hong, J., Zhang, L., Shan, X., Li, V.O.K.: CP-TDMA: Coloring- and probability-

based TDMA scheduling for wireless ad hoc networks. IEICE Transactions on Communica-
tion E91-B(1), 322–326 (2008)

http://www.isi.edu/nsnam/ns/

Distributed Contention Resolution in Wireless
Networks�

Thomas Kesselheim and Berthold Vöcking

Department of Computer Science, RWTH Aachen University, Germany
{thomask,voecking}@cs.rwth-aachen.de

Abstract. We present and analyze simple distributed contention reso-
lution protocols for wireless networks. In our setting, one is given n pairs
of senders and receivers located in a metric space. Each sender wants
to transmit a signal to its receiver at a prespecified power level, e. g.,
all senders use the same, uniform power level as it is typically imple-
mented in practice. Our analysis is based on the physical model in which
the success of a transmission depends on the Signal-to-Interference-plus-
Noise-Ratio (SINR). The objective is to minimize the number of time
slots until all signals are successfully transmitted.

Our main technical contribution is the introduction of a measure
called maximum average affectance enabling us to analyze random
contention-resolution algorithms in which each packet is transmitted in
each step with a fixed probability depending on the maximum average
affectance. We prove that the schedule generated this way is only an
O(log2 n) factor longer than the optimal one, provided that the prespec-
ified power levels satisfy natural monontonicity properties. By modifying
the algorithm, senders need not to know the maximum average affectance
in advance but only static information about the network. In addition,
we extend our approach to multi-hop communication achieving the same
appoximation factor.

1 Introduction

In a wireless network, communication carried out at the same time is not
physically separated. Therefore transmissions may collide due to too much in-
terference. The Media Access Control (MAC) layer’s task is to coordinate the
communication such that simultaneous transmissions do not interfere but that
the medium is sufficiently used to allow for optimal throughput. In this pa-
per, we present and analyze distributed contention-resolutions protocols for this
scheduling task giving worst-case guarantees.

The interference constraints are modelled by the physical interference model
[11]. Between any two nodes of the network u and v a distance d(u, v) is defined.
The received signal strength decreases when this distance is increasing. More
formally, if node u transmits a signal at power level p then it is received by v with
� This work has been supported by the UMIC Research Centre, RWTH Aachen Uni-

versity.

N.A. Lynch and A.A. Shvartsman (Eds.): DISC 2010, LNCS 6343, pp. 163–178, 2010.
© Springer-Verlag Berlin Heidelberg 2010

164 T. Kesselheim and B. Vöcking

strength p/d(u,v)α, where the constant α > 0 is the so-called path-loss exponent1.
The node v can successfully decode this signal if the signal strength received
from the intended sender is at least β times as large as the signals strengths by
interfering transmissions made at the same time plus ambient noise. This is, the
Signal-to-Interference-plus-Noise Ratio (SINR) is above some threshold β ≥ 0,
the so-called gain.

In the interference scheduling problem, we are given a set of n requests R ⊆
V × V , corresponding to pairs of nodes from a metric space. For each request
� ∈ R, we have to select a power level p(�) > 0 and a time slot c(�) ∈ [k] :=
{1, . . . , k} such that for each � = (u, v) ∈ R the SINR constraint

p(�)
d(u, v)α

≥ β

⎛
⎜⎜⎜⎝

∑
�′=(u′,v′)∈R
c(�)=c(�′)

p(�′)
d(u′, v)α

+N

⎞
⎟⎟⎟⎠

is fulfilled. The constant N ≥ 0 expresses ambient noise that all transmissions
have to cope with. The objective is to minimize the number of time slots k.

So, in fact, two choices are made: For each request �, we have to select a power
level p(�) and a time slot in which the transmission should take place (to make
the distinction clear the latter problem is also referred to as coloring). In this
work, we focus on the coloring problem and assume the power assignment to
be given such that all senders know a priori at which power to transmit. For
example, powers might be given by hardware or depend on the distance between
the sender and the receiver as described below.

Our objective is to calculate a schedule whose length is close to the length
of the optimal schedule in the same instance. This measure was introduced by
Moscibroda et al. as scheduling complexity T (R) [17]. As we concentrate on
the coloring problem, we compare lengths of the schedules we compute to the
optimal schedule length for R that uses some fixed power assignment p, denoted
by T (R, p).

In order to have an algorithm that is applicable in a realistic environment it
has to work in a distributed fashion with as little information as possible. In
fact, our algorithms only require static information on the network that can be
spread at the time of deployment. Particularly, the number of network nodes,
the clock synchronization and the power assignment can be seen as such static
information. In contrast, no information about the current state of the network
will be necessary. For example, communication requests arise after the deploy-
ment and an algorithm has to work without knowledge on which requests have
to be served by the network and which of them were already successfully served.

In related work several schemes for assigning the powers have been used.
The simplest way is to make all transmissions at the same power level, e. g.,
the maximum power supported by the hardware. These power assignments are
called uniform [13,3].
1 Typically it is assumed that 2 < α < 5. However, our analysis works for any α > 0.

Distributed Contention Resolution in Wireless Networks 165

A more complex solution that still facilitates a distributed implementation at
least in theory is to make the power only dependent of the distance between the
respective sender and receiver (and therefore independent of the other nodes).
In linear power assignments [9] the power for a transmission between a sender
and a receiver whose distance is d is chosen proportional to dα and thus propor-
tional to the minimum transmission power needed to deal with ambient noise.
Square-root (or mean) power assignments [8,12] choose the transmission power
for distance d proportional to

√
dα. So the transmission power still grows for

increasing distances but not as fast as in a linear power assignment.
For each of the power schemes mentioned above, there are specialized algo-

rithms and several bounds on how fixing to this scheme influences the optimal
schedule length. Most of these algorithms are centralized; so far, distributed al-
gorithms with a provable performance guarantee are only known for linear power
assignments [9] (cf. Section 1.2). Furthermore, most existing transceivers support
only a relatively small, fixed number of possible power levels so that a practical
implementation of both linear and square-root power assignments remain a chal-
lenge. As a consequence it is necessary to have more general algorithms which
do not only work for a certain power scheme.

Our algorithms solve these issues as they work in a distributed fashion and
take the power assignment as input. They do not require a certain power scheme
but work for every power assignment satisfying the following natural conditions.
First, it has to be non-decreasing and sublinear or linear. That means if d(�) ≤
d(�′) for two requests �, �′ ∈ R then

p(�) ≤ p(�′) and p(�)
d(�)α

≥ p(�
′)

d(�′)α
. (1)

So the transmission power of �′ has to be at least as large as the one for �.
At the same time, the received power at the receiver of �′ must not be larger
than the one at the receiver of �. This monotonicity condition is very natural
and is fulfilled by all previously studied power assignments, particularly the ones
mentioned above.

The second condition is that powers are chosen sufficiently large so that ambi-
ent noise plays a minor part compared to interference. In particular, we assume
the power received at any receiver is at least some constant factor higher than
the minimum power that is needed to deal with noise (βN). To simplify notation,
we assume this constant factor to be 2. So for all requests � ∈ R

p(�)
d(�)α

≥ 2βN . (2)

This ensures that we actually deal with conflicts due to too large interference
and not due to too weak transmission power. Previous approaches also used this
assumption but stated it rather implicitly. Indeed it may be violated by uniform
and square-root power assignments when considering too large distances. But in
this case the problem consists of rather dealing with noise than with interference.

166 T. Kesselheim and B. Vöcking

1.1 Our Contribution

We introduce a new measure called maximum average affectance Ā(R, p) that
depends on the request set R and the power assignment p. This measure extends
a so-called measure of interference for linear power assignments [9] in a non-
trivial way towards general power assignments satisfying Conditions 1 and 2. It
is the key for analyzing the performance of simple contention resolution protocols
in wireless networks with prespecified power assignments and comparing it to
the optimum that could be achieved.

For two requests � = (u, v) and �′ = (u′, v′), and a power assignment p, we
define the affectance of � on �′ by

ap(�, �′) = min

{
1, β p(�)
d(u, v′)α

/(
p(�′)
d(u′, v′)α

− βN
)}
.

The notion of affectance was introduced by Halldórsson and Wattenhofer [13],
which we extended to arbitrary power assignments and bounded by 1. When
taking the noise out of consideration, it indicates which amount of interference
� induces at �′, normalized by the signal strength from the intended sender of �.
As a consequence the sum of affectance is at most 1 for a request set that may
be assigned to same time slot.

To get the maximum average affectance Ā(R, p), we take the maximum over
all subsets of requests and consider the average affectance a link is exposed to
from all other requests in this subset.

Definition 1. The maximum average affectance of a request set R and a power
assignment p is given by

Ā(R, p) = max
M⊆R

avg
�′∈M

∑
�∈M
ap(�, �′) = max

M⊆R
1
|M |
∑
�′∈M

∑
�∈M
ap(�, �′) .

If R and p are clear from the context, we simply write Ā. When replacing the
average by the maximum in this definition, we would get a measure that is closely
related to the measure of interference in [9].

The maximum average affectance enables us to derive lower bounds on the
scheduling complexity for all power assignments satisfying Conditions 1 and 2.
In particular, we prove Ā(R, p) is at most a factor O(logn) larger than the
optimal schedule length T (R, p). This way it enables us to compare schedules
we compute to the optimal schedule length T (R, p).

We use this measure to analyze random contention-resolution based algo-
rithms. In this kind of algorithms each sender transmits with a certain probabil-
ity q in each step until one of the transmissions has successfully been received. We
first prove a stability result. If q ≤ 1/4Ā, all transmissions are successful within
O(logn/q) time slots whp2. Thus choosing q = 1/4Ā, we generate a schedule of
length O(Ā · logn) whp, which is at most O(T (R, p) · log2 n).
2 With high probability: with probability 1− nc for each constant c.

Distributed Contention Resolution in Wireless Networks 167

To make the algorithm applicable to a distributed setting, we present two
modifications. These do not affect the schedule length vitally and we still get
schedules of length O(Ā ·logn) whp. On the one hand, we extend it such that the
network nodes do not have to know Ā anymore but adapt the transmission prob-
ability q on their own. On the other hand, we find a way to inform each sender if
a transmission has successfully been received by transmitting acknowledgement
packets. This is not a trivial task because these acknowledgement packets may
also interfere.

Altogether, this is the first distributed algorithm to the interference scheduling
problem with a guaranteed approximation ratio. The algorithm is distributed in
the following sense. It can be run on all senders and receivers of a network such
that during the execution no central entity is needed that spreads information
about the current state of the network, e. g. which requests have to be scheduled.
The nodes only need static information, namely the power assignment, a rough
estimation on the total number of nodes and a synchronized clock.

As a further result, we adapt the ideas to a distributed multi-hop algorithm
that allows packets to use intermediate relay nodes. For a fixed choice of paths
and powers we get an O(log2 n) whp approximation for this problem as well.
For most of the other approaches to scheduling such an adaptation is not possi-
ble. In particular, for uniform and square-root power assignments, no multi-hop
scheduling algorithm with a provable performance guarantee was known up to
now.

1.2 Related Work

Scheduling in wireless networks has been subject to reseach for more than four
decades up to now. Right from the beginning random access protocols such
as ALOHA [1] have been dealt with. Collision avoidance in models featuring
binary conflict constraints has been deeply studied over the years (see, e. g.
[4,6,7]). However, in the physical interference model the interference constraints
are not binary but take all other network nodes into consideration in an additive
way. Therefore, it brings about new problems and challenges. Depending on the
choice of powers interesting phenomena such as nested pairs [8] can be observed.
Furthermore, characterizing the optimal schedule length is much more involved.

The analysis of scheduling algorithms in the physical model that deals with
arbitrarily (and not randomly) distributed network nodes has been initiated by
Moscibroda and Wattenhofer [16]. However, they do not solve the interference
scheduling problem but a similar one. Instead, they find and schedule a set of
pairs of senders and receivers such that all network nodes are strongly con-
nected. They prove scheduling these pairs is possible in O(log4 n) time steps
(independent of the topology) with a certain (sublinear) power assignment. This
approach was extended to arbitrary requests sets [17]. However, the lengths of
the generated schedules were not compared to the optimal schedule length. In
fact, they can be a factor of Ω(n) away from the optimal one.

168 T. Kesselheim and B. Vöcking

There has also been much work on algorithms with an approximation guar-
antee compared to the optimal schedule length. Most of these algorithms are
centralized.

Using uniform power assignments, Halldórsson and Wattenhofer [13] present
an O(1) approximation in the plane compared to uniform power assignment.
This problem was proved to be NP-hard by Goussevskaia et al. [10]. Andrews
and Dinitz [2] in contrast compare to the optimal power assignment and present
an O(logΔ · logn) approximation in the plane. Here, Δ is the ratio between
the longest and the shortest distance between a sender and its receiver. They
also prove the joint problem of power control and coloring to be NP-hard. Avin
et al. [3] additionally show that the optimal schedule can at most be a factor
O(logPmax) shorter if the ratio between the maximum and the minimum power
used is Pmax.

With special regard to linear power assignments, Fanghänel et al. [9] intro-
duced a measure of interference I as a bound on the optimal schedule length.
It holds I = O(logΔ · logn · T (R)) in general and I = O(T (R, p)) if p is a
linear power assignment. This bound is complemented by an algorithm using
O(I + log2 n) time slots which results in an O(1) approximation in linear power
assignments for sufficiently dense instances.

Chafekar et al. [5] also use linear power assignments to get an O(log2Δ log2 Γ
logn) approximation for the joint multi-hop scheduling and routing problem,
where Γ is the maximum and the minimum transmission power used by the op-
timum. This result was improved by Fanghänel et al. [9] to O(logΔ log2 n). So
far, these were the only algorithms for the multi-hop problem with a performance
guarantee.

Square-root power assignments were introduced by Fanghänel et al. [8]. They
proved that in the bidirectional model (featuring undirected requests) it yields
schedules that are O(log3.5+α n) times as long as the ones using the optimal
power assignment. Halldórsson [12] improved this result to O(log n) in fading
metrics. He also showed that in the unidirectional model (as presented above)
the resulting schedule is at most O(log logΔ · log2 n) away from the one using
the optimal power assignment.

All of the mentioned approximation guarantees depend onΔ and indeed there
are instances [12] with large Δ where the algorithm only computes a (trivial)
Ω(n) approximation. Only very recently [14] an approach has been presented
that achieves approximation guarantees poly-logarithmic in n. Nevertheless, op-
timizing transmission powers in a de-centralized way still remains a challenge. So
distance-based power assignments seem to be a reasonable way for distributed
environments at least in theory.

2 Distributed Single-Hop Scheduling Algorithms
Random contention-resolution algorithms are probably the most intuitive way
to share limited resources among several agents in a distributed fashion. The
idea is that each agent accesses the resource in any time slot with a certain

Distributed Contention Resolution in Wireless Networks 169

probability q until its first success. In case of a collision, none of the involved
agents is successful in this round.

This idea is easily applicable in wireless networks by letting each sender trans-
mit its packet in each time slot with probability q until the first success. Due to
its simplicity, this and similar approaches are also relevant for practical applica-
tions. However, if the transmission probability q is chosen too small, time slots
are not sufficiently used. In contrast, if it is chosen too large, conflicts are likely.

In this section, we present an analysis of a random contention-resolution al-
gorithm for the interference scheduling problem. This analysis is based on the
maximum average affectance Ā. We start by analyzing a single time slot in
which some senders transmit with probability q while the others remain silent.
We prove that if q is chosen small enough, a q/4 fraction of the senders taking
part succeed.

Lemma 1. Given a request set R′ ⊆ R. Consider a time slot in which each
sender of the requests in R′ transmits with probability q ≤ 1/4Ā, the others remain
silent. Then at least q/4 · |R′| transmissions are successful in expectation.

Proof. For � ∈ R′, let X� be the 0/1 random variable indicating if � transmits,
and X ′� be the 0/1 random variable indicating if the transmission is successful.

Note that to have X ′� = 1, i. e. to make transmission � successful, it suffices to
have

X� = 1 and
∑
�′∈R′

ap(�′, �)X�′ < 1 .

By Markov inequality, we have

Pr

[∑
�′∈R′

ap(�′, �)X�′ ≥ 1

]
≤ E

[∑
�′∈R′

ap(�′, �)X�′
]

=
∑
�′∈R′

ap(�′, �)q .

Let M :=
{
� ∈ R′ |∑�′∈R′ ap(�′, �) ≤ 2Ā

}
. By definition of Ā, we know that

|M | ≥ 1
2 · |R′|. For a request � ∈M , we have

∑
�′∈R′

ap(�′, �)q ≤ 2Āq ≤ 1
2

which implies that E [X ′�] = Pr [X ′� = 1] = Pr [X� = 1] ·Pr [X ′� = 1 | X� = 1] ≥
q/2. In case � �∈M , we simply use E [X ′�] ≥ 0.

This yields the expected total number of successful transmissions is

E

[∑
�∈R
X ′�

]
=
∑
�∈R

E [X ′�] ≥
q

2
· |M | ≥ q

4
· |R′| .

We use this lemma to analyze Algorithm 1, which takes the transmission proba-
bility q as a parameter. Each sender transmits its packet with probability q until
the first success.

170 T. Kesselheim and B. Vöcking

Algorithm 1. Scheduling using transmission probability q.
while success �= true do

transmit with probability q;

The measure Ā allows us to derive a relation between the transmission prob-
ability q and the time until the last transmission has successfully taken place.
This can be seen as a stability result for a fixed value q. We find out a value
such that if Ā is below it, collisions do not take place too often and all packets
are successfully delivered fast.

Theorem 1. If q ≤ 1/4Ā, Algorithm 1 needs O(logn/q) time slots whp.

Proof. Let be nt the random variable indicating the number of requests that
have not been successfully scheduled in the time slots 1, . . . , t.

By Lemma 1, we have E [nt+1 | nt = k] ≥ k − q4k and so

E [nt+1] ≤
∞∑
k=0

Pr [nt = k] ·
(

1− q
4

)
k =
(

1− q
4

) ∞∑
k=0

k ·Pr [nt = k] =
(

1− q
4

)
E [nt] .

Using n0 = n, this yields

E [nt] ≤
(

1− q4
)t
n .

In particular, after 4c lnn/q time slots for each constant c, the expected number
of remaining requests is

E
[
n4c lnn/q

] ≤
(

1− q
4

)4c lnn/q
n ≤
(

1
e

)c lnn
n = n1−c .

The Markov inequality yields

Pr
[
n4c lnn/q �= 0

]
= Pr

[
n4c lnn/q ≥ 1

] ≤ E
[
n4c lnn/q

] ≤ n1−c

So we need O(logn/q) time slots whp.

We achieve the best result when choosing q = 1/4Ā, which yields a schedule of
length O(Ā · logn) whp. In Section 4 we will see this yields an O(log2 n) ap-
proximation of the optimal schedule. However, two major issues prevent this
algorithm from being applied in distributed scenarios. On the one hand, a suit-
able transmission probability has to be chosen, which requires knowing Ā. On
the other hand, senders have to know when to stop transmitting. This cannot
be determined from the position of the sender node but only from the receiver.
Therefore, in a distributed setting, senders have to be informed someway. In the
next sections, we will present solutions to cope with these two problems.

Distributed Contention Resolution in Wireless Networks 171

2.1 Determining the Optimal Transmission Probability

One major drawback of Algorithm 1 is that it needs to get the transmission
probability as a parameter, which has to be chosen suitably to guarantee short
schedules. If senders do not know the network or the request this is not possible.
We solve this problem by applying the idea of an exponential backoff as follows.
Algorithm 2 works the same way as Algorithm 1 but does not have the parameter
q anymore. Instead, it starts with a high transmission probability and reduces it
if the transmission has not been successful during a longer period. That causes
eventually the transmission probability to be small enough that no collisions
occur.

Algorithm 2. A Distributed Single-Hop Scheduling Algorithm
k := 0;
while success �= true do

run Algorithm 1 for 8 lnn/q time slots with parameter q = 1
4·2k ;

k := k + 1;

Although the algorithm is much more complex, we get a guarantee that is not
essentially worse than the one for Algorithm 1.

Theorem 2. When all nodes apply Algorithm 2, scheduling takes O(Ā · logn)
time slots whp.

Due to space contraints, we have to skip this analysis and some further proofs.
They can be found in the full version.

3 Sending Acknowledgements

Taking the model again into consideration, it only states feasibility of one-way
communication. This yields senders do not know if a transmission has success-
fully been received. Our solution to this problem is to use acknowledgement
packets to inform a sender that its transmission was successfully received by the
intended receiver. These acknowledgement packets also need one time slot to be
transmitted. In the final algorithm, they will be transmitted in even time slots,
whereas the actual data packets are transmitted in odd time slots.

We need to assign powers to the acknowledgement transmissions as well. For
these transmissions, the original senders act as receivers and vice versa. Using
the same power as for the other transmission does not work in general, because
there are instances and power assignments in which the optimal schedule length
increases by Ω(n) when exchanging senders and receivers.

3.1 Dual Instances

For a request � = (u, v), we define the dual request �∗ by (v, u). Analogously, for
a request set R the dual request set R∗ is defined by R∗ = {�∗ | � ∈ R}. For a

172 T. Kesselheim and B. Vöcking

request set R and a power assignment p : R → R>0, we define the dual power
assignment p∗ : R∗ → R>0 by

p∗(�∗) = p(�
′)2

d(�′)α
· d(�)

α

p(�)
where �′ = arg max

�∈R
d(�) .

Note that if p fulfills Conditions 1, then p∗ also does and (p∗)∗ = p. Note that
the �′ factor is only necessary to ensure Condition 2 holds. It could also be
chosen much larger. So when switching to a subset of R, we do not have to use
a different dual power assignment.

We can observe that in the dual power assignment p∗ the affectance of a dual
request �∗ on another dual request �′∗ is bounded by the affectance of �′ on � in
the power assignment p.

Observation 3. Given two requests �, �′ ∈ R and some power assignments p,
we have ap∗(�∗, �′∗) ≤ 2ap(�′, �).

The calculations can be found in the full version. This observation directly yields
the maximum average affectance for a dual request set under the dual power
assignment differs by at most a factor of 2 from the original one.

Lemma 2. For all request sets R and power assignments p, we have Ā(R∗, p∗)
≤ 2Ā(R, p).
So, we found a power assignment for the dual request set whose maximum av-
erage affectance is not much higher than the one for the original request set.
Therefore it is suitable for the acknowledgement transmissions. For the algo-
rithm, we again assume that all transmission powers are a priori known to the
senders. This is, the receivers know the dual power assignment.

3.2 Scheduling Algorithm

In order to implement acknowledgement transmissions, we let each receiver trans-
mit a packet back to its sender immediately in the time slot after having received
a packet. However, as these transmissions may still interfere each other, each one
is only transmitted with probability 1/8. Otherwise, no acknowledgement is trans-
mitted yielding a retransmission. Each sender only stops transmissions after hav-
ing successfully received an acknowledgement. Algorithm 3 extends Algorithm 1
by these ideas. We can still adapt the approach of Algorithm 2 that assigns
different values for the parameter q.

Algorithm 3. An extended algorithm implementing acknowledgements
while success �= true do

transmit with probability q (otherwise wait one time slot);
wait for acknowledgment (one time slot);
if acknowledgement has been received then

success := true;

Distributed Contention Resolution in Wireless Networks 173

Theorem 4. If q ≤ 1/4Ā, Algorithm 3 needs O(logn/q) time slots whp.

Due to space limits, the proof can only be found in the full version. As we see, we
only lose a constant factor in the schedule length when using the acknowledge-
ment packets as above. In order to adapt the approach of Algorithm 2, the only
modification needed is that for each possible value of q the algorithm has now
to be run for 256 lnn/q steps. However, this also changes the resulting schedule
length by only a constant factor, still ensuring O(Ā · logn) whp.

In total, we get an algorithm that is fully distributed in the sense that nodes
do not need any additional information about the current state of the network.
The only assumption we need is all nodes have to know a rough estimation of the
total number of requests n and which powers to use and they have a synchronized
clock.

4 Comparison to the Optimal Schedule
To this point, we have presented several algorithms, each with a performance
bound of O(Ā · logn) whp. However, it still remains to show that Ā is not far
from the optimal schedule length in order to compare the performance of this
algorithm to the optimal schedule. In contrast, for all similar measures this is
not guaranteed – they can differ by a factor of Ω(n) from the optimal schedule
length. As a matter of fact, this would also happen if we used the maximum
instead of the average. In particular, we will prove that Ā = O(T (R, p) · logn).
This will prove that the schedules calculated by our algorithms are at most a
factor of O(log2 n) whp away from the optimal schedule.

As a first step towards this result, we consider a set of requests R that can
be scheduled in a single time slot. Informally spoken, we add a request � that
is shorter than all requests in R but does not have to be scheduled in the same
time slot as R. We derive a bound on how much affectance this request � is
exposed to.
Lemma 3. Given a set R of requests that may be scheduled in a single time
slot using some power assignment p fulfilling Conditions 1 and 2, and another
request � with d(�) ≤ d(�′) for all �′ ∈ R, then we have

∑
�′∈R
ap(�′, �) = O(1) .

This lemma can be seen as a generalization of Theorem 1 in [9]. For the proof
see the full version. By decomposing the set R corresponding to the schedule
this directly yields the following generalization where R may be scheduled in T
time slots.
Lemma 4. Given a set R of links that may be scheduled in T slots using some
power assignment p fulfilling Conditions 1 and 2, and another request � with
d(�) ≤ d(�′) for all �′ ∈ R, then we have

∑
�′∈R
ap(�′, �) = O(T) .

174 T. Kesselheim and B. Vöcking

For the same situation as above, we now bound the sum of affectance that �
causes at all requests in R.

Lemma 5. Given a set R of links that may be scheduled in T time slots using
power assignment p and another link � with d(�) ≤ d(�′) for all �′ ∈ R, then we
have ∑

�′∈R
ap(�, �′) = O(T · logn) .

Proof. To prove this lemma, we make use of the results on dual instances we
presented in Section 3.1. For the the dual instance R∗ and the dual power as-
signment p∗ we showed

∑
�′∈R
ap(�, �′) ≤ 2

∑
�′∗∈R∗

ap∗(�′∗, �∗) .

Furthermore p∗ fulfills Conditions 1 and 2. This allows us to apply Lemma 4
and get ∑

�′∗∈R∗
ap∗(�′∗, �∗) = O(T (R∗, p∗)) .

So it only remains to show that T (R∗, p∗) = O(T (R, p) · logn). Let R1, . . . ,RT
be the decomposition of R made by the schedule. We know that each of the sets
Rt fulfills the SINR constraint using the power assignment p. This implies that
Ā(Rt, p) ≤ 1 for all t ∈ [T].

By Lemma 2, we have Ā(R∗t , p∗) ≤ 2. Thus, using Algorithm 1 there is a
schedule of length O(logn) for each request set R∗t using power assignment p∗.
A concatenation of these schedules gives us a schedule of length O(T · logn) for
the entire set R∗.
The combination of both above lemmas allows us to compare Ā(R, p) to the
optimal schedule length T (R, p).
Theorem 5. Given a set R of links that may be scheduled in T time slots using
some power assignment p fulfilling Conditions 1 and 2. Then T = Ω(Ā(R,p)/logn).

Proof. We show that Ā(R, p) = O(T ·logn). Let beR′ ⊆ R andR′ = {�1, . . . , �n̄}
with d(�1) ≤ d(�2) ≤ . . . ≤ d(�n̄). Observe that in this notation Lemmas 4 and
5 yield

∑
j∈[n̄]
j>i

ap(�i, �j) = O(T) and
∑
j∈[n̄]
j>i

ap(�j , �i) = O(T · logn) .

So we get

1
|R′|
∑
�∈R′

∑
�′∈R′

ap(�, �′) = 1
|R′|
∑
i∈[n̄]

∑
j∈[n̄]

ap(�i, �j) = 1
|R′|
∑
i∈[n̄]

∑
j∈[n̄]
j>i

ap(�i, �j) + ap(�j , �i) .

This yields the claim.

Distributed Contention Resolution in Wireless Networks 175

So, in total, this guarantees that the schedules calculated by our algorithms are
at most a factor of O(log2 n) longer than the optimal one that uses the same
power assignment. Interestingly, this optimal schedule is not required to use
acknowledgement packets and therefore not be computable in a distributed way.

5 Multi-Hop Scheduling

In the multi-hop variant of the interference scheduling problem, packets are
routed via intermediate networks nodes until reaching their final destination.
As we do for the powers, we assume also the paths to be fixed. This is, each
packet has a predefined path, which is for example given by routing tables in
the network nodes.

Our algorithm applies the technique of random delays that has successfully
been applied to scheduling in wired [15] and also in wireless [5,9] networks. That
is, time is divided into time frames such that each packet attempts to cross one
hop in each time frame after having waiting the initial delay at its origin node.

However, in a distributed environment, determining the maximum delay is
more involved as we assume that all nodes only know static information on the
network. They neither know which packets have to be scheduled in general nor
which is the future path some packet will take. Our deals with this problem as
follows. It works in phases. In phase k each packet is assigned a delay indepen-
dently uniformly at random that is at most 2k. The phase consists of O(2k log2 n)
time slots that are grouped to 2k+1 time frames each of length 212 · 18 · 	ln2 n
.

During each of these phases Algorithm 3 is executed, where in each step each
node works as a receiver if it does not decide to transmit in this step. In each
time frame, each packet attempts to cross one hop. If a packet fails to cross a
hop in the respective time slot, it is not considered anymore during this phase
but deferred to the next one starting at the node where the failure occurred.

Theorem 6. If T is the optimal schedule length, using the multi-hop algorithm
results in a schedule length of O(T · log2 n) whp.

The formal definition of the algorithm and its analysis can be found in the full
version.

6 Adaptation to Different Scenarios

6.1 Devices without Power Control

As uniform power assignments obviously fulfill Condition 1, and also Condition 2
if the power is large enough, the basic scheduling results are immediately ap-
plicable even if the senders do not support transmitting at smaller power levels
than the maximum. However, to transmit the acknowledgement packets we used
the dual power assignment p∗, which is not uniform in general. So, in order to
apply this algorithm, devices have to be able to control their transmission power.

176 T. Kesselheim and B. Vöcking

Nevertheless, if devices are not able of power control we can still use the
key techniques. Suppose all transmissions have to be made at the same power
level, say p̂. If β > 1, we can prove the following result, which is similar to
Observation 3.

Observation 7. If � and �′ can be transmitted in the same time slot using power
p̂ and β > 1, then ap̂(�∗, �′∗) ≤

(
β+1
β−1

)α
· ap̂(�, �′) .

This observation yields Ā(R∗, p̂) = O(1) if R can be scheduled in a single time
slot. So, we can send the acknowledgements in a similar manner as in Algorithm 3
using again the transmission power p̂ rather than the dual power assignment.
These changes do not affect the core of the analysis but only the constant factors
involved. However, this result only holds for the case that all transmissions use
the same transmission power p̂.

6.2 Bidirectional Model

In the bidirectional model [8], requests are undirected because both involved
nodes act as a sender and a receiver at the same time. In order to estimate
the interference between two requests � and �′ the smallest of the distances is
relevant. For this model, we can replace the affectance definition by

ap(�, �′)=min
{

1, β p(�)
min{d(u, u′)α, d(u, v′)α, d(v, u′)α, d(v, v′)α}

/(
p(�′)
d(u′, v′)α

− βN
)}
.

With this definition, the above results can be transferred to the bidirectional
model. Particularly, we get distributed algorithms with an approximation factor
of O(log2 n) whp.

7 Discussion and Open Problems

While previous algorithms are mostly centralized, the algorithms and analyses
we presented seem to be much closer to realistic scenarios. However, we made
use of three assumptions, namely the power assignment is given, each node has a
rough estimation of the total number of nodes and the clocks are synchronized.
These are suitable assumptions as this knowledge can be spread when deploying
the network. On the contrary, the information that arises over time, e. g. which
transmissions have to be made is not necessary.

Nevertheless, it is an interesting question which performance can still be
achieved without this knowledge. Unfortunately, we cannot get rid of any of
these assumptions in a non-trivial way. For example, for the clock synchroniza-
tion the standard ALOHA trick [18] does not work. However, concerning the
number of nodes and the clock synchronization there are various results in other
scenarios that could possibly be transferred.

Distributed Contention Resolution in Wireless Networks 177

For the power assignment problem the best solution for distributed settings
up to now is to take distance-based power schemes such as the square-root power
assignment. With our algorithms this yields an O(log logΔ · log3 n) approxima-
tion compared to the optimal schedule using the optimal power assignment.
Very recently [14] an approach has been presented calculate a power assignment
achieving an approximation ratio that is independent of Δ. However this algo-
rithm only works in a centralized way. So there is still much space for future
research in distributed protocols for these problems.

Acknowledgements

We like to thank Alexander Fanghänel for valuable discussions and comments.

References

1. Abramson, N.: The aloha system: another alternative for computer communica-
tions. In: AFIPS ’70 (Fall): Proceedings of the Fall Joint Computer Conference,
November 17-19, 1970, pp. 281–285 (1970)

2. Andrews, M., Dinitz, M.: Maximizing capacity in arbitrary wireless networks in the
sinr model: Complexity and game theory. In: Proceedings of the 28th Conference
of the IEEE Communications Society, INFOCOM (2009)

3. Avin, C., Lotker, Z., Pignolet, Y.A.: On the power of uniform power: Capacity
of wireless networks with bounded resources. In: Fiat, A., Sanders, P. (eds.) ESA
2009. LNCS, vol. 5757, pp. 373–384. Springer, Heidelberg (2009)

4. Bar-Yehuda, R., Goldreich, O., Itai, A.: On the time-complexity of broadcast in
multi-hop radio networks: An exponential gap between determinism and random-
ization. Journal of Computer and System Sciences 45(1), 104–126 (1992)

5. Chafekar, D., Anil Kumar, V.S., Marathe, M.V., Parthasarathy, S., Srinivasan, A.:
Cross-layer latency minimization in wireless networks with SINR constraints. In:
Proceedings of the 8thACM International Symposium Mobile Ad-Hoc Networking
and Computing (MOBIHOC), pp. 110–119 (2007)

6. Clementi, A.E.F., Crescenzi, P., Monti, A., Penna, P., Silvestri, R.: On computing
ad-hoc selective families. In: Proceedings of the 5th International Workshop on
Randomization and Approximation Techniques in Computer Science (RANDOM-
APPROX), pp. 211–222 (2001)

7. Demaine, E.D., Hajiaghayi, M.T., Feige, U., Salavatipour, M.R.: Combination can
be hard: approximability of the unique coverage problem. In: Proceedings of the
17th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 162–171 (2006)

8. Fanghänel, A., Kesselheim, T., Räcke, H., Vöcking, B.: Oblivious interference
scheduling. In: Proceedings of the 28th ACM Symposium on Principles of Dis-
tributed Computing, pp. 220–229 (2009)

9. Fanghänel, A., Kesselheim, T., Vöcking, B.: Improved algorithms for latency min-
imization in wireless networks. In: Albers, S., Marchetti-Spaccamela, A., Matias,
Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 447–458.
Springer, Heidelberg (2009)

10. Goussevskaia, O., Oswald, Y.A., Wattenhofer, R.: Complexity in geometric SINR.
In: Proceedings of the 8th ACM International Symposium Mobile Ad-Hoc Net-
working and Computing (MOBIHOC), New York, NY, USA, pp. 100–109 (2007)

178 T. Kesselheim and B. Vöcking

11. Gupta, P., Kumar, P.R.: The capacity of wireless networks. IEEE Transactions on
Information Theory 46, 388–404 (2000)

12. Halldórsson, M.M.: Wireless scheduling with power control. In: Fiat, A., Sanders,
P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 361–372. Springer, Heidelberg (2009)

13. Halldórsson, M.M., Wattenhofer, R.: Wireless communication is in APX. In:
Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W.
(eds.) ICALP 2009. Part I, LNCS, vol. 5555, pp. 525–536. Springer, Heidelberg
(2009)

14. Kesselheim, T.: A constant-factor approximation for wireless capacity maximiza-
tion with power control in the SINR model. CoRR abs/1007.1611 (2010)

15. Leighton, F.T., Maggs, B.M., Rao, S.B.: Packet routing and job-shop scheduling
in O(congestion+dilation) steps. Combinatorica (1994)

16. Moscibroda, T., Wattenhofer, R.: The complexity of connectivity in wireless net-
works. In: Proceedings of the 25th Conference of the IEEE Communications Society
(INFOCOM), pp. 1–13 (2006)

17. Moscibroda, T., Wattenhofer, R., Zollinger, A.: Topology control meets SINR: The
scheduling complexity of arbitrary topologies. In: Proceedings of the 7th ACM In-
ternational Symposium Mobile Ad-Hoc Networking and Computing (MOBIHOC),
pp. 310–321 (2006)

18. Roberts, L.G.: Aloha packet system with and without slots and capture. SIG-
COMM Comput. Commun. Rev. 5(2), 28–42 (1975)

A Jamming-Resistant MAC Protocol for
Multi-Hop Wireless Networks�

Andrea Richa1, Christian Scheideler2, Stefan Schmid3, and Jin Zhang1

1 Computer Science and Engineering, SCIDSE, Arizona State University
Tempe, AZ 85287, USA

{aricha,jzhang82}@asu.edu
2 Department of Computer Science, University of Paderborn, D-33102 Paderborn,

Germany
scheideler@upb.de

3 Deutsche Telekom Laboratories, TU Berlin, D-10587 Berlin, Germany
stefan@net.t-labs.tu-berlin.de

Abstract. This paper presents a simple local medium access control
protocol, called Jade, for multi-hop wireless networks with a single chan-
nel that is provably robust against adaptive adversarial jamming. The
wireless network is modeled as a unit disk graph on a set of nodes dis-
tributed arbitrarily in the plane. In addition to these nodes, there are
adversarial jammers that know the protocol and its entire history and
that are allowed to jam the wireless channel at any node for an arbi-
trary (1 − ε)-fraction of the time steps, where 0 < ε < 1 is an arbitrary
constant. We assume that the nodes cannot distinguish between jammed
transmissions and collisions of regular messages. Nevertheless, we show
that Jade achieves an asymptotically optimal throughput if there is a
sufficiently dense distribution of nodes.

1 Introduction

The problem of coordinating the access to a shared medium is a central challenge
in wireless networks. In order to solve this problem, a proper medium access
control (MAC) protocol is needed. Ideally, such a protocol should not only be able
to use the wireless medium as effectively as possible, but it should also be robust
against attacks. Unfortunately, most of the MAC protocols today can be easily
attacked. A particularly critical class of attacks are jamming attacks (i.e., denial-
of-service attacks on the broadcast medium). Jamming attacks are typically easy
to implement as the attacker does not need any special hardware. Attacks of
this kind usually aim at the physical layer and are realized by means of a high
transmission power signal that corrupts a communication link or an area, but
they may also occur at the MAC layer, where an adversary may either corrupt
control packets or reserve the channel for the maximum allowable number of

� A full version of this article including all proofs appears on arXiv.org (identifier
1007.1189).

N.A. Lynch and A.A. Shvartsman (Eds.): DISC 2010, LNCS 6343, pp. 179–193, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

180 A. Richa et al.

slots so that other nodes experience low throughput by not being able to access
the channel. In this paper we focus on jamming attacks at the physical layer,
that is, the interference caused by the jammer will not allow the nodes to receive
messages. The fundamental question that we are investigating is: Is there a MAC
protocol such that for any physical-layer jamming strategy, the protocol will still
be able to achieve an asymptotically optimal throughput for the non-jammed time
steps? Such a protocol would force the jammer to jam all the time in order to
prevent any successful message transmissions. Finding such a MAC protocol
is not a trivial problem. In fact, the widely used IEEE 802.11 MAC protocol
already fails to deliver any messages for very simple oblivious jammers that
jam only a small fraction of the time steps [3]. On the positive side, Awerbuch
et al. [2] have demonstrated that there are MAC protocols which are provably
robust against even massive adaptive jamming, but their results only hold for
single-hop wireless networks with a single jammer, that is, all nodes experience
the same jamming sequence.

In this paper, we significantly extend the results in [2]. We present a MAC
protocol called Jade (a short form of “jamming defense”) that can achieve a
constant fraction of the best possible throughput for a large class of jamming
strategies in a large class of multi-hop networks where transmissions and inter-
ference can be modeled using unit-disk graphs. These jamming strategies include
jamming patterns that can be completely different from node to node. It turns
out that while Jade differs only slightly from the MAC protocol of [2], the
proof techniques needed for the multi-hop setting significantly differ from the
techniques in [2].

1.1 Model

We consider the problem of designing a robust MAC protocol for multi-hop
wireless networks with a single wireless channel. The wireless network is modeled
as a unit disk graph (UDG) G = (V, E) where V represents a set of n = |V | honest
and reliable nodes and two nodes u, v ∈ V are within each other’s transmission
range, i.e., {u, v} ∈ E, if and only if their (normalized) distance is at most 1.
We assume that time proceeds in synchronous time steps called rounds. In each
round, a node may either transmit a message or sense the channel, but it cannot
do both. A node which is sensing the channel may either (i) sense an idle channel
(if no other node in its transmission range is transmitting at that round and its
channel is not jammed), (ii) sense a busy channel (if two or more nodes in its
transmission range transmit at that round or its channel is jammed), or (iii)
receive a packet (if exactly one node in its transmission range transmits at that
round and its channel is not jammed).

In addition to these nodes there is an adversary (who may control any number
of jamming devices). We allow the adversary to know the protocol and its entire
history and to use this knowledge in order to jam the wireless channel at will
at any round (i.e, the adversary is adaptive). However, like in [2], the adversary
has to make a jamming decision before it knows the actions of the nodes at the
current round. The adversary can jam the nodes individually at will, as long

A Jamming-Resistant MAC Protocol for Multi-Hop Wireless Networks 181

as for every node v, at most a (1 − ε)-fraction of its rounds is jammed, where
ε > 0 can be an arbitrarily small constant. That is, v has the chance to receive
a message in at least an ε-fraction of the rounds. More formally, an adversary is
called (T, 1− ε)-bounded for some T ∈ N and 0 < ε < 1, if for any time window
of size w ≥ T and at any node v, the adversary can jam at most (1− ε)w of the
w rounds at v.

Given a node v and a time interval I, we define fv(I) as the number of time
steps in I that are non-jammed at v and sv(I) as the number of time steps in I in
which v successfully receives a message. A MAC protocol is called c-competitive
against some (T, 1− ε)-bounded adversary if, for any time interval I with |I| ≥
K for a sufficiently large K (that may depend on T and n),

∑
v∈V sv(I) ≥

c ·
∑

v∈V fv(I). In other words, a c-competitive MAC protocol can achieve at
least a c-fraction of the best possible throughput.

Our goal is to design a symmetric local-control MAC protocol (i.e., there is
no central authority controlling the nodes, and all the nodes are executing the
same protocol) that has a constant-competitive throughput against any (T, 1−ε)-
bounded adversary in any multi-hop network that can be modeled as a UDG. In
order to obtain a more refined picture of the competitiveness of our protocol, we
will also investigate so-called k-uniform adversaries. An adversary is k-uniform
if the node set V can be partitioned into k subsets so that the jamming sequence
is the same within each subset. In other words, we require that at all times, the
nodes in a subset are either all jammed or all non-jammed. Thus, a 1-uniform
jammer jams either everybody or nobody in a round whereas an n-uniform
jammer can jam the nodes individually at will.

In this paper, we will say that a claim holds with high probability (w.h.p.) iff
it holds with probability at least 1 − 1/nc for any constant c ≥ 1; it holds with
moderate probability (w.m.p.) iff it holds with probability at least 1− 1/(log n)c

for any constant c ≥ 1.

1.2 Related Work

Due to the topic’s importance, wireless network jamming has been extensively
studied in the applied research fields [1,5,6,22,26,27,28,30,31,37,38,39,40], both
from the attacker’s perspective [6,26,27,40] as well as from the defender’s per-
spective [1,5,6,27,28,30,38,40]—also in multi-hop settings (e.g. [21,32,42,43,44]).

Traditionally, jamming defense mechanisms operate on the physical layer
[28,30,36]. Mechanisms have been designed to avoid jamming as well as detect
jamming. Spread spectrum technology has been shown to be very effective to
avoid jamming as with widely spread signals, it becomes harder to detect the
start of a packet quickly enough in order to jam it. Unfortunately, protocols
such as IEEE 802.11b use relatively narrow spreading [20], and some other
IEEE 802.11 variants spread signals by even smaller factors [5]. Therefore, a
jammer that simultaneously blocks a small number of frequencies renders spread
spectrum techniques useless in this case. As jamming strategies can come in
many different flavors, detecting jamming activities by simple methods based on

182 A. Richa et al.

signal strength, carrier sensing, or packet delivery ratios has turned out to be
quite difficult [27].

Recent work has also studied MAC layer strategies against jamming, including
coding strategies [6], channel surfing and spatial retreat [1,41], or mechanisms
to hide messages from a jammer, evade its search, and reduce the impact of
corrupted messages [38]. Unfortunately, these methods do not help against an
adaptive jammer with full information about the history of the protocol, like the
one considered in our work.

In the theory community, work on MAC protocols has mostly focused on
efficiency. Many of these protocols are random backoff or tournament-based pro-
tocols [4,7,17,18,25,34] that do not take jamming activity into account and, in
fact, are not robust against it (see [2] for more details). The same also holds for
many MAC protocols that have been designed in the context of broadcasting [8]
and clustering [24]. Also some work on jamming is known (e.g., [9] for a short
overview). There are two basic approaches in the literature. The first assumes
randomly corrupted messages (e.g. [33]), which is much easier to handle than
adaptive adversarial jamming [3]. The second line of work either bounds the
number of messages that the adversary can transmit or disrupt with a limited
energy budget (e.g. [16,23]) or bounds the number of channels the adversary can
jam (e.g. [10,11,12,13,14,15,29]).

The protocols in [16,23] can tackle adversarial jamming at both the MAC
and network layers, where the adversary may not only be jamming the channel
but also introducing malicious (fake) messages (possibly with address spoofing).
However, they depend on the fact that the adversarial jamming budget is finite,
so it is not clear whether the protocols would work under heavy continuous
jamming. (The result in [16] seems to imply that a jamming rate of 1/2 is the
limit whereas the handshaking mechanisms in [23] seem to require an even lower
jamming rate.)

In the multi-channel version of the problem introduced in the theory com-
munity by Dolev [13] and also studied in [10,11,12,13,14,15,29], a node can only
access one channel at a time, which results in protocols with a fairly large run-
time (which can be exponential for deterministic protocols [11,14] and at least
quadratic in the number of jammed channels for randomized protocols [12,29]
if the adversary can jam almost all channels at a time). Recent work [10] also
focuses on the wireless synchronization problem which requires devices to be
activated at different times on a congested single-hop radio network to synchro-
nize their round numbering while an adversary can disrupt a certain number of
frequencies per round. Gilbert et al. [15] study robust information exchange in
single-hop networks.

Our work is motivated by the work in [3] and [2]. In [3] it is shown that an
adaptive jammer can dramatically reduce the throughput of the standard MAC
protocol used in IEEE 802.11 with only limited energy cost on the adversary
side. Awerbuch et al. [2] initiated the study of throughput-competitive MAC
protocols under continuously running, adaptive jammers, but they only consider
single-hop wireless networks. We go one step further by considering multi-hop

A Jamming-Resistant MAC Protocol for Multi-Hop Wireless Networks 183

networks where different nodes can have different channel states at a time, e.g.,
a transmission may be received only by a fraction of the nodes. It turns out
that while the MAC protocol of [2] can be adopted to the multi-hop setting
with a small modification, the proof techniques cannot. We are not aware of any
other theoretical work on MAC protocols for multi-hop networks with provable
performance against adaptive jamming.

1.3 Our Contributions

In this paper, we present a robust MAC protocol called Jade. Jade is a fairly
simple protocol: it is based on a very small set of assumptions and rules and has
a minimal storage overhead. In fact, in Jade every node just stores a constant
number of parameters, among them a fixed parameter γ that should be chosen
so that the following main theorem holds:
Theorem 1. When running Jade for at least Ω((T log n)/ε + (log n)4/(γε)2)
time steps, Jade has a constant competitive throughput for any (T, 1−ε)-bounded
adversary and any UDG w.h.p. as long as γ = O(1/(log T + log log n)) and (a)
the adversary is 1-uniform and the UDG is connected, or (b) there are at least
2/ε nodes within the transmission range of every node.

Note that in practice, log T and log log n are rather small so that our condition
on γ is not too restrictive. Also, a conservative estimate on log T and log log n
would leave room for a superpolynomial change in n and a polynomial change
in T over time.

On the other hand, we can also show the following result demonstrating that
Theorem 1 essentially captures all the scenarios (within our notation) under
which Jade can have a constant competitive throughput.

Theorem 2. If (a) the UDG is not connected, or (b) the adversary is allowed
to be 2-uniform and there are nodes with o(1/ε) nodes within their transmission
range, then there are cases in which Jade is not constant competitive for any
constant c independent of ε.

Certainly, no MAC protocol can guarantee a constant competitive throughput
if the UDG is not connected. However, it is still open whether there are sim-
ple MAC protocols that are constant competitive under non-uniform jamming
strategies even if there are o(1/ε) nodes within the transmission range of a node.

2 Description of Jade

This section first gives a short motivation for our algorithmic approach and then
presents the Jade protocol in detail.

2.1 Intuition

The intuition behind our MAC protocol is simple: in each round, each node
u tries to send a message with probability pu with pu ≤ p̂ for some small
constant 0 < p̂ < 1. Consider the unit disk D(u) around node u consisting of

184 A. Richa et al.

u’s neighboring nodes as well as u.1 Moreover, let N(u) = D(u) \ {u} and
p =

∑
v∈N(u) pv. Suppose that u is sensing the channel. Let q0 be the probability

that the channel is idle at u and let q1 be the probability that exactly one
node in N(u) is sending a message. It holds that q0 =

∏
v∈N(u)(1 − pv) and

q1 =
∑

v∈N(u) pv

∏
w∈N(u)\{v}(1− pw). Hence,

q1 ≤
∑

v∈N(u)

pv
1

1− p̂

∏
w∈N(u)

(1−pw)=
q0 · p
1− p̂

, q1 ≥
∑

v∈N(u)

pv

∏
w∈N(u)

(1−pw)=q0·p.

Thus we have the following lemma, which has also been derived in [2] for the
single-hop case.

Lemma 1. q0 · p ≤ q1 ≤ q0
1−p̂ · p.

By Lemma 1, if a node v observes that the number of rounds in which the channel
is idle is essentially equal to the number of rounds in which exactly one message
is sent, then p =

∑
v∈N(v) pv is likely to be around 1 (if p̂ is a sufficiently small

constant), which would be ideal. Otherwise, the nodes know that they need to
adapt their probabilities. Thus, if we had sufficiently many cases in which an idle
channel or exactly one message transmission is observed (which is the case if the
adversary does not heavily jam the channel and p is not too large), then one can
adapt the probabilities pv just based on these two events and ignore all cases in
which the wireless channel is blocked, either because the adversary is jamming
it or because at least two messages interfere with each other (see also [19] for
a similar conclusion). Unfortunately, p can be very high for some reason, which
requires a more sophisticated strategy for adjusting the access probabilities.

2.2 Protocol Description

In Jade, each node v maintains a probability value pv, a threshold Tv and a
counter cv. The parameters p̂, γ > 0 in the protocol are fixed and the same for
every node. p̂ may be set to any constant value so that 0 < p̂ ≤ 1/24, and γ
should be small enough so that the condition in Theorem 1 is met.

Initially, every node v sets Tv := 1, cv := 1 and pv := p̂. Afterwards, the
Jade protocol works in synchronized rounds. In every round, each node v
decides with probability pv to send a message. If it decides not to send a
message, it checks the following two conditions:

– If v senses an idle channel, then pv := min{(1 + γ)pv, p̂}.
– If v successfully receives a message, then pv := (1 + γ)−1pv and Tv :=

max{Tv − 1, 1}.

1 In this paper, disks (and later sectors) will refer both to 2-dimensional areas in the
plane as well as to the set of nodes in the respective areas. The exact meaning will
become clear in the specific context.

A Jamming-Resistant MAC Protocol for Multi-Hop Wireless Networks 185

Afterwards, v sets cv := cv + 1. If cv > Tv then it does the following:
v sets cv := 1, and if there was no round among the past Tv rounds in
which v sensed a successful message transmission or an idle channel, then
pv := (1 + γ)−1pv and Tv := min{Tv + 1, 21/(4γ)} .

As we will see in the upcoming section, the concept of using a multiplicative-
increase-multiplicative-decrease mechanism for pv and an additive-increase-
additive-decrease mechanism for Tv, as well as the slight modifications of the
protocol in [2], marked in italic above, are crucial for Jade to work.

3 Analysis of Jade

In contrast the description of Jade, its stochastic analysis is rather involved as it
requires to shed light onto the complex interplay of the nodes all following their
randomized protocol in a highly dependent manner. We first prove Theorem 1
(Sections 3.1 and 3.2) and then prove Theorem 2 (Section 3.3). In order to show
the theorems, we will frequently use the following variant of the Chernoff bounds
[2,35].

Lemma 2. Consider any set of binary random variables X1, . . . , Xn. Suppose
that there are values p1, . . . , pn ∈ [0, 1] with E[

∏
i∈S Xi] ≤

∏
i∈S pi for every set

S ⊆ {1, . . . , n}. Then it holds for X =
∑n

i=1 Xi and μ =
∑n

i=1 pi and any δ > 0
that

P[X ≥ (1 + δ)μ] ≤
(

eδ

(1 + δ)1+δ

)μ

≤ e−
δ2μ

2(1+δ/3) .

If, on the other hand, it holds that E[
∏

i∈S Xi] ≥
∏

i∈S pi for every set S ⊆
{1, . . . , n}, then it holds for any 0 < δ < 1 that

P[X ≤ (1− δ)μ] ≤
(

e−δ

(1 − δ)1−δ

)μ

≤ e−δ2μ/2.

Throughout the section we assume that γ = O(1/(log T +log log n)) is sufficiently
small.

3.1 Proof of Theorem 1

We first look at a slightly weaker form of adversary. We say a round t is open for
a node v if v and at least one other node in its neighborhood are non-jammed
(which implies that v’s neighborhood is non-empty). An adversary is weakly
(T, 1 − ε)-bounded for some T ∈ N and 0 < ε < 1 if the adversary is (T, 1 − ε)-
bounded and in addition to this, at least a constant fraction of the non-jammed
rounds at each node are open in every time interval of size w ≥ T .

Theorem 3. When running Jade for Ω([T +(log3 n)/(γ2ε)] · (logn)/ε) rounds
it holds w.h.p. that Jade is constant competitive for any weakly (T, 1−ε)-bounded
adversary.

186 A. Richa et al.

Proof. First, we focus on a time frame F consisting of α log n/ε subframes of
size f = α[T + (log3 n)/(γ2ε)] each, where f is a multiple of T and α is a
sufficiently large constant. The proof needs the following three lemmas. The first
one is identical to Claim 2.5 in [2]. It is true because only successful message
transmissions reduce Tu.

Lemma 3. If in a time interval I the number of rounds in which a node u
successfully receives a message is at most r, then u increases Tu in at most
r +
√

2|I| rounds in I.

The second lemma holds for arbitrary (not just weakly) (T, 1− ε)-bounded ad-
versaries and will be shown in Section 3.2.

Lemma 4. For every node u,
∑

v∈D(u) pv = O(1) for at least a (1−εβ)-fraction
of the rounds in time frame F , w.h.p., where the constant β > 0 can be made
arbitrarily small.

The third lemma just follows from some simple geometric argument.

Lemma 5. A disk of radius 2 can be cut into at most 20 regions so that the
distance between any two points in a region is at most 1.

Consider some fixed node u. Let J ⊆ F be the set of all non-jammed open
rounds at u in time frame F (which are a constant fraction of the non-jammed
rounds at u because we have a weakly (T, 1 − ε)-bounded adversary). Let p be
a constant satisfying Lemma 4 (i.e.,

∑
w∈D(v) pw ≤ p). Define DD(u) to be the

disk of radius 2 around u (i.e., it has twice the radius of D(u)). Cut DD(u)
into 20 regions R1, . . . , R20 satisfying Lemma 5, and let vi be any node in region
Ri (if such a node exists), where vi = u if u ∈ Ri. According to Lemma 4 it
holds for each i that at least a (1 − εβ′/20)-fraction of the rounds in F satisfy∑

w∈D(vi) pw ≤ p for any constant β′ > 0, w.h.p. Thus, at least a (1 − εβ′′)-
fraction of the rounds in F satisfy

∑
w∈D(vi) pw ≤ p for every i for any constant

β′′ > 0, w.h.p. As D(v) ⊆ DD(u) for all v ∈ D(u) and u has at least ε|F | non-
jammed rounds in F , we get the following lemma, which also holds for arbitrary
(T, 1− ε)-bounded adversaries:

Lemma 6. At least a (1−β)-fraction of the rounds in J satisfy
∑

v∈D(u) pv ≤ p

and
∑

w∈D(v) pw = O(p) for all nodes v ∈ D(u) for any constant β > 0, w.h.p.

Let us call these rounds good. Since the probability that u senses the channel is
at least 1−p̂ and the probability that the channel at u is idle for

∑
w∈D(u) pw ≤ p

is equal to
∏

v∈N(u)(1 − pv) ≥
∏

v∈N(u) e−2pv ≥ e−2p, u senses an idle channel
for at least (1− p̂)(1−β)|J |e−2p ≥ 2β|J | many rounds in J on expectation if β is
sufficiently small. This also holds w.h.p. when using the Chernoff bounds under
the condition that at least (1 − β)|J | rounds in F are good (which also holds
w.h.p.). Let k be the number of times u receives a message in F . We distinguish
between two cases.

A Jamming-Resistant MAC Protocol for Multi-Hop Wireless Networks 187

Case 1: k ≥ β|J |/6. Then Jade is constant competitive for u and we are done.

Case 2: k < β|J |/6. Then we know from Lemma 3 that pu is decreased at most
β|J |/6 +

√
2|F | times in F due to cu > Tu. In addition to this, pu is decreased

at most β|J |/6 times in F due to a received message. On the other hand, pu

is increased at least 2β|J | times in J (if possible) due to an idle channel w.h.p.
Also, we know from the Jade protocol that at the beginning of F , pu = p̂.
Hence, there must be at least β(2 − 1/6− 1/6)|J | −

√
2|F | ≥ (3/2)β|J | rounds

in J w.h.p. at which pu = p̂. As there are at least (1 − β)|J | good rounds in
J (w.h.p.), there are at least β|J |/2 good rounds in J w.h.p. in which pu = p̂.
For these good rounds, u has a constant probability to transmit a message and
every node v ∈ D(u) has a constant probability of receiving it, so u successfully
transmits Θ(|J |) messages to at least one of its non-jammed neighbors in F (on
expectation and also w.h.p.).

If we charge 1/2 of each successfully transmitted message to the sender and
1/2 to the receiver, then a constant competitive throughput can be identified for
every node in both cases above, so Jade is constant competitive in F .

It remains to show that Theorem 3 achieves constant competitiveness for any
time interval exceeding |F |. First, note that all the proofs are valid as long as
γ ≤ 1/[c(logT + log log n)] for a constant c ≥ 2, so we can increase T and
thereby also |F | as long as this inequality holds. So w.l.o.g. we may assume that
γ = 1/[2(logT +log log n)]. In this case, 21/(4γ) ≤

√
|F |, so our rule of increasing

Tv in Jade implies that Tv ≤
√
|F | at any time, which is crucial for Lemma 4

to hold for a time frame starting at any time. This allows us to extend the
competitive throughput result to any sequence of time frames, which completes
the proof of Theorem 3. ��

Now, let us consider the two cases of Theorem 1. Recall that we allow here any
(T, 1− ε)-bounded adversary and not just a weakly bounded.

Case 1: the adversary is 1-uniform and the UDG is connected. In this
case, every node has a non-empty neighborhood and therefore all non-jammed
rounds of the nodes are open. Hence, the conditions on a weakly (T, 1 − ε)-
bounded adversary are satisfied. So Theorem 3 applies, which completes the
proof of Theorem 1 a).

Case 2: |D(v)| ≥ 2/ε for all v ∈ V . Consider some fixed time interval I
with |I| being a multiple of T . For every node v ∈ D(u) let fv be the number
of non-jammed rounds at v in I and ov be the number of open rounds at v in
I. Let J be the set of rounds in I with at most one non-jammed node. Suppose
that |J | > (1 − ε/2)|I|. Then every node in D(u) must have more than (ε/2)|I|
of its non-jammed rounds in J . As these non-jammed rounds must be serialized
in J to satisfy our requirement on J , it holds that |J | >

∑
v∈D(u)(ε/2)|I| ≥

(2/ε) · (ε/2)|I| = |I|. Since this is impossible, it must hold that |J | ≤ (1− ε/2)|I|.
Thus,

∑
v∈D(u) ov ≥ (

∑
v∈D(u) fv) − |J | ≥ (1/2)

∑
v∈D(u) fv because∑

v∈D(u) fv ≥ (2/ε) · ε|I| = 2|I|. Let D′(u) be the set of nodes v ∈ D(u)

188 A. Richa et al.

with ov ≥ fv/4. That is, for each of these nodes, a constant fraction of the
non-jammed time steps is open. Then

∑
v∈D(u)\D′(u) ov < (1/4)

∑
v∈D(u) fv, so∑

v∈D′(u) ov ≥ (1/2)
∑

v∈D(u) ov ≥ (1/4)
∑

v∈D(u) fv.
Consider now a set U ⊆ V of nodes so that

⋃
u∈U D(u) = V and for every

v ∈ V there are at most 6 nodes u ∈ U with v ∈ D(u) (U is easy to construct
in a greedy fashion for arbitrary UDGs and also known as a dominating set of
constant density). Let V ′ =

⋃
u∈U D′(u). Since

∑
v∈D′(u) ov ≥ (1/4)

∑
v∈D(u) fv

for every node u ∈ U , it follows that
∑

v∈V ′ ov ≥ (1/6)
∑

u∈U

∑
v∈D′(u) ov ≥

(1/24)
∑

u∈U

∑
v∈D(u) fv ≥ (1/24)

∑
v∈V fv. Using that together with Theo-

rem 3, which implies that Jade is constant competitive w.r.t. the nodes in V ′,
completes the proof of Theorem 1 b).

3.2 Proof of Lemma 4

In order to finish the proof of Theorem 1, it remains to prove Lemma 4. Consider
any fixed node u. We partition u’s unit disk D(u) into six sectors of equal angles
from u, S1, ..., S6. Note that all nodes within a sector Si have distances of at
most 1 from each other, so they can directly communicate with each other (in
D(u), distances can be up to 2). We will first explore properties of an arbitrary
node in one sector, then consider the implications for a whole sector, and finally
bound the cumulative sending probability in the entire unit disk.

Recall the definition of a time frame, a subframe and f in the proof of The-
orem 3. Fix a sector S in D(u) and consider some fixed time frame F . Let us
refer to the sum of the probabilities of the neighboring nodes of a given node
v ∈ S by p̄v :=

∑
w∈S\{v} pw. The following lemma shows that pv will decrease

dramatically if p̄v is high throughout a certain time interval. It needs the fact
that maxvTv ≤

√
|F | (not shown here).

Lemma 7. Consider a node v in a unit disk D(u). If p̄v > 5 − p̂ during all
rounds of a subframe I of F , then pv will be at most 1/n2 at the end of I, w.h.p.

We omit the proof here. Given this property of the individual probabilities, we
can derive a bound for the cumulative probability of an entire sector S. In order
to compute pS =

∑
v∈S pv, we introduce three thresholds, a low one, ρgreen = 5,

one in the middle, ρyellow = 5e, and a high one, ρred = 5e2. The following three
lemmas provide some important insights about these probabilities. The proof of
the second one is omitted here.

Lemma 8. For any subframe I in F and any initial value of pS in I there is at
least one round in I with pS ≤ ρgreen w.h.p.

Proof. We prove the lemma by contradiction. Suppose that throughout the entire
interval I, pS > ρgreen. Then it holds for every node v ∈ S that p̄v > ρgreen − p̂
throughout I. In this case, however, we know from Lemma 7, that pv will decrease
to at most 1/n2 at the end of I w.h.p. Hence, all nodes v ∈ S would decrease
pv to at most 1/n2 at the end of I w.h.p., which results in pS ≤ 1/n. This
contradicts our assumption, so w.h.p. there must be a round t in I at which
pS ≤ ρgreen. ��

A Jamming-Resistant MAC Protocol for Multi-Hop Wireless Networks 189

Lemma 9. For any time interval I in F of size f and any sector S it holds
that if pS ≤ ρgreen at the beginning of I, then pS ≤ ρyellow throughout I, w.m.p.
Similarly, if pS ≤ ρyellow at the beginning of I, then pS ≤ ρred throughout I,
w.m.p.

Lemma 10. For any subframe I in F it holds that if there has been at least one
round during the past subframe where pS ≤ ρgreen, then throughout I, pS ≤ ρred

w.m.p.

Proof. Suppose that there has been at least one round during the past subframe
where pS ≤ ρgreen. Then we know from Lemma 9 that w.m.p. pS ≤ ρyellow at
the beginning of I. But if pS ≤ ρyellow at the beginning of I, we also know from
Lemma 9 that w.m.p. pS ≤ ρred throughout I, which proves the lemma. ��

Now, define a subframe I to be good if pS ≤ ρred throughout I, and otherwise
I is called bad. With the help of Lemma 8 and Lemma 10 we can prove the
following lemma.

Lemma 11. For any sector S, at most εβ/6 of the subframes I in F are bad
w.h.p., where the constant β > 0 can be made arbitrarily small depending on the
constant α in f .

From Lemma 11 it follows that apart from an εβ-fraction of the subframes, all
subframes I in F satisfy

∑
v∈D(u) pv ∈ O(1) throughout I, which completes the

proof of Lemma 4.

3.3 Limitations of the Jade Protocol

One may ask whether a stronger throughput result than Theorem 1 can be
shown. Ideally, we would like to use the following model. A MAC protocol is
called strongly c-competitive against some (T, 1−ε)-bounded adversary if, for any
sufficiently large time interval and any node v, the number of rounds in which v
successfully receives a message is at least a c-fraction of the total number of non-
jammed rounds at v. In other words, a strongly c-competitive MAC protocol can
achieve at least a c-fraction of the best possible throughput for every individual
node. Unfortunately, such a protocol seems to be difficult to design. In fact, Jade

is not strongly c-competitive for any constant c > 0, even if the node density is
sufficiently high.

Theorem 4. In general, Jade is not strongly c-competitive for a constant c > 0
if the adversary is allowed to be 2-uniform and ε ≤ 1/3.

Proof. Suppose that (at some corner of the UDG) we have a set U of at least 1/p̂
nodes located closely to each other that are all within the transmission range
of a node v. Initially, we assume that

∑
u∈U pu ≥ 1, pv = p̂ and Tx = 1 for

all nodes x ∈ U ∪ {v}. The time is partitioned into time intervals of size T . In
each such time interval, called T -interval, the (T, 1− ε)-bounded adversary jams
all but the first εT rounds at U and all but the last εT rounds at v. It follows

190 A. Richa et al.

directly from Section 2.3 of [2] that if T = Ω((log3 n)/(γ2ε)), then for every node
u ∈ U , Tu ≤ α

√
T log n/ε w.h.p. for some sufficiently large constant α. Thus,

Tu ≤ γT/(β log n) w.h.p. for any constant β > 0 if T is sufficiently large. Hence,
between the last non-jammed round at U and the first non-jammed round at v
in a T -interval, the values Tu are increased (and the values pu are decreased) at
least β(log n)/(6γ) times. Thus, at the first non-jammed round at v, it holds for
every u ∈ U that

pu ≤ p̂ · (1 + γ)−β(log n)/(6γ) ≤ p̂ · e−(β/6) log n ≤ 1/nβ/6

and, therefore,
∑

u∈U pu = O(1/n2) if β ≥ 18. This cumulative probability will
stay that low during all of v’s non-jammed rounds as during these rounds the
nodes in U are jammed. Hence, the probability that v receives any message
during its non-jammed rounds of a T -interval is O(1/n2), so Jade is not c-
competitive for v for any constant c > 0. ��

Also, in our original model, Jade is not constant competitive if the node density
is too low.

Theorem 5. In general, Jade is not c-competitive for a constant c independent
of ε if there are nodes u with |D(u)| = o(1/ε) and the adversary is allowed to be
2-uniform.

Proof. Suppose that we have a set U of k = o(1/ε) nodes located closely to
each other that are all within the transmission range of a node v. Let T =
Ω((log3 n)/(γ2ε)). In each T -interval, the adversary never jams v but jams all
but the first εT rounds at U . Then Section 2.3 of [2] implies that for every node
u ∈ U , Tu ≤ γT/(β log n) w.h.p. for any constant β > 0 if T is sufficiently large.
The nodes in U continuously increase their Tu-values and thereby reduce their pu

values during their jammed time steps. Hence, the nodes in U ∪ {v} will receive
at most εT · |U |+ (εT + O(T/ log n)) = εT · o(1/ε) + (ε + o(1))T = (ε + o(1))T
messages in each T -interval on expectation whereas the sum of non-jammed
rounds over all nodes is more than T . ��

This implies Theorem 2. Hence, Theorem 1 is essentially the best one can show
for Jade (within our notation).

3.4 Simulations

We briefly report on some simulation results that complement the theoretical
insights. We assume that initially, pv = p̂ = 1/24 for all nodes v. The nodes
are distributed over a square plane of 4 × 4 units, and are connected in a unit
disk graph manner (multi-hop). In each round, a node is jammed independently
with probability (1 − ε). We run the simulation for a sufficiently large number
of time steps indicated by the Theorem 1, where ε = 0.3, T = 200, and γ = 0.1.
Figure 1 (left) shows the throughput competitiveness of Jade as a function of
the network size for a scenario with a uniform node distribution and a scenario

A Jamming-Resistant MAC Protocol for Multi-Hop Wireless Networks 191

Fig. 1. Left: Throughput as a function of network size. Right: Convergence behavior
for multi-hop networks (uniform distribution). For the plot, we used n = 500.

with a normal/Gaussian distribution. In both cases, the throughput is larger
when the density is higher (20% to 40%), which corresponds to our formal in-
sight that a constant competitive throughput is possible only if the node density
exceeds a certain threshold. Moreover, we found that a constant throughput and
a constant cumulative sending probability (per unit disk) is reached fast. See
Figure 1 (right).

4 Conclusion

This paper has presented the first jamming-resistant MAC protocol with prov-
ably good performance in multi-hop networks exposed to an adaptive adversary.
While we have focused on unit disk graphs, we believe that our stochastic anal-
ysis is also useful for more realistic wireless network models. Moreover, although
our analysis is involved, our protocol is rather simple.

References

1. Alnifie, G., Simon, R.: A multi-channel defense against jamming attacks in wireless
sensor networks. In: Proc. of Q2SWinet ’07, pp. 95–104 (2007)

2. Awerbuch, B., Richa, A., Scheideler, C.: A jamming-resistant MAC protocol for
single-hop wireless networks. In: Proc. of PODC ’08 (2008)

3. Bayraktaroglu, E., King, C., Liu, X., Noubir, G., Rajaraman, R., Thapa, B.: On
the performance of IEEE 802.11 under jamming. In: Proc. of IEEE Infocom ’08,
pp. 1265–1273 (2008)

4. Bender, M.A., Farach-Colton, M., He, S., Kuszmaul, B.C., Leiserson, C.E.: Adver-
sarial contention resolution for simple channels. In: Proc. of SPAA ’05 (2005)

5. Brown, T., James, J., Sethi, A.: Jamming and sensing of encrypted wireless ad hoc
networks. In: Proc. of MobiHoc ’06, pp. 120–130 (2006)

6. Chiang, J., Hu, Y.-C.: Cross-layer jamming detection and mitigation in wireless
broadcast networks. In: Proc. of MobiCom ’07, pp. 346–349 (2007)

7. Chlebus, B.S., Kowalski, D.R., Rokicki, M.A.: Adversarial queuing on the multiple-
access channel. In: Proc. of PODC ’06 (2006)

192 A. Richa et al.

8. Czumaj, A., Rytter, W.: Broadcasting algorithms in radio networks with unknown
topology. Journal of Algorithms 60(2), 115 (2006)

9. Dolev, S., Gilbert, S., Guerraoui, R., Kowalski, D., Newport, C., Kuhn, F., Lynch,
N.: Reliable distributed computing on unreliable radio channels. In: Proc. 2009
MobiHoc S3 Workshop (2009)

10. Dolev, S., Gilbert, S., Guerraoui, R., Kuhn, F., Newport, C.C.: The wireless syn-
chronization problem. In: Proc. 28th Annual ACM Symposium on Principles of
Distributed Computing (PODC), pp. 190–199 (2009)

11. Dolev, S., Gilbert, S., Guerraoui, R., Newport, C.: Gossiping in a multi-channel
radio network: An oblivious approach to coping with malicious interference. In:
Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 208–222. Springer, Heidelberg
(2007)

12. Dolev, S., Gilbert, S., Guerraoui, R., Newport, C.: Secure communication over radio
channels. In: Proc. 27th ACM Symposium on Principles of Distributed Computing
(PODC), pp. 105–114 (2008)

13. Dolev, S., Gilbert, S., Guerraoui, R., Newport, C.C.: Gossiping in a multi-channel
radio network. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 208–222.
Springer, Heidelberg (2007)

14. Gilbert, S., Guerraoui, R., Kowalski, D., Newport, C.: Interference-resilient infor-
mation exchange. In: Proc. of the 28th Conference on Computer Communications,
IEEE Infocom 2009 (2009)

15. Gilbert, S., Guerraoui, R., Kowalski, D.R., Newport, C.C.: Interference-resilient
information exchange. In: Proc. 28th IEEE International Conference on Computer
Communications (INFOCOM), pp. 2249–2257 (2009)

16. Gilbert, S., Guerraoui, R., Newport, C.: Of malicious motes and suspicious sensors:
On the efficiency of malicious interference in wireless networks. In: Shvartsman,
M.M.A.A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp. 215–229. Springer, Heidelberg
(2006)

17. Goldberg, L.A., Mackenzie, P.D., Paterson, M., Srinivasan, A.: Contention resolu-
tion with constant expected delay. J. ACM 47(6) (2000)

18. Hastad, J., Leighton, T., Rogoff, B.: Analysis of backoff protocols for mulitiple
accesschannels. SIAM Journal on Computing 25(4) (1996)

19. Heusse, M., Rousseau, F., Guillier, R., Duda, A.: Idle sense: An optimal access
method for high throughput and fairness in rate diverse wireless lans. In: Proc.
SIGCOMM (2005)

20. IEEE: Medium access control (MAC) and physical specifications. In: IEEE
P802.11/D10 (1999)

21. Jain, K., Padhye, J., Padmanabhan, V.N., Qiu, L.: Impact of interference on multi-
hop wireless network performance. In: Proc. 9th Annual International Conference
on Mobile Computing and Networking (MobiCom), pp. 66–80 (2003)

22. Jiang, S., Xue, Y.: Providing survivability against jamming attack via joint dy-
namic routing and channel assigment. In: Proc. 7th Workshop on Design of Reliable
Communication Networks, DRCN (2009)

23. Koo, C.Y., Bhandari, V., Katz, J., Vaidya, N.H.: Reliable broadcast in radio net-
works: The bounded collision case. In: Proc. of PODC ’06 (2006)

24. Kuhn, F., Moscibroda, T., Wattenhofer, R.: Radio network clustering from scratch.
In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, Springer, Heidelberg
(2004)

25. Kwak, B.-J., Song, N.-O., Miller, L.E.: Performance analysis of exponential backoff.
IEEE/ACM Transactions on Networking 13(2), 343–355 (2005)

A Jamming-Resistant MAC Protocol for Multi-Hop Wireless Networks 193

26. Law, Y., van Hoesel, L., Doumen, J., Hartel, P., Havinga, P.: Energy-efficient link-
layer jamming attacks against wireless sensor network mac protocols. In: Proc. of
SASN ’05, pp. 76–88 (2005)

27. Li, M., Koutsopoulos, I., Poovendran, R.: Optimal jamming attacks and network
defense policies in wireless sensor networks. In: Proc. of Infocom ’07, pp. 1307–1315
(2007)

28. Liu, X., Noubir, G., Sundaram, R., Tan, S.: Spread: Foiling smart jammers using
multi-layer agility. In: Proc. of Infocom ’07, pp. 2536–2540 (2007)

29. Meier, D., Pignolet, Y.A., Schmid, S., Wattenhofer, R.: Speed dating despite jam-
mers. In: Krishnamachari, B., Suri, S., Heinzelman, W., Mitra, U. (eds.) DCOSS
2009. LNCS, vol. 5516, Springer, Heidelberg (2009)

30. Navda, V., Bohra, A., Ganguly, S., Rubenstein, D.: Using channel hopping to
increase 802.11 resilience to jamming attacks. In: Proc. of Infocom ’07, pp. 2526–
2530 (2007)

31. Negi, R., Perrig, A.: Jamming analysis of MAC protocols. Technical report,
Carnegie Mellon University (2003)

32. Noubir, G.: On connectivity in ad hoc networks under jamming using directional
antennas and mobility. In: Langendoerfer, P., Liu, M., Matta, I., Tsaoussidis, V.
(eds.) WWIC 2004. LNCS, vol. 2957, pp. 186–200. Springer, Heidelberg (2004)

33. Pelc, A., Peleg, D.: Feasibility and complexity of broadcasting with random trans-
mission failures. In: Proc. of PODC ’05 (2005)

34. Raghavan, P., Upfal, E.: Stochastic contention resolution with short delays. SIAM
Journal on Computing 28(2), 709–719 (1999)

35. Schmidt, J., Siegel, A., Srinivasan, A.: Chernoff-Hoeffding bounds for applications
with limited independence. SIAM Journal on Discrete Mathematics 8(2), 223–250
(1995)

36. Simon, M.K., Omura, J.K., Schultz, R.A., Levin, B.K.: Spread Spectrum Commu-
nications Handbook. McGraw-Hill, New York (2001)

37. Thuente, D., Acharya, M.: Intelligent jamming in wireless networks with applica-
tions to 802.11b and other networks. In: Proc. of MILCOM ’06 (2006)

38. Wood, A., Stankovic, J., Zhou, G.: DEEJAM: Defeating energy-efficient jamming
in IEEE 802.15.4-based wireless networks. In: Proc. of SECON ’07 (2007)

39. Xu, W., Ma, K., Trappe, W., Zhang, Y.: Jamming sensor networks: attack and
defense strategies. IEEE Network 20(3), 41–47 (2006)

40. Xu, W., Trappe, W., Zhang, Y., Wood, T.: The feasibility of launching and de-
tecting jamming attacks in wireless networks. In: Proc. of MobiHoc ’05, pp. 46–57
(2005)

41. Xu, W., Wood, T., Zhang, Y.: Channel surfing and spatial retreats: defenses against
wireless denial of service. In: Proc. of Workshop on Wireless Security (2004)

42. Ye, S., Wang, Y., Tseng, Y.: A jamming-based MAC protocol for wireless multihop
ad hoc networks. In: Proc. IEEE 58th Vehicular Technology Conference (2003)

43. Ye, S.-R., Wang, Y.-C., Tseng, Y.-C.: A jamming-based MAC protocol to improve
the performance of wireless multihop ad-hoc networks. Wirel. Commun. Mob. Com-
put. 4(1), 75–84 (2004)

44. Zander, J.: Jamming in slotted ALOHA multihop packed radio networks. IEEE
Transactions on Networking 39(10), 1525–1531 (1991)

Brief Announcement: Simple Gradecast Based
Algorithms

Michael Ben-Or, Danny Dolev, and Ezra N. Hoch

The Hebrew University of Jerusalem, Israel
{benor,dolev,ezraho}@cs.huji.ac.il

Summary: Gradecast is a simple three-round algorithm presented by Feldman
and Micali [4]. The current work presents two very simple algorithms that uti-
lize Gradecast to achieve Byzantine agreement and to solve the Approximate
agreement problem [2].

An optimal approximate agreement algorithm was presented by Fekete [3] (see
also [5]), which supports up to 1

4n Byzantine nodes and has message complexity
of O(nk), where n is the number of nodes and k is the number of rounds. Our
solution to the approximate agreement problem is optimal, simple and reduces
the message complexity to O(k · n3), while supporting 1

3n Byzantine nodes.
In the Byzantine consensus problem each node p has an input value vp, and all

non-faulty nodes are required to reach the same output value v (“agreement”),
s.t. if all non-faulty nodes have the same input value v′ then the output value is v′,
i.e., v = v′ (“validity”). Approximate agreement aims at reaching an agreement
on a value from the Real domain, s.t. the output values of non-faulty nodes are
at most ε apart; and are within the range of non-faulty nodes’ inputs.

In both problems it is interesting to compare the round-complexity when
there are f < t failures. That is, what if in a specific run there are only f < t
failures? Can the Byzantine consensus / approximate agreement problems be
solved faster? The answer is “yes” on both accounts. The property of terminating
in accordance to the actual number of failures f is termed “early-stopping”. Both
algorithms presented in this paper have the early-stopping property.

The solutions presented herein all use Gradecast as a building block. Grade-
cast is a 3 round distributed algorithm that ensures some properties that are
similar to those of broadcast. Specifically, in Gradecast there is a sender node p
that sends a value v to all other nodes. Each node q’s output is a pair 〈vq, cq〉,
where vq is the value q thinks that p has sent and cq is q’s confidence in this
value. The Gradecast properties ensure that:
1. if p is non-faulty then vq = v and cq = 2, for every non-faulty q;
2. for every non-faulty nodes q, q′: if cq > 0 and cq′ > 0 then vq = vq′ ;
3. |cq − cq′ | ≤ 1 for every non-faulty nodes q, q′.

Both algorithms use Gradecast to detect faulty nodes and ignore them in future
rounds. By using Gradecast we ensure that either a Byzantine node z discloses
its faultiness, or all non-faulty nodes see the same message from z. A very simple
iterative algorithm schema solves Byzantine consensus and approximate agree-
ment. These solutions are simple, optimal in their resiliency (t < 1

3n), stop-early

N.A. Lynch and A.A. Shvartsman (Eds.): DISC 2010, LNCS 6343, pp. 194–197, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Brief Announcement: Simple Gradecast Based Algorithms 195

Algorithm ByzConsensus

/* Initialization */
1: set BAD := ∅;

/* Main loop */
2: for r := 1 to t + 1 do:
3: gradecast v, while ignoring messages

from nodes in BAD;

/* Notations */
4: let 〈q, v, c〉 represent that q

gradecasted v with confidence c;
5: let maj be the value received most

among values with confidence ≥ 1;

6: let #maj be the number of
maj occurrences with confidence 2;

/* Updates */
7: set v := maj;
8: set BAD := BAD ∪

{q | received 〈q, ∗, c〉 with c ≤ 1};
9: if #maj ≥ n − t then break loop;
10: end for

11: if executed for < t + 1 iterations then
participate in one more iteration;

12: return v;

Algorithm ApproxAgree(ε)

/* Initialization */
1: set BAD := ∅;

/* Main loop */
2: while true do:
3: gradecast v, while ignoring messages

from nodes in BAD;

/* Notations */
4: let 〈q, v, c〉 represent that q

gradecasted v with confidence c;
5: let values be the multiset of received

values with confidence ≥ 1 and add
“0” until values contains n items;

6: let values′ be the multiset of received
values with confidence 2;

/* Updates */
7: set v := AVG(values);
8: set BAD := BAD ∪

{q | received 〈q, ∗, c〉 with c ≤ 1};
9: if there are n − t items in values′ that

are at most ε apart, then break loop;
10: end while

11: participate in one more iteration;
12: return v;

Fig. 1. ByzConsensus and ApproxAgree: efficient Byzantine consensus and approx-
imate agreement algorithms

and are optimal in their running time (up to a constant factor induced by us-
ing Gradecast in each iteration). I.e., The first algorithm solves the Byzantine
consensus problem within 3 ·min {f + 2, t + 1} rounds.

The second algorithm solves the approximate agreement problem, converging
to 1

n within O(log n
log log n) rounds. The message complexity is O(k·n3) per k rounds,

while tolerating 1
3n Byzantine failures, as opposed to O(nk) of the previous

best known results. Moreover, the solution dynamically adapts to the number of
failures at each round.

Results: Figure 1 presents both ByzConsensus which solves the Byzantine
consensus problem, and ApproxAgree which solves approximate agreement.

The idea behind the algorithms is to use gradecast as a means of requiring the
Byzantine nodes to “lie” at the expense of being expelled from the algorithm.
That is, at each iteration a node p will gradecast its own value, and then consider
the values it received: a) any node that gradecasted a value with confidence ≤ 1
will be marked as faulty (by being added to BAD), and will be ignored for the
rest of the algorithm; b) any value with confidence ≥ 1 will be considered, and
p will update its own value according to the values with confidence ≥ 1.

This mechanism ensures that for a faulty node z, if different non-faulty nodes
consider different values for z’s gradecast (for example, one considers z grade-
casted “0” with confidence 1, and the other considers z gradecast’s confidence to

196 M. Ben-Or, D. Dolev, and E.N. Hoch

be 0) then all non-faulty nodes will know z to be faulty, and will remove it from
the algorithm. In other words, a Byzantine node can give contradicting values
to non-faulty nodes at most once.

Theorem: ByzConsensus solves the Byzantine consensus problem.
Proof idea: If no Byzantine node “lies” in some round, then all non-faulty nodes
see the same set of values and update their own value exactly the same. Thus,
in the following round they will all terminate. There can be at most f rounds in
which a Byzantine node “lies”.

Approximate agreement
Given a constant ε the approximate agreement problem requires that: 1) “agree-
ment”: |op − oq| ≤ ε for any two non-faulty nodes p, q; 2) “validity”: op ∈ [L, H]
for every non-faulty node p; where op ∈ ! and L (H resp.) is the lowest (highest
resp.) input values of non-faulty nodes.

The function AV G used in Figure 1 removes the t lowest and t highest values
and computes the average of the remaining values. A main property of AV G is
that for any x ≤ t: if M is a multi-set of n − x values, and M1 and M2 con-
tain M and additional x items (i.e., M1, M2 differ by at most x values) then
|AVG(M1)−AVG(M2)| ≤ (H(M)− L(M)) · x

n−2t .

Theorem: ApproxAgree(ε) solves the approximate agreement problem, and
for ε = H−L

n it converges within at most O
(

log n
log log n

)
rounds.

Proof idea: Similar to ByzConsensus if a Byzantine node “lies” in some round
it is excluded from all future rounds. Assume there are NEWi Byzantine nodes
that “lie” at round i. From the properties of AV G after k rounds the non-faulty
nodes’ values are converged to within (H−L) ·

∏k
i=1

NEWi

n−2t . Thus, the Byzantine
nodes aim to maximize

∏k
i=1 NEWi under the constraint that

∑k
i=1 NEWi ≤ t.

Therefore, the worst case Byzantine behavior will assign NEWi = t
k . Conse-

quently, after k rounds, the non-faulty nodes’ values are converged to within
H−L

kk (t
n−2t)

k. For ε = H−L
n , the above discussion proves that within O

(
log n

log log n

)
rounds, all non-faulty nodes’ values are within ε if each other.

Additional results
In the full paper [1], in addition to the full proofs of the above results, there
is also an additional algorithm. The algorithm, which is based on similar ideas
solves � sequential Byzantine consensuses within O(t+ �) rounds. The algorithm
overcomes the very limiting requirement of previous results - the assumption
about synchronized starts of the consensus instances (a requirement that cannot
be obtained when instances stop early).

Acknowledgements. Michael Ben-Or is the incumbent of the Jean and He-
lena Alfassa Chair in Computer Science, and he was supported in part by the
Israeli Science Foundation (ISF) research grant. Danny Dolev is Incumbent of
the Berthold Badler Chair in Computer Science. Danny Dolev was supported in
part by the Israeli Science Foundation (ISF) Grant number 0397373.

Brief Announcement: Simple Gradecast Based Algorithms 197

References

1. Ben-Or, M., Dolev, D., Hoch, E.N.: Simple gradecast based algorithms. CoRR,
abs/1007.1049 (2010)

2. Dolev, D., Lynch, N.A., Stark, E., Weihl, W.E., Pinter, S.: Reaching approximate
agreement in the presence of faults. J. of the ACM 33, 499–516 (1986)

3. Fekete, A.D.: Asymptotically optimal algorithms for approximate agreement. In:
PODC ’86, pp. 73–87. ACM, New York (1986)

4. Feldman, P., Micali, S.: Optimal algorithms for byzantine agreement. In: STOC ’88,
pp. 148–161. ACM, New York (1988)

5. Zamsky, A.: Phd thesis (October 1998)

Brief Announcement: Decentralized Network
Bandwidth Prediction

Sukhyun Song, Pete Keleher, Bobby Bhattacharjee, and Alan Sussman

UMIACS and Department of Computer Science, University of Maryland, U.S.A.

Motivation. Distributed applications can often benefit from knowledge of the
bandwidth between hosts, without performing measurements between all host
pairs. For example, if a peer-to-peer (P2P) computational grid system predicts
pairwise bandwidth between all nodes in the system, that information could
increase overall system performance by finding high-bandwidth nodes to store
large scientific input or output datasets. Another possible beneficiary is a P2P
online game, which can provide users a seamless gaming experience by selecting
a coordinator node that has high-bandwidth connections to the players in a game
region.

Ramasubramanian et. al [4] claim, from both theoretical and empirical evi-
dence, that a metric space for Internet bandwidth almost satisfies the four-point
condition (4PC) [2]. Based on this finding, they have proposed a tree-embedding
model for bandwidth prediction, where bandwidth measurements are embedded
as distances in an edge-weighted tree, called a prediction tree. The model shows
that dT (u, v) = d(u, v) holds, where dT (u, v) is the distance between nodes u
and v in an edge-weighted tree T , and d(u, v) is the distance in a metric space
defined by the formula d(u, v) = C −BW (u, v), such that C is a large constant
that keeps d(u, v) from being negative, and BW (u, v) is the bandwidth between
hosts u and v.

Inspired by the tree-embedding model, our study proposes a decentralized
bandwidth prediction system. We briefly describe the key ideas for the node join
algorithm in such a decentralized system, using a random measurement starting
point, and also describe different techniques used to increase prediction accuracy.

Algorithms. The overall design goal is to construct a prediction tree in a dis-
tributed fashion. We first show a basic centralized algorithm, then describe how
it can be extended to a decentralized version.

A prediction tree starts with the first two joining nodes connected by an
edge weighted by their distance. The tree grows by iteratively adding nodes as
follows. For a newly joining node x, a base node z is chosen as a random host
in the system. The algorithm selects another node y, called an end node, that
maximizes the Gromov product (x|y)z . The Gromov product of x and y at z,
denoted (x|y)z , is defined as (x|y)z = 1

2 (d(z, x)+d(z, y)−d(x, y)). An inner node
tx is created and located in the graph where dT (z, tx) = (x|y)z . The algorithm
then adds x to the prediction tree by creating an edge (tx, x) with weight (y|z)x.

A naive way to find an end node y is to measure bandwidth to all N hosts in
the system. To develop a more efficient prediction system, we reduce the number
of measurements necessary for each newly joining node by constructing an anchor

N.A. Lynch and A.A. Shvartsman (Eds.): DISC 2010, LNCS 6343, pp. 198–200, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Brief Announcement: Decentralized Network Bandwidth Prediction 199

tree. An anchor tree is a rooted unweighted tree where each node represents a
host in the system. Each time a node x is added to a prediction tree, x is also
added to the corresponding anchor tree by becoming a child of x’s anchor node.
x’s anchor node is defined as a node that was previously added to the prediction
tree along with the edge that x’s inner node tx is located on. When joining, x
moves up and down on the anchor tree starting from a random base node z until
finding a Gromov product maximizer y. At each hop, x measures bandwidth to
the currently visited node and all its neighbors to decide where it moves next.
In this way, the number of measurements can be reduced to less than N , but
how much less depends on the shape of the anchor tree and the positions of z
and y. The number of measurements will be O(1) in the best case and N in the
worst case.

There have been several studies related to constructing an edge-weighted tree
for a metric space that satisfies the 4PC. Since the algorithms proposed by Abra-
ham et. al and Buneman [1,2] use a non-incremental recursive algorithm that
builds the tree from scratch, unlike our incremental iterative algorithm, those
algorithms cannot be used in practice when nodes dynamically join a distributed
system. Compared to the algorithm with a fixed base node described by Rama-
subramanian et. al [4], our algorithm starts the measurements at a random base
node, which provides an indispensable underpinning for decentralization.

We last describe how the algorithm is decentralized. The key insight is that the
participating nodes build an overlay network that directly matches the structure
of the anchor tree. By assigning a distance label to each node when it joins the
system, we can construct a prediction tree in a distributed fashion. Node x’s
distance label contains all anchor nodes on the path from the root node to x in
the anchor tree. The distance label also maintains the corresponding distance
values between anchor nodes on the prediction tree. Since a distance label is
equivalent to a partial prediction tree, the bandwidth between two nodes can be
computed via a simple computation using their distance labels. In other words,
a distance label plays a similar role to the network coordinates in a network
latency prediction system, such as Vivaldi [3].

Heuristics for High Accuracy. Even though the algorithm guarantees perfect
accuracy for a metric space that satisfies the 4PC, directly applying it to the
real world Internet could result in poor prediction accuracy, since real networks
do not always satisfy the 4PC. This leads us to introduce heuristics to tolerate
an imperfect metric space that does not perfectly satisfy the 4PC.

The first technique is error minimization. When the 4PC does not hold in a met-
ric space, it is no longer an effective approach to find an end node that maximizes
the Gromov product. So we modify the algorithm to choose the next hop in the
anchor tree that minimizes the relative prediction error. At each hop, x computes
its temporary position in a prediction tree for each candidate end node, For each
candidate and the corresponding temporary position of x, we estimate a relative
error by comparing the bandwidth data embedded in the prediction tree to the real
measured bandwidth data. Then x chooses the next hop that is associated with x’s
temporary position that minimizes the relative error.

200 S. Song et al.

The second heuristic is to use a rational transform function. Since dT (u, v) >
d(u, v) might occur in a real world network, the algorithm can predict a negative
bandwidth value, which will decrease overall prediction accuracy. By estimating
bandwidth not by C−dT (u, v), but instead by C

dT (u,v) , the predicted bandwidth
will always be positive even when dT (u, v) is highly overestimated.

The last technique is deep search for an end node choice. The base algorithm
considers only direct neighbors as candidate nodes to be an end node. We can
modify that to take advantage of additional candidates, including indirect neigh-
bors. The larger pool of candidates will result in higher prediction accuracy.

Experimental Results. We have simulated our algorithms using a dataset that
contains bandwidth measurements between hundreds of PlanetLab nodes, based
on the same dataset used to validate the base algorithm by Ramasubramanian et.
al [4]. Preliminary results demonstrate that our approach shows high prediction
accuracy, with more than 80% of the node pair predictions having a relative
error less than 0.5. Also, each node joining the system causes a small amount of
measurement traffic.

References

1. Abraham, I., Balakrishnan, M., Kuhn, F., Malkhi, D., Ramasubramanian, V.,
Talwar, K.: Reconstructing approximate tree metrics. In: PODC ’07: Proceedings
of the Twenty-Sixth Annual ACM Symposium on Principles of Distributed Com-
puting, pp. 43–52. ACM, New York (2007)

2. Buneman, P.: A Note on the Metric Properties of Trees. J. Combinatorial Theory
(B) 17, 48–50 (1974)

3. Dabek, F., Cox, R., Kaashoek, F., Morris, R.: Vivaldi: a decentralized network co-
ordinate system. In: SIGCOMM ’04: Proceedings of the 2004 Conference on Appli-
cations, Technologies, Architectures, and Protocols for Computer Communications,
pp. 15–26. ACM, New York (2004)

4. Ramasubramanian, V., Malkhi, D., Kuhn, F., Balakrishnan, M., Gupta, A., Akella,
A.: On the treeness of internet latency and bandwidth. In: SIGMETRICS ’09: Pro-
ceedings of the Eleventh International Joint Conference on Measurement and Mod-
eling of Computer Systems, pp. 61–72. ACM, New York (2009)

Brief Announcement: Synchronous Las Vegas
URMT Iff Asynchronous Monte Carlo URMT

Abhinav Mehta, Shashank Agrawal, and Kannan Srinathan

Center for Security, Theory and Algorithmic Research (C-STAR),
International Institute of Information Technology, Hyderabad, 500032, India.

{abhinav mehta@research.,shashank.agrawal@research.,srinathan@}iiit.ac.in

Introduction: In the unconditionally reliable message transmission (URMT)
problem, two non-faulty nodes, the sender S and the receiver R are part of a
communication network modelled as a digraph over a set of nodes influenced by
an unbounded active adversary that may corrupt some subset of these nodes. S
has a message that he wishes to send to R; the challenge is to design a protocol
such that R correctly obtains S’s message with arbitrarily high probability,
irrespective of what the adversary (maliciously) does to disrupt the protocol.
Analogous to randomized sequential algorithms, one may distinguish between
two variants of URMT, namely, Monte Carlo and Las Vegas. In the former
variant R outputs the sender’s message with high probability and may produce
an incorrect output with small probability; in the latter, R outputs the sender’s
message with high probability and with small probability may abort the protocol
but in no case does the receiver terminates with an incorrect output.

In this work, we focus on studying the (im)possibility of Monte Carlo URMT
protocols over asynchronous networks (UAMC) and Las Vegas URMT protocols
over synchronous networks (USLV). Though not seemingly related, interestingly,
we show that the network connectivity requirements for both the aforementioned
cases are same (and are strictly greater than that of Monte Carlo protocols over
synchronous networks, which has been studied in [4]).

Model and Definitions: We model the underlying network by a directed
graph, N = (V, E), where V is the set of nodes and E ⊆ V × V is the set of
directed edges in the network. We assume that the edges are secure, i.e., if (u, v)
∈ E then u can send any message to v securely and reliably. We further assume
that the topology of the network is known to every node. Fault in the network
is modelled by a non-threshold adversary structure A [1], which is a set of the
subsets of the node set, i.e., A ⊆ P(V \{S, R}), one of which may be Byzantinely
corrupt during an execution. We assume that A is a maximal basis [1].

Let the message space be a large finite field 〈F, +, ·〉. All the computations are
done in this field. In the following, all probabilities are taken over the choice of
the message S intends to send, the random inputs of all honest players and the
random inputs of the adversary.

Definition (A, δ)-UAMC : Let δ < 1
2 . We say that a protocol in an asyn-

chronous network N is (A, δ)-UAMC if for all valid Byzantine corruptions of any

N.A. Lynch and A.A. Shvartsman (Eds.): DISC 2010, LNCS 6343, pp. 201–203, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

202 A. Mehta, S. Agrawal, and K. Srinathan

B ∈ A, the probability that R outputs m given that S has sent m, is at least
(1− δ). Otherwise R outputs m′ �= m or does not terminate.

Definition (A, δ)-USLV : Let δ < 1
2 . We say that a protocol in a synchronous

network N is (A, δ)-USLV if for all valid Byzantine corruptions of any B ∈ A,
the probability that R outputs m given that S has sent m, is at least (1 − δ).
Otherwise, R outputs a special symbol ⊥ (/∈ F).

For m, K1, K2 ∈ F, we define an authentication function χ(m; K1, K2) =
(m, m · K1 + K2). We refer to K1, K2 as keys. Given that the adversary does
not know the keys, it may tamper with an authenticated message without being
detected with atmost 1/|F| probability [3].

Our Results: We have the following results, detailed proofs appear in [2].
Theorem 1: In a directed network N , (A, δ)-USLV (resp. (A, δ)-UAMC) pro-

tocol is possible if and only if for every adversary structure B ⊆ A such that
|B| = 2, (B, δ)-USLV (resp. (B, δ)-UAMC) protocol is possible.

Theorem 2: Let B = {B1, B2}. In a directed network N , (B, δ)-USLV (or
(B, δ)-UAMC protocol) is possible if and only if for each α ∈ {1, 2}, there exists
a weak path qα avoiding nodes in B1 ∪ B2 such that every node u along the path
qα has a strong path to R avoiding all nodes in Bα

1 . (Paths q1, q2 need not be
distinct.)

S R

x

S R

x

b1

b2

b1

b2

Fig. 1. (a) Network N1, (b) Network N2. Adversary structure is B = {{b1}, {b2}}

Proof Sketch: With the help of simple graphs, we give a sketch of our
sufficiency and necessity proofs for Theorem 2. Consider the directed network
N1 shown in Figure 1(a). Let m be the message S intends to send. We describe
a (B, 1/|F|)-USLV protocol Π :

– Round 1: S sends m and R sends a random pair of keys K1, K2 to node x.
– Round 2: Node x sends χ(m; K1, K2) to b1 and b2.
– Round 3: Nodes b1 and b2 forward to R whatever is received from node x at

the end of round 2.
– Round 4: For each i ∈ {1, 2}, let R receive (yi, zi) from bi. R applies the

following decision rule to recover the message: If ∃ j ∈ {1, 2} s.t. zj �=
yj ·K1 + K2, output yj (since bj is corrupt). Else if y1 �= y2, output ⊥ (this
happens with probability atmost 1/|F|). Else, output y1 (since in this case,
y1 = y2 = m).

1 We denote 1 = 2 and vice-versa.

Synchronous Las Vegas URMT Iff Asynchronous Monte Carlo URMT 203

Along the lines of protocol Π , we can construct a (B, 1/|F|)-UAMC protocol Π ′

for network N1. As the network is asynchronous, computation does not proceed
in rounds, rather nodes wait for messages to arrive. However, obviously, R cannot
wait for both (y1, z1) and (y2, z2) to arrive before taking some action. So, we
modify R’s decision rule as follows: Wait until for some i ∈ {1, 2}, (yi, zi) is
received from bi. If zi = yi · K1 + K2, output yi (probability that yi �= m is
atmost 1/|F|). Else, wait until (yi, zi) is received from bi and output yi (since bi

is corrupt, R is bound to receive yi, and yi = m).
We now see why the edge (x, b1) is critical. Consider the network N2 shown in

Figure 1(b) in which the edge (x, b1) is missing but all the other edges present in
N1 are also present inN2 (along with a few more edges). Here, we briefly describe
adversary strategies under which no protocol for URMT can exist. We direct the
reader to [2] for a formal proof of why the strategies succeed. We assume that
the adversary knows the message S intends to send. Let m1, m2 ∈ F be two
distinct messages. When S intends to send mi, adversary corrupts node bi.

Case of (B, δ)-USLV : When adversary corrupts b1, it does not exchange any
messages with S, b2 and x. Also, it simulates a local copy of S with input m2.
When adversary corrupts b2, it does not exchange any messages with nodes S,
x and b1. Also, it simulates a local copy of S with input m1 and a local copy
of x (say x2). Furthermore, to ensure indistinguishability, adversary guesses the
messages sent along the edge (R, x) and feeds it as input to x2.

Case of (B, δ)-UAMC : On corrupting b2, adversary fail-stops it. For any valid
protocol, when S chooses to send m1, there must exist a finite time instant
T before which R halts with output m1 with at least 1 − δ probability. When
adversary corrupts b1, it does not exchange any messages with nodes S, x and b2.
Also, it simulates a local copy of S with input m2. Furthermore, as the adversary
has power to schedule messages, it delays all messages along the directed edge
(b2,R) till time T .

References

1. Hirt, M., Maurer, U.: Player Simulation and General Adversary Structures in Perfect
Multi-party Computation. Journal of Cryptology 13(1), 31–60 (2000)

2. Mehta, A., Agrawal, S., Srinathan, K.: Interplay between (im)perfectness, synchrony
and connectivity: The Case of Probabilistic Reliable Communication. Cryptology
ePrint Archive, Report 2010/392 (2010), http://eprint.iacr.org/

3. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with hon-
est majority. In: STOC ’89: Proceedings of the Twenty-First Annual ACM Sympo-
sium on Theory of Computing, pp. 73–85. ACM, New York (1989)

4. Srinathan, K., Rangan, C.P.: Possibility and complexity of probabilistic reliable
communications in directed networks. In: Proceedings of 25th ACM Symposium on
Principles of Distributed Computing, PODC’06 (2006)

http://eprint.iacr.org/

Foundations of
Speculative Distributed Computing

(Invited Lecture Extended Abstract)

Rachid Guerraoui

EPFL, Switzerland

The Pitch

Speculation is frequent in distributed computing. It is even the norm in dis-
tributed algorithms that are designed for practical purposes. Yet, speculation
is difficult and it has, so far, led to algorithms that are intricate and hard to
reason about, let aside prove and test. The reason is simple: speculation involves
different execution paths that are usually intermingled in the same algorithm,
adding to the difficulties of concurrency and communication, inherent to general-
purpose distributed computing.

This talk suggests the possibility of a principled approach to speculation and,
indirectly, of a well-founded approach to the design and implementation of prac-
tical distributed algorithms.

Speculation in a Nutshell

Speculation is the idea that the design of an algorithm follows an if-then-else
control structure, obeying the celebrated political motto: hope for peace but plan
for war.

In short, under certain good conditions, i.e., the speculation, a specific path
of the algorithm, i.e., the speculative path, is executed. When the conditions are
not met, i.e. in the bad case, a backup path is executed instead. The rationale
behind this approach is twofold: (i) the probability for the speculation to hold is
high and, (ii) the complexity of the speculative is significantly lower than that
of the backup path.

Examples of speculative algorithms are numerous. They include cache coher-
ence protocols, multi-thread assignment techniques, Ethernet congestion control
mechanisms, transactional memory systems, as well as mutual exclusion, lock-
free, replication and agreement algorithms.

The Many Faces of Speculation

Speculative algorithms can be classified according to at least three categories.
One form of speculation, arguably the most common, is the direct one with

exactly one speculative and one backup paths. This is for instance the case
with fast mutual exclusion algorithms where, in the absence of contention, the
number of steps needed to enter a critical section is significantly lower than the
one needed in the presence of contention.

N.A. Lynch and A.A. Shvartsman (Eds.): DISC 2010, LNCS 6343, pp. 204–205, 2010.
� Springer-Verlag Berlin Heidelberg 2010

Foundations of Speculative Distributed Computing 205

A more sophisticated form of speculation is the nested one where the backup
path might itself be composed of a speculative path and another, nested, backup
path. An example of such a form of speculation is replication algorithms that
behave in an efficient manner, say with constant complexity if the system is syn-
chronous and prone to failure, and finally into a backup path with potentially
undefined complexity if the system is not synchronous. One could also consider
different types of contention and devise mutual exclusion algorithms that de-
grades gracefully according to the type of contention encountered, e.g. total
contention, interval contention, step contention, etc. Early deciding algorithms,
where the complexity depends on the actual number of failures that occur in an
execution can also be viewed as nested speculative algorithms.

An even more sophisticated form of speculation is the recursive one where the
distributed algorithm might keep switching back and forth between the specula-
tive and the backup paths. This is typically the case with eventually synchronous
agreement algorithms, which keep looping over a speculative path that termi-
nates whenever the system becomes synchronous. Interestingly, speculation is
used here to ensure termination, i.e. to turn the complexity from infinite to
finite.

Speculative Principles

Like any distributed algorithm, a speculative algorithm A is supposed to solve a
problem P assuming a set of executions (or traces) M , commonly called a model.
The very characteristic of a speculative algorithm is that, under M ′, a strict subset
of M , the complexity of A is supposed to be lower than its complexity in M .

Part of the challenge underlying speculation is that, while A is supposed to
perform efficiently under M ′, A is still expected to solve P under M . Hence the
design of A requires to detect whether the speculation turns out to be true, and
if it does not, to safely fall back to the alternative path.

Setting the grounds for a theory of speculation goes through addressing many
challenging questions. Given a problem P and an algorithm A′ solving P in a
model M ′, is it possible to automatically transform A′ into the speculative part
of a more general algorithm A that solves P within a strict superset of M? Is
there a refined speculation of P of which solutions can be viewed as speculative,
composable, parts of the same speculative algorithm solving P . Are there, for
any sub-model M ′ of a more general model M , a general detector that establishes
whether a given execution path of M belongs M ′.

Ideally, a theory of speculation would lead to devise the distributed coun-
terpart of the if-then-else control structure where (a) the speculation, (b) the
speculative algorithm and (c), its backup, would be, first class, separate citizens
of a distributed computation.

Anonymous Asynchronous Systems:
The Case of Failure Detectors

François Bonnet and Michel Raynal

IRISA, Université de Rennes 1, France
fbonnet@irisa.fr, raynal@irisa.fr

Abstract. Trivially, agreement problems such as consensus, that cannot be
solved in non-anonymous asynchronous systems prone to process failures, can-
not be solved either if the system is anonymous. The paper investigates failure
detectors that allow processes to circumvent this impossibility. It has several con-
tributions. It first presents four failure detectors (denoted AP , AP , AΩ and AΣ)
and show that they are the “identity-free” counterparts of the two perfect failure
detectors, eventual leader failure detectors and quorum failure detectors, respec-
tively. AΣ is new and showing that AΣ and Σ have the same computability
power in a non-anonymous system is not trivial. The paper also shows that the
notion of failure detector reduction is related to the computation model. Then,
the paper presents and proves correct an uniform anonymous consensus algo-
rithm based on the failure detector pair (AΩ, AΣ) (“uniform” means that not
only processes have no identity, but no process is aware of the total number of
processes). This new algorithm is not a “straightforward extension” of an algo-
rithm designed for non-anonymous systems. To benefit from AΣ, it uses a novel
message exchange pattern where each phase of every round is made up of sub-
rounds in which appropriate control information is exchanged. Finally, the paper
discusses the notions of failure detector hierarchy, weakest failure detector for
anonymous consensus, and the implementation of identity-free failure detectors
in anonymous systems.

1 Introduction

Anonymous systems. One of the main issue faced by distributed computing lies in mas-
tering uncertainty created by the adversaries that are asynchrony and failures. As a
simple example, the net effect of these adversaries makes impossible for a process to
know if another process has crashed or is only very slow. Recently, new facets of uncer-
tainty (e.g., dynamicity, mobility) have appeared and made distributed computing even
more challenging.

Among the many adversaries that distributed computing has to cope with, anonymity
is particularly important. It occurs when the computing entities (processes, agents, sen-
sors, etc.) have no name, and consequently cannot distinguish the ones from the others.
It is worth noticing that, from a practical point of view, anonymity is a first class prop-
erty as soon as one is interested in guaranteeing privacy.

One of the very first works (to our knowledge) that addressed anonymous systems
is the work of D. Angluin [1]. In that paper, considering message passing systems,

N.A. Lynch and A.A. Shvartsman (Eds.): DISC 2010, LNCS 6343, pp. 206–220, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Anonymous Asynchronous Systems: The Case of Failure Detectors 207

Angluin was mainly interested in computability issues, namely answering the question
“which functions can be computed in presence of asynchrony and anonymity?”

Enriching a system with a failure detector. Failure detectors [8] are one of the most
popular approaches to circumvent impossibility results in non-anonymous failure-prone
asynchronous systems. Roughly speaking, a failure detector is a device that provides
each process with failure-related information. According to the quality of this informa-
tion, several types of failure detectors can be defined. As an example, let us consider
the consensus problem. This problem, that cannot be solved in a pure asynchronous
message-passing system prone to even a single process crash [13], is defined as follows.
Each process proposes a value, and every process that does not crash has to decide a
value (termination), such that a decided value is a proposed value (validity), and no
two processes decide different values (agreement). It has been shown that the eventual
leader failure detector denoted Ω is the weakest failure detector that allows consensus
to be solved in message-passing asynchronous systems where a majority of processes
never crash [7]. It has also been shown that the pair (Σ, Ω), where Σ is a quorum fail-
ure detector [10], is the weakest failure detector to solve consensus in non-anonymous
systems when any number of processes may crash [10,11]. (These failure detectors are
precisely defined later in the paper.)

Failure detectors and anonymous systems. The local output of a failure detector Ω is
a process identity. Similarly, the local output of a failure detector P (perfect failure
detector) [8] or Σ [10] is a set of process identities. While these failure detectors can
be added to an anonymous distributed system, their outputs cannot be directly used by
the anonymous processes for the simple reason that there is no “process identity” notion
inside the system. This means that (the output of) Ω is useless in an anonymous system.
As far as the output of P or Σ is concerned an anonymous process can only exploit the
cardinality of the identity set that is currently output. As we will see, this cardinal value
can be exploited if the failure detector is P , while it cannot if it is Σ.

Differently from Ω, P or Σ, failure detectors have been proposed that, while used in
non-anonymous systems, neither output process identities nor associate values with pro-
cess identities. We call them identity-free failure detectors. As an example, the failure
detector L, that outputs a Boolean value at every process has been introduced in [12],
where it is shown to be the weakest failure detector for the (n − 1)-set agreement
problem in n-process asynchronous message-passing systems prone to any number of
crashes. This failure detector has been generalized in [2].

A failure detector, denoted here AP , that outputs an approximation of the number
of crashed processes has been proposed in [17,18]. This failure detector has been used
in [3] to solve consensus in anonymous systems prone to any number t < n of process
crashes. It has also been shown in [3] that, in an anonymous system enriched with such
a failure detector, 2t + 1 is a lower bound on the number of rounds for consensus (in
a non-anonymous system enriched with a perfect failure detector, this lower bound is
t + 1).

Roadmap. The paper is made up of 6 sections. The anonymous distributed computation
model is presented in Section 2. Section 3 presents the four identity-free failure detec-
tors AP , AP , AΩ and AΣ. Section 4 addresses failure detector reductions and shows

208 F. Bonnet and M. Raynal

that AΣ and Σ are equivalent in non-anonymous systems. This section also discusses
the notion of failure detector hierarchy and the implementability of anonymous failure
detectors. Section 5 presents a uniform (AΣ, AΩ) -based anonymous consensus algo-
rithm. Finally, Section 6 discusses the “weakest failure detector” issue for anonymous
consensus.

Note. Due to page limitation, the proofs of theorems appear in the corresponding tech-
nical report [6].

2 Anonymous Asynchronous Message-Passing Systems

Process model. The system is made up of a fixed number n of processes, denoted
p1, . . . , pn. Π = {1, . . . , n} denotes the set of process identities (also called indexes).

Processes are anonymous in the sense that no process knows the existence of indexes
and all processes execute the same algorithm. This means that indexes are can only be
used from an external observer point of view: they do not belong to the system as
perceived by processes. The processes are asynchronous in the sense that there is no
assumption on their respective speeds.

The underlying time model is the set of positive integers (denoted N). Time instants
are denoted τ , τ ′, etc. Similarly to indexes, this time notion is not accessible to the
processes. It is only used from an external observer point of view to state or prove
properties. More generally, but for process identities, the computation model is the same
as in [8].

Failure model. A process executes correctly its algorithm until it possibly crashes. A
crash is a premature stop; after it has crashed, a process executes no step. A process that
does not crash in a run is correct in that run. Otherwise, it is faulty in that run. Until
it crashes (if ever it does), a process is alive. Given a run, Correct denotes the set of
processes that are correct in that run.

An environment is a set of failure patterns, where a failure pattern [8] is a function
F : N → 2Π such that F (τ) denotes the set of processes that have crashed by time τ .
We consider here failure patterns in which all (but one) processes may crash in a run.
This set of failure patterns is called wait-free environment.

Communication. The processes communicate by exchanging messages through reliable
channels. These channels are asynchronous, which means that there is no assumption on
message transit delays, except that they are positive and finite (every message eventually
arrives).

The processes are provided with a broadcast() communication primitive that allows
the invoking process to send the same message to all the processes (including itself).
The broadcast() primitive is not reliable in the sense that, if a process pi crashes while
broadcasting a message, that message can be received by an arbitrary subset of processes.
When it receives a message, a process cannot determine which process is its sender.

Notation. The previous computation model is denoted AAS[∅]. AAS is an acronym
for Anonymous Asynchronous System; ∅ means that there is no additional assumption.

Anonymous Asynchronous Systems: The Case of Failure Detectors 209

AS[∅] is used to denote the non-anonymous counterpart of AAS[∅], i.e., an Asynchro-
nous message-passing System prone to any number of crash failures and where each
process has a distinct identity and knows all process identities.

3 Failure Detectors

3.1 Definition of Failure Detectors

The following definitions, based on Π and the set N of time instants, are from [8]. A
failure detector history with range R describes the behavior of a failure detector during
a run. It is a function H : Π × N→ R where H(i, τ) describes the value of the failure
detector at pi at time τ . A failure detector D with range R is a function that maps each
failure pattern F to a set of failure detector histories with range R: D(F) is the set of
failure detector histories that D can exhibit when the failure pattern is F .

Let A and B be two failure detectors. In the following AAS[A, B] denotes the sys-
tem AAS[∅] enriched with failure detector A and failure detector B. This means that
any process can additionally read the local variables provided by these failure detectors.
AAS[A] denotes a system where only the failure detector A can be accessed.

3.2 A Few Classical Failure Detectors

This section briefly recall informally the definition of three well-known failure detec-
tors, namely, P , Ω, and Σ (their formal definitions can be found in [7,8,10,11]) and
also the defintion of P (a simple variant of P). While they have been designed for non-
anonymous systems, nothing prevent us from enriching an anonymous system with any
of them (but, as shown below, it is possible that such an “enrichment” does not add
computational power to the anonymous system).

The perfect failure detector P . A perfect failure detector [8] provides each process pi

with a set denoted suspectedi that contains process indexes and is such that it (1) never
contains the index of a process before it crashes and (2) eventually contains the indexes
of all faulty processes.

When considering AAS [P], it is easy to see that, while a process pi cannot use
the identities that are currently in suspectedi (those are meaningless in an anonymous
system), it can instead use the integer |suspectedi| that provides it with a lower bound
on the number of crashed processes.

The perfect failure detector P . This failure detector provides each process pi with a
set denoted alivei that contains process indexes and is such that it (1) contains at least
the indexes of the processes that are currently alive and (2) eventually contains only the
indexes of correct processes. Intuitively, the output of P corresponds to the complement
set of the output of P with respect to Π the set of indexes.

The eventual leader failure detector Ω. An eventual leader failure detector Ω [7] pro-
vides each process pi with a variable leaderi that contains a process index such that
eventually (1) the variables leaderi of the non-faulty processes contain forever the same
index and (2) this index is the one of a non-faulty process.

210 F. Bonnet and M. Raynal

As identities are outside an anonymous system, it is easy to see that AAS[Ω] is
not more powerful than AAS[∅] (due to anonymity, no process can exploit the process
identity it is provided by Ω).

The quorum failure detector Σ. The notion of quorum has been introduced in [14] (and
explicitly used to solve consensus in [19]). A quorum failure detector Σ [10] provides
each process with a set sigmai of process indexes (such a set is called quorum) such
that (1) eventually, any quorum contains only correct processes and (2) any two quorum
values do intersect (whatever the time instants at which these quorum values have been
output).

It is shown in [10] that Σ is the weakest failure detector to implement a register in an
asynchronous message-passing system prone to any number of crashes. A simple proof
of this result appears in [5].

3.3 Identity-Free Failure Detectors

As seen in the Introduction, some failure detectors do not output process identities
(or values associated with process identities) but Boolean values, integers, etc. whose
“meaning” is on the entire system. As already indicated, we call them identity-free
failure detectors. This section recalls the definition of two of them (AP and AΩ) and
introduces a new one (AΣ) that is the identity-free counterpart of Σ. As we will see
later, “counterpart” means that while AΣ is meaningful in an anonymous system, Σ is
not, but they have the same computational power in a non-anonymous system.

The identity-free perfect failure detector AP . Such a failure detector (a variant of a
failure detector introduced in [17,18]) provides each process pi with an integer ancpi

(approximate number of crashed processes) that (1) is never greater than the number of
crashed processes and (2) is eventually equal to the number of faulty processes (see [3]
for a formal definition). Intuitively AP satisfies the same properties as P except that,
instead of returning a set of indexes, it simply returns the cardinal of this set.

The identity-free perfect failure detector AP . Such a failure detector provides each
process pi with an integer anapi (approximate number of alive processes) that (1) is
never smaller than the number of alive processes and (2) is eventually equal to the
number of correct processes. Intuitively AP satisfies the same properties as P except
that, instead of returning a set of indexes, it simply returns the cardinal of this set.

The identity-free eventual leader failure detector AΩ. Such a failure detector [15] pro-
vides each process pi with a boolean a leaderi such that eventually (1) there is one
non-faulty process (say p�) whose Boolean variable remains forever true and (2) the
Boolean variables of the other non-faulty processes remain forever false. Intuitively
AΩ satisfies the same properties as Ω.

The identity-free quorum failure detectors AΣ. Such a failure detector provides each
process with a variable a sigmai that contains pairs. Each pair is composed of a label
x and an integer y. Without loss of generality, the set of labels is assumed to be a subset

Anonymous Asynchronous Systems: The Case of Failure Detectors 211

of N. The intuition is the following. If (x, y) ∈ a sigmai, AΣ has informed process pi

of (1) the existence of label x and (2) the fact that y processes are assumed to know the
label x. As, we will see, a quorum is a set of processes that know the same label.

Formally, the behavior of the local variables {a sigmai}1≤i≤n is defined by the
following properties. The first two properties (validity and monotonicity) are well-
formedness properties, while the last two properties (safety an liveness) are behavioral
properties.

Definition 1. S(x) = {i | ∃τ ∈ N : (x,−) ∈ a sigmaτ
i }.

Formal definition. The formal definition of AΣ is as follows.

– Validity. ∀ i ∈ Π : ∀ τ ∈ N: a sigmaτ
i = {(x1, y1), . . . , (xp, yp)} where

∀ 1 ≤ a, b ≤ p : (xa, yb ∈ N) ∧
(
(a �= b)⇒ (xa �= xb)

)
.

– Monotonicity. ∀i ∈ Π : ∀τ ∈ N:(
((x, y) ∈ a sigmaτ

i

)
⇒
(
∀τ ′ ≥ τ : ∃y′ ≤ y : (x, y′) ∈ a sigmaτ ′

i

)
.

– Liveness. ∀i ∈ Correct : ∃(x, y): ∃τ : ∀ τ ′ ≥ τ :(
(x, y) ∈ a sigmaτ ′

i

)
∧
(
|S(x) ∩ Correct| ≥ y

)
.

– Safety. ∀ i1, i2 ∈ Π : ∀ τ1, τ2 ∈ N:
∀ (x1, y1) ∈ a sigmaτ1

i1
: ∀ (x2, y2) ∈ a sigmaτ2

i2
:

∀ T1 ⊆ S(x1): ∀ T2 ⊆ S(x2):
(
(|T1| = y1) ∧ (|T2| = y2)

)
⇒ (T1 ∩ T2 �= ∅).

Interpretation. The validity property expresses the fact that, at any time, a sigmai is a
non-empty set of pairs (x, y) where x is a label and y a number of processes associated
with this label (those are processes assumed to know the label x). For any process pi, at
any time τ and any label x, x can appear at most once in a sigmaτ

i , but any number of
distinct labels can appear in a sigmaτ

i .
The monotonicity property states that the number y of processes associated with

a label x, as known by pi, can only decrease. This requirement is not necessary but
makes things simpler. Not considering this monotonicity property will not change our
results but would make them more difficult to understand and proofs more technical.
Hence, this property has to be seen as a “comfort” property, and not as a “computability”
property.

S(x) is the set of all processes that know the label x. While a process pi knows it
belongs to S(x), it does not know the value of S(x). Moreover S(x) can not be used
by algorithms; it is only used to define AΣ.

The next property is called liveness because it is used to prove liveness of AΣ-based
algorithms (and similarly for the safety property). It captures the fact that, after some
time, a quorum contains only correct processes, thereby preventing a correct process
from blocking forever if it uses that quorum. To that end, this property states that, for
any correct process pi, there is eventually a label x such that its associated number y of
processes remains always smaller or equal to the number of correct processes in S(x).
(The underlying intuition is that any correct process will eventually know a label that is
associated with a set of correct processes only.)

The safety property is a little bit more involved. It captures the intersection property
associated with quorums. Let x1 and x2 be two labels known by pi1 and pi2 respectively,

212 F. Bonnet and M. Raynal

T1 any subset of S(x1), T2 any subset of S(x2) (let us remember that S(x) is the set
of all the processes that know label x). The safety property states the following: if
|T1| = y1 and |T2| = y2, where (x1, y1) ∈ a sigmai1 and (x2, y2) ∈ a sigmai2),
then T1 ∩ T2 �= ∅. Let us remember that y1 is the number of processes associated with
label x1 as know by pi1 (and similarly for y2). The intuition is that the y1 processes that
know label x1 and y2 processes that know label x2 do intersect.

4 Reductions between Failure Detectors

Definitions. The following definitions are a straightforward generalization of defini-
tions given in [8]. They add the notion of “system model”. Given two failure detectors
D1 and D2, and a system model C (AAS orAS), D1 is weaker than D2 in C (denoted
D1 �C D2) if there is an algorithm that emulates the output of the failure detector D1
in C[D2]. If reductions exist in both direction, (i.e., D1 �C D2 and D2 �C D1), D1
and D2 are equivalent in C (denoted D1 $C D2). Finally the notation D1 ≺C D2
means that D1 is strictly weaker than D2 (i.e., D1 �C D2 and D2 ��C D1). Similarly,
if D1 is (strictly) weaker than D2 in C, D2 is said to be (strictly) stronger than D1 in
C. If D1 ��C D2 and D2 ��C D1, D1 and D2 are said to be not comparable in C.

It is important to notice that the existence of reductions between failure detectors
depends on the system model. Given any two failure detectors D1 and D2, as AAS is
AS without the notion of process identities, we have (D1 �AAS D2) ⇒ (D1 �AS
D2), but we do not have (D1 �AS D2)⇒ (D1 �AAS D2).

As simple examples (see below) we have (1) X $AS AX for X = P, Σ and Ω; (2)
AP ≺AAS P ; (3) (AΩ �AS Ω) ∧ (AΩ ��AAS Ω).

4.1 Simple Reductions

InAS . Directly from definitions, one can easily see that P $AS P and AP $AS AP :
for the first equivalence it is sufficient to compute the complement set of the output set
with respect to Π the set of all indexes, whereas for the latter it is sufficient to substract
the output integer to n, the total number of processes.

Due to page limitation, the proofs that P $AS AP and Ω $AS AΩ are given in [6].
Moreover it is well-known that Ω ≺AS P [7] and Σ ≺AS P [10]. The simple reduction
AΣ �AS Σ appears in [6] while the next section gives an algorithm for Σ �AS AΣ
(whose proof appears also in [6]). It follows that, in non-anonymous systems, the three
classical failure detectors defined in Section 3.2 and their identity-free counterparts
defined in Section 3.3 have the same computational power.

In AAS . Some reductions between failure detectors that exist in a non-anonymous
system are no longer possible in an anonymous system. More precisely we have the
following in AAS .

– P and P are not more equivalent. There is no reduction from one to the other since
there is no way for processes, in the anonymous model, to discover indexes of alive
(resp. faulty) processes when their failure detectors provide them only with indexes
of faulty (resp. alive) processes.

Anonymous Asynchronous Systems: The Case of Failure Detectors 213

– The equivalence between AP and AP still exist (reductions in the non-anonymous
model do not use indexes and then remain valid in the anonymous model).

– P is no more stronger than Σ and Ω. Indeed there is no way for processes, in
the anonymous model, to discover indexes of correct processes when their failure
detectors provide them only with indexes of faulty processes. P is still stronger
than AP and AΣ; the reductions of the non-anonymous model remain valid since
there is no use of indexes.

– P is strictly stronger than Σ (take the output of P), AP (take the cardinal of the
output of P), and Ω (take the smallest identity output by P).

– P (resp. P) and AΩ cannot be compared. Indeed, as the system is anonymous,
there is no way for the processes to break asymmetry and elect a leader.

– AP is strictly stronger than AΣ. Assuming n is known, the reduction consists in
permanently outputting the pair (0, n− ancpi) (ancpi is pi’s local output of AP).
As AΣ ≺AAS AP , AP ≺AAS P , AP $AAS AP , AP ≺AAS P , we also have
AΣ ≺AAS P and AΣ ≺AAS P .

– Due to the absence of identities, AP (resp. AP) cannot be compared with Σ and
Ω. Moreover, AP cannot be compared with AΩ (Proof in [6]).

– Ω and AΩ cannot be compared. On the one side, there exists no algorithm that can
build Ω in AAS[AΩ] since it is not possible to associate identities with processes.
On the other side, there exists no algorithm that builds AΩ in AAS[Ω] since the
processes being anonymous, none of them can discover it is the eventual leader. Σ
and AΣ cannot be compared for the same reasons.

Ω AΩΣAΣ

P $ P

AP $ AP

(a) in AS

ΣAΣ Ω AΩ

P

P

AP $ AP

(b) in AAS

Fig. 1. Hierarchy of failure detectors

Hierarchy of failure detectors. Figure 1 summarizes the reductions that exist between
the previous failure detectors in non-anonymous systems (left) and anonymous systems
(right). An arrow from D1 to D2 means that D2 is weaker than D1 in the corresponding
system model.

Implementability. Failure detectors are introduced to capture the additional power re-
quired to solve a problem that is otherwise unsolvable in the considered system. While
a (non-trivial) failure detector cannot be implemented in a pure asynchronous, it is in-
teresting to investigate if it can be implemented in a synchronous system. When such
an implementation does exist, the failure detector is realistic [9].

Considering Figure 1, a square indicates that the associated failure detector can be
implemented in the corresponding synchronous system, while an ellipses denotes it
cannot. As P can be easily implemented in a non-anonymous synchronous system,
by reduction all the proposed failure detectors are realistic in AS. As far anonymous
synchronous systems are concerned we have the following.

214 F. Bonnet and M. Raynal

– As there is no notion of process identity, P , P , Σ and Ω cannot be implemented in
an anonymous synchronous system.

– AP , AP and AΣ can be implemented in an anonymous synchronous system. At
every round r, any alive process broadcasts a heartbeat message and counts the
number hr of heartbeats received during that round. This number defines the current
output of AP , the integer n − hr defines the current output of AP and the pair
(0, hr) defines the current output of AΣ.

– AΩ cannot be implemented in an anonymous synchronous system. Indeed even if
the system is synchronous there is no deterministic solution for processes to break
the symmetry between them.

The important point is that AΩ is not a realistic failure detector as far as the system is
anonymous. Despite this fact, AΩ remains important from a theoretical point of view as
it is relevant in the search for the “weakest failure detector” for anonymous consensus
(see Section 6).

4.2 Building Σ in AS[AΣ]

The construction. The algorithm that builds Σ in AS[AΣ] is described in Figure 2. It
relies on two main data structures at each process pi.

– alivei is a queue, always containing all the process indexes, that is managed as
follows. When pi receives a message from pj , it reorders j and places it at the
head of that queue. In that way, the processes that are alive (i.e., those that send
messages) appear at the head of alivei, while the processes that have crashed are
progressively moved at its tail.

– queuei is an array of queues; queuei[x] contains the identities of the processes
that, from pi’s point of view, know the quorum whose name is x. The quorum
names x are obtained from the local output a sigmai (underlying failure detector
AΣ). queuei[x][j] denotes the jth element of queuei[x].

According to these data structures, the behavior of a process pi is made up of three tasks
T 1, T 2 and T 3.

– T 1 is an infinite loop in which pi repeatedly broadcasts a message ALIVE(i, labelsi)
that contains the names of the quorums it knows (i.e., those that appear in a sigmai).

– T 2 is the matching task of T 1. When pi receives ALIVE(j, labels), it first updates
alivei accordingly (line 6). Then, for each quorum name it knows (line 7), updates
its current view of the processes that know x (i.e., the processes pj that have (x,−)
in their a sigmaj , lines 8-9)).

– T 3 is the core of the construction. It is an infinite loop whose aim is to define the
current value of sigmai (the local output of Σ). Process pi first computes a set
candidates that contains the pairs (x, y) ∈ a sigmai such that |queuei[x]| ≥ y
(line 12). Those are the pairs such that pi has received ALIVE(−, {· · · , x, · · · })
from at least y distinct processes (i.e., y processes know the label x). If the set
candidates is empty, pi cannot compute a non-trivial value for sigmai. It conse-
quently sets sigmai to Π (line 14). Otherwise, pi computes a non-trivial value for

Anonymous Asynchronous Systems: The Case of Failure Detectors 215

sigmai from the set candidates (lines 15-18). To that end, rank(�) is defined as
the position of the identity � in the queue alivei (line 16).
The aim is to assign to sigmai the y processes that are at the head of queuei[x]
(line 18), where the corresponding pair (x, y) ∈ candidates is determined as fol-
lows. Using an array-like notation, the identities in the prefix queuei[x][1..y] “glob-
ally appear in alivei before” the identities in the other prefixes queuei[x′][1..y′].
“Globally appear before” means that there is an identity in queuei[x′][1..y′] whose
rank in alivei is after the rank of any identity in queuei[x][1..y]. (This is formally
expressed by lines 15-17.) Let us notice that several prefixes queuei[x][1..y] can
globally appear as being the “first” in alivei. If it is the case, any of them can be
selected.
To fix the idea, consider the following example. alivei = [7, 1, 3, 9, 4, 8, 2, 5, 6],
a sigmai = {(5, 4), (7, 3), (2, 5)}, queuei[5] = [1, 3, 4, 2, 5], queuei[7]=[1, 8, 5],
queuei[2] = [1, 5]. Considering only queuei[5], queuei[7] and queuei[2], we have
candidates = {(5, 4), (7, 3)}. As queuei[5][4] = 2, and queuei[7][3] = 5, we have
r min = rank(queuei[5][4]) = rank(2) = 7 < rank(queuei[7][3]) = rank(5) =
8. Hence, (x, y) = (5, 4) defines the queue prefix whose identities are “first” in
alivei. Consequently sigmai is set to queuei[5][1..4] = {1, 3, 4, 2}.

Init: alivei ← all process indexes in arbitrary order;
for each x do queuei[x] ← empty queue end for.

(1) T1: repeat forever
(2) labelsi ← {x | (x,−) ∈ a sigmai};
(3) broadcast ALIVE(i, labelsi)
(4) end repeat.

(5) T2: when ALIVE(j, labels) is received:
(6) remove j from alivei; enqueue j at the head of alivei;
(7) for each x ∈ labels such that

(
(x,−) ∈ a sigmai

)
do

(8) if (j ∈ queuei[x]) then remove j from queuei[x] end if;
(9) enqueue j at the head of queuei[x]
(10) end for.

(11) T3: repeat forever
(12) let candidates = { (x, y) | (x, y) ∈ a sigmai ∧ |queuei[x]| ≥ y };
(13) if (candidates = ∅)
(14) then sigmai ← {1, . . . , n}
(15) else let r min = min(x,y)∈candidates

(
rank(queuei[x][y])

)
(16) where rank() = rank of in the queue alivei;
(17) let (x, y) ∈ candidates such that rank(queuei[x][y]) = r min;
(18) sigmai ← the first y elements of queuei[x]
(19) end if
(20) end repeat.

Fig. 2. Building Σ in AS[AΣ] (code for pi)

216 F. Bonnet and M. Raynal

Theorem 1. The algorithm described in Figure 2 builds Σ in AS[AΣ].

5 Consensus Algorithm in AAS[AΣ, AΩ]

Why (AΣ, AΩ)?. As indicated in the Introduction, the fact that (1) (Σ, Ω) is the weak-
est failure detector to solve consensus in a non-anonymous system, (2) (Σ, Ω) are use-
less in anonymous systems, and (3) (AΣ, AΩ) is the identity-free counterpart of (Σ, Ω)
was one of our motivations for designing an (AΣ, AΩ)-based uniform anonymous con-
sensus algorithm.

Description of the uniform (AΣ, AΩ)-based algorithm. This algorithm borrows its
“three-phase per round” structure from the non-anonymous consensus algorithm pre-
sented in [20]. Differently from that algorithm, the message exchange pattern used in-
side the second and third phases is based on an entirely new principle. Moreover, due to
the novelty of AΣ, the way the safety and liveness properties are ensured are also new.

The algorithm is described in Figure 3. It is round-based: a process executes a
sequence of asynchronous rounds until it decides. A process pi invokes the opera-
tion propose(vi) (where vi is the value it proposes), and decides when it executes the
statement return(v) (line 25 or 38, where v is the value it decides). As in other non-
anonymous consensus algorithms, when a process decides it stops participating in the
consensus algorithm. Consequently, before deciding a process pi broadcasts a message
DECIDE(v) in order to prevent the other processes from blocking forever (waiting for a
message that pi will never send).

The three main local variables associated with a round are ri (the local round num-
ber), and a pair of estimates of the decision value est1i and est2i. The variable est1i

contains pi’s current estimate of the decision value when a new round starts while est2i,
whose value is computed during the second phase of every round, contains either a new
estimate of the decision value or a default value ⊥.

The behavior of a process pi during a round r is made up of three phases, denoted
phase 1, 2 and 3 which are as follows. The first phase of a round is the only one where
AΩ is used, while AΣ is used only in the second and third phases of a round.

– In the first phase of a round, a process pi that considers it is leader broadcasts a
message PHASE1(ri, v). If a leaderi is false, pi waits for a message PHASE1(r, v),
adopts v as its new estimate and forwards PHASE1(ri, v) to all (to prevent other
processes from blocking forever in that phase of round r).

– Similarly to [19], the aim of the second phase of a round r is to assign a value to
the variables est2i in such a way that the following round property denoted P (r)
is always satisfied (where est2i[r] denotes the value assigned to est2i at line 12 of
round r):

P (r) ≡
[
(est2i[r] �= ⊥) ∧ (est2j[r] �= ⊥)

]
⇒
(
est2i[r] = est2j[r]

)
.

To attain this goal, a classical non-anonymous algorithm directs a process to wait
for messages from processes defining a quorum [19]. In an anonymous system, this
is no longer possible as the notion of process name is outside AΣ. A process pi

Anonymous Asynchronous Systems: The Case of Failure Detectors 217

operation propose (vi):
(1) est1i ← vi; ri ← 0;
(2) while true do
(3) begin asynchronous round
(4) ri ← ri + 1;

% Phase 1 : assign a value to est1i with the help of AΩ %
(5) wait until

(
(a leaderi) ∨ (PHASE1(ri , v) received)

)
;

(6) if (PHASE1(ri , v) received) then est1i ← v end if;
(7) broadcast PHASE1(ri , est1i);

% Phase 2 : assign a value v or ⊥ to est2i %
(8) sri ← 1; labelsi ← {x | (x,−) ∈ a sigmai}; broadcast PHASE2(ri , sri, labelsi , est1i);
(9) repeat
(10) if

(
PHASE3(ri ,−,−, est2) received

)
then est2i ← est2; exit repeat loop end if;

(11) if
(
∃ (x, y) ∈ a sigmai ∧ ∃ sr ∈ N

such that y msgs PHASE2(ri , sr, labelsj ,−) received with x ∈ labelsj for each msg
)

(12) then if (all y msgs contain the same estimate v) then est2i ← v else est2i ← ⊥ end if;
(13) exit repeat loop
(14) else if (labelsi �= {x | (x,−) ∈ a sigmai}) ∨ (PHASE2(ri , sr,−,−) received with sr > sri)
(15) then sri ← sri + 1; labelsi ← {x | (x,−) ∈ a sigmai};
(16) broadcast PHASE2(ri , sri, labelsi , est1i)
(17) end if
(18) end if
(19) end repeat;

% Phase 3 : try to decide a value from the est2 values %
(20) sri ← 1; labelsi ← {x | (x,−) ∈ a sigmai}; broadcast PHASE3(ri , sri, labelsi , est2i);
(21) repeat
(22) if

(
PHASE1(ri + 1,−) received

)
then exit repeat loop end if;

(23) if
(
∃ (x, y) ∈ a sigmai ∧ ∃ sr ∈ N

such that y msgs PHASE3(ri , sr, labelsj ,−) received with x ∈ labelsj for each msg
)

(24) then let reci = the set of estimates est2 contained in the y previous messages;
(25) case (reci = {v}) then broadcast DECIDE(v); return(v)
(26) (reci = {v,⊥})then est1i ← v
(27) (reci = {⊥}) then skip
(28) end case;
(29) exit repeat loop
(30) else if (labelsi �= { x | (x,−) ∈ a sigmai }) ∨ (PHASE3(ri , sr, −,−) received with sr > sri)
(31) then sri ← sri + 1; labelsi ← {x | (x,−) ∈ a sigmai};
(32) broadcast PHASE3(ri , sri, labelsi , est2i)
(33) end if
(34) end if
(35) end repeat
(36) end asynchronous round
(37) end while.

(38) when DECIDE(v) is received: broadcast DECIDE(v); return(v).

Fig. 3. A Consensus algorithm for AAS [AΣ, AΩ] (code for pi)

can use only the pairs (x, y) ∈ a sigmai, which supply no “immediately usable”
information on which processes have sent messages. This issue is solved as follows.
During each round, the messages broadcast by processes carry appropriate label-
based information, and processes can be required to re-broadcast messages related
to the very same round when this information does change.
Hence, a process pi first broadcasts a message PHASE2(ri, sri, labelsi , est1i) where
sri is a sub-round number (initialized to 1), and labelsi is the set of labels it knows
(line 8). As we are about to see, this information (the pair sri and labelsi) allows pi

to wait for message from an appropriate quorum of processes.
Process pi then enters a waiting loop (lines 9-19), that (as we will see in the proof)
it eventually exits at line 10 or 13 after having assigned a value to est2i. The exit

218 F. Bonnet and M. Raynal

at line 10 is to prevent pi from blocking forever in phase 2 when processes have
already progressed to phase 3 of the current round ri.
As far the exit of the repeat loop at line 13 is concerned,pi exits when it has received
“enough” (namely y) messages PHASE2(ri, sr, labelsj ,−) (these messages carry
a round number equal to ri and the same sub-round number sr -which can be
different from sri-) such that (a) ∃(x, y) ∈ a sigmai and (b) x ∈ labelsj for every
of the y received messages (line 11). When this occurs, if the y messages carry the
same estimate value v, pi assigns that value v to est2i, otherwise, it assigns it the
default value ⊥ (line 12). In both cases, pi exits the loop and starts the third phase.
If the test of line line 11 is not satisfied, pi checks (line 14) if it has new information
from its failure detector (predicate labelsi �= {x | (x,−) ∈ a sigmai}), or has
received a message PHASE2(ri, sr,−,−) such that sr > sri (which means that this
message refers to a sub-round of ri more advanced than sri). If this test is satisfied,
while remaining at the same round, pi increase sri and broadcasts the message
PHASE2(ri, sri, labelsi , est1i) which refreshes the values of sri and labelsi it had
sent previously. Otherwise, pi continues waiting for messages.

– The aim of the third phase is to allow a process to decide when it discovers that a
quorum of processes have the same non-⊥ value v in their estimates est2i.
The message exchange pattern used in this phase (where the notion of sub-round is
used) is exactly the same as in the one used in the second phase where the value of
est2i replaces the value of est1i.
The only thing that changes with respect to the second phase is the processing done
when the predicate of line 23 is satisfied (let us notice that this predicate is the same
as the one of line 11 when the message tag PHASE2 is replaced by the tag PHASE3).
If pi has received the same value v from all the processes that compose the last
quorum defined from the predicate of line 23, it decides v (line 25). If it has received
a value v and ⊥, it adopts v as its new estimate est1i (line 26). Finally, if it has
received only ⊥, it keeps its previous estimate est1i (line 27). The proof shows
that the combination of property P () (established by the second phase), and the
quorums defined by the predicates of lines 11 and 23, ensures that no two processes
can decide differently.

Theorem 2. The algorithm described in Figure 3 solves the consensus problem in
AAS[AΣ, AΩ].

6 On the Weakest FD for Anonymous Consensus

Failure detector-based consensus algorithms. The previous section has presented an
(AΣ, AΩ)-based anonymous consensus algorithm. A (non-uniform) AP -based con-
sensus algorithm has been presented in [3]. A natural question is then: “which of
(AΣ, AΩ) and AP is the weakest to solve consensus in anonymous systems ?” Un-
fortunately (AΣ, AΩ) and AP cannot be compared in AAS (proof similar to the ones
that appear in Section 4.1).

Anonymous Asynchronous Systems: The Case of Failure Detectors 219

Notion of weakest failure detector for a given problem. [7] Given a problem P and a
failure detector D, D is the weakest failure detector for P in XX [∅] (where XX stands
for AS or AAS) if (a) there is an algorithm that solves P in XX [D], and (b) for any
failure detector D′ such that P can be solved in XX [D′], we have D � D′. It is shown
in [16] that, in AS[∅], any problem has a weakest failure detector.

New failure detectors. Given two failure detectors D1 and D2, let us define a new
failure detector D1 ⊕ D2 as follows. During an arbitrary but finite period of time,
D1 ⊕ D2 outputs ⊥ at every process, and then behaves either as D1 or as D2 at all
processes.

Let us observe that, if D1 and D2 cannot be compared, D1 (resp.,D2) is strictly
stronger that D1 ⊕ D2. This is because D1 ⊕ D2 can trivially be built in XX [D1]
(resp., XX [D2]), while D1 (resp.,D2) cannot be built in XX [D1⊕D2].

Weakest failure detector for consensus inAAS . Whereas (Σ, Ω) is the weakest failure
detector for consensus in non-anonymous systems, (AΣ, AΩ) is not the weakest failure
detector for anonymous consensus, due to the absence of reduction between AP and
AΩ. Hence, let us introduce the new failure detector (AΣ, AΩ)⊕AP which is strictly
weaker than both (AΣ, AΩ) and AP . Interestingly, there is a simple algorithm that
solves anonymous consensus in AAS[(AΣ, AΩ)⊕AP]. This algorithm is as follows.
Each process pi waits until the output of AAS[(AΣ, AΩ) ⊕ AP] is different from ⊥.
Then, according to the actual output of the failure detector (that is non-deterministic), it
executes either the (AΣ, AΩ)-based algorithm presented in Section 5 or the AP -based
algorithm described in [3].

A conjecture. We conjecture that (AΣ, AΩ) ⊕ AP is the weakest failure detector
for solving anonymous consensus. This conjecture is motivated by the observation
that in a non-anonymous system we have

(
(Σ, Ω) ⊕ P

)
$AS (Σ, Ω) where (Σ, Ω)

is the weakest failure detector for consensus. If correct, this conjecture implies that
(AΣ, AΩ)⊕AP is the weakest failure detector for consensus since it will then be true
in both anonymous and non-anonymous systems.

References

1. Angluin, D.: Local and Global Properties in Networks of Processes. In: Proc. 12th Sympo-
sium on Theory of Computing (STOC’80), pp. 82–93. ACM Press, New York (1980)

2. Biely, M., Robinson, P., Schmid, U.: Weak Synchrony Models and Failure Detectors for
Message-passing (k)Set Agreement. In: Abdelzaher, T., Raynal, M., Santoro, N. (eds.)
OPODIS 2009. LNCS, vol. 5923, pp. 285–299. Springer, Heidelberg (2009)

3. Bonnet, F., Raynal, M.: The Price of Anonymity: Optimal Consensus despite Asynchrony,
Crash and Anonymity. In: Keidar, I. (ed.) DISC 2009. LNCS, vol. 5805, pp. 341–355.
Springer, Heidelberg (2009)

4. Bonnet, F., Raynal, M.: Looking for the Weakest Failure Detector for k-Set Agreement in
Message-passing Systems: Is Πk the End of the Road? In: Guerraoui, R., Petit, F. (eds.) SSS
2009. LNCS, vol. 5873, pp. 149–164. Springer, Heidelberg (2009)

220 F. Bonnet and M. Raynal

5. Bonnet, F., Raynal, M.: A Simple Proof of the Necessity of the Failure Detector Σ to Imple-
ment an Atomic Register in Asynchronous Message-passing Systems. Information Process-
ing Letters 110(4), 153–157 (2010)

6. Bonnet, F., Raynal, M.: Anonymous Asynchronous Systems: The Case of Failure Detectors.
Tech. Report PI 1945, IRISA, Rennes (January 2010)

7. Chandra, T., Hadzilacos, V., Toueg, S.: The Weakest Failure Detector for Solving Consensus.
Journal of the ACM 43(4), 685–722 (1996)

8. Chandra, T., Toueg, S.: Unreliable Failure Detectors for Reliable Distributed Systems. Jour-
nal of the ACM 43(2), 225–267 (1996)

9. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R.: A Realistic Look at Failure Detectors. In:
Proc. Int’l Conference International on Dependable Systems and Networks (DSN’02), pp.
345–353. IEEE Computer Press, Los Alamitos (2002)

10. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R.: Tight Failure Detectors Bounds on
Atomic Objects. Journal of the ACM 57(4) (2010)

11. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Hadzilacos, V., Kouznetsov, P., Toueg, S.:
The Weakest Failure Detectors to Solve Certain Fundamental Problems in Distributed Com-
puting. In: Proc. 23th ACM Symposium on Principles of Distributed Computing (PODC’04),
pp. 338–346. ACM Press, New York (2004)

12. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Tielmann, A.: The Weakest Failure De-
tector for Message Passing Set-Agreement. In: Taubenfeld, G. (ed.) DISC 2008. LNCS,
vol. 5218, pp. 109–120. Springer, Heidelberg (2008)

13. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of Distributed Consensus with One
Faulty Process. Journal of the ACM 32(2), 374–382 (1985)

14. Gifford, D.K.: Weighted Voting for Replicated Data. In: Proc. 7th ACM Symposium on Op-
erating System Principles (SOSP’79), pp. 150–172. ACM Press, New York (1979)

15. Guerraoui, R., Raynal, M.: The Alpha of Indulgent Consensus. The Computer Journal 50(1),
53–67 (2007)

16. Jayanti, P., Toueg, S.: Every Problem has a Weakest Failure Detector. In: Proc. 27th ACM
Symposium on Principles of Distributed Computing (PODC’08), pp. 75–84 (2008)

17. Mostefaoui, A., Rajsbaum, S., Raynal, M., Travers, C.: On the Computability Power and
the Robustness of Set Agreement-oriented Failure Detector Classes. Distributed Comput-
ing 21(3), 201–222 (2008)

18. Mostefaoui, A., Rajsbaum, S., Raynal, M., Travers, C.: The Combined Power of Conditions
and Information on Failures to Solve Asynchronous Set Agreement. SIAM Journal of Com-
puting 38(4), 1974–1601 (2008)

19. Mostefaoui, A., Raynal, M.: Solving Consensus Using Chandra-Toueg’s Unreliable Fail-
ure Detectors: a General Quorum-Based Approach. In: Jayanti, P. (ed.) DISC 1999. LNCS,
vol. 1693, pp. 49–63. Springer, Heidelberg (1999)

20. Mostefaoui, A., Raynal, M.: Leader-Based Consensus. PPL 11(1), 95–107 (2001)

The Computational Structure of Progress Conditions

Gadi Taubenfeld

The Interdisciplinary Center, P.O. Box 167, Herzliya 46150, Israel
tgadi@idc.ac.il

http://www.faculty.idc.ac.il/gadi/

Abstract. Understanding the effect of different progress conditions on the com-
putability of distributed systems is an important and exciting research direction.
For a system with n processes, we define exponentially many new progress con-
ditions and explore their properties and strength. We cover all the known, sym-
metric and asymmetric, progress conditions and many new interesting conditions.
Together with our technical results, the new definitions provide a deeper under-
standing of synchronization and concurrency.

Keywords: Progress conditions, wait-freedom, obstruction-freedom, S-freedom,
consensus, synchronization, contention, cooperation, universality, hierarchy.

1 Introduction

We define exponentially many new progress conditions and explore their properties
and relative strength. Our results regarding the computational structure of the new and
known, symmetric and asymmetric, progress conditions provide a deeper understand-
ing of synchronization and concurrency. Most of the known progress conditions can be
classified as either cooperation-based conditions or contention-based conditions. Coop-
eration arises when several processes need to coordinate their actions in order to achieve
a common goal. Contention arises when several processes compete for exclusive use of
shared resources, such as communication bandwidth, data items or files.

Fault-freedom, the weakest cooperation-based condition, guarantees that every pro-
cess will complete its pending operations provided that all the processes participate
and there are no failures. Obstruction-freedom, the weakest contention-based condi-
tion, guarantees that a process will be able to complete its pending operations in a finite
number of its own steps, if all the other processes “hold still” (i.e., do not take any steps)
long enough [11]. Wait-freedom, the strongest both contention-based and cooperation-
based progress condition, guarantees that every process will always be able to complete
its pending operations in a finite number of its own steps, regardless of the behavior
of the other processes [10]. While a consensus object can be implemented using only
atomic registers under either fault-freedom or obstruction-freedom, it can not be imple-
mented using registers under wait-freedom.

We start by proving two general impossibility results for symmetric progress con-
ditions, which have many interesting implications. For example, we show that objects
that satisfy cooperation-based progress conditions can be implemented from objects
that satisfy the corresponding contention-based conditions, but not vice versa. We es-
tablish a formal connection between symmetric and asymmetric progress conditions,

N.A. Lynch and A.A. Shvartsman (Eds.): DISC 2010, LNCS 6343, pp. 221–235, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

222 G. Taubenfeld

which enables us to apply the general impossibility results for proving new results also
for asymmetric progress conditions. For the special case where only atomic registers are
used, we give a complete characterization under which symmetric progress conditions
consensus is solvable, and prove impossibility results for the asymmetric case. Finally,
we prove a general universality result.

1.1 Exponentially Many Symmetric Progress Conditions

From now on we assume that the number of processes is n and n ≥ 2. A process is
active when it has pending operations, otherwise it is passive. For a set of processes P ,
let |P | denotes the size of P . For a given point in a computation, active.P is the number
of active processes in P . We use S to denote a non-empty set such that S ⊆ {1, ..., n}.

Definition. For any non-empty set S, the progress condition S-freedom guar-
antees that for every set of processes P , if at some point in a computation
active.P = |P | and |P | ∈ S, then every process in P will be able to eventu-
ally complete its pending operations, provided that (1) all the processes not in
P do not take steps for long enough; and (2) none of the processes in P fails
(which means that each of the processes in P will continue to take steps until
it becomes passive).

Let A be an algorithm for n processes that satisfies S-freedom for some set S. Further-
more, assume that for some number k, k ∈ S and k − 1 �∈ S. Assume that for a set of
processes P at some point in a computation of A, active.P = |P | = k, and that all the
processes not in P do not take any more steps. Since not all the processes in P become
passive at the same time eventually some process in P will become passive and once
this happens active.P = k − 1. It is important to notice, that although at this point
active.P = k−1 �∈ S, the definition of S-freedom guarantees that (because in the near
past all k processes were active) eventually every process in P will become passive.

It is possible to weaken the requirement that “every process in P will be able to
eventually complete its pending operations”, and only require that “some process in P
will be able to eventually complete its pending operations”. For one-shot objects (also
called tasks), like consensus, most of our results apply also in this case.

Since the number of non-empty subsets of {1, ..., n} is 2n − 1, there are 2n − 1
different progress conditions. They relate to known progress conditions as follows:
The condition {n}-freedom is the same as fault-freedom; {1}-freedom is the same as
obstruction-freedom; {1, ..., n}-freedom is the same as wait-freedom; {1, n}-freedom
is the progress condition which implies both obstruction-freedom and fault-freedom.
For 1 ≤ k ≤ n, {1, ..., k}-freedom is the same as k-obstruction-freedom. We call these
n conditions, contention-based progress conditions, since {1, ..., k}-freedom guaran-
tees progress under contention of at most k processes. For 0 ≤ t ≤ n−1, {n−t, ..., n}-
freedom is the same as t-resiliency. We call these n conditions, cooperation-based
progress conditions, since {n− t, ..., n}-freedom captures the ability to tolerate t faults.

Clearly, an object that satisfies T -freedom satisfies also S-freedom, for any S ⊂ T .
For any given set S, we say that S-freedom is a symmetric progress conditions in the
sense that a given process is not favored with respect to the others.

The Computational Structure of Progress Conditions 223

1.2 Asymmetric Progress Conditions

The notion of asymmetric progress conditions was coined and investigated in [13]. It is
motivated by the observation that some processes may be more important than others
and hence should get stronger progress guarantees. Thus, an asymmetric progress con-
dition specifics the progress guarantees for each process separately. One such progress
condition which is defined in [13], called (n, x)-liveness, satisfies wait-freedom for x
processes and satisfies obstruction-freedom for the remaining n− x processes.

In the literature, saying that an object is wait-free is the same as saying that each one
of the processes is wait-free w.r.t. that object. Although using the term wait-freedom in
two different ways may be confusing, it simplifies the discussion. Following this “tra-
dition”, we will say that an object is S-free iff each process is S-free w.r.t. that object.
Clearly, a process that is T -free is also S-free, for any S ⊂ T . Asymmetric progress
conditions can be practically motivated by modern multicore architectures where pro-
cesses in different cores might be provided with different progress guarantees.

1.3 Our Contributions

A consensus object o supports one operation: o.propose(v) satisfying: (1) Agreement:
In any run, the o.propose() operation returns the same value, called the consensus
value, to every process that invokes it. (2) Validity: In any run, if the consensus value
is v, then some process invoked o.propose(v). When v ∈ {0, 1} the object is called a
binary consensus object. By a consensus object we mean a binary consensus object; and
by n-consensus we mean a multi-valued consensus object where v ∈ {0, 1, ..., n− 1}.
The term register means an atomic read/write register. A simple (but not obvious) ob-
servation is that, for two positive integers m and n, and a set S ⊆ {1, ..., min(m, n)},
it is not always possible to implement an S-free consensus object for n processes using
S-free consensus objects for m processes and registers. Our results are:

New Definitions. We define exponentially many progress conditions and investigate
their properties and relative strength. Together with the technical results, the new no-
tions provide a deeper understanding of synchronization and concurrency.

General impossibility results. Let S be a subset of {1, ..., n}, where n ≥ 2. |S| is
the number of elements in S, and max .S and min.S are the largest and the smallest
elements in S, respectively. The width of S, denoted width.S , is defined as follows:
width.S = 1 + max .S −min.S . We prove the following two impossibility results,

– For any set |S| ≥ 2, it is not possible to implement an S-free consensus object
for n processes using any number of wait-free consensus objects for width.S − 1
processes and registers.

– For any two sets S and T , and integer k, if |T | ≥ 2, k ∈ T , k �∈ S and k ≤ width.T
then it is not possible to implement a T -free consensus object for n processes using
any number of S-free consensus objects for n processes and registers.

It follows from the results that: (1) for any 2 ≤ k ≤ n, it is not possible to implement a
{1, k}-free consensus object for k processes using any number of wait-free consensus

224 G. Taubenfeld

objects for n − 1 processes and registers; and (2) For any n > 2, it is not possible to
implement a wait-free consensus object for two processes using any number of {1, n}-
free consensus objects for n processes and registers.

Cooperation vs. contention. It follows from the above impossibility results that ob-
jects which satisfy cooperation-based progress conditions can not be used to imple-
ment objects which satisfy contention-based progress conditions. However, objects that
satisfy cooperation-based conditions can be implemented from objects that satisfy the
corresponding contention-based conditions. More formally,

– It is not possible to implement {1, 2}-free consensus object for n processes using
{2, ..., n}-free consensus objects for n processes and registers. However, for 2 ≤
k ≤ n, it is possible to implement an {n− k + 1, ..., n}-free consensus object for
n processes using {1, ..., k}-free consensus objects for n processes and registers.

This result is rather surprising, given the fact that while cooperation-based conditions
imply fault-freedom, contention-based conditions do not imply the fault-freedom.

Asymmetric progress conditions. We establish a connection between symmetric and
asymmetric conditions, which enables us to apply the general impossibility results for
proving new results also for asymmetric conditions. For example, we show that:

– For any two integers k1 and k2 such that 1 ≤ k1 < k2 ≤ n, it is not possible to
implement a consensus object for n processes that satisfies {k1, k2}-freedom for
n− k2 + 1 processes and satisfies {k1}-freedom for all the other processes, using
any number of wait-free consensus objects for k2 − k1 processes and registers.

Atomic registers. When only registers are used, we have a complete characterization
under which symmetric conditions consensus is solvable, and prove impossibility re-
sults for the asymmetric case. For the symmetric case, we show that:

– For any set S, it is possible to implement an S-free consensus object for n processes
using registers if and only if |S| = 1.

The results generalize the famous FLP result for the case of one faulty process [6,18].

Universality. We generalize results regarding the universality of consensus from [10].
An object o is S-universal for n processes if any object which has sequential specifica-
tion has an S-free linearizable implementation using registers and objects of type o for
n processes. We prove that,

– For any positive integer n, and any non-empty set S ⊆ {1, ..., n}, an S-free con-
sensus object for n processes is S-universal for n processes.

The result implies that an object o is S-universal for n processes if and only if an S-
free consensus object for n processes can be implemented from objects of type o and
registers. The wait-free hierarchy [10], is an infinite hierarchy of objects, such that the
objects at level i are exactly those objects which are {1, ..., i}-universal for i processes,
but are not {1, ..., i + 1}-universal for i + 1 processes. We will explain, how to define
other interesting hierarchies.

The Computational Structure of Progress Conditions 225

1.4 Related Work

The consensus problem was formally defined in [20]. The impossibility result that there
is no consensus algorithm that can tolerate even a single crash failure in an asyn-
chronous model was first proved for the message-passing model in [6], and later has
been extended for the shared memory model in which only atomic registers are sup-
ported, in [18]. A recent survey which covers many related impossibility results can be
found in [4]. The power of shared objects has been studied extensively in environments
where processes may fail benignly, and where every operation is wait-free. In [10], Her-
lihy classified objects by their consensus numbers and defined the wait-free hierarchy.
Additional results regarding the wait-free hierarchy can be found in [14,16].

Objects that can be used, together with registers, to build wait-free implementa-
tions of any other object are called universal objects. Previous work provided methods,
called universal constructions, to transform sequential specifications of arbitrary shared
objects into wait-free concurrent implementations that use universal objects [10,21].
In [21] it is proved that sticky bits are universal, and independently, in [10] it is proved
that wait-free consensus objects are universal. A bounded space version of the universal
construction from [10] appears in [15]. Linearizability is defined in [12].

Two extensively studied conditions are wait-freedom [10] and obstruction-freedom
[11]. It is shown in [11] that obstruction-free consensus is solvable using registers. Var-
ious contention management techniques have been proposed to improve obstruction-
freedom under contention [7,22]. Other works investigated boosting obstruction-freedom
by making timing assumption [1,5] and using failure detectors [8]. Wait-free consensus
algorithms that use registers in the absence of contention and revert to using strong syn-
chronization operations when contention occurs, are presented in [2,17,19].

The notion of asymmetric progress conditions was coined in [13], where the (n, x)-
liveness condition which guarantees wait-freedom for x processes and obstruction-
freedom for the remaining n − x processes, was defined. The following results are
proven in [13]: (1) It is not possible to implement an (n, 1)-live consensus object using
wait-free consensus objects for n− 1 processes and registers; (2) For 1 ≤ x < n − 1,
an (n, x)-live consensus object is strictly weaker than an (n, x + 1)-live consensus
object, thereby establishing a hierarchy for (n, x)-liveness; (3) It is not possible to im-
plement a consensus object for n processes which guarantees both fault-freedom and
obstruction-freedom for one process and only obstruction-freedom for the remaining
n−1 processes, using wait-free consensus objects for n−1 processes and registers; (4)
It is possible to implement a consensus object for n ≥ x processes that satisfies a con-
dition called asymmetric group-based progress condition using (x, x)-live consensus
objects and registers.

The notion of k-obstruction-freedom is presented in [24], as part of a transformation
that is used to fuse objects which avoid locking and locks together in order to create new
types of shared objects. In [25], a new classification for evaluating the strength of shared
objects is proposed. The classification is based on finding, for each object of type o, the
largest k for which it is possible to solve consensus for any number processes, using any
number of objects of type o and registers, assuming that the required progress condition
is k-obstruction-freedom. The main technical result in [25] is that the new classification
is equivalent to Herlihy’s traditional classification.

226 G. Taubenfeld

Although progress conditions and adversaries are two seemingly different notions,
they are actually closely related. In [3], a precise way is presented to characterize ad-
versaries by introducing the notion of disagreement power: the biggest integer k for
which the adversary can prevent processes from agreeing on k values when using reg-
isters only; and it is shown how to compute the disagreement power of an adversary.
Our formalism for expressing progress conditions is not expressive enough to express
all the adversaries considered in [3], and vice versa. In the last section, we generalize
our formalism to express both.

2 Preliminaries

Our model of computation consists of an asynchronous collection of n processes that
communicate via shared objects. An event corresponds to an atomic step performed by a
process. For example, the events which correspond to accessing registers are classified
into two types: read events which may not change the state of the register, and write
events which update the state of a register but does not return a value. We use the
notation ep to denote an instance of an arbitrary event at a process p.

A run is a pair (f, R) where f is a function which assigns initial states (values) to
the objects and R is a finite or infinite sequence of events. An implementation of an
object from a set of other objects, consists of a non-empty set C of runs, a set N of
processes, and a set of shared objects O. For any event ep at a process p in any run in
C, the object accessed in ep must be in O. Let x = (f, R) and x′ = (f ′, R′) be runs.
Run x′ is a prefix of x (and x is an extension of x′), denoted x′ ≤ x, if R′ is a prefix of
R and f = f ′. When x′ ≤ x, (x−x′) denotes the suffix of R obtained by removing R′

from R. Let R; T be the sequence obtained by concatenating the finite sequence R and
the sequence T . Then x; T is an abbreviation for (f, R; T).

Process p is enabled at run x if there exists an event ep such that x; ep is a run.
For simplicity, we write xp to denote either x; ep when p is enabled in x, or x when p
is not enabled in x. Register r is a local register of p if only p can access r. For any
sequence R, let Rp be the subsequence of R containing all events in R which involve
p. Runs (f, R) and (f ′, R′) are indistinguishable for a set of processes P , denoted by
(f, R)[P](f ′, R′), iff for all p ∈ P , Rp = R′

p and f(r) = f ′(r) for every local register
r of p. When P = {p} we write [p] instead of [P]. It is assumed that the processes are
deterministic, that is, if x; ep and x; e′p are runs then ep = e′p.

The runs of an asynchronous implementation of an object must satisfy several prop-
erties. For example, if a write event which involves p is enabled at run x, then the same
event is enabled at any finite run that is indistinguishable to p from x. In the following
proofs, we will implicitly make use of few such straightforward properties.

3 Impossibility Results

We use S and T to denote non-empty sets which are subsets of {1, ..., n}; |S| is the
number of elements in S, and max .S and min.S are the largest and the smallest el-
ements in S, respectively. The width of S, denoted width.S , is defined as follows:
width.S = 1 + max .S −min.S . Thus, the width of the set {1, ..., n} is n. We notice
that it is always the case that width.S ≥ |S|.

The Computational Structure of Progress Conditions 227

Theorem 1. For any set |S| ≥ 2, it is not possible to implement an S-free consensus
object for n processes using any number of wait-free consensus objects for width.S −1
processes and registers.

It follows immediately from Theorem 1 that for any 2 ≤ k ≤ n, it is not possible to
implement a {1, k}-free consensus object for n processes using any number of wait-
free consensus objects for k − 1 processes and registers. Next we consider the relative
strength of different condition for the same number of processes.

Theorem 2. For any two sets S and T , and integer k, if |T | ≥ 2, k ∈ T , k �∈ S
and k ≤ width.T then it is not possible to implement a T -free consensus object for n
processes using any number of S-free consensus objects for n processes and registers.

It follows from Theorem 2 that: For any n > 2, it is not possible to implement a wait-
free consensus object for two processes using any number of {1, n}-free consensus
objects for n processes and registers. Next we prove the theorems. For lack of space,
the proofs of all the lemmas appear only in the full version. (The full version of the
paper can be downloaded from: www.faculty.idc.ac.il/gadi .)

3.1 A Detailed Proof

The proofs of Theorem 1 and Theorem 2 use the following notions, abbreviations, and
lemmas. Let N be the set of all n processes, and let P ⊆ N . A finite run x is (P, v)-
valent if in all extensions of x, by processes in P only, where a decision is made,
the decision value is v (v ∈ {0, 1}). A run is P -univalent if it is either (P, 0)-valent
or (P, 1)-valent, otherwise it is P -bivalent. We say that two P -univalent runs are P -
compatible if they have the same valency, that is, either both runs are (P, 0)-valent or
both are (P, 1)-valent. Finally, we say that process p ∈ P is a P -decider at run x if for
every extension y of x by steps of processes from P only (i.e. x[N − P]y), the run yp
is P -univalent. Recall that we assume that S ⊆ {1, ..., n}.

Lemma 1. Let |S| ≥ 2, and let P be a set of processes such that |P | = max .S . Then,
for every p ∈ P , there is at least one subset of P , denoted p.SP , of size min.S which
does not include p.

Lemma 2. For a set S and non-empty sets of processes P and Q such that |P | ∈ S,
|Q| ∈ S and Q ⊆ P , in any S-free consensus object, if two P -univalent runs are
indistinguishable for Q and the state of all the objects that (processes in) Q can access
are the same at these runs, then these runs must be P -compatible.

Lemma 3. Let |S| ≥ 2 and let P be a set of processes such that |P | = max .S . Then,
every S-free consensus object has a P -bivalent empty run.

Lemma 4. Let |S| ≥ 2 and let P be a set of processes such that |P | = max .S . Let
y be a run of an S-free consensus object, and let p ∈ P and q ∈ P be two different
processes such that (1) y �= yp and y �= yq, (2) the runs yp and yqp are P -univalent
and not P -compatible. Then, in their two next events from y, p and q are accessing the
same object, and this object is not a register.

228 G. Taubenfeld

Lemma 5. Let |S| ≥ 2 and let P be a set of processes such that |P | = max .S . For
every S-free consensus object there is a P -bivalent run x and process p ∈ P such that
p is a P -decider at x.

Lemma 6. Let |S| ≥ 2 and let P be a set of processes such that |P | = max .S . Every
S-free consensus object has a P -bivalent run y and two processes p ∈ P and q ∈ P
such that: (1) p is a P -decider at y; (2) the runs yp and yqp are P -univalent and not
P -compatible; and (3) in their two next events from y, p and q are accessing the same
object, and this object is not a register.

Lemma 7. Let |S| ≥ 2 and let P be a set of processes such that |P | = max .S . Every
S-free consensus object has a P -bivalent run y, a set Q ⊆ P of size width.S , and two
processes p ∈ Q and q ∈ Q such that: (1) p is a P -decider at y; (2) the runs yp and
yqp are P -univalent and not P -compatible; and (3) in their next events from y, all the
width.S processes in Q, are accessing the same object, and this object is not a register.

Proof of Theorem 1. It follows from Lemma 7 that every implementation of an S-free
consensus object for n processes, must use an object, say o, which at least width.S
processes must be able to access at the same run, and o is not a register. Thus, it is not
possible to implement an S-free consensus object for n processes using any number of
wait-free consensus objects for width.S − 1 processes and registers. ��

Proof of Theorem 2. Assume to the contrary that there is such an implementation of a
T -free consensus object for n processes from S-free consensus objects for n processes
and registers. Let P be a set of processes such that |P | = max .T . It follows from
Lemma 7 that such an implementation has a P -bivalent run y, a set Q ⊆ P of size
width.T , and two processes p ∈ Q and q ∈ Q such that: (1) p is a P -decider at y; (2)
the runs yp and yqp are P -univalent and not P -compatible; and (3) in their next events
from y, all the width.S processes in Q, are accessing the same object, say o, and this
object is not a register. Thus, it must be the case that o is an S-free consensus object.

Assume that at the end of y, just before the width.T processes access o, n − k
processes fail and the remaining k active processes, including p and q, are about to
access o. Since there are only k active processes and k ∈ T , the implementation of a
T -free consensus object must guarantee that these k processes will eventually properly
terminate. However, since k �∈ S, the S-free consensus object o does not guarantee that
any of the remaining k active processes will ever get a response from o. Assume none
of the k processes ever gets a response for o. Although the k processes may continue to
take steps, because yp and yqp are P -univalent and not P -compatible, the final decision
value (of the T -free consensus object) depends on getting a response from o. Without a
response from o, it is not possible to determine whether the prefix of the current run is
yp or yqp. Thus, the k processes will never be able to terminate. A contradiction. ��

4 Cooperation vs. Contention

It follows from the impossibility results that objects which satisfy cooperation-based
progress conditions can not implement objects which satisfy contention-based progress
conditions. More formally,

The Computational Structure of Progress Conditions 229

Theorem 3. It is not possible to implement {1, 2}-free consensus object for n processes
using {2, ..., n}-free consensus objects for n processes and registers.

Proof. Let T be the set {1, 2}, and k = 1. Then, (1) |T | ≥ 2, (2) k ∈ T , (3) k �∈
{2, ..., n}, and (4) k ≤ width.T . Thus, the result follows from Theorem 2. ��

Next we show that objects that satisfy cooperation-based conditions can be imple-
mented from objects that satisfy the corresponding contention-based conditions.

Theorem 4. For 2 ≤ k ≤ n, it is possible to implement an {n − k + 1, ..., n}-free
consensus object for n processes using {1, ..., k}-free consensus objects for n processes
and registers.

To prove theorem 4, we first generalize a known result for wait-freedom, namely, that
multi-valued consensus can be implemented from binary consensus ([23], page 329).

Lemma 8. For any k ≥ 2, n ≥ 2 and S ⊆ {1, ..., n}, an S-free k-consensus object for
n processes can be implemented from S-free binary consensus objects for n processes
and atomic bits.

Proof. To implement a singe k-consensus object, we use �log k� binary consensus ob-
jects, which are numbered 0 through �log k� − 1, and k bits which are numbered 0
through k − 1 and are initialized to 0. To propose a value v ∈ {0, ..., k − 1}, p does
the following: (1) it sets the bit number v to 1; (2) it proposes the binary encoding of v,
bit by bit, to the binary consensus objects in an increasing order starting from number
0. If at some point during the second step the bit p has proposed is not accepted as
the consensus value at the corresponding binary consensus object, p stops proposing v,
scan the bits and chooses one of the bits that are set to 1, say v′, which also matches
the values that has successfully proposed so far and continues to propose the value v′.
This procedure continues until p proposes, to all the �log k� binary consensus objects.
The value that its binary encoding was successfully proposed to all the �log k� binary
consensus objects is the final consensus value. ��

Proof of Theorem 4: Build a tree of degree k with �n/k� leaves, and where each node
of the tree is a {1, ..., k}-free k-consensus object. Each participating process is pro-
gressing from a leaf to the root, where at each level of the tree it accesses a k-consensus
object, competing against at most k − 1 processes in its neighbor’s subtree. As a pro-
cess advances towards the root, it plays the role of process 0 (i.e., proposes 0) when it
arrives from the left most subtree, of process k − 1 when it arrives from the right most
subtree, or of process 0 ≤ i ≤ k−1 when it arrives from the i’th subtree. The winner at
each node is the process its value is being agreed upon. Only a winner at a given node
continues to progress towards the root. The value agreed at the root is the final decision
value. Each of the processes that accesses the root writes the final decision value at a
special register called decision, and decides on that value. Each process that loses at
some node other than the root, spins on the decision register until a value is written into
it and decides on that value. ��

230 G. Taubenfeld

5 Asymmetric Progress Conditions

As already mentioned, the notion of asymmetric progress conditions was coined and in-
vestigated in [13]. Let APC be an Asymmetric Progress Condition; we define max.APC,
min.APC and width.APC as follows,

– max.APC is the largest 1 ≤ k ≤ n such that (at least) n − k + 1 processes are
{k}-free, or 0 if no such k exists.

– min.APC is the smallest 1 ≤ k ≤ n such that every process is {k}-free, or 0 if no
such k exists.

– width.APC equals 1+max .APC −min.APC if min.APC �= 0, or 0 otherwise.

Thus, for the asymmetric progress condition (n, 1)-liveness (as defined in [13]), max .
(n, 1)-liveness = n, min.(n, 1)-liveness = 1 and width .(n, 1)-liveness = n.

Lemma 9. Let O be a consensus object for n processes that satisfies an asymmetric
progress condition APC such that min.APC ≥ 1. Using O and a single register it is
possible to implement a consensus object for n processes that satisfies the symmetric
progress condition (min.APC, max.APC)-freedom.

Proof. Let decision be a register which is initially set to −1. Each process tries to
reach a decision by accessing O. A process that reaches a decision writes the decision
value into decision and terminates. Each process infinitely often reads decision, and
if the value read is different from −1, it decides on that value and terminates. Since
every subset of max.APC processes includes at least one {max .APC}-free process, this
implementation clearly satisfies (min.APC, max.APC)-freedom. Another way to view
this implementation is: once O returns a value to some processes, it keeps this value in
an internal private register, and thereafter returns it immediately to every process that
accesses it. ��

Lemma 10. Let APC be a an asymmetric progress condition such that 1 ≤ min.APC <
max .APC ≤ n, and let P be a set of processes such that |P | = max .APC . Every con-
sensus object for n processes that satisfies APC has a P -bivalent run y, a set Q ⊆ P of
size width.APC , and two processes p ∈ Q and q ∈ Q such that: (1) p is a P -decider
at y; (2) the runs yp and yqp are P -univalent and not P -compatible; and (3) in their
next events from y, all the width.APC processes in Q, are accessing the same object,
and this object is not a register.

Proof. Assume to the contrary that O is a consensus object for n processes that sat-
isfies APC, and O does not have a run y with all the three properties as mentioned in
Lemma 10. By Lemma 9, using O and a single register it is possible to implement a
consensus objects O′ for n processes that satisfies the symmetric progress condition
(min.APC, max.APC)-freedom. Thus, also O′ does not have such a a run y. However,
this contradicts Lemma 7. ��

Theorem 5. For any asymmetric progress condition APC such that 1 ≤ min.APC <
max .APC ≤ n, it is not possible to implement a consensus object for n processes
that satisfies APC using any number of wait-free consensus objects for width.APC −1
processes and registers.

The Computational Structure of Progress Conditions 231

Proof. The proof is similar to that of Theorem 1. It follows from Lemma 10 that every
implementation of a consensus object for n processes that satisfies APC, must use an
object, say o, which at least width.APC processes must be able to access at the same
run, and o is not a register. Thus, it is not possible to implement a consensus object
for n processes that satisfies APC using any number of wait-free consensus objects for
width.APC − 1 processes and registers. ��

It is proven in [13] that it is not possible to implement an (n, 1)-live consensus object
using any number of wait-free consensus objects for n− 1 processes and registers; and
that this result holds even when the requirement that one process should be wait-free
is replaced with the much weaker requirement that one process is {1, n}-free. These
important results are special cases of the following corollary of Theorem 5.

Corollary 1. For any two positive integers k1 and k2 such that 1 ≤ k1 < k2 ≤ n, it
is not possible to implement a consensus object for n processes, that satisfies {k1, k2}-
freedom for n−k2 +1 processes and satisfies {k1}-freedom for all the other processes,
using any number of wait-free consensus objects for k2 − k1 processes and registers.

Another interesting result from [13] is that: For 1 ≤ x < n−1, an (n, x)-live consensus
object is strictly weaker than an (n, x+1)-live consensus object, thereby establishing a
hierarchy for (n, x)-liveness. Using Lemma 10 it is possible to slightly generalize this
result.

6 Atomic Registers

For the case where only registers are used, we present a complete characterization under
which symmetric progress conditions consensus is solvable, and prove impossibility
results for the asymmetric case.

Theorem 6

– For any set S, it is possible to implement an S-free consensus object for n processes
using registers if and only if |S| = 1.

– For any asymmetric progress condition APC, it is not possible to implement a con-
sensus object for n processes that satisfies APC using registers if width.APC > 1.

Proof. It follows from Theorem 1 that it is not possible to implement an S-free con-
sensus object for n processes using registers if |S| ≥ 2, and it follows from Theorem 5
that it is not possible to implement a consensus object for n processes that satisfies APC
using registers if width.APC > 1.

Next, we show that for any integer 1 ≤ k ≤ n, it is possible to implement a {k}-free
consensus object for n processes using registers. The algorithm (i.e., implementation)
proceeds in rounds. The notion of a round is used only for the sake of describing the al-
gorithm. We do not assume a synchronous model of execution in which all the processes
are always executing the same round.

Each process has a preference for the decision value in each round; initially this
preference is the input value of the process. If no decision is made in a round then the
processes advance to the next round, and try again to reach agreement.

232 G. Taubenfeld

IMPLEMENTING {k}-FREE CONSENSUS FOR n PROCESSES USING REGISTERS (WHERE k ∈
{1, ..., n}): program for process pi with input ini (where ini ∈ {0, 1} and
i ∈ {1, ..., n}).
shared registers
x[0..∞, 0..1] infinite array of bits, initially x[0, 0] = x[0, 1] = 1 and all other entries are 0
flag [1..∞, 1..n] infinite array of bits, initially all entries are 0
decide ranges over {⊥, 0, 1}, initially ⊥

local registers
ri integer, initially 1
vi bit, initially ini ; li,counti integers, initial values are immaterial

1 while decide =⊥ do
2 if x[ri, 0] = 0 and x[ri, 1] = 0 then x[ri, vi] := 1 fi /* preferred value */
3 flag [ri, i] := 1 /* signal participation */
4 if x[ri − 1, 1 − vi] = 0 then decide := vi /* no conflict in ri − 1 */
5 else repeat /* k-barrier */
6 counti = 0 /* initialize local counter */
7 for li = 1 to n do if flag[ri, li] = 1 then counti := counti + 1 fi od
8 until (counti ≥ k) /* at least k participate */
9 if x[ri, 0] = 1 then vi := 0 else vi := 1 fi /* value for ri + 1 */
10 fi
11 ri := ri + 1
12 od
13 decide(decide)

In round r ≥ 1, process pi first checks if the bit of its preference vi and of the opposite
value 1 − vi are set. If both bits are not set, pi sets its preference bit vi by writing 1
to x[r, vi] (line 2). Then, pi sets its participation bit by writing 1 to flag [ri, i] (line 3).
Next, pi reads the bit x[r − 1, 1 − vi]. If the bit x[r − 1, 1 − vi] is not set, then every
process that reaches round r with the conflicting preference 1 − vi will find that only
x[r, vi] is set to 1, will never set x[r, 1 − vi] to 1. Consequently, process pi can safely
decide on vi, and it writes vi to decide (line 4). Otherwise, waits until it notices that
at least k processes are participating in round r (lines 5–8). After that pi updates its
preference in an attempt to agree with the other processes (line 9). Then, pi proceeds to
round r + 1 (line 11).

If exactly k processes with possibly conflicting preferences participate in round r,
then they will reach line 9, only after all of them set their flags in line 3. This implies
that once some process reaches line 9, no process is at line 2, and hence all the k
processes will reach round r + 1 with the same preference which is the value chosen in
line 9. When all processes reach a round with the same preference, a decision is reached
either in that round or the next round. ��

7 Universality

In [10], the notion of universality is introduced in the context of wait-freedom. An object
o is (wait-free) universal for n processes if any object which has sequential specification

The Computational Structure of Progress Conditions 233

has a wait-free linearizable implementation using registers and objects of type o in a
system with n processes. Below we generalize the notion of wait-free universality.

Definition. An object o is S-universal for n processes if any object which
has sequential specification has an S-free linearizable implementation using
registers and objects of type o for n processes.

One of the important results proved in [10], is that wait-free consensus for n processes
is universal for n processes. Next we generalize this result.

Theorem 7. For any positive integer n, and any non-empty set S ⊆ {1, ..., n}, an S-
free consensus object for n processes is S-universal for n processes.

To prove the result, we present a universal construction that implements any S-free
object o for n processes from S-free consensus objects for S processes and registers.
The construction conceptually mimics the original construction for the wait-free model
from [10]. In the full version of the paper, we give such a construction, which is similar
to the one for the wait-free model from [23]. A similar type of a universality result (with
a similar proof) can be proved also for asymmetric progress conditions.

Corollary 2. For any object o, any positive integer n, and any non-empty set S ⊆
{1, ..., n}, o is S-universal for n processes if and only if an S-free consensus object for
n processes can be implemented from objects of type o and registers.

The wait-free hierarchy is an infinite hierarchy of objects, introduced in [10], such that
the objects at level i of the hierarchy are exactly those objects which are {1, ..., i}-
universal for i processes, but are not {1, ..., i + 1}-universal for i + 1 processes. For
that hierarchy, by the above definition, (1) no object at level less than i together with
registers can implement any object at level i; and (2) each object at level i together with
registers can implement any object at level i or at a lower level.

The wait-free hierarchy is meaningful because it can be defined using only the
(contention-based) progress conditions {1, ..., k}-freedom, for all k. In such a case,
there is a total order, based on the stronger than relation, between all these conditions.
Similar such hierarchies, in which there is a total order between the conditions, can be
naturally defined. For example, by using the cooperation-based progress conditions, the
cooperation hierarchy can be defined as follows: For a given system of n processes, the
objects at level i of the hierarchy are exactly those objects which are {n− i +1, ..., n}-
universal for n processes, but are not {n− i, ..., n}-universal for n processes.

8 Discussion

It is possible to extend the definitions of progress conditions in various ways. Below we
define two such new interesting extensions.

Definition. For any non-empty set S ⊆ {1, ..., n} and an integer 1 ≤ k ≤ n, the
progress condition (S, k)-freedom guarantees that for every set of processes P , if at
some point in a computation active.P = |P | and |P | ∈ S, then (at least) min{k, |P |}
processes in P will be able to eventually complete their pending operations, provided

234 G. Taubenfeld

that (1) all the processes not in P do not take steps for long enough; and (2) none of the
processes in P fails.

We notice that in a system of n processes, (S, n)-freedom is the same as S-freedom;
and ({1, ..., n}, 1)-freedom is the same as a known condition called non-blocking [12]
(sometimes also called lock-freedom).

Definition. Let W1, ..., Wn be sets of sets of process identifiers such P ∈ Wi only
if pi ∈ P . The progress condition (W1, ..., Wn)-freedom guarantees that for every set
of processes P and every process pi, if at some point in a computation active.P = |P |
and P ∈Wi, then process pi will be able to eventually complete its pending operations,
provided that (1) all the processes not in P do not take steps for long enough; and (2)
none of the processes in P fails.

Each one of the adversaries considered in [3] corresponds to some (W1, ..., Wn)-free
progress condition, which has the following property: For every set P , if P ∈ Wi and
pj ∈ P then P ∈Wj . We notice that satisfying this property, completely precludes the
ability to express the asymmetric progress conditions defined in the introduction. That
is, w.r.t. this definition, this property distinguishes between symmetric and asymmetric
progress conditions (adversaries).

Additional interesting questions are: exploring the complexity and computability of
problems like set-consensus, renaming, etc. under various new progress conditions;
exploring the relation to failure detectors, by possibly extending known results for wait-
freedom [9]; defining meaningful hierarchies; better understanding of the relations be-
tween different progress conditions; adding timing assumptions.

Known open problems, like the robustness of the wait-free hierarchy or whether
a queue object can be implemented from a set of test-and-set objects, fetch-and-add
objects, swap objects and atomic registers, for n ≥ 3, can now be studied in our more
general setting.

The study should not be limited to shared memory systems only. Consider for ex-
ample n senders that are trying to broadcast the same message to a single receiver, and
it is required that at least one of the senders succeeds to transmit, without collisions,
whenever an odd number of senders broadcast at the same time. This required progress
condition, and similar ones, that are sometimes expressed using the notion of a conflict
graph, can be easily formally expressed and studied within our general framework.

References

1. Aguilera, M.K., Toueg, S.: Timeliness-based wait-freedom: a gracefully degrading progress
condition. In: Proc. 27rd ACM Symp. on Principles of Distributed Computing, pp. 305–314
(2008)

2. Attiya, H., Guerraoui, R., Kouznetsov, P.: Computing with reads and writes in the absence of
step contention. In: Fraigniaud, P. (ed.) DISC 2005. LNCS, vol. 3724, pp. 122–136. Springer,
Heidelberg (2005)

3. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Tielmann, A.: The disagreement power of
an adversary. In: Keidar, I. (ed.) DISC 2009. LNCS, vol. 5805, pp. 8–21. Springer, Heidelberg
(2009)

4. Fich, F.E., Ruppert, E.: Hundreds of impossibility results for distributed computing. Dis-
tributed Computing 16(2-3), 121–163 (2003)

The Computational Structure of Progress Conditions 235

5. Fich, E.F., Luchangco, V., Moir, M., Shavit, N.: Obstruction-free algorithms can be practi-
cally wait-free. In: Fraigniaud, P. (ed.) DISC 2005. LNCS, vol. 3724, pp. 78–92. Springer,
Heidelberg (2005)

6. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one
faulty process. Journal of the ACM 32(2), 374–382 (1985)

7. Guerraoui, R., Herlihy, M.P., Pochon, B.: Towards a theory of transactional contention man-
agers. In: Proc. of the 24th Symp. on Principles of Dist. Computing, pp. 258–264 (2005)

8. Guerraoui, R., Kapalka, M., Kouznetsov, P.: The weakest failure detectors to boost
obstruction-freedom. Distributed Computing 20(6), 415–433 (2008)

9. Guerraoui, R., Kouznetsov, P.: Failure detectors as type boosters. Distributed Computing 20,
343–358 (2008)

10. Herlihy, M.P.: Wait-free synchronization. ACM Trans. on Programming Languages and Sys-
tems 13(1), 124–149 (1991)

11. Herlihy, M.P., Luchangco, V., Moir, M.: Obstruction-free synchronization: Double-ended
queues as an example. In: Proc. of the 23rd Int. Conf. on Dist. Computing Systems (2003)

12. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent objects.
TOPLAS 12(3), 463–492 (1990)

13. Imbs, D., Raynal, M., Taubenfeld, G.: On asymmetric progress conditions. In: Proc. 29th
ACM Symp. on Principles of Distributed Computing (to appear, 2010)

14. Jayanti, P.: Robust wait-free hierarchies. Journal of the ACM 44(4), 592–614 (1997)
15. Jayanti, P., Toueg, S.: Some results on the impossibility, universality, and decidability of

consensus. In: Segall, A., Zaks, S. (eds.) WDAG 1992. LNCS, vol. 647, pp. 69–84. Springer,
Heidelberg (1992)

16. Lo, W.-K., Hadzilacos, V.: All of us are smarter than any of us: Nondeterministic wait-free
hierarchies are not robust. SIAM Journal on Computing 30(3), 689–728 (2000)

17. Luchangco, V., Moir, M., Shavit, N.: On the uncontended complexity of consensus. In: Fich,
F.E. (ed.) DISC 2003. LNCS, vol. 2848, pp. 45–59. Springer, Heidelberg (2003)

18. Loui, M.C., Abu-Amara, H.: Memory requirements for agreement among unreliable asyn-
chronous processes. Advances in Computing Research 4, 163–183 (1987)

19. Merritt, M., Taubenfeld, G.: Resilient consensus for infinitely many processes. In: Fich, F.E.
(ed.) DISC 2003. LNCS, vol. 2848, pp. 1–15. Springer, Heidelberg (2003)

20. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults. Journal
of the ACM 27(2), 228–234 (1980)

21. Plotkin, S.A.: Sticky bits and universality of consensus. In: Proc. 8th ACM Symp. on Princi-
ples of Distributed Computing, pp. 159–175 (1989)

22. Scherer, W.N., Scott, M.L.: Advanced contention management for dynamic software trans-
actional memory. In: Proc. of the 24th Symp. on Principles of Dist. Computing, pp. 240–248
(2005)

23. Taubenfeld, G.: Synchronization Algorithms and Concurrent Programming.
Pearson/Prentice-Hall (2006) ISBN 0-131-97259-6

24. Taubenfeld, G.: Contention-sensitive data structures and algorithms. In: Keidar, I. (ed.) DISC
2009. LNCS, vol. 5805, pp. 157–171. Springer, Heidelberg (2009)

25. Taubenfeld, G.: On the computational power of shared objects. In: Abdelzaher, T., Raynal,
M., Santoro, N. (eds.) OPODIS 2009. LNCS, vol. 5923, pp. 270–284. Springer, Heidelberg
(2009)

Scalable Quantum Consensus for Crash Failures

Bogdan S. Chlebus1, Dariusz R. Kowalski2, and Micha�l Strojnowski3

1 Department of Computer Science and Engineering
University of Colorado Denver, U.S.A.

2 Department of Computer Science
University of Liverpool, U.K.

3 Instytut Informatyki
Uniwersytet Warszawski, Poland

Abstract. We present a scalable quantum algorithm to solve binary
consensus in a system of n crash-prone quantum processes. The algo-
rithm works in O(polylog n) time sending O(n polylog n) qubits against
the adaptive adversary. The time performance of this algorithm is asymp-
totically better than a lower bound Ω(

√
n/ log n) on time of classi-

cal randomized algorithms against adaptive adversaries. Known classical
randomized algorithms having each process send O(polylog n) messages
work only for oblivious adversaries. Our quantum algorithm has a better
time performance than deterministic solutions, which have to work in
Ω(t) time for t < n failures.

1 Introduction

Quantum computing is a paradigm of information processing that attempts to
harness the phenomena of quantum mechanics to enhance computing power.
Recent success stories in this area indicate that structuring computation on the
quantum level can enhance performance so that classical complexity bounds
could be surpassed.

Quantum centralized computation can be represented by quantum circuits.
There is a finite number of types of quantum gates that together are universal,
in the sense that they can approximate a given general unitary transformation
of qubits with arbitrary precision of approximation. This model of quantum
centralized computing can be generalized to incorporate faults, see [1].

Quantum distributed computing is a study of quantum machines which pro-
cess locally either qubits or bits and communicate among themselves by either
quantum or classical channels. The motivation for seeking distributed quantum-
computing solutions is that building a big single quantum computer with many
qubits may be prohibitively difficult and expensive, so replacing such a machine
by a network of small quantum computers could be a viable solution to carry
out computation on a scale that would yield practical benefits. Recent work
on distributed quantum computing was surveyed by Broadbent and Tapp [5],
Buhrman and Röhrig [6], and Denchev and Pandurangan [14].

N.A. Lynch and A.A. Shvartsman (Eds.): DISC 2010, LNCS 6343, pp. 236–250, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Scalable Quantum Consensus for Crash Failures 237

The classical versus quantum communication. Quantum communication chan-
nels can transmit qubits, similarly as classical channels transmit bits. It is known
that quantum communication can be simulated by first distributing entangled
pairs of qubits and next sending classical bits, for a cost of two bits per qubit;
this mechanism is often called teleportation. When both qubits are sent and en-
tangled pairs are used, then it is possible to transmit two classical bits by sending
one qubit over a quantum channel, this mechanism is called super-dense coding.
The optimality of such simulations between modes of communication was inves-
tigated by Bennett and Wiesner [4], Cleve, van Dam, Nielsen, and Tapp [12], and
Holevo [19]. A conclusion is that if entangled pairs can be distributed or quantum
channels are available, then there exist mutual simulations between classical and
quantum channels with only a constant overhead. For more on classical versus
quantum communication complexity see the papers by Cleve and Buhrman [11],
de Wolf [13], and Ta-Shma [26].

Scalability. A postulate to require that each process contributes a sub-linear
number of operations during an execution motivates the notion of scalability as
a desirable characteristic of distributed algorithms, see [8,9,20,21,22]. Given a
performance metric, it is natural to assume O(n polylog n) to be the amount
contributed by all processes running a scalable algorithm in a large distributed
system. Scalability comes in two variants: global and local [9]. Global scalability
means that O(n polylog n) is a bound on the complexity. Local scalability means
that O(polylog n) is the maximum contribution to the complexity per process.

We are concerned with the scalability of communication measured as the num-
ber of transmitted classical bits and quantum qubits. In our algorithms, the nodes
communicate among themselves using a sparse network to save on communica-
tion. In each round, a node receives messages from its neighbors, processes them
and sends new messages to the neighbors. This means that scalability hinges
on good properties of the underlying networks. While quantum information gets
proliferated, all local processing by nodes is performed by quantum circuitry
that implements suitable unitary transformations. Only after this has been con-
cluded, measurements are made to determine classical bits. What follows after
that is classical computation along with classical communication.

The problem. We study the binary consensus problem. Each process is initial-
ized with either 0 or 1 and it must eventually decide on a value from among
the initial ones. The decision value is to be the same across all the processes.
A deterministic version of the consensus problem is normally specified by the
standard requirements of agreement, validity, and termination. A randomized
version of the problem has agreement formulated as ε-agreement, for 0 < ε < 1:
all the processes decide on the same value with the probability at least 1− ε.

Our results. We develop scalable quantum algorithms to solve binary consen-
sus in a system of n crash-prone processes that use both quantum and classi-
cal channels to communicate. The algorithms are scalable with respect to both
time and communication, in the sense that they work in time O(polylog n) by

238 B.S. Chlebus, D.R. Kowalski, and M. Strojnowski

sending O(n polylog n) qubits and bits. The algorithms are randomized in the
outcomes of measurements of some qubits, so their performance bounds are ex-
pected. No pre-entangled qubits pre-distributed among the nodes are used. We
give four consensus solutions, two classical randomized and two quantum ones.
All the algorithms solve consensus with ε-agreement, for ε treated as a param-
eter. We begin with a randomized algorithm RandomizedConsensus which
solves consensus when t < n/3. Algorithm QuantumConsensus is obtained
from that randomized one by packing all possible random choices by way of su-
perpositions; the algorithm achieves its performance bounds against the adaptive
adversary. Next we give a randomized algorithm ExtendedRandomizedCon-

sensus which is more involved but works for any upper bound on the number
of crashes t < n. Finally we transform that randomized algorithm to Extend-

edQuantumConsensus which also works for any upper bound on the number
of crashes t < n. The randomized algorithms have their performance bounds
proven against the content-oblivious adversary, while the quantum algorithms
achieve their performance bounds against the adaptive adversary.

Previous work. Quantum consensus solutions were given by Ben-Or and Has-
sidim [3]. Their algorithms work in the expectedO(1) time and send Ω(n2) qubits
against adaptive adversaries that control crashes. The algorithms are adapta-
tions to the model of quantum distributed computing of algorithms developed
originally for the classical models. Chlebus, Kowalski and Strojnowski [9] gave
a globally-scalable deterministic solution of consensus which sends O(n log4 n)
bits and is fast in the sense that its time complexity is O(t) when t is the number
of crashes the algorithm tolerates. Randomized classical solutions for consensus
problem have been studied against adversaries of various power. Bar-Joseph and
Ben-Or [2] proved a lower bound Ω(

√
n/ log n) on the expected time of random-

ized solution for consensus against the adaptive adversary when the number of
crashes is a constant fraction of n; they also gave a randomized algorithm of time
O(
√

n/ logn) for at most n/10 crashes that uses Ω(n2) bits of communication.
Chlebus and Kowalski [8] developed a locally-scalable randomized consensus so-
lution which terminates in the expectedO(log n) time while the expected number
of bits that each process sends and receives is O(log n) if the number of crashes
is a constant fraction of the number of processes n and crashes are controlled
by an oblivious adversary. Gilbert and Kowalski [17] gave a globally-scalable
randomized consensus algorithm that achieves O(n) bits of communication, and
terminates in O(log n) time with high probability while tolerating up to f < n/2
crash failures.

Related work. The Ω(tn) lower bound on the message complexity of deter-
ministic solutions for f arbitrary (Byzantine) faults was proved by Dolev and
Reischuk [15] and Hadzilacos and Halpern [18]. In contrast to that, Chlebus
and Kowalski [7] developed a deterministic early-stopping consensus solution for
crash failures of O(n polylog n) message complexity; that algorithm has Ω(n2)
bit communication complexity. Chor, Merritt and Shmoys [10] showed that

Scalable Quantum Consensus for Crash Failures 239

randomization allows to obtain a constant expected time algorithm against the
oblivious adversary, if a minority of processes may crash.

Scalability has been studied in various distributed settings. King, Saia, San-
walani and Vee [22] considered scalability in peer-to-peer networks. Holtby,
Kapron and King [20] gave a tradeoff between the time required to solve an
almost everywhere Byzantine consensus by a randomized scalable solution and
how many processes eventually decide on a common value. King and Saia [21]
gave a scalable algorithm to agree on a small representative committee of pro-
cesses in a Byzantine message passing, as a step to facilitate scalable solutions
of consensus and leader election. Chlebus, Kowalski and Strojnowski [9] showed
that consensus cannot be solved deterministically by an algorithm that is locally
scalable with respect to message complexity and can tolerate any number of
crashes.

A discussion of six natural models of distributed computing including quan-
tum ones was presented by Gavoille, Kosowski, and Markiewicz [16]. A starting
point was the classical graph model of (anonymous) distributed computing [24].
Standard assumptions about this model in its classical extension allow for the
knowledge by each node of its name and the number of nodes, while a quantum
extension of this model allows for a distribution of pre-entangled states among
the nodes of the underlying network. Each of these models could be equipped by
either classical or quantum communication channels represented by the edges of
the underlying network. The consensus problem requires some communication
among the nodes to occur in any of these models, as argued in [16]. This can
be contrasted with the problem of leader election: a leader can be elected in
such a quantum distributed system without any communication by using only
pre-entangled qubits, see [14]. On the other hand, Kobayashi, Matsumoto, and
Tani [23] showed that leader election can be solved in anonymous quantum dis-
tributed networks without pre-entanglement.

2 Technical Preliminaries

We consider a synchronous distributed system with n processes. The processes
are prone to crashes; we denote by t < n an upper bound on the number of
crashes that may occur in an execution. The numbers t and n are known to the
algorithms, in that they may be part of code. The system can be represented as a
network: the processes play the roles of nodes, with some pairs of nodes connected
by communication channels that can transfer either qubits or classical bits.

Adversaries. The adversaries we consider have the numbers t and n as param-
eters. The oblivious adversary decides prior to the start of an execution which
processes will crash; the timing of crashes during the execution is left for the
adversary to control. The adaptive adversary can choose online in the course
of execution which processes to crash and when this occurs. The adaptive ad-
versary can see the states of all the processes at any round and the contents
of all the messages and random bits as soon as they have been generated. We

240 B.S. Chlebus, D.R. Kowalski, and M. Strojnowski

adjust the notion of adaptive adversary to quantum communication as follows:
the adaptive adversary can see the qubit’s amplitudes, in the sense that they are
available as numbers. This availability in a round occurs just after any operation
on the qubit has been completed in the round. The content-oblivious adversary
is a weakening of the adaptive adversary obtained by imposing a restriction
that the adversary cannot read the states of processes nor see the contents of
messages. Other than that, the adversary can monitor the traffic of messages
and may choose which nodes to crash at any round in an execution.

In a quantum model of computation, there is a way to neutralize some of the
power of the adaptive adversary. This may be achieved by having the states of
qubits that affect decisions made in the course of an execution contain multiple
configurations in superpositions. These qubits need to be processed in a suitably
passive way so as not to have them represent any bias until measurements.

Quantum centralized processing. We discuss here the aspects of centralized quan-
tum computing that are used in the pseudo-codes of our algorithms. A central-
ized quantum algorithm can be represented as a circuit with quantum gates and
wires; see [25] for an informative introduction to the related topics. We repre-
sent the contents of quantum registers in the standard computational basis. A
requirement imposed on a transformation implemented by a quantum circuit is
to be unitary. There are small-size sets of gates that are universal in the sense
that any unitary transformation can be approximated by a collection of these
universal gates. For any collection of universal gates, there exists a unitary op-
eration that requires a simulating circuit to be of exponential size with respect
to the number of qubits. Our sequential algorithms run by the nodes require
polynomial size in the number n of nodes using standard types of gates. Next
we review the information sufficient to show this.

Creating uniform superpositions. An application of the Hadamard gate H to every
qubit in a register X = |00 . . .0〉 creates an equal superposition of all the possible
values in this register. If X consists of k qubits, then this works as follows: HkX =

1
2k/2

∑
x |x〉, where this summation notation means that x’s are interpreted as

written in binary and they run from x = 0 through x = 2k − 1.

Control by a qubit. Any operation U we know how to implement can be extended
to one controlled by an additional qubit. If |x〉 is the control qubit then the
controlled operation acts like U when |x〉 = |1〉 and it acts like identity when
|x〉 = |0〉. For instance, the controlled-not operation, denoted Controlled-Not, flips
a qubit subject to the control qubit being |1〉, otherwise it leaves the qubit intact.
Formally, if |x〉 = α|0〉+β|1〉, then the operation Controlled-Not(|x〉, |y〉) produces
α|0〉|y〉+β|1〉|1 xor y〉. Given two qubits |ab〉, we can swap their contents to ob-
tain |ba〉 by applying Controlled-Not on the registers three times in a sequence:
the first Controlled-Not is controlled by the first qubit, the next Controlled-Not
by the second qubit, and the third instance of Controlled-Not again by the first
qubit. This can be generalized to multi-qubit registers by matching qubits in
pairs: for two quantum registers of equal size A and B, the operation Swap(A,B)
exchanges the contents of these two registers to obtain BA from AB. The

Scalable Quantum Consensus for Crash Failures 241

operation Swap(A,B) controlled by a qubit x is denoted by Controlled-Swap(x,
A, B). Formally, if |x〉 = α|0〉+β|1〉, then the operation Controlled-Swap(|x〉, A, B)
produces α|0〉AB +β|1〉BA. Although cloning of qubits is impossible, entangled
copies of registers can be created. Let A and B be quantum registers of equal
size, with B initially set to |00 . . . 0〉. An application of Controlled-Not pairwise
to the corresponding qubits of A and B creates an entangled copy of each qubit
of register A in the corresponding qubit of B. Formally, if A =

∑
x αx|x〉, then

the operation Entangled-Copy(A, B) produces
∑

x αx|xx〉.
Control by a condition. We may condition operations on properties of vectors in
the computational base. Let x and y be binary strings of length k. Let F (x, y)
be any boolean function on the domain of sequences of 2k classical bits, which
may be interpreted as defined on vectors |x〉|y〉 in the computational basis. Let
A and B be quantum registers of k qubits each, and C be a single qubit register.
Let U be a quantum operation on C. The operation U conditioned on F acts
like U provided that F is true. More precisely, if AB =

∑
x,y αx,y|xy〉 then

Conditional-U(F (A, B), C) means
∑

x,y αx,y|xy〉| if F (x, y) then U(C)〉. A circuit
for U conditioned on F can be implemented as follows. For each x and y such that
F (x, y) holds true, use a circuit implementing U conditioned on 2k qubits being
exactly xy, and next compose all these circuits by applying them in sequence one
by one. The size of the resulting quantum circuit is O(22ks), where s is the size
of a circuit implementing U . We will use Conditional-Not conditioned on F (x, y)
which is 1 for x > y. In our algorithm, the number k will be O(log n), so the size
of the needed circuit for Conditional-Not is polynomial in n.

Graphs that facilitate communication. Let G = (V, E) be an undirected graph.
Let C ⊆ V denote a set of nodes of G. We say that an edge (v, w) of G is internal
for C if v and w are both in C. We say that an edge (v, w) of G connects C1 and
C2, or is between C1 and C2, if one of its ends is in C1 and the other in C2, for any
disjoint sets of nodes C1 and C2. The subgraph of G induced by C, denoted G|C ,
is the subgraph of G containing the nodes in C and all the edges internal for C.

Let α, β, δ and � be positive integers and 0 < ε < 1 be a real number.

Edge-expansion: graph G is said to satisfy (�, α, β)-edge-expansion if, for any two
disjoint sets X, Y ⊆ V of at least � nodes in each of them, there are at least α
edges between X and Y in graph G, and for any two disjoint sets W, Z ⊆ V
of at most � nodes each, there are at most β edges between W and Z in
graph G.

Edge-density: graph G is said to be (�, α, β)-edge-dense if, for any set X ⊆ V of
at least � nodes, there are at least α|X | edges internal for X , and for any set
Y ⊆ V of at most � nodes, there are at most β|Y | edges internal for Y .

Compactness: graph G is said to be (�, ε, δ)-compact if, for any set B ⊆ V of at
least � nodes, there is a subset C ⊆ B of at least ε� nodes such that each
node’s degree in G|C is at least δ. (We call any such set C a survival set
for B.)

A graph is said to have �-expanding property, or to be an �-expander, if any
two subsets of � nodes each are connected by an edge. Observe that (�, α, β)

242 B.S. Chlebus, D.R. Kowalski, and M. Strojnowski

-edge-expansion implies the �-expanding property for α > 0. In our algorithm
we will use �-expanders for � = n/2i and for � = (2/3)in/64, for i ≥ 1. There exist
�-expanders of the maximum degree O(n

� log n), as can be proved by the prob-
abilistic method. Explicit constructions of such expanders with O(n

� polylog n)
bound on node degrees were given by Ta-Shma, Umans, and Zukerman [27].

We use the notation lg x to denote the binary logarithm log2 x. For a given
n, we define δ = 24 lg n and γ = 2 lg n. Let R(n, y) be a random variable whose
value is a graph of n nodes such that each pair of nodes is connected by an
edge with probability y, independently over all such pairs. Let k be an integer
parameter that satisfies 25δ ≤ k ≤ 2n/3. Let G(k) denote R(n, y) for y = 24δ/k.

Lemma 1 ([9]). For every n and k such that 25δ ≤ k ≤ 2n
3 , a random graph

G(k) whp is (k/64, δ/8, δ/4)-edge-dense, (k/64)-expanding, (k, 3/4, δ)-compact,
and the degree of each node is between 22n

k δ and 26n
k δ.

The notation N i
G(W) is used to denote the set of all the nodes in V that are

of distance at most i in graph G from some node in W , with the neighborhood
N1

G(v) of v denoted as NG(v). We define dense neighborhoods as follows, where
γ and δ are two integer parameters: For a node v ∈ V , a set S ⊆ Nγ

G(v) is said
to be a (γ, δ)-dense-neighborhood for v when each node in S ∩ Nγ−1

G (v) has at
least δ neighbors in S.

Lemma 2 ([9]). If a graph G = (V, E) of n nodes is (k, 3/4, δ)-compact, (k/64,
δ/8, δ/4)-edge-dense and (k/64)-expanding, then for any node v, any (γ, δ)-dense-
neighborhood for a node v ∈ V has at least k/64 nodes, for γ ≥ 2 lg n. Moreover,
for any two nodes v, w, any (γ, δ)-dense-neighborhood for v is connected by an edge
with any (γ, δ)-dense-neighborhood for w, for any γ ≥ 2 lg n.

3 Randomized Algorithm

A pseudo-code of algorithm RandomizedConsensus is given in Figure 1. The
algorithm is an adaptation of a deterministic algorithm given by Chlebus, Kowal-
ski, and Strojnowski [9]. The deterministic algorithm has to work in time Ω(t).
In contrast to that, we show how to trade worst-case performance for expected
time that is polylogarithmic in n. The pattern of communication used by the al-
gorithm is completely deterministic, in the sense that no random bits nor qubits
are involved in choosing when and where to send a message.

A process p uses the following private variables: binary candidatep, boolean
convincedp, and an integer variable ticketp. Process p stores its candidate value
at variable candidatep. We want all the processes to decide on one among these
initial values. The variable convincedp is initialized to true. A process p stays
convinced if the variable convincedp is never set to false in Stage 3.

We use networks G modeled as sparse graphs that were also employed in [9].
The graph G for n processes is (2n/3, 3/4, δ)-compact, (n/96)-expanding and

Scalable Quantum Consensus for Crash Failures 243

S1. initialize candidatep to the input value;
S2. assign a number selected uniformly at random in the range 1 through n3 to ticketp

independently from the other processes
S3. for 5 lg n rounds, in each round perform:

if convinced then
– send the pair (ticketp, candidatep) to every neighbor q in G
– if less than δ messages were received then set convincedp ← false

– for each received message of the form (ticketm, candidatem) do
if ticketm > ticketp then

set (ticketp, candidatep) ← (ticketm, candidatem)
S4. if not convinced then inquire about candidate values using graphs G1, G2, . . . , Glg n

S5. decide on candidatep

Fig. 1. Algorithm RandomizedConsensus, a pseudo-code for process p

(n/96, δ/8, δ/4)-edge-dense, while each node has degrees between 33δ and 39δ,
for δ = 24 lgn. Such a graph exists by Lemma 1 for k = 2n/3; its edges represent
communication channels. Graph Gi is n/2i-expanding of O(2i log n) maximum
degree, for 1 ≤ i ≤ lg n; its edges represent classical channels.

Stage 4 takes 2 lg n rounds during which the processes act as follows: A pro-
cess p that is still unconvinced at the start of this stage sends a request message
to all its neighbors in graph G1 in the first round of the stage. A convinced
process receiving a request sends back a message. If p receives at least one re-
sponse, then p sets candidatep to the maximum value among values candidateq

received and sets convincedp ← true. If no answer has been received, then p
sends request messages to all its neighbors in graph G2 in the third round and
collects responses in the forth one. In general, if a process p is unconvinced in
round 2i− 1 of the stage, for 1 ≤ i ≤ lg n, then p sends a request message to all
its neighbors in graph Gi and collects responses, if any, in round 2i. Responses
in round 2i are sent only to the processes that have sent requests. If p receives
at least one response, then p sets candidatep to the maximum value among
candidateq values received and sets convincedp ← true to become convinced.

Consider an execution ofStage 3 of algorithmRandomizedConsensus. LetB2
be a set that consist of processes that have not crashed by the beginning of Stage 3
and B3 a set of processes that have not crashed by the end of Stage 3. Lemma 3
follows from observations made in [9] regarding deterministic ways of scheduling
communication adopted to algorithm RandomizedConsensus.

Lemma 3. The following properties hold for any possible timing of crashes of
the nodes in B2 \ B3: If there is a (γ, δ)-dense-neighborhood for p ∈ B3 in
graph G|B3 , then process p becomes convinced, unless it crashes in Stage 3. If
there is no (γ, δ)-dense-neighborhood for p ∈ B2 in graph G|B2 , then process p
does not become convinced. Any process in a survival set C for B3 becomes con-
vinced, unless it crashes in Stage 3.

244 B.S. Chlebus, D.R. Kowalski, and M. Strojnowski

Lemma 4. Algorithm RandomizedConsensus solves consensus with 1
2 -agree-

ment against the content-oblivious adversary when t < n/3.

Proof. Termination and validity follow by inspection of the pseudo-code. Con-
sider the crashes that occur by the end of Stage 3. There are less than n/3 of
them, by the assumption. By the compactness property of G, as formulated in
Lemma 1, there exists a survival set C for B2 of at least 3k/4 = n

2 elements and
with each node in G|C of degree at least δ. Each node in C receives at least δ
messages per round of Stage 3, and so each node in C stays convinced through
the end of Stage 3.

Now consider what happens during Stage 3: Each time a message with a higher
ticket number than that of p is received, the obtained ticket and the associated can-
didate value replace the original ticket along with the candidate value. Then this
ticket and candidate value are propagated by process p to its neighbors, as long as
Stage 3 is not over yet. The adversary may fail at most n/3 processes from C, thus
at least n/6 of them will be convinced by the beginning of Stage 4. One may ob-
serve that no processes with distinct candidate values stay convinced throughout
Stage 3. To see why this is the case, suppose there were two processes v and w in
B3 that stay convinced. By Lemma 3, each one of these two nodes v and w has its
(γ, δ)-dense-neighborhood in G|B3 . By Lemma 2, these two dense neighborhoods
are connected by an edge in G|B3. Combine this with the inequality 2γ+1≤ 5 logn,
where 5 lgn is the number of rounds of Stage 3, to see that the maximum of the two
values would reach the other process and replace the smaller value within Stage 3.

If there remain some unconvinced processes by the end of Stage 3, then they
become convinced during Stage 4, by an argument similar to one about algorithm
LPC1 in [9]. If a process p with the highest ticket number is unique and it belongs
to the set C then Stage 3 is concluded with all the processes in C having adopted
both the ticket and the candidate value of p. The probability that the process
with the greatest ticket number is in C equals at least the ratio of |C| to the
number n of all the processes, which is at least 1/2. ��

Theorem 1. Algorithm RandomizedConsensus solves consensus with
1
2 -agreement in time O(log n) while sending O(n log3 n) bits against the content-
oblivious adversary, if only t < n/3.

Proof. The property of solving consensus is given in Lemma 4. The time perfor-
mance follows directly from the design of the stages. Messages are sent/received
only in Stages 3 and 4. In each round of Stage 3, each non-faulty process sends
O(log n) messages, with a message carrying O(log n) bits. It follows that a total
of O(n log3 n) bits are sent. The number of bits sent in Stage 4 is O(n log2 n) by
the analysis of a corresponding part of algorithm LPC1 given in [9]. ��

Algorithm RandomizedConsensus can be iterated: a consecutive iteration uses
the candidate values from the end of the previous iteration, so that once agree-
ment is reached, it will be maintained in future iterations. As the error is one-
sided and iterations are independent, the probabilities of multiple errors multiply.
Iterating algorithm RandomizedConsensus k times gives the following:

Scalable Quantum Consensus for Crash Failures 245

Corollary 1. For any integer k > 0, there is a randomized algorithm that solves
consensus with 2−k-agreement in time O(k log n) while sending O(kn log3 n) bits
against the content-oblivious adversary, if only t < n/3.

4 Quantum Algorithm

In this section we give a quantum algorithm QuantumConsensus solving con-
sensus against crashes controlled by adaptive adversaries. A pseudo-code of the
algorithm is given in Figure 2. The algorithm is an adaptation of the random-
ized algorithm RandomizedConsensus. Except for the same private variables
to store bits, a process p uses two private quantum registers: a 3 lg n-qubit reg-
ister |Ticketp〉 and a single-qubit register |Votep〉.

The quantum effects used in QuantumConsensus allow to show properties
of the algorithm that hold for an adaptive adversary that are analogous to the
properties of algorithm RandomizedConsensus with respect to the oblivious
adversary. The intuition is that a quantum message carries a superposition of
ticket values, so even when the adversary can see the qubits transmitted, this
does not reveal any information about the outcome of a future measurement.
Next we formalize this argument.

Influential tickets. We say that a group of k qubits is a ticket if this group is
initialized with an equal superposition of all 2k possible states in the compu-
tational basis. A group of qubits is influential if the qubits among them are
used in unitary transformations only as either (1) control qubits or (2) qubits
determining conditions on which operations are conditioned or (3) in swaps or
controlled swaps or conditional swaps with other influential qubits.

Lemma 5. Consider an execution of an algorithm in which quantum messages
carry qubits that belong to influential tickets. Then the adaptive adversary gains
nothing from seeing the states of the qubits in these messages, as compared to
the content-oblivious adversary.

Proof. The superpositions of states of influential qubits, until a measurements
that collapses the group to a sequence of classical bits, stay intact or are switched
with the superpositions of other influential qubits. The measurement of influen-
tial qubits at any time gives any possible configuration of the influential bits
with equal probability. It follows that the influential qubits do not carry any
bias towards a future decision. Therefore if the adversary needs to prevent some
of the messages from being dispatched by crashing the senders before transmis-
sions, then this can be decided without seeing the contents of the messages. ��

Lemma 6. Algorithm QuantumConsensus solves consensus with 1
2 -agreement

against the adaptive adversary, when t < n/3.

Proof. The qubits in registers Ticket are influential tickets, therefore Lemma 5
applies. If a message is entangled with some qubits held by the sender, then

246 B.S. Chlebus, D.R. Kowalski, and M. Strojnowski

S1. initialize candidatep to the input value;
prepare a one-qubit vote: |Votep〉 = |candidatep〉

S2. generate a superposition of all the numbers in the range 1 through n3:
|Ticketp〉 ← H3 lg n|00 . . . 0〉 = 1

23/2 lg n

∑n3

a=1 |a〉
S3. for 5 lg n rounds, in each round perform:

if convinced then
– apply Entangled-Copy(|TicketpVotep〉, M) to create messages M entangled with

|TicketpVotep〉 and next send one such M to each neighbor q in G
– if less than δ messages were received then set convincedp ← false

– for each received message of the form |TicketmVotem〉, set a qubit S to |0〉 and
apply two quantum operations:
• Conditional-Not(Ticketm > Ticketp, S)
• Controlled-Swap(S, |TicketmVotem〉, |TicketpVotep〉)

S4. measure the private registers |Ticketp〉 and |Votep〉;
set candidatep ← Votep to the outcome of the measurement of |Votep〉

S5. if not convinced then inquire about candidate values using graphs G1, G2, . . . , Glg n

S6. decide on candidatep

Fig. 2. Algorithm QuantumConsensus, a pseudo-code for process p

the states of the sender and the receiver become entangled upon receipt of the
message by the receiver. So an execution of the algorithm creates an entangled
quantum global state. When a measurement is performed, the collapses to classi-
cal states have the effect of instantaneous communication: the quantum Ticket
registers collapse to classical bits and the global state of the system is such as if
the measurement was performed in the beginning of the execution and then al-
gorithm RandomizedConsensus were executed. Therefore the argument used
in Lemma 4 applies. ��

Theorem 2. Algorithm QuantumConsensus solves consensus against the
adaptive adversary with 1

2 -agreement in time O(log n) and sending O(n log3 n)
qubits, when t < n/3.

Proof. A proof analogous to that of Theorem 1 applies. ��

Algorithm QuantumConsensus has the property that no entanglement is cre-
ated by its execution, so it can be iterated similarly as the randomized classical
version. As the error is one-sided and iterations are independent, the proba-
bilities of multiple errors multiply. Iterating algorithm QuantumConsensus k
times gives the following:

Corollary 2. For any integer k >, there exists a quantum algorithm that solves
consensus against the adaptive adversary with 2−k-agreement in time O(k log n)
and using O(kn log3 n) qubits, when t < n/3.

Scalable Quantum Consensus for Crash Failures 247

S1. initialize candidatep to the input value
S2. assign a number selected uniformly at random in the range 1 through n3 to ticketp

independently from the other processes
S3. for i = 1 to log3/2 n + 1:

levelp ← 1
for j = 1 to log3/2 n do:

– if levelp = j then set convincedp ← true else set convincedp ← false

– perform 5 lg n rounds, in each round:
if convinced then
• send the pair (ticketp, candidatep) to every neighbor q in G(j)
• if less than δ messages were received then set convincedp ← false

• for each received message of the form (ticketm, candidatem) do
if ticketm > ticketp then

set (ticketp, candidatep) ← (ticketm, candidatem)
else send back (ticketp, candidatep) to each process m from which a message

was received
– if (not convinced) and (levelp = j) then levelp ← levelp + 1

S4. decide on candidatep

Fig. 3. Algorithm ExtendedRandomizedConsensus, a pseudo-code for process p

5 Randomized and Quantum Algorithms Extended

In this section we first show how to achieve time and communication perfor-
mance comparable to these of RandomizedConsensus in the case of an ar-
bitrary bound t < n on the number of crashes. A pseudo-code of algorithm
ExtendedRandomizedConsensus is given in Figure 3. The pattern of com-
munication used by the algorithm is deterministic, in the sense that no random
bits nor qubits are involved in choosing when and where to send a message. The
private variables given in the pseudo-code are used similarly as in Randomized-

Consensus unless indicated otherwise.
Instead of one graph G in algorithm RandomizedConsensus, we use log3/2 n

different graphs G(j), for 1 ≤ j ≤ log3/2 n, where graph G(j) has the properties
listed in Lemma 1 for k = (2/3)jn.

Stages 1, 2 and 4 are the same as in RandomizedConsensus. Stage 3 repeats
(lg3/2 n + 1) · lg3/2 n times Stage 3 from RandomizedConsensus, for different
graphs G(j). A process participates only in the iterations corresponding to its
current level. If during participation in an iteration a process becomes non-
convinced, then at the end of this iteration it increases its level by one. Note that
the level is bounded by lg3/2 n. Consider an execution of Stage 3 of algorithm
ExtendedRandomizedConsensus. For a given iteration of the inner for-loop,
we define the sets B2 and B3 as follows: B2 is a set that consists of processes
that have not crashed by the beginning of the considered iteration in Stage 3
and B3 is a set of processes that have not crashed by the end of the considered

248 B.S. Chlebus, D.R. Kowalski, and M. Strojnowski

iteration in Stage 3. In the analysis of the algorithm, we explore communication
properties described in Lemma 3 with respect to graph G(�) and sets B2 and B3
for an iteration of the inner for-loop of Stage 3 for parameter j set to �.

A proof of the following fact about the correctness is omitted:

Lemma 7. Algorithm ExtendedRandomizedConsensus solves consensus
with 1

2 -agreement against the content-oblivious adversary for any t < n.

Theorem 3. Algorithm ExtendedRandomizedConsensus solves consensus
with 1

2 -agreement in time O(log3 n) and sending O(n log5 n) bits against the
content-oblivious adversary, for any t < n.

Proof. The correctness is guaranteed by Lemma 7. The time performance follows
from the specification of the algorithm. We analyze the message complexity
next. Messages are sent only in Stage 3. Observe that the number of responses
is upper bounded by the number of inquiring messages. The key property is
that in each iteration of the inner for-loop in Stage 3 for variable j equal to �,
for some 1 ≤ � ≤ lg3/2 n, the number of processes that start that iteration as
convinced is at most n/(3/2)�−1. This is clear for � = 1, as the number of all
the processes is at most n. Suppose that for some � > 1 the key property does
not hold in some iteration of the inner for-loop for j = �. Consider the preceding
iteration of the inner loop for j equal to �− 1 ≥ 1. By the assumption, at least
n/(3/2)� participating processes became non-convinced during this iteration and
increased their level to � at the end of this iteration. This gives a contradiction
since, by Lemma 3 applied to graph G(� − 1) used in the considered iteration,
at least (3/4) · n/(3/2)� of these processes would be in a survival set and thus
stay convinced until the end of the iteration and do not change the level. The
message complexity of an iteration of the inner for-loop for any parameter j is
at most O(n log2 n), since the maximum degree of graph G(j) is O((3/2)j log n),
by Lemma 1, and there are O(log n) rounds in each iteration. The total number
of iterations is (lg3/2 n + 1) · lg3/2 n and each message carries O(log n) bits. ��

Algorithm ExtendedRandomizedConsensus can be iterated: a consecu-
tive iteration uses the candidate values from the end of the previous iteration, so
that once agreement is reached, it is maintained in the following iterations. As
the error is one-sided and iterations are independent, the probabilities of multi-
ple errors multiply. Iterating algorithm ExtendedRandomizedConsensus k
times gives the following:

Corollary 3. For any integer k > 0, there exists a randomized algorithm that
solves consensuswith2−k-agreement in timeO(k log3 n)while sendingO(kn log5 n)
bits against the content-oblivious adversary, for any t < n.

Now we transform the extended randomized solution to a quantum algorithm
called ExtendedQuantumConsensus. The approach is similar to the one ap-
plied in Section 4; we omit pseudo-code due to space limits. In the first stage we
initialize a qubit for a vote. The second stage sets an equal superposition of all

Scalable Quantum Consensus for Crash Failures 249

the vectors in the computational basis. The third stage implements controlled
swaps based on conditional negation conditioned on comparisons among the tick-
ets. Finally the qubits are measured and a decision is made on the candidate
values. The performance of the algorithm is summarized in the next fact:

Theorem 4. Algorithm ExtendedQuantumConsensus solves consensus
with 1

2 -agreement in time O(log3 n) and sending O(n log5 n) qubits against the
adaptive adversary, for any t < n.

Iterating the algorithm a suitable number of times we obtain an algorithm that
gives the following fact:

Corollary 4. For any positive integer k, there exists a quantum algorithm that
solves consensuswith 2−k-agreement in timeO(k log3 n)while sendingO(kn log5 n)
bits against the adaptive adversary, for any t < n.

References

1. Aharonov, D., Ben-Or, M.: Fault-tolerant quantum computation with constant
error rate. SIAM Journal on Computing 38(4), 1207–1282 (2008)

2. Bar-Joseph, Z., Ben-Or, M.: A tight lower bound for randomized synchronous con-
sensus. In: Proceedings of the 17th ACM Symposium on Principles of Distributed
Computing (PODC), pp. 193–199 (1998)

3. Ben-Or, M., Hassidim, A.: Fast quantum Byzantine agreement. In: Proceedings of
the 37th ACM Symposium on Theory of Computing (STOC), pp. 481–485 (2005)

4. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle opera-
tors on Einstein-Podolsky-Rosen states. Physical Review Letters 69(20), 2881–2884
(1992)

5. Broadbent, A., Tapp, A.: Can quantum mechanics help distributed computing?
SIGACT News 39(3), 67–76 (2008)

6. Buhrman, H., Röhrig, H.: Distributed quantum computing. In: Rovan, B., Vojtáš,
P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 1–20. Springer, Heidelberg (2003)

7. Chlebus, B.S., Kowalski, D.R.: Time and communication efficient consensus for
crash failures. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 314–328.
Springer, Heidelberg (2006)

8. Chlebus, B.S., Kowalski, D.R.: Locally scalable randomized consensus for syn-
chronous crash failures. In: Proceedings of the 21st ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA), pp. 290–299 (2009)

9. Chlebus, B.S., Kowalski, D.R., Strojnowski, M.: Fast scalable deterministic consen-
sus for crash failures. In: Proceedings of the 28th ACM Symposium on Principles
of Distributed Computing (PODC), pp. 111–120 (2009)

10. Chor, B., Merritt, M., Shmoys, D.B.: Simple constant-time consensus protocols in
realistic failure models. Journal of the ACM 36(3), 591–614 (1989)

11. Cleve, R., Buhrman, H.: Substituting quantum entanglement for communication.
Physical Review A 56(2), 1201–1204 (1997)

12. Cleve, R., van Dam, W., Nielsen, M., Tapp, A.: Quantum entanglement and the
communication complexity of the inner product function. In: Williams, C.P. (ed.)
QCQC 1998. LNCS, vol. 1509, pp. 61–74. Springer, Heidelberg (1999)

250 B.S. Chlebus, D.R. Kowalski, and M. Strojnowski

13. de Wolf, R.: Quantum communication and complexity. Theoretical Computer Sci-
ence 287(1), 337–353 (2002)

14. Denchev, V.S., Pandurangan, G.: Distributed quantum computing: a new frontier
in distributed systems or science fiction? SIGACT News 39(3), 77–95 (2008)

15. Dolev, D., Reischuk, R.: Bounds on information exchange for Byzantine agreement.
Journal of the ACM 32(1), 191–204 (1985)

16. Gavoille, C., Kosowski, A., Markiewicz, M.: What can be observed locally? Round-
based models for quantum distributed computing. In: Keidar, I. (ed.) DISC 2009.
LNCS, vol. 5805, pp. 243–257. Springer, Heidelberg (2009)

17. Gilbert, S., Kowalski, D.R.: Distributed agreement with optimal communication
complexity. In: Proceedings of the 21st ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pp. 965–977 (2010)

18. Hadzilacos, V., Halpern, J.Y.: Message-optimal protocols for Byzantine agreement.
Mathematical Systems Theory 26(1), 41–102 (1993)

19. Holevo, A.S.: Bounds for the quantity of information transmitted by a quan-
tum communication channel. Problems of Information Transmission 9(3), 177–183
(1973)

20. Holtby, D., Kapron, B.M., King, V.: Lower bound for scalable Byzantine agreement.
Distributed Computing 21(4), 239–248 (2008)

21. King, V., Saia, J.: From almost everywhere to everywhere: Byzantine agreement
with Õ(n3/2) bits. In: Keidar, I. (ed.) DISC 2009. LNCS, vol. 5805, pp. 464–478.
Springer, Heidelberg (2009)

22. King, V., Saia, J., Sanwalani, V., Vee, E.: Towards secure and scalable computa-
tion in peer-to-peer networks. In: Proceedings of the 47th IEEE Symposium on
Foundations of Computer Science (FOCS), pp. 87–98 (2006)

23. Kobayashi, H., Matsumoto, K., Tani, S.: Fast exact quantum leader election on
anonymous rings. In: Proceedings of the 8th Asian Conference on Quantum Infor-
mation Science (AQIS), pp. 157–158 (2008)

24. Linial, N.: Distributive graph algorithms - global solutions from local data. In:
Proceedings of the 28th Symposium on Foundations of Computer Science (FOCS),
pp. 331–335 (1987)

25. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge (2000)

26. Ta-Shma, A.: Classical versus quantum communication complexity. SIGACT
News 30(3), 25–34 (1999)

27. Ta-Shma, A., Umans, C., Zuckerman, D.: Lossless condensers, unbalanced ex-
panders, and extractors. Combinatorica 27(2), 213–240 (2007)

How Much Memory Is Needed for Leader
Election

Emanuele G. Fusco1,� and Andrzej Pelc2,��

1 Computer Science Department, Sapienza, University of Rome, 00198 Rome, Italy
fusco@di.uniroma1.it

2 Département d’informatique, Université du Québec en Outaouais,
Gatineau, Québec J8X 3X7, Canada

pelc@uqo.ca

Abstract. We study the minimum memory size with which nodes of
a network have to be equipped, in order to solve deterministically the
leader election problem. Nodes are unlabeled, but ports at each node
have arbitrary fixed labelings which, together with the topology of the
network, can create asymmetries to be exploited in leader election. We
consider two versions of the leader election problem: strong LE in which
exactly one leader has to be elected, if this is possible, while all nodes
must terminate in a state “infeasible” otherwise, and weak LE, which
differs from strong LE in that no requirement on the behavior of nodes
is imposed, if leader election is impossible. Nodes are modeled as identical
automata and we ask what is the minimum amount of memory of such
an automaton to enable leader election.

We show that logarithmic memory is optimal for leader election in
the class of arbitrary connected graphs. Weak LE can be achieved with
O(log n) bits of memory for all connected graphs with at most n nodes
and strong LE can be achieved with O(log n) bits of memory for all
connected graphs with exactly n nodes (none of these assumptions can
be entirely removed). On the other hand, we show that Ω(log n) bits of
memory are necessary to enable leader election even for the class of rings.
By contrast we show that strong LE can be accomplished in the class
of trees of maximum degree Δ using only O(log log Δ) bits of memory,
without any additional information. This proves an exponential gap in
memory requirements for leader election between the class of trees and
the class of arbitrary graphs. Moreover, we prove that no automaton can
solve the leader election problem for all trees, even in the weak form.

1 Introduction

Leader election is a well-known problem in distributed computing, first posed in
[25]. Every node of a network has a boolean variable initialized to 0, and after
� This work was done during the visit of Emanuele G. Fusco at the Research Chair in

Distributed Computing of the Université du Québec en Outaouais.
�� Partially supported by NSERC discovery grant and by the Research Chair in Dis-

tributed Computing at the Université du Québec en Outaouais.

N.A. Lynch and A.A. Shvartsman (Eds.): DISC 2010, LNCS 6343, pp. 251–266, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

252 E.G. Fusco and A. Pelc

the election, exactly one node, called the leader, should change this value to 1. If
nodes of the network have distinct labels, then leader election is always possible
(e.g., the node with the largest label can become a leader). However, nodes
may refrain from revealing their identities, e.g., for security reasons. Hence it is
desirable to have leader election algorithms that do not rely on node identities
but exploit asymmetries of the network due to its topology and to port labelings.

The amount of memory needed to solve distributed and network problems
is a topic extensively studied in the literature, for such tasks as, e.g., network
exploration [6,13,20,30], routing [11,12] and rendezvous [14,15,24]. Somewhat
surprisingly, leader election has not been studied in this context. In this paper
we study the minimum memory size with which nodes of a network have to be
equipped for solving deterministically the leader election problem.

A network is modeled as an undirected connected graph. We assume that
nodes are unlabeled, but ports at each node have arbitrary fixed labelings 0, . . . ,
d−1, where d is the degree of the node. We do not assume any coherence between
port labelings at various nodes. Nodes are modeled as identical automata that
communicate with each other along links of the network, and we ask what is
the minimum amount of memory of such an automaton to enable deterministic
leader election. We consider two versions of the leader election problem: strong
LE and weak LE. In strong LE one leader has to be elected whenever this is
possible, while all nodes must terminate in a state “unfeasible” when leader
election is impossible. Weak LE differs from strong LE in that no requirement
on the behavior of nodes is imposed, if leader election is impossible.

Our results. We show that logarithmic memory is optimal for leader election in
the class of arbitrary connected graphs. Weak LE can be achieved with O(log n)
bits of memory for all connected graphs with at most n nodes and strong LE can
be achieved with O(log n) bits of memory for all connected graphs with exactly n
nodes (none of these assumptions can be entirely removed). On the other hand,
we show that Ω(log n) bits of memory are necessary to enable leader election even
for the class of rings. By contrast we show that strong LE can be accomplished in
trees of maximum degree Δ using only O(log log Δ) bits of memory, without any
additional information. This proves an exponential gap in memory requirements
for leader election between the class of trees and the class of arbitrary graphs.
Moreover, we prove that no automaton can solve the leader election problem for
all trees, even in the weak form.

Related work. Leader election was first studied for rings, under the assumption
that all labels are distinct. A synchronous algorithm, based on comparisons of
labels, and using O(n log n) messages was given in [18]. It was proved in [16]
that this complexity is optimal for comparison-based algorithms. On the other
hand, the authors showed an algorithm using a linear number of messages but
requiring very large running time. An asynchronous algorithm using O(n log n)
messages was given, e.g., in [29] and the optimality of this message complexity
was shown in [4]. Leader election in radio networks has been studied, e.g., in
[19,21,27] and randomized leader election, e.g., in [32].

How Much Memory Is Needed for Leader Election 253

Many authors [1,2,3,8,22,23,31,33,35] studied various computing problems in
anonymous networks. In particular, [5,35] characterize networks in which leader
election can be achieved when nodes are anonymous. In [34] the authors study
the problem of leader election in general networks, under the assumption that
labels are not unique. They characterize networks in which this can be done and
give an algorithm which performs election when it is feasible. They assume that
the number of nodes of the network is known to all nodes and do not attempt
to minimize the number of messages. In [10] the authors study feasibility and
message complexity of sorting and leader election in rings with nonunique labels,
while in [9] the authors provide algorithms for the generalized leader election
problem in rings with arbitrary labels, unknown (and arbitrary) size of the ring
and for both synchronous and asynchronous communication. In [17] the leader
election problem is approached in a model based on mobile agents.

Memory size needed for tree canonizaton, a task related to symmetry breaking
in tree networks, has been investigated in [26]. The author shows a centralized
algorithm, deciding whether two directed trees are isomorphic or not, that works
in logarithmic space. To the best of our knowledge, the present paper is the
first study of the memory size of nodes required for leader election in arbitrary
networks.

The model. The network is modeled as an undirected connected graph whose
nodes are unlabeled, but ports at each node v have arbitrary fixed labelings
0, . . . , d(v)− 1, where d(v) is the degree of the node. Unless otherwise specified,
we will use the term “graph” to mean a graph with the above properties. Each
node is a copy of the same input/output automaton A which is a quadruple
(S, Q, π, λ), where S is a finite set of states, Q is the input/output alphabet,
π : S × Q −→ S is the state transition function, and λ : S −→ Q is the out-
put function. The alphabet Q is the set of finite sequences each of whose terms
is a finite binary sequence called a message. All nodes start in the same state
S0, called the initial state. Computations in the network are organized in asyn-
chronous phases. Consider a node v that is in state S at the beginning of some
phase. Let λ(S) = (m0, m1, . . . , mn) be the sequence of messages correspond-
ing to state S (some of the messages mi may be equal to the empty message
θ: this is a reserved string of bits. Node v sends message mi on port i, for all
ports i = 0, . . . , d(v) − 1. (All messages mi, for i ≥ d(v) are ignored.) After
sending, node v waits until a message m′

i (possibly empty) arrives on each port
i = 0, . . . , d(v)− 1. The sequence σ = (m′

0, . . . , m
′
d(v)−1) becomes an input sym-

bol, under the influence of which node v transits to state S′ = π(S, σ). This ends
the current phase for node v and at the beginning of the next phase node v is in
state S′. There are three pairwise disjoint sets of states included in S: the sets L,
N and U . States in L are called leader states, states in N are called non-leader
states, and states in U are called infeasible states. Once a node enters a state in
one of these sets, it remains forever in the set (although it may change states).
More formally, for any σ ∈ Q and any states S′ ∈ L, S′′ ∈ N and S′′′ ∈ U , we
have π(S′, σ) ∈ L, π(S′′, σ) ∈ N and π(S′′′, σ) ∈ U . For a given network, the task

254 E.G. Fusco and A. Pelc

of leader election (LE) consists in the following: all nodes except one eventually
enter a non-leader state, and one node eventually enters a leader state.

We consider two versions of the leader election task for a class C of graphs :

• Weak LE. Let G be any graph in class C. If leader election is possible for the
graph G, then all nodes except one eventually enter a non-leader state, and one
node eventually enters a leader state.
• Strong LE. Let G be any graph in class C. If leader election is possible for
the graph G, then all nodes except one eventually enter a non-leader state, and
one node eventually enters a leader state. If leader election is impossible for the
graph G, then all nodes eventually enter an infeasible state.

Hence weak LE differs from strong LE in that, in the case of impossibility of
leader election, no restriction on the behavior of nodes is imposed: they can stop
in an arbitrary state, or arbitrarily circulate through the set of states. In Section
2 we explain precisely when leader election is possible.

We say that an automaton A solves weak (resp. strong) LE in the class C of
graphs, if the respective task can be carried out for every graph of the class C in
which copies of A are placed in every node, under any adversarial scheduling of
message deliveries.

We seek automata with small memory, measured by the number of states, or
equivalently by the number of bits on which these states can be encoded. An
automaton with K states requires Θ(log K) bits of memory.

Due to lack of space, detailed descriptions of some algorithms and proofs of
several results are omitted.

2 Preliminaries

We will use the following notion from [35]. Let G be a graph and v a node of
G. The view from v is the infinite rooted tree V(v) with labeled ports, defined
recursively as follows. V(v) has the root x0 corresponding to v. For every node
vi, i = 1, . . . , k, adjacent to v, there is a neighbor xi in V(v) such that the port
number at v corresponding to edge {v, vi} is the same as the port number at x0
corresponding to edge {x0, xi}, and the port number at vi corresponding to edge
{v, vi} is the same as the port number at xi corresponding to edge {x0, xi}. Node
xi, for i = 1, . . . , k, is now the root of the view from vi. By Vt(v) we denote the
view V(v) truncated to depth t. We will use the following propositions directly
following from [28,35].

Proposition 1. For a n-node graph, V(u) = V(v), if and only if Vn−1(u) =
Vn−1(v).

Proposition 2. Let u and v be two nodes in a graph G, such that V(u) = V(v).
Let (a1, . . . , ak) be a sequence of port numbers in G and let u′ and v′ be nodes
in G, such that a path from u to u′ and a path from v to v′ correspond to the
sequence (a1, . . . , ak). Then V(u′) = V(v′).

The following proposition expresses the feasibility of leader election in terms of
views.

How Much Memory Is Needed for Leader Election 255

Proposition 3. Leader election is possible in a graph G, if and only if views of
all nodes are different.

The above proposition establishes the uniqueness of views as a necessary and
sufficient condition on the feasibility of leader election. We will show in this paper
that if this condition is satisfied, then weak LE can be performed in the class
of all graphs with at most n nodes using O(log n) bits of memory at each node.
Observe that some bound on the size of the graphs in which leader election is to
be performed is necessary: otherwise even weak LE cannot be done, regardless
of memory size. Indeed, it follows from Theorem 2 proved in Section 3 that no
automaton can solve even weak LE in the class of all cycles. On the other hand,
we will show that strong LE is feasible in all graphs with exactly n nodes using
O(log n) bits of memory at each node. Here we use a strong assumption that the
number of nodes is known. Notice that this assumption cannot be weakened even
to knowing a linear bound on the size of the graph. Indeed, consider the following
well-known example. There are two cycles: a k-node cycle C = (v1, . . . , vk) and a
(2k)-node cycle C′ = (w1, . . . , wk, w′

1, . . . , w
′
k) with the following port labelings.

In cycle C, at node v1 port 0 corresponds to edge {v1, v2}, and at every node
vi, for i > 1, port 0 corresponds to edge {vi−1, vi}. In cycle C′ at nodes w1 and
w′

1 port 0 corresponds to edge {w1, w2} (resp. {w′
1, w

′
2}) and at every node wi

and w′
i, for i > 1, port 0 corresponds to edge {wi−1, wi} (resp. {w′

i−1, w
′
i}). It

is easy to see that if the adversary schedules synchronous computations, nodes
wi and w′

i in cycle C′ will be always in the same state as node vi in the cycle
C (of course the labels are not known to the nodes and are used only for the
description). Hence the solvability of strong LE in the class consisting of these
two cycles (whose sizes differ only by a factor of 2) is impossible: an automaton
providing a solution for C (where leader election is possible) will incorrectly elect
two leaders in C′ (where leader election is impossible), instead of stopping in an
infeasible state.

In the sequel we will use the notion of a Universal Exploration Sequence (UXS)
[20]. Let (a1, a2, . . . , ak) be a sequence of integers. An application of this sequence
to a graph G at node u is the sequence of nodes (u0, . . . , uk+1) obtained as
follows: u0 = u, u1 is the neighbor of u0 such that the port at u0 corresponding
to edge {u0, u1} has number 0; for any 1 ≤ i ≤ k, ui+1 is the neighbor of ui such
that the port number at ui corresponding to the edge {ui, ui+1} is (p + ai) mod
d(ui), where p is the port number at ui corresponding to the edge {ui, ui−1}. A
sequence (a1, a2, . . . , ak) whose application to a graph G at any node u contains
all nodes of this graph is called a UXS for this graph. A UXS for a class G of
graphs is a UXS for all graphs in this class.

The following important result, based on a reduction from Kouckỳ [20], is due
to Reingold [30].

Proposition 4. [30] For any positive integer n, there exists a UXS Y (n) =
(a1, a2, . . . , ak) for the class Gn of all graphs with at most n nodes, such that:
• k is polynomial in n,
• for any i ≤ k, the integer ai can be constructed using O(log n) bits of memory.

256 E.G. Fusco and A. Pelc

The above result implies that a (usually non-simple) path (u0, . . . , uk+1) travers-
ing all nodes can be computed (node by node) using O(log n) bits of memory, for
any graph with at most n nodes. Moreover, logarithmic memory suffices to walk
back and forth on this path: to walk forward at node ui, port (p+ai) mod d(ui)
should be computed when coming by port p, to walk backward, port (p − ai)
mod d(ui) should be computed.

For a fixed UXS (a1, a2, . . . , ak) and a node u of a graph G, the signature of
node u is the sequence S(u) = ((b1, b

′
1) . . . , (bk+1, b

′
k+1)) of pairs of integers, such

that bi is the port number at node ui−1 corresponding to the edge {ui, ui−1},
and b′i is the port number at node ui corresponding to the edge {ui, ui−1},
where (u0, . . . , uk+1) is the application of the UXS (a1, a2, . . . , ak) to graph G
at node u. Thus S(u) is the sequence of pairs of port numbers corresponding to
traversed edges in the walk starting at node u and constructed using the UXS
(a1, a2, . . . , ak).

Using Proposition 4, the following result has been proved in [7].

Proposition 5. [7] Let Y (n2 + n) be a UXS for the class Gn2+n of all graphs
with at most n2+n nodes, satisfying Proposition 4. Let G be a graph with at most
n nodes. For every node u of G, let S(u) be the signature of u corresponding to
the UXS Y (n2 + n). Then, for any nodes u1, u2 of G we have V(u1) �= V(u2), if
and only if S(u1) �= S(u2).

3 Leader Election in Arbitrary Graphs

3.1 Weak Leader Election

We first provide an intuitive description of our algorithm that solves weak LE
in logarithmic memory. If nodes had large memories they could discover their
whole signatures and then exchange them with all other nodes in the network.
By Propositions 3 and 5, if leader election is possible, then all signatures must
be different. When each node has compared its signature with signatures of all
other nodes, a leader can be elected by selecting the node with the smallest
signature in lexicographic order.

Since in our case the memory of a node is much too small to store an entire
signature, the basic idea of our algorithm is to perform this comparison term by
term, so that each node needs to recall the step of the comparison it is performing
and two values only. This is made possible by exploiting universal exploration
sequences from [30].

Fix n and denote by Y the UXS Y (n2+n) from Proposition 5. Let Y [i] denote
the i-th term of Y . Let G be any graph with at most n nodes. For every node
u, let S(u) be the signature of u corresponding to Y . We denote by S(u)[i] the
i-th term of the signature S(u). The length of Y is denoted by |Y |.

Now fix nodes u and v. Let (p, p′) = S(u)[1]. Node u compares (p, p′) with
S(v)[1] (this can be done by an appropriate exchange of messages between u
and v). If the two values coincide, node u proceeds to compare the second term
of its signature with the second term of the signature of v. The comparison

How Much Memory Is Needed for Leader Election 257

proceeds for |Y | steps or up to the time when two distinct values are found in
the signatures. If S(v) precedes S(u) in lexicographic order, u gives up comparing
its signature with other nodes and becomes a non-leader. If S(u) precedes S(v)
in lexicographic order, or the two signatures are equal, node u remains a leader
candidate, and starts comparing its signature with the signature of the next node
in the application of Y at u. Node u becomes the leader, if it did not give up after
|Y | signature comparisons. Notice that n−1 comparisons are not enough, indeed
the UXS can induce loops and thus some comparisons may result in comparing
the signature of a node with itself. After |Y | signature comparisons, a node is
guaranteed to have compared its signature with those of all other nodes, in view
of the properties of Y .

The main problem in comparing signatures in this way is the congestion caused
by simultaneous execution of this task in all nodes of the network. Indeed, a
node of large degree could simultaneously receive a request from each of its
neighbors. Even in a network of constant maximum degree a node that is a
crossing point of many paths defined by the UXS could receive up to Θ(n)
simultaneous requests. Handling linearly many requests simultaneously would
require exponentially many states.

To solve this problem, we implement a policy that allows each node to handle
only one request per phase, by selecting the one with the smallest rank in lexi-
cographic order and annihilating all others. Hence, many requests for getting a
given element of a signature will be lost and will have to be sent again. Never-
theless we prove that eventually every node receives a reply to all its requests.

We first define the annihilating policy as a procedure which specifies which
message survives when a node receives some input. Notice that this policy is
implemented by correctly defining the transition function π of the automaton
and does not require any additional state. If a node u receives more than one non-
empty message in a phase, it purges its input by calling Procedure annihilate.
All non-empty messages sent in the execution of the algorithm have at least two
fields called field 1 and field 2.
Procedure annihilate
Let M be the set of non-empty messages received by node u in a given phase. The
message m ∈M that survives is the one with the smallest rank in lexicographic
order over field 1, field 2, and the incoming port number. Node u considers this
unique message (and empty messages on other ports) as its input in the given
phase. �
From now on we assume that a node receives at most one non-empty message in
each phase. When no message is specified to be sent by a node on a given port
in a given phase, the message sent on that port is the empty message.

Procedure get(i, k), whose details are omitted, allows a node u to obtain the
k-th term of the signature of the i-th node in the application of Y at u. The
procedure is defined for parameters i ≥ 0 and k > 0. In particular, get(0, k)
allows a node to obtain the k-th term of its own signature.

258 E.G. Fusco and A. Pelc

Algorithm Weak Leader Elect
Each node maintains two counters, k and i, initialized to 1. Counters track
the step in the signature comparison process. In phase 0, each node initiates
Procedure get(0, 1).
• A node u that initiated get(0, k) and did not receive yet a reply to its request,
reinitiates get(0, k) in each phase in which it receives only empty messages.
• When a node u gets a reply in Procedure get(0, k), it stores S(u)[k] and
initiates get(i, k).
• A node that initiated get(i, k) and did not receive yet a reply to its request,
reinitiates get(i, k) in each phase in which it receives only empty messages.
• When a node u gets a reply in Procedure get(i, k), it compares the outcome
of the procedure, call it o, with S(u)[k]. If o < S(u)[k] (in lexicographic order),
then node u enters a non-leader state and it keeps participating in the algorithm
only by acting as a relay node. If o > S(u)[k] (in lexicographic order), then
node u increases counter i by 1, sets counter k to 1, and initiates get(0, 1). If
o = S(u)[k] and k < |Y |, then node u increases counter k by 1, and initiates
get(0, k). If k = |Y |, node u increases counter i by 1, sets counter k to 1, and
initiates get(0, 1).
• A node enters a leader state when its counter i reaches value |Y |+ 1. A node
in a leader state keeps participating in the algorithm only by acting as a relay
node. �

Lemma 1. Algorithm Weak Leader Elect elects a unique leader whenever it
is possible.

Since Algorithm Weak Leader Elect requires every node to keep only constantly
many counters of size logarithmic in n, we get the following theorem.

Theorem 1. There exists an automaton with O(log n) bits of memory that
solves weak LE in the class of graphs with at most n nodes.

We now provide a matching lower bound on the memory size required to solve
weak LE, which holds already on the class of rings, and is valid even for syn-
chronous computations.

Theorem 2. An automaton with Ω(log n) bits of memory is required to solve
weak LE in the class of rings with at most n nodes.

3.2 Strong Leader Election

Algorithm Strong Leader Elect for solving strong LE in n-nodes networks
can be obtained by making each node compare signatures of all other nodes,
keeping count of how many distinct ones it finds in the network. As different
signatures correspond to different views, and leader election is possible in a
network with n nodes, if and only if all nodes have different views, the feasibility
of LE in a n-node graph is equivalent to the existence of n distinct signatures.
Algorithm Weak Leader Elect can then be applied, in solvable instances, in
order to elect a unique leader.

How Much Memory Is Needed for Leader Election 259

Lemma 2. Algorithm Strong Leader Elect elects a unique leader whenever
it is possible. If leader election is impossible, all nodes enter an infeasible state.

Algorithm Strong Leader Elect requires every node to keep only constantly
many counters of size logarithmic in n, plus counters needed for executing Algo-
rithm Weak Leader Elect. Hence, as a consequence of Theorem 1, we get the
following result.

Theorem 3. There exists an automaton with O(log n) bits of memory that
solves strong LE in the class of graphs with exactly n nodes.

Notice that the lower bound Ω(log n) on the memory size needed to solve weak
LE for the class of graphs with at most n nodes (proved in Theorem 2) does not
immediately imply a similar lower bound for strong LE for the class of graphs
with exactly n nodes. Indeed, the argument used for weak LE relies on rings
of different sizes, while in strong LE the automaton is designed for a specific
value of n. Nevertheless, a similar lower bound, showing that the automaton
from Theorem 3 is also optimal, can be obtained as follows.

Proposition 6. An automaton with Ω(log n) bits of memory is required to solve
strong LE in the class of n-nodes rings.

4 Leader Election in Trees

In this section we provide an upper bound O(log log Δ) on the number of memory
bits required to solve strong LE in trees with maximum degree Δ. We also show
that no automaton can solve even weak LE in all trees.

A tree T has a central node, if and only if, it has even diameter D. The central
node in this case is the unique node that is the starting point of (at least) two
edge disjoint paths of length D/2. If a tree T has odd diameter D, then it has a
central edge. This unique edge is the central edge of any path of length D in T .

Consider the set T0 of rooted trees where each node has label 0 at the port
leading to its parent. Such a n-node tree can be encoded by a binary string of
length 2n− 2. This is done by performing a depth-first visit of the tree, driven
by increasing order of port numbers at each node, and writing 1 every time an
edge is traversed going down, and 0 every time an edge is traversed going up.
A tree T ∈ T0 can be reconstructed from its code as follows. Start from the
root, making it the current node. In every step of the reconstruction we have a
suffix σ of the code and a current node v. In the first step σ is the code. If the
first element of σ is a 1, attach a new child to v, label the port connecting v to
this child with the smallest port number not yet assigned at node v. Also assign
label 0 to the port at the child connecting it to v. The child becomes the current
node at the next step. If the first element of σ is a 0, the parent of v becomes the
current node at the next step. In both cases, the first element of σ is removed.

A string s of length 2n− 2 belongs to the set Cn of well formed codes, if and
only if it has n − 1 ones, n − 1 zeroes, and no prefix of s contains more zeroes
than ones. The coding and decoding functions described above define a bijection

260 E.G. Fusco and A. Pelc

between the set Cn and the set of all n-node trees in T0. This is a subset of the
trees we want to handle, as in general the port number leading to the parent
of a node v is arbitrarily chosen between 0 and d(v) − 1. This difficulty can be
overcome, thus defining a bijection between the class of all rooted trees with
port numbers and their representations as code strings, as follows. Consider an
internal node w. Let i be the port number, at w, of the edge connecting w to
its parent. Let u be the child of w such that the edge between w and u has port
number i + 1 at w. Then add the symbol � into the code before the first visit
to u. Denote such an augmented code of a tree T by B(T). From now on it is
called the code of T . As symbol � has been added to the code, resulting in a
ternary alphabet, we use 2 bits to represent each symbol in code B(T) without
ambiguities.

4.1 Strong LE in Trees Using O(log log Δ) Memory Bits

We first give an overview of our algorithm. Algorithm Tree Leader Elect solv-
ing strong LE in trees has three stages. In stage 1, the tree is pruned, starting
from the leaves, until only the central node or the central edge remains. If only
the central node remains after pruning, this node can be elected as a leader.
Trees whose pruning ends with the central edge admit LE, if and only if the two
subtrees rooted at the endpoints of the central edge are not isomorphic1 (either
because of differences in the topology or different port labelings).

Stage 2 determines, for trees with a central edge, whether the two subtrees
are isomorphic or not. If not, a unique leader is elected, otherwise LE is impos-
sible. Endpoints of the central edge coordinate the process of comparing the two
subtrees, however, the memory of each node is so small that it cannot even save
one port number. Hence, no single node can track the progress of the comparison
on its own. Information allowing to perform the comparison is thus distributed
among many nodes in the subtrees, so that no node needs to store more than
constantly many counters, whose values are bounded by log Δ. The comparison
is done by performing a pre-order visit of each subtree; flags are used to identify
nodes in the path from the root of the subtree to the currently visited node,
i.e., the owner of the token. This owner is responsible for generating the next
symbol of the augmented code of the subtree rooted in one of the endpoints
of the central edge, and for sending it up to this endpoint. Each of the end-
points of the central edge compares each symbol received from its subtree with
the corresponding symbol obtained from the other subtree. If two mismatching
symbols are found, the symmetry is broken and a leader is elected, otherwise,
each endpoint resumes the visit of its subtree by broadcasting a request for the
next symbol to all its neighbors. Among them, exactly one is flagged and will
relay the request down the tree towards the current owner of the token.

While moving the token from a parent to its first child is easy, moving the
token from a child to the next child, or determining that all children have been

1 Rooted trees are isomorphic, if there exists a bijection from nodes of one to nodes of
the other that maps the root to the root, preserving adjacencies and port numbers.

How Much Memory Is Needed for Leader Election 261

already visited and thus the token has to be sent back to the parent, is much
harder, as port numbers determining the ranks of the children in the pre-order
visit are too large to be kept in the memory of any single node.

Procedure Move Token, described below, is the fundamental building block of
the algorithm. The procedure allows to move the token from a child to the next
child to be visited (or back to the parent when all children have been already
visited), using only one counter of O(log log Δ) bits at each node.

In stage 3, success or impossibility of LE is broadcast to all nodes, thus al-
lowing non-leader nodes to correctly enter a non-leader or an infeasible state,
according to the outcome of the election.

Procedure Move Token
The procedure is initiated by the parent w of the current owner v of the token.

We assume that either w is one of the endpoints of the central edge, or it has at
least one neighbor that is marked ascending (namely, its parent). This invariant
will hold at each call of the procedure in Algorithm Tree Leader Elect.

Each node u has a counter c(u) that is set to 0 when the procedure is initiated.
Let p(u) be the port number, at w, connecting w to node u. Moreover, let x be
the number of bits allowed by the memory size to be assigned to a counter c(u).
O(log log Δ) memory bits are enough to guarantee 22x ≥ Δ, and this is all we
will need.

The following block of 4 phases is iterated 2x times, counted by c(w) ranging
from 0 to 2x − 1. Nodes that are candidates to obtain the token are all the
neighbors u of w, having p(u) ≥ 1, that are not marked and do not own the
token.
1. In phase 1, node w sends message < c(w) > to all its neighbors.
2. In phase 2, let k =

∑c(w)
i=1 si22x−i, where s1 = 1 if p(v) ≥ 22x−1, s1 = 0

otherwise, and, for i > 1, si = 1 if p(v) ≥ 22x−i +
∑i−1

j=1 sj22x−j , and si = 0
otherwise. Node v sends message < large >, if p(v)−k ≥ 22x−c(w)−1. Otherwise
it sends message < small >.
3. In phase 3, node w relays the message, either < large > or < small >, received
from v in phase 2, together with counter c(w). Then it increases counter c(w)
by one.
4. In phase 4, for each candidate node u, we have k =

∑c(w)
i=1 si22x−i, where s1 = 1

if p(u)− 1 ≥ 22x−1, s1 = 0 otherwise, and, for i > 1, si = 1 if p(u)− 1 ≥ 22x−i +∑i−1
j=1 sj22x−j , and si = 0 otherwise. If w sent message < large, c(w) > in phase

3, each candidate node u stops being a candidate if p(u)− k− 1 < 22x−c(w)−1. If
w sent message < small, c(w) > in phase 3, each candidate node u stops being
a candidate if p(u)− k − 1 ≥ 22x−c(w)−1.

After 2x iterations of the above block, the remaining candidate node, if it
exists, sends message < success > to all its neighbors and obtains the token.
The next phase is used by node w to inform its children (in particular node v),
if the token has been moved to the next child or not. �

By means of a binary search, Procedure Move Token chooses the node u such
that p(u) = p(v) + 1 as the new owner of the token, if such a node exists among

262 E.G. Fusco and A. Pelc

children of the node w that initiated the procedure. The procedure can be easily
modified to choose the node u such that p(u) = p(v) + 2, in the case when w
is connected to its parent (i.e., its only neighbor marked ascending) through
port p(v) + 1. This is done by letting a candidate node u lose (i.e., stop being a
candidate), in phase 4, if p(u)− k − 2 < 22x−c(w)−1 when a < large > message
was sent by its parent, and if p(u) − k − 2 ≥ 22x−c(w)−1, when a < small >
message was sent by its parent. Values si, which determine k, are computed in
this case as follows. s1 = 1 if p(u)− 2 ≥ 22x−1, s1 = 0 otherwise, and, for i > 1,
si = 1 if p(u)− 2 ≥ 22x−i +

∑i−1
j=1 sj22x−j, and si = 0 otherwise.

Lemma 3. Let w be the parent of the current owner v of the token. Let j be the
port number at w corresponding to edge {w, v}. Let v′ be the child of w such that
port j +1 at w corresponds to edge {w, v′}, if such a node exists. Procedure Move
Token moves the token from v to v′.

Lemma 4. Algorithm Tree Leader Elect elects a unique leader in any tree T
whenever it is possible. If leader election is impossible in T , then all nodes enter
an infeasible state.

Theorem 4. There exists an automaton with O(log log Δ) bits of memory, that
solves strong LE in the class of trees with maximum degree Δ.

Proof. Stages 1 and 3 of Algorithm Tree Leader Elect require an automaton
with only constantly many states. As for stage 2, the only task requiring more
than constantly many memory bits is moving the token among sibling nodes, by
means of calls to Procedure Move Token. All values exceeding log Δ (e.g., port
numbers) that appear in the description of Procedure Move Token are handled
by the state transition function of the automaton, and never need to be stored
in the memory of a node. Indeed, the procedure requires the parent w of the
current owner of the token to store only the iteration number (which ranges from
0 to 2x − 1 ∈ O(log Δ)) and other nodes to remember only whether they are
candidates or not. Hence O(log Δ) states of the automaton are enough, which
implies that O(log log Δ) memory bits are sufficient.

4.2 Impossibility of a Universal Leader Election Automaton for
Trees

In this section we prove the following impossibility result which remains valid
for strong LE as well.

Theorem 5. No automaton can solve weak LE in the class of all trees.

Proof. Assume, for contradiction, that an automaton A solves weak LE in the
class of all trees. Let C be the number of states of automaton A. Consider the
following class of trees. A (h, k)-tree is a tree on h + k + 2 nodes, obtained by
connecting the central node of a star with h + 1 nodes to the central node of
a star with k + 1 nodes. Both ports corresponding to the edge connecting the
centers are labeled 0. Hence, LE is possible in a (h, k)-tree, if and only if h �= k.

How Much Memory Is Needed for Leader Election 263

Call vh the node of degree h + 1 and vk the node of degree k + 1 in a (h, k)-
tree. Call h-leaves the leaves connected to vh and k-leaves the leaves connected
to vk. lh,p denotes the h-leaf that is connected to node vh by the edge whose
corresponding port number at vh is p.

Suppose that copies of automaton A are placed in all nodes of the tree. The
trace th,k(i) of node vh is the sequence of states of vh in a (h, k)-tree, up to
phase i. The j-th term of this sequence, denoted by th,k[j], for j ≤ i, is the state
of vh at the beginning of phase j.

The state of a given leaf lh,p at the beginning of a given phase only depends
on the trace of the central node vh to which the leaf is connected, up to the
previous phase.

For any automaton with C states, we can describe the transition function of
a given h-leaf as a transition matrix mapping each pair of states (the state of
vh and the state of the h-leaf) to a new state of the h-leaf. This matrix has
C2 cells; each cell of the matrix contains a value chosen among the C possible
states for the h-leaf. Hence at most X = CC2

distinct matrices exist. The value
of p determines the transition matrix of the h-leaf lh,p. The leaf lh,p is equivalent
to lh,q, denoted by lh,p ≡ lh,q, if lh,p and lh,q have the same transition matrix.
Notice that two equivalent h-leaves are always in the same state.

In a (h, h)-tree, traces th,h(i) of the two centers are equal, for any value i.
Informally speaking, we can construct a transition function π′ whose input con-
sists of the current state of node vh and messages from pairwise non-equivalent
h-leaves. We can then construct an automaton A′ having π′ as its transition
function. Now consider two (h, h)-trees. Tree T contains copies of automaton A
in all nodes. Tree T ′ contains copies of automaton A′ in the central nodes and
copies of automaton A in all leaves. The function π′ is such that, for all values
i, traces th,h(i) of central nodes in T are equal to traces t′h,h(i) of central nodes
in T ′.

Formally, let λ∗(S) = m0, where λ(S) = (m0, m1, . . . , mh) is the sequence of
messages that is the output corresponding to state S in automaton A. J ⊂ S×Q
is the set of legal inputs defined as follows. σ = (S, m0, m1, . . . , mh) is in J , if
and only if (m0, m1, . . . , mh) ∈ Q, m0 = λ∗(S), and mp = mq for each pair (p, q)
such that lh,p ≡ lh,q. An input of function π for the copy of automaton A placed
in a central node of a (h, h)-tree is always legal. Indeed, the states of the two
central nodes are equal in any phase and the states of equivalent h-leaves are
equal in any phase. Two nodes in the same state always send the same message
on the same port.

Hence we can define the following bijection α, whose domain is the set J of
legal inputs and whose set of values J ′ has cardinality bounded by CX+1. Let
α : J −→ J ′, α((S, m0, m1, . . . , mh)) = (λ∗(S), mz1 , . . . , mzr), where all integers
zi are indices of pairwise non-equivalent h-leaves and r ≤ X . As α is a bijection,
we can also define its inverse α−1 : J ′ −→ J .

Once function α has been defined, the transition function π′ we are seeking
can be constructed as follows. π′ : J ′ −→ S, π′(α(σ)) = π(α−1(α(σ))) = π(σ).

264 E.G. Fusco and A. Pelc

Claim. CX+1 is an upper bound on the number of reachable state configurations
of nodes in a (h, h)-tree.

In any (h, h)-tree, traces with more than CX+1 terms will thus induce a repeated
configuration of states of all nodes. As CX+1 does not depend on the value
h, infinitely many triples (a, b, c), with a < b < c, exist, such that ta,a(i) =
tb,b(i) = tc,c(i), for any value i. Pick such a triple of integers. We will now
prove, by induction on j, that ta,b(j) = tb,a(j) = ta,a(j), for all values j. For
j = 0, the base of induction holds, as the first term of any trace is the initial
state of the automaton A. Assuming ta,b(j) = tb,a(j) = ta,a(j) we have that
ta,b[j + 1] = ta,a[j + 1], since, by the inductive hypothesis, tb,a[j] = ta,a[j] and
all a-leaves are in the same state in phase j in an (a, b)-tree as in an (a, a)-tree.
Similarly, tb,a[j + 1] = tb,b[j + 1]. As ta,a(i) = tb,b(i) for any value i, we have
ta,b[j + 1] = tb,a[j + 1] = ta,a[j + 1], which concludes the proof by induction.

It follows that we can find three values, a < b < c, such that, for any assign-
ment x = a, x = b, or x = c and any assignment y = a, y = b, or y = c, traces
of the central nodes in a (x, y)-tree are always equal. Hence, for all (x, y)-trees,
any x-leaf has the same state, in a given phase, as the corresponding y-leaf (if
it exists). Also the states of nodes vx and vy are equal in each phase. Hence,
neither an a-leaf nor a b-leaf can become a leader, as this would cause election of
two leaders in an (a, c)-tree or in a (b, c)-tree. The same holds for nodes va and
vb. On the other hand, weak LE requires election of a leader in an (a, b)-tree,
contradiction. Hence, automaton A does not solve weak LE in the class of all
trees, and the proof of the theorem is complete.

The argument from the proof of Theorem 5 shows in fact that an automaton with
C states cannot solve weak LE in the class of trees of maximum degree CCC2

+1.
This implies that the minimum number of memory bits of an automaton solving
weak LE for all trees of maximum degree Δ is Ω(log log log Δ). In Theorem 4
we showed an automaton with O(log log Δ) bits of memory that solves strong
LE in such trees. This yields the following open problem.

Problem 1. What is the minimum number of memory bits of an automaton
that can solve weak (respectively strong) LE in the class of trees of maximum
degree Δ?

In this paper we focused on the size of memory, while most of the literature
was concerned with time and message complexity of leader election. This yields
the following problem.

Problem 2. What are the tradeoffs between memory size at nodes and time or
message complexity of leader election?

References

1. Attiya, H., Snir, M., Warmuth, M.: Computing on an Anonymous Ring. Journal
of the ACM 35, 845–875 (1988)

2. Attiya, H., Snir, M.: Better Computing on the Anonymous Ring. Journal of Algo-
rithms 12, 204–238 (1991)

How Much Memory Is Needed for Leader Election 265

3. Boldi, P., Vigna, S.: Computing anonymously with arbitrary knowledge. In: Proc.
18th ACM Symp. on Principles of Distributed Computing, pp. 181–188 (1999)

4. Burns, J.E.: A formal model for message passing systems, Tech. Report TR-91,
Computer Science Department, Indiana University, Bloomington (September 1980)

5. Codenotti, B., Gemmell, P., Simon, J.: Symmetry breaking in anonymous networks:
characterizations. In: Proc. 4th Israel Symposium on Theory of Computing and
Systems ISTCS, pp. 16–26 (1996)

6. Cook, S.A., Rackoff, C.: Space Lower Bounds for Maze Threadability on Restricted
Machines. SIAM J. Comput. 9, 636–652 (1980)

7. Czyzowicz, J., Kosowski, A., Pelc, A.: How to meet when you forget: Log-space
rendezvous in arbitrary graphs, Proc. 29th ACM Symp. on Principles of Distributed
Comp. PODC 2010 (2010)

8. Diks, K., Kranakis, E., Malinowski, A., Pelc, A.: Anonymous wireless rings. The-
oretical Computer Science 145, 95–109 (1995)

9. Dobrev, S., Pelc, A.: Leader election in rings with nonunique labels. Fundamenta
Informaticae 59, 333–347 (2004)

10. Flocchini, P., Kranakis, E., Krizanc, D., Luccio, F.L., Santoro, N.: Sorting Multisets
in Anonymous Rings. In: Proc. of the IEEE International Parallel and Distributed
Processing Symposium IPDPS, Cancun, Mexico, pp. 275–280 (2000)

11. Fraigniaud, P., Gavoille, C.: Routing in Trees. In: Orejas, F., Spirakis, P.G., van
Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 757–772. Springer, Heidelberg
(2001)

12. Fraigniaud, P., Gavoille, C.: A Space Lower Bound for Routing in Trees. In: Alt, H.,
Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 65–75. Springer, Heidelberg
(2002)

13. Fraigniaud, P., Ilcinkas, D.: Digraphs Exploration with Little Memory. In: Diek-
ert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 246–257. Springer,
Heidelberg (2004)

14. Fraigniaud, P., Pelc, A.: Deterministic rendezvous in trees with little memory. In:
Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 242–256. Springer, Heidel-
berg (2008)

15. Fraigniaud, P., Pelc, A.: Delays induce an exponential memory gap for rendezvous
in trees. In: Proc. 22nd Ann. ACM Symposium on Parallel Algorithms and Archi-
tectures, SPAA 2010 (2010)

16. Fredrickson, G.N., Lynch, N.A.: Electing a leader in a synchronous ring. Journal
of the ACM 34, 98–115 (1987)

17. Haddar, M.A., Kacem, A.H., Métivier, Y., Mosbah, M., Jmaiel, M.: Electing a
leader in the local computation model using mobile agents. In: Proc. 6th ACS/IEEE
International Conference on Computer Systems and Applications AICCSA 2008,
pp. 473–480 (2008)

18. Hirschberg, D.S., Sinclair, J.B.: Decentralized extrema-finding in circular configu-
rations of processes. Communications of the ACM 23, 627–628 (1980)

19. Jurdzinski, T., Kutylowski, M., Zatopianski, J.: Efficient algorithms for leader elec-
tion in radio networks. In: Proc., 21st ACM Symp. on Principles of Distr. Comp.
(PODC 2002), pp. 51–57 (2002)

20. Kouckỳ, M.: Universal Traversal Sequences with Backtracking. J. Comput. Syst.
Sci. 65, 717–726 (2002)

21. Kowalski, D., Pelc, A.: Leader election in ad hoc radio networks: a keen ear helps.
In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W.
(eds.) ICALP 2009. LNCS, vol. 5556, pp. 521–533. Springer, Heidelberg (2009)

266 E.G. Fusco and A. Pelc

22. Kranakis, E.: Symmetry and Computability in Anonymous Networks: A Brief Sur-
vey. In: Proc. 3rd Int. Conf. on Structural Information and Communication Com-
plexity, pp. 1–16 (1997)

23. Kranakis, E., Krizanc, D., van der Berg, J.: Computing Boolean Functions on
Anonymous Networks. Information and Computation 114, 214–236 (1994)

24. Kranakis, E., Krizanc, D., Morin, P.: Randomized Rendez-Vous with Limited Mem-
ory. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008.
LNCS, vol. 4957, pp. 605–616. Springer, Heidelberg (2008)

25. LeLann, G.: Distributed systems: Towards a formal approach. In: Gilchrist, B. (ed.)
Information processing’77, pp. 155–160. North Holland, Amsterdam (1977)

26. Lindell, S.: A logspace algorithm for tree canonization. In: Proc. 24th ACM Sym-
posium on Theory of Computing (STOC 1992), pp. 400–404 (1992)

27. Nakano, K., Olariu, S.: Uniform leader election protocols for radio networks. IEEE
Transactions on Parallel Distributed Systems 13, 516–526 (2002)

28. Norris, N.: Universal Covers of Graphs: Isomorphism to Depth N − 1 Implies
Isomorphism to All Depths. Discrete Applied Mathematics 56(1), 61–74 (1995)

29. Peterson, G.L.: An O(n log n) unidirectional distributed algorithm for the circular
extrema problem. ACM Transactions on Programming Languages and Systems 4,
758–762 (1982)

30. Reingold, O.: Undirected connectivity in log-space. Journal of the ACM 55, 1–24
(2008)

31. Sakamoto, N.: Comparison of Initial Conditions for Distributed Algorithms on
Anonymous Networks. In: Proc. 18th ACM Symp. on Principles of Distributed
Computing (PODC 1999), pp. 173–179 (1999)

32. Willard, D.E.: Log-logarithmic selection resolution protocols in a multiple access
channel. SIAM J. on Computing 15, 468–477 (1986)

33. Yamashita, M., Kameda, T.: Computing on anonymous networks. In: Proc. 7th
ACM Symp. on Principles of Distributed Computing (PODC 1988), pp. 117–130
(1988)

34. Yamashita, M., Kameda, T.: Electing a leader when procesor identity numbers are
not distinct. In: Bermond, J.-C., Raynal, M. (eds.) WDAG 1989. LNCS, vol. 392,
pp. 303–314. Springer, Heidelberg (1989)

35. Yamashita, M., Kameda, T.: Computing on anonymous networks: Part I - charac-
terizing the solvable cases. IEEE Trans. Parallel and Distributed Systems 7, 69–89
(1996)

Leader Election Problem versus Pattern
Formation Problem�

Yoann Dieudonné1, Franck Petit2, and Vincent Villain1

1 MIS, Université de Picardie Jules Verne Amiens, France
2 LIP6/Regal, Université Pierre et Marie Curie, INRIA, CNRS, France

Abstract. Leader election and arbitrary pattern formation are funda-
mental tasks for a set of autonomous mobile robots. The former consists
in distinguishing a unique robot, called the leader. The latter aims in
arranging the robots in the plane to form any given pattern. The solv-
ability of both these tasks turns out to be necessary in order to achieve
more complex tasks.

In this paper, we study the relationship between these two tasks in a
model, called CORDA, wherein the robots are weak in several aspects.
In particular, they are fully asynchronous and they have no direct means
of communication. They cannot remember any previous observation nor
computation performed in any previous step. Such robots are said to
be oblivious. The robots are also uniform and anonymous, i.e, they all
have the same program using no global parameter (such as an identity)
allowing to differentiate any of them. Moreover, none of them share any
kind of common coordinate mechanism or common sense of direction,
except that they agree on a common handedness (chirality).

In such a system, Flochini et al. proved in [9] that it is possible to
elect a leader for n ≥ 3 robots if it is possible to form any pattern for
n ≥ 3. In this paper, we show that the converse is true for n ≥ 4 and
thus, we deduce that both problems are equivalent for n ≥ 4 in CORDA
provided the robots share the same chirality.

Keywords: Mobile Robot Networks, Pattern Formation, Leader
Election.

1 Introduction

Mobile robots working together to perform cooperative tasks in a given envi-
ronment is an important, open area of research. Teams (or, swarms) of mobile
robots provide the ability to measure properties, collect information and act in
a given physical environment. Numerous potential applications exist for such
multi-robot systems, to name only a very few: environmental monitoring, large-
scale construction, risky area surrounding or surveillance, and exploration of
awkward environments.

In a given environment, the ability for the swarm of robots to succeed in the
accomplishment of the assigned task greatly depends on (1) global properties
� This work has been supported by the ANR projet R-Discover (08-ANR-CONTINT).

N.A. Lynch and A.A. Shvartsman (Eds.): DISC 2010, LNCS 6343, pp. 267–281, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

268 Y. Dieudonné, F. Petit, and V. Villain

assigned to the swarm, and (2) individual capabilities each robot has. Examples
of such global properties are the ability to distinguish among themselves at least
one (or, more) robots (leader), to agree on a common global direction (sense
of direction), or to agree on a common handedness (chirality). The individal
capacities of a robot are its moving capacities and its sensory organs.

To deal with cost, flexibility, resilience to dysfunction, and autonomy, many
problems arise for handling the distributed coordination of swarms of robots in
a deterministic manner. This issue was first studied in [13,14], mainly motivated
by the minimal level of ability the robots are required to have in the accomplish-
ment of basic cooperative tasks. In other words, the feasibility of some given
tasks is addressed assuming swarm of autonomous robots either devoid or not of
capabilities like (observable) identifiers, direct means of communication, means
of storing previous observations, sense of direction, chirality, etc. So far, except
the “classical” Leader Election Problem [1,6,9,12], most of the studied tasks are
geometric problems, so that Arbitrary Pattern Formation Problem, Line For-
mation, Gathering, and Circle Formation—refer to [3,4,5,8,9,10,14] for these
problems.

In this paper, we concentrate on two of the aforementioned problems: Leader
Election Problem (LEP) and Arbitrary Pattern Formation Problem (APFP).

Definition 1 (LEP). [9] Given the positions of n robots in the plane, the n
robots are able to deterministically agree on the same robot L called the leader.
Initially, the robots are in arbitrary positions, with the only requirement that no
two robots are in the same position.

Definition 2 (APFP). [9] The robots have in input the same pattern, called the
target pattern P, described as a set of positions in the plane given in lexicographic
order (each robot sees the same pattern according to the direction and orientation
of its local coordinate system). They are required to form the pattern: at the end
of the computation, the positions of the robots coincide, in everybody’s local view,
with the positions of P, where P may be translated, rotated, and scaled in each
local coordinate system. Initially, the robots are in arbitrary positions, with the
only requirement that no two robots are in the same position, and that the number
of positions prescribed in the pattern and the number of robots are the same.

The issue of whether APFP or LEP can be solved or not according to some
capabilities of the robots is addressed in [9]. Not surprisingly, both problems are
not deterministically solvable in general, due to the anonymity and the disorien-
tation of the robots. This is especially true for LEP for which the impossibility of
breaking a possible symmetry makes LEP unsolvable. For that matter, in [6] the
authors provide a complete characterization (necessary and sufficient conditions)
on the robots positions to elect a leader in a deterministic way.

A first relationship between APFP and LEP is given by the following theo-
rem:

Theorem 1. [9] If it is possible to solve APFP for n ≥ 3 robots, then LEP is
solvable too.

Leader Election Problem versus Pattern Formation Problem 269

Naturally, an interesting question arises from the above theorem: “Is the converse
true?”. In other terms: “With robots devoid of sense of direction, does APFP
becomes solvable whenever the robots have the possibility to distinguish a unique
leader?” In [16], the authors provide a positive answer to this question assuming
that robots have a common handedness. The latter allows to infer the orientation
of the x-axis once the orientation of the y-axis is given. Their result holds in the
semi-synchronous model (SSM), a.k.a. Model SYm in the literature.

In this paper, we show that this result also holds for n ≥ 4 robots in a
fully asynchronous model, called CORDA [7]. Combined with Theorem 1 and
provided the robots have the chirality property, we deduce that Leader Election
and Pattern Formation are two equivalent problems in CORDA for n ≥ 4 robots,
in the precise sense that, the former problem is solvable if and only if the latter
problem is solvable.

The rest of the paper is organized as follows: In Section 2, we describe the
distributed systems. The proof of equivalence is given in Section 3 for any n ≥ 4
by providing an algorithm working in CORDA. (Due to lack of space, technical
proofs have been ommitted.) Finally, we make concluding remarks in Section 4.

2 Model

We adopt the model CORDA (COordination and control of a set of Robots
in a totally Distributed and Asynchronous environment) introduced in [7]. The
distributed system considered in this paper consists of n robots r1, r2, · · · , rn—the
subscripts 1, . . . , n are used for notational purpose only. Each robot ri is viewed
as a point in a two-dimensional space unbounded and devoid of any landmark.
When no ambiguity arises, ri also denotes the position in the plane occupied by
that robot. Each robot has its own local coordinate system and unit measure.
The robots do not agree on the orientation of the axes of their local coordinate
system, nor on the unit measure.

Definition 3 (Sense of Direction). A set of n robots has sense of direction if
the n robots agree on a common direction of one axis (x or y) and its orientation.
The sense of direction is said to be partial if the agreement relates to the direction
only —ie. they are not required to agree on the orientation.

Given an x-y Cartesian coordinate system, the handedness is the way in which
the orientation of the y axis (respectively, the x axis) is inferred according to
the orientation of the x axis (resp., the y axis).

Definition 4 (Chirality). A set of n robots has chirality if the n robots share
the same handedness.

In the rest of this paper, we assume that the robots have chirality and have no
sense of direction.

The robot’s life is viewed as an infinite sequence of cycles. Each cycle is a
sequence of four states Wait-Observe-Compute-Move characterized as follows.

270 Y. Dieudonné, F. Petit, and V. Villain

Life cycle. Initially, a robot is in the waiting state (Wait). Asynchronously
and independently from other robots, it observes its surroundings (Observe)
by using its sensors. The sensors return a set of all the positions occupied by at
least one robot, with respect to its own coordinate system. Then, from its new
observations the robot computes its next location (Compute) according to a
given protocol which is the same one for all the robots. Once the computation
is done, the robot moves towards its new location (Move). Finally, the robot
returns to the waiting state.

The distance traveled by a robot in a cycle is unpredictable and thus, the
robot may stop its motion before reaching the computed location. However, the
distance traveled by a robot r in a move is neither infinite nor infinitesimally
small. In particular, there exists a constant σr > 0 such that if the destination
point is closer than σr, r will reach it; Otherwise, r will move towards it of at
least σr. Note that no robot (including r) has the knowledge of σr. It is assumed
that the amount of time spent in each phase of a cycle is finite but unpredictable
and may be different for each cycle and for each robot. That is why the robots
are considered to be fully asynchronous.

Finally we assume that the robots are uniform and anonymous, i.e, they all
have the same program using no local parameter (such as an identity) allowing to
differentiate any of them. Moreover, they have no direct means of communication
and they are oblivious, i.e., none of them can remember any previous observation
nor computation performed in any previous cycles.

3 Equivalence for n ≥ 4

In this section we prove the main result of this paper:

Theorem 2. In CORDA, assuming a group of n ≥ 4 robots having chirality
and devoid of any kind of sense of direction, LEP is solvable if and only if
APFP is solvable.

To prove Theorem 2, from Theorem 1, it remains to show the following lemma:

Lemma 1. In CORDA, assuming a group of n ≥ 4 robots having chirality and
devoid of any kind of sense of direction, if LEP is solvable, then APFP is
solvable.

The remainding of this section is devoted to prove Lemma 1 by providing a pro-
tocol that forms an arbitrary target pattern assuming that, initially the robots
are in a leader configuration, wherein the robots are able to deterministically
elect a leader.

The overall idea of our algorithm consists of the three following main steps:
First, by moving to some appropriate positions, the robots build a kind of global
coordinate system. Next, they compute the final positions to occupy in order to
form the pattern. Finally, the robots carefully move towards these final positions,
while maintaining the global coordinate system invariant. In the next subsection

Leader Election Problem versus Pattern Formation Problem 271

(Subsection 3.1), we provide basic definitions and properties leading to describe
what is an (equivalent) agreement configuration. Then, in Subsection 3.2, we
will give the distributed algorithm with its correctness proof.

3.1 Agreement Configuration

In the rest of this paper, we assume the set of all the positions Q occupied by
the robots in the plane is the set of all the coordinates expressed in a carte-
sian coordinate system S which is unknown for all the robots. However, all the
coordinates Q expressed in S coincide with all the cordinates Q expressed in
everybody’s local system where Q may be translated, rotated or scaled.

Definition 5 (Smallest enclosing circle). [4] Given a set Q of n ≥ 2 po-
sitions p1, p2, · · · , pn on the plane, the smallest enclosing circle of Q , called
SEC(Q), is the smallest circle enclosing all the positions in Q.

When no ambiguity arises, SEC(Q) is shortly denoted by SEC and
SEC(Q) ∩ Q indicates the set of all the positions both on SEC(Q) and Q.
Besides, we say that a robot r is inside SEC if and only if r is not located
on the circumference of SEC. In any configuration Q, SEC is unique and can
be computed in linear time [11]. Note that since the robots have the ability of
chirality, they are able to agree on a common orientation of SEC, denoted �,
in the sequel referred to as the clockwise direction.

Property 1. [15] SEC passes either through two of the positions that are on the
same diameter (opposite positions), or through at least three positions. SEC
does not change by eliminating or adding positions that are inside it. SEC does
not change by adding positions on its boundary. However, it may be possible that
SEC changes by either eliminating or moving positions on its circumference.

Examples showing the latter assertion of Property 1 are proposed in Figure 1.

SEC2

SEC1

(a) Critical (white) robot
cannot be deleted

without changing SEC.

SEC SEC

(b) An example showing how SEC may
change by moving one robot.

Fig. 1. Examples illustrating Property 1

272 Y. Dieudonné, F. Petit, and V. Villain

Definition 6 (Critical position). [10] Given a set Q of distinct positions. We
say that a position p is critical iff SEC(Q) �= SEC(Q \ {p}).

An example of such a critical robot is given by Figure 1, Case (a). According to
Property 1, a critical position cannot be inside SEC. So, the following corollary
holds:

Corollary 1. Let Q be a configuration. If there exists a critical position p in Q,
then p is on the circumference of SEC(Q).

Before giving other properties about critical positions, we need to define extra
notions.

Definition 7 (adjacent(r, C, �)). Given a circle C and a group of robots located
on it, we say that r′ = adjacent(r, C, �) if r′ is the next robot on C just after r
in the clockwise direction.

In the same way, we can define adjacent(r, �) in the counterclockwise direction.
When no ambiguity arises, adjacent(r, C, �) is shortly denoted by
adjacent(r, �). Sometimes, if r′ = adjacent(r, �), we simply say that r′ and r
are adjacent.

Definition 8 (angle(p, c, p′, �)). Given a circle C centered at c and two points
p and p′ located on it, angle(p, c, p′, �) is the angle centered at c from p to p′ in
the clockwise direction.

In the same way, we can define angle(p, c, p′, �) in the counterclockwise direction.
The following properties are fundamental results about smallest enclosing

circles:

Lemma 2. [2] Let ri, rj and rk be three consecutive robots on SEC centered
at c such that rj = adjacent(ri, �) and rk = adjacent(rj , �). If angle(ri, c, rk,
�) ≤ 180o, then rj is non-critical and SEC does not change by eliminating rj .

Corollary 2. Let SEC(Q) be the smallest circle enclosing all the positions in Q.
For all couple of positions ri and rj in SEC(Q)∩Q such that rj = adjacent(ri,
�), we have angle(ri, c, rj , �) ≤ 180o.

Lemma 3. [2] Given a smallest enclosing circle with at least four robots on it,
there exists at least one robot which is not critical.

Definition 9 (Concentric Enclosing Circle). Given a set P of distinct po-
sitions. We say that CP is a concentric enclosing circle if and only if it is
centered at the center c of SEC, has a radius strictly greater than zero and it
passes through at least one position in P .

In the following, SCP and |SCP | respectively denote the set of all the concentric
enclosing circle in P and its cardinality. For some k such that 1 ≤ k ≤ |SCP |,
CP

k indicates the kth greatest concentric enclosing circle in P and
⋃k

i=1 CP
i is

Leader Election Problem versus Pattern Formation Problem 273

the set of the k first greatest enclosing circles in P . Moreover, we assume that a
position (or robot) located inside a concentric enclosing circle CP

k is not on the
circumference of CP

k . CP
i ∩ P indicate the set of all the positions both on CP

i

and P .

Remark 1. From Definition 9, SEC is the greatest concentric enclosing circle of
SC (i.e., SEC = C1) and the center of SEC cannot be a concentric enclosing
circle.

From Definition 9, we can introduce the notion of agreement configuration:

Definition 10 (Agreement Configuration). A configuration Q is an agree-
ment configuration if and only if both following conditions hold:
1. There exists a robot rl in Q such that rl is the unique robot located on the
smallest concentric enclosing circle CQ

|SCQ|,
2. There is no robot at the center of SEC(Q).

In an agreement configuration, rl is called the leader.

Definition 11. Two agreement configuration Q1 and Q2 is said to be equivalent
if and only if both following conditions hold:
1. SEC(Q1) and SEC(Q2) are superimposed.
2. Let c1 and c2 be respectively the center of SEC(Q1) and the center of
SEC(Q2). Let rl1 and rl2 be respectively the leader in Q1 and the leader in Q2.
[c1, rl1) and [c2, rl2) are superimposed.

3.2 Protocol

Starting from a leader configuration, the protocol, shown in Algorithm 1, allows
to form any target pattern P . It is a compound of two procedures presented
below:
1. Protocol < Leader� Agreement> transforms an arbitrary leader configura-
tion into an agreement configuration;
2. Protocol < Agreement� Pattern> transforms an agreement configuration
into a pattern P .

Algorithm 1. Form an arbitrary pattern starting from a leader configuration
(n ≥ 4).
P := the target pattern ;
if the robots do not form the target pattern
then if the robots do not form an agreement configuration

then Execute <Leader�Agreement>;
else Execute <Agreement�Pattern>;

274 Y. Dieudonné, F. Petit, and V. Villain

Algorithm 2. Procedure < Leader � Agreement > for any robot ri in an
arbitrary leader configuration
Q := the configuration where the robots currently lies;
rl := Leader(Q);
c := center of SEC(Q)
if rl is located at c
then rk := the closest robot to c ∈ Q \ {rl};

p := the middle of the segment [rl; rk];
if I am rl then MoveTo(p,→);

else if rl is not critical
then p := the middle of the segment [rl; c];

if I am rl then MoveTo(p,→);
else /* rl is critical and rl is on SEC*/

rk := the first non-critical robot starting from rl on SEC in clockwise.
if I am rk

then p := the middle of the segment [rk; c]; MoveTo(p,→); endif

Procedure < Leader � Agreement >. In a leader configuration, the following
theorem holds:

Theorem 3. [6] If the robots are in a leader configuration, then they can dis-
tinguish a unique leader which is one of the closest robot to the center of the
smallest enclosing circle of the configuration, provided that they share the prop-
erty of chirality.

From Theorem 3, we know that we can distinguish a unique robot rl, called the
leader, which is one of the robots closest to the center c of SEC(Q). However,
according to Definition 10, if rl is at the center of SEC(Q) or if rl is not the
unique robot closest to the center of SEC(Q), Q is not an agreement config-
uration. In that case, Procedure < Leader� Agreement> allows to transform
the leader configuration into an agreement configuration. Algorithm 2 describes
Procedure < Leader� Agreement>. In Algorithm 2, we use two subsoutines:
Leader(Q) and MoveTo(p,→). The former returns the unique leader from a
leader configuration Q. The latter allows a robot r to move towards the point p,
using a straight movement.

Procedure < Agreement � Pattern > Intuitively, once the robots are in an
agreement configuration, they can also agree on their final positions—refer to Def-
inition 12. Then, some selected robots (Definition 14) begin to occupy them, start-
ing from those situated on SEC, and then on all the circles concentric to SEC from
the largest to the smallest passing through at least one of the final positions—refer
to Definition 13. During this phase, the final positions are maintained unchanged,
by making sure that the robots remain in an equivalent agreement configuration
until the pattern is formed. In particular, we make sure that no angle above 180o

is created on SEC—otherwise, according to Corollary 2 SEC changes—and that

Leader Election Problem versus Pattern Formation Problem 275

the leader of the agreement configuration remains the unique closest robot from
the center of SEC and do not leave the radius where it is located.

Before presenting Procedure <Agreement�Pattern> shown in Algorithm 3,
we need the following definitions:

a

b

cd

e f

g

h i

j

k

l

m

n

(a) Positions a to n form the target
pattern P .

SEC

a

cd

e f

g

h i

j

k

l

m

n

o
s

b

(b) Position b is the first non-critical
position s in P .

SEC

s
l

c
x

x
x

x

x
x

x

x

x

x

x

x
x

x

(c) P mapped on the actual
agreement configuration Q formed by
the robots (Robots are depicted as x’s

in the figure).

Fig. 2. An example showing a pattern P mapped on an agreement configuration Q—
Definition 12

Definition 12 (Map(Q,P)). Let Q and P be respectively an agreement config-
uration formed by the robots in the plane and a target pattern.
Map(Q,P) is the set of all the final positions P expressed in the plane where
the robots currently lie and computed as follows:
1. First, the center of SEC(P)) is translated to the center of SEC(Q).
2. Then, let o, c, rl and s be respectively the center of SEC(Q), the center of
SEC(P), the leader in Q and the first non-critical position (in the lexicographic

276 Y. Dieudonné, F. Petit, and V. Villain

order) located on the smallest concentric enclosing circle of P. P is rotated so
that the half-line [o, rl) is viewed as the half-line [c, s).
3. Finally, P is scaled with respect to the radius of SEC(Q) in order that all
the distances are expressed according to the radius of SEC(Q). In particular
SEC(Q) = SEC(P).

An example showing the construction of Definition 12 is given in Figure 2.

Definition 13 ((k,P)-partial pattern). Let Q and P be respectively an agree-
ment configuration formed by the robots in the plane and a target pattern. We
say that:
1. Q is a (0,P)-partial pattern if the leader in Q is inside the smallest concentric
enclosing circle of Map(Q,P).
2. Q is a (k,P)-partial pattern with 1 ≤ k ≤ Min(|SCQ|, |SCP |) if the three
following properties holds:

a. Q is a (0,P)-partial pattern.
b. C

Map(Q,P)
k ∩Map(Q,P) � CQ

k ∩ Q.
c.
⋃k−1

i=1 CQ
i ∩Q =

⋃k−1
i=1 C

Map(Q,P)
i ∩Map(Q,P).

In the sequel, we say that Q is a maximal (k,P)-partial pattern if Q is a (k,P)-
partial pattern and not a (k + 1,P)-partial pattern.

Definition 14 (Extra robots). Let P and Q be respectively a target pattern
and a configuration formed by the robots in the plane such that Q is a maximal
(k,P)-partial pattern. We say that a robot r is an extra robot if one of the two
following properties holds:

1. k = 0, r is inside SEC(Q), and r is not the leader in Q;
2. k ≥ 1 and

(a) either r is inside the enclosing circle C
Map(Q,P)
k and r is not the leader

in Q;
(b) or r is on the circumference of C

Map(Q,P)
k and r does not occupy a po-

sition in C
Map(Q,P)
k ∩Map(Q,P).

The routine Nearest extra robot(CMap(Q,P)
k+1 ,Q, Map(Q,P)) returns an extra

robot r such that r is the closest extra robot to C
Map(Q,P)
k+1 which is not located on

C
Map(Q,P)
k+1 . If several candidates exists, then the extra robots inside C

Map(Q,P)
k+1

have priority. Finally, if there is again several candidates then these latter ones
are located on the same concentric circle C centered at the center c of C

Map(Q,P)
k+1

and the routine returns the extra robot, located on C, which is the closest in
clockwise to the intersection between C and the half line [c, rl) (with rl the leader
in Q).

Nearest free point(CMap(Q,P)
k+1 ,Q, r) returns the nearest position from r

which is located on C
Map(Q,P)
k+1 and not occupied by any robot belonging to Q.

If there are two nearest positions then the routines returns the position which is

Leader Election Problem versus Pattern Formation Problem 277

Algorithm 3. Procedure < Agreement � Pattern > for any robot ri in an
agreement configuration
Q := the configuration where the robots currently lies;
P := the target pattern; /* P is the same for all the robots */
rl := Leader(Q);
s := the first non-critical position located on the smallest concentric enclosing

circle of Map(Q,P);
if the robots do not form any (k,P)-partial pattern
then /*rl is not inside the smallest concentric enclosing circle of Map(Q,P) */

p := the middle of the segment [c; s];
if I am rl then MoveTo(p,→);

else /* the robots form a (k,P)-partial pattern */
if the center of SEC(Q) ∈ Map(Q,P)
then x := the center of SEC(Q);
else x := s;
Final Positions := Map(Q,P) \ {x};
if all the positions in Final Positions are occupied
then if I am rl then MoveTo(x,→);
else k := the maximal k for which Q is a (k,P)-partial pattern;

if there is at least one extra robot not located on C
Map(Q,P)
k+1

then r := Nearest extra robot(CMap(Q,P)
k+1 ,Q, Map(Q,P));

p := Nearest free point(CMap(Q,P)
k+1 ,Q, r);

if I am r then MoveTo(p,→);
else Arrange(CMap(Q,P)

k+1 , F inal Positions)

the closest in clockwise to the intersection between C
Map(Q,P)
k+1 and the half line

[c, rl) (with c the center of C
Map(Q,P)
k+1 and rl the leader).

MoveTo(p, C, �) allows a robot to move toward a position p located on the
circle C by moving along the boundary of C in clockwise. MoveTo(p, C, �) is
similar but in counterclockwise.

Arrange(CMap(Q,P)
k+1 , F inal Positions) allows all the robots on C

Map(Q,P)
k+1 to

occupy all the positions in C
Map(Q,P)
k+1 ∩ Final Positions. The function is de-

scribed by Algorithm 4 in which we use the following notions:

Definition 15 (arc(p, p′, C, �)). Given a circle C and two points p, p′ located
on it, arc(p, p′, C, �) is the arc of circle C from p to p′ in the clockwise direction,
p being excluded (p′ being included).

Definition 16 (P -arc(pi, pi+1, C, �)). Given a target pattern P and an agree-
ment configuration Q, we say that arc(pi, pi+1, C, �) is a P -arc(pi, pi+1, C, �)
if and only if the three following properties holds:
1. C is one of the concentric enclosing circle of Map(Q,P)
2. pi and pi+1 belong to Final Positions
3. pi+1 = adjacent(pi, C, �)

278 Y. Dieudonné, F. Petit, and V. Villain

Remark 2. From Definition 15, we know that pi is not located on
P -arc(pi, pi+1, C, �).

In the remainder, we say that a P -arc is free if there is no robot located on it.
In Figure 3, the circles denote the positions to achieve. The crosses depict the
robots. The P -arc starting after f (f excluded) and finishing at a is free.

x

x

x

x
x
x

x
x

a
f

e

d

c

b

SEC

Fig. 3. An example showing a Deadlock Chain and a Deadlock Breaker

Definition 17 (Deadlock Chain). A Deadlock Chain is a consecutive se-
quence of P -arc starting from a free P -arc P0 and followed in the counter-
clockwise direction by a P -arc P1 such that:
1. P1 is a P -arc(p, p′, C, �) such that angle(p, c, p′, �) = 180o and there is only
one robot r on it and r is located at p′,
2. and P1 is followed in counterclockwise by a consecutive sequence (possibly
empty) of
P -arc(p, p′, C, �) such that there is only one robot r on each of them and r is
located at p′,
and that consecutive sequence (possibly empty) is followed by a P -arc(p, p′, C, �)
such that there is at least two robots on it and one of them is located at p′. This
P -arc is called the last P -arc of the deadlock chain.

In Figure 3, the segment starting from Position a (a included) to Position b (b
excluded) forms a deadlock chain.

Definition 18 (Deadlock Breaker). Let P -arc(p, p′, C, �) be the last P -arc
of a deadlock chain. The deadlock breaker is the robot located at p′.

In Figure 3, the robot located at Position c is the deadlock breaker.

Sketch of Correctness Proof of Algorithm 1. We first show that by exe-
cuting Algorithm 1, the smallest enclosing circle SEC(Q) remains invariant—
Lemma 4.

Lemma 4. According to Algorithm 1, the smallest enclosing circle SEC(Q)
remains invariant.

Leader Election Problem versus Pattern Formation Problem 279

Algorithm 4. Arrange(CMap(Q,P)
k+1 , F inal Positions) executed by robot ri on

C
Map(Q,P)
k+1

/* I am ri */
p := the closest position in C

Map(Q,P)
k+1 ∩ Final Positions \ {ri} to ri in clockwise;

if C
Map(Q,P)
k+1 = SEC(Q)

then if there is no robot in arc(ri, p,C
Map(Q,P)
k+1 , �) or I am a deadlock breaker

then if I am a deadlock breaker
then t := the position s.t. angle(ri, c, t, �) = 1

2
angle(ri, c, p,�);

p := t;
endif
ri−1 := adjacent(ri, SEC, �);
p′ := the position such that angle(ri−1, c, p

′, �) = 180o;
p′′ := the closest point to ri in clockwise in {p; p′};
if ri is not located at p′′ then MoveTo(p′′, SEC, �);

endif

else if there is no robot in arc(ri, p,C
Map(Q,P)
k+1 , �)

then MoveTo(p,C
Map(Q,P)
k+1 , �);

Next, we prove that if the robots form a leader configuration which is not a
final pattern P and not an agreement configuration, they eventually form an
agreement configuration—Lemma 5.

Lemma 5. If the robots form a leader configuration which is not a final pattern
P and not an agreement configuration, they form an agreement configuration in
a finite number of cycles.

Starting from such a configuration, Map(Q,P) remains invariant or the target
pattern P is formed—Lemma 6 and Corollary 3. Note that Corollary 3 assures
that the two parts of Algorithm 1 (Protocol < Leader � Agreement > and
Protocol <Agreement�Pattern>) work in the asynchronous model CORDA
even if the unique robot closest to the center of SEC is not still.

Lemma 6. Starting from an agreement configuration Q, the robots remain in
an equivalent agreement configuration or the target pattern P is formed in a
finite number of cycles.

Corollary 3. From an agreement configuration, Map(Q,P) remains invariant
or the target pattern P is formed.

It follows that from an agreement configuration which is not a (k,P)-partial
pattern, the robots eventually form a (0,P)-partial pattern—Lemma 7.

Lemma 7. From an agreement configuration which is not a (k,P)-partial pat-
tern, the robots form a (0,P)-partial pattern in a finite number of cycles.

280 Y. Dieudonné, F. Petit, and V. Villain

From this point on, note that according to Algorithm 3, Final Positions is
equal to all the positions in Map(Q,P) except:

1. either the center c of SEC(Q) if c ∈Map(P ,Q),
2. or the first non critical position located on the smallest concentric enclosing
circle of Map(Q,P) if c /∈Map(P ,Q)

Next, we show by induction that, from a configuration being a maximal (k,P)-
partial pattern, the robots eventually form a (k + 1,P)-partial pattern or the
target pattern P is formed—Lemmas 8 to 10.

Lemma 8. Let P be a target pattern and let Q be a configuration which is a
maximal (k,P)-partial pattern such that 1 ≤ k < |SCP |. If all the extra robots
are on C

Map(Q,P)
k+1 then, all the positions in Final Positions ∩ C

Map(Q,P)
k+1 are

occupied in a finite number of cycles.

Lemma 9. Let P be a target pattern and let Q be a configuration which is a
maximal (0,P)-partial pattern. If all the extra robots are on SEC(Map(Q,P))
then, all the positions in Final Positions ∩ C

Map(Q,P)
k+1 are occupied in a finite

number of cycles.

Lemma 10. Let P be a target pattern and let Q be a configuration which is a
maximal (k,P)-partial pattern. The robots form a (k + 1,P)-partial pattern or
the target pattern is formed, in a finite number of cycles.

From Lemma 10 and by induction we deduce the following theorem:

Theorem 4. Starting from a leader configuration, Algorithm 1 allows to solve
APFP in CORDA among a group of n ≥ 4 robots having chirality and devoid
of any kind of sense direction.

4 Conclusion

We studied the relationship between APFP and LEP among robots having
chirality in CORDA. We gave an algorithm allowing to form an arbitrary pattern
starting from any geometric configuration wherein the leader election is possible.
Combined with the result in [9], we deduce that APFP and LEP are equivalent,
i.e., it is possible to solve APFP for n ≥ 4 if and only if LEP is solvable too.
The possible equivalence for n = 3 remains an open problem.

Notice that our solution would not always guarantee the invariance of SEC if
n = 3 and all the robots are placed on it. Indeed, in this particular case, if there
does not exists two robots that are on the same diameter it would be impossible
to remove one of the three without creating an angle greater than 180o (which is
not the case when n ≥ 4). This is why the given solution only works if we have
four robots or more. In a future work, we would like to investigate this case.
Also, the issue of knowing whether the equivalence is still valid without chirality
will be one of our main concern in future.

Leader Election Problem versus Pattern Formation Problem 281

References

1. Canepa, D., Gradinariu Potop-Butucaru, M.: Stabilizing flocking via leader election
in robot networks. In: Masuzawa, T., Tixeuil, S. (eds.) SSS 2007. LNCS, vol. 4838,
pp. 52–66. Springer, Heidelberg (2007)

2. Cieliebak, M., Prencipe, G.: Gathering autonomous mobile robots. In: 9th Inter-
national Colloquium on Structural Information and Communication Complexity
(SIROCCO 9), pp. 57–72 (2002)

3. Cohen, R., Peleg, D.: Local spreading algorithms for autonomous robot systems.
Theor. Comput. Sci. 399(1-2), 71–82 (2008)

4. Defago, X., Konagaya, A.: Circle formation for oblivious anonymous mobile robots
with no common sense of orientation. In: 2nd ACM International Annual Workshop
on Principles of Mobile Computing (POMC 2002), pp. 97–104 (2002)

5. Dieudonné, Y., Labbani-Igbida, O., Petit, F.: Circle formation of weak mobile
robots. TAAS 3(4) (2008)

6. Dieudonné, Y., Petit, F.: Deterministic leader election in anonymous sensor net-
works without common coordinated system. In: Tovar, E., Tsigas, P., Fouchal, H.
(eds.) OPODIS 2007. LNCS, vol. 4878, pp. 132–142. Springer, Heidelberg (2007)

7. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Hard tasks for weak robots:
The role of common knowledge in pattern formation by autonomous mobile robots.
In: Aggarwal, A.K., Pandu Rangan, C. (eds.) ISAAC 1999. LNCS, vol. 1741, pp.
93–102. Springer, Heidelberg (1999)

8. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Distributed coordination
of a set of autonomous mobile robots. In: IEEE Intelligent Veichle Symposium (IV
2000), pp. 480–485 (2000)

9. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary pattern forma-
tion by asynchronous, anonymous, oblivious robots. Theor. Comput. Sci. 407(1-3),
412–447 (2008)

10. Katreniak, B.: Biangular circle formation by asynchronous mobile robots. In: Pelc,
A., Raynal, M. (eds.) SIROCCO 2005. LNCS, vol. 3499, pp. 185–199. Springer,
Heidelberg (2005)

11. Megiddo, N.: Linear-time algorithms for linear programming in r3 and related
problems. SIAM J. Comput. 12(4), 759–776 (1983)

12. Prencipe, G.: Distributed coordination of a set of autonomous mobile robots. Tech-
nical Report TD-4/02, Dipartimento di Informatica, University of Pisa (2002)

13. Suzuki, I., Yamashita, M.: Agreement on a common x-y coordinate system by a
group of mobile robots. Intelligent Robots: Sensing, Modeling and Planning, 305–
321 (1996)

14. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots - formation of
geometric patterns. SIAM Journal of Computing 28(4), 1347–1363 (1999)

15. Welzl, E.: Smallest enclosing disks (balls and ellipsoids). In: Maurer, H.A. (ed.)
New Results and New Trends in Computer Science. LNCS, vol. 555, pp. 359–370.
Springer, Heidelberg (1991)

16. Yamashita, M., Suzuki, I.: Characterizing geometric patterns formable by oblivious
anonymous mobile robots. Theoretical Computer Science (to appear, 2010)

Rendezvous of Mobile Agents
in Directed Graphs

Jérémie Chalopin1, Shantanu Das1, and Peter Widmayer2

1 LIF, CNRS & Aix-Marseille University, France
jeremie.chalopin@lif.univ-mrs.fr, shantanu.das@acm.org

2 Institute of Theoretical Computer Science, ETH Zürich, Switzerland
widmayer@inf.ethz.ch

Abstract. We study the problem of gathering at the same location two
mobile agents that are dispersed in an unknown and unlabeled envi-
ronment. This problem called Rendezvous, is a fundamental task in dis-
tributed coordination among autonomous entities. Most previous studies
on the subject model the environment as an undirected graph and the so-
lution techniques rely heavily on the fact that an agent can backtrack on
any edge it traverses. However, such an assumption may not hold for cer-
tain scenarios, for instance a road network containing one-way streets.
Thus, we consider the case of strongly connected directed graphs and
present the first deterministic solution for rendezvous of two anonymous
(identical) agents moving in such a digraph. Our algorithm achieves ren-
dezvous with detection for any solvable instance of the problem, without
any prior knowledge about the digraph, not even its size.

Keywords: Distributed Algorithm, Directed Graph, Leader Election,
Rendezvous, Anonymous Networks, Mobile Agents, Graph Exploration.

1 Introduction

One of the fundamental problems in distributed coordination is the task of gath-
ering together two autonomous entities that are dispersed in a unknown envi-
ronment. The problem, called rendezvous problem, has been studied both for
robots moving in a terrain or software agents moving in a network. In the for-
mer case, the environment is a bounded (or unbounded) region of the infinite
two-dimensional plane. While in the latter case, the environment is modeled as
a graph where the two agents are initially located at distinct nodes of the graph.
When the two dispersed entities can not communicate from a distance, solving
rendezvous is essential for an exchange of information or for achieving even the
simplest form of coordination between the mobile entities. The rendezvous prob-
lem belongs to the class of symmetry-breaking problems (e.g. leader election is
another such problem) that are central to study of computability in distributed
systems. The importance of the problem is evident from the large volume of
literature [10, 11, 14–17, 19] dedicated to solving the problem under various
conditions and restrictions.

N.A. Lynch and A.A. Shvartsman (Eds.): DISC 2010, LNCS 6343, pp. 282–296, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Rendezvous of Mobile Agents in Directed Graphs 283

For rendezvous in graphs, almost all previous results were restricted to undi-
rected graphs. However, in many scenarios, it is natural to model the environ-
ment as a directed graph. For instance, in a communication network such as the
internet, it may be possible to communicate in only one direction along some of
the channels. Another example of a directed graph is a road network containing
some one way streets.

To the best of our knowledge, there are no known results on rendezvous of
agents in arbitrary and unknown directed graphs. Moreover, the solutions for
the undirected graphs do not carry over to the case of digraphs, as they heavily
rely on the ability of the agents to backtrack on a traveled path.

In this paper, we show how two identical agents can rendezvous in an unknown
digraph. The agents are allowed to move along the arcs of the digraph from the
tail end to head end. We assume the digraph to be strongly connected so that
any node of the digraph can be reached. An agent located at any node v of the
digraph can choose one of the several arcs outgoing from v and this choice is made
by a deterministic algorithm which specifies the moves of the agents. The idea
is to design an algorithm that when executed by each agent ensures that after a
finite number of moves, the agents terminate in exactly one node of the digraph.
In the most general setting, the nodes of the graph are anonymous (i.e. the agents
can not distinguish between nodes of the same degree) and the agents themselves
do not have any unique identifiers either. In this setting, rendezvous can not be
solved in arbitrary graphs, using deterministic algorithms. We thus focus on the
problem of “rendezvous with detect” where the agents rendezvous if and only if it
is deterministically possible for the given instance, and otherwise stop and report
that problem is not solvable. Solving rendezvous usually requires the agents to
completely explore the digraph. Exploration of unknown and unlabeled graphs
(or digraphs) is difficult unless the agents are allowed to mark the nodes. As in
several previous papers on the topic [3, 4, 9, 11, 13], we allow the agents to mark
nodes of the digraphs by writing on whiteboards available at each node.

Related Works: The problems of rendezvous and leader election has been
extensively studied from the point of view of computability in unknown and
unlabeled graphs, starting from the work of Angluin [2]. Many researchers have
focussed on characterizing the conditions under which distributed coordination
problems (such as leader election) can be solved in the absence of unique identi-
fiers for the participating entities. Characterizations of the solvable instances for
leader election in message passing systems have been provided by Boldi et al. [7]
and by Yamashita and Kameda [18] among others. The rendezvous problem
which falls under the same class of symmetry breaking problems, has been solved
under various different assumptions such as distinct labels for the agents, sense
of direction information, or under a synchronous setting (e.g. [4, 10, 16, 17, 19]).
The problem has been studied for specific topologies such as rings [11], tori [17],
trees [15] as well as in the most general case of an unlabeled terrain [14]. The
idea of solving rendezvous by marking the starting locations with tokens was
first proposed by Baston and Gal [5].

284 J. Chalopin, S. Das, and P. Widmayer

Most of the above results are for undirected graphs. Boldi and Vigna [7, 8]
considered directed graphs and they introduced the concept of fibrations to illus-
trate certain properties of digraphs. For instance, they showed that deterministic
leader election is solvable only in fibration-free digraphs.

For directed graphs, even exploration using deterministic algorithms is rel-
atively difficult compared to undirected graphs. The problem of exploring and
constructing a map of an unknown strongly connected digraph has been studied
previously, from the point of view of minimizing the number of arc traversals
(also called the “moves” complexity). For exploration of node-labelled digraphs,
the best known algorithm [1] has a cost of O(dlogd ∗m) moves for a digraph G
having deficiency d (i.e. d arcs are needed to make G Eulerian). Another opti-
mization criteria is minimizing the amount of memory required by an agent to
explore a directed graph (See e.g. [13])

When the nodes of the digraph are not labelled, it is necessary to mark the
nodes so that they can be recognized on subsequent visits. Exploration of unla-
beled and unknown digraphs using pebbles to mark vertices, has been studied
by Bender et al. [6]. A related problem of searching for a black hole has been
recently studied for directed graphs (see [9]).

Our Results: We study the rendezvous problem for two identical agents starting
from arbitrary locations in strongly connected directed graphs in the absence of
unique identifiers. We present an algorithm for solving Rendezvous with Detect
in any strongly connected digraph. Our results give a characterization of the
solvable instances for rendezvous in this setting. Thus, our result generalizes
previous results on rendezvous in undirected graphs to the more general case of
directed graphs. The algorithm considered in this paper requires O(m.n) moves
for graphs of n nodes and m edges, whereas for undirected graphs, the same
problem can be solved in O(m) moves. Our algorithm is universal and works
for digraphs of arbitrary size and topology (i.e. no prior knowledge about the
digraph is required).

2 Definitions and Properties

2.1 Our Model

The environment where the agents are operating is represented by a strongly
connected directed graph G = (V, A) where V is the set of nodes and A is the
set of arcs of G. We denote by n and m, the number of nodes and the number
of arcs of G, respectively. There are two identical mobile agents located in two
distinct nodes of the digraph G. The agents execute the same algorithm and
start from the same initial state (though not necessarily at the same time). The
agents do not have any prior knowledge of the graph G, not even n, the size of G.
Every action performed by an agent takes a finite but otherwise unpredictable
amount of time. The node from where an agent a starts the algorithm (i.e.
the initial location) is called the homebase of agent a, denoted by h(a). The
objective of the agents is to solve rendezvous i.e. meet at any unspecified node

Rendezvous of Mobile Agents in Directed Graphs 285

of the digraph G. We denote an instance of the rendezvous problem by (G, χp)
where χp : V → {0, 1} is a node-labeling of G such that χp(v) = 1 if there exists
an agent a such that h(a) = v, and χp(v) = 0 otherwise.

The agents can traverse the arcs of G only from the tail end to the head end
(but not the other way). Since G is strongly connected each node has at least one
incoming and at least one outgoing arc. We denote by din(v) (resp. dout(v)) the
number of incoming (resp. outgoing) arcs at v. The arcs going out from a node
v are locally oriented i.e. they are labelled as 1, 2, . . . , dout(v). Similarly, the arcs
incoming at a node v are labelled as 1, 2, . . . , din(v) and an agent arriving at node
v by an arc e, knows the label of e at v. Note that each arc e = (u, v) of G has
two labels, one at the tail end u and the other at the head-end v. The arc labeling
of G (sometimes called the port numbering) is specified by λ : A(G) → N2. We
call this the Duplex arc-labeling model. Note that this model corresponds to the
Port-to-Port(PP) model in the message passing system, as defined by Yamashita
and Kameda [18].

We will also consider the more general case of Simplex arc-labeling where only
outgoing arcs at a node v are labelled, but not the incoming arcs. In other words,
an agent arriving at node v does not know through which arc it arrived. In this
case, the arc labeling of G is specified by λ : A(G)→ N.This model corresponds
to the Port-to-Mailbox (PM) model in the message passing system of Yamashita
and Kameda [18]. The difference between the two models and the effect it has
on the computations, is further discussed in Section 4.

Each node v ∈ G has a whiteboard and any agent visiting node v can read or
write to that whiteboard. We use label(v) to denote the contents of the white-
board of the node v. Initially all whiteboards are empty, so label(v)= φ, for each
v ∈ V (G). Whenever the two agents are in the same node, they see each other
and stop.

2.2 Coverings of Digraphs

For the definitions given below, we consider multigraphs, i.e. digraphs that
possibly contain parallel arcs and self loops. Such a multigraph is denoted by
D = (V (D), A(D), s, t) where V (D) is a set of vertices, A(D) is a set of arcs,
and s and t are two functions that assign to each arc two elements of V (D) :
a source and a target. A path between two vertices u and v in D is a sequence
of arcs a1, a2, . . . ap such that s(a1) = u, ∀1 ≤ i ≤ p − 1, t(ai) = s(ai+1) and
t(ap) = v.

A homomorphism γ between the multigraph D and the multigraph D′ is a
mapping γ : V (D) ∪ A(D) → V (D′) ∪ A(D′) such that for each arc a ∈ A(D),
γ(s(a)) = s(γ(a)) and γ(t(a)) = t(γ(a)). An homomorphism γ is an isomorphism
if γ is bijective. We now define the notion of graph coverings, borrowing the
terminology of Boldi and Vigna[8].

Definition 1. A covering projection is a homomorphism ϕ from D to D′ sat-
isfying the following: (i) For each arc a′ of A(D′) and for each node v of V (D)
such that ϕ(v) = v′ = t(a′) there exists a unique arc a in A(D) such that t(a) = v

286 J. Chalopin, S. Das, and P. Widmayer

and ϕ(a) = a′. (ii) For each arc a′ of A(D′) and for each node v of V (D) such
that ϕ(v) = v′ = s(a′) there exists a unique arc a in A(D) such that s(a) = v
and ϕ(a) = a′.

If the homomorphism ϕ satisfies only property (i) above, it is called a fibration,
whereas if it satisfies only property (ii), it is called an opfibration. If a covering
projection ϕ : D → D′ exists, D is said to be a covering of D′ via ϕ and D′ is
called the base of ϕ. The notions of coverings extend to labelled digraphs in an
obvious way: the homomorphisms must preserve the labeling. Throughout the
paper we will consider digraphs where the vertices and arcs are labelled with
labels from a recursive label set L (The labeling of D is denoted by μD). We will
consider homomorphisms which preserve these labelings.

Definition 2. A labeled digraph (D, μD) is said to be covering-minimal if there
does not exist any labeled multigraph (D′, μD′), where D′ is not isomorphic to
D, such that (D, μD) is a covering of (D′, μD′) via a label-preserving covering
projection.

G1 G2 H

Fig. 1. There exists an opfibration from digraph G1 to H and a covering projection
from digraph G2 to H . So, G2 covers H , while G1 is covering minimal. (The arc labeling
is not shown in the figure and the node-labeling is illustrated by colors black and white.)

2.3 Impossibility Result

We now present a characterization of labelled digraphs where it is possible to
solve rendezvous of mobile agents. First let us consider some known computabil-
ity results for digraphs.

Lemma 1 ([8]). Given a digraph G(V, A) and an arbitrary (non-injective) label-
ing μG on G, if there exists a label-preserving covering projection from the labelled
digraph (G, μG) to a labeled multigraph (H, μH), such that |V (H)| < |V (G)| then
it is impossible to solve leader election using message-passing in (G, μG).

Lemma 2. For a directed graph G, a port numbering λ on the arcs of G, and
a bicoloring χp : V → {0, 1} of the nodes of G, if there exists an algorithm
for solving rendezvous of mobile agents that start from nodes of same color in
G, then there is an algorithm for solving leader election by message passing in
(G, λ, χp).

Rendezvous of Mobile Agents in Directed Graphs 287

The above result follows trivially from the fact that a mobile agent algorithm
can be simulated by a message-passing algorithm where the messages are simply
an encoding of the agent’s states and their algorithm (see [3] for details). Once
rendezvous is solved on the digraph G, there is exactly one node that contains
all the agents and this node can be the designated leader.

Based on the above results, it follows that rendezvous is not possible in a
labelled digraph (G, λ, χp) which is not covering minimal. In the next section we
present an algorithm the solves rendezvous for all strongly connected digraphs
that are covering minimal. Thus, we have the following result:

Theorem 1. Given any strongly connected directed graph G, a port numbering
λ on the arcs of G, and node labeling χp that denotes the initial placement of two
identical agents in G, Rendezvous is solvable if and only if (G, λ, χp) is covering
minimal.

The above result holds irrespective of whether the port numbering λ is a sim-
plex or duplex arc-labeling. In the next section, we present an algorithm for
rendezvous assuming duplex arc-labeling (i.e. when both incoming and outgoing
arcs are locally oriented). In section 4, we will show how to extend the algorithm
for the case of simplex arc-labeling.

3 Rendezvous Algorithm

A usual strategy for deterministic rendezvous in unknown graphs is the following.
Each agent marks its initial location, explores the graphs and builds a labelled
map of the graph. From the map and initial position of the agents in the map, the
agents can compute a unique location (if it exists, i.e. if the map is asymmetric)
and both agents move to that location.

Exploration of a digraph is relatively easy if each agent is provided with a
unique marker distinct from that of the other agent (for instance, suppose that
one agent has a spray-can of blue paint and the other agent has a spray-can
of red paint). An agent can explore the digraph G by following a depth-first
strategy and writing on each visited node using the distinct marker (so that
it can recognize it on later visits). Such an algorithm for exploring a digraph is
presented as Algorithm Simple-Explore (See Algorithm 1). During the algorithm,
the agent maintains a counter that is incremented whenever a new node is visited.
The (counter,marker) pair provides a unique label for each node v that is visited
by the agent. It is easy to see that the algorithm succeeds in building a map of
any strongly connected digraph G.

Lemma 3. On executing Algorithm Simple-Explore using a unique marker, on
any strongly connected digraph G, the agent outputs a map of the digraph.

Lemma 4. Algorithm Simple-Explore requires O(m · n) moves by an agent.

In general, the agents would not have access to distinct markers at the beginning
of the algorithm. We now show how two identical agents may obtain distinct

288 J. Chalopin, S. Das, and P. Widmayer

Algorithm 1. SimpleExplore(MARKER)

MAP ← φ; Count ← 1;
Write (MARKER, Count) on current node;
Increment Count;
Add current node to MAP ;
while ∃ a reachable node in MAP that has unexplored arcs do

Go to the closest reachable node u that has unexplored arcs;
Choose the unexplored arc e with smallest label;
Traverse arc e = (u, v) to reach node v;
if v is marked with MARKER, (i.e. v ∈ MAP) then

add arc e to MAP ;
else

Write (MARKER,Count) on node v;
Increment Count;
Add node v and arc e to MAP ;

Return MAP ;

markers for exploring the digraph. Each agent starts by exploring the digraph
and whenever it arrives at ith node in its traversal, it simply writes the integer i
on the node. The agent a maintains a partial map Ma containing the nodes and
arcs visited so far by the agent (The map Ma is a subgraph of G). The problem
is that when the agent arrives at an already labelled node, it can not determine
whether v was marked by itself (i.e. v ∈Ma) or node v was marked by the other
agent (i.e. v /∈ Ma). At this stage the agent does not know how to update its
map Ma. So, the agent a executes a checking procedure (to be described later),
in order to determine if node v was marked by another agent. At the end of the
checking procedure, either the agent a realizes that the node v is marked by the
other agent, or, the agent a is able to come back to a known node u in its map
Ma. In the latter case, the agent continues with the traversal without adding
the node v to its map. While in the former case, the agent would have detected
an asymmetry i.e. a difference in the maps of the two agents. Thus, in this case,
the agent starts a new round of exploration (i.e. it executes Algorithm 1) using
its current map Ma as the unique marker to mark nodes during the exploration.
We present below a high level description of the algorithm. A more detailed de-
scription (pseudocode) is given in Algorithm 2. We need the following definition.

Definition 3. For any two nodes u, u′ ∈ G, (u, u′) is called a pseudo-arc if there
is a (not necessarily simple) directed cycle (u, v0, v1, . . . , vt, u

′ = u0, u1, . . . , ut =
u) for some t ≥ 0, such that label(ui)=label(vi), 0 ≤ i ≤ t, λ(vi, vi+1) =
λ(ui, ui+1), 0 ≤ i < t, and λ(ut, v0) = λ(vt, u0). We say that an agent traversed
the pseudo-arc (u, u′) whenever it traverses the path (u, v0, v1, . . . , vt, u

′).

Notice that if ui = vi, 0 ≤ i ≤ t in the above definition, then the pseudo-arc
corresponds to an actual arc in A(G). On the other hand if t = 0 i.e. u = u′,
then the pseudo-arc corresponds to a pair of symmetric arcs between u and v0.

Rendezvous of Mobile Agents in Directed Graphs 289

Algorithm DirRDV

Round I: The agent executes the following steps:

1. The agent executes an exploration procedure during which it traverses the
graph, marks the nodes that it visits with a counter (unless the node is
already marked) and adds any node that it marks, to its local map (the
map is a labelled subgraph of G containing the nodes marked by the agent).
The exploration is interrupted whenever either the agent reaches an already
marked node v or there are no more unexplored arcs that can be reached
from the current node.

2. If the agent has reached an already marked node v, the agent executes pro-
cedure Check-Path at current node v using its current map, in order to
determine if the node v belongs to its map. If procedure Check-Path returns
false then node v does not belong to its map and the agent has detected
an asymmetry in the digraph. In this case the agent executes round two of
the algorithm. Otherwise if Check-Path returns true, the agent would have
returned to a known node u (as shown later) and the agent continues the
exploration from node u.

3. If there are no unexplored arcs incident to any reachable node in the map,
then the agent terminates the exploration and executes procedure Check-
MAP. If the procedure returns true then the current instance is not covering
minimal and thus, the agent declares that rendezvous is not possible. If pro-
cedure Check-MAP returns false then the agent has detected an asymmetry
in the digraph. In this case the agent executes round two of the algorithm.

During Round-I, whenever the agent arrives at an unmarked node v, it writes
on the whiteboard the label of v which consists of the round number, value of
the counter, the current map, and the number of unexplored arcs incident to v.
The partial map Ma maintained by the agent a contains each node marked by
this agent (along with its label) and each explored arc which the agent used to
reach an unmarked node (such an arc is called discovery arc). For any explored
arc that leads to a marked node, the agent adds a pseudo-arc to its map.

Round II: Let Ma be the map obtained by an agent a at the end of first
round. The agent executes algorithm Simple-Explore using Ma as the marker.
Let (G, μG) be the output of the procedure and λ be the arc labeling part of
μG. The agent can obtain the labeling χp by assigning χp(v) := 1 for any node v
whose label has counter value of 1; χp(u) = 0 for any other node u. If (G, λ, χp)
is covering minimal then the agent computes a unique rendezvous location (that
depends only on G, λ and χp) and moves to that location using its map. Other-
wise the agent declares the problem is not solvable and terminates.

Procedure Check-Path: This procedure is executed at a marked node v, by
an agent a that reached v through the arc e = (u, v). Let the current map of
agent a be M which is a labelled subgraph of G. If the label of v does not appear
in M then the procedure returns false. Otherwise there is a node u′ in M that

290 J. Chalopin, S. Das, and P. Widmayer

Algorithm 2. DirRDV

/* Algorithm for rendezvous with detect, for two agents. */

Write HOME on the starting node;
begin

Round := 1; // Begin 1st Round

MAP := φ;
Count := 1;
Write visited(Round, MAP , Count) on current node;
Increment Count;
Add current node to MAP ;
while ∃ a reachable node in MAP that has unexplored arcs do

Go to the closest reachable node u that has unexplored arcs;
Choose the unexplored arc e with smallest label;
Mark e as explored at node u;
Traverse arc e to reach node v;
if v is already marked then

Result := execute Check-Path (MAP , u, e, label(v));
if Result = true, (i.e. ∃u0 ∈ MAP s.t. label(v)=label(u0)) then

Add pseudo-arc (u, u0) to MAP ;
Write the new MAP at node u0;

else
Go to next round;

else
Add node v and arc e to MAP ;
Write visited(Round, MAP , Count) on node v;
Increment Count;

Result := Execute Check-Map(MAP);
if Result = true then

return ”Rendezvous is not possible” ;
else

Go to next round;

end
begin

Round := 2; // Begin 2nd Round

MARKER:= (Round, MAP);
Map2 := Simple-Explore (MARKER);
v := RV-point(Map2);
Go to node v using Map2;

end

has the same label as v. In this case there exists a directed path P from u′ to
u in M . The agent tries to traverse, from the current node v, the path having
a same label-sequence as path P . If such a path does not exist or the agent
detects a discrepancy between the path it is traversing and the path P in M ,
then we know that node v was marked by the other agent and thus, v /∈ M . In
this case, the procedure returns false. Otherwise the procedure returns true and
this implies either node u′ is same as node v (i.e. arc e completes a cycle in M)

Rendezvous of Mobile Agents in Directed Graphs 291

or u′ and v are symmetric nodes in G. In either of these cases, the agent has
returned to the known node u′ in its map, at the end of the checking procedure.

Procedure Check-Map: The agent executes this procedure to check the ac-
curacy of the map that it obtained. The agent first writes the current map on
the whiteboard of each node that it originally marked. Then the agent traverses
the path corresponding to each pseudo arc in the map and compares the label
of each node with the corresponding node in its map. If there is a mismatch,
the procedure returns false (i.e. the agent has detected an asymmetry in the
digraph). Otherwise the procedure returns true at the end of the traversal. (In
this case the map is the base of a covering on the labelled graph (G, λ, χp) as
shown later.)

2

31

G M

3 1

13
2

2

Fig. 2. The labelled digraph M is the map computed by the agents executing our
algorithm on G. The thin arcs in M are the pseudo-arcs and black nodes are homebases.

Lemma 5. If procedure Check-Path returns true for the arc (u, v), then the
agent has returned to a known node u0 in its current map and it has discovered
a new pseudo-arc (u, u0).

Proof. Let v be the current node and e = (u, v) be the last arc traversed by the
agent (let’s call it agent a), at the start of the procedure. The agent a is trying
to determine whether node v belongs to its current map Ma. Note that u ∈Ma

and there exists a node u0 ∈ Ma such that label(u0) = label(v) (otherwise the
procedure would have returned false). If v was marked by agent a then v = u0
(since the agent would not mark two nodes with the same label). In this case the
agent returns to node u0 at the end of the procedure after traversing the path
P = (u0, u) followed by arc e.

Otherwise node v was marked by the other agent (say agent b), i.e. v �= u0. At
the end of the procedure the agent arrives at a node w such that label(w)=label(v)
(otherwise the procedure would return false). Note that either w = v or w = u0,
since there are at most two nodes in the digraph having the same label. Suppose
w = v and let us consider the directed path P ′ traversed by the agent during
the procedure. This path has the same labels as path P above and ends at the
same node (v) as path P . There can not be two distinct incoming arcs with the
same label at any node1. Thus the paths P and P ′ are the same, i.e. u0 = v; A
contradiction! Thus, the node w �= v, which implies that w = u0. So, the agent
would finally arrive at node u0 ∈Ma in either case. ��

1 Recall that we assume duplex arc-labeling.

292 J. Chalopin, S. Das, and P. Widmayer

Lemma 6. If an agent reaches round two of the algorithm DirRDV, then the
two agents have distinct maps at the end of round one.

Proof. An agent reaches round two, if during round one, either an execution of
procedure Check-Path returns false or an execution of Check-MAP returns false.
Suppose an agent a executes procedure Check-Path at node v after traversing
arc e = (u, v) and the procedure returns false. This implies that node v /∈ Ma,
the current map of agent a. Let Mb be the current map of the other agent. We
know v ∈ Mb. If label(v) does not exist in Ma, then Ma �= Mb

⋃
H for any

(possibly empty) subgraph H of G. Thus, even if agent b adds more nodes and
arcs to its map, its map would never be same as Ma. Now let us consider the
other case when one of the nodes u0 ∈ Ma has the same label as node v ∈ Mb.
In this case there is no directed path starting from v that has the same sequence
of labels as the path P = (u0, u) ∈ Ma. The agent b can not mark any other
node w to its map such that label(w)=label(v). Thus, the map of agent b would
never contain any path corresponding to the path P in Ma. Thus the map Ma

would be distinct from the map obtained by agent b at the end of its execution
of round one of the algorithm.

Let us consider the other scenario when the procedure check-MAP returns
false. In this case, either the map Ma is not strongly connected or the maps
written on some of the nodes do not correspond to the map carried by the
agent. In the latter case it is easy to see that the maps carried by the two agents
are distinct. In the former case, notice that (G, λ, χp) is not a covering of Ma

(since G is strongly connected and Ma is not). This implies that the map of the
other agent (which is node disjoint from Ma) can not be an exact copy of Ma. ��

The algorithm terminates unsuccessfully if the procedure CheckMAP returns
true. This happens when the map constructed by the agent at the end of its
exploration (i.e. when there are no more unexplored arcs) is a strongly connected
digraph M such that the map written on any node that the agent visits is
identical. In this case we can show that the original labelled digraph (G, λ, χp)
is a covering of M .

Lemma 7. If the procedure Check-MAP returns true, then the labeled digraph
(G, λ, χp) is not covering minimal.

Proof. Omitted.

Theorem 2. For any strongly connected digraph G and a duplex arc-labeling
λ on G, algorithm DirRDVsolves the rendezvous of two agents placed initially
according to χp, if (G, λ, χp) is covering minimal and otherwise detects that
rendezvous is not solvable.

Proof. The algorithm executed by an agent may terminate after round one only
if the procedure CheckMAP returns true. In this case, we know that (G, λ, χp) is
not covering minimal as proved in Lemma 7. In all other cases, both the agents
reach round two of the algorithm. Thus, due to Lemma 6, the two agents have

Rendezvous of Mobile Agents in Directed Graphs 293

distinct maps at the end of round one. The marker used by each agent consists of
the round number and its map at the end of round one; This marker is distinct
from the marker used by the other agent and also distinct from the markers used
by both agents in the first round. Thus, due to Lemma 3 each agent successfully
builds the map of (G, λ, χp) and if (G, λ, χp) is covering minimal, the agents can
determine a unique location to meet. ��

Theorem 3. Algorithm Rendezvous requires O(m.n) moves by the agents in
total.

Proof. The exploration part of the algorithm requires O(m.n) moves by the
agents (to explore each unexplored arc, e = (u, v) the agent has to traverse at
most n arcs to reach the source u of the arc). There are at most m calls to the
procedure Check-Path and each execution of Check-Path requires O(n) moves
by an agent. The procedure Check-MAP is executed at most once during the
algorithm and this requires O(m.n) moves (since the size of the traversal path
in the procedure is at most m · n). Finally the second round of the algorithm
has the same complexity as procedure Simple-Explore, which requires O(m.n)
moves as shown previously. ��

4 Rendezvous without Incoming Arc Labels

In the previous section, we assumed the presence of local orientation on both
the set of incoming arcs and the set of outgoing arcs incident to any node of
the digraph. Having local orientation on the outgoing arcs is necessary for nav-
igability in the digraph. In this section we consider digraphs G with simplex
arc-labeling λ where incoming arcs at a node are not labelled. In fact, in this
model, the agent can not even determine the in-degree of a node. The difference
between the two models is the following. In the duplex arc-labeling model, any
fibration on (G, λ, χp) was also an opfibration and vice versa. However, in the
simplex arc-labeling model, there could exist an opfibration ϕ from (G, λ, χp) to
a smaller labeled digraph even if (G, λ, χp) is covering minimal (and fibration-
free). In this case there exists a node v ∈ G such that two arcs e, f from distinct
nodes u, u′ lead to the node v such that label(u) = label(u′) and λ(e) = λ(f).
For example, see Figure 3 where the node labelled 4 has two similar incoming
arcs (from two distinct nodes, both labelled with 2).

One consequence of the above observation is that Lemma 5 does not hold
anymore. In other words, after executing procedure Check-Path, if the procedure
returns true, then the agent may not have returned to a known node in its map.
The agent is either back at a node u0 in its own map or it is in some symmetric
node v0 in the map of the other agent. The agent was no means of determining
which case is true. To solve this problem, we take the following approach. The
agent continues with the exploration assuming that it is at node u0. In this case
the agent may have swapped places with the other agent or both agent may be
in the same map. As the two subgraphs corresponding to the two partial maps
are symmetric, it does not matter which part the agent is in. In fact we can

294 J. Chalopin, S. Das, and P. Widmayer

a

b

1

4
2

2

3
1

4
3

Fig. 3. An execution of the algorithm on a digraph G without incoming local orientation

show that the same algorithm from the previous section works also for the case
of simplex arc labeling.

Theorem 4. For any strongly connected digraph G, and a simplex arc-labeling
λ on G, algorithm DirRDVsolves the rendezvous of two agents placed initially
according to χp, if (G, λ, χp) is covering minimal and otherwise detects that
rendezvous is not solvable.

Proof. During the exploration in round one of the algorithm, each agent main-
tains a map of the subgraph explored by it. Let Ma and Mb be the partial
maps of the two agents a and b respectively. If the two maps are not symmetric,
the agents will detect the asymmetry (during an execution of Check-Path or
CheckMAP). Notice that Lemma 6 still holds. So, if the agents go to Round-2,
they would have distinct maps and thus, they will successfully solve the ren-
dezvous problem. Further Lemma 7 also continues to hold and if (G, λ, χp) not
covering minimal, the agents detect that rendezvous is not possible.

The only difference from the previous section occurs when the maps of the two
agents are identical but there exists a node v of G which has two incoming arcs
e, f having the same label x = λ(e) = λ(f). Suppose node v ∈ Ma, then there
exists a node v′ ∈ Mb with identical label as node v. (For an illustration, see
Figure 3 where the nodes labeled 4 correspond to v and v′). In this case, (G, λ, χp)
is still covering minimal and we show below that the two agents indeed succeed
in solving rendezvous for this instance.

The agent that is first to arrive at node v through either arc e or arc f ,
would add an arc labeled x incident to v in its map and write the new map at
v. The other agent that arrives later to v through the other arc, would notice
that the map at v already contains an arc labeled x incoming at the node v.
This inconsistency would be detected when this agent executes Check-Path for
the new arc that it traversed. Thus this agent would execute Round-2 of the
algorithm using a map that does not contain the arcs e or f (such a map is
distinct from the map of the other agent). Now consider the other agent which
added the arc labeled x to its map. Note that the map written at v′ does not
contain such an arc. Thus, when the agent executes CheckMAP at the end of
Round-1, it will arrive at node v′ and detect the inconsistency in the maps.
So, the procedure CheckMAP would return false and the agent would execute
Round-2 of the algorithm using a map which contains one of the arcs e or f .
Thus, the two agents execute round-2 using distinct maps (i.e. distinct markers)
and they would succeed in solving rendezvous. ��

Rendezvous of Mobile Agents in Directed Graphs 295

5 Conclusions

In this paper, we considered the rendezvous of two agents in strongly connected
digraphs. If the digraph G is not strongly connected, it is not always possi-
ble to explore the graph in general and thus, rendezvous is not possible. For
any strongly connected digraph G, the algorithm we presented achieves the ren-
dezvous of two agents whenever it is deterministically possible, i.e. whenever
the labeled digraph (G, λ, χp) is covering minimal (or fibration-free). The ren-
dezvous problem requires breaking the symmetry between two identical agents
and a generalization of this problem, called the Gathering problem, is to gather
together k > 2 agents at a single node of G. To solve the gathering of k > 2
agents we need to extend our solution by generalizing the technique of mapping
paths in the graph using pseudo-arcs. A straightforward generalization of the
algorithm would involve replacing each pseudo-arc traversal with the traversal
of a cycle in the map, repeated r = gcd(1, 2, . . .k) times (instead of just twice as
in our algorithm), in order to ensure that the agent returns to the correct sub-
graph. However, this will blowup the cost of the algorithm exponentially. So, an
interesting question to be answered by future research is whether k > 2 agents
can gather in anonymous digraphs such that the number of moves is polynomial
in the parameters n, m and k. For undirected graphs, it is already known to be
possible using O(m · k) moves.

References

1. Albers, S., Henzinger, M.R.: Exploring Unknown Environments. SIAM Journal on
Computing 29(4), 1164–1188 (2000)

2. Angluin, D.: Local and global properties in networks of processors. In: Proc. of
12th Symposium on Theory of Computing (STOC), pp. 82–93 (1980)

3. Barrière, L., Flocchini, P., Fraigniaud, P., Santoro, N.: Can we elect if we cannot
compare? In: Proc. 15th ACM Symp. on Parallel Algorithms and Architectures
(SPAA’03), pp. 200–209 (2003)

4. Barrière, L., Flocchini, P., Fraigniaud, P., Santoro, N.: Election and rendezvous
in fully anonymous networks with sense of direction. Theory of Computing Sys-
tems 40(2), 143–162 (2007)

5. Baston, V., Gal, S.: Rendezvous search when marks are left at the starting points.
Naval Research Logistics 48(8), 722–731 (2001)

6. Bender, M., Fernandez, A., Ron, D., Sahai, A., Vadhan, S.: The power of a pebble:
Exploring and mapping directed graphs. In: Proc. 30th ACM Symp. on Theory of
Computing (STOC), pp. 269–287 (1998)

7. Boldi, P., Vigna, S.: An effective characterization of computability in anonymous
networks. In: Welch, J.L. (ed.) DISC 2001. LNCS, vol. 2180, pp. 33–47. Springer,
Heidelberg (2001)

8. Boldi, P., Vigna, S.: Fibrations of graphs. Discrete Math. 243, 21–66 (2002)
9. Czyzowicz, J., Dobrev, S., Kralovic, R., Mikĺık, S., Pardubská, D.: Black Hole

Search in Directed Graphs. In: Kutten, S., Žerovnik, J. (eds.) SIROCCO 2009.
LNCS, vol. 5869, pp. 182–194. Springer, Heidelberg (2010)

10. Dessmark, A., Fraigniaud, P., Kowalski, D., Pelc, A.: Deterministic rendezvous in
graphs. Algorithmica 46, 69–96 (2006)

296 J. Chalopin, S. Das, and P. Widmayer

11. Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Multiple agents rendezvous in
a ring in spite of a black hole. In: Papatriantafilou, M., Hunel, P. (eds.) OPODIS
2003. LNCS, vol. 3144, pp. 34–46. Springer, Heidelberg (2004)

12. Dobrev, S., Flocchini, P., Kralovic, R., Santoro, N.: Exploring a dangerous un-
known graph using tokens. In: Proc. of 5th IFIP International Conference on The-
oretical Computer Science, TCS (2006)

13. Fraigniaud, P., Ilcinkas, D.: Digraph exploration with little memory. In: Diekert, V.,
Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 246–257. Springer, Heidelberg
(2004)

14. Czyzowicz, J., Labourel, A., Pelc, A.: How to meet asynchronously (almost) ev-
erywhere. In: Proc. 21st Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA (2010)

15. Fraigniaud, P., Pelc, A.: Deterministic Rendezvous in Trees with Little Memory.
In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 242–256. Springer,
Heidelberg (2008)

16. Kowalski, D.R., Malinowski, A.: How to meet in anonymous network. Theoretical
Computer Science 399(1-2), 141–156 (2008)

17. Kranakis, E., Krizanc, D., Markou, E.: Mobile agent rendezvous in a synchronous
torus. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887,
pp. 653–664. Springer, Heidelberg (2006)

18. Yamashita, M., Kameda, T.: Computing on anonymous networks: Part I–
Characterizing the solvable cases. IEEE Transactions on Parallel and Distributed
Systems 7(1), 69–89 (1996)

19. Yu, X., Yung, M.: Agent rendezvous: A dynamic symmetry-breaking problem. In:
Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp.
610–621. Springer, Heidelberg (1996)

Almost Optimal Asynchronous Rendezvous
in Infinite Multidimensional Grids

Evangelos Bampas1,�, Jurek Czyzowicz2, Leszek Gąsieniec3,
David Ilcinkas1,�, and Arnaud Labourel1,�,��

1 LaBRI, CNRS / INRIA / Université de Bordeaux
{bampas,ilcinkas,labourel}@labri.fr

2 Université du Québec
Jurek.Czyzowicz@uqo.ca
3 University of Liverpool

L.A.Gasieniec@liverpool.ac.uk

Abstract. Two anonymous mobile agents (robots) moving in an asyn-
chronous manner have to meet in an infinite grid of dimension δ > 0,
starting from two arbitrary positions at distance at most d. Since the
problem is clearly infeasible in such general setting, we assume that the
grid is embedded in a δ-dimensional Euclidean space and that each agent
knows the Cartesian coordinates of its own initial position (but not the
one of the other agent). We design an algorithm permitting the agents to
meet after traversing a trajectory of length O(dδpolylog d). This bound
for the case of 2d -grids subsumes the main result of [12]. The algorithm
is almost optimal, since the Ω(dδ) lower bound is straightforward.

Further, we apply our rendezvous method to the following network
design problem. The ports of the δ-dimensional grid have to be set such
that two anonymous agents starting at distance at most d from each other
will always meet, moving in an asynchronous manner, after traversing a
O(dδpolylog d) length trajectory.

We can also apply our method to a version of the geometric ren-
dezvous problem. Two anonymous agents move asynchronously in the
δ-dimensional Euclidean space. The agents have the radii of visibility of
r1 and r2, respectively. Each agent knows only its own initial position
and its own radius of visibility. The agents meet when one agent is visible
to the other one. We propose an algorithm designing the trajectory of
each agent, so that they always meet after traveling a total distance of
O((d

r
)δpolylog(d

r
)), where r = min(r1, r2) and for r ≥ 1.

1 Introduction

1.1 The Problem and the Model

Consider a Euclidean δ-dimensional space F . We construct an infinite grid Gδ

of dimension δ as follows. The set of nodes of Gδ are the points of F with
� Partially supported by the ANR project ALADDIN, the INRIA project CEPAGE

and by a France-Israel cooperation grant (Multi-Computing project).
�� Corresponding author: LaBRI (bât A30), Université Bordeaux 1, 351 cours de la

Libération, F-33405 Talence cedex, France. Tph. +33 (0)5 40 00 66 69.

N.A. Lynch and A.A. Shvartsman (Eds.): DISC 2010, LNCS 6343, pp. 297–311, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

298 E. Bampas et al.

integer coordinates. We link by an edge two nodes u = (u1, u2, . . . , uδ) and v =
(v1, v2, . . . , vδ) iff there is i ∈ {1, 2, . . . , δ}, s.t., ∀j �= i, uj = vj and ui = vi ± 1.
At each node, the endpoints of edges incident to it are labeled by unique integers
from the set {1, 2, . . . , 2δ}, called port numbers.

The route of each agent is a sequence of adjacent edges which are subsequently
traversed during its movement. The actual timing of the walk of each agent along
its route is asynchronous, i.e., it is controlled by an adversary. The adversary
initially places both agents at any two nodes in the grid. Given the coordinates
of its initial location v0, the route chosen by an agent is a sequence of edges in
the grid (e1, e2, . . .), s.t., in stage i the agent traverses the edge ei = [vi−1, vi],
starting at vi−1 and finishing at vi. Stages are repeated indefinitely until ren-
dezvous is accomplished. We assume that each agent starts its walk at any time,
but both agents are placed by the adversary at their respective initial positions
at the same time, and since that moment any moving agent may encounter the
other agent, even if the other agent didn’t start its walk yet.

We describe the walk f of an agent on its route following definitions from [12,
15, 16]. Let R = (e1, e2, . . .) be the route of an agent. Let (t1, t2, . . .), where
t1 = 0, be an increasing sequence of reals, chosen by the adversary, that represent
points in time. Let fi : [ti, ti+1] → [vi, vi+1] be any monotonous, continuous
function, chosen by the adversary, s.t., fi(ti) = vi and fi(ti+1) = vi+1. For any
t ∈ [ti, ti+1], we define f(t) = fi(t). The interpretation of the walk f is as follows.
At time t the agent is at point f(t) of its route. The adversary may arbitrarily
vary the speed of the agent for as long as the walk of the agent in each segment
is continuous and monotonous.

Agents with routes R1 and R2 and with walks f (1) and f (2) meet at time t, if
points f (1)(t) and f (2)(t) are identical. A rendezvous is guaranteed for routes R1
and R2, if the agents using these routes meet, regardless of the walks chosen by
the adversary. The cost of the rendezvous algorithm is measured by the sum of
the lengths of the trajectories of both agents from their starting locations until the
time t of the rendezvous. Since the actual portions of these trajectories may vary
depending on the adversary, we consider the maximum of this sum, i.e., the worst-
case over all possible walks chosen for both agents by the adversary. In this paper
we are looking for a rendezvous algorithm of the smallest possible cost with respect
to the unknown original distance d between the agents.

1.2 Related Work

The rendezvous problem was first described in [38]. A detailed discussion of the
large literature on rendezvous can be found in the excellent book [3]. Most of
the results in this domain can be divided into two classes: those considering
the geometric scenario (rendezvous in the line, see, e.g., [7, 8, 23], or in the
plane, see, e.g., [5, 6]), and those discussing rendezvous in graphs, e.g., [2, 4]. A
generalization of the rendezvous problem is that of gathering [21, 27–29, 35, 41],
when more than two agents have to meet in one location.

If graphs are unlabeled, deterministic rendezvous requires breaking symme-
try, which can be accomplished either by allowing marking nodes or by labeling

Asynchronous Rendezvous in Infinite Multidimensional Grids 299

the agents. Deterministic rendezvous with anonymous agents working in un-
labeled graphs but equipped with tokens used to mark nodes was considered
e.g., in [33]. In [43] the authors studied gathering of many agents with unique
labels. In [17, 31, 40] deterministic rendezvous in graphs with labeled agents
was considered. However, in all the above papers, the synchronous setting was
assumed. Asynchronous gathering under geometric scenarios has been studied,
e.g., in [13, 21, 37] in different models than ours: agents could not remember past
events, but they were assumed to have at least partial visibility of the scene. The
first paper to consider deterministic asynchronous rendezvous in graphs was [16].
The authors concentrated on complexity of rendezvous in simple graphs, such
as the ring and the infinite line. They also showed feasibility of deterministic
asynchronous rendezvous in arbitrary finite connected graphs with known upper
bound on the size. Further improvements of the above results for the infinite
line were proposed in [39]. Gathering many robots in a graph, under a different
asynchronous model and assuming that the whole graph is seen by each robot,
has been studied in [28, 29].

The assumption that the distributed mobile entities know their initial location
in the geometric environment was considered in the past, e.g., in the context of
geometric routing, see, e.g., [1, 9, 32, 34], where it is typically assumed that the
source node knows the position of the destination as well as its own position,
or broadcasting [19, 20], where the position awareness of only the broadcasting
node is admitted. Such assumption, partly fueled by the availability and the
expansion of the Global Positioning System (GPS), is sometimes called location
awareness of agents or nodes of the network, and it often leads to better bounds
of the proposed solutions.

An alternative approach to location awareness is adopted in network design
where the nodes of the network are preprocessed in order to enable or to speed up
a certain distributed process. For example, in the context of graph exploration
it was shown in [11] that a suitable a priori coloring of the nodes with 3 colors
provides a graph environment that can be explored by an agent equipped with
a constant size memory. In contrast, if the preprocessing is not allowed it is
known [22] that an agent requires Ω(log n) bits of memory to be able to explore
all graphs of order n. Another approach to network design consists in graph
preprocessing by setting the port numbers, so that the graph exploration is easy,
i.e., with constant memory, e.g. see [24, 26] or memoryless agents, [14, 18, 30].

The efficient rendezvous solutions proposed in this paper rely directly on the
use of space-covering sequences introduced recently in [12]. The space-covering
sequences are close relatives to space-filling curves studied extensively in the
literature, see, e.g., [10, 25, 36, 42]. The space-filling curves visit every point in
an infinite grid exactly once. Gotsman and Lindenbaum pointed out in [25] that
for any space-filling curve there always exist some close points in the grid that
are arbitrarily far apart on the space-filling curve, i.e., these type of curves fail in
preserving locality in the worst case. The deficiency of space-filling curves comes
from the assumption that they must visit each point in a discrete 2d-space
exactly once. The authors of [12] propose a novel structure of space-covering

300 E. Bampas et al.

sequences that traverse points in a discrete 2d-space repeatedly. They show that
for any two points located at an arbitrary distance d in the 2d-space there
are well defined and efficiently computable instances of these two points in the
sequence at distance O(d2+ε) apart, for any positive constant ε.

1.3 Our Results

In this paper, we design efficient rendezvous algorithms for anonymous agents
asynchronously moving in multidimensional infinite grids. In section 2, we con-
sider the location aware agents, i.e., agents knowing the Cartesian coordinates
of their own initial positions in the integer grid. We give an almost optimal
O(dδpolylog d) rendezvous algorithm where δ is the space dimension of the grid.
Our approach, applied to the 2-dimensional grid, results in an O(d2polylog d) al-
gorithm, improving the recent main result from [12], i.e., a O(d2+ε) upper bound.
This may be seen as an exponential improvement on the deficiency factor that
leads to an almost optimal solution since a straightforward lower bound on the
worst case distance is Ω(d2). The consequence of our approach is the design of
the more efficient and simpler space-covering sequences introduced in [12]. In
section 3 we show how this approach may be applied to the case of rendezvous
of two agents with positive visibility radii, moving in a Euclidean space. Again
each agent is aware of its original position (but not the position of the other
agent). Finally, in section 4, we show that it is possible to set the port numbers
of the integer grid in the δ-dimensional space to achieve an efficient rendezvous.
In this case, the anonymous agents are not location aware.

2 Rendezvous Algorithm for Location Aware Agents in
the Grid

In this section we assume that the grid belongs to the Euclidean δ-dimensional
space F and each agent knows the integer Cartesian coordinates of its initial
position in the space. We assume that the agents have coherent compasses and
a common unit of length permitting to refer to the same system of Cartesian
coordinates.

The general idea of our approach is the following. The rendezvous algorithm
constructs the trajectory of the agents following the integer grid lines of the
Euclidean space. Hence each such line contains points (x1, x2, . . . , xδ), where
xi, for some fixed 1 ≤ i ≤ δ is any real value, and each xj , for j �= i, 1 ≤
j ≤ δ is some integer. We will define an infinite sequence of grids, each grid
inducing a partition of the space into δ-dimensional hypercubes. The size of these
hypercubes increases when following this sequence of partitions. We then define
a directed acyclic graph whose nodes are the hypercubes of all such partitions,
with arcs between intersecting hypercubes belonging to consecutive partitions
(the arcs are directed from the larger to the smaller hypercubes). For any initial
position p of the agent, we consider an infinite tree T (p) containing all hypercubes
of the family containing point p, such that for each node in T (p) its successors

Asynchronous Rendezvous in Infinite Multidimensional Grids 301

are also in T (p) and if the same hypercube is obtained this way more than once it
is duplicated so that T (p) remains a tree. The route produced for each agent will
correspond to the upward movement along T (p) interleaved with some depth-
first-search type traversals of the siblings of the newly visited node. We show
that the two agents will eventually visit some hypercube, belonging to both their
respective trees, which contains the two initial positions of the agents. The route
corresponding to the visit of such a hypercube will result in rendezvous.

2.1 Euclidean Space Partitions Induced by Multidimensional Grids

We consider an infinite sequence of partitions Π = π1, π2, . . . of the grid Gδ

into hypercubes of dimension δ in F . For the sake of simplicity, in the rest
of the paper, we will use the term hypercube for a hypercube of dimension δ.
The corners of hypercubes in πi are points u = (u1, u2, . . . , uδ) such that ∀j ∈
{1, 2, . . . , δ}, uj = 2i−1 + k2i for some integer k. Each grid πi partitions space F
into hypercubes of side length 2i. To assure that each πi forms an exact partition,
we assume that each hypercube H contains, besides its interior points, the corner
v having maximum coordinates, as well as all open f -faces containing v, for
f = 1, 2, . . . , δ − 1. Such corner v is called the reference point of the hypercube
containing it. For example, a 3-dimensional hypercube, having points (0, 0, 0)
and (1, 1, 1) as its corners, is a union of its reference point v = (1, 1, 1), the three
open edges of the cube incident to v, the three open square faces incident to v,
and the interior of the cube.

Lemma 1. For positive integers i and k, such that i ≥ k + 1, any hypercube
located in partition πi intersects (2k +1)δ hypercubes belonging to partition πi−k.

Proof. Let C be a hypercube drawn from partition πi. Consider any edge e of C
along dimension l ∈ {1, . . . , δ}. This edge is of length 2i. Due to the definition of
Π the edge e cannot be aligned with edges in partition πi−k and each endpoint
of e is located in the centre of some hypercube in this partition. Since hyper-
cubes in partition πi−k are of size 2i−k, the edge e must penetrate (including
its endpoints) exactly 2i

2i−k + 1 = 2k + 1 hypercubes in πi−k. Finally, since this
phenomenon applies to every dimension, the number of hypercubes in partition
πi−k intersected by a hypercube in partition πi is (2k + 1)δ. ��

By Γ we denote the subsequence γ1 = πi1 , γ2 = πi2 , . . . , of the above sequence
of partitions, such that the indices ij are defined by the recurrence:

i1 = 1
ij+1 = ij + max{1, �log ij�}

We consider the infinite, directed acyclic graph T , whose nodes are the hy-
percubes of the partitions γ1, γ2, . . . and there is a directed edge in T from
hypercube P to Q, if

– P and Q are from two consecutive grids γk and γk−1, respectively, and
– P and Q have a nonempty intersection

302 E. Bampas et al.

For any point p of the Euclidean space, we call the ascending path Ak(p)
the path of T formed of the hypercubes S1(p), S2(p), . . . , Sk(p), such that each
hypercube Si(p) belongs to grid γi and p ∈ Si(p). By Tk(p) we denote the tree
containing the ascending path Ak(p), rooted at Sk(p), obtained from T in such
a way that, each time a hypercube has more than one predecessor in T , it is
split (duplicated together with all its succession class) so eventually a tree is
obtained. By T (p) we denote the infinite tree obtained in the similar way.

Lemma 2. For a given point p of the Euclidean space and for s ≥ 4, any hy-
percube of size s · 2�log log s� belonging to T (p) has (2�log log s� + 1)δ children.

Proof. The proof follows directly from the definition of T (p) and from Lemma 1.
��

Lemma 3. For any pair of points p1, p2 at distance d in the Euclidean space and
any δ + 1 partitions γj1 , γj2 , . . . , γjδ+1 ,∈ Π, each one composed of hypercubes of
size at least 4d, there exists a hypercube of one of the partitions which contains
both points p1, p2.

Proof. First, we have to show the following claim.

Claim. Let H1 and H2 be two hyperplanes (of dimension δ− 1) in F separating
hypercubes in distinct partitions of γj1 , γj2 , . . . , γjδ+1 . If H1 and H2 are parallel
then they are at distance at least 2d of each other.

Proof of the claim. Let H1 and H2 be hyperplanes separating hypercubes in
γi and γj respectively. H1 is defined by xl = 2i−1 + k2i for some l ∈ {1, 2, . . . , δ}
and k ∈ Z. Similarly, H2 is defined by xl′ = 2j−1+k′2j for some l′ ∈ {1, 2, . . . , δ}
and k′ ∈ Z). Notice that the normal vector of H1 is parallel to the xl-axis and
that the normal vector of H2 is parallel to the xl′ -axis. H1 and H2 are parallel
if and only if l = l′. Assume without loss of generality that i < j. The distance
between the hyperplanes is equal to :

dist(H1, H2) = |(2i−1 + k2i)− (2j−1 + k′2j)|
= 2i−1|(1 + 2k)− 2j−i(1 + 2k′)|

Notice that |(1+2k)−2j−i(1+k′2k′)| is an integer since k, k′ and 2j−i are integers.
Moreover, |(1 + 2k)− 2j−i(1 + k′2k′)| is odd and so it is greater than zero, since
(1 + 2k) is odd and 2j−i(1 + 2k′) is even. It follows that dist(H1, H2) ≥ 2i−1.
Finally, since the size of the hypercubes in γi is 2i ≥ 4d, the hyperplanes are at
distance at least 2d. This ends the proof of the claim.

Assume, by contradiction, that there are two points p1, p2 at distance d that
are not in the same hypercube in any partition in γj1 , γj2 , . . . , γjδ+1 . Since p1 and
p2 are not in the same hypercube in each γji , there is at least one hyperplane Hi

separating p1 and p2, i.e., the segment joining p1 and p2 intersects Hi. Let H be
the set {H1, H2, . . . , Hδ+1}. There are at least two parallel hyperplanes H and H ′

Asynchronous Rendezvous in Infinite Multidimensional Grids 303

in H since the normal vector of each Hi is parallel to an axis of the space F .
The segment s joining p1 and p2 intersects H in u and H ′ in v. The distance
between p1 and p2 is at least the distance between u and v, hence, at least the
distance between H and H ′. However, by the Claim, H and H ′ are at distance
at least 2d, a contradiction. It follows, that there exists a hypercube in one of
the partitions containing both points p1 and p2. ��

2.2 The Algorithm

In the beginning the agent is at its original position p. The agent calls procedure
Initialize (line 2) to move to the reference point of the hypercube H1 from
γ1 (the lowest level grid of the construction) containing p. H1 is the starting
point in the ascending path A(p) of the infinite tree T (p), represented also by
the single-node tree T1(p). The execution of the algorithm corresponds to the
traversal of the ascending path A(p), constructing iteratively the sequence of
trees T1(p), T2(p), We say that, when an agent advances on the ascending
path to a new hypercube Hi+1, which is the root of the tree Ti+1(p), the agent
explores the new hypercube Hi+1. The exploration of a new hypercube is an
attempt to meet the other agent, which, at this time, may be exploring the same
hypercube or one of its ancestors.

The exploration of the hypercube Hi+1 is made during the i-th iteration of the
main loop of the RV algorithm. At the beginning of the i-th iteration the agent
is placed in the reference point of hypercube Hi – the root of Ti(p). The first
phase of the loop consists in moving to the reference point of Hi+1. Iteratively,
each preceding sibling of Hi is traversed in the backward sense by Traverse
procedure and the previous sibling is reached by the corresponding connector
(lines 7-9). Eventually, when the smallest sibling is reached and traversed, the
connector to its parent is traversed (line 11), leading to the reference point of
Hi+1. Finally, Hi+1 is traversed in the forward sense by Traverse procedure
(line 13).

The entire route of the agent is the concatenation of a sequence of connectors
between different hypercubes of the construction (most of them repeated many
times). Each such connector either joins consecutive siblings or it joins the first
child (the smallest among all siblings) and its parent. In order to use efficient
(i.e., short) connectors, the children of each node are arranged in such a way
that the first child contains the reference point of its parent, and the consecutive
siblings are adjacent hypercubes, i.e., they share a (δ − 1)-face, cf. Lemma 4
below. Then, when children are of diameter r, all connectors between them or
joining them to parents are of length O(r).

The algorithm uses a variable height which is the height of the hypercube
in the tree T (p), which is currently being explored. The variable H corresponds
to the hypercube at the reference point of which the agent currently is. The
operation Connect(H, C) generates a connector from the reference point of the
current hypercube H to the reference point of the hypercube C. Notice

304 E. Bampas et al.

Algorithm RV(point p)
1 height← 1;
2 H ← Initialize(v);
3 Traverse(H, 1, forward);
4 repeat
5 P ← Parent(H, p)
6 Traverse(H, height, backward);
7 while PrevSib(H, P) exists do
8 Connect(H, PrevSib(H, P)); H ← PrevSib(H, P);
9 Traverse(H, height, backward);
10 height← height + 1;
11 Connect(H, P);
12 H ← P ;
13 Traverse(H, height, forward);
14 until rendezvous

that C must be either the first child, parent, next sibling or previous sibling of
H . The next sibling and previous sibling of a node can be obtained by procedure
NextSib(H, P) and PrevSib(H, P) respectively. Observe that these procedures
use a parent P of the hypercube H as a parameter since a hypercube can have
one of several parents and so one of several potential next or previous siblings.
The procedure Parent(H, p) returns the parent of H containing point p.

The procedure Traverse(H, height, sense) performs essentially the depth-
first-search traversal of the subtree of T (p) rooted at hypercube H at height
height. The parameter sense permits to indicate an orientation for the traversal
of T (p), either backward or forward. The traversal of a hypercube performed
with parameter sense equal to backward is the reverse of the traversal done with
sense equal to forward. The procedure TraverseUnit performs the traversal
of a hypercube of size 2 in γ1.

procedure Traverse(H, height, sense)
1 if (height = 1) then
2 TraverseUnit(H, 1, sense)
3 else
4 C ← FirstChild(H);
5 Connect(H, C);
6 while NextSib(C, H) exists do
7 if(sense = forward) then
8 Traverse(C, height− 1, forward);
9 Connect(C, NextSib(C, H)); C ← NextSib(C, H);
10 Traverse(C, height− 1, sense);
11 while PrevSib(C, H) exists do
12 Connect(C, PrevSib(C, H)); C ← PrevSib(C, H);
13 if(sense = backward) then
14 Traverse(C, height− 1, backward);
15 Connect(C, H);

Asynchronous Rendezvous in Infinite Multidimensional Grids 305

Lemma 4. The total length of the connectors linking the space-covering of the
children of a hypercube H of size s · 2�log log s� is O(s · 2δ(log log s+1)).

Proof. Note first that the children of H form also a hypercube of size
s(2�log log s� + 1) composed of smaller hypercubes of size s (this is not a hy-
percube which is an element of any of the grid partitions considered). In each
hypercube of size s, the corner with the largest coordinates is chosen as its repre-
sentative. The representatives can be interpreted as nodes of another hypercube
Hr of size s · 2�log log s� in which edges are of length s. It is possible to find a
Hamiltonian path in Hr connecting the representatives, sharing the (δ−1)-faces,
and further use the edges of this tour as connectors. Since the number of repre-
sentatives is 2δ(log log s+1) and the edges of the tour are of length s, the length of
the Hamiltonian path and in turn the total length of the connectors is bounded
by O(s · 2δ(log log s+1)). ��

Lemma 5. The length of the trajectory of the agent corresponding to the explo-
ration of a hypercube of size s is O(sδ log s).

Proof. A hypercube of size s ·2�log log s� has (2�log log s�+1)δ children by Lemma 2
and the total length of the connectors of its children is O(s · 2δ(log log s+1)) by
Lemma 4. Hence, the function λ(s) defining the length of the portion of the
trajectory corresponding to the exploration of a hypercube of size s is given by
the following recurrence :

λ(1) = c1

λ(s · 2�log log s�) = (2�log log s� + 1)δλ(s) + O(s · 2δ(log log s+1))

Let c2 ≥ 1 be a constant whose exact value will be defined later. We prove by
induction that there is a constant c3, such that for s ≥ c2, we have the following
property:

Ps : λ(s) ≤ c3s
δ log s

We assume that the constant c3 is large enough such that c3 ≥ λ(c2)
cδ
2 log c2

. Hence,
Pc2 is true. Now, we assume by induction that Ps is true. We have:

λ(s · 2�log log s�) ≤ (2�log log s� + 1)δλ(s) + c4s · 2δ(log log s+1)

≤ (2�log log s� + 1)δc3s
δ log s + c4s · 2δ(log log s+1)

Hence to prove that Ps2�log log s� is true, it is sufficient to prove that:

(2�log log s� + 1)δc3s
δ log s + c4s · 2δ(log log s+1) ≤ c3s

δ2δ�log log s� log(s · 2�log log s�)

(2�log log s� + 1)δ

2δ�log log s� log s +
c42δ

c3sδ−1 ≤ log s + log log s

Notice that:

(2�log log s� + 1)δ = 2δ�log log s� +
δ−1∑
k=0

(
δ

k

)
2k�log log s�

≤ 2δ�log log s� + 2δ2(δ−1)�log log s�

306 E. Bampas et al.

Hence it is sufficient to prove that:

2δ�log log s� + 2δ2(δ−1)�log log s�

2δ�log log s� log s +
c42δ

c3sδ−1 ≤ log s + log log s

2δ

2�log log s� log s +
c42δ

c3sδ−1 ≤ log log s

2δ +
c42δ

c3sδ−1 ≤ log log s since log s≤2�log log s�

2δ +
2δ

sδ−1 ≤ log log s assuming that c3 ≥ c4

The left term tends to 2δ for s going to the infinity. Since the right term tends to
the infinity and is positive for s going to the infinity, there must exist a constant
c5 such that the inequality is satisfied for all s ≥ c5. By taking c2 = c5 and
c3 = max

{
c4,

λ(c2)
cδ
2 log c2

}
, all the assumptions made during the proof are fulfilled.

Finally, Ps is true for every s by induction. ��

Theorem 1. Suppose that a pair of agents is originally placed at any two points
p1, p2 at distance at most d in the δ-dimensional infinite integer grid. Consider
the trajectories computed by RV(p1) and RV(p2). Any asynchronous walk along
these trajectories results in the rendezvous of the agents after traversing trajec-
tories of length O(dδ logδ2+δ+1 d).

Proof. We show first that all the connectors may be correctly computed by the
agent using RV algorithm. Consider first the connectors used in algorithm RV.
Suppose that the agent stores in its memory the global variable height - the
height of the hypercube actually explored, the coordinates of its initial position
p as well as the number of iterations of the loop from lines 7-9 that have already
been performed within the current iteration of the main loop from lines 4-14.
From this information and from the knowledge how the siblings at each level
have been arranged, the agent may compute in which direction (i.e., positive
or negative direction of some of the δ axes of the grid) the connector to the
next or the previous sibling goes. The length of this connector is a function
of height solely. Similarly the connector between a parent and its first child is
easily computed since the position of the reference point of the first child is easily
computed from the reference point of the parent.

In order to compute correctly the connectors computed in the Traverse pro-
cedure, we suppose that for each active call of Traverse we keep on the recursive
stack the local variable height as well as the number of the sibling in lines 8 and
14 for which the current recursive call from its parent node is made. The data
stored on the recursive stack and the knowledge how the siblings at each level are
arranged allow to compute the direction and the length of each of the connectors.

In order to consider the moment of termination of the algorithm take (δ + 1)
consecutive grids γk, γk+1, . . . , γ(k+δ) of Γ , such that γk is the first grid of Γ
containing hypercubes of size at least 4d. By Lemma 3, one of the grid parti-
tions contains some hypercube H containing both points p1 and p2. Suppose, by

Asynchronous Rendezvous in Infinite Multidimensional Grids 307

symmetry, that the agent originally placed at point p1 is the first one to com-
plete the traversal of H . Since the other agent is all the time situated inside the
segment of the trajectory corresponding to H the agents must meet.

The largest such hypercube H (the one belonging to γk+δ) has the size in
O(d logδ+1 d). By an application of Lemma 5 for s = O(d logδ+1 d), we obtain
the statement of the theorem. ��

To show that the above result is almost optimal observe that there are Ω(dδ)
integer grid points in the d-neighborhood of any point. Since the adversary may
hold one of the agents for arbitrary long time close to its initial position, the
second agent must eventually explore its entire d-neighborhood using a trajectory
of length Ω(dδ).

3 Location Aware Agents in Euclidean Space with
Non-zero Visibility

We now consider a model in which an agent at point p in the δ-dimensional Eu-
clidean space F sees all points in the δ-dimensional ball of radius r ≥ 1 centered
at p. We say that the agent has visibility range r. In this model, rendezvous oc-
curs when one of the agents sees the other. Agents may have different visibility
radii, thus it is not necessary that they both see each other at the same time.
Each agent is aware of the coordinates of its own location at any time.

The idea is to apply the algorithm developed in the previous section for
location-aware agents with zero visibility, but choosing the size of the lowest-
level hypercubes in such a way that it is as large as possible and whenever an
agent traverses the portion of its trajectory that corresponds to the lowest level
hypercubes, it sees all of their interior points.

Each agent, knowing its visibility radius r, determines the maximum integer
k (possibly negative) such that k ≤ log r√

δ
. Note that this implies r ≥ 2k

√
δ,

therefore the visibility radius of the agent is at least the diameter of a hypercube
of size 2k. This implies that an agent visiting a node of this hypercube sees all
the interior points. Having computed the value of k, the agent moves from its
original position to the closest reference point of some hypercube of size 2k of
the appropriate layer in the hierarchy Π . From that point, it starts executing
the algorithm of the previous section with a unit hypercube of size 2k.

In a more general setting, the two agents have different visibility radii r1 and
r2. As explained above, they compute their respective values k1 and k2 and
they start executing the rendezvous algorithm with hypercubes of respective
sizes 2k1 and 2k2 . Essentially, the two agents ascend the same tree-like structure
T as before, except that they start at a higher level which is possibly not the
same for the two agents. In any case, one of the agents will start exploring first
a hypercube that is guaranteed to contain both starting points, according to
Lemma 3, and thus it will be able to see the other agent effecting rendezvous.

Due to the modification of the size of the unit hypercubes of the agents, the
algorithm behaves in the worst case as if the distance between the starting points

308 E. Bampas et al.

of the agents is scaled by 2−k < 2
√

δ
r , where r = min{r1, r2}. This results in a

trajectory of length O((2d
√

δ
r)δ logδ2+δ+1(2d

√
δ

r)) = O((d
r)δ logδ2+δ+1(d

r)).

4 Setting the Grid Port Numbers for Efficient
Rendezvous

We now sketch how to convert the algorithm we developed in Section 2 into
an algorithm suitable for anonymous grids with local port numbering. The idea
is to put labels on the nodes of the grid, and then using these labels simulate
the rendezvous algorithm in the absence of location awareness on the part of
the agents. We then discuss how to manipulate the local port numbers at each
node so that the agent is able to extract each node’s label by performing a short
exploration of its neighborhood.

Omitting the details of the labeling process due to lack of space, we just men-
tion that for dimension δ we need O(2δ) different labels. By choosing carefully
the order of the children of each hypercube, we can make sure that the labels
provide the agent with enough information to execute the rendezvous algorithm.
We now elaborate on the port setting scheme that we use. Let x = (x1, . . . , xδ)
be an arbitrary node in the δ-dimensional grid. For i in the range 1 ≤ i ≤ δ,
we assign port number i of node x to the edge connecting node x to node
(x1, . . . , xi−1, xi +1, xi+1, . . . , xδ). The remaining port numbers from δ +1 to 2δ
may be assigned in any of δ! ways to the remaining edges outgoing from x. This
assignment is described by a permutation σx of {1, . . . , δ}, such that for all i in
the range 1 ≤ i ≤ δ, port number δ + σx(i) of node x is assigned to the edge
connecting node x to node (x1, . . . , xi−1, xi − 1, xi+1, . . . , xδ).

Now, suppose that the agent finds itself at node x. It is possible to recover the
permutation σ−1

x , thus also the permutation σx, in the following way: for each i
in the range 1 ≤ i ≤ δ, (a) follow port number δ + i of node x, (b) observe the
port number j (1 ≤ j ≤ δ) that corresponds to the edge just traversed in the
local port order of the new node, (c) follow port number j of the new node to
go back to the original node x. Then, the agent can deduce that σ−1

x (i) = j.
Knowing σx, the agent knows exactly which port number corresponds to each

direction out of node x in the δ-dimensional grid. Furthermore, the port setting
scheme we just described endows each node with one out of δ! distinct labels.
Therefore, for large enough dimension δ, it is possible to encode the required
node labels using the available port number permutations.

We modify the rendezvous algorithm so that whenever an agent arrives at a
node x, it performs the following trajectory: it follows port numbers δ+1, . . . , 2δ,
in that order, and then if follows port numbers 2δ, . . . , δ + 1, in that order,
each time returning to node x. During the first phase of this trajectory (ports
δ + 1, . . . , 2δ), the agent recovers the permutation σx, and thus the label of x.
This modification increases the length of the trajectory of each agent by a factor
of O(δ). Moreover, since the interjected trajectory is a palindrome and both
agents perform it at each node they visit, in the worst case they will meet while

Asynchronous Rendezvous in Infinite Multidimensional Grids 309

exploring the neighborhood of the same node as the one on which they would
meet using the original algorithm.

Thus, we arrive at the following theorem:

Theorem 2. For large enough δ, it is possible to preprocess the local port num-
bers in the δ-dimensional infinite grid so that two agents originally placed at
distance at most d in the grid can achieve rendezvous after traversing trajecto-
ries of size O(dδ logδ2+δ+1 d).

For smaller number of dimensions δ, it is still possible to encode all the required
labels in the grid, by coarsening the grid on which the algorithm is executed and
using more than one node of the original grid to encode the label of a node in
the coarsened grid. Details are omitted due to lack of space.

5 Final Remarks

Several interesting questions remain unanswered. E.g., is it possible to design
an optimal O(dδ) rendezvous algorithm in δ-dimensional grids? Is it possible to
extend the location aware approach to some classes of graphs other than grids?
In Section 4 there seems to be a lot of freedom when choosing possible port
arrangements. Is it possible to use a more sophisticated port arrangements so
that the mobile agent uses o(log d) or even a constant number of its memory
bits?

References

1. Abraham, I., Dolev, D., Malkhi, D.: LLS: a locality aware location service for
mobile ad hoc networks. In: Proc. DIALM-POMC 2004, pp. 75–84 (2004)

2. Alpern, S.: The rendezvous search problem. SIAM J. on Control and Optimiza-
tion 33, 673–683 (1995)

3. Alpern, S., Gal, S.: The theory of search games and rendezvous. Int. Series in
Operations research and Management Science, vol. 55. Kluwer Academic Publisher,
Dordrecht (2002)

4. Alpern, J., Baston, V., Essegaier, S.: Rendezvous search on a graph. Journal of
Applied Probability 36, 223–231 (1999)

5. Anderson, E., Fekete, S.: Asymmetric rendezvous on the plane. In: Proc. 14th
Annual ACM Symp. on Computational Geometry, pp. 365–373 (1998)

6. Anderson, E., Fekete, S.: Two-dimensional rendezvous search. Operations Re-
search 49, 107–118 (2001)

7. Baston, V., Gal, S.: Rendezvous on the line when the players’ initial distance is
given by an unknown probability distribution. SIAM J. on Control and Optimiza-
tion 36, 1880–1889 (1998)

8. Baston, V., Gal, S.: Rendezvous search when marks are left at the starting points.
Naval Res. Log. 48, 722–731 (2001)

9. Bose, P., Morin, P., Stojmenovic, I., Urrutia, J.: Routing with guaranteed delivery
in ad hoc wireless networks. Wireless Networks 7(6), 609–616 (2001)

310 E. Bampas et al.

10. Buchin, K.: Constructing Delaunay Triangulations along Space-Filling Curves. In:
Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 119–130. Springer,
Heidelberg (2009)

11. Cohen, R., Fraigniaud, P., Ilcinkas, D., Korman, A., Peleg, D.: Label-guided graph
exploration by a finite automaton. ACM Transactions on Algorithms 4(4), 1–18
(2008)

12. Collins, A., Czyzowicz, J., Gasieniec, L., Labourel, A.: Tell me where I am so I can
meet you sooner: Asynchronous rendezvous with location information. In: Proc. of
ICALP 2010 (2010)

13. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Solving the Robots Gather-
ing Problem. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.)
ICALP 2003. LNCS, vol. 2719, pp. 1181–1196. Springer, Heidelberg (2003)

14. Czyzowicz, J., Dobrev, S., Gasieniec, L., Ilcinkas, D., Jansson, J., Klasing, R.,
Lignos, I., Martin, R.A., Sadakane, K., Sung, W.-K.: More Efficient Periodic
Traversal in Anonymous Undirected Graphs. In: Kutten, S., Žerovnik, J. (eds.)
SIROCCO 2009. LNCS, vol. 5869, pp. 167–181. Springer, Heidelberg (2010)

15. Czyzowicz, J., Labourel, A., Pelc, A.: How to meet asynchronously (almost) ev-
erywhere. In: Proc. of SODA 2010, pp. 22–30 (2010)

16. De Marco, G., Gargano, L., Kranakis, E., Krizanc, D., Pelc, A., Vaccaro, U.: Asyn-
chronous deterministic rendezvous in graphs. Theoretical Computer Science 355,
315–326 (2006)

17. Dessmark, A., Fraigniaud, P., Kowalski, D., Pelc, A.: Deterministic rendezvous in
graphs. Algorithmica 46, 69–96 (2006)

18. Dobrev, S., Jansson, J., Sadakane, K., Sung, W.-K.: Finding short right-hand-on-
the-wall walks in graphs. In: Pelc, A., Raynal, M. (eds.) SIROCCO 2005. LNCS,
vol. 3499, pp. 127–139. Springer, Heidelberg (2005)

19. Emek, Y., Gasieniec, L., Kantor, E., Pelc, A., Peleg, D., Su, C.: Broadcasting
in UDG radio networks with unknown topology. Distributed Computing 21(5),
331–351 (2009)

20. Emek, Y., Kantor, E., Peleg, D.: On the effect of the deployment setting on broad-
casting in Euclidean radio networks. In: Proc. PODC 2008, pp. 223–232 (2008)

21. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous
oblivious robots with limited visibility. In: Ferreira, A., Reichel, H. (eds.) STACS
2001. LNCS, vol. 2010, pp. 247–258. Springer, Heidelberg (2001)

22. Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., Peleg, D.: Graph exploration by a
finite automaton. Theoretical Computer Science 345(2-3), 331–344 (2005)

23. Gal, S.: Rendezvous search on the line. Operations Research 47, 974–976 (1999)
24. Gasieniec, L., Klasing, R., Martin, R.A., Navarra, A., Zhang, X.: Fast peri-

odic graph exploration with constant memory. J. on Computer Systems and Sci-
ences 74(5), 808–822 (2008)

25. Gotsman, C., Lindenbaum, M.: On the metric properties of discrete space-filling
curves. IEEE Transactions on Image Processing 5(5), 794–797 (1996)

26. Ilcinkas, D.: Setting Port Numbers for Fast Graph Exploration. Theor. Comput.
Sci. 401(1-3), 236–242 (2008)

27. Israeli, A., Jalfon, M.: Token management schemes and random walks yield self
stabilizing mutual exclusion. In: Proc. PODC’90, pp. 119–131 (1990)

28. Klasing, R., Kosowski, A., Navarra, A.: Taking advantage of symmetries: gathering
of asynchronous oblivious robots on a ring. In: Baker, T.P., Bui, A., Tixeuil, S.
(eds.) OPODIS 2008. LNCS, vol. 5401, pp. 446–462. Springer, Heidelberg (2008)

29. Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots
in a ring. Theoretical Computer Science 390, 27–39 (2008)

Asynchronous Rendezvous in Infinite Multidimensional Grids 311

30. Kosowski, A., Navarra, A.: Graph Decomposition for Improving Memoryless Pe-
riodic Exploration. In: Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS,
vol. 5734, pp. 501–512. Springer, Heidelberg (2009)

31. Kowalski, D., Malinowski, A.: How to meet in anonymous network. Theoretical
Computer Science 399, 141–156 (2008)

32. Kozma, G., Lotker, Z., Sharir, M., Stupp, G.: Geometrically aware communication
in random wireless networks. In: Proc. PODC 2004, pp. 310–319 (2004)

33. Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Mobile agent rendezvous in a
ring. In: Proc. 23rd International Conference on Distributed Computing Systems
(ICDCS 2003), pp. 592–599 (2003)

34. Kuhn, F., Wattenhofer, R., Zhang, Y., Zollinger, A.: Geometric ad-hoc routing:
theory and practice. In: Proc. PODC 2003, pp. 63–72 (2003)

35. Lim, W., Alpern, S.: Minimax rendezvous on the line. SIAM J. on Control and
Optimization 34, 1650–1665 (1996)

36. Moon, B., Jagadish, H.V., Faloutsos, C., Saltz, J.H.: Analysis of the Clustering
Properties of the Hilbert Space-Filling Curve. IEEE Transactions on Knowledge
Data Engineering 14(1), 124–141 (2001)

37. Prencipe, G.: Impossibility of gathering by a set of autonomous mobile robots.
Theoretical Computer Science 384, 222–231 (2007)

38. Schelling, T.: The strategy of conflict. Oxford University Press, Oxford (1960)
39. Stachowiak, G.: Asynchronous Deterministic Rendezvous on the Line. In: Nielsen,

M., Kucera, A., Miltersen, P.B., Palamidessi, C., Tuma, P., Valencia, F.D. (eds.)
SOFSEM 2009. LNCS, vol. 5404, pp. 497–508. Springer, Heidelberg (2009)

40. Ta-Shma, A., Zwick, U.: Deterministic rendezvous, treasure hunts and strongly
universal exploration sequences. In: Proc. 18th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA 2007), pp. 599–608 (2007)

41. Thomas, L.: Finding your kids when they are lost. Journal on Operational Res.
Soc. 43, 637–639 (1992)

42. Xu, B., Chen, D.Z.: Density-Based Data Clustering Algorithms for Lower Dimen-
sions Using Space-Filling Curves. In: Zhou, Z.-H., Li, H., Yang, Q. (eds.) PAKDD
2007. LNCS (LNAI), vol. 4426, pp. 997–1005. Springer, Heidelberg (2007)

43. Yu, X., Yung, M.: Agent rendezvous: a dynamic symmetry-breaking problem. In:
Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp.
610–621. Springer, Heidelberg (1996)

Exclusive Perpetual Ring Exploration without
Chirality

Lélia Blin, Alessia Milani, Maria Potop-Butucaru, and Sébastien Tixeuil

Univ. Pierre et Marie Curie - Paris 6, LIP6-CNRS UMR 7606, France
{lelia.blin,alessia.milani,maria.gradinariu,sebastien.tixeuil}@lip6.fr

Abstract. In this paper, we study the exclusive perpetual exploration
problem with mobile anonymous and oblivious robots in a discrete space.
Our results hold for the most generic settings: robots are asynchronous
and are not given any sense of direction, so the left and right sense (i.e.
chirality) is decided by the adversary that schedules robots for execution,
and may change between invocations of a particular robots (as robots are
oblivious). We investigate both the minimal and the maximal number of
robots that are necessary and sufficient to solve the exclusive perpetual
exploration problem. On the minimal side, we prove that three deter-
ministic robots are necessary and sufficient, provided that the size n of
the ring is at least 10, and show that no protocol with three robots can
exclusively perpetually explore a ring of size less than 10. On the max-
imal side, we prove that k = n − 5 robots are necessary and sufficient
to exclusively perpetually explore a ring of size n when n is co-prime
with k.

1 Introduction

We consider autonomous robots that are endowed with visibility sensors (but
that are otherwise unable to communicate) and motion actuators. Those robots
must collaborate to solve a collective task, namely exclusive perpetual explo-
ration, despite being limited with respect to input from the environment, asym-
metry, memory, etc.

The area to be explored is modeled as a graph and the exclusive perpetual
exploration tasks requires every possible vertex to be visited infinitely often by
every robot, with the additional constraint that no two robots may be present
at the same node at the same time or may concurrently traverse the same edge
of the graph.

Robots operate in cycles that comprise look, compute, and move phases. The
look phase consists in taking a snapshot of the other robots positions using its
visibility sensors. In the compute phase a robot computes a target destination
based on the previous observation. The move phase simply consists in mov-
ing toward the computed destination using motion actuators. We consider an
asynchronous computing model, i.e., there may be a finite but unbounded time
between any two phases of a robot’s cycle. Asynchrony makes the problem hard

N.A. Lynch and A.A. Shvartsman (Eds.): DISC 2010, LNCS 6343, pp. 312–327, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Exclusive Perpetual Ring Exploration without Chirality 313

since a robot can decide to move according to an old snapshot of the system and
different robots may be in different phases of their cycles at the same time.

Moreover, the robots that we consider here have weak capacities: they are
anonymous (they execute the same protocol and have no mean to distinguish
themselves from the others), oblivious (they have no memory that is persistent
between two cycles), and have no compass whatsoever (they are unable to agree
on a common direction or orientation in the ring).

Related work. While the vast majority of literature on coordinated distributed
robots considers that those robots are evolving in a continuous two-dimensional
Euclidian space and use visual sensors with perfect accuracy that permit to
locate other robots with infinite precision, a recent trend was to shift from the
classical continuous model to the discrete model. In the discrete model, space
is partitioned into a finite number of locations. This setting is conveniently
represented by a graph, where nodes represent locations that can be sensed, and
where edges represent the possibility for a robot to move from one location to the
other. Thus, the discrete model restricts both sensing and actuating capabilities
of every robot. For each location, a robot is able to sense if the location is
empty or if robots are positioned on it (instead of sensing the exact position of a
robot). Also, a robot is not able to move from a position to another unless there
is explicit indication to do so (i.e., the two locations are connected by an edge
in the representing graph). The discrete model permits to simplify many robot
protocols by reasoning on finite structures (i.e., graphs) rather than on infinite
ones. However, as noted in most related papers [6,5,3,4,2], this simplicity comes
with the cost of extra symmetry possibilities, especially when the authorized
paths are also symmetric.

Assuming visibility capabilities, the two main problems that have been stud-
ied in the discrete robot model are gathering [6,5], exploration with stop [3,4,2],
and exclusive perpetual exploration [1]. For exploration with stop, the fact that
robots need to stop after exploring all locations requires robots to “remember”
how much of the graph was explored, i.e., be able to distinguish between vari-
ous stages of the exploration process since robots have no persistent memory. As
configurations can be distinguished only by robot positions, the main complexity
measure is then the number of robots that are needed to explore a given graph. The
vast number of symmetric situations induces a large number of required robots.
For tree networks, [4] shows that Ω(n) robots are necessary for most n-sized tree,
and that sublinear robot complexity is possible only if the maximum degree of the
tree is 3. In uniform rings, [3] proves that the necessary and sufficient number of
robots is Θ(log n), although it is required that the number k of robots and the size
n of the ring are coprime. Note that both approaches are deterministic, i.e., if a
robot is presented twice the same situation, its behavior is the same in both cases.
In [2], the authors propose to adopt a probabilistic approach to lift constraints
and to obtain tighter bounds. They show that four identical probabilistic robots
are necessary and sufficient to solve the exploration problem in any anonymous
unoriented ring of size n > 8, also removing the coprime constraint between the
number of robots and the size of the ring.

314 L. Blin et al.

Most related to our work is the constrained perpetual exploration of anonymous
graph presented in [1]. While this paper considers perpetual exploration instead of
exploration with stop, it introduces the additional constraint that no two robots
should ever concurrently be located at the same node or cross the same edge (de-
noted in the following as the exclusivity property). Due to the mutual exclusion
constraints and dependently on the graph to be visited, the authors show that there
exists a maximum number of robots such having a larger number of robots on the
graph, makes the problem impossible to be solved. They consider a synchronous
model and, contrarily to [6,5,3,4,2], they assume the robots to be endowed with
sense of direction, i.e. they agree on the four basic directions: north, south, east,
and west. In this strong model, n robots can synchronize to explore a ring of size n
without violating the mutual exclusion requirements. Assuming chirality, permits
to break all cases of initial symmetry since a global total order can be inferred on
nodes.

Our contribution. In this paper, we initiate research about constrained perpet-
ual exploration with mobile asynchronous, anonymous and oblivious robots in
the discrete model in ring-shaped networks. Moreover, our robots are not given
any sense of direction, so the left and right sense (i.e. chirality) is decided by the
adversary that schedules robots for execution, and may change between invoca-
tions of a particular robots (as robots are oblivious). This very weak assumption
preserves all usual problems related to symmetry breaking. We investigate both
the minimal and the maximal number of robots that are necessary and sufficient
to solve the exclusive perpetual exploration problem on a ring. On the minimal
side, we prove that three deterministic robots are necessary and sufficient, pro-
vided that the size n of the ring is at least 10, and show that no protocol with
three robots can exclusively perpetually explore a ring of size less than 10. On
the maximal side, we prove that n − 5 robots are necessary and sufficient to
exclusively perpetually explore a ring of size n when n is coprime with k.

2 Model

We consider a distributed system of k mobile robots scattered on a ring of n
nodes u0,u1,..., u(n−1) such as ui is connected to both u(i−1) and u(i+1). The ring
is assumed to be anonymous i.e no labeling is available to distinguish nodes or
edges. In addition, the ring is unoriented i.e given two neighbors, it is impossible
to determine which node is on the right or on the left.

The robots are identical i.e., they cannot be distinguished using their appear-
ance and all of them execute the same protocol. Additionally, the robots are
oblivious i.e., they have no memory of their past actions. We assume the robots
do not communicate in a explicit way. However, they have the ability to sense
their environment and see the position of the other robots. Robots operate in
three phase cycles: Look, Compute and Move. During the Look phase robots
take a snapshot of their environment. The collected information (position of the
other robots) are used in the compute phase in which robots decide to move

Exclusive Perpetual Ring Exploration without Chirality 315

or to stay idle. In the last phase (move phase) they may move to one of their
adjacent nodes towards the target destination computed in the previous phase.

The computational model we consider is the CORDA model [7] in a discreete
setting, i.e. when a robot takes a snapshot of the network, it sees the other
robots on nodes only. On the other hand, the time between Look, Compute, and
Move operations is finite yet unbounded, and is decided by the adversary for
each action of each robot. Thus, because of the asynchrony, different robots can
execute concurrently different phases (e.g., a robot can perform a look operation
while another robot is moving), and a robot can use an outdated snapshot of
the network to compute where to move and whether to move.

In the following we assume that initially every node of the ring contains at
most one robot. A robot whose execution of Look and Compute operations leads
to an actual move is said activatable. The positions of all robots at time t defines
the system configuration at t.

Since the ring and the robots are anonymous, a robot cannot distinguish
between two configurations where the relative positions of robots is the same,
e.g., any two configurations where all robots occupy adjacent nodes of the ring
(one robot for each node) are indistinguishable for any robot despite the actual
nodes occupied. For that reason, we abstract all indistinguishable configurations
in a single configuration represented as a sequence of 0 (no robot occupies a
node) and 1 (otherwise) which denotes the relative position of nodes in any of
the above said indistinguishable configurations.

Formally,

Definition 1. For k robots in the n-node ring, a configuration is an alternative
(circular and non oriented) sequence of symbols r and f, indexed by integers: ri

stands for i consecutive nodes, each of them occupied by a robot, and fj stands
for j consecutive nodes free of any robot.

For instance, a configuration C = (ri1 , fj1 , . . . ,ri�
, fj�

) describes the case in
which the k robots are split in � groups where each group of robots occupies
consecutive nodes on the ring, and two groups are separated by at least one free
node.

3 On the Minimal and Maximal Number of Robots for
Perpetual Exploration

In this section, we provide a set of impossibility results. For sake of space, the
corresponding proofs can be found in [8].

Lemma 1. For any n ≥ 3, perpetual exploration of the n-node ring is impossible
with one robot.

Lemma 2. For any n ≥ 3, perpetual exploration of the n-node ring is impossible
with an even number of robots.

316 L. Blin et al.

Lemma 3. (Flocchini et al. [3]) Let k < n. If k divides n then the exploration
of the n-node ring with k robots is not possible.

Lemma 4. Perpetual exploration of the n-node ring is impossible with three
robots for all n < 10.

Lemma 5. For any ring of size n it is impossible to solve the perpetual explo-
ration with n− 2 robots, where n ≥ 2.

Lemma 6. For any ring of size n, it is impossible to solve the perpetual explo-
ration with n− k robots with 2 < k ≤ n where n mod k = 0.

Lemma 7. For any ring of size n, it is impossible to solve the perpetual explo-
ration with k = n− 3 robots.

Lemma 8. For any ring of size n, it is impossible to solve the perpetual explo-
ration with k = n− 4 robots.

4 Exclusive Exploration Algorithm Using a Minimum
Number of Robots

In this section we propose a distributed algorithm that achieves an exclusive per-
petual exploration of a ring of size n ≥ 10 with 3 robots. As shown, three robots
are the minimal number of robots that can solve the exclusive perpetual explo-
ration problem. We identify two types of configurations: legitimate and non legit-
imate. We identify the following legitimate configurations C0 = (r2, f2,r1, fz) ,
C1 = (r1, f1,r1, f2,r1, fz) or C2 = (r2, f3,r1, fz) with z �∈ {0, 1, 2, 3}. These
configurations will be referred in the following as two-gap, one-two-gap and three-
gap configurations respectively.

When started in a legitimate configuration the protocol always moves the
system in a legitimate configuration. When started in a non-legitimate configu-
ration the protocol ensures the convergence towards a legitimate configuration.
For the sake of the presentation we divide the protocol into two phases: the first
phase is executed whenever the system is in a legitimate configuration while the
second phase works when the protocol is in a initial configuration.

The first phase of the algorithm makes the system cycle between the legitimate
configurations. A two-gap configuration moves to a one-two-gapconfiguration (via
Rule RL1m), a one-two-gap configuration moves to a three-gap configuration (via
Rule RL2m) while a three-gap configuration moves to a two-gap configuration
(via Rule RL3m).

Legitimate Phase: z �= {0, 1, 2, 3}
RL1m :: (r2, f2,r1, fz)→ (r1, f1,r1, f2,r1, fz−1)
RL2m :: (r1, f1,r1, f2,r1, fz)→ (r2, f3,r1, fz)
RL3m :: (r2, f3,r1, fz)→ (r2, f2,r1, fz+1)

Convergence Phase takes care of the execution of the system while the initial
configuration is not a legitimate configuration.

Exclusive Perpetual Ring Exploration without Chirality 317

B

C

A

(a) Configuration
C0

B

C

A

(b) Configuration
C1

C

B

A

(c) Configuration
C2

B

CA

(d) Configuration
C0

Fig. 1. Perpetual exploration with three robots

Convergence Phase. Execution starting from special configurations.
RC1m :: (r2, fy,r1, fz) → (r2, fmin(y,z)−1,r1, fmax(y,z)+1) with y �= z �= {1, 2, 3}
RC2m :: (r1, fx,r1, fy ,r1, fy) → (r1, fx,r1, fy−1,r1, fy+1) with x �= y �= 0
RC3m :: (r1, fx,r1, fy,r1, fz) → (r1, fx−1,r1, fy+1, r1, fz) with x < y < z
RC4m :: (r3, fz) → (r2, f1,r1, fz−1) when 1 robot executes

→ (r1, f1,r1, f1,r1, fz−2) when 2 robots execute
RC5m :: (r2, f1,r1, fz) → (r2, f2,r1, fz−1)

4.1 Correctness

In the following a round denotes the shortest fragment of execution where each
robot executes at least once.

Lemma 9. Starting in a legitimate configuration, after the execution of a round,
the position of all the robots shift one location in the same direction.

In the following we compute the service time of the algorithm (the number of
steps necessary to all three robots to completely explore the ring at least once).

Lemma 10. The service time of the algorithm is Θ(kn).

Let C′
1 denote the configurations (r1, fy,r2, fz) with y �= z �= {0, 1, 2, 3}, C′

2 de-
note (r1, fx,r1, fy,r1, fy) andC′

3 denote the configurations (r1, fx,r1, fy,r1, fz).

R2,F2,R1,Fz R1,F1,R1,F2,R1,Fz-1

R2,F3,R1,Fz

R2,Fx,R1,FyR1,Fx,R1,Fy,R1,Fy

R3,Fx

R1,Fx,R1,Fy,R1,Fu

R2,F1,R1,Fz R1,F1,R1,F1,R1,Fz

Fig. 2. Algorithm with three robots, convergence et legitimate phases

318 L. Blin et al.

B

A

(a) C0

B

A

(b) C1

B

A

(c) C2

BA

4
(d) C3

B

A

(e) C4

B

A

(f) C0

Fig. 3. Perpetual exploration with a maximum number of robots

Lemma 11. Starting from a configuration C′
i the system converges to a legiti-

mate configuration (Ci, i=1,3).

Following the above lemmas we can state the correctness of the algorithm.

Theorem 1. The algorithm implements the constrained perpetual exploration.

5 Exploration Algorithm Using a Maximum Number of
Robots

In this section we propose an algorithm that achieves a constrained perpetual
exploration of a ring of size n with k = n−5 robots for k > 3 odd and n mod k �=
0. As for the protocol with 3 robots, the algorithm works into two phases: the
Legitimate Phase is to perpetually explore the ring and the Convergence Phase
is to reach a legitimate configuration.

The main idea of the algorithm, once in a legitimate configuration is to main-
tain the invariant that if there is a block of 3 robots, than one robot in this block
moves to join the other block (whose size is bigger) via the shortest path. Then,
once the robot joins the biggest block, a robot in the opposite side of the block
moves to join the block of size 2. A functioning scenario of the Legitimate Phase
of the algorithm is presented in Figure 3.

Legitimate Phase: LFM

RL1M :: (f2,rx, f3,r2)→ (f2,rx−1, f1,r1, f2,r2)
RL2M :: (f2,rx, f1,r1, f2,r2)→ (f2,rx, f2,r1, f1,r2)
RL3M :: (f2,rx, f2,r1, f1,r2)→ (f2,rx, f3,r3)
RL4M :: (f2,rx, f3,r3)→ (f1,rx, f3,r2, f1,r1)
RL5M :: (f1,rx, f3,r2, f1,r1)→ (f2,rx+1, f3,r3)

We now describe how to reach a legitimate configuration starting from any
configuration. We first introduce some notation that we will use later to describe
one of the rules according to which robots move. Given a configuration c =
(rx, f1,ry, f1,rz, f1,rw, f1,rk, f1), let Sc be the set of blocks with minimum
size, i.e., Sc = {ri with i = min{x, y, z, w, k}}. For a given ri i = {x, y, z, w, k},
let LN(ri) be the largest block at distance one free node from ri in c. Finally,
let Tc = {ri ∈ S :: ∀rj ∈ S, |LN(ri)| ≥ |LN(rj)|}.

Exclusive Perpetual Ring Exploration without Chirality 319

Convergence Phase (where ♠ denotes the sequence f1,r1, f1).

RC2-1M :: (rx, f5) → (rx−1, f1,r1, f4) if one robot moves
RC2-2M :: → (rx−2, f1,r1, f3,r1, f1) if both robots move
RC4-1M :: (rx, f3,ry , f2) → (rx−1, f1,r1, f2,ry, f2) 3 < x < y
RC4-2M :: (rx, f4,ry , f1) → (rx−1, f4,ry+1, f1) 3 < x < y
RC4-3M :: (r1, f4,ry , f1) → (r1, f3,r1, f1,ry−1, f1)
RC4-4M :: (r1, f3,ry , f2) → (r1, f3,ry−1,♠)
RC4-5M :: (rx, f4,ry , f1) → (rx−1, f1,r1, f3,ry, f1) x ∈ {2, 3}
RC6-1M :: (rx, f3,ry , f1,rz, f1) → (rx+1, f3,ry , f1,rz−1, f1) z > 1 and x ≥ y
RC6-2M :: (rx, f3,ry , f1,rz, f1) → (rx+1, f3,ry , f1,rz−1, f1) x = 1 and x �= y
RC6-3M :: (rx, f3,ry,♠) → (rx+1, f3,ry , f2) 2 < y ≤ x
RC6-4M :: (rx, f1,rx, f2,rz, f2) → (rx, f1,rx,♠,rz−1, f2) z > 1 if one robot moves
RC6-5M :: → (rx, f1,rx,♠,rz−2,♠) z > 1 if both robots move
RC6-6M :: (rx, f1,ry , f2,rz, f2) → (rx−1, f1,ry+1, f2,rz, f2) 1 < x < y, x �= y − 1
RC6-7M :: (r1, f1,ry , f2,rz, f2) → (f2,ry , f2,rz, f1,r1) 2 < y < z
RC6-8M :: (r1, f1,ry , f2,rz, f2) → (ry+1, f2,rz, f3) 2 < z < y
RC6-9M :: (rx, f1,ry , f2,rz, f2) → (rx, f1,ry ,♠,rz−1, f2) 1 < x = y − 1
RC6-10M :: (rx, f1, ry, f2,r1, f2) → (rx, f1,ry , f3,r1, f1) z = 1, 1 < x ≤ y

RC8-1M :: (rx, f2,ry , f1,rz, f1,rw, f1)
→ (rx+1, f2,ry, f1,rz, f1,rw−1, f1) x = y and w < z

RC8-2M : (rx, f2,rx, f1,rz, f1,r1, fw)
→ (rx, f2,rx−1, f1,rz+1, f1,r1, fw) x = y and z = x + 1 and w = 1

RC8-3M :: (rx, f2,ry , f1,rz, f1,rw, f1)
→ (rx+1, f2,ry, f1,rz, f1,rw−1, f1) x > y

RC8-4M :: (rx, f2,ry , f1,ry, f1,r1, f1)
→ (rx−1, f1,r1, f1,ry, f1,ry, f1,r1, f1) x ≥ y and y = z and w = 1

RC8-5M :: (rx, f2,ry , f1,ry, f1,rw, f1)
→ (rx, f2,ry, f1,ry−1, f1,rw+1, f1) x ≥ y and y = z and w = y + 1

RC8-6M :: (rx, f2,ry , f1,r1, f1,rx, f1)
→ (rx, f1,r1, f1,ry−1, f1,r1, f1,rx, f1) x > y, y �= z, z = 1 w = x

RC8-7M :: (rx, f2,ry , f1,r1, f1,rw, f1)
→ (rx, f2,ry, f2,rw+1, f1) x > y, y �= z z = 1 w = x − 1

RC8-8M :: (rx, f2,ry , f1,rz, f1,r1, f1)
→ (rx, f2,ry−1, f1, rz+1, f1,r1, f1) x > y, y = z − 1 and w = 1

RC10-1M :: (rx, f1,ry , f1,rz, f1,rz, f1,ry , f1) z = w and k = y
→ (rx, f1,ry−1, f1, rz+1, f1,rz, f1,ry, f1) if one robot moves

RC10-2M :: (rx, f1,ry , f1,rz, f1,rz, f1,ry , f1) z = w and k = y
→ (rx, f1,ry−1, f1, rz+1, f1,rz+1, f1,ry−1, f1) if two robots move

RC10-3M :: (rx, f1,ry , f1,rz, f1,rz+1, f1,ry−1, f1)
→ (rx, f1,ry−1, f1, rz+1, f1,rz+1, f1,ry−1, f1) w = z + 1 and k = y − 1

RC10-4M :: (rx, f1,ry , f1,rz, f1,ry , f1,rz, f1)
→ (rx, f1,ry−1, f1, rz+1, f1,ry , f1, rz, f1) y < z and x /∈ {y, z}

RC10-5M :: (rx, f1,ry , f1,ry, f1,rz, f1,ry, f1)
→ (rx+1, f1,ry, f1,ry , f1, rz, f1,ry−1, f1) x > z

RC10-6M :: (rx, f1,ry , f1,ry, f1,ry , f1,ry , f1)
→ (rx−1, f1,ry+1, f1, ry, f1,ry, f1,ry , f1) x = y − 1, if one robot moves

RC10-7M :: (rx, f1,ry , f1,ry, f1,ry , f1,ry , f1)
→ (rx−2, f1,ry , f1, ry, f1,ry, f1,ry+1, f1) x = y − 1, if two robots move

RC10-8M :: (rx, f1,ry , f1,ry, f1,ry , f1,ry , f1)
→ (rx+1, f1,ry−1, f1, ry, f1,ry, f1,ry , f1) x = y + 1, if one robot moves

320 L. Blin et al.

RC10-9M :: (rx, f1, ry, f1,ry, f1,ry , f1,ry, f1)
→ (rx+2, f1,ry−1, f1,ry, f1,ry , f1,ry−1, f1) x = y + 1, if two robots move

RC10-10M :: (ry+2, f1,ry−1, f1,ry, f1,ry , f1,ry, f1)
→ (ry+3, f1, ry−1, f1,ry , f1,ry, f1,ry−1, f1) y > 1

RC10-11M :: (rx, f1, ry, f1,rx, f1,ry, f1,rx, f1)
→ (rx, f1,ry+1, f1,rx−1, f1, ry, f1,rx, f1) y = x + 1, if one robot moves

RC10-12M :: (rx, f1, ry, f1,rx, f1,ry, f1,rx, f1)
→ (rx, f1,ry+1, f1,rx−2, f1, ry+1, f1,rx, f1) y = x + 1, if two robots move

RC10-13M :: (rx, f1, rx, f1,ry , f1,ry, f1,ry , f1)
→ (rx, f1,rx+1, f1,ry−1, f1, ry, f1,ry, f1) x = y + 1, if one robot moves

RC10-14M :: (rx, f1, rx, f1,ry , f1,ry, f1,ry , f1)
→(rx+1, f1,rx+1, f1,ry−1, f1,ry, f1,ry−1, f1) x = y + 1, if two robots move

RC10-15M :: c = (rx, f1,ry , f1, rz, f1,rw, f1,rk, f1)
→ a robot in ri ∈ Tc moves towards LN(ri)

5.1 Correctness

First, we prove that a collision can never occur and that once in a legitimate con-
figuration any robot that moves according to an old snapshot, it moves according
to the algorithm Legitimate phase.

Lemma 12. Robots never collide and in each legitimate configuration a robot
that moves according to an old snapshot, moves as expected by the algorithm
Legitimate phase.

Proof. If one robot at time moves, then since a robot moves always towards
a free node, it cannot create a collision. The only configurations when more
than one robot move, are the symmetric configurations. Observe that in this
configurations if two robots move at the same time, they never move towards
the same free node. Thus, the only way to create a collision is the case when one
of the two robots that was expected to move in a given symmetric configuration,
moves later with respect to the other one. Thus, it moves according to an old
snapshot in a configuration where some other robot may be scheduled to move.
In the following we prove that, even though a robot moves according to an old
snapshot, it never creates a collision. In the following we analyze all possible
symmetric configurations:

1. First we consider all symmetric configurations where robots are divided into
5 groups. Observe that we cannot have all the blocks of the same size because
this implies the number of robots is a multiple of the number of free nodes.
– Consider all configurations where we have exactly two different sizes

for the blocks: c1 = (Rx, F1, Ry, F1, Ry, F1, Ry, F1, Ry, F1); c2 =
(Ry, F1, Ry, F1, Rx, F1, Rx, F1, Rx, F1); c3 = (Rx, F1, Ry, F1, Rx, F1, Ry,
F1, Rx, F1).
When at configuration c1 = (Rx, F1, Ry, F1, Ry, F1, Ry, F1, Ry, F1), if
x /∈ {y, 1, y + 1}, we recursively apply RC10-2M(if both robots move)
or RC10-1Mand then RC10-3M(if one robot moves). Either we reach a

Exclusive Perpetual Ring Exploration without Chirality 321

configuration (Rx, F2, Rz , F1, Rz, F2) where no robot is pending to move,
or we reach a configuration (Rx, F2, Rz, F1, Rz−1, F1, R1, F1), where the
single robot r is pending to move to join Rz−1. If x > z we apply RC8-3M ,
if x < z we apply RC8-7M . In both cases, r is the robot scheduled to
move. Since z = 2y we have that z �= x, otherwise we have an even
number of robots.
It remains to consider the case where x ∈ {y − 1, y + 1}. If x = y −
1, we apply RC10-6M if one robot moves and we reach a configuration
(Ry−2, F1, Ry+1, F1, Ry, F1, Ry, F1, Ry, F1), where there is a robot r in
Ry−2 pending to move to join Ry. We recursively apply RC10-15Mand
r is eventually scheduled to move alone.
If x = y + 1 and only one robot moves (RC10-8M), we reach a configu-
ration where we apply RC10-10M , where the robot pending to move is
the one scheduled to move.
Consider configuration c3 = (Rx, F1, Ry, F1, Rx, F1, Ry, F1, Rx, F1). If
x �= y + 1 we apply RC10-2M , or RC10-1Mand then RC10-3M , to reach
a configuration where no robot is pending to move. Otherwise, we ap-
ply RC10-11Mor RC10-12M . If only one robot moves, we reach a con-
figuration (Rx, F1, Ry+1, F1, Rx−1, F1, Ry, F1, Rx, F1) where a robot r
in Rx−1 is pending to move towards Ry. Then, we recursively apply
RC10-15Mand we eventually reach a configuration where r is the only
robot scheduled to move. If it moves before this configuration it moves
in the opposite direction of the robot scheduled to move, so no collision
happens.
Consider configuration c2 = (Rx, F1, Rx, F1, Ry, F1, Ry, F1, Ry, F1). If
x �= y + 1, we apply RC10-2M(two robots move) or RC10-1M(one robot
moves) and then RC10-3M , to reach a configuration where no robot is
pending to move. If x = y + 1 and only one robot moves, according
to RC10-13M , we reach a configuration (Rx, F1, Rx+1, F1, Ry−1, F1, Ry,
F1, Ry, F1) where a robot r is pending to move from Ry to join Rx. We
recursively apply RC10-15M . And if r does not move, we reach a config-
uration (Rx, F1, Rz, F1, R1, F1, Ry, F1, Ry, F1) where z > x where there
is another robot r

′
pending to move from R1 to Rz. If r

′
moves before

r, we apply RC8-5Mand r is the robot scheduled to move. If r moves
before, r

′
is the robot scheduled to move according to RC10-15M.

– Consider all configurations where we have exactly three differ-
ent sizes for the blocks. Either we have three blocks of the
same size: c1 = (Rx, F1, Rx, F1, Rx, F1, Ry, F1, Rz, F1); c2 =
(Rx, F1, Rx, F1, Ry, F1, Rx, F1, Rz, F1); or we have two pairs of blocks
of the same size: c3 = (Rx, F1, Rx, F1, Ry, F1, Ry, F1, Rz, F1);
c4 = (Rx, F1, Ry, F1, Rx, F1, Ry, F1, Rz, F1); c5 = (Rx, F1, Ry, F1, Ry,
F1, Rx, F1, Rz, F1).
When at configuration c4 we apply RC10-4Mwhere only one robot moves
and we reach a not symmetric configuration. When at c5 we apply
RC10-2M if both robots move, or RC10-1Mand then RC10-3Mto reach
a configuration of type c5 where the size of x decreases by one and the

322 L. Blin et al.

size of y increases by one w.r.t. the previous configuration. Thus, by re-
cursively applying the above rules we reach either a quiescent configura-
tion (Rz, F2, Ry, F1, Ry, F2) or a configuration (Rz, F2, Ry, F1, Ry−1, F1,
R1, F1) where the single robot r in R1 will eventually move towards
Ry−1. In this latter configuration, if z ≥ y we apply RC8-1M ; if y > z we
apply RC8-8M . In all the cases r is the robot scheduled to move. Hence,
we reach a quiescent configuration and no collision happens.
When in configuration c2 we apply RC10-5M and we reach a configura-
tion
(Rx, F1, Rx, F1, Ry, F1, Rx−1, F1, Rz+1, F1) where z > y. Then, we apply
RC10-15M . Observe either the robots in Rx−1 continue to join Rz+1, or
the robots in Ry move to join the robot in Rx. Hence, no collision can
happen. Finally, when at configuration c1 or c3, we apply RC10-15M .
Since in both cases there is only one robot that is scheduled to move, we
cannot create a collision.

– Finally, consider all configurations where we have exactly four different
sizes for the blocks. Then, we have at most two blocks of robots of the
same size. We apply RC10-15M .
Two robots at time may move only if we are at
(Rx, F1, Ry, F1, Rz, F1, Rw, F1, Rz , F1) where either z is the mini-
mum size and w > x, y or w is the minimum size. In the first case,
the robots in both Rz move to join Rw: if both robots move no
collision happen; if one robot moves than we reach a configuration
(Rx, F1, Ry, F1, Rz−1, F1, Rw+1, F1, Rz, F1) where there is a robot in Rz

pending to move to join Rw+1. We apply RC10-15M recursively and
we obtain a configuration (Rx, F1, Ry, F2, Rw′ , F1, Rz, F1) where w

′
> y

and x �= y. Hence, for the RC8-3Mr is the robot scheduled to move. In
the second case, where w is the minimum, we have a single block of
robots that has to move in two opposite direction. But in case there is
a robot that at some time is pending to move, it will be the last in this
block to move. Hence, no collision can happen.

2. Consider, the configuration (Rx, F1, Rx, F2, Rz, F2). Because
of RC6-4M if only one robot moves we reach configuration
(Rx, F1, Rx, F1, R1, F1, Rz−1, F2), and there is a robot r that eventu-
ally will move from Rz−1 to join Rx. If z − 1 > x, we apply RC8-4M , and
if x > z − 1, we apply RC8-6M . In both cases, and r is the only robot
scheduled to move. Finally consider z − 1 = x, we apply RC8-3Mand r is
the robot scheduled to move.

3. for the symmetric configuration (Rx, F1, Ry, F3, Ry, F1). If two robots move
they both move towards a block Ry, so no collision can happen. If
only one robot moves, (according to RC6-1M) we reach a configuration
(Rx−1, F1, Ry+1, F3, Ry, F1) and a robot r is pending to move from Rx−1 to
join Ry. We recursively apply RC6-1Mand eventually we reach a configura-
tion (R1, F1, Ry+x−1, F3, Ry, F1) if r is still pending to move. Then, r is the
only robot scheduled to move, because either in a legitimate configuration
or by RC6-3M .

Exclusive Perpetual Ring Exploration without Chirality 323

4. Finally, consider the configuration where all robots are collected to form a
single block. The two robots at the extreme of the block are expected to
move. If they both move, it is simple to see that no collision may happen.
If only one robot moves we reach a configuration (Rx, F4, R1, F1). Then, we
apply RC4-3Mand the pending robot is the one scheduled to move.

Then, we prove that starting from any configuration we always reach a legitimate
configuration,i.e.; one of the configurations we reach in the execution of algorithm
LFM .

Lemma 13. Starting from a non legitimate configuration the system converges
to a legitimate configuration in finite time.

Proof. 1. When in a configuration (rx, f3,ry, f2), if x ∈ {2, 3} we are in a
legitimate configuration. Thus, first consider x = 1. Applying RC4-4Mand
then RC6-2M(being at configuration (rx, f3,ry−1, f1,r1, f1)), we move a
robot from ry to rx and we reach a legitimate configuration.
Then consider 3 < x < y. In this latter case, we recursively apply in sequence
the three rules RC4-1M , RC6-7Mand RC6-8Mto move one robot at the time
from rx to ry up to the time we are in a legitimate configuration because
x = 3. In particular, in each step of the recursion, we apply RC4-1Mto
reach a configuration (rx−1, f1,r1, f2,ry, f2). Then, we apply RC6-7Mto
move to (rx−1, f2,r1, f1,ry, f2), and then RC6-8Mto reach configuration
(rx−1, f3,ry+1, f2).

2. Consider a configuration (rx, f4,ry, f1). If x = 1 we apply RC4-3Mand we
reach a configuration (r1, f3,r1, f1,ry, f1). We apply RC6-1Mand RC6-2M(if
only one robot moved) and we reach a configuration (r2, f3,r2, f1,ry, f1).
We recursively apply RC6-1Mand when z = 1 we apply RC6-3Mto reach a
configuration (rx, f3,ry, f2) (above proved). If x ∈ {2, 3}, we apply RC4-5M

and we reach a configuration (rx−1, f1,r1, f3,ry, f1). Either we are in the
case previously proved or we apply RC6-2Mto reach configuration (r2, f3,
ry, f2) and we apply the algorithm RL1m.
Finally, if x > 3 we recursively apply RC4-2Mand we reach a configuration
(rx, f4,ry, f1) where x = 3. The claim follows.

3. When in a configuration (rx, f3,ry, f1,rz, f1) we apply RC6-1M to RC6-3M

and eventually the set rz joins the biggest set between rx and ry, say y.
If z > 1 and x > 1, we repeatedly apply RC6-1M eventually lead to a
configuration (rx, f3,ry, f2), proved above. If x = 1, we apply RC6-2M and
we reach a configuration that is either a legitimate configuration, or such
that we have to recursively apply RC6-1M and then we reach a legitimate
configuration. If z = 1 and x = 2 we are in a legitimate configuration
and we execute RL5M . Otherwise, x > 2 and we apply RC6-3M to reach
a configuration (rx, f3,ry, f2), proved above.

4. When in a configuration (rx, f1,ry, f2,rz, f2), for z = 1, we apply RC6-10M

and reach a configuration (rx, f3,ry, f1,rz, f1). Then, for what above proved
we reach a legitimate configuration in finite time. Then, consider the same
configuration for z > 1. We have the following cases:

324 L. Blin et al.

– if x = 1, we apply RC6-7Mand RC6-8Mand in at most two steps we reach
a configuration (ry+1, f2,rz, f3)

– If 1 < x < y and x �= y − 1, we repeatedly apply RC6-6M to reach
configuration (rx+y, f2,rz , f3) and for what above stated we reach a
legitimate configuration.

– If 1 < x = y − 1, we apply RC6-9M and we reach a configuration
(rx, f1,rx+1, f1, r1, f1,rz−1, f2). Then, if z−1 > x we apply RC8-8Mand
we reach a configuration (rz−1, f2,rx−1, f1, rx+2, f1,r1, f1). then, be-
cause of RC8-3Mwe reach a configuration (rz, f2,rx−1, f1,rx+2, f2). The
claim follows for what proved in the previous point.
If x > z − 1, we applyRC8-3M and we eventually reach a configuration
(rx+y, f2, r1, f1,rz, f2). Then, we apply consecutively apply RC6-7Mand
RC6-8Mand we reach a configuration (rx+y+1, f2,rz , f3).
Finally, consider x = z − 1. We start from a configuration (rx, f1,rx+1,
f2, rx+1, f2). We apply RC6-9Mand we reach a configuration (rx, f1,
rx+1, f1, r1, f1,rx, f2). Then, we apply RC8-2Mand we reach a configu-
ration (rx−1, f1, rx+2, f1,r1, f1, rx, f2). Finally, by applying RC8-2Mwe
reach a configuration (rx−1, f1,rx+2, f2,rx+1, f2) (above proved).

– If x = y, we apply RC6-4MorRC6-5M (respectively if one robot moves or
two robots move). First, consider that two robots move.
Then we reach a configuration (rx, f1,rx, f1,r1, f1,rz−2, f1,r1, f1). We
are in a new symmetric configuration where two robots may move. If both
robots move, according to the rule RC10-2Mwe reach a configuration
(rx+1, f1,rx+1, f2,rz−2, f2). Then it is simple to see that by repeating
the above rules we reach a configuration (ry, f1,ry, f2,r1, f2) and then,
by applying RC6-10M , we reach a configuration (ry, f1,ry, f3,r1, f1).
If at (rx, f1,rx, f1,r1, f1,rz−2, f1,r1, f1) only one robot moves (i.e.,
we apply RC10-1M), we reach a configuration (rx, f1,rx+1, f2,rz−2, f1,
r1, f1):
If z − 2 > x + 1, we apply RC8-2Mand we reach a configuration (rx, f1,
rx+1, f2,rz−1, f2) (above proved).
If z−2 < x+1, we apply RC8-6Mand we reach a configuration (rx+1, f2,
rz−2, f2,rx+1, f1). Then we pass from an initial configuration (rx, f2,rz ,
f2,rx, f1) to (rx+1, f2,rz−2, f2,rx+1, f1). This means that eventu-
ally we reach a configuration (rx′ , f2,r1, f2,rx′ , f1), where we apply
RC6-10Mto reach (rx′ , f1, r1, f3,rx′ , f1) (above proved).
If z−2 = x+1, we apply RC8-1Mand we reach a configuration (rx+2, f2,
rx+1, f1,rx, f2) (above proved).
It remains to prove that we converge to a legitimate configuration even
if starting at configuration (rx, f1,rx, f2,rz, f2) only one robot moves,
and we reach a configuration (rx, f1,rx, f1,r1, f1,rz−1, f2).
If z − 1 > x we apply RC8-3M , if x > z − 1 we apply RC8-6M . In both
cases, we reach a configuration (rz−2, f1,r1, f1,rx, f1,rx, f1,r1, f1). We
reduce to the case where two robots move, previously proved.
Finally, if x = z−1 we are in a configuration (rx, f1,rx, f1,r1, f1,rx, f2).
We apply RC8-3Mto reach a configuration (rx−1, f1,r1, f1,rx, f1,rx, f1,

Exclusive Perpetual Ring Exploration without Chirality 325

r1, f1). We apply RC10-1M , RC10-2M if respectively one robot moves or
two robots move, and we repeat the above reasoning.

5. Consider any configuration with 4 blocks, i.e., (rx, f2,ry, f1,rz , f1,rw, f1).
It is simple to see that rule RC8-3M converges to a configuration with three
blocks. Then, we prove that every other rule either converges to a config-
uration where we have to apply RC8-3Mor to a configuration with three
blocks.
Consider RC8-4M , then from configuration (rx, f2,ry, f1,ry, f1,r1, f1) we
pass to configuration (rx−1, f1,r1, f1,ry, f1,ry, f1,r1, f1). If x = 2 and
y = x + 1, we apply RC10-13M if only one robot moves or RC10-14M if two
robots move. In this latter case we reach a configuration (ry+1, f1,ry+1,
f2,r1, f2) and the claim follows. In the first case, we reach a configuration
(ry, f1,ry+1, f2,r1, f1,r1, f1), where we have to apply RC8-3M . Otherwise
we apply RC10-1M if only one robot moves or RC10-2M if two robots move.
In the first case, we reach a configuration (rx−1, f2,ry+1, f1,ry, f1,r1, f1)
and we can apply only RC8-3M . In the second case we reach a configuration
(rx−1, f2,ry+1, f1,ry+1, f2).

Consider RC8-6M , then from configuration (rx, f2,ry, f1,r1, f1,rx, f1) we
pass to configuration (rx, f1,r1,f1,ry−1, f1,r1, f1,rx, f1).We apply RC10-2M

if two robots move to reach a configuration (ry−1, f2,rx+1, f1,rx+1, f2).
Otherwise, we apply RC10-1Mand we reach configuration (rx+1, f2,ry−1, f1,
r1, f1,rx, f1). Then, we apply RC8-7Mto reach a configuration with three
blocks.
Consider RC8-8M , after the application of the rule at configuration (rx, f2,
ry, f1,ry+1, f1,r1, f1) to reach a configuration (rx, f2,ry−1, f1,ry+2, f1,r1,
f1). Either we have to apply RC8-3Mor x = y − 1. In this latter case, we
apply RC8-1Mand we reach a configuration with three blocks.
It is simple to see that the claim follows for RC8-5Mand RC8-7M . Finally,
with RC8-1Mand RC8-2Mwe move to a configuration where x �= y.
Hence, the claim follows.

6. In a configuration with 5 blocks with rules RC10-4M- RC10-14Mwe arrive
in a configuration where we have either to apply RC10-15Mor RC10-1M ,
RC10-2M . With RC10-15Mwe converge to a configuration with less than 5
blocks, because we consider the minimum blocks and among them we select
the one(s), say Rx, with the biggest block at distance one free node. This
invariant is maintained while Rx move one robot at time to join the block
at distance one free node with the biggest size. Finally, it is simple to see
that if we recursively apply the sequence RC10-1M , RC10-3Mor RC10-2Mwe
converge to a configuration with less than 5 blocks.

7. When in a configuration with one block of robots, because of RC2-1M or
RC2-2M , we reach a configuration either with 2 or 3 blocks. The claim follows.

It remains to prove that once the robots reach a legitimate configuration, each
robot will explore all the ring without colliding with any other robot.

Theorem 2. The Algorithm implements the constrained perpetual exploration.

326 L. Blin et al.

Proof. Following Lemma 13, the system in a finite number of steps converges to
a legitimate configuration. By Lemma 12 no collision can happen and once in a
legitimate configuration we move to another legitimate configuration.

Then, consider that at time t the system is in a quiescent legitimate config-
uration c, i.e., there is no robot that at that time should move because of a
Look phase executed before t. It is simple to see that once we reach a quiescent
legitimate configuration the system will move to another quiescent legitimate
configuration. This is because in any legitimate configuration, each robot has a
different view of the system and thus, at a given time, only one robot moves.

If x = 2, even though one robot moves from ry to rx, we maintain the
invariant that y′ = y − 1 > x. When x = 3 we move one robot from rx to ry.
Then we return to the initial configuration. Note that once a robot moves from
ry to rx via the longest path, it will eventually come back to ry through the
shortest path and shift in ry up to reach the initial position and repeat all the
above steps. Then, each robot visits all the nodes in the ring. Hence, the claim
follows.

6 Conclusions

In this paper we extend the results in [1] related to the perpetual ring explo-
ration. We consider the most generic model: our robots are asynchronous and
are not given any sense of direction, so the left and right sense (i.e. chirality) is
decided by the adversary that schedules robots for execution, and may change
between invocations of a particular robots (as robots are oblivious). This very
weak assumption preserves all usual problems related to symmetry breaking.
We investigate both the minimal and the maximal number of robots that are
necessary and sufficient to solve the exclusive perpetual exploration problem.
On the minimal side, we prove that three deterministic robots are necessary and
sufficient, provided that the size n of the ring is at least 10, and show that no
protocol with three robots can exclusively perpetually explore a ring of size less
than 10. On the maximal side, we prove that k = n−5 robots are necessary and
sufficient to exclusively perpetually explore a ring of size n when n is co-prime
with k.

References

1. Baldoni, R., Bonnet, F., Milani, A., Raynal, M.: On the solvability of anonymous
partial grids exploration by mobile robots. In: Baker, T.P., Bui, A., Tixeuil, S. (eds.)
OPODIS 2008. LNCS, vol. 5401, pp. 428–445. Springer, Heidelberg (2008)

2. Devismes, S., Petit, F., Tixeuil, S.: Optimal probabilistic ring exploration by asyn-
chronous oblivious robots. In: Kutten, S., Žerovnik, J. (eds.) SIROCCO 2009. LNCS,
vol. 5869, pp. 195–208. Springer, Heidelberg (2010)

3. Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Computing without communicat-
ing: Ring exploration by asynchronous oblivious robots. In: Tovar, E., Tsigas, P.,
Fouchal, H. (eds.) OPODIS 2007. LNCS, vol. 4878, pp. 105–118. Springer, Heidel-
berg (2007)

Exclusive Perpetual Ring Exploration without Chirality 327

4. Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Remembering without memory:
Tree exploration by asynchronous oblivious robots. In: Shvartsman, A.A., Felber, P.
(eds.) SIROCCO 2008. LNCS, vol. 5058, pp. 33–47. Springer, Heidelberg (2008)

5. Klasing, R., Kosowski, A., Navarra, A.: Taking advantage of symmetries: Gathering
of asynchronous oblivious robots on a ring. In: Baker, T.P., Bui, A., Tixeuil, S.
(eds.) OPODIS 2008. LNCS, vol. 5401, pp. 446–462. Springer, Heidelberg (2008)

6. Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots
in a ring. Theor. Comput. Sci. 390(1), 27–39 (2008)

7. Prencipe, G.: Instantaneous actions vs. full asynchronicity: Controlling and coordi-
nating a set of autonomous mobile robots. In: Restivo, A., Rocca, S.R.D., Roversi,
L. (eds.) ICTCS. LNCS, vol. 2202, pp. 154–171. Springer, Heidelberg (2001)

8. Blin, L., Milani, A., Potop-Butucaru, M., Tixeuil, S.: Exclusive Perpetual ring ex-
ploration without chirality. Technical report inria-00464206 (2010)

Drawing Maps with Advice

Dariusz Dereniowski1,� and Andrzej Pelc2,��

1 Department of Algorithms and System Modeling,
Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland

deren@eti.pg.gda.pl
2 Département d’informatique, Université du Québec en Outaouais,

Gatineau, Québec J8X 3X7, Canada
pelc@uqo.ca

Abstract. We study the problem of the amount of information required
to draw a complete or a partial map of a graph with unlabeled nodes and
arbitrarily labeled ports. A mobile agent, starting at any node of an un-
known connected graph and walking in it, has to accomplish one of the
following tasks: draw a complete map of the graph, i.e., find an isomor-
phic copy of it including port numbering, or draw a partial map, i.e., a
spanning tree, again with port numbering. The agent executes a deter-
ministic algorithm and cannot mark visited nodes in any way. None of
these map drawing tasks is feasible without any additional information,
unless the graph is a tree. This is due to the impossibility of recognizing
already visited nodes. Hence we investigate the minimum number of bits
of information (minimum size of advice) that has to be given to the agent
to complete these tasks. It turns out that this minimum size of advice de-
pends on the numbers n of nodes or the number m of edges of the graph,
and on a crucial parameter μ, called the multiplicity of the graph, which
measures the number of nodes that have an identical view of the graph.

We give bounds on the minimum size of advice for both above tasks.
For μ = 1 our bounds are asymptotically tight for both tasks and show
that the minimum size of advice is very small: for an arbitrary function
ϕ = ω(1) it suffices to give ϕ(n) bits of advice to accomplish both tasks for
n-node graphs, and Θ(1) bits are not enough. For μ > 1 the minimum size
of advice increases abruptly. In this case our bounds are asymptotically
tight for topology recognition and asymptotically almost tight for span-
ning tree construction. We show that Θ(m log μ) bits of advice are enough
and necessary to recognize topology in the class of graphs with m edges
and multiplicity μ > 1. For the second task we show that Ω(μ log(n/μ))
bits of advice are necessary and O(μ log n) bits of advice are enough to
construct a spanning tree in the class of graphs with n nodes and multi-
plicity μ > 1. Thus in this case the gap between our bounds is always at
most logarithmic, and the bounds are asymptotically tight for multiplicity
μ = O(nα), where α is any constant smaller than 1.

� This work was done during the visit of Dariusz Dereniowski at the Research Chair
in Distributed Computing of the Université du Québec en Outaouais. This author
was partially supported by the MNiSW grant N N206 379337.

�� Partially supported by NSERC discovery grant and by the Research Chair in Dis-
tributed Computing at the Université du Québec en Outaouais.

N.A. Lynch and A.A. Shvartsman (Eds.): DISC 2010, LNCS 6343, pp. 328–342, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Drawing Maps with Advice 329

1 Introduction

The background and the problem. Knowing the topology of a network or
at least a spanning tree of it is of significant help in organizing communication
among nodes of the network and in accomplishing distributed tasks. It is well
known that such tasks as, e.g., broadcasting or gossiping (information exchange)
can be performed more efficiently when the topology of the network or a span-
ning tree of it are available to nodes, than when they have to be executed in
an unknown network. One way of supplying this vital information to nodes is
by means of exploration of the network, where a mobile agent has to traverse
all links of the network and visit all its nodes. In fact, one of the main reasons
to perform the well-studied task of graph exploration, see, e.g., [2, 4, 5, 8, 9],
is to draw a faithful map of the graph that models the explored network. Pro-
vided that the agent has enough memory and computation power and that the
exploration has been performed, drawing a map of the graph is easy, if nodes
have distinct identities that can be perceived by the agent, or if the agent can
leave marks at nodes when it visits them. However, neither of these assumptions
is always satisfied. On the one hand, nodes may refuse to reveal their identi-
ties, e.g., for security reasons, or limited sensory capabilities of the agent may
prevent it from perceiving these identities; on the other hand, nodes may not
have facilities (whiteboards) allowing to leave marks, or such marks may be de-
structed between visits of the agent and thus unreliable. Thus it is important
for the agent to be able to recognize the topology of the graph (draw a full map
of the network) or construct its spanning tree (which is an important partial
map of it) without relying on identities of the nodes and without marking them.
In contrast, in order to allow the agent to move in the network, we have to
assume that ports at every node are distinguishable for the agent. If an agent
were unable to locally distinguish ports at a node, it may have even been un-
able to visit all neighbors of a node of degree at least 3. Indeed, after visiting
the second neighbor, the agent cannot distinguish the port leading to the first
visited neighbor from the port leading to the unvisited one. Thus an adversary
may always force an agent to avoid all but two edges incident to such a node,
thus effectively precluding exploration. Hence we assume that a node of degree
d has ports 1, . . . , d corresponding to the incident edges. Ports at each node can
be perceived by an agent visiting this node, but there is no coherence assumed
between port labelings at different nodes.

We consider two map drawing tasks that have to be accomplished by a mobile
agent executing a deterministic algorithm and walking in an unknown connected
graph with unlabeled nodes and labeled ports. One is topology recognition which
consists in returning an isomorphic copy of the graph with correctly numbered
ports, and the other is spanning tree construction which consists in returning
a spanning tree of the graph, again with correctly numbered ports. Both tasks
have to be performed by an agent that starts in an arbitrary node of an unknown
graph and is allowed to explore it. These tasks can be easily accomplished after
exploration, if the graph is a tree (and in this case they are obviously equivalent):
after performing an Eulerian tour of the tree, the agent realizes this fact and

330 D. Dereniowski and A. Pelc

can reconstruct the topology of the tree. However, it turns out that unless the
graph is a tree, none of these tasks can be accomplished without any additional
information given to the agent.

(a) (b)

2
1

2

2

1

1

2

2

2

1

3 3 1

1

2 2

12

1

2

1 2

1
21

3 3 1

Fig. 1. Non-isomorphic graphs undistinguishable by the agent

Fig. 1 (cf. [25]) gives an example of two non-isomorphic graphs after whose
exploration an agent will get identical information, and thus will not be able
to distinguish them. Indeed, a stronger fact is true: for any graph that is not a
tree, an agent that has explored the graph and has no additional information
can neither recognize the topology of the graph, nor even construct its spanning
tree. This yields the main problem that we study in this paper.

What is the minimum number of bits of a priori information required
by an agent exploring a graph, in order to recognize its topology or to
construct its spanning tree?

This way of stating the problem follows the paradigm of network algorithms with
advice that has become recently popular (cf. the subsection ”Related work”),
and can be described as follows. An oracle knowing the entire network can give
a string of bits (advice) to the mobile agent. (In other settings strings of bits
are given to nodes that subsequently exchange messages.) Then an algorithm is
executed by the agent without knowing in which network it operates, using the
provided advice. The total number of bits given by the oracle is the size of advice.
Thus the framework of advice permits to quantify the amount of information
needed to solve a network problem, regardless of the type of information that is
provided.

Since for trees no additional information is needed, in the rest of the paper we
assume that the explored graph is not a tree. It turns out that the size of advice
needed to solve the two problems under investigation depends on three param-
eters: the number n of nodes, the number m of edges, and a crucial parameter
μ called the multiplicity of the graph.1 This parameter depends on the notion
of the view from a node. Intuitively, this is the infinite tree with labeled ports,
rooted at the given node, that would be obtained by a complete infinite explo-
ration of the graph, if each visited node were attached as a new node in the tree
(see the formal definition in Section 2). Since nodes of the graph are not labeled

1 Our multiplicity parameter μ is related to the symmetricity σ of a graph, defined
in [25]. We define multiplicity for a graph G with a particular port labeling, while
σ(G) is defined in [25] to be the maximum multiplicity over all port labelings of G.

Drawing Maps with Advice 331

and cannot be marked, and thus already visited nodes cannot be recognized on
subsequent visits, the view from a node is the maximum information that can
be obtained by an agent starting at this node and exploring the graph. It has
been proved in [22] that if views of two nodes of a n-node graph are different,
then their views truncated to level n− 1 are also different. Hence, knowing any
upper bound on n, the agent can learn in finite time which nodes have equal
views and which do not. It is known (cf. [25]) that, for every node v of a graph,
the number of nodes from which the view is identical as that from v is the same.
This number is the multiplicity μ of the graph.

Our results. We give bounds on the minimum size of advice required by an
agent both for the task of topology recognition and of spanning tree construc-
tion. (We focus on the feasibility of accomplishing these tasks and not on the
complexity of their performance.) For μ = 1 our bounds are asymptotically tight
for both tasks and show that the minimum size of advice is very small: for an
arbitrary function ϕ = ω(1) it suffices to give ϕ(n) bits of advice to accomplish
both tasks for n-node graphs, and Θ(1) bits are not enough. For μ > 1 the mini-
mum size of advice increases abruptly. In this case our bounds are asymptotically
tight for topology recognition and asymptotically almost tight for spanning tree
construction. We show that Θ(m log μ) bits of advice are enough and necessary
to recognize topology in the class of graphs with m edges and multiplicity μ > 1.
For the second task we show that Ω(μ log(n/μ)) bits of advice are necessary and
O(μ log n) bits of advice are enough to construct a spanning tree in the class of
graphs with n nodes and multiplicity μ > 1. Thus in this case the gap between
our bounds is always at most logarithmic, and the bounds are asymptotically
tight for multiplicity μ = O(nα), where α is any constant smaller than 1.

Our results imply the following, somewhat surprising comparison of the im-
portance of graph exploration in accomplishing the two considered tasks. For
the task of topology recognition, the fact that the agent can explore the graph
has a small impact on the required size of advice, if μ > 1. Indeed, for any
μ > 1, there are 2O(m log n) port-labeled non-isomorphic graphs with n nodes, m
edges and multiplicity μ. Hence without any exploration it would be enough to
give O(m log n) bits of advice to recognize topology (by giving the index of the
graph in some ordered list of all such graphs), and with the help of exploration
the number of bits is Θ(m log μ). Thus the capability to explore the graph is
“worth” at most a logarithmic factor in the size of advice (the largest difference
occurring when μ is constant). By contrast, for the task of spanning tree con-
struction, the possibility of exploring the graph may have a crucial impact on
the required size of advice. Indeed, for any μ, there are at least 2Ω(n/μ) graphs
with n nodes and multiplicity μ, no pair of which has isomorphic spanning trees.
Hence, without exploration, Ω(n/μ) bits of advice would be necessary to solve
the spanning tree construction problem. However, if the agent can explore the
graph, only O(μ log n) bits are sufficient to find a spanning tree. Thus, for any
μ polylogarithmic in n, the capability of exploring the graph is “worth” an ex-
ponential decrease of the size of advice required for spanning tree construction.

Due to lack of space, proofs of several results (marked with �) are omitted.

332 D. Dereniowski and A. Pelc

Related work. Network algorithms with advice were studied, e.g., in [11–
14, 18, 19, 23]. When advice is given by the oracle to the nodes, rather than
to a mobile agent, the advice paradigm becomes closely related to that of infor-
mative labeling schemes [1, 7, 20, 21, 24]. In the advice paradigm the authors
studied the minimum size of advice required for the solvability of the respective
network problem or for its efficient solution. In [7] it was shown that giving ap-
propriate 2-bit labels to nodes of a graph allows an agent to explore all graphs,
and that with 1-bit labels an agent can explore all graphs of bounded degree. In
[12] the authors compared the minimum size of advice required to solve two in-
formation dissemination problems using a linear number of messages. In [13] the
authors established the size of advice given to a mobile agent, needed to break
competitive ratio 2 of an exploration algorithm in trees. In [14] it was shown
that advice of constant size permits to carry on the distributed construction of
a minimum spanning tree in logarithmic time. In [11] the authors established
lower bounds on the size of advice needed to beat time Θ(log∗ n) for 3-coloring
of a cycle and to achieve time Θ(log∗ n) for 3-coloring of unoriented trees. It
was also shown that, both for trees and for cycles, advice of size Ω(n) is needed
to 3-color in constant time. In the case of [23] the issue was not efficiency but
feasibility: it was shown that Θ(n log n) is the minimum size of advice required
to perform monotone connected graph clearing, using the minimum number of
searchers. In [19] the authors studied radio networks for which it is possible to
perform centralized broadcasting in constant time. They proved that O(n) bits
of advice allow to obtain constant time in such networks, while o(n) bits are not
enough. In [16] the trade-off between the size of advice and broadcasting time
in trees was investigated, assuming that advice is given only to the source of
broadcasting.

Computability in anonymous networks and feasibility of distributed tasks per-
formed using message exchange in anonymous networks, without advice, have
been studied, e.g., in [3, 6, 25]. Papers [10, 17] were devoted to investigating ex-
ploration in anonymous networks when agents have small memory. Rendezvous
was considered in this context, e.g., in [15].

2 Terminology and Preliminaries

Networks are modeled as simple undirected connected graphs (without self-loops
or multiple edges). Nodes of a graph are unlabeled and ports at a node of degree
d are arbitrarily labeled 1, . . . , d. Thus each edge has two labels, one at each
extremity. We do not assume any coherence between port labelings at different
nodes. Port labels are visible to an agent walking in the graph.

Graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic, if there is a bijection
f : V1 −→ V2, such that u is adjacent to v, if and only if f(u) is adjacent to f(v),
and the port number corresponding to edge {u, v} at node u is equal to the port
number corresponding to edge {f(u), f(v)} at node f(u), for distinct u, v ∈ V1.

An oracle is a function O from a class G of graphs to the set of finite binary
strings. Given a graph G ∈ G, the oracle gives to the agent the stringO(G), called

Drawing Maps with Advice 333

the advice. The length of O(G) is called the size of advice. The agent (knowing
O(G) but not G) is placed by an adversary in an arbitrary node of the graph G
and executes its deterministic algorithm, for which O(G) can be a parameter.
We say that an agent solves the topology recognition problem (respectively the
spanning tree construction problem) in a class G of graphs, with advice of size s,
if for any graph G ∈ G, the agent, given advice of size s, outputs an isomorphic
copy of G (respectively an isomorphic copy of a spanning tree of G) upon the
execution of its algorithm.

We will use the following notion from [25]. Let G be a graph and v a node of
G. The view from v is the infinite rooted tree V(v) with labeled ports, defined
recursively as follows. V(v) has the root x0 corresponding to v. For every node
vi, i = 1, . . . , k, adjacent to v in G, there is a child xi in V(v) such that the port
number at v corresponding to edge {v, vi} is the same as the port number at
x0 corresponding to edge {x0, xi}, and the port number at vi corresponding to
edge {v, vi} is the same as the port number at xi corresponding to edge {x0, xi}.
Node xi, for i = 1, . . . , k, is now the root of the view from vi. By Vt(v) we denote
the view V(v) truncated to depth t. The following proposition is proved in [22].

Proposition 1. For a n-node graph, V(u) = V(v), if and only if Vn−1(u) =
Vn−1(v).

The following notion was introduced in [25]. Let G be a graph. The quotient
graph of G, denoted QG, is a (not necessarily simple) graph defined as follows.
Nodes of QG correspond to sets of nodes of G which have the same view. For
any (possibly equal) nodes x and y of QG, corresponding to sets U and V ,
respectively, there is an edge between x and y with labels p at x and q at y, if
there exists an edge {u, v} in G with u ∈ U , v ∈ V and with ports p at u and q
at v. Graphs G and H are called equivalent, if QG = QH .

If G has n nodes and QG has k nodes, then k divides n (cf. [25]) and the
multiplicity μ of G is equal to n/k. It follows from [25] that computing views of
all nodes of G is the maximum information that can be obtained from exploring
G. More precisely we have the following proposition.

Proposition 2. Let G and H be equivalent graphs with the quotient graph Q.
Consider an agent starting from node v of G and from node w of H, where v
and w correspond to the same node of Q. If the agent has the same advice for
G and H, then the execution of its algorithm is identical in G and in H.

The next proposition shows that any upper bound on the size of the graph G is
sufficient to construct QG after exploring G.

Proposition 3. Given any upper bound n on the number of nodes of a graph
G, there exists an algorithm for an exploring agent that finds the quotient graph
QG after exploring the graph G. �
The next two propositions follow from the definition of the quotient graph.

Proposition 4. ([25]) Let G be a graph with multiplicity μ. Let vi be the node
in QG corresponding to the set of nodes Vi of G having the same view. Consider

334 D. Dereniowski and A. Pelc

an edge e = {vi, vj} of QG with corresponding port numbers p and q. If Ee is
the set of edges of G corresponding to e, then we have:

1. if i = j and p = q, then Ee forms a perfect matching in Vi,
2. if i = j and p �= q, then Ee is a set of pairwise disjoint cycles containing all

the nodes in Vi,
3. if i �= j, then Ee is a perfect matching in Vi ∪ Vj such that no edge has both

endpoints either in Vi or in Vj .

Proposition 5. ([25]) Let G be any n-node graph of multiplicity μ and let TQG

be any spanning tree of the quotient graph QG. Then, there exist μ node-disjoint
subtrees of G, each of which is isomorphic to TQG .

3 Graphs with Multiplicity 1

In this section we show that for graphs of multiplicity 1, ω(1) bits of advice
are enough to accomplish both the topology recognition and the spanning tree
construction tasks (an arbitrarily slowly growing function of the size of the graph
will do), but Θ(1) bits are not enough for these tasks.

Lemma 1. There exists no algorithm for an exploring agent that can find the
number of nodes of the graph in the class of graphs of multiplicity 1, provided
that Θ(1) bits of advice are given. �

Corollary 1. There exists no algorithm for an exploring agent that recognizes
topology or constructs a spanning tree in the class of graphs with multiplicity 1,
provided that Θ(1) bits of advice are given. �

If μ = 1, then G and QG are isomorphic. Hence QG contains all the information
needed to recognize topology and to construct a spanning tree. Due to Propo-
sition 3, it is sufficient to provide advice containing any upper bound on the
number of nodes of G.

Let ϕ : N→ N be any (computable) function diverging to infinity. (The diver-
gence can be arbitrarily slow.) We construct an algorithm Aϕ that uses advice of
size at most ϕ(n), where n is the number of nodes of the explored graph G, and
determines the graph QG. There exists a non-decreasing (computable) function
ϕ∗ : N→ N such that ϕ∗(n) ≤ ϕ(n) for all n, and ϕ∗ diverges to infinity. Hence
w.l.o.g. we may assume that ϕ itself is non-decreasing. For a n-node graph G the
advice consists of the number x = ϕ(n) and the information that μ = 1. Then
Aϕ computes the smallest integer n, such that ϕ(n) > x. By the definition, n
is an upper bound on n. By Proposition 3, using n, the algorithm Aϕ can find
QG. It outputs this graph for the topology recognition task. The correctness of
Aϕ follows from the fact that QG is isomorphic to G. Since the agent using the
algorithm Aϕ recognizes the topology, it can also construct a spanning tree of
G. Since the number ϕ(n) can be coded on less than ϕ(n) bits and one bit is
enough to code μ = 1, we have:

Drawing Maps with Advice 335

Theorem 1. For any (computable) function ϕ : N → N such that ϕ = ω(1),
there exists an algorithm for an exploring agent that uses advice of size at most
ϕ(n) and solves both the problem of topology recognition and that of the spanning
tree construction in the class of n-node graphs of multiplicity 1.

Together with Corollary 1, Theorem 1 gives the optimal size of advice to solve
either of our two problems for graphs of multiplicity 1.

4 Topology Recognition for Graphs of Multiplicity > 1

In this section we establish asymptotically tight bounds on the size of advice
needed for topology recognition in the class of graphs of any multiplicity μ > 1.

Lemma 2. For any μ ≥ 2 and m ≥ 4μ there exist μΩ(m) equivalent non-
isomorphic graphs of multiplicity μ. �

Theorem 2. Every algorithm for an exploring agent that recognizes topology in
the class of graphs with multiplicity μ ≥ 2 and m ≥ 4μ edges requires Ω(m log μ)
bits of advice.

Proof. Let G be the class of equivalent non-isomorphic graphs constructed in
the proof of Lemma 2. We have |G| ≥ μcm = 2cm log μ for some constant
c > 0. Suppose that an agent is able to recognize the topology of G ∈ G
using �cm logμ� − 1 bits of advice. This advice partitions the class G into
k = 2�cm log μ�−1 ≤ μcm/2 disjoint classes C1, . . . , Ck with the same advice for all
graphs in the same class. Thus, there exists i ∈ {1, . . . , k} such that |Ci| > 1. For
different graphs G, H ∈ Ci, graphs G and H are equivalent and, since the advice
is the same for G and H , the agent produces the same output for both graphs, by
Proposition 2. By Lemma 2, G and H are not isomorphic — a contradiction. ��

Together with Theorem 2, the following result gives an asymptotically tight
bound on the size of advice sufficient for topology recognition in the class of
graphs with m edges and multiplicity μ ≥ 2.

Theorem 3. For any μ ≥ 2 there exists an algorithm for an exploring agent
that uses O(m log μ) bits of advice and recognizes topology in the class of graphs
with m edges and multiplicity μ.

Proof. We prove the theorem by estimating the number of non-isomorphic equiv-
alent graphs with m edges and of multiplicity μ. Consider one edge e = {vi, vj}
of the common quotient graph Q. Let Vi and Vj be sets of nodes of the equiv-
alent graphs corresponding to vi and vj in Q. Sets Vi and Vj have size μ. By
Proposition 4 we have the following possibilities:

1. i = j and the port labels at the endpoints of e are identical. Then e corre-
sponds to O(n!) possible perfect matchings in the set Vi;

2. i = j and the port labels at the endpoints of e are different. Then e corre-
sponds to μO(μ) possible collections of disjoint cycles with nodes in Vi;

336 D. Dereniowski and A. Pelc

3. i �= j. In this case e corresponds to O(n!) possible perfect matchings between
the nodes in Vi and Vj .

There are at most m/(μ/2) edges in the quotient graph Q. Considering the
worst case, there are at most μO(m) non-isomorphic graphs G that have the
same quotient graph Q.

Given a graph G to explore, we provide the following advice to the agent: the
number of nodes n ≤ m of G, and the index i of G in the list of all non-isomorphic
n-node graphs with the quotient graph QG, ordered by using any fixed order
provided with the algorithm. As shown above, this advice uses O(m log μ) bits.
By Proposition 3, the agent finds QG using the given n. Then, it reconstructs
the ordered list of all n-node graphs with the quotient graph QG and returns
the i-th graph in the list. ��

The following observation shows that, for the problem of topology recognition,
exploration is not worth much in terms of decreasing the size of advice. While
Θ(m log μ) bits are needed with exploration, O(m log n) bits are enough without
it, hence the ratio is at most logarithmic. This should be contrasted with the
situation for spanning tree construction, where, as will be seen in Section 5,
exploration is worth a lot.

Proposition 6. Let G be a n-node graph with m edges. There exists an al-
gorithm for an agent that returns the topology of G without performing any
exploration, using O(m log n) bits of advice. �

5 Spanning Tree Construction for Graphs of Multiplicity
> 1

In this section we establish asymptotically almost tight bounds Ω(μ log(n/μ))
and O(μ log n) on the size of advice needed for the spanning tree construction
in the class of n-node graphs of any multiplicity μ > 1. These bounds differ
by at most a logarithmic factor and are asymptotically tight for multiplicity
μ = O(nα), where α is any constant smaller than 1.

Lemma 3. For every μ ≥ 2 and for every n = rμ, where r is an integer, there
exists a collection G of (n/μ)Ω(μ) n-node equivalent graphs with multiplicity μ,
such that no two graphs in G have isomorphic spanning trees.

Proof. First we analyze the case when μ < 8. Since the result is asymptotic, we
can assume that n is sufficiently large, in particular n > 5μ. Consider the quo-
tient graph Q given in Fig. 2(b) (this example is for μ = 3 and r = 15). (For even
r take the quotient graph with r−1 nodes and add a pendant edge.) The edge e
with port numbers 2 and 4 is unique in Q. The edge with port numbers 3 and 4 at
distance i from e is called the i-th edge of Q, i = 0, . . . , (r−5)/2−1. Define Gi by
taking μ copies of Q and ‘rearranging’ the μ edges corresponding to the i-th edge
of Q into a perfect matching between their left and right endpoints that makes
Gi connected (see Fig. 2(a) for an example). Let G = {G0, . . . , G(r−5)/2−1}.

Drawing Maps with Advice 337

(a)

1 2 1 2 1 2 1 2
2 1

(b)

1 2 1 2

3

1 2 1 2

3

1 2 1 2

3

1 2 1 2

3

1 2 1 2

4 4 4 4 4 3 4 3

(c)

4

3

1

2

1

2

v

Fig. 2. (a) graph G1 ∈ G with μ = 3; (b) quotient graph Q; (c) a subpath of each
spanning tree

If i �= j, then Gi and Gj do not have isomorphic spanning trees. Indeed,
a graph Gk ∈ G contains as a subgraph a cycle C with edges in the perfect
matching and edges with port labels 1 and 2, connecting the endpoints of the
edges in the matching. Moreover, exactly one edge of this cycle does not belong
to any spanning tree of G, for otherwise the tree is not connected. Thus, in
particular, each spanning tree of Gk contains a subgraph H of C depicted in
Fig. 2(c). The node v of this subgraph uniquely identifies the length of the path
in Gk with endpoint v and containing the edges which do not belong to C and
have port labels 1 and 2. This determines the distance in the quotient graph
between the edge corresponding to the perfect matching and the edge with port
numbers 2, 4. This distance equals k, which means that if the spanning trees
of Gi and Gj are isomorphic, then i = j, which proves the claim. Moreover,
|G| = (r − 5)/2 = Θ(n). This gives the bound from the lemma for each fixed μ,
2 ≤ μ < 8.

Let now 8 ≤ μ ≤ n. For simplicity of presentation, assume that μ is divisible
by 4. At the end of the proof we show how to handle the general case. Let
R be any family of (μ/4)-node paths rooted at an endpoint. Each edge e of
R has a label l(e) ∈ {1, . . . , r}. Two rooted paths R and R′ are similar, if
there exists a bijection f from the set of nodes of R into the set of nodes of R′

such that {u, v} is an edge of R if and only if {f(u), f(v)} is an edge of R′, and
l({u, v}) = l({f(u), f(v)}) holds for all adjacent nodes u, v of R. (In other words,
R and R′ are similar, if they have the same length and identical edge labelings
up to symmetry.) For a rooted path R, we use notions of parent and child, as
in any rooted tree. For a given rooted path R ∈ R we construct a graph GR of
multiplicity μ.

Before defining GR for R ∈ R, we introduce the basic building block, called the
component, used to construct the graphs GR. Each component has 4r nodes. The
component together with its quotient graph Q are given in Figs 3(a) and 3(b),
respectively. The graph Q is also the quotient graph of each final graph GR

constructed below. We distinguish in the component an arbitrary path on r
nodes connected by edges with port labels in {3, 4}. We will call this path the
leading path of the component. The nodes of Q are denoted by z1, . . . , zr (see
Fig. 3(b)). Each node v of R is represented by a copy of the component in GR,

338 D. Dereniowski and A. Pelc

2

2

2

1

1

1
1

2
3 4

1

1

1

2

2

2

2

1

3

3

3 4 3

1
2

1
2

1
21

2
4

43

43

4 3

3

3

3

4

4

3

1
2

1
2

4 3

3

3

4

4 3
12

1

4

2

2

1

2

1z
2z 3z

−1rz rz

(a)

1
...

(b)

...
2

2 3 1

1
...

...
1

...

1

1

1

2

23

3

3

1 2

2
4

4

4

4 3

2

2

21

2
3

3

3

3

1
3 4 3

1 2 1
3
2

4
1

3
2

1
2

2

1
2

1

1

2

2

4 3

4 3

4 3

3

4 3

3 34

4

3
12

4

2

1

1

4

2

1
2

1
2

(c)

1

(d)

Fig. 3. (a) the component; (b) the quotient graph of the component and of GR for
each R ∈ R; (c),(d) all possible connections between different components

denoted by GR(v). For any nodes u and v in R, such that u is the parent of v, we
define c(u, v) to be 3 if u has a parent w and l({w, u}) = l({u, v}), and to be 4
otherwise. If u is the parent of v in R, then we connect GR(u) with GR(v) in such
a way that c(u, v) nodes in GR(u) corresponding to zl({u,v}) in Q form a cycle
together with the unique node corresponding to node zl({u,v}) in Q that belongs
to the leading path of GR(v). Fig. 3(c) depicts the four nodes of a component
GR(v), corresponding to a node zi of Q, and connections representing the case
when v has exactly one incident edge with label i and this edge connects v with
its child, or its parent. Fig. 3(d) depicts these nodes and connections in the case
when v has two incident edges with label i. By construction, the graph GR is
connected. Moreover, GR has multiplicity μ, for each μ �= n/2. For μ = n/2,
a similar construction can be used, except that it has to be ensured that each
“horizontal” edge in the component has different labels at the endpoints. The
rest of the proof is for μ �= n/2, the case μ = n/2 being analogous. See Fig. 4 for
an example of the construction of GR. Fig. 4(a) depicts a path R with 4 nodes.
We take μ = 16 and n = 48. The quotient graph Q given in Fig. 4(b) has r = 3
nodes. The graph GR is shown in Fig. 4(c).

We define G(R) = {GR : R ∈ R}. In order to prove the lower bound stated in
the lemma, we count the number of graphs in G(R) that do not have isomorphic
spanning trees. The proof is in two steps. First we show that if R is not similar
to R′, then GR and GR′ cannot have isomorphic spanning trees. This will follow
from the path-like structure of the graphs in G(R). In this way, we reduce our
task to estimating the number of non-similar paths that can form a family R.
The proof of the following claim is in the Appendix.

Claim. If graphs GR and GR′ have isomorphic spanning trees, then R and R′

are similar. �

Let R contain all (μ/4)-node pairwise non-similar paths. Since μ ≥ 8, R �=
∅. There are (n/μ)Ω(μ) such paths. By Claim 5, the family G(R) consists of

Drawing Maps with Advice 339

R()G d

R()G c

R()G b

RG a()

(a)

(b)

3
1 2 1

3
2

34

21

a

d

3

3
c

b

2

2

2

1

1

1

2
3 4

1

1

1

2

2

2

2

1

3

3

3 4 3

2

1
2

3

4

4

3

3

33

3

3

1

2

2

2

1

1

1

2
3 4

1

1

1

2

2

2

2

1

3

3

3 4 3

1
2

1
2

1
2

3

4

4

3

3

33

3

3

1

2

2

2
1

1

3 4
1

1

1

2

2

2

2

1

3

3

4 3

1
2

1
2

3

4

4

3

3

33

3

3

2

1

2

2
1

1

4
1

1

1

2

2

2

2

1

3

3

3 4 3

1
2

1
2

1
21

2

3

4

4

3

3

33

3

3

1

3

2

1
2

1

2

1

1
2 1

21

3

1 1

2

2

(c)

1

Fig. 4. (a) a rooted tree R ∈ R; (b) the quotient graph Q; (c) the graph GR

(n/μ)Ω(μ) equivalent n-node graphs of multiplicity μ that do not have isomorphic
spanning trees.

Note that if 4r does not divide n, then we obtain the bound from the lemma
by making one component of size 4r + (n mod (4r)). ��

Theorem 4. For every μ ≥ 2 and every n = rμ, every algorithm for an ex-
ploring agent that constructs a spanning tree in the class of n-node graphs of
multiplicity μ requires Ω(μ log(n/μ)) bits of advice. �

The following result gives an almost matching upper bound on the size of advice
sufficient for spanning tree construction.

Theorem 5. For any μ ≥ 2 there exists an algorithm for an exploring agent
that uses O(μ log n) bits of advice and constructs a spanning tree in the class of
n-node graphs of multiplicity μ.

Proof. The oracle provides advice consisting of the number n of nodes and of
a sequence of μ − 1 edges that the agent uses to obtain a spanning tree, where
each edge is given as four integers in {1, . . . , n} (the endpoints and the port
numbers at the endpoints). By Proposition 3, the agent finds QG using n. The
quotient graph QG is connected, for otherwise G itself would not be connected.
Let TQG be the first spanning tree of QG in some fixed order. The agent finds
TQG . We need to assign a canonical order to nodes of this tree. If TQG has a
central node or a central edge but is non-symmetric (considering port labelings),
nodes of TQG can be canonically ordered starting from the central node of this
tree, or from one of the endpoints of the central edge, following an Eulerian tour
of the tree starting by the smallest port and leaving every node by the next
port after the one by which the node was entered. If the tree has a central edge

340 D. Dereniowski and A. Pelc

and is symmetric, each of the halves of it can be ordered as above. Note that
TQG has n/μ nodes. By Proposition 5, the graph G contains μ node-disjoint
subtrees Ti such that each Ti is isomorphic to TQG , i = 1, . . . , μ. Thus, the total
number of nodes (resp. edges) in all the subtrees Ti is n (resp. n − μ). Since G
is connected, there exist μ− 1 edges ej, j = 1, . . . , μ− 1, such that the subgraph
of G containing exactly the edges of the subtrees Ti, i = 1, . . . , μ, and those
edges ej, is a spanning tree T of G. To finish the construction of the spanning
tree T of G, the agent connects the subtrees Ti, i = 1, . . . , μ, using the edges ej ,
j = 1, . . . , μ− 1, which are given as advice. Endpoints of the edges ej are given
to the agent using the canonical order described above. ��

We illustrate the algorithm described in the proof of Theorem 5 in the following
example. Let G be the graph given in Fig. 5(a), where n = 16, μ = 4. This
implies that the quotient graph must have n/μ = 4 nodes. The agent finds the
quotient graph QG and one of its spanning trees, given respectively in Figs 5(b)
and 5(c). The advice, besides n, codes the three edges added in order to connect
the copies of TQG into a spanning tree T of G, shown in Fig. 5(d).

1

2

2

1 2 1
1

2

2

1 2 1
1

2

2

1 2 1

2

2
2

2
1

3
12

1
2

1

2
1

3

2 2

121212 1 2 1 2 1 2

2 1 2 1 2 1 1 2 1 2 1 2

1

3

3

1

1

3

3

1

2 2

2 2

12

1
2

1

2

1

2

2

1 2 1

(a) (d)

(c)(b)

Fig. 5. (a) a graph G with μ = 4 and n = 16; (b) QG; (c) TQG ; (d) T obtained from
advice and μ = 4 copies of TQG

Theorems 4 and 5 imply that our bounds on the size of advice for spanning tree
construction are asymptotically tight and equal Θ(μ log n), when μ = O(nα), for
any constant α < 1.

Our final observation shows that, as opposed to the task of topology recogni-
tion, in the spanning tree construction the ability of exploring the graph is worth
a lot in terms of the size of advice. While O(μ log n) bits are enough to accom-
plish this task with exploration, Ω(n/μ) bits are needed without it. Hence, for μ
polylogarithmic in n, the ability of exploring is ‘worth’ an exponential decrease
in the size of advice required for constructing a spanning tree. As we have seen
in Section 4, this is very different from what happens for the task of topology
recognition.

Proposition 7. An agent that returns a spanning tree for the class of n-node
graphs of multiplicity μ without performing any exploration requires Ω(n/μ) bits
of advice. �

Drawing Maps with Advice 341

6 Conclusion

We established asymptotically tight bounds on the minimum size of advice re-
quired to solve the topology recognition problem. For the spanning tree con-
struction problem, our bounds are asymptotically almost tight: O(μ log n) and
Ω(μ log(n/μ)). Closing this (at most logarithmic) gap is a natural open prob-
lem. In this paper we focused only on the feasibility of these two map drawing
tasks. It is natural to ask what are the trade-offs between the size of advice and
the efficiency (time) of accomplishing each task. We also did not impose any
restriction on the memory size of the agent. Another open problem is to study
trade-offs between the size of advice and the size of the memory of the agent
required to accomplish a particular network task.

References

1. Abiteboul, S., Kaplan, H., Milo, T.: Compact labeling schemes for ancestor queries.
In: Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pp. 547–556 (2001)

2. Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM Journal on
Computing 29, 1164–1188 (2000)

3. Angluin, D.: Local and global properties in networks of processors. In: Proc. 12th
Annual ACM Symposium on Theory of Computing (STOC 1980), pp. 82–93 (1980)

4. Bender, M.A., Fernandez, A., Ron, D., Sahai, A., Vadhan, S.: The power of a peb-
ble: Exploring and mapping directed graphs. Information and Computation 176,
1–21 (2002)

5. Betke, M., Rivest, R., Singh, M.: Piecemeal learning of an unknown environment.
Machine Learning 18, 231–254 (1995)

6. Boldi, P., Vigna, S.: An effective characterization of computability in anonymous
networks. In: Welch, J.L. (ed.) DISC 2001. LNCS, vol. 2180, pp. 33–47. Springer,
Heidelberg (2001)

7. Cohen, R., Fraigniaud, P., Ilcinkas, D., Korman, A., Peleg, D.: Label-guided graph
exploration by a finite automaton. In: Caires, L., Italiano, G.F., Monteiro, L.,
Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 335–346.
Springer, Heidelberg (2005)

8. Deng, X., Papadimitriou, C.H.: Exploring an unknown graph. Journal of Graph
Theory 32, 265–297 (1999)

9. Dessmark, A., Pelc, A.: Optimal graph exploration without good maps. Theoretical
Computer Science 326, 343–362 (2004)

10. Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree exploration with little mem-
ory. Journal of Algorithms 51, 38–63 (2004)

11. Fraigniaud, P., Gavoille, C., Ilcinkas, D., Pelc, A.: Distributed computing with
advice: information sensitivity of graph coloring. Distributed Computing 21,
395–403 (2009)

12. Fraigniaud, P., Ilcinkas, D., Pelc, A.: Oracle size: a new measure of difficulty for
communication problems. In: Proc. 25th Ann. ACM Symposium on Principles of
Distributed Computing (PODC 2006), pp. 179–187 (2006)

13. Fraigniaud, P., Ilcinkas, D., Pelc, A.: Tree exploration with an oracle. Information
and Computation 206, 1276–1287 (2008)

342 D. Dereniowski and A. Pelc

14. Fraigniaud, P., Korman, A., Lebhar, E.: Local MST computation with short ad-
vice. In: Proc. 19th Annual ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA 2007), pp. 154–160 (2007)

15. Fraigniaud, P., Pelc, A.: Deterministic rendezvous in trees with little memory.
In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 242–256. Springer,
Heidelberg (2008)

16. Fusco, E., Pelc, A.: Trade-offs between the size of advice and broadcasting time in
trees. In: Proc. 20th ACM Symposium on Parallelism in Algorithms and Architec-
tures (SPAA 2008), pp. 77–84 (2008)

17. Gasieniec, L., Pelc, A., Radzik, T., Zhang, X.: Tree exploration with logarithmic
memory. In: Proc. 18th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2007), pp. 585–594 (2007)

18. Gavoille, C., Peleg, D., Pérennes, S., Raz, R.: Distance labeling in graphs. In:
Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2001), pp. 210–219 (2001)

19. Ilcinkas, D., Kowalski, D., Pelc, A.: Fast radio broadcasting with advice.
In: Shvartsman, A.A., Felber, P. (eds.) SIROCCO 2008. LNCS, vol. 5058,
pp. 291–305. Springer, Heidelberg (2008)

20. Katz, M., Katz, N., Korman, A., Peleg, D.: Labeling schemes for flow and con-
nectivity. In: Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2002), pp. 927–936 (2002)

21. Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. In: Proceedings of the
24th Annual ACM Symposium on Principles of Distributed Computing (PODC
2005), pp. 9–18 (2005)

22. Norris, N.: Universal covers of graphs: Isomorphism to depth N-1 implies isomor-
phism to all depths. Discrete Applied Mathematics 56, 61–74 (1995)

23. Soguet, D., Nisse, N.: Graph searching with advice. In: Prencipe, G., Zaks, S. (eds.)
SIROCCO 2007. LNCS, vol. 4474, pp. 51–65. Springer, Heidelberg (2007)

24. Thorup, M., Zwick, U.: Approximate distance oracles. J. ACM 52(1), 1–24 (2005)
25. Yamashita, M., Kameda, T.: Computing on anonymous networks: Part I - charac-

terizing the solvable cases. IEEE Trans. Parallel and Distributed Systems 7, 69–89
(1996)

Network-Aware Distributed Algorithms:
Challenges and Opportunities in Wireless Networks

(Invited Lecture Summary)

Nitin Vaidya

University of Illinois at Urbana-Champaign

Wireless networks differ from typical wired networks in several significant ways. Wire-
less channel is a broadcast medium, resulting in interference between simultaneous
transmissions on the wireless channel. Wireless channel conditions vary over time and
space, making it necessary to adapt to the time-varying conditions. The wireless signals
can propagate along different paths from a transmitter to a receiver, resulting in channel
fading.

These characteristics of the wireless medium can degrade performance. However, the
same characteristics also offer potential performance benefits. For instance, the broad-
cast nature of the wireless medium may allow the nodes to overhear transmissions in-
tended for other hosts. Fading may degrade instantaneous performance of a given user
when the channel is in fade, however, multi-user diversity schemes can exploit fading to
improve performance. Many wireless communications mechanisms have been designed
over the years to realize such performance benefits.

Not surprisingly, being aware of the underlying network characteristics can help im-
prove performance of distributed algorithms as well. This talk introduces some simple
examples of distributed algorithms that can benefit by paying attention to the wireless
network characteristics, and describes some topics for future research.

N.A. Lynch and A.A. Shvartsman (Eds.): DISC 2010, LNCS 6343, p. 343, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Connectivity Problem in Wireless Networks�

Dariusz R. Kowalski and Mariusz A. Rokicki

University of Liverpool, United Kingdom
{D.Kowalski,M.A.Rokicki}@liverpool.ac.uk

Abstract. We study the complexity of the following connectivity prob-
lem in wireless networks: for a given placement of n nodes in the plane,
the goal is to compute a channel and power assignment that forms
strongly connected communication structure spanning all nodes. The
complexity measure is the total number of assigned channels, and the
goal is to minimize this number. We work with two signal inference mod-
els: Geometric Radio Networks (GRN) and Signal to Interference Plus
Noise Ratio (SINR). We show a generic polynomial-time transformation
from the wide class of separable assignments in GRN to assignments in
the SIRN model. This transformation preserves asymptotic complexity,
i.e., the number of channels used in the assignments. In this way we
show an assignment, constructed in polynomial-time, guarantying con-
nectivity in the SINR model by using only O(log n) channels, which is an
improvement over the best previous result O(log2 n) presented in [21].

1 Introduction

Wireless networks have become very popular for their numerous advantages from
the user perspective. On the other hand, these properties, attractive to the users,
pose several challenges to the designers of wireless network architectures and
protocols. One of the main such problems is how to schedule interfering trans-
missions to accomplish specific communication tasks. In wireless networks where
only one or a constant number of channels are used, the most popular way to
resolve colliding transmissions is to use time/code division; this is often im-
plemented using complex coding techniques, but in any case there are several
provable limitations incurred in this setting, c.f., [7]. One of the solutions to
this problem is to use a slightly larger number of transmission channels (though
within a certain “reasonable” limit, e.g., logarithmic) and vary the transmission
powers at the nodes.

Among the basic communication tasks there is a connectivity problem: how
to schedule channels and power transmissions in order to achieve strong con-
nectivity for a given placement of wireless nodes. More precisely, we would like
to minimize the total number of channels needed to form a strongly connected
network over a given set of n nodes located in the Euclidean plane. In order
� This work was supported by the Engineering and Physical Sciences Research Council

[grant numbers EP/G023018/1, EP/H018816/1].

N.A. Lynch and A.A. Shvartsman (Eds.): DISC 2010, LNCS 6343, pp. 344–358, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Connectivity Problem in Wireless Networks 345

to achieve this goal, transmission powers need to be assigned properly. Note
however that in this work we do not consider simultaneous optimization of en-
ergy consumption; assignment of transmission powers is used only to help in
minimizing the number of used channels.

We consider two models of signal inference: Geometric Radio Networks model
(GRN) and Signal to Interference plus Noise Ratio (SINR) model. In the GRN
model we assume that each node has a certain transmission range. The trans-
mission range of a node depends on its transmission power. In this model a
transmission from a node v is successfully received at a node w if w is in v’s
transmission range and no other node that reaches w by its range transmits con-
currently. In the SINR model the power of transmission fades with the distance.
The transmission can be successfully received if its signal power is sufficiently
strong against the total signal power of the concurrent transmissions and the
background noise, all measured at the receiver. These two models seem to be
quite different, in the sense that there are examples in which a successful trans-
mission in the GRN model dose not imply a successful transmission in the SINR
model and vice versa. However, we will show that in case of the connectivity
problem on the plane, these two models have similar power, up to a logarithmic
factor, in terms of the number of channels that are to be used.

Previous and related work. The SINR model was introduced by Gupta and
Kumar [15], where the authors investigated the capacity of wireless networks.
The connectivity problem considered in our work was abstracted and studied
in the context of SINR model by Moscibroda and Wattenhofer [23]. The au-
thors showed how to compute in polynomial time an assignment of transmission
powers and O(log4 n) channels to achieve strong connectivity of the resulting
reachability graph. They also proved that allowing only uniform or linear power
transmissions yields Ω(n) channels to be used for some node placement. The up-
per bound O(log4 n) was later improved to O(log3 n) by Moscibroda et al. [24]
and to O(log2 n) by Moscibroda [21]. In [4] the authors studied the connectivity
problem in one- and two-dimensional grids with the assumption of the uniform
power transmissions. In case of one dimensional grids, it was showed that a
constant number of channels is sufficient to form a strongly connected network,
provided α > 1 (α is the path-loss exponent in the SINR model). The same result
is proved for two dimensional grids for α > 2. For small parameter α, the authors
showed that O(log n) channels allow to form a strongly connected network, and
at least Ω(log n/ log log n) channels are necessary in two dimensional grids.

In geometric radio networks, the complexity of the connectivity problem is
Θ(log n), as proved in [10]. This result holds for any placement of nodes in the
plane.

The relations between the geometric radio model and the SINR model were
studied in [20]. Assuming that nodes are distributed uniformly at random in the
square unit, the authors showed that it is possible to emulate any UDG protocol
on SINR with a polylogarithmic stretch factor, with very high probability.

346 D.R. Kowalski and M.A. Rokicki

A related problem of scheduling a given set of communication links (with or
without a’priori specified power assignment) in the SINR model was also inten-
sively studied, see e.g., [9,22]. The goal is to minimize the length of a transmission
schedule in which there is a successful transmission along each of the requested
links. In [14], the authors showed that link scheduling problem is NP-complete.
A polynomial time algorithm with a constant approximation factor was given
in [16]. It is an improvement over the O(log n)-approximation given in [13]. Fang-
hanel et al. [9] showed that oblivious power assignment requires linear number
of channels for some set of links to be realized. Note that the main difference
between scheduling and connectivity problems is that in the former one, a set of
links is given as a part of the input, while in the latter it needs to be computed as
a part of the solution. In [3], the authors investigated reception zones under the
SINR model. In particular, they showed that for α > 1 and for uniform power
assignment the reception zones have to be convex.

The related broadcast problem was also studied in the context of geomet-
ric radio networks, c.f., [8]. The goal of broadcasting is to find the shortest
connected schedule that disseminates a message from one distinguished node
to all other nodes. In the centralized setting, the best broadcasting protocol
works in O(D log2 rmax

rmin
) rounds [11], improving one of the results from [8]. Here

O(log2 rmax

rmin
) can be viewed as an average number of channels to perform broad-

cast without interference. In [18], the authors studied the convergecast problem
in ad-hoc geometric radio networks, where the transmission powers can be mod-
ified during the execution.

In general graph-based model of radio networks (c.f., [5]), the fastest known
broadcasting protocol in directed networks requires O(D log2 n) rounds as shown
in [6], where D is the diameter of the network (directed networks corresponds
to non-uniform transmission powers). In [1] it was shown that there exists a
bipartite graph that requires Ω(log2 n) rounds to guarantee that each node in
one layer receives a message from at least one node from the other layer. Thus,
in case of networks with constant diameter, the upper bound matches the lower
bound. The fastest known broadcasting protocol in symmetric networks requires
at most O(D + log2 n) rounds [12,19].

Our results. The main result of this work is a generic polynomial-time trans-
formation of a wide class of solutions for the connectivity problem, satisfying so
called“separability”condition, from the model of geometric radio networks to the
SINR model. The obtained assignment requires asymptotically the same number
of channels as the original assignment for geometric radio networks. In partic-
ular, we show that the polynomial-time assignment based on [10], developed in
the context of GRN model, is in the class that can be transformed to assignments
in the SINR model (preserving the asymptotic number of channels). This gives
a polynomial-time construction of an assignment using O(log n) channels in the
SINR model, which is an improvement over the best previous O(log2 n) bound
obtained in [21].

We start by introducing the considered wireless models and the connectivity
problem in Section 2. The properties of the assignment in the GRN model are

Connectivity Problem in Wireless Networks 347

studied in Section 3. The generic transformation to the SINR model is given in
Section 4. We discuss the obtained results and open directions in Section 5.

2 Models of Wireless Networks and the Connectivity
Problem

We are given n nodes located in the Euclidean plane (i.e., with the Euclidean
metric d(·, ·)). Each node is equipped with a radio transmitter and receiver.
Communication is scheduled in synchronous rounds (slots). If a node v decides
to transmit in a round t, it chooses a transmission power Pv(t) and a frequency
channel cv(t) to be used. In this work, we consider static power and channel
assignments, i.e., the power and the channel of node v do not depend on a round
number t; therefore in the remainder we will use notation Pv, cv without param-
eter t. Signal attenuation is proportional to the inverse of the distance to the
power α, where α is typically assumed to be a constant in the range (2, 6). Signals
transmitted on different channels are not interfering, in the sense that receiving
data transmitted on one channel does not depend on simultaneous transmissions
on other channels. The feedback received from wireless transmissions in a round
by node w depends on various physical constraints. In this work we consider two
such interference models.

Geometric Radio Networks (GRN) model. In the geometric radio network model,
also called the radio model or GRN for short, a node w receives a transmission
from node v in round t only if

(i) node v transmits in round t and Pv ≥ d(v, w)α, and
(ii) if a node u �= v transmits in round t then Pu < d(u, w)α.

In other words, a message sent by node v is received at node w if node v is
the only transmitting node satisfying (Pv)1/α ≥ d(v, w). If there are at least two
nodes v, u satisfying condition (i) in round t then we say that a collision occurs in
node w, which implies that no message is successfully delivered to node w in this
round.1 Note that this model specification is equivalent to the classic geometric
radio networks, c.f., [8], where the transmission range Rv of a node v corresponds
to the threshold value (Pv)1/α in our equivalent definition. In particular, the Unit
Disk Graphs (UDG) model (c.f., [17]) is a geometric radio network with uniform
ranges (i.e., uniform transmission powers in our formulation). Therefore, when
considering GRN model, we will argue in terms of transmission ranges, and the
corresponding reachability graph defined as follows. We say that v is w’s in-
neighbor, and w is v’s out-neighbor, in the reachability graph defined by the
set of nodes and their transmission powers, if the transmission range of v, i.e.,
Rv = (Pv)1/α, satisfies Rv ≥ d(v, w) .

1 In the setting considered in this work, the capability of distinguishing collisions from
background noise does not influence the complexity, therefore we do not make any
specific assumption about so called collision detection.

348 D.R. Kowalski and M.A. Rokicki

Signal to Interference plus Noise Ratio (SINR) model. In the Signal to Inter-
ference plus Noise Ratio model, also called the SINR model for short, a node w
receives a transmission from node v in round t only if

Pv

d(v,w)α

N +
∑

u�=v,w,u∈T
Pu

d(u,w)α

≥ β ,

for some noise parameter N > 0 and threshold β, both being part of the model
setting, and assuming that T is the set of nodes transmitting in round t. We
assume that β ≥ 1; if it is smaller than 1, then it is enough to make our con-
struction for threshold β′ = 1 and the result, i.e., all SINR equations, will also
hold for original β.

Connectivity problem. Consider n nodes located in the plane. A CP-assignment
σ is a function assigning to each node v a channel cv and a transmission power
Pv. A channel is a non-negative integer, while a transmission power is a real
non-negative number. Note that we may assume that transmission powers are in
fact rational non-negative numbers, since there is a finite number of stations and
thus their initial powers could be slightly re-scalled to make the values rational,
without violating properties of the radio or the SINR system.

We say that a CP-assignment σ realizes link (v, w) in a given model, for any
nodes v �= w, if a message transmitted by v with transmission power Pv and
channel cv defined by σ is always successfully received by node w, regardless of
the behavior of other nodes (i.e., whether some of them simultaneously transmit
using channels and transmission powers as specified by σ). Here we consider only
two models: GRN and SINR.

We say that a CP-assignment σ solves the CP-connectivity problem in a given
model if the set of links realized by σ in this model forms a strongly connected
directed graph spanning all the nodes. We call such CP-assignment admissible
for this model. The measure of quality of the outputted CP-assignment is the
number of different channels used by σ, and the goal is to minimize this number.
In this work we consider centralized setting, i.e., where each node knows exact
locations of all other nodes and all nodes perform the same algorithm. Our goal
is to give a polynomial-time centralized deterministic algorithm, in terms of the
size of the input of the problem, finding a CP-assignment with a small number
of channels.

Separability and other useful definitions. We call a CP-assignment separable if
it satisfies the following condition:

for any two nodes u, v with the same assigned channel, the distance
between them is at least the maximum of their assigned powers to the
power 1/α, i.e., d(u, v) ≥ max{(Pu)1/α, (Pv)1/α}.

We will use the notion of separability for CP-assignments admissible for the radio
model. We show in Section 3 and an example of efficient separable assignment
for the GRN model.

Connectivity Problem in Wireless Networks 349

Throughout this work we distinguish objects used in the context of the radio
model from the ones used for the SINR model by using a star symbol in the
notation for SINR, i.e., σ∗, P ∗

v , c∗v, etc.
We denote by [x] the set {0, 1, . . . , x − 1}. All logarithms without specified

base are assumed to be to the base 2. In the analysis, we also assume that n is
sufficiently large, as we focus on asymptotic notation.

3 Connectivity and Separability in the GRN Model

In this section we show that the algorithmic method developed in [10] gives
a separable CP-assignment for any given placement of n nodes, using at most
18 logn+1 different channels. Moreover, it can be computed in polynomial time.
We start with describing the algorithm from [10], and simultaneously we pro-
vide high-level justification of the correctness and estimation of the number of
channels used. Finally, we give formal argument why the resulting assignment
is separable. This will give a sample input to the transformation to the SINR
model described in Section 4.

Consider the closest-neighbor network in which each node adjusts its trans-
mission power so that its transmission range is equal to its closest neighbor
(according to the Euclidean distance). It can be proved that the in-degree of
each node in the closest-neighbor network is at most 6.

The algorithm works in phases. In each phase i only some subset Ai ⊆ V of
nodes is considered. Initially all the nodes are considered, i.e., A0 = V . In the
ith phase, each considered node v ∈ Ai chooses its closest neighbor u ∈ Ai and
adjusts its transmission power so that its transmission range is exactly d(v, u),
i.e., Pv is set to d(v, u)α. We can see that this procedure creates a set of directed
components in the reachability graph, c.f., Figure 1. Each directed component
has a sink w that can be reached, via intermediate nodes, from each node of
the component. (In case of more than one such node w in the component, we
choose one arbitrarily and associate the name “sink” only with this node, with
respect to the component.) Let us partition each component of the reachability
graph into layers, where layer Lj contains nodes of j hops from the sink, i.e.,
nodes from which there is a directed path of length i to the sink, but not any
shorter one. Recall that the in-degree of each node in a component is at most
6. Therefore, one can assign 6 channels so that each node in layer Lj+1 can
successfully transmit its message to some node in layer Lj , mainly, to the node
in Lj within its transmission range (c.f., [12]). Note however that collision may
still be caused by nodes located in any three consecutive layers. In order to avoid
it, we need to use 3 · 6 = 18 different channels per phase. More precisely, we
allocate channels to the nodes in layer Lj as follows: we use the first 6 available
channels if j = 1 mod 3, next 6 available channels for j = 2 mod 3, and the
last 6 available channels for j = 0 mod 3.

This way our channel assignment guarantees that each node from each layer
can reach its sink, without causing any collision. In phase i + 1, only sink nodes

350 D.R. Kowalski and M.A. Rokicki

w

1

2

3

w

w

w

(a) Phase 1. (b) Phase 2.

Fig. 1. Example of a radio network in which the root is found in two phases. In the
first phase, Figure 1a, there are three directed components formed with sinks w1, w2, w3

(white nodes). Only sinks are active in the second phase. In the second phase, Figure
1b, there is only one component (consisting of the sinks w1, w2, w3) and the sink w = w2

of this component becomes the root of the whole network. The root is assigned a unique
channel and its transmission range reaches all the nodes in the network.

of the components from phase i are considered, i.e., the set Ai+1 contains all the
sink nodes from phase i. In a new phase, a new set of (at most 18) channels is
used. The phases are iterated until there is only one sink node remaining. This
node becomes the root of the whole network, and to guarantee its superiority
we assign a new channel to it. We can see from the construction that the root
is reachable by all the nodes in the network, via intermediate nodes. The root
gets assigned one extra channel and sufficient power to reach all the nodes in the
network. This way we achieve channel and power assignment with guarantees
that there is a directed path between each pair of nodes in the graph consisting
of realizable directed point-to-point links. Note that the algorithm is clearly
polynomial.

We estimate the number of channels used in the construction. In each phase
we reduce the number of active nodes by at least half. So by at most log n phases
only the root remains. In each phase we use at most 18 channels. Thus, we use at
most 18 logn channels plus one extra channel for the root to reach all the nodes.

It remains to show that the obtained CP-assignment is separable. Since in each
phase different channels are used, it is enough to consider channel assignment in
a single phase. Consider two nodes v, u assigned the same channel. If one of them,
say v, had range bigger than the distance between the two nodes, then node u
would be closer to node v than the closest node (as the range assigned to v is
the same as the distance to the closest node). This is however a contradiction,
which means that the distance must be at least the maximum of both ranges
(recall that ranges are defined as transmission powers to the power 1/α).

Connectivity Problem in Wireless Networks 351

4 Connectivity in the SINR Model

We start with describing a general transformation from separable radio CP-
assignments to SINR CP-assignments, then we analyze its properties and con-
clude about the resulting O(log n) channel assignment in the SINR model.

4.1 Transformation from Separable Radio CP-Assignments to
SINR Assignments

We show how to find a CP-assignment σ∗ admissible for the SINR model based
on a given separable CP-assignment σ, preserving asymptotically the number of
used channels.

The construction of CP-assignment σ∗ admissible for the SINR model pro-
ceeds in four stages. First, if the maximum distance between any two nodes is
bigger than 1, we scale down all distances to make them at most 1. Under this as-
sumption, we deliver a formula on the power assignment, and next we construct
channel allocation — all based on a given separable CP-assignment admissible
for radio networks. Finally, if scaling was used in the first stage, we re-scale all
distances up to the original ones and update the constructed power assignment,
while keeping the channel assignment unchanged.

Let b be a constant depending on the system parameters α, β such that
b(α−2)/2 ≥ 16α+3 · ζ(α/2) · 3β, where ζ(·) is the Riemann zeta function (c.f., [2]).

Scaling (optional). Let dmax be the maximum distance between any two nodes.
If dmax ≤ 1 then we proceed to the next construction stage. Otherwise we scale
distances by dividing each of them by dmax. Parameter dmax is called a scaling
factor. We also scale parameter N by multiplying it by dα

max.

Obtaining a separable CP-assignment in the GRN model. Let σ denote a given
separable CP-assignment in the GRN mode, obtained for the node placement
satisfying dmax ≤ 1. Let Pu be the power and cu be the channel assigned to
node u by σ, and let Ru = (Pu)1/α be the transmission range of node u in the
radio model according to σ. We denote by Rmin the minimum and by Rmax the
maximum of values Ru, over all nodes u. For the purpose of the presentation of
the material in this section, it is more convenient to use ranges Ru defined by σ
instead of actual transmission powers Pu assigned by σ.

Setting transmission powers in σ∗. We define node powers P ∗
u in σ∗ as follows.

Let γ be equal to 3Nβ · (Rmax)(α−2)/2. We set P ∗
u = γ · (Ru)(α+2)/2.

Setting transmission channels in σ∗. Assume that all channels in σ are disjoint
integers in [κ] = {0, 1, . . . , κ − 1}. In order to assign channels to nodes in the
CP-assignment σ∗, based on channel assignment from σ, we proceed in three
steps. We first impose grid structures in the plane, then we color grids cells, and
finally we assign channels to the nodes based on the channel assigned by σ, on
the grid-cell coloring and on the transmission ranges in σ.

352 D.R. Kowalski and M.A. Rokicki

Grids G2ir. Let r be equal to Rmin/
√

2. Let Gr be a grid cutting the plane into
r×r squares, also called cells, in such a way that each node is inside some square.
Such grid exists since the number of points is finite. Note that by separability
of CP-assignment σ and by the definition of r, there is at most one node in
each cell of Gr. We define grids G2ir, for integers i > 0, by induction. Suppose
we have already defined grid G2i−1r partitioning the plane into squares of size
(2i−1r) × (2i−1r), for some i > 0. In order to construct grid G2ir, we partition
the set of squares in G2i−1r into disjoint groups, each containing four squares
sharing the same corner point, and then each group is replaced by a different
cell in G2ir being a union of the four squares in the group. It follows that the grid
G2ir, for every integer i > 0, contains squares of size (2ir) × (2ir) covering the
whole plane, and such that every two intersecting squares have either a border
side or a corner point in common. Observe also that each square in G2ir is a
union of 22(i−j) different squares from grid G2jr, for any 0 ≤ j < i.

Coloring cells in the grids. For any integer i ≥ 0, we assign b2 colors to the cells
(squares) in grid G2ir as follows. We start with coloring cells in an arbitrary row
in G2ir cyclically, using colors from 0 to b2 − 1. Then, for any positive integer j,
we color rows in G2ir as follows

– jth row above the first colored row in G2ir: by shifting the colors right by
j · b modulo b2 (i.e., adding j · b modulo b2 with respect to the color of the
cell in the same column located in the first colored row), and

– jth row below the first colored row by shifting the colors left by j · b mod-
ulo b2 (i.e., by subtracting j · b modulo b2 with respect to the color of the
corresponding cell in the first colored row).

The following fact holds by examining the grid coloring procedure.

Fact 1. Any two cells of grid G2ir, for any integer i ≥ 0, colored by the same
color have at least b−1 rows or at least b−1 columns of grid G2ir between them.

Assigning channels in σ∗. For each node u, we define its channel c∗u in σ∗ as a
triple (cu, �u, qu), where cu is the number of the channel of u assigned by σ, while
�u is an integer in [b2] and qu is an integer in [b] defined in the following way.
Let i ≥ 0 be the integer satisfying 2iRmin ≤ Ru < 2i+1Rmin. We define �u to be
the color of the cell in G2ir containing node u, and qu is equal to i mod b.

Re-scaling (optional). It is easy to see that the SINR ratios for the original
distances and noise N are the same as the corresponding ones for the scaled
values, for any transmission schedule. Therefore we keep the power and channel
assignment computed in the scaled scenario unchanged.

4.2 Analysis of σ∗

We prove that if σ is a separable CP-assignment admissible for the radio model
then the constructed σ∗ is a CP-assignment admissible for the SINR model. We

Connectivity Problem in Wireless Networks 353

also argue that the number of channels used by σ∗ is bigger than the one used
by σ by at most b3 factor.

The main result about our transformation, proved in Section 4.3, is as follows.

Theorem 1. If σ is a separable CP-assignment for a given placement of n
nodes, admissible for the GRN model and using κ channels, then σ∗ is a CP-
assignment for this set of nodes which is admissible for the SINR model and it
uses at most κ ·b3 channels. Moreover, σ∗ can be computed from σ in polynomial
time.

Applying Theorem 1 to the separable CP-assignment σ admissible for the radio
model with at most 18 logn+1 channels, as defined and analyzed in Section 3, we
get the following result (recall that b is a constant and the considered assignment
from Section 3 can be computed in polynomial time).

Corollary 1. For any given set of n points on the plane there exists a CP-
assignment admissible for the SINR model using O(log n) channels, and it can
be computed in polynomial time.

4.3 Proof of Theorem 1

Consider a placement of n nodes, satisfying dmax ≤ 1; otherwise it is easy to
see that scaling and re-scaling procedures justify that the assignment computed
in the scaled scenario gives the same connectivity graph as if we keep the same
assignment in the original node placement. Also note that all computational
steps made in the construction of σ∗ are clearly polynomial (recall that α, β are
constant parameters of the model).

Let σ be as assumed in the statement of the theorem. We may assume that
the channels assigned by σ are from [κ]. Observe that the upper bound κ · b3 on
the number of channels used in σ∗ follows directly from the fact that there are κ
channels used by σ, the range b2 of the second coordinate and the range b of the
third coordinate. In the remainder we argue that σ∗ is admissible for the SINR
model. We prove it by showing that each link realized by σ in the radio model
is realized by σ∗ in the SINR model, and thus the set of realized links forms a
strongly directed spanning sub-graph.

Consider a link (v, w) realized by σ in the radio network model. To simplify
the notation, denote the channel cv assigned by σ to node v by c. First note
that, according to the channel assignment in σ∗, only nodes with channel c
allocated by σ may have the same channel assigned by σ∗ as v does. We denote
by Tc the set of nodes different from v, w that are assigned channel c by σ.
Further, we partition set Tc into subsets Tc(i), where u ∈ Tc(i) if u ∈ Tc and
2iRmin ≤ Ru < 2i+1Rmin, for a non-negative integer i.

We first estimate the nominator of the SINR ratio at node w.

Lemma 1. In the SINR model,

P ∗
v

d(v, w)α
= γ · R

(2+α)/2
v

d(v, w)α
≥ γ · d(v, w)(2−α)/2 .

354 D.R. Kowalski and M.A. Rokicki

Proof. First note that Rv ≥ d(v, w), by the facts that Rv is the transmission
range assigned to v by σ and link (v, w) is realized by σ in the radio model. It
follows that

P ∗
v

d(v, w)α
= γ · R

(2+α)/2
v

d(v, w)α
≥ γ · d(v, w)(2−α)/2 ,

in the SINR model. ��

We denote by c∗ the channel assigned to node v by σ∗, that is, c∗ = (cv, �v, qv) =
(c, �, q), for some � ∈ [b2] and q ∈ [b] (we drop sub-index v for simplicity, as v is
fixed in the remainder of this proof).

It remains to estimate from above the denominator of the SINR ratio at node
w, mainly the ratios P∗

u

d(u,w)α for nodes u �= v with channel c∗ assigned by σ∗. We
denote the set of these nodes by T . Note that T ⊆

⋃
i≥0,i=q mod b Tc(i), by the

fact that c∗ = (c, �, q). Observe also that links (u, w), for u ∈ T , are not realized
by σ in the radio model, since nodes in T are assigned the same channel c in σ
as node v and we assumed that link (v, w) is realized by σ in the radio model.

For the purpose of the analysis we introduce a numbering of cells in Gr that
is centered in the cell containing node w. More precisely, assume that the cell
in Gr containing node w has cell-coordinates (0, 0), and the remaining cells are
assigned pairs of integers accordingly to the directions of XY axis on the plane,
i.e., cells in a jth row above (below) cell (0, 0) have the second coordinate j
(resp., −j), and cells in a jth column on the right (left) side of cell (0, 0) have
the first coordinate j (resp., −j), for any positive integer j.

The main tool in estimating the value of the interference at node w is a specific
potential function associated with cells in grid Gr. It “distributes” the value of
the interference caused by a few points in the plane into wider square regions,
in an almost uniform way, which later allows to estimate the total value of the
interference by simple summing up the potential function over square regions.
In order to define the potential function, we need to introduce an additional
notation. Consider a node u ∈ T . It follows that u has channel c∗ allocated by
σ∗ and thus u ∈ Tc(i), for some non-negative integer i = q mod b. Let (xu, yu)
be the coordinates of the cell in Gr containing node u. Recall that the location
of node w was assumed to be in cell (0, 0) of the grid. Let Cu denote the cell in
G2i−1r containing node u. We define Su as a collection of cells (x, y) from grid
Gr contained in Cu.

Lemma 2. For any two different nodes u, u′ ∈ T , the sets Su and Su′ are
disjoint.

Proof. It is enough to show that Cu =
⋃

Su is contained in the ball of radius
Ru/2 centered in u, for any node u ∈ T .2 Having this property proved, we could
then apply separability of CP-assignment σ, saying that the distance between any
u �= u′ is at least the maximum of Ru, Ru′ , which in turn is at least Ru/2+Ru′/2.

2 Notation
⋃

Su, for a family of sets Su, denotes the union of the sets in Su; in our
case, it is a union of squares on the plane.

Connectivity Problem in Wireless Networks 355

This yields that the two balls—one centered in u and with radius Ru/2 and the
other one centered in u′ and with radius Ru′/2—are disjoint, and so the sets Su

and Su′ .
Consider a node u ∈ T ; we have u ∈ Tc(i), for some non-negative integer i = q

mod b. Recall that, by the definition of Tc(i), we have 2iRmin ≤ Ru < 2i+1Rmin.
By the definition of Su, the distance between any point in Cu =

⋃
Su and node

u is smaller than
√

2 · 2i−1r =
√

2 · 2i−1 ·Rmin/
√

2 = 2i−1Rmin ≤ Ru/2 ,

where in the equation above we used the definition of r = Rmin/
√

2 and the
property 2iRmin ≤ Ru of node u ∈ Tc(i). This completes the proof of the lemma.

��

For each cell (x, y) in Su we associate its potential function ψu(x, y) with respect
to node u ∈ T :

ψu(x, y) =
aγ · (Ru)(α−2)/2

(r ·max{|x|, |y|})α ,

where a = (16r)α. The following fact links the potential function with the
strength of the signal transmitted by u ∈ T and received by w in the SINR model.

Lemma 3. Potential functions ψu(x, y) of cell (x, y) in grid Gr satisfy the fol-
lowing inequality, for any u ∈ T :∑

(x,y)∈Su

ψu(x, y) ≥ P ∗
u

d(u, w)α
.

Using Lemma 2, we can define a general potential function ψ(x, y) of cell (x, y)
in Gr as follows: since each cell (x, y) of Gr is in at most one set Su, for u ∈ T ,
we define ψ(x, y) to be equal to ψu(x, y) if there is u ∈ T such that (x, y) ∈ Su,
and ψ(x, y) = 0 otherwise.

Before making final estimation of
∑

u∈T
P∗

u

d(u,w)α by using potential functions,
as indicated by Lemma 3, we split this sum into two smaller sums. We denote
by T (1) the set of nodes u ∈ T such that d(u, w) ≥ b · d(v, w). Note that if
Ru ≥ b ·d(v, w), for u ∈ T , then also u ∈ T (1), but the reversed implication may
not hold in general. Let T (2) = T \ T (1).

Lemma 4. We have ∑
u∈T (1)

P ∗
u

d(u, w)α
≤ P ∗

v

3βd(v, w)α
.

Lemma 5. We have ∑
u∈T (2)

P ∗
u

d(u, w)α
≤ P ∗

v

3βd(v, w)α
.

356 D.R. Kowalski and M.A. Rokicki

Observe also that, by the definition of γ and by the fact that link (v, w) is realized
by σ in the radio model, we have

P ∗
v = γ · (Rv)(α+2)/2 ≥ 3Nβ · (Rmax)(α−2)/2 · (Rv)(α+2)/2 ≥ 3Nβ · (Rv)α ≥ 3Nβd(v, w)α ,

and consequently, the following fact holds:

Fact 2. The inequality N ≤ P∗
v

3βd(v,w)α holds.

By the inequalities from Lemmas 4 and 5 and from Fact 2, we finally get

P ∗
v

d(v, w)α
= β ·

(
3 · P ∗

v

3βd(v, w)α

)

≥ β ·

⎛⎝N +
∑

u∈T (1)

P ∗
u

d(u, w)α
+
∑

u∈T (2)

P ∗
u

d(u, w)α

⎞⎠
= β ·

(
N +

∑
u∈T

P ∗
u

d(u, w)α

)
.

5 Concluding Remarks

We showed a generic (polynomial-time) transformation from separable CP-assign-
ments admissible for the GRN model into CP-assignments admissible for the SINR
model, preserving the number of used channels (asymptotically). For the purpose
of analysis we introduced a potential function that may be a useful tool for anal-
ysis of transformations between GRN and SINR models for other communication
problems. An interesting open question is whether there exists a dual transforma-
tion, i.e., a (polynomial-time) transformation from CP-assignments admissible for
the SINR model into the ones admissible for the radio model, which does not sub-
stantially change the number of channels. Another perspective line of research is
to consider dynamic and/or ad hoc scenarios in the context of the connectivity
problem.

Our transformation could be also viewed as an algorithm solving the problem
of scheduling communication along a given set of links (in our case, a set of
links that forms a strongly connected spanning graph) with preliminary (radio)
power and channel assignment satisfying separability condition. The requirement
of being a separable radio assignment narrows the class of allowed inputs, and
therefore some of negative results and lower bounds concerning general schedul-
ing of any given set of links may not apply to our construction. For example, a
linear lower bound on the number of channels proved in [9] for schedules that
use so called “oblivious”power assignment (i.e., where the power assigned to the
sender is a function of the distance between the sender and the receiver) cannot
be applied to the class of inputs allowed by our transformation. More precisely,
the lower bound in [9] was proved based on placements of nodes on the line with
distances between consecutive points growing exponentially. It is easy to check

Connectivity Problem in Wireless Networks 357

that such settings allow efficient radio assignments that form a line, and there-
fore some inputs for our transformation have O(1) channels. The transformation
assigns transmission powers in such a way than they are polynomially smaller
that the corresponding values of the signal-decay factors (i.e., the distance to the
power α). Hence, since the distances grow exponentially, nodes that are more
than a few-hop distance away from the receiver contribute very little, in total, to
the power of the interference at the receiver. This means that a constant num-
ber of channels is still enough to assure connectivity by our construction in the
considered setting. This justifies that the lower bound for oblivious scheduling
from [9] does not apply to our construction.

On the other hand, previously known solutions to the (general) scheduling
problem cannot be directly applied to provide an upper bound to the connectivity
problem for two reasons. First, they aim to find a solution only for a given set of
links, while a solution to the connectivity problem needs to find a suitable set of
links by itself. Second, solutions to the scheduling problem focus on comparing
the computed assignment to the best possible one, while our solution establishes
a global upper bound on the number of channels guarantying strong connectivity
for any node placement.

In general, the proposed research direction of studying relations between dif-
ferent models of wireless communication can be applied to other models and
communication problems. The GRN model appears to be simpler and more in-
tuitive to deal with, and thus it may be more convenient for designing and ana-
lyzing wireless algorithms, while the SINR model seems to be closer to the real
physical layer. Finding transformations between these two, and other related,
models would help in better understanding of wireless communication and in
transforming protocols and complexity results between different models.

Acknowledgments

The authors would like to thank the reviewers for pointing out an interesting
relation between the connectivity and scheduling problems in the SINR model.

References

1. Alon, N., Bar-Noy, A., Linial, N., Peleg, D.: A Lower Bound for Radio Broadcast.
Journal of Computer and System Sciences 43, 290–298 (1991)

2. Apostol, T.M.: Introduction to Analytic Number Theory. Springer, New York
(1995)

3. Avin, C., Emek, Y., Kantor, E., Lotker, Z., Peleg, D., Roditty, L.: Towards Al-
gorithmically Usable SINR Models of Wireless Networks. In: Proc. 28th ACM
Symposium on Principles of Distributed Computing (PODC), pp. 200–209 (2009)

4. Avin, C., Lotker, Z., Pasquale, F., Pignolet, Y.A.: A Note on Uniform Power Con-
nectivity in the SINR Model. In: Dolev, S. (ed.) ALGOSENSORS 2009. LNCS,
vol. 5804, pp. 116–127. Springer, Heidelberg (2009)

5. Chlamtac, I., Kutten, S.: Tree-Based Broadcasting in Multihop Radio Networks.
IEEE Transactions on Computers 36, 1209–1223 (1987)

358 D.R. Kowalski and M.A. Rokicki

6. Chlamtac, I., Weinstein, O.: The Wave Expansion Approach to Broadcasting in
Multihop Radio Networks. IEEE Trans. on Communications 39, 426–433 (1991)

7. Clementi, A.E.F., Monti, A., Silvestri, R.: Selective Families, Superimposed Codes,
and Broadcasting on Unknown Radio Networks. In: Proc. 12th Annual Symposium
on Discrete Algorithms (SODA), pp. 709–718 (2001)

8. Dessmark, A., Pelc, A.: Broadcasting in Geometric Radio Networks. J. Discrete
Algorithms 5, 187–201 (2007)

9. Fanghanel, A., Kesselheim, T., Racke, H., Voecking, B.: Oblivious Interference
Scheduling. In: Proc., 28th ACM Symposium on Principles of Distributed Com-
puting (PODC), pp. 220–229 (2009)

10. Fussen, M., Wattenhofer, R., Zollinger, A.: Interference Arises at the Receiver.
In: Proc. International Conference on Wireless Networks, Communications, and
Mobile Computing, WIRELESSCOM (2005)

11. Gasieniec, L., Kowalski, D.R., Lingas, A., Wahlen, M.: Efficient Broadcasting in
Known Geometric Radio Networks with Non-uniform Ranges. In: Taubenfeld, G.
(ed.) DISC 2008. LNCS, vol. 5218, pp. 274–288. Springer, Heidelberg (2008)

12. Gasieniec, L., Peleg, D., Xin, Q.: Faster Communication in Known Topology Radio
Networks. In: Proc. 24th ACM Symposium on Principles of Distributed Computing
(PODC), pp. 129–137 (2005)

13. Goussevskaia, O., Halldorsson, M., Wattenhofer, R., Welzl, E.: Capacity of Ar-
bitrary Wireless Networks. In: Proc. 28th Ann. IEEE Conference on Computer
Communications (INFOCOM), pp. 1872–1880 (2009)

14. Goussevskaia, O., Oswald, Y.A., Wattenhofer, R.: Complexity in Geometric SINR.
In: Proc. 8th ACM Int. Symp. on Mobile Ad Hoc Networking and Computing
(MobiHoc), pp. 100–109 (2007)

15. Gupta, P., Kumar, P.R.: The Capacity of Wireless Networks. IEEE Transactions
on Information Theory 46, 388–404 (2000)

16. Halldorsson, M., Wattenhofer, R.: Wireless Communication is in APX. In: Al-
bers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.)
ICALP 2009. LNCS, vol. 5556, pp. 525–536. Springer, Heidelberg (2009)

17. Huson, M.L., Sen, A.: Broadcast Scheduling Algorithms for Radio Networks. In:
Proc. IEEE Military Communications Conference (MILCOM), pp. 647–651 (1995)

18. Kesselman, A., Kowalski, D.R.: Fast Distributed Algorithm for Convergecast in Ad
Hoc Geometric Radio Networks. J. Parallel and Distributed Comput. 66, 578–585
(2006)

19. Kowalski, D.R., Pelc, A.: Optimal Deterministic Broadcasting in Known Topology
Radio Networks. Distributed Computing 19, 185–195 (2007)

20. Lebhar, E., Lotker, Z.: Unit Disk Graph and Physical Interference Model: Putting
Pieces Together. In: Proc., 23rd IEEE Intl. Parallel and Distributed Processing
Symposium (IPDPS), pp. 1–8 (2009)

21. Moscibroda, T.: The Worst-case Capacity of Wireless Sensor Networks. In: Proc. 6th
Int. Conf. on Information Processing in Sensor Networks (IPSN), pp. 1–10 (2007)

22. Moscibroda, T., Oswald, Y.A., Wattenhofer, R.: How Optimal are Wireless
Scheduling Protocols? In: Proc. 26th Ann. IEEE Conference on Computer Com-
munications (INFOCOM), pp. 1433–1441 (2007)

23. Moscibroda, T., Wattenhofer, R.: The complexity of Connectivity in Wireless
Networks. In: Proc. 25th Ann. IEEE Conference on Computer Communications
(INFOCOM), pp. 1–13 (2006)

24. Moscibroda, T., Wattenhofer, R., Zollinger, A.: Topology Control Meets SINR: the
Scheduling Complexity of Arbitrary Topologies. In: Proc., 7th ACM Int. Symposium
on Mobile Ad Hoc Networking and Computing (MobiHoc), pp. 310–321 (2006)

Trusted Computing
for Fault-Prone Wireless Networks�

Seth Gilbert1 and Dariusz R. Kowalski2

1 National University of Singapore, Singapore
gilbert@comp.nus.edu.sg

2 University of Liverpool, United Kingdom
D.Kowalski@liverpool.ac.uk

Abstract. We consider a fault-prone wireless network in which commu-
nication may be subject to wireless interference. There are many possible
causes for such interference: other applications may be sharing the same
bandwidth; malfunctioning devices may be creating spurious noise; or
malicious devices may be actively jamming communication. In all such
cases, communication may be rendered impossible.

In other areas of networking, the paradigm of “trusted computing” has
proved an effective tool for reducing the power of unexpected attacks.
In this paper, we ask the question: can some form of trusted computing
enable devices to communicate reliably? In answering this question, we
propose a simple “wireless trusted platform module” that limits the man-
ner in which a process can access the airwaves by enabling and disabling
the radio according to a pre-determined schedule. Unlike prior attempts
to limit disruption via scheduling, the proposed “wireless trusted plat-
form module” is general-purpose: it is independent of the application
being executed and the topology of the network.

In the context of such a “wireless trusted platform module,” we de-
velop a communication protocol that will allow any subset of devices
in a region to communicate, despite the presence of other disruptive
(possibly malicious) devices: up to k processes can exchange information
in the presence of t malicious attackers in O(max(t3, k2) log2 n) time.
We also show a lower bound: when t < k, any such protocol requires
Ω(min(k2, n) logk n) rounds; in general, at least Ω(min(t3, n2)) rounds
are needed, when k ≥ 2.

1 Introduction

Wireless networks are everywhere, enabling devices to communicate and ex-
change information without the need for physical infrastructure. Wireless net-
works rely on the open airwaves for communication, and the open airwaves are
publicly accessible by anyone and everyone. This openness has advantages, al-
lowing universal participation and creating a lower barrier to entry; it also has
� This publication was prepared while the first author was at EPFL, Switzerland. The

work of the second author was supported by the Engineering and Physical Sciences
Research Council [grant numbers EP/G023018/1, EP/H018816/1].

N.A. Lynch and A.A. Shvartsman (Eds.): DISC 2010, LNCS 6343, pp. 359–373, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

360 S. Gilbert and D.R. Kowalski

TCM

Fig. 1. Simple schematic of sensor device with a wireless “trusted computing mod-
ule”(e.g., a wTPM) controlling power to the antenna

disadvantages: any user can join the network and cause disruption. Disruption
may be caused intentionally, by malicious parties, or unintentionally, by other
applications sharing the same bandwidth.
Trusted Computing. Recently, the paradigm of Trusted Computing has come
to be seen as a powerful technique for reducing vulnerability to attack. (See,
e.g., [29, 33].) The basic idea underlying trusted computing is that each com-
puter (or networked device) will contain a tamper-proof component (often a
special-purpose chip) known as a trusted platform module (TPM) that provides
certain reliable guarantees. For example, the TPM may contain cryptographic
authentication keys that securely identify the computer. The TPM may also con-
tain a mechanism that protects data stored on a computer, or that may provide
certain guarantees as to the software running on that computer. Elements of the
trusted computing architecture are implemented today in Windows Vista, for
example, in BitLocker Drive Encryption.

In this paper, we examine the application of trusted computing techniques to
wireless networking, in particular to the problem of interference and disruption
(either benign or malicious) on the wireless airwaves. Imagine that every wireless
device has a “wireless” TPM (wTPM) that controls access to the radio1. (See
Figure 1 for a simplified schematic representation.) When the radio is enabled
by the wTPM, the software running on the wireless device can send and receive
messages; conversely, when the radio is disabled by the wTPM, the software
running on the wireless device cannot access the radio. Thus, even when a mali-
cious attacker hacks or takes control of a wireless devices, (s)he can only create
interference when the radio is enabled2.

An important design criterion for a wTPM is that it be simple, and that
it be as computation-agnostic as possible. The wTPM should not be aware of

1 Note that use of the radio frequencies is already heavily regulated in most countries,
and hence it might be feasible to require all legal devices to be equipped with such a
wTPM; of course the “trusted computing” approach will be ineffective for a concerted
attacker with access to illegal hardware.

2 While “trusted computing” is sometimes criticized for its privacy implications, these
problems are less severe in the wireless case where the wTPM only affects when the
radio is enabled, while revealing no personal information.

Trusted Computing for Fault-Prone Wireless Networks 361

the computation running on the wireless device, nor should it monitor the com-
munication sent and received over the radio. Ideally, it should simply connect
and disconnect the radio, irregardless of what the device is doing or whether
the device is sending or receiving a message. The fundamental open question is
whether it is possible to design such a simple, computation-agnostic wTPM that
will still allow wireless devices to perform the communication and computation
that they desire, without sacrificing efficiency.
Overview of Results. In this paper, we make some progress toward answering
these questions. We focus on the basic problem of reliably exchanging infor-
mation: there are at most k wireless devices—from some larger universe of n
devices—that want to exchange information with each other. (We assume that
k is fixed; however, we discuss in Sections 5.3 how to adapt to varying num-
bers of participants.) At the same time, there are at most t malicious devices
that disrupt communication. These devices may broadcast corrupt messages, or
they may “jam” the airwaves—when their radios are enabled by the wTPM—
preventing any information form being exchanged.

Each device contains two pieces of software: (1) the wTPM, which is tamper-
proof, and (2) the communication protocol, which may be corrupt on malicious
devices. (1) wTPM : The wTPM consists of a fixed binary sequence indicating
whether the radio is enabled or disabled at any given time. When the radio is
enabled, the device can communicate; when the radio is disabled, it can neither
send nor receive. The behavior or the wTPM is fixed in advance, and is not
affected by anything that occurs during an execution. (2) Communication pro-
tocol : The communication protocol determines whether the device broadcasts
or receives in any given round, if the radio is enabled. We focus on oblivious
protocols where the broadcast/receive schedule is also fixed in advance.

Our main result consists of the wTPM design, along with an efficient com-
munication protocol that is compatible with the wTPM. Our protocol runs in
Θ(max(t3, k2) log2 n) rounds; surprisingly, this is almost as efficient as the best
(oblivious) protocols for exchanging information, even when all the devices are
honest: every such protocol requires Ω(min(k2, n) logk n) rounds [6, 11]. We pro-
vide a complementary lower bound, showing that exchanging information re-
quires at least Ω(min(t3, n2)) rounds, for k ≥ 2. (Note: there is a trivial O(n2)
solution that selectively enables each pair of processes.) Together, these lower
bounds indicate that our proposed protocol is near optimal in most cases.

Both the wTPM and the protocol are generated by a random process which is
designed to activate only (approximately) k/t radios in each round. Even though
communication among the honest devices is (effectively) limited to one-to-one
communication, we still exchange information nearly as efficiently as protocols
that rely on one-to-many communication, e.g., have each sender transmit his
information while all the other processes listen. Of note, the resulting protocols
are relatively simple to implement when provided with a good source of (pseudo)-
random bits (or data structures for generating such bits, e.g., extractors).

Our approach to security also has a secondary benefit: it can significantly
reduce the power usage of wireless protocols. Powering the radio is one of the

362 S. Gilbert and D.R. Kowalski

most energy-consuming operations for a small wireless device. If the wTPM
disables the radio sufficiently often, then it forces every protocol running on
the device to be much more energy efficient than might otherwise be the case.
When t = Θ(k), the wTPM enforces a high-level of energy efficiency, enabling
only O(1) devices in each round. By contrast, prior protocols for information
exchange activate Θ(k) processes per round.

Finally, in order to enable more general applications, we also briefly consider
the continuous version of information exchange, where there are an unknown
number of processes that occasionally have information to distribute. A natural
generalization of our protocol ensures that every message injected in some round
r will be delivered by round r + O(max(t3, �2) log3 n), as long as there are at
most � ≤ n active messages during that interval.
Other Approaches to Tolerating Malicious Devices in a Radio Network. The
idea of enforcing a fixed broadcast schedule for a wireless radio, in order to
avoid malicious interference, has been previously proposed on several occasions.
Koo [20], in one of the first papers studying the problem of reliable broadcast
in a wireless network subject to Byzantine failures, suggested that devices be
forced to follow a “round-robin” schedule, preventing malicious devices from
broadcasting out of turn. Later papers (e.g., [4, 5]) followed this approach as well.
In general, such an approach either assumes that only one device is enabled at a
time—leading to Ω(n) or Ω(n2) running times—or it relies on some geographic
property to determine whether a device can broadcast, for example, enabling
devices in specific regions to broadcast in a given round. By contrast, in this
paper, we attempt to develop a generic wTPM that is computation-agnostic,
geographically ignorant, and yet still achieves efficient performance.

An alternate approach for dealing with malicious disruption is to posit some
limit on the amount of disruption (see, e.g., [1, 16, 21]), or on the rate at which
the devices can cause disruption [2]. Such limits might arise from practical con-
siderations, e.g., the size of the battery on a malicious device, or from hardware
constraints, e.g., a device might not be allowed to broadcast at above some spec-
ified rate. The latter approach, in particular, has significant promise for a wTPM
solution, as a wTPM might enforce a bounded rate of broadcast.

A third approach for coping with malicious disruption is to leverage the avail-
ability of more than one communication channel: while malicious devices may
disrupt some subset of the available channels, reliable communication can pro-
ceed on the other channels. This has proved a popular approach, as it requires
minimal limitations on the power or scope of the malicious devices. (See, for
example, [12–15, 17, 26, 28, 31, 32].) One open question is whether such multi-
channel solutions could be even more efficient if a wTPM were available.
Other Related Work. The problem of resolving contention among a set of (hon-
est, fault-free) devices on a multiple-access channel has been extensively studied
(see, e.g., [3, 19, 22, 34], among many others). Wireless networks with crash
failures (but not Byzantine failures) have also been studied extensively (e.g., [8–
10, 24]). In essence, the challenge in this paper is to solve the problem of

Trusted Computing for Fault-Prone Wireless Networks 363

contention among honest processes, while simultaneously preventing the ma-
licious processes from jamming.

Recently, there has been much interest in other models of interference, such
as the SINR model [18, 27], and the dual-graph model [25]. These models cap-
ture interference in a somewhat more sophisticated manner, and hence it is an
interesting open question how to cope with malicious interference in such models.

2 A Model for Wireless Trusted Computing

Model. Let Π be a set of n processes. Each process knows n and the set Π . Each
process is either active or passive. An active process can send/receive messages
and perform computations; a passive process cannot act in any way. At most
k honest processes are activated. At most t dishonest (or Byzantine) processes
may also be activated; such processes may act in an arbitrarily malicious fashion.

Processes communicate with a radio over a collision-prone wireless channel.
In each round, each process (whether honest or dishonest) can either broadcast
or listen. When exactly one process broadcasts, every other process receives the
message; when more than one process broadcasts, no process receives anything.
Trusted Computing. Each device is equipped with a tamper-proof wireless
trusted-platform module (wTPM). The wTPM at each process is initialized with
a binary string that indicates, for each round, whether the radio is enabled or
disabled. When the radio is disabled, the process can neither send nor receive.
The Byzantine devices cannot corrupt the wTPM, meaning that they cannot
broadcast when the radio is disabled by the wTPM.

We define an algorithm 〈T, B〉 to be two binary (n, m)-matrices. We refer
to matrix T as the radio-enable matrix and matrix B as the broadcast-listen
matrix. Rows of each matrix correspond to processes, and columns corresponds
to rounds. That is, row p of matrix T is the initialization string for the wTPM at
process p: the radio at process p is enabled in round r if and only if T [p, r] = 1.
Similarly, row p of matrix B indicates whether process p broadcasts or listens
in each round: process p broadcasts in round r if B[p, r] = 1; otherwise it listens.
We assume, for simplicity, that whenever a process is enabled and scheduled to
broadcast, it transmits all available information. (There is no required relation
between T and B.)

By definition, algorithms are oblivious : the behavior of each process is fixed;
they do not adapt to adversarial behavior. Oblivious protocols have several
advantages: they are often more robust, as they do not depend on accurately
observing ongoing events. In the case of a wTPM, an oblivious wTPM would ap-
pear more plausible, as it can be constructed in a generic protocol-independent
manner (as compared to attempting to adapt to circumstances).

Exchanging Information. We consider the problem of (k, t)-information ex-
change. Define P ⊆ Π to be the set of at most k active honest processes. (Note
that activations are local; a process knows only whether it is in set P or not.)
Each process in P is initialized with a rumor. At the end of the execution, every

364 S. Gilbert and D.R. Kowalski

active, honest process should transmit its rumor to every other active, honest
process, as long as there are at most t active dishonest processes.3

The primary metric is time complexity, i.e., the number of rounds that the
protocol executes. In Section 5.3 we consider a continuous variant where we count
from a rumor’s injection until the rumor is received by all other honest processes.
Another complexity measure of interest is energy consumption, defined as the
sum, over all rounds, of the number of radio-enabled processes.

3 Lower Bound

Theorem 1. For the problem of (k, t)-information exchange:(i) if k ≥ t, then
Ω(min(k2, n) logk n) rounds are required; (ii) if k ≥ 2, then Ω(min(t3, n2))
rounds are required.

Proof. When k ≥ t, the lower bound of Ω(min(k2, n) logk n) follows from bounds
on superimposed codes [6, 11], which holds even when all processes are honest.

Now assume k ≥ 2. We show that there are two honest processes that fail to
exchange rumors in the first t2(t − 2)/32 rounds. It is sufficient to consider the
case when t2(t− 2)/32 < n(n− 1)/4.

For 0 ≤ i ≤ n, define Ri to be the set of rounds such that Ar = {p : T [p, r] =
1} is of size i. We omit rounds in set R0 ∪ R1 from the analysis, as at most
one radio-enabled process cannot send a message to any other process. We focus
on sets R2 and R≥3 =

⋃
i≥3 Ri. Let S2 be the set of all pairs that are radio-

enabled in rounds in R2, i.e., S2 = {{p, q} : ∃r∈R2 T [p, r] = T [q, r] = 1}. We
have |S2| ≤ |R2| ≤ t2(t− 2)/32 < n(n− 1)/4.

Let F2 be a set of t/2 processes such that the number of pairs of elements
from F2 that are in S2 is smaller than

(
t/2
2

)
/2. Such a set exists by a probabilistic

argument: the expected number of pairs from S2 included in the random set of
t/2 processes is smaller than:

|S2| ·
(

n−2
t/2−2

)(
n

t/2

) = |S2| ·
(t/2− 1)(t/2)

(n− 1)n
< n(n− 1)/4 · (t/2− 1)(t/2)

(n− 1)n
=

1
2
·
(

t/2
2

)
,

and therefore a set with this property exists.
Consider processes in F2 and rounds in R≥3. Let R be the subset of R≥3

containing rounds r ∈ R≥3 such that |{p ∈ F2 : T [p, r] = 1}| = 2; let S be the
set {{p, q} : p, q ∈ F2}\S2. Since each round in R is associated with at most one
pair in S, and there are at least

(
t/2
2

)
−
(
t/2
2

)
/2 =

(
t/2
2

)
/2 pairs in S, there is a

pair {p∗, q∗} in S associated with at most |R|
|S| ≤

t2(t−2)/32
1
2 ·(t/2

2) ≤ t/2 rounds in R≥3.

Let R∗
≥3 = {r ∈ R≥3 : T [p∗, r] = T [q∗, r] = 1}. By the choice of p∗, q∗, we

have |R∗
≥3| ≤ t/2. Since R∗

≥3 ⊆ R≥3, for every r ∈ R∗
≥3 there is a process p(r)

different from p∗, q∗ such that T [p(r), r] = 1. Let F3 be the set of processes

3 Malicious processes may create their own rumors, which cannot be distinguished
from honest rumors; it is unavoidable that processes may deliver such rumors.

Trusted Computing for Fault-Prone Wireless Networks 365

{p(r) : r ∈ R∗
≥3}. An estimate |F3| ≤ |R∗

≥3| ≤ t/2 holds. We define F as
(F2 \ {p∗, q∗}) ∪ F3. It follows that |F | ≤ |F2| − 2 + |F3| < t.

Let {p∗, q∗} be the set of honest processes, and F be the set of Byzantine pro-
cesses. The adversary’s strategy is as follows: whenever a Byzantine process is
radio-enabled according to T , it transmits. It is easy to check that in each round
where processes p∗, q∗ are radio-enabled by T , there is also another process in F
which is radio-enabled by T , and thus it interrupts any attempted transmission
between p∗ and q∗. Indeed, they cannot both be active in round r ∈ R2, since
{p∗, q∗} in set S, and set S does not contain—by definition—any pair in set S2,
i.e., any pair that is active alone in some round in R2. Therefore no communica-
tion can occur between p∗ and q∗ during rounds in R2. (Recall that this is also
impossible in rounds in R0 and R1, by definition.) Consider a round r ∈ R≥3. If
p, q are both active in round r, then, by definition of R≥3, there must be at least
one more process active in this round. Hence, round r satisfies the condition in
the definition of set F3, which means that at least one process p ∈ F3 is such that
T [p, r] = T [p∗, r] = T [q∗, r] = 1, and thus p jams the communication between
p∗, q∗ in round r. Therefore, rumors between p∗, q∗ are not exchanged. Finally,
note that set F of Byzantine processes is of size |F2|− 2+ |F3| < t and there are
only two honest processes p∗, q∗. ��

4 Implementing Information Exchange

We now present an algorithm that performs (k, t)-information exchange in time
Θ(max(t3, k2) log2 n). Each process knows that there are at most k honest pro-
cesses active, and at most t Byzantine processes active. We define 〈T, B〉 (i.e.,
the algorithm) using a random process, and argue that the resulting algorithm
achieves the desired results with high probability. This both shows that there
exists an efficient deterministic solution to the problem of (k, t)-information-
exchange, via the probabilistic method, and shows how to find it efficiently.

We construct the algorithm out of sub-pieces. As we do not know how many
honest processes are active, we define algorithm A(�, �/2) which assumes that
there are more than �/2 but at most � honest processes active, and which runs
in time Θ(max(t3/�, �2) log2 n) rounds. The final protocol consists of concate-
nating the algorithms A(·, ·) for exponentially decreasing ranges, i.e., Ak =
A(k, k/2) & A(k/2, k/4) & . . . & A(2, 1), where & represents concatenation.
Summing the costs as � decreases, the final running time is Θ(max(t3, k2) log2 n).

4.1 Defining Algorithm A(�, �/2)

We now define A(�, �/2) = 〈T, B〉, for any 2 ≤ � ≤ k, where � is a power
of 2. We divide A(�, �/2) into three “sub-algorithms”, 〈T1, B1〉, 〈T2, B2〉, 〈T3, B3〉,
which when concatenated, form A(�, �/2). Let m = c ·max(t3/�, �2) log n, for a
sufficiently large constant c, to be derived in the analysis. (The function of each
of these stages is described in more detail in Section 4.2.)

366 S. Gilbert and D.R. Kowalski

– Stage 1: 〈T1, B1〉 We define T1 to be a binary (n×m)-matrix where, for
every p, r, each bit T1[p, r] = 1 with probability min(1/t, 1/�); otherwise
T1[p, r] = 0. We define B1 to be a binary (n×m)-matrix where, for every
p, r, each bit B1[p, r] = 1 with probability 1/2; otherwise B1[p, r] = 0.

– Stage 2: 〈T2, B2〉 Define the (n× 2m)-matrix T ′ as follows, for all p : For each
odd column r = 1, 3, 5, . . ., define T ′[p, r] = 1 with probability min(1/t, 1/�);
otherwise T ′[p, r] = 0. For each even column r = 2, 4, 6, . . ., define T ′[p, r] to
be identical to the preceding column, i.e., T ′[p, r] = T ′[p, r− 1]. Define T2 as
2 logn repetitions of T ′; T2 is a (n× (4m logn))-matrix.
Define B′ as follows, for all p: For each odd column r = 1, 3, 5, . . ., we define
B′[p, r] = 1 with probability 1/2; otherwise B′[p, r] = 0. For each even
column r = 2, 4, 6, . . ., we define B′[p, r] to be the inverse of the preceding
column, i.e., we define B′[p, r] = (1 − B′[p, r − 1]). Define B2 as 2 logn
repetitions of B′. Note that B2 is a (n× (4m logn))-matrix.

– Stage 3: 〈T3, B3〉 We define T3 to be identical to T1, i.e., T3 = T1. We define
B3 to be the inverse of B1, i.e., for all p, r: B3[p, r] = (1−B1[p, r]).

Thus, A(�, �/2) is defined by the matrices T1 & T2 & T3 and B1 & B2 & B3. It
follows that the length of algorithm A(�, �/2) is O(max(t3/�, �2) log2 n).

4.2 Overview of the Analysis

We now analyze the protocol and show that it is correct and efficient. We consider
A(�, �/2), where 2 ≤ � ≤ k. As we have already bounded the running time, we
focus on showing that every honest process succeeds in transmitting its rumor to
every other honest process. Fix � such that there are more than �/2 and at most
� honest, active processes. Recall that P is the set of honest, active processes.
We examine each of the three “sub-algorithms” separately.

– Stage 1: guarantees each rumor is delivered to > (|P |−�/8) honest processes.

When this stage completes, each rumor is known to a large number of honest
processes. However, there may be no one honest process that knows all the
rumors. While it is relatively cheap to distribute each rumor to a large fraction
of the participants, it is more expensive to deliver each rumor to every other
active participant. In the first stage, rumors are delivered directly, in a pairwise
fashion: each participant directly sends its rumor to a large fraction of the other
participants. In order to deliver every rumor directly in a pairwise fashion to
every process would require approximately Θ(k2t) rounds. The second stage
avoids this by exchanging rumors indirectly.

– Stage 2: guarantees that there is a subset P ∗ ⊆ P of size �/8 where every
process in P ∗ has received all the rumors.

The second stage relies on a more careful examination of the communication
graph defined by the protocol. Unlike in Stage 1, we do not rely on direct edges
between pairs of processes, but instead expect rumors to be passed indirectly

Trusted Computing for Fault-Prone Wireless Networks 367

over multiple “hops” in the induced communication graph. We show that the
communication graph, when appropriately defined, has good expansion (see Def-
inition 1), which immediately implies that the communication graph has a large
component with small diameter (see Corollary 1). We can then conclude that
every process in the large component learns every rumor.

– Stage 3: guarantees that each honest process receives at least one message
from a process in P ∗.

Processes in P ∗ cooperate to ensure that every process in P is notified of all the
rumors. Notably, it turns out that Stage 3 is the symmetric opposite of Stage
1: whereas Stage 1 involved disseminating rumors, Stage 3 involves collecting
them. We now proceed to analyze the three parts in more detail.

4.3 Stage 1: Spreading

The goal of the first stage, intuitively, is to distribute each rumor to more than
|P |−�/8 honest participants. We show that the sub-protocol 〈T1, B1〉 guarantees
the following property: For every P ∗ ⊆ P , where |P ∗| = �/8, and for every rumor
ρ, there exists some process q ∈ P ∗ such that q receives ρ during Part 1 of the
protocol. This implies that we can choose any subset of P of size �/8 and be sure
that every rumor is known by at least one member of that subset.

For the purpose of the next lemma, fix some set P of size bigger than �/2
and at most �, some subset P ∗ ⊆ P of size �/8, and some process p ∈ P \ P ∗.
(When p ∈ P ∗, the property follows trivially.) Also, fix some set F of at most t
Byzantine processes. We calculate the probability that the rumor from process
p reaches some process in P ∗ without being disrupted by a process in F :

Lemma 1. For given sets P, P ∗, F and process p ∈ P \P ∗: there is some round
r and some process q ∈ P ∗ such that p successfully transmits its rumor to q
in round r (i.e., p is the only process radio-enabled that transmits and q is
the only process radio-enabled that listens in round r) with probability at least
1− e−(c/128)·max(t,�) log n.

Proof (sketch). For any given round r, the probability that p is radio-enabled
and set to broadcast, while exactly one process in P ∗ is radio-enabled and set
to listen, while every other process in P and F is radio-disabled is at least
min(�/(16t), 1/16). Thus, the probability that p fails to broadcast to q in all
c ·max(t3/�, �2) log n rounds is as desired, with high probability. ��

By counting the number of possible configurations of subsets, we conclude, by a
union bound, that the desired property is achieved by the end of the first stage:

Lemma 2. The following event holds w.h.p., for sufficiently large constant c:
For every set P of active processes where �/2 < |P | ≤ �, for every subset P ∗ ⊆ P
of size �/8, for every set F of at most t Byzantine processes, every rumor in P
is received by some process in P ∗ by the end of sub-algorithm 〈T1, B1〉. ��

368 S. Gilbert and D.R. Kowalski

4.4 Stage 2: Exchanging

We now show that there is some subset of honest processes of size �/8 where
every process in the set has received every rumor by the end of the second stage.

Recall that 〈T2, B2〉 consists of 2 logn repetitions of two matrices T ′ and B′,
respectively. Given a set of honest processes P and a set of Byzantine processes
F , we define an undirected graph G(P, F, T ′, B′) based on T ′ and B′. Each
vertex in G represents a process, i.e., there are n vertices. For each odd column
r = 1, 3, 5, . . . we add an edge (p, q) to graph G if the following hold: (1) For
every process p′ ∈ F , T ′[p′, r] = 0, i.e., every Byzantine process is radio-disabled.
(2) For every process q′ ∈ P \ {p, q}, T ′[q′, r] = 0, i.e., every other process is
radio-disabled. (3) For processes p and q, T ′[p, r] = T ′[q, r] = 1, i.e., processes p
and q are radio-enabled. (4) For process p, B′[p, r] = 1; for process q, B′[q, r] = 0.

This implies that process p succeeds in sending a message to process q in the
round based on column r. Since column r+1 is defined in terms of column r, we
conclude that q succeeds in sending a message to process p in the round based
on column r + 1. Thus, we consider the graph G to be undirected.

We argue that for all sets P and F , the graph G(P, F, T ′, B′) has a large
subgraph with small diameter. We show this by examining the expansion of G.
Following the definition from [30], we say that a graph G is an α-expander if it
follows the following property:

Definition 1. A graph G = (V, E) is an α-expander if for every pair of subsets
W1 ⊆ V and W2 ⊆ V , where |W1| ≥ α and |W2| ≥ α, there is some p ∈ W1 and
some q ∈ W2 such that (p, q) ∈ E.

We will argue that, with high probability, for every set P and set F , graph
G(P, F, T ′, B′) is an �/8-expander:

Lemma 3. With high probability, for sufficiently large c, for every P and F ,
graph G(P, F, T ′, B′) is an �/8-expander.

Proof. Fix a set P of size �/2 < |P | ≤ � and a set F of size at most t. (We may
assume, without loss of generality, that F is of size exactly t, as otherwise the
adversary could add “silent” Byzantine processes without otherwise changing the
execution.) We calculate the probability that G(P, F, T ′, B′) is a �/8-expander
(after which we take a union bound over all possible sets P and F).

Fix arbitrary sets W1 and W2 of size at least �/8. We calculate the proba-
bility that there is some edge between W1 and W2 in G(P, F, T ′, B′). (We then
take a union bound over all possible sets W1 and W2.) Specifically, for a given
column of T ′ and B′: (1) Every process in F is radio-disabled: with probability
≥ (1−min(1/t, 1/�))|F | ≥ (1−1/t)t ≥ 1/4. (2) Exactly one process in W1 is radio-
enabled: with probability at least (�/8) ·min(1/t, 1/�) ·(1−min(1/t, 1/�))�/8−1 ≥
(1/32) ·min(�/t, 1). (3) Exactly one process in W2 is radio-enabled: with proba-
bility at least (�/8) ·min(1/t, 1/�) · (1−min(1/t, 1/�))�/8−1 ≥ (1/32) ·min(�/t, 1).
(4) The conditional event, under the assumption that one radio-enabled element
in W1 is chosen and one radio-enabled element in W2 is chosen, that either the
radio-enabled process in W1 is set to broadcast and the radio-enabled process in

Trusted Computing for Fault-Prone Wireless Networks 369

W2 is set to receive, or the radio-enabled process in W1 is set to receive and the
radio-enabled process in W2 is set to broadcast: with probability at least 1/2.

Thus, for a given column, there is an edge between W1 and W2 with probability

at least 1
8 ·
(

min(�/t,1)
32

)2
. Thus over c · max(t3/�, �2) log n odd columns (and

their even counterparts corresponding to the edge in the reverse direction), the
probability that there is no edge between W1 and W2 is bounded by:(

1− 1
8
·
(

min(�/t, 1)
32

)2
)c·max(t3/�,�2) log n

≤
(

1
e

)min(�2/t2,1)
8·322 ·c·max(t3/�,�2) log n

= e−
c

8·322 max(t�,�2) log n .

We now count the total number of sets W1 and W2, and also the total number
of sets P and F . There are at most n� sets P with more than �/2 and at most
� elements. There are at most nt sets F with (at most) t elements. There are
at most 2� sets W1, and similarly at most 2� sets W2. In total, we can bound
the number of sets P , F , W1, and W2 by: n� · nt · 2� · 2� = 22�+(�+t) log n ≤
23max(t,�) log n. By a union bound over all possible sets, the probability that
there exists any sets P and F such that G(P, F, T ′, B′) is not an �/8-expander is
no greater than: 23max(t,�) log n · e−

c
8·322 max(t�,�2) log n ≤ e−(c

8·322 −3)·max(t�,�2) log n.
Thus, for sufficiently large c, w.h.p., graph G(P, F, T ′, B′) is a (�/8)-expander
for every P and F . ��
We now apply the following, proven in [7], to conclude that there is some subset
of P with small diameter:

Theorem 2. Let G be an α-expander. For every set Q of at least 4α nodes,
there is a subset Q∗ ⊆ Q of at least α nodes such that the subgraph of G induced
by set Q∗ has diameter of at most 2 log n. ��
Corollary 1. For every set P containing more than �/2 and at most � processes,
for every set F of size at most t, there is a subset P ∗ ⊆ P containing �/8
processes such that P ∗ has diameter at most 2 logn in G(P, F, T ′, B′). ��
We thus conclude that after executing 〈T2, B2〉, there is some subset P ∗ of size
�/8 such that every process in P ∗ knows every rumor:

Lemma 4. The following event holds w.h.p., for sufficiently large constant c:
For every set P with more than �/2 and at most � processes, for every set F
of at most t processes: after executing 〈T1, B1〉 & 〈T2, B2〉, there is some subset
P ∗ ⊆ P containing �/8 honest processes such that every rumor has been received
by every process in P ∗.

Proof. Define P ∗ as per Corollary 1. Recall that P ∗ has diameter at most 2 log n.
At the end of 〈T1, B1〉, i.e., at the end of Stage 1, every rumor is known to some
process in P ∗, by Lemma 2. In every iteration of 〈T ′, B′〉 during Stage 2, rumors
are propagated one hop through graph G(P, F, T ′, B′). Thus, during Stage 2,
over 2 log n iterations of 〈T ′, B′〉, every rumor stored in P ∗ at the end of Stage 1
is propagated to every other process in P ∗. ��

370 S. Gilbert and D.R. Kowalski

4.5 Stage 3: Dissemination

In the third stage, the identified subset P ∗ distributes the rumors gathered
during Stage 2 to the remaining processes in P . We have already shown that in
Stage 1, each process in P \ P ∗ successfully sends a message to some process in
P ∗. As T3 = T1 and B3 is the entry-by-entry binary inverse of B1, each successful
sender in Stage 1 becomes a successful receiver in Stage 3 and vice versa, in every
round. (Note: in the analysis of Stage 1, we considered only events/rounds in
which there was only one sender and one receiver.) Thus, each process in P \P ∗

receives a message from some process in P ∗. Thus we conclude:

Lemma 5. The following event holds w.h.p., for sufficiently large constant c:
For every set P with more than �/2 and at most � of honest processes, and for
every set F of at most t processes, after executing 〈T1, B1〉 & 〈T2, B2〉 & 〈T3, B3〉,
each process in P has received all rumors of other processes in P . ��

Combining the log k instances for exponentially decreasing �, and applying the
probabilistic argument to Lemma 5 for each instance A(�, �/2), we conclude:

Theorem 3. There exists a (k, t)-information exchange algorithm with running
time O(max(t3, k2) log2 n). ��

5 Extensions

5.1 Energy Usage

An advantage of the wTPM is that it enforces energy efficiency: in each around
of A(�, �/2), only a min(1/t, 1/�) fraction of honest processes are radio-enabled;
the remainder cannot access their radios, saving power. Thus, we can show:

Lemma 6. There exists a (k, t)-information exchange protocol with running
time O(max(t3, k2) log2 n), where there are an average of O(�k/t�) processes
radio-enabled in each round.

Proof. In protocol A(�, �/2), in expectation, there are ≤ min((k + t)/t, (k +
t)/�) ≤ 2�k/t� processes radio-enabled in every round. Thus, w.h.p., there are
O(max(t3, k2) log2 n · �k/t�) processes radio-enabled in the execution. Combined
with the time complexity result of Lemma 5, which holds with high probability,
and using the probabilistic argument, this implies the claimed result. ��

For t = Θ(k) the per round energy usage is O(1), on average, which is optimal.

5.2 Self-verifying Rumors

We can somewhat improve the previous results when rumors are self-verifying,
that is, when a process can distinguish a rumor that was initiated at an honest
process from a rumor initiated at a malicious process (for example, via public
keys or MACs). If a process can stop early, i.e., can cease executing the protocol
when it believes it has received all available rumors, then we can obtain the
following result:

Trusted Computing for Fault-Prone Wireless Networks 371

Lemma 7. There exists a (k, t)-information exchange protocol with running
time O(max(t3/k′, k2) log2 n) where an average of O(1) honest processes are
radio-enabled in each round, and k′ is the actual number of active honest pro-
cesses.

Proof. Consider the protocol as before: A(k, k/2) & · · · & A(2, 1). A process
terminates when it completes protocol A(�, �/2), having already received at least
�/2 rumors: there are clearly at least �/2 honest processes, and there is no need
to continue executing the protocol for smaller �. Since the running time for each
A(�, �/2) is O(min(t3/�, k2) log2 n), the claimed running time follows.

For energy: assume that k′ ≤ k honest process are activated. On average,
there are min((k′ + t)/t, (k′ + t)/�) processes enabled in each round. Since the
protocol terminates no later than where � > k′/2, on average there are no more
than O(1) processes radio-enabled in each round, by using the similar argument
as in the proof of Lemma 6. ��

We conjecture that by carefully ordering the A(·, ·) instances, and by detecting
when to stop, it may be possible to adapt to |P |, independent from k and n.

5.3 Continuous Communication

To this point, we have assumed that honest processes are all enabled in the same
round, and that they each have exactly one rumor to distribute. In some situa-
tions, processes may be activated—and rumors injected—in any round. Consider,
then, the following straightforward strategy: instead of executing each instance of
A(�, �/2) sequentially, interleave the executions. That is, divide time into blocks
of log n rounds, and in a round r where r mod log n = k, execute one round
of A(2k+1, 2k). When a rumor is injected at a process p, it begins participating
for a given A(�, �/2) each time a new instance is started. (Here, a global clock
or additional synchronization mechanism must be used). From this we conclude
that there exists a continuous information exchange protocol where if there are
k ≤ n rumors active in some round r, for an unknown value k, then all such
rumors will be delivered no later than time r + O(max(t3, k2) log3 n).

6 Conclusions

We have shown that it is possible to design a wTPM that, by selectively enabling
and disabling the radio, facilitates reliable communication. Surprisingly, as long
as t < k2/3, the resulting protocol is nearly as efficient, in time complexity, as
optimal oblivious information exchange protocols for networks with no malicious
devices. We have also shown a new lower bound indicating that when k ≤ √n
or when t ≥ k2/3, the resulting bound is near optimal. The new protocol also
provides improved energy efficiency, as existing oblivious solutions (in the model
without malicious devices) need O(k ·min(k2, n) logk n) energy [6, 11].

An interesting open question is the performance of protocols such as the
one in this paper in multi-hop networks. When there are no malicious devices,

372 S. Gilbert and D.R. Kowalski

the time complexity of all-to-all communication is Θ(n min(D,
√

n)) [23]. When
there are Byzantine processes, the situation is more complex, as we need to
guarantee that honest processes form a connected component. Another question
is whether, by relaxing the restrictions on the wTPM, allowing randomization
or some adaptivity, we may be able to achieve even better performance.

References

1. Alistarh, D., Gilbert, S., Guerraoui, R., Milosevic, Z., Newport, C.: Securing your
every bit: Reliable broadcast in byzantine wireless networks. In: Proceedings of the
Symp. on Parallel Algorithms and Architectures (SPAA). pp. 50–59 (2010)

2. Awerbuch, B., Richa, A.W., Scheideler, C.: A jamming-resistant mac protocol for
single-hop wireless networks. In: Proceedings of the Symp. on Principles of Dis-
tributed Computing (PODC). pp. 45–54 (2008)

3. Bar-Yehuda, R., Goldreich, O., Itai, A.: On the time-complexity of broadcast in
multi-hop radio networks: An exponential gap between determinism and random-
ization. J. of Computer and System Sciences 45(1), 104–126 (1992)

4. Bhandari, V., Vaidya, N.H.: On reliable broadcast in a radio network. In: Proceed-
ings of the Symp. on Principles of Distributed Computing (PODC). pp. 138–147
(2005)

5. Bhandari, V., Vaidya, N.H.: On reliable broadcast in a radio network: A simplified
characterization. Tech. rep., U. of Illinois at Urbana-Champaign (2005)

6. Bonis, A.D., Gasieniec, L., Vaccaro, U.: Optimal two-stage algorithms for group
testing problems. SIAM J. on Computing 34(5), 1253–1270 (2005)

7. Chlebus, B., Kowalski, D.R., Shvartsman, A.A.: Collective asynchronous reading
with polylogarithmic worst-case overhead. In: Proceedings of the Symp. on Theory
of Computing (STOC). pp. 321–330 (2004)

8. Chlebus, B.S., Kowalski, D.R., Lingas, A.: The do-all problem in broadcast net-
works. In: Proceedings of the Symp. on Principles of Distributed Computing
(PODC). pp. 117–127 (2001)

9. Clementi, A., Monti, A., Silvestri, R.: Optimal f-reliable protocols for the do-all
problem on single-hop wireless networks. In: Bose, P., Morin, P. (eds.) ISAAC 2002.
LNCS, vol. 2518, pp. 320–331. Springer, Heidelberg (2002)

10. Clementi, A., Monti, A., Silvestri, R.: Round robin is optimal for fault-tolerant
broadcasting on wireless networks. JPDC 64(1), 89–96 (2004)

11. Clementi, A.E.F., Monti, A., Silvestri, R.: Selective families, superimposed codes,
and broadcasting on unknown radio networks. In: Proceedings of the twelfth annual
ACM-SIAM Symp. on Discrete algorithms. pp. 709–718 (2001)

12. Dolev, S., Gilbert, S., Guerraoui, R., Newport, C.: Gossiping in a multi-channel
radio network: An oblivious approach to coping with malicious interference. In:
Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 208–222. Springer, Heidelberg
(2007)

13. Dolev, S., Gilbert, S., Guerraoui, R., Newport, C.: Secure communication over radio
channels. In: Proceedings of the Symp. on Principles of Distributed Computing
(PODC). pp. 105–114 (2008)

14. Dolev, S., Gilbert, S., Guerraoui, R., Kowalski, D.R., Newport, C., Kuhn, F.,
Lynch, N.: Reliable Distributed Computing on Unreliable Radio Channels. In:
MobiHoc S3 Workshop (2009)

Trusted Computing for Fault-Prone Wireless Networks 373

15. Dolev, S., Gilbert, S., Guerraoui, R., Kuhn, F., Newport, C.: The Wireless Syn-
chronization Problem. In: Proceedings of the Symp. on Principles of Distributed
Computing (PODC). pp. 190–199 (2009)

16. Gilbert, S., Guerraoui, R., Newport, C.: Of malicious motes and suspicious sensors:
On the efficiency of malicious interference in wireless networks. In: Shvartsman,
A.A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp. 215–229. Springer, Heidelberg
(2006)

17. Gilbert, S., Guerraoui, R., Kowalski, D., Newport, C.: Interference-Resilient Infor-
mation Exchange. In: INFOCOM. pp. 2249–2257 (2009)

18. Goussevskaia, O., Moscibroda, T., Wattenhofer, R.: Local broadcasting in the phys-
ical interference model. In: DIALM-POMC. pp. 35–44 (2008)

19. Komlos, J., Greenberg, A.: An asymptotically fast non-adaptive algorithm for con-
flict resolution in multiple access channels. IEEE Trans. on Information Theory pp.
302–306 (1985)

20. Koo, C.Y.: Broadcast in radio networks tolerating byzantine adversarial behavior.
In: Proceedings of the Symp. on Principles of Distributed Computing (PODC).
pp. 275–282 (2004)

21. Koo, C.Y., Bhandari, V., Katz, J., Vaidya, N.H.: Reliable broadcast in radio net-
works: The bounded collision case. In: Proceedings of the Symp. on Principles of
Distributed Computing (PODC). pp. 258–264 (2006)

22. Kowalski, D.R.: On selection problem in radio networks. In: Proceedings of the
Symp. on Principles of Distributed Computing (PODC). pp. 158–166 (2005)

23. Kowalski, D.R., Pelc, A.: Time complexity of radio broadcasting: adaptiveness vs.
obliviousness and randomization vs. determinism. Theoretical Computer Science
333(3), 355–371 (2005)

24. Kranakis, E., Krizanc, D., Pelc, A.: Fault-tolerant broadcasting in radio networks.
J. of Algorithms 39(1), 47–67 (2001)

25. Kuhn, F., Lynch, N., Newport, C., Oshman, R., Richa, A.: Broadcasting in radio
networks with unreliable communication. In: Proceedings of the Symp. on Princi-
ples of Distributed Computing (PODC) (2010)

26. Meier, D., Pignolet, Y.A., Schmid, S., Wattenhofer, R.: Speed Dating Despite Jam-
mers. In: Proceedings of the International Conference on Distributed Computing
in Sensor Systems (DCOSS). pp. 1–14 (2009)

27. Moscibroda, T., Wattenhofer, R.: The complexity of connectivity in wireless net-
works. In: INFOCOM (2006)

28. Newport, C.: Distributed Computation on Unreliable Radio Channels. Ph.D. the-
sis, MIT (2009)

29. Pearson, S., Balacheff, B.: Trusted computing platforms: TCPA technology in con-
text. Prentice Hall (2002)

30. Pippenger, N.: Sorting and selecting in rounds. SIAM J. of Computing 16, 1032–
1038 (1987)

31. Strasser, M., Pöpper, C., Capkun, S.: Efficient Uncoordinated FHSS Anti-jamming
Communication. In: Proceedings International Symp. on Mobile Ad Hoc Network-
ing and Computing (MOBIHOC). pp. 207–218 (2009)

32. Strasser, M., Pöpper, C., Capkun, S., Cagalj, M.: Jamming-resistant Key Estab-
lishment using Uncoordinated Frequency Hopping. In: Proceedings of the Symp.
on Security and Privacy. pp. 64–78 (2008)

33. Trusted Computing Group: Trusted platform module (tpm) specifications,
http://www.trustedcomputinggroup.org/resources/tpm main specification

34. Willard, D.E.: Log-logarithmic selection resolution protocols in a multiple access
channel. SIAM J. of Computing 15(2), 468–477 (1986)

Opportunistic Information Dissemination in
Mobile Ad-hoc Networks:

The Profit of Global Synchrony�

Antonio Fernández Anta1,2, Alessia Milani3,
Miguel A. Mosteiro4,2, and Shmuel Zaks5

1 Institute IMDEA Networks, Leganés, Spain
2 LADyR, GSyC, Universidad Rey Juan Carlos, Móstoles, Spain

anto@gsyc.es
3 LIP6, Université Pierre et Marie Curie - Paris 6, Paris, France

alessia.milani@lip6.fr
4 Department of Computer Science, Rutgers University, Piscataway, NJ, USA

mosteiro@cs.rutgers.edu
5 Department of Computer Science, Technion, Haifa, Israel

zaks@cs.technion.ac.il

Abstract. The topic of this paper is the study of Information Dissemination in
Mobile Ad-hoc Networks by means of deterministic protocols. We characterize
the connectivity resulting from the movement, from failures and from the fact that
nodes may join the computation at different times with two values, α and β, so
that, within α time slots, some node that has the information must be connected
to some node without it for at least β time slots. The protocols studied are clas-
sified into three classes: oblivious (the transmission schedule of a node is only a
function of its ID), quasi-oblivious (the transmission schedule may also depend
on a global time), and adaptive.

The main contribution of this work concerns negative results. Contrasting the
lower and upper bounds derived, interesting complexity gaps among protocol-
classes are observed. More precisely, in order to guarantee any progress towards
solving the problem, it is shown that β must be at least n − 1 in general, but
that β ∈ Ω(n2/ log n) if an oblivious protocol is used. Since quasi-oblivious
protocols can guarantee progress with β ∈ O(n), this represents a significant gap,
almost linear in β, between oblivious and quasi-oblivious protocols. Regarding
the time to complete the dissemination, a lower bound of Ω(nα + n3/ log n)
is proved for oblivious protocols, which is tight up to a polylogarithmic factor
because a constructive O(nα + n3 log n) upper bound exists for the same class.
It is also proved that adaptive protocols require Ω(nα + n2), which is optimal
given that a matching upper bound can be proved for quasi-oblivious protocols.

These results show that the gap in time complexity between oblivious and
quasi-oblivious, and hence adaptive, protocols is almost linear. This gap is what
we call the profit of global synchrony, since it represents the gain the network
obtains from global synchrony with respect to not having it.

� This research was partially supported by Spanish MICINN grant no. TIN2008-06735-C02-01,
Comunidad de Madrid grant no. S2009TIC-1692, EU Marie Curie International Reintegration
Grant IRG 210021, NSF grant no. 0937829, ANR grant R-DISCOVER, and by the Israel
Science Foundation, grant no. 1249/08.

N.A. Lynch and A.A. Shvartsman (Eds.): DISC 2010, LNCS 6343, pp. 374–388, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Opportunistic Information Dissemination in MANETs 375

1 Introduction

A Mobile Ad-hoc Network (aka MANET) is a set of mobile nodes which communi-
cate over a multihop radio network, without relying on a stable infrastructure. In these
networks, nodes are usually battery-operated devices that can communicate via radio
with other devices that are in range. Due to unreliable power supply and mobility,
nodes may have a continuously changing set of neighbors in that range. This dy-
namic nature makes it challenging to solve even the simplest communication problems
in general. Hence, proposed protocols often have strong synchronization and stability
requirements, like having a stable connected network for long enough time.

Current trends in networking-architecture developments, like delay and disruption
tolerant networks, and opportunistic networking [8, 22], aim to deal with the discon-
nections that naturally and frequently arise in wireless environments. Their objective is
to allow communication in dynamic networks, like a MANET, even if a route between
sender and receiver never exists in the network. The result is that multi-hop commu-
nication is provided through opportunistic communication, in which the online route
of a message is followed one link at a time, as links in the route become available.
While the next link is not available, the message is held in a node. With opportunistic
communication, strong connectivity requirements are no longer needed. Furthermore,
in some cases mobility is the key to allow communication (e.g., consider two discon-
nected static nodes, where communication between them is provided by a device that,
due to mobility, sometimes is in range of one and sometimes of the other).

In this paper, we formally define a particular class of MANET which is suited for
opportunistic communication, and which we call potentially epidemic. A MANET is
potentially epidemic if the changes in the communication topology are such that an
online route exists among any two nodes that wish to communicate.

The network is potentially epidemic because the actual propagation of the informa-
tion on the online routes, and then the possibility for a node to affect another node,
depends on the stability of each communication links of the online route.

In this context, we define and study the deterministic solvability of a problem that we
call Dissemination. In this problem, at a given time a source node holds an information
that must be disseminated to a given set of nodes belonging to the MANET. The
nodes elected to eventually receive the information are the ones that satisfy a given
predicate. Depending on this predicate, the Dissemination problem can instantiate most
of the common communication problems in distributed systems, such as Broadcast,
Multicast, Geocast, Routing, etc.

In particular, we determine assumptions on link stability and speed of nodes under
which a distributed deterministic protocol exists that solves Dissemination in potentially
epidemic networks. Moreover, we relate the time complexity of the solution to the speed
of movement and to the information that protocols may use.

1.1 The Dissemination Problem

We study the problem of disseminating a piece of information, initially held by a dis-
tinguished source node, to all nodes of a given set in the network. Formally,

376 A. Fernández Anta et al.

Definition 1. Given a MANET formed by a set V of n nodes, let P be a predicate on
V and s ∈ V a node that holds a piece of information I at time t1 (s is the source of
dissemination). The Dissemination problem consists of distributing I to the set of nodes
VP = {x ∈ V :: P(x)}. A node that has received I is termed covered, and otherwise
it is uncovered. The Dissemination problem is solved at time slot t2 ≥ t1 if, for every
node v ∈ VP , v is covered by time slot t2.

The Dissemination problem abstracts several common problems in distributed systems.
E.g. Broadcast, Multicast, Geocast, Routing etc., are all instances of this problem for
a particular predicate P . In order to prove lower bounds, we will use one of these
instances: the Geocast problem. The predicate P for Geocast is P(x) = true if and
only if, at time t1, x is up and running, and it is located within a parametric distance
d > 0 (called eccentricity) from the position of the source node at that time.

1.2 Model

We consider a MANET formed by a set V of n mobile nodes deployed in R2, where
no pair of nodes can occupy the same point in the plane simultaneously. It is assumed
that each node has data-processing and radio-communication capabilities, and a unique
identificator number (ID) in [n] � {1, . . . , n}.

Time. Each node is equipped with a clock that ticks at the same uniform rate ρ but,
given the asynchronous activation, the clocks of different nodes may start at different
times. A time interval of duration 1/ρ is long enough to transmit (resp. receive) a mes-
sage. Computations in each node are assumed to take no time. Starting from a time
instant used as reference, the global time is slotted as a sequence of time intervals or
time slots 1, 2, . . . , where slot i > 0 corresponds to the time interval [(i − 1)/ρ, i/ρ).
Without loss of generality [24] all node’s ticks are assumed to be in phase with this
global tick.

Node Activation. We say that a node is active if it is powered up, and inactive other-
wise. It is assumed that, due to lack of power supply or other unwanted events that we
call failures, active nodes may become inactive. Likewise, due also to arbitrary events
such as replenishing their batteries, nodes may be re-activated. We call the temporal
sequence of activation and failures of a node the activation schedule. The activation
schedule for each node is assumed to be chosen by an adversary, in order to obtain
worst-case bounds. Most of the lower-bound arguments included in this paper hold,
even if all nodes are activated simultaneously and never fail (which readily provide a
global time), making the results obtained stronger.

We assume that a node is activated in the boundary between two consecutive time
slots. If a node is activated between slots t − 1 and t we say that it is activated at
slot t, and it is active in that slot. Upon activation, a node immediately starts running
from scratch an algorithm previously stored in its hardware, but no other information or
status is preserved while a node is inactive. Consequently, it is possible that a covered
node does not hold the information I , because it has been inactive after receiving it. To
distinguish a covered node that does not hold the information from one that holds it, we
introduce the following additional terminology: we say that a node p is informed at a
given time t if it holds the information I at time t, otherwise p is said to be uninformed.

Opportunistic Information Dissemination in MANETs 377

Radio Communication. Nodes communicate via a collision-prone single radio chan-
nel. A node v can receive a transmission of another node u in time slot t only if their
distance is at most the range of transmission r during the whole slot t. The range of
transmission is assumed to be the same for all nodes and all time slots. If two nodes
u and v are separated by a distance at most r, we say that they are neighbors. In this
paper, no collision detection mechanism is assumed, and a node cannot receive and
transmit at the same time slot. Therefore, an active node u receives a transmission from
a neighboring node v at time slot j if and only if v is the only node in u’s neighborhood
transmitting at time slot j. Also, a node cannot distinguish between a collision and no
transmission. In general, we say that a node v ∈ V ′ transmits uniquely among the nodes
of set V ′ ⊆ V in a slot t if it is the only node in V ′ that transmits in t.

Link stability. We assume that nodes may move on the plane. Thus, the topology
of the network is time dependent. For simplicity, we assume that the topology only
changes in the boundaries between time slots. Then, at time slot t nodes u and v are
connected by a link in the network topology iff they are neighbors during the whole
slot t. An online route between two nodes u and v is a path u = w0, w1, . . . , wk = v
and a sequence of time slots t1 < t2 < · · · < tk such that the network has a link be-
tween wi−1 and wi at time slot ti. Observe that in order to be able to solve an instance
of Dissemination, it is necessary that the network is potentially epidemic. I.e. after the
initial time t1, there is an online route from the source s to every node in VP . However,
as argued in [6], worst-case adversarial choice of topologies for a dynamic network
precludes any deterministic protocol from completing Broadcast, even if connectivity
is guaranteed. Note that Broadcast is an instance of Dissemination, and that if there is
connectivity then there are online routes between all nodes. Thus, the property that the
network is potentially epidemic as described is not sufficient to solve Dissemination,
and further limitations to the adversarial movement and activation schedule are in or-
der. While respecting a bound on the maximum speed vmax, which is a parameter, the
adversarial movement and activation schedule is limited by the following connectivity
property:

Definition 2. Given a Mobile Ad-hoc Network, an instance of the Dissemination prob-
lem that starts at time t1, and two integers α ≥ 0 and β ≥ 0, the network is (α, β)-
connected if, for every time slot t ≥ t1 at which the problem has not yet been solved,
there is a time slot t′ such that the following conditions hold:

– the intersection of time intervals [t, t + α) and [t′, t′ + β) is not empty, and
– there is a pair of nodes p, p′, such that at t′ p is informed and p′ is uncovered, and

they are active and neighbors the whole time interval [t′, t′ + β).

It is of the utmost importance to notice that (α, β)-connectivity is a characterization that
applies to any model of dynamic network, given that for any mobility and activation
schedule, and any pair of nodes, there is a minimum time they are connected (even if
that time is 0) and a maximum time they are disconnected (even if that time is very
large). Thus, any dynamic network model used to study the Dissemination problem has
its own α and β values.

Due to the same argument, (α, β)-connectivity does not guarantee by itself that the
network is epidemic (i.e. that the information is eventually disseminated); instead, an

378 A. Fernández Anta et al.

(α, β)-connected network is only potentially epidemic. Consider for instance the source
node. Thanks to the (α, β)-connectivity, at most every α slots, the source s is connected
to other nodes of the network for at least β time slots. But, we have progress only if the
protocol to solve Dissemination is able to use the β slots of connectivity to cover some
uncovered node. As a consequence of the above discussed, impossibility results only
restrict β, whereas α only constrains the running time, as it is shown in this paper.

1.3 Protocols for Dissemination

We consider distributed deterministic protocols, i.e., we assume that each node in the
network is preloaded with its own and possibly different deterministic algorithm that
defines a schedule of transmissions for it. Even if a transmission is scheduled for a
given node at a given time, that node will not transmit if it is uninformed.

Following the literature on various communication primitives [17,16], a protocol is
called oblivious if, at each node, the algorithm’s decision on whether or not to schedule
a transmission at a given time slot depends only on the identifier of the node, and on
the number of time slots that the node has been active. Whereas, if no restriction is
put on the information that a node may use to decide its communication schedule, the
protocol is called adaptive. Additionally, in this paper, we distinguish a third class of
protocols that we call quasi-oblivious. In a quasi-oblivious protocol the sequence of
scheduled transmissions of a node depends only on its ID and a global time. Quasi-
oblivious protocols have sometimes been called oblivious, since the model assumed
simultaneous activation, and hence a global time was readily available. However we
prefer to make the difference explicit, as done in [21], because we found a drastic gap
between this class and fully oblivious protocols.

1.4 Previous Work

A survey of the vast literature related to Dissemination is beyond the scope of this
article. We overview in this section the most relevant previous work. Additionally, a
review of relevant related work for static and dynamic networks beyond MANETs can
be found in [11].

The Dissemination problem abstracts several common problems in Radio Networks.
When some number 1 ≤ k ≤ n of active nodes hold an information that must be
disseminated to all nodes in the network, the problem is called k-Selection [16] or
Many-to-all [5]. If k = 1 the problem is called Broadcast [2, 18], whereas if k = n
the problem is known as Gossiping [9, 4]. Upper bounds for these problems in mobile
networks may be used for Dissemination, and even those for static networks may apply
if the movement of nodes does not preclude the algorithm from completing the task
(e.g., round-robin). On the other hand, if only the subset of k nodes have to receive
the information, the problem is known as Multicast [5, 13], and if only nodes initially
located at a parametric distance from the source node must receive the information the
problem is called Geocast [15], defined in Section 1.1.

Deterministic solutions for the problems above have been studied for MANETs.
Their correctness rely on strong synchronization or stability assumptions. In [19], de-
terministic Broadcast in MANETs was studied under the assumption that nodes move

Opportunistic Information Dissemination in MANETs 379

in a one-dimensional grid knowing their position. Two deterministic Multicast proto-
cols for MANETs are presented in [14,20]. The solutions provided require the network
topology to globally stabilize for long enough periods to ensure delivery of messages,
and they assume a fixed number of nodes arranged in some logical or physical structure.
Leaving aside channel contention, a lower bound of Ω(n) rounds of communication
was proved in [23] for Broadcast in MANETs, even if nodes are allowed to move only
in a two-dimensional grid, improving over the Ω(D log n) bound of [3], where D is the
diameter of the network. This bound was improved to Ω(n log n) in [7] without using
the movement of nodes, but the diameter of the network in the latter is linear. Recently,
deterministic solutions for Geocast were proposed in [1] for a one-dimensional setting
and in [10] for the plane. In the latter work, the authors concentrate in the structure of
the Geocast problem itself, leaving aside communication issues such as the contention
for the communication channel.

1.5 Our Results

The main contribution of this work concerns negative results. Contrasting the lower
bounds obtained with upper bounds derived by careful combination of previous tech-
niques, interesting complexity gaps among protocol-classes are observed.

For a model where nodes may fail, there is no global clock, and nodes may be ac-
tivated at different times, we show in Theorem 6 that any oblivious protocol takes, in
the worst case, Ω((α + n2/ ln n)n) steps to solve the Geocast problem if vmax >
πr/6(α+ �(n/3)(n/3− 1)/ ln(n/3(n/3− 1))�− 2). Given the upper bound of n(α+
4n(n−1) ln(2n)) for Dissemination established in Theorem 8 by means of an oblivious
deterministic protocol based on Primed Selection [12], this lower bound is tight up to a
poly-logarithmic factor.

Moreover, for the same model, Theorem 5 shows that, even if nodes are activated
simultaneously and do not fail, and an adaptive protocol is used, any Geocast protocol
takes, in the worst case, Ω(n(α+n)) if vmax > πr/(3(2α+n−4)). This result should
be contrasted with the quasi-oblivious protocol based on Round-Robin that solves Dis-
semination in at most n(α + n) steps as established in Theorem 7.

The latter results are asymptotically tight and show that full adaptiveness does not
help with respect to quasi-obliviousness. The first lower bound and the last upper bound,
show an asymptotic separation almost linear between oblivious and quasi-oblivious pro-
tocols. In a more restrictive model, where nodes are activated simultaneously, there
exists an oblivious protocol (e.g. Round Robin) that solves Dissemination in at most
n(α + n) steps. Hence, the lower bound proved in Theorem 6 shows the additional
cost of obliviousness when nodes are not simultaneously activated. This gap is what
we call the profit of global synchrony, since it represents the gain the network obtains
from global synchrony with respect to not having it. Moreover, the quasi-oblivious pro-
tocol derived shows that for the Dissemination problem, the simultaneous activation
performance can be achieved by distributing the time elapsed since the source started
the dissemination. For a discussion of the importance of node-activation schedule in
distributed computing refer to [11].

Additionally, it is shown in Theorem 1 that no protocol can solve the Geocast prob-
lem (and hence Dissemination) in all (α, β)-connected networks unless β ≥ n − 1.

380 A. Fernández Anta et al.

Interestingly, it is shown in Theorem 2 that this bound becomes β > �(n − 1)(n −
3)/4 ln((n− 1)(n− 3)/4)� if the protocol is oblivious. Comparing these bounds with
the requirements of the protocols presented above, the quasi-oblivious protocol required
β ≥ n, which is almost optimal, while the oblivious protocol required β ∈ Ω(n2 log n),
which is only a polylogarithmic factor larger than the lower bound. These results also
expose another aspect of the profit of global synchrony mentioned before: while β = n
is enough for quasi-oblivious protocols to solve Dissemination, oblivious protocols re-
quire a value of β almost a linear factor larger.

Finally, for an arbitrary small bound on node speed, we show in Theorem 3 the
existence of an (α, β)-connected network where Geocast takes at least α(n− 1) steps,
even using randomization; and the existence of an (α, β)-connected network where any
deterministic protocol that transmits periodically takes at least n(n − 1)/2 steps, even
if nodes do not move, in Theorem 4.

1.6 Paper Organization

The rest of the paper is organized as follows. In Section 2 we introduce some tech-
nical lemmas that will be used to prove our main results; in Section 3 we prove the
lower bounds on link stability and on the time complexity to solve the Dissemination
problem with respect to some important aspects of the system (e.g. speed of movement
of nodes and their activation schedule) and of the protocols (e.g., obliviousness versus
adaptiveness). We finally present the corresponding upper bounds in Section 4.

2 Auxiliary Lemmas

The following lemmas will be used throughout the analysis. A straightforward conse-
quence of the pigeonhole principle is established in the following lemma.

Lemma 1. For any time step t of the execution of a Dissemination protocol, where a
subset V ′ of k informed nodes do not fail during the interval [t, t + k − 2], there exists
some node v ∈ V ′ such that v does not transmit uniquely among the nodes in V ′ during
the interval [t, t + k − 2].

In the following lemma, we show the existence of an activation schedule such that, for
any oblivious deterministic protocol, within any subset of at least 3 nodes, there is one
that does not have a unique transmission scheduled within a period roughly quadratic
in the size of the subset. The proof, based on the probabilistic method, is omitted for
brevity and can be found in [11].

Lemma 2. For any deterministic oblivious protocol that solves Dissemination in a
MANET of n nodes, where nodes are activated possibly at different times, and for any
subset of k nodes, k ≥ 3, there exists a node-activation schedule such that, for any
time slot t and letting m = �k(k − 1)/ ln(k(k − 1))�, each of the k nodes is activated
during the interval [t−m + 1, t], and there is one of the k nodes that is not scheduled
to transmit uniquely among those k nodes during the interval [t, t + m− 1].

Opportunistic Information Dissemination in MANETs 381

3 Solvability of the Dissemination Problem

If there is at least one node in VP − {s} at least one time slot is needed to solve Dis-
semination, since the source node has to transmit at least once to pass the information.
Furthermore, if all nodes in VP are neighbors of s, one time slot may also be enough if
the source node transmits before neighboring nodes are able to move out of its range.
On the other hand, if the latter is not possible, more than one time slot may be needed.
Let us consider the Geocast problem. Given that the specific technological details of
the radio communication devices used determine the minimum running time when the
eccentricity is d ≤ r, all efficiency lower bounds are shown for d > r unless otherwise
stated.

3.1 Link Stability Lower Bounds

The following theorem shows a lower bound on the value of β for the Geocast problem.

Theorem 1. For any Vmax > 0, d > r, α > 0, and any deterministic Geocast protocol
Π , if β < n− 1, there exists an (α, β)-connected MANET of n nodes such that Π does
not terminate, even if all nodes are activated simultaneously and do not fail.

Proof. Consider three sets of nodes A, B, and C deployed in the plane, each set de-
ployed in an area of size ε arbitrarily small, such that 0 < ε < r and d ≥ r + ε. The
invariant in this configuration is that nodes in each set form a clique, every node in A
is placed within distance r from every node in B, every node in B is placed at most
at distance ε from every node in C, and every node in A is placed at some distance
r < δ ≤ r + ε from every node in C. At the beginning of the first time slot, the adver-
sary places n− 1 nodes, including the source node s, in the set C, the remaining node
x in set A, and activates all nodes. The set B is initially empty. Given that d ≥ r + ε, x
must become informed to solve the problem. Also, ε is set appropriately so that a node
can move ε distance in one time slot without exceeding Vmax.

For any protocol Π for Geocast, let t be the first time slot where the source node is
the only node to transmit in the set C. Adversarially, let t be the first time slot when the
source is informed. Thus, (α, β)-connectivity is preserved up to time slot t for any α.
At time slot t, all nodes placed in C are informed.

After time slot t, the adversary moves the nodes as follows. Given that the problem
was not solved yet and nodes in C do not fail, according to Lemma 1, there exists a
node y ∈ C that does not transmit uniquely among the nodes in C during the interval
[t + 1, t + n − 2]. Given that Π is a deterministic protocol, and the adversary knows
the protocol and defines the movement of all nodes, the adversary knows which is the
node y.

Assume, for the sake of contradiction, that β ≤ n − 2. Then, the adversary places
y in B for all time slots in the interval [t + 1, t + β]. Additionally, for each time slot
t′ ∈ [t + 1, t + β] where y transmits, the adversary moves to B some node z ∈ C that
transmits at t′ to produce a collision. At the end of each time slot t′ the adversary moves
z back to C. Such a node z exists since y does not transmit uniquely during the interval
[t+1, t+n−2] and n−2 ≥ β. At the end of time slot t+β, the adversary moves y back

382 A. Fernández Anta et al.

to C and the above argument can be repeated forever preserving the (α, β)-connectivity
and precluding Π from solving the problem. Therefore, β must be at least n− 1.

Building upon the argument used in the previous theorem, but additionally exploiting
the adversarial node activation, the following theorem shows a lower bound on the
value of β for the Geocast problem if the protocol used is oblivious. The idea of the
proof is to split evenly the nodes of set C in the proof of Theorem 1 in two groups, so
that alternately the nodes in one group are activated while the nodes in the other group
produce collisions. The details are omitted for brevity and can be found in [11].

Theorem 2. For any Vmax > 0, d > r, n ≥ 8, α > 0, and any deterministic oblivious
protocol for Geocast Π , if β ≤ m = �(n− 1)(n− 3)/4 ln((n− 1)(n− 3)/4)�, there
exists an (α, β)-connected MANET of n nodes such that Π does not terminate.

3.2 Time Complexity Lower Bounds versus Speed, Activation and Obliviousness

Exploiting the maximum time α that a partition can be disconnected, a lower bound
on the time efficiency of any protocol for Geocast, even regardless of the use of ran-
domization and even for arbitrarily slow node-movement, can be proved. The follow-
ing theorem establishes that bound. The proof is omitted for brevity and can be found
in [11].

Theorem 3. For any Vmax > 0, d > r, α > 0, and β > 0, there exists an (α, β)-
connected MANET of n nodes, for which any Geocast protocol takes at least α(n− 1)
time slots, even if all nodes are activated simultaneously and do not fail.

The linear lower bound for Geocast proved in Theorem 3 was shown exploiting the
maximum time of disconnection between partitions. Exploiting the adversarial schedule
of node activation, even if nodes do not move nor fail, the same bound can be simply
proved for arbitrary Geocast protocols, while a quadratic bound can be shown for the
important class of equiperiodic protocols. The protocol definition and the theorem for
the latter follows. The proof is omitted for brevity and can be found in [11].

Definition 3. A protocol of communication for a Radio Network is equiperiodic if for
each node, the transmissions scheduled are such that the number of consecutive time
steps without transmitting, call it T − 1, is always the same. We say that T is the period
of transmission of such a node.

Theorem 4. For any Vmax ≥ 0, d > r, α > 0, β > 0, and any deterministic equiperi-
odic Geocast protocol Π , there exists an (α, β)-connected MANET of n nodes, for
which Π takes at least n(n− 1)/2 time slots to solve the problem, even if nodes do not
fail and do not move.

In Theorems 3 and 4 we showed lower bounds for Geocast for arbitrarily small values
of Vmax. We now show that, by slightly constraining Vmax, a quadratic lower bound
can also be shown for arbitrary deterministic protocols.

Opportunistic Information Dissemination in MANETs 383

Theorem 5. For any Vmax > πr/(3(2α + n − 4)), d > r, α > 0, β > 0, and any
deterministic Geocast protocol Π , there exists an (α, β)-connected MANET of n nodes,
for which Π takes Ω((α + n)n) time slots to solve the problem, even if all nodes are
activated simultaneously and do not fail.

Proof. The following adversarial configuration and movement of nodes shows the
claimed lower bound. Consider six sets of nodes A, A′, B, B′, C, and C′, each de-
ployed in an area of size ε arbitrarily small, such that 0 < ε < r and d ≥ r + ε, and
four points, x, y, x′, and y′ placed in the configuration depicted in Figure 1(a).

A A′

B

B′
C C′

x x′

y y′≤ r

≤ ε

r < · ≤ r + ε

r
<

·≤
r

+
ε

r
<

· ≤
r

+
ε

r
<
· ≤

r
+

ε

(a) Distances invariant.

A A′

B

B′

C C′

x x′

y y′

s

(b) Initial configuration.

Fig. 1. Illustration of Theorem 5. A small empty circle depicts a point in the plane. A small
black circle depicts a node. A big empty area depicts an empty set. A big shaded area depicts a
non-empty set.

The invariant in these sets is that nodes in each set form a clique; each node in A′ is
placed at some distance > r and ≤ r + ε from the points x, y′, and each node in B;
each node in A is placed at some distance > r and ≤ r + ε from the points x′, y, and
each node in B; each node in B is placed within distance r of points x, y, x′, and y′,
and each node in C and C′; each node in C is placed at some distance > r and ≤ r + ε
from the point x; each node in C′ is placed at some distance > r and ≤ r + ε from the
point x′; and each node in B′ is placed within distance ε of each node in B and within
distance r of each node in C and C′. 1

At the beginning of the first time slot, the adversary places n/2 nodes, including
the source node s, in set B′, the remaining n/2 nodes in the set A, and starts up all
nodes. (For clarity, assume that n is even.) All the other sets are initially empty. (See
Figure 1(b).)Given that d ≥ r + ε, all nodes must be covered to solve the problem.
Also, ε is set appropriately so that a node can be moved ε distance in one time slot
without exceeding Vmax, and so that a node can be moved from set A to point x through
the curved parts of the dotted line (see Figure 1(a)),of length less than π(r + ε)/6, in

1 During some periods of time a given set could be empty, we mean that x is separated (within)
that distance from any point in the area designated to the set X

384 A. Fernández Anta et al.

α + n/2− 2 time slots without exceeding Vmax. (To see why the length bound is that,
it is useful to notice that the distance between each pair of singular points along each of
the circular dotted lines is upper bounded by (r + ε)/2.)

Let t be the first time slot when the source is scheduled to transmit. Adversarially, let
t be the first time slot when the source is informed. Nodes stay in the positions described
until t and, consequently, all the other n/2−1 nodes in set B′ receive it. Starting at time
slot t+1, the adversary moves the nodes so that only one new node every α+n/2 steps
becomes informed. First we give the intuition of the movements and later the details.
(See Figure 1(b).)Nodes that are not in B or B′ are moved following the dotted lines.
Some of the nodes in B′ are moved back and forth to B. Nodes initially in A are moved
clockwise to A′, except for one of them, say u, which is moved simultaneously counter-
clockwise to the point x. Upon reaching A′ nodes are moved counter-clockwise back to
A, except for one of them, say v, which is moved simultaneously clockwise to the point
x′, while the node u is also moved simultaneously to the point y. Upon reaching A, the
remaining nodes repeat the procedure while u keeps moving towards C and v keeps
moving towards C′ through y′ respectively. Nodes initially in A are moved in the above
alternating fashion, one to C and the next one to C′, until all nodes become informed.
Movements are produced so that (α, β)-connectivity is preserved. The details follow.

The movement of each node u moved from A to C is carried out in three phases of at
least α + n/2− 2 time slots each as follows. (As explained below, some nodes initially
in A will be moved instead to C′, but the movement is symmetric. For clarity, we only
describe the whole three phases for one node. The movement is illustrated in Figure 4
in [11], which is omitted here for brevity.)

Phase 1 During the first α− 2 time slots, u is moved counterclockwise from A towards
the point x maintaining a distance > r and ≤ r + ε with respect to every node
in B. In the (α − 1)-th time slot of this phase, u is moved within distance r
of every node in set B preserving (α, β)-connectivity. Nodes in B′ stay static
during this interval. Given that only nodes in B′ are informed and the distance
between them and u is bigger than r, u does not become covered during this
interval.

During the following n/2−1 time slots of the first phase, the counterclockwise
movement of node u towards the point x continues, but now maintaining a
distance at most r with respect to every node in B. In the last time slot of
the second phase, u is moved to point x. During this interval, nodes in B′ are
moved back and forth to B as described in Theorem 1 to guarantee that u does
not become covered before reaching point x. Upon reaching point x, u and all
the other nodes in the network not in B or B′ remain static. Phase 1 ends the
time slot before u becomes covered.

Simultaneously, along the first α+n/2−2 time steps of this phase, the remain-
ing nodes initially in A are moved clockwise to A′. Then, even if u becomes
informed immediately upon reaching point x, u cannot inform nodes in A′

because they are separated by a distance > r.

Phase 2 During this phase, u is moved counterclockwise towards point y maintaining
a distance at most r with respect to every node in B and B′. Simultaneously,

Opportunistic Information Dissemination in MANETs 385

nodes that were in A′ at the end of the second phase are moved counterclock-
wise to A except for one node v that moves in its own first phase to x′.
Nodes moving from A′ to A maintain a distance > r with respect to u. Thus,
even if u becomes covered the information cannot be passed to the former. At
the end of this phase v is placed in point x′. Thus, even if v becomes covered
in the first step of its second phase, v cannot inform nodes in A because they
are separated by a distance > r.

Phase 3 During this phase, u is moved counterclockwise towards set C maintaining a
distance at most r with respect to every node in B and B′. Simultaneously,
nodes that were in A at the end of the second phase are moved clockwise to A′

except for one node w that moves in its own first phase to x. Also simultane-
ously, v continues its movement towards set C′ in its own second phase.
Nodes moving from A to A′ maintain a distance > r with respect to v. Thus,
even if v becomes covered the information cannot be passed to the former.
Also, nodes u and w are moved maintaining a distance > r between them.
Thus, u cannot inform w. At the end of this phase u has reached set C, v is
placed in point y′, and w is placed in point x. Thus, even if w becomes covered
in the first step of its second phase, w cannot inform nodes in A because they
are separated by a distance > r. Upon completing the third phase, u stays static
in C forever so that (α, β)-connectivity is preserved.

The three-phase movement detailed above is produced for each node initially in A,
overlapping the phases as described, until all nodes have became covered. Given that
when a node u reaches the point x, its phase 1 is stretched until the time step before u
becomes covered by a node v in B and all other nodes remain static, the next node w
that will be moved from A′ to x′ does not become covered by v, because w stays in A′

until u becomes covered. In each phase of at least α + n/2− 2 time slots every node is
moved a distance at most π(r + ε)/6 + ε. Thus, setting ε appropriately, the adversarial
movement described does not violate Vmax. Given that n/2 nodes initially in A are
covered one by one, each at least within α + n/2− 2 time slots after the previous one,
the overall running time is lower bounded as claimed, even if t = 1.

The quadratic lower bound shown in Theorem 5 holds for any deterministic protocol,
even if it is adaptive. Building upon the argument used in that theorem, but additionally
exploiting the adversarial node activation, the following theorem shows a roughly cubic
lower bound for oblivious protocols, even relaxing the constraint on Vmax. The proof
is omitted for brevity, the details can be found in [11].

Theorem 6. For any n ≥ 9, d > r, α > 0, β > 0, Vmax > πr/6(α + �(n/3)(n/3−
1)/ ln(n/3(n/3−1))�−2), and any oblivious deterministic Geocast protocol Π , there
exists an (α, β)-connected MANET of n nodes, for which Π takes Ω((α + n2/ ln n)n)
time slots to solve the problem.

4 Upper Bounds

Solving the Dissemination problem under arbitrary node-activation schedule and node-
movement is not a trivial task. To the best of our knowledge, deterministic protocols for

386 A. Fernández Anta et al.

such scenarios were not studied before, not even for potentially epidemic networks such
as an (α, β)-connected MANET, and not even for specific instances of Dissemination.
In this section, a quasi-oblivious protocol and an oblivious one that solve Dissemina-
tion, both based on known algorithms particularly suited for our setting, are described
and their time efficiency proved. The first bound is asymptotically tight with respect to
the more powerful class of adaptive protocols.

A Quasi-Oblivious Protocol. The idea behind the protocol is to augment the well-
known Round-Robin protocol with the synchronization of the clock of each node with
the time elapsed since the dissemination started, which we call the global time. This
is done by embedding a counter τ , corresponding to the global time, in the messages
exchanged to disseminate the information I . Given that the schedule of transmissions
of a node depends only on its ID and the global time, the protocol is quasi-oblivious.
More details about the algorithm can be found in [11].

It can be proved that this quasi-oblivious algorithm solves Dissemination for arbi-
trary values of Vmax in at most n(α + n) time steps. The details are omitted for brevity
and can be found in [11]. Formally,

Theorem 7. Given an (α, β)-connected MANET where β ≥ n, there exists a quasi-
oblivious deterministic protocol that solves Dissemination for arbitrary values of Vmax

in at most n(α + n) time steps.

Recall that β ≥ n−1 is required for the problem to be solvable as shown in Theorem 1.
This upper bound is asymptotically tight with respect to the lower bound for general
deterministic Geocast protocols when Vmax > πr/(3(2α+n−4)) shown in Theorem 5.
Thus, we can conclude that having extra information in this case does not help.

An Oblivious Protocol. We finally describe how to implement an oblivious protocol for
Dissemination, based on Primed Selection, a protocol presented in [12] for the related
problem of Recurrent Communication. Given that in this protocol the schedule of trans-
missions of a node depends only on its ID, the protocol is oblivious. This upper bound
is only a poly-logarithmic factor away from the lower bound shown in Theorem 6.

In order to implement Primed Selection, one of n prime numbers is stored in advance
in each node’s memory, so that each node holds a different prime number. Let p� denote
the �-th prime number. We set the smallest prime number used to be pn, which is at
least n, because Primed Selection requires the smallest prime number to be at least the
maximum number of neighbors of any node, which in our model is unknown. The al-
gorithm is simple to describe, upon receiving the information, each node with assigned
prime number pi transmits with period pi.

It was shown in [12] that, for any Radio Network formed by a set V of nodes running
Primed Selection, for any time slot t, and for any node i such that the number of nodes
neighboring i is k − 1, 1 < k < n, i receives a transmission without collision from
each of its neighbors within at most k maxj∈V pj steps after t. Given that in our setting
the biggest prime number used is p2n−1, that px < x(ln x + ln lnx) for any x ≥ 6 as
shown in [25], and that due to mobility all nodes may get close to i in the worst case,
we have that k maxj∈V pj < n(2n−1)(ln(2n−1)+ ln ln(2n−1)), for n ≥ 4. Which

Opportunistic Information Dissemination in MANETs 387

is in turn less than 4n(n− 1) ln(2n) for n ≥ 3. Hence, given that in the worst case all
nodes must be covered at least one at a time and that the network is (α, β)-connected,
the overall running time is less than n(α+ 4n(n− 1) ln(2n)). We formalize this bound
in the following theorem. Recall that β > �(n− 1)(n− 3)/4 ln((n− 1)(n− 3)/4)� is
required for the problem to be solvable when n ≥ 8 as shown in Theorem 2.

Theorem 8. Given an (α, β)-connected MANET, where β ≥ n(2n− 1)(ln(2n− 1) +
ln ln(2n − 1)) and n ≥ 4, there exists an oblivious deterministic protocol that solves
Dissemination for arbitrary values of Vmax in at most n(α + 4n(n − 1) ln(2n)) time
steps.

References

1. Baldoni, R., Ioannidou, K., Milani, A.: Mobility versus the cost of geocasting in mobile
ad-hoc networks. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 48–62. Springer, Hei-
delberg (2007)

2. Bar-Yehuda, R., Goldreich, O., Itai, A.: On the time-complexity of broadcast in multi-hop
radio networks: An exponential gap between determinism and randomization. Journal of
Computer and System Sciences 45, 104–126 (1992)

3. Bruschi, D., Del Pinto, M.: Lower bounds for the broadcast problem in mobile radio net-
works. Distributed Computing 10(3), 129–135 (1997)

4. Chlebus, B., Ga̧sieniec, L., Lingas, A., Pagourtzis, A.: Oblivious gossiping in ad-hoc radio
networks. In: Proc. of 5th Intl. Workshop on Discrete Algorithms and Methods for Mobile
Computing and Communications, pp. 44–51 (2001)

5. Chlebus, B.S., Kowalski, D.R., Radzik, T.: On many-to-many communication in packet ra-
dio networks. In: Shvartsman, A.A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp. 260–274.
Springer, Heidelberg (2006)

6. Clementi, A.E.F., Pasquale, F., Monti, A., Silvestri, R.: Communication in dynamic radio
networks. In: Proc. 26th Ann. ACM Symp. on Principles of Distributed Computing, pp. 205–
214 (2007)

7. Dessmark, A., Pelc, A.: Broadcasting in geometric radio networks. Journal of Discrete Al-
gorithms 5, 187–201 (2007)

8. Fall, K.: A delay-tolerant network architecture for challenged internets. In: Proceedings of
the 2003 Conference on Applications, Technologies, Architectures, and Protocols for Com-
puter Communications (SIGCOMM), pp. 27–34 (2003)

9. Farach-Colton, M., Mosteiro, M.A.: Sensor network gossiping or how to break the broadcast
lower bound. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 232–243. Springer,
Heidelberg (2007)

10. Fernández Anta, A., Milani, A.: Bounds for deterministic reliable geocast in mobile ad-hoc
networks. In: Baker, T.P., Bui, A., Tixeuil, S. (eds.) OPODIS 2008. LNCS, vol. 5401, pp.
164–183. Springer, Heidelberg (2008)

11. Fernández Anta, A., Milani, A., Mosteiro, M.A., Zaks, S.: Opportunistic information dis-
semination in mobile ad-hoc networks: The profit of global synchrony. Technical Report
RoSaC-2010-1, GSyC, Universidad Rey Juan Carlos (2010)

12. Fernández Anta, A., Mosteiro, M.A., Thraves, C.: Deterministic communication in the weak
sensor model. In: Tovar, E., Tsigas, P., Fouchal, H. (eds.) OPODIS 2007. LNCS, vol. 4878,
pp. 119–131. Springer, Heidelberg (2007)

13. Gasieniec, L., Kranakis, E., Pelc, A., Xin, Q.: Deterministic m2m multicast in radio net-
works. In: Proc. of 31st Intl. Colloquium on Automata Languages and Programming, pp.
670–682 (2004)

388 A. Fernández Anta et al.

14. Gupta, S.K.S., Srimani, P.K.: An adaptive protocol for reliable multicast in mobile multi-hop
radio networks. In: Proceedings of the 2nd IEEE Workshop on Mobile Computing Systems
and Applications (1999)

15. Jinag, X., Camp, T.: A review of geocasting protocols for a mobile ad hoc network. In:
Proceedings of Grace Hopper Celebration (2002)

16. Kowalski, D.R.: On selection problem in radio networks. In: Proc. 24th Ann. ACM Symp.
on Principles of Distributed Computing, pp. 158–166 (2005)

17. Kowalski, D.R., Pelc, A.: Time complexity of radio broadcasting: Adaptiveness vs. obliv-
iousness and randomization vs. determinism. Theoretical Computer Science 333, 355–371
(2005)

18. Kushilevitz, E., Mansour, Y.: An Ω(D log(N/D)) lower bound for broadcast in radio net-
works. SIAM Journal on Computing 27(3), 702–712 (1998)

19. Mohsin, M., Cavin, D., Sasson, Y., Prakash, R., Schiper, A.: Reliable broadcast in wireless
mobile ad hoc networks. In: Proceedings of the 39th Hawaii International Conference on
System Sciences, p. 233 (2006)

20. Pagani, E., Rossi, G.P.: Reliable broadcast in mobile multihop packet networks. In: Proc.
of the 3rd ACM Ann. Intl. Conference on Mobile Computing and Networking, pp. 34–42
(1997)

21. Peleg, D., Radzik, T.: Time-efficient broadcast in radio networks. In: Koster, A.M.C.A.,
Muñoz, X. (eds.) Graphs and Algorithms in Communication Networks, ch, 12, pp. 315–339.
Springer, Heidelberg (2009)

22. Pelusi, L., Passarella, A., Conti, M.: Opportunistic networking: data forwarding in discon-
nected mobile ad hoc networks. IEEE Communications Magazine 44(11), 134–141 (2006)

23. Prakash, R., Schiper, A., Mohsin, M., Cavin, D., Sasson, Y.: A lower bound for broadcasting
in mobile ad hoc networks. Technical report, Ecole Polytechnique Federale de Lausanne
(2004)

24. Roberts, L.G.: Aloha packet system with and without slots and capture. Computer Commu-
nication Review 5(2), 28–42 (1975)

25. Rosser, J.B., Schoenfeld, L.: Approximate formulas for some functions of prime numbers.
Illinois Journal of Mathematics 6(1), 64–94 (1962)

Brief Announcement: Failure Detectors
Encapsulate Fairness�

Scott M. Pike, Srikanth Sastry, and Jennifer L. Welch

Dept. of Computer Science and Engineering
Texas A&M University

College Station, TX 77843, USA
{pike,sastry,welch}@cse.tamu.edu

Abstract. Fairness is a measure of the number of steps a process takes
relative to other processes and/or messages in transit. We argue that
failure detectors encapsulate fairness. As evidence, we specify models for
fairness-based message-passing systems that are the weakest to imple-
ment the Chandra-Toueg failure detectors from [1]

Failure Detectors and Partial Synchrony. Failure detectors [1] — system
services that provide information about process crashes in an otherwise asyn-
chronous system — are believed to encapsulate partial synchrony [3]. That is,
given a partially-synchronous system model M , it is possible to replace M with
an asynchronous system augmented with an appropriate failure detector D (that
is implementable in M) such that all the problems solvable in M are also solvable
in the asynchronous system augmented with D. This belief has led to the pursuit
to find the ‘weakest’ system models to implement various failure detectors.

Such pursuits have met with limited success, in part, because many such sys-
tem models are specified with respect to real-time constraints on communication
and computation. We argue that such ‘weakest’ system models should be speci-
fied as restrictions on fairness: a measure of the number of steps executed by a
process relative to other events in the system.

Failure Detector Classes. We consider four failure detector classes from [1]:

1. Perfect failure detector (denoted P) never suspects live processes and even-
tually suspects all crashed processes forever.

2. Strong failure detector (denoted S) never suspects some correct process and
eventually suspects all crashed processes forever.

3. Eventually Perfect failure detector (denoted ♦P) eventually never suspects
correct processes and suspects all crashed processes forever.

4. Eventually Strong failure detector (denoted ♦S) eventually never suspects
some correct process and suspects all crashed processes forever.

� This work was supported in part by NSF grant 0964696 and Texas Higher Education
Coordinating Board grant NHARP 000512-0130-2007.

N.A. Lynch and A.A. Shvartsman (Eds.): DISC 2010, LNCS 6343, pp. 389–391, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

390 S.M. Pike, S. Sastry, and J.L. Welch

Fairness. We focus on fairness properties that refer to both the computation
and the communication that takes place in executions. Computational fairness
specifies the number of steps executed by processes relative to each other; com-
municational fairness specifies the number of steps executed by the recipient of
a message while that message is in transit.

Computational Fairness. A process i is said to be k-proc-distinguished if all
processes are fair with respect to i; that is, in each execution segment where
any process j takes k + 1 steps, then either (1) i takes at least one step, or
(2) i has crashed. If all processes are fair with respect to i only after some
unknown global stabilization time (GST), then i is said to be eventually k-proc-
distinguished. Note that while other processes may be fair with respect to a
proc-distinguished process i, process i need not be fair with respect to other
processes; i.e., a proc-distinguished process may take an unbounded number of
steps in the duration between two consecutive steps by a non-proc-distinguished
process. This is an important distinction between computational fairness and
bounded relative process speeds defined in [3]. Bounded relative process speeds
may be viewed as a special case where every process is (eventually) k-proc-
distinguished.

Communicational Fairness. A process i is said to be d-com-distinguished if
all other processes are fair with respect to messages from i; that is, for every
message m sent by i to j, the recipient j takes no more than d steps while m
is in transit and i is not crashed. Note that if i crashes while m is in transit
to j, then the bound d does not apply. If all processes are fair with respect
to messages from i only after some unknown GST, then i is said to be even-
tually d-com-distinguished. Like computational fairness, it is not necessary for
a d-com-distinguished process i to be fair with respect to messages sent from
non-com-distinguished processes to i. That is, i may take an unbounded number
of steps while a message from a non-com-distinguished process is in transit to i.

Fairness-Based Partial Synchrony. We present four partially synchronous
models — AF , SF , ♦AF , and ♦SF — that specify fairness properties rather
than real-time behavior.

1. All Fair (AF) is specified as follows: in every run, all processes are both
k-proc-distinguished and d-com-distinguished, for known k and d.

2. Some Fair (SF) is specified as follows: in every run, some correct process i
is both k-proc-distinguished and d-com-distinguished, for known k and d.

3. Eventually All Fair (♦AF) is specified as follows: for each run, there exists
a (potentially unknown) time after which the system behaves like AF .

4. Eventually Some Fair (♦SF) is specified as follows: for each run, there exists
a (potentially unknown) time after which the system behaves like SF .

Weakest System Models. Our primary result states that AF , SF , ♦AF , and
♦SF specify the exact amount of fairness encapsulated by P , S, ♦P , and ♦S,
respectively. In other words, AF , SF , ♦AF , and ♦SF are the ‘weakest’ system
models to respectively implement P , S, ♦P , and ♦S with any number of crashes.

Brief Announcement: Failure Detectors Encapsulate Fairness 391

We establish this result is as follows. First, we present a construction that
uses any failure detector from [1] in an otherwise asynchronous system to sched-
ule distributed applications such that each process executes its application steps
fairly with respect to other processes (and messages). The fairness properties
guaranteed by the scheduler depend on the failure detector. By employing P ,
S, ♦P , or ♦S, the scheduler provides fairness guarantees specified by AF , SF ,
♦AF , or ♦SF , respectively. This shows that the failure detectors encapsulate at
least as much fairness as is specified in the corresponding fairness-based system
models. For the other direction, we present an algorithm which implements a
failure detector on top of these fairness-based systems. When this algorithm is
deployed inAF , SF , ♦AF , or ♦SF , it implements P , S, ♦P , or ♦S, respectively.
Thus, we show that these failure detectors encapsulate no more guarantees on
fairness than what is provided by the corresponding fairness-based systems.

Discussion. The notion of ‘capturing the power’ of a failure detector was ex-
plored in [5] for shared-memory systems. Our work, which focuses on message-
passing systems, deviates from [5] in three significant ways. (1) The ‘power’ of a
failure detector is different in shared-memory and message-passing systems. For
example, in environments with arbitrary number of process crashes, the weak-
est failure detectors for consensus and k-set agreement are different in shared-
memory and message-passing systems. Hence, ‘capturing the power’ of a failure
detector in message-passing systems merits separate investigation. (2) Asyn-
chronous systems under message passing are weaker than under shared memory
because the quorum failure detector is necessary to implement read/write atom-
icity with message passing. Hence, the results from [5] need not carry over to
message-passing systems. (3) We address the synchronism captured by perpet-
ually accurate oracles (in addition to eventually accurate ones) and resolve the
issue of synchronous-systems-vs.-perfect-failure-detector [2] whereas the results
in [5] specify fairness constraints only for classes of eventually accurate oracles.

The full version of the paper can be found at [4].

References

1. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. J. ACM 43(2), 225–267 (1996), http://dx.doi.org/10.1145/226643.226647

2. Charron-Bost, B., Guerraoui, R., Schiper, A.: Synchronous system and perfect fail-
ure detector: solvability and efficiency issues. In: International Conference on De-
pendable Systems and Networks, pp. 523–532 (2000),
http://dx.doi.org/10.1109/ICDSN.2000.857585

3. Dwork, C., Lynch, N.A., Stockmeyer, L.: Consensus in the presence of partial syn-
chrony. J. ACM 35(2), 288–323 (1988), http://dx.doi.org/10.1145/42282.42283

4. Pike, S.M., Sastry, S., Welch, J.L.: Failure detectors encapsulate fairness. Tech.
Rep. 2010-7-1, Dept. of Computer Science and Engineering, Texas A&M University
(2010), http://www.cse.tamu.edu/academics/tr/2010-7-1

5. Rajsbaum, S., Raynal, M., Travers, C.: The iterated restricted immediate snapshot
model. In: Hu, X., Wang, J. (eds.) COCOON 2008. LNCS, vol. 5092, pp. 487–497.
Springer, Heidelberg (2008), http://dx.doi.org/10.1007/978-3-540-69733-6_48

http://dx.doi.org/10.1145/226643.226647
http://dx.doi.org/10.1109/ICDSN.2000.857585
http://dx.doi.org/10.1145/42282.42283
http://www.cse.tamu.edu/academics/tr/2010-7-1
http://dx.doi.org/10.1007/978-3-540-69733-6_48

Brief Announcement: Automated Support for
the Design and Validation of Fault Tolerant

Parameterized Systems - A Case Study

Francesco Alberti1, Silvio Ghilardi2, Elena Pagani2,
Silvio Ranise1, and Gian Paolo Rossi2

1 FBK-Irst, Trento, Italia
2 Università degli Studi di Milano, Milano, Italia

Background and motivations. Algorithms for ensuring fault tolerance are key
ingredients in many applications such as avionics and networking. There is an
increasing demand to integrate (formal) validation in the design process of these
algorithms as they are often part of safety critical systems. When validation fails,
the designer would benefit from tracking the sequence of events that led to an
incorrect state to recover the error. To productively integrate formal verification
in the design phase, tools should be able to return such error traces. Fault toler-
ant algorithms are often parametric, which makes their automated verification
a daunting task. Indeed, checking that an algorithm satisfies a certain property
requires to prove it for any number of processes.

Contributions. We propose the use of an infinite state model checker for safety
properties, called mcmt [3] (http://www.dsi.unimi.it/~ghilardi/mcmt), to
assist in the design of the considered class of algorithms. mcmt is particularly
suitable for this purpose because it is based on a declarative framework in which
parametric algorithms can be naturally specified by using first-order formulae
I, T r, and U for the set of initial states, the transitions, and the set of unde-
sired states, respectively. The distinguishing feature of mcmt is that it applies
the so-called backward reachability procedure [1] in a symbolic setting: a tree
whose nodes are labeled by the formulae describing the pre-images of U with
respect to the transitions in Tr is constructed and visited on-the-fly. The visit
is interleaved with fix-point and safety checks so as to decide when the process
can stop. To mechanize this, mcmt puts some constraints on the format of I,
Tr, and U so that (a) the class of formulae describing the set of backward reach-
able states are closed under pre-image computation and (b) both fix-point and
safety checks can be reduced to decidable logical problems, called Satisfiability
Modulo Theories (SMT) [7] problems. Facts (a) and (b) rely on results pre-
cisely stated and proved in [2]; satisfiability tests involving quantified formulae
are preprocessed by manual instantiations - subject to powerful but complete
heuristics - and are then discharged via the integration with the SMT-solver
yices (http://yices.csl.sri.com).

The first contribution of our work is the definition of a sub-set of the formal
framework [2] underlying mcmt, which is suitable for the specification of fault
tolerant algorithms.

N.A. Lynch and A.A. Shvartsman (Eds.): DISC 2010, LNCS 6343, pp. 392–394, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.dsi.unimi.it/~ghilardi/mcmt
http://yices.csl.sri.com

Design and Validation of Fault Tolerant Parameterized Systems 393

Property and
CFM

SOFM

Property
(e.g., Agreement)

System Tr
Transition

Choose Failure Model

MCMT

Tr extended
with

transitions
modelling FM

Safe/Unsafe

(error trace if the case)

...

Modified

Fig. 1. A methodology for designing fault tolerant algorithms

In order to describe the possible misbehaviors of real distributed systems, a
taxonomy of failure models has been presented in the literature [6]: such tax-
onomy abstracts relevant features concerning faults that may occur in practice.
For example, the simplest of such models is the Crash Failure Model (CFM)
where processes may halt at any time. A slightly more realistic model consists
of considering the possibility that a process may omit to send a message besides
crashing at any time, called the Send Omission Failure Model (SOFM).

Since mcmt natively supports only the simplest failure model (i.e. the CFM)
[5], the second contribution of our work is a technique to re-write the specifica-
tion of an algorithm for a certain failure model, so as to represent more complex
failures and enable the validation of distributed algorithms under critical condi-
tions. The underlying idea is to add a local state variable to each process as a flag
signaling whether the process is faulty or not, and to enlarge the specification
with faulty behaviors. Then, we propose a design methodology for parametrized
and fault tolerant algorithms (see Figure 1) that exploits the previous two con-
tributions consisting of (i) specifying the algorithm and its safety property, (ii)
choosing a failure model (e.g., the CFM or the SOFM), (iii) invoking mcmt,
and (iv) modifying the specification of the algorithm according to the analysis
of the error trace returned by the tool (if any), before repeating the procedure.
This schema can be easily blended with a standard incremental and iterative
approach to design.

The third contribution is to apply this methodology to replay the design
of the reliable broadcast algorithms of Chandra and Toueg in [8]. We focus on
Agreement as the safety property to check. The authors of [8] consider several
parametric algorithms, obtained by stepwise refinement. Table 1 shows the re-
sults of our experiments. Algorithm 1 is the simplest one, designed to be correct
with the CFM (first column of Table 1). Its unsafety w.r.t. the SOFM is quickly
established by mcmt by finding a shorter error trace than the one described
in [8] (second column of Table 1). Algorithm 1e is a first refinement of Algo-
rithm 1, which is still found to be unsafe. In this case, the error trace found by
mcmt, after a manual analysis, corresponds to that described in [8]. Algorithm
2 is the second refinement and its up-front verification turned out to be quite
problematic, even using mcmt invariant synthesis capabilities [4]. Fortunately,

394 F. Alberti et al.

Table 1. mcmt performances

Algo. 1, CFM Algo. 1, SOFM Algo. 1e, SOFM Algo. 2, SOFM
Safe (agreement) Yes No No Yes
time (sec) 1.18 17.66 1,709.93 4,719.51
state vars 8 9 11 15
transitions 13 13+3 16+6 22+6
nodes 113 464 9,679 11,158
SMT calls 2,792 20,009 1,338,058 2,558,986
Length unsafe trace × 11 33 ×
invariants × × × 19 (+7)

Timings obtained on an Intel Core Duo 2.66 GHz with 2 GB, running Debian Linux.
(The complete specifications of the algorithms considered here can be downloaded at
http://www.falberti.it/reliableBroadcast.)

the possibility to interact with mcmt allowed us to add 7 more system proper-
ties (e.g., “there is only one coordinator at a time”) to the specification. These
properties, and 19 more invariants automatically found by the tool, have been
validated by mcmt before their use, thus guaranteeing that their inclusion does
not affect the main verification result. On the other hand, their adoption signif-
icantly pruned the backward search tree and yielded the performances reported
in the last column of Table 1. The tool also validated the three lemmata used
in [8] to perform the pen-and-paper proof of the correctness of the algorithm.
These results show the practical viability of our technique.

There are two main lines for future work. First, we would like to consider more
general failure models (e.g., general omission) to conclude the formal validation
of the reliable broadcast algorithms in [8]. Second, we intend to refine our models
so as to consider temporal constraints that would widen the scope of applicability
of our techniques to more realistic algorithms.

References
1. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.-K.: General decidability theorems

for infinite-state systems. In: Proc. of LICS, pp. 313–321 (1996)
2. Ghilardi, S., Nicolini, E., Ranise, S., Zucchelli, D.: Towards SMT Model-Checking of

Array-based Systems. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 67–82. Springer, Heidelberg (2008)

3. Ghilardi, S., Ranise, S.: Mcmt: A Model Checker Modulo Theories. To appear in
Proc. of IJCAR (July 2010)

4. Ghilardi, S., Ranise, S.: Goal Directed Invariant Synthesis for Model Checking Mod-
ulo Theories. In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS (LNAI),
vol. 5607, pp. 173–188. Springer, Heidelberg (2009)

5. Ghilardi, S., Ranise, S.: A note on the stopping failure model (Unpublished note),
http://homes.dsi.unimi.it/~ghilardi/mcmt/stop_fail_note.pdf

6. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)
7. The SMT-LIB initiative, http://www.SMT-LIB.org
8. Toueg, S., Chandra, T.D.: Time and Message Efficient Reliable Broadcast. In: van

Leeuwen, J., Santoro, N. (eds.) WDAG 1990. LNCS, vol. 486, pp. 289–303. Springer,
Heidelberg (1991)

http://www.falberti.it/reliableBroadcast
http://homes.dsi.unimi.it/~ghilardi/mcmt/stop_fail_note.pdf
http://www.SMT-LIB.org

Brief Announcement:
On Reversible and Irreversible Conversions

Mitre C. Dourado1, Lucia Draque Penso2,
Dieter Rautenbach2, and Jayme L. Szwarcfiter1,�

1 Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
{mitre,jayme}@nce.ufrj.br

2 Universität Ulm, 89069 Ulm, Germany
{lucia.penso,dieter.rautenbach}@uni-ulm.de

Abstract. We study two types of iterative 0/1-vertex-labeling processes
in arbitrary network graphs where in each synchronous round every ver-
tex
– either never changes its label from 1 to 0, and changes its label from

0 to 1 if sufficiently many neighbours have label 1,
– or changes its label if sufficiently many neighbours have a different

label.
In both scenarios the number of neighbours required for a change de-
pends on individual threshold values of the vertices. Our contributions
concern computational aspects related to the sets with minimum car-
dinality of vertices with initial label 1 such that during the process all
vertices eventually change their label to 1 and remain with 1 as label.
We establish hardness results for the general case and describe efficient
algorithms for restricted instances.

Keywords: Dynamic monopoly; conversion; consensus; irreversible
threshold process; local majority process; iterative polling process; fault
propagation; self-stabilization.

1 Introduction

We study iterative 0/1-vertex-labeling processes on finite, simple, and undirected
graphs, which model distributed computations in networks whose communica-
tion model is synchronous message-passing. Such processes correspond to con-
version or consensus problems and occured in a variety of distinct areas such
as social influence, neural networks, cellular automata, percolation, marketing
strategies, and especially in distributed computing [1–9].

Formally, given a graph G, a threshold function f : V (G) → Z, and an
initial labeling c1 : V (G)→ {0, 1}, the IRRf -process of c1 on G is the sequence
P = (c1, c2, . . .) of labelings ct : V (G)→ {0, 1} such that for every v ∈ V (G) and
every t ∈ N, we have ct+1(v) = 1 iff either ct(v) = 1 or there are f(v) neighbours
� The authors acknowledge partial support by the CAPES/DAAD Probral project

“Cycles, Convexity, and Searching in Graphs”.

N.A. Lynch and A.A. Shvartsman (Eds.): DISC 2010, LNCS 6343, pp. 395–397, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

396 M.C. Dourado et al.

u of v with ct(u) = 1. Similarly, given G, f , and c1 as above, the Rf -process of
c1 on G is the sequence P = (c1, c2, . . .) of labelings ct : V (G) → {0, 1} such
that for every v ∈ V (G) and every t ∈ N, we have ct+1(v) �= ct(v) iff there are
f(v) neighbours u of v with ct(u) �= ct(v). A process P = (c1, c2, . . .) is said to
converge to 1 if eventually all vertices have label 1, i.e. there is some t0 ∈ N
such that ct(v) = 1 for every v ∈ V (G) and every t ∈ N with t ≥ t0. The
parameter irrf (G) (rf (G), resp.) is the minimum number of vertices with label
1 in an initial labeling c1 such that the IRRf -process (Rf -process, resp.) of c1
on G converges to 1.

IRRf -processes are irreversible in the sense that vertices whose label is 1
will never change their label to 0. An IRRf -process on a graph G models the
spread of something like a virus, a fashion, or a permanent fault. The irreversible
k-threshold processes considered by Dreyer and Roberts [3] coincide exactly with
IRRk-processes where the index k means that the threshold function f is con-
stant k. Rf -processes are reversible in the sense that vertices may change their
label several times. An Rf -process on a graph G models iterative voting or up-
dating mechanisms related to consensus problems. The local majority processes
considered by Mustafa and Pekeč [6] coincide exactly with Rf -processes where

f(v) =
⌊

dG(v)
2

⌋
+ 1 for every vertex v ∈ V (G). Certain IRRf -processes, Rf -

processes, and many of their natural variants were proposed under names such
as local majority processes or iterative polling processes in distributed computing.
The two parameters irrf (G) and rf(G) are closely related to dynamic monopolies
or dynamos for short, and to catastrophic fault patterns.

Our contributions concern computational aspects of these two parameters.

2 IRRf-Processes

First, we consider the decision problem IRRk-Conversion Set, which, for a
given graph G and a given integer c ≥ 0, consists of deciding “irrk(G) ≤ c”.

Dreyer and Roberts [3] prove the NP-completeness of IRRk-Conversion

Set for every k ≥ 3 and they explicitely mention the complexity of IRR2-

Conversion Set as an open problem, which is solved by our following result.

Theorem 1. IRR2-Conversion Set is NP-complete.

Next, we consider the optimization problem Minimum IRR-Conversion Set,
which, for a given graph G and a given function f : V (G) → Z, consists of
determining an initial labeling c1 : V (G)→ {0, 1} with c1(V (G)) = irrf (G) such
that the IRRf -process of c1 on G converges to 1.

In [3] Dreyer and Roberts present an algorithm and claim that it determines
irr2(G) for (rooted) trees. Unfortunately, if the tree Tk arises by joining a vertex
r to a vertex of degree 2 in each of k disjoint paths of order 4, then choosing r
as the root of Tk, the algorithm of Dreyer and Roberts returns 4 if k = 1 and
3k if k ≥ 2 while irr2(Tk) = 2k + 1, i.e. it does not work correctly.

We develop a reduction principle, which leads to the following results.

Brief Announcement: On Reversible and Irreversible Conversions 397

Theorem 2. For n0 ∈ N, there is a linear time algorithm that solves Minimum

IRR-Conversion Set restricted to instances (G, f) such that all blocks of G
have order at most n0.

Theorem 3. There is a quadratic time algorithm that solves Minimum IRR-

Conversion Set restricted to instances (G, f) such that G is chordal and
f(v) ≤ 2 for every v ∈ V (G).

3 Rf-Processes

Rf -processes are much harder to understand than IRRf -processes. It is an open
problem to efficiently determine r2(T) even for trees T . We present a best possible
bound.

Proposition 1. If T is a tree of order n with l leaves, then r2(T) ≤ n+l
2 .

Next, we consider the decision problem Rk-Conversion Set, which, for a given
graph G and a given integer c ≥ 0, consists of deciding “rk(G) ≤ c”.

It is unknown whether Rk-Conversion Set lies in NP and we establish the
following hardness result.

Theorem 4. R2-Conversion Set is NP-hard.

Finally, we consider the problem of computing rf(G) for certain paths and cycles.

Theorem 5. There is a polynomial time algorithm that determines rf(G) re-
stricted to instances (G, f) such that G is a path or a cycle and f(v) = 1 for
some vertex v of G implies that v has a neighbour u with f(u) = 1.

References

1. Balister, P., Bollobás, B., Johnson, J.R., Walters, M.: Random majority percolation.
Random Struct. Algorithms 36, 315–340 (2010)

2. Bermond, J.-C., Bond, J., Peleg, D., Perennes, S.: The power of small coalitions in
graphs. Discrete Appl. Math. 127, 399–414 (2003)

3. Dreyer Jr., P.A., Roberts, F.S.: Irreversible k-threshold processes: Graph-theoretical
threshold models of the spread of disease and of opinion. Discrete Appl. Math. 157,
1615–1627 (2009)

4. Hassin, Y., Peleg, D.: Distributed probabilistic polling and applications to propor-
tionate agreement. Inf. Comput. 171, 248–268 (2001)

5. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a
social network. In: Proceedings of the 9th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 137–146 (2003)

6. Mustafa, N.H., Pekeč, A.: Listen to your neighbors: How (not) to reach a consensus.
SIAM J. Discrete. Math. 17, 634–660 (2004)

7. Peleg, D.: Local majorities, coalitions and monopolies in graphs: A review. Theor.
Comput. Sci. 282, 231–257 (2002)

8. Peleg, D.: Size bounds for dynamic monopolies. Discrete Appl. Math. 86, 263–273
(1998)

9. Poljak, S., Turźık, D.: On pre-periods of discrete influence systems. Discrete Appl.
Math. 13, 33–39 (1986)

Brief Announcement: A Decentralized
Algorithm for Distributed Trigger Counting

Venkatesan T. Chakaravarthy1, Anamitra R. Choudhury1,
Vijay K. Garg2, and Yogish Sabharwal1

1 IBM Research - India, New Delhi
2 University of Texas at Austin

{vechakra,anamchou,ysabharwal}@in.ibm.com, garg@ece.utexas.edu

Abstract. Consider a distributed system with n processors, in which
each processor receives some triggers from an external source. The dis-
tributed trigger counting problem is to raise an alert and report to a user
when the number of triggers received by the system reaches w, where
w is a user-specified input. The problem has applications in monitoring,
global snapshots, synchronizers and other distributed settings. The main
result of the paper is a decentralized and randomized algorithm with ex-
pected message complexity O(n log n log w). Moreover, every processor in
this algorithm receives no more than O(log n log w) messages with high
probability.

1 Introduction

Consider a distributed system with n processors, in which each processor receives
some triggers from an external source. The distributed trigger counting (DTC)
problem is to raise an alert and report to a user when the number of triggers re-
ceived by the system reaches w, where w is a user specified input. The sequence
of processors receiving the w triggers is not known apriori to the system. More-
over, the number of triggers received by each processor is also not known. We
are interested in designing distributed algorithms for the DTC problem that are
communication efficient and are also decentralized. The DTC problem arises in
applications such as distributed monitoring and global snapshots. We refer to [3]
and [2] for a discussion of these two aspects, respectively. The DTC problem is
also related to the distributed resource controller problem (see e.g. [1]).

Our goal is to design a distributed algorithm for the DTC problem that is
communication efficient and decentralized. We use the following two natural
parameters that measure these two important aspects:

– The message complexity, which is defined to be the number of messages
exchanged between the processors.

– The MaxLoad, which is defined to be the maximum number of messages
received by any processor in the system.

Garg et al. [2] studied the DTC problem and presented two algorithms: a cen-
tralized algorithm and a tree-based algorithm. The centralized algorithm has

N.A. Lynch and A.A. Shvartsman (Eds.): DISC 2010, LNCS 6343, pp. 398–400, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Brief Announcement: A Decentralized Algorithm for DTC 399

message complexity O(n log w). However, the MaxLoad of this algorithm can
be as high as Ω(n log w). The tree-based algorithm has message complexity
O(n log n logw). This algorithm is more decentralized in a heuristic sense, but its
MaxLoad can be as high as O(n log n logw), in the worst case. They also proved
a lowerbound on the message complexity. They showed that any deterministic al-
gorithm for the DTC problem must have message complexity Ω(n log(w/n)). So,
the message complexity of the centralized algorithm is optimal asymptotically.
However, this algorithm has MaxLoad as high as the message complexity.

We consider a general distributed system where any processor can communi-
cate with any other processor. We assume an asynchronous model of computation
and messages. We assume that the messages are guaranteed to be delivered but
there is no fixed upper bound on the message arrival time.

Our main result is a decentralized randomized algorithm called Layere-

dRand that is efficient in terms of both the message complexity and MaxLoad.
Its message complexity is O(n log n log w). Moreover, with high probability, its
MaxLoad is O(log n logw). The message complexity of our algorithm is the same
as that of the tree based algorithm of Garg et al. [2]. However, the MaxLoad of
our algorithm is significantly better than both their tree based and centralized
algorithms. It is important to minimize MaxLoad for many applications. For
example, in sensor networks where the message processing may consume limited
power available at the node, a high MaxLoad may reduce the lifetime of a node.

Our main result is formally stated next. For 1 ≤ i ≤ w, the external source
delivers the ith trigger to some processor xi. We call the sequence x1, x2, . . . , xw

as a trigger pattern.

Theorem 1. Fix any trigger pattern. The message complexity of the Layere-

dRand algorithm is O(n log n log w). Furthermore, there exist constants c and
d ≥ 1 such that Pr[MaxLoad ≥ c log n log w] ≤ 1/nd. The above bounds hold for
any trigger pattern, even if fixed by an adversary.

2 LayeredRand Algorithm

For the sake of simplicity, we assume that n = 2L − 1, for some integer L. The
n processors are arranged in L layers numbered 0 through L− 1. For 0 ≤ � < L,
layer � consists of 2� processors. Layer 0 consists of a single processor, which we
refer to as the root. Layer L−1 is called the leaf layer. Only processors occupying
adjacent layers will communicate with each other.

The algorithm proceeds in multiple rounds. In the beginning of each round,
the system needs to know how many triggers are yet to be received. This can
be computed by keeping track of the total number of triggers received in all the
previous rounds and subtracting this quantity from w. Let the term initial value
of a round mean the number of triggers yet to be received at the beginning of
the round. We use a variable ŵ to store the initial value of any round. In the
first round, we set ŵ = w, since all the w triggers are yet to be received.

We next describe the procedure followed in a single round. Let ŵ denote the
initial value of this round. For each 1 ≤ � < L, we compute τ(�) for the layer �:

400 V.T. Chakaravarthy et al.

τ(�) =
⌈

ŵ

4 · 2� · log(n + 1)

⌉
.

Each processor x maintains a counter C(x), which is used to keep track of some
of the triggers received by x and other processors occupying the layers below of
that of x. The exact semantics C(x) will become clear shortly. The counter is
reset to zero in the beginning of the round.

Consider any non-root processor x occupying a level �. Whenever x receives
a trigger, it will increment C(x) by one. If C(x) reaches the threshold τ(�), x
chooses a processor y occupying level � − 1 uniformly at random and sends a
message to y. We refer to such a message as a coin. Upon receiving the coin, y
updates C(y) by adding τ(�) to C(y). Intuitively, receipt of a coin by y means
that y has evidence that some processors below the layer � − 1 have received
τ(�− 1) triggers. After the update, if C(y) ≥ τ(�− 1), y will pick a processor z
occupying level �−2 uniformly at random and send a coin to z. Then, y updates
C(y) = C(y)− τ(�− 1). Processor z handles the coin similarly.

The behavior of the root is similar to that of the other processors, except that
it does not send coins to anybody above. The root processor r also maintains a
counter C(r). Whenever it receives a trigger from the external source, it incre-
ments C(r) by one. If it receives a coin from level 1, it updates C(r) = C(r)+τ(1).

The crucial activity of the root is to initiate an end-of-round procedure. When
C(r) reaches �ŵ/2� (i.e., when C(r) ≥ �ŵ/2�), the root declares end-of-round.
At this stage the root needs to get a count of the total number of triggers received
by all the processors in this round. Let this count be w′. Notice that the sum of
C(x) over all the processors yields the value w′. Using binary-tree formation over
the processors, this task can be accomplished in such a way that each processor
receives at most a constant number of messages. At the end of any round, if the
newly computed ŵ is zero, we know that all the w triggers have been received.
So, the root can raise an alert to the user and the algorithm is terminated.

It can be shown that the algorithm correctly raises an alert if and only if it
receives w triggers. We now present a brief sketch of the analysis. As ŵ falls by
a factor of two in each round, the number of rounds is O(log w). The number
of messages exachanged in each round can be shown to be O(n log n). Hence,
the message complexity is O(n log n log w). It can be shown that for any node,
the expected number of messages received is O(log n log w). Furthermore, us-
ing Chernoff bounds, we can show that with high probability the MaxLoad is
O(log n log w). This establishes Theorem 1.

References

1. Emek, Y., Korman, A.: Brief announcement: New bounds for the controller problem.
In: PODC ’09 (2009)

2. Garg, R., Garg, V.K., Sabharwal, Y.: Scalable algorithms for global snapshots in
distributed systems. In: 20th Int. Conf. on Supercomputing, ICS (2006)

3. Keralapura, R., Cormode, G., Ramamirtham, J.: Communication-efficient dis-
tributed monitoring of thresholded counts. In: SIGMOD Conference (2006)

Brief Announcement:
Flash-Log – A High Throughput Log

Mahesh Balakrishnan, Philip A. Bernstein,
Dahlia Malkhi, Vijayan Prabhakaran, and Colin Reid

Microsoft Corporation

1 Introduction

Modern storage solutions, such as non-volatile solid-state devices, offer unprece-
dented speed of access over high-bandwidth interconnects. An array of flash
memory chips attached directly to a 1-10 GB fiber switch can support up to
100K page writes per second. While no single host can drive such throughput,
the combined power of a large group of clients, accessing the shared storage over
a common interconnect, can utilize the system at full capacity.

One useful structure for shared storage is a totally-ordered log. Such a log can
be used to store updates from transactions that originate at different clients. This
could be preferable to server-local logs that are used in shared-storage database
systems, as in Oracle RAC and Rdb/VMS, to avoid the need to merge logs
at recovery time. It could also be used as a log-structured database, as in the
Hyder system [1]. A log-structured database is particularly attractive for non-
volatile solid-state storage, where log-structuring improves write performance
and automates wear-leveling.

These settings motivate the design of a shared totally-ordered log named
Flash-Log. Flash-Log supports an appendlog(entry) API, which provides clients
with a totally ordered, durable shared log. The log is stored on network-attached
storage units, which we call segments. For fault tolerance and bandwidth, the
log is stored on more than one segment. That is, each log entry is spread across
the segments using replication or erasure coding.

In addition to the utilization benefit of giving multiple clients access to shared
storage, there is also a scale-out benefit. To grow the system, one simply adds
more clients, up to the capacity and throughput limit of the shared storage.
This is easier than in a system with direct attached storage, where data needs
to be partitioned and/or replicated across clients and the workload needs to be
partitioned so that each request is directed to a client that has the required data.

Since clients can independently write to segments, coordination is needed to
ensure they agree on a total order of the entries that are appended to the log, de-
spite failures and message delays. This constitutes a classical scenario handled by
state machine replication. However, Flash-Log deviates from classical solutions
in that it uses shared storage as participants in the process of reaching a decision
about the total order. The core difficulty is to implement certain functionalities
using segments that support only simple operations that are appropriate for im-
plementation in a device controller. This is particularly challenging when dealing

N.A. Lynch and A.A. Shvartsman (Eds.): DISC 2010, LNCS 6343, pp. 401–403, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

402 M. Balakrishnan et al.

with autonomous configuration management: Our design automatically migrates
to new storage devices if a failure occurs or a segment fills up.

One might hope for an existing replication recipe for these settings. Unfortu-
nately, previous work in these settings laid an insufficient algorithmic foundation.
The Disk Paxos (DP) algorithm of Gafni and Lamport [3] and the Active Disk
Paxos work of Chockler and Malkhi [2] both build on the foundations of Paxos.
Hence, they build reliable storage using 2N − 1 (2F +1) replicas in order to tol-
erate failure of any F = N − 1. In today’s large storage settings, these solutions
are too costly. Instead, with Flash-Log, we deploy only N disks, which is suit-
able for the storage setting because storage servers may be huge and replicating
the actual service state is costly. When we lose a disk, we immediately switch
to a new set of segments, and start a background recovery process to prevent a
double failure from causing data loss.

Additionally, in DP, each client is designated an exclusive block on disk to
announce when it wants to become a leader; a wannabe leader must read the
blocks allocated for the entire universe of clients to discover if another leader
has been activated. This method not only uses 2N − 1 disks for availability, but
pre-reserves one disk block for exclusive write per client per consensus decision
on each of the disks, which can hardly be practical. Additionally, in DP everyone
must know the entire set of clients from the outset. Some of these limitations are
alleviated in Active DP, but to pipeline updates effectively, Active DP requires
clients to funnel updates through a leader. In contrast, with Flash-Log the set of
clients is completely dynamic. Multiple clients contending for the next append
to the log reserve a unique slot and then write it directly to network attached
storage. This makes Flash-Log suitable for sustaining high-throughput load.

2 Append-Log Steady State

The log provides applications running on client nodes with an appendlog(entry)
interface. An entry has a fixed size, which fits precisely in one disk page. The
append-log operations are made atomic in the face of failures by committing
provisional append-ordering information onto a log. Two protocols were crafted
for use in Flash-Log, both of which are novel variants of Vertical Paxos [4].

In the first variant, Flash-Log1, the configuration consists of a set of segments,
which clients (potentially numerous) access directly over an inter-connect. Note
that in this architecture, no single process is a bottleneck in the critical path
of normal operation. The Flash-Log1 segment-set is comprised of several com-
ponents: an edge segment, a set of L log segments, and a set of N end-
write segments, all required to provide an append operation. The first phase
of append-log writes the log entry to the edge and set of L log-segments. This
stores the entry and simultaneously reserves an offset for it, the one returned
from the append to the edge segment. The second phase of append-log commits
the reserved offset by writing it to the N end-write segments. Figure 2 (left)
depicts the steady-state interaction pattern of Flash-Log1.

In the second variant, Flash-Log2, the configuration of each epoch consists of
a set of N segments and a designated leader process running on some compute

Brief Announcement: Flash-Log – A High Throughput Log 403

Disk Array 1

Disk Array 2

Log segments

End-Write

segments

Client

Flash-Log1

client

Leader

Disk array

Flash-Log2

Fig. 1. Steady-State Communication Flow in Flash-Log

node. This variant works with standard read/write operations on commodity
disks, but requires a leader process. Although this variant is not purely data-
centric, the leader role is so light that it can likely handle requests at interconnect
speed. The first phase gets a reserved offset from the leader; the second phase
commits the entry with the offset embedded in it onto the N segments. Figure
2 (right) depicts the steady-state interaction pattern of Flash-Log2.

3 Auto Reconfiguration

If a fault occurs or a segment fills up, Flash-Log automatically migrates to
new storage devices. Whereas the steady-state protocol is fairly straightforward,
reconfiguration requires care. With correct algorithmic foundation, we can cor-
rectly handle failures, even complex cascading scenarios. The Flash-Log reconfig-
uration protocol borrows from the Vertical Paxos (VP) protocol [4], but modifies
it, using passive storage devices in the role of various protocol participants.

References

1. Bernstein, P.A., Reid, C.W.: Scaling out without partitioning. In: 13th Workshop
on High Performance Transaction Systems, HPTS (2009)

2. Chockler, G., Malkhi, D.: Active disk paxos with infinitely many processes. In:
PODC ’02: Proceedings of the Twenty-First Annual Symposium on Principles of
Distributed Computing, pp. 78–87. ACM, New York (2002)

3. Gafni, E., Lamport, L.: Disk paxos. In: Herlihy, M.P. (ed.) DISC 2000. LNCS,
vol. 1914, pp. 330–344. Springer, Heidelberg (2000)

4. Lamport, L., Malkhi, D., Zhou, L.: Vertical paxos and primary-backup replication.
In: PODC ’09: Proceedings of the 28th ACM Symposium on Principles of distributed
computing, pp. 312–313. ACM, New York (2009)

Brief Announcement: New Bounds for Partially
Synchronous Set Agreement

Dan Alistarh1, Seth Gilbert1, Rachid Guerraoui1, and Corentin Travers2

1 Swiss Federal Institute of Technology, Lausanne, Switzerland
2 Technion, Haifa, Israel

Set agreement [4] is a fundamental problem in distributed computing, in which
processes collectively choose a small subset of values from a larger set of pro-
posals. Set agreement has been extensively studied in both synchronous and
asynchronous systems [10,11,3,5,8,9]. Real world distributed systems, however,
are neither purely synchronous nor purely asynchronous. To describe such a sys-
tem, Dwork et al. [6] introduced the idea of partial synchrony. They assume
for every execution some (unknown) time GST (global stabilization time), after
which the system is synchronous. In a recent paper [1,2], we study the complex-
ity of set agreement in the context of partially synchronous systems, determining
the minimum-sized window of synchrony in which set agreement can be solved.
We show that at least � t

k �+ 2 synchronous rounds are required for k-set agree-
ment, where t < n is the number of crashes, and k is the agreement parameter
of the set agreement task. We then introduce an algorithm that terminates in
any window of synchrony of size at least � t

k�+ 4 rounds. Together, these results
tightly bound the inherent price of tolerating some asynchrony.

Lower Bound By Reduction. The technique for deriving the lower bound
is an important contribution in end of itself, as it provides new insights into
the complexity of set agreement. Instead of relying on topology, as is typically
required for set agreement lower bounds, we derive our result by reducing the
feasibility of asynchronous set agreement to the problem of solving set agreement
in a window of size � t

k� + 1. Since asynchronous set agreement is known to be
impossible, this reduction implies that at least � t

k�+ 2 synchronous rounds are
required for k-set agreement.

This technique can be viewed as a generalizationof the simulation from [7], mov-
ing from synchronous systems to cover the spectrum of partially synchronous ones.
There are two new key observations. First, when the simulation is run for an epoch
of length � t

k �+1 rounds, we show that either some simulator sees a window of syn-
chrony of size � t

k �+1 rounds, or some simulator fails. Second, we observe that these
epochs of length � t

k �+ 1 can be repeated until some simulator sees a synchronous
window of � t

k �+ 1 rounds. From this we conclude that we have successfully simu-
lated a set agreement protocol, resulting in the desired reduction.

Early Deciding Synchronous Set Agreement. Our technique turns out to
be of more general interest as we can re-derive and extend existing lower bounds
for synchronous early deciding set agreement. It has been previously shown [8,9],
using sophisticated techniques, that even in an execution with f < t failures,
some process cannot decide prior to round � f

k � + 2. We re-derive both lower

N.A. Lynch and A.A. Shvartsman (Eds.): DISC 2010, LNCS 6343, pp. 404–405, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Brief Announcement: New Bounds for Partially Synchronous Set Agreement 405

bounds in a simpler and more general manner. Of note, both lower bounds are
corollaries of a single theorem that relates the number of processes which decide
early with the worst-case round complexity of an algorithm. Basically, we show
that if d processes decide by round � f

k �+1 in executions with at most f failures,
then in the worst-case, some process takes at least time � t

k �+ E(·)+ 1 to decide
(where E is a function of t, k and d).
Upper Bound for Partially Synchronous Agreement. We then present the
first known algorithm for k-set agreement that tolerates periods of asynchrony.
Our algorithm guarantees correctness, regardless of asynchrony, and terminates
as soon as there is a window of synchrony of size � t

k�+ O(1). In our paper [1,2],
we show synchronous round complexity of � t

k �+ 4.
Implications. Our simulation technique [1,2] provides additional evidence that
the impossibility of fault-tolerant asynchronous k-set agreement is a central re-
sult in distributed computing, as it implies non-trivial results in both partially
synchronous and synchronous models. Second, it highlights close connections
between models that have differing levels of synchrony, since it takes advantage
of structural similarities between partially synchronous set agreement and early
deciding set agreement to establish lower bounds in two different models of syn-
chrony. The uncertainty regarding asynchrony (found in a partially synchronous
execution) turns out to be fundamentally similar to the uncertainty regarding
failures (found in an early deciding execution). Characterizing this similarity
remains an intriguing open question.

References

1. Alistarh, D., Gilbert, S., Guerraoui, R., Travers, C.: Of choices, failures and asyn-
chrony: The many faces of set agreement. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.)
ISAAC 2009. LNCS, vol. 5878, pp. 943–953. Springer, Heidelberg (2009)

2. Alistarh, D., Gilbert, S., Guerraoui, R., Travers, C.: Of choices, failures and asyn-
chrony: The many faces of set agreement. Algorithmica (to appear)

3. Borowsky, E., Gafni, E.: Generalized FLP impossibility result for t-resilient asyn-
chronous computations. In: STOC, pp. 91–100 (1993)

4. Chaudhuri, S.: More choices allow more faults: Set consensus problems in totally
asynchronous systems. Inf. Comput. 105(1), 132–158 (1993)

5. Chaudhuri, S., Herlihy, M., Lynch, N.A., Tuttle, M.R.: A tight lower bound for
k-set agreement. In: FOCS, pp. 206–215. IEEE, Los Alamitos (1993)

6. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-
chrony. J. ACM 35(2), 288–323 (1988)

7. Gafni, E.: Round-by-round fault detectors: Unifying synchrony and asynchrony
(extended abstract). In: PODC, pp. 143–152 (1998)

8. Gafni, E., Guerraoui, R., Pochon, B.: From a static impossibility to an adaptive lower
bound: the complexity of early deciding set agreement. In: STOC, pp. 714–722 (2005)

9. Guerraoui, R., Herlihy, M., Pochon, B.: A topological treatment of early-deciding
set-agreement. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS, vol. 4305,
pp. 20–35. Springer, Heidelberg (2006)

10. Herlihy, M., Shavit, N.: The topological structure of asynchronous computability.
J. ACM 46(6), 858–923 (1999)

11. Saks, M.E., Zaharoglou, F.: Wait-free k-set agreement is impossible: The topology
of public knowledge. SIAM J. Comput. 29(5), 1449–1483 (2000)

It’s on Me! The Benefit of Altruism in
BAR Environments

Edmund L. Wong, Joshua B. Leners, and Lorenzo Alvisi

Department of Computer Science, The University of Texas at Austin
1616 Guadalupe, Suite 2.408

Austin, TX 78701 USA
{elwong,leners,lorenzo}@cs.utexas.edu

Abstract. Cooperation, a necessity for any peer-to-peer (P2P) coop-
erative service, is often achieved by rewarding good behavior now with
the promise of future benefits. However, in most cases, interactions with
a particular peer or the service itself eventually end, resulting in some
last exchange in which departing participants have no incentive to con-
tribute. Without cooperation in the last round, cooperation in any prior
round may be unachievable. In this paper, we propose leveraging altru-
istic participants that simply follow the protocol as given. We show that
altruism is a simple, necessary, and sufficient way to incentivize coopera-
tion in a realistic model of a cooperative service’s last exchange, in which
participants may be Byzantine, altruistic, or rational and network loss
is explicitly considered. By focusing on network-level incentives in the
last exchange, we believe our approach can be used as the cornerstone
for incentivizing cooperation in any cooperative service.

Keywords: P2P, cooperative services, game theory, BAR.

1 Introduction

Establishing and maintaining cooperation between peers in decentralized ser-
vices spanning multiple administrative domain (MAD) is hard [17,21]. Because
participants may be selfish and withhold resources unless contributing is in their
best interest, these services must provide sufficient incentives for participants to
contribute. These incentive structures must of course be resilient against buggy
or malicious peers; however, they must also be robust against a more subtle
threat: an overabundance of good will from the unselfish peers who simply fol-
low the protocol run by the service. It is, after all, the unselfishness of correct
peers—as codified in the protocol they obediently follow—that allows selfish
peers to continue receiving service without contributing their fair share. Yet, the
efforts of well-meaning peers alone may be insufficient to sustain the service.
Further, asking these peers to increase their contribution to make up for free-
riders may backfire: even well-meaning peers, if blatantly taken advantage of,
may give in to the temptation of joining the ranks of the selfish, leading in turn
to more defections and to the service’s collapse.

N.A. Lynch and A.A. Shvartsman (Eds.): DISC 2010, LNCS 6343, pp. 406–420, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

It’s on Me! The Benefit of Altruism in BAR Environments 407

Although real MAD systems include a sizable fraction of correct and unselfish
peers [2], their impact on the incentive structure of MAD services is not well
understood. The BAR model [3] does explicitly account for these peers—they
are the altruistic peers, who, together with the selfish rational peers and the
potentially disruptive Byzantine peers, give the model its acronym—but existing
BAR-tolerant systems have side-stepped the challenge of altruism by designing
protocols that neither depend on nor leverage the presence of altruistic peers.1

This paper asks the following question: Can we leverage the good will of altruistic
nodes and still motivate rational participants to cooperate? We find that not only
is altruism not antithetical to rational cooperation, but that, in a fundamental
way, rational cooperation can only be achieved in the presence of altruism. To
do so, we distill the issue to a rational peer’s last opportunity to cooperate.

The last exchange. Rational peers are induced to cooperate with another peer
(or, more generally, with a service) by the expectation that, if they cooperate,
they will receive future benefit. However, in most cases, interaction with a par-
ticular peer or with the service itself eventually comes to an end. In this last
exchange, rational peers do not have incentive to contribute, as doing so incurs
cost without any future benefit. Unfortunately, rational cooperation throughout
the protocol often hinges on this critical last exchange: the lack of incentive to
cooperate at the end may, in a sort of reverse domino effect, demotivate rational
peers from cooperating in any prior exchange.

Most current systems address this problem in one of three ways (or some
combination of them). Some systems [3,16] assume that rational peers interact
with the service forever, and thus future incentives always exist; others [13,14,15]
assume rational peers deviate only if their increase in utility is above a certain
threshold; others, finally, try to threaten rational peers with the possibility of
losing utility if they deviate. For instance, in BAR Gossip [16], peers that do not
receive the data they expect pester the guilty peer by repeatedly requesting the
missing contribution.

Unfortunately, each of these approaches relies on somewhat unrealistic as-
sumptions. Few relationships in life are infinite in length; worse, as we will show
later in this paper, with a lossy network and the possibility of Byzantine peers it
may be impossible to incentivize cooperation even in an infinite-length protocol.
The real possibility of penny-pinching peers can undermine any system that as-
sumes no deviation unless their expected gain is “large enough.” Finally, threats
such as pestering are effective only when they are credible: to feel threatened,
a peer must believe that it will be rational for the other peer to pester. Since
pestering incurs cost for the initiator as well as for the receiver, it is surprisingly
hard to motivate rational peers to pester in the first place. For example, pes-
tering in BAR Gossip is credible only under the rather implausible assumption
that a peer, even when faced with enduring silence, will never give up on an

1 Gossip-based BAR-tolerant streaming protocols [15,16] do rely on an altruistic source
for seeding the stream but otherwise model the gossiping peers as either rational or
Byzantine.

408 E.L. Wong, J.B. Leners, and L. Alvisi

unresponsive peer and forever continue to attribute a peer’s lack of contribution
to the unreliability of the network [16].

Our contributions. We model the last-exchange problem as a finite-round
game between two peers, P1 and P2; neither peer expects to interact with the
other beyond this exchange. We assume P1 holds a contribution (e.g., some
information) that is of value to P2; however, contributing yields no expectation of
further benefit for P1. We are interested in studying whether P2 can nonetheless
induce a selfish P1 to contribute by threatening to pester it if P1 fails to do so.
Pestering is an attractive threat because it is simple and does not require the
involvement of a third party. We want to determine whether it can be made a
credible threat under realistic system assumptions, unlike in BAR Gossip [16].
In each round, P1 is given a choice whether to contribute or not; in response,
P2 may pester P1. Peers communicate through a lossy channel and therefore do
not necessarily share the same view of the ongoing game. For instance, P1 may
have contributed, but P2 may not have received the contribution.

We show that, without requiring implausible network assumptions or the
specter of never-ending pestering, the presence of altruistic peers is both nec-
essary and sufficient to make pestering a credible threat and motivate rational
peers to contribute. In particular:

– We prove that there exists no equilibrium strategy where rational peers
contribute if all peers are either rational or Byzantine—even if we allow for
an infinite number of pestering rounds.

– We show that the presence of altruistic peers is sufficient to transform pes-
tering into a credible threat. Intuitively, if rational peers have sufficiently
high beliefs that they may be interacting with an altruistic peer, they are
motivated to pester, making it in turn preferable for rational peers to con-
tribute.

The fraction of altruistic peers sufficient to sustain rational contribution de-
pends on several system parameters, including the probability of network loss,
the fraction of Byzantine peers in the system, and the behavior that rational
peers expect from altruistic and Byzantine peers. Exploring this space through
a simulator we find that:

– Altruistic peers make rational cooperation easy to achieve under realistic
conditions. In particular, we find that even if less than 10% of the population
is altruistic, rational peers are incentivized to cooperate in a system where
the network drops 5% of all packets and Byzantine peers make up over 50%
of the remainder of the population.

– Prodigal altruistic peers do harm rational cooperation: if altruistic peers
contribute every time they are pestered, then we cannot always achieve ra-
tional cooperation; when we do, it requires an implausibly high fraction of
altruistic peers. This is good news: the less foolishly generous is the altruistic
behavior sufficient to incentivize rational contribution, the more feasible it
is to design systems with a sustainable population of altruistic peers.

It’s on Me! The Benefit of Altruism in BAR Environments 409

– The uncertainty introduced by network loss is both a bane and a boon. On
the one hand, it significantly complicates the analysis of a peer’s optimal
strategy because each peer does not know what the other has observed.
On the other, it lowers the threshold for rational cooperation by leaving
open some possibility that the other peer may be altruistic, even when the
observed behavior suggests otherwise.

Organization of paper. After presenting in Section 2 the game theoretic frame-
work used to analyze the last exchange problem, we show in Section 3 that ra-
tional cooperation is impossible in the absence of altruistic peers. We proceed
to derive, in Section 4, conditions under which altruism is sufficient to elicit
rational cooperation in the last exchange and, in Section 5, use simulations to
study the implications of these conditions on the design of cooperative services.
We discuss related work in Section 6 before concluding in Section 7. Because of
space limitations, we omit proofs or provide proof sketches of most of our results;
detailed proofs can be found in a companion technical report [23].

2 Formalizing the Last Exchange Problem

We consider cooperative services that can be modeled as a collection of peer-
to-peer pairwise exchanges, in which two players P1 and P2 communicate over
unreliable channels. In particular, we focus on the last exchange between P1 and
P2; we are interested in studying under which conditions P2 can induce a selfish
P1 to contribute with the threat of pestering.

We model this last exchange as a (T + 1)-round stochastic sequential game,
which is similar to a repeated game except that it allows players’ payoffs to
change. This flexibility is critical to model the intuition that P2 benefits from
P1’s contribution only the first time P2 receives it. In each round, P1 moves first
by choosing between two actions: contribute (denoted by c) or do nothing (n).
P2 follows by choosing between two actions: pester (p) or do nothing (n). Since
our analysis of the game often relies on the number of rounds remaining rather
than on the round number, we think of the game as starting with round T and
ending with round 0.

While doing nothing has neither cost nor benefit, P1 incurs a cost sc in every
round in which it contributes and a cost rp in every round in which it is pestered;
P2 incurs a cost rc in every round it receives a contribution and a cost sp in every
round it pesters P1. A non-Byzantine P2 starts off being destitute, i.e., P2 does
not have P1’s contribution. A destitute P2 receives a one-time benefit bc (rc+sp

the first time it receives P1’s contribution; now no longer destitute, P2 gains no
further benefit from receiving further copies of the contribution.
Network loss, signals, and utilities. To model the unreliable channel through
which P1 and P2 communicate, we adopt from game theory the concept of private
signals : for every action a played by some player, both players privately observe
some (possibly different) resulting signal. Specifically, let ρ, 0 < ρ < 1, be the
rate of network loss, which we assume to be common knowledge. When Pi plays

410 E.L. Wong, J.B. Leners, and L. Alvisi

a, Pi observes a, and its peer P−i observes a with probability 1 − ρ and n
otherwise. Thus, players do not always observe their peer’s actions accurately
and cannot rely on their peer accurately observing their own actions.

The sequence of signals observed by Pi until round t defines Pi’s history ht
i. At

the beginning of the game, hT
1 is the empty sequence; hT

2 consists instead of the
signal ωT,1

2 observed by P2 in round T , corresponding to P1’s action. In round
k < T , hk

1 is obtained by appending to P1’s prior history hk+1
1 the next pair

of signals (ωk+1,1
1 , ωk+1,2

1) observed by P1: hk
1 = (hk+1

1 , ωk+1,1
1 , ωk+1,2

1); similarly
for P2, hk

2 = (hk+1
2 , ωk+1,2

2 , ωk,1
2).

P1 and P2’s utilities are defined with respect to the signals they observe:

u1(C, P̂) = −
(
|P̂ |rp + |C|sc

)
u2(P, Ĉ) = H [|Ĉ| − 1]bc −

(
|P |sp + |Ĉ|rc

)
where C and P̂ are the sets of rounds in which P1 respectively contributed and
observed P2 pester; P and Ĉ are the sets of rounds in which P2 respectively
pestered and observed P1 contribute; and H [n] is the unit step function.2

Strategies, types, beliefs, and equilibrium. All players are assigned an
initial strategy, i.e., the protocol. The strategy that a player ultimately follows,
however, depends on the player’s type:

– Byzantine (B): These players play an arbitrary strategy.
– Altruistic (A): These players follow the strategy assigned to them initially.
– Rational (R): These players follow a strategy only if deviating unilaterally

from it does not increase their utility.

As noted earlier, our game is stochastic: the payoffs of a non-Byzantine P2 change
depending on whether P2 is destitute (and wants P1 to contribute) or not (and
wants P1 to do nothing). For convenience, we abuse notation and introduce two
additional types, D and ¬D, to characterize the state of a non-Byzantine player
P2, depending on whether or not it is destitute. Note that if P1 contributes, a
P2 of type D will observe c, and hence change to type ¬D, with probability
1− ρ.

We are interested in finding strategies in which a rational players is not able to
deviate and increase its utility ex-ante, i.e., in expectation over its peers’ types
and strategies. Determining whether a given strategy is a rational player’s best
response, however, is complicated in our game because, while each player knows
its own type, it does not know for certain the type of its peer. Instead, Pi starts
with initial beliefs μi(θ) representing the probabilities that Pi assigns to the
statement that its peer P−i is of type θ. We assume that, for all i ∈ {1, 2}, μi(θ)
equals an initial value μ(θ), which is common knowledge, and that the beliefs of
a rational Pi’s evolve based on the history ht

i it has observed; we use μi(θ|ht
i) to

denote Pi’s conditional beliefs.
For a given set of beliefs, a rational player’s strategy σR,i depends on the

specific strategy that it expects its peer to adopt—which, in turn, depends on
the peer’s type. A rational player expects an altruistic Pi’s strategy σA,i to be

2 H [n] = 0 if n < 0; else H [n] = 1.

It’s on Me! The Benefit of Altruism in BAR Environments 411

identical to the initially assigned protocol and a rational player to follow σR,i

(assuming that it is a best response). If Pi is Byzantine, however, its strategy
σB,i can in principle be arbitrary, significantly complicating the task of iden-
tifying a rational player’s best response ex-ante. We address this difficulty by
restricting the beliefs that a rational player can hold vis-à-vis Byzantine behav-
iors. In particular, we assume that a rational player does not expect to be able
to influence σB,i through its actions, i.e., a rational player expects to observe
a Byzantine peer Pi do nothing in round t with some probability βt

i ≥ ρ that
does not depend on Pi’s current history ht

i. Thus, rational players, instead of
considering an arbitrary σB,i, best-respond to this expected Byzantine strategy
σ̄B,i. While this restriction sacrifices the generality of Byzantine behavior, it
models the reasonable distrust that a rational player is likely to harbor towards
a Byzantine peer’s threats and promises. If Pi is not Byzantine, however, the
expectation is that its strategy will depend on its observed history ht

i; we use
σθ,i(a|ht

i) to denote the conditional probability that a is played by Pi of type θ
given ht

i.
Formally, let σi = (σ̄B,i, σA,i, σR,i) denote the strategies that a rational player

expects Pi to adopt, depending on Pi’s type; σ = (σ1, σ2) denote the strategy
profile that describes the (expected) strategies for P1 and P2; and μ = (μ1, μ2)
denote the belief profile that describes the beliefs μ1 and μ2 held by a rational
P1 and P2. We are interested in perfect Bayes equilibrium: a strategy profile
and set of beliefs (σ∗, μ∗) such that for all i ∈ {1, 2}, μ∗

i (θ|ht
i) is computed using

Bayes rule whenever ht
i is reached via a signal that may be observed with positive

probability; and for all histories ht
i and strategies σ′

R,i:

E(σ∗
R,i,σ

∗
−i)[ui|ht

i] ≥ E(σ′
R,i,σ

∗
−i)[ui|ht

i]

where E(σR,i,σ
∗
−i)[ui|ht

i] is a rational Pi’s expected utility from playing σR,i

with beliefs μ∗
i , with both strategy and beliefs conditional on ht

i, while its peer
P−i plays σ∗

−i. To lighten the already substantial notation, we will refer to σR,i

as σi when it is obvious we are referring to the rational strategy.
We assume that all players are limited to actions in the strategy space. This

can be accomplished in practice if actions outside of the strategy space generate
a proof of misbehavior [3,9] and if the associated punishments (e.g., financial
penalties) are sufficient to deter rational players. Finally, we assume that a ra-
tional P1 does not try to avoid pestering by severing its network connection: if
losing a fraction of bandwidth from pestering is undesirable, disconnecting and
losing all of it is even less desirable.

3 The Need for Altruism

Altruism is not only sufficient to incentivize cooperation, it is necessary. In this
section, we assume that there is no altruism, and we show that, as a result,
rational players never pester or contribute.

Theorem 1. There exists no equilibrium in which rational P1 and P2 respec-
tively contribute and pester.

412 E.L. Wong, J.B. Leners, and L. Alvisi

Proof. (Sketch) Suppose such an equilibrium exists. Then there exists some
rounds tc and tp such that P1 and P2 contribute and pester, respectively, with
some positive probability for the last time. However, a rational P1 never con-
tributes after round tp since P1 incurs cost by contributing, yet there is no further
threat of pestering; thus, tc ≥ tp.3 On the other hand, a rational P2 only pesters
until round tc + 1 since P2 incurs cost by pestering with no chance of further
contribution from P1; thus tp > tc. Contradiction.

Theorem 1 only holds when the game lasts for a finite number of rounds. When
there exists no bound on the number of rounds, a weaker, yet in practice still
crippling, result holds. We summarize the main result here; the model of the
infinitely-repeated game, which generalizes the finitely-repeated model, and de-
tails of the results can be found in the companion technical report [23].

Theorem 2. In the infinitely-repeated game, suppose a non-destitute P2 always
prefers to do nothing and rational players expect that there exists some positive
fraction of Byzantine peers that either (a) when playing as P1, never contributes;
or (a) when playing as P2, plays the same strategy played by a destitute rational
P2. Then there exists no pure equilibrium in which rational P1 and P2 respec-
tively contribute and pester.4

Proof. (Sketch) If some Byzantine P2 pesters as if playing the destitute ratio-
nal strategy, despite P1’s contributions, then P1’s belief that P2 is Byzantine
eventually grows arbitrarily close to 1. Similarly, if a Byzantine P1 never con-
tributes despite P2’s incessant pestering, then P2 becomes increasingly certain
P1 is Byzantine. It can be shown that a player’s belief in its peer being Byzantine
eventually grows sufficiently high such that the expected utility of contributing
(in the first case) or pestering (in the second) is lower than that of doing nothing.
By showing a bound of the number of rounds in which a rational P1 contributes
or P2 pesters, it follows, using an argument similar to the finitely-repeated game,
that this bound must be 0.

4 Altruism to the Rescue

We now show that altruism is sufficient to incentivize rational peers to, respec-
tively, pester and contribute by constructing a cooperative strategy profile and
proving that it is an equilibrium. We start by specifying the altruistic strategy:

– σA,1: P1 contributes during round T . During round t < T , P1 contributes,
only if pestered, with probability (1 − α)/(1 − ρ)2, where α is a known
parameter such that 0 < (1 − α)/(1− ρ)2 ≤ 1.5

– σA,2: For any round t > 0, P2 pesters if and only if P2 is destitute.

3 Recall that we count rounds in reverse.
4 We can also show there exist no mixed equilibria that put positive probability on a

finite number of histories. We leave other mixed strategies to future work.
5 Hence, if P2 pesters an altruistic P1 during round t, P2 expects to observe a contri-

bution in round t − 1 with probability 1 − α.

It’s on Me! The Benefit of Altruism in BAR Environments 413

In practice, all players are initially given the altruistic strategy. Although we
cannot guarantee that a rational P1 will follow σA,1, we can (and will) prove
that, under the expectation that its peer P−i of type θ plays σθ,−i,6 a rational
Pi will play the following rational strategy:

– σR,1: During round t, P1 contributes if and only if t >
⌈
sc/((1− ρ)2rp)

⌉
−

1 (i.e., if being pestered is sufficiently expensive to overcome the cost of
contributing), P1 observes pestering (for t < T), and P1’s belief that P2 is
destitute exceeds some threshold μ̄t

1.
– σR,2: Same as σA,2.

In a perfect Bayes equilibrium, whether a rational player deviates or not depends
on its beliefs for all histories, both those on and off the equilibrium path. In
our desired equilibrium, almost every history has some positive probability of
being observed: a rational P2 expects that an altruistic P1 contributes with
positive probability (if P2 pestered); destitute P2 always pester; and, as a result
of network loss, doing nothing is always observable with positive probability from
either player. Thus, for most histories, Bayes rule can be applied to calculate a
rational player’s beliefs. For those histories that are not observed with positive
probability, beliefs can be assigned which support the rational strategy as an
equilibrium strategy. The details, omitted here for lack of space, can be found
in the companion technical report [23].

Generally, there may exist multiple strategies that result in a cooperative
equilibrium. We believe that our rational strategy represents a sensible design
point: incentivizing a rational P1 to contribute in every round would require
P1 to start with an unrealistically low belief in P2 being Byzantine. Fortunately,
this is unnecessary: we show in Section 5 that the rational strategy results in
P1 often contributing multiple times.

4.1 When Does a Rational P2 Pester?

Intuitively, P2 pesters only if it is destitute and it believes that P1 is sufficiently
altruistic (and thus willing to contribute, even in the final rounds).

Lemma 3. If a rational P2 has received a contribution, P2 does nothing.

Proof. (Sketch) If P2 already has the contribution, P2 receives no further benefit
from receiving another contribution. In fact, pestering and receiving another
contribution only incurs cost.

Theorem 4. A rational, destitute P2 pesters in round t > 0 following some his-
tory ht

2 if its belief μ2(A|ht
2) that P1 is altruistic satisfies the following condition:

μ2(A|ht
2) >

sp

αt−1(1− α)(bc − rc) + (1 − αt−1)sp
(1)

6 Thus, all our lemmas and theorems should be prefaced by “In our cooperative equi-
librium. . . ”.

414 E.L. Wong, J.B. Leners, and L. Alvisi

Proof. (Extended sketch) By contradiction. Assume P2 prefers to do nothing
despite condition (1): there exists some strategy σn

2 in which P2 does nothing in
round t despite having beliefs which satisfy condition (1). Construct an alternate
strategy σp

2 in which: P2 pesters following ht
2; if P2 receives a contribution in

round t − 1, P2 does nothing for the remainder of the game; otherwise, σp
2 and

σn
2 are identical for the remaining rounds.
Consider P2’s difference in expected utility between playing σn

2 and σp
2 . There

are three cases. If P1 is Byzantine, the expected difference in utility between σn
2

and σp
2 is sp. If P1 is rational, it can be shown that P2 has a better chance of

receiving a contribution in the future if P2 pesters now (versus doing nothing);
hence, if P2 is destitute starting from ht

2, then the expected difference in utility
between σn

2 and σp
2 is at most sp. Finally, if P1 is altruistic, then the expected

utility, starting from P2’s turn in round t−1, of playing σn
2 or σp

2 is the same; let
V (A, t−1) represent this utility. Thus, the expected difference in utility between
σn

2 and σp
2 when facing an altruistic P1 is then

sp − (1− α)(bc − rc − V (A, t− 1))

It can be shown that pestering an altruistic P1 until P2 gets the contribution or
t = 0 is in P2’s best interest; thus, for i < t, V (A, i) ≤ −sp + (1− α)(bc − rc) +
αV (A, i− 1), where V (A, 0) = 0. Solving the recursion and using condition (1)
we find that the expected difference in utility between σn

2 and σp
2 is at most

sp − μ2(A|ht
2)(α

t−1(1− α)(bc − rc) + (1 − αt−1)sp) < 0

and thus P2 prefers to pester. Contradiction.

4.2 When Does a Rational P1 Contribute?

It is obvious that P1 never contributes when the threat of pestering does not
offset the cost of contributing.

Lemma 5. P1 does nothing for rounds t ≤ τ , where

τ =
⌈

1
(1− ρ)2

sc

rp

⌉
− 1 (2)

The next two results limit when P1 contributes. Even after it contributes, if
P1 is unsure whether or not P2 is still destitute, a combination of several factors
(a highly lossy network that may have dropped the contribution, a high cost
for being pestered, enough rounds to make pestering a sufficiently costly threat)
may induce P1 to contribute again, without being pestered.

Lemma 6 gives a condition under which P1 contributes only if a non-Byzantine
P2 is known to be destitute. It follows in Theorem 7 that, after the first round,
P1 contributes only if pestered in the prior round.

It’s on Me! The Benefit of Altruism in BAR Environments 415

Lemma 6. Let t < T be the current round, where

T <
1− ρ + ρ2

ρ2(1− ρ)2
sc

rp
(3)

If P1 contributed in the past and has not been pestered since, then P1 does nothing
in round t.

Theorem 7. Let t < T be the current round, and suppose that P1 observed
nothing from P2 in round t + 1. Then P1 does nothing in round t if (3) holds.

Proof. (Sketch) By contradiction. Consider some round t in which P1 contributes
despite having done nothing and observed P2 do nothing in round t + 1 (if
P1 contributed, Lemma 6 holds). It can be shown that since (1) P1’s belief in
P2 being destitute is strictly non-decreasing when observing P2 do nothing and
(2) the number of expected pesters decreases with the number of remaining
rounds, P1 increases its utility by contributing in round t + 1 instead of round
t. Contradiction.

We now consider the conditions under which P1 actually contributes. In every
round, P1 must make a choice:

– Pay the cost of contributing now (sc), hoping to stop a non-Byzantine
P2 from pestering in the future. The savings are a function of the remaining
rounds and the beliefs about P2.

– Delay contributing, at the risk of being pestered (with cost at most (1−ρ)rp),
hoping to glean more about P2’s type.

Procrastination has its lure. Since we are considering strategies where a non-
Byzantine P2 always pesters (minus the last round) whereas a Byzantine P2 may
not, every additional signal can drastically affect P1’s expected utility and pos-
sibly save P1 the cost of contributing. Moreover, doing nothing now does not
preclude P1 from contributing in the future. Yet, we find that if P1 has suffi-
ciently strong belief that P2 is destitute, procrastination is something best put
off until tomorrow: for every round sufficiently removed from the end of the
game, there exists a belief threshold above which contributing yields a higher
expected utility for P1.

Theorem 8. Let ht
1 be the history of P1 in round t, where τ < t ≤ T and τ is

defined by condition (2). A rational P1 contributes if its belief that P2 is destitute
exceeds some threshold μ̄t

1 ≤ 1. In particular, if μ1(D|ht
1) ≥ μ̄t

1, P1 contributes;
otherwise, P1 does nothing.

Proof. (Extended sketch) By induction on t. The base case, t = τ +1, is simple:
since P1 never contributes after round τ + 1, we can calculate the threshold at
which P1 prefers to contribute. For the inductive step, we assume the theorem
holds for all t, τ < t ≤ t0; we prove t = t0+1 by contradiction. If a threshold does

416 E.L. Wong, J.B. Leners, and L. Alvisi

not exist, there must be some belief μ∗(D|ht
1) in which P1 prefers to contribute

and higher beliefs in which P1 prefers to do nothing. By the inductive hypothesis,
it can be shown that we can always find a belief μ′

1(D|ht
1′), arbitrarily close to

μ∗(D|ht
1) from above, such that:

– P1 does nothing in round t; and
– P1 plays the same actions in subsequent rounds after observing the same

non-empty sequence of signals as if P1 had started with belief μ∗(D|ht
1).

It follows that P1’s expected utility of playing action at
1 followed by the threshold

strategy with either belief μ∗
1(θ|ht

1) or μ′
1(θ|ht

1′) must be equal; let V (at
1, θ) be this

expected continuation utility. By Lemmas 3 and 6, we know that V (at
1,¬D) = 0.

Given belief μ∗
1(θ|ht

1), P1 prefers to contribute; given belief μ′
1(θ|ht

1′), P1 prefers
to do nothing. This implies that

−sc ≥ μ∗
1(D|ht

1)(V (n,D)− ρV (c,D)) + μ∗
1(B|ht

1)(V (n,B)− V (c,B))

−sc < μ′
1(D|ht

1′)(V (n,D)− ρV (c,D)) + μ′
1(B|ht

1′)(V (n,B)− V (c,B))

Using these conditions, the fact that P1 is never better off contributing to a
Byzantine P2 (i.e., V (n,B)− V (c,B) + sc ≥ 0), and Lemma 6, we can derive a
contradiction.

4.3 The Rational Strategy Is an Equilibrium Strategy

Theorem 9. Assume an altruistic Pi plays the altruistic strategy σA,i. Let T be
constrained by condition (3) and condition (1) hold in all histories ht

2, for t > 0,
in which P2 is destitute. Then the rational strategy is an equilibrium strategy.

Proof. By Lemmas 3 and 5 and Theorems 4, 7, and 8.

5 Characterizing the Equilibrium

To understand the implications of Section 4 on the design of cooperative services,
we explore, through simulation, the parameter space for which our cooperative
equilibrium holds. We ask the following questions:
1. What fraction of altruistic peers suffices to motivate P2 to pester?
The shaded areas in Figure 1 show (for different rates of network loss, different
initial beliefs about the likelihood of P1 being Byzantine, and different worth of
receiving a contribution) the fraction of altruistic peers that suffices to trigger
P2’s pestering, as a function of the probability ((1−α)/(1−ρ)2) that an altruistic
P1 will contribute if pestered (P1’s generosity). We assume that P2 believes an
altruistic P1 follows the altruistic strategy; a Byzantine P1 never contributes;
and a rational P1 only contributes in round T . This is a conservative estimate on
the fraction of altruistic peers sufficient to motivate P2; in practice, the actual
amount is likely to be lower than we report. As expected, for a given level of
generosity, it is easier to incentivize P2 if the value of the contribution increases

It’s on Me! The Benefit of Altruism in BAR Environments 417

(a) Varying bc − rc (μ2(B) = 0.5) (b) Varying μ2(B) (bc − rc = 105)
bc − rc = 104 bc − rc = 106 μ2(B) = 0.1 μ2(B) = 0.5

ρ
=

0.
05

0

0.17

0.33

0.50

0 0.25 0.5 0.75 1
0

0.17

0.33

0.50

0 0.25 0.5 0.75 1
0

0.30

0.60

0.90

0 0.25 0.5 0.75 1
0

0.17

0.33

0.50

0 0.25 0.5 0.75 1

ρ
=

0.
25

0

0.17

0.33

0.50

0 0.25 0.5 0.75 1
0

0.17

0.33

0.50

0 0.25 0.5 0.75 1
0

0.30

0.60

0.90

0 0.25 0.5 0.75 1
0

0.17

0.33

0.50

0 0.25 0.5 0.75 1

Fig. 1. Sufficient initial beliefs for a rational P2 in its peer P1 being altruistic to in-
centivize P2 to pester (y-axis, shaded area) for varying amounts of altruistic generosity
(x-axis). Simulation run with sp = 1, T = 20.

1.00 Pr. Byz. pester = 0.1
Pr. Byz. pester = 0.5
Pr. Byz. pester = 1.0

0.25

0.50

0.75

B
el

ie
f

th
at

 P
2

is
 d

es
ti

tu
te

0
20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Round

Pr. Byz. pester ρ = 0.05 ρ = 0.25
0.1 14 17
0.5 5 9
1.0 2 3

Fig. 2. Left: the belief thresholds of P1’s beliefs; solid lines represent ρ = 0.05; dotted
lines represent ρ = 0.25. Right: the maximum number of times P1 contributes for each
of these thresholds. Simulation run with sc/rp = 2, T = 20.

and the likelihood of P1 being Byzantine decreases. Given a highly lossy network,
P2 is also more willing to continue pestering, as it is more willing to attribute
to network loss its failure to receive a contribution.

2. How are P1’s beliefs and the rate of network loss affecting P1’s
willingness to contribute? P1 may contribute only if its belief that P2 is
destitute is above a certain threshold. We show in Figure 2 how that threshold
changes over the course of a game in which T = 20. For six configurations,
obtained by taking the cross product of two rates of network loss and three
different probabilities that a Byzantine P2 will pester, we plot the belief threshold
and report the number of times that P1 contributes. For a given round, we
assign P1 some initial belief that P2 is destitute and construct the game tree to
determine whether that initial belief is sufficient to motivate P1 to contribute
in that round; we use binary search to approximate the threshold value. As

418 E.L. Wong, J.B. Leners, and L. Alvisi

expected, when the game has only few rounds left and the cost from being
pestered is not enough to overcome the cost of contributing, there is no threshold
above which P1 contributes. Note also that increasing ρ increases the belief
threshold required to convince P1 to contribute (as it reduces the expected threat
from pestering) but also makes P1 more likely to contribute when pestered,
since past contributions are more likely to have been dropped. Also, the belief
threshold increases as the likelihood of a Byzantine P2 pestering decreases, since
it becomes more in P1’s interest to delay contribution, waiting to see whether
P2 will pester. However, when P1 observes pestering, its belief that P2 is destitute
increases, and P1 becomes more more willing to contribute. Finally, decreasing
the relative cost of contributing (sc/rp) has an obvious effect on P1’s likelihood
to contribute (not shown).
3. Too much generosity? An intriguing conclusion from Figure 1 is that
altruistic generosity can make it much harder to motivate P2 to pester. The
reason is that the more generous altruistic peers are, the easier it is for a rational
P2 to determine, from observed signals, whether P1 is altruistic or not, which
in turn affects whether P2 continues to pester. Figure 1 shows the effects that
an altruistic peer’s generosity has on cooperation. For higher levels of altruistic
generosity, we can only guarantee cooperation if such generosity is offset by a
high ρ or bc − rc. Altruistic generosity becomes a more obvious discriminant if
a Byzantine P1 never contributes, but it becomes less conspicuous with higher
rates of network loss, which affects the observed generosity from P2’s perspective.
As expected, P2 is more willing to pester given a more valuable contribution.

6 Related Work

Incentive-compatible systems and protocols. There has been much work in
incentive-compatible systems (e.g., [3,4,13,14,16,20]). None of these systems as-
sume the existence of altruistic players, and only a few [3,16,20] consider Byzan-
tine peers. Our techniques can be applied to many of these systems. For example,
BAR Gossip [16], FOX [14], and PropShare [13] can use altruism to incentivize
key exchange. Our technique can be used towards implementing BAR Gossip’s
“fair-enough” exchange and may provide insight into the larger fair exchange
problem [11,19]. Finally, rational secret sharing [10] faces a similar problem to
the last exchange. However, without a pestering mechanism, our work is not
directly applicable.
Irrationality in incentive-compatible protocols. Eliaz [7] proposed the gen-
eralization of Nash equilibrium to scenarios where some number of peers may be
Byzantine. Aiyer et al. [3] generalized this to the BAR model, which introduced
the possibility of altruistic peers and on which our model is based. Abraham et
al. [1] describe (k, t)-robust equilibrium, a solution concept in which a rational
player does not deviate despite the possibility of collusion by groups up to size
k and up to t “irrational” agents that may play any strategy. Similarly, Martin
[18] introduces an equilibrium concept in which rational players do not devi-
ate regardless of Byzantine or altruistic players’ actions. Our work differs from

It’s on Me! The Benefit of Altruism in BAR Environments 419

previous work by showing the need for altruism to address a key problem in
cooperative services and considering real-world issues such as network costs and
lossy links. Vassilakis et al. [22] study how altruism affects content sharing in
P2P services at the application level. Their approach complements our own; we
focus on network-level incentives and issues (such as lossy links) that motivate
participants to actually send the content they share at the application level.
Their work does not address Byzantine participants.
Game-theory. There has been extensive work that has covered imperfect knowl-
edge, private signaling, and the use of altruism in game theory. The use of al-
truism to achieve cooperation in the finitely-repeated prisoner’s dilemma game
was first proposed by Kreps et al. [12]. It was shown that reputations could be
maintained even when there was imperfect observation of actions [8]. Cripps et
al. later showed that, under certain conditions, reputations cannot be maintained
forever unless the action played by the irrational player was part of a rational
player’s equilibrium strategy [5,6]. None of the previous work consider both the
possibility of Byzantine and altruistic players. Many of them also assume that
actions or their corresponding signals can either be observed at least publicly
[5,8], if not perfectly [12]. More importantly, the focus of this work is the exis-
tence (or nonexistence) of equilibrium under general conditions. We focus on the
application of theory to a specific problem and a realistic model that we believe
to be applicable to many distributed protocols.

7 Conclusion

Despite the presence of altruistic peers in real-world MAD systems, little at-
tention has been given to their role in establishing rational cooperation. In this
paper, we take the first step in understanding their function by showing that
altruism is necessary and sufficient to motivate rational cooperation in the cru-
cial last exchange between MAD peers. Our results suggest that, while a small
fraction of altruistic peers is sufficient to spur rational peers into action even in
systems with a large fraction of Byzantine peers, overly generous altruistic peers
can irreparably harm rational cooperation.

Acknowledgments. We are grateful to Tom Wiseman and Joe Halpern for
many illuminating discussions, and to the anonymous referees. This work is
supported by NSF Grant No. 0905625.

References

1. Abraham, I., Dolev, D., Gonen, R., Halpern, J.: Distributed computing meets game
theory: robust mechanisms for rational secret sharing and multiparty computation.
In: PODC ’06, pp. 53–62 (July 2006)

2. Adar, E., Huberman, B.A.: Free riding on Gnutella. First Monday 5(10), 2–13
(2000), http://www.firstmonday.org/issues/issue5_10/adar/index.html

3. Aiyer, A.S., Alvisi, L., Clement, A., Dahlin, M., Martin, J.P., Porth, C.: BAR fault
tolerance for cooperative services. In: SOSP ’05, pp. 45–58 (October 2005)

http://www.firstmonday.org/issues/issue5_10/adar/index.html

420 E.L. Wong, J.B. Leners, and L. Alvisi

4. Cohen, B.: Incentives build robustness in BitTorrent. In: First Workshop on the
Economics of Peer-to-Peer Systems (June 2003)

5. Cripps, M.W., Mailath, G.J., Samuelson, L.: Imperfect monitoring and imperma-
nent reputations. Econometrica 72(2), 407–432 (2004)

6. Cripps, M.W., Mailath, G.J., Samuelson, L.: Disappearing private reputations in
long-run relationships. J. of Economic Theory 127(1), 287–316 (2007)

7. Eliaz, K.: Fault tolerant implementation. Rev. of Econ. Studies 69, 589–610 (2002)
8. Fudenberg, D., Levine, D.K.: Maintaining a reputation when strategies are imper-

fectly observed. Review of Economic Studies 59(3), 561–579 (1992)
9. Haeberlen, A., Kouznetsov, P., Druschel, P.: PeerReview: Practical accountability

for distributed systems. In: SOSP ’07, pp. 175–188 (October 2007)
10. Halpern, J., Teague, V.: Rational secret sharing and multiparty computation. In:

Proc. 36th STOC, pp. 623–632 (2004)
11. Kremer, S., Markowitch, O., Zhou, J.: An intensive survey of non-repudiation pro-

tocols. Computer Communications 25(17), 1606–1621 (2002)
12. Kreps, D., Milgrom, P., Roberts, J., Wilson, R.: Rational cooperation in the finitely

repeated prisoners’ dilemma. J. of Economic Theory 27(2), 245–252 (1982)
13. Levin, D., LaCurts, K., Spring, N., Bhattacharjee, B.: BitTorrent is an auction:

analyzing and improving BitTorrent’s incentives. SIGCOMM Comput. Commun.
Rev. 38(4), 243–254 (2008)

14. Levin, D., Sherwood, R., Bhattacharjee, B.: Fair file swarming with FOX. In:
IPTPS ’06 (February 2006)

15. Li, H., Clement, A., Marchetti, M., Kapritsos, M., Robinson, L., Alvisi, L., Dahlin,
M.: FlightPath: Obedience vs choice in cooperative services. In: OSDI ’08. pp.
355–368 (December 2008)

16. Li, H.C., Clement, A., Wong, E., Napper, J., Roy, I., Alvisi, L., Dahlin, M.: BAR
Gossip. In: OSDI ’06, pp. 191–204 (November 2006)

17. Locher, T., Moor, P., Schmid, S., Wattenhofer, R.: Free riding in bittorrent is
cheap. In: HotNets ’06 (November 2006)

18. Martin, J.P.: Leveraging altruism in cooperative services. Tech. Rep. MSR-TR-
2007-76, Microsoft Research (June 2007)

19. Pagnia, H., Gärtner, F.C.: On the impossibility of fair exchange without a trusted
third party. Tech. Rep. TUD-BS-1999-02, Darmstadt University of Technology,
Department of Computer Science, Darmstadt, Germany (March 1999)

20. Peterson, R.S., Sirer, E.G.: Antfarm: efficient content distribution with managed
swarms. In: NSDI ’09, pp. 107–122 (2009)

21. Piatek, M., Isdal, T., Anderson, T., Krishnamurthy, A., Venkataramani, A.: Do
incentives build robustness in BitTorrent? In: NSDI ’07, pp. 1–14 (April 2007)

22. Vassilakis, D.K., Vassalos, V.: An analysis of peer-to-peer networks with altruistic
peers. Peer-to-Peer Networking and Applications 2(2), 109–127 (2009)

23. Wong, E.L., Leners, J.B., Alvisi, L.: It’s on me! The benefit of altruism in BAR
environments. Technical Report TR-10-08, UT Austin (2010)

Beyond Lamport’s Happened-Before: On the Role
of Time Bounds in Synchronous Systems

Ido Ben-Zvi1 and Yoram Moses2

1 Department of Computer Science, Technion
idobz@cs.technion.ac.il

2 Department of Electrical Engineering, Technion
moses@ee.technion.ac.il

Abstract. Lamport’s Happened-before relation is fundamental to co-
ordinating actions in asynchronous systems. Its role is less dominant
in synchronous systems, in which bounds are available on transmission
times over channels. This paper initiates a study of the role that time
bounds play in synchronous systems by focusing on two classes of prob-
lems: Ordered Response, in which a triggering event must be followed by
a sequence of events (“responses”) performed in a prescribed temporal
order, and Simultaneous Response, in which the responses must be per-
formed simultaneously. In both cases, information about the triggering
event must flow from its site of origin to the responding sites, and the
responses must be timed as specified. A generalization of happened- be-
fore called Syncausality, is defined. A pattern of communication consist-
ing of a syncausal chain coupled with an appropriate set of time bound
guarantees gives rise to a communication structure called a centipede.
Centipedes are a nontrivial generalization of message chains, and their
existence is shown to be necessary in every execution of every protocol
that solves ordered response. A variation on centipedes called centib-
rooms are shown to play an analogous role for Simultaneous Response:
Every execution of a protocol for Simultaneous Response must contain
a centibroom.

Keywords: synchronous message passing, bounded communication, or-
dered response, simultaneous response, causality, syncausality, knowl-
edge, common knowledge, levels of knowledge, knowledge and time.

Dedicated to the memory of Amir Pnueli, a magnificent person and great inspiration.

1 Introduction

Many distributed systems applications need to react to spontaneous events, or
ones initiated by their environment. Examples for such events are the activation
of a fire alarm or smoke detector, a deposit or withdrawal from a bank account, or
the identification of an interesting subject in a multi-camera surveillance system.
In response to an external event, correct behavior of the system may require

N.A. Lynch and A.A. Shvartsman (Eds.): DISC 2010, LNCS 6343, pp. 421–436, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

422 I. Ben-Zvi and Y. Moses

that an action, or more generally a set of actions, be performed. When multiple
actions are performed, the temporal order in which the actions are performed
is often important. Indeed, financial transactions will typically require a variety
of actions involving testing various conditions and making related updates to be
completed. To capture such situations, we define the following general problem:

Definition 1 (Ordered Response [OrR]). An instance of the Ordered Re-
sponse problem is defined by a tuple OR = OR(et, α1, . . . , αk), where et (the
triggering event) is a spontaneous external input and αh = 〈ah, ih〉 where ah is
an action for process ih.1 A protocol solves OR if it guarantees that
(1) if et occurs, then process ih will perform action ah, for h = 1, . . . , k;
(2) αh will happen before αh+1 does, for all h < k; and finally
(3) none of the actions ah will be performed in runs in which et does not occur.

In the Ordered Response problem, αh stands for the event of process ih perform-
ing the action ah. We shall denote the site of the triggering event et by i0. Since
the triggering event in OR(et, α1, . . . , αk) is a spontaneous event, information
about the occurrence of et must flow from i0 to each of the responding sites.
Moreover, these sites must coordinate to perform the actions in the specified
order. OR thus combines notification about et with a coordination problem. In
asynchronous systems, both aspects of OrR are handled in a similar fashion, by
generating message chains that ensure that Lamport’s happened-before relation
holds between et and α1, and then between αh to αh+1, for all h < k. This pa-
per studies OrR and related issues in synchronous systems, in which there are
known bounds on message transmission, and processes share a global clock. Mes-
sage chains play a somewhat different role in this setting. The following example
illustrates some of the issues at play.

Example 1. Charlie’s bank account is temporarily suspended due to credit prob-
lems. Should Charlie make a sufficient deposit at his local branch, Banker Bob at
headquarters will re-activate the account. Alice holds a cheque from Charlie, but
trying to cash it before the account is re-activated will result in her being fined by
the bank rather than receiving payment. Alice, Bob and Charlie are connected
by a communication network as depicted in Figure 1(a). In particular, messages
from Charlie to Bob and Alice take up to 10 and 12 days to be delivered, re-
spectively. We can view this as an instance of OrR in which the triggering event
is a deposit by Charlie, and the responses are the account re-activation by Bob
and, no sooner than Bob’s action, Alice’s cashing the cheque.

In a particular instance, depicted in Figure 1(b), Charlie makes a deposit at
time t, and immediately broadcasts a message stating this to both Alice and
Bob. The message reaches Bob in 4 days and Alice in 6. Bob immediately re-
activates Charlie’s account at t + 4. When can Alice deposit the cheque? The
1 For simplicity, we assume that et happens at most once in any given execution, as

do each one of the actions performed in response to it. The processes ih need not be
distinct, although it is natural and instructive to assume that adjacent processes in
the sequence are distinct, so that ih �= ih+1.

On the Role of Time Bounds in Synchronous Systems 423

(a) The network of Example 1

Fig. 1

cheque would be cashed successfully at any time after t+ 4. However, Alice only
knows about Charlie’s deposit at t + 6. But even at that point, she must wait
further. In the absence of additional information indicating when Bob actually
received Charlie’s message, she is only guaranteed that this will happen by time
t + 10. Knowing Bob’s protocol, she can safely submit the cheque at or after
time t + 10, but not sooner.

In this example, Alice acts after Bob does. While in the asynchronous setting
she must obtain explicit notification that Bob acted, in the synchronous setting
she can base her action on the information that Charlie sent Bob the message
at time t, combined with the bound determining when this message will arrive,
and her knowledge of Bob’s protocol, which ensures action when Bob receives
Charlie’s message. Her action, which clearly depends on Bob’s action having
taken place, can be performed without an explicit message chain from Bob. This
is no surprise. It is generally accepted that in the presence of bounds, Lamport’s
happened-before relation is not the sole factor in coordinating actions. Never-
theless, we know of no systematic treatment of how events can be coordinated
in such synchronous systems. The purpose of this paper is to study the role that
time bounds can play in coordination problems such as OrR. As we shall see, the
set of communication structures that underly coordination in the synchronous
case is considerably richer than it is in the asynchronous case.

Example 2. In a setting similar to Example 1, Susan is Bob’s supervisor at the
bank. The network is now as depicted in Figure 2(a). Suppose that Charlie
broadcasts his deposit to all three, and that communication is delivered as in
Figure 2(b). In this case Alice can, as before, submit her cheque at t + 10. But
she can do even better. Since she receives a message from Susan at t + 8 that
was sent at t + 3, the bound on the (S, B) channel ensures her that Bob is be
notified of Charlie’s deposit by time t+7. The account will be solvent as of time
t + 7, and Alice can safely cash her cheque upon receiving Susan’s message.

In both examples, the timing of Alice’s action depends on the time bounds. In
Example 2, however, information that Alice receives in a message from Susan
serves to update her knowledge about when Bob’s action is performed, and
enables her to perform her action earlier than she could before receiving it.
This example illustrates the fact that the proper ordering of events can depend
on a subtle interplay between the actual delivery times of messages, and the

(b) Cheque cleared at t + 10

424 I. Ben-Zvi and Y. Moses

(a) The network of Examples 2 and 3 (b) Susan speeds up Alice’s response

Fig. 2

time bound guarantees. Notice that, for the purpose of properly ordering Alice’s
action, Susan plays a similar role in Example 2 to that played by Charlie in
Example 1. Information about the triggering event is, in both cases, obtained
from Charlie.

Intuitively, any solution to the OrR problem must ensure that particular
knowledge is obtained following the occurrence of the triggering event. Since the
response actions are performed if and only if et occurs, each of the responding
processes must know that et occurred before performing any response action(s).
If the triggering event et was unconditionally guaranteed to take place at some
time t0, then it would be trivial to coordinate an OrR response to et without
need for any communication. However, being a spontaneous external input, et
is not guaranteed to occur. Hence, information about its occurrence must flow
from i0 to the responders. The second aspect of OrR is the proper ordering of
the responses. Before the response αh+1 can be performed, ih+1 must know that
αh has taken place. As the above examples suggest, this does not require explicit
notification, and can be obtained by combining information about actual timing
obtained through messages, with a priori bound information. But before αh can
take place, process ih must know that all previous responses have occurred. As
we shall show, ordered response is governed by a communication structure that
we call a centipede, that generalizes the dynamics observed in Example 2.

Examples 1 and 2 illustrate how a process can come to know that commu-
nication directed at a remote site has arrived, based on transmission bound in-
formation. But bounds can be used in an additional fashion. Namely, if by time
t+ bij process j receives no message sent by i at time t, then j can know that no
such message was sent. Depending on i’s protocol, this can provide j information
about i’s state at time t. Consider the following refinement of Example 2.

Example 3. In the network of Example 2 depicted in Figure 2(a), suppose that
Susan sends Alice a message in every round as long as Susan has not heard from
Charlie about an appropriate deposit. In this particular instance, Susan receives
a message from Charlie at time t+2, at which point she stops sending her update
messages. At time t + 9 Alice will be able to “time-out” on Susan’s time t + 2
message. She then knows that Susan heard from Charlie at t + 2. Moreover,
knowing that Susan relays information to Bob as before, Alice knows that Bob
heard about the deposit no later than time t + 5. Hence, Alice can safely cash
her cheque at time t + 9 rather than t + 10.

On the Role of Time Bounds in Synchronous Systems 425

In Example 3 Alice learns of Charlie’s deposit without receiving any message
whatsoever. She clearly receives no message chain originating from Charlie.
Nevertheless, it seems instructive to think of Susan as sending Alice a “silent
message” at time t + 2, carrying relevant information, by not sending an actual
message. This view will motivate an extension of Lamport’s happened-before re-
lation that we shall call syncausality, standing for “synchronous potential causal-
ity.” A syncausal chain will then be a chain consisting of a sequence of messages
and timeouts. As we will see, syncausality is a central element in informing
processes about nondeterministic events such as spontaneous external inputs.

The main contributions of this paper are:

– The notion of syncausality is defined, generalizing Lamport’s happened-
before relation by adding timeout precedence.

– The Ordered Response (OrR) and Simultaneous Response (SiR) problems
are defined, capturing a natural form of coordination in distributed systems.
OrR is shown to require attaining nested knowledge, while Simultaneous
Response requires obtaining common knowledge about the triggering event.

– Syncausality is shown to be a necessary condition for obtaining knowledge
about nondeterministic events at a remote site.

– A notion of Bound-based guarantees is defined, corresponding to the causal
guarantees that depend solely on transmission bounds. These guarantees
account for changes in knowledge about remote sites that are not based
solely on syncausality.

– Centipedes, a particular form of temporal communication structure, are de-
fined. A centipede consists of a syncausal chain with “legs” that consist of
bound-based guarantees. Centipedes are shown to be necessary in any run
in which nested knowledge of an external input is attained. Consequently,
every instance of OrR requires the construction of a centipede whose form
depends on the instance of OrR being implemented. In a precise sense, cen-
tipedes are shown to be the analogue in synchronous systems to message
chains through a given set of processes in asynchronous systems.

– Centibrooms, a slight variant of centipedes, are shown to be necessary for
obtaining common knowledge (see [12]) of nondeterministic events in syn-
chronous systems. This formally captures the fact that a single pivotal event
is needed in order to obtain common knowledge in this setting.

– Finally, it is shown that every instance of SiR requires the construction of
a centibroom whose structure depends on the instance of SiR being imple-
mented.

– The technical results are obtained by way of a knowledge-based analysis.
This is another illustration of the power of knowledge theory in the analysis
of distributed system.

Related work: Explicit and implicit use of time bounds for coordination and
improved efficiency is ubiquitous in distributed computing. An elegant example
of its use is made by Hadzilacos and Halpern in [11]. That knowledge can be
gained by way of timeouts when timing guarantees are available has been part of
the folklore from decades. A tutorial by the second author suggests as a viable

426 I. Ben-Zvi and Y. Moses

topic for future work performing an explicit analysis of the effect of timeouts
on knowledge gain [20]. He also presents an example in which communication
can be saved by using timeouts. However, [20] does not or suggest modifying
Lamport causality to suit synchronous, and none of the new notions or technical
results in the current paper were suggested in [20]. Krasucki and Ramanujam
in [13] study of the interaction between knowledge and the ordering of events
in a distributed system. They consider concurrency in a rather abstract setting,
where they show that causality is related to the existence of particular partially
ordered sets. They do not explicitly study the synchronous model, however, and
do not explicitly consider synchronous time bounds on channels. Moses and
Bloom [18] perform a knowledge-based analysis of clock synchronization in the
presence of bounds on transmission times. They generalize Lamport’s relation by
defining a notion of timed causality e

α−→e′ that corresponds to e taking place at
least α time units before e′. It appears that ‘ α−→’ is a quantitative generalization
of Lamport causality for the purpose of determining relative timing of events,
while syncausality is a qualitative causality relation more suitable for studying
knowledge gain and information flow. A similar notion appears in the work of
Patt-Shamir and Rajsbaum [23]. Knowledge about knowledge touches on many
fields, ranging from philosophy [15] and psychology [4], to linguistics [10,21],
economics [1], AI [16], cryptography [5,24,9] and distributed systems [12,3,22].
In computer security, for example, it often becomes important to ensure that
particular agents have access to particular information, and not know particular
facts. Our analysis suggests tacit ways in which information can be transmitted
in synchronous systems. One implication is that in order to guard against a
particular form of knowledge gain, it is essential to deny the possibility of the
appropriate centipede forming.

Organization: This paper is organized as follows. Section 2 presents a brief
sketch of the model and the definitions used in the theorems and the proofs.
Section 3 relates the Ordered Response problem to nested knowledge, and proves
a knowledge gain theorem for two processes. Section 4 proceeds to define cen-
tipedes and state the Centipede Theorem for multi-process knowledge gain. In
Section 5 we introduce the Simultaneous Response problem, review the defini-
tion of common knowledge, and relate the two. Centibrooms are defined, and
are shown to be necessary in every instance of simultaneous response. Finally,
Section 6 presents conclusions.

2 Background and Preliminary Definitions

As mentioned in Section 1, we focus on a simple synchronous setting with a
global clock, in which processes that take steps at integer times, and bounds on
transmission times over channels are given. We analyze knowledge in protocols
that execute in such a setting by following the approach described in [8]. Namely,
we separate the definition of the environment for which protocols are designed,
formally called the context, from the actual protocol being executed in that
context. Given a context γ and a protocol P designed to run in γ, there is a

On the Role of Time Bounds in Synchronous Systems 427

unique set R = R(P, γ), of all runs of P in γ. This set is called a system, and we
study how knowledge evolves in systems. The reason why it does not suffice to
consider just one system—say the system consisting of all possible runs in γ—is
because the protocol being executed plays an important role in determining what
is known. Typically, the information inherent in receiving a particular message
(or in not receiving one) depends on the protocol being used.

A fully detailed model is beyond the scope of this abstract. The crucial ele-
ments are the following.

– We assume that processes can receive external inputs from the outside world.
These are determined in a genuinely nondeterministic fashion, and are not
correlated with anything that comes before in the execution or with external
inputs of other processes. Triggering events are always external events.

– The set of processes is denoted by P. The network consists of the weighted
channels graph over P, in which the weights are the bounds bij for every
channel (i, j). A copy of the (weighted) network, as well as the current global
time, are part of every process’ local state at all times.

– The scheduler, which we typically call the environment, is in charge of choos-
ing the external inputs, and of determining message transmission times. The
latter are also determined in a nondeterministic fashion, subject to the con-
straint that delivery satisfies the transmission bounds.

– Time is identified with the natural numbers, and each process is assumed to
take a step at each time t. For simplicity, the processes follow deterministic
protocols. Hence, a given protocol P for the processes and a given behavior
of the environment completely determine the run.

– Events are sends, receives, external inputs and internal actions. All events
in a run are distinct, and we denote a generic event by the letter e. For
simplicity, events do not take time to be performed. At a given time point a
process can perform an arbitrary finite set of actions.

We denote such a context by γ s, and useR s to denote a systemR(P, γ s) consist-
ing of the set of all runs of some protocol P in synchronous context γ s. An ND
(or nondeterministic) event is either (a) the arrival an external input, or (b) an
early receive, i.e., a message delivery that occurs strictly before the transmission
bound for its channel is met.

A process-time node (or simply node) is a pair (i, t), where i is a process and t
is a time. Such a node represents an instant on i’s timeline. While Lamport’s
happened-before relation is typically defined among events, we define syncausal-
ity, its generalization to synchronous systems, as a relation among process-time
nodes. This choice allows us to avoid defining non-receipt events, for capturing
timeouts and the expiration of time bounds. Since every event takes place at a
particular node, working with nodes suffices. Formally, we proceed as follows.

Definition 2 (Syncausality). Fix a run r. The syncausality relation � over
nodes of r is the smallest relation satisfying the following four conditions:
1. If t ≤ t′, then (i, t) � (i, t′);
2. If some message is sent at (i, t) and received at (j, t′) then (i, t) � (j, t′);

428 I. Ben-Zvi and Y. Moses

3. If i and j are connected by a channel with bound bij then (i, t) � (j, t + bij)
for all t; and

4. If (i, t) � (h, t̂) and (h, t̂) � (j, t′), then (i, t) � (j, t′).

Essentially, the first two clauses correspond to the local precedence and message
precedence steps of Lamport’s happened-before. Syncausality thus directly gen-
eralizes of happened-before. The third clause corresponds to timeout precedence.

2.1 Definition of Knowledge

We focus on a very simple logical language in which the set Φ of primitive
propositions consists of propositions occurred(e) and ND(e), where e is an event.
To obtain the logical language L, we close Φ under propositional connectives
and knowledge formulas. Thus, Φ ⊂ L, and if ϕ ∈ L and i ∈ P, then Kiϕ ∈
L.2 The formula Kiϕ is read process i knows ϕ. For ease of exposition, we
assume that processes have perfect recall so that, intuitively, their local state at
any time contains the full history of events that they have experienced. This
assumption is needed only for the analysis of Response problems, and can be
obtained by adding an auxiliary variable—only at the modeling stage and not
the implementation—keeping track of the local history.

For defining the meaning of knowledge formulas, we follow the framework of
[8]. The truth of formulas is evaluated with respect to a triple (R, r, t) consisting
of a set of runs R, a run r ∈ R, and a time t ∈ N, and we use (R, r, t) � ϕ
to state that ϕ holds at time t in run r, with respect to R. Denoting by ri(t)
process i’s local state at time t in r, we inductively define

(R, r, t) � occurred(e) if e occurs in r at a time t′ ≤ t;
(R, r, t) � ND(e) if e is an ND event in r and (R, r, t) � occurred(e); while
(R, r, t) � Kiϕ if (R, r′, t′) � ϕ for every run r′ satisfying ri(t) = r′i(t

′).

By definition, Kiϕ is satisfied at a point (r, t) if ϕ holds at all points of R
at which i has the same local state as at (r, t). Thus, given R, the local state
determines what facts are true.

3 Knowledge and Ordered Response

We can now prove that particular nested knowledge is a precondition to action
in OrR, formalizing and justifying the informal discussion in the introduction
of how performing response actions in OrR requires processes to obtain nested
knowledge.

Theorem 1. Let OR = OR(et, α1, . . . , αk) be an instance of OrR, and assume
that protocol P solves OR in γ s. Let r ∈ R s be a run in which et occurs, let
1 ≤ h ≤ k, and let th be the time at which ih performs action ah in r. Then

(R s, r, th) � Kih
Kih−1 · · ·Ki1occurred(et).

2 This is a simplified language for ease of exposition. In Section 5 we extend it to allow
for common knowledge.

On the Role of Time Bounds in Synchronous Systems 429

Theorem 1 implies that for the last action in an ordered response to be per-
formed, a nested knowledge formula stating that the last responder knows that
the previous one knows. . . that the first responder knows et. An analysis of when
this property can hold will uncover the communication structure required in ev-
ery run of an OrR protocol.

3.1 Causal Cones and Knowledge Gain

Having related the Ordered Response problem to knowledge, we now proceed to
develop a theory that will provide the link that is still missing, relating knowledge
and causality in synchronous systems. Lamport relates the happened-before re-
lation to light cones in Minkowski space-time [14]. In the same vein, it is natural
to consider past and future causal “cones” induced by syncausality. We define
the future causal cone of a node α to be fut(r, α) = {θ : α

r� θ}. Similarly,
the past causal cone of α is past(r, α) = {θ : θ

r� α}. Observe that the cones
induced by syncausality in synchronous systems are significantly larger than the
ones that follow just from Lamport’s happened-before relation. Moreover, just
as the future and past cones meet at the current point in space-time for light
cones, we can show:

Lemma 1. For all runs r ∈ R s and nodes α: fut(r, α) ∩ past(r, α) = {α}.

The first step in relating syncausality to knowledge in synchronous systems
comes from the observation that the events that occur in the past (syncausal)
cone of a node completely determine the local state at the node. A proof by
induction on all nodes (j, t′) with 0 ≤ t′ ≤ t shows:

Lemma 2. Let r, r′ ∈ R s. If past(r, (i, t)) = past(r′, (i, t)) and both runs agree
on the initial states, external inputs, and early receives at all nodes of past(r, (i, t)),
then ri(t) = r′i(t).

Since the knowledge of a process in R s is determined by its local state, Lemma 2
implies that this knowledge depends only on the past causal cone. In the asyn-
chronous setting, Chandy and Misra have shown that a process can know only
about events in its past causal cone [3]. This is not the case in synchronous sys-
tems. It is true, however, for events known to be nondeterministic: Indeed, we
can now state and prove using Lemma 2 the following knowledge gain theorem
for two processes:

Theorem 2 (2-process Knowledge Gain). Assume that e takes place at
(i0, t) in r ∈ R s = R(P, γ s). If (R s, r, t′) � Ki1ND(e) then (i0, t) � (i1, t′).

The proof of Theorem 2 is obtained by constructing a run r′ indistinguish-
able to i1 at t′ from r in which no ND events occur outside past(r′, (i1, t′)) =
past(r, (i1, t′)). Theorem 2 captures a natural sense in which syncausality is a no-
tion of potential causality for the synchronous model. Recall that every external
input is, in particular, an ND event. Thus, Theorem 2 implies that knowledge
about the occurrence of an external input requires a syncausal connection. Thus,

430 I. Ben-Zvi and Y. Moses

by Theorem 1 it follows that in every run of an instance OR = OR(et, α1, . . . , αk)
there must be syncausal chains connecting the node (i0, t) at which et to each
of the nodes θh at which the responses αh are performed.

4 Bound Guarantees and Centipedes

Our purpose in this section is to formalize and generalize the examples in the
introduction, which dealt with a two-response instance of OrR, to obtain a
structural requirement for arbitrary instances of OrR. Before we do so, let us
revisit the issue of bounds on message transmission times. Recall that the bound
bij provides a guarantee on the pace at which messages from i will reach j.
We are sometimes interested in using these bounds to obtain upper bounds on
message chains (or syncausal chains) that may involve a path of channels in
the network, and not just one. It is natural, and will be useful, to define the
transmission distance between processes h and k, which we denote by D(h, k),
to be the minimal distance between h and k in the weighted graph consisting
of the communication network, in which edges (i, j) are assigned as weights the
bounds bij on transmission times. In particular, D(i, i) = 0 for all i ∈ P.

Intuitively, the examples in the Introduction demonstrated that without
explicit information about actual communication deliveries, knowledge that a
syncausal chain from an ND event has reached a destination node cannot be
obtained before time equal to or exceeding the transmission distance from the
source to destination has transpired. It is convenient to relate nodes by bound
guarantees based on transmission distances as follows:

Definition 3. We write (i, t) � (j, t′) if t′ ≥ t + D(i, j).

Observe that bound guarantees are independent of the speed at which messages
actually arrive; they depend only on the weighted network topology. This is why
it may be possible to know that a delivery has taken place based on the send
event and the bound guarantees, without requiring further direct proof. As we
shall see, if anyone knows at time t′ that (i, t) � (j, t′) without obtaining syn-
causal information about early receives in the syncausal chain from (i, t) to (j, t′),
then necessarily (i, t) � (j, t′). Bound guarantees tie in with syncausal chains
to determine the information structure that must underly solutions to ordered
response. In fact, we now define a structure consisting of a careful combination
of � and � relations, that, in a precise sense, captures knowledge gain and
ordering of events in synchronous systems.

Definition 4 (Centipede). Let r ∈ R s, let ih ∈ P for 0 ≤ h ≤ k and let
t ≤ t′. A centipede for 〈i0, . . . , ik〉 in the interval (r, t..t′) is a sequence of nodes
θ0 � θ1 � · · · � θk such that θ0 = (i0, t), θk = (ik, t′), and θh � (ih, t′)
holds for h = 1, . . . , k − 1.

A centipede for 〈i0, . . . , ik〉 in the interval (r, t..t′) is depicted in Figure 3. In-
tuitively, every node θh+1 serves to ensure that its corresponding “leg” node
(ih+1, t

′) is causally affected, both by the origin node (i0, t), and by the node θh.

On the Role of Time Bounds in Synchronous Systems 431

Fig. 3

The node θh, in turn, ensures the existence of a shorter centipede. We emphasize
that the bound guarantee in θh � (ih, t′) does not only (and will typically not)
stand for causality based on unsent messages. Rather, it also stands for the fact
that the information available at θh guarantees that ih has enough time to learn
by time t′ about the part of the centipede to its left. This inductive structure
underlies the close relationship the we will show between centipedes and knowl-
edge gain. Observe that the shaded lines in Figure 2(b) outline an underlying
1-legged centipede.

We remark that, since both � and � are reflexive, it is possible for adjacent
θj ’s to coincide. Moreover, it is possible (in fact, probably quite common) for θh

to occur at the same site ih, with its “leg” (ih, th) in many cases. Indeed, every
simple (Lamport-style) message chain gives rise to a centipede of a simple form in
which all internal nodes θh are co-located in this sense with their respective legs
(ih, th). It follows that a centipede is a natural, albeit nontrivial, generalization
of a Lamport-causal chain. We can now show that a centipede is a necessary
condition for knowledge gain in synchronous systems:

Theorem 3 (Centipede Theorem). Let P be an arbitrary protocol, and let
r ∈ R s = R(P, γ s). Moreover, assume that e is an ND event at (i0, t) in r. If
(R s, r, t′) � Kik

Kik−1 · · ·Ki1ND(e), then there is a centipede for 〈i0, . . . , ik〉 in
(r, t..t′).

The proof of Theorem 3 is based on a nontrivial and subtle knowledge-based
analysis of the interaction between bound guarantees and syncausality. Combin-
ing the Centipede Theorem with Theorem 1 we can obtain:

Corollary 1. Let P be a protocol solving OR = OR(et, α1, . . . , αk) in γ s, and
assume that et occurs at (i0, t) in r ∈ R s. If ik performs ak at time t′ in r then
there is a centipede for 〈i0, . . . , ik〉 in (r, t..t′).

5 Simultaneous Response and Centibrooms

In synchronous systems it is often desirable to perform actions simultaneously at
different sites. A natural variant of OrR is the Simultaneous Response problem,
defined as follows.

432 I. Ben-Zvi and Y. Moses

Definition 5 (Simultaneous Response [SiR]). Let et be an external input.
Then SR = SR(et, α1, . . . , αk) defines an instance of the Simultaneous Response
problem. A protocol solves SR if it guarantees that if the triggering event et
occurs, then at some later point all actions α1,. . . ,αk in the response set of SR
will be performed simultaneously.

As in the case of ordered response, we can obtain insight into the structure of
simultaneous response via knowledge theory. The state of common knowledge
has been shown to play an important role in agreements and in coordinating
simultaneous actions [12,7,8]. Common knowledge, however, involves knowledge
about knowledge for unbounded depths. To formally treat common knowledge,
we extend our logical language L by adding the operators EG (everyone in G
knows) and CG (the processes in G have common knowledge that) for every
G ⊆ P. Thus, if ϕ ∈ L then so are EGϕ and CGϕ. We use (EG)k as shorthand
for nesting k levels of EG. The definition of satisfaction for formulas is now
extended by the following clauses:

(R, r, t) � EGϕ if (R, r, t) � Kiϕ for every i ∈ G; and
(R, r, t) � CGϕ if (R, r, t) � (EG)kϕ for every k ≥ 1.

In the terminology of [8], the responses α1, . . . , αk in an instance of SiR induce
a perfectly coordinated ensemble of events in R s. Using Proposition 11.2.2 of [8]
we can conclude that common knowledge of the occurrence of triggering event et
must hold before the responses can be performed in SiR:

Theorem 4. Let SR = SR(et, α1, . . . , αk) be an instance of SiR, and assume
that protocol P solves SR in γ s. Moreover, G = {i1, . . . , ik} be the set of processes
appearing the response set of SR. Finally, let r ∈ R s be a run in which et occurs.
If the responses are performed at time t in r, then (R s, r, t) � CGND(et).

As we now show, the Centipede Theorem can be extended to show an analogous
result for common knowledge, with the centipede replaced by a simpler structure,
defined as follows:

Fig. 4

Definition 6 (Centibroom). Let t ≤ t′ and G ⊆ P. There is a centibroom
Br〈i0, G〉 in (r, t..t′) if there is a node θ satisfying (i0, t) � θ � (ih, t′) for
all ih ∈ G.

On the Role of Time Bounds in Synchronous Systems 433

A pictorial depiction of a centibroom is given in Figure 4. The node θ is called
the pivot of the centibroom. Observe that a pivot node embodies a “pivotal
event” for the group G of processes: This pivot makes it possible, in principle,
to guarantee that all members of G will know by time t′ of the existence of this
pivot for time t′.

Clearly, centibrooms are simpler structures than general centipedes. Notice,
however, that a centibroom for G = {j1, . . . , j�} can be considered as a con-
densed representation of infinitely many centipedes, each of which can support
knowledge gain of a particular formula. More concretely, we have the following.

Lemma 3. Let G ⊆ P, and let θ be a pivot node for Br〈i0, G〉 in (r, t..t′). Then
for every sequence 〈i1, . . . , ik〉 ∈ Gk of processes in G, the sequence (i0, t) · θk

(where θ repeats k times) is a centipede for 〈i0, . . . , ik〉 in (r, t..t′).

Notice that Lemma 3 does not bound the value of k, nor does it restrict the
possibility of repetitions in the sequence 〈i1, . . . , ik〉 in question. Given the cen-
tipede Theorem, it seems natural to conjecture that a centibroom is a candidate
to serve as the structure underlying common knowledge. We now show that this
is indeed the case.

Theorem 5 (Common Knowledge Gain). Let P be an arbitrary protocol,
let G ⊆ P, let R s = R(P, γ s), and let r ∈ R s. Moreover, assume that e is an ND
event at (i0, t) in r. If (R s, r, t′) � CGND(e), then there is a centibroom Br〈i0, G〉
in (r, t..t′).

The proof of Theorem 5 is based on the Centipede Theorem. Recall that CGϕ
implies arbitrarily deeply nested knowledge of ϕ. Every such nested knowledge
formula implies the existence of a centipede. A nested knowledge formula is
constructed whose centipede has sufficiently many nodes that at least one of
them must be a pivot for G at t′. What results is the desired centibroom.

The pivot node in a centibroom embodies a “pivotal event” for the group G
of processes. Theorem 5 shows that such a pivotal event is the only way common
knowledge can arise in synchronous systems. This demonstrates that the nature
of common knowledge is finitistic, despite its familiar definition being based on an
infinite conjunction of facts. This phenomenon is consistent with the analysis of
common knowledge in the work on fault-tolerance [6,19,17]. There, too, common
knowledge arises at some time t′ exactly if there is some property S of the correct
nodes that ensures that all agents will know by time t′ that the property S held
in the run.

We remark that Theorem 5 relates to a familiar situation involving the evolu-
tion of knowledge in broadcasts. In a flooding protocol or a radio broadcast, for
example, the contents being broadcast become common knowledge to a grow-
ing set of participants with time. Typically, after a time interval equivalent to
the diameter of the system, the contents can become common knowledge to all
processes in the system.

As in the case of Ordered Response, we can use Theorem 5 relate the Simul-
taneous Response problem SiR and centibrooms, as follows:

434 I. Ben-Zvi and Y. Moses

Corollary 2. Let P be a protocol solving SR = SR(et, α1, . . . , αk) in γ s, and
assume that et occurs at (i0, t) in r ∈ R s. If the response actions are performed
at time t′ in r, then there is a centibroom Br〈i0, G〉 in (r, t..t′).

6 Conclusions

We have performed an analysis of causality in synchronous systems, where pro-
cesses share a global clock and channels have bounded transmission times. We in-
troduced the Ordered Response and Simultaneous Response problems, as natural
coordination tasks in a distributed system. They involve natural forms of tempo-
ral and simultaneous coordination in any given context. While in asynchronous
systems we have, via Lamport’s relation, that causality requires message chains,
causality has a richer structure in the synchronous setting. First of all, timeouts
allow information flow via non-messages. This gives rise to syncausal chains,
which consist of sequences of messages and timeouts. But syncausal chains do
not tell the full story of causality in synchronous systems. We showed that guar-
anteeing that one event happens before another does not depend on a linear
structure of information flow. Rather, the centipede structure, consisting of a
restricted tree form combining syncausality and bound guarantees, is at the
base of temporally ordering events under synchrony. Similarly, centibrooms are
at the essence of simultaneous coordination in synchronous systems.

Our results all hold in particular in the case in which bij =∞ for all channels,
so that communication is asynchronous (although processes share the global
clock and can move at each step). Because communication is asynchronous,
bound guarantees are useless in this setting. Syncausality reduces to Lamport’s
happened-before, all possible centipedes collapse to message chains, and cen-
tibrooms do not exist. Thus, our results also apply to such contexts, reproving
Chandy and Misra’s Knowledge-gain theorem in a slightly more general setting.
Asynchrony of communication alone suffices for this type of implosion.

Our theorems provide necessary conditions for information flow based on syn-
causality. How knowledge actually evolves in a system will depend on the partic-
ular protocol used. For example, a timeout at t + bij is ineffective if the protocol
would never have the “sender” i send a message at time t. Alice can learn by tim-
ing out on Susan’s message in Example 3 only because, had Susan not obtained
confirmation of Charlie’s deposit, she would have sent a message at t + 2. The
protocol used plays a crucial role in this knowledge transfer. As a first study of
the role that protocols play in determining information flow in the synchronous
contexts γ s, we analyze the full-information protocol in a follow-on paper [2].
The necessary conditions in this paper’s theorems are necessary and sufficient
in that case. It follows that our characterization of coordination in terms syn-
causality, centipedes, and centibrooms is, in a precise sense, tight.

In future work we plan to study causality and coordination in a similar fash-
ion for other models with synchronous features. Perhaps the most urgent would
be a study of semi-synchronous systems in which clocks are private, and may
drift over time. Some of our ideas regarding timeouts, syncausality and bound

On the Role of Time Bounds in Synchronous Systems 435

guarantees should have suitably modified analogues in such contexts. But addi-
tional issues may also be also be involved there, knowledge about the current
level of synchronization, and about other processes’ knowledge regarding clocks.
Our work proves that outside the realm of asynchronous systems causality and
the ordering of events involve more than Lamport’s happened before relation.
The theory of causality beyond asynchronous systems and Lamport’s happened
before promises to be rich and interesting.

Acknowledgments. We thank Danny Dolev, Idit Keidar and Ayelet Shiri for
useful discussions that improved the presentation. Special thanks to Moshe Vardi
for suggesting the term centibroom.

This research was supported in part by ISF grant 1339/05.

References

1. Aumann, R.J.: Agreeing to disagree. Annals of Statistics 4(6), 1236–1239 (1976)
2. Ben-Zvi, I., Moses, Y.: Sufficient conditions for knowledge gain and information

flow in synchronous systems (2010) (in preparation)
3. Chandy, K.M., Misra, J.: How processes learn. Distributed Computing 1(1), 40–52

(1986)
4. Clark, H.H., Marshall, C.R.: Definite reference and mutual knowledge. In: Joshi,

A.K., Webber, B.L., Sag, I.A. (eds.) Elements of Discourse Understanding. Cam-
bridge University Press, Cambridge (1981)

5. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on
Information Theory 22(5), 644–654 (1976)

6. Dwork, C., Moses, Y.: Knowledge and common knowledge in a Byzantine environ-
ment: crash failures. Information and Computation 88(2), 156–186 (1990)

7. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Common knowledge revisited.
In: Proc. 6th TARK, pp. 283–298. Morgan Kaufmann, San Francisco (1996)

8. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge.
MIT Press, Cambridge (2003)

9. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM Journal on Computing 18(1), 186–208 (1989)

10. Grice, H.P.: Logic and conversation, pp. 41–58 (1975)
11. Hadzilacos, V., Halpern, J.Y.: Message-optimal protocols for byzantine agreement.

Mathematical Systems Theory 26(1), 41–102 (1993)
12. Halpern, J.Y., Moses, Y.: Knowledge and common knowledge in a distributed

environment. Journal of the ACM 37(3), 549–587 (1990)
13. Krasucki, P.J., Ramanujam, R.: Knowledge and the ordering of events in dis-

tributed systems (extended abstract). In: Proc. 5th TARK, pp. 267–283. Morgan
Kaufmann, San Francisco (1994)

14. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM 21(7), 558–565 (1978)

15. Lewis, D.: Convention, A Philosophical Study. Harvard University Press, Cam-
bridge (1969)

16. McCarthy, J., Hayes, P.J.: Some philosophical problems from the standpoint of
artificial intelligence. In: Michie, D. (ed.) Machine Intelligence, vol. 4, pp. 463–502.
Edinburgh University Press, Edinburgh (1969)

436 I. Ben-Zvi and Y. Moses

17. Mizrahi, T., Moses, Y.: Continuous consensus via common knowledge. Distributed
Computing 20(5), 305–321 (2008)

18. Moses, Y., Bloom, B.: Knowledge, timed precedence and clocks. In: Proc. 13th
ACM Symp. on Principles of Distributed Computing, pp. 294–303 (1994)

19. Moses, Y., Tuttle, M.R.: Programming simultaneous actions using common knowl-
edge. Algorithmica 3, 121–169 (1988)

20. Moses, Y.: Knowledge and communication: a tutorial. In: Proc. 4th TARK, pp.
1–14. Morgan Kaufmann, San Francisco (1992)

21. Parikh, R.: Finite and infinite dialogues. In: Moschovakis, Y.N. (ed.) Logic from
Computer Science, MSRI Publication No. 21, pp. 481–497. Springer, Heidelberg
(1991)

22. Parikh, R., Krasucki, P.: Levels of knowledge in distributed computing.
Sādhanā 17(1), 167–191 (1992)

23. Patt-Shamir, B., Rajsbaum, S.: A theory of clock synchronization (extended ab-
stract). In: Proc. 26th ACM STOC, pp. 810–819 (1994)

24. Rabin, M.O.: How to exchange secrets with oblivious transfer. Cryptology ePrint
Archive, Report 2005/187 (2005), Originally written in (1981)

On the Power of Non-spoofing Adversaries

H.B. Acharya1 and Mohamed Gouda1,2

1 Department of Computer Science
University of Texas at Austin

2 National Science Foundation
{acharya,gouda}@cs.utexas.edu

Abstract. One of the fundamental concepts in network security is the
active adversary. Such an adversary is defined, in the classic paper by
Dolev and Yao, as an adversary that (in addition to eavesdropping pas-
sively), can “impersonate another user and ... alter or replay the mes-
sage”. Thus, the original definition of an active adversary includes the
ability to spoof (lie about its identity). In this paper, we study the spe-
cial case of active adversaries who are restricted from spoofing. As in
the original study by Dolev and Yao, the motivation of our adversary
is to break the confidentiality of the message being transmitted using a
cascade protocol (a protocol in which neither sender nor receiver name
stamps the messages they send). We prove a very surprising result: our
weaker adversary, who is restricted from spoofing, is in fact exactly as
powerful as the unrestricted Dolev-Yao adversary with respect to the
goal of breaking confidentiality of cascade protocols.

1 Introduction

Public-key encryption is widely used to secure network communication. As Need-
ham and Schroeder [12] as well as Dolev and Yao [6] point out, these systems
can be attacked by “active” adversaries that can, in addition to listening pas-
sively,“impersonate another user and ... alter or replay the message”.

In recent years, there has been substantial research on guaranteeing the au-
thenticity of packet information. IPsec [10] and hop integrity [9] are two impor-
tant examples of signing packets. Cryptographic signatures are computationally
expensive, so other groups have developed other anti-spoofing safeguards. The
most popular approach is packet filtering (notably ingress filtering [7], Martian
address filtering [1], forwarding-table based filtering, route-based distributed fil-
tering [13], and Source Address Validity Enforcement [11]). A similar approach,
packet tracing, involves observing traffic at routers and reconstructing a packet’s
actual path [2]. Network intrusion detectors such as DECIDUOUS [4] can also
be used to locate an adversary.

Given this wide range of tools against spoofing, it becomes reasonable to
assume that in many cases the active adversary is no longer able to “impersonate
another user”. How much of the power of Dolev and Yao’s active adversary is
lost when it cannot spoof?

N.A. Lynch and A.A. Shvartsman (Eds.): DISC 2010, LNCS 6343, pp. 437–449, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

438 H.B. Acharya and M. Gouda

In this paper, we study the power of a non-spoofing adversary to break the
security of cascade protocols, as studied in the original paper that defines active
adversaries [6]. We obtain an extremely surprising result: if the aim of the ad-
versary is to compromise confidentiality, then there is no difference whatsoever
between the power of an adversary that can spoof and an adversary that cannot.
If a protocol can protect the confidentiality of a message from a non-spoofing
adversary, it will also resist an adversary that can spoof.

In this paper, we first provide a proof of the above statement for the simple
case of two-step cascade protocols. Next, we prove the result that the security
of a general k-step cascade protocol is equivalent to the security of a set of
two-step cascade protocols. Formally, we demonstrate how to convert any given
k-step cascade protocol P into a set of two-step cascade protocols P{}, such that
P can be broken by adversary X iff P{} can be broken by X . (We define a set
of protocols to be broken by an adversary iff at least one of the protocols in the
set is broken by the adversary.) Note that, iff P can be broken by a spoofing
adversary A, P{} can be broken by A also. By definition, there exist one or more
two-step cascade protocols in P{} that can be broken by A. But by our first
result, as these are two-step cascade protocols, they are also broken by a non-
spoofing adversary Z. In other words, iff P is broken by a spoofing adversary A,
P{} is also broken by the non-spoofing adversary Z. Applying the equivalence of
P and P{} again, we find that this means P is broken by Z. This concludes our
proof.

The next section introduces our notational and conceptual conventions.

2 Users and Adversaries

In this paper, we have used the lambda-calculus convention of representing the
application of a function to an argument, so F (X) is written FX . However, we
assume right-associativity: FGX represents F (G(X)) (unlike lambda calculus,
where FGX means H(X) where H = F (G)).

As FX means F (X), in order to represent concatenation, we use the comma
operator. “F concatenated with X” is written F, X .

A user is a process with a unique identifier such as I, J or K. The users are
connected by a communication network, and can send messages to each other.
The protocol followed by such messages, in order to ensure their confidentiality,
is the focus of this paper.

The users of a protocol form a public key system.

1. Every user X has two functions:
(a) The public key function BX

(b) The private key function RX

Both BX and RX map finite binary sequences (i.e. numbers) to finite binary
sequences.

2. The pairs (X, BX) are available to all users.
3. RX is known only to X .
4. BX and RX satisfy the conditions

On the Power of Non-spoofing Adversaries 439

– ∀M, BXRXM = RXBXM = M .
– It is cryptographically hard to obtain M from BXM without access to

RX .
Note that the second condition forces every user X to have distinct BX as
well as RX . (Otherwise, let BI = BJ . As J has access to all public keys, it
knows this. Now J can deduce that RJBIM = M , so it can obtain M from
BIM .)

The only operations users can employ are their public and private key functions.
Note that it is not possible to distinguish whether it is encryption or decryption
which is being applied to an argument, unless the argument is known. For in-
stance, suppose user I applies BI to the argument M ; this is an encryption. But
if I applies BI to RIM , it is a decryption.

However, several layers of these operations can be applied. For instance, user
I has access to the key RI and all keys BX (where X is any user), so from
M it can generate RIBJBIM . Such a combination of operations is called a key
sequence.

Adjacent matching public and private key functions in a key sequence cancel
each other out. So for instance, RIBJRJBIM = RIBIM = M . A key sequence
with no such adjacent matching pairs is called a simple key sequence. Reducing a
key sequence to a simple key sequence by recursively removing all such matching
pairs is called simplification.

The adversary is a valid user in the protocol system, whose motive is to obtain
the message M being communicated between two other users (say I and J). In
this paper, we consider two models of adversary:

1. The “classic” Dolev-Yao adversary A.
2. The “non-spoofing” adversary Z.

The adversary A can perform the following actions:

1. A can obtain any message passing through the network.
2. As a legitimate user, A can send any message to any other user in the net-

work. In particular, A can send messages to I with a fake source address
stating the message is from J , and similarly, can send messages to J pre-
tending to be I. Of course, it can also send messages that claim, honestly,
that they are from A.

3. A has a private key function RA, and access to the public key functions of
all the other users in the system. It can apply any key sequence composed
of these keys, to any message it obtains.

A has the following restrictions to its power:

– A cannot break the cryptography used. For instance, it cannot extract M
from BIM without obtaining RI .

– A cannot tamper with the public information. For instance, it cannot cause,
say, I to think BA is the value of BJ .

440 H.B. Acharya and M. Gouda

A can obtain messages, apply its own keys, and send messages to any user with
its own or a different source address. Hence, as A can masquerade as another
user (spoof), we refer to it as a spoofing adversary.

Adversary Z is identical to A, but has one more restriction on its power : it
is a valid user of the system, and can obtain messages, apply its own keys, and
send messages to any user, but such messages bear the true source address. Such
an adversary cannot spoof, i.e. lie about its identity in a message; hence it is
called a non-spoofing adversary.

In the next section, we describe the simple family of two-step cascade proto-
cols; section 4 shows that A and Z are equivalent with respect to their power to
break the security of these protocols.

3 Two-Step Cascade Protocols

In this section, we discuss a simple class of cascade protocols, consisting of only
two steps : a request and a reply. The objective of such a protocol is to transmit
a secret message (the plaintext) M between two users. This is a simplification
of the general theory for k-step cascade protocols developed in [6].

A two-step cascade protocol is defined by two sets of key sequences aXY and
bXY .

aXY ∈ {RX , BX , BY }∗

bXY ∈ {RY , BX , BY }∗

where X and Y are any two users. In practice, X and Y are distinct (there is
no reason why a user should send messages to itself).

The protocol has the property of being uniform: the key sequences have the
same structure, irrespective of which users are trying to communicate. For in-
stance, suppose aIJ = RIBJBJ ; then in this protocol, aKL = RKBLBL. Note
that it is not necessary that aXY = aY X or bXY = bY X .

The first class of messages in the protocol, the request, has the form

X → Y : X, aXY M, Y

The only part of the message that is encrypted is the plaintext. Source and
destination are sent in the clear.

The second class of messages, the reply, has the form

X ← Y : Y, bXY aXY M, X

Note that bXY is applied to the entire sequence aXY M and not to the original
message M .

A well-known example of such a protocol is due to Diffie and Hellman [5].

I → J : I, BJRIM, J

I ← J : J, BIRJBIRJBJRIM, I

= J, BIRJM, I

We observe that aXY = BY RX and bXY = BXRY BXRY in this protocol.

On the Power of Non-spoofing Adversaries 441

3.1 Conditions for Security

For a protocol to be secure, the adversary should not be able to extract the message
plaintext M . (Note that, in this paper, we only consider attacks on confidentiality,
and not on other measures of security such as freshness and integrity. For example,
we do not care if A obtains messages by intercepting them instead of eavesdrop-
ping. We are also not concerned by attacks in which A generates and injects new
messages into the system impersonating another user.)

We call the entire key sequence applied to the plaintext in a message the guard
of the message. The adversary should not be able to remove the entire guard if
the message is secure.

We now provide an example of a successful attack. Suppose I and J are using
the Diffie-Hellman protocol shown in the previous section. A breaks the security
in the following way :

1. A captures the first message, BJRIM .
2. A uses the protocol to send this message to J as a new “request” and receives

the corresponding “reply” in return.

A→ J : A, BJRIM, J

A← J : J, BARJBARJBJRIM, A

= J, BARJBARIM, A

3. A applies the key sequence BIRABJRA to the payload, obtaining M .

This attack proves that the Diffie-Hellman protocol which we presented in the
previous section is clearly not secure.

However, an interesting feature of cascade protocols is that there exist clear
necessary and sufficient conditions for the security of a cascade protocol. These
conditions are derived in [6]; we will briefly discuss them below.

ΣA = RA ∪ {∀X : BX} is the library of keys user A has access to.
ΠA = {∀X : bAX} is the library of key sequences user A can indirectly cause

to be applied to a message. This is because, if A sends a message M1 as a request
to I, it receives bAIM1 as the reply.

Communication between users I and J using protocol P :

I → J : I, aIJM, J

I ← J : J, bIJaIJM, I

is secure from attack by adversary A if (and only if) there exists no sequence
a′

IJ with both the following properties:

– a′
IJ is composed only of keys and key sequences which the adversary A can

cause to be applied to a message, i.e.

a′
IJ ∈ (ΣA ∪ΠA)∗

– The simplified key sequence a′
IJaIJ is the empty key sequence, i.e. a′

IJaIJM =
M .

442 H.B. Acharya and M. Gouda

(Note that there is no need to separately state that the adversary should also not
be able to remove bIJaIJ , the guard of the reply message. This requirement is
covered by the non-existence of a′

IJ defined above. The reason for this asymmetry
is that bIJ ∈ Π , i.e. the adversary can apply bIJ to a message. To see how, note
that the adversary can send aIJM to J , pretending to be I, and obtain bIJaIJM .

Now, consider the case that there exists a key sequence cIJ such that the
adversary can apply cIJ , and cIJbIJaIJM = M . But in this case, there clearly
exists a sequence a′

IJ : a′
IJ = cIJbIJ . Thus, the condition that the adversary A

should not be able to remove the guard of the reply is subsumed by the condition
that A should not be able to remove the guard of the request.)

Protocol P is secure from adversary A iff, for all possible choices of I, J, and
A (given A is not I or J), communication between users I and J using P is
secure from attack by A.

In the next section, we study the security of two-step cascade protocols from
both adversaries A and Z defined in the previous section.

4 Security of Two-Step Cascade Protocols

The actions available to the spoofing adversary A are a proper superset of the
actions available to a non-spoofing adversary Z, so A is clearly at least as pow-
erful as Z. In this section, we prove the very interesting result that the converse
also holds: Z is as powerful as A, with respect to the goal of attacking a two-step
cascade protocol.

Theorem 1. A non-spoofing adversary and a spoofing adversary are equivalent
in power with respect to the goal of breaking the confidentiality of a two-step
cascade protocol.

Proof. We begin our proof by noting that the spoofing adversary A is at least
as powerful as the non-spoofing adversary Z. If protocol P cannot be broken by
A, then both A and Z are (equally) ineffective attacking it.

To prove that Z is also as powerful as A, we demonstrate that any protocol
P that can be broken by A can also be broken by Z.

The necessary and sufficient conditions to ensure that P cannot be broken by
A are given by Theorem 1 of Dolev and Yao [6]:

1. aIJ contains either BI or BJ .
2. If bIJ has RJ then it also has BJ .

As A can break P , one of these conditions must be false. We now demonstrate
that, if either of these two conditions does not hold, then Z can extract message
M from the message aIJM , breaking protocol P .

1. Consider the case that aIJ has neither BI nor BJ .
In this case, aIJ is composed of RI .
As BI is a public key, it is available to Z. Thus Z can remove any guard
composed of RI .
Hence Z can obtain M from the message aIJM .

On the Power of Non-spoofing Adversaries 443

2. The second possible case where P is insecure occurs when bIJ is composed
of RJ and BI only.
We begin by observing two facts.
First, for any Gx, the keys in every sequence Gx are constrained to be RI ,
BI , or BJ . In particular, there are three possible values for the left-most key
in Gx.
Second, bZJ is simply bIJ , with BZ substituted for BI . In other words,
bZJ is composed of RJ and BZ only. But Z has RZ and BJ . Thus, if any
subsequence of bZJ (including bZJ itself) occurs as the outermost sequence
of keys in a guard, Z can remove this sequence.
We now present the attack Z can use to compromise protocol P .
Note that aIJ is a key sequence of finite length (say, of length n).
We introduce the symbols Gn, . . .G1, G0. Gx means the suffix of aIJ , which
has length x. Thus Gn = aIJ , ... G0 is the empty sequence.
Furthermore, G0 is a proper suffix of G1, G1 is a proper suffix of G2, etc.
We show that, given any GxM , 0 ≤ x ≤ n, adversary Z can always remove
at least one of the left-most keys to obtain GyM , 0 ≤ y ≤ x.
Let the k + 1 right-most elements in bIJ be . . .RJBk

I . (k ≥ 0. Note that, for
the protocol to be insecure, it is guaranteed that there must be at least one
RJ in the key sequence bIJ .)
(a) If the left-most element in GxM is RI , then Z can remove this RI since

Z has BI .
(b) If the left-most element in GxM is BJ , then Z first applies the key

sequence Rk
Z to GxM . Next, Z (stating its true identity as Z) initiates

protocol P with J :

Z → J : Z, Rk
ZGxM, J

Z ← J : J, bZJRk
ZGxM, Z

bZJ is the same as bIJ , except that each occurrence of BI is replaced by
BZ . In particular, its right-most k+1 elements are RJBk

Z . This sequence
cancels out the k+1 leftmost elements in Rk

ZGxM (recall these elements
were Rk

ZBJ).
Adversary Z then removes all remaining elements of bZJ forming the
outermost key sequence in the reduced bZJRk

ZGxM . The resulting GyM
is shorter (at least one element shorter) than GxM .

(c) If the left-most element in GxM is BI , then by symmetry Z simply
follows the same attack detailed in the item above. Z applies Rk

Z , then
initiates protocol P with I, and so on. (Note that this algorithm removes
BK for any K that Z communicates with. In the previous item, we used
K = J ; here K = I. The working is identical.)

This concludes our proof of the fact that Z can always remove at least the
left-most element from the guard Gx of GxM .
But the length of the original guard Gn is finite. By well ordering, it is
not possible to have an infinite chain of the form GnM, Gn−1M, Gn−2M . . .
without eventually reaching G0M , i.e. M . Hence, at some point, Z will obtain
M .

444 H.B. Acharya and M. Gouda

Hence, we conclude that Z is as powerful as A in compromising the confiden-
tiality of two-step cascade protocols.

5 Security of k-Step Cascade Protocols

In this section, we generalize our study of two-step cascade protocols to k-step
cascade protocols where k ≥ 2. Such protocols consist of repeatedly sending
messages back and forth between two users. (Note that we assume the traditional
“ping-pong” model of cascade protocols, where only two users pass the message
back and forth and apply layers of encryption and decryption.)

We begin by defining the following protocol used by I and J to securely
communicate the confidential message plaintext M .

I → J : I, g1
IJM, J

I ← J : J, g2
IJg1

IJM, I

I → J : I, g3
IJg2

IJg1
IJM, J

. . .

I → J : I, gk
IJgk−1

IJ ...g1
IJM, J

The initial step consists of encrypting the plaintext with a key sequence (in this
case g1) and sending the result to another user. In each subsequent step, a key
sequence is applied to the entire message received in the step before. The result
of the operation is sent to the other user.

This subsequent step is repeated until the total number of messages reaches
k. Note that, although in the example k is odd, in general k may also be even,
in which case the final message is of the form

I ← J : J, gk
IJgk−1

IJ ...g1
IJM, I

For convenience, we assume for the remainder of this section that the two legit-
imate users communicating are always I and J . This allows us to use the clean
notation g1, g2 . . . as shorthand for the hard-to-read g1

IJ , g2
IJ

If we consider any two consecutive steps (say steps l and l+1) of the protocol,
they must be of one of the two forms

I → J : I, gl...g1M, J

I ← J : J, gl+1gl...g1M, I

or

I ← J : J, gl...g1M, I

I → J : I, gl+1gl...g1M, J

The first form results when l is odd, and the second when l is even.

On the Power of Non-spoofing Adversaries 445

The first form is obviously a two-step cascade protocol in its own right, with
aIJ = gl...g1 and bIJ = gl+1. For the second form, rewriting it as

J → I : J, gl...g1M, I

J ← I : I, gl+1gl...g1M, J

shows clearly that it is also a two-step cascade protocol with aJI = gl...g1 and
bJI = gl+1. (Note that in this case, J issues the request and I the reply; thus,
we use aJI instead of aIJ and bJI instead of bIJ .)

From these observations, we can conclude the following lemma :

Lemma 1. Any two consecutive steps of a k-step cascade protocol constitute a
valid two-step cascade protocol.

The set of all two-step cascade protocols “contained” in a k-step cascade proto-
col P is called the decomposition of P . There are k − 1 such two-step cascade
protocols, consisting of steps 1 and 2, 2 and 3 ... k − 1 and k.

The question naturally arises as to how the security of a k-step cascade proto-
col is related to the security of the elements of its decomposition. We now show
the very interesting result that, if we define a set of protocols to be secure iff all
the member protocols in the set are secure, then the security of a k-step cascade
protocol P and the security of its decomposition P{} are equivalent.

Theorem 2. A k-step cascade protocol P is secure iff every two-step cascade
protocol in its decomposition is secure.

Proof. We need to prove both directions - if and only if. To prove security, we
will again employ Theorem 1 of Dolev and Yao [6], which states that a cascade
protocol is secure iff it satisfies the following two conditions:

1. The first key sequence applied to the message plaintext (i.e. g1) must, in its
simplified form, contain either BI or BJ .

2. All key sequences that are subsequently applied must, in their simplified
forms, contain BI if they contain RI and BJ if they contain RJ .

The decomposition of protocol P is the set

P{} = {P1, P2, . . .Pk−1}

where Pl is the two-step cascade protocol formed by steps l and l + 1 of P .
To prove the “if” direction, suppose P is insecure even though P{} is secure.

As P is insecure, it must violate at least one of the two conditions given above.

1. Consider the case that P violates the condition 1 above. In this case, the
security is broken in the first step of P . As P{} is known to be secure, P1 is
secure.
g1 is the guard of the message in the first step of the secure protocol P1.
Thus by condition 1, g1 (in its simplified form) contains either BI or BJ .
g1 is also the first key sequence applied to the message plaintext in P . Hence
the first guard applied to M in P contains BI or BJ , i.e. P obeys condition
1. Thus we obtain a contradiction.

446 H.B. Acharya and M. Gouda

2. Suppose the security of P is broken in step no. l, where l > 1. (The first
step has been proved secure in the above item.) If it is broken in more than
one step, we choose the smallest l. If P violates condition 1, then the first
step is broken; as in this case we consider l > 1, it follows that P is insecure
because it does not satisfy the second condition of the theorem.
(a) If l is odd.

In this case, the simplified form of gl contains RI and not BI .
The second step of Pl−1 involves applying the key sequence gl. We know
that the simplified form of gl contains RI and not BI . Hence we see
that Pl−1 violates condition 2 - in other words, Pl−1 is insecure. But we
started with the assumption that P{} is secure, which of course requires
that the protocol Pl−1 is secure. Hence we have a contradiction.

(b) If l is even.
This case is exactly analogous to the one above.
The simplified form of gl contains RJ and not BJ . In other words, Pl−1
is insecure. But Pl−1 is known to be secure, as P{} is secure. Thus, we
obtain a contradiction.

As the assumption that P is insecure but its decomposition P{} is secure al-
ways leads to a contradiction, it must be impossible. Hence we conclude that, if
{P1, P2, . . . Pk−1} is secure, P must also be secure.

To prove the “only if” direction, suppose P is secure even though P{} =
{P1, P2, . . . Pk−1} is insecure.

Let l be the smallest value such that Pl is insecure. There are two ways in
which this can happen: violation of the first and of the second conditions of the
theorem above.

1. If Pl violates the first condition.
(a) Consider the case l = 1.

P is known to be secure.
g1 is the guard of the first message in secure protocol P .
Hence, by condition 1, g1 (in its simplified form) contains either BI or
BJ .
g1 is also the guard of the first message in P1. As g1 in its simplified
form contains either BI or BJ , P1 does not violate condition 1. This
contradicts our initial assumption that P1 violates the condition.

(b) Consider l > 1.
Pl is insecure because gl...g1 contains neither BI nor BJ .
In this case, the guard gl...g1 is composed of only RI and RJ . In other
words, an adversary can capture message gl...g1M and completely re-
move the guard to obtain plaintext M , using only the keys BI and BJ

(which are public keys).
This means that protocol P is also insecure as it has the message gl...g1M .
But protocol P is known to be secure - a contradiction.

2. If Pl violates the second condition.
This means that gl+1 contains RI but not BI , or RJ but not BJ .

On the Power of Non-spoofing Adversaries 447

(a) If l is even (so l + 1 is odd).
gl+1, which is applied by I, contains RI but not BI .
As l + 1 > 1, gl+1 is not the first key sequence applied to M in protocol
P . (g1 is this first key sequence.)
Consequently, if gl+1 contains RI but not BI , protocol P violates con-
dition 2 of Dolev and Yao, so it is insecure. But P is known to be secure
- a contradiction.

(b) If l is odd.
This case is exactly analogous to the one presented above.
gl+1 contains RJ but not BJ .
gl+1 is not the first key sequence applied to M in protocol P .
P is thus proven insecure by the Dolev-Yao theorem. This contradicts
our initial assumption that P is secure.

Therefore, the assumption that P is secure but its decomposition is insecure
always leads to a contradiction and must be impossible. Hence, given that P is
secure, {P1, P2, . . . Pk−1} is also secure.

As we have proved both the “if” and the “only if” directions, we conclude our
proof.

It is now simple to prove our main result.

Theorem 3. A non-spoofing adversary and a spoofing adversary are equivalent
in power with respect to the goal of breaking the confidentiality of a two-step
cascade protocol.

Proof. A set of protocols is secure iff every protocol in the set is secure. By
duality, we define a set of protocols to be broken by an adversary iff at least one
of the protocols in the set is broken by the adversary.

By Theorem 2, if (and only if) P can be broken by an adversary A, so can its
decomposition P{}. Let us consider that this successful adversary is a spoofing
adversary A.

As P{} is broken, we know that there must exist at least one member protocol
Pl ∈ P{} such that Pl is vulnerable to A. (If there are multiple vulnerable
members, we can choose any one at random).

But Pl is a two-step cascade protocol. By Theorem 1, Pl (and hence P{}) is
also broken by a non-spoofing adversary Z.

From Theorem 2, we conclude that P is also broken by Z.
As Z can break the confidentiality of protocol P in every case where A can,

Z is at least as powerful as A. It is known that A is at least as powerful as Z.
From these two statements, we conclude that A and Z have equivalent power.
This concludes our proof.

6 Conclusion

This paper presents a novel result concerning the security of cascade protocols,
as defined in the landmark paper of Dolev and Yao [6]. In the original definition

448 H.B. Acharya and M. Gouda

of an “active” adversary, the adversary is defined as having two novel powers:
impersonation, and altering or replaying messages. (This is in addition to the
powers of a “passive” adversary, i.e., eavesdropping and applying its own keys
to captured messages). As there now exist effective means to prevent spoofing,
we studied the effect on an active adversary if it is made unable to spoof. The
result was completely unexpected: if the aim of the adversary is to compromise
confidentiality, then a guarantee of no spoofing does not reduce the power of the
active adversary to compromise cascade protocols. As a component of our proof
of this theorem, we also obtain the independently interesting theorem that any
k-step cascade protocol can be decomposed into a set of two-step protocols, and
this set is equivalent in security to the original protocol.

We believe this result to be interesting because, while it is directly applicable
only to one particular class of protocols (namely cascade protocols), it allows us
to carry on a discussion of the powers of different kinds of adversaries. Clearly, the
scope for further research extends in two directions. In the first place, it would be
interesting to explore the relative power of adversaries that are restricted from
using one or more of the powers mentioned above. The other question raised
by our research is how the protocol model could be strengthened. Starting with
the simple model of cascade protocols, if we use more general protocol models,
at what point does the ability to spoof, for example, become non-redundant?
Thus, our adoption of a simple protocol model exposes several interesting lines
for further inquiry. In contrast, previous work, which began by assuming stronger
models such as namestamp protocols, yielded mostly negative results. For ex-
ample, it has been proven that namestamp protocols have no simple test for
security [3].

We propose, as an open problem, the generalization of this discussion (re-
garding the powers of different adversaries) to include more practical protocols.
Stated as a question, “How can the protocol model be strengthened so that it
remains possible to derive interesting results about the power of the adversary,
but the family of protocols covered by the model becomes broad enough to in-
clude protocols which are in practical use?” In our immediate future work, we
intend to explore one such stronger model: we are studying whether our results
continue to hold when cascade protocols are generalized to allow more than two
parties [8].

References

1. Baker, F.: Requirements for ip version 4 routers. RFC 1812 (1995)
2. Bellovin, S.: Icmp traceback messages. Internet Draft: draft-bellovin-itrace-00.txt

(2000)
3. Book, R., Otto, F.: On the security of name-stamp protocols. In: Third Conference

on Foundations of Software Technology and Theoretical Computer Science, vol. 39,
pp. 319–325 (1985)

4. Chang, H., Narayan, R., Wu, S., Vetter, B., Wang, X., Brown, M., Yuill, J., Sargor,
C., Jou, F., Gong, F.: Deciduous: decentralized source identification for network
based intrusions. In: Proceedings of the 6th IFIP/IEEE International Symposium
on Integrated Network Management (1999)

On the Power of Non-spoofing Adversaries 449

5. Diffie, W., Hellman, M.: Multiuser cryptographic techniques. In: Proceedings of
the AFIPS (1976)

6. Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Transactions
on Information Theory 29(2), 198–208 (1983)

7. Ferguson, P., Senie, D.: Network ingress filtering: Defeating denial of service attacks
which employ source ip address spoofing. RFC 2827 (2000)

8. Goldreich, O.: On the security of cryptographic protocols and cryptosystems. D.Sc.
Thesis, Technion. (1983)

9. Gouda, M.G., Elnozahy, E., Huang, C., McGuire, T.: Hop integrity in computer
networks. In: Proceedings of the 8th IEEE International Conference on Network
Protocols (2000)

10. Kent, S., Atkinson, R.: Security architecture for the internet protocol. RFC 2401
(1998)

11. Li, J., Mirkovic, J., Wang, M., Reiher, P., Zhang, L.: Save: Source address validity
enforcement protocol. In: Proceedings of IEEE INFOCOM (2002)

12. Needham, R., Schroeder, M.: Using encryption for authentication in large networks
of computers. Communications of ACM 2, 993–999 (1978)

13. Park, K., Lee, H.: On the effectiveness of probabilistic packet marking for ip trace-
back under denial of service attack. In: Proceedings of IEEE INFOCOM (2001)

Implementing Fault-Tolerant Services Using
State Machines: Beyond Replication

Vijay K. Garg�

Department of Electrical and Computer Engineering
The University of Texas at Austin

Austin, TX 78712-1084, USA

Abstract. This paper describes a method to implement fault-tolerant
services in distributed systems based on the idea of fused state machines.
The theory of fused state machines uses a combination of coding theory
and replication to ensure efficiency as well as savings in storage and mes-
sages during normal operations. Fused state machines may incur higher
overhead during recovery from crash or Byzantine faults, but that may
be acceptable if the probability of fault is low. Assuming n different
state machines, pure replication based schemes require n(f + 1) replicas
to tolerate f crash faults in a system and n(2f + 1) replicas to tolerate
f Byzantine faults. For crash faults, we give an algorithm that requires
the optimal f backup state machines for tolerating f faults in the sys-
tem of n machines. For Byzantine faults, we propose an algorithm that
requires only nf + f additional state machines, as opposed to 2nf state
machines. Our algorithm combines ideas from coding theory with repli-
cation to provide low overhead during normal operation while keeping
the number of copies required to tolerate f faults small.

1 Introduction

The replicated state machine approach is a general method for implementing a
fault-tolerant service by replicating servers and coordinating client interactions
with server replicas. This approach proposed by Lamport in [1,2] and further
elaborated by Schneider in [3] is considered the standard solution to the prob-
lem of fault-tolerance in distributed systems. Note that replication has been
considered wasteful in the context of fault-tolerance of data (in communication
and storage) for many decades, but in the distributed systems replication con-
tinues to be the dominant approach for fault-tolerance [4]. In this paper, we give
an alternate method for fault-tolerance that combines ideas from replication
with coding theory [5,6] to get main advantages of both the approaches. We use
(sufficient) replication to guarantee low overhead during normal operations and
coding theory to reduce the number of copies to get space and message savings.

� This research was supported in part by the NSF Grants CNS-0718990, CNS-0509024,
Texas Education Board Grant 781, SRC Grant 2006-TJ-1426, and Cullen Trust for
Higher Education Endowed Professorship.

N.A. Lynch and A.A. Shvartsman (Eds.): DISC 2010, LNCS 6343, pp. 450–464, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Implementing Fault-Tolerant Services: Beyond Replication 451

We depart from the standard model of fault-tolerance in distributed systems
in which the problem is to tolerate faults in functioning of a single state machine.
We will be concerned with fault-tolerance in a set of state machines where the
size of the set will usually be greater than one. While this assumption makes the
problem different from the usual set-up, we argue that our set-up is practically
useful. Any large system is generally constructed as a set of state machines rather
than a single monolithic state machine. Even when the server is constructed as
a single state machine, it is quite natural to have multiple instances of the state
machines deployed for different departments of the organization.

In this paper, we show how services in a distributed system can be made
fault-tolerant using fusion. Given n different state machines running on different
servers, we focus on tolerating f faults. We focus on two types of faults: crash
faults and Byzantine faults. For crash faults, faulty state machines lose their
state. We assume that crash faults are detectable and the problem that remains
is to recover the lost state of state machines. For Byzantine faults [7], the state
machine may go to an incorrect state spontaneously and the algorithm must
continue to provide correct responses to the client in spite of these faults.

For crash faults, we give a technique to construct additional f state machines
(called fused state machines) such that the system of n + f machines can tol-
erate crash of any f machines in the system. We illustrate our technique on
the resource allocation service from [3], a causal ordering algorithm [8] and a
distributed mutual exclusion algorithm [9]. The fused state machines use a com-
bination of erasure coding and replication to ensure that during normal opera-
tions, the message and computation overhead on primary state machines is close
to that for replicated state machines. The updates of fused state machines are
made efficient using linearity of erasure coding scheme employed and sufficient
replication.

For Byzantine faults, the problem of detection is harder from the perspective of
computation and communication complexity. Here we use a hybrid of replication
and coding theory. In particular, we give an algorithm that keeps the overhead
of the replicated state machine approach during normal operations but requires
only nf + f additional state machines (as opposed to 2nf state machines). Our
algorithm is based on the following observation that if there are f + 1 copies
of a state machine, then at least one of them is correct. In case of a fault, we
only need to determine which of these copies is correct. The traditional method
of keeping 2f + 1 copies (and then using majority) is wasteful for the task. We
introduce the notion of efficient liar detection based on fused state machines.
This allows us to prove the following main result in this paper (in Section 3).
Let there be n primary state machines, each with O(m) data structures. There
exists an algorithm with additional nf + f state machines that can tolerate f
Byzantine faults and has the same overhead as the Replicated State Machine
approach during the normal operation and additional O(mf + nt2) overhead
during recovery where t is the actual number of faults that occurred in the
system.

452 V.K. Garg

In our earlier work, we have given algorithms for fusible data structures. In
particular, [10] gives algorithms for arrays, stacks, queues, linked lists etc. to han-
dle crash faults. This work has been generalized to tolerate multiple crash faults
in [11]. In contrast, the goal of the current work is to focus on the differences
between the replicated state machine approach and the fused state machine ap-
proach and also tackle Byzantine faults. Furthermore, we show that our approach
is applicable to many distributed algorithms including a causal ordering algo-
rithm [8], and Ricart and Agrawala’s mutual exclusion algorithm[9]. For both of
these algorithms, we get n-fold savings in space. We also get savings in messages
for Ricart and Agarwala’s algorithm because of aggregation that is possible in
fused state machines. In [12], an algorithm has been provided to generate fused
finite state machines. That algorithm assumes that the state space of the pri-
mary machines is finite. In this paper, techniques are suitable even for infinite
state space.

In data storage and communication, coding theory is extensively used to re-
cover from faults. For example, RAID disks use disk striping and parity based
schemes (or erasure codes) to recover from the disk faults [13,14,15]. As another
example, network coding [16,17] has been used for recovering from packet loss or
to reduce communication overhead for multicast. In these applications, the data
is viewed as a set of data entities such as disk blocks for storage applications
and packets for network applications. Coding theory techniques [6] are oblivious
to the structure of the data. The details of actual operations on the data are
ignored and the codes are simply recomputed after any write update. To toler-
ate crash failures for servers, one can view the memory of the server as a set of
pages and apply coding theory to maintain code words. This approach, however,
may not be practical because a small change in data may require recomputation
of the backup for one or more pages. This results in a high computational and
communication overhead. We show in this paper that with data structure-aware
programming and partial state replication, backup machines can be designed so
that they provide fault-tolerance in an efficient manner.

2 Fusible State Machines

There are n deterministic primary state machines, P (i), where i ranges from 1
to n. Each state machine receives an input from the client (or environment). On
receiving the input, the state machine applies the state transition function to
change its state. The set of states and inputs may be infinite.

We require state machines to be deterministic just as required by the repli-
cated state machine approach. Given the state of a machine and the sequence
of inputs, the behavior of the state machine is required to be unique. This as-
sumption is crucial in both the replicated state machine (RSM) and the fused
state machine (fused-SM) approaches.

Throughout this paper we assume that channels are reliable and FIFO and
that there is a fixed upper bound for all message delivery. We also assume that
crashes of processes are reliably detected.

Implementing Fault-Tolerant Services: Beyond Replication 453

2.1 Event Counter

To concretize our discussion, we start with n simple state machines, P (i)’s,
shown in Fig. 1. Each of these n machines accept two types of input: entry(v)
and exit(v). These state machines may, for example, be counting the number
of people of type i entering a room. Each state machine has a variable count
with domain as non-negative integers. When P (i) receives an event entry(v), it
increments its count if v is equal to i and decrements it when it receives a similar
exit(v) event.

P (i) :: i = 1..n
int counti = 0;
On event entry(v):

if (v == i) counti = counti + 1;
On event exit(v):

if (v == i) counti = counti − 1;

F (j) :: j = 1..f
int fCountj = 0;
On event entry(i), for any i

fCountj = fCountj + ij−1;
On event exit(i) for any i

fCountj = fCountj − ij−1;

Fig. 1. Fusion of Counter State Machines

To tolearte f faults, the Replicated State Machine (RSM) approach requires f
additional state machines for each of P (i) resulting in the total of nf additional
state machines. For fusion, we add just f additional machines, F (1)..F (f) as
shown in Fig. 1. F (j) increases its count by ij−1 for any event entry(i) and
decrements by the same amount for exit(i). It can be seen that the fused-SM F (1)
tracks the sum of all counts. It increments the variable fCount1 on entry(i) for
any i and decrements it for any exit(i). F (2) maintains fCount2 =

∑
i i∗counti.

More generally, fCountj =
∑

i ij−1 ∗ counti for all j = 1..f.
The recovery procedure for fusible SM is more complex than for replication.

It crucially depends on the fact that if any f machines crash, the rest of the ma-
chines are still available. F (1) is sufficient to recover from one crash fault. If P (c)
has failed, then its state countc can be recovered as fCount1 −

∑
i�=c counti. In

general, we can recover states of any f failed state machines using the remaining
machines. For example, consider the case when f is two and the machines that
crashed are P (c) and P (d). Using fusion machine F (1) and remaining counts we
can get the value of countc + countd. Using fCount2, we can get the value of
c ∗ countc + d ∗ countd. We have two linearly independent equations in two vari-
ables which can be solved to get the values of countc and countd. More generally,
recovery from f faults reduces to solving f linearly independent equations in f
variables.

A reader well-versed in coding theory would realize that if (count1, count2, ,
countn) is viewed as data, (count1,count2,..countn,fCount1, fCount2,..fCountf)
can be viewed as a code word. The code word obtained is equivalent to one obtained
by multiplying data vector by the identity matrix adjoined with the transpose of
theVandermondematrix[5]. Theunique solvability of all the counts is easy to show;
the proof is given in [18] for completeness sake.

454 V.K. Garg

Theorem 1. Suppose x = (count1, count2, , countn) is the state of the primary
state machines. Assume fCountj =

∑
i ij−1 ∗counti for all j = 1..f. Given any

n values out of y = (count1, count2, ..countn,fCount1, fCount2, ..fCountf) the
remaining values in x can be uniquely determined.

It is important to note the distinction between a server and a state machine. In
the event counter example, to tolerate f crash faults among n state machines, the
RSM approach need not run all nf on distinct servers. We could, for example,
run one copy of each of the state machines for all P (1)..P (n), on one server. Thus,
the number of servers required to tolerate f crash faults can still be considered to
be f for the RSM approach. However, the fused state machine approach provides
upto n-fold savings in the space required for keeping backups. We now show that
the fused-SM approach also yields benefits in computation and communication
when events are shared between primary state machines. Suppose that each P (i)
has an additional event called incr which increases counti by 1. When the event
incr happens, all Pi increment their counts. In the RSM approach the event incr
would be communicated to nf state machines, and will be executed nf times.
In the Fused-SM approach, we require F (j) to execute incr as
fCountj = fCountj +

∑i=n
i=1 ij−1. The total number of events that are executed

is exactly f , one for each fused-SM. Thus, when events are shared across primary
state machines, we get the advantage of aggregation thereby reducing the message
and computation complexity for backup.

Note that we do not require the fused-SMs to be synchronized with primary
state machines. The only requirement is that all updates from primary state
machines are applied in the same order at all the fused-SMs. The messages at
fused-SMs may be buffered because the primary state machines never wait for
fused-SMs to finish their updates. In case of a failure of a primary machine, all
the pending updates at the fused-SMs must be applied before the recovery.

So far we had assumed that by adding numbers we do not get overflow. If
overflow is possible, there are two approaches to tackle it. The first approach is
to do all the arithmetic, i.e. addition (subtraction), and multiplication (division)
in finite Galois field as typically done in coding theory [5]. In that case the matrix
G can either be chosen as a Cauchy Matrix or a Vandermonde matrix reduced
using elementary transformations so that the first n rows form an identity matrix
[19]. The other possibility is to guarantee that there is never any overflow in any
computation. This can be done, for example, by using BigInteger package in
Java.

2.2 Causal Ordering

We now generalize the Event Counter example to primary state machines that
contain not one variable but a set of data structures. Whenever a primary state
machine receives an event from a client and updates it data structures, it also
sends a message to the fused state machines with the list of variables and the in-
cremental change in their values. We illustrate this method for a causal ordering
algorithm [20] in a group of n processes.

Implementing Fault-Tolerant Services: Beyond Replication 455

Consider the version described by Raynal, Schiper, and Toueg [8]. Each pro-
cess maintains a matrix M of integers. The entry M [q, r] at P (i) records the
number of messages sent by process P (q) to process P (r) as known by process
P (i). Whenever a message is sent from P (i) to P (r), the matrix M is piggy-
backed with the message. A message is eligible to be received when the number
of messages sent from any process P (q) to P (i), as indicated by the matrix W
received in the message, is less than or equal to the number recorded in the
matrix M .

Suppose, we would like the system to be able to tolerate f crash faults, i.e.,
recover matrices for processes that have crashed. We require P (i)’s to send an
“M-Update” message with incremental changes in entries of the matrix to the
fused processes F (j). Instead of maintaining f copies of the matrix for each pri-
mary process, the fused-SM algorithm requires a single (fused) matrix for every
fault. Thus, the storage requirement for fused processes is O(fn2) as opposed to
O(fn3) required by a replication based algorithm. A similar algorithm can be
used to recover vector clocks of faulty processes in distributed systems.

2.3 Resource Allocator

The technique outlined in previous section may not be practical when a simple
change in data structure results in a significant change in the state. We show
that by analysis of the data structure, and by selective replication the size of the
messages from primary messages to fusion processes can be reduced significantly.

To illustrate this point, we apply the method of fusion to the resource allocator
state machine in [3]. Assume that there are n different type of resources that
can only be used in mutually exclusive fashion. The state machine P (i) shown
in Fig. 2 handles clients requesting resource i. It maintains two variables: user,
an integer which records the current user of the resource if any, and waiting, a
queue of integers which stores the id’s of clients waiting for the resource.

user: int initially 0;// resource idle
waiting: queue of int initially null;

On receiving acquire from client pid
if (user == 0) {

send(OK) to client pid; user = pid;}
else waiting.append(pid);

On receiving release
if (waiting.isEmpty())

user = 0;
else { user = waiting.head();

send(OK) to user;
waiting.removeHead(); }

Fig. 2. Resource Allocator State Machine from [3] P (i) :: i = 1..n

Suppose that we want to tolerate one fault in any of these n machines. When-
ever, the variable user changes we can send the incremental change to fusion
processes. But, what should we do about the waiting list? If we view the bit
representation of waiting list as an integer (a big integer), then computing the
code at fusion processes after every change would be very inefficient. We use
the technique from fusible data structures[10]. Instead of sending the change in

456 V.K. Garg

state, we send the event that allows the fused structure to be maintained ef-
ficiently. The primary state machine that uses fused-SM approach is shown in
Fig. 3. Whenever any data structure changes, it sends to the fused machines the
change that needs to be made in the data structure in a manner that is tailored
to the data structure. Note that the primary machine does not send the changed
queue or even the incremental difference from the old queue and the new queue.
It only sends enough information so that the fused queues can carry out the
state change.

P (i) :: i = 1..n
On receiving acquire from client pid
if (user == 0){send(OK) to client pid;

user = pid;
send(USER, i, user) to F (j)’s;}

else { waiting.append(pid);
send(ADD-WAITING,i, pid) to F (j)’s;}

On receiving release
if (waiting.isEmpty()){olduser = user;

user = 0;
send(USER, i, user− olduser) to F (j) }

else { olduser = user;
user = waiting.head();
send(OK) to waiting.head();
waiting.removeHead();
send(USER, i, user− olduser) to F (j)’s
send(DEL-WAITING, i, user) to F (j)’s

}

F (j) :: j = 1..f
fuser:int initially 0;
fwaiting:fused queue initially

0;

On receiving (USER, i, val)
fuser = fuser + ij−1 ∗ val;

On receiving (ADD-WAITING, i,
pid)
fwaiting.append(i, pid);

On receiving (DEL-WAITING, i,
user)
fwaiting.deleteHead(i, user);

Fig. 3. Algorithm A: Fused State Machine for Resource Allocation

The code for the fused-SM is shown in Fig. 3. In F (j) we have used fwaiting
as a fused queue. For simplicity, we use a circular array based implementation
(a linked list based implementation is in [10]).

The above method has reduced the number of backup state machines nf to
f and yet it can tolerate any f faults from P (1)..P (n). The recovery process is
more complex than replication but the significant savings (n-fold) in the reduced
number of active state machines may justify this added complexity especially
when the probability of faults is small.

Remark: So far we had assumed that the clients interact only with the primary
machines which, in turn, interacted with fusion machines to keep them up-to-
date. In many examples, an alternate design is possible in which the commands
to the primary state machines are also issued to the fused-SMs. The pseudo-code
for such a design is shown in [18].

We now do overhead analysis for both RSM and the fused-SM approach.
Overhead Under Normal Operation: For replication, we require additional nf

state machines, f replicas for each of the primary state machine. Each operation

Implementing Fault-Tolerant Services: Beyond Replication 457

fQueue: array[0..M − 1] of int initially
0;
head, tail, size:array[1..n] of int init 0;

append(i, v):
if (size[i] == M)

throw Exception(”Full Queue”);
fQueue[tail[i]] = fQueue[tail[i]] + ij−1 ∗
v;
tail[i] = (tail[i] + 1)%M ;
size[i] = size[i] + 1;

deleteHead(i, v):
if (size[i] == 0)

throw Exception(”Empty Queue”);
fQueue[head[i]] = fQueue[head[i]] −
ij−1 ∗ v;
head[i] = (head[i] + 1)%M ;
size[i] = size[i] − 1;

isEmpty(i):
return (size[i] == 0);

Fig. 4. Fused Queue Implementation at F (j)

requires a message to the primary state machine and f replicas. For fused-SM
approach, we require additional f machines. Each operation still requires f + 1
messages, one to the primary state machine and f messages from the primary
to fused-SMs. The message to the primary state machine is same as for the
RSM approach, however messages to the fused-SMs may contain additional state
information so that fused machines can execute the event despite availability only
of fused data structures.

Assume that the waiting list can have size at most O(m). The RSM approach
requires O(nfm) space to tolerate f faults among n machines. The fused-SM
approach requires O(fm+nf) space. The component O(nf) is required because
we allow O(1) state information for each of the n state machines at the fused-
SMs. In the example, we kept head[i], tail[i] and size[i] for each state machine.

The number of events and messages required to be processed at the fused-SM
is n times more than the number of events processed by a replica. Thus, if n is
large the fused-SMs may become bottleneck. In these cases, one could easily use
a hybrid of replicated and fused-SM approach.

Complexity for Recovery after Failure: The RSM approach has minimal over-
head for recovery after failure. As soon as a primary machine is detected to be
crashed, the replica with the highest id that survives can take over and start
functioning as primary.

The recovery overhead in the fused-SM approach is crucially dependent on the
number of actual faults t. Let the state of any primary state machine be O(m).
First consider the case when t equals 1. The recovery algorithm will require
O(n) messages, one from each of the surviving machines of size O(m). It will
take O(nm) time to recover the state of the crashed machine. For t > 1 faults,
we would be required to solve t linearly independent equations. Equivalently, it
can be viewed as multiplying the fusion vector with the inverse of the equation
matrix. Since m is large compared to t, we ignore the one time cost of computing
the inverse. Thus, we get the overall cost as O(m(nt + t2)).

458 V.K. Garg

2.4 Application to Ricart and Agrawala’s Algorithm

The state machine for the resource allocator example was based on a central-
ized algorithm for mutual exclusion. We now show that the technique is also
applicable to distributed algorithms such as Ricart and Agarwala’s algorithm[9].
Suppose that there are n primary processes P (1)..P (n) that are coordinating
access to a single critical section. For the RSM based approach, each Pi would
need f backups and will result in nf additional state machines (even if they
are run on only f additional servers). Since each state machine requires O(n)
space to keep track of pending requests, the total space requirement is O(fn2).
The code for the fused-SM based Ricart and Agrawals’s algorithm is presented in
[18]. With the fused-SM approach, we use f additional state machines with total
of O(fn) space. Any request message is also sent to the fused processes which
update the fused data structures on behalf of all the processes in the system.
Similarly, okay messages are also sent to the fused processes.

The non fault-tolerant algorithm requires 2n messages per CS invocation.
With the RSM approach, every message needs to be sent to f backup processes
resulting in 2n(f + 1) messages. The Fused-SM approach requires an additional
request message and n− 1 okays to be sent to any fused process. Thus, the total
message requirement is only 2n + nf , which results in savings of nf messages.

3 Byzantine Faults

So far we had assumed crash faults. We now discuss Byzantine faults where any
state machine may change its state arbitrarily. The RSM approach requires that
there be 2f backup replicas for each primary state machine. Since there are 2f+1
values available, even if f of them are faulty, the majority will always be correct.
When this approach is applied to n different servers, the RSM approach requires
additional 2nf replicas. For data coding, it is well known that by appending 2f
parity check symbols, one can recover from f unknown data errors [6]. Can the
same ideas be applied to fault-tolerance of state machines?

The additional constraint we have for tolerating Byzantine faults in state
machines is that during normal (fault-free) operation, we would like to have as
little overhead as possible. Specifically, we would like to avoid the overhead of
decoding the state during normal operations. To achieve this goal, we give an
algorithm that combines replication with coding theory. We first consider the
case of a single Byzantine fault. Next we generalize the algorithm to tolerate f
Byzantine faults but assume that each state machine has O(1) state. Finally,
we give the algorithm that tolerates f Byzantine faults and each primary state
machine may have O(m) state.

3.1 Tolerating Single Byzantine Fault

We start with the case of detecting and tolerating a single Byzantine fault among
n primary state machines. The pure RSM approach requires two replicas for

Implementing Fault-Tolerant Services: Beyond Replication 459

every primary machine resulting in 3n state machines in all. The pure Fused-SM
approach would require n + 2 machines in all. However, in the pure Fused-SM
approach, even the normal operations may be inefficient. For crash faults, the
decoding was required only when there was a failure, a low probability event.
For Byzantine faults, a pure Fused-SM approach would require decoding even
during normal operations just to detect if one of the primary machines is faulty.
We now show a hybrid approach that is efficient during normal operation and
still requires less number of processes than the RSM approach.

Our algorithm is based on two observations. First, if we have two copies of a
primary state machine P (i), then one of these copies is guaranteed to be correct.
The RSM approach relies on keeping an additional copy so that majority can
be used to determine which is correct. In our approach, we use the concept of
liar detection. We use the fused-SMs to determine which of the two copies is
faulty. The liar detection approach is more efficient in terms of the total number
of copies required. The second observation we use is that if two copies of P (i)
agree on some value, then that value is guaranteed to be correct (because, there
can be at most one Byzantine fault).

Theorem 2. Let there be n primary state machines, each with O(m) data struc-
tures. There exists an algorithm with additional n + 1 state machines that can
tolerate a single Byzantine fault and has the same overhead as the RSM approach
during normal operation and additional O(m + n) overhead during recovery.

Proof. We keep one replica Q(i) for every primary state machine P (i) and a
fused-SM F (1) for the entire system. Thus, we keep 2n+1 state machines in all.
During normal operation (when there is no fault), the value of any output at
P (i) and Q(i) must be identical. In this case, we do not decode the value from
F (1). As soon as P (i) and Q(i) differ for any i, we have detected Byzantine
fault in the system. Note that we do not observe the state of P (i) and Q(i)
at all events. We only look at the response of P (i) and Q(i) for input events
and take action when the response (output) at P (i) differs from Q(i). At this
point, we know that either P (i) is correct or Q(i) is correct, but do not know the
identity of the liar yet. We now invoke the liar detection algorithm as follows.
Given the state of P (i) and Q(i), in O(m) time we can locate the first data of
size O(1) that is different in them. We use the fused process F (1) to determine
which of these values is correct. This step will require messages of size O(1)
from other n−1 primary processes. It also requires that the system ensures that
all operations that have been performed on the primary state machines have
been applied to F (1). Now, in O(n) time the correct value of the data can be
determined; therefore, we have the identity and the state of the correct process.
The liar process can be killed and a new copy of the correct process can be
started.

Observe that in the above algorithm we never decode the data structure at the
fused-SM. During normal operations, we only do the encoding. Whenever there
is Byzantine fault detected, we use F (1) only to determine which of the copies is
correct. We can encode O(1) crucial information to determine whether P (i) or

460 V.K. Garg

Q(i) is a liar. Also observe that if the fault occurs in the fused machine, it does
not affect the overall operation of the system and it is not even detected. If early
detection of fault in the fused machine is important for some application, then
periodically (or during off-peak period) one could simply reset and recompute
the fused process data. Thus, decoding of the fused-SM is not required.

3.2 Tolerating f Byzantine Faults in State Machines with O(1)
State

To generalize the above algorithm for f faults, we maintain the invariant that
there is at least one correct copy in spite of f faults. Therefore, we keep f copies
of each of the primary server and f fused copies. Thus, we have total of n∗f +f
state machines in addition to n primary machines. The only requirement on
the fused copies {H(j), j = 1..f}is that if H(j) is not faulty and if we have
n − 1 correct values of the primary machines, then the remaining one can be
determined using H(j). Thus, a simple xor or sum based fused-SM is sufficient.
Even though we are tolerating f faults, the requirement on the fused copy is
only for a single fault (because we are also using replication).

The primary copy together with its f replicas are called unfused copies. If any
of f + 1 unfused copies differ, we call the primary server mismatched. Let the
value of one of the copies be v. The number of unfused copies with value v is
called the multiplicity of that copy.

We now generalize Theorem 2 for f ≥ 1 faults. At first, we will assume that
the state space of each of the state machines is small. Later, we generalize it to
the case when each of the state machine has O(m) state.

Theorem 3. There exists an algorithm with fn+ f backup state machines that
can tolerate f Byzantine faults and has the same overhead as the RSM approach
during normal operation and additional O(nf) overhead during recovery.

Proof. We keep f copies for each primary state machine and f overall fused
machines. This results in additional nf + f state machines in the system. If
there are no faults among unfused copies, all f +1 copies will result in the same
output and therefore the system will incur same overhead as the RSM approach.

Our algorithm first checks the number of primary state machines that are
mismatched. First consider the case when there is a mismatch between a primary
state machine P (i) and its replica for at most one value of i = 1..n. Let that
primary machine be P (c). Since there are at most f faults, we can conclude
that we have the correct state of all other primary state machines P (i), i �= c.
Now given the correct state of all other primary machines, we can successively
retrieve the state of P (c) from fused machines H(j), j = 1..f till we find one of
the unfused machine that has f + 1 multiplicity. We have to decode at most f
fused machines each at cost of O(n).

Now consider the case when there is a mismatch for at least two primary state
machines, say P (c) and P (d). Let α(c) and α(d) be the largest multiplicity among
unfused copies of P (c) and P (d) respectively. Without loss of generality, assume
that α(c) ≥ α(d). We show that the copy with multiplicity α(c) is correct.

Implementing Fault-Tolerant Services: Beyond Replication 461

Unfused Copies:
On receiving any message from client
Update local copy;
send state update to fused processes;
send response to the client;

Client:
send event to all unfused f + 1 copies;
if (all f + 1 responses identical)

use the response;
else invoke recovery algorithm;

Fused Copies:
On receiving update from unfused copy
if (all f + 1 updates identical)

carry out the update
else invoke recovery algorithm;

Recovery Algorithm:
Let t be the number of mismatched
SMs;
while t > 1 do

choose the copy with largest multi-
plicity;

kill all incorrect unfused copies;
restart them with the chosen copy;
t = t − 1;

// Can assume that t equals one.
// Let P (c) be the mismatched SM
for (j = 1; j ≤ f ; j + +)

create a new copy using H(j) and
P (i), i �= c;

if (any copy has multiplicity f + 1)
recover to that copy and return;

Fig. 5. Algorithm C: Tolerating f Byzantine faults

If this copy is not correct, then there are at least α(c) liars among unfused
copies of P (c). We now claim that there are at least f + 1 − α(d) liars among
unfused copies of P (d) which gives us the total number of liars as α(c) + f +
1−α(d) ≥ f +1 contradicting the assumption on the maximum number of liars.
Consider the copy among unfused copies of P (d) with multiplicity α(d). If this
copy is correct we have f +1−α(d) liars. If this value is false, we know that the
correct value has multiplicity less than or equal to α(d) and therefore there are
at least f + 1− α(d) liars among unfused copies of P (d).

By identifying the correct value, we have reduced the number of mismatched
primary state machines by 1. By repeating this argument, we get to the case
when there is exactly one mismatched primary machine.

Based on the proof of Theorem 3, we get the Algorithm C shown in Figure 5, to
tolerate f Byzantine faults with nf replicated and f fused-SMs.

In Algorithm C, we had to decode the fused-SMs during the recovery algo-
rithm. The algorithm requires at most f fusion processes to be decoded in the
worst case. If there are t ≤ f faults, we are guaranteed that after decoding t
fused-SMs we will have f +1+ t unfused copies. At least one of these copies will
have multiplicity of f +1 or more. Alternatively, we can try out all the values of
unfused copies of P (c) and {P (i), i �= c} to compute H and thereby determine
multiplicity of various copies.

3.3 Tolerating f Byzantine Faults for State Machines with O(m)
State

We now extend the algorithm to the case when each of the primary state machine
has O(m) state. We would like to avoid decoding or encoding the entire fused

462 V.K. Garg

Z:set of copies initially {1..f + 1};
while (all unfused copies in Z not identical)

w = min{r : ∃p, q ∈ Z : statep[r] �= stateq[r]};
j = 1;
while (no copy with multiplicity f + 1)

create state[w] using H(j) and P (i), i �= c;
j = j + 1;

endwhile;
delete other copies from Z;

endwhile;
return any copy from Z;

Fig. 6. Locating a Correct Unfused Copy for mismatched P (c): locate(int c)

process. As observed earlier, one of the f + 1 unfused copies is guaranteed to
be correct and it is sufficient to locate this copy using fused copies. We give an
algorithm with O(mf +nt2) time complexity to locate the correct copy. Assume
that we are trying to locate the correct copy among unfused copies of P (c).

In the algorithm shown in Fig. 6, the set Z maintains the invariant that it
includes all the correct unfused copies (and may include incorrect copies as well).
The invariant is initially true because all indices from 1..f + 1 are in Z. Since
the set has f + 1 indices and there are at most f faults, we know that the set Z
always contains at least one correct copy.

The outer while loop iterates until all copies are identical. If all copies in Z
are identical, from the invariant it follows that all of them must be correct and
we can simply return any of the copies in Z. Otherwise, there exist at least two
different copies in Z, say p and q. Let w be the first index in which states of
copies p and q differ 1. Either copy p or the copy q (or both) are liars. We now
use the fused machines to recreate copies of state[w]. Since we have the correct
copies of all other primary machines P (i), i �= c, we can use them with the fused
copies H(j), j = 1..f . Note that the fused copies may themselves be wrong so it
is necessary to get enough multiplicity for any value to determine if some copy
is faulty. Suppose that for some v, we get multiplicity of f +1. This implies that
any copy with state[w] �= v must be faulty and therefore can safely be deleted
from Z. We are guaranteed to get a value with multiplicity f + 1 out of total
2f + 1 copies. Further, since copies p and q differ in state[w], we are guaranteed
to delete at least one of them in each iteration of while. Eventually, the set Z
would either be singleton or will contain only identical copies. In either case, the
while loop terminates and we have located a correct copy.

We now analyze the time complexity of the procedure locate. Assume that
there are t ≤ f actual faults that occurred. We delete at least one index in
each iteration of the outer while loop and there are at most t faulty processes
giving us the bound of t for the number of iterations of the while loop. In each

1 For simplicity, we view the state of machines as an O(m) array (though in practice
it could be any structure with size O(m)).

Implementing Fault-Tolerant Services: Beyond Replication 463

iteration, creating state[w] requires at most O(1) state to be decoded for each
fusion process at the cost of O(n). The maximum number of fused processes
that would be required is t. Thus, O(nt) work is required for a single iteration
before a copy is deleted from Z. To determine w in incremental fashion requires
O(mf) work cumulative over all iterations. Combining these costs we get the
complexity of the algorithm to be O(mf + nt2).

By using the method locate, in the recovery algorithm we get the following
result – the main result of the paper.

Theorem 4. Let there be n primary state machines, each with O(m) data struc-
tures. There exists an algorithm with additional nf + f state machines that can
tolerate f Byzantine faults and has the same overhead as the RSM approach dur-
ing the normal operation and additional O(mf + nt2) overhead during recovery
where t is the actual number of faults that occurred in the system.

Theorem 4 combines advantages of replication and coding theory. We have
enough replication to guarantee that there is at least one correct copy at all
times and therefore we do not need to decode the entire state machine but only
locate the correct copy. We have also taken advantage of coding theory to reduce
the number of copies from 2f to f .

It can be seen that our algorithm is optimal in the number of unfused and fused
copies it maintains to guarantee that there is at least one correct unfused copy
and that faults of any f machines can be tolerated. The first requirement dictates
that there be at least f +1 unfused copies and the recovery from Byzantine fault
requires that there be at least 2f + 1 fused or unfused copies in all.

4 Conclusions

We have presented efficient distributed algorithms to tolerate crash and Byzan-
tine faults of state machines in distributed systems. Our algorithms use a com-
bination of replication and coding theory to achieve efficiency in detection and
correction of faults. Our algorithms use fewer backup state machines (and there-
fore smaller space, and fewer messages in many cases) while providing the same
level of fault-tolerance.

Acknowledgements. I am thankful to Bharath Balasubramanian, Vinit Ogale
and Yogish Sabharwal for discussions on the topic.

References

1. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
ACM Commun. 21(7), 558–565 (1978)

2. Lamport, L.: Using time instead of timeout for fault-tolerant distributed systems.
ACM Trans. Program. Lang. Syst. 6(2), 254–280 (1984)

3. Schneider, F.B.: Implementing fault-tolerant services using the state machine ap-
proach: A tutorial. ACM Comput. Surv. 22(4), 299–319 (1990)

464 V.K. Garg

4. Sivasubramanian, S., Szymaniak, M., Pierre, G., van Steen, M.: Replication for
web hosting systems. ACM Comput. Surv. 36(3), 291–334 (2004)

5. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-
Holland Publishing Company, Amsterdam (1981)

6. van Lint, J.H.: Introduction to Coding Theory. Springer, Heidelberg (1998)
7. Pease, M., Shostak, R., Lamport, L.: Reaching agreements in the presence of faults.

Journal of the ACM 27(2), 228–234 (1980)
8. Raynal, M., Schiper, A., Toueg, S.: The causal ordering abstraction and a simple

way to implement it. Information Processing Letters 39(6), 343–350 (1991)
9. Ricart, G., Agrawala, A.K.: An optimal algorithm for mutual exclusion in computer

networks. Communications of the ACM 24 (1981)
10. Garg, V.K., Ogale, V.A.: Fusible data structures for fault-tolerance. In: ICDCS, p.

20. IEEE Computer Society, Los Alamitos (2007)
11. Balasubramanian, B., Garg, V.K.: A fusion-based approach for handling multi-

ple faults in data structures. Technical Report ECE-PDS-2009-001, Parallel and
Distributed Systems Laboratory, ECE Dept. University of Texas at Austin (2009)

12. Ogale, V.A., Balasubramanian, B., Garg, V.K.: A fusion-based approach for tol-
erating faults in finite state machines. In: IPDPS, pp. 1–11. IEEE, Los Alamitos
(2009)

13. Patterson, D.A., Gibson, G., Katz, R.H.: A case for redundant arrays of inex-
pensive disks (raid). In: SIGMOD ’88: Proceedings of the 1988 ACM SIGMOD
International Conference on Management of Data, pp. 109–116. ACM Press, New
York (1988)

14. Chen, P.M., Lee, E.K., Gibson, G.A., Katz, R.H., Patterson, D.A.: Raid: high-
performance, reliable secondary storage. ACM Comput. Surv. 26(2), 145–185
(1994)

15. Plank, J.S.: A tutorial on Reed-Solomon coding for fault-tolerance in RAID-like
systems. Software – Practice & Experience 27(9), 995–1012 (1997)

16. Luby, M.G., Mitzenmacher, M., Shokrollahi, M.A., Spielman, D.A., Stemann, V.:
Practical loss-resilient codes. In: STOC ’97: Proceedings of the Twenty-Ninth An-
nual ACM Symposium on Theory of Computing, pp. 150–159. ACM Press, New
York (1997)

17. Byers, J.W., Luby, M., Mitzenmacher, M., Rege, A.: A digital fountain approach
to reliable distribution of bulk data. SIGCOMM Comput. Commun. Rev. 28(4),
56–67 (1998)

18. Garg, V.K.: Implementing fault-tolerant services using fused state machines. Tech-
nical Report ECE-PDS-2010-001, Parallel and Distributed Systems Laboratory,
ECE Dept. University of Texas at Austin (2010)

19. Plank, J.S., 0002, Y.D.: Note: Correction to the 1997 tutorial on reed-solomon
coding. Softw., Pract. Exper. 35(2), 189–194 (2005)

20. Birman, K.P., Joseph, T.A.: Reliable communication in the presence of failures.
ACM Transactions on Computer Systems 5(1), 47–76 (1987)

Low Communication Self-stabilization through
Randomization

Shay Kutten and Dmitry Zinenko�

Technion - Israel Institute of Technology
Haifa 32000, Israel

Abstract. Most self-stabilizing protocols rely on checking every neigh-
bor of a node continuously to detect failures. Such protocols have a high
communication cost, especially in dense graphs. Conceivably, one can
check neighbors less often, reducing the amount of communication per
round. However, delaying the checking delays the fault detection and
the stabilization, and therefore has the potential of increasing the total
amount of communication overhead until stabilization.

In this paper, we strive to reduce “after stabilization” overhead, with-
out increasing the “before stabilization” overhead. For that, we inves-
tigate the potential effect of randomization on the communication ef-
ficiency of self-stabilizing protocols. We present randomized low com-
munication self-stabilizing algorithms for several major tasks, namely,
spanning tree construction, distributed reset, and unison. We study this
approach in a complete graph, since there the communication overhead
of checking seems the highest when one strives for protocols that are also
fast.

1 Introduction

In his seminal paper in 1973, Dijkstra introduced the notion of self-stabilization
in the context of distributed systems [16]. He defined a system as self-stabilizing
when “regardless of its initial state, it is guaranteed to arrive at a legitimate state
in a finite number of steps.” A strong motivation was demonstrated by [30], who
showed that crash failures can drive protocols to arbitrary states.

In many early self stabilizing protocols every node collects complete global
information (e.g. [24]). Even in later algorithms, using the local checking and
detection paradigm [2, 8], a node collects the state of all its neighbors. Masuzawa
et al. [14, 26] showed that a complete knowledge of the neighborhood is not
always necessary, especially after stabilization. In this work, we show that this
is sometimes the case even before stabilization.

We study this approach in a complete graph, since there the communication
overhead of checking seems the highest when one strives for protocols that are
also fast. The results may be meaningful also for a virtual complete graph, e.g.
the application layer of the Internet, that is an overlay over a less dense graph.

� Supported in part by a grant from the ISF.

N.A. Lynch and A.A. Shvartsman (Eds.): DISC 2010, LNCS 6343, pp. 465–479, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

466 S. Kutten and D. Zinenko

We present randomized low communication self-stabilizing algorithms for sev-
eral major tasks, namely, the tasks of a spanning tree construction, distributed
reset, and unison. This implies results for many other important tasks, such as
naming, routing, etc. Our results compare favorably to previous papers studying
our problems in the communication efficiency measures developed by [14], as
well in the traditional measure of the number of bits sent.

When applied in a complete graph, all the known self-stabilizing spanning
tree algorithms require Ω(n2) messages until stabilization. Similarly, previous
solutions for distributed reset and unison in dense networks are time efficient, but
have a high communication overhead. By comparison, our algorithms stabilize
after only O(n log n) messages and O(log n) rounds with high probability1 until
stabilization, and O(n) messages per round later. Our reset and unison protocols
can also be used (although with a different round complexity) in more general
classes of synchronous networks. For example, in bounded degree networks their
round complexity is O(D+log n) with high probability (D is the graph diameter),
while still sending one message per node per round.

Besides reducing communication, the “smooth” and uniform behavior of our
protocols should be especially desirable for the implementation of middleware,
since it avoids hard-to-predict fluctuations in the network load. A middleware
protocol that uses unbalanced and hard to predict patterns of communications
can potentially cause network congestions and negatively affect not only its own
performance, but also that of other applications on the same network.

1.1 Model

A distributed system is a set of cooperating computing elements (processors),
interconnected by a network. It is represented by a graph, with processors rep-
resented by vertices (also called nodes), and the links between processors repre-
sented by graph edges. Our algorithms do not use any assumption about unique
identifiers, that is, our network is anonymous. In this work, we concentrate on
the case of the complete graph topology, where a communication link exists be-
tween every pair of nodes. However, the order of outgoing communication links
as seen by each processor is arbitrary. It is impossible to determine which link
leads to which processor until a message is received from that link directly.

An execution of a synchronous distributed system proceeds in rounds. Each
round, the processors make their pending state transitions and may send and/or
receive messages over their communication links. We use a standard model (e.g.,
[1]), where all the processors are active each round, and all the messages sent
during a particular round are received before the beginning of the next round.

At any point of time transient adversarial failures may alter arbitrarily the
state of any process variables. However, the adversary is oblivious of, and unable
to affect, the random bits generated but the processes. As is common for self-
stabilization protocols, when dealing with the algorithms’ time complexity, we
1 An event occurs with high probability if it occurs with probability 1 − O(n−α) for

any fixed α ≥ 1. All our algorithms converge with probability 1, the w.h.p. part
relates to the number of rounds (and therefore messages) until the convergence.

Low Communication Self-stabilization through Randomization 467

always count the number of rounds after the last failure has occurred. Therefore,
our model of failures is equivalent to the case when the algorithm is initialized to
arbitrary values, possibly chosen by an adversary, but no further failures occur
when the execution time is measured.

1.2 Related Work

Intuitively, one can identify two sources for the high communication complexity.
One is the desire to be fast, and hence to communicate with many neighbors
at the same time. The other arises from the self stabilization context: even as-
suming we already stabilized, a node must verify that this is indeed the case.
For example, in a leader election protocol, every two nodes need to be compared
from time to time, to make sure they do not both consider themselves to be the
leaders. Electing a leader in a complete network can be achieved in one round.
However, for a deterministic algorithm, this would cost Ω(n2) messages. Sim-
ilarly, the time efficient unison algorithms of [7, 10] would stabilize fast when
applied to a complete graph, but would have used Ω(n2) messages per round.

In [13, 14], the authors ask whether it is possible to lower the communication
complexity of self-stabilizing protocols below the need of checking every neighbor
forever. In many cases, their answer is negative for the deterministic algorithms.
However, randomized algorithms, such as the ones we present here, could po-
tentially overcome this limitation. Another difference between our papers is that
they concentrate mainly on reducing communication after the stabilization is
complete. We, on the other hand, are interested in developing protocols that are
message-efficient at any time, and not only after the stabilization.

For general graphs, multiple message-driven algorithms were presented for
the spanning tree construction in the context of self stabilization [11, 13, 20, 22].
Some protocols for self-stabilizing distributed reset appear in [2, 4, 5], and for
the stabilizing unison problem in [6, 7, 10, 21]. All those algorithms may use
Ω(n2) communication until convergence when applied in a dense graph.

The spanning tree protocol presented in [22] has a similar motivation, and
also uses a bounded degree spanning tree to reduce communication and memory
requirements. The idea of contacting only one neighbor at a time was used for
reducing memory requirements in various papers, such as in [9]. For deterministic
algorithms, this approach often increases the stabilization time. The technique
of repeated tree coloring to detect competing trees was presented in [2, 4], and
several other publications. We use it with a slight adaptation in Sect. 5.1-5.2.
Afek and Matias have already used randomization in [3] to solve an equivalent
problem (leader election) with O(n) messages (w.h.p.). It was adapted to the
self stabilizing context in [4] to achieve improved time complexity. We use the
identifier selection mechanism of [3] in our spanning tree algorithm.

This work is also related to randomized gossip algorithms, such as those de-
scribed in [25, 31], and random branching processes [15]. The branching process
used by our spanning tree algorithm bears a similarity to a simpler random gos-
sip process analyzed by Pittel [28]. The exact random process we describe, to
our best knowledge, has never been presented before.

468 S. Kutten and D. Zinenko

2 The Random Process

In this section, we describe a simple random process that serves as a starting
point for our construction. It grows a spanning tree with degree (maximum
branching factor) d ≥ 2 in a complete graph with n nodes, given a root node.

The tree starts with exactly one node, the predefined root of the tree. Every
node in the tree can have at most d children. Every request round, every node
v that belongs to the tree and has d(v) < d children, selects d − d(v) addi-
tional nodes as its children independently at random2. After the request round
is complete, all the nodes that were selected this way join the tree during the
confirmation round. A newly joining node chooses one of the tree nodes that
selected it arbitrarily and notifies its new parent.

Let Ti be the number of nodes in the tree after i request and i confirmation
rounds have completed, starting with T0 = 1.

The number of leaves in a d-regular tree with Ti internal nodes is always
exactly Ti(d − 1) + 1. Therefore, this is the number of selections

∑
v(d − d(v))

made during request round i, regardless of the precise tree structure. The number
of selections Ti(d−1)+1 > Ti(d−1) is almost linear in the number of tree nodes.
Since the number of joining nodes is non-decreasing in the number of selections,
we may bound the number of tree nodes from below by a random gossip model,
where every tree member sends a message uniformly at random to d − 1 nodes
each round. It is well known (see, e.g. [23]) that even for d = 2, messages from
the root will reach all the nodes with high probability after only O(log n) rounds.

To generalize, let A be a synchronous algorithm on n nodes, with a state that
can be defined in terms of the number of nodes in a particular structure. In our
case this structure will always be a tree or a forest. Define TA

i to be the number
of nodes in that structure (by analogy with Ti).

Lemma 1. If E(TA
i+1|TA

i = x) ≥ E(Ti+1|Ti = x) for all x > 0, and TA
i+1 ∈

[TA
i , (d + 1)TA

i] for constant d, then for some k = O(log n), TA
k = n w.h.p..

The proof of the last lemmas is rather lengthy and mathematical, and is based
on several standard probability concentration bounds. Due to the lack of space,
its presentation is deferred to the full paper.

3 Spanning Forest Algorithm

First, we show a simple self-stabilizing extension of the protocol in Sect. 2. This
is not the final algorithm, we present it mainly to prove some basic properties
that are used later on.

Like many other spanning tree algorithms that are based on local check-
ing and detection (e.g., [2, 18]), for maintaining a tree, we provide every node
with two variables: treeid and treedistance. All the error-free nodes in a
2 We assume that a node selects new children independently, including selecting itself,

to simplify the analysis. In real-world implementations, it should not select the same
node more than once, or select nodes which are already in its child/parent set.

Low Communication Self-stabilization through Randomization 469

single tree share the same treeid, and all, except for the roots, have a posi-
tive treedistance which is larger by one than that of their parent. Nodes with
treedistance equal to 0 consider themselves roots. The algorithm ensures that
all the nodes eventually join the trees with the largest treeid in the graph. The
pseudocode run by every node is the same and appears on Fig. 1–3.

Figure 1. Spanning forest algorithm, main loop
1: loop
2: R ← received request messages
3: C ← received confirmation messages
4: if request then // this is the request round
5: run request procedure (Fig. 2)
6: else
7: run confirmation procedure (Fig. 3)
8: request ← ¬request

Figure 2. Spanning forest algorithm, request procedure
1: children ← C
2: while |children| < d do
3: children ← children ∪ random neighbor
4: send request 〈treeid, treedepth〉 to the first d children

Figure 3. Spanning forest algorithm, confirmation procedure
1: candidates ← {r ∈ R : r > 〈treeid, treedepth〉}
2: if |candidates| > 0 then
3: parent ← max(candidates) // an arbitrary maximal candidate if not unique
4: treeid ← parent.treeid
5: treedepth ← parent.treedepth + 1
6: send confirmation 〈〉 to parent
7: else // we are orphaned, become a root
8: treedepth ← 0

When one node captures another node that already has children, we can use
this fact to capture the subtree of the new node as fast as possible. A newly
joined node does not start with an empty children set, like in the process
in Sect. 2. Its “effort” from the earlier rounds is preserved to some degree —
it is more likely to receive confirmation from its old children on the following
round. We were unable to account for this optimization in the analysis, but our
simulations show that it has a measurable impact on the convergence speed.

To be able to capture subtrees quickly, we would also like our trees to be
of a small height. A node prefers, among all potential parents with the same
treeid, the ones with the smallest treedistance. The trees “contract”, because
new nodes join as close to the root as possible, and also move closer to the

470 S. Kutten and D. Zinenko

root within the same tree whenever offered such a possibility. For the simplicity
of description, we define an order on <treeid, treedistance> pairs to be as
above: first increasing by treeid, and then decreasing by treedistance. Any
comparisons in the algorithm definitions use this order.

Note that the algorithm of Sect. 2 alternated between request and confirma-
tion rounds. In the context of self-stabilization, a round may be a request round
at one node and a confirmation round at another. We say that two nodes are syn-
chronized if their request rounds coincide. Handling the lack of synchronization
directly in the spanning forest algorithm would make it and the related proofs
much less elegant. We prefer to ignore this problem for now, by not claiming
anything about the algorithm’s properties when the configuration is not syn-
chronized; it will be solved later using a separate unison algorithm (Sect. 4.1).

3.1 Algorithm Analysis

For this section we define the proper parent of a non-root node v to be the node
to which v sent the confirmation message during its last confirmation round, but
only if it has the same treeid as v. Otherwise v has no current proper parent. A
node’s children are the nodes in its children set. The following lemma is given
without a proof due to the lack of space.

Lemma 2. At every point of time after the first 3 rounds, a node u is the proper
parent of a node v only if v is a child of u. The graph formed by the (directed)
proper parent relationships is a directed forest with the branching factor ≤ d.

Lemma 3. Assume that there is only one node with the maximum treeid in
the graph, and all the nodes are synchronized. Then, when running the span-
ning forest algorithm, that node’s tree absorbs all the nodes in the graph within
O(log n) rounds with high probability.

Proof. We base our proof on Lemma 1, comparing our algorithm to the process
in Sect. 2. The choices to which new nodes to send request messages are made
independently and uniformly at random. Therefore both processes can be an-
alyzed using the standard balls-in-bins model (see, for example, [27]). Such a
model involves two independent factors: the number of balls thrown (messages
sent), and the probability per ball of hitting a bin of a particular type (a node
which is not already in the tree).

In order to show that E(TA
i+1|TA

i = x) ≥ E(Ti+1|Ti = x), it is enough to
prove that when the tree contains Ti nodes: (1) at least Ti(d− 1) selections are
made; and (2) every such selection is independent and hits a node in the tree
with probability at most Ti

n . The first item is correct for the same reason as in
Sect. 2: this is the number of leaves in a d-regular tree with Ti internal nodes.

The second item would be correct if all the selections would be new random
selections (line 3 in the request procedure), simply because the probability of
randomly hitting a tree node is Ti

n . However, as we have mentioned earlier, new
nodes that already had children before joining the tree may preserve them. This
did not happen in the original process. First, note that those children cannot

Low Communication Self-stabilization through Randomization 471

be in the tree when they send the confirmations, otherwise they would not send
confirmations for their parent’s previous, inferior, treeid.

We assume that all the nodes are synchronized, therefore the nodes receive any
request messages together with the request message from their current parent.
Assume that one such child node receives k such messages. Only one message,
the one from its current parent, was sent to it deterministically. The other k− 1
messages must be new random selections, made uniformly and independently
from each other.

Now consider the event that k new random selections messages arrive at some
node. For k independent uniformly distributed random variables U1, . . . , Uk, it
holds that Pr(U2 = U1, . . . , Uk = U1) = Pr(U2 = x, . . . , Uk = x) for any x s.t.
Pr(U1 = x) �= 0. Fixing one of those k random selections, the probability of
this event is the same as the probability of the event described in the previous
paragraph. The difference is, in the former, the node was already in the tree with
probability 0, and in the latter with a probability of Ti

n . We conclude, therefore,
that in the former case the expected number of captured nodes is at least as
large as if all the selections were new independent random selections.

Finally, TA
i+1 ∈ [TA

i , (d + 1)TA
i] for the same reasons as in Sect. 2.

We define the leader forest to be the forest of nodes with the largest treeid value
in the graph (it is a forest because of Lemma 2)3. We do not claim anything about
the speed of convergence when the nodes are not synchronized, since our final
spanning tree algorithm will make sure this is the case eventually.

Lemma 4. Assume that all the nodes are synchronized. When running the span-
ning forest algorithm, the leader forest absorbs all the nodes in the graph within
O(log n) rounds with high probability.

Proof. It is not hard to see, that eventually all the nodes in the graph must be
captured by one of the trees in the leader forest. We compare its growth with
the growth of a single dominating tree from Lemma 3.

Let q be the number of different roots in the leader forest, and TA
i,j be the

number of nodes in the tree of root j after i confirmation rounds. While the
single tree in Lemma 3 performs exactly Ti(d − 1) + 1 selections during the
following request round, the leader forest with the same total number of nodes
tries at least

∑
j

(
TA

i,j(d− 1) + 1
)

= TA
i (d− 1)+ q . The probability of hitting a

node outside the leader forest is the same in both cases, as it depends only on
the local tree structure and the total number of nodes.

As the leader forest makes at least as many selections with at least the same
probability of success as in Lemma 3, we can apply Lemma 1 to it as well.

As the reader can see, the algorithm of this section is not very useful, unless we
can ensure that there is only one root with the highest treeid and synchronize
all the nodes to the same round. We show how to do it in the following sections.

3 There may be several trees with the largest treeid, if node identities are not unique.

472 S. Kutten and D. Zinenko

4 Low-Bandwidth Self-stabilizing Reset and Unison

In a regular random gossip [23], every node with a “knowledge” sends it to a sin-
gle random neighbor every round. In a complete graph, the knowledge becomes
known to all the nodes with high probability after COV = O(log n) rounds.

We add one additional variable, reset, to the node state. Any node can start a
reset procedure by setting its reset to 2COV. The only exception are the nodes
that already have a non-zero reset variable; those are the nodes that already
participate in a reset. The reset value is used as a countdown “time-to-live”
timer: every round when the timer is still positive, the node decreases it by 1
and sends its value to a random neighbor. When the value goes from 1 to 0,
the node resets. The intuition behind using 2COV is that it takes COV rounds
for all the nodes to become aware that a reset is in progress and another COV
rounds to agree on when to perform the reset.

When a node receives a reset timer value from another node, it takes the
maximum between all the received values and its own as the new reset value.
However, the nodes never set their timer to values larger than 2COV, since those
were clearly introduced by an adversary.

Theorem 1. Let i be a round when one of the nodes initializes a reset procedure.
Then, with high probability, during some round t, such that i + 2COV ≤ t <
i + 3COV, all the nodes in the graph reset simultaneously (and on round t + 1
all the reset variables are 0).

Proof. Let v be a node that initialized a reset on round i, and let j be the current
round. As v counts down its timer, there could be new resets initialized by nodes
other than v; there can also be older resets initialized before round i.

Consider the way messages from v spread among the nodes in the graph.
Whenever a message reaches a node u that does not participate in a reset, or
participates in a reset that started before round i, that node has a smaller reset.
In this case, u adopts the new timer value. Whenever a message reaches a node
u with the same, or a higher reset value (i.e. u participates in a reset that
was initialized during round i or later), u ignores it. In both cases, u starts or
continues to spread messages with reset ≥ 2COV− (j − i).

Because every value spreads to all the nodes w.h.p. within COV rounds, during
round i+COV, all the nodes have reset ≥ COV with high probability. Therefore,
no new resets are initialized during rounds i+COV. . . i+2COV, and the maximal
value of reset remains consistent during those rounds (the maximal value of
reset + j is constant).

Applying the same theorem again, tells us that, with high probability, all the
nodes adopt this maximum within the remaining COV rounds. Since no resets
could be initialized after round i+COV (w.h.p.), this maximum must be between
2COV− (j − i) and 3COV− (j − i).

Corollary 1. A distributed reset can be performed in a complete or bounded
degree graph in a self-stabilizing fashion with high probability within O(log n)
rounds while using O(n log n) messages.

Low Communication Self-stabilization through Randomization 473

Our reset procedure works in any graph when substituting the appropriate COV
value. For example, in bounded degree networks COV = O(D + log n), where D
is the graph diameter [19].

4.1 The Unison Problem

Assume that we have n processors connected in a complete synchronous network.
Every processor is running a clock counting the number of rounds that passed
since some event in the past. The unison problem [21] is to ensure that all the
clocks are synchronized, i.e. their values are equal after every increment.

Theorem 2. The unison problem can be solved in a complete or bounded degree
graph in a self-stabilizing fashion with high probability within O(COV + log n)
rounds while using O(n(COV + log n)) messages.

Proof. In order to solve the unison problem, the reset algorithm is used as fol-
lows. Every processor sends one message to a random neighbor every round.
The message contains both its clock value and its reset value. A processor that
receives a message with an unsynchronized clock value initializes a reset. When
a processor resets, it sets its clock to a predefined value (e.g., 0).

When not all the clocks are synchronized, at least one node has a minority
clock value. At least half of the other nodes will initialize a reset if they receive
a message from this node, so the probability of reset in this case is at least 1/2.
In the case of the bounded degree graph, this probability is at least 1/Δ = O(1),
because there must be two neighboring nodes whose clocks differ. Therefore, a
reset will be initiated after O(log n) rounds with high probability. When a reset
is initialized, all the nodes are guaranteed to execute it simultaneously within
O(COV) rounds with high probability, and set their clocks to a common value.
Since every node sends one message each round, the message complexity of this
procedure is O(n(COV + log n)) w.h.p..

5 Spanning Tree Algorithm

5.1 Tree Recoloring

We use the technique of repeatedly recoloring trees (see, e.g., [2, 17, 4, 18]) to
allow the roots to detect a situation when there are several roots with the same
treeid in the graph. Repeated tree recoloring works as follows: from time to
time, the root of the tree chooses a new random color to use and sends it to its
children. Propagation with feedback (see, e.g. [29]) is then used to make sure
the whole tree is colored in this color. When the root has received completion
reports from all its direct children, it chooses a new random color. Lemma 5
ensures that a new color is chosen at least once every O(log n) rounds:

Lemma 5. Let CAP = O(log n) be the time required for the leader forest to
capture all the nodes in the graph w.h.p. (as in Lemma 4). Then, with high
probability, at any time after the first i ≥ CAP request rounds, the height of
every tree in the graph (or equivalently max(treedepth)) is at most CAP.

474 S. Kutten and D. Zinenko

Proof. Define the restricted leader forest F to be the subgraph of the leader forest
that contains only the nodes with treedistance less than the last request round
number. During the first request and confirmation rounds, those are the nodes
that have the maximum treeid and are roots. During the second — those that
have the maximum treeid and are either roots or their immediate children, etc.

We would like to prove that F captures every node in the graph within CAP
rounds. In order to do so, consider the leader forest F ′ that would result from
increasing the treeid of all the original leader forest roots by 1. Clearly, Lemma 4
applies to F ′.
F and F ′ contain the same nodes during the first round. A node in F ′ is

always able to capture any node not in F ′. Additionally, a node is in F ′ after
round pair i if and only if it either was in F ′ before, or received a request message
from one of the nodes in F ′ during that round pair. Observe that the same holds
for F . We can therefore create a coupling between the random choices of the
nodes in F and F ′, so that the selections are made with the same probabilities
and the same results. Therefore, on any particular round, the distribution of |F|
is the same as the distribution of |F ′|, and Lemma 4 applies to F as well.

We conclude that after CAP rounds, all the nodes in the graph are in F with
high probability. After CAP request rounds, the height of any tree in F is at
most CAP by the definition of F , and after a node is captured by one of the
leader trees, its height can only decrease.

Because of Lemma 5 we only allow the treedistance of any node to be less
than or equal to CAP. This way we avoid very deep trees set up by the adversary.
Any node that discovers that its treedistance is greater than this value resets
it to 0 and becomes a root. Since in the proof neither F nor F ′ had any nodes
with treedistance > CAP, this modification does not affect algorithm correctness
(more specifically the ability of the leader forest to capture every node in the
graph within CAP rounds w.h.p.).

The next corollary follows from the fact that the time required to recolor a
tree is at most twice its depth:

Corollary 2. Completely recoloring any tree in the leader forest using propaga-
tion with feedback requires at most O(log n) rounds.

5.2 Competitor Detection and Synchronization

Let CAP = O(log n) be the time required for a single root with the highest
treeid to capture all the nodes, as in Lemma 4. After CAP rounds have passed,
with high probability there are multiple roots with the highest treeid if and
only if there are multiple trees.

In order to detect the presence of multiple trees, we use tree recoloring com-
bined with a round counter. In our algorithm, only the roots perform the de-
tection based on the request messages they receive. Whenever a root receives
a request message from a node colored differently than its last two colors, that

Low Communication Self-stabilization through Randomization 475

originating node must belong to a different tree. If a root receives such a message
after enough rounds have passed, it starts a global reset procedure, which we
have specified in Sect. 4.

The purpose of the reset is for all the nodes to choose new random treeids
simultaneously. We use the ID selection procedure from [3] to ensure that after
every such reset, an unique leader exists with high probability regardless of n:

Lemma 6 (Lemma 6 from [3]). If n nodes run the procedure Choose(treeid),
there is a unique node with the largest treeid, with probability at least 1 − ε,
where ε = 1/r.

For our purpose we take r = nα. The procedure consists of drawing two random
integers as the treeid: the primary key is drawn from a Geometric distribution
with p = 1/2, and the secondary key is uniformly selected from [1, 36r log(4r)].
The largest primary key is less than (α + 1) log n with high probability, however
the secondary key may be as large as 36αnα log(4n), and therefore the size of a
node treeid is O(log n) bits.

Lemma 7. If there are R > 1 trees in the leader forest, then the probability
that no root receives a request message from a competing tree over CAP + log n
request rounds is less than 2n−1.

Proof. By Lemma 4, the probability that the the leader forest has not absorbed
all the nodes after CAP request rounds is less than n−1.

If all the trees belong to the leader forest, as long as no detection occurs, R
cannot change. At least n(d − 1) + R request messages are sent every request
round (recall the proof of Lemma 4), and each one of them arrives at one of the
roots of a different tree with a probability (R − 1)/n. The probability that no
such event occurs during the remaining log n request rounds is:(

1− R− 1
n

)(n(d−1)+R) log n

< e−(d−1)(R−1) log n ≤ n−(d−1)(R−1) ≤ n−1 (1)

The probability that any of those two unfavorable events occur is therefore at
most 2n−1.

Let the competition detection mechanism use Ω(n) colors. The probability that
a message arriving at a root from a different tree has either the root’s current
or previous color is O(1/n). Divide the execution into epochs of CAP + log n =
O(log n) request rounds. The following corollary follows from Corollary 2 com-
bined with Lemma 7.

Corollary 3. If there is more than one root in the leader forest, and the detec-
tion mechanism is using Ω(n) colors, then a reset is triggered within O(log n)
request rounds with high probability.

The detection of lack of synchronization between node request rounds is even
easier. It is enough that a node receives a request message after its confirmation
round or vice versa. Alternatively, we could reduce the phase synchronization to
unison and use Theorem 2.

476 S. Kutten and D. Zinenko

Lemma 8. If not all the nodes are synchronized, this is detected by some node
w.h.p. within O(1) rounds.

Proof. Let there be cn nodes that consider the current round to be a request
round. Assume that c ≤ 1/2, otherwise wait for the next round.

The cn nodes send at least cn(d− 1) messages to random nodes during their
request round. For each of these messages, the probability of triggering detection
is 1 − c. Therefore, the probability that none of the cn(d − 1) messages trigger
detection is ccn(d−1). By taking a derivative in c, there is one minimum at c = 1/e.
Since c ∈ [1/n, 1/2], ccn(d−1) ≤ max

(
n−(d−1), 2−

n
2 (d−1)

)
= O(n−1) .

5.3 Algorithm Description and Analysis

The pseudocode for the final spanning tree algorithm appears on Fig. 4–7. The
local state variable roundcounter counts the number of rounds since the begin-
ning of the algorithm or since the last reset.

Figure 4. Spanning tree algorithm, main loop
1: loop
2: R ← received request messages
3: C ← received confirmation messages
4: T ← received reset messages
5: run reset handler procedure (Fig. 5)
6: if request then
7: if (R �= ∅) ∧ (reset = 0) then // not synchronized
8: reset ← 2COV
9: run request procedure (Fig. 6)

10: else
11: if (C �= ∅) ∧ (reset = 0) then // not synchronized
12: reset ← 2COV
13: run confirmation procedure (Fig. 7)
14: request ← ¬request

Note that in order to achieve bounded memory/message size, we must limit
the values of the drawn treeids. This also makes our algorithms more prac-
tical to implement. The probability that any node draws a value larger than
(α + 2) log n in O(log n) attempts (resets) is just o(n−α). Therefore, with high
probability, the execution of the algorithm with truncated entries is identical to
its execution if the treeids weren’t limited. When the execution is different,
it leads to tO(log n) rounds increase in time complexity with a probability of
tn−α−1, therefore the expectation of this increase is O(1).

All the resets introduced by an adversary must cease within O(log n) rounds.
It does not matter that some nodes may reset earlier than others, or that the
reset breaks some of the invariants we relied on earlier. After the first reset
initialized by the algorithm (if such is needed), all the nodes are synchronized.
After every such reset, with high probability there exists only one leader tree

Low Communication Self-stabilization through Randomization 477

Figure 5. Spanning tree algorithm, reset handler procedure
1: if T �= ∅ then
2: reset ← max(reset,max(T))
3: if reset > 0 then
4: reset ← min(reset,2COV) − 1
5: if reset = 0 then
6: R, C ← ∅
7: roundcounter ← 0
8: treeid ← 〈min(Geo(1

2
), (α + 2) log n), 1 + �U(36αnα log(4n))�〉

9: request ←true
10: else
11: send reset to a random neighbor

Figure 6. Spanning tree algorithm, request procedure
1: roundcounter ← min(roundcounter + 1, CAP)
2: coloringdone ← �m ∈ C : ((m.color �= color) ∨ (m.coloringdone = false))
3: children ← {confirm.source : confirm ∈ C}
4: while |children| < d do
5: children ← children ∪ random neighbor
6: send request 〈treeid, treedepth, color〉 to the first d children

Figure 7. Spanning tree algorithm, confirmation procedure
1: candidates ← {r ∈ R : (r > 〈treeid, treedepth〉)∧ (r.treedepth < CAP)}
2: if |candidates| > 0 then
3: parent ← max(candidates)
4: treeid ← parent.treeid
5: treedepth ← parent.treedepth + 1
6: if color �= parent.color then
7: color ← parent.color
8: coloringdone ← false
9: send confirmation 〈color, coloringdone〉 to parent.source

10: else // we are orphaned, become a root
11: treedepth ← 0
12: if (roundcounter ≥ CAP)∧(∃r ∈ R : (r.color /∈ {color, oldcolor}))∧(reset =

0) then
13: reset ← 2COV
14: if coloringdone then
15: oldcolor ← color
16: color ←random color

(Lemma 6). Therefore, there are only O(1) resets w.h.p.. By Theorem 1, every
reset takes at most O(log n) rounds. The time between resets is also O(log n)
because of Corollary 3 and Lemma 8. Finally, after the last reset, there is only
one node with the highest treeid, so by Lemma 3, a spanning tree is constructed
within O(log n) rounds. Every round, at most nd messages are sent. The size of
all the variables is O(log n) bits. As a result, we have the following theorem:

478 S. Kutten and D. Zinenko

Theorem 3. On average and with high probability the spanning tree algorithm
converges within O(log n) rounds and uses O(n log n) messages. The algorithm
uses O(log n) memory bits at every node, and this is also the size of its messages.

6 Conclusion and Further Work

An interesting question is whether there is a gap in the communication efficiency
between randomized protocols and deterministic ones. [1] showed a lower bound
of Ω(n log n) messages for any deterministic (even non self-stabilizing) leader
election. However, in their model not all the processors may be initially active.

Our reset protocol works in any graph. It is possible that our other algorithms
can be configured or improved to work in a more general topology as well (ex-
pander graphs look particularly promising). Some of this work seems extensible
to asynchronous networks, or at least asynchronous bounded networks [12]. We
have also done some work on a generalization of the random process that can
be applied, with some additional work, to allow handling crash failures.

Another direction for improvement is a tighter mathematical analysis. Intu-
itively, re-capturing an existing sub-tree of a new node should be easier than
hitting new nodes randomly. After running some simulations, we learned that is
has a real effect on the algorithm’s time complexity, but were unable to find a
method that would allow us to account for its effects in the theoretical analysis.

References
[1] Afek, Y., Gafni, E.: Time and message bounds for election in synchronous and asyn-

chronous complete networks. In: PODC’85, pp. 186–195. ACM, New York (1985)
[2] Afek, Y., Kutten, S., Yung, M.: Memory-efficient self-stabilization on general net-

works. In: Toueg, S., Kirousis, L.M., Spirakis, P.G. (eds.) WDAG 1991. LNCS,
vol. 579, pp. 15–28. Springer, Heidelberg (1992)

[3] Afek, Y., Matias, Y.: Elections in anonymous networks. Information and Compu-
tation Journal 113(2), 312–330 (1994)

[4] Aggarwal, S., Kutten, S.: Time optimal self-stabilizing spanning tree algorithm. In:
Shyamasundar, R.K. (ed.) FSTTCS 1993. LNCS, vol. 761, pp. 400–410. Springer,
Heidelberg (1993)

[5] Arora, A., Gouda, M.: Distributed reset. IEEE Transactions on Computing 43(9),
1026–1038 (1994)

[6] Arora, A., Dolev, S., Gouda, M.G.: Maintaining digital clocks in step. In: Toueg,
S., Kirousis, L.M., Spirakis, P.G. (eds.) WDAG 1991. LNCS, vol. 579, pp. 71–79.
Springer, Heidelberg (1992)

[7] Awerbuch, B., Kutten, S., Mansour, Y., Patt-Shamir, B., Varghese, G.: Time
optimal self-stabilizing synchronization. In: STOC’93, pp. 652–661 (1993)

[8] Awerbuch, B., Patt-Shamir, B., Varghese, G., Dolev, S.: Self-stabilization by local
checking and global reset. In: Tel, G., Vitányi, P.M.B. (eds.) WDAG 1994. LNCS,
vol. 857, pp. 326–339. Springer, Heidelberg (1994)

[9] Blin, L., Potop-Butucaru, M., Rovedakis, S., Tixeuil, S.: A new self-stabilizing
minimum spanning tree construction with loop-free property. In: Keidar, I. (ed.)
DISC 2009. LNCS, vol. 5805, pp. 407–422. Springer, Heidelberg (2009)

[10] Boulinier, C., Petit, F., Villain, V.: When graph theory helps self-stabilization.
In: PODC’04, pp. 150–159 (2004)

Low Communication Self-stabilization through Randomization 479

[11] Burman, J., Kutten, S.: Time optimal asynchronous self-stabilizing spanning tree.
In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 92–107. Springer, Heidelberg
(2007)

[12] Chou, C.-T., Cidon, I., Gopal, I.S., Zaks, S.: Synchronizing asynchronous bounded
delay networks. In: van Leeuwen, J. (ed.) WDAG 1987. LNCS, vol. 312, pp. 212–
218. Springer, Heidelberg (1988)

[13] Delporte-Gallet, C., Devismes, S., Fauconnier, H.: Robust stabilizing leader elec-
tion. In: Masuzawa, T., Tixeuil, S. (eds.) SSS 2007. LNCS, vol. 4838, pp. 219–233.
Springer, Heidelberg (2007)

[14] Devismes, S., Masuzawa, T., Tixeuil, S.: Communication efficiency in self-
stabilizing silent protocols. In: ICDCS’09, pp. 474–481. IEEE, Los Alamitos (2009)

[15] Devroye, L.: Branching processes and their applications in the analysis of tree
structures and tree algorithms. In: Probabilistic Methods for Algorithmic Discrete
Mathematics, vol. 16, pp. 249–314. Springer, Heidelberg (1998)

[16] Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commu-
nunications of the ACM 17(11), 643–644 (1974)

[17] Dolev, S., Israeli, A., Moran, S.: Self-stabilization of dynamic systems assuming
only read/write atomicity. In: PODC’90, pp. 103–117 (1990)

[18] Dolev, S., Israeli, A., Moran, S.: Uniform dynamic self-stabilizing leader election.
IEEE Transactions on Parallel and Distributed Systems 8(4), 424–440 (1997)

[19] Feige, U., Peleg, D., Raghavan, P., Upfal, E.: Randomized broadcast in networks.
In: Asano, T., Imai, H., Ibaraki, T., Nishizeki, T. (eds.) SIGAL 1990. LNCS,
vol. 450, pp. 128–137. Springer, Heidelberg (1990)

[20] Gärtner, F.C.: A survey of self-stabilizing spanning-tree construction algorithms.
Technical report, Ecole Polytechnique Fèdèrale de Lausanne (2003)

[21] Gouda, M.G., Herman, T.: Stabilizing unison. Information Processing Let-
ters 35(4), 171–175 (1990)

[22] Hérault, T., Lemarinier, P., Peres, O., Pilard, L., Beauquier, J.: A model for large
scale self-stabilization. In: IPDPS’07, pp. 1–10 (2007)

[23] Karp, R., Schindelhauer, C., Shenker, S., Vocking, B.: Randomized rumor spread-
ing. In: FOCS’00, p. 565. IEEE Computer Society, Los Alamitos (2000)

[24] Katz, S., Perry, K.J.: Self-stabilizing extensions for message-passing systems. Dis-
tributed Computing 7(1), 17–26 (1993)

[25] Koldehofe, B.: Simple gossiping with balls and bins. Studia Informatica Univer-
salis 3(1), 43–60 (2004)

[26] Masuzawa, T., Izumi, T., Katayama, Y., Wada, K.: Brief announcement:
Communication-efficient self-stabilizing protocols for spanning-tree construction.
In: Abdelzaher, T., Raynal, M., Santoro, N. (eds.) OPODIS 2009. LNCS, vol. 5923,
pp. 219–224. Springer, Heidelberg (2009)

[27] Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algo-
rithms and Probabilistic Analysis. Cambridge University Press, Cambridge (2005)

[28] Pittel, B.: On spreading a rumor. SIAM Journal of Applied Mathematics 47(1),
213–223 (1987)

[29] Segall, A.: Distributed network protocols. IEEE Transactions on Information The-
ory IT-29, 23–35 (1983)

[30] Varghese, G., Jayaram, M.: The fault span of crash failures. Journal of the
ACM 47, 47–52 (1997)

[31] Vogels, W., van Renesse, R., Birman, K.: The power of epidemics: robust com-
munication for large-scale distributed systems. SIGCOMM Comput. Commun.
Rev. 33(1), 131–135 (2003)

Fast Self-stabilizing Minimum Spanning Tree
Construction

Using Compact Nearest Common Ancestor Labeling
Scheme

Lélia Blin1,3, Shlomi Dolev4,
Maria Gradinariu Potop-Butucaru2,3,5, and Stephane Rovedakis1,6

1 Université d’Evry-Val d’Essonne, 91000 Evry, France
2 Université Pierre & Marie Curie - Paris 6, 75005 Paris, France

3 LIP6-CNRS UMR 7606, France
{lelia.blin,maria.gradinariu}@lip6.fr

4 Department of Computer Science, Ben-Gurion University of the Negev,
Beer-Sheva, 84105, Israel
dolev@cs.bgu.ac.il

5 INRIA REGAL, France
6 Laboratoire IBISC-EA 4526, 91000 Evry, France

stephane.rovedakis@ibisc.fr

Abstract. We present a novel self-stabilizing algorithm for minimum
spanning tree (MST) construction. The space complexity of our solution
is O(log2 n) bits and it converges in O(n2) rounds. Thus, this algorithm
improves the convergence time of all previously known self-stabilizing
asynchronous MST algorithms by a multiplicative factor Θ(n), to the
price of increasing the best known space complexity by a factor O(log n).
The main ingredient used in our algorithm is the design, for the first time
in self-stabilizing settings, of a labeling scheme for computing the nearest
common ancestor with only O(log2 n) bits.

1 Introduction

Since its introduction in a centralized context [15,14], the minimum spanning
tree (or MST) problem gained a benchmark status in distributed computing
thanks to the seminal work of Gallager, Humblet and Spira [9].

The emergence of large scale and dynamic systems, often subject to transient
faults, revives the study of scalable and self-stabilizing algorithms. A scalable
algorithm does not rely on any global parameter of the system (e.g. upper bound
on the number of nodes or the diameter). Self-stabilization introduced first by
Dijkstra in [6] and later publicized by several books [7,8] deals with the ability
of a system to recover from catastrophic situation (i.e., the global state may be
arbitrarily far from a legal state) without external (e.g. human) intervention in
finite time.

Although there already exists self-stabilizing solutions for the MST construc-
tion, none of them considered the extension of the Gallager, Humblet and Spira

N.A. Lynch and A.A. Shvartsman (Eds.): DISC 2010, LNCS 6343, pp. 480–494, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Fast Self-stabilizing Minimum Spanning Tree Construction 481

algorithm (GHS) to self-stabilizing settings. Interestingly, this algorithm unifies
the best properties for designing large scale MSTs: it is fast and totally decen-
tralized and it does not rely on any global parameter of the system. Our work
proposes an extension of this algorithm to self-stabilizing settings. Our extension
uses only logarithmic memory and preserves all the good characteristics of the
original solution in terms of convergence time and scalability.

Gupta and Srimani presented in [13] the first self-stabilizing algorithm for the
MST problem. The MST construction is based on the computation of all shortest
paths (for a certain cost function) between all pairs of nodes. While executing the
algorithm, every node stores the cost of all paths from it to all the other nodes. To
implement this algorithm, the authors assume that every node knows the number
n of nodes in the network, and that the identifiers of the nodes are in {1, . . . , n}.
Every node u stores the weight of the edge eu,v placed in the MST for each node
v �= u. Therefore the algorithm requires Ω(

∑
v �=u log w(eu,v)) bits of memory at

node u. Since all the weights are distinct integers, the memory requirement at
each node is Ω(n log n) bits. The main drawback of this solution is its lack of
scalability since each node has to know and maintain information for all the nodes
in the system. Note also that the time complexity announced by the authors,
O(n) stays only in the particular synchronous settings considered by the authors.
In asynchronous setting the complexity is Ω(n2) rounds. A different approach
for the message-passing model, was proposed by Higham and Liang [11]. The
algorithm performs roughly as follows: every edge checks whether it eventually
belongs to the MST or not. To this end, every non tree-edge e floods the network
to find a potential cycle, and when e receives its own message back along a cycle,
it uses the information collected by this message (i.e., the maximum edge weight
of the traversed cycle) to decide whether e could potentially be in the MST or
not. If the edge e has not received its message back after the time-out interval,
it decides to become tree edge. The memory used by each node is O(log n) bits,
but the information exchanged between neighboring nodes is of size O(n log n)
bits, thus only slightly improving that of [13]. This solution also assume that
each node has access to a global parameter of the system: the diameter. Its
computation is expensive in large scale systems and becomes even harder in
dynamic settings. The time complexity of this approach is O(mD) rounds where
m and D are the number of edges and the diameter of the network respectively,
i.e., O(n3) rounds in the worst case.

In [2] we proposed a self-stabilizing loop-free algorithm for the MST problem.
Contrary to previous self-stabilizing MST protocols, this algorithm does not
make any assumption on the network size (including upper bounds) or the unicity
of the edge weights. The proposed solution improves on the memory space usage
since each participant needs only O(log n) bits while preserving the same time
complexity as the algorithm in [11].

Clearly, in the self-stabilizing implementation of the MST algorithms there is
a trade-off between the memory complexity and their time complexity (see Table
1, where a boldface denotes the most useful (or efficient) feature for a particular
criterium). The challenge we address in this paper is to design fast and scal-

482 L. Blin et al.

Table 1. Distributed Self-Stabilizing algorithms for the MST problem

a priori knowledge space complexity convergence time
[13] network size and O(n log n) Ω(n2)

the nodes in the network
[11] upper bound on diameter O(log n) O(n3)

+messages of size O(n log n)
[2] none O(log n) O(n3)
This paper none O(log2 n) O(n2)

able self-stabilizing MST with little memory. Our approach brings together two
worlds: the time efficient MST constructions and the memory compact informa-
tive labeling schemes. Therefore, we extend the GHS algorithm to self-stabilizing
settings and keep compact its memory space by using a self-stabilizing exten-
sion of the nearest common ancestor labeling scheme of [1]. Note that labeling
schemes have already been used in order to infer a broad set of information such
as vertex adjacency, distance, tree ancestry or tree routing [5], however none of
these schemes have been studied in self-stabilizing settings (except the last one).

Our contribution is therefore twofold. We propose for the first time in self-
stabilizing settings a O(log2n) bits scheme for computing the nearest common
ancestor. Furthermore, based on this scheme, we describe a new self-stabilizing
algorithm for the MST problem. Our algorithm does not make any assump-
tion on the network size (including upper bounds) or the existence of an a
priori known root. Moreover, our solution is the best space/time compromise
over the existing self-stabilizing MST solutions. The convergence time is O(n2)
asynchronous rounds and the memory space per node is O(log2 n) bits. Interest-
ingly, our work is the first to prove the effectiveness of an informative labeling
scheme in self-stabilizing settings and therefore opens a wide research path in this
direction.

2 Model and Notations

We consider an undirected weighted connected network G = (V, E, w) where
V is the set of nodes, E is the set of edges and w : E → R+ is a positive cost
function. Nodes represent processors and edges represent bidirectional communi-
cation links. Additionally, we consider that G = (V, E, w) is a network in which
the weight of the communication links may change value.

The processors asynchronously execute their programs consisting of a set of
variables and a finite set of rules. The variables are part of the shared register
which is used to communicate with the neighbors. A processor can read and
write its own registers and can read the shared registers of its neighbors. Each
processor executes a program consisting of a sequence of guarded rules. Each
rule contains a guard (Boolean expression over the variables of a node and its
neighborhood) and an action (update of the node variables only). Any rule whose

Fast Self-stabilizing Minimum Spanning Tree Construction 483

guard is true is said to be enabled. A node with one or more enabled rules is
said to be privileged and may make a move executing the action corresponding
to the chosen enabled rule.

A local state of a node is the value of the local variables of the node and
the state of its program counter. A configuration of the system G = (V, E) is
the cross product of the local states of all nodes in the system. The transition
from a configuration to the next one is produced by the execution of an action
at a node. A computation of the system is defined as a weakly fair, maximal
sequence of configurations, e = (c0, c1, . . . ci, . . .), where each configuration ci+1
follows from ci by the execution of a single action of at least one node. During
an execution step, one or more processors execute an action and a processor
may take at most one action. Weak fairness of the sequence means that if any
action in G is continuously enabled along the sequence, it is eventually chosen
for execution. Maximality means that the sequence is either infinite, or it is finite
and no action of G is enabled in the final global state.

In the sequel we consider the system can start in any configuration. That
is, the local state of a node can be corrupted. Note that we don’t make any
assumption on the bound of corrupted nodes. In the worst case all the nodes in
the system may start in a corrupted configuration. In order to tackle these faults
we use self-stabilization techniques.

Definition 1 (self-stabilization). Let LA be a non-empty legitimacy predi-
cate1 of an algorithm A with respect to a specification predicate Spec such that
every configuration satisfying LA satisfies Spec. Algorithm A is self-stabilizing
with respect to Spec iff the following two conditions hold:
(i) Every computation of A starting from a configuration satisfying LA preserves
LA (closure).
(ii) Every computation of A starting from an arbitrary configuration contains a
configuration that satisfies LA (convergence).

3 Overview of our Solution

We propose to extend the Gallager, Humblet and Spira (GHS) algorithm, [9],
to self-stabilizing settings via a compact informative labeling scheme. Thus, the
resulting solution presents several advantages appealing for large scale systems:
it is compact since it uses only logarithmic memory in the size of the network,
it scales well since it does not rely on any global parameter of the system, it
is fast — its time complexity is the better known in self-stabilizing settings.
Additionally, it self-recovers from any transient fault.

The central notion in the GHS approach is the notion of fragment. A frag-
ment is a partial spanning tree of the graph, i.e., a fragment is a tree which
spans a subset of nodes. Note that a fragment can be limited to a single node.
An outgoing edge of a fragment F is an edge with a unique endpoint in F .
1 A legitimacy predicate is defined over the configurations of a system and is an

indicator of its correct behavior.

484 L. Blin et al.

The minimum-weight outgoing edge of a fragment F is denoted in the following
as MEF . In the GHS construction, initially each node is a fragment. For each
fragment F , the GHS algorithm in [9] identifies the MEF and merges the two
fragments endpoints of MEF . Note that, with this scheme, more than two frag-
ments may be merged concurrently. The merging process is recursively repeated
until a single fragment remains. The result is a MST. The above approach is
often called “blue rule” for MST construction.

This approach is particularly appealing when transient faults yield to a forest
of fragments (which are sub-trees of a MST). The direct application of the blue
rule allows the system to reconstruct a MST and to recover from faults which
have divided the existing MST. However, when more severe faults hit the system
the process variables may be corrupted leading to a configuration of the network
where the set of fragments are not sub-trees of some MST. That is, it may be a
spanning tree but not of minimum weight, or it can contain cycles. In this case,
the application of the blue rule only is not sufficient to reconstruct a MST. To
overcome this difficulty, we combine the blue rule with another method, referred
in the literature as the “red rule”. The red rule removes the heaviest edge from
every cycle. The resulting configuration contains a MST. We use the red rule
as follows: given a spanning tree T of G, every edge e of G that is not in T
is added to T , thus creating a (unique) cycle in T ∪ {e}. This cycle is called
a fundamental cycle, denoted by Ce. If e is not the edge of maximum weight
in Ce, then, according to the red rule, there exists an edge f �= e in Ce with
w(f) > w(e). The edge of maximum weight can be removed since it is not part
of any MST.

Our MST construction combines both the blue and red rules. The blue rule ap-
plication needs that each node identifies its own fragment. The red rule requires
that nodes identify the fundamental cycle corresponding to every adjacent non-
tree-edge. In both cases, we use a self-stabilizing labeling scheme, called NCA-L,
which provides at each node a distinct informative label such that the nearest
common ancestor of two nodes can be identified based only on the labels of these
nodes (see Section 3.1). Thus, the advantage of this labeling is twofold. First the
labeling helps nodes to identify their fragments. Second, given any non-tree edge
e = (u, v), the path in the tree going from u to the nearest common ancestor of
u and v, then from there to v, and finally back to u by traversing e, constitute
the fundamental cycle Ce.

To summarize, our algorithm will use the blue rule to construct a spanning
tree, and the red rule to recover from invalid configurations. In both cases, it uses
our algorithm NCA-L to identify both fragments and fundamental cycles. Note
that, in [3,4] distributed algorithms using the blue and red rules to construct
a MST in a dynamic network are proposed, however these algorithms are not
self-stabilizing.

Variables used by NCA-L and MST modules For any node v ∈ V (G), we denote
by N(v) the set of all neighbors of v in G. We use the following notations:
– pv: the parent of v in the current spanning tree, an integer pointer to a

neighbor;

Fast Self-stabilizing Minimum Spanning Tree Construction 485

– �v: the label of v composed of a list of pairs of integers where each pair is an
identifier and a distance (the size of �v is bounded by O(log2 n) bits);

– sizev: a pair of variables, the first one is an integer the number of nodes in
the sub-tree rooted at v and the second one is the identifier of the child u of
v with the maximum number of nodes in the sub-tree rooted at u;

– mwev: the minimum weighted edge composed by a pair of variables, the first
one is an integer, the weight of the edge and the second one is the label of a
node u stored in �u.

3.1 Self-stabilizing Nearest Common Ancestor Labeling

Our labeling scheme, called in the following NCA-L, uses the notions of heavy
and light edges introduced in [10]. In a tree, a heavy edge is an edge between a
node u and one of its children v of maximum number of nodes in its sub-tree.
The other edges between u and its other children are tagged as light edges. We
extend this edge designation to the nodes, a node v is called heavy node if the
edge between v and its parent is a heavy edge, otherwise v is called light node.
Moreover, the root of a tree is a heavy node. The idea of the scheme is as follows.
A tree is recursively divided into disjoint paths: the heavy and the light paths
which contain only heavy and light edges respectively.

- Child ≡ {u ∈ N(v) : pu = Idv}
- SizeC(v) ≡ Leaf(v) ∨ (sizev = (1 +

∑
u∈Child(v)

sizeu,

arg max{sizeu : u ∈ Child(v)}))
- Leaf(v) ≡ (� ∃u ∈ N(v), pu = Idv) ∧ sizev = (1,⊥)
- Label(v) ≡ LabelR(v) ∨ LabelNd(v)
- LabelR(v) ≡ (pv = ∅ ∧ v = (Idv, 0))
- LabelNd(v) ≡ pv ∈ N(v) ∧ (Heavy(v) ∨ Light(v))
- Heavy(v) ≡ sizepv

[1] = Idv ∧ sizev[0] < sizepv
[0] ∧ last(pv

)[1] + 1 = last(v)[1]
- Light(v) ≡ sizepv

[1] �= Idv ∧ sizev[0] ≤ sizepv
[0]/2 ∧ v = pv

.(Idv, 0)

- nca(u, v) ≡

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
.(a0, a1) s.t. u ∩ v = , u = .(a0, a1).′u if (a0 = b0 ∨ �= ∅)

and v = .(b0, b1).′v ∧u ≺ v

.(b0, b1) s.t. u ∩ v = , u = .(a0, a1).′u if (a0 = b0 ∨ �= ∅)
and v = .(b0, b1).′v ∧v ≺ u

∅ otherwise
- Cycle(v) ≡ v ⊂ pv

∨ v ≺ pv

- MinEnabled(v) ≡ Enabled(v) ∧ (∀u ∈ N(v), Enabled(u) ∧ Idv < Idu)

Fig. 1. Predicates used by the algorithm NCA-L for the labeling procedure

To label the nodes in a tree T , the size of each subtree rooted at each node
of T is needed to identify heavy edges leading the heaviest subtrees at each
level of T . To this end, each node v maintains a variable named sizev which
is a pair of integers. The first integer is the local estimation of the number of
nodes in the subtree rooted at v. The second integer is the identifier of a child

486 L. Blin et al.

of v with maximum number of nodes. That is, it indicates the heavy edge. The
computation of sizev is processed from the leaves to the root (see Predicate
SizeC(v) in Figure 1). A leaf has no child, therefore sizev = (1,⊥) for a leaf node
v (see Predicate Leaf(v) in Figure 1 and Rule R�).

Based on the heavy and light nodes in a tree T indicated by variable sizev at
each node v ∈ T , each node of T can compute its label. The label of a node v
stored in �v is a list of pair of integers. Each pair of the list contains the identifier
of a node and a distance to the root of the heavy path (i.e., a path including
only heavy edges). For the root v of a fragment, the label �v is the following
pair (Idv, 0), respectively the identifier of v and the distance to itself, i.e., zero
(see Rule R�). When a node u is tagged by its parent as a heavy node (i.e.,
sizep

v
[1] = Idu), then the node u takes the label of its parent but it increases by

one the distance of the last pair of the parent label. Examples of theses cases
are given in Figure 2, where integers inside the nodes are node identifiers and
lists of pairs of values are node labels. When a node u is tagged by its parent
v as a light node (i.e., sizep

v
[1] �= Idu), then the node u becomes the root of a

heavy path and it takes the label of its parent to which it adds a pair of integers
composed of its identifier and a zero distance (see Figure 2).

0

1 2

3 4 5

96 7 8

(0,0)

(0,1)

(0,2)

(0,3)

(0,1)(4,0)

(0,2)(7,0)

(0,0)(2,0)

(0,0)(2,1)

(0,0)(2,2)

(0,0)(2,1)(9,0)

10
(0,0)(2,3)

(a)

0

1 2

3 4 5

96 7 8

(0,0)

(0,1)

(3,0)

(3,1)

(0,2)

(3,0)(7,0)

(2,0)

(2,1)

(2,2)

(2,1)(9,0)

10(2,3)

(b)

Non tree edge: Heavy tree edge: Light tree edge:

Fig. 2. Labeling scheme

This labeling scheme is used in second part of this article in MST algorithm
to find the minimum weighted edges, but it is also used to detect and destroy
cycles since the initial configuration may not be a spanning tree. To this end,
we define an order ≺ on the labels of nodes. Let a and b be two nodes and �a

and �b be their respective labels such that �a = �.(a0, a1).�′a and �b = �.(b0, b1).�′b
with �a ∩ �b = �. The label of a node a is lower than the label of node b, noted
�a ≺ �b, if (1) (a0, a1).�′a = ∅ and (b0, b1).�′b �= ∅, or (2) a0 < b0 or (3) a0 = b0
and a1 < b1.

A node u can detect the presence of a cycle by only comparing its label with
the label of its parent. That is, if its label is contained in the label of its parent,
or it is inferior to the one of its parent then u is part of a cycle (see Predicate

Fast Self-stabilizing Minimum Spanning Tree Construction 487

Cycle(v) in Figure 1). In this case, the node u becomes the root of its fragment
in order to break the cycle (see below Rule R�).

Algorithm NCA-L is composed of two rules. Rule R� creates a root or breaks
cycles while rule R� produces a proper labeling. Note that the last predicates in
rules R� and R� (the part in gray) are used only for insuring the exclusivity of
rules execution when the labeling scheme works together with the MST scheme.

A node v with an incoherent parent (which is not one of its neighbors) or
present in a cycle executes R�. Following the execution of this rule node v be-
comes a root node, it sets its parent to void and its label to (Idv, 0).

Rule R� helps a node v to compute the number of nodes in its sub-tree (stored
in variable sizev) and provides to v a coherent label.

R�: [Root creation]
If pv �∈ N(v) ∨ (pv = ∅ ∧ �v �= (Idv, 0) ∨ (Cycle(v) ∧¬NeedReorientation(v))
Then pv := ∅; �v = (Idv, 0);

R�: [Label correction]
If ¬Cycle(v) ∧ (¬SizeC(v) ∨ ¬Label(v)) ∧MinEnabled(v) ∧ ¬TreeMerg(v)
Then If Leaf(v) then sizev = (1,⊥)

Else sizev := (1+
∑

u∈Child(v) sizeu, arg max{sizeu : u ∈ Child(v)});
If sizep

v
[1] = Idv then �v := �p

v
; last(�v)[1] := last(�v)[1] + 1;

Else �v = �p
v
.(Idv, 0)

3.2 Self-stabilizing MST

In this section we describe our self-stabilizing MST algorithm. The algorithm
executes two phases: the MST correction and the MST fragments merging. Recall
that our algorithm uses the blue rule to construct a spanning tree and the red
rule to recover from invalid configurations. In both cases, it uses the nearest-
common ancestor labeling scheme to identify fragments and fundamental cycles.
We assume in the following that the merging operations have a higher priority
than the recovering operations. That is, the system recovers from an invalid
configuration if and only if no merging operation is possible. In the worst case,
after a failure hit the system, a merging phase will be followed by a recovering
phase and finally by a final merging phase.

The minimum weighted edge and MST correction. Note that the scope
of our labeling scheme is twofold. First, it allows a node to identify the neighbors
that share the same fragment and consequently to select the outgoing edges of
a fragment. Second, the labeling scheme may be used to identify cycles and to
repair the tree. To this end, the algorithm uses the nearest common ancestor
predicate nca depicted in Figure 1. For two nodes u and v with e = (u, v) a
non tree edge (i.e., pu �= v and pv �= u), if the nearest common ancestor does
not exist then u and v are in two distinct fragments (i.e., if we have nca(u, v) =
∅). Otherwise u and v are in the same fragment F and the addition of e to

488 L. Blin et al.

- MergeChild(v) ≡ min{mweu : u ∈ Child(v) ∧ mweu[1] = ∅}
- MergeAdj(v) ≡ (min{w(u, v) : u ∈ N(v) \ Child(v) \ {pv} ∧ nca(u, v) = ∅}, ∅)
- MergeEdge(v) ≡ min{MergeChild(v), MergeAdj(v)}
- FarLcaChild(v) ≡ arg min≺{mweu[1] : u ∈ Child(v) ∧ mweu[1] � v}
- RecoverChild(v) ≡ mweu such that FarLcaChild(v) = u
- FarLca(v) ≡ arg min≺{nca(u, v) : u ∈ N(v) \ Child(v) \ {pv} ∧ mwev[1] �= ∅∧

nca(u, v) � mwev[1]∧nca(u, v) �= ∅}

- RecoverAdj(v) ≡

⎧⎪⎪⎨⎪⎪⎩
(w(u, v), nca(u, v)) s.t. FarLca(v) = u if FarLca(v) �= ∅
(w(u, v), nca(u, v)) otherwise
s.t. u = arg min≺{nca(u, v) :
u ∈ N(v) \ Child(v) \ {pv} ∧ nca(u, v) �= ∅}

- RecoverEdge(v) ≡
{

RecoverChild(v) if RecoverAdj(v)[1] ≺ RecoverChild(v)
RecoverAdj(v) otherwise

- MinEdge(v) ≡
{

MergeEdge(v) if MergeEdge(v) �= ∅
RecoverEdge(v) otherwise

- NeedReorientation(v) ≡ LabelR(v) ∨ (pv
= (⊥,⊥) ∧ ppv

= Idv)
- EndReorientation(v) ≡ pv

= (∅, ∅) ∧ (v = (⊥,⊥) ∨ v �= (∅, ∅))
- TreeMerg(v) ≡ NeedReorientation(v) ∨ EndReorientation(v)
- NewFrag(v) ≡ mwev = mwepv

∧ mwev[1] �= Idv ∧ w(v, pv) > mwev[0]

Fig. 3. Predicates used by the MST for the tree correction or the fusion fragments

F generates a cycle. Let path(x, y) be the set of edges on the unique path
between x and y in F , with x, y ∈ F . The fundamental cycle Ce is the following:
Ce = path(u, nca(u, v)) ∪ path(nca(u, v), v) ∪ e. Consider the example depicted
on Figure 2(b). The labels of nodes 10 and 6 are respectively �10 = (2, 3) and
�6 = (3, 1). In this case nca(10, 6) = ∅ so the edge (10, 6) is an outgoing edge
because the nodes 10 and 6 are in two distinct fragments and they have no
common ancestor. If the edge (10, 6) is of minimum weight then (10, 6) can be
used for a merging between the fragment rooted in 2 and the fragment rooted in
3. For the case of nodes 10 and 9 the labels are �10 = (2, 3) and �9 = (2, 1)(9, 0)
and nca(10, 9) = (2, 1). Consequently, 10 and 9 are in the same fragment. The
fundamental cycle Ce with e = (9, 10) goes through the node with the label
nca(10, 9), in other word the node 5 in Figure 2(b).

Predicate MinEdge(v) (see Figure 3) computes both the minimum weight
outgoing edge used in a merging phase and the internal edges used in a recovering
phase. Our algorithm gives priority to the computation of minimum outgoing
edges via Predicate MinEdge(v). A recovering phase is initiated if there exists a
unique tree or if a sub-tree of one fragment has no outgoing edge.

The computation of the minimum weight outgoing edge is done in a frag-
ment Fu if and only an adjacent fragment Fv is detected by Fu, i.e., if we have
Predicate MergeEdge(v) �= ∅. In this case, using Rule RMin each node collects
from the leaves to the root the outgoing edges leading to an adjacent fragment
Fv. At each level in a fragment, a node selects the outgoing edge of minimum

Fast Self-stabilizing Minimum Spanning Tree Construction 489

weight among the outgoing edges selected by its children and its adjacent out-
going edges. Thus, this allows to the root of a fragment to select the minimum
outgoing edge e of the fragment leading to an adjacent fragment. Then, the edge
e can be used to perform a merging between two adjacent fragments using an
edge belonging to a MST.

Let us explain Rule R� which allows to correct a tree (or a fragment). In this
case, the information about the non-tree edges are sent to the root as follows.
Among all its non-tree edges, a node u sends the edge e = (u, v) with the
nca(u, v) nearest to the root (see Figure 4(a)). The information about the edge e
is stored in variable mweu. If the parent x of the node u has the same information
and the weight of the edge w(u, x) > w(e) then the edge (u, v) is removed from
the tree (see Figure 4(a-b) for the nodes 6 and 10). We use the red rule in an
intensive way, because we remove all the edges with a weight upper than w(e) in
fundamental cycle of e. This interpretation of the red rule allows to insure that
after a recovering phase the remaining edges belong to a MST.

0

1 2

3 4 5

96 7 8

(0,0)

(0,1)

(0,2)

(0,3)

(0,1)(4,0)

(0,2)(7,0)

(0,0)(2,0)

(0,0)(2,1)

(0,0)(2,2)

(0,0)(2,1)(9,0)

10(0,0)(2,3)

7 12

3 4

9

6

1

8

5 2

11

106

14

15

16

7,(0,0)

7,(0,0)

7,(0,0)

7,(0,0)

7,(0,0)

7,(0,0)

7,(0,0)

7,(0,0)

1,(0,1)

6,(0,2)
10,(0,0)(2,1)

(a)

0

1 2

3 4 5

96 7 8

(0,0)

(0,1)

(0,2)

(0,3)

(0,1)(4,0)

(0,2)(7,0)

(0,0)(2,0)

(0,0)(2,1)

(0,0)(2,2)

(0,0)(2,1)(9,0)

10(0,0)(2,3)

7 12

3 4

9

6

1

8

5 2

11

106

14

15

16

7,(0,0)

7,(0,0)

7,(0,0)

7,(0,0)

7,(0,0)

7,(0,0)

7,(0,0)

7,(0,0)

1,(0,1)

6,(0,2)
10,(0,0)(2,1)

(b)

Non tree edge: Heavy tree edge: Light tree edge:

Fig. 4. Minimum weighted edge computation and Tree correction. The bubble at each
node v corresponds to the weight and the label of the common ancestor of the edge
stored on variable mwev.

RMin: [Minimum computation]
If ¬Cycle(v) ∧ Label(v) ∧ [(mwev �= MinEdge(v) ∧ MergeEdge(v) �= ∅) ∨
(mwepv

= mwev ∧MergeEdge(v) = ∅)]
Then mwev := MinEdge(v);

R�: [MST Correction]
If ¬Cycle(v) ∧ Label(v) ∧NewFrag(v)
Then pv := ∅; �v := (Idv, 0);

To summarize, in this section we explained how to compute the outgoing-edges
and the fundamental cycles (Rule RMin), and how to recover from a false tree
(Rule R�). The next section addresses the fragments merging operation (Rules
R�� and R�).

490 L. Blin et al.

Fragments Merging

In this phase two rules are executed: R�� and R�. Note that Rule RMin (de-
scribed in the previous section) computes from the leaves to the root the mini-
mum outgoing edge e = (u, v) of the fragment Fu, with u ∈ Fu. The information
about e are stored in the variable mwe, i.e., the weight of the edge and a common
ancestor equal to∞ to indicate that these information concern an outgoing edge.
When a root r of Fu has stabilized its variable mwer, it starts a merging phase
(Rule R��). To this end, the nodes in the path between r and u are reoriented
from r to v. During this reorientation the labels are locked. That is, each node x
on the path between r and u (including r and excluding v) changes its label to:
�v := (⊥,⊥). When a node u becomes the root of the fragment Fu it can merge
with the fragment Fv. After the addition of the outgoing edge e, the labeling
process is re-started (see Rule R�). The merging phase is repeated until a single
fragment is obtained.

R��: [Merging]
If NeedReorientation(v) ∧mwev = MergeEdge(v)
Then

If (∃u ∈ N(v)\Child(v)\{pv}, w(u, v) = MergeEdge(v) ∧ Idv > Idu)
Then

pv := min{Idu : u ∈ N(v)\Child(v)\{pv} ∧w(u, v) = MergeEdge(v)};
�v := (∅, ∅);

If (∃u ∈ N(v)\Child(v)\{pv}, w(u, v) = MergeEdge(v)∧Idv < Idu∧pu =
Idv)

Then �v := (∅, ∅);
Else pv := min{Idu : u ∈ Child(v) ∧mwev = MergeEdge(v)};

�v := (⊥,⊥);

R�: [End Merging]
If ¬NeedReorientation(v) ∧ EndReorientation(v)
Then �v := (∅, ∅);

4 Complexity Proofs

In the following we discuss the complexity issues of our solution. Due to space
limitation the correctness proofs are omitted, see [16].

Lemma 1. Algorithms NCA-L and MST have a space complexity of O(log2 n) bits.

Proof. Algorithm NCA-L uses three variables : pv, �v, sizev. The first and the last
one are respectively a pointer to a neighbor node and a pair of integers, each one
needs O(log n) bits. However, the variable �v is a list of pairs of integers. A new
pair of integers is added to the list when a light edge is created in the tree. As
noticed in [1], there are at most log n light edges on the path from a leaf to the
root, i.e., at most log n pairs of integers. Thus, the variable �v uses log n× log n
bits.

Fast Self-stabilizing Minimum Spanning Tree Construction 491

Algorithm MST uses an additional variable mwev which is a pair composed of
an integer and the label of a node. The label of a node is stored in variable �v

which uses log2 n bits. Thus, the variable mwev needs log2 n bits.
Therefore, Algorithms NCA-L and MST use O(log2 n) bits of memory at each

node. �
Lemma 2. Starting from any configuration, all cycles are removed from the
network in at most O(n2) rounds, with n the number of nodes in the network.

Proof. As explained in the proof of Lemma 6, to break a cycle Ck a part of the
nodes in Ck must compute their new labels, that is a label computation must
be initiated from one node and then this process must cross Ck. Thus, the worst
case is a configuration in which all the nodes in Ck have to compute their new
labels using Rule R� to detect the presence of cycle Ck. Therefore, at most O(n)
rounds are needed to compute the new label of the nodes in Ck based on the
label of one node x in Ck. According to Lemma 6, when this computation is done
the cycle Ck is detected and removed by the node x. At most O(n) additional
rounds are needed to break the cycle Ck.

Since there is at most n/2 cycles in a network, at most O(n2) rounds are
needed to remove all the cycles from the network. �
Lemma 3. Starting from a configuration which contains a tree T , using Algo-
rithm NCA-L any node v ∈ VT has a correct label in at most O(n) rounds.

Proof. According to the description of Algorithm NCA-L, the correction of node
labels is done using a bottom-up computation followed by a top-down compu-
tation in the tree T = (VT , ET).

The bottom-up computation is started by the leaves of T , when leaf nodes
v ∈ VT have corrected their variable sizev to (1,⊥) then internal nodes u ∈ VT

can start to correct their variable sizeu. An internal node v ∈ VT computes a
correct value in its variable sizev using Rule R� when all its children u have a
correct value in their variable sizeu. Since the computation is done in a tree sub-
graph then in at most O(n) rounds each node v ∈ VT has corrected its variable
sizev.

The top-down computation is started by the root of the tree T . When the root
v has a correct value in variable sizev then the computation of correct labels can
start. Thus, if the parent of a node v has a correct value in its variable sizep

v

and �p
v

then v can compute its correct label in �v using Rule R�. As for the
bottom-up computation, the top-down computation is done in at most O(n)
rounds since it is performed in a tree sub-graph.

Therefore, in at most O(n) rounds each node v in the tree T has a correct
label stored in variable sizev. �
Lemma 4. Starting from any configuration, Algorithm NCA-L reaches a legiti-
mate configuration in at most O(n2) rounds.

Proof. The initial configuration C could contain one or more cycles, so according
to Lemma 2 in at most O(n2) rounds the system reaches a new configuration

492 L. Blin et al.

C′ which contains no cycle. Moreover according to Lemma 3, the nodes v in
each tree T in the configuration C′ have a correct label in at most O(n) rounds.
Therefore, starting from an arbitrary configuration each node v ∈ V computes
its correct label in at most O(n2) rounds. �
Lemma 5. Starting from any configuration, Algorithm MST reaches a legitimate
configuration in at most O(n2) rounds.

Proof. According to Lemma 2, starting from any configuration after at most
O(n2) rounds all the cycles are removed from the network, i.e., it remains a
forest of trees after at most O(n2) rounds. Moreover, according to Lemma 3 in
at most O(n) additional rounds each node v ∈ V has a correct label since each
node belongs to a unique tree.

According to the description of Algorithm MST and Macro MinEdge(v), when
it is possible to make a merging between two distinct trees in the forest a merging
phase is started. This merging phase is done in three steps: (1) information
corresponding to the minimum outgoing edge is propagated in a bottom-up
fashion in each tree, (2) the orientation is reversed from the root of a tree until
reaching the node in the tree adjacent to the minimum outgoing edge, and (3)
the node labels are changed to inform of the end of the merging phase, followed
by a propagation of the new correct node labels in the new tree resulting from
the merging phase.

The first step is a propagation of information in a bottom-up fashion in a tree
which is done in at most O(n) rounds. The second step reverses and propagates
new node labels on a part of the tree (between the root and the node adjacent to
the minimum outgoing edge) which is done in at most O(n) rounds too. Step 3
modifies the label of the nodes which have changed their parent pointer in step
2, so this last step takes also at most O(n) rounds and the relabeling of the nodes
in the new tree is done in at most O(n) rounds according to Lemma 3. Thus, a
merging phase is accomplished in at most O(n) rounds and as there are in the
worst case n trees then in at most O(n2) rounds a spanning tree is constructed.

When there is no possible merging for a given fragment (or tree) Ti in the forest
then the correction phase concerning Ti is started. In a tree Ti, the internal edges
(i.e., whose two endpoints are in Ti) are sent upward in Ti in order to detect
incorrect tree edges. The internal edges e are sent following an order on the
distance between the common ancestor nca(e) and the root of Ti, by sending
first the edge e with the nearest common ancestor nca(e) from the root. Let
h(Ti) be the height of tree Ti and d(v) be the distance from v ∈ Ti to the root
of Ti. Thus, an internal (resp. leaf) node has at most d(v) − 2 (resp. d(v) − 1)
adjacent internal edges. Since a leaf node could have a lower priority (compared
to its ancestors) to send all its adjacent internal edges, then the worst case
to correct a tree is the case of a chain. Indeed, if the last internal edge of a
leaf node x must be used to detect an incorrect tree edge then x may have to
wait that all its ancestors in the chain have sent their internal edges of higher
priority. Thus, starting from any configuration after at most O(h(Ti)2) rounds
Ti contains no incorrect edges. Note that this is the worst case time to detect the
farthest incorrect tree edge from the root of Ti, otherwise the correction phase

Fast Self-stabilizing Minimum Spanning Tree Construction 493

is stopped earlier for nearest incorrect tree edges because the merging phase has
a higher priority than the correction phase. Moreover, after O(h(Ti)2) rounds
all the new edges used by Ti for a merging are correct tree edges for Ti. So, Ti

does not remove another tree edge in a new correction phase. Hence starting
from any configuration, a correction phase deletes all the incorrect tree edges of
a spanning tree after at most O(n2) rounds and no new tree edges are removed
by a correction phase.

Therefore, starting from an arbitrary configuration Algorithm MST constructs
a minimum spanning tree in at most O(n2) rounds. �
Lemma 6. Let C a configuration where the set of variables pv, v ∈ V, form at
least one cycle in the network. In a finite time, Algorithm NCA-L removes all the
cycles from the network.

Proof. If a node v has a parent which is not in its neighborhood or if v has no
parent then the parent and the label variable of v is modified to ∅ and (Idv, 0)
respectively with Rule R�.

A node v identifies a cycle with Predicate Cycle(v) which uses v’s label and
the label of its parent. In a legitimate configuration, v’s label is smaller than
the label of its parent and is constructed using the label of its parent, i.e., the
label of the parent of v is included to v’s label. Thus, if the label of v is included
or is smaller than the label of its parent then a cycle is detected and Predicate
Cycle(v) is true. In this case, v reinitiates its parent and label variable using
Rule R�.

In order to detect a cycle the label computation process must cross a part
or all the nodes of the cycle. However, since we consider a distributed scheduler
then all the nodes in a cycle can be activated and we can have a rotation of the
labels of the nodes in the cycle. This may lead to a new configuration in which
the labels cannot be used to detect a cycle, because the label of one node is not
used to compute some other labels and to detect a cycle. To break this symmetry,
we use the node identifiers with Predicate MinEnabled(v). This predicate allows
to activate the node v iff v has no neighbor u such that u is activated and u’s
identifier is lower than v. Therefore, there is at least a node x in the cycle which
is not activated and when the label of x is used by some other nodes to compute
their labels then Predicate Cycle(x) is true and x breaks the cycle using Rule
R�. �
5 Conclusion

We extended the Gallager, Humblet and Spira (GHS) algorithm, [9], to self-
stabilizing settings via a compact informative labeling scheme. Thus, the result-
ing solution presents several advantages appealing for large scale systems: it is
compact since it uses only logarithmic memory in the size of the network, it
scales well since it does not rely on any global parameter of the system, it is
fast — its time complexity is the better known in self-stabilizing settings. Addi-
tionally, it self-recovers from any transient fault. The time complexity is O(n2)
rounds and the space complexity is O(log2n).

494 L. Blin et al.

References

1. Stephen, A., Cyril, G., Haim, K., Theis, R.: Nearest common ancestors: a survey
and a new algorithm for a distributed environment. Theory of Computing Sys-
tems 37(3), 441–456 (2004)

2. Blin, L., Potop-Butucaru, M., Rovedakis, S., Tixeuil, S.: A New Self-stabilizing
Minimum Spanning Tree Construction with Loop-Free Property. In: Keidar, I.
(ed.) DISC 2009. LNCS, vol. 5805, pp. 407–422. Springer, Heidelberg (2009)

3. Park, J., Masuzawa, T., Hagihara, K., Tokura, N.: Distributed Algorithms for
Reconstructing MST after Topology Change. In: van Leeuwen, J., Santoro, N.
(eds.) WDAG 1990. LNCS, vol. 486, pp. 122–132. Springer, Heidelberg (1991)

4. Park, J., Masuzawa, T., Hagihara, K., Tokura, N.: Efficient distributed algorithm
to solve updating minimum spanning tree problem. Systems and Computers in
Japan 23(3), 1–12 (1992)

5. Bein, D., Datta, A.K., Villain, V.: Self-Stablizing Pivot Interval Routing in General
Networks. In: ISPAN, pp. 282–287 (2005)

6. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. ACM Com-
mun. 17(11), 643–644 (1974)

7. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)
8. Tel, G.: Introduction to distributed algorithm, 2nd edn. Cambridge University

Press, Cambridge (2000)
9. Gallager, R.G., Humblet, P.A., Spira, P.M.: A distributed algorithm for minimum-

weight spanning trees. ACM Trans. Program. Lang. Syst. 5(1), 66–77 (1983)
10. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors.

SIAM Journal Computing 13(2), 338–355 (1984)
11. Higham, L., Liang, Z.: Self-stabilizing minimum spanning tree construction on

message-passing networks. In: Welch, J.L. (ed.) DISC 2001. LNCS, vol. 2180, pp.
194–208. Springer, Heidelberg (2001)

12. Katz, S., Perry, K.J.: Self-stabilizing extensions for message-passing systems. Dis-
tributed Computing 7, 17–26 (1993)

13. Gupta, S.K.S., Srimani, P.K.: Self-stabilizing multicast protocols for ad hoc net-
works. J. Parallel Distrib. Comput. 63(1), 87–96 (2003)

14. Kruskal, J.B.: On the shortest spanning subtree of a graph and the travelling
salesman problem. Proc. Amer. Math. Soc. 7, 48–50 (1956)

15. Prim, R.C.: Shortest connection networks and some generalizations. Bell System
Tech. J, 1389–1401 (1957)

16. Blin, L., Dolev, S., Potop-Butucaru, M.G., Rovedakis, S.: Fast Self-Stabilizing Min-
imum Spanning Tree Construction. Research Report, hal-00492398, HAL (2010)

The Impact of Topology on Byzantine
Containment in Stabilization�

Swan Dubois1, Toshimitsu Masuzawa2, and Sébastien Tixeuil1

1 LIP6 - UMR 7606 Université Pierre et Marie Curie - Paris 6 & INRIA, France
2 Osaka University, Japan

Abstract. Self-stabilization is a versatile approach to fault-tolerance
since it permits a distributed system to recover from any transient fault
that arbitrarily corrupts the contents of all memories in the system.
Byzantine tolerance is an attractive feature of distributed systems that
permits to cope with arbitrary malicious behaviors.

We consider the well known problem of constructing a maximum met-
ric tree in this context. Combining these two properties proves difficult:
we demonstrate that it is impossible to contain the impact of Byzantine
nodes in a self-stabilizing context for maximum metric tree construction
(strict stabilization). We propose a weaker containment scheme called
topology-aware strict stabilization, and present a protocol for computing
maximum metric trees that is optimal for this scheme with respect to
impossibility result.

Keywords: Byzantine fault, Distributed protocol, Fault tolerance, Sta-
bilization, Spanning tree construction.

1 Introduction

The advent of ubiquitous large-scale distributed systems advocates that toler-
ance to various kinds of faults and hazards must be included from the very
early design of such systems. Self-stabilization [1,2,3] is a versatile technique
that permits forward recovery from any kind of transient faults, while Byzan-
tine Fault-tolerance [4,5] is traditionally used to mask the effect of a limited
number of malicious faults. Making distributed systems tolerant to both tran-
sient and malicious faults is appealing yet proved difficult [6,7,8] as impossibility
results are expected in many cases.

Two main paths have been followed to study the impact of Byzantine faults
in the context of self-stabilization:
- Byzantine fault masking (any correct processes eventually satisfy its specifi-
cation). In completely connected synchronous systems, one of the most studied
problems in the context of self-stabilization with Byzantine faults is that of clock

� This work has been supported in part by ANR projects SHAMAN, ALADDIN,
SPADES, by MEXT Global COE Program and by JSPS Grant-in-Aid for Scientific
Research ((B) 22300009).

N.A. Lynch and A.A. Shvartsman (Eds.): DISC 2010, LNCS 6343, pp. 495–509, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

496 S. Dubois, T. Masuzawa, and S. Tixeuil

synchronization. In [9,6], probabilistic self-stabilizing protocols were proposed for
up to one third of Byzantine processes, while in [10,11] deterministic solutions
tolerate up to one fourth and one third of Byzantine processes, respectively.

- Byzantine containment. For local tasks (i.e. tasks whose correctness can be
checked locally, such as vertex coloring, link coloring, or dining philosophers),
the notion of strict stabilization was proposed [8,12,13,14]. Strict stabilization
guarantees that there exists a containment radius outside which the effect of
permanent faults is masked, provided that the problem specification makes it
possible to break the causality chain that is caused by the faults. As many prob-
lems are not local, it turns out that it is impossible to provide strict stabilization
for those. Note that a strictly stabilizing algorithm with a radius of 0 which runs
on a completely connected system provides a masking approach.

Our Contribution. In this paper, we investigate the possibility of Byzantine
containment in a self-stabilizing setting for tasks that are global (i.e. for which
there exists a causality chain of size r, where r depends on n the size of the net-
work), and focus on a global problem, namely maximum metric tree construc-
tion (see [15,16]). As strict stabilization is impossible with such global tasks, we
weaken the containment constraint by relaxing the notion of containment radius
to containment area, that is Byzantine processes may disturb infinitely often a
set of processes which depends on the topology of the system and on the location
of Byzantine processes.

The main contribution of this paper is to present new possibility results for
containing the influence of unbounded Byzantine behaviors. In more details,
we define the notion of topology-aware strict stabilization as the novel form of
the containment and introduce containment area to quantify the quality of the
containment. The notion of topology-aware strict stabilization is weaker than the
strict stabilization but is stronger than the classical notion of self-stabilization
(i.e. every topology-aware strictly stabilizing protocol is self-stabilizing, but not
necessarily strictly stabilizing).

To demonstrate the possibility and effectiveness of our notion of topology-
aware strict stabilization, we consider maximum metric tree construction. It is
shown in [8] that there exists no strictly stabilizing protocol with a constant
containment radius for this problem. In this paper, we provide a topology-aware
strictly stabilizing protocol for maximum metric tree construction and we prove
that the containment area of this protocol is optimal.

2 Distributed System

A distributed system S = (V, E) consists of a set V = {v1, v2, . . . , vn} of processes
and a set E of bidirectional communication links (simply called links). A link is
an unordered pair of distinct processes. A distributed system S can be regarded
as a graph whose vertex set is V and whose link set is E, so we use graph
terminology to describe a distributed system S.

Processes u and v are called neighbors if (u, v) ∈ E. The set of neighbors of
a process v is denoted by Nv, and its cardinality (the degree of v) is denoted

The Impact of Topology on Byzantine Containment in Stabilization 497

by Δv(= |Nv|). The degree Δ of a distributed system S = (V, E) is defined as
Δ = max{Δv | v ∈ V }. We do not assume existence of a unique identifier for
each process. Instead we assume each process can distinguish its neighbors from
each other by locally arranging them in some arbitrary order: the k-th neighbor
of a process v is denoted by Nv(k) (1 ≤ k ≤ Δv). The distance between two
processes u and v is the length of the shortest path between u and v.

In this paper, we consider distributed systems of arbitrary topology. We as-
sume that a single process is distinguished as a root, and all the other processes
are not distinguishable.

We adopt the shared state model as a communication model in this paper,
where each process can directly read the states of its neighbors.

The variables that are maintained by processes denote process states. A pro-
cess may take actions during the execution of the system. An action is simply
a function that is executed in an atomic manner by the process. The actions
executed by each process are described by a finite set of guarded actions of the
form 〈guard〉 −→ 〈statement〉. Each guard of process u is a boolean expression
involving the variables of u and its neighbors.

A global state of a distributed system is called a configuration and is specified
by a product of states of all processes. We define C to be the set of all possi-
ble configurations of a distributed system S. For a process set R ⊆ V and two
configurations ρ and ρ′, we denote ρ

R*→ ρ′ when ρ changes to ρ′ by executing an
action of each process in R simultaneously. Notice that ρ and ρ′ can be different
only in the states of processes in R. For completeness of execution semantics,
we should clarify the configuration resulting from simultaneous actions of neigh-
boring processes. The action of a process depends only on its state at ρ and the
states of its neighbors at ρ, and the result of the action reflects on the state of
the process at ρ′.

A schedule of a distributed system is an infinite sequence of process sets.
Let Q = R1, R2, . . . be a schedule, where Ri ⊆ V holds for each i (i ≥ 1).
An infinite sequence of configurations e = ρ0, ρ1, . . . is called an execution from

an initial configuration ρ0 by a schedule Q, if e satisfies ρi−1
Ri

*→ ρi for each
i (i ≥ 1). Process actions are executed atomically, and we also assume that a
distributed daemon schedules the actions of processes, i.e. any subset of processes
can simultaneously execute their actions. A more constrained daemon is the
central one which must choose only one enabled process at each step. Note
that, as the central daemon allows executions that are also allowed under the
distributed daemon, an impossibility result under the central daemon is stronger
than one under the distributed one. In the same way, a possibility result under
the distributed daemon is stronger than one under the central one.

The set of all possible executions from ρ0 ∈ C is denoted by Eρ0 . The set
of all possible executions is denoted by E, that is, E =

⋃
ρ∈C Eρ. We consider

asynchronous distributed systems where we can make no assumption on sched-
ules except that any schedule is weakly fair : every process is contained in infinite
number of subsets appearing in any schedule.

498 S. Dubois, T. Masuzawa, and S. Tixeuil

In this paper, we consider (permanent) Byzantine faults : a Byzantine process
(i.e. a Byzantine-faulty process) can make arbitrary behavior independently from
its actions. In other words, a Byzantine process has always an enabled rule and
the daemon arbitrarily chooses a new state for this process when this process
is activated. If v is a Byzantine process, v can repeatedly change its variables
arbitrarily. The only restriction we do on Byzantine processes is that the root
process can never be Byzantine.

3 Self-Stabilizing Protocol Resilient to Byzantine Faults

Problems considered in this paper are so-called static problems, i.e. they require
the system to find static solutions. For example, the spanning-tree construction
problem is a static problem, while the mutual exclusion problem is not. Some
static problems can be defined by a local specification predicate (shortly, spec-
ification), spec(v), for each process v: a configuration is a desired one (with a
solution) if every process v ∈ V satisfies spec(v) in this configuration. A spec-
ification spec(v) is a boolean expression on variables of Vv (⊆ V) where Vv is
the set of processes whose variables appear in spec(v). The variables appearing
in the specification are called output variables (shortly, O-variables). In what
follows, we consider a static problem defined by a local specification predicate.

Self-Stabilization. A self-stabilizing protocol ([1]) is a protocol that eventually
reaches a legitimate configuration, where spec(v) holds at every process v, re-
gardless of the initial configuration. Once it reaches a legitimate configuration,
every process never changes its O-variables and always satisfies spec(v). From
this definition, a self-stabilizing protocol is expected to tolerate any number and
any type of transient faults since it can eventually recover from any configuration
affected by the transient faults. However, the recovery from any configuration
is guaranteed only when every process correctly executes its action from the
configuration, i.e., we do not consider existence of permanently faulty processes.

Strict stabilization. When (permanent) Byzantine processes exist, Byzantine
processes may not satisfy spec(v). In addition, correct processes near the Byzan-
tine processes can be influenced and may be unable to satisfy spec(v). Nesterenko
and Arora [8] define a strictly stabilizing protocol as a self-stabilizing protocol
resilient to unbounded number of Byzantine processes.

Given an integer c, a c-correct process is a process defined as follows.

Definition 1 (c-correct process). A process is c-correct if it is correct (i.e.
not Byzantine) and located at distance more than c from any Byzantine process.

Definition 2 ((c, f)-containment). A configuration ρ is (c, f)-contained for
specification spec if, given at most f Byzantine processes, in any execution start-
ing from ρ, every c-correct process v always satisfies spec(v) and never changes
its O-variables.

The parameter c of Definition 2 refers to the containment radius defined in [8].
The parameter f refers explicitly to the number of Byzantine processes, while
[8] dealt with unbounded number of Byzantine faults (that is f ∈ {0 . . .n}).

The Impact of Topology on Byzantine Containment in Stabilization 499

Definition 3 ((c, f)-strict stabilization). A protocol is (c, f)-strictly stabiliz-
ing for specification spec if, given at most f Byzantine processes, any execution
e = ρ0, ρ1, . . . contains a configuration ρi that is (c, f)-contained for spec.

An important limitation of the model of [8] is the notion of r-restrictive spec-
ifications. Intuitively, a specification is r-restrictive if it prevents combinations
of states that belong to two processes u and v that are at least r hops away.
An important consequence related to Byzantine tolerance is that the contain-
ment radius of protocols solving those specifications is at least r. For any global
problem, such as the spanning tree construction we consider in this paper, r can
not be bounded to a constant. The results of [8] show us that there exists no
(o(n), 1)-strictly stabilizing protocol for these problems and especially for the
spanning tree construction.

Topology-aware strict stabilization. In the former paragraph, we saw that
there exist a number of impossibility results on strict stabilization due to the
notion of r-restrictive specifications. To circumvent this impossibility result, we
define here a new notion, which is weaker than the strict stabilization: the
topology-aware strict stabilization (denoted by TA-strict stabilization for short).
Here, the requirement to the containment radius is relaxed, i.e. the set of pro-
cesses which may be disturbed by Byzantine ones is not reduced to the union
of c-neighborhood of Byzantine processes but can be defined depending on the
topology of the system and on Byzantine processes location.

In the following, we give formal definition of this new kind of Byzantine con-
tainment. From now, B denotes the set of Byzantine processes and SB (which is
a function of B) denotes a subset of V (intuitively, this set gathers all processes
which may be disturbed by Byzantine processes).

Definition 4 (SB-correct node). A node is SB-correct if it is a correct node
(i.e. not Byzantine) which does not belong to SB.

Definition 5 (SB-legitimate configuration). A configuration ρ is SB-legiti-
mate for spec if every SB-correct node v is legitimate for spec (i.e. if spec(v)
holds).

Definition 6 ((SB, f)-topology-aware containment). A configuration ρ0 is
(SB, f)-topology-aware contained for specification spec if, given at most f Byzan-
tine processes, in any execution e = ρ0, ρ1, . . ., every configuration is SB-legitima-
te and every SB-correct process never changes its O-variables.

The parameter SB of Definition 6 refers to the containment area. Any process
which belongs to this set may be infinitely disturbed by Byzantine processes.
The parameter f refers explicitly to the number of Byzantine processes.

Definition 7 ((SB, f)-topology-aware strict stabilization). A protocol is
(SB, f)-topology aware strictly stabilizing for specification spec if, given at most
f Byzantine processes, any execution e = ρ0, ρ1, . . . contains a configuration ρi

that is (SB, f)-topology-aware contained for spec.

500 S. Dubois, T. Masuzawa, and S. Tixeuil

Note that, if B denotes the set of Byzantine processes and SB = {v ∈ V |
min{d(v, b), b ∈ B} ≤ c}, then a (SB , f)-topology-aware strictly stabilizing pro-
tocol is a (c, f)-strictly stabilizing protocol. Then, a TA-strictly stabilizing pro-
tocol is generally weaker than a strictly stabilizing one, but stronger than a
classical self-stabilizing protocol (that may never meet its specification in the
presence of Byzantine processes).

The parameter SB is introduced to quantify the strength of fault containment,
we do not require each process to know the actual definition of the set. Actually,
the protocol proposed in this paper assumes no knowledge on this parameter.

4 Maximum Metric Tree Construction

In this work, we deal with maximum (routing) metric spanning trees as defined
in [16] (note that [15] provides a self-stabilizing solution to this problem). Infor-
mally, the goal of a routing protocol is to construct a tree that simultaneously
maximizes the metric values of all of the nodes with respect to some total order-
ing ≺. In [16], authors give a general definition of a routing metric and provide
a characterization of maximizable metrics, that is metrics which always allow
to construct a maximum (routing) metric spanning trees. In the following, we
recall all definitions and notations introduced in [16].

Definition 8 (Routing metric). A routing metric is a five-tuple (M, W, met,
mr,≺) where:
- M is a set of metric values,
- W is a set of edge weights,
- met is a metric function whose domain is M ×W and whose range is M ,
- mr is the maximum metric value in M with respect to ≺ and is assigned to
the root of the system,
- ≺ is a less-than total order relation over M that satisfies the following three
conditions for arbitrary metric values m, m′, and m′′ in M :

- irreflexivity: m �≺ m,
- transitivity : if m ≺ m′ and m′ ≺ m′′ then m ≺ m′′,
- totality: m ≺ m′ or m′ ≺ m or m = m′.

Any metric value m ∈ M \ {mr} satisfies the utility condition (that is, there
exist w0, . . . , wk−1 in W and m0 = mr, m1, . . . , mk−1, mk = m in M such that
∀i ∈ {1, . . . , k}, mi = met(mi−1, wi−1)).

For instance, we provide the definition of three classical metrics with this model:
the shortest path metric (SP), the flow metric (F), and the reliability metric
(R).

SP = (M1, W1, met1, mr1,≺1) F = (M2, W2, met2, mr2,≺2)
where M1 = N where mr2 ∈ N

W1 = N M2 = {0, . . . , mr2}
met1(m, w) = m + w W2 = {0, . . . , mr2}
mr1 = 0 met2(m, w) = min{m, w}
≺1 is the classical > relation ≺2 is the classical < relation

The Impact of Topology on Byzantine Containment in Stabilization 501

R = (M3, W3, met3, mr3,≺3)
where M3 = [0, 1]

W3 = [0, 1]
met3(m, w) = m ∗ w
mr3 = 1
≺3 is the classical < relation

Definition 9 (Assigned metric). An assigned metric over a system S is a
six-tuple (M, W, met, mr,≺, wf) where (M, W, met, mr,≺) is a metric and wf
is a function that assigns to each edge of S a weight in W .

Let a rooted path (from v) be a simple path from a process v to the root r. The
next set of definitions are with respect to an assigned metric (M, W, met, mr,≺,
wf) over a given system S.

Definition 10 (Metric of a rooted path). The metric of a rooted path in S
is the prefix sum of met over the edge weights in the path and mr.

For example, if a rooted path p in S is vk, . . . , v0 with v0 = r, then the metric
of p is mk = met(mk−1, wf({vk, vk−1})) with ∀i ∈ {1, k − 1}, mi = met(mi−1,
wf({vi, vi−1})) and m0 = mr.

Definition 11 (Maximum metric path). A rooted path p from v in S is
called a maximum metric path with respect to an assigned metric if and only if
for every other rooted path q from v in S, the metric of p is greater than or equal
to the metric of q with respect to the total order ≺.

Definition 12 (Maximum metric of a node). The maximum metric of a
node v �= r (or simply metric value of v) in S is defined by the metric of a
maximum metric path from v. The maximum metric of r is mr.

Definition 13 (Maximum metric tree). A spanning tree T of S is a maxi-
mum metric tree with respect to an assigned metric over S if and only if every
rooted path in T is a maximum metric path in S with respect to the assigned
metric.

The goal of the work of [16] is the study of metrics that always allow the con-
struction of a maximum metric tree. More formally, the definition follows.

Definition 14 (Maximizable metric). A metric is maximizable if and only
if for any assignment of this metric over any system S, there is a maximum
metric tree for S with respect to the assigned metric.

Note that [15] provides a self-stabilizing protocol to construct a maximum metric
tree with respect to any maximizable metric. Moreover, [16] provides a fully
characterization of maximazable metrics as follow.

Definition 15 (Boundedness). A metric (M, W, met, mr,≺) is bounded if
and only if: ∀m ∈M, ∀w ∈W, met(m, w) ≺ m or met(m, w) = m

502 S. Dubois, T. Masuzawa, and S. Tixeuil

Definition 16 (Monotonicity). A metric (M, W, met, mr,≺) is monotonic if
and only if: ∀(m, m′) ∈ M2, ∀w ∈ W, m ≺ m′ ⇒ (met(m, w) ≺ met(m′, w) or
met(m, w) = met(m′, w))

Theorem 1 (Characterization of maximizable metrics [16]). A metric is
maximizable if and only if this metric is bounded and monotonic.

Given a maximizable metric M = (M, W, mr, met,≺), the aim of this work is
to construct a maximum metric tree with respect toM which spans the system
in a self-stabilizing way in a system subject to permanent Byzantine failures. It
is obvious that these Byzantine processes may disturb some correct processes.
It is why, we relax the problem in the following way: we want to construct a
maximum metric forest with respect to M. The root of any tree of this forest
must be either the real root or a Byzantine process.

Each process v has three O-variables: a pointer to its parent in its tree (prntv ∈
Nv ∪ {⊥}), a level which stores its current metric value (levelv ∈ M), and a
variable which stores its distance to the root of its tree (distv ∈ {0, . . . , D}).
Obviously, Byzantine process may disturb (at least) their neighbors. We use the
following specification of the problem.

We introduce new notations as follows. Given an assigned metric (M, W, met,
mr,≺, wf) over the system S and two processes u and v, we denote by μ(u, v)
the maximum metric of node u when v plays the role of the root of the system.
If u and v are two neighor processes, we denote by wu,v the weight of the edge
{u, v} (that is, the value of wf({u, v})).

Definition 17 (M-path). Given an assigned metric M = (M, W, mr, met,≺,
wf) over a system S, a M-path is a path (v0, . . . , vk) (k ≥ 1) such that:
(i) prntv0 = ⊥, levelv0 = mr, distv0 = 0, and v0 ∈ B ∪ {r}, (ii) ∀i ∈
{1, . . . , k}, prntvi = vi−1, levelvi = met(levelvi−1, wvi,vi−1), and distvi = i, (iii)
∀i ∈ {1, . . . , k}, met(levelvi−1, wvi,vi−1) = max≺{met(levelu, wvi,u), u ∈ Nvi},
and (iv) levelvk

= μ(vk, v0).

We define the specification predicate spec(v) of the maximum metric tree con-
struction with respect to a maximizable metric M as follows.

spec(v) :

{
prntv = ⊥, levelv = mr, and distv = 0 if v is the root r

there exists aM-path (v0, . . . , vk) such that vk = v otherwise

Following discussion of Section 3 and results from [8], it is obvious that there
exists no strictly stabilizing protocol for this problem. It is why we consider
the weaker notion of topology-aware strict stabilization. First, we show an im-
possibility result in order to define the best possible containment area. Then,
we provide a maximum metric tree construction protocol which is (SB, f)-TA-
strictly stabilizing where f ≤ n − 1 which matches these optimal containment
area. From now, SB denotes this optimal containment area, i.e.:

SB = {v ∈ V \B |μ(v, r) � max≺{μ(v, b), b ∈ B}} \ {r}

The Impact of Topology on Byzantine Containment in Stabilization 503

�

� �

� �

�

�

� �

� �

�

r r

bb

mr=10 mr=10

7 6

5

4106

8

3216

levelb = 10levelb = 10

11 12

107

13

6

53

1

SBSB

Fig. 1. Examples of containment areas for flow spanning tree construction

�

� �

� �

�

�

� �

� �

�

r r

bb

SB

mr=1

levelb = 1

mr=1

levelb = 1

0,750,75

0,750,75
1

1
0,8

0,4 0,3

0,75

0,25

0,75

10,5

1

0,25

0,750,5

SB

Fig. 2. Examples of containment areas for reliability spanning tree construction

Intuitively, Byzantine faults may disturb only processes that are (non strictly)
closer from a Byzantine process than the root with respect to the metric. Fig-
ures 1 and 2 provide some examples of containment areas with respect to two
maximizable metrics.

We introduce here a new definition that is used in the following.

Definition 18 (Fixed point). A metric value m is a fixed point of a metric
M = (M, W, mr, met, ≺) if m ∈ M and if for all value w ∈ W , we have:
met(m, w) = m.

4.1 Impossibility Result

In this section, we show that there exist some constraints on the containment
area of any topology-aware strictly stabilizing protocol for the maximum metric
tree construction depending on the metric.

Theorem 2. Given a maximizable metricM = (M, W, mr, met,≺), even under
the central daemon, there exists no (AB , 1)-TA-strictly stabilizing protocol for
maximum metric spanning tree construction with respect toM where AB � SB.

504 S. Dubois, T. Masuzawa, and S. Tixeuil

Proof. LetM = (M, W, mr, met,≺) be a maximizable metric and P be a (AB, 1)-
TA-strictly stabilizing protocol for maximum metric spanning tree construction
protocol with respect toM where AB � SB. We must distinguish the following
cases:

Case 1: |M | = 1. Denote by m the metric value such that M = {m}. For any
system and for any process v �= r, we have μ(v, r) = min≺{μ(v, b), b ∈ B} = m.
Consequently, SB = V \(B∪{r}) for any system. Consider the following system:
V = {r, u, v, b} and E = {{r, u}, {u, v}, {v, b}} (b is a Byzantine process). As
SB = {u, v} and AB � SB, we have: u /∈ AB or v /∈ AB . Consider now the
following configuration ρ0

0: prntr = prntb = ⊥, prntv = b, prntu = v, levelr =
levelu = levelv = levelb = m, distr = distb = 0, distv = 1 and distu = 2 (other
variables may have arbitrary values). Note that ρ0

0 is AB-legitimate for spec
(whatever AB is). Assume now that b behaves as a correct process with respect
to P . Then, by convergence of P in a fault-free system starting from ρ0

0 which
is not legitimate (remember that a strictly-stabilizing protocol is a special case
of a self-stabilizing protocol), we can deduce that the system reaches in a finite
time a configuration ρ0

1 in which: prntr = ⊥, prntu = r, prntv = u, prntb = v,
levelr = levelu = levelv = levelb = m, distr = 0, distu = 1, distv = 2 and
distb = 3. Note that processes u and v modify their O-variables in this execution.
This contradicts the (AB, 1)-TA-strict stabilization of P (whatever AB is).

Case 2: |M | ≥ 2. By definition of a bounded metric, we can deduce that there
exist m ∈ M and w ∈ W such that m = met(mr, w) ≺ mr. Then, we must
distinguish the following cases:

Case 2.1: m is a fixed point ofM. Consider the following system: V = {r, u, v, b},
E = {{r, u}, {u, v}, {v, b}}, wr,u = wv,b = w, and wu,v = w′ (b is a Byzantine
process). As for any w′ ∈ W , met(m, w′) = m (by definition of a fixed point), we
have: SB = {u, v}. Since AB � SB, we have: u /∈ AB or v /∈ AB. Consider now the
following configuration ρ1

0: prntr = prntb = ⊥, prntv = b, prntu = v, levelr =
levelb = mr, levelu = levelv = m, distr = distb = 0, distv = 1 and distu = 2
(other variables may have arbitrary values). Note that ρ1

0 is AB-legitimate for spec
(whatever AB is). Assume now that b behaves as a correct process with respect
to P . Then, by convergence of P in a fault-free system starting from ρ1

0 which
is not legitimate (remember that a strictly-stabilizing protocol is a special case
of a self-stabilizing protocol), we can deduce that the system reaches in a finite
time a configuration ρ1

1 in which: prntr = ⊥, prntu = r, prntv = u, prntb = v,
levelr = mr, levelu = levelv = levelb = m (since m is a fixed point), distr = 0,
distu = 1, distv = 2 and distb = 3. Note that processes u and v modify their
O-variables in this execution. This contradicts the (AB, 1)-TA-strict stabilization
of P (whatever AB is).

Case 2.2: m is not a fixed point ofM. This implies that there exists w′ ∈W such
that: met(m, w′) ≺ m (remember that M is bounded). Consider the following
system: V = {r, u, v, v′, b}, E = {{r, u}, {u, v}, {u, v′}, {v, b}, {v′, b}}, wr,u =
wv,b = wv′,b = w, and wu,v = wu,v′ = w′ (b is a Byzantine process). We can
see that SB = {v, v′}. Since AB � SB, we have: v /∈ AB or v′ /∈ AB . Consider

The Impact of Topology on Byzantine Containment in Stabilization 505

now the following configuration ρ2
0: prntr = prntb = ⊥, prntv = prntv′ = b,

prntu = r, levelr = levelb = mr, levelu = levelv = levelv′ = m, distr = distb =
0, distv = distv′ = 1 and distu = 1 (other variables may have arbitrary values).
Note that ρ2

0 is AB-legitimate for spec (whatever AB is). Assume now that b
behaves as a correct process with respect to P . Then, by convergence of P in
a fault-free system starting from ρ2

0 which is not legitimate (remember that a
strictly-stabilizing protocol is a special case of a self-stabilizing protocol), we
can deduce that the system reaches in a finite time a configuration ρ2

1 in which:
prntr = ⊥, prntu = r, prntv = prntv′ = u, prntb = v (or prntb = v′), levelr =
mr, levelu = m levelv = levelv′ = met(m, w′) = m′, levelb = met(m′, w) = m′′,
distr = 0, distu = 1, distv = distv′ = 2 and distb = 3. Note that processes v
and v′ modify their O-variables in this execution. This contradicts the (AB, 1)-
TA-strict stabilization of P (whatever AB is).

4.2 Topology-Aware Strict Stabilizing Protocol

In this section, we provide our self-stabilizing protocol that achieves optimal
containment areas to permanent Byzantine failures for constructing a maximum
metric tree for any maximizable metricM = (M, W, met, mr,≺). More formally,
our protocol is (SB , f)-strictly stabilizing, that is optimal with respect to the
result of Theorem 2. Our protocol is borrowed from the one of [15] (which is
self-stabilizing). The key idea of this protocol is to use the distance variable
(upper bounded by a given constant D) to detect and break cycles of processes
which have the same maximum metric. The main modifications we bring to
this protocol follow. In the initial protocol, when a process modifies its parent, it
chooses arbitrarily one of the ”better” neighbors (with respect to the metric). To
achieve the (SB, f)-TA-strict stabilization, we must ensure a fair selection along
the set of its neighbor. We perform this fairness with a round-robin order along
the set of neighbors. The second modification is to give priority to rules (R2) and
(R3) over (R1) for any correct non root process (that is, such a process which
has (R1) and another rule enabled in a given configuration always executes the
other rule if it is activated). Our solution is presented as Algorithm 4.1.

In the following, we provide a sketch1 of the proof of the TA-strict stabilization
of SSMAX . Remember that the real root r can not be a Byzantine process
by hypothesis. Note that the subsystem whose set of nodes is (V \ SB) \ B is
connected respectively by boundedness of the metric.

Given ρ ∈ C and m ∈M , let us define the following predicate:
IMm(ρ) ≡ ∀v ∈ V, levelv � max≺{m, max≺{μ(v, u), u ∈ B ∪ {r}}}

If we take a configuration ρ ∈ C such that IMm(ρ) holds for a given m ∈M ,
then we can prove that the boundedness ofM implies that, for any step ρ *→ ρ′

of SSMAX , IMm(ρ′) holds. Hence, we can deduce that:

Lemma 1. For any metric value m ∈M , the predicate IMm is closed by actions
of SSMAX .
1 Due to the lack of place, formal proofs are omitted. A full version of this work is

available in the companion technical report (see [17]).

506 S. Dubois, T. Masuzawa, and S. Tixeuil

algorithm 4.1. SSMAX : A TA-strictly stabilizing protocol for maximum met-
ric tree construction.
Data:

Nv: totally ordered set of neighbors of v.
D: upper bound of the number of processes in a simple path.

Variables:

prntv

{
= ⊥ if v = r

∈ Nv if v �= r
: pointer on the parent of v in the tree.

levelv ∈ {m ∈ M|m � mr}: metric of the node.
distv ∈ {0, . . . , D}: distance to the root.

Macro:
For any subset A ⊆ Nv, choose(A) returns the first element of A which is bigger than prntv

(in a round-robin fashion).
Rules:

(Rr) :: (v = r) ∧ ((levelv �= mr) ∨ (distv �= 0)) −→ levelv := mr; distv := 0
(R1) :: (v �= r) ∧ (prntv ∈ Nv)∧

((distv �= min(distprntv + 1, D)) ∨ (levelv �= met(levelprntv , wv,prntv)))
−→ distv := min(distprntv + 1, D); levelv := met(levelprntv , wv,prntv)

(R2) :: (v �= r) ∧ (distv = D) ∧ (∃u ∈ Nv, distu < D − 1)
−→ prntv := choose({u ∈ Nv|distv < D − 1}); distv := distprntv + 1;
levelv := met(levelprntv , wv,prntv)

(R3) :: (v �= r) ∧ (∃u ∈ Nv, (distu < D − 1) ∧ (levelv ≺ met(levelu, wu,v)))

−→ prntv := choose
({

u ∈ Nv

∣∣∣
(levelu < D − 1) ∧ (met(levelu, wu,v) = max≺

q∈Nv/levelq<D−1
{met(levelq , wq,v)})

})
;

levelv := met(levelprntv , wprntv,v); distv := distprntv + 1

Given an assigned metric to a system S, observe that the set of metrics value
M is finite and that we can label elements of M by m0 = mr, m1, . . . , mk such
that ∀i ∈ {0, . . . , k − 1}, mi+1 ≺ mi. We introduce the following notations:

∀mi ∈M, Pmi =
{
v ∈ (V \ SB) \B

∣∣μ(v, r) = mi

}
∀mi ∈M, Vmi =

i⋃
j=0

Pmj

∀mi ∈M, Imi =
{
v ∈ V

∣∣max≺{μ(v, u), u ∈ B ∪ {r}} ≺ mi

}
∀mi ∈M, LCmi =

{
ρ ∈ C

∣∣(∀v ∈ Vmi , spec(v)) ∧ (IMmi(ρ))
}

LC = LCmk

If we consider a configuration ρ ∈ LCmi for a given metric value mi and a process
v ∈ Vmi , then we can show from the closure of IMmi (established in Lemma 1),
the boundedness ofM and the construction of the protocol that v is not enabled
in ρ. Then, the closure of IMmi is sufficient to conclude that:

Lemma 2. For any mi ∈M , the set LCmi is closed by actions of SSMAX .

Lemma 2 applied to LC = LCmk
gives us the following result:

Lemma 3. Any configuration of LC is (SB , n− 1)-TA contained for spec.

This lemma establishes the closure of SSMAX . To prove the TA strict stabi-
lization of SSMAX , it remains to prove its convergence. In this goal, we prove

The Impact of Topology on Byzantine Containment in Stabilization 507

that any execution starting from an arbitrary configuration of C converges to
LCm0 = LCmr and then to LCm1 and so on until LCmk

= LC.
Note that IMmr is satisfied by any configuration of C and that if all processes

of Pmr are not enabled in a configuration then this configuration belongs to
LCmr. Then, we can prove that any process of Pmr takes only a finite number
of steps in any execution. This implies the following result:

Lemma 4. Starting from any configuration of C, any execution of SSMAX
reaches in a finite time a configuration of LCmr.

Given a metric value mi ∈ M and a configuration ρ0 ∈ LCmi , assume that
e = ρ0, ρ1, . . . is an execution of SSMAX starting from ρ0. We define then
the following variant function. For any configuration ρj of e, we denote by Aj

the set of processes v of Imi such that levelv = mi in ρj . Then, we define
f(ρj) = min{distv, v ∈ Aj}. We can prove that there exists an integer k such
that f(ρk) = D. This implies the following lemma:

Lemma 5. For any mi ∈M and for any configuration ρ ∈ LCmi , any execution
of SSMAX starting from ρ reaches in a finite time a configuration such that
∀v ∈ Imi , levelv = mi ⇒ distv = D.

Given a metric value mi ∈M , consider a configuration ρ0 ∈ LCmi such that ∀v ∈
Imi , levelv = mi ⇒ distv = D. Assume that e = ρ0, ρ1, . . . is an execution of
SSMAX starting from ρ0. For any configuration ρi of e, we define the following
set Eρi = {v ∈ Imi |levelv = mi}. First, we prove that there exists an integer
k such that for any integer j ≥ k, we have Eρj+1 ⊆ Eρj . In other words, there
exists a point of the execution afterwards the set E can not grow. Moreover, we
prove that if a process of Eρj (j ≥ k) is activated during the step ρj *→ ρj+1,
then it satisfies v /∈ Eρj+1 . Finally, we observe that any process v ∈ Imi such
that distv = D is activated in a finite time. In conclusion, we obtain that there
exists an integer j such that Eρj = ∅. In other words, we have:

Lemma 6. For any mi ∈ M and for any configuration ρ ∈ LCmi such that
∀v ∈ Imi , levelv = mi ⇒ distv = D, any execution of SSMAX starting from ρ
reaches in a finite time a configuration such that ∀v ∈ Imi , levelv ≺ mi.

A direct consequence of Lemmas 5 and 6 is the following.

Lemma 7. For any mi ∈M and for any configuration ρ ∈ LCmi , any execution
of SSMAX starting from ρ reaches in a finite time a configuration ρ′ such that
IMmi+1(ρ′) holds.

Given a metric value mi ∈ M , consider a configuration ρ ∈ LCmi . We know by
Lemma 7 that any execution starting from ρ reaches in a finite time a config-
uration ρ′ such that IMmi+1(ρ′) holds. Denote by e an execution starting from
ρ′. Now, we can observe that, if all processes of Pmi+1 are not enabled in a con-
figuration of e, then this configuration belongs to LCmi+1 . Then, we can prove
that any process of Pmi+1 takes only a finite number of steps in any execution
starting from ρ′. This implies the following result:

508 S. Dubois, T. Masuzawa, and S. Tixeuil

Lemma 8. For any mi ∈M and for any configuration ρ ∈ LCmi , any execution
of SSMAX starting from ρ reaches in a finite time a configuration of LCmi+1 .

Let ρ be an arbitrary configuration. We know by Lemma 4 that any execution
starting from ρ reaches in a finite time a configuration of LCmr = LCm0 . Then,
we can apply at most k times the result of Lemma 8 to obtain that any execution
starting from ρ reaches in a finite time a configuration of LCmk

= LC, that proves
the following result:

Lemma 9. Starting from any configuration, any execution of SSMAX reaches
a configuration of LC in a finite time.

Lemmas 3 and 9 imply respectively the closure and the convergence of SSMAX .
We can summarize our results with the following theorem.

Theorem 3. SSMAX is a (SB, n−1)-TA strictly stabilizing protocol for spec.

5 Conclusion

We introduced a new notion of Byzantine containment in self-stabilization: the
topology-aware strict stabilization. This notion relaxes the constraint on the
containment radius of the strict stabilization to a containment area. In other
words, the set of correct processes which may be infinitely often disturbed by
Byzantine processes is a function depending on the topology of the system and
on the actual location of Byzantine processes. We illustrated the relevance of
this notion by providing a topology-aware strictly stabilizing protocol for the
maximum metric tree construction problem which does not admit strictly stabi-
lizing solution. Moreover, our protocol performs the optimal containment area
with respect to the topology-aware strict stabilization.

Our work raises some opening questions. Number of problems do not accept
strictly stabilizing solution. Does any of them admit a topology-aware strictly
stabilizing solution ? Is it possible to give a necessary and/or sufficient condition
for a problem to admit a topology-aware strictly stabilizing solution ? What
happens if we consider only bounded Byzantine behavior ?

References

1. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. ACM Com-
mun. 17(11), 643–644 (1974)

2. Dolev, S.: Self-stabilization. MIT Press, Cambridge (March 2000)
3. Tixeuil, S.: Self-stabilizing Algorithms. Chapman & Hall/CRC Applied Algorithms

and Data Structures. In: Algorithms and Theory of Computation Handbook, 2nd
edn., pp. 26.1–26.45. CRC Press, Taylor & Francis Group (November 2009)

4. Lamport, L., Shostak, R.E., Pease, M.C.: The byzantine generals problem. ACM
Trans. Program. Lang. Syst. 4(3), 382–401 (1982)

5. Nesterenko, M., Tixeuil, S.: Discovering network topology in the presence of byzan-
tine nodes. IEEE Trans. Parallel Distrib. Syst. (October 2009)

The Impact of Topology on Byzantine Containment in Stabilization 509

6. Dolev, S., Welch, J.L.: Self-stabilizing clock synchronization in the presence of
byzantine faults. J. ACM 51(5), 780–799 (2004)

7. Daliot, A., Dolev, D.: Self-stabilization of byzantine protocols. In: Tixeuil, S., Her-
man, T. (eds.) SSS 2005. LNCS, vol. 3764, pp. 48–67. Springer, Heidelberg (2005)

8. Nesterenko, M., Arora, A.: Tolerance to unbounded byzantine faults. In: 21st Sym-
posium on Reliable Distributed Systems, p. 22. IEEE Computer Society, Los Alami-
tos (2002)

9. Ben-Or, M., Dolev, D., Hoch, E.N.: Fast self-stabilizing byzantine tolerant digital
clock synchronization. In: Bazzi, R.A., Patt-Shamir, B. (eds.) PODC, pp. 385–394.
ACM, New York (2008)

10. Dolev, D., Hoch, E.N.: On self-stabilizing synchronous actions despite byzantine
attacks. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 193–207. Springer,
Heidelberg (2007)

11. Hoch, E.N., Dolev, D., Daliot, A.: Self-stabilizing byzantine digital clock synchro-
nization. In: Datta, A.K., Gradinariu, M. (eds.) SSS 2006. LNCS, vol. 4280, pp.
350–362. Springer, Heidelberg (2006)

12. Sakurai, Y., Ooshita, F., Masuzawa, T.: A self-stabilizing link-coloring protocol
resilient to byzantine faults in tree networks. In: Higashino, T. (ed.) OPODIS
2004. LNCS, vol. 3544, pp. 283–298. Springer, Heidelberg (2005)

13. Masuzawa, T., Tixeuil, S.: Stabilizing link-coloration of arbitrary networks with
unbounded byzantine faults. International Journal of Principles and Applications
of Information Science and Technology (PAIST) 1(1), 1–13 (2007)

14. Dubois, S., Potop-Butucaru, M.G., Nesterenko, M., Tixeuil, S.: Self-stabilizing
byzantine asynchronous unison. CoRR abs/0912.0134 (2009)

15. Gouda, M.G., Schneider, M.: Stabilization of maximal metric trees. In: Arora, A.
(ed.) WSS, pp. 10–17. IEEE Computer Society, Los Alamitos (1999)

16. Gouda, M.G., Schneider, M.: Maximizable routing metrics. IEEE/ACM Trans.
Netw. 11(4), 663–675 (2003)

17. Dubois, S., Masuzawa, T., Tixeuil, S.: The Impact of Topology on Byzan-
tine Containment in Stabilization. Research report inria-00481836 (May 2010),
http://hal.inria.fr/inria-00481836/en/

http://hal.inria.fr/inria-00481836/en/

Minimum Dominating Set Approximation
in Graphs of Bounded Arboricity

Christoph Lenzen and Roger Wattenhofer

Computer Engineering and Networks Laboratory (TIK)
ETH Zurich

{lenzen,wattenhofer}@tik.ee.ethz.ch

Abstract. Since in general it is NP-hard to solve the minimum dominat-
ing set problem even approximatively, a lot of work has been dedicated
to central and distributed approximation algorithms on restricted graph
classes. In this paper, we compromise between generality and efficiency
by considering the problem on graphs of small arboricity a. These fam-
ily includes, but is not limited to, graphs excluding fixed minors, such
as planar graphs, graphs of (locally) bounded treewidth, or bounded
genus. We give two viable distributed algorithms. Our first algorithm
employs a forest decomposition, achieving a factor O(a2) approximation
in randomized time O(log n). This algorithm can be transformed into a
deterministic central routine computing a linear-time constant approxi-
mation on a graph of bounded arboricity, without a priori knowledge on
a. The second algorithm exhibits an approximation ratio of O(a log Δ),
where Δ is the maximum degree, but in turn is uniform and determinis-
tic, and terminates after O(log Δ) rounds. A simple modification offers a
trade-off between running time and approximation ratio, that is, for any
parameter α ≥ 2, we can obtain an O(aα logα Δ)-approximation within
O(logα Δ) rounds.

1 Introduction

We are interested in the distributed complexity of the minimum dominating
set (MDS) problem, a classic both in graph theory and distributed computing.
Given a graph, a dominating set is a subset D of nodes such that each node
in the graph is either in D, or has a direct neighbor in D. There are various
applications where it is beneficial to find dominating sets of small cardinality,
for instance in routing. We want to find a minimum dominating set (MDS)—or
a dominating set that is not much larger than an MDS—fast, if possible even in
constant time.

Regrettably, it has been shown that in general graphs, small dominating sets
cannot be computed in constant time [15]. In some special graphs, however, this
is simple. In a tree, for instance, we can get a constant approximation of the
MDS problem by choosing all inner nodes, because a third of the inner nodes
must be in any MDS. In fact, one can approximate an MDS quickly and up
to a constant for more general graphs, for instance planar graphs [18]. What

N.A. Lynch and A.A. Shvartsman (Eds.): DISC 2010, LNCS 6343, pp. 510–524, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Minimum Dominating Set Approximation in Graphs of Bounded Arboricity 511

about graph classes between planar and general? One property of planar graphs
is sparsity, i.e., the number of edges is at most linear in the number of nodes.
Hence it seems natural to raise the question on which side of the boundary
between “easy” and “hard” sparse graphs reside.

Unfortunately, a constant MDS approximation cannot be computed quickly in
sparse graphs, as the hardness of the general MDS problem can be enclosed into
a small part of the graph whose contribution to the global solution is decisive.
Just take n−

√
n nodes, and connect them as a star. The remaining

√
n nodes

can be connected arbitrarily, yielding a sparse graph with less than n+
√

n
2 = 2n

edges. Whereas the star is dominated by its center alone, we can just apply the
lower bound [15] to the remaining

√
n nodes.

Consequently, we need a different definition of sparseness, one that applies
“everywhere” in the graph. In this work we consider graphs of bounded arboric-
ity, subsuming planar graphs, graphs of bounded genus or treewidth, and, more
generally, graphs excluding any fixed minor. The arboricity of a graph can be
defined in two equivalent ways: (i) the minimum number of forests into which
the edge set can be partitioned and (ii) the maximum ratio of edges to nodes
in any subgraph. We present two distributed algorithms, each of which exploits
one of these properties. Generally speaking, both algorithms run in logarithmic
time and feature an approximation guarantee that depends on the arboricity of
the graph. This can be seen as the result of a balancing act between generality
of feasible inputs on the one hand and approximation quality and running time
on the other hand: On graphs of small arboricity, we outperform the so far best
algorithm designed for general graphs; faster routines achieving similar approx-
imations are currently known only for severely constrained inputs like planar
graphs or graphs of bounded growth.

As a corollary, we observe that based on a forest decomposition, a central
algorithm can compute a constant-factor approximation in a linear number of
operations in any graph of bounded arboricity. In contrast, asymptotically opti-
mum solutions are intractable in general graphs (and thus also on sparse graphs),
where it is known to be NP-hard to obtain any sublogarithmic approximation
ratio [23]. To the best of our knowledge, graphs of bounded arboricity represent
the so far most general family of graphs for which a constant MDS approxima-
tion can be computed efficiently. Finally, given that all our algorithms are simple
and the distributed routines require only small messages, we believe them to be
suitable for use in practice.

2 Related Work

It is safe to say that computing small dominating sets is one of the most classical
and fundamental graph problems. The task of finding a minimum dominating
set was among the first to be recognized as NP-complete [11] and—dominating
set being a quite general special case of set cover—Raz and Safra proved that it
is NP-hard to achieve a c log Δ-approximation, where Δ is the maximum node
degree and c > 0 a constant [23]. Ironically, a ((1 − o(1)) log Δ)-approximation

512 C. Lenzen and R. Wattenhofer

can be obtained by a naive greedy algorithm, a strategy which was shown to
be optimal for polynomial-time algorithms unless NP is contained in the class
of problems that can be solved deterministically in time nO(log log n) (where n is
the number of nodes) by Feige [10].

Arguably, for distributed algorithms things are even worse. Even if message
size is unbounded and nodes may perform arbitrary local computations (in
particular solve NP-hard problems!), Ω(log Δ/ log log Δ) and Ω(log n/ log log n)
communication rounds are required to guarantee a polylogarithmic approxima-
tion [15]. Currently, the best known randomized algorithm yields an expected1

O(log Δ)-approximation in O(log n) time [17]. Considering that a better approx-
imation ratio is (supposing P �=NP, of course) intractable, this is optimal up to
a factor of O(log n log log Δ/ logΔ) in time complexity. However, for this algo-
rithm no non-trivial bound on the message size holds. The authors give a second
algorithm whose messages are of size at most O(log Δ), trading in for a time
complexity of O(log2 Δ). To the best of our knowledge, the deterministic dis-
tributed complexity of MDS approximations on general graphs is more or less a
blind spot, as so far neither fast (polylogarithmic time) algorithms nor stronger
lower bounds are known.

In light of the strong negative results, it is natural to consider restricted
families of graphs. Here we get a colorful picture. The ((1−o(1)) log Δ)-hardness
result of Feige has been extended to bipartite and split graphs by Chleb́ık and
Chleb́ıková [4], and thus also to chordal graphs and their complements. The case
of trees is trivial for centralized algorithms. Distributed algorithms need time in
the order of the depth of the tree for an optimal solution, while a constant
approximation is also trivial. For series-parallel graphs a linear-time centralized
algorithm was devised by Takamizawa et al. [25]. This algorithm generalizes to
a polynomial-time one in graphs of bounded treewidth.

More interesting are less extreme cases. For instance, both in planar and unit
disk graphs, it remains NP-complete to solve MDS exactly [5,11], but PTAS
have been given [2,13]. These graph classes are also comparatively well under-
stood in the distributed setting. On unit disk graphs, or more generally the
family of graphs of bounded growth,2 a constant approximation can be found in
O(log∗ n) rounds [24]. The respective algorithm outputs a maximal independent
set (which must also be a dominating set); because the number of independent
neighbors of any node in an optimal solution is bounded by a constant, so is
the approximation ratio of the algorithm. Using the same argument, a constant
approximation can be found on graphs of bounded independence, however, the
so far best known maximal independent set algorithms on this graph class have
randomized running time O(log n) with high probability [1,21]. For deterministic
algorithms on unit disk graphs, the product of approximation ratio and running
time cannot be in o(log∗ n) [19], implying that the upper bound from [24] is

1 This can be improved to hold with high probability [14].
2 “Bounded independence” means that the number of independent nodes in neigh-

borhoods is constant. “Bounded growth” refers to the stronger property that the
number of independent nodes in an r-neighborhood is polynomially bounded in r.

Minimum Dominating Set Approximation in Graphs of Bounded Arboricity 513

asympotically optimal. The same result also implies a constant lower bound
on the approximation ratio of deterministic distributed algorithms running on
planar graphs in o(log∗ n) rounds, which was proved independently in [6]. On
the other hand, a deterministic constant-time algorithm that outputs a 74-
approximation on planar graphs was given in [18]. Shortly thereafter, Czygrinow
et al. devised a (1 + ε)-approximation on planar graphs [6] (for any constant
ε > 0) in O(log∗ n) time. Their algorithm utilizes a different constant-time ap-
proximation for planar graphs with a constant, but much larger approximation
ratio than in [18]; intriguingly, a closer look reveals that this routine does not re-
quire planarity at all, but works for any graph free of K3,3-minors. Earlier, two of
the authors of this work gave slower (polylogarithmic time with large exponent)
algorithms yielding (1 + o(1))-approximations in graphs excluding any fixed mi-
nor [7,8]. It should be mentioned, though, that the algorithms from [7,8,6] have
in common that they compute optimal solutions to subproblems on subgraphs of
bounded diameter, implying that NP-hard problems are solved. Therefore, the
respective results are mainly theoretic statements on distributed time complexity
and probably infeasible in practice.

Returning to centralized algorithms, Baker’s PTAS for planar graphs [2] is
based on the fact that planar graphs admit an O(D) tree decomposition in time
O(Dn), where D denotes the diameter of the graph. Building on Baker’s ideas,
Eppstein extended the approach to minor-closed families excluding a specific
apex graph [9]. Finally Grohe generalized the technique further, giving PTAS
for any minor-closed family that does not contain all minors [12].

3 Contribution

In this work, we give practical approximation algorithms whose approximation
ratios depend on the arboricity of the underlying graph, i.e., the minimum num-
ber of forests into which the edge set can be decomposed. The family of graphs
of bounded arboricity contains all graphs excluding fixed minors, thus including
planar graphs, graphs of bounded genus, and graphs of bounded tree-width. It
is a proper superset of the family of graphs excluding some minor, as already
graphs of arboricity 2 may have K√

n-minors.3

Our first distributed algorithm computes, given a forest decomposition into f
forests, an f2-approximation in randomized time O(log n) with high probability.
The algorithms of Czygrinow et al. [6,7,8] also involve forest decompositions, but
they rely on additional properties of the underlying graph and are considerably
slower. Barenboim and Elkin applied essentially the same technique as Czy-
grinow et al. to obtain forest decompositions [3]. However, they stated slightly
different and more general results, better fitting our needs. More precisely, their

3 In contrast, graphs of bounded independence are fundamentally different. A clique
has maximum arboricity, but independent sets are of size one, while a star has
arboricity one, but the neighborhood of the center consists of n − 1 independent
nodes. The combination of bounded independence and arboricity implies bounded
degree and vice versa.

514 C. Lenzen and R. Wattenhofer

algorithms compute Θ(a)-forest decompositions of graphs of arboricity a in time
O(log n) provided that an upper bound in O(a) on a or an upper bound in O(nc)
on n (for a constant c ≥ 1) is known to the nodes. Employing their algorithm,
we thus get an O(a2)-approximation in O(log n) time on any graph of arboricity
a. In particular, the resulting routine guarantees constant approximation ratios
on graphs of bounded arboricity, using messages of size O(log n). From a col-
oring lower bound by Linial [20], Barenboim and Elkin inferred a lower bound
of Ω(log n/ log f) on the time to compute a forest decomposition into f forests
distributedly. Thus, no algorithm utilizing a forest decomposition can yield sub-
stantially better results. Using standard techniques, our algorithm can also be
transformed into an efficient central routine. In this case, we can remove the
logarithmic overhead in running time and the need for randomization, and we
need no a-priori knowledge on the arboricity of the graph. Hence, we achieve
a uniform, central O(a)-approximation within O(an) steps, i.e., a linear time
constant approximation on graphs of bounded arboricity.

We proceed by presenting a second, deterministic distributed algorithm that
features a smaller running time ofO(log Δ), smaller messages of sizeO(log log Δ),
and is uniform, i.e., does not require any bounds on a or n as input. Interest-
ingly, this algorithm requires less symmetry breaking than the first one (which
apart from the forest decomposition computes a maximal independent set). In-
deed, a port numbering suffices, and if (an upper bound on) a is known to the
algorithm, also this condition can be dropped, i.e., the modified algorithm does
not rely on any non-topological symmetry breaking information at all. These ad-
vantages come not for free, as the approximation ratio of the second algorithm
now depends on the maximum degree, being O(a log Δ). A simple modification of
the algorithm permits to reduce the running time to O(log Δ/ log α), but at the
expense weakening the approximation guarantee to O(aα log Δ/ logα) (for any
α ≥ 2). We give an example where the approximation ratio of the second algorithm
is matched, i.e., better approximation guarantees require different techniques.

4 Constant-Factor Approximation

In this section, we present an algorithm that computes a dominating set at most
O(a2) larger than optimum. After introducing the employed standard model
of distributed computation and some preliminary definitions, we proceed by
presenting the algorithm. After proving its approximation ratio, we review how
to obtain a (2a)-forest decomposition of a graph of arboricity a in O(an) central
operations. From these results, we conclude that on graphs of bounded arboricity
constant MDS approximations can be computed in O(log n) distributed rounds
and O(n) central steps.

4.1 Model

We model a distributed system as a simple, undirected graph G = (V, E),
where edges represent bidirectional communication links. Algorithms proceed in

Minimum Dominating Set Approximation in Graphs of Bounded Arboricity 515

synchronous rounds. In each round, nodes (i) send messages to their neighbors,
(ii) receive messages sent by their neighbors, and (iii) perform arbitrary (but
finite) local computations. Furthermore, we permit randomization, i.e., nodes
have access to an unlimited source of unbiased random bits. Initially, any node
v knows its inclusive neighborhood N+

v := {v}∪{w ∈ V | {v, w} ∈ E}. Similarly,
by N+

S :=
⋃

s∈S N+
s we denote the inclusive neighborhood of a set S ⊆ V .

Before we describe our first algorithm, we need to formalize some well-known
graph theoretic concepts.

Definition 1 (Dominating Sets). A dominating set is a subset of the nodes
D ⊆ V such that N+

D = V . A minimum dominating set (MDS) is a dominating
set of minimum cardinality. An α-approximation to an MDS is a dominating set
of size at most α|M |, where M is an MDS.

Definition 2 (Independent Sets). An independent set is a subset of the
nodes I ⊆ V containing no neighbors. A maximal independent set (MIS) is an
independent set for which adding any node destroys independence, i.e., N+

I = V
and I is also a dominating set.

Definition 3 (Forests and Forest Decompositions). A forest is a graph
containing no cycles. An oriented forest is a forest where edges have been oriented
such that outdegrees are at most one. If (v, w) ∈ E for two nodes in the forest, w
is called parent of v and v is a child of w. An f -forest decomposition of a graph
G is a decomposition of the edge set E = E1

·
∪ E2

·
∪ . . .

·
∪ Ef together with an

appropriate orientation of the edges such that the subgraphs induced by each Ei,
i ∈ {1, . . . , f}, are oriented forests. Given a forest decomposition, we denote by
P (v) := {w ∈ V | (v, w) ∈ E} and P (S) :=

⋃
s∈S P (s) the set of parents of the

node v ∈ V and the set S ⊆ V , respectively. The arboricity a(G) of G is the
minimal number of forests in a forest decomposition of G. In the forthcoming,
we will write a instead of a(G) whenever the argument is clear from the context.

4.2 Algorithm

Our first algorithm is based on the following observations. Given an f -forest
decomposition and an MDS M , the nodes can be partitioned into two sets. One
set contains the nodes which are dominated by a parent, the other contains
the remaining nodes, which thus are either themselves in M or have a child
in M . Since dominating set nodes can cover only f parents, the latter are at
most (f + 1)|M | many nodes. If each such node elects all its parents into the
dominating set, we have chosen at most f(f + 1)|M | nodes.

For the first set, we can exploit the fact that each node has at most f parents
in a more subtle manner. Covering the nodes in this set by parents only, we
need to solve a special case of set cover where each element is part of at most
f sets. Such instances can be approximated well by a simple sequential greedy
algorithm: Pick any element that is not yet covered and add all sets containing
it; repeat this until no element remains. Since in each step we add at least one
new set from an optimum solution, we get an f -approximation. This strategy

516 C. Lenzen and R. Wattenhofer

can be parallelized by computing a maximal independent set in the graph where
two nodes are adjacent exactly if they share a parent, as adding the parents of
the nodes in an independent set in any order would be a feasible execution of
the sequential greedy algorithm.

Putting these two observations together, first all parents of nodes from a
maximal independent set in a helper graph are elected into the dominating set.
In this helper graph, two nodes are adjacent if they share a parent. Afterwards,
the remaining uncovered nodes have no parents, therefore it is uncritical to select
them all. This approach is summarized in Algorithm 1.

Algorithm 1. Parent Dominating Set
input : f -forest decomposition of G
output: dominating set D
H := (V, F), where {v, w} ∈ F ⇔ P (v) ∩ P (w) �= ∅ // neighbors in H share a1

parent in G
Compute a maximal independent set I on H2

D := P (I) // all parents of nodes in the independent set join D3

D := D ∪ (V \ N+
D) // all still uncovered nodes may safely join D4

4.3 Analysis

Lemma 1. In Line 1 of Algorithm 1, at most f(f + 2)|M | many nodes enter
D, where M denotes an MDS of G.

Proof. Denote by Vc ⊆ V the set of nodes that have a child in M or are them-
selves in M . We have that |Vc| ≤ (f + 1)|M |, since no node has more than f
parents. Each such node adds at most f parents to D in Line 1 of the algorithm,
i.e., in total at most f(f + 1)|M | many nodes join D because they are elected
by children in I ∩ Vc.

Now consider the set of nodes Vp ⊂ V that have at least one parent in M ,
i.e., in particular the nodes in I ∩ Vp have at least one parent in M . By the
definition of F and the fact that I is an independent set, no node in M can
have two children in I. Thus, |I ∩ Vp| ≤ |M |. Since no node has more than f
parents, we conclude that at most f |M | many nodes join |D| after being marked
as candidate by a child in I ∩ Vp.

Finally, observe that since M is a dominating set, we have that Vc ∪ Vp = V
and thus

|D| ≤ f |I ∩ Vc|+ f |I ∩ Vp| ≤ f(f + 1)|M |+ f |M | = f(f + 2)|M | ,

concluding the proof. ��

Theorem 1. Algorithm 1 outputs a dominating set D containing at most (f2 +
3f + 1)|M | many nodes, where M is an optimum solution.

Minimum Dominating Set Approximation in Graphs of Bounded Arboricity 517

Proof. By Lemma 1, at most f(f + 2)|M | nodes enter D in Line 1 of the al-
gorithm. Since I is a MIS in H , all nodes that have a parent are adjacent to
at least one node in D after Line 1. Hence, the nodes selected in Line 1 must
either be covered by a child or themselves be in M . As no node has more than
f parents, thus in Line 1 at most (f + 1)|M | many nodes join D. Altogether, at
most (f2 + 3f + 1)|M | many nodes may end up in D as claimed. ��

Corollary 1. In any graph G, a factor O(a(G)2) approximation to the MDS
problem can be computed distributedly in O(log n) rounds with high probability.4

In particular, on graphs of bounded arboricity a constant-factor approximation
can be obtained in O(log n) rounds with high probability. This can be accomplished
with messages of size O(log n).

Proof. We run Algorithm 1 in a distributed fashion. To see that this is possi-
ble, observe that (i) nodes need only to know whether a neighbor is a parent
or a child, (ii) that H can be constructed locally in 2 rounds and (iii) a syn-
chronous round in H can be simulated by two rounds on G. Thus, we simply
may pick distributed algorithms to compute a forest decomposition of G and a
maximal independent set and plug them together to obtain a distributed variant
of Algorithm 1.

For the forest decomposition, we employ the algorithm from [3], yielding a
decomposition into O(a) forests in O(log n) rounds. A maximal independent
set can be computed in O(log n) rounds with high probability by well-known
algorithms [1,21], or a more recent similar technique [22]. In total the algorithm
requires O(log n) rounds with high probability and according to Theorem 1 the
approximation guarantee is O(a).

Regarding message size, we need to check that we do not require large mes-
sages because we compute a MIS on H . Formulated abstractly, the algorithm
from [22] breaks symmetry by making each node still eligible for the independent
set choosing a random value in each round and permitting it to join the indepen-
dent set if its value is a local minimum. This concept can for instance be realized
by taking O(log n) random bits as encoding of some number and comparing it to
neighbors. The respective values will with high probability differ. This approach
can be emulated using messages of size O(log n) in G: Nodes send their random
values to all parents in the forest decomposition, which then forward only the
smallest values to all children.5 ��

4.4 Linear Time Central Algorithm

Employing well-known techniques, a central algorithm can compute a suitable
forest decomposition with linear complexity.

4 I.e., with probability at least 1 − 1/nc for an arbitrary, but fixed constant c > 0.
5 If (an upper bound on) n is not known, one can start with constantly many bits

and double the number of used bits in each round where two nodes pick the same
value. This will not slow down the algorithm significantly and bound message size
by O(log n) with high probability.

518 C. Lenzen and R. Wattenhofer

Lemma 2. A 2a(G)-forest decomposition of G can be computed in O(|E|+n) ⊆
O(an) computational steps.

Proof. For each node, we compute and store its degree (O(|E|) steps). Now we
place the nodes into buckets according to their degree. We pick a node with
smallest degree, we orient its edges, delete them, and update the assignment of
the nodes to the buckets. This is repeated until no more nodes remain. Assum-
ing appropriate data structures, the number of operations will be bounded by
O(|E| + n) ⊆ O(an), as each edge and node is accessed a constant number of
times. Since a graph of arboricity a and n′ nodes has less than an′ edges, the
smallest degree of any subgraph of G is at most 2a(G). Hence we obtain a forest
decomposition into 2a(G) forests. ��

Hence, for any graph of arboricity a ∈ O(1), a deterministic, central algorithm
can compute anO(1)-approximation to the MDS problem with linear complexity.

Corollary 2. Deterministically, an O(a)-approximation to an MDS can be com-
puted in O(|E| + n) ⊆ O(an) central steps.

Proof. Using Lemma 2, we can compute a forest decomposition within the stated
complexity bounds. In a central setting, Algorithm 1 can easily be implemented
using O(|E|+ n) steps. The approximation guarantee follows from Theorem 1.

��

5 A Solution in the Port Numbering Model

Algorithm 1 might be unsatisfactory with regard to several aspects. Its running
time is logarithmic in n even if the maximum degree Δ is small. This cannot be
improved upon by any approach that utilizes a forest decomposition, as a lower
bound of Ω(log n/ log f) is known on the time to compute a forest decomposi-
tion into f forests [3]. The algorithm is not uniform, as it necessitates global
knowledge of a bound on a(G) or n.

Moreover, the algorithm requires randomization in order to compute a MIS
quickly. Considering deterministic algorithms, one might pose the question how
much initial symmetry breaking information needs to be provided to the nodes.
While randomized algorithms may randomly generate unique identifiers of size
O(log n) in constant time with high probability, many deterministic algorithms
assume them to be given as input. Milder assumptions are the ability to distin-
guish neighbors by means of a port numbering and/or an initial orientation of
the edges.

In this section, we show that an uniform, deterministic algorithm exists that
requires a port numbering only, yet achieves a running time of O(log Δ) and a
good approximation ratio. The size of the computed dominating set is bounded
linearly in the product of the arboricity a(G) of the graph and the logarithm
of the maximum degree Δ. Interestingly, we will observe later that if (an upper
bound on) the arboricity is known to the algorithm, one can even drop the
assumption of a port numbering.

Minimum Dominating Set Approximation in Graphs of Bounded Arboricity 519

5.1 The Port Numbering Model

In this section, we consider the so-called port numbering model. Again an undi-
rected and simple graph G = (V, E) is given. Communication is synchronous
and computation is deterministic. Nodes refer to their neighbors by means of a
port numbering, i.e., each node v uniquely maps the numbers {1, . . . , δ} to its
edges (where δ is the degree of v). Nodes can distinguish from which of their
neighbors they received a specific message. However, in contrast to the previous
setting where nodes had unique identifiers, different nodes now may refer to the
same destination by different port numbers.

Note that this model is quite harsh. For instance, it is impossible to reliably
discover cycles, compute a MIS, or determine the diameter of the graph.

5.2 Algorithm

The basic idea of Algorithm Greedy-by-Degree (Algorithm 2) is that it is always
feasible to choose nodes of high residual degree (by which we mean the number
of uncovered nodes in the inclusive neighborhood) simultaneously, i.e., all the
nodes that cover up to a constant factor as many nodes as the one covering the
most uncovered nodes. This permits to obtain strong approximation guarantees
without the structural information provided by knowledge of a(G) or a forest
decomposition; the mere fact that the graph must be “locally sparse” enforces
that if many nodes are elected into the set, also the dominating set must be large.
A difficulty arising from this approach is that nodes are not aware of the current
maximum residual degree in the graph. Hence, every node checks whether there
is a node in its 2-hop neighborhood having a residual degree larger by a factor
2. If not, nodes may join the dominating set (even if their degree is not large
from a global perspective), implying that the maximum residual degree drops
by a factor of 2 in a constant number of rounds.

A second problem occurs once residual degrees become small. In fact, it may
happen that a huge number of already covered nodes can each dominate the
same small set of a(G)−1 nodes. For this reason, it is mandatory to ensure that
not more nodes may join the dominating set than actually need to be covered.
To this end, nodes that still need to be covered elect one of their neighbors (if
any) that are feasible according to the criterion of (locally) large residual degree.
This scheme is described in Algorithm 2.

Note that nodes may never leave D once they entered it. Thus, nodes may ter-
minate based on local knowledge only when executing the algorithm, as they can
cease executing the algorithm as soon as δv = 0, i.e., their complete neighborhood
is covered by D. Moreover, it can easily be verified that one iteration of the loop
can be executed by a local algorithm in the port numbering model using 6 rounds.

5.3 Analysis
In the sequel, when we talk of a phase of Algorithm 2, we refer to a complete
execution of the while loop. We start by proving that not too many nodes with
small residual degrees enter D.

520 C. Lenzen and R. Wattenhofer

Algorithm 2. Greedy-by-Degree.
output: dominating set D
D := ∅1

while V �= N+
D do2

C := ∅ // candidate set3

for v ∈ V in parallel do4

δv := |N+
v \ N+

D | // residual degree5

Δv := max
w∈N+

v
{δw} // maximum residual degree within one hop6

Δv := max
w∈N+

v
{Δw} // maximum residual degree within two hops7

if �log δv� ≥ �log Δv� then8

C := C ∪ {v}9

end10

if v ∈ N+
C \ N+

D then11

w := any node from C ∩ N+
v (break symmetry by port numbers)12

D := D ∪ {w} // uncovered nodes select a candidate joining D13

end14

end15

end16

Lemma 3. Denote by M an MDS. During the execution of Algorithm 2, in total
at most 16a|M | nodes join D in Line 2 of the algorithm after computing δv ≤ 8a
in Line 2 of the same phase.

Proof. Fix a phase of the algorithm. Consider the set S consisting of all nodes
v ∈ V that become covered in this phase by some node w ∈ N+

v that computes
δw ≤ 8a and joins D. As according to Line 2 nodes join D subject to the condition
that residual degrees throughout their 2-hop neighborhoods are less than twice
as large as their own, no node m ∈ M can cover more than 16a many nodes in
S. Hence, |S| ≤ 16a|M |. Because of the rule that a node needs to be elected by
a covered node in order to enter D, this is also a bound on the number of nodes
joining D in a phase when they have residual degree at most 8a. ��

Next, we show that in each phase, at most a constant factor more nodes of
large residual degree are chosen than are in an MDS.

Lemma 4. If M is an MDS, in each phase of Algorithm 2 at most 16a|M | nodes
v that compute δv > 8a in Line 2 join D in Line 2.

Proof. Denote by D′ the nodes v ∈ V joining D in Line 2 of a phase in which
they computed δv > 8a and by V ′ the set of nodes that had not been covered at
the beginning of this phase. Define for i ∈ {0, . . . , �log n�} that

Mi := {v ∈M | δv ∈ (2i−1, 2i]}

Vi :=
{

v ∈ V ′
∣∣∣∣ max

w∈N+
v

{δw} ∈ (2i−1, 2i]
}

Di := {v ∈ D′ | δv ∈ (2i−1, 2i]} .

Note that
⋃�log n�

i=�log 8a� Di = D′.

Minimum Dominating Set Approximation in Graphs of Bounded Arboricity 521

Consider any j ∈ {�log 8a�, . . . , �logn�}. By definition, nodes in Vj may only
be covered by nodes from Mi for i ≤ j. Thus,

∑j
i=0 2i|Mi| ≥ |Vj |.

Nodes v ∈ Dj cover at least 2j−1 + 1 nodes from the set
⋃

i∈{j,...,�log n�} Vi, as
by definition they have no neighbors in Vi for i < j. On the other hand, Lines 2
to 2 of the algorithm impose that these nodes must not have any neighbors of
residual degree larger than 2�log δv� = 2j, i.e., these nodes cannot be in a set
Vi for i > j. Hence, each node v ∈ Dj has at least 2j−1 + 1 neighbors in Vj .
This observation implies that the subgraph induced by Dj ∪ Vj has at least
2j−2|Dj | ≥ 2a|Dj| edges. On the other hand, by definition of the arboricity, this
subgraph has less than a(|Dj |+ |Vj |) edges. It follows that

|Dj| ≤
a|Vj |

2j−2 − a
≤ 23−ja|Vj | ≤ 23−ja

j∑
i=0

2i|Mi| .

We conclude that

�log n�∑
j=�log 8a�

|Dj | ≤
�log n�∑

j=�log 8a�
23−ja

j∑
i=0

2i|Mi| ≤ 8a

�log n�∑
j=0

j∑
i=0

2i−j |Mi|

< 8a

�log n�∑
i=0

∞∑
j=i

2i−j |Mi| = 16a

�log n�∑
i=0

|Mi| = 16a|M | ,

as claimed. ��
We now can bound the approximation quality of the algorithm.

Theorem 2. Assume that G has maximum degree Δ. Then an execution of Al-
gorithm 2 on G terminates within 6�log(Δ+1)� rounds and outputs a dominating
set at most a factor 16a(G) log Δ larger than optimum. The worst-case approxi-
mation ratio of the algorithm is Θ(a(G) log Δ). Message size can be bounded by
O(log log Δ).

Proof. We first examine the running time of the algorithm. Denote by Δ(i) the
maximum residual degree after the ith phase, i.e., Δ(0) = Δ + 1 (as a node also
covers itself). As observed earlier, each phase of Algorithm 2 takes six rounds.
Because all nodes v computing a δv satisfying �log δv� = �log Δ(i)� join C in
phase i and any node in N+

C becomes covered, we have that �log Δ(i + 1)� ≤
�log Δ(i)� − 1 for all phases i. Since the algorithm terminates at the end of the
subsequent phase once Δ(i) ≤ 2, in total at most �logΔ(0)� = �log(Δ + 1)�
phases are required.

Having established the bound on the running time of the algorithm, its ap-
proximation ratio directly follows6 by applying Lemmas 3 and 4. The bound
on the message size follows from the observation that in each phase nodes need
to exchange residual degrees rounded to powers of 2 and a constant number of
binary values only.

6 Note that in the last three phases the maximum degree is at most 8 ≤ 8a.

522 C. Lenzen and R. Wattenhofer

For the lower bound of Ω(a log Δ), we briefly sketch appropriate input graphs.
We start with a(G) being constant. For k ∈ N, k ≥ 2 an optimal solution consists
of 4 nodes of degree 2k−1. Half of their inclusive neighborhood is covered by a
node having degree 2k, another quarter by a node of degree 2k−1, one eighth
by a node of degree 2k−2, and so on. In each phase, the algorithm will choose
one of the latter nodes, namely the one of highest degree. Thus it will choose
k ∈ Θ(log Δ) nodes, whereas an optimal solution contains 4 ∈ O(1) nodes.
This bound extends to arbitrarily large values of n by replicating this graph
sufficiently often. The described graph has constant arboricity, as each node is
covered at most constantly often. Similarly, we could decide to cover each node
multiple times by nodes in the suboptimal solution computed by the algorithm
(i.e., half of the neighborhood of a node in the optimal solution is covered by
Θ(a) nodes, a quarter by another Θ(a) nodes, etc.). Hence, for any value of a
and arbitrarily large n, we can construct a graph of n nodes where Algorithm 2
computes a solution by factor Ω(a log Δ) worse than the optimum. ��

Like with the algorithms by Kuhn et al. [16,17], we can sacrifice accuracy in
order to speed up the computation.

Corollary 3. For any α ≥ 2, Algorithm 2 can be modified such that it has a
running time of O(logα Δ) and approximation ratio O(a(G)α logα Δ).

Proof. We simply change the base of the logarithms in Line 2 of the algorithm,
i.e., instead of rounding residual degrees to integer powers of two, we round to
integer powers of α. Naturally, this linearly affects the approximation guarantees.
In the proof of Lemma 4, we just replace the respective powers of 2 by α as well,
yielding a bound of O(a(G)+α logα Δ) on the approximation ratio by the same
reasoning as in Theorem 2. ��

If it was not for the computation of a MIS, we could speed up Algorithm 1 in
almost the same manner (accepting a forest decomposition into a larger number
of forests). However, the constructed helper graph is of bounded independence,
but not arboricity or growth. For this graph class currently no distributed algo-
rithm computing a MIS in time o(log n) is known.

We conclude this section with some final remarks. If nodes know a(G) (or
a reasonable upper bound), a port numbering is not required anymore. In this
case, nodes will join D without the necessity of being elected by a neighbor,
however only if the prerequisite δv > 8a is satisfied. To complete the dominating
set, uncovered nodes may join D independently of δv once their neighborhood
contains no more nodes of residual degree larger than 8a. It is not hard to see
that with this modification, essentially the same analysis as for Algorithm 2
applies, both with regard to time complexity and approximation ratio.

6 Conclusion

We presented efficient distributed minimum dominating set approximation algo-
rithms for graphs of bounded arboricity. Compared to the best known solution
for general graphs using reasonably sized messages, we can either (i) reduce the

Minimum Dominating Set Approximation in Graphs of Bounded Arboricity 523

running time by a factor of Θ(log Δ) (Algorithm 2) or (ii) change the running
time from Θ(log2 Δ) to Θ(log n) and improve on the approximation quality by
a factor of Θ(log Δ) (Algorithm 1). Moreover, our algorithms provide deter-
ministic approximation guarantees. The Algorithms by Kuhn et al. [16] utilize
randomized rounding, thus yielding probabilistic bounds. The faster of the two
given algorithms is entirely deterministic. In contrast, Algorithm 1 necessitates
the computation of a maximal independent set on a graph of bounded inde-
pendence; deterministic solutions of running time linear in Δ are known, but a
respective variant of the algorithm would be slow in comparison.

Of independent interest might be that on graphs of bounded arboricity, a
central version of Algorithm 1 obtains a constant-factor approximation within a
linear number of operations, without the need for randomization. In summary,
minimum dominating sets are substantially easier to approximate on graphs of
small arboricity, for distributed as well as for central algorithms.

Acknowledgements

We would like to thank Jukka Suomela for inspiring discussions and Topi Musto
and the anonymous reviewers for many valuable comments that helped to im-
prove this paper.

References

1. Alon, N., Babai, L., Itai, A.: A Fast and Simple Randomized Parallel Algorithm
for the Maximal Independent Set Problem. J. Algorithms 7(4), 567–583 (1986)

2. Baker, B.S.: Approximation Algorithms for NP-Complete Problems on Planar
Graphs. J. ACM 41(1), 153–180 (1994)

3. Barenboim, L., Elkin, M.: Sublogarithmic Distributed MIS algorithm for Sparse
Graphs using Nash-Williams Decomposition. Distributed Computing, 1–17 (2009)

4. Chlebk, M., Chlebkov, J.: Approximation Hardness of Dominating Set Problems in
Bounded Degree Graphs. Information and Computation 206(11), 1264–1275 (2008)

5. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit Disk Graphs. Discrete Math.
86(1-3), 165–177 (1990)

6. Czygrinow, A., Hańćkowiak, M., Wawrzyniak, W.: Fast Distributed Approxima-
tions in Planar Graphs. In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp.
78–92. Springer, Heidelberg (2008)

7. Czygrinow, A., Hańćkowiak, M.: Distributed Almost Exact Approximations for
Minor-Closed Families. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS,
vol. 4168, pp. 244–255. Springer, Heidelberg (2006)

8. Czygrinow, A., Hanckowiak, M.: Distributed Approximation Algorithms for
Weighted Problems in Minor-Closed Families. In: Lin, G. (ed.) COCOON 2007.
LNCS, vol. 4598, pp. 515–525. Springer, Heidelberg (2007)

9. Eppstein, D.: Diameter and Treewidth in Minor-Closed Graph Families. Algorith-
mica 27(3), 275–291 (2000)

10. Feige, U.: A Threshold of lnn for Approximating Set Cover. J. ACM 45(4), 634–652
(1998)

524 C. Lenzen and R. Wattenhofer

11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, New York (1979)

12. Grohe, M.: Local Tree-Width, Excluded Minors, and Approximation Algorithms.
Combinatorica 23(4), 613–632 (2003)

13. Hunt, H.B., Marathe, M.V., Radhakrishnan, V., Ravi, S.S., Rosenkrantz, D.J.,
Stearns, R.E.: NC-Approximation Schemes for NP- and PSPACE-Hard Problems
for Geometric Graphs. Journal of Algorithms 26(2), 238–274 (1998)

14. Kuhn, F.: Personal Communication (2010)
15. Kuhn, F., Moscibroda, T., Wattenhofer, R.: What Cannot Be Computed Locally!

In: Proc. 23rd Annual ACM Symposium on Principles of Distributed Computing,
PODC (2004)

16. Kuhn, F., Moscibroda, T., Wattenhofer, R.: The Price of Being Near-Sighted. In:
Proc. 17th ACM-SIAM Symposium on Discrete Algorithms, SODA (2006)

17. Kuhn, F., Wattenhofer, R.: Constant-Time Distributed Dominating Set Approxi-
mation. Distrib. Comput. 17(4), 303–310 (2005)

18. Lenzen, C., Oswald, Y.A., Wattenhofer, R.: What can be Approximated Locally?
In: 20th ACM Symposium on Parallelism in Algorithms and Architecture, SPAA
(June 2008)

19. Lenzen, C., Wattenhofer, R.: Leveraging Linial’s Locality Limit. In: Taubenfeld,
G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 394–407. Springer, Heidelberg (2008)

20. Linial, N.: Locality in Distributed Graph Algorithms. SIAM Journal on Comput-
ing 21(1), 193–201 (1992)

21. Luby, M.: A Simple Parallel Algorithm for the Maximal Independent Set Problem.
SIAM J. Comput. 15(4), 1036–1055 (1986)

22. Métivier, Y., Robson, J.M., Saheb Djahromi, N.,, Z.: An Optimal Bit Complex-
ity Randomised Distributed MIS Algorithm. In: Kutten, S., Žerovnik, J. (eds.)
SIROCCO 2009. LNCS, vol. 5869, pp. 1–15. Springer, Heidelberg (2010)

23. Raz, R., Safra, S.: A Sub-Constant Error-Probability Low-Degree Test, and a Sub-
Constant Error-Probability PCP Characterization of NP. In: Proc. of the 29th
Annual ACM Symposium on Theory of Computing (STOC), pp. 475–484. ACM,
New York (1997)

24. Schneider, J., Wattenhofer, R.: A Log-Star Distributed Maximal Independent Set
Algorithm for Growth-Bounded Graphs. In: Proc. of the 27th Annual ACM Sym-
posium on Principles of Distributed Computing, PODC (August 2008)

25. Takamizawa, K., Nishizeki, T., Saito, N.: Linear-Time Computability of Combina-
torial Problems on Series-Parallel Graphs. J. ACM 29(3), 623–641 (1982)

Brief Announcement:
Sharing Memory in a Self-stabilizing Manner�

Noga Alon1, Hagit Attiya2, Shlomi Dolev3, Swan Dubois4,
Maria Gradinariu4, and Sébastien Tixeuil4

1 Sackler School of Mathematics and Blavatnik School of Computer Science,
Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University,

Tel Aviv, 69978, Israel
nogaa@tau.ac.il

2 Department of Computer Science, Technion, 32000, Israel
hagit@cs.technion.ac.il

3 Contact author. Department of Computer Science, Ben-Gurion University of the
Negev, Beer-Sheva, 84105, Israel

dolev@cs.bgu.ac.il
4 LIP6, Universite Pierre et Marie Curie, Paris 6/INRIA, 7606, France

Introduction. A core abstraction for many distributed algorithms simulates
shared memory [3]; this abstraction allows to take algorithms designed for shared
memory, and port them to asynchronous message-passing systems, even in the
presence of failures. There has been significant work on creating such simula-
tions, under various types of permanent failures, as well as on exploiting this
abstraction in order to derive algorithms for message-passing systems (see [2].)

All these works, however, only consider permanent failures, neglecting to in-
corporate mechanisms for handling transient failures. Such failures may result
from incorrect initialization of the system, or from temporary violations of the
assumptions made by the system designer, for example the assumption that a
corrupted message is always identified by an error detection code. The ability to
automatically resume normal operation following transient failures, namely to
be self-stabilizing [4], is an essential property that should be integrated into the
design and implementation of systems.

This paper presents the first practically self-stabilizing simulation of shared
memory that tolerates crashes. Specifically, we simulate a single-writer multi-
reader (SWMR) atomic register in asynchronous message-passing systems where
less than a majority of processors may crash. The simulation is based on reads
and writes to a (majority) quorum in a system with a fully connected graph

� More details can be found in [1]. Noga Alon is supported in part by an ERC advanced
grant, by a USA-Israeli BSF grant, by the Israel Science Foundation. Hagit Attiya
is supported in part by the Israel Science Foundation (grant number 953/06). The
work started while Shlomi Dolev was a visiting professor at LIP6 supported in part
by the ICT Programme of the European Union under contract number FP7-215270
(FRONTS), Microsoft, Deutsche Telekom, US Air-Force and Rita Altura Trust Chair
in Computer Sciences.

N.A. Lynch and A.A. Shvartsman (Eds.): DISC 2010, LNCS 6343, pp. 525–527, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

526 N. Alon et al.

topology1. A key component of the simulation is a new bounded labeling scheme
that needs no initialization, as well as a method for using it when communication
links and processes are started at an arbitrary state.

Overview of our simulation. A simulation of a SWMR atomic register in a
message-passing system, supports two procedures, read and write, for accessing
the register. The ABD simulation [3] is based on a quorum approach: In a write
operation, the writer makes sure that a quorum of processors (consisting of a
majority of the processors, in its simplest variant) store its latest value. In a
read operation, a reader contacts a quorum of processors, and obtains the latest
values they store for the register; in order to ensure that other readers do not
miss this value, the reader also makes sure that a quorum stores its return value.

A key ingredient of this scheme is the ability to distinguish between older and
newer values of the register; this is achieved by attaching a sequence number to
each register value. In its simplest form, the sequence number is an unbounded
integer, which is increased whenever the writer generates a new value. This solu-
tion could be appropriate for a an initialized system, which starts in a consistent
configuration, in which all sequence numbers are zero, and are only incremented
by the writer or forwarded as is by readers. In this manner, a 64-bit sequence
number will not wrap around for a number of writes that is practically infinite,
certainly longer than the life-span of any reasonable system.

However, when there are transient failures in the system, as is the case in
the context of self-stabilization, the simulation starts at an uninitialized state,
where sequence numbers are not necessarily all zero. It is possible that, due to a
transient failure, the sequence numbers might hold the maximal value when the
simulation starts running, and thus, will wrap around very quickly.

Our solution is to partition the execution of the simulation into epochs, namely
periods during which the sequence numbers are supposed not to wrap around.
Whenever a “corrupted” sequence number is discovered, a new epoch is started,
overriding all previous epochs; this repeats until no more corrupted sequence
numbers are hidden in the system, and the system stabilizes. Ideally, in this
steady state, after the system stabilizes, it will remain in the same epoch (at
least until all sequence numbers wrap around, which is unlikely to happen).

This raises, naturally, the question of how to label epochs. The natural idea,
of using integers, is bound to run into the same problems as for the sequence
numbers. Instead, we capitalize on another idea from [3], of using a bounded
labeling scheme for the epochs. A bounded labeling scheme [6,5] provides a func-
tion for generating labels (in a bounded domain), and guarantees that two labels
can be compared to determine the largest among them.

Existing labeling schemes assume that initially, labels have specific initial
values, and that new labels are introduced only by means of the label generation
function. However, transient failures, of the kind the self-stabilizing simulation
must withstand, can create incomparable labels, so it is impossible to tell which
is the largest among them or to pick a new label that is bigger than all of them.
1 Standard end-to-end schemes can be used to implement the quorum operation in

the case of general communication graph.

Brief Announcement: Sharing Memory in a Self-stabilizing Manner 527

To address this difficulty, we present a constructive bounded labeling scheme
that allows to define a label larger than any set of labels, provided that its size
is bounded. We assume links have bounded capacity, and hence the number of
epochs initially hidden in the system is bounded.

The writer tracks the set of epochs it has seen recently; whenever the writer
discovers that its current epoch label is not the largest, or is incomparable to
some existing epoch, the writer generates a new epoch lable that is larger than
all the labels it has. The number of bits required to represent an epoch label
depends on m, the maximal size of the set, and it is in O(m log m). We ensure
that the size of the set is proportional to the total capacity of the communication
links, namely, O(cn2), where c is the bound on the capacity of each link, and
hence, each epoch label requires O((cn2(log n + log c)) bits.

It is possible to reduce this complexity, making c essentially constant, by
employing a data-link protocol for communication among the processors.

We show that, after a bounded number of write operations, the results of reads
and writes can be linearized in a manner that satisfies the semantics of a SWMR
register. This holds until the sequence numbers wrap around, as can happen in
a realistic version of the unbounded ABD simulation.

The labeling scheme. Let k > 1 be an integer, and let X be the set {1, 2, .., k2+1}.
L (the set of labels) is the set of all ordered pairs, (s, A), such that s ∈ X and
A ⊆ X |L| =

(
k2+1

k

)
k2 + 1 = k(1+o(1))k. A label (si, Ai) is smaller (≺) a label

(sj , Aj) if and only if (sj ∈ Ai) and si �∈ Aj .
Given a subset S of at most k labels (s1, A1), (s2, A2), . . . in L, we compute a

new label (si, Ai) which is greater (with respect to ≺) than every label of S:

– si is an element of X that is not in the union A1 ∪A2 ∪ . . . ∪Ak, and
– A is a subset of size k of X containing all values (s1, s2, . . . , sk).

It can be proved [1] that this element exists and that this yields a bounded
labeling scheme, even with uninitialized values.

References

1. Alon, N., Attiya, H., Dolev, S., Dubois, S., Gradinariu, M., Tixeuil, S.: Practically
Stabilizing Atomic Memory, arXiv 1007.1802 (2010)

2. Attiya, H.: Robust Simulation of Shared Memory: 20 Years After. EATCS Dis-
tributed Computing Column (2010)

3. Attiya, H., Bar-Noy, A., Dolev, D.: Sharing Memory Robustly in Message-Passing
Systems. J. ACM 42(1), 124–142 (1995)

4. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)
5. Dolev, D., Shavit, N.: Bounded Concurrent timestamping. SIAM J. on Comput-

ing 26(2), 418–455 (1997)
6. Israeli, A., Li, M.: Bonded timestamps. Distr. Comp. 6(4), 205–209 (1993)

Brief Announcement: Stabilizing Consensus with
the Power of Two Choices

Benjamin Doerr1, Leslie Ann Goldberg2, Lorenz Minder3,
Thomas Sauerwald4, and Christian Scheideler5

1 Max-Planck Institute for Computer Science, Saarbrücken
2 Department of Computer Science, University of Liverpool

3 Computer Science Division, University of California, Berkeley
4 Simon Fraser University, Burnaby, Canada

5 Department of Computer Science, University of Paderborn

Consensus problems occur in many contexts and have therefore been extensively
studied in the past. In the original consensus problem, every process initially
proposes a value, and the goal is to decide on a single value from all those
proposed. We are studying a slight variant of the consensus problem called the
stabilizing consensus problem [2]. In this problem, we do not require that each
process irrevocably commits to a final value but that eventually they arrive at a
common, stable value without necessarily being aware of that. This should work
irrespective of the states in which the processes are starting. In other words, we
are searching for a self-stabilizing algorithm for the consensus problem. Coming
up with such an algorithm is easy without adversarial involvement, but we allow
some adversary to continuously change the states of some of the nodes at will.
Despite these state changes, we would like the processes to arrive quickly at a
common value that will be preserved for as many time steps as possible (in a
sense that almost all of the processes will store this value during that period of
time). Interestingly, we will demonstrate that there is a simple algorithm for this
problem that essentially needs logarithmic time and work with high probability
to arrive at such a stable value, even if the adversary can perform arbitrary state
changes, as long as it can only do so for a limited number of processes at a time.

Our approach. We are focussing on synchronous message-passing systems with
adversarial state changes. More precisely, we are given a fixed set of n processes
that are numbered from 1 to n. The time proceeds in synchronized rounds. In
each round, every process can send out one or more requests, receive replies to
its requests, and perform some local computation based on these replies. We
assume that every process can send a message to any other process (i.e., there
are no connectivity constraints) and faithfully follows the stated protocol (given
its current state, which might have been changed by the adversary).

Stabilizing consensus problem. We are studying a slight variant of the original
consensus problem called the stabilizing consensus problem [2]. In this problem,
we may start with an arbitrary set of initial output values. As in the usual
convention, a configuration includes all of the processes’ local states. A configu-
ration C is called output-stable if in all possible executions starting from C, the

N.A. Lynch and A.A. Shvartsman (Eds.): DISC 2010, LNCS 6343, pp. 528–530, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Brief Announcement: Stabilizing Consensus with the Power of Two Choices 529

output of each process does not change. If every process outputs x in an output-
stable configuration C, we say the outputs stabilize to x in C. A self-stabilizing
consensus protocol must satisfy the following three properties:

– Stabilization: the protocol eventually reaches an output-stable configura-
tion.

– Validity: if a process outputs a value v, then v must have been output by
some process in the previous round.

– Agreement: for every reachable output-stable configuration, all processes
have the same output.

The adversary. We also assume that there is a T -bounded adversary that knows
the entire configuration of the system in the current round. Based on that infor-
mation, it may decide to introduce arbitrary state changes in up to T processes
at the end of each round except that the protocol code cannot be manipulated.
Of course, under a T -bounded adversary we cannot reach an output-stable con-
figuration any more. Therefore, we will only require the system to reach a con-
figuration C so that for any polynomial in n many time steps following C, all
but at most O(T) processes agree on some stable value v (note that these O(T)
processes can be different from round to round). We will call this an almost
output-stable configuration.

Our contribution. We are focussing on stabilizing consensus problems based on
an arbitrary (finite or countably infinite) set S of legal values with a total order.
Classical examples are S = {0, 1} and S = N. All initial output values of the
processes must be from S and also the adversary is restricted to choosing only
values in S. (In case the adversary chooses a value outside of S in some process
p, we may assume that p instantly recognizes that and then switches over to
some default value in S.) We propose the following simple protocol called the
median rule:

In each round, every process i picks two processes j and k uniformly
and independently at random among all processes (including itself) and
requests their values. It then updates vi to the median of vi, vj and vk.
Any request sent to process i will be answered with the value i had at
the beginning of the current round.

For example, if vi = 10, vj = 12 and vk = 100, then the new value of vi is 12.
The median rule works surprisingly well. We can prove that we reach an almost
stable consensus in time O(log m log log n + log n) w.h.p.1, where m = |S|. If no
adversary is present, then the runtime decreases to O(log m) w.h.p. Our results
are listed in Table 1.

The work closest to our work is the paper by Angluin et al. [1] in the context of
population protocols. Their consensus protocol can tolerate Byzantine behavior
of o(

√
n) nodes. However, they only focus on two values whereas we allow any

number of legal values, and in our model any node can experience state changes.
1 We write w.h.p. to refer to an event that holds with probability at least 1− n−c for

any constant c > 1.

530 B. Doerr et al.

with adversary without adversary
worst-case, m = 2 O(log n) O(log n)
worst-case, arb. m O(log m log log n + log n) O(log m + log n)

average-case, arb. m
O(log m + log log n) if m is odd

Θ(log n) if m is even
O(log m + log log n) if m is odd

Θ(log n) if m is even

Fig. 1. Our results on the time and work required by each process to reach an almost
stable consensus (with adversary) or stable consensus (without adversary). m = |S| is
the number of legal values. By average-case we refer to the case where every initial value
is chosen independently and uniformly at random among m ≤ n1/2−ε legal values for
some constant ε > 0. All results hold with probability at least 1−n−c for any constant
c > 1.

Of course, |S|may not be finite. In this case, our results still hold if we define m
as the number of legal values between v� and vr, where v� is the (n/2−c

√
n log n)-

smallest and vr is the (n/2 + c
√

n log n)-smallest value of the initial values for
some sufficiently large constant c. Therefore, as a by-product, the median rule
computes a good approximation of the median, even under the presence of an
adversary.

Our results also hold if instead of state changes at arbitrary processes we
have a fixed number of

√
n Byzantine processes. The bound on T is essentially

tight as T = Ω(
√

n log n) would not allow the median rule to stabilize any
more w.h.p. (even if the adversary can only put T processes to sleep instead of
changing their states) because the adversary could keep two groups of processes
with equal values in perfect balance for at least a polynomially long time.

Finally, if the T -bounded adversary is static in a sense that there is a fixed
set of bad T processes that can experience adversarial state changes throughout
the execution, then a simple extension of the median rule, called careful median
rule, reaches a stable consensus for all non-bad processes for any polynomial
number of time steps w.h.p.: each process runs the median rule as before but
outputs the majority value of the last k rounds of the median rule as its value,
for some constant k ≥ 3. A stable consensus is not possible with the original
median rule as with T =

√
n there is a constant probability that some non-bad

process contacts two bad processes and therefore changes its value to a value
selected by the adversary. The details can be found in [3].

References

1. Angluin, D., Aspnes, J., Eisenstat, D.: A simple population protocol for fast robust
approximate majority. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 20–32.
Springer, Heidelberg (2007)

2. Angluin, D., Fischer, M., Jiang, H.: Stabilizing consensus in mobile networks. In:
Gibbons, P.B., Abdelzaher, T., Aspnes, J., Rao, R. (eds.) DCOSS 2006. LNCS,
vol. 4026, pp. 37–50. Springer, Heidelberg (2006)

3. Doerr, B., Goldberg, L.A., Minder, L., Sauerwald, T., Scheideler, C.: Stabilizing
consensus with the power of two choices. Technical report, University of Paderborn
(2010), http://wwwcs.upb.de/cs/scheideler

http://wwwcs.upb.de/cs/scheideler

Author Index

Abraham, Ittai 4
Acharya, H.B. 437
Afek, Yehuda 127
Agrawal, Shashank 201
Aguilera, Marcos K. 4
Alberti, Francesco 392
Alistarh, Dan 94, 404
Alon, Noga 525
Alvisi, Lorenzo 406
Attiya, Hagit 35, 94, 525

Balakrishnan, Mahesh 401
Bampas, Evangelos 297
Ben-Or, Michael 194
Ben-Zvi, Ido 421
Bernstein, Philip A. 401
Bhattacharjee, Bobby 198
Blin, Lélia 312, 480
Bonnet, François 206
Busch, Costas 64

Carouge, Francois 50
Chakaravarthy, Venkatesan T. 398
Chalopin, Jérémie 282
Chlebus, Bogdan S. 236
Choudhury, Anamitra R. 398
Cornejo, Alejandro 148
Czyzowicz, Jurek 297

Dalessandro, Luke 20
Das, Shantanu 282
Dereniowski, Dariusz 328
Dieudonné, Yoann 267
Doerr, Benjamin 528
Dolev, Danny 194
Dolev, Shlomi 480, 525
Dourado, Mitre C. 395
Dubois, Swan 495, 525

Estrade, Brett 64

Felber, Pascal 124
Fernández Anta, Antonio 374
Fetzer, Christof 124
Fusco, Emanuele G. 251

Garg, Vijay K. 398, 450
G ↪asieniec, Leszek 297
Ghilardi, Silvio 392
Gilbert, Seth 94, 359, 404
Giurgiu, Andrei 94
Goldberg, Leslie Ann 528
Gouda, Mohamed 437
Gradinariu, Maria 525
Gradinariu Potop-Butucaru, Maria 480
Guerraoui, Rachid 94, 204, 404

Hendler, Danny 79
Herlihy, Maurice 109
Hillel, Eshcar 35
Hoch, Ezra N. 194

Ilcinkas, David 297
Incze, Itai 79

Keleher, Pete 198
Kesselheim, Thomas 163
Korland, Guy 127
Kowalski, Dariusz R. 236, 344, 359
Kuhn, Fabian 148
Kutten, Shay 465

Labourel, Arnaud 297
Lee, Hyonho 130
Leners, Joshua B. 406
Lenzen, Christoph 510
Liskov, Barbara 3

Malkhi, Dahlia 4, 401
Marlier, Patrick 124
Masuzawa, Toshimitsu 495
Mehta, Abhinav 201
Milani, Alessia 312, 374
Minder, Lorenz 528
Moses, Yoram 421
Mosteiro, Miguel A. 374

Nowack, Martin 124

Pagani, Elena 392
Pelc, Andrzej 251, 328

532 Author Index

Penso, Lucia Draque 395
Petit, Franck 267
Pike, Scott M. 389
Potop-Butucaru, Maria 312
Prabhakaran, Vijayan 401

Rajsbaum, Sergio 109
Ranise, Silvio 392
Rautenbach, Dieter 395
Raynal, Michel 206
Reid, Colin 401
Richa, Andrea 179
Riegel, Torvald 124
Rokicki, Mariusz A. 344
Rossi, Gian Paolo 392
Rovedakis, Stephane 480

Sabharwal, Yogish 398
Sastry, Srikanth 389
Sauerwald, Thomas 528
Scheideler, Christian 179, 528
Schmid, Stefan 179
Schneider, Johannes 133
Scott, Michael L. 20
Sharma, Gokarna 64
Shavit, Nir 79

Song, Sukhyun 198
Spear, Michael F. 20, 50
Srinathan, Kannan 201
Strojnowski, Micha�l 236
Sussman, Alan 198
Szwarcfiter, Jayme L. 395

Taubenfeld, Gadi 221
Tixeuil, Sébastien 312, 495, 525
Travers, Corentin 404
Tzafrir, Moran 79

Vaidya, Nitin 343
Villain, Vincent 267
Vöcking, Berthold 163

Wattenhofer, Roger 133, 510
Welch, Jennifer L. 389
Widmayer, Peter 282
Wong, Edmund L. 406

Yanovsky, Eitan 127

Zaks, Shmuel 374
Zhang, Jin 179
Zinenko, Dmitry 465

	Title
	Preface
	Organization
	Table of Contents
	The 2010 Edsger W. Dijkstra Prize in Distributed Computing
	Invited Lecture I: Consensus (Session 1a)
	The Power of Abstraction
	Fast Asynchronous Consensus with Optimal Resilience
	Introduction
	Model
	Problem
	Binding Gather
	Algorithms for Crash Failures
	Fast Probabilistic Agreement
	Fast Consensus

	Algorithms for Byzantine Failures Using Weak Sequence Broadcast
	Sequenced Broadcast and Weak Sequenced Broadcast
	Verifiable Secret Sharing
	Binding Gather with Certified Values
	Fast Probabilistic Agreement with Certified Values
	Fast Weak Byzantine Agreement

	References

	Transactions (Session 1b)
	Transactions as the Foundation of a Memory Consistency Model
	Introduction
	The Basic Transactional Model
	Transactional Sequential Consistency
	Strict Serializability
	Transactional Data-Race Freedom

	Modeling Locks and Other Traditional Synchronization
	Reference Implementations
	Advantages with Respect to Lock-Based Semantics
	Practical Concerns

	Improving Performance with Selective Strictness
	Condition Synchronization and Forward Progress
	Progress
	Inevitability
	orElse and abort

	Strong Isolation
	Conclusions
	References

	The Cost of Privatization
	Introduction
	Preliminaries
	STM Properties
	Privatization

	Privatization with Invisible Reads
	Privatization with Visible Reads
	Related Work
	Discussion
	References
	More Details for the Proof of Theorem

	A Scalable Lock-Free Universal Construction with Best Effort Transactional Hardware
	Introduction
	Background: Best Effort Transactional Hardware
	Background: Single-CAS STM
	SCSTM Behavior
	SCSTM Properties

	The Lock-Free Transformation
	Making Stealing Safe
	Ensuring Progress via HW_LIMIT
	ABA Safety

	Evaluation
	Conclusions and Future Work
	References

	Window-Based Greedy Contention Management for Transactional Memory
	Introduction
	Related Work
	Execution Window Model
	Conflict Graph

	Offline Algorithm
	Analysis of Offline Algorithm

	Online Algorithm
	Analysis of Online Algorithm

	Adaptive Algorithm
	Conclusions
	References

	Shared Memory Services and Concurrency (Session 1c)
	Scalable Flat-Combining Based Synchronous Queues
	Introduction
	A Synchronous Queue Using Single-Combiner Flat-Combining
	Parallel Flat Combining
	Correctness

	Performance Evaluation
	Producer-Consumer Benchmarks
	Performance as Arrival Rates Change
	The Pitfalls of the Parallel Flat Combining Algorithm

	Discussion
	References

	Fast Randomized Test-and-Set and Renaming
	Introduction
	Model and Problem Statement
	Related Work
	An Adaptive Test-and-Set Implementation
	The RatRace Algorithm
	Analysis of the RatRace Algorithm

	A Randomized Algorithm for Tight Renaming
	The ReShuffle Algorithm
	Analysis of ReShuffle

	A Randomized Adaptive Algorithm
	The AdaptiveSearch Algorithm
	Analysis of AdaptiveSearch

	Future Work
	References

	Concurrent Computing and Shellable Complexes
	Introduction
	Model
	Carrier Maps and Shellable Complexes
	Asynchronous Message-Passing
	Synchronous Message-Passing
	Asynchronous Shared Memory
	Semi-synchronous Message-Passing
	Asynchronous Set Agreement Memory
	References

	Brief Announcements I (Session 1d)
	Brief Announcement:Hybrid Time-Based Transactional Memory
	References

	Brief Announcement: Quasi-Linearizability: Relaxed Consistency for Improved Concurrency
	References

	Brief Announcement: Fast Local-Spin Abortable Mutual Exclusion with Bounded Space
	References

	Wireless Networks (Session 1e)
	What Is the Use of Collision Detection (in Wireless Networks)?
	Introduction
	Related Work
	Model and Definition
	MIS Algorithm
	MIS, Synchronous Wake-Up
	MIS, Asynchronous Wake-Up
	Broadcast Algorithm

	Lower Bounds For MIS, Coloring and Broadcasting With Collision Detection
	Lower Bound for Broadcasting without Collision Detection in GBG
	References

	Deploying Wireless Networks with Beeps
	Introduction
	Model and Definitions
	Interval Coloring
	Continuous Interval Coloring
	Discrete Interval Coloring
	Dynamic Graphs

	Lower Bound
	References

	Distributed Contention Resolution in Wireless Networks
	Introduction
	Our Contribution
	Related Work

	Distributed Single-Hop Scheduling Algorithms
	Determining the Optimal Transmission Probability

	Sending Acknowledgements
	Dual Instances
	Scheduling Algorithm

	Comparison to the Optimal Schedule
	Multi-Hop Scheduling
	Adaptation to Different Scenarios
	Devices without Power Control
	Bidirectional Model

	Discussion and Open Problems
	References

	A Jamming-Resistant MAC Protocol for Multi-Hop Wireless Networks
	Introduction
	Model
	Related Work
	Our Contributions

	Description of Jade
	Intuition
	Protocol Description

	Analysis of Jade
	Proof of Theorem
	Proof of Lemma
	Limitations of the $JADE$ Protocol
	Simulations

	Conclusion
	References

	Brief Announcements II (Session 1f)
	Brief Announcement: Simple Gradecast Based Algorithms
	References

	Brief Announcement: Decentralized Network Bandwidth Prediction
	References

	Brief Announcement: Synchronous Las Vegas URMT Iff Asynchronous Monte Carlo URMT
	References

	Invited Lecture II: Best Student Paper (Session 2a)
	Foundations of Speculative Distributed Computing
	Anonymous Asynchronous Systems:The Case of Failure Detectors
	Introduction
	Anonymous Asynchronous Message-Passing Systems
	Failure Detectors
	Definition of Failure Detectors
	A Few Classical Failure Detectors
	Identity-Free Failure Detectors

	Reductions between Failure Detectors
	Simple Reductions
	Building Σ in AS[AΣ]

	Consensus Algorithm in AAS[AΣ,AΩ]
	On the Weakest FD for Anonymous Consensus
	References

	Consensus and Leader Election (Session 2b)
	The Computational Structure of Progress Conditions
	Introduction
	Exponentially Many Symmetric Progress Conditions
	Asymmetric Progress Conditions
	Our Contributions
	Related Work

	Preliminaries
	Impossibility Results
	A Detailed Proof

	Cooperation vs. Contention
	Asymmetric Progress Conditions
	Atomic Registers
	Universality
	Discussion
	References

	Scalable Quantum Consensus for Crash Failures
	Introduction
	Technical Preliminaries
	Randomized Algorithm
	Quantum Algorithm
	Randomized and Quantum Algorithms Extended
	References

	How Much Memory Is Needed for Leader Election
	Introduction
	Preliminaries
	Leader Election in Arbitrary Graphs
	Weak Leader Election
	Strong Leader Election

	Leader Election in Trees
	Strong LE in Trees Using O(loglog) Memory Bits
	Impossibility of a Universal Leader Election Automaton for Trees

	References

	Leader Election Problem versus Pattern Formation Problem
	Introduction
	Model
	Equivalence for n ≥ 4
	Agreement Configuration
	Protocol

	Conclusion
	References

	Mobile Agents (Session 2c)
	Rendezvous of Mobile Agents in Directed Graphs
	Introduction
	Definitions and Properties
	Our Model
	Coverings of Digraphs
	Impossibility Result

	Rendezvous Algorithm
	Rendezvous without Incoming Arc Labels
	Conclusions
	References

	Almost Optimal Asynchronous Rendezvous in Infinite Multidimensional Grids
	Introduction
	The Problem and the Model
	Related Work
	Our Results

	Rendezvous Algorithm for Location Aware Agents in the Grid
	Euclidean Space Partitions Induced by Multidimensional Grids
	The Algorithm

	Location Aware Agents in Euclidean Space with Non-zero Visibility
	Setting the Grid Port Numbers for Efficient Rendezvous
	Final Remarks
	References

	Exclusive Perpetual Ring Exploration without Chirality
	Introduction
	Model
	On the Minimal and Maximal Number of Robots for Perpetual Exploration
	Exclusive Exploration Algorithm Using a Minimum Number of Robots
	Correctness

	Exploration Algorithm Using a Maximum Number of Robots
	Correctness

	Conclusions
	References

	Drawing Maps with Advice
	Introduction
	Terminology and Preliminaries
	Graphs with Multiplicity 1
	Topology Recognition for Graphs of Multiplicity >1
	Spanning Tree Construction for Graphs of Multiplicity >1
	Conclusion
	References

	Invited Lecture III: Wireless Networks (Session 3a)
	Network-Aware Distributed Algorithms:Challenges and Opportunities in Wireless Networks
	Connectivity Problem in Wireless Networks
	Introduction
	Models of Wireless Networks and the Connectivity Problem
	Connectivity and Separability in the GRN Model
	Connectivity in the SINR Model
	Transformation from Separable Radio CP-Assignments to SINR Assignments
	Analysis of σ*
	Proof of Theorem

	Concluding Remarks
	References

	Computing in Wireless and Mobile Networks (Session 3b)
	Trusted Computing for Fault-Prone Wireless Networks
	Introduction
	A Model for Wireless Trusted Computing
	Lower Bound
	Implementing Information Exchange
	Defining Algorithm A((l,l/2)
	Overview of the Analysis
	Stage 1: Spreading
	Stage 2: Exchanging
	Stage 3: Dissemination

	Extensions
	Energy Usage
	Self-verifying Rumors
	Continuous Communication

	Conclusions
	References

	Opportunistic Information Dissemination in Mobile Ad-hoc Networks:The Profit of Global Synchrony
	Introduction
	The Dissemination Problem
	Model
	Protocols for Dissemination
	Previous Work
	Our Results
	Paper Organization

	Auxiliary Lemmas
	Solvability of the Dissemination Problem
	Link Stability Lower Bounds
	Time Complexity Lower Bounds versus Speed, Activation and Obliviousness

	Upper Bounds
	References

	Brief Announcements III (Session 3c)
	Brief Announcement: Failure Detectors Encapsulate Fairness
	References

	Brief Announcement: Automated Support forthe Design and Validation of Fault Tolerant Parameterized Systems - A Case Study
	References

	Brief Announcement:On Reversible and Irreversible Conversions
	Introduction
	IRR$_f$-Processes
	R$_f$-Processes
	References

	Brief Announcement: A Decentralized Algorithm for Distributed Trigger Counting
	Introduction
	$LAYEREDRAND$ Algorithm
	References

	Brief Announcement: Flash-Log – A High Throughput Log
	Introduction
	Append-Log Steady State
	Auto Reconfiguration
	References

	Brief Announcement: New Bounds for Partially Synchronous Set Agreement
	References

	Modeling Issues and Adversity (Session 3d)
	It’s on Me! The Benefit of Altruism in BAR Environments
	Introduction
	Formalizing the Last Exchange Problem
	The Need for Altruism
	Altruism to the Rescue
	When Does a Rational $P2$ Pester?
	When Does a Rational $P1$ Contribute?
	The Rational Strategy Is an Equilibrium Strategy

	Characterizing the Equilibrium
	Related Work
	Conclusion
	References

	Beyond Lamport’s {\it Happened-Before}: On the Role of Time Bounds in Synchronous Systems
	Introduction
	Background and Preliminary Definitions
	Definition of Knowledge

	Knowledge and Ordered Response
	Causal Cones and Knowledge Gain

	Bound Guarantees and Centipedes
	Simultaneous Response and Centibrooms
	Conclusions
	References

	On the Power of Non-spoofing Adversaries
	Introduction
	Users and Adversaries
	Two-Step Cascade Protocols
	Conditions for Security

	Security of Two-Step Cascade Protocols
	Security of k-Step Cascade Protocols
	Conclusion
	References

	Implementing Fault-Tolerant Services Using State Machines: Beyond Replication
	Introduction
	Fusible State Machines
	Event Counter
	Causal Ordering
	Resource Allocator
	Application to Ricart and Agrawala's Algorithm

	Byzantine Faults
	Tolerating Single Byzantine Fault
	Tolerating f Byzantine Faults in State Machines with O(1) State
	Tolerating f Byzantine Faults for State Machines with O(m) State

	Conclusions
	References

	Self-stabilizing and Graph Algortihms (Session 3e)
	Low Communication Self-stabilization through Randomization
	Introduction
	Model
	Related Work

	The Random Process
	Spanning Forest Algorithm
	Algorithm Analysis

	Low-Bandwidth Self-stabilizing Reset and Unison
	The Unison Problem

	Spanning Tree Algorithm
	Tree Recoloring
	Competitor Detection and Synchronization
	Algorithm Description and Analysis

	Conclusion and Further Work
	References

	Fast Self-stabilizing Minimum Spanning Tree Construction
	Introduction
	Model and Notations
	Overview of our Solution
	Self-stabilizing Nearest Common Ancestor Labeling
	Self-stabilizing MST

	Complexity Proofs
	Conclusion
	References

	The Impact of Topology on Byzantine Containment in Stabilization
	Introduction
	Distributed System
	Self-Stabilizing Protocol Resilient to Byzantine Faults
	Maximum Metric Tree Construction
	Impossibility Result
	Topology-Aware Strict Stabilizing Protocol

	Conclusion
	References

	Minimum Dominating Set Approximation in Graphs of Bounded Arboricity
	Introduction
	Related Work
	Contribution
	Constant-Factor Approximation
	Model
	Algorithm
	Analysis
	Linear Time Central Algorithm

	A Solution in the Port Numbering Model
	The Port Numbering Model
	Algorithm
	Analysis

	Conclusion
	References

	Brief Announcements IV (Session 3f)
	Brief Announcement:Sharing Memory in a Self-stabilizing Manner
	References

	Brief Announcement: Stabilizing Consensus with the Power of Two Choices
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

