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Preface

The 13th International Conference on Medical Image Computing and Computer-
Assisted Intervention, MICCAI 2010, was held in Beijing, China from 20-24
September, 2010. The venue was the China National Convention Center (CNCC),
China’s largest and newest conference center with excellent facilities and a prime
location in the heart of the Olympic Green, adjacent to characteristic construc-
tions like the Bird’s Nest (National Stadium) and the Water Cube (National
Aquatics Center).

MICCAI is the foremost international scientific event in the field of medical
image computing and computer-assisted interventions. The annual conference
has a high scientific standard by virtue of the threshold for acceptance, and
accordingly MICCAI has built up a track record of attracting leading scientists,
engineers and clinicians from a wide range of technical and biomedical disciplines.

This year, we received 786 submissions, well in line with the previous two
conferences in New York and London. Three program chairs and a program
committee of 31 scientists, all with a recognized standing in the field of the
conference, were responsible for the selection of the papers. The review process
was set up such that each paper was considered by the three program chairs,
two program committee members, and a minimum of three external reviewers.
The review process was double-blind, so the reviewers did not know the identity
of the authors of the submission.

After a careful evaluation procedure, in which all controversial and gray area
papers were discussed individually, we arrived at a total of 251 accepted papers
for MICCAI 2010, of which 45 were selected for podium presentation and 206
for poster presentation. The acceptance percentage (32%) was in keeping with
that of previous MICCAI conferences. All 251 papers are included in the three
MICCAI 2010 LNCS volumes.

We are greatly indebted to the reviewers and to the members of the program
committee for their invaluable efforts in critically assessing and evaluating the
submissions in a very short time frame.

The annual MICCAI event has, in addition to its main conference, a rising
number of satellite tutorials and workshops, organized on the day before and the
day after the main conference. This year’s call for submission for tutorials and
workshops led to a record number of proposals, of which a significant fraction
had to be rejected because of space and time limitations. The final program
hosted eight tutorials, which together gave a comprehensive overview of many
areas of the field, and provided rich educational material especially aimed at
PhD students and postdoctoral researchers.

The 15 workshops gave - mostly younger - researchers the opportunity to
present their work, often in an early stage of their investigations, so that they
could obtain useful feedback from more experienced scientists in the field. The
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workshop subjects highlighted topics that were not all fully covered in the main
conference, and thus added to the diversity of the MICCAI program. In par-
ticular, several workshops offered so-called challenges in which researchers were
in competition to best segment or register a set of clinical images with ground
truth provided by medical experts. We are grateful to the tutorial and workshop
committees, in particular to the chairs Dinggang Shen and Bram van Ginneken,
for making these satellite events a success.

Highlights of the conference were the two keynote lectures. Professor Alan C.
Evans of the McConnell Brain Imaging Centre, Montreal Neurological Institute,
McGill University, Montreal, Canada described recent activity in brain network
modeling with an emphasis on anatomical correlation analysis in his presenta-
tion “Network Analysis of Cortical Anatomy”. Professor Guang-Zhong Yang of
the Royal Society/Wolfson Medical Image Computing Laboratory, Imperial Col-
lege, London, UK outlined key clinical challenges and research opportunities in
developing minimally invasive surgery systems in his presentation “Snake and
Lobster - A Feast for MICCAI?”.

MICCAI 2010 would not have been feasible without the efforts of many people
behind the scenes. We are particularly indebted to the local organizing commit-
tee in Beijing, consisting of Nianming Zuo, Yong Liu, Ming Song, Bing Liu,
Bizhen Hong, Shaomei Wang, and Gangqin Zhang, all of the Institute of Au-
tomation of the Chinese Academy of Sciences, for their excellent work before
and during the conference, and to Jacqueline Wermers for her outstanding assis-
tance with the editorial work in compiling the three Springer LNCS books that
contain the proceedings of this conference.

We are obliged to the Board of the MICCAI Society for the opportunity to
organize this prestigious conference, and to many of the Society Board and Staff
members for valuable and continuous advice and support through all phases of
the preparation.

A special word of thanks goes to our sponsors, who generously provided
financial support of the conference as a whole, or of specific activities. This
greatly helped us with the overall organization of the meeting, as well as allowed
us to award prizes for best papers in various categories and travel stipends to
an appreciable number of student participants.

It was our great pleasure to welcome the attendees to Beijing for this exciting
MICCAI 2010 conference and its satellite tutorials and workshops. The 14th
International Conference on Medical Image Computing and Computer-Assisted
Intervention will be held in Toronto, Canada, from 15-21 September 2011. We
look forward to seeing you there.

September 2010 Tianzi Jiang
Nassir Navab
Josien Pluim

Max Viergever
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Awards Presented at the 12th International Conference
on Medical Image Computing and Computer-Assisted
Intervention, MICCAI 2009, London

MICCAI Society Enduring Impact Award
The Enduring Impact Award is the highest award of the Medical Image Com-
puting and Computer-Assisted Intervention Society. It is a career award for
continued excellence in the MICCAI research field. The 2009 Enduring Impact
Award was presented to Ron Kikinis, Harvard Medical School, USA.

MICCAI Society Fellowships
MICCAI Fellowships are bestowed annually on a small number of senior members
of the Society in recognition of substantial scientific contributions to the MICCAI
research field and service to the MICCAI community. The first fellowships were
presented in 2009, to
Nicholas Ayache (INRIA Sophia-Antipolis, France)
Alan Colchester (University of Kent, UK)
Takeyoshi Dohi (University of Tokyo, Japan)
Guido Gerig (University of Utah, USA)
David Hawkes (University College London, UK)
Karl Heinz Höhne (University of Hamburg, Germany)
Ron Kikinis (Harvard Medical School, USA)
Terry Peters (Robarts Research Institute, Canada)
Richard Robb (Mayo Clinic, USA)
Chris Taylor (University of Manchester, UK)
Russ Taylor (Johns Hopkins University, USA)
Max Viergever (University Medical Center Utrecht, The Netherlands).

MedIA-MICCAI Prize
The 2009 MedIA-MICCAI Prize for the best paper in the special MICCAI issue
of Medical Image Analysis, sponsored by Elsevier, was awarded to
Vicky Wang (University of Auckland, New Zealand)
for the article “Modelling passive diastolic mechanics with quantitative MRI of
cardiac structure and function”, authored by Vicky Y. Wang, Hoi I. Lam, Daniel
B. Ennis, Brett R. Cowan, Alistair A. Young, and Martyn P. Nash.

Best Paper in Navigation
The prize for the best paper in the MICCAI 2009 conference in the area of nav-
igation, sponsored by Medtronic, was awarded to
Wolfgang Wein (Siemens Corporate Research, Princeton, USA)
for the article: “Towards guidance of electrophysiological procedures with real-
time 3D intracardiac echocardiography fusion to C-arm CT”, authored by Wolf-
gang Wein, Estelle Camus, Matthias John, Mamadou Diallo, Christophe Duong,
Amin Al-Ahmad, Rebecca Fahrig, Ali Khamene, and Chenyang Xu.
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Best Paper in Computer-Assisted Intervention Systems and Medical Robotics
The prize for the best paper in the MICCAI 2009 conference in the area of
computer-assisted intervention systems and medical robotics, sponsored by In-
tuitive Surgical, was awarded to
Marcin Balicki (Johns Hopkins University, USA)
for the article “Single fiber optical coherence tomography microsurgical instru-
ments for computer and robot-assisted retinal surgery”, authored by Marcin
Balicki, Jae-Ho Han, Iulian Iordachita, Peter Gehlbach, James Handa, Russell
Taylor, Jin Kang.

MICCAI Young Scientist Awards
The Young Scientist Awards are stimulation prizes awarded to the best first
authors of MICCAI contributions in distinct subject areas. The nominees had
to be a full-time student at a recognized university at - or within the two years
before - the time of submission. The 2009 MICCAI Young Scientist Awards were
presented to
Tammy Riklin Raviv (MIT, USA), for the article “Joint segmentation of im-
age ensembles via latent atlases”
Christopher Rohkohl (Friedrich-Alexander University, Germany), for the ar-
ticle “‘Interventional 4-D motion estimation and reconstruction of cardiac vas-
culature without motion”
Peter Savadjiev (Harvard Medical School, USA), for the article “Local white
matter geometry indices from diffusion tensor gradients”
Lejing Wang (TU Munich, Germany), for the article “Parallax-free long bone
X-ray image stitching”
Yiyi Wei (INRIA Lille, France; LIAMA CASIA, China), for the article “Toward
real-time simulation of blood-coil interaction during aneurysm embolization”.
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Stéphane Audière, Maurice Charbit, Elsa D. Angelini,
Jennifer Oudry, and Laurent Sandrin

Incremental Shape Statistics Learning for Prostate Tracking in
TRUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Pingkun Yan and Jochen Kruecker

Fast and Accurate Ultrasonography for Visceral Fat Measurement . . . . . . 50
You Zhou, Norihiro Koizumi, Naoto Kubota, Takaharu Asano,
Kazuhito Yuhashi, Takashi Mochizuki, Takashi Kadowaki,
Ichiro Sakuma, and Hongen Liao

Real-Time Gating of IVUS Sequences Based on Motion Blur Analysis:
Method and Quantitative Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Carlo Gatta, Simone Balocco, Francesco Ciompi,
Rayyan Hemetsberger, Oriol Rodriguez Leor, and
Petia Radeva



XVIII Table of Contents – Part II

Registration of a Statistical Shape Model of the Lumbar Spine to 3D
Ultrasound Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Siavash Khallaghi, Parvin Mousavi, Ren Hui Gong,
Sean Gill, Jonathan Boisvert, Gabor Fichtinger, David Pichora,
Dan Borschneck, and Purang Abolmaesumi

Automatic Prostate Segmentation Using Fused Ultrasound B-Mode
and Elastography Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

S. Sara Mahdavi, Mehdi Moradi, William J. Morris, and
Septimiu E. Salcudean

Neuroimage Analysis

ODF Maxima Extraction in Spherical Harmonic Representation via
Analytical Search Space Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Iman Aganj, Christophe Lenglet, and Guillermo Sapiro

An Anthropomorphic Polyvinyl Alcohol Triple-Modality Brain
Phantom Based on Colin27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Sean Jy-Shyang Chen, Pierre Hellier, Jean-Yves Gauvrit,
Maud Marchal, Xavier Morandi, and D. Louis Collins

Statistical Analysis of Structural Brain Connectivity . . . . . . . . . . . . . . . . . 101
Renske de Boer, Michiel Schaap, Fedde van der Lijn,
Henri A. Vrooman, Marius de Groot, Meike W. Vernooij,
M. Arfan Ikram, Evert F.S. van Velsen, Aad van der Lugt,
Monique M.B. Breteler, and Wiro J. Niessen

Maximum A Posteriori Estimation of Isotropic High-Resolution
Volumetric MRI from Orthogonal Thick-Slice Scans . . . . . . . . . . . . . . . . . . 109

Ali Gholipour, Judy A. Estroff, Mustafa Sahin,
Sanjay P. Prabhu, and Simon K. Warfield

Change Detection in Diffusion MRI Using Multivariate Statistical
Testing on Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Antoine Grigis, Vincent Noblet, Félix Renard, Fabrice Heitz,
Jean-Paul Armspach, and Lucien Rumbach

Increasing Power to Predict Mild Cognitive Impairment Conversion to
Alzheimer’s Disease Using Hippocampal Atrophy Rate and Statistical
Shape Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Kelvin K. Leung, Kai-Kai Shen, Josephine Barnes,
Gerard R. Ridgway, Matthew J. Clarkson, Jurgen Fripp,
Olivier Salvado, Fabrice Meriaudeau,
Nick C. Fox, Pierrick Bourgeat, and
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Abstract. This paper presents a new diffeomorphic temporal registra-

tion algorithm and its application to motion and strain quantification

from a temporal sequence of 3D images. The displacement field is com-

puted by forward eulerian integration of a non-stationary velocity field.

The originality of our approach resides in enforcing time consistency by

representing the velocity field as a sum of continuous spatiotemporal B-

Spline kernels. The accuracy of the developed diffeomorphic technique

was first compared to a simple pairwise strategy on synthetic US images

with known ground truth motion and with several noise levels, being the

proposed algorithm more robust to noise than the pairwise case. Our al-

gorithm was then applied to a database of cardiac 3D+t Ultrasound (US)

images of the left ventricle acquired from eight healthy volunteers and

three Cardiac Resynchronization Therapy (CRT) patients. On healthy

cases, the measured regional strain curves provided uniform strain pat-

terns over all myocardial segments in accordance with clinical literature.

On CRT patients, the obtained normalization of the strain pattern after

CRT agreed with clinical outcome for the three cases.

1 Introduction

Quantification of cardiac motion and strain provides insight about cardiac func-
tion by estimating how a given pathology affects global or local contractility of
the myocardium. In clinical routine, motion and strain are usually derived from
ultrasound (US) images for which 3D acquisitions are now currently available
with sufficient spatiotemporal resolution for characterizing motion and strain.
Nonetheless, 3D-US images have lower signal-to-noise ratio (SNR) and temporal
resolution than the 2D ones, thus making their processing more challenging.

Several approaches [1,2,3] have been proposed to extend 2D speckle tracking
techniques to 3D and to recover myocardial motion from a sequence of 3D-US

T. Jiang et al. (Eds.): MICCAI 2010, Part II, LNCS 6362, pp. 1–8, 2010.
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images. One of the main drawbacks of these techniques based on pairwise reg-
istrations is that they do not make use of the temporal information embedded
in the 3D-US sequences. Parametric spatiotemporal models providing continu-
ous and smooth transformations were proposed by Ledesma-Carbayo et al. [4]
to exploit temporal information in 2D-US image sequences. However, ensuring
temporal smoothness of the displacement field does not render properly temporal
consistency, i.e. that the displacement field at each time point is related to all
the previous times.

Diffeomorphic registration algorithms ([5,6] among others) ensure a contin-
uous, differentiable and with continuous inverse, correspondence between the
features to register. Thus, they are particularly well suited to handle medical
image sequences as they conserve the topology and the orientation of the ob-
served anatomical structures along time. By integrating a velocity field over time,
they provide an elegant way of encoding temporal consistency.

This concept was applied by Khan et al. [7] to monitor growth processes by ex-
tending the LDDMM [5] image registration algorithm. Velocities were computed
using a dense grid, which did not guarantee their spatiotemporal continuity, un-
like parametric registration methods. Moreover, a regularization term added to
the image similarity metric involved a smoothing kernel that enforced the spatial
continuity of the computed velocities. The temporal continuity of the velocities
was then fully conditioned by the conservation of the topology of the observed
features along the image sequence. This assumption does not hold for noisy im-
age sequences, such as cardiac US images. Similar concepts were applied to 2D
contours and 3D shapes by Durrleman et al. [8]. However, while the computa-
tional cost of dense velocity fields is acceptable for sparse topologies, its extension
to dense volumetric spatiotemporal data remains critical.

In this paper, we propose a diffeomorphic registration algorithm that models
velocities continuously in time and space. We refer to our approach as Tempo-
ral Diffeomorphic Free-Form Deformation (TDFFD) algorithm. We extend the
popular parametric FFD registration technique [6] by summing spatiotemporal
B-Spline kernels to model the 3D+t velocity field. One of the main advantages of
our approach is the enforcement of the continuity of the velocity field by using a
continuous parametric representation. As a result, the velocity and displacement
fields can be computed at any time within the temporal interval captured by the
image sequence. The advantage of applying such transformation model for strain
quantification purposes is demonstrated here on synthetic and real 3D-US image
sequences, with the underlying objective of accurately estimating the impact of
Cardiac Resynchronization Therapy (CRT) on 3D strain.

2 Registration Algorithm and Strain Computation

In this paper, we consider a sequence of N images {In, n = 1 . . .N}, each image
being defined on a spatial domain Ω ⊂ IRd where d = 3 stands for the spatial
dimension. Each image In is associated to a time instant tn ∈ [0, T ], with T >
0 ∈ IR. The purpose of the registration algorithm is to solve for the diffeomorphic
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mapping ϕ : Ω × [0, T ] → IRd that relates any point x in the Eulerian space
of coordinates of the first image in the sequence (here taken by convention as
t = 0) to a continuous time t ∈ [0, T ].

The temporal dimension is introduced into the diffeomorphic registration
problem by relating the mapping ϕ at any time t ∈ [0, T ] to a time-varying ve-
locity field. In this paper, the velocity field is represented as a sum of spatiotem-
poral kernels. The B-Spline velocity weights given to all kernels are concatenated
in a vector of parameters p, the velocity being then denoted as v(x, t,p) and
computed as

v(x,p, t) =
∑

τ

∑
c

β
( t − tτ

Δτ

)
B

(x − xc

Δc

)
pτ,c (1)

where B(·) is the 3D tensor product of 1D cubic B-spline kernels β(·), defined
on a sparse grid of 4D control points, being c the spatial index, τ the temporal
index, and (Δc, Δτ ) the width of the kernels in each dimension. Hence, the ϕ
mapping is obtained as

ϕ(x, t,p) = x +
∫ t

0

v(ϕ(x, τ,p), τ,p)dτ . (2)

Forward eulerian integration scheme. The transport equation for comput-
ing ϕ in Eq. 2 is solved numerically using a forward Euler integration scheme in
which the continuous integral is replaced by a discrete summation. The contin-
uous time interval is now split into a collection of tk ∈ [0, T ] values where the
time increment Δtk between consecutive time-steps is adapted to ensure invert-
ibility as described in the next subsection. Using this discretization, Eq. 2 can
be approximated by

ϕ(x, tn,p) = x +
n−1∑
k=0

v(ϕ(x, tk,p), tk,p)Δtk , (3)

If we define xk(p) .= ϕ(x, tk,p), tk
.=

∑k−1
l=0 Δtl, and vk−1(p) .= v(xk−1, tk−1,p)

then we can recursively write xk as follows:

xk(p) = xk−1(p) + vk−1(p)Δtk−1 . (4)

Adaptive time-step computation. The integration of Eq. 2 using the discrete
approximation of Eq. 4 requires to select a time-step sufficiently small for ensur-
ing accurate computation and invertibility of the mapping ϕ. In our method, we
start with a uniform sampling of the time interval [0, T ], arbitrarily chosen as
half of the temporal spacing of the image sequence. To ensure invertibility, one
needs to consider the Jacobian of the mapping xn(p), here denoted as Dxn(p)
and computed from Eq. 4 using

Dxn(p) =
n−1∏
k=0

(I + Dvk(p)Δtk) .=
n−1∏
k=0

Δϕk , (5)

where I stands for the identity matrix. This Jacobian must be positive definite
everywhere to ensure invertibility of the transformation. A necessary condition
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for this is to have det(Dxn(p)) > 0 for all x ∈ Ω. Computing the product over
k of all det(Δϕk) gives the determinant of the Jacobian matrix in Eq. 5. When
a negative value of det(Δϕk) is detected, the value of Δtk is reduced by a factor
2 until the obtention of a positive determinant.

Similarity metric and non-linear optimization. 3D-US images are char-
acterized by a speckle spatial distribution inside the myocardial wall that is
conserved along time. The Mean Squared Error (MSE) appears therefore as a
good fit for capturing the optimal set of B-Spline velocity weights p from Eq. 1.
Similarity is measured between the first image in the sequence and all the con-
secutive frames according to

MSE(p) =
N−1∑
n=0

∫
Ω

(
I0(x) − In(xn(p), tn)

)2

dx (6)

Since the number of parameters characterizing the transformation is large, and
the metric is explicitly differentiable, gradient-based optimization methods are
well indicated for minimizing Eq. 6. In this paper, the L-BFGS-B method was
used, which searches the optimum according to the gradient and a low-rank
approximation of the Hessian of the metric. For computing the total derivative
of Eq. 6 with respect to the weights p of velocity kernels, we need the following
derivative:

dxn

dp
=

dvn−1

dp
Δtn−1 +

dxn−1

dp
where

dvn−1

dp
=

∂vn−1

∂xn−1

dxn−1

dp
+

∂vn−1

∂p
. (7)

Hence, dxn/dp can be obtained from the following recursive equation:

dxn

dp
=

dxn−1

dp

(
I + Dvn−1Δtn−1

)
+

∂vn−1

∂p
Δtn−1 , (8)

where D is the Jacobian on all spatial dimensions (i.e., (Dv)ij = ∂vi/∂xj).

Strain computation. The Cauchy strain tensor is estimated directly using
the spatial derivatives of the displacement field from Eq. 5, obtained at any
spatiotemporal location using Eq. 4. The Cauchy strain tensor is then computed
as

σ(x, tn) =
1
2
((Dxn)tDxn − I) . (9)

Strain is obtained along a specific direction h using σh(x, t) = ht · σ(x, t) · h.
The h directions considered here are the three vectors (circumferential, longitu-
dinal, radial) of a parabolic coordinate system related to the anatomy of the left
ventricle.

3 Experiments

The proposed registration algorithm was applied to three different synthetic
datasets to evaluate its accuracy and was then applied to clinical routine 3D-US
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Fig. 1. Median value of error magnitude on the displacement field for the FFD (plotted

in blue dashed) and the TDFFD algorithm (black). Vertical bars indicate the second

and third quartiles. Three levels of noise are considered: w = 0.2 (left), w = 0.5 (center)

and w = 0.7 (right).

images. First, a simple pairwise strategy and the proposed temporally consistent
scheme were compared taking a ground truth deformation from simulated US
data as reference. Then, strain curves were estimated from 3D-US sequences for
8 volunteers and 3 CRT patients before the therapy and at 12-months follow-up.

3.1 Registration Accuracy on Simulated US Data

Elen et al. [2] simulated Left Ventricle (LV) deformation in which the LV was
represented as a thick-walled ellipsoid with physiologically relevant end-diastolic
dimensions. A simplified kinematic model with an ejection fraction of 60% over a
cardiac cycle was used to generate the ground truth displacement field. We used
this ground truth data to evaluate the accuracy of the proposed algorithm and
compare it to a pairwise registration strategy at different noise levels. Various sig-
nal to noise ratios were generated by adjusting intensities inside and outside the
myocardial wall using a weight w (w = 0.2, w = 0.5 and w = 0.7 in this paper).
Fig. 1 shows the median magnitude and dispersion of the difference between the
ground truth displacement field and the ones given by two algorithms: a pair-
wise FFD (see reference in [6]) and the temporal diffeomorphic FFD registration
(TDFFD) algorithms. This error was computed over the entire myocardial wall.
FFD pairwise registration was performed between each image and the first im-
age in the sequence, taking the chain of previously computed transformations
as bulk transformation. For the two algorithms, the B-Spline grid had an initial
resolution of three control points in the longitudinal direction and five in the
the two transverse directions. This resolution was then refined twice by a factor
2. For the lowest amount of noise, there was no substantial difference between
FFD and TDFFD strategies. However, as the signal to noise ratio decreased,
the TDFFD algorithm proved to be more robust and produced smaller errors
(maximal median error of 2.6 mm for TDFFD and 3.6 mm for pairwise FFD).
The dispersion was also clearly reduced when using the TDFFD algorithm for
all noise levels, as observed in Fig. 1. For w = 0.7, the upper limit of the third
quartile goes from 6.6 mm using pairwise FFD to 3.5 mm using TDFFD.
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Fig. 2. Longitudinal strain quantified for the synthetic case and 8 healthy volun-

teers in basal and mid segments. The AHA segments are labelled according to the

following: · Basal anterior (1), ◦ Basal anteroseptal (2), × Basal inferoseptal (3), +

Basal inferior (4), ∗ Basal inferolateral (5), � Basal anterolateral (6), � Mid ante-

rior (7), � Mid anteroseptal (8), � Mid inferoseptal (9), � Mid inferior (10), � Mid

inferolateral (11), � Mid anterolateral (12). Color version of this figure available at

http://bit.ly/miccai10.

3.2 Experiments on Clinical Datasets

Data acquisition. We acquired 3D echocardiographic sequences in an apical
view for two populations, using a General Electric (Milwaukee, WI, USA) Vivid
7 device. The first population was made up of 8 healthy volunteers (aged 31 ±
6 years), and the second population was composed of 3 CRT patients (aged 61
± 8 years), who were all clinical responders to CRT. The average number of
images per cardiac cycle was of 17.8 for the healthy subjects and 18.3 for the
CRT patients. The pixel spacing was on average of 0.9 × 0.6 × 0.9 mm3 for the
healthy volunteers and 1.0 × 0.7 × 1.0 mm3 for the CRT patients.

Strain in healthy volunteers. Fig. 2 shows the recovered longitudinal strain
curves for the database of 8 healthy subjects at mid and basal segments of the
American Heart Association (AHA). The segments either not totally included
in the field of view of the 3D-US images or suffering from typical image artifacts
(non visibility of lateral wall, reflections of surrounding anatomical structures,
lower spatial resolution on the lateral sides of the sector) of 3D-US acquired

http://bit.ly/miccai10
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Fig. 3. (a) Longitudinal strain as a colormap at end of systole before CRT (top) and

at twelve months follow-up (bottom) for Patient 1. (b-g) Longitudinal strain curves

in septal regions before (OFF) and at 12 months follow-up (M12) for Patients 1 to 3.

Color version of this figure available at http://bit.ly/miccai10.

clinically, were excluded from the analysis. The recovered strain curves showed
a similar pattern in all volunteers, in good agreement with clinical literature [9].
The average peak systolic strain was of −16.3 ± 4.7%. This value is close the
−17.5 ± 4% reported in [9] and obtained from tagged MRI images. Different
phases of diastole such as the isovolumetric relaxation and the atrial contraction
(acceleration of the strain at the end of the diastole) periods can be distinguished
in cases with higher temporal image resolution such as Volunteers 1 and 4.

Strain before and after CRT. The three CRT patients processed in this paper
had dilated geometry before implantation, thus the LV did not fit entirely in the
field of view. Therefore, strain was only quantified in the septal regions that
usually have the best image quality. Fig. 3 shows longitudinal strain plotted
using a color map for the first patient and its temporal evolution per septal
segment for all the patients. Average strain curves are shown in red and the peak
systolic strain value before and after CRT is indicated by an arrow. Patients
1 and 3 showed a significant improvement in peak systolic strain after CRT
that correlated well with an important reverse remodeling observed in these
two patients at the 12-month follow-up (reduction of end-systolic volume of
27.7% and 51.0%, respectively). For Patient 2, no substantial change in peak
strain value was observed from the strain curves. This patient had lower reverse
modeling as observed at the follow-up with a reduction of end-systolic volume
of 16.9%. This value is very close to 15 %, which is the threshold used at our
institution for defining positive CRT response.

4 Conclusion

This paper presents a new diffeomorphic registration method ensuring tempo-
ral consistency of the resulting deformation fields, which can be particularly

http://bit.ly/miccai10


8 M. De Craene et al.

useful in image sequences with substantial amount of noise and artifacts. This
algorithm was applied for the quantification of strain in 3D US using synthetic
datasets, and a set of healthy subjects and CRT patients. Experiments on syn-
thetic US datasets proved an improved robustness and accuracy at high noise lev-
els compared to classical pairwise approaches. On healthy volunteers, the method
provided physiologically meaningful longitudinal strain curves with small disper-
sion among LV segments. On CRT patients, improved peak systolic longitudinal
strain in the septum agreed with positive clinical response and reverse remod-
eling. Future work will include US-adapted similarity metrics and the extension
of this registration framework to incorporate compounding strategies to address
field of view issues in 3D-US sequences of heart failure patients with dilated LV.
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Abstract. This paper presents a robust framework for freehand ultra-

sound elastography to cope with uncertainties of freehand palpation us-

ing the information from an external tracker. In order to improve the

quality of the elasticity images, the proposed method selects a few im-

age pairs such that in each pair the lateral and out-of-plane motions are

minimized. It controls the strain rate by choosing the axial motion to be

close to a given optimum value. The tracking data also enables fusing

multiple strain images that are taken roughly from the same location.

This method can be adopted for various trackers and strain estimation

algorithms. In this work, we show the results for two tracking systems

of electromagnetic (EM) and optical tracker. Using phantom and ex-vivo
animal experiments, we show that the proposed techniques significantly

improve the elasticity images and reduce the dependency to the hand

motion of user.

Keywords: Ultrasound, Elastography, Elasticity, Tracking, Strain.

1 Introduction

Ultrasound elastography is an emerging medical imaging modality which in-
volves imaging the mechanical properties of tissue and has numerous clinical
applications. Among many variations of ultrasound elastography [1], our work
focuses on real-time static elastography, a well-known technique that applies
quasi-static compression of tissue and simultaneously images it with ultrasound.
Within many techniques proposed for static elastography, we focus on freehand
palpation elasticity imaging which involves deforming the tissue by simply press-
ing the ultrasound probe against it. Freehand ultrasound elastography has shown
great potential in clinical applications especially for diagnosis and screening of
breast lesions [2]. The application of elastography is not limited to breast, and
other applications such as diagnosis of prostate cancer, monitoring ablation and
deep vein thrombosis have also been studied.

Despite the reports on success of elastography, yet it has not become a part of
any routine clinical application. The main reason is that elastography is highly
qualitative and user-dependent. The best result is achieved when the user com-
presses and decompresses the tissue uniformly in the axial direction with the
proper hand motion. It is difficult to control the compression rate as it is gov-
erned by the hand motion and the frame rate of RF data. Also, small lateral

T. Jiang et al. (Eds.): MICCAI 2010, Part II, LNCS 6362, pp. 9–16, 2010.
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or out-of-plane motions can compromise the quality of images. However, it is
difficult to induce pure axial motion with freehand compression. Sophisticated
algorithms can only partially address the problem by compensating for in-plane
motions and applying smoothness constraints. The images are also hard to in-
terpret, and artifacts –caused by failure of the strain estimation algorithm or
poor hand motion– may be mistaken for lesions inside the soft tissue. Devel-
oping an elastography technique that is not affected by poor hand motion and
other sources of signal decorrelation will pave the way for wide-spread clinical
use of elastography.

To improve the reliability, quality metrics such as persistence in strain images
have been developed [3,4]. This quality indicator is calculated for each image
and provided to the user as feedback. Persistence is also used to merge multiple
elasticity images together [3]. To measure the persistence, strain is computed
for two pairs of echo frames, and the resulting images are correlated. Although
these techniques offers a major advantage, there remains several limitations.
First, the strain has to be estimated before the calculation of the quality metric.
With typical ultrasound settings, the frame rate can reach more than 30 Hz. For
subsequent frames, an efficient implementation of this image-based metric might
cope with this rate. Nonetheless, the task will be extremely difficult to try all
the combinations in a series of frames. Moreover, the quality metric will not be
able to provide feedback to the user whether he/she should adjust the palpation
in certain direction. Also, there would be minimal control over the strain rate.

The ultrasound probe is often tracked in navigation/guidance systems to pro-
vide spatial information, to form freehand 3D ultrasound, or to facilitate multi-
modality registration. In this work, we exploit the tracking data to enhance the
quality of the elasticity images. We use the tracking data to select multiple im-
age pairs that contain the optimum deformation for the elastography algorithm.
The optimum value for lateral and out-of-plane motions is zero, and the optimum
axial motion is determined by the specific elastography algorithm used, which
is Normalized Cross-Correlation (NCC) in this work. Next, we fuse the strain
images obtained from the multiple image pairs together based on the location
of each strain image to improve image quality. We assume that the ultrasound
data is 2D. Nonetheless similar techniques proposed here could be extended to
3D ultrasound.

2 Methodology

Consider a sequence of RF data collected during the palpation of tissue using a
tracked transducer. We have previously shown that it is possible to synchronize
the RF frames with the tracking information relying only on the same data
collected during palpation [5]. From synchronization, the tracking information
is interpolated at the incident time of each frame. The input to our algorithm is
then a series of RF frames along with their corresponding transformation.

First, we need to define a distance function between two frames of RF data.
For this purpose, we use a model of image decorrelation in presence of out-of-
plane and lateral motion. RF signal is often modeled as the collective response
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of scatterers randomly distributed within the resolution cell of the ultrasound
[6,7]. Each scatterer is assumed to have an amplitude governed by the shape of
the resolution cell and a phase which is distributed from 0 to π uniformly at
random. Considering a Gaussian shape for the resolution cell Prager et. al [8]
calculated the correlation as a function of out-of-plane motion to be exp(− δ2

2σ2 ).
δ and σ denote the displacement and the width of the resolution cell respectively.
Although this function is only valid for fully developed speckle, it provides a con-
venient estimate of correlation. It should be noted that in [8], the displacement is
estimated from correlation, whereas here, we intend to define an energy function
based on displacement. Extending this formula to both out-of-plane and lateral
displacements, we define our energy function, E(x, z), as follows:

E(Dx, Dz) = exp(−Kx · D2
x − Kz · D2

z), (1)

where Dx and Dz represent the displacement in out-of-plane and lateral direc-
tions. E does not depend on axial motion ( Dy) since displacement in axial
direction is necessary for strain estimation. Kx and Kz determine the sensi-
tivity to a certain direction. In order to be able to use this function, we need a
component-wise metric representing the distance of two frames given their homo-
geneous transformations. The first step is to compute the relative transformation
between them. Suppose a = [ax ay az]T is the axis-angle representation of the
relative rotation, and t = [tx ty tz]T is the relative translation. Assuming a small
rotation, the relative displacement of a point, P = [xy 0]T , will be d = a×P + t.
We then define the distance vector of two frames, D = [Dx Dy Dz]T , as the RMS
of the components of d for all the points in the region of interest (ROI):

Dx = sqrt{ 1
(y2 − y1)

∫ y2

y1

(−az · y + tx)2dy },

Dy = sqrt{ 1
(x2 − x1)

∫ x2

x1

(az · x + ty)2dx },

Dz = sqrt{ 1
(y2 − y1)(x2 − x1)

∫ x2

x1

∫ y2

y1

(ax · y − ay · x + tz)2dydx }, (2)

where sqrt{.} returns the root. Here, ROI is assumed to be rectangular and
determined by x1, x2, y1, and y2. The vector D provides a measure of distance
for each direction separately. We use this vector in Equation (1) which gives us
an estimate of “pseudo-correlation” over the ROI.

The data goes through four stages of processing to create a single high-quality
strain image. In the first step, few images are selected from the data series
that are approximately collected from one cross-section of tissue with minimal
lateral and out-of-plane motion. To this end, the energy function of each frame
is computed with respect to all other frames in the sequence. Then, the total
energy is found for each frame as the sum of the energies of the M closest frames,
where closeness implies higher energy, and M is the maximum number of frames
to be selected. Then, the frame with the highest total energy (the center frame)
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is identified, and the M closest frames to the center frame including itself are
selected. Additionally, the frames that have E of less than 0.5 with respect to the
center frame are disqualified. This is applied to ensure lower number of frames
are chosen when M frames from one cross-section are not available.

In the next stage, the program evaluates all possible combination of frame
pairs for elastography. For M frames, there will be

(
M
2

)
= M(M − 1)/2 pair

combinations which will be compared using a slightly modified version of E.
Since the pairs are directly compared, it suffices to minimize the exponent of
Equation (1) in order to maximize E. We also add a term for axial motion that
penalizes compressions that are higher than an optimum compression value, topt.
Hence, a “cost function”, C1, is defined as follows:

C1(D)= Kx·D2
x+Ky ·D̃y

2
+Kz ·D2

z , D̃y =
{

Dy − topt, |Dy − topt| > 0
0, |Dy − topt| ≤ 0 (3)

where topt implies the optimal strain, which can be theoretically defined as de-
scribed in [9]. Here, topt is set depending on the robustness of the elasticity
estimation algorithm. Its value might be within the range of the resolution of
the tracker. Therefore, at this stage we do not assign a penalty for the com-
pressions less than topt. If the compression is close to zero, the contrast of the
reconstructed image degrades. The program filters the pairs with low compres-
sion in the next stage using image content. Similar to the first part, a maximum
number of frames with lowest cost are selected provided that the cost is lower
than a threshold. The threshold is not strict to ensure acceptable pairs are not
filtered.

The final pairs are selected by recovering the global lateral motion and com-
pression by matching the two RF frames in each pair. The tracking information
is used to initialize the search. For instance, the search range for compression is
set to be from zero to the tracker reading in axial direction padded in both sides
with the maximum error of the tracker. Given two frame I1 and I2, the amount
of lateral motion a, and compression, b, is found by solving cross-correlation:

argmax
a,b

⎧⎨⎩ ∑
x,y∈G

I1(x, y) · I2(x + a, by) + I1(x − a,−by) · I2(x, y)

⎫⎬⎭ . (4)

The RF data is normalized with standard variation and assumed to have zero
mean. We employ two tricks which extensively increases the speed of search.
First, we do not match the entire image to solve for these parameters. Instead,
only pixels on a grid, G, are used as described by Equation (4). The two terms of
Equation (4) ensures that the search remains reciprocal, which means switching
the images only affects the sign of a and b. Second, a is recovered by matching
only the top part of the two images while b is fixed to one. The reason is that
the displacement due to compression is minimal in that region.

Having the global motions, the cost function is modified to penalize very low
compressions:
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C2(D̂) = Kx · D̂x

2
+ Ky · |D̂y − topt|3

D̂y + c
+ Kz · D2

z , (5)

where D̂x and D̂y are the global motions from Equation (4) converted to mm. c
is a small number that limits the cost of zero compression. Finally, the pairs with
the lowest cost are selected until a maximum number of frame pairs is reached
or the minimum cost grows higher than the average cost.

The last step involves computing the strain for all the selected frame pairs.
We have implemented normalized cross-correlation (NCC) [10] to recover the
displacements and least squares estimation to calculate the strain. Before calcu-
lating strain, the global lateral motion and compression from the previous step
are compensated in one image using cubic interpolation. This is known to reduce
the error of strain estimation [11]. The final strain image, Sfinal is the weighted
average of all the strains:

Sfinal =
∑m

i=1 wi · Si∑m
i=1 wi

, wi =
{ ρi

1−ρi
, ρi > 0.7

0, otherwise
(6)

where ρi is the correlation coefficient for the ith pair after applying the dis-
placements, and m is the number of pairs. Fusing the strains in this fashion is
acceptable since the algorithm only allows for compressions that are close to a
predetermined amount optimal for strain estimation.

3 Experiments and Results

We acquired ultrasound data using a SONOLINE AntaresTM ultrasound system
(Siemens Medical Solutions USA, Inc.) with a high-frequency ultrasound trans-
ducer (VF10-5) at center frequency of 6-8MHz. We accessed RF through the Axius
DirectTM Ultrasound Research Interface provided by Siemens. Our custom data
acquisition program was connected to this interface to send the command for cap-
turingRF data. At the same time, the programcollected tracking information from
either a “Polaris” optical tracker (Northern Digital Inc., Waterloo, Canada) with
passive markers or the “medSAFE” EM tracker (Ascension Tech. Corp.).

RF data and tracking information was captured from a breast phantom con-
taining a harder lesion (CIRS elastography phantom, Norfolk, VA) and ex-vivo
pig liver. Alginate was injected to the liver to mark a part of liver, and then,
that area was ablated. The users were asked to palpate the tissue over the hard
lesion in the breast phantom and the ablated lesion in the pig liver while data
was being collected. Between 100 to 138 RF frames were acquired with the rate
of about 30 frames per second.

The first set of data was captured by an experienced user from the breast
phantom. Figure 1(a) shows the translation components of hand motion with
respect to the first frame. The axial motion is dominant and there is only a
gradual drift in the lateral and elevational directions. Figure 1(b) depicts the
high-quality strain image resulting from the TrUE algorithm.
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Fig. 2. Two cases of improper motions are shown where the hand motion suffers from

large lateral and elevational components evident in relative translations. The results

of case 1 with EM tacker is shown on the left column, and the results of case 2 with

optical tracker is shown on the right column.
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Applying a compression similar to the one shown in Figure 1(a) is a difficult
task for novice or even intermediate users. This is especially the case where axial
compression does not translate into a simple up and down motion. Ultrasound gel
creates a slippery surface that makes the palpation prone to out-of-plane motion.
Two case are shown in Figure 2, where one is tracked with the EM tracker and
the other one with the optical tracker. In Figure 2(a) the hand motion contains a
large amount of out-of-plane motion, whereas, in Figure 2(b), the user has moved
the probe laterally. In both cases, the TrUE algorithm generates reliable results.
Figures 2 (c) and (d) show the contrast-to-noise ratio (CNR) and signal-to-noise
ratio (SNR) of the strain image. The CNR and SNR value are computed from:

CNR =

√
2(s̄b − s̄t)2

σ2
b + σ2

t

, SNR =
s̄

σ
, (7)

where s̄ and σ denote the mean and standard deviation of intensities. The t or
b subscripts show that the computation is only for the target or the background
region, respectively. The SNR and CNR for computing the strain from consecu-
tive frames (the dashed curve) is compared to the SNR and CNR of the strain
image from the proposed method (solid line). Using consecutive frames is the
standard method of elastography in ultrasound machines. Almost in all cases
the TrUE algorithm outperforms the consecutive frames by a large margin.

Although the SNR and CNR provide quantitative measures to compare the
strain images, they do not directly reflect the visual quality of strain. In Figure 3,
we show results of elastography using our frame selection technique as well as
four other strain images calculated from consecutive frames. The Figure shows
the effects of improper compression in consecutive frames in the strain image.
At the same time our algorithm provides a single reliable strain.

(a) B-mode (b) TrUE (c) 1&2

(d) 2&3 (e) 3&4 (f) 4&5

Fig. 3. Comparison of the strain from TrUE vs. consecutive frames for ex-vivo pig liver
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4 Discussion

We presented a method of ultrasound elastography which is robust to the quality
of the hand motion of the user. Using the information from an external tracker,
it automatically selects multiple frame pairs with a specific compression and
minimal undesired motions. Our approach does not take into account the tissue
motion from other sources such as breathing or patient motion. However, these
types of motions are not normally problematic since they occur with a slower
pace compared to hand motion.

Our experiments shows that even when the transducer has severe lateral or
out-of-plane motions, the algorithm still manages to produce good results. The
multi-stage frame selection and careful image fusion makes the TrUE method
less sensitive to tacker accuracy and robust to strain estimation failures.

We are planning to use the proposed method in a breast cancer study. For this
purpose, we will be implementing our MATLAB code in C. The strain estimation
which is still the bottleneck of our approach will be executed in GPU allowing
for the use of sophisticated algorithms.

Acknowledgments. Pezhman Foroughi, Hassan Rivaz, and Ioana Fleming are
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Abstract. To ensure accurate targeting and repeatability, 3D TRUS-guided  
biopsies require registration to determine coordinate transformations to (1)  
incorporate pre-procedure biopsy plans and (2) compensate for inter-session 
prostate motion and deformation between repeat biopsy sessions. We evaluated 
prostate surface- and image-based 3D-to-3D TRUS registration by measuring 
the TRE of manually marked, corresponding, intrinsic fiducials in the whole 
gland and peripheral zone, and also evaluated the error anisotropy. The image-
based rigid and non-rigid methods yielded the best results with mean TREs of 
2.26 mm and 1.96 mm, respectively.  These results compare favorably with a 
clinical need for an error of less than 2.5 mm. 

Keywords: surface-based registration, image-based registration, accuracy, 
prostate, repeat biopsy, inter-session, 3D TRUS, peripheral zone. 

1   Introduction 

Current diagnostic tests for prostate cancer (PCa) include prostate-specific antigen 
(PSA) tests and digital rectal exams (DRE), but two-dimensional (2D) transrectal 
ultrasound (TRUS) guided biopsy (Bx) is the clinical standard for definitive diagno-
sis.  2D TRUS guidance, however, is not without limitations.  A 2D view restricts the 
anatomic information available to the physician for the accurate characterization of 
tumor location, which is vital for targeting and needle guidance.  PCa is particularly 
difficult to target with 2D TRUS-guided Bx since this cancer tends to be small and 
multifocal.  Furthermore, up to 80% of the cancer can be located in the prostate’s 
peripheral zone (PZ) [1], an area subject to deformation due to ultrasound transducer 
pressure during the exam (Fig. 1). These difficulties contribute to false negative rates 
as high as 34% [2], and the detection rate of cancer on the necessary repeat Bx ranges 
between 10% and 25% [3].  In order to reduce the need for repeat Bxs, and provide 
better planning for required repeat Bxs, improved techniques are necessary to accu-
rately identify tumor locations and record biopsy cores so as to avoid negative areas 
and target precancerous lesions. Techniques for obtaining an accurate 3D record of 
Bx locations and providing guidance of repeated Bxs to specific locations are of  
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profound importance to the timely diagnosis of prostate cancer, and lead to high im-
pact on patient care and quality of life. 

A three-dimensional (3D) TRUS-guided prostate biopsy system has been developed 
in our laboratory, using a mechanically stabilized and tracked end-firing probe that 
provides a 3D view of the anatomy and records the 3D location of each Bx core (Fig. 
1(c)) [4].  In order to accurately transform the 3D locations of Bx cores taken during a 
previous session into the coordinate space of the current session, 3D-TRUS to 3D-
TRUS image registration needs to be performed.  The transformation given by this 
registration will compensate for differences in prostate position and deformation be-
tween sessions, which can be substantial due to the time between biopsy sessions, and 
may be due to differences in patient positioning, edema and swelling due to needle 
insertion, and bladder and/or rectum filling.  

In this study, we evaluate the accuracy of four algorithms for 3D-TRUS to 3D-
TRUS registration of prostate images taken during different biopsy sessions. We 
evaluate rigid and non-rigid variations of both surface-based and image-based regis-
tration algorithms.  We determine a mean target registration error (TRE) for each 
algorithm and provide an analysis of the spatial anisotropy in the TRE.  Furthermore, 
since the PZ of the prostate is of particular clinical interest, and we hypothesize that 
this region may undergo characteristically different (from the remainder of the gland) 
deformations due to its proximity to the ultrasound transducer, we perform a separate 
accuracy analysis on this region. Our primary success criterion is a clinically desired 
TRE of 2.5 mm or less, with a non-dominant fiducial localization error (FLE) [5]. 

Previous related work focuses on intra-session registration of 3D-TRUS to 3D-
TRUS [5, 6], and 3D-TRUS to magnetic resonance (MR) [7] prostate images, and 
accuracies as high as 1.50 mm have been reported.  However, to the best of our 
knowledge, an evaluation of 3D-TRUS to 3D-TRUS inter-session registration, with 
its attendant challenges as described above, has not been previously conducted for 
image-guided prostate biopsies. 

 

   
(a) (b) (c) 

Fig. 1. Axial view of prostate with PZ highlighted in black (a) without deformation and (b) with 
deformation caused by transducer probe pressure.  (c) Mechanically assisted 3D-TRUS biopsy 
system with real-time tracking and recording of the 3D position of the biopsy needle. 

2   Materials and Methods 

2.1   Materials 

3D TRUS prostate images were obtained from 10 different patients who had  
undergone two prostate imaging sessions one week apart.  The physician inserts the 

probe probe 

PZ PZ 
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transducer probe into the patient’s rectum and rotates it (by rolling it about the probe 
axis) to acquire 180 2D images in 1 degree increments. The 2D US images from the 
US machine are digitized using a frame grabber and reconstructed into a 3D image. 
Acquisition of the 3D image requires approximately 10 seconds and the reconstruc-
tion occurs as the images are acquired, allowing the physician to view the 3D image 
as it is being acquired. The first set of scans was acquired using a HDI-3500 ultra-
sound machine and second was acquired using a HDI-5000.  The same transducer 
probe (Philips C9-5) was used with both machines, but calibrated differently.  From 
each patient, 2 images from the two different procedures were selected to be the 

source ( SI ) and target images ( TI ). The image dimensions were 448 × 448 × 350 

(voxel size of 0.19 × 0.19 × 0.19 mm3). The selection of images for this study was 
based on our ability to localize in 3D a set of corresponding intrinsic fiducials (small 
calcifications) in the image pairs for use in computing the TRE. In all 10 image 
pairs, we found a total of 92 fiducial pairs, of which 18 were located in the PZ. It is 
important to note that the fiducials in our study are used only to evaluate the registra-
tion methods, and are not used as inputs to the registration algorithms.  

2.2   Surface-Based Registration 

For surface-based registration, we first segmented the images semi-automatically 
using a dynamically deformable contour model [8].  We then rigidly registered the 
surfaces using the iterative closest point (ICP) algorithm [9], where both surfaces are 
represented by point clouds.  In order to align the surfaces, a rigid transformation T  

is required that maps each point in the source image of patient i, ( i
SI ), to its corre-

sponding point in the target image of patient i, ( i
TI ).  The algorithm proceeds by (1) 

establishing correspondence between closest point pairs, and (2) by estimating the 
transformation required to align the corresponding points.  Steps (1) and (2) are iter-
ated until a convergence criterion (RMS of the sum of squares of the closest point 
distances) of 0.01 mm is met [9].   

Following rigid registration, we performed a non-rigid registration using a thin-

plate spline (TPS) [10].  Parametric correspondence between surfaces i
SI  and i

TI  was 

established by radially projecting equal-angle rays from the centroid of the rigidly 
aligned surfaces, and corresponding the point pair lying on each ray.  This approach 
to correspondence establishment is justified due to the approximately spherical shape 
of the prostate.  A 3D TPS is defined in the 3D image space and aligns the corre-

sponding points.  The TPS is applied to i
SI  in order to register it to i

TI . 

2.3   Image-Based Registration 

We adopt the block matching approach proposed by Ourselin et al. for rigid registra-
tion [11].  The registration consists of the following four steps: (1) dividing the source 

image into rectangular block regions; (2) for each block in i
SI , finding the block in a 

local neighborhood within i
TI  having the optimal value of a chosen image-to-image 

metric; (3) constructing a vector field mapping each i
SI  block to its best matching i

TI  
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block; and (4) performing a least trimmed squares optimization to regularize the vec-

tor fields [12] in order to determine the transformation mapping i
SI  to i

TI .  Steps (1) 

through (4) are iterated, with a progressively smaller block size, in order to provide a 
coarse-to-fine registration of the images.  The chosen image-to-image metric is  
mutual information [13], due primarily to the effects of directionally-dependent shad-
owing artifacts present in 3D TRUS images.  We used the implementation provided 
by MedINRIA (INRIA, Asclepios Research Team, 2009) that adopts a multi-
resolution approach.  Results were achieved using a multi-resolution image pyramid 
where the finest and coarsest image resolutions used were tuned empirically  
to 32×32×32 and 16×16×16, respectively. The block size, N , is initialized to 

⎟
⎠
⎞

⎜
⎝
⎛=

8
,

8
,

8
min

ZYX
N , where X, Y and Z are the 3D image dimensions and the initial 

search area, Ω, is equal to N2  [14].  The parameters are halved when refining the 
scale and the process stops when the block size is 4=N . 

For image-based non-rigid registration, the moving image deformation is defined 
using a regular 3D grid of B-spline control points.  We used a limited-memory Broy-
den Fletcher Goldfarb Shannon optimizer [15], and mutual information [13] as the 
image-to-image metric.  We used the implementation provided by the 3D-SLICER 
software (Surgical Planning Lab, Harvard Medical School, Boston, USA), which 
permits the tuning of the following parameters: the number of optimization iterations 
(we set this parameter to 50), the number of elements along each side of the grid of B-
spline control points (10), the number of histogram bins (20) and randomly-sampled 
voxels (100,000) to use in computing the mutual information metric, and the maxi-
mum allowed deformation of the B-spline grid control points (1). 

2.4   TRE 

We measured the TRE as the overall misalignment of manually marked, correspond-

ing, intrinsic fiducials in i
SI and i

TI .  The TRE is defined, for the jth corresponding 

fiducial in patient i, as the Euclidean distance between the transformed fiducial 

)(
~ ij

S
ij
S T ff = from i

SI  and the corresponding fiducial ij
Tf  in i

TI , written as 

2

ijv=ijTRE , where )
~

(ij ij
S

ij
T ffv −= .  The mean TRE for patient i is denoted as 

∑=
j i

iji NTRETRE /)( 2 , where iN  is the number of fiducials identified in 

i
SI .  The overall mean TRE is denoted as ∑∑=

i j

ij NTRETRE /)( 2 , where 

N is the total number of fiducial pairs used in the calculation.  In this study, there 
were 92 fiducial pairs in total, of which 18 were within the PZ of the prostates.  

2.5   Error Anisotropy 

We performed a 3D principal component analysis (PCA) of the 3D point  
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anisotropy of the TRE. Using MATLAB (The Mathworks Inc., Natick, MA), we 
computed the PCA by finding the eigenvectors (ei) and eigenvalues (λi) of the covari-
ance matrix ofΔ . This was done for both the whole gland (WG) and PZ. The 95% 
standard error ellipsoid volumes were defined with their semi-principal axes parallel 

to the eigenvectors, with lengths 2
,υαχλ ×= iia , (i = 1, 2, 3 and 80.2, ≈υαχ ), 

where 2
,υαχ  is the probability distribution evaluated for 95% confidence (α = 0.05) 

and 3 degrees of freedom (υ = 3) [16]. 
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Fig. 2. WG (black) and PZ (white) frequency distributions of (a) pre-registered distances be-
tween all 92 fiducial pairs, (b) rigid surface-based TREij, (c) non-rigid surface-based TREij, (d) 
rigid image-based TREij, (e) non-rigid image-based TREij 
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3   Results 

3.1   TRE 

Our pre-registration mean misalignment was ~7.45 mm, ranging from 0.28-18.0 mm. 
The frequency distributions of the WG and PZ TREs are shown in Figure 2 and the 
TRE results are summarized in Table 1.  The two-tailed paired t-test results shown in 
Table 2 indicate that surface- and image-based rigid registration TREs were statisti-
cally significantly different with p = 4.29x10-6.  The surface- and image-based  
non-rigid TREs were also significantly different, with p = 1.60x10-9.  

Table 1. Whole gland (WG) and peripheral zone (PZ) mean TRE results for surface-based (SB) 
and image-based (IB) registration 

Registration WG PZ 

 SB IB SB IB 

Pre-registration  
mean TRE (mm) 

7.36 ± 4.17 5.23 ± 3.29 

Rigid mean TRE (mm) 3.20 ± 1.46 2.26 ± 0.98 3.45 ± 1.21 2.30 ± 0.90 

Non-rigid mean TRE(mm) 3.29 ± 1.50 1.96 ± 0.85 3.62 ± 1.12 2.11 ± 0.91 

Table 2. t-test results for surface-based (SB), image-based (IB), rigid (R), and non-rigid (NR) 
registration 

SB vs. IB SB vs. IB SB IB 

  R NR R vs. NR R vs. NR 

WG p-value 4.29x10-6 1.6x10-9 0.05 1.38x10-7 

PZ p-value 1.88x10-4 6.21x10-6 0.12 0.07 

3.2   Error Anisotropy 

Figure 3 shows the 95% confidence ellipsoids for the PCA performed on the direc-
tional components of the WG and PZ TREs for the non-rigid registration methods.  
The WG pre-registered ellipsoid volume (EV) is 4.46 cm3 while the post-registration 
EVs range from 0.12 cm3 to 0.41 cm3. The EVs for surface-based rigid and non-rigid 
TRE were greater than the image-based EVs by an average of 0.27 cm3.   

The PZ pre-registered EV is 1.58 cm3 while the post-registration volumes range 
from 0.14 cm3 to 0.37 cm3. The EVs for surface-based rigid and non-rigid TRE were 
greater than the EVs for image-based TRE by an average of 0.22 cm3. Table 3 shows 
the ratios of the eigenvalues for each registration approach as well as for the unregis-
tered case, to illustrate any anisotropy in the error. 
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(a) (b) (c) 

   
(d) (e) (f) 

Fig. 3. Error ellipsoids for WG and PZ: (a) WG pre-registered data, (b) WG surface-based non-
rigid registration, (c) WG image-based non-rigid registration, (d) PZ pre-registered data, (e) PZ 
surface-based non-rigid registration, and (f) PZ image-based non-rigid registration 

Table 3. Ratios of 95% TRE confidence ellipsoid eigenvalues 

  WG PZ 

Registration Method λ1 / λ2 λ2 / λ3 λ1 / λ3 λ1 / λ2 λ2 / λ3 λ1 / λ3 

Unregistered 1.16 1.37 1.43 1.24 1.72 1.95 

Surface-based rigid 1.51 1.36 1.42 2.08 1.6 1.6 

Surface-based non-rigid 1.76 1.86 2.02 2.58 2.75 3.13 

Image-based rigid 1.16 1.37 1.43 1.24 1.72 1.95 

Image-based non-rigid 1.51 1.36 1.42 2.08 1.6 1.6 

4   Discussion 

Using 3D image registration to correct for prostate motion and deformation that oc-
curs between Bx procedures is vital to accurate Bx planning and needle guidance. The 
desired TRE is 2.5 mm since the smallest tumor considered clinically significant has a 
radius of ~5 mm (for a 0.5cm3 spherical tumor) [17]. Since the TRE (RMSE) provides 
an estimate of the standard deviation of the normal distribution of biopsy targets given 
by a registration algorithm, a TRE of 2.5 mm gives a confidence interval with 95.4% 
of the registered targets within the clinically significant 5 mm radius. 

The non-rigid image-based method yielded the lowest WG and PZ TRE values of 
1.96 mm and 2.11 mm, respectively. Figures 2(d) and (e) show that the image-based 
method outperformed the surface-based method by illustrating the right-skewed dis-
tribution of the TRE values (for both WG and PZ), with ~65% of the values below the 
respective means. In a previous evaluation of image registration methods in the intra-
session context, the non-rigid image-based TRE for images taken 6 minutes apart was 
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1.50 mm [5]. This shows that after a time gap of 1 week, the same image-based regis-
tration algorithm, tuned as in [5], is able to achieve comparable results.  

The t-test results in Table 2 reveal statistically significant differences in all cases 
except when comparing surface-based rigid and non-rigid registration values. We 
speculate that this could be due to the variability introduced by segmentation (±1.31 
mm) [5].  The FLE [18] was 0.21 mm [5], and thus was not dominant.  

Figure 3 shows the anisotropy in the TRE where both WG and PZ pre-registered 
fiducial misalignments are predominantly in the z-direction, which is along the trans-
ducer probe axis where we might expect misalignments due to probe pressure. The 
surface-based errors are predominantly anisotropic in x and y, which may be the re-
sult of inconsistent segmentation due to poor image contrast at the prostate boundaries 
parallel to the ultrasound beam. Table 3 indicates increased error anisotropy in the PZ, 
in comparison to the WG. This may be due to deformation that characteristically 
pushes the central region of the PZ upward in response to probe pressure, while the 
lateral "lobes" of the PZ bulge downward and laterally.  The post-registration 3D EVs 
are dramatically reduced (by a factor of 10–37 for WG, and 4.27–11.29 for PZ) as 
compared with the pre-registered EVs.  

Our results demonstrate that in the inter-session scenario with 1 week between ses-
sions, the tested surface-based and image-based 3D TRUS image registration tech-
niques yield clinically sufficient accuracy, with image-based registration giving the 
lowest error. Furthermore, due to the segmentation step required for surface-based 
registration, the two methods are comparable in execution time on a contemporary 
single-core workstation (90–105 s). The image-based method is preferred since it is 
more accurate, does not require segmentation and can potentially be automated. 
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Abstract. Breathing motion leads to a significant displacement and de-

formation of organs in the abdominal region. This makes the detection

of the breathing phase for numerous applications necessary. We propose

a new, purely image-based respiratory gating method for ultrasound.

Further, we use this technique to provide a solution for breathing af-

fected 4D ultrasound acquisitions with a wobbler probe. We achieve the

gating with Laplacian eigenmaps, a manifold learning technique, to de-

termine the low-dimensional manifold embedded in the high-dimensional

image space. Since Laplacian eigenmaps assign each ultrasound frame a

coordinate in low-dimensional space by respecting the neighborhood re-

lationship, they are well suited for analyzing the breathing cycle. For the

4D application, we perform the manifold learning for each angle, and

consecutively, align all the local curves and perform a curve fitting to

achieve a globally consistent breathing signal. We performed the image-

based gating on several 2D and 3D ultrasound datasets over time, and

quantified its very good performance by comparing it to measurements

from an external gating system.

1 Introduction

Imaging organs in thorax and abdomen is affected by respiratory motion. For
consecutive processing steps, it is often necessary to assign to each image its
corresponding breathing phase. This is achieved with external gating devices,
which the patient gets connected to. These devices, however, have long setup
times, prolong the overall acquisition, are costly, and consequently, rarely used
in practice. Moreover, the synchronization of image data and breathing signal
is not trivial. While certain imaging devices, such as CT and MR scanners,
support the connection of respiratory gating systems, we are not aware of such a
possibility for ultrasound; leaving the synchronization to the user. We propose an
image-based respiratory gating system for ultrasound using manifold learning.
Moreover, we use this technique to provide a solution for acquiring breathing
affected 4D ultrasound with a wobbler probe. The proposed method is fully
automatic, and does not need any prior information or training data.
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Fig. 1. Wobbler angle (blue) and respiratory phase (gray) over time. Dashed lines

indicate respiratory change d within one sweep. Dash dotted line indicates frames from

same angle over several breathing cycles.

One of the applications for which the assignment of the respiratory phase is
important is 2D and 3D ultrasound mosaicing. In order to achieve good results,
images from the same respiratory phase have to be combined. An alternative to
breathing gating are breath-hold acquisitions, but they further complicate the
procedure and are dependent on the patients ability for breath-hold. Another
application that we investigate in more details throughout the article, and for
which we have not yet found a solution proposed in the literature, is the acquisi-
tion of breathing affected 4D ultrasound with a mechanically steered transducer,
also referred to as wobbler. The problems for using a wobbler in such a scenario
is that images in one sweep do not contain consistent information, but repre-
sent the anatomy in different breathing phases. We illustrate this in figure 1,
where we schematically plot the deviation angle of the wobbler together with
the respiratory signal over time. The phase difference d indicates the range of
breathing phases accumulated in one sweep. We propose to select all frames ac-
quired from the same angle (dash dotted line) and apply the image-based gating
on each of those sets of images. Having the respiratory signal estimated for each
angle, we align these curves and apply a robust spline curve fitting to create
a globally consistent respiratory signal. This, consequently, allows us to recon-
struct volumes for specific breathing stages. An alternative to the application
of a wobbler would be a native 3D transducer with elements arranged on a 2D
array. Those systems, however, are still expensive and the access to their data
streaming and radio frequency data is very restricted.

1.1 Related Work

There are several papers on image-based gating in ultrasound for detecting the
cardiac motion [1,2,3,4]. These approaches apply techniques that are either (i)
specific to detecting the cardiac signal e.g. centroid algorithm [4], (ii) based
on user interaction [1], or (iii) designed for intravascular ultrasound [2,3]. We
are only aware of the work of Sundar et al . [5], where an automatic technique
for breathing gating in ultrasound is proposed. It bases on the phase correlation
technique to estimate the motion between successive frames. The breathing phase
is estimated from the energy change between consecutive frames. The inherent
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limitation of the phase correlation algorithm is that it finds the global translation
in the image plane. Considering the case of 2D ultrasound, the organ motion is
not necessarily in-plane, and consequently, there is no uniform global translation.

Several manifold learning techniques were proposed in the literature with
common techniques being Isomap [6] and Laplacian eigenmaps [7]. Since its
introduction, manifold learning has been applied for a multitude of applications,
including segmentation [8], registration [9], tracking [10], recognition [11], and
4D CT reconstruction [12]. The approach taken in the reconstruction is similar
to ours because Isomap is used to estimate the breathing phase on CT slabs. In
our work, we deal with the specific challenges of the integration of 4D ultrasound
wobbler data. To this end, we focus on Laplacian eigenamps, since we achieved
better results in comparison to Isomap.

2 Method

The general idea of manifold learning is to project a manifold in high dimensional
space RN to a low dimensional space Rn, while preserving the local neighbor-
hood. For our application, we consider one dimension of the ambient space for
each image pixel, so N is corresponding to the resolution of the ultrasound im-
ages. For the low dimensional space, we set n = 1, because we want to use
the coordinate of the points directly as breathing phase estimation. Considering
k ultrasound images U = {u1, . . . ,uk} that are acquired over several breath-
ing cycles, the manifold learning m assigns each image a coordinate in the low
dimensional space φi

m : R
N → R

1 (1)
ui �→ φi, (2)

with 1 ≤ i ≤ k. The suggestion that ultrasound images lie on a low dimen-
sional manifold in the ambient space seems to be justified because variations
between neighboring slices are smooth, and further, slices from the same respi-
ratory phase but different acquisition times are similar. Moreover, since manifold
learning techniques try to optimally preserve local information [7], meaning that
similar images are mapped to similar positions in the low dimensional space, it
is reasonable to use φi as an estimate for the respiratory phase.

2.1 Laplacian Eigenmaps

We propose the application of Laplacian eigenmaps [7] for the respiratory phase
estimation because the technique is well founded on mathematical concepts
(Laplace Beltrami operator) and computationally efficient. Laplacian eigenmaps
build upon the construction of a graph, which represents the neighborhood infor-
mation of the data set. Subsequently, the graph Laplacian is applied to calculate
a low-dimensional representation of the data that preserves the local neighbor-
hood information in an optimal way.
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Fig. 2. Breathing signals from manifold learning. Illustrated is the case for 3 angles (3

colors). X-axis indicates ultrasound frame number. The plots show the signals before

and after alignment.

We construct a graph with a node for each point ui and with edges connect-
ing neighboring nodes. We select for each image ui the l nearest neighbors, by
evaluating the norm ||ui −uι||2. Further, heat kernel-based weights are assigned
to the edges with wiι = e−||ui−uι||2/(2·σ2) and σ2 the variance [7]. The similar-
ity measure is important for neighborhood selection and weighting, where the
calculation of the Euclidean norm between the points is equivalent to calculat-
ing the sum of squared differences (SSD) between the images. A vast number
of similarity measures is proposed in the context of medical image registration.
Since we deal with monomodal data for our application, we investigate the per-
formance of SSD and the correlation coefficient (CC). The calculation of CC is
similar to the calculation of SSD on normalized input images. Once the neigh-
borhood graph is constructed, the eigenvectors of the graph Laplacian provide
the embedding map.

2.2 Global Consistency

After the breathing gating is performed for each angle, we have to establish the
correspondence between different angles in order to construct the global respira-
tory signal. Be U the set of all acquired images. We partition the set in disjunct
subsets U1, . . . ,Uα, corresponding to the number of different deflection angles α
of the wobbler (dash dotted region in figure 1). We perform the manifold learning
for each of the subsets separately mj(ui) = φj

i , with 1 ≤ j ≤ α. So depending
on the acquisition angle of the ultrasound image ui, the corresponding manifold
learning mj is performed. Considering all the phases estimated from one an-
gle, we have the local respiratory signals Φj = {φj

1, . . . , φ
j
v}, with v the number

of frames per angle. Each local signal contains a consistent estimation of the
breathing signal. It is, however, not possible to directly compare local signals,
because the 1D projection of the manifold learning can be in an arbitrary range.
This is illustrated in figure 2(a) with exemplary three local signals corresponding
to three angular positions. A simple normalization of each of the local signals
Φj is not sufficient because the extreme positions of the breathing cycle may not
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Fig. 3. Aligned local signals (green crosses). Robust spline fitting (red). Ground truth

(blue). Dotted lines indicate separation of breathing cycle into several stages. For each

stage a volume is compounded, with an exemplary volume rendering on the right image.

be reached within them. Consequently, we affinely register local signals in order
to retrieve the best scaling sj and translation tj

Φj �→ sj · Φj + tj . (3)

This is, in fact, a groupwise registration scenario, where we choose to align each
pair of neighboring curves with a pairwise registration, starting from the middle
one. The result of the alignment is shown in figure 2(b).

The values of the partial signals Φj are now comparable, however, may still
contain outliers. Consequently, we apply a robust curve fitting to all the sample
points to retrieve the global breathing signal. We experimented with various
curve models, including Fourier, sum of sine waves, and splines. We achieved
best results with fitting a spline curve because it allows for the most flexibility,
which is important due to irregularity of breathing. The value of the fitted curve
then represents the breathing phase of the ultrasound frames.

In a final step, the breathing cycle is classified into several breathing stages.
For each of the breathing stages, the ultrasound frames along the various angles
are gathered, and compounded into a final volume, see figure 3.

3 Experiments

For our experiments we use the ultrasound system from Ultrasonix (Richmond,
Canada) and the optical tracking system from A.R.T. (Weilheim, Germany).
Both systems are connected to a workstation PC. For the synchronization, we
time stamp the data on the tracking system and use a network time server to
calculate the time offset. For the ultrasound data, we use the direct streaming of
B-mode images over the network. We perform tests on multiple patient datasets
acquired from different positions, focusing on the liver and kidney.

In order to validate our results, we compare them to the measurements of an
external gating system. In [13], four different gating systems are compared with
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Fig. 4. Analysis of the phase correlation technique for synthetic images. Three different

motion scenarios with corresponding energy (gating) curves.

best results for an elastic belt and an optical tracking system. We use the tracking
system with markers attached to the chest of the patient. We apply a principal
component analysis of the 6D tracking data to find the principal component
along whose direction we measure the breathing motion. Further, we low-pass
filter the signal to remove cardiac motion and extract the respiratory signal.
We refer to the tracked signal as ground truth, which is not completely correct
because it contains tracking errors. However, it is the best that can currently
be achieved [13] and is sufficient to validate the performance of our image-based
approach.

We compare our approach to the phase correlation technique [5]1. Unfortu-
nately, we do not achieve meaningful results for our datasets. We think that this
is due to the limitation of the technique of approximating the 3D motion with
a global translation in 2D. In order to illustrate this limitation, we produced
synthetic images which show periodic motion. The first scenario consists of a
rectangle moving up and down, see figure 4. For the second, we add a fixed rect-
angle, and for the third we add a rectangle that grows and shrinks (see additional
material for videos). We plot the corresponding energy curves of the phase corre-
lation technique. For the first scenario (blue) the signal is correct. The addition
of a fixed object (red) already leads to a slight distortion, while the addition of
the shrinking/growing object (green), leads to an extraction of a false motion
signal. Since already the addition of the shrinking/growing object avoids the
extraction of the correct motion, it is comprehensible that this approach is not
best suited for breathing estimation in a noisy ultrasound environment with 3D
anatomy moving in and out of plane.

The resolution of our ultrasound images is 640 × 480 pixels. We downsample
the images in each direction by a factor of 2, leading to N = 1

4 · 640 · 480.
This enables a faster processing and leads to no noticeable degradation of the
manifold learning. We show excerpts of two data sets in figure 5. We perform all
our experiments with a graph neighborhood of l = 14. The number of images
for manifold learning varies between 100 and 300, where we did not notice a
dependency of the performance on the number of input samples.

In figure 6, we show the result of the respiratory gating for one of the 2D
datasets together with the ground truth signal. We also calculate the correlation
coefficient for multiple 2D data sets, shown in table 1. It is remarkable that the
1 We want to thank the authors of [5] for sharing source code.
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Fig. 5. 2D Ultrasound images over time from liver (abdomen, right upper quadrant,

oblique section) and kidney (left lateral decubitus position, right intercostal flank

section)
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Fig. 6. Breathing gating results for 2D (red: es-

timated signal, blue: ground truth)

Table 1. 2D

2D Correlation

liver1 95.4

liver2 94.4

liver3 93.6

kidney 97.3

Table 2. 3D

3D Correlation

liver 30◦ 94.3

liver 45◦ 95.8

liver 60◦ 96.8

kidney 45◦ 94.4

ground truth signal is almost perfectly detected. All peaks in the ground truth
signal also appear in the detection. Further, the calculation of the correlation,
which is in the range of 95%, confirms the visual similarity of the graphs. We also
experimented with normalizing the images before passing them to the manifold
learning, noticed however no significant improvement.

For the 4D experiments, we show the result of a fitted curve in figure 2. We
also calculate the correlation coefficient between the fitted curves and ground
truth for four datasets, see table 2. We experimented with three different angular
ranges, 30◦, 45◦, and 60◦ (maximum of probe), for which the probe steers to
15, 21, and 29 different angular positions. We split the breathing signal into 9
different breathing stages, and compound a 3D volume for each of the stages.
A volume rendering of one of the volumes is shown in figure 3. The additional
material contains a video showing the 4D volume rendering.

All image-based approaches rely on ultrasound acquisitions from the same po-
sition, because otherwise it is not possible to differentiate between probe motion
and breathing motion. To investigate this assumption, we attached a tracking
target to the transducer and analyzed its trajectory. This analysis showed only a
negligible deviation. The still position therefore does not limit the applicability
of our method, which is also confirmed by our good gating results.
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4 Conclusion

We presented an automatic, image-based respiratory gating method for ultra-
sound using manifold learning. Moreover, we proposed a solution for acquiring
4D breathing data with a wobbler probe. Our method has the advantage that
it is fully automatic and does not require a training phase or prior information
about the underlying anatomy. We demonstrated this in our experiments by
performing our analysis on various datasets showing different organs and sec-
tions. The results of these experiments were very good, for both, 2D and 3D
ultrasound data over time. Our approach therefore presents an attractive alter-
native to external tracking and gating systems with their various setup issues
and synchronization problems.

References

1. Treece, G., Prager, R., Gee, A., Cash, C., Berman, L.: Grey-scale gating for free-

hand 3D ultrasound. In: ISBI, pp. 993–996 (2002)

2. Zhu, H., Oakeson, K., Friedman, M.: Retrieval of cardiac phase from IVUS se-

quences. In: Proceedings of SPIE, vol. 5035, p. 135 (2003)

3. de Winter, S., Hamers, R., Degertekin, M., Tanabe, K., Lemos, P., Serruys, P.,

Roelandt, J., Bruining, N.: A novel retrospective gating method for intracoronary

ultrasound images based on image properties. In: Computers in Cardiology (2003)

4. Karadayi, K., Hayashi, T., Kim, Y.: Automatic image-based gating for 4d ultra-

sound. In: Engineering in Medicine and Biology Society (2006)

5. Sundar, H., Khamene, A., Yatziv, L., Xu, C.: Automatic image-based cardiac and

respiratory cycle synchronization and gating of image sequences. In: Yang, G.-

Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS,

vol. 5762, pp. 381–388. Springer, Heidelberg (2009)

6. Tenenbaum, J., Silva, V., Langford, J.: A global geometric framework for nonlinear

dimensionality reduction. Science 290(5500), 2319 (2000)

7. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data

representation. Neural Comput. 15(6) (2003)

8. Zhang, Q., Souvenir, R., Pless, R.: On manifold structure of cardiac MRI data:

Application to segmentation. In: CVPR, vol. 1, pp. 1092–1098 (2006)

9. Hamm, J., Davatzikos, C., Verma, R.: Efficient large deformation registration via

geodesics on a learned manifold of images. In: Yang, G.-Z., Hawkes, D., Rueckert,

D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5761, pp. 680–687.

Springer, Heidelberg (2009)

10. Lee, C., Elgammal, A.: Modeling view and posture manifolds for tracking. In: ICCV

(2007)

11. Wachinger, C., Mateus, D., Keil, A., Navab, N.: Manifold Learning for Patient

Position Detection in MRI. In: ISBI (April 2010)

12. Georg, M., Souvenir, R., Hope, A., Pless, R.: Manifold learning for 4d ct recon-

struction of the lung. In: MMBIA (2008)

13. Martinez-Möller, A., Bundschuh, R., Riedel, M., Navab, N., Ziegler, S., Schwaiger,

M., Nekolla, S.: Comparison of respiratory sensors and its compliance for respira-

tory gating in emission tomography. Journal of Nuclear Medicine (2007)



T. Jiang et al. (Eds.): MICCAI 2010, Part II, LNCS 6362, pp. 34–41, 2010. 
© Springer-Verlag Berlin Heidelberg 2010 

Measurement of the Skin-Liver Capsule Distance on 
Ultrasound RF Data for 1D Transient Elastography 

Stéphane Audière1,2, Maurice Charbit1, Elsa D. Angelini1,  
Jennifer Oudry2, and Laurent Sandrin2 

1 Institut Telecom, Telecom ParisTech, CNRS LTCI, Paris, France 
2 Echosens, Research and Development Department, Paris, France 

Abstract. Vibration-controlled transient elastography (VCTE™) technique is 
routinely used in clinical practice to assess non-invasively the liver stiffness 
which is correlated to hepatic fibrosis. Adequate use of the VCTE™ probe re-
quires the knowledge of the distance between the skin and the liver paren-
chyma. This paper compares two methods to estimate this distance using spatial 
variations of the spectral content of ultrasound radiofrequency (RF) lines, ob-
tained from a probe consisting of a single element ultrasound transducer placed 
in front of the liver right lobe. Results on a database of 188 patients, including 
normal-weight and obese persons, show that the spectral variance can accu-
rately discriminate the subcutaneous fat from the liver tissue. The proposed al-
gorithm works in real-time and is suitable for VCTE™ scanning protocol setup. 

Keywords: ultrasound, RF lines, liver, spectral analysis, elastography. 

1   Introduction 

Vibration-controlled transient elastography (VCTE™) technique [1] is routinely used 
in clinical practice to quantify liver stiffness by measuring the velocity of a low-
frequency shear wave generated and travelling through the liver. It has been demon-
strated that stiffness is highly correlated with fibrosis stage assessed by liver biopsy 
[2]. The VCTE™ device can be operated with different 1D-ultrasound probes, operat-
ing at different frequencies, depending on the patient morphology. The highest fre-
quency probe provides higher spatial resolution but cannot be used on patients with a 
thick fat layer, due to frequency-dependent ultrasound attenuation in the fat. There-
fore, the choice of the probe during an examination depends on the distance between 
the probe (in contact with the skin surface) and the liver. This distance corresponds to 
the subcutaneous thickness, called skin-liver capsule distance (SCD). The SCD is  
currently measured manually on ultrasound B-mode imaging. Automatic measure-
ment of the SCD is therefore of  great interest for VCTE™ scanning protocol setup to 
alleviate manual measurements, reduce operator dependency, and standardize the 
measurement technique. Ultrasound segmentation methods have mainly focused on 
B-mode imaging given the difficulty in getting access to raw RF data on commercial 
systems and the complexity of the RF signal content. Unfortunately, B-mode images 
are formed from the detection of the RF ultrasound line envelopes, which removes 
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rich spectral information that could be used to characterize soft tissue properties. 
Among the few works dedicated to RF-based ultrasound segmentation, we can cite 
Hammoude et al. [3] who used changes in central frequency due to tissue attenuation 
to segment the heart muscle but had to face erratic changes in ultrasound signal. 
Boukerroui et al. [4] proposed a segmentation framework based on gray scale levels 
and texture analysis from the ultrasound envelope signal, combined with tissue char-
acterization from the analysis of the central frequency spectrum of the ultrasound RF 
lines. More recently, Dydenko et al. [5] combined RF autoregressive spectrum pa-
rameters with the estimation of ultrasound propagation speed to characterize cardiac 
tissues and obtained good results using the estimated speed variance on in vivo sig-
nals. Moradi et al. [6] used the fractal dimension of RF time series for tissue charac-
terisation, but needed high pulse repetition frequency rates. Davignon et al. [7] used 
the “integrated backScatter coefficient” (IBS) and the average central frequency to 
improve a segmentation method based on the ultrasound envelope signal. These stud-
ies all confirmed that the spectral information of the ultrasound RF lines was adapted 
for segmentation tasks, providing discriminant information on the acoustic properties 
of the different tissues.   

To our knowledge, few studies have been performed on the automatic measure-
ment of the thickness of the subcutaneous layer, or on the skin-liver capsule distance. 
Ng et al. [8] recently showed that changes in the spectral content of 2D-spatial RF 
images enabled to accurately measure subcutaneous layer thickness on humans, but 
required spatial compounding. In this paper, a real-time implementation of the spec-
tral analysis proposed by Ng et al. [8], but applied to 1D ultrasound RF lines, was 
evaluated and compared to the exploitation of the IBS parameter from [7]. 

2   Materials and Methods 

The SCD includes the layers of tissues connecting the epidermis of the skin surface to 
the liver. Fibrous membranes of connective tissues may vary in thickness and density 
between individuals. Furthermore, the fibrous membranes may contain varying  
proportion of fat and are more echogenic than the liver parenchyma, as illustrated in 
Fig. 1. Overall the subcutaneous layer has a rather heterogeneous appearance while 
the liver is rather homogeneous. 

2.1   Spectral RF Analysis 

In most cases, the liver capsule is not precisely detectable on 1D ultrasound RF lines. 
Indeed, the direction of the ultrasound beam and the surface of the capsule must be 
perfectly perpendicular to accurately detect the echo generated by the capsule, as il-
lustrated in Fig. 1. Since it is not possible to visually control the orientation of the 
VCTE™ ultrasound beam with respect to the liver surface, the echo amplitude cannot 
be directly used to determine the SCD. On the other hand, distinction between the 
subcutaneous layer and the liver can be performed via spectral analysis of the RF 
lines, based on the fact that ultrasound attenuation is tissue- and frequency-dependent, 
as detailed below.  
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Fig. 1. (a) Positioning of the ultrasound (US) transducer for a VCTE™ and B-mode scanning, 
at the level of the 7th right intercostal space. (b) B-mode image (the position of the capsule is 
identified with a dashed line.). (c) Ultrasound RF line acquired with the VCTE™ probe.  

The spectrogram ),( zfS  of the RF signal at frequency f and at a distance z from 

the probe is generally modelled as:  
222

),()()(),( zfAfRfHzfS = , (1) 

where H is the transfer function of the ultrasonic source, R is the backscatter compo-
nent from the echoes and A is the attenuation term. In human soft tissues, ultrasound 
RF lines are exponentially attenuated in depth, leading to the following model for A: 

zfezfA )(),( α−=  , (2) 

Within the limited bandwidth of the ultrasound transducer, experimental measures 
have shown that soft tissues create attenuation phenomena of the RF lines which are 
linearly proportional to its frequency.  Huisman et al. [9] have proposed the following 
attenuation law: 

)()( 0 cfff −+= βαα  , (3) 

where 0α is the tissue-specific attenuation coefficient at the central frequency cf of the 

transducer and β is the slope of the frequency-dependent linear attenuation. This at-

tenuation model, exponential in z and with an attenuation coefficient linear in f natu-
rally motivates the choice of a spectral analysis of the ultrasound RF signal for tissue 
characterization (different tissues being encountered along the z-axis). 

RF Spectral parameters: Two parameters were calculated from the spectrograms of 
acquired RF lines: the total energy reflected by the tissues (measured with the IBS) 
and the spectral variance. The IBS was proposed in [7] as a suitable discriminant  
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parameter for tissue characterization. In our case, the tissues constituting the subcuta-
neous layer are hyper-echogenic relative to the liver parenchyma, leading to poten-
tially higher IBS values. The spectral variance σ2 characterizes the local variation of 
the centroid frequency content of the spectrogram. Both can be calculated with the 

moment method, as proposed in [10], IBS corresponding to 0m and the spectral vari-

ance being computed as: 
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where 
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with BW being the useful bandwidth of the transducer. The spectral variance σ2 does 
not depend on the echogeneity difference between tissues (i. e. RF signal strength), 
but rather on the heterogeneity of the tissues. From Eq. (3), σ2 is also independent of 

0α and cf but only depends on the tissue-dependent attenuation coefficient β . 

2.2   Ultrasound RF Scanning Setup and Procedure 

The VCTE™ device used in this study was composed of a probe containing a low-
frequency vibrator, an ultrasonic transducer operating, depending on the probe, at 2.5 
MHz or 3.5 MHz, a dedicated electronic system and a control unit. The sampling  
frequency of the ultrasound signal was 50 MHz with a 14-bit resolution. A single ul-
trasound element was used both as an emitter and a receiver. For each volunteer, 400 
ultrasound RF lines were acquired, along a fixed scan line, at a pulse repetition fre-
quency of 20 Hz during 20 s. 

In this study, the following acquisition protocol was used: the liver was first identi-
fied with B-mode ultrasound images and the skin capsule distance was manually 
measured on the images (as illustrated in Fig. 1). The VCTE™ probe was then placed 
at the same scanning location, but with the application of a controlled pressure on the 
skin surface of 20 to 30 kPa, for RF recording in elastography scanning mode. Appli-
cation of such pressure limits probe motion while the patient breathes. 

A database was acquired with the two VCTE™ probes on 188 volunteers: 85% 
with normal weights and 15% of obese (corresponding to a body mass index (BMI) 
>30 kg/m²). The ultrasound RF lines were acquired for a depth range between 5 and 
65 mm, to accommodate for the variability of the skin-liver capsule distance within 
the volunteers population.  

3   Results and Discussion 

3.1   Spectral Analysis Setup 

For each RF line, the spectrogram was computed with short-time Fourier transform 
(STFT). Spatial windows of length 12λ were used for the STFT computation, where λ 
represents the wavelength (and 2λ the pulse length) of the emitted ultrasound signal  
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Fig. 2. (a) Series of RF lines acquired with a VCTE™ probe on a moderately obese volunteer. 
(b) Averaged localized spectrogram profiles inside the liver and inside the subcutaneous layer. 

(estimated for an average ultrasound velocity c set to 1540 m/s for human soft tis-
sues). This spatial window size, which sets the axial precision of the spectrogram, was 
chosen to optimize the tradeoff between frequency and temporal resolution. Overlaps 
of 75% and a weighting Blackman window were applied. With these parameters, we 
considered that the spectrogram computation had a precision of 3λ (i.e. 3 times the ax-
ial resolution of the US transducer).  

In Fig. 2, an example of a series of temporal ultrasound RF lines acquired with a 
fixed-position VCTE™ 3.5 MHz probe is provided. The volunteer was a male patient 
measuring 1.67 m and weighing 82 kg (BMI = 30 kg/m², and B-mode SCD = 20 mm, 
corresponding to moderate obesity). Averaged profiles (over 0.5 s) of localized spec-
trogram data for the subcutaneous layer (z=10 mm) and inside the liver (z=40 mm) are 
shown on Fig. 2b.  Spectral analysis of the spectrograms, to extract the IBS and spec-
tral variance, was performed on a series of consecutive 400 RF lines acquired over 20 
s, maintaining the probe in a fixed position. Spatio-temporal maps of these parameters 
were computed and a binarization of these maps was applied, based on Otsu’s thresh-
olding, to separate the subcutaneous layer from the liver tissue. The series of  
SCD measures was then combined to provide a robust estimate and compensate for 
potential tissue interface motion during breathing and to attenuate the effects of noisy 
components. Averaging of the SCD measures over the series of RF lines was per-
formed in two steps: (1) local averaging over temporal windows of 2 s (approximate 
breathing period), (2) hysteresis thresholding for outliers removal on the temporal 
profile of the SCD values and selection of the SCD median value. For real-time com-
putation during VCTE™ scanning, these computations are performed in temporal 
streaming mode, with SCD measures refreshed every 0.5 s. 

Parametric maps of the normalized IBS and the normalized spectral variance pa-
rameters are illustrated in Fig.  3, along with the corresponding Otsu’s thresholding 
results, for two volunteers.  We can clearly observe on the normal-weight volunteer 
the effect of the breathing on the localisation of the capsule interface, while we don’t 
observe such effect on the obese volunteer. On the normal-weight volunteer, with 
higher temporal variability on SCD values, the average measures were the following: 
SCDIBS = 12.08 ± 0.62 mm, SCDσ²=13.76 ± 0.52 mm, while the B-mode measure was 
SCDB-mode = 13 mm. Maximum and minimum SCD values over the temporal series  
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Fig. 3. Spectral analysis on an obese volunteer (top row) and a normal weight volunteer (bot-
tom row). Normalized parametric maps of the IBS (a) the spectral variance (c) are plotted along 
with the corresponding thresholding results (b-d). 

were: SCDIBS=[11.07 mm 13.09 mm] and SCDσ² =[12.41 mm, 14.43 mm]. This corre-
sponds to lateral liver displacement, relative to the skin surface, of 2mm which corre-
lates well with MRI-based findings reported in [11].   

3.2   Quantitative Evaluation of the SCD Measures 

SCD measures based on both spectral parameters were first evaluated on an in vitro 
experiment to measure the layer thickness on subcutaneous pig tissues, as illustrated 
in Fig. 4. A pig meat sample made of fat and muscle was placed on top of a gelatin 
cylinder phantom mimicking the liver acoustic properties.  

 

                                                 a)                                                                  b) 

Fig. 4. In vitro experiment on pig tissues. (a) Experimental scanning setup. (b) Temporal series 
of RF lines. The black line on the image represents the SCD values calculated with the s² pa-
rameter (solid) and the IBS parameter (dashed). 
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The subcutaneous fat layer thickness directly measured on the sample was 13.4 mm. 
The algorithm provided a temporal average measure of 15 mm for the σ² parameter 
and 25mm for the IBS parameter, both estimations having a spatial precision of 1.25 
mm (for the algorithm). This experiment, performed on high-quality RF lines, showed 
that the IBS parameter completely failed to provide an accurate fat layer thickness 
measure, while the σ² parameter provided an accurate estimate, within the precision of 
the method. This experiment highlights the superiority of the spectral variance pa-
rameter to distinguish fat from muscle and to be less sensitive to depth-attenuation 
which is the predominant advantage on in vivo RF data. 

3.3   Qualitative Comparison of SCD Measures on Volunteers 

SCD values measured with the three probes (1 B-mode and 2 VCTE™), and averaged 
over the whole population or separately over the normal-weight (SCDB-mode<20 mm) 
and the over-weight population (SCDB-mode>20 mm), are reported in Table 1. For the 
spectral estimations, the algorithm precision of 3λ corresponded to 1.8mm for the 2.5 
MHz probe and 1.3mm for the 3.5 MHz probe. As expected, the SCD measures were 
smaller with VCTE™ probes which apply more pressure on the skin. The range of 
differences confirmed that SCDB-mode cannot be directly mapped to setup the scanning 
protocol with the VCTE™ probes. The two VCTE™ probes should provide similar 
SCD values, which was only the case with the σ² parameter. The IBS parameter  
estimated systematically lower SCD values with up to 3.7 mm (30%) of measure dis-
crepancies between probes, for the over-weight population.  

Focusing on the normal-weight population (SCD<20 mm), the differences between 
the B-mode and the VCTE™-based measures should be small, given the little de-
formability of the subcutaneous tissues. Regarding this point, we observed that the 
similarity of measures was better for the σ² parameter than for the IBS. We also ob-
served that the IBS parameter systematically underestimated the subcutaneous layer 
thickness, especially for the 3.5 MHz probe. Finally, we observed that higher correla-
tions (c.f. p-values) were obtained for the σ² parameter, especially for over-weight 
volunteers. These results overall suggested that this parameter, even though more 
costly to compute, should be preferred to the IBS parameter.  

To evaluate the consistency between SCD measures from the B-mode and the 
VCTE™ probes, we performed Kendall's correlation tests on the whole database.  
Results are reported in Table 2, for the following parameters of the test: τ is the Kend-
all’s rank correlation coefficient, and p-val is the p-value for the correlation test. The 
p-values confirmed that the SCD measures provided by the spectral methods were 
well correlated with B-mode ultrasound measures, while direct comparison was bi-
ased, especially on over-weight patients.  

Table 1. Average SCD values measured with three probes 

SCD (mm) B-mode VCTE™ 2.5 MHz VCTE™ 3.5 MHz 

  σ² IBS σ² IBS 
All 17.2±5.9 16.0±4.3 12.2±3.9 15.6±4.3 10.7±2.6 
<20 14.4±3.7 14.7±3.2 11.1±2.8 14.5±3.7 10.2±2.3 
>20 25.1±6.1 20.4±4.6 15.9±4.8 19.4±4.1 12.2±3.0 
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Table 2. Kendall’s correlation test between B-mode and VCTE™ SCD measures  

Probe  All SCD SCDB-mode ≤ 20mm SCDB-mode>20mm 

σ² τ = 0.6   p-val = 2.10-24  τ = 0.5   p-val = 6.10-15   τ = 0.4   p-val = 2.10-3  
2.5 

MHz IBS τ = 0.4   p-val = 6.10-16   τ = 0.3   p-val = 1.10-7  τ = 0.3   p-val = 9.10-3   

σ² τ = 0.5   p-val = 3.10-18   τ = 0.4   p-val = 6.10-12   τ = 0.2   p-val = 5.10-3   3.5 
MHz IBS τ = 0.3   p-val = 2.10-9  τ = 0.3   p-val = 1.10-6   τ = 0.1   p-val = 0.19   

4   Conclusion 

This paper presented the evaluation of a spectral analysis approach to segment ultra-
sound RF lines and measure subcutaneous layer thickness, for liver scanning, on a large 
database of subjects. A correlation study was performed to compare thickness measures 
with an imaging B-mode ultrasound probe. The spectral analysis was tailored to the 
specific scanning and acquisition setup of a VCTE™ probe, involving the tuning of the 
spatial window length, the weighting window and the spectral bandwidth. In vitro  
experiment on pig tissues reported a precision of measure of 1 to 2 mm.  
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Abstract. Automatic delineation of the prostate boundary in transrec-

tal ultrasound (TRUS) can play a key role in image-guided prostate

intervention. However, it is a very challenging task for several reasons,

especially due to the large variation of the prostate shape from the base

to the apex. To deal with the problem, a new method for incrementally

learning the patient-specific local shape statistics is proposed in this pa-

per to help achieve robust and accurate boundary delineation over the

entire prostate gland. The proposed method is fast and memory efficient

in that new shapes can be merged into the shape statistics without re-

computing using all the training shapes, which makes it suitable for use

in real-time interventional applications. In our work, the learned shape

statistics is incorporated into a modified sequential inference model for

tracking the prostate boundary. Experimental results show that the pro-

posed method is more robust and accurate than the active shape model

using global population-based shape statistics in delineating the prostate

boundary in TRUS.

1 Introduction

Transrectal ultrasound (TRUS) is currently the most commonly used imaging
modality for image-guided biopsy and therapy of prostate cancer due to its
real-time nature, cost effectiveness, and simplicity. Accurate delineation of the
prostate boundary in TRUS can play a key role in image-guided prostate inter-
ventions. However, extracting the prostate boundary in TRUS is a challenging
task due to the low signal-to-noise ratio of ultrasound imaging, the large inten-
sity variation both inside and outside of the prostate, and especially the large
shape variations through the whole gland from the base to the apex.

Methods for segmenting the prostate in static TRUS images have been
reported in the past. Abolmaesumi and Sirouspour [1] traced the prostate bound-
ary by moving from one estimated boundary point to the next following a trajec-
tory described by a constant velocity dynamic model. Ladak et al. [2] employed
a discrete dynamic contour guided by shape statistics to segment the prostate
in TRUS. Shen et al. [3] proposed a segmentation method by first classifying
a TRUS image using support vector machine with Gabor filter bank and then
fitting a statistical prostate shape model to the output image. These static im-
age segmentation methods have been successful in the mid-gland, because the

T. Jiang et al. (Eds.): MICCAI 2010, Part II, LNCS 6362, pp. 42–49, 2010.
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boundary shapes in that area are quite regular with small variation. However,
due to the large prostate shape variation in the base and the apex areas, poor
segmentation performance in those areas was indicated [3, 4]. Recently, Yan et
al. [5] addressed the problem using a dynamic shape modeling approach. The
prostate shape statistics is continuously recomputed from several of the most re-
cently segmented prostate shapes. The method obtained considerable success by
incorporating the adaptive local shape statistics into the segmentation process.
However, due to the continuous model recalculation using the obtained shapes,
this method is not computationally efficient and also requires storing all the
training shapes.

In this paper, we propose a new method for incrementally learning the patient-
specific local shape statistics to help achieve accurate boundary delineation over
the whole prostate gland in TRUS. New shapes that become available during the
delineation process can be merged into the shape statistics using an incremental
subspace learning method [6, 7] without explicitly recomputing using all the
training shapes. Therefore, the proposed learning method is computationally
efficient and removes the need of storing all the training shapes, which makes
it suitable for use in interventional applications. In addition, the incremental
learning method updates the shape statistics in a smoother way compared to
the work in [5]. Instead of segmenting each frame separately, the shape statistics
is incorporated into a modified sequential inference model for contour based
tracking to exploit the shape change dynamics from frame to frame. The prostate
boundary tracker starts with the global population-based shape statistics. As
more and more prostate boundary shapes from a particular patient are available
along with the tracking, the learned shape statistics will become patient-specific
and can quickly adapt to the prostate boundaries in a local neighborhood by
weighing more on the most recent shapes. Finally, since the proposed method
does not employ any numerical optimization, it is much faster compared to the
previous methods on prostate boundary delineation [2, 3, 5], which is a highly
desired feature for use in real-time interventional applications. The performance
of the method is demonstrated by tracking the prostate boundaries in a series
of TRUS sequences.

2 Incremental Shape Statistics Learning

Let a prostate contour St in the frame acquired at time t represented by a series
of k contour points, i.e. St = {vi

t|i = 1, . . . , k}. Each contour point vi
t is a 2D

vector {xi
t, y

i
t}. The contour points are equally spaced (Euclidean distance based

spacing) and sampled from the shapes [5, 9]. The active shape model (ASM)
introduced by Cootes et al. [8] is used in our work for shape modeling, which
provides a compact statistical shape representation by modeling contour point
distribution. Suppose that the shape statistics has been computed from previous
n prostate boundary observations at time t0. The shapes can be denoted by
A = {Si − S̄A|i = 1, . . . , n}, where S̄A = 1

n

∑n
i=1 Si is the mean shape. The

observed shapes can be decomposed by using the singular value decomposition
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(SVD) as A = UΣVT , where each column of U is an eigenvector of A and Σ is
a diagonal matrix containing the corresponding eigenvalues. With the computed
shape statistics, a new shape S can be represented by using the mean shape
and the eigenvectors linearly combined by a coefficient vector b = UT (S − S̄A).
The approximation of the shape S constrained by the shape statistics can be
obtained by Ŝ = S̄A + Ub.

As the TRUS probe moves to image different areas of the prostate gland, it is
desirable to use the newly available shapes to update the previous shape statistics
to have the patient-specific local prostate shape knowledge. Let B = {Si−S̄B|i =
1, . . . , m} represent the differences between the recent m shapes acquired after t0
and their mean shape S̄B = 1

m

∑m
i=1 Si. The objective is to merge the new shape

set B into the shape statistics computed from the set A at time t0. To achieve this
goal, the incremental subspace learning algorithm [6,7], which was originally used
for learning the appearance of a rectangular area in video frames, is modified to
incrementally learn the shape statistics of deformable contours. Thus, the shape
statistics can be updated by merging the new observations without recomputing
using all the training shapes. Let C denote the concatenation of shape sets A
and B. The mean shape in the new shape statistics is computed as

S̄C =
nf

nf + m
S̄A +

m

nf + m
S̄B, (1)

where f is a forgetting factor f ∈ R and 0 ≤ f ≤ 1. The smaller the value of
f , the faster the information from the old shape statistics is discarded, and vice
versa. To assist the effective SVD computation, let B̃ be the component of B

orthogonal to U and B̂ =
[
B1 · · · Bm

√
nm

n+m (S̄B − S̄A)
]
. The concatenated

matrix C can be expressed as C = [A B] = [U B̃]R
[
VT 0
0 I

]
, where R =[

fΣ UT B̂

0 B̃(B̂ − UUT B̂)

]
. Finally, the incrementally updated shape statistics of C

can be obtained as U′ = [U B̃]Ũ and Σ′ = Σ̃, where ŨΣ̃ṼT is the SVD of R.
The proposed incremental learning algorithm involves computation of QR

decomposition of a k × (m + 1) matrix and SVD of a (e + m + 1)× (e + m + 1)
matrix for each update, where e is the number of eigenshapes at t0. Compared to
the simplistic approach of applying SVD to a k×(n+m) matrix for recomputing
shape statistics at each step, our proposed method learns the shape statistics
in a more efficient way, especially when the number of training shapes n gets
large. There is also no need to store the k × n contour points of the old training
shapes. The resulted reduction in computational time and memory usage makes
the algorithm well-suited for real-time image-guidance tasks.

3 Sequential Inference Model for Tracking

Instead of separately segmenting each TRUS frame, the incremental shape statis-
tics learning algorithm is incorporated into a visual tracking framework for
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prostate boundary delineation to exploit the gradual shape transition along
with the movement of the TRUS probe. Given a set of observed TRUS frames
It = {Ii|i = 1, . . . , t}, the aim is to delineate the prostate shape St in the current
frame t, which can be formulated as to find St that maximizes the probability
p(St|It). By using Bayes’ theorem, we have

p(St|It) ∝ p(It|St)
∫

p(St|St−1)p(St−1|It−1)dSt−1. (2)

The probability p(St−1|It−1) denotes the tracking result obtained in the previous
frame. The probability p(St|St−1) describes the dynamic process of propagating
the prostate shapes from frame t−1 to frame t. The probability p(It|St) measures
how well the propagated contour St can be fit into the frame t. The details of
the probability terms on the right side of (2) are presented as follows.

For computational efficiency and robustness, prostate shapes are projected
into the subspace of the incrementally learned shape statistics by using an affine
transformation Tt and the coefficient vector bt as in Section 2

St = Tt

(
S̄t + Utbt

)
. (3)

Let xt = [xt, yt, θt, st, αt, φt]T be the translations along x and y axes, rotation
angle, scale, aspect ratio, and skew direction in the affine transformation. The
state vector Xt can be composed by concatenating the transformation parame-
ters and shape representation coefficients as Xt = [xt;bt]. The prostate shape
transition between the TRUS frames can be described as

Xt = Xt−1 + ΔX = [(xt + Δx); (bt + Δb)] , (4)

where the difference ΔX follows normal distribution N (ΔX; 0,Ψ) and Ψ is a
diagonal covariance matrix whose elements are the corresponding variances of
the elements in Xt. Therefore, we have

p(St|St−1) = p(Xt|Xt−1) = N (Xt;Xt−1,Ψ). (5)

The probability p(It|St) of observing TRUS frame It given a shape St can be
measured by the distance between St and the detected prostate boundary. The
dark-to-bright transition has been shown to be an effective prostate boundary
indication feature [9], which can be computed by the pixel intensity contrast
along the normal vector of the contours. Let {F i

max|i = 1, . . . , k} denote the
points with the maximal feature values corresponding to each contour point, the
probability p(It|St) can be measured

p(It|St) ∝ exp

(
− 1

2r2k

k∑
i=1

‖F i
max − xi

t‖2

)
, (6)

where r is the spacing between the points on the normal vector profile.
The particle filter based Condensation algorithm introduced by Isard and

Blake [10] is modified for solving this deformable contour tracking problem for-
mulated in (2). The workflow of the tracking method is shown in Fig. 1. Since the
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Fig. 1. Workflow of the particle filter based tracking method using the sequential in-

ference model

proposed method does not employ any numerical optimization, it runs in linear
time O(N), where N is the number of samples. The final shape can be estimated
by computing the expectation of all the samples Ŝt =

∑N
i=1 p(Si

t|It)Si
t.

4 Experimental Results

In our experiments, the proposed method was retrospectively tested on sequences
collected during TRUS guided prostate cancer biopsy procedures using an iU22
ultrasound system (Philips Healthcare, Andover, MA). The TRUS frames were
digitized by a video card at 30 frames per second (fps). Each grabbed TRUS
frame has 640×480 pixels and the pixel sizes were 0.1493mm and 0.1798mm
in 4cm and 5cm depth settings, respectively. In total, 3215 video frames were
grabbed from 20 different patients. An experienced radiologist manually de-
lineated the prostate boundary in one out of every ten frames of the TRUS
sequences, in total 316 frames, to provide the ground truth for validation.

In our experiments, the tracked prostate boundary was represented by a con-
tour with k = 64 points. The initial prostate shape statistics was computed using
62 prostate shapes previously obtained from a different data set. To quickly in-
corporate the newly tracked shapes into the shape statistics, the incremental
learning was performed in every frame. The forgetting factor f in (1) was em-
pirically set to 0.95 to weigh the learning more on the recently tracked contours,
while maintaining the smoothness of the incrementally learned shape statistics.
The number of samples N used in the particle filter is a trade-off between the
efficiency and accuracy. A larger number of samples may give a bit more accu-
rate tracking results, however, will also make the algorithm slower. The results
demonstrated in this paper were obtained by using N=1000 samples.

The proposed method starts tracking from a given initial contour, which can
be obtained by either manual delineation or using an automatic 2D TRUS image
segmentation algorithm [3,5]. The initial values of the affine transformation pa-
rameters and the shape representation coefficients can be computed by using the
initial contour. The variance of the normal distribution in the dynamical model
(5) was empirically set to be [2.0, 2.0, 0.001, 0.05, 0.05, 0.001] for the transforma-
tion part and

√
Σ/10 for the shape representation part. Only the first 3 most

significant eigenvectors in the shape statistics were used in our work. The pro-
posed method was developed in Matlab. Once initialized, it tracks the prostate
boundary in TRUS fully automatically. On a Core2 1.86 GHz PC, we achieved
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Table 1. MAD errors (mm) of the ASM and the proposed tracking method on delin-

eating the prostate boundary in the TRUS sequences

Method seq-1 seq-2 seq-3 seq-4 seq-5 seq-6 seq-7 seq-8 seq-9 seq-10

ASM 3.28 2.54 2.24 1.66 3.09 2.54 1.73 2.67 2.34 2.80

Tracking 0.95 1.92 1.45 1.62 2.16 0.83 0.63 0.76 1.54 1.36

seq-11seq-12seq-13seq-14seq-15seq-16seq-17seq-18seq-19seq-20 Average

ASM 1.66 1.20 3.01 1.63 3.02 4.73 1.92 2.97 2.53 2.61 2.51±0.78

Tracking 1.52 0.96 1.89 1.46 2.26 1.22 1.49 1.98 1.42 1.39 1.44±0.46
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√
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1U0

1 S̄1 ∓
√
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S̄0 S̄1 S̄2 S̄3 S̄4

Fig. 2. The 1st row shows the delineation of prostate boundary in TRUS with the

manually delineated contour in red and the automatic tracking result in yellow; the

2nd row shows the mean shapes in the incrementally learned shape statistics at each

stage corresponding to the video frames; the 3rd row shows the shapes generated by

varying the mean shapes with the largest mode of variation

12 fps with the above parameter setting. On the same computer, the ASM seg-
mented the sequences with 3 fps.

Fig. 2 shows the tracking results of a TRUS sequence and the learned shape
statistics corresponding to the displayed frames. It can be observed that the mean
shapes and the major shape components gradually change towards the tracked
shapes through incremental learning. Fig. 3 demonstrates the tracking results of
the proposed method in different regions of the prostate gland. The initialization
contours are included to show that the proposed method can successfully track
the prostate boundary when the prostate boundary shape becomes significantly
different from the initial shape. In general, the tracking results are close to the
manually delineated contours.

Besides the visual inspection, we also quantitatively evaluated the perfor-
mance of the proposed method. The ASM [8], which has been widely used for
segmenting the prostate in TRUS [2, 3, 5, 9], was applied to the same data set
by detecting the prostate boundary using the same boundary feature and initial
contours for comparison. For TRUS sequence segmentation, the result of ASM
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Fig. 3. The first column shows the initialized contours to start the tracking of each se-

quence. The rest two columns show the tracking results in different part of the prostate

gland, where the manually delineated contours are shown in red and the tracked con-

tours are shown in yellow.

Table 2. MAD errors (mm) of the ASM and the proposed tracking method in the

base, mid-gland, and apex areas over the 20 TRUS sequences, respectively

Method base mid-gland apex

ASM 2.53±1.17 1.48±0.59 3.52±1.63

Tracking 1.39±0.67 1.20±0.42 1.73±0.76

from one frame was propagated to the next as the initialization. The mean ab-
solute distance (MAD) error was employed for quantitative measurement. As
shown in Table 1, the accuracy of the proposed method was significantly better
than the ASM, which uses only the global population-based shape statistics. In
our work, the statistical significance was evaluated using paired t test (p <0.05).

It is also interesting to see the performance of the methods in each of the
base, mid-gland, and apex regions. For quantitative evaluation, the ground truth
segmentations of each patient were sequentially divided into three groups with
equal number of frames in each group. Since the sequence was obtained by
scanning through the prostate from the base to apex, the three groups were
labeled as base, mid-gland, and apex in the specified order. The evaluation results
are shown in Table 2. Compared to the ASM, prostate boundary delineation
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accuracy was significantly improved in all the regions by using the proposed
tracking approach with incrementally learning the shape statistics.

5 Conclusions

In this paper, we presented a new algorithm for incremental shape statistics
learning, which is well-suited for use in image-guidance applications due to its
computation and memory efficiency. The learning algorithm was successfully
incorporated into a modified sequential inference model to help achieve more ro-
bust and accurate delineation of the prostate boundary in TRUS over the entire
prostate gland. Experimental results show that the contour delineation error of
the proposed method was 42.6% less than that of the ASM. Significant improve-
ment was made in the base and apex areas with 45.1% and 50.1% less delineation
errors, respectively. To the best of our knowledge, the proposed tracking algo-
rithm is the first method that aims to extract the prostate boundary from TRUS
in real-time during image-guided prostate interventions. In our future work, we
will investigate more efficient software implementation of the algorithm and also
explore hardware acceleration to get the program run in real-time.
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Abstract. Visceral fat area (VFA) has close relationship with hypertension, 
diabetes and cardiovascular disease, and therefore serve as a reliable indicator 
of these diseases. Abdominal computed tomography (CT) enables precise quan-
tification of the VFA and has been considered as the gold standard for VFA as-
sessment. In this paper, we develope a novel method to quickly and accurately 
measure the VFA with ultrasonography (US). We evaluated the novel method 
on five volunteers and the diagnosis procedures lasted less than 30 seconds 
averagely. The simulation results by our method were compared with VFA 
estimated by abdominal CT. The correlation coefficient between them was 
0.913 for men and 0.858 for women. And the mean deviation of between VFA 
by CT and by our method was  for men and  for women. 

1   Introduction 

The term metabolic syndrome (MS), a combination of medical disorders that increase 
the risk of chronic diseases such as diabetes, hypertension, and cardiovascular 
disease, has been adopted by International Diabetes Federation (IDF) in 2006. MS is a 
major public health problem, the prevalence of which has increased worldwide. 
Visceral obesity, the excess accumulation of visceral fat deposits mainly around the 
waist, is thought to be a fundamental pathology for MS in particular. Therefore, 
accurate measurement of visceral fat represents an important tool in assessing MS. 

Visceral fat, also known as organ fat, packes in between internal organs and the 
torso, as opposed to subcutaneous fat which is found underneath the skin. Since 
visceral fat is located deep inside the body and mixed with other organs, its accurate 
assessment has prooven to be challenging work. Abdominal computed tomography 
(CT) has been considered the most accurate and reproducible technique of body fat 
measurement, particularly abdominal adipose tissue. Abdominal CT enables accurate 
quantification of the visceral fat area (VFA) and therefore serves as the gold standard 
for visceral fat assessment [1]. However, abdominal CT has many drawbacks, 
including exposure to radiation, lack of simplicity, high cost, and time-consuming. 
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Due to these limitations, a variety of alternative methods are being used to assess 
visceral fat amount and distribution. Previous studies have shown that waist circumfe-
rence (WC), and WC-based indices can perform as some indicators of the level of 
visceral obesity [2]. These measurements are recommended as a simpler and easier 
screening method. However, due to the lack of the individual visualization of visceral 
fat, these methods have fatal drawbacks such as inability to distinguish subcutaneous 
fat from visceral fat, inability to take into account an individual’s specific informa-
tion, low level of reproducibility in the case of marked obesity, and most important, 
poor accuracy. 

In recent years, simple methods for assessing visceral fat accumulation using 
ultrasonography (US) have been studied and were further confirmed by strong corre-
lations with CT-detected VFA [3][4]. Ultrasound has many advantages such as non 
invasive to human bodies, low-cost, easy to be operated, real time and enables the 
visualization of visceral fat. Therefore, US-based methods show a balance on simplic-
ity and accuracy between abdominal CT and WC-based indices. However, due to the 
poor image quality and limited visual field of US, the results of the existing US-based 
methods are still unsatisfactory and need further improvements. 

In the study, a fast and accurate method is developed for visceral obesity studies to 
provided an estimation of the abdominal visceral fat area and distribution using ultra-
sonography. 

2   Method 

2.1   Ultrasound Probe Compatible Device 

To provide a quick, easy-operated and accurate way to guide the ultrasonographic 
procedures, three factors are important: 1) Same positions and angles for ultrasound 
probe on different patients during diagnosis; 2) Distinct markers easy to be observable 
in US image; 3) Quantitive measurement on patients’ curvature of abdomen. 

We designed a belt-shaped ultrasound probe compatible device to fulfill these re-
quirements (Fig.1). Two kinds of US measurements of visceral fat are taken. Firstly, 
US-determined visceral fat distance is defined as the distance between the internal 
face of the rectus abdominis muscle and the centre of the aorta from each diagnostic 
position. Secondly, the images acquire from the central position were saved for fur-
ther processing. 

Unlike CT, the ultrasound can only provide a limited scope inside one patient's 
body. The diagnosing angle and position of probe may differ from doctor to doctor 
due to their own experiences. This belt-shaped device provides doctors a standard 
which is easy to follow. In the visual field of an abdominal US, due to the flow of 
blood, the aorta is nearly the most distinct marker for US. Thus, the belt-shaped de-
vice is designed to be fixed in the exact position from where the aorta can be observed 
most clearly. As a result, the diagnosis process will be finished in seconds, which is 
convenient for patients as well. With an elastic material, this belt-shaped device 
would bend smoothly and mold to patient's abdomen. It is easy to understand that: a 
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patient with mild visceral obesity in normal range of waist circumference would have 
a 'flatter' shape in abdomen, which means that the belt-shaped device will less bend 
when diagnosing, while a patient with more serious visceral obesity would get a 
'plumper' waist, and resultingly more bent the belt-shaped device becomes when 
diagnosing. Hence, the curvature of the belt is proportional to the curvature of 
abdomen, which can serve as valuable characteristic of individual seriousness level of 
visceral obesity and give a reasonable classification of patients.With three probe-
diagnosing positions rather than one, the curvature of abdomen can be described 
quantitively.  

(a)    (b)  

Fig. 1. Ultrasound probe compatible device. Distance and angle between two adjacent probes 
are 50mm and  in unbent situation. (a) Belt-shaped device design (b) Measurement method. 

2.2   Segmentation of Visceral Fat Area 

Analyzed results based on hundreds of abdominal CT images show that most visceral 
area of patient in his/her abdominal cross-section could be simulated as an ellipse, 
with aorta in the center. Although this approach may not be very exact for individual 
patient, the eccentricity of ellipse reflects the curvature of abdomen and therefore 
serves as a quantitive description of visceral obesity. 

The ultrasound probe were detecting from three positions by the belt-shaped de-
vice. The information we can acquire contains: , denotes the distance between the 
internal face of the rectus abdominis muscle and the centre of the aorta detected from 
front,  and is defined as semi-minor axis of ellipse; , denotes the distance between 
front-end of ultrasound probe in the central diagnosing position and the centre of the 
aorta detected from front, , denotes the same distance detected from one side; , 
denotes the distance between two probes (50mm); , denotes the curve length be-
tween  and  derived from  by as showed in Fig. 2(a). Then, by 
ellipse circumference and ellipse parametric equation, we can calculate: , denotes 
the semi-major axis; , denotes the angle between two probes. 

For abdominal cross-section of a patient who has been diagnosed (denotes as pa-
tient ), we discretize the visceral area based on the ellipse approach as follow. The 
ellipse is divided uniformly by angle and axis length. Each section is identified by a 
number . For patient , we define the area of section  as , the fat percentage of 
section  as . Succinctly, we have  and 

, where  refers to the total number of sections (In this paper, 
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). Similar with a matrix, we can define , the neighbourhood 
of  as: the fat percentages of sections who share the same edges or vertices with 
section  (Fig.2(b)). Immediately, there follows 

 . (1) 

The computation of is trivial and main difficulty is how to give a reasonable esti-
mation of .  

In order to distinguish the visceral fat from other organs, we used a Markov Ran-
dom Field (MRF) based segmentation algorithm (Fig. 3). The main process of this 
algorithm follows [5]. We must declare here that this kind of algorithms were not 
developed specially for solving the fat recognition problem of ultrasonographic im-
age, and have never been introduced into this field.  

 (a)     (b)  

Fig. 2. Ellipse approach of abdominal cross-section. (a) Parameters of ellipse. Red part is the 
visceral fat. Grey part is other organs. (b) Neighbourhood in a discretized ellipse. Green part 
refers to , the neighbourhood of . 

(a)    (b)    (c)  

Fig. 3. Distinction of visceral fat. (a) Original US image. The colorful part in central indicates 
aorta. (b) Segmentation of visceral fat. The white part indicates the visceral fat area. (c) Match-
ing US visual field into the whole visceral area. 

2.3   Matching with Pre- tored Data 

In this part, we compare the ultrasonographic image of patient , with pre-stored CT 
scanned image of previous patients, and choose the patients whose situations are most 
similar with the current patient. We established a set V from 146 patients abdominal 
CT scanned images in a urban hospital, which cover full gamut of patients in its 
community. This pre-stored CT scanned images served as a pre-stored database with 
which the current patient  can compare. 

s

 Fast and Accurate Ultrasonography for Visceral Fat Measurement 53 



The visual field of ultrasonography is only local. So, we match the ultrasonography 
into the whole visceral area, and divide it into  sections following the previous part 
(Fig. 3(c)). We denote section  has area and fat percentage , for every 

. We have an estimation of  components of , and the problem now 
is how to estimate the fat percentage of the remaining  hidden sections 

. For CT images, the discretization of ellipse can be ac-
complished without difficulty. Then, section  of patient , has the fat percentage 

. Naturally, there is . 
Now, we want to find out the patients from V whose situations are most similar 

with patient . As a result, the visceral fat distributions of those patients would serve 
as references for patient . We evaluate the correlative level between patient  and 
patient k by matching  and . We use the Grey-Level Cor-
relation Formula to accomplish it 

 , (2) 

where  and  refer to the average of  and  respec-
tively. Before the matching process, the patients whose eccentricity  and minor axis 

 differ too large from patient  will be rejected in order to accelerate. The 10 pa-
tients with max value of  compose the set B. The CT image of those chosen pa-
tients would serve as the basis of fat estimation of current patient .  

We expect that  can be expressed as a ‘combination’ of patients from B and 
this combination can reflect the visceral fat distribution of patient . To achieve it, we 
establish an optimization standard. By (3), we defines the cost at one section, and (4) 
is the integrally cost, which should be minimized. Consider , the neighbour-
hood of . We give a choice not only realizing optimization at single  itself, but 
also throughout its neighbourhood . We define the distance cost function between 
patient  and patient  at section i as 

 ,  , (3) 

where  and refers to the neighbourhood of and  respectively. Hence, 
integrally, the  should be the vector who satisfies that 

, 

, for .

(4) 

Consequently, the determination of  has been transformed into an optimization 
problem. This numerical optimization is performed automatically by a constraint 
nonlinear conjugate gradient method (CGM).  

3   Experiment Results 

In this part, all correlations between two variables were evaluated using Pearson's 
product-moment correlation coefficient. Comparisons between each two groups were 
done with an unpaired t-test.  

54 Y. Zhou et al. 



3.1   Evaluation Experiment of US 

We tested the belt-shaped ultrasound probe compatible device on five volunteers from 
an urban community. All our ultrasonographic procedures were performed by the 
same examiner using a portable ultrasonography equipment ( , ALOKA, Japan). 
The center of the belt-shaped device fixed exactly 2 cm left to umbilicus for each 
patient. Each patient assumed a supine position, and US data were measured at the 
end of expiration by a 6-MHz 2D abdominal probe, while the probe was making con-
tact with patients’ skin as slight as possible (Fig.4). 

    For  each  volunteer, the diagnosis procedures lasted  less than 30 seconds.  This 
 quite  an  acceptable  time  during  a  medical  examination.  In  addition , More quick 

diagnosis speed is also expectable in the future if doctors become more proficient in 
this novel method. 

 

Fig. 4. Practical diagnosis procedures for a patient. (a) Diagnosis by US. (b) Distance of viscer-
al fat measured in US image. (c) Belt-shaped ultrasound probe compatible device. 

3.2   Campare with CT Results  

Simulation on 146 patients’ abdominal CT images were done and showed that there 
was strong correlation between the US observed VFA from front psotion and the total 
VFA of an individual patient. The coefficent was r = 0.883 and the level of 
significance was p-value < 2.2e-16 (Fig. 5). As a result, it is reasonable to use the US 
observed fat percentage as an indicator for total VFA. 

Since abdominal CT holds the most accurate quantification of the VFA, we treated 
it as the testing standard for visceral fat assessment. Abdominal cross-section by CT 
scanning was obtained in a single tomographic slice at umbilical level as ultrasound 
probe did. Portions with a CT number of −200 to −10 Hounsfield Units (HU) were 
separated as adipose tissue and their areas were automatically calculated.  

 

is
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We simulated our method on 28 male and 35 female samples, and compared the 
results with abdominal CT. Figure 6 shows the comparisons of CT and our US-based 
method. The mean deviation between VFA measured by CT and our US method for 
each patient is  for men and  for women. The correlation between 
these two groups is also presented. For men, the coefficent was r = 0.913 and the level 
of significance was p-value = 1.179e-11. For women, there are r = 0.858 and p-value 
= 4.674e-11. These results proofed the significant positive correlations between VFA 
measured by CT and by our method. 

And we also divided these 63 patients in both sex into three groups by the CT-
measured VFA: low (  ), medium (between and ) and 
high ( > ). The average and max VFA deviations between US method and 
CT method of these three groups were shown in Table 1. From this table, it is easy to 
notice that our US-based method performed better on the medium group than other 
two groups averagely. The reason of this is that the data per-stored data mainly laid 
mainly in this VFA range. Thus, the result reminds us that the pre-stored database is 
very essential for our method and it must cover full range of patients in enough quan-
tities. On the other hand, the max VFA deviations are all too large in three groups. 
This demonstrates that there are many personal detailed characteristics of certain 
patients have been omitted in our method, which should be checked carefully for the 
further improvement of this US-based method. 

 

Fig. 5. Scattergram of relationship between US observed VFA and the total VFA 

   

Fig. 6. Camprison of our US-based method and CT for men and women 
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Table 1. VFA deviations between US_method and CT_method in different groups 

Groups low medium high 
Numbers of patients 17 25 21 

VFA deviations 
( ) 

Average 15.7 9.1 27.3 
Max  42.2 36.9 37.3 

4   Discussions and Conclusion  

This paper proposes a novel US-based method for estimation of the VFA. A fast and 
convenient diagnosis method was introduced and a robust algorithm was proposed to 
estimate a patient’s VFA from US data automatically. As far as we know, this is the 
first attempt to compute VFA by ultrasound, and our results were shown to be strong-
ly correlated with CT measurements.  

However, one main limitation of this present study is that all the data of patients 
were collected from the same ethnic group. Thus, the results cannot generalize direct-
ly to other individuals of certain ethnic groups. For instance, the female body type in 
particular differs largely between Westerners and Easterners. As a result, how to ap-
ply this novel method universally needs further discussions. 

Till now, we have developed a US-based method whose accuracy reaches the level 
of abdominal CT. However, it is not an entirely impossible thing that the US-based 
method will become a more reliable indicator for MS than abdominal CT in the 
future. Due to the non-invasiveness and simplity of US, diagnosis at different levels 
of the abdomen will be accomplished without much difficulties. Consequencely, 3D 
individual visualization and estimation of  visceral fat can be realized by US, while 
usually only one slice of abdominal cross-section image can be acquired by CT in 
medical examination due to the harmness of rediation. Secondly, due to its real-time 
characteristics, US allows us to detect visceral fat over a period of time. One patient’s 
abdominal cross-sectional area when expiring will differ largely from inspiring. 
Abdominal CT cannot take this difference into consider and therefore would be less 
convincing than US in this respect. Further, by US, we may represent a useful method 
for monitoring weight loss, variations and transfer of visceral fat, which can be ex-
pected to indicate the associated risks of MS more accurately. 

In conclusion, although its results are still rough and there are many details need 
discussing, the present US-based method has proofed to be a considerably fast and 
accurate way for VFA estimation. 
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Abstract. Intravascular Ultrasound (IVUS) is an image-guiding tech-

nique for cardiovascular diagnostic, providing cross-sectional images of

vessels. During the acquisition, the catheter is pulled back (pullback) at

a constant speed in order to acquire spatially subsequent images of the

artery. However, during this procedure, the heart twist produces a swing-

ing fluctuation of the probe position along the vessel axis. In this paper

we propose a real-time gating algorithm based on the analysis of motion
blur variations during the IVUS sequence. Quantitative tests performed

on an in-vitro ground truth data base shown that our method is superior

to state of the art algorithms both in computational speed and accuracy.

1 Introduction

Intravascular Ultrasound is a catheter-based invasive diagnostic procedure used
intraoperatively to assess cardiovascular diseases. The ultrasound probe is placed
at the tip of the catheter and, while rotating on its axis, it emits and receives
ultrasound pulses, successively reconstructed in radially distributed A-lines. The
envelope detection of acquired radio frequency signals allows the reconstruction
of cross-sectional images of the artery. During the acquisition, the catheter is
pulled back at a constant speed in order to acquire spatially subsequent images
of the artery. However, during this procedure, the heart twisting produces arti-
ficial fluctuations of the probe position along the vessel axis (swinging effect).
Moreover, due to the heart cyclic contraction/expansion, an apparent rotation
with respect to the catheter axis and in-plane translation can be observed.

The image visualization and automatic analysis, e.g. volumetric lumen seg-
mentation and/or volumetric plaque characterization of IVUS pullbacks require
a pre-processing motion compensation [1,2]. Given the intraoperative nature of
IVUS imaging and the need of instantaneous diagnosis of the patient conditions,
the motion compensation cannot be computed off-line and the computational
cost of the gating algorithm must be very low. The combined effect of the three
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movements can be reduced by image-based gating algorithms [3,4,5] i.e. by ex-
tracting the most stable frames from the pullback sequence. Such techniques
are composed by two parts: 1 - the extraction of a signal (1D or 2D) correlated
with the cardiac phase; 2 - the selection of stable frames based on the previously
extracted signal. The method in [3] extracts two signals based on two different
principles; they conclude that the more reliable is based on the computation
of the Absolute Intensity Difference (AID) applied to subsequent frames of a
circular ROI centered in the middle of the short-axis image. The method in
[4] computes a Dissimilarity Matrix based on the Normalized Cross Correlation
(NCC) between couples of frames; subsequently a dynamic programming algo-
rithm finds optimal gating frames. In [5], the method by O’Malley et. al. [4] is
modified using a textural descriptor for each frames and computes the dissimi-
larity matrix in a faster and robust way; moreover, the dynamic programming
algorithm has been substituted by a local minima search in a 1D signal obtained
from the dissimilarity matrix. It is important to stress that the quality of an
image-based gating algorithm strongly depends on the ability of the method to
extract a signal (1D or 2D) correlated with the actual vessel oscillation. In this
paper, we present a novel and real-time image-based gating method that exploits
motion blur variations during the cardiac cycle in coronary artery pullbacks.

Up to now, the experiments to validate image-gating techniques are question-
able. The ECG signal used in the validation of [4] has been demonstrated to be
a suboptimal descriptor of the relative oscillations between the catheter tip and
the coronary artery [6]. In [5] the authors propose an indirect methodology to
assess the smoothness of the reconstructed sequence.

In this paper a reliable validation of the technique is obtained by designing a
novel ad-hoc in-vitro experiment in which ground-truth data was generated using
an oscillating mechanical device. The performance of our algorithm is compared
against the other state-of-the-art methods using such reference data.

2 Method

Image gating algorithms consist of two stages: the extraction of a 1D or 2D signal
correlating with the cardiac cycle and the identification of the signal’s instants
corresponding to the most stable cardiac frames.

2.1 Cardiac Signal Extraction

The proposed cardiac signal extraction is based on the idea that, provided a high
frame rate acquisition equipment, every tissue displacement causes, in the image
being captured, a motion blur proportional to the speed of the tissue movement.
We propose a motion blur intensity estimator B(I) computed as minus the
average of the absolute value of vertical derivative over the polar IVUS image:

B(I) = −E

(∣∣∣∣δI(r, θ)
δr

∣∣∣∣) (1)
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Fig. 1. Trend of the motion blur estimation on the simulated blurred IVUS images

where r is the radial position and θ is the angle of the probe during the image
scan. The estimation is averaged (expected value E) over all the image A-lines
in order to reduce outliers effect. In order to illustrate the suitability of the
proposed estimator, we simulate increasing motion blur effect in a set of in-vivo
IVUS image. Such phenomenon can be modeled by a convolution between the
non-degraded image with a set of linear point spread functions (PSFs) with
increasing length. This causes a blurring of the image, and thus the reduction
of edge sharpness [7] [8]. Figure 1 shows the plot of the estimator B over the
length of the simulated motion blur PSF. Since the actual PSF in clinical images
is unknown, each PSF has been rotated in steps of 10◦. This resulted in a set
of curves exhibiting similar trends. The relationship between B and the PSF
length is monotonically non decreasing and thus suitable to compute comparison
between different frames. In order to obtain the variation of the motion blur
during the sequence, we apply equation (1) to all the images in the sequence
obtaining a signal B(It), where t is the temporal variable, as depicted in Figure
2 (a). It is important to highlight that changes in the vessel structures, e.g.
plaques, bifurcations, etc., modify the image texture thus influencing the signal
B(It), as it can be seen in Figure 2 (a). Since the pullback speed is significantly
lower than the speed of the oscillation [4], we can separate the oscillatory part
of the signal B(It) from the changes in the vessel structure. This has been done
by applying a Butterworth high-pass filter (order = 10) with cut-off at 0.5Hz,
obtaining the signal BHP (It). An oscillation below 0.5Hz is below 30 beat per
minute (BPM) and thus it cannot be related to phenomena induced by heart
beating. Figure 2 (b) shows the high-pass filtered version of the signal B(It);
periodic local minima, spaced about 1 second to the other, can be easily identified
(see Figure 2 (c)). This repeating pattern has a frequency of 1.02±0.06̄Hz which
is in agreement with the ECG captured during the pullback (1.13Hz). The peak
at about 1 Hz and the harmonics at multiple frequencies in Figure 2 (d) confirm
the periodic nature of the signal. A possible explanation of the sharp periodical
variations (from local minima to local maxima) in the BHP (It) signal can be
drawn from the physiology of the cardiac cycle. The systolic phase is composed
by the iso-volumetric contraction followed by the blood ejection from the left
chamber. During the iso-volumetric contraction the pressure increases until the
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Fig. 2. Motion blur signal B(It) obtained from a patient sequence (a); its respective

high-pass filtered version BHF (It) (b); first 10 seconds of the signal BHF (It) (c); am-

plitude of the Fourier transform of BHF (It) (d)

ventricle pressure exceeds the aortic pressure, causing the abrupt opening of the
aortic valve. This causes the sudden heart motion due to the rapid ejection of
the blood, reflecting to a motion that can be captured by the proposed motion
blur estimator.

2.2 Gating

Once the motion blur signal BHF (It) is computed, the stable frames in an ar-
terial IVUS sequence must be reliably identified. Unfortunately not all the local
minima corresponds to stable frames, so noise artifacts must be discarded. As it
can be noticed in Figure 2 (c), the local minima corresponding to a stable frame
are immediately followed by a local maximum. Exploiting this fact, we propose a
method that selects a set of stable frame candidates among the local minima of
BHF (It). A local minimum is retained as candidate if it is immediately followed
by a local maximum which satisfy a zero-crossing criteria. The list of candidates
is further refined by removing cases in which the gradient between the couple
of minimum-maximum is lower than a certain threshold T . T is computed such
that it separates the gradient distribution in two distinct modes.
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3 Results

In this section, the proposed image-gating algorithm is quantitatively validated,
and its performance are compared against the state-of-the-art methods. Reliable
ground-truth data was obtained by designing a novel ad-hoc experiment.

3.1 In vitro Experiment

A mechanical device simulating the periodical heart movements has been de-
signed in order to generate reliable ground-truth data. Figure 3 shows the me-
chanical device and its power supply. The apparatus is composed by a rotating
eccentric wheel connected to a transversal arm generating horizontal swing-
ing oscillations. The amplitude of the oscillation ΔL can be tuned using a
regulating knob from 1 to 5 mm, in steps of 1 mm. The oscillation speed
can be controlled setting the power supply voltage V , following the equation
F [BPM ] = 4.1912 [BPM/V olts] V [V olts]. The catheter guide is connected to
the oscillating arm. A total of 21 pullbacks from three post-mortem arteries have
been acquired at 30 frame/s using a Galaxy II IVUS Imaging System (Boston
Scientific) and a catheter Atlantis SR Pro 40 MHz (Boston Scientific). For each
artery 7 pullbacks have been recorded varying the mechanical device parameters
(ΔL = {1, 2, 3, 4} mm, F = 60 [BPM] and ΔL = 3 mm, F = {50, 60, 70, 80}
[BPM]). Each sequence contains 1000 frames, of 33.3 s duration. It is worth
to note that the maximal frequency resolution using a 30 frame/s acquisition
setup is of 0.06̄ Hz (4 BPM) and that the methodological incertitude induced
by the power supply, (approximately ±0.5 V), produces a methodological error
in the oscillation frequency of ±2 [BPM]. Such uncertainties must be accounted
in the method evaluation. The sequences are available for research purpose and
can be obtained under request.

Fig. 3. Picture of the ad-hoc oscillating device and its power supply

3.2 Quantitative Evaluation

To quantitatively and fairly assess the performance of each image gating meth-
ods, we designed a measure that is robust to the methodological uncertainties.
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Fig. 5. SNR performance of different gating algorithms applied to three post-mortem
arteries (a,b and c). Dots indicate the performance for each sequence while the gray

bar is the average score. The plot in (d) shows the average computation (1000 frame

sequence) for the 4 tested algorithms; it is important to note that the times scale is

logarithmic.

For every sequence the nominal oscillation frequency fN is known. Thus, we
introduce the Signal to Noise Ratio (in dB) defined as follows:

SNRdB = 20 log

( ∫
ξ
|S(ξ)|HfN (ξ)∫

ξ
|S(ξ)|(1 −HfN (ξ))

)
(2)
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Input IVUS sequence

AID OM

GA MOT

Fig. 6. Longitudinal cut of an input IVUS sequence and the reconstructed longitudinal

cuts obtained using different image-based gating algorithms

where S(ξ) is the Fourier transform of the signal s(t) produced by a given al-
gorithm; H is a frequency filter designed to filter out the frequencies that are
not related with the nominal one (fN ). Hence, the numerator of equation (2)
represents the energy of the signal, related to the nominal frequency fN , while
the denominator corresponds to the energy of the signal not related with the
oscillation, i.e. the noise of the signal. In such way, the higher is the SNR,
the better the image-gating technique extracts the oscillatory component from
the image sequence. The filter H(ξ) is designed as follows:

HfN (ξ) =
M∑

n=1

exp
(
− (ξ − nfN)2

2σ2
M

)
(3)

An example of |S(ξ)| and the filter HfN (ξ), are shown in figure 4 in solid and
dashed lines respectively. Since the catheter can bend inside the artery, the
catheter tip oscillation is not perfectly sinusoidal. To account for this mechan-
ical limitation, the filter of equation (3) includes higher harmonics. Using the
defined SNR measure, we tested the methods in [3] (AID method), [4] (OM
algorithm) and [5] (GA) compared with our technique (MOT). Figure 5 (a-c)
shows the results on three different post-mortem arteries. As it can be notice, the
proposed method outperforms other methods in all three arteries. However, for
the artery in figure 5 (b), the dispersion of AID and MOT is large. The ANOVA
test confirmed that the results of our method are statistically significant with
respect to AID for the first two arteries, while it is not for the third one. Fig-
ure 5 (d) shows the average computational time, for a 1000 frame sequence, in
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seconds. The computational time of our method is of the same order of the
fastest algorithm (AID) as it can be seen in figure 5 (d).

3.3 Qualitative In-vitro Evaluation

A qualitative comparison of the image-gating methods is illustrated in figure 6,
showing a longitudinal cut of an IVUS sequence and the resulting longitudinal
cuts obtained using the four gating algorithms. The input longitudinal cut has
been obtained from a sequence of the proposed ground-truth data; its appear-
ance is very similar to in-vivo acquired sequences, showing the typical saw-tooth
shaped artifact. It can be noticed that the result of OM and GA are very similar
since GA is an improvement of OM. In this sequence, the difference between AID
and MOT is not easily noticeable, while their superior performance with respect
to OM and GA is evident, especially observing the arterial tissue sharpness.

4 Conclusion

In this paper we proposed a real-time gating algorithm based on the analysis of
motion blur variations during the IVUS sequence. For the first time in literature,
a reliable validation of image-based gating techniques is performed. The algo-
rithm have been tested on ground-truth data generated by an ad-hoc oscillating
mechanical device. The proposed method outperforms the other state-of-the-art
algorithms both in SNR and computational complexity. Future work will be
addressed to an extensive validation of the method with several post-mortem
arteries.
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Abstract. Motivation: Spinal needle injections are technically demand-

ing procedures. The use of ultrasound image guidance without prior CT

and MR imagery promises to improve the efficacy and safety of these

procedures in an affordable manner. Methodology: We propose to cre-

ate a statistical shape model of the lumbar spine and warp this atlas

to patient-specific ultrasound images during the needle placement proce-

dure. From CT image volumes of 35 patients, statistical shape model of

the L3 vertebra is built, including mean shape and main modes of vari-

ation. This shape model is registered to the ultrasound data by simul-

taneously optimizing the parameters of the model and its relative pose.

Ground-truth data was established by printing 3D anatomical models of

3 patients using a rapid prototyping. CT and ultrasound data of these

models were registered using fiducial markers. Results: Pairwise registra-

tion of the statistical shape model and 3D ultrasound images led to a

mean target registration error of 3.4 mm, while 81% of all cases yielded

clinically acceptable accuracy below the 3.5 mm threshold.

1 Introduction

Spinal needle injection is widely applied in analgetic and diagnostic purposes [1].
In the management of back pain, epidural anesthesia, facet joint injections and
nerve blocks are common forms of these interventions, performed in great num-
bers in hospitals and radiology clinics. Back pain is the second most common
reason for a visit to the physician. In the United States alone, approximately
90% of adults will experience back pain at some point in their life. Nearly 50%
of the current working population has reported some history of back pain; this
is the leading cause for missed work time and seriously degrades on-the-job per-
formance [2]. In back pain management, accessing the lumbar epidural space
presents major difficulties. The success rate of proper needle insertion is a dis-
mal 60% after 10 attempts [3] when no guidance is used, clearly an inadequate
practice. Contemporary radiological needle guidance with CT and fluoroscopy
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requires specialized facilities often unavailable to patients living in rural areas,
and involve X-ray radiation. In search of a more accessible, portable, and non-
toxic imaging alternative, ultrasound guidance has been considered. Watson et
al. [4] and Klocke et al. [5] targeted the L3-L4 and L2-L3 interspace, a chal-
lenging procedure that, if performed inaccurately, damages the spinal cord. The
results suggested that ultrasound as a solo guidance is inadequate. To address
this issue, combination of ultrasound with CT has been proposed [6,7,8]. In these
studies, the auxiliary information is necessary for guidance, but as stated above,
either unobtainable or involves ionizing radiation. Hence, the use of statistical
shape models is a logical alternative.

Previously in the literature, statistical shape models (or atlases) have been
considered as an alternative to pre-operative CT scans [9,10,11]. These atlases
are generally divided into two main categories: those that describe the out-
line of objects (geometrical atlases) [9,10,11,12,13] and those that contain both
the geometrical and internal density distribution of the object (volumetric at-
lases) [14,15,16]. As an example of geometrical atlases, [17] captures the varia-
tions in pose of each vertebra and builds a model for the curvature of the spine.
The feasibility of ultrasound registration to a statistical atlas of femur has been
previously investigated [18]. In [12] a geometrical atlas to ultrasound registration
of the pelvis is performed. While geometrical atlases are computationally less ex-
pensive, they are prone to bone surface segmentation errors in ultrasound data.

Our contribution is the first report of a volumetric vertebral atlas and its reg-
istration to 3D ultrasound without prior segmentation. We demonstrate a feasi-
bility study on the L3 vertebrae, one of the most problematic anatomical sites
in spinal pain management. In departure from the prior art using tetrahedral
mesh and Bernstein polynomials [13], we employ a simple but generic approach
based on the B-spline deformable transformation that allows for straightforward
extension for an ensemble of vertebrae and relevant structures [14,15,16].

2 Method

2.1 Construction of the Statistical Shape Model

Figure 1 demonstrates the atlas model construction process. A set of CT images,
acquired from 38 patients (19 male and 19 female), was used in this study. Data
was collected under the approval of the research ethics board, and the patients
involved provided informed consent for this data to be used in the research.
Using ITK-Snap, the L3 vertebra was semi-automatically segmented from the
CT volumes (each containing 120× 200 × 100 voxels with an isotropic spacing
of 0.6 mm). The patient data was divided into two groups: 35 for constructing
the atlas (hereafter referred to as training data), and 3 for validation (two male
and one female). One of the CT volumes for atlas construction was chosen as
the template It. Each training example, Ik, is registered to the template by
a rigid registration followed by a B-spline deformable registration, such that
It ≈ T k

def(T
k
rigid(Ik)) , where T(.) denotes a transform. B-spline registration is

performed in a 40 × 30 × 30 grid using Mattes Mutual Information metric. To
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Fig. 1. Outline of the atlas construction method from a set of CT images

reduce the deformable registration time, a three stage multi-resolution approach
is implemented. Each deformable registration took between two and four hours
on a Core 2 Quad CPU machine with 2.4 GHz speed and 3 GB of RAM. With
the deformable transform of all the training examples known with respect to
the template, principal component analysis (PCA) is performed to construct the
statistical atlas for the L3 vertebrae.

After the atlas is constructed it can be used to generate new instances of the
population. A new instance of the atlas, defined by the deformation vector, Dnew

,can be produced by a linear combination of the mean deformation vector, φ̄,
atlas weights, wi, and the eigenvectors of the covariance matrix generated from
all the deformation fields, vi, as follows:

Dnew = φ̄ +
N∑

i=1

wivi (1)

2.2 Statistical Atlas to Ultrasound Registration

The registration framework is shown in Figure 2. First, the mean shape of the L3
atlas is rigidly registered to the 3D ultrasound volume by simulating ultrasound
images from the atlas, and performing an intra-modality registration with the 3D
ultrasound images [19]. The similarity metric used is the Linear Correlation of
Linear Combinations (LC2) [19] between the actual and the simulated ultrasound
images, and is computed from the atlas volume using:

LC2 =
∑

(U(x, y) − f(x, y))2

M × V ar(U)
(2)

where f is the simulated ultrasound image, U is the actual ultrasound image and
M is the number of overlapping voxels between the ultrasound and the atlas vol-
ume. We used the Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
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Fig. 2. Outline of statistical atlas to ultrasound registration method

as the optimization method [20]. Following the initial rigid registration, we per-
formed deformable registration of the atlas model to the 3D ultrasound data by
simultaneously creating new instances of the atlas and updating the rigid trans-
formation and the atlas parameters, while optimizing the LC2 similarity metric.

3 Experiments and Results

3.1 Statistical Shape Model

We investigated whether the statistical shape model generated from L3 can span
the space of shape variations in the patient population. For this purpose, we
used a leave-one-out cross registration with the CT data. In each step, we left
out one of the patient CTs for testing, created the atlas from the rest of the
data, and registered the created atlas to the remaining patient CT. This process
was repeated by selecting each CT data once as the testing data. Throughout
the process, the template was held constant. To validate the model, we used
the first 12 eigenvectors which covered 95% of the total modes of variation. The
registration process used Mattes Mutual Information and deformable B-Spline
registration, in conjunction with the CMA-ES optimizer to solve for the atlas
model and rigid registration parameters.

As in [9], the Root Mean Square (RMS) error between the closest surface
points of registered atlas and the test data was used to measure the capability of
the atlas to capture the deformations within the patient population. The mean
error across all registrations was 0.89 mm with a standard deviation of 0.19 mm.

3.2 Registration of the Atlas to Ultrasound Images

In a second set of experiments, we aim to show how well the constructed atlas
can be deformed and reoriented to match the shape and position of the patient
vertebra using the acquired 3D ultrasound images. In each registration, we si-
multaneously optimized 12 shape and 6 rigid parameters, which correspond to
the first 12 PCA eigenvectors and the pose respectively.
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Fig. 3. Transverse (left), sagittal (center), and coronal (right) slices of the original

US volume overlayed with the bone contours of the misaligned (top) and registered

(bottom) atlas volumes

The three excluded CT volumes from the atlas generation process (see Sec-
tion 2.1) were used to construct 3D CAD models of the entire lumbar spine, in-
cluding L1 to L5. These models were printed using a Cimetrix 3D shape printer
(Cimetrix Solutions, Oshawa, ON, Canada). Three spine phantoms were con-
structed by submerging these models in an agargelatine-based tissue phantom
which was designed to simulate the appearance of soft tissue in ultrasound. A
high-resolution CT image (0.46 × 0.46 × 0.625 mm) and an ultrasound volume
were acquired from each phantom. The ultrasound volume was reconstructed
from a freehand sweep with an L14-5/38 linear-array transducer (Ultrasonix,
Richmond, BC, Canada) operating at 6.6 MHz with an imaging depth of 5.5 cm.
The probe was tracked using an Optotrack Certus System (Northern Digital Inc.,
Waterloo, ON, Canada) and calibrated using an N-wire phantom [21]. The phan-
tom CT and ultrasound volumes were aligned using fiducial markers mounted on
the exterior of the phantom box. The position of these fiducials in the ultrasound
coordinate system was identified using a calibrated stylus pointer.

The atlas mean shape and the ultrasound volumes were brought to an initial
position by rigidly registering the mean shape to the corresponding phantom CT
volume. For each phantom, thirty experiments were performed with perturbing
the mean shape using a transformation generated from a uniform random dis-
tribution in the interval of [0,10] mm translation along each axis and [0-10]◦

rotation about each axis. The registration parameters were then optimized as it
was discussed in Section 2.2.
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(a) (b)

Fig. 4. (a) Sagittal, and (b) coronal views of the registered L3 atlas to the 3D ultra-

sound volume. The five red circles illustrate the landmark positions.

To evaluate the accuracy of the registration, two expert orthopedic surgeons
were asked to identify five corresponding landmarks, three on the spinous pro-
cess and two on the target facet joints shown in Figure 4(b), on the registered
atlas, the ultrasound volume and the corresponding CT. The average distance
of these five landmarks was chosen as a measure of the final Target Registration
Error (TRE). A registration was considered failed if the final TRE is more than
3.5 mm, as the clinically accepted error. Registration results are shown in Ta-
ble 1 and an example of the initial misalignment and the registration result is
depicted in Figure 3. Figure 4 shows an overlay of the registered atlas with the
ultrasound volume.

As seen in Table 1, the average TRE is less than 3.5 mm with success rate
of 81% for all three phantoms. Our preliminary results for the registration of
atlases created from L2 and L4, the neighboring vertebrae to L3, to 3D ultra-
sound volumes, with the same patient data set, have shown TRE below 3.2 mm
based on five landmarks per vertebrae. The registration results satisfy clinical
requirements for facet joint injection. They also demonstrate the feasibility of
using volumetric atlases for the registration of a patient spine to 3D ultrasound
data. This can enable the use of ultrasound image guidance for spinal inter-
ventions without prior CT, to improve the efficacy of these procedures in an
affordable manner.

On going research is aimed at addressing several goals: i) Run time; currently,
a single registration of the atlas model to ultrasound data, implemented in un-
optimized C++ code, takes in the order of hours on a 2.3 GHz, 16-core Pentium
machine with 16 GB of RAM. Future efforts will focus on speeding up the compu-
tation, specifically by implementing the algorithm on graphics processing units
(GPUs). Recently released open-source software for GPU implementation of B-
spline interpolation and registration will facilitate achieving this goal; ii) Atlas
generation bias; the current atlas generation process is potentially biased towards
the chosen template. An alternative would be to use groupwise atlas generation
methods that have become widely popular recently, especially in neuroimaging
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Table 1. Registration results for the atlas to US registration. SR (Success Rate) is

defined as the ratio of the registrations where the overall TRE is less than 3.5 mm. SR

is presented for each phantom with the maximum initial misalignment of 10 mm.

Phantom Mean Landmark Error Std SR

mm mm %

1 3.38 0.42 81%

2 3.48 0.33 79%

3 3.25 0.45 82%

research; iii) Spine registration; at the moment, the method only registers the
atlas of a single vertebra to 3D ultrasound volumes. Registration of an atlas
of the entire (or partial) spine with the ultrasound data would provide better
contextual information to the physician for intervention.
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Abstract. In this paper we propose a fully automatic 2D prostate seg-

mentation algorithm using fused ultrasound (US) and elastography im-

ages. We show that the addition of information from mechanical tissue

properties acquired from elastography to acoustic information from B-

mode ultrasound, can improve segmentation results. Gray level edge sim-

ilarity and edge continuity in both US and elastography images deform

an Active Shape Model. Comparison of automatic and manual contours

on 107 transverse images of the prostate show a mean absolute error of

2.6±0.9 mm and a running time of 17.9±12.2 s. These results show that

the combination of the high contrast elastography images with the more

detailed but low contrast US images can lead to very promising results

for developing an automatic 3D segmentation algorithm.

1 Introduction

Low dose rate (LDR) prostate brachytherapy is a common method for treating
patients with low risk prostate cancer. In this treatment, 40-100 small radioactive
seeds are permanently inserted in the prostate and its periphery. Treatment
planning and delivery relies on transrectal ultrasound (TRUS) imaging. In order
to create the treatment plan, a pre-operative volume study is carried out in
which a set of transverse ultrasound images are collected. These images are then
manually segmented to extract the prostate boundaries. A plan is devised to
deliver sufficiently high radiation dose to the cancerous tissue while maintaining
a tolerable dose to healthy tissue. Reliable segmentation and visualization of the
prostate is a vital step in dose planning. Manual segmentation is time consuming
and, due to the low signal to noise ratio of ultrasound images, inter and intra-
observer variabilities are high. Even though various 2D prostate segmentation
methods and some 3D methods have been proposed in the literature [1,2,3,4,5],
the effective automatic segmentation of ultrasound images of the prostate has
remaining challenges such as user initialization and limited accuracy.

In this paper, we propose a prostate segmentation method based on intra-
modality fusion of ultrasound B-mode and elastography. Elastography [6], in
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which mechanical properties of tissue are characterized, has shown to be promis-
ing in improving the visibility of the prostate gland [7,8]. In a recent study, we
have shown that ultrasound dynamic elastography images of the prostate have
superior object-background contrast compared to B-mode ultrasound, especially
at the base and apex [9]. This is due to the fact that prostate tissue is gener-
ally stiffer than the surrounding tissue. We utilize this advantage and combine
elastography and US image data for 2D segmentation of the prostate. The elas-
tography images are acquired using a system described in [9] which enables the
simultaneous registered acquisition of B-mode and elastography images, thereby
eliminating the concerns about image registration and cost.

We use an Active Shape Model (ASM) [10] approach which starts with an
initial shape extracted from a large number of elastography and B-mode prostate
images. The deformation of this initial shape is restricted to conform to the
statistical model and is guided by edge detection from both elastography and
B-mode images based on edge gradient similarity and continuity. The use of a
statistically created model ensures the compliance of the resulting contours with
the overall shape of the organ. Additionally, the restricted deformation results
in robustness to poor image quality. The use of a measure of edge continuity [9]
in addition to gradient similarity, reduces the effects of strong speckle-induced
local edges on the algorithm which improves the rate of convergence. We provide
a statistical analysis of the accuracy of our 2D image segmentation method and
show that the combined use of elastography and B-mode images improves the
accuracy and the convergence rate. Further, we describe a preliminary framework
for extending the proposed method to an automatic 3D segmentation algorithm
and present an example.

2 Methods

The US and elastography images used in this paper were acquired from pa-
tients going through the standard LDR prostate brachytherapy procedure at
Vancouver Cancer Center, BC Cancer Agency. Intra-operatively, prior to the
procedure, RF data and US images were simultaneously collected using the sys-
tem described in [9]. In this system RF data is collected at approximately 40 fps
from the sagittal array of a vibrating (amplitude 0.5-2 mm, frequency range 2-
10 Hz) and rotating (−45◦ to 50◦) TRUS probe (dual-plane linear/microconvex
broadband 5 - 9 MHz endorectal transducer, Ultrasonix Medical Corp.). The
RF data were processed [11] to obtain sagittal elastography strain images from
which conventional transverse images of the prostate were achieved.

Our 2D segmentation approach combines the information from elastography
and US images within an Active Shape Model (ASM) which deforms based
on gray level similarity and edge continuity. We follow the approach from [10].
First, we construct a training set by manually selecting 30 specific points on
the prostate boundary in N = 25 mid-gland images from 7 patients. The set
of images used for creating the training set does not include the images to be
segmented. The manually segmented contours are aligned by using least-squares-
based iterative scaling, rotation and translation and the average of the resulting
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contours, x̄, is used as the initial contour. Then, in order to capture the statistics
of the training set, we calculate the covariance matrix, S =

∑N
i=1 dxidxT

i , where
dxi in the training phase is the distance between each point on the manual
contour and the corresponding point on the mean shape. The modes of variation
of the shape are described by the eigenvalues, λi, and eigenvectors, pi, of S,
from which the t largest eigenvalues are selected as the most significant modes
of variation. We selected t such that for i = 1, · · · , t, λi/

∑
λ > 5%. A shape

instance consistent with the training set can thus be created using Eq.(1):

x = x̄ + Pb (1)

where P = (p1 · · · pt) is the matrix of the first t eigenvectors and b = (b1 · · · bt)T is
a vector of weights. Hence, in the shape fitting phase, given a shape deformation,
dx, the shape parameter adjustments, db, can be calculated using Eq.(2).

db = PT dx (2)

To calculate the movement, dxi, for each model point i, a measure of edge gray
level similarity was used in [10]. For each point i of each image j of the training
set, a normalized edge derivative profile, gij normal to the boundary, centered at
the model point and of length np is extracted. gij is averaged over all images from
which the covariance matrix Sgi is calculated to obtain a statistical description
of the gray level appearance for every point. During the shape fitting, at each
iteration and for every point, sample edge derivative profiles hi(d) of distance
d (d = −l, · · · , l) from the boundary point and length np are extracted in a
similar manner. The square of the Mahalanobis distance of these profiles from
the model profile, gi, give a measure of edge gray level similarity. For each point,
the d resulting in the least Mahalanobis distance suggests the required point
movement along a line normal to the boundary. The physical values of l and np

are set to 8 and 5 mm, respectively.
In our data set, we observed that the gray level edge similarity measure alone,

gives many false positives due to ultrasound speckle or sharp edge-like structures
since only 1D information (normal to the edge) is being analyzed. Therefore, in
our approach, we incorporate our edge continuity measure [9] which measures
the continuity of the edge in a direction orthogonal to the edge profile. At a dis-
tance d from each point, we compute the average normalized cross-correlation,
ci(d), between the edge intensity profile ei(d) (obtained similar to gij), of length
np, with its two neighboring left and right edge intensity profiles. For a contin-
uous edge (i.e. large similarity between ei(d) and its left and right neighboring
profiles), ci(d) should have a shape similar to a Gaussian function with a large
peak and a small standard deviation. We define the edge continuity measure,
Ki(d) = P 2

ci
/σi(d) in which Pci characterizes the peak and σi is the standard

deviation of a Gaussian function fitted to ci(d). For each point, the d resulting in
the maximum continuity measure suggests the required point movement along
a line normal to the boundary.

We define un to be the vector normal to the boundary at the boundary point,
dgE , to be the distance from the boundary point suggested by the gray level
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similarity, and dKUS , and dKE to be the distances from the boundary point
computed from the edge continuity measures in US and elastography images,
respectively. Based on the above equations, at each iteration, k, the following
steps are performed to deform the current shape points, xcurrent into the next
shape, xnext.

1. Find the required shape deformation:

dx = xnext − xcurrent = dfun

df = α1dgE + α2dKUS + α3dKE

2. Calculate the optimum pose parameters: scaling, translation and

rotation, corresponding to dx, apply this transformation to obtain

T (xcurrent). Adjusting the pose is required to align xcurrent to be as

close as possible to xnext before adjusting the shape [10].

3. Calculate db = P T (xnext − T (xcurrent))

α = [α1 α2 α3] are corresponding weights. Due to the large amount of noise
in US images, gray level similarity matching in these images does not improve
results but degrades convergence, and therefore, it is not included. Our criteria
for convergence is when 94% of the contour points have a dx of less than np/2.
Fig. 1 illustrates how dgE and dKE are obtained in an elastography image.

We will provide a comparison of segmentation results using gray level similar-
ity from elastography images, combined edge continuity and gray level similarity
from elastography images and finally edge continuity and gray level similarity
from both elastography and US images.

Fig. 1. An illustration of how dgE (top point) and dKE (bottom point) are obtained

in an elastography image. The gray level similarity measure is compared to that of the

model for each corresponding point. The edge continuity measure is maximized over

the line normal to the boundary. For clarity, these measures are shown on two different

points, whereas they are calculated for single points.
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3 Results

To evaluate our 2D segmentation results we measure the mean absolute dis-
tance (MAD) and maximum distance (MaxD) between 2D automatic and man-
ual contours. Table 1 provides the mean and standard deviations of MAD and
MaxD between 107 manual and automatic contours selected from 7 patients.
The results are presented separately for elastography gray level similarity only
(αa=[1 0 0]), elastography gray level similarity and edge continuity (αb=[0.5
0 0.5]), and elastography gray level similarity and edge continuity plus US edge
continuity (αc=[0.5 0.25 0.25]). Fig. 2 shows an example of segmentation results
for the three sets of weight parameters.

The most accurate segmentation results were acquired when αc=[0.5 0.25 0.25].
By using this selection of weight parameters, deformation is mainly guided by
the coarser elastography images but also refined by the finer US images. It is
specifically seen in the posterior region of the prostate, where elastography im-
age quality is low, that the addition of edge continuity in US images improves
segmentation results. This can be observed in Fig. 2. The choice of αc also results
in the convergence of the algorithm in an average of 22 iterations vs. 37 and 98
iterations for αb and αa. The maximum number of iterations was set to 50 for
αb and αc and 100 for αa. In the case of αa, 95% of the cases did not converge
within 100 iterations.

Fig. 2. 2D automatic segmentation results using elastography gray level similarity

(yellow dashed line), elastography edge continuity and gray level similarity (blue line),

and elastography gray level similarity and edge continuity plus US edge continuity (red

line) on US (left) and elastography (right) images. The manual contour is shown as a

blue/white dotted line.

4 Discussion

By visual inspection of the automatic segmentation results, we observed that
most of the 2D segmentation error of the mid-gland slice was in the anterior
and posterior regions. In elastography images, the blood vessels which lie on the
anterior of the prostate appear as stiff tissue and are not always distinguishable
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Table 1. Comparison of 2D manual and automatic segmentation showing the Mean

Absolute distance (MAD) and Maximum Distance (MaxD - positive sign meaning

larger automatic contour) between manual and automatic prostate contours, the num-

ber of iterations and duration of the algorithm. K: edge continuity measure, dg: gray

level similarity measure.

dg in elast. dg and K in elast. dg and K in elast.
and K in US

MAD (mm) 3.4 ± 1.8 3.4 ± 1.7 2.6 ± 0.9
MaxD (mm) 1.0 ± 9.8 −6.5 ± 7.0 −4.9 ± 4.7
no. of iter. 98 ± 13 37 ± 17 22 ± 15

duration (s) 10.7 ± 1.4 17.3 ± 0.8 17.9 ± 12.2

from the prostate itself. In such cases, the automatic contour extends beyond
the actual boundary. In the posterior, due to the relatively low contrast in this
region, the automatic contour converges to the darker tissue inside the prostate.
By including edge continuity data from US images this problem has been par-
tially resolved. We attribute this low contrast to mainly the slippage between
the protective sheath on the probe and the surface of the rectum during elas-
tography data collection. By replacing the 1D axial strain computation with
2D axial/lateral and by increasing the resolution of elastography imaging such
problems can be subsided.

Our current elastography data acquisition system has the benefit of collecting
inherently registered elastography and US data. Currently the TRUS rotation
range is within ±50◦ which may result in missing data in the mid-lateral regions
of large prostates. Also, the quality of the B-mode US images acquired along
with the elastography data is affected by the computational limitations of the
real-time data acquisition system and the ultrasound machine. We are currently
working on resolving these problems to improve segmentation results.

The proposed 2D prostate segmentation method using fused elastography and
US image information can be extended into 3D by modifying the method that
we proposed in [12] which was based on fitting an a priori shape to a set of
parallel transverse ultrasound images. The algorithm was initialized by the user
manually selecting some initial boundary points on the mid-slice. These points
were used to un-warp and un-taper all images resulting in a set of elliptical
prostate shapes. With the aid of the Interacting Multiple Model Probabilistic
Data Association (IMMPDA) [13] edge detector and ellipse fitting, a tapered
ellipsoid was fitted to all contours which was then sliced at image depths. The
resulting 2D contours were reversely tapered and warped to match the initial
images. We showed [12] that the method is fast, and produces smooth contours
that are in agreement with the brachytherapy requirements. However, the need
for manual initialization limits its use for real-time applications and makes it
user dependent. Also, the poor visibility of the boundary at the base and apex
complicates segmentation of these regions.
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Fig. 3. An example of 3D surface of the prostate created manually (red) and by the

automatic algorithm (blue)

To resolve these issues we replace the manual initialization of the 3D semi-
automatic segmentation with the described 2D segmentation. Additionally, we
employ elastography along with US images for propagating the mid-gland seg-
mentation to the rest of the images. This is done by including an additional
IMMPDA edge detection on the coarser elastography images to guide the edge
detection on the finer US images. The described framework for automatic 3D
prostate segmentation was applied to one patient data set. Fig. 3 shows 3D
surfaces created from automatic (blue) and manual (red) segmentation of the
prostate for this patient. 11 images were used to construct this surface model.
The volume of the manually created surface is 33.9 ml, the volume of the au-
tomatically created surface is 34.4 ml, and the volume of the non-overlapping
region between the two surfaces is 4.9 ml. A thorough clinical study is required
to evaluate this 3D segmentation framework.

5 Conclusions

In this paper we outlined a novel 2D method of prostate segmentation that
combines ultrasound elastography imaging with B-mode data. This is the first
instance of using such a combination for prostate segmentation and reinforces
efforts to improve US segmentation outcomes using elastography data [14]. With
the fusion of information from elastic properties of tissue provided by elastogra-
phy with the acoustic properties of tissue provided by B-mode we developed an
automatic and accurate segmentation of the prostate which gives good results in
2D. The automatically generated 2D contours can be used to initialize the mid-
slice for 3D segmentation and remove user variability. Additionally, the method
can be utilized to register pre and intra-operative prostate images and has the
potential of improving intra-operative dosimetry.

Acknowledgments. This project was funded by NSERC Canada (Discovery
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R21 CA120232-01.
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Abstract. By revealing complex fiber structure through the orientation 
distribution function (ODF), q-ball imaging has recently become a popular 
reconstruction technique in diffusion-weighted MRI. In this paper, we propose 
an analytical dimension reduction approach to ODF maxima extraction. We 
show that by expressing the ODF, or any antipodally symmetric spherical 
function, in the common fourth order real and symmetric spherical harmonic 
basis, the maxima of the two-dimensional ODF lie on an analytically derived 
one-dimensional space, from which we can detect the ODF maxima. This 
method reduces the computational complexity of the maxima detection, without 
compromising the accuracy. We demonstrate the performance of our technique 
on both artificial and human brain data. 

1   Introduction 

Diffusion-weighted MRI significantly extends the scope of the information obtained 
from MRI, from being solely spatially dependent to being defined on the spatial-
orientational domain. Fiber microstructure and orientation are inferred using this 
modality from the locally measured diffusion profile of water molecules. Diffusion 
tensor imaging (DTI) [1] effectively models the diffusion in single-fiber voxels as a 
Gaussian represented by its covariance tensor. As for more complex fiber 
architecture, q-ball imaging (QBI) [2]–[6] has been very successful in revealing 
intravoxel fiber orientations by introducing the orientation distribution function 
(ODF) as the probability of diffusion in a given direction. 

Contrary to DTI, where the principal diffusion direction can be readily computed 
as the major eigenvector of the diffusion tensor, QBI provides a continuous spherical 
function which, although clearly illustrates the major diffusion orientations as its 
maxima, does not directly quantify them. Diffusion directions as vectors carry less 
information than the ODF itself does. On the other hand, their easy interpretation and 
their application in tractography, e.g., [7]–[9], make the ODF maxima extraction an 
important post-processing step still to be carefully addressed. The number of peaks 
can also be interpreted as a measure of white matter complexity. In addition, unlike 
mixture models that calculate fiber directions by describing the diffusion signal as the 
sum of finite discrete unidirectional components, ODF maxima are computed without 
any assumptions about the existence of such components. 
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Exhaustive search via finite difference method has been exploited in the literature 
as a straightforward approach to ODF maxima extraction [3,10]. This generally 
requires a two-dimensional (2D) discretization of the unit sphere, resulting in 
computational complexity that grows quadratically with the desired resolution. 
Numerical optimization approaches such as gradient ascent [11], Newton-Raphson 
techniques [12], and Powell’s method [13], have also been employed. These 
techniques require a guarantee of convergence and careful initialization to obtain all 
the maxima. Lastly, polynomial based approaches, [14]–[16], have been proposed to 
extract the maxima as a subset of the stationary points of the ODF. These methods 
exploit a transformation of the real and symmetric spherical harmonic (RSSH) basis 
(most efficient for ODF reconstruction [3]), to the constrained symmetric tensor or 
constrained homogenous polynomial bases, resulting in polynomial equations which 
are solved numerically. 

In this paper, we propose a polynomial based approach to reduce the problem of 
ODF maxima extraction in the fourth order RSSH basis, from a 2D search on the 
sphere, to a one-dimensional (1D) one on an analytically-derived curve. Compared to 
the 2D problem, this approach significantly reduces the computational complexity of 
the search for the maxima of the ODF – or any antipodally symmetric spherical 
function – without compromising the precision. Contrary to [14]–[16], our method 
works directly in the RSSH basis and does not require the extra step of transforming 
the RSSH coefficients to other tensor-based bases. We suggest a discretization 
scheme for the 1D exhaustive search, and show experimental results on both artificial 
and human brain data. 

We start Sec.  2 with a brief review of the RSSH basis, and continue by describing 
our mathematical derivation. Experimental results are presented in Sec.  3. 

2   Methods 

2.1   ODF in Real and Symmetric Spherical Harmonic Basis 

In this work, we use the estimator derived in [6] to compute the ODF in constant solid 
angle (CSA). The original definition of the QBI ODF [2] does not include the 
Jacobian factor , thereby creating the need for normalization and artificial 
sharpening. In contrast, the estimator in [6] is normalized, dimensionless, and has 
been shown to preserve the natural sharpness of the ODF. 

The spherical harmonic basis is commonly used for representing spherical 
functions such as the ODF, allowing for sampling in any desired direction. 
Orthonormal spherical harmonic functions are given by 

 

 , 2 14 !! cos , (1) 

 

where ·  is the associated Legendre function, and  and  are standard spherical 
coordinates. The assumption of the ODF being real and antipodally symmetric,  
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however, makes the use of the RSSH basis [3] more suitable. RSSH functions are 
indexed by a single parameter 1 /2 1, corresponding to  and , as 
follows [3]: 
 

 

1 √2Re , 0, 0√2Im , 0 .  (2) 

 
The ODF can be computed in this basis first by using a minimum square scheme to 
approximate the signal, and then by analytically computing the Funk-Radon 
transform, [2], following the method introduced in [3]–[5] for the original QBI, and 
subsequently adapted in [6] for the CSA-QBI. 

2.2   ODF Maxima Extraction 

RSSH functions, being smooth, allow us to find all the local maxima of the ODF ,  as points satisfying the following properties (subscripts indicate partial 
derivatives): 
 

 , 0, (3) 
 , 0, (4) 
 det , 0, (5) 
 tr , 0, (6) 

 
with the Hessian matrix ,  defined as 
 

 , , ,, , . (7) 

 
Equations (3) and (4) guarantee that ,  is either an extremum or a saddle point of 
the ODF. Inequalities (5) and (6) filter out, respectively, the saddle points and the 
local minima (including possible negative lobes), leaving us only with the local 
maxima of the ODF. The above expressions can all be analytically computed for an 
ODF expressed in the RSSH basis. However, the main challenge is to find the points 
that simultaneously satisfy equations (3) and (4). Once they are identified, applying 
inequalities (5) and (6) to filter out undesired points is trivial. 

Iterative approaches (e.g., Newton method) may be applied to solve equations (3) 
and (4). Yet, being quite sensitive to the initialization, they are not guaranteed to 
converge to all the maximum points. Alternatively, an exhaustive search will result in 
all the maxima with an accuracy determined by the discretization resolution. 
Nonetheless, with the ODF being a 2D manifold, the search space, and consequently 
the computational complexity of the algorithm, grows quadratically with the desired 
resolution. 
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We will next show how the fourth order RSSH basis makes it possible to confine 
the search to a 1D space, thereby creating an efficient method to extract the maxima. 

2.3   Reducing the Dimension of the Search Space 

Let us assume that the ODF has been approximated in the fourth order RSSH basis, as 

 , , . (8) 

Combining equations (1), (2), and (8), while substituting the values of cos  
from Table 1 leads to 

 

, 2√ 3 cos 1 sin cos sin35 cos 30 cos 37 cos 3 sin cos7 cos 1 sin cos sinsin , (9) 

where , cos sin , etc. (We drop the notation 

 in the rest of this subsection.) 
We now attempt to solve Eq. (4) by deriving Eq. (9) with respect to . We then 

divide it by sin cos  and rearrange it, while using the identity sec 1tan , to obtain 

 
tan 3 tan 6 tan4 0. (10) 

Equation (10) is a cubic function of tan , and can be analytically solved, leading to a 
closed-form expression for .1 Thus, for each given , we obtain one, two, or 
three different real values for  which satisfy Eq. (4). 

The curve characterized by the pair ,  (Fig. 1(b)) is in fact our new 1D 
search space which contains all the ODF maxima as points satisfying equations (3), 
(5), and (6) (Fig. 1(c&d)). The number of these maxima does not need to be initially 
specified, since it is automatically determined by the algorithm and depends on various 
factors, such as the number of real solutions to Eq. (10). This is particularly important 
in practice, as different regions of the white matter naturally exhibit different 
complexity. The maxima can be found using a 1D exhaustive search (see Sec.  2.4), 
which is considerably faster than exploring the entire 2D manifold of the ODF.2 

                                                           
1 Each solution of tan  corresponds to a unique value of 0, . Please note that this 

approach can also be applied in the RSSH basis of higher orders, with the difference that 
there may be no analytical solution for , and numerical methods may need to be applied. 

2 Such 1D exhaustive searches can also be performed using tensor-based approaches [14]–[16]. 
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     (a)                                (b)                                  (c)                                  (d)  

Fig. 1. (a) Reconstructed ODF. (b) Analytically defined 1D space is searched. (c) All the 
extrema and saddle points are identified.  (d) ODF maxima are extracted. 

Table 1. The associated Legendre functions required for the proposed algorithm 

Function  Expression cos  = 1 cos  = 1 2⁄ 3 cos 1  cos  = 3 cos sin  cos  = 3 sin  cos  = 1 8⁄ 35 cos 30 cos 3  cos  = 5 2⁄ 7 cos 3 cos sin  cos  = 15 2⁄ 7 cos 1 sin  cos  = 105 cos sin  cos  = 105 sin  

2.4   One-Dimensional Exhaustive Search 

Here we detail the discretization scheme used to perform the aforementioned 1D 
exhaustive search for the maxima. We exploit the closed-form description of the 
curve ,  provided by Eq. (10) and parameterize the curve with 0,2 . 

To achieve a constant spatial resolution Δ Δ sin Δ , we need a variable 
step size Δ : 

 Δ Δ
′ sin 1

′
Δ , (11) 

which is rewritten as a function of tan . For every , Eq. (10) results in 
one, two or three real values for , for each of which ′  can be computed 
simply by deriving Eq. (10) with respect to , and substituting for  and . Therefore, 
at each step we choose Δ  to be the minimum of the three (or fewer) values obtained 
from Eq. (11). 

Next, we keep all the candidate points satisfying inequalities (5), (6), and the 
following, which is a relaxation of Eq. (3), 
 | , | . (12) 
We found an appropriate value of 0.02~0.03 for the threshold. Note again that 
inequalities (5), (6), and (12) can all be computed analytically using equations (1), (2), 
(8), and Table 1. The ODF maxima are then computed as the mean directions  
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Fig. 2. Extracted maxima from synthetic ODFs with fiber crossing, in noise-free case (top), and 
with SNR=40 (bottom) 

corresponding to the clusters of points, created by processing all the candidate points, 
as follows: Each point is added to a previous cluster if its Euclidean distance to the 
representative (mean) point of that cluster is minimum among all other clusters and is 
smaller than a threshold (0.4 was used here). If no such cluster is found, a new cluster 
is created, and the algorithm goes on until all the candidate points are processed. 

 

Fig. 3. Experimental results on human brain data, superimposed on the FA map 
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3   Results and Discussion 

To validate our approach, we first show results on artificial data. We simulated fiber 
crossing by generating diffusion images from the sum of two exponentials, /2, where  is a diagonal matrix with diagonal entries (9, 2, 2), 
and  is  rotated about the z-axis by a varying angle. CSA-ODFs were 
reconstructed in the fourth order RSSH basis from 76 diffusion directions, uniformly 
sampled on the sphere. The maxima were then extracted using the proposed 
technique, and results are depicted in Fig. 2 (top). Increasing the angular precision to 
0.5° revealed that multiple fiber orientations are resolved starting at the crossing angle 
of 37.5°. Choosing a spatial resolution of Δ 0.001, required the evaluation of the 
ODF at 7.7×104 points, whereas a 2D search on the sphere with the same resolution 
would cost 1.6×107 operations. When we repeated the experiment by adding Rician 
noise with a signal-to-noise ratio (SNR) of 40 (Fig. 2, bottom), the minimum angle 
where crossing was detected increased to 48°. Such experiments are commonly 
employed to evaluate the robustness of the ODF reconstruction algorithm to noise.  

We also tested our method on a popular public human brain dataset [17]. CSA-
ODFs were reconstructed in the fourth order RSSH basis from 200 diffusion images 
acquired at b=3000 s/mm². Figure 3 illustrates the ODFs with their extracted maxima 
superimposed on the fractional anisotropy (FA) map, in the region of the centrum 
semiovale, where three major fiber bundles intersect. To demonstrate the performance 
of the proposed technique, all the maxima are shown here, including those 
corresponding to slight variations in the ODF (for example due to noise). Major ODF 
peaks corresponding to fiber orientations may however be selected by placing a 
threshold on the ODF [3] or on its curvature [15]. 
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Abstract. We propose a method for the creation of an anatomically and

mechanically realistic brain phantom from polyvinyl alcohol cryogel (PVA-

C) for validation of image processing methods for segmentation, recon-

struction, registration, and denoising. PVA-C is material widely used in

medical imaging phantoms for its mechanical similarities to soft tissues.

The phantom was cast in a mold designed using the left hemiphere of

the Colin27 brain dataset [1] and contains deep sulci, a complete insu-

lar region, and an anatomically accurate left ventricle. Marker spheres

and inflatable catheters were also implanted to enable good registration

and simulate tissue deformation, respectively. The phantom was designed

for triple modality imaging, giving good contrast images in computed to-

mography, ultrasound, and magnetic resonance imaging. Multimodal data

acquired from this phantom are made freely available to the image process-

ing community (http://pvabrain.inria.fr) and will aid in the valida-

tion and further development of medical image processing techniques.

1 Introduction

The human cerebrum is a topologically complex organ with deep fissures and
sulci over its lateral and medial surfaces, as well as fluid filled ventricles of
complex form in its interior. The creation of a physical model capable of depicting
the form of the cerebrum in a realistic manner is not trivial due in part to
these deep structures. Previous works in creating brain phantoms have either
reduced the depth of the sulci [2], or only recreated the brain’s form superficially
with dessert gelatin molds [3,4]. Although these phantoms bear a gross cursory
resemblance to the human cerebrum, they do not accurately depict its anatomy.
Registering these phantoms to their acquired multi-modality images may also not
be straight-forward since the landmarks on the phantom are not easy to find or
image. This may be due to the structures being smaller than the image resolution
or having insufficient contrast of the markers with respect to the surrounding

T. Jiang et al. (Eds.): MICCAI 2010, Part II, LNCS 6362, pp. 92–100, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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(a) (b)

(c) (d)

Fig. 1. Two views of the elastic Colin27 based brain phantom mold from (a) the inside

and (b) the outside. (c) The PVA-C phantom casted from our mold using our PVA

solution recipe. Note the deep sulci and insular regions of the phantom. (d) The setup

for scanning the phantom with the catheters used to inflate the phantom on the right.

tissues. For instance, Reinertsen and Collins [4] rely on the presence of bubbles
in their phantom to act as landmarks for validation.

Our goal is to create a triple modality human brain phantom containing
anatomically realistic structures and physically realistic texture. The phantom
was then scanned and the multimodal images are made publically available.
Polyvinyl alcohol was selected for phantom construction.

Polyvinyl alcohol (PVA) is a synthetic polymer synthesized from polyvinyl
acetate through hydrolysis of the latter’s acetate groups [2]. When liquid PVA
solutions undergo a specified period of freezing at a set temperature and is then
allowed to slowly thaw to room temperature, this freeze-thaw cycle (FTC) trans-
forms the liquid PVA solution into a elastic semi-opaque gel know as polyvinyl
alcohol cryogel (PVA-C) [5,6,7,8].

PVA-C is used in biomedical research for producing soft tissue phantoms in
studies to develop, characterize, and refine different imaging or image processing
methods [9,10,11]. It is a good material for such studies since it has similar
texture, mechanical properties such as compressibility and elasticity, and similar
water content to many soft tissues[2,4,9,10,11,12,13]. PVA-C has been used in
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the construction of phantoms for studying a wide variety of tissues including
that of the heart [14], breast [10,11], prostate [13], arterial vasculature [8,2], the
brain [4,2], as well as their abnormal tissues in the form of lesions and tumours
[10,11,13].

In the following sections, we describe the methods we used to build our brain
phantom. The contributions of our phantom to the literature include:

Anatomical accuracy: Deep cortical structures of the Colin27 cerebrum, such as the

sulci, the insular region and the ventricles are realistically represented in the cast

phantom.

Realistic texture: Recipes of PVA-C with textures most similar to human cerebral

tissues were determined through the feedback of an experienced neurosurgeon who

knows the tactility of the human brain and tumour tissues.

Multimodal imaging: PVA-C formulations that can be imaged effectively with high

contrast CT, US, and MR are used to construct the phantom and its implants.

Freely available data: Images acquired using the US, MR, and CT scanners are

made available through our website to researchers and the general public. Images

for this phantom were acquired using magnetic resonance imaging (T1 and T2

weighted, PD, FLAIR, and DTI), ultrasound imaging, and computed tomography,

to ensure that the phantom exhibits similar contrast to images of the live cerebrum

acquired using these imaging modalities.

2 Phantom Construction

2.1 PVA Solution Preparation

The PVA solutions used to cast the brain phantom and its various components
were prepared using 99-100% hydrolyzed PVA with an average molecular weight
of 86 kilodaltons (Code:418120010) from Acros organics (Geel, Belgium).

Master solutions of 5% and 8% mass percentage (w/%w) PVA solutions were
prepared by heating distilled water and adding a percentage weight of PVA to
the water. The mixture was constantly stirred until the PVA particles were well
hydrated upon which the holding vessel of PVA and water mixture was placed in
an oven at 93◦–95◦ Celsius for 7 hours. Small quantities of distilled water were
added back into the solutions according to the amounts lost during preparation
of the PVA solution. PVA solutions with different lower mass percentages can be
subsequently produced by heating the master solutions and mixing in additional
water.

2.2 PVA-C Preparation

PVA-C was prepared by completely freezing and thawing PVA solutions, which
resulted in semi-translucent flexible gel. The solutions were placed in a room
temperature (25◦ Celsius) chest freezer and cooled to -25◦ to -20◦ Celsius. After
12 hours of freezing at the aforementioned temperatures, the freezer was shut-off
and its interior was allowed to rise back to room temperature over another 12
hour period. These freeze thaw cycles (FTC) were repeated as needed to vary
the consistency of the produced PVA-C.
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2.3 Brain Mold

The mold for our brain phantom was based on the polygonal surface mesh seg-
mented from the left hemisphere of the Colin27 data set [1]. This mesh was then
subtracted from a rectangular prism mesh to create a “negative” of the cortical
surface, which was then used for stereolithographic printing.

We utilized the services of RedEye On Demand (Eden Prairie, MN, USA) for
the fabrication of our brain phantom mold using the TangoPlus Polyjet Resin
(FC-930) as the material. This clear rubber-like photopolymer is disposited layer
by layer in order to produce a finished three dimensional object (See Fig. 1a). We
found that the mold made using this material was able to accurately model the
sulci and insular region of the cerebral hemisphere. It also has enough flexibility
to allow demolding without damaging the PVA-C phantom and reverts itself to
its original shape when deformed.

The bottom of a plastic tub was cut out and glued around the opening of the
flexible rubber mold. This allows us to cast a base for our demolded phantom
and limit its relative movement when placed and imaged in another plastic tub
of the same size.

The mold component for the left ventricle of the phantom was constructed
separately using silicone bathroom caulk. Layers of caulk approximately 2mm
thick were applied to vellum traces from life-size printouts of segmented 2mm
sagittal sections of the left ventricle. These layers were then assembled medially
to laterally and aligned using cross-hairs on the printout traces to maintain
placement accuracy of the sagittal sections and then covered with additional
silicone rubber caulk to smooth the mold component surface.

2.4 Approximating Live Brain Texture

An array of PVA-C samples was prepared with either 1, 2, or 3 FTCs and
4%, 5%, 6%, or 8% PVA solutions, producing 12 different PVA-C samples. The
samples were palpated at room-temperature by a gloved neurosurgeon who is
familiar with the texture of human brain and brain pathologies.

The experienced neurosurgeon was then asked to rate each sample from 0 to
10 with the former being nothing like live brain and the latter being exactly like
live brain, while noting whether the sample was softer or firmer than healthy
brain tissue. The neurosurgeon was then asked to choose 2 of the samples which
felt most like low grade gliomas.

The surgeon rated the PVA-C sample created from 6% PVA solution at 1
FTC as being similar to palpating the surface of a live brain and the 4% PVA
at 3 FTC as being similar to palpating a low grade glioma.

We measured the elastic modulus of the 6% PVA 1 FTC PVA-C sample using
a 3369 Dual Column Testing System (Instron, Norwood, MA, USA) and found
that it has a value 4.6kPa, which is within the range found for human brain
tissue [15].
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2.5 Implants

To make our phantom useful for tests in image guidance and registration, struc-
tures created from various formulations of PVA-C were included into the phan-
tom. Spherical registration marker were created using a harder PVA-C made
from 8% PVA solution that has undergone 2 freeze-thaw cycles (FTC). These
were molded using the containers for reflective passive spheres used in optical
tracking and are approximately 12mm in diameter. A PVA-C “tumour” was
also created using 4% PVA solution with 2 FTC and then implanted into the
phantom. The tumour was molded using the plastic case from inside a Kinder
surprise (Ferrero, Pino Torinese, Italy). When the phantom is completed, the
markers and the tumour will each have undergone 3 FTC.

These PVA-C structures are skewered and suspended using 0.45mm monofil-
ament fishing lines inside the phantom at the desired location. The left ventricle
mold component was clamped and also suspended with fishing lines in a similar
fashion.

Finally, we placed the inflatable head of a urinary catheter into the frontal
lobe of the phantom and another in the medial portion of the phantom in the
cast base of the mold. Each urinary catheter can be inflated with up to 10ml of
water using a syringe in the manner described by Reinertsen and Collins [4] to
vary the extent of deformation on the phantom.

3 Triple Modality Imaging Contrast

Commonly available chemicals were used to change the contrast of our phantom
for imaging in US, MR, and CT. A PVA-C with the PVA concentration and
FTC resembling textures similar to a living human cerebrum was chosen to be
the base solution for dissolving the contrast enhancing chemicals.

To increase back-scattering of sound waves in US imaging, solutions containing
talcum powder at 4%, 2%, 1%, and 0.5% weight of the base solution were mixed.
Each of the samples was immersed in water and imaged with a Sonosite 180
Plus (Sonosite, Bothell, WA, USA) diagnostic ultrasound system tracked using
a Stealth neurosurgical station (Medtronic, Minneapolis, MN, USA) and visually
examined for contrast with the surrounding water and implanted PVA markers
spheres.

For increasing phantom contrast in CT imaging, a powdered barium sulphate
(BaSO4) preparation used for colon enema (Guerbet Micropaque Colon, Guer-
bet, Villepinte, Île-de-France, France) was mixed into our PVA solutions. Solu-
tions were prepared with 8%, 6%, 3%, and 1% weight BaSO4 of the initial base
solution. PVA-C samples were made from each of these solutions and imaged
using a LightSpeed 16 VCT scanner (GE Healthcare, Little Chalfont, Bucking-
hamshire, UK).

To enhance the signal in T1 weighted images, copper sulphate (CuSO4) was
added to the PVA mixture in small quantities. Minute quantities of CuSO4

dramatically increase the contrast of the PVA sample in T1 and T2 weighted
images. To find an optimal concentration of CuSO4, we prepared 0.2%, 0.1%,
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0.05%, and 0.025% anhydrous CuSO4 PVA-C samples and imaged them with
T1 and T2 imaging sequences on a Verio 3T MR scanner (Siemens Healthcare,
Erlangen, Germany).

We found that for the phantom brain tissue, PVA-C made with 6% PVA
solution at 1FTC containing concentration of 2% BaSO4, 0.025% CuSO4, and
1% talcum as contrast agents worked well for CT, MR, and US, respectively.
For our triple modality image markers, we found that a gel made from a 8%
PVA solution with 5% BaSO4, 0.2% CuSO4, and 5% talcum as contrast agents
worked well for CT, MR, and US, respectively. Although, CuSO4 diffuses rather
quickly out of the PVA-C, it did not affect the quality of the images greatly if
they were acquired within the week when the phantom was built. The texture
of the PVA-C did not change dramatically with the addition of these quantities
of contrast agents.

4 Image Acquisition

Multimodality images with deformations were acquired for the phantom using the
same models of MR, CT, and US imaging devices that we used for determining
imaging contrast (See Fig. 1b,c). The phantom was first scanned in the MR with
T1 weighted spin-echo (TR=668ms, TE=8.9ms, Flip Angle=70◦, 1×1×3mm) and
gradient-echo imaging (TR=1900ms, TE=3ms, Flip Angle=9◦, 1mm isotropic),
T2 weighted imaging (TR=6530ms, TE=840ms, Flip Angle= 150◦, 1×1×3mm),
proton density (PD: TR=6530ms,TE=9.4ms,Flip Angle=150◦, 1×1×3mm), fluid
attenuated inversion recovery (FLAIR: TR=5000ms, TE=273ms, TI=1800ms,
Flip Angle=120◦, 1mm isotropic), and 30 direction diffusion weighted (DWI:
TR=9300ms, TE=94ms, Flip Angle=90◦, 1×1×2mm) MR sequences. Fractional
anisotropy, apparent diffusion coefficient, and trace weighted images were com-
puted from the diffusion weighted images. A CT scan (491 axial slices at 1.25mm
thickness) was then acquired for the phantom followed by the acquisition of a se-
ries of tracked B-mode US images (44 images of 4-6 sweeps at each 5.2cm and
7.1cm depth).

All of the images from each modality were acquired one after the other to
ensure that the phantom is in the same state in the set of images. After each
series of multimodality imaging, the phantom was deformed by inflating each of
the two implanted urinary catheters in the phantom with 0ml, 5ml or 10ml of
water through 5 rounds of inflations (See Fig. 2).

As well, images for super-resolution image processing were acquired by scan-
ning the phantom with MP-RAGE T1 weighted gradient echo sequence 6 times
at an isotropic resolution of 0.5mm with a slight displacement of the phantom
less than 1cm between each acquisition. The phantom was then scanned using
a T1 weighted spin echo sequence at 1mm isotropic resolution 7 times with its
container filled with water and 7 times without the water, again with a slight
displacement of the phantom less than 1cm between each acquisition.
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(a) (b) (c) (d)

(e) (f) (g) (h)

I II III IV

Fig. 2. A selection of PVA-C brain phantom images acquired using (a) MR T1-weighted

gradient-echo (b) MR T1-weighted spin-echo (c) MR T2-weighted (d) MR PD (e) MR

FLAIR (f) MR DTI colour map (g) CT (h) and the reconstructed US sweeps. Images

I–IV shows the phantom imaged with T1-weighted gradient-echo at different inflations

of the catheters.

5 Conclusion

An anatomically and mechanically realistic PVA-C brain phantom was created
and imaged using MR, CT, and US. The images acquired from this phantom
were then made publically available to the larger image processing community.
We believe that the acquired multi-modal images be used for validation of many
image processing techniques such as segmentation, super-resolution, image re-
construction, linear or non-linear registration, and denoising algorithms, using
images acquired from one modality to act as the ground truth of another. The
images are made available at: http://pvabrain.inria.fr
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Aside from image processing, the formulation of our phantom material to ap-
proximate live cerebral brain tissue can be invaluable for improving implantation
for deep-brain stimulators and simulating biopsy needle insertions. The accurate
anatomy and texture of the brain phantom as well as the low cost of the starting
materials can also make it useful as a tool in training medical professionals.

In order to further improve the phantom, we are currently in the process
of developing better multimodal imaging spherical markers for higher contrast
imaging, and finding better MR contrast agents that do not diffuse. We would
also like to further characterize the multi-modal PVA-C developed in the work
such that the physical and imaging property of the material can be better un-
derstood. Nevertheless, the presented methods represent an important step in
the development of multimodality imageable tissue-like materials, along with
techniques for creating anatomically accurate brain phantoms.
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Abstract. We present a framework for statistical analysis in large co-

horts of structural brain connectivity, derived from diffusion weighted

MRI. A brain network is defined between subcortical gray matter struc-

tures and a cortical parcellation obtained with FreeSurfer. Connectivity

is established through minimum cost paths with an anisotropic local

cost function and is quantified per connection. The connectivity network

potentially encodes important information about brain structure, and

can be analyzed using multivariate regression methods. The proposed

framework can be used to study the relation between connectivity and

e.g. brain function or neurodegenerative disease. As a proof of principle,

we perform principal component regression in order to predict age and

gender, based on the connectivity networks of 979 middle-aged and el-

derly subjects, in a 10-fold cross-validation. The results are compared to

predictions based on fractional anisotropy and mean diffusivity averaged

over the white matter and over the corpus callosum. Additionally, the

predictions are performed based on the best predicting connection in the

network. Principal component regression outperformed all other predic-

tion models, demonstrating the age and gender information encoded in

the connectivity network.

1 Introduction

Both functional and anatomical connectivity of the brain are areas of increasing
research interest. Functional connectivity is mainly established through func-
tional magnetic resonance imaging (fMRI) while diffusion MRI has been applied
for assessing anatomical or structural connectivity. Both types have been ana-
lyzed by modeling connectivity as a complex network and applying graph theory
approaches to study the network topology. A review of graph theoretical analysis
of complex brain networks is given in [1].
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In structural connectivity the network nodes represent brain regions and the
connections are usually established through probabilistic or streamline tractog-
raphy. Streamline tractography might be incapable of finding a connection in
regions of uncertain directionality, due to e.g. crossing fibers or noise. To over-
come this problem, probabilistic tractography was proposed in which multiple
flow vectors are chosen from a distribution around the principal eigenvector of
the diffusion tensor, e.g. [2,3]. Alternatively, a connection between two regions
can be established through directional dependent minimum cost path methods
[4,5,6,7]. These methods compute the minimum cost to get from a start region
to another point in the image. The costs depend on both location and direction
and can be defined based on the diffusion MRI data. Even though minimum
cost path methods are closely related to probabilistic tractography, they contain
no random factor and will therefore give reproducible results. This is an advan-
tage when creating a connectivity network. Furthermore, minimum cost path
methods find the globally optimal paths, except for some inaccuracy due to dis-
cretization. Probabilistic tractography is more likely to end at a local optimum
because of limited flow vector sampling in a modeled distribution.

We present a new framework for statistical analysis of structural brain con-
nectivity based on minimum cost paths. The connectivity network is established
from diffusion weighted images (DWI) using the method previously proposed
by Melonakos et al. [7]. The network nodes are based on segmentations and
cortical parcellations obtained using FreeSurfer [8,9]. By quantifying the con-
nectivity between the nodes, we construct a mean connectivity brain network
that can be analyzed using multivariate statistics. The results can be used to
study connectivity changes in e.g. aging, cognitive decline, and neurological or
psychiatric disorders. As a proof of principle, we perform principal component
regression in order to predict age and gender in a large dataset of aging subjects.
We compare the results to predictions based on fractional anisotropy (FA) and
mean diffusivity (MD) averaged over the white matter and the corpus callosum,
and prediction based on the best predicting connection.

2 Framework

2.1 Connectivity

Minimum cost paths. The connectivity between two brain regions is defined
by minimum cost paths. Start region R is connected with point p, through the
path Γ with minimum cumulative traveling cost. This cumulative cost u(p) is
given by

u(p) = min
Γ

∫ L

0

ψ(x(s),x′(s))ds (1)

where s is the arc length along Γ ; L is the length of Γ ; x(s) is the position on
the path; x′(s) = ∇u

||∇u|| is the unit local direction of the path; and ψ(x,v) is the
local anisotropic cost function, defining the cost at position x in direction v.
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Local Cost Function. In order to have the minimum cost paths run through
white matter bundles, a local cost function which is low on, and in the direction
of, white matter tracts should be defined. To this end, different cost functions
have been proposed. Some are based on the diffusion tensor model [4,6]. These
methods are not suitable for modeling regions of multiple fiber populations e.g.
in the event of crossing fibers. We choose a local cost function based on the set of
acquired diffusion weighted images [5,7] and decide to use the local cost function
proposed in [7].

ψ(x,v) =

⎛⎝ S(x,v)∫
w⊥v

S(x,w)
S(x,0) dw

⎞⎠3

(2)

Where S(x,v) is the (interpolated) DWI value at position x and (interpolated)
direction v. S(x,0) is the value of the image without diffusion weighting (B0)
at position x. S(x,v) is low if the diffusion at position x in direction v is high,
because of diffusion-related signal loss. Therefore, the costs are low if the diffusion
is high in direction v compared to perpendicular directions.

Quantifying Connectivity. For every connection a value needs to be obtained
depicting the connectivity between the connected nodes. It is possible to use
different measures for quantifying connectivity. Equation 1 can be generalized
to integrate any local measure, f(x), from the start region R to point p over the
minimum cost path, defined by ψ(x,v). Dividing the cumulative measure by the
path length L yields a mean measure, f̄(x), over the minimum cost path.

f̄(p) =
1
L

∫ L

0

f(x(s))ds (3)

In this way it is possible to calculate e.g. the mean FA or mean MD over the
minimum cost path. Although these measures are based on a tensor model,
which has disadvantages as discussed before, the local cost function is not, and
depends on both local anisotropy and diffusion. We use the mean cost, obtained
by dividing cumulative cost by path length, as connectivity measure. Dividing
by the length of the minimum cost path is necessary in order to correct for
differences in head size and/or brain atrophy.

2.2 Construction of the Connectivity Network

To enable statistical analysis of brain connectivity maps, corresponding subcor-
tical and cortical regions should be defined in all subjects. Hereto, the publicly
available FreeSurfer software is used, which is capable of segmenting subcortical
structures [8] and parcellating the cortex [9]. T1-weighted (T1w) scans are given
as input for the FreeSurfer reconstruction pipeline. The resulting segmentation
and cortical parcellation are transformed according to rigid registration of the
T1w scan to the B0 diffusion image performed by Elastix [10]. Minimum cost
paths are calculated as proposed by Melonakos et al. [7] and only performed
within gray and white matter as defined by the FreeSurfer segmentation.
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From the FreeSurfer segmentation, we use 17 subcortical structures succeed-
ingly as start regions: the brain stem, and the left and right segmentations of
thalamus, caudate nucleus, putamen, pallidum, hippocampus, amygdala, accum-
bens area and ventral diencephalon. As target regions we use the FreeSurfer
cortical parcellation based on the Destrieux 2009 atlas, which divides the cor-
tex in 75 regions per hemisphere, augmented by the 16 subcortial regions not
currently used as start region. The connectivity between start and target region
is represented by the minimum of the mean cost among all voxels in the target
region. The resulting connectivity network consists of 2 × 75 + 17 = 167 nodes
and n = (167− 1)× 17 = 2822 connections, which for m subjects combines into
a m× n connectivity matrix.

2.3 Statistical Analysis

The connectivity matrix can be used to investigate changes in connectivity with
e.g. normal aging, in cognitive decline, and in psychiatric disorders. As a proof
of principle, we perform principal component regression (PCR) in an attempt
to predict age and gender of our test subjects. For PCR we perform principal
component analysis on the connectivity matrix. The first 15 principal compo-
nents are used as input for multivariate linear regression to predict age and
for multivariate logistic regression to predict gender. We compare our results to
predictions based on five different univariate regression models. Two models are
based on diffusion measures in the entire white matter, namely mean FA and
MD (WM-FA and WM-MD). Additionally, two predictions are based on the re-
gional measures of mean FA and mean MD in the corpus callosum (CC-FA and
CC-MD). White matter and corpus callosum are defined by the FreeSurfer seg-
mentation. For the fifth model, we perform a regression for every connection in
the connectivity network. The connection with the smallest root mean squared
deviation based on the training set, is used for the final prediction.

All experiments are performed in a 10-fold cross validation. For every fold,
the regression coefficients are estimated on the training set and the prediction is
evaluated on the test set. The alternative prediction models use the same subdi-
vision of subjects for the cross validation. Age prediction is evaluated by mean
absolute difference (|Δ|) between predicted and actual age. For the prediction
of gender, the percentage of correctly predicted subjects is reported.

In population studies of the elderly, gender may not be distributed evenly
over all ages. In that case, if both age and gender relate to the prediction model
variable, it is necessary to correct for one when predicting the other. This cor-
rection is performed by linear regression with the confounding variable as input,
and the model variable as output. The residuals are used for prediction.

3 Results

Imaging data from the Rotterdam Scan Study [11], acquired in 2005-2006, were
used for the evaluation of the method. Scans were obtained on a 1.5 T GE
scanner using an 8-channel head coil. The DWI scanning protocol had a b-value



Statistical Analysis of Structural Brain Connectivity 105

Fig. 1. Mean absolute difference in age prediction (a) and percentage correctly pre-

dicted gender (b) for all models at all folds

of 1000 s/mm2 in 25 non-collinear directions, and one volume was acquired
without diffusion weighting. Voxel sizes were 0.8 × 0.8 × 3.5 mm. Head motion
and Eddy current corrections of the DWI were performed with FDT, part of
FSL[12]. FDT was also used to fit the tensor for calculation of the FA and MD
images. The 3D T1w images had voxels sizes of 0.49 × 0.49 × 0.8 mm.

Subjects with cortical infarcts, artifacts in any of their scans or FreeSurfer
errors were excluded from the analysis. The remaining 979 subjects had a mean
age of 68.5 ± 7.4 years (range 59.0 - 96.7) and consisted of 469 men and 510
women.

Figure 1a shows the age prediction error for the different regression models
per fold. Lower |Δ| indicates better results. The PCR model resulted in the
lowest |Δ| for nine out of ten folds, while the FA-based models showed overall
the highest |Δ|. Table 1 shows the results averaged over all folds. PCR on the
connectivity matrix improved age prediction with at least 0.7 years compared
to the global and regional measures. It also showed an improvement of 0.5 years
compared to the best predicting single connection. The 15 principal components
explained on average 65.8% of the variance in the gender corrected data.

Figure 1b shows the gender prediction accuracy for all models and folds. PCR
outperformed the other models on all folds. Table 1 shows that, while the pre-
diction based on the global and regional diffusion measures was close to random,
PCR on the connectivity matrix obtained a gender prediction accuracy of 74.1%.
The 15 principal components explained on average 61.6% of the variance in the
age corrected data.

Figure 2 shows the connections running between the right putamen start
region and all target regions in one subject. These connections are obtained by
tracing back in the direction of the lowest cumulative cost, starting at the target
voxel. By combining the 15 principal components with the PCR coefficients, it is
possible to obtain the per connection regression coefficients. The connections in
Fig. 2 are colored according to their regression coefficient for gender prediction
as calculated based on the training set of the tenth fold.
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Table 1. Per model, mean absolute difference in years in predicted age and percentage

correctly predicted gender averaged over all folds

Age prediction Gender prediction
|Δ| (years) Correct (%)

WM-FA 5.8 50.8
WM-MD 5.0 54.4
CC-FA 5.8 55.8
CC-MD 5.3 51.1
Best connection 4.8 57.2
PCR 4.3 74.1

Fig. 2. Subject specific connections starting from the right putamen (in cyan). Con-

nections are colored according to their regression coefficients for gender prediction.

4 Conclusion and Discussion

We present a new framework for structural connectivity analysis in large datasets
of diffusion weighted brain MRI. Connectivity is established through minimum
cost paths with an anisotropic local cost function based on DWI. Using brain
regions defined by FreeSurfer, a connectivity network is obtained that can be
analyzed using multivariate regression methods. As a proof of principle we per-
formed PCR in order to predict age and gender. WM-FA and WM-MD are
capable of predicting age with a mean absolute difference of 5.8 and 5.0 years
respectively. PCR of the connectivity matrix reduces the prediction error to 4.3
years, suggesting that some of the network connections contain more informa-
tion regarding age than others. The tight age distribution of the subjects makes
prediction a difficult task. Predicting the mean age or, in case of a skewed dis-
tribution, the median age can already be quite accurate in tight distributions.
The mean absolute difference for prediction of the mean age of the training set
is 6.0 years; the median age reduces this difference to 5.6 years. Both results are
close to the results of the global and regional diffusion measure models, but PCR
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shows a clear improvement. On gender prediction, PCR improves the correctly
predicted percentage from close to random for the global and regional diffusion
measures to 74.1%.

PCR predicts more accurate than the best predicting connection for both age
and gender. It could be argued that this improvement is caused by the use of 15
versus one regression variable, or by the aggregation of connections into groups.
The latter could result in averaging of noise due to redundancy in the data. To
test the additional advantage of using principal components over using the mean
of groups of connections, we randomly assigned all connections into 15 groups,
which are used as input for multivariate linear regression. This model results
in a mean absolute difference in predicted age of 4.9 years and a percentage
of correctly predicted gender of 62.7%. These results are comparable or better
than the best predicting connection. However, the results are not better than
the PCR results, which shows the benefits of the use of principal components.

Minimum cost path methods will always find a connection between two re-
gions. This is an advantage when constructing a connectivity matrix in which
corresponding connections need to be found in all subjects. As a result, the
proposed framework differs from existing approaches in that the analysis is car-
ried out on all connections instead of a subset. Furthermore, there is no need
for parameters that determine which connections are retained in the analysis
[1]. The disadvantage, however, is that it might suggest biologically implausible
direct connections between regions. It is important to keep in mind that the
connections that are found may also represent indirect connections, connecting
two regions through a third.

Finally, the presented whole-brain analysis method is especially suited to
study differences in connectivity in populations, where previously proposed tract-
ography-based analyses are mainly directed at studying the topology of the
structural network. Robinson et al. also perform statistical analysis of brain
connectivity, but they use probabilistic tractography based on a tensor model
and classify their subjects in two wide range age groups [13]. In [14] they perform
their tractography based on a two-component partial volume model and classify
in two strongly contrasting age groups. We do not fit any model to the DWI
data and predict age as a continuous variable. The prediction of age or gender
of a person is of course not very relevant in research and clinical practice. The
performed experiment can, however, be used to assess which connections have
the largest contribution to the prediction. These connections contain the most
information regarding age or gender. In future work, we will add the cortical par-
cellation regions as start regions, creating a connectivity network that includes
cortico-cortical connections.

In conclusion, we present a framework for construction of a structural brain
connectivity network that potentially can be used to study brain changes in e.g.
aging, neurodegenerative disease or psychiatric disorders. As a proof of principle,
we perform PCR in order to predict age and gender based on a network of con-
nections between subcortical structures and cortical regions. PCR outperforms
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the predictions based on global and regional averaged FA and MD and the best
predicting single connection, demonstrating the value of the information encoded
in the connectivity network.
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Abstract. Thick-slice image acquisitions are sometimes inevitable in

magnetic resonance imaging due to limitations posed by pulse sequence

timing and signal-to-noise-ratio. The estimation of an isotropic high-

resolution volume from thick-slice MRI scans is desired for improved

image analysis and evaluation. In this article we formulate a maximum

a posteriori (MAP) estimation algorithm for high-resolution volumetric

MRI reconstruction. As compared to the previous techniques, this prob-

abilistic formulation relies on a slice acquisition model and allows the

incorporation of image priors. We focus on image priors based on im-

age gradients and compare the developed MAP estimation approach to

scattered data interpolation (SDI) and maximum likelihood reconstruc-

tion. The results indicate that the developed MAP estimation approach

outperforms the SDI techniques and appropriate image priors may im-

prove the volume estimation when the acquired thick-slice scans do not

sufficiently sample the imaged volume. We also report applications in

pediatric and fetal imaging.

Keywords: MAP estimation, super-resolution, volume reconstruction.

1 Introduction

Thick slice image acquisitions are sometimes inevitable in magnetic resonance
imaging (MRI) due to pulse sequence timing requirements and the need to main-
tain high signal-to-noise-ratio (SNR). Such scans are typically performed for T2-
weighted and diffusion weighted imaging in a variety of applications including
brain, lung, and heart imaging, and fetal and neonatal MRI. Thick-slice scans are
acquired in single shot fast spin echo (SSFSE) imaging of fetuses, neonates, and
pediatric patients who may move in the scanner [1]. SSFSE slices are acquired in
a fraction of a second, thus freezing the motion of the subject. Nevertheless, due
to thick slice acquisitions necessary to maintain SNR and the inter-slice motion
artifacts, these images do not appropriately reflect the 3D anatomy.

The reconstruction of a high-resolution volumetric image from thick slice scans
is desired for enhanced image analysis and improved evaluation. Inter-slice re-
construction has been previously addressed in [2] based on an iterative back
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projection reconstruction algorithm, where multiple shifted thick-slice scans pro-
vide dense sampling of the imaged object. In more recent studies [1], [3], [4]
high-resolution volumes have been reconstructed from fast slice scans of moving
subjects. These scans are affected by inter-slice motion thus iterations of slice-
to-volume registration and scattered data interpolation (SDI) have been used in
these studies for iterative motion estimation and volume reconstruction.

Nevertheless, scattered data interpolation techniques do not provide a math-
ematical framework to justify that the estimated high-resolution volume is a
minimum error representation of the imaged object given the acquired scans.
In this article we have formulated a general mathematical framework based on
a maximum a posteriori (MAP) estimation algorithm for high-resolution vol-
ume reconstruction. Inspired by the recent advances in super-resolution image
reconstruction [5], [6], the developed MAP estimation approach relies on a slice
acquisition model and minimizes a cost function of the error norm between the
estimated volume and the acquired slices.

In addition, the MAP estimation approach allows the incorporation of prior
image models for volume reconstruction, which is critical when the number of
thick-slice scans is limited and the slice thickness is significantly larger than
the matrix resolution. Under certain conditions the developed MAP estimation
approach simplifies to regularized MLE reconstruction, thus the main contribu-
tion in this article is the development and performance analysis of MAP volume
estimation and comparison to SDI and non-regularized MLE solutions.

As such, we focus on simple image priors based on image gradients for per-
formance analysis of high-resolution volume reconstruction using the formulated
MAP estimation approach. We limit our evaluation to the reconstruction of
isotropic brain volumes from a limited number of orthogonal thick-slice scans,
but the results can be generalized to similar applications. Our evaluation involves
quantitative analysis using synthetic digital brain phantom images, and appli-
cations in pediatric and fetal MRI. We compare the MAP estimation technique
with the B-Spline SDI approach in [1] and a non-regularized MLE solution, and
evaluate the effect of image priors under different scanning conditions.

2 Methods

In order to formulate the volume estimation problem in a super-resolution frame-
work we need to establish a slice acquisition model, which describes how the ac-
quired slices are obtained from the imaged object. The following slice acquisition
model is considered in this study:

yk = DkBkSkMkx + vk; k = 1, ..., n (1)

where yk is the vector of the voxels of the kth 2D slice with slice thickness Δsk

and uniform in-plane spacing of Δρk; x is a vector of the desired reconstructed
image voxels in the lexicographical order with isotropic spacing of Δρ; vk is the
residual noise vector, n is the number of slices obtained from N scans, Mk is
the matrix of motion parameters, Sk is a matrix representing the slice selection
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profile, Bk is a blur matrix representing the point spread function (PSF) of the
MRI signal acquisition process, and Dk is a down-sampling matrix.

On the basis of Equation (1) the imaged object goes through geometric and
signal operations, including motion, slice selection and signal averaging, PSF
blur, and resampling, to generate the acquired slices. Assuming that all the ma-
trix operations, including the motion parameter matrices are known in Equation
(1), this equation can be written in a simple linear form like yk = Wkx + vk,
where Wk = DkBkSkMk. These linear equations can be augmented to form
a large linear matrix equation like y = Wx + v. Super-resolution volume re-
construction is the inverse problem of finding x given the acquired slices yk.
The classical solution to this linear inverse problem can be obtained through
maximum likelihood estimation (MLE).

The MAP estimation is considered as a generalization of MLE and is written
based on the conditional probability density function (PDF) of the acquired
slices yk given the estimated volume x̂ as well as the prior information about
the PDF of the estimated volume, i.e. Pr(x̂):

xMAP = argmax
x

[logPr(yk|x̂) + logPr(x̂)] (2)

The MAP solution depends on the probability functions. Here we assume that
the noise residuals (error samples) are drawn from Gaussian distributions with
mean of zero and standard deviation of σk. Therefore:

Pr(yk|x̂) =
∏

i

1
σk

√
2π

exp(− (ŷk(i)− yk(i))2

2σ2
k

) (3)

where yk(i) are the samples from the acquired slices yk, and ŷk(i) are the samples
from the estimated slices ŷk = Wkx̂ + vk. The error samples are defined by
ek(i) = ŷk(i)− yk(i), and the error vector is defined as ek = Wkx̂− yk.

Various image priors may be used. The simplest form involves an exponential
function that is quadratic in the voxel values of x, i.e. Pr(x̂) = exp(−x̂TQx̂);
where Q is a symmetric, positive definite matrix. Here we use Q = CTC where
C is the gradient magnitude image operation. Assuming independent slice acqui-
sitions the log-likelihood of the conditional PDF in Equation (3) is the sum of the
l2-norm of the error vectors over all the slices. Consequently the maximization
of the log likelihood function results in the following minimization problem:

x̂MAP = argmin
x

n∑
k=1

‖Wkx̂− yk‖22 + λ‖Cx̂‖22 (4)

The augmented matrix W in the linear inverse problem is very large and the
classical solution through pseudo-inverse is prohibitive. Instead we use a steepest
descent iterative minimization approach. The iterative solution of Equation (4)
based on image operators shown in Equation (1) is written as:

x̂n+1 = x̂n + α

n∑
k=1

MT
k ST

k BT
k DT

k (yk −DkBkSkMkx̂n)− λCTCx̂n, (5)
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where α is the step size in the direction of the gradient. The matrices Dk,
Bk, Sk, and Mk and their transposes are exactly interpreted as corresponding
image operators. Dk is defined as a resampling operation. Bk is defined as the
convolution with a Gaussian kernel resembling the point spread function (PSF)
of the MRI signal acquisition process. C is implemented as a gradient magnitude
image operation. λ is a weighting coefficient.

The slice selection profile Sk is defined based on the slice selection process. For
an arbitrary slice select direction defined by the normal vector of the slice plane
equation, the following geometrical equation is obtained for the voxels of slice
k (defined by a vector r) in the slice selection process: |μsk.r − s0k| < Δsk/2;
where Δsk is the slice thickness, and s0k is the distance of the slice from the
origin. μsk specifies the slice (or slice-selection) orientation and is interpreted as
the normal vector of the slice plane equation. The normal vector can be obtained
in the physical coordinate system based on the so-called direction cosines rota-
tion matrix. Consequently the Sk operation is implemented as rigid 3D rotation
with the rotation matrix directly obtained from direction cosines matrix, and its
transpose is the inverse (transpose) of the direction cosines matrix.

The motion matrix Mk is implemented as a 6-DOF 3D rigid transformation
(including three rotations and three translations). Motion estimation and super-
resolution volume reconstruction are considered as separable problems. Therefore
in the presence of inter-slice motion, iterations of motion correction and volume
reconstruction are performed to find Mk and x, respectively. Motion correction
can be performed through slice-to-volume registration [1], [3], or based on slice
intersections [4]. This is not a subject of interest in this article; in order to focus
on the performance analysis of volume reconstruction we assume that there is
no motion or the motion is known (accurately corrected) in our experiments.

3 Results

3.1 Quantitative Evaluation

Quantitative evaluation and comparison of the algorithms was carried out using
digital brain phantom (DBP) images obtained from the Brainweb database [7].
Thick slice scans in the axial, coronal and sagittal slice select directions were
synthetically generated from the high-resolution DBP images by applying oper-
ations based on Equation (1). The in-plane resolution of the synthetic scans was
1 mm and various slice thicknesses were examined between 2 to 8 mm.

Since a reference high-resolution volume is available for the validation dataset
(i.e. the original DBP images), the accuracy of reconstruction can be measured
quantitatively. Two measures are used here: Mean Absolute Error (MAE) and
Peak Signal to Noise Ratio (PSNR). MAE is defined as the mean absolute dif-
ferences of the voxel intensity values between the reference volume and the re-
constructed volume. PSNR is defined in the logarithmic decibel (dB) scale as
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20 log10(MAX/
√

MSE), where MAX is the maximum possible voxel intensity
value (4096 in our experiments) and MSE is the mean square error of the voxel
intensity values between the reference volume and the reconstructed volume.
Lower MAE and higher PSNR indicate more accurate reconstruction.

Fig. 1 shows the MAE and PSNR values computed as a function of the slice
thickness of synthesized thick-slice input scans for different volume reconstruc-
tion techniques. Four techniques have been considered: AVE is the simplest one
and is based on averaging the input scans resampled to the space of the desired
high-resolution volumetric image. SDI is a 3-level BSpline SDI approach based
on [1], MLE is a non-regularized MLE obtained from the MAP formulation by
setting λ = 0, and MAP is the MAP estimation with λ = 0.01. This value was
chosen experimentally as a normalization factor between the reconstruction error
image and the gradient magnitude of the estimated volume.

Fig. 1. MAE and PSNR between the ground truth DBP volume and the reconstructed

volumes as a function of slice thickness. The measures have been compared for 4 tech-

niques: AVE for averaging the resampled input scans, SDI for BSpline SDI, MLE for

non-regularized MLE, and MAP for the developed MAP estimation approach.

The results in Fig. 1 indicate that all the techniques perform better than sim-
ple averaging. The developed MAP estimation approach outperforms SDI, and
is generally more accurate than MLE. The comparison of MAP and MLE at slice
thickness 2 mm indicates that if the slice thickness is not much larger than the
in-plane resolution, the prior image model may not provide improvements. On
the other hand, when the high-resolution volume space is not densely sampled
by the thick-slice scans (i.e. due to large slice thickness and limited number of
orthogonal scans), image priors significantly improve the reconstruction accu-
racy. This is observed for the slice thickness values between 3 to 5 mm. Finally,
when the slice thickness is too large (i.e. more than six times larger than the
in-plane resolution) image priors in the form of image gradients may not help
too much. Improvement of volume estimation is difficult in these cases due to
fundamental performance limits in super-resolution reconstruction [8].
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3.2 Application to Pediatric and Fetal MRI

The first application is the estimation of isotropic high-resolution volumes from
thick-slice T2-weighted TSE scans of pediatric patients who underwent clini-
cal brain MRI for the evaluation of tuberous sclerosis. As part of the imaging
procedure, two T2-weighted TSE volumes (one axial and one coronal) were ac-
quired for each patient using a Siemens Trio 3-Tesla scanner. TSE imaging was
performed with TR = 14070 ms, TE = 89 ms, matrix size of 512 × 512, slice
thickness of 2 mm, and in-plane resolutions between 0.4 to 0.5 mm. The scanning
protocol also involved a high-resolution T1-weighted (T1W) MPRAGE acquisi-
tion with TR = 2530 ms, TE = 3.39 ms, and isotropic resolution of 1 mm.

The acquired TSE scans, as well as the reconstructed volumes and the T1W
MPRAGE volume of a 3-year-old child are shown in Fig. 2. The reconstructed
volumes in this case have a high isotropic resolution of 0.5 mm3, which is four
times better than the slice thickness and two times better than the MPRAGE
volume. Visual inspection indicates that the MAP estimated volume is much
sharper and has a better contrast as compared to the SDI estimated volume.

Fig. 2. Application of the volume reconstruction algorithms to T2-weighted TSE im-

ages of a 3-year old child: Two thick-slice TSE scans were acquired and used for re-

construction in the (a) axial and (b) coronal directions; (c) and (d) are the volumes

reconstructed using the SDI approach and the MAP estimation approach, respectively,

and (e) is the acquired high-resolution T1W MPRAGE volume

We use two sets of measures for comparing the accuracy of volume reconstruc-
tions. First we compute the similarity of the reconstructed T2W volumes to the
acquired high-resolution T1W volume. Normalized mutual information (NMI)
is appropriate in this case as it quantifies the nonlinear relationship between
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the intensity values of images with different contrast sources. We also use two
sharpness (focus) measures: M1 (the intensity variance measure) and M2 (the
energy of image gradient measure). Both measures are monotonic and robust to
noise [9]. The variance measure is calculated as the sum of square differences
(SSD) between each voxel intensity value and the mean image intensity value.
M2 is computed by integrating the magnitude of image gradient at all voxels.

The NMI measure computed as the similarity of T2W volume to the acquired
T1W volume was 1.61, 1.71, and 2.00 for the AVE, SDI, and MAP estimation
techniques respectively. This indicates that from an information-theoretic view-
point the intensity values of the MAP estimated volume better match with those
of the reference T1W volume. The computed M1 & M2 sharpness measures were
39092 & 6.7×1011, 41671 & 1.0×1012, and 43139 & 1.1×1012 for the AVE, SDI,
and MAP estimation techniques respectively. This indicates that the sharpest
volumes were obtained from the MAP estimation approach.

The second application of this technique is for fetal MRI. Iterative inter-slice
motion correction and volume reconstruction was performed here. Clinical fe-
tal MRI scans were obtained using a 1.5-T TwinSpeed Signa system and an
8-channel phased-array cardiac coil for pregnant patients with diagnosed or sus-
pected cases of fetal anomalies after diagnostic ultrasonography. The input scans
involve multiple SSFSE acquisitions in the fetal sagittal, axial and coronal planes
with slice thickness between 3 to 5 mm, and in-plane resolution of 0.7 to 0.8 mm.

Fig. 3 shows an example of volumetric fetal brain MRI reconstruction. Note
that the reconstructed volume clearly reflects the underlying continuity of tis-

Fig. 3. Application of the volume reconstruction algorithms to a 31.43 week fetus:

Three of the six acquired SSFSE scans in fetal axial, coronal, and sagittal planes are

shown in (a) to (c) respectively. (d) and (e) show the volumes reconstructed with

isotropic resolution of 0.8 mm3 using the SDI approach and the MAP estimation ap-

proach, respectively. Note that coherent tissue boundaries present in all three planes

of the MAP estimated volume but not in the out-of-plane views of the original scans



116 A. Gholipour et al.

sue structural boundaries in all three planes, whereas the original acquisitions
exhibit discontinuous tissue boundaries in the out-of-plane views due to the
effect of partial volume averaging. We examined 15 fetal brain MRI datasets
and computed sharpness measures. The average improvement in the M1 and
M2 sharpness measures with respect to the AVE reconstructed volumes were
8% and 20% for the SDI, and 12% and 42% for the MAP estimated volumes,
respectively.

4 Conclusion

We have developed a MAP estimation approach for the reconstruction of isotropic
high-resolution volumetric MRI from thick-slice orthogonal scans. This formula-
tion is based on a slice acquisition model, minimizes a cost function of an error
norm between the acquired thick-slice scans and the reconstructed volume, and
provides a framework for the incorporation of image priors. The results indicate
that the MAP estimation approach outperforms the scattered data interpolation
techniques, and image priors result in improved accuracy when the slice thick-
ness is 3 to 5 times larger than the in-plane resolution. In addition to fetal and
pediatric MRI, this approach can be used in many other MRI applications.
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Abstract. This paper presents a longitudinal change detection frame-

work for detecting relevant modifications in diffusion MRI, with appli-

cation to Multiple Sclerosis (MS). The proposed method is based on

multivariate statistical testings which were initially introduced for tensor

population comparison. We use these methods in the context of longitu-

dinal change detection by considering several strategies to build sets of

tensors characterizing the variability of each voxel. These testing tools

have been considered either for the comparison of tensor eigenvalues

or eigenvectors, thus enabling to differentiate orientation and diffusiv-

ity changes. Results on simulated MS lesion evolutions and on real data

are presented. Interestingly, experiments on an MS patient highlight the

ability of the proposed approach to detect changes in non evolving le-

sions (according to conventional MRI) and around lesions (in the normal

appearing white matter), which might open promising perspectives for

the follow-up of the MS pathology.

1 Introduction

The automated detection of relevant changes in longitudinal Magnetic Reso-
nance Imaging (MRI) sequences is crucial for medical diagnosis, follow-up and
prognosis. The core problem is to identify image regions that are significantly
different between two successive images. Because of its widespread interest and
the large number of applications in diverse domains, change detection has been
the topic of much interest. A review of the literature can be found in [1]. In con-
ventional MRI, various methods have already been proposed to detect changes
[2], [3], [4]. But few works have addressed change detection in Diffusion Tensor
Imaging (DTI). Some previous works have addressed change detection in scalar
images, characterizing diffusion properties, such as the Fractional Anisotropy or
the Mean Diffusivity. These works rely either on statistical parametric testing,
using the Generalized Likelihood Ratio Test (GLRT) [5], or on non parametric
testing, for instance permutation testing [6]. A comparison of standard statistical
testing on Diffusion Weighted (DW-) images is presented in [7]. In [8], the GLRT
has been extented to diffusion tensor images, but the approach does not take
into account the positive definite nature of matrices. This constraint has been
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considered in [9] where tensor test statistics have been developed for population
comparison. We propose to use this method for longitudinal change detection.
To this end, we consider stategies to build sets of tensors characterizing the
variabily of each voxel. These strategies are based on the variability existing in
the DW-images, or in the spatial neighborhood of the considered voxel, or a
combination of these two. Based on the tensor model, we derive testing tools for
the comparison of tensor eigenvalues and eigenvectors, thus enabling to differ-
entiate orientation and diffusivity changes. The proposed framework is based on
the following processing pipeline: 1- Preprocessing of the two DTI acquisitions,
2- Generation of the two tensor populations to be compared and 3- Multivariate
statistical testing between the two sets of tensors.

2 Proposed Framework

2.1 Preprocessing

Eddy current distortion correction. Each set of DW-images may be mis-
aligned due to eddy current distortions. Thus, a correction is achieved by affinely
registering each slice of the DWI data set onto the corresponding slice of the T2
image (without diffusion weighting).

Registration. Change detection methods generally require the two images to
be accurately registered. Thus, an affine transformation is estimated between the
two DWI sets, considering the mutual information between the T2 images. Since
an affine transformation may not always be sufficient to compensate for all the
undesired global differences that may be present between the two acquisitions,
the registration is then refined with the deformable method described in [10].

Interpolation and reorientation. An interpolation method is required to re-
sample the warped tensor image. It has been shown in [11] that interpolation
methods for tensor image can lead to significantly different results according to
the chosen metric. In particular, the Log-Euclidean metric seems to be prefered
to the Euclidean metric because of the swelling effect induced by the latter. Ther-
fore, we use a third order B-Spline interpolation method in the Log-Euclidean
space. Then, the Preservation of Principal Direction (PPD) reorientation strat-
egy described in [12] is applied to preserve the orientation and shape information
of the warped tensor image.

2.2 Generation of the Tensor Sets Reflecting the Local Variability

In this section, we investigate several strategies to generate a set of tensors
characterizing the variability of each voxel, based on the variability existing
in the DW-images, or in the spatial neighborhood of the considered voxel, or a
combination of these two. Tensors are estimated using the standard least squares
approach. Since this procedure does not guarantee the positive definiteness of the
tensors (which is a required property for using Log-Euclidean metrics), negative
eigenvalues are set to an arbitrary small positive value.
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Local Bootstrap. DTI acquisitions are composed of P gradient directions, P
being usually greater than six, thus leading to an overdetermined linear system
to estimate the tensor. Using a bootstrap strategy enables us to learn the dis-
tribution reflecting tensor estimation uncertainty based on the DW-images [13].
To this end, we generate at each voxel N bootstrap samples by randomly select-
ing P DW-signal with replacement, and preserving the gradient directions [13]
(Fig.1a). The random draw with replacement of the gradient directions amounts
actually to associate different weights to each gradient direction for tensor es-
timation. Using the local bootstrap on the two registered data sets enables to
generate two populations of tensors.

Spatial Neighborhood. An alternative idea is to learn the tensor distribution
at each voxel by considering all the tensors in a surrounding user-defined spa-
tial neighborhood. By this way, we make the implicit assumption that tensors
follow a constant model on this neighborhood and that the observed variability
is the consequence of random effects. Learning tensor distribution at each voxel
by considering all the tensors in a surrounding spatial neighborhood is based on
the commonly made assumption of a constant piecewise model [1], [2]. The limi-
tations of this model are well known, in particular here, at the interface between
different tissues, but the model is known to be robust and efficient. This method
has the advantage to be computationally cheap. However, it does not take into
account the information carried out by the DW-images.

Spatial Bootstrap. The spatial bootstrap is a combination of the local boot-
strap and the spatial neighborhood methods. From a surrounding box with a
user-defined size, we generate at each voxel N bootstrap samples by drawing for
each gradient direction one DW-signal of the neighborhood (Fig.1b).

2.3 Multivariate Statistical Testing on Tensors

Log-Euclidean metric. Using Euclidean metrics, such as the Frobenius dis-
tance, may raise some problem when considering symmetric positive definite
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Fig. 1. Schematic representation of the local and spatial (3 × 3 × 3 neighborhood)

bootstrap for P gradient directions. 127 represents the DW-signal of the 27th voxel of

the neighborhood according to the first gradient direction.
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(SPD) matrices since it does not define a vector space on SPD matrices. A sim-
ple and computationally efficient way to build a vector space on SPD matrices is
to consider the Log-Euclidean metric [11]. The Log-Euclidean metric corresponds
to the Euclidean metric on the logarithm of matrices. By this way, the matrices
with null or negative eigenvalues are at an infinite distance to any SPD matrices.
The logarithm of an SPD matrix D is obtained as L = Log(D) = ULog(Λ)UT ,
where Λ and U are the matrices derived from the standard spectral decomposi-
tion, containing respectively the eigenvalues and the eigenvectors of D. Then, the
Log-Euclidean distance between two SPD matrices D1 and D2 can be defined
as the Euclidean distance between their logarithms:

d2(D1, D2) = ‖Log(D1)− Log(D2)‖2 (1)

According to this metric, an estimator of the mean D̄ of a set of N tensors Di is
given by the exponential of the arithmetic log-tensorsmean, i.e. D̄ = exp(L̄), with:

L̄ = argminΣ

N∑
i=1

‖Log(Di)−Σ‖2 =
1
N

N∑
i=1

Log(Di) (2)

Statistical tests. Many statistical tests rely on the normal distribution. Consid-
ering the multivariate normal distribution for the SPD matrices has the drawback
to associate matrices with negative or null eigenvalues with a non null probabil-
ity. To circumvent this limitation, Schwartzman [9] suggests to model the matrix
logarithms with the multivariate normal distribution, which comes to model the
SPD matrices with a Log-normal distribution. Based on this model, it is possi-
ble to derive statistical tests on tensors eigenvalues and eigenvectors. We con-
sider two populations of N1 and N2 tensors respectively. Under the assumption
that the tensor logarithms of the two populations follow the normal distributions
L1 ∼ N (M1, σ

2Id) and L2 ∼ N (M2, σ
2Id), the Maximum Likelihood Estimates

of M1, M2, and σ2 are respectively L̄1, and L̄2 computed according to Eq. 2, and:

σ̂2 =
1

6(N1 + N2 − 2)

[
N1∑
i=1

tr
(
L1i − L̄1

)2 +
N2∑
i=1

tr
(
L2i − L̄2

)2] (3)

We consider a test [9] that evaluates whether the two populations of diffusion
tensors have similar eigenvalues, but possibly different eigenvectors. Let D1,
U1 and D2, U2 be the matrices derived from standard spectral decomposition,
and containing respectively the eigenvalues and eigenvectors of M1 and M2.
The test, based on the log-likelihood ratio under hypotheses H0 : D1 = D2 vs
H1 : D1 �= D2 is:

T =
(N1 + N2 − 2)N1N2

3(N1 + N2)2σ̂2
tr
[
(Λ1 − Λ2)2

]
(4)

with Λ1 and Λ2 the eigenvalue matrices of L̄1 and L̄2, respectively.
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Another case of interest is to test whether the two population of diffusion ten-
sors have similar eigenvectors, i.e the same orientation. When we combine the two
populations, we derive the mean tensor L̄ of the new population from Eq. 2. We
compute then the eigen-decomposition of this latter, and noteΛ the eigenvaluema-
trix. The proposed test, based on the log-likelihood ratio under hypotheses H0 :
U1 = U2 vs H1 : U1 �= U2, treating D1 = D2 = D as a nuisance parameter is:

T =
2(N1 + N2)− 3

6σ̂2
tr

[(
N1Λ1 −N2Λ2

N1 + N2

)2

− Λ2

]
(5)

3 Results

Experiments on synthetic lesions. We considered two successive DTI ac-
quisitions of the same subject acquired on a 3.0T MRI scanner with 30 encoding
gradients (b-value of 1000 s/mm2). By this way, the differences between the two
scans are only due to the acquisition noise and distortion. The image dimensions
are 128× 128× 40 and the spatial resolution is 1.8× 1.8× 3.5mm3. A synthetic
lesion is simulated in one of these scans as follows. We consider a lesion mask,
located in the white matter, and delineated by a physician to ensure its location
and shape to be clinically relevant. Inside the lesion mask, we modify uniformly
either the diffusivity in the principal direction, i.e. the principal eigenvalue (ap-
plication of a multiplicative factor k ∈]1, 2[), or the tensor orientations (rotation
of the ellipsoid canonical xyz system by α ∈]0, π/8]). The criterion used to com-
pare the different methods is the area under Receiver Operating Characteristic
(ROC) curves. In a ROC curve, the true positive rate (or sensitivity) is plotted
in function of the false positive rate (or 1-specificity) for different cut-off points.
A test that allows a perfect discrimination is characterized by a ROC plot that
passes through the upper left corner (i.e. an area of one). The Table 1 sum-
marizes the results for the three investigated strategies: S (Spatial), LB (Local
Bootstrap), and SB (Spatial Bootstrap). For all the experiments, we consider
a 3 × 3 × 3 spatial neighborhood for the SB and S strategies, and N = 100
bootstrap samples for LB and SB strategies. For both diffusivity and orienta-
tion modifications, the two methods based on the spatial neighborhood stand
out, thus pointing out the prominent part of the spatial information for reliable
change detection.

Table 1. Areas under the ROC curve for eigenvalues and eigenvectors tests (MS sim-

ulation: see text)

k S LB SB α S LB SB

eigenvalues: 1.2 0.713 0.202 0.724 eigenvectors: π/32 0.814 0.590 0.726

1.4 0.902 0.417 0.927 2 ∗ π/32 0.871 0.756 0.844

1.6 0.960 0.743 0.982 3 ∗ π/32 0.870 0.822 0.850

1.8 0.976 0.787 0.991 4 ∗ π/32 0.871 0.877 0.873
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Experiments on an MS patient. We considered two brain DTI acquisitions
of an MS patient acquired on a 3.0T MRI scanner with 33 encoding gradients
(b-value of 1000 s/mm2) at two different times (t2 − t1 = 15 months). The
images dimensions are 256×256×34 and the spatial resolution is 1×1×3mm3.
Examples of detection maps obtained with the three proposed approaches are
presented in Fig.2. Each potential approach gives different results for the vari-
ance (Eq.3), and mean tensors estimation (Eq.2). For instance (Fig.2: var-LB),
the DW-signal variability is greater in areas of high diffusivity (e.g. cerebrospinal
fluid), and much lower in highly structured areas (e.g. white matter). On average,
considering the spatial neighborhood gives larger values for the variance except
in the cerebrospinal fluid (Fig.2: var-S). As a consequence, the bootstrap yields
less false detections in the ventricles. The local bootstrap generates change de-
tection maps sensitive to small variations since the variance values at each voxel
are smaller (Fig.2: eig-LB). Directly using the spatial information after the ten-
sors estimation, achieves satisfactory results for a low computational burden. A
spatial bootstrap estimation benefits from the interesting properties of the local
bootstrap (i.e., direct modeling of the DW-signal), and reduces false detections
thanks to the spatial neighborhood information (Fig.2: SB).

A visual inspection of the results by an expert helps us to verify that anatom-
ical changes are also observable in diffusion imaging. Then other changes are
observed, that may provide information of a different kind. In Fig.2: eig, two

t1 t2 S LB SB

var

eig

vec

Fig. 2. Variance (var), and detection maps obtained for the eigenvalues (eig) and eigen-

vectors (vec) test statistics with the three different strategies for tensor population

generation
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Fig. 3. ROC curves (semilogx plot): longitudinal change detection results for the three

proposed generation of tensor sets and the GLRT

prominent lesions are detected. Both detections correspond to existing lesions
(in anatomical images), but according to the expert, only the bottom one is
changing. The top lesion is of widespread interest, since considering the anatom-
ical images, it does not seem to evolve during the time elapsed between the two
acquisitions. Then in Fig.2: vec, if it was obvious that for MS patients we have
to detect variations in the eigenvalues map (demyelination Fig.2: eig), we also
highlight the fact that the orientation is significantly changing. Notice also that
the proposed framework detects white matter modification near the ventricles
corresponding to physiological process known as leukoaraiosis.

ROC curves are used to quantitatively compare the three strategies, Fig.3. We
compare the results with a reference detection map obtained by a manual seg-
mentation of evolving lesions on the T2 images by an expert. Thus, ROC plots
should be analyzed carefully since the segmentation from the expert cannot re-
ally be considered as a ground truth (changes may occur in diffusion imaging
without being visible in anatomical images). The proposed framework is com-
pared with the GLRT framework introduced in [8], which differs in the following
points. During the preprocessing, we directly resample the DTI rather than going
through the DW-signal. On top of that, the GLRT does not take into account
the positive definite nature of matrices. From Fig.3, we highlight the interesting
behavior of the proposed test statistic compared to the GLRT. The separability
property (eigenvalues/eigenvectors) is of much interest.

4 Conclusion

Clinical disability for MS patients are localized in the white matter, and are
driven by a significant modification of the perpendicular diffusivity. As expected,
the eigenvalues test statitistic is relevant to detect such modifications. The com-
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parison of three strategies for the generation of the two tensor sets to be com-
pared has demonstrated the superiority of methods based on a spatial neighbor-
hood. Nonetheless, the spatial information introduces a smoothing effect on the
detection, while the bootstrap based approaches enable a better spatial local-
ization. We also notice significant orientation modifications during longitudinal
analysis. In the future we want to investigate if some correlation exists between
MS disease evolution and these pathological modifications, and try to combine
both information as a predictive tool for MS.

References

1. Radke, R.J., Andra, S., Al-Kofahi, O., Roysam, B.: Image change detection algo-

rithms: a systematic survey. IEEE Trans. Image Process 14(3), 294–307 (2005)

2. Bosc, M., Heitz, F., Armspach, J.-P., Namer, I., Gounot, D., Rumbach, L.: Auto-

matic change detection in multimodal serial MRI: application to multiple sclerosis

lesion evolution. NeuroImage 20, 643–656 (2003)

3. Rey, D., Subsol, G., Delingette, H., Ayache, N.: Automatic detection and segmen-

tation of evolving processes in 3D medical images: Application to multiple sclerosis.
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Abstract. Identifying mild cognitive impairment (MCI) subjects who

will convert to clinical Alzheimer’s disease (AD) is important for ther-

apeutic decisions, patient counselling and clinical trials. Hippocampal

volume and rate of atrophy predict clinical decline at the MCI stage and

progression to AD. In this paper, we create p-maps from the differences

in the shape of the hippocampus between 60 normal controls and 60 AD

subjects using statistical shape models, and generate different regions of

interest (ROI) by thresholding the p-maps at different significance levels.

We demonstrate increased statistical power to classify 86 MCI convert-

ers and 128 MCI stable subjects using the hippocampal atrophy rates

calculated by the boundary shift integral within these ROIs.

1 Introduction

The clinical onset of Alzheimer’s disease is insidious and progressive, with the
cognitive ability of a patient changing slowly from normal to severely impaired
over many years. Many subjects are diagnosed with mild cognitive impairment
(MCI) when they have measurable memory deficits but do not fulfill AD criteria.
While around 30% of all patients diagnosed with MCI progress to AD, some
remain stable and others revert to normal [1]. There is much interest in the early
diagnosis of AD: identifying those MCI subjects who will progress to clinical AD
(MCI converters) from those who remain stable (MCI stable). This information
is valuable for making therapeutic decisions, counseling patients and planning
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clinical trials. Large scale studies such as the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) (www.adni-info.org) were established to collect imaging and
clinical data in order to assess and compare biomarkers of disease progression
and early diagnosis of AD.

The hippocampus is one of the earliest structures affected in AD, and hip-
pocampal atrophy on magnetic resonance imaging (MRI) has been shown to be
a marker of AD pathology. Hippocampal atrophy is also predictive of clinical
decline at an MCI stage and even presymptomatically in familial AD. Recent
research has shown that hippocampal volume, shape variation and atrophy rate
may differentiate MCI converters from stable subjects [2,3], and predict the con-
version to AD [4]. In addition, regions (or subfields) in the hippocampus have
been shown to have different atrophy patterns in AD, with inward deformations
occurring in the CA1 and subiculum subfields in AD, while CA3,4 and den-
tate gyrus subfields remaining relatively intact [5]. Greater atrophy of the CA1
region is found in MCI converters [2]. Therefore, a region of interest (ROI) ap-
proach which identifies separately different sub-regions of the hippocampus may
be more sensitive to study changes in hippocampal volumes.

A common method to identify ROIs is based on the statistical differences be-
tween different diagnostic groups. Hua et al. [6] recently showed that the sample
size of a hypothetical AD clinical trial can be reduced by performing the analy-
sis on ROIs based on voxels with significant atrophy rates over time (p < 0.001)
between baseline and 1-year follow-up scans within the temporal lobes in a non-
overlapping training set of 22 AD patients. Other researchers have used ROIs in
the hippocampus identified using atrophy or surface maps based on statistical dif-
ferences between MCI converters and stable subjects to demonstrate the ability
to separate MCI converters and stable subjects [2,3]. In particular, Morra et al. [7]
created an average surface map for each diagnostic group by geometrically averag-
ing the surface maps of the subjects within that group. The local atrophy within
the hippocampus is estimated by calculating the radial size of the hippocampus
along its long axis. P -maps are then generated by comparing the local atrophy at
each point in the hippocampus between different diagnostic groups.

1.1 Contributions

The main contribution of this paper is the proposal to identify ROIs in the
hippocampus based on the statistical differences in its shape between normal
controls (NC) and AD subjects using statistical shape models, and then quantify
the atrophy rates within these local ROIs using the boundary shift integral (BSI).
We demonstrate increased statistical power to classify MCI converters and stable
subjects using atrophy rates within these ROIs.

2 Method

2.1 Image Data

We downloaded from the ADNI website (www.adni-info.org) pre-processed
baseline and 12-month repeat volumetric T1-weighted MR scans acquired using

www.adni-info.org
www.adni-info.org
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1.5T scanners of 334 subjects (60 NC, 214 MCI and 60 AD: mean(SD) age
76.5(4.8), 75.0(7.3) and 75.1(6.6)). MCI subjects were then subdivided into two
subgroups (86 converters and 128 stable: mean(SD) age 74.8(7.4) and 75.2(7.2))
based on their follow-up clinical diagnoses determined up to 36 months after
baseline. Representative imaging parameters were TR = 2400ms, TI = 1000ms,
TE = 3.5ms, flip angle = 8◦, field of view = 240 × 240mm and 160 sagittal
1.2mm-thick-slices and a 192 × 192 matrix, or 180 sagittal 1.2mm-thick-slices
with a 256 × 256 matrix. The images are pre-processed by the standard ADNI
image processing pipeline, which included post-acquisition correction of gradient
warping, B1 non-uniformity correction, intensity non-uniformity correction and
phantom based scaling correction.

Hippocampal segmentations at baseline and 12 months were downloaded from
the ADNI website. The segmentations were calculated by using a non-linear
warping technique from a template aided by the placement of manual land-
marks [8]. The technique (referred to as SNT) is commercially available from
Medtronic Surgical Navigation Technologies (Louisville, CO) and has been val-
idated in elderly subjects including MCI and AD patients [9].

2.2 Method Overview

Statistical shape models (SSM) of the hippocampus using these baseline SNT
hippocampal segmentations were built from a training set of 120 randomly se-
lected subjects (60 NC and 60 AD). A Hotelling’s T 2 test was performed on
the position of each landmark to identify regions of significant shape difference
between NC and AD. The resulting p-maps were then mapped onto the 214 MCI
subjects. Thresholding of the p-maps at different significance levels was used to
generate different ROIs in the hippocampus of the MCI subjects. We then tested
whether the quantification of hippocampal atrophy rates using BSI within these
ROIs increased the ability to classify MCI converters and stable subjects.

2.3 Statistical Shape Model

Two SSMs were built on the training set of 120 (NC+AD) subjects for left and
right hippocampus respectively. The hippocampal surfaces generated by march-
ing cube algorithm were first rigidly aligned using the iterative closest point
algorithm. The correspondence between shape landmarks was established by a
groupwise optimization of minimal description length with fluid regularization
in the shape image [10]. The hippocampal shapes were then aligned by the Pro-
crustes analysis via similarity transformations. A principal component analysis
was then performed and the components were chosen to accounts for 98% of
total variations in the population (assuming that the last 2% would be noise),
so that the shapes in the training set can be expressed as

xi = x̄ + Wbi (1)

where W is the matrix consisting of eigenvectors of the covariance matrix,
and the elements in vector bi are the parameters for the i-th shape. For each
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landmark on the hippocampal surface, a Hotelling’s T 2 test was used in order
to assess the differences between NC and AD.

The marching cube generated MCI hippocampal surfaces were smoothed using
a windowed sinc function to remove the aliasing artifact due to voxelization.
The SSM was deformed to fit the smoothed target surface SMCI, minimizing a
distance metric between the SSM generated surface and the target. The distance
between two surfaces S(x) and S(y) generated by point sets x and y can be
defined in a symmetrical manner as

dS(S(x),S(y)) =
∑
p∈x

dp(p,S(y)) +
∑
q∈y

dp(q,S(x)), (2)

where dp(p,S) is the Euclidean distance from the point to the closest point on
surface S.

Thus we can fit the SSM to the target surface SMCI by the optimization of
parameters

(Ty,by) = argmin
(T ,b)

dS(S(T (x̄ + Wb)),SMCI) (3)

using Powell’s algorithm, where T is a similarity transformation with 7 degrees
of freedom. For each landmark on the SSM-generated surface, we propagated its
p-value to the closest point on the surface SMCI. Thus we can have a p-map for
any given hippocampal surface.

Different ROIs on the surface of the hippocampus were obtained by thresh-
olding the p-maps using p < 0.05, p < 0.01, p < 0.005, p < 0.001, p < 0.0005
and p < 0.0001.

2.4 Hippocampal Atrophy Using Boundary Shift Integral

We used the hippocampal boundary shift integral (HSBI) to quantify the atro-
phy rate between the baseline and repeat scans [11,12]. After aligning the hip-
pocampus in the repeat images to the baseline image using a 6-degree-of-freedom
registration, HBSI was calculated over the hippocampal boundary region (given
by the exclusive OR region of the binary 1-voxel dilated and 1-voxel eroded hip-
pocampal regions) using a double intensity window approach [13,14]1. A double
intensity window was included for the HBSI calculation in order to capture
boundary shift at both the hippocampus–CSF border, and the hippocampus–
WM border.

To quantify the hippocampal atrophy rates within the ROIs identified using
SSM, we calculated HBSI over the AND region of the hippocampal boundary
region and the ROIs dilated by 1 voxel. The hippocampal atrophy rates were then
calculated by dividing HBSI by the baseline hippocampal volume and normalized
by the scan interval.

Cohen’s d and the area under the curve from receiver operating curves (ROC)
were used to assess the relative statistical power of hippocampal atrophy rates
calculated using different ROIs to classify MCI converters and stable subjects.
1 BSI source code is availabe at http://sourceforge.net/projects/bsintegral/

http://sourceforge.net/projects/bsintegral/
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3 Results

Fig. 1(a) shows the p-map of the differences between NC and AD. Regions with
low p-value (in red) correspond to the medial and lateral aspects of the hip-
pocampal head and tail. The iso-contours of p-values outlining regions with
different significance levels are shown Fig 1(b).

(a) (b)

Fig. 1. (a) P -map of the differences in the hippocampus between NC and AD. Left:

inferior view, right: superior view. (b) Iso-contour on p-maps in the left (top) and right

(below) hippocampus. The views from left to right are lateral, superior, medial and

inferior.

Table 1. Mean (SD) annualised atrophy rates, number of landmarks after thresholding

(M), Cohen’s d as effect size and the area under the receiver operating curve (AUC)

using different p-value thresholds. * denotes statistical differences at p < 0.05 in AUC

between ‘no threshold’ and ‘threshold at the given p-value’.

Annualised atrophy rate (%)

Converters (N=86) Stable (N=128) Cohen’s d AUC

No threshold (M=8196) 4.14 (3.64) 3.14 (3.08) 0.30 0.59

p < 0.05 (M=3174) 2.50 (1.94) 1.69 (1.77) 0.44 0.63*

p < 0.01 (M=1650) 1.70 (1.30) 1.06 (1.25) 0.51 0.65*

p < 0.005 (M=1107) 1.29 (1.00) 0.74 (0.96) 0.57 0.66*

p < 0.001 (M=474) 0.74 (0.59) 0.40 (0.54) 0.61 0.67*

p < 0.0005 (M=301) 0.53 (0.48) 0.27 (0.42) 0.58 0.66*

p < 0.0001 (M=35) 0.08 (0.18) 0.04 (0.16) 0.26 0.55

Table 1 shows the mean (SD) of the annualised hippocampal atrophy rates,
number of landmarks after thresholding, Cohen’s d as effect sizes and the area
under the receiver operating curve as a measure of overall classification perfor-
mance (Fig. 2) using different p-value thresholds. Both Cohen’s d and AUC (i.e.
the power to classify MCI converters and stable) were higher when using ROIs
generated using p < 0.05 to p < 0.001 compared to using the full hippocam-
pus. Cohen’s d and AUC reached a maximum when using ROIs generated by
p < 0.001 to calculate the atrophy rate.
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Fig. 2. Receiver operating curve of different p-value thresholds

4 Conclusions and Discussions

We have demonstrated that the power to classify MCI converters and stable
subjects using hippocampal atrophy rates can be increased by using local ROIs
within the hippocampus identified using SSM on a training set of NC and AD.
An improvement in the early diagnosis of AD (at an MCI stage) is important
for clinical and research purposes.

In this study, we have used data from NC and AD, which is independent of
the MCI data, to identify ROIs that can increase the power to classify MCI
converters and stable subjects. And we have found that the regions identified
by SSM on the lateral and medial sides of the right hippocampus include, but
are not limited to, CA1 and subiculum. Differences in regions that are near CA1
have been consistently reported between NC and AD [15,16]. The subiculum has
also been shown to be different between NC and AD [15].

We found that thresholding at p < 0.001 provided the best classification
power to separate MCI converters and stable subjects. Even though the atrophy
rates using the p < 0.001 threshold proved to be more discriminant between
MCI converters and stable subjects, they were about 17 times smaller than
the ones obtained using the full hippocampus. This rather large difference in
atrophy rate reflects the characteristics of the SSMs which were built using a
similarity transform. The similarity transform removed global shape variations
due to scaling, which is related to global atrophy. This technique is therefore
more adapted to capture local regions which undergo larger change in shape
than the rest of the hippocampus and allows better discrimination between the
groups. It should be noted that longer follow-up is required since some of the
stable subjects may convert to AD in the future.

As p-values are highly dependent on the number of samples in the training set,
a different ‘best p-value’ is likely to be found when using a different number of
samples. In future, we plan to use a effect size map instead of p-map to identify
ROIs.
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We have used the hippocampal segmentations from SNT to generate SSM
because they are readily available from the ADNI website. However, there are
different hippocampal segmentation protocols which produce different shapes of
the hippocampus [17]. Our method may be applied to hippocampal segmenta-
tions from different protocols and methods [18] to determine which one has the
most power to classify MCI converters and stable subjects.

Our method involves two image registration processes – inter-subject registra-
tions between the baseline images in SSM and intra-subject registrations between
baseline and repeat images in BSI. The two registration processes should be con-
sistent, so that the statistically different ROIs identified in SSM will correspond
to the atrophic regions between the registered baseline and repeat images in BSI.
This is especially important for structures that are symmetrical in shape.

In conclusion, our method provides a framework to increase the statistical
power of patient classification using the quantification of local atrophy rate in
ROIs identified using shape differences between diagnostic groups.
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Abstract. Accurate and reliable method for measuring the thickness of

human cerebral cortex provides powerful tool for diagnosing and study-

ing of a variety of neuro-degenerative and psychiatric disorders. In these

studies, capturing the subtle longitudinal changes of cortical thickness

during pathological or physiological development is of great importance.

For this purpose, in this paper, we propose a 4D cortical thickness mea-

suring method. Different from the existing temporal-independent meth-

ods, our method fully utilizes the 4D information given by temporal

serial images. Therefore, it is much more resistant to noises from the

imaging and pre-processing steps. The experiments on longitudinal image

datasets from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

show that our method significantly improves the longitudinal stability,

i.e. temporal consistency, in cortical thickness measurement, which is

crucial for longitudinal study. Power analysis of the correlation between

cortical thickness and Mini-Mental-Status-Examination (MMSE) score

demonstrated that our method generates statistically more significant

results when comparing with the 3D temporal-independent thickness

measuring methods.

1 Introduction

Many recent anatomical magnetic resonance image (MRI) studies on the human
brain have been focused on the cerebral cortex thickness analysis, because lon-
gitudinal variations in cortical thickness are found closely correlated to either

� Data used in the preparation of this article were obtained from the Alzheimers

Disease Neuroimaging Initiative (ADNI) database (www.loni.ucla.edu/ADNI). As

such, the investigators within the ADNI contributed to the design and imple-
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writing of this report. ADNI investigators include (complete listing available at

www.loni.ucla.edu/ADNI/Collaboration/ADNI Authorship list.pdf).
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pathological (e.g. Alzheimer’s disease) or physiological (e.g. normal aging) de-
velopment of brains. Therefore, an accurate cortical thickness measuring method
with longitudinal consistency and stability, which can detect and monitor the
developmental changes of cortical thickness, is highly desirable. Many cortical
thickness methods have been previously proposed. They can be broadly catego-
rized as explicit surface based, implicit surface based and probabilistic segmen-
tation based. In the explicit surface-based methods, after the inner (WM/GM
interface) and outer (GM/CSF interface) surfaces are extracted by deformable
surface models (which incorporate the smoothness constraints), the thickness is
defined as the distance between a pair of points from each of the two surfaces.
The correspondence between the two points in the pair is found either by de-
formable mapping of the inner surface to the outer surface [1,2], nearest point [3]
or surface normal [4]. The disadvantages of using explicit surface are the extra
computational cost and errors generated by the surface construction. In con-
trast, in implicit surface-based approaches, after segmentation of brain tissues,
no surface mesh is explicitly constructed to represent the WM/GM and GM/CSF
boundary. This makes the algorithms in this category more computationally ef-
ficient. The PDE-based [5] method is one of the representative approaches in
this category [6, 7, 8]. In this method, Laplace’s equation is solved in the GM
region with certain boundary conditions (by setting different constant potentials
on the two boundaries). The nested sub-layers of cortex is thus revealed by the
resultant iso-potentials. The cortical thickness is then defined at each point as
the length of the streamline along the gradient of the defined potential field.
Some of the above methods are based on a hard segmentation of brain tissues.
The disadvantage of using hard segmentation is the losing of sub-voxel informa-
tion, which makes the algorithms very sensitive to the segmentation errors. To
overcome this limitation, methods which measure the thickness on probabilistic
segmentation of GM are proposed. Diffeomorphic registration of the probabilis-
tic segmentation image is used in [9] to find a one-to-one correspondence of point
pairs, between which cortical thickness is defined. Similarly, in [10], thickness is
defined as the minimum line integral across the probablistic GM segmentation.

The above existing methods can be considered as 3D thickness measuring
approaches, because they are designed to measure the thickness temporal-
independently and do not take into account the temporal correlation. In or-
der to improve the measuring accuracy and stability in longitudinal thickness
studies, in this paper, we aim to devise a 4D thickness measuring method which
is capable of fully utilizing the temporal information provided by longitudinal
image dataset. The reason why 4D thickness measurement is important and
necessary is that, measuring cortical thickness from MR images is affected by
many artifacts and noises, such as intensity inhomogeneity, partial volume (PV)
effect and segmentation errors. Comparing the thickness of cortical structures
(1.2 ∼ 4.5mm [11]) to the the resolution of MR images (≈ 1mm), the errors intro-
duced in the measuring process are considerably large. Therefore, if the thickness
changes are evaluated as the difference between two temporal-independent 3D
measurements, these errors will be amplified and result in jittery longitudinal
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measurements. Another fact makes the longitudinal study even more difficult
is that the expected change in GM thickness during the early stages of some
neurological disorders, e.g. Alzheimer’s disease, has been shown to be less than
1mm in most brain regions [12, 13]. Since the cortical structure are only a few
voxels thick in the images, sub-voxel accuracy is required to detect the subtle
longitudinal thickness changes. In this situation, incorporating the information
from other time-points as constraints to improve the accuracy and robustness
of thickness measurement becomes very important. Currently, such temporal
constraints are introduced by applying some sort of regression over the inde-
pendently estimated 3D measurements. The problem of this regression-based
method is that it imposes overly restrictive constraints due to the limitation
of the pre-assumed regression model (usually linear), without taking into ac-
count the temporal correlation. This prompts us to incorporate the temporal
constraints directly into the thickness measurement process. In this paper, after
getting the 4D segmentation results of the longitudinal input images using a 4D
segmentation method [14], we propose to measure the thickness on the aligned
GM probability maps of different time-points in a common stereotaxic space. In
this way, information from all time-points can be easily incorporated.

2 Methods

2.1 Cortical Thickness Measurement by Minimum Line Integral

In [10], a 3D thickness measurement is defined as the minimum line integral on
the probabilistic segmentation of GM. As shown in Fig. 1, the thickness on each
voxel in the GM (denoted by red dot) is defined as the minimum line integral
(denoted as yellow arrow) of the probability map of the GM (the underneath
image) over all possible directions (denoted as a group of green arrows) passing
through that voxel. Mathematically, this method can be expressed as:

T (x) = min
l∈Lx

∫
l

P (x)dl (1)

where T (x) is the measured thickness of cortex at voxel x ∈ R3. P (x) ∈ [0 1] is
the probability of the point x belonging to the GM. Lx is the set of all possible
lines in three-dimensional space passing through x. In implementation, Lx is
defined by evenly sampling on the unit sphere.

2.2 4D Cortical Thickness Measurement

As Fig. 2 shows, our 4D thickness measurement method consists of five steps.
Without loss of generality, we use a longitudinal image dataset with one baseline
scan and N − 1 follow-up scans to explain each step in the pipeline.
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Fig. 1. Cortical thickness measurement by minimal line integral
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Fig. 2. 4D cortical thickness measurement

Pre-processing : Intensity inhomogeneity is firstly corrected [15]. Next, the N−
1 follow-up images are rigidly (6 DOFs) registered to the baseline images, because
the images are from the same subject with only translational or rotational mis-
alignments. After that, the skull and cerebellum are removed [16] in baseline.
Finally, by applying the resultant mask in baseline onto the aligned follow-up
scans, we get consistent skull and cerebellum removing results in all follow-
up scans.

Step 1 : Input the pre-processed images into a 4D segmentation algorithm
(CLASSIC [14]), to acquire the segmentation of GM with higher accuracy and
longitudinal consistency. The probabilistic 4D segmentations of GM are denoted
as Pi, i = 1, · · · , N .

Step 2 : Register each follow-up to baseline using diffeomorphic demons reg-
istration [17]. The resultant deformation fields and warped probabilistic seg-
mentation of GM are denoted as Di and Di(Pi), respectively. To quantify the
expansion and contraction caused by transformation Di, on each voxel, the Ja-
cobian determinant |JDi(x)| are calculated (as shown in step 2 of Fig. 2). This
map will be used as a scaling factor to correct the warped GM probability
map Di(Pi) by preserving the probabilistic volume. The reason to impose the
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diffeomorphic constraints in the inter-timepoint registration is to seek a minimal
deforming path. This property makes the deformation along the radial direction
(the direction thickness changes) on the cortex mantle. In [9], this property of
diffeomorphic registration was also used to find the corresponding point pairs in
thickness measurement.

Step 3 : In order to preserve the probabilistic volume, the warped GM proba-
bility map Di(Pi) is corrected by multiplying with the scaling factor:

P ′
i (x) = Di(Pi(x)) · |JDi(x)| (2)

This local probabilistic volume preserving step is also known as modulation in
voxel-based morphometry [18].

Step 4 : In the order of the scan time, the warped and corrected GM probability
map of each time-point can be represented as P ′

1, · · · , P ′
N . Since these maps are

in a standardized stereotaxic space (baseline space) and the probabilistic volume
is preserved, for each GM voxel in this space, the minimal line integral direction
can be defined as:

lmin = arg min
l∈Lx

1
N

N∑
i=1

∫
l

P ′
i (x)dl (3)

Different from the definition in 3D temporal-independent thickness measure-
ment, lmin is the optimal thickness measuring direction not only for a single
time-point, but for all the images in the longitudinal image dataset. This means
information from different time-points is fully utilized as constraint and guidance
in finding the optimal measuring direction, which is the key factor in thickness
measuring algorithms. Therefore, lmin can be robustly estimated against the
noises. The thickness at GM voxel x on the i-th time-point is then defined as
the line integral on P ′

i along lmin:

Ti(x) =
∫

lmin

P ′
i (x)dl (4)

In this 4D measurement, we can make sure that the thicknesses to be compared
in the longitudinal study are based on a common measuring direction. This will
make all the thickness values resistant to outliers and much more comparable
than the 3D measurement.

3 Experiments and Results

The validation of cortical thickness measuring algorithm has been a difficult
problem, because no gold standard is available and can be used to evaluate
a measurement. It is very difficult to manually measure the thickness in 3D
images, due to the highly convoluted nature of cortex. Instead of the direct
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validation, indirect validation method has been adopted to compare different
thickness measuring methods [10,19]. This method is based on the fact that cor-
tical thickness has close relationship with the psychological functions of brain.
In some diseases, such as Alzheimer’s disease, the decrease of thickness has
been found highly correlated to the psychological disorder [20, 21] which can
be quantified by scores from some clinical examination, such as Mini-Mental-
Status-Examination (MMSE) or Clinical Dementia Rating (CDR). Therefore,
by comparing the correlations detected by different measuring method and the
corresponding statistical significance, the accuracy and reliability of each method
when applied in clinical studies can be evaluated [19].

Data. Data used in the experiment were obtained from the public available
ADNI database (www.loni.ucla.edu/ADNI). In our study, 40 patients with mild
cognitive impairment (MCI) who later developed to probable Alzheimer’s dis-
ease (AD) and, for comparison, 15 normal controls (NC) were selected. In MCI
group, the average MMSE decline is 9.2 (within 2∼3 years), which indicates
a substantial neuropsychological disorder has been developed. Therefore, the

(a) 3S3T

(b) 3S4T

(c) 4S3T

(d) 4S4T

Fig. 3. Average correlation between thickness and MMSE scores. From left to right:

the left, inferior, superior and right views.
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corresponding decrease of the cortical thickness is expected. In NC group, the
average MMSE change is 1.3. Considering the possible MMSE assessment errors,
subjects in this group can be regarded as neuropsychological healthy, and thus
the cortical thickness is expected to keep stable (or slight decrease with normal
aging).

Experiment design. Since the 4D processing is introduced at both the seg-
mentation step and the thickness measuring step, totally four different thickness
measuring pipelines are compared in order to trace the source of the possi-
ble observed improvements. The four different combinations are: 3D segmenta-
tion and 3D thickness measurement (3S3T), 3D segmentation and 4D thickness
measurement (3S4T), 4D segmentation and 3D thickness measurement (4S3T)
and 4D segmentation and 4D thickness measurement (4S4T). After the 4 differ-
ent thickness values are measured, in order to conduct voxel-wise group analysis,
each subject’s thickness maps are mapped onto the template space.
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Fig. 4. Longitudinal change of average thickness of 15 subjects from NC group. (Each

curve represents a subject).

Results on MCI group. Before the voxel-wise correlation analysis can be
conducted in the template space, the mapped thickness is first smoothed us-
ing full-width-at-half-maximum (FWHM) Gaussian filter (σ = 8mm) in order
to suppress possible registration errors and inter-subject structure variations.
After that, Pearson’s correlation between thickness and MMSE score is calcu-
lated voxel-wise within each subject. The average correlation within the MCI
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Table 1. Longitudinal stabilities of different thickness measuring methods

3S3T 3S4T 4S3T 4S4T

regression residual

(mean ± std, mm) 0.161±0.067 0.121±0.073 0.117±0.052 0.081±0.040

group are then computed by transforming the correlation coefficients to Fisher’s
z -value and transforming back. The resultant average correlations from the four
methods are summarized in Fig. 3. As we can see, when more 4D components
are added into the pipeline, the higher correlation can be detected. The average
correlation detected increases in the order 3S3T < 3S4T and 4S3T < 4S4T .
Among all the four methods, the fully 4D method (4S4T) gives the highest cor-
relation. This shows that both 4D segmentation and 4D thickness measurement
can improve the accuracy and consistency for longitudinal thickness analysis.
Superior/Mid Temporal Pole, Entorhinal Cortex and Middle/Inferior Temporal
Gyrus are the five ROIs, in which the highest correlation are detected. These
findings are consistent with those from [20,21].

Results on NC group. In the experiment on NC group, the stability (ro-
bustness) of different methods are compared in the situation that the change of
thickness is very slight. For each subject, the average whole cortical thickness
is computed at every time-point. This longitudinal average thickness change of
the 15 NC subjects are shown in Fig. 4. As we can see, 3D methods generate
jittery changes which indicates the lack of longitudinal stability and consistency.
In contrast, the proposed method is much more resistant to the noise and gives
the most stable thickness measures. To quantitatively compare this stability, for
each subject, a linear regression is performed on the longitudinal change curve
and the fitting errors (residual) are computed. The results are summarized in
Table 1. Our method gives the smallest mean residual (which can be viewed as
the estimated mean error) and the smallest standard deviation.

4 Conclusion

We presented a 4D cortical thickness measuring framework. By applying the min-
imal line integral thickness measuring method on the aligned probability maps
of GM from each time-point, we incorporate longitudinal information into the
thickness measurement as temporal constraints. Experiments on clinical images
from ADNI show that our method can detect much higher correlation between
cortical thickness and MMSE scores with higher statistical significance. This
indirectly indicates that our method is much more consistent and accurate in
thickness measurement for longitudinal data.
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Abstract. Recently, inference of functional connectivity between brain regions 
using resting state fMRI (rsfMRI) data has attracted significant interests in the 
neuroscience community. This paper proposes a novel fiber-centered approach 
to study the functional connectivity between brain regions using high spatial 
resolution diffusion tensor imaging (DTI) and rsfMRI data. We measure the 
functional coherence of a fiber as the time series’ correlation of two gray matter 
voxels that this fiber connects. The functional connectivity strength between 
two brain regions is defined as the average functional coherence of fibers con-
necting them. Our results demonstrate that: 1) The functional coherence of  
fibers is correlated with the brain regions they connect; 2) The functional con-
nectivity between brain regions is correlated with structural connectivity. And 
these two patterns are consistent across subjects. These results may provide new 
insights into the brain’s structural and functional architecture. 

Keywords: functional network, structural network, rsfMRI, DTI, functional 
coherence.  

1   Introduction 

Recently analysis of functional connectivity between brain regions using resting state 
fMRI (rsfMRI) data has attracted significant interests in neuroscience community [1-
3]. Functional connectivity between two brain regions is typically defined as the 
similarity of their fMRI time series. One of the major challenges in functional 
connectivity analysis of the human brain is the enormous size of possible 
combinations of brain regions. In the neuroimaging community, currently, there are 
two major streams of methodologies for functional connectivity study: ROI-based and 
clustering-based approaches. ROI-based approach is typically applied in applications 
that study limited number of brain regions. ROIs are either determined by manual 
placement of regions in the brain images or automatically determined by activation 
detection or other regional homogeneity analysis [4-6]. Clustering-based approaches 
are typically data-driven and they identify the brain networks that have more coherent 
fMRI time-series signals within each network [7, 8]. However, for high spatial 
resolution rsfMRI data, the computation time and memory consumption for 
volumetric clustering are increasing dramatically. 
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Fig. 1. The flowchart of the proposed computation pipe-
line for fiber-centered functional connectivity analysis. 

In this paper, we propose an intuitive fiber-centered approach to study the func-
tional connectivity between brain regions using high spatial resolution diffusion ten-
sor imaging (DTI) and rsfMRI data. Our premise is that axonal fibers obtained from 
DTI data are the structural substrates of functional connectivity between brain re-
gions, and thus provide a natural anatomical localization for inference of functional 
connectivity. Therefore, we measure the correlation between rsfMRI time series of 
two gray matter voxels that this fiber connects to define the functional coherence of 
the fiber and the functional connectivity between the voxels it connect. We applied 
the above methodology to study the functional coherences of all fibers in the entire 
brain and to study the functional connectivity between major brain regions, which are 
parcellated via an atlas-based warping algorithm [9].  

2   Method 

2.1   Overview of the 
Method  

The proposed computational 
pipeline is summarized in 
Figure 1. Firstly, we co-
register rsfMRI, DTI and T1 
images into the same space 
using the FSL FLIRT tool 
(http://www.fmrib.ox.ac.uk/f
sl/). Then the whole brain is 
parcellated into regions by 
applying an atlas-based 
warping algorithms on the 
tissue map obtained from T1 
image [9]. The anatomical 
labels are further mapped 
onto the DTI tissue map 
derived from [10]. After 
that, we group the tracked 
fibers from DTI data into 
clusters based on the brain 
regions that they connect. 
Finally, we extract the nearest gray matter voxels’ rsfMRI signals for the two ends of 
each fiber, and perform functional coherence analysis, functional connectivity 
analysis and functional networks clustering based on these signals. This paper focuses 
on the last step. 

2.2   Data Acquisition and Preprocessing  

Eight volunteers were scanned using a 3T GE Signa MRI system. We acquired the 
resting state fMRI data with dimensionality 128×128×60×100, space resolution 
2mm×2mm×2mm, TR 5s, TE 25ms, and flip angle 90 degrees. DTI data were acquired 
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using the same spatial resolution as the fMRI data. Parameters were TR 15.5s and TE 
89.5ms, with 30 DWI gradient directions and 3 B0 volumes acquired. 

Pre-processing of the rsfMRI data consists of brain skull removal, motion 
correction, spatial smoothing, temporal pre-whitening, slice time correction, global 
drift removal, and band pass filtering (0.01Hz~0.1Hz). The pre-processing of the DTI 
data consists of brain skull removal, motion correction, and eddy current correction. 
After the pre-processing, fiber tracking was performed using MEDINRIA (FA 
threshold: 0.2; minimum fiber length: 20; sampled by 4). Brain tissue segmentation 
was conducted on DTI data by our method in [10].   

DTI space is used as the standard space from which to generate the GM 
segmentation and to report the brain network results on the cortical surface. Since 
fMRI and DTI sequences are both EPI sequences, their distortions tend to be similar 
and the misalignment between DTI and fMRI images is much less than that between 
T1 and fMRI images [11]. Co-registration between DTI and rsfMRI data is performed 
using the FSL FLIRT (http://www.fmrib.ox.ac.uk/fsl/). 

2.3   Fiber Projection  

There are a few reasons that cause the tracked fibers are not necessarily located on the 
cortex [12]. They include: 1) The FA values around the boundaries of gray matter and 
white matter are relatively low and the tractography procedure might stop before 
reaching the cortex. As a result, the tracked fibers will be within the cortical surface. 
2) There is discrepancy in the brain tissue segmentation based on DTI data and the 
DTI tractography. In this case, the fiber could be either outside the cortex if the gray 
matter is over-segmented or inside the cortex if the gray matter is under-segmented 
[12]. Hence, in order to use the fiber connection information on the cortex, we project 
the fibers onto the cortical surface. If the end point of a fiber lies outside the cortex, 
we search along the fiber backwards the cortical surface. Otherwise, we extend the 
fiber towards the cortical surface. The searching process stops either when the fiber 
arrives at the surface or it exceeds a searching threshold. In very rare case when a 
fiber cannot reach the surface, we treat this fiber as an outlier and remove it. When a 
fiber are projected to the the surface, it has two HAMMER labels [9] of the surface 
patchs its ends pass through. Then, with the two labels, the fibers can be clustered into 
groups based on different combinations of start-end HAMMER label patterns, and 
these groups reflcet the structural connectivity between brain regions. 

2.4   Functional Coherence Analysis for Fibers  

As reported in the literature, the blood supply to the white matter is significantly 
lower than that of the cortex (less than one fourth) [13], and the BOLD contribution to 
the white matter is relatively low. So, the investigation of gray matter rsfMRI signals 
makes more sense. To ensure signals are extracted from the nearest gray matter voxel 
for each fiber end, after the co-registration of DTI and rsfMRI data, the tissue 
segmentation map of DTI image is used to guide the search for the nearest gray matter 
voxel. The searching method is similar to the one in Section 2.3, but this searching 
ends at the nearest voxel with gray matter label in the DTI-derived tissue 
segmentation image. Then, we extract the rsfMRI time series for two ends of each 
fiber, and define the functional coherence for each fiber as the absolute value of the 
Pearson’s correlation coefficient of the two ends’ rsfMRI signals. 
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2.5   Functional Connectivity between Brain Regions 

In many previous studies of functional connectivity analysis, the fMRI signals are 
typically averaged within a brain region first, e.g., in a ROI (region of interest), and 
then the correlations between the averaged signals are computed as the functional 
connectivity. However, if the fMRI time series in a brain region are not coherent, the 
averaging process will smooth out real activity patterns. In this paper, the functional 
connectivity between two brain regions is defined as the average functional coherence 
of the fibers connecting them. Therefore� the analysis of functional connectivity be-
tween two regions is decomposed into the analysis of functional connectivity of two 
structurally connected voxels. In this way, we avoided the risk of averaging inhomo-
geneous fMRI signals in a brain region.    

To have anatomical meaningful regions of the brain, we first apply the HAMMER 
algorithm to parcellate the brain tissue obtained in Section 2.2 into 84 ROIs including 
both major cortical and sub-cortical structures [9, 14]. Then, for each hemisphere, we 
regroup these regions into 7 categories: the frontal lobe, the temporal lobe, the occipital 
lobe, the parietal lobe, subcortical region, cingulate region and the lateral ventricle. 
Therefore, we have 14 larger brain regions in addition. Using the method in Section 2.4, 
functional coherences of all fibers in the entire brain are calculated. Then we average 
the functional coherence of fibers connecting two regions to measure the functional 
connectivity strength between the two regions. So we have a symmetrical functional 
connectivity matrix C for all the 14 regions of the entire brain, and c(i, j) measures the 
functional connectivity strength between region i and region j , ( )0 , 1c i j< < . 

2.6   Cluster Brain Regions Using Affinity Propagation Algorithm  

The affinity propagation (AP) method [15] is a recently developed clustering method 
that can automatically determine the number of clusters in a population. It has been 
proved to have better performance than the traditional K-means clustering algorithm 
[15]. In general, The AP algorithm works by finding a set of exemplars in the data 
and assigning other data points to the exemplars. The AP algorithm approximates 
maximization of the sum of similarities to exemplars by recursively passing real-
valued message along edge in a factor graph until a good set of exemplars and corre-
sponding clusters emerges. 

In this paper we use the AP algorithm to cluster the 84 regions into different func-
tional networks, treating each region as a node in a network. There are two major steps 
in AP algorithm: similarity matrix computation and real-valued message passing, as 
summarized in following sections. Details on AP algorithm are referred to [15].  

2.6.1   Definition of Similarity Matrix 
The similarity matrix is obtained before the execution of the AP algorithm that simul-
taneously considers all data points as potential exemplars. We use the functional  
connectivity matrix as the similarity matrix. And the similarity between two regions is 
defined as ( ) ( )kickis ,/1, −= , and for each i, s(i, i) is set to 0. In this paper, we choose 

the maximum of the similarity multiplied by a constant value as self-similarity value 
p, and then we can obtain the expected clustering number by adjusting p value. 
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2.6.2   Real-Valued Message Passing Algorithm 
Basically, there are two kinds of messages exchanged between data points, responsi-
bility and availability, and each takes a different type of competition into account. The 
inputs are the pair-wise similarities and data point preferences. 

In AP algorithm, the similarity ),( kis  indicates how well the data point k is suited 
to be the exemplar for data point i. The preference s(i, i) is defined such that points 
with high values are more likely to be selected as exemplars. The number of identified 
exemplars is affected by both the values of the input preference and the messaging-
passing procedure. The responsibility r(i, k), sent from data point i to a candidate 
exemplar point k, reflects the accumulated evidence of how well-suited point k is to 
serve as the exemplar for point i, taking into account other potential exemplars for 
point i. The self-responsibility r(k, k) reflects accumulated evidence that point k is an 
exemplar based on its input preference tempered by how ill-suited it is to be assigned 
to another exemplar. The availability a(i, k), sent from candidate exemplar point k to 
point i, indicates the accumulated evidence of how appropriate it would be for point i 
to choose point k as its exemplar, taking into account the support from other points 
that point k should be an exemplar. The availability a(k, k), reflecting accumulated 
evidence that point k is an exemplar, is based on the positive responsibilities sent to 
candidate exemplar k from other points.  

The update of responsibility lets all the candidate exemplars compete for ownership 
of a data point, whereas the update of availability collects evidence from data point as 
to whether each candidate exemplar would be a good exemplar. The messages of 
availability and responsibility are updated recursively. After convergence, availabil-
ities and responsibilities are combined to identify exemplars. For point i, the value of 
k that maximizes ),(),( kirkia + either identifies point i as an exemplar if k=i, or iden-
tify data point that is the exemplar for point i. More details are referred to [15].  

3   Results  

3.1   Distribution of Fibers’ Functional Coherences 

We calculated the functional 
coherence of each fiber in the 
entire brain using the method 
mentioned in Section 2.4, and the 
statistic was done for all 8 sub-
jects. We can conclude from 
Figure 2 that the functional co-
herence strength has a consistent 
probability distribution across 
subjects.  

The functional coherence is 
also color coded for each fiber in 
the whole brain, as shown in 
Figure 3. The color of each fiber stands for the strength of functional coherence, and  
 

 

Fig. 2. Distributions of the fiber functional coher-
ences of 4 randomly selected subjects  
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Fig. 3. Distributions of fibers’ functional coher-
ences over entire brain for 3 randomly selected 
subjects 

Table 1. Region index 

Region ID Region name
Left Right 

Frontal lobe 1 14 

Temporal lobe 2 13 

Occipital lobe 3 12 

Parietal lobe 4 11 

Subcortical region 5 10 

Cingulate region 6 9 

Lateral ventricle 7 8 
 

the color bar is on the right. Fig-
ure 3 shows that the fiber func-
tional coherence strength is cor-
related to the regions it connects. 
For instance, some groups of 
fibers connecting the temporal 
lobe have relatively lower func-
tional coherences, while the in-
ter-hemisphere fibers connecting 
the occipital lobes have relatively 
higher functional coherences. 
And this pattern is consistent 
across different brains, as shown 
in Figure 3 for 3 randomly se-
lected subjects. This result dem-
onstrates that the region-specific 
distribution of fibers’ functional 
coherences is not random; it 
rather reflects brain’s consistent functional architecture.   

3.2   Functional Connectivity Analysis 

Based on the 14 regions described in section 2.5, we study the functional connectivity 
between these regions by constructing a connectivity matrix. We arrange the 14 re-
gions in the order shown in Table.1. The distribution of the 14 regions is exactly sym-
metrical along the Y axis in Figure 4(a), which will help to view connectivity patterns. 

The element (x, y) of the connectivity matrix is defined by the averaged functional 
coherence of all fibers connecting the region x 
and region y. Figure 4(a) shows the connectivity 
matrices for 4 randomly selected subjects. As 
we can see from the figure, 1) The connectivity 
matrix is relatively symmetrical along the dash 
dot line R; 2) The first and third quadrant is 
symmetrical along R, which means the func-
tional connectivity between two hemispheres is 
relatively spatially symmetrical; 3) The second 
and fourth quadrant looks similar, demonstrating 
that the functional networks in each hemisphere 
are similar; 4) The connectivity pattern looks 
similar across different brains, but also with 
considerable variation.   

Similarly, based on the brain parcellation in step 2 (Figure 1), we performed func-
tional connectivity analysis for 84 brain regions. The 84 regions are also arranged in a 
symmetrical order. In other words, the 14 regions are decomposed into smaller parts 
without changing the Region ID, and the smaller parts are also arranged to be sym-
metrical along the Y axis. The connectivity matrices are visualized in Figure 4(b). The 
connectivity matrices for the 84 regions further strongly support the conclusions 
drawn from 14 regions analysis above. However, it reflects more discrepancy between 
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two hemispheres, which is in consistency with the asymmetric brain. It is apparent 
that the connectivity pattern across subjects is quite reproducible. Also, the compari-
son of 14 and 84 regions analysis supports the idea that more segregated brain regions 
may have more functional differentiation. 

 

Fig. 4. (a) Functional connectivity matrices of 14 regions for 4 randomly selected subjects. (b) 
Functional connectivity matrices of 84 regions for 4 randomly selected subjects. 

3.3   Region Clustering Using AP Algorithm 

As we discussed in the previous 
section, the functional connec-
tivity matrices for 84 regions 
show a stable pattern across sub-
jects, which makes the clustering 
via AP algorithm feasible. We 
adjust the self-similarity value p 
in AP algorithm to obtain a stable 
clustering for each subject, and 
the cluster number for each case 
ranges from 20 to 24. The clus-
tering result is mapped to cortical 
surface, and for each subject each 
color represents a sub-network, 
as shown in Figure 5 for 4 ran-
domly selected subjects. Note 
that the colors are just randomly 
selected to show sub-network 
boundaries for each subject. They may vary across subjects for the same functional 
sub-network. The clustering result looks reasonable by visual inspection. As we can 
see in the top of Figure 5, the visual cortical regions of two hemispheres are clustered 

 

Fig. 5. Clustering of the 84 regions into sub-
networks for randomly selected 4 regions 
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into meaningful regions, e.g., the V1 and V2 regions are clearly separated. This cluster 
is relatively consistent across subjects. We can see that the distributions of some sub-
networks are symmetrical in two hemispheres. Some sub-networks contain regions 
across hemispheres. These clustering results support the view that the anatomical struc-
tural network is the basis of functional networks.  

4   Discussion and Conclusion 

In this paper, we present a novel fiber-centered approach for functional connectivity 
analysis in the entire brain. The advantages of this methodology include its intuitive-
ness and anatomical meaning. The analysis of functional connectivity between two 
brain regions is converted into the analysis of functional coherences of the fibers 
connecting these two regions. Our analysis on normal brains has shown meaningful 
results. In the future, we will cluster fibers using the functional coherences and their 
spatial distribution features. With the clustered fibers, we can potentially parcellate 
the white matter and gray matter into functionally homogenous regions automatically. 
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Abstract. We introduce a generative probabilistic model for segmen-

tation of tumors in multi-dimensional images. The model allows for dif-

ferent tumor boundaries in each channel, reflecting difference in tumor

appearance across modalities. We augment a probabilistic atlas of healthy

tissue priors with a latent atlas of the lesion and derive the estimation

algorithm to extract tumor boundaries and the latent atlas from the

image data. We present experiments on 25 glioma patient data sets,

demonstrating significant improvement over the traditional multivariate

tumor segmentation.

1 Introduction

Limited therapy options require a careful diagnostic for patients with brain tu-
mors. A multitude of available brain imaging sequences gives rise to patient
data sets that include multi-parametric, multi-modal, and multi-temporal vol-
umes even in standard clinical settings. Quantitative analysis of a lesion in these
data poses a challenging computational problem. In this paper, we present a
fully automated method for channel-specific tumor segmentation in such multi-
dimensional images.

Generative probabilistic models of spatial tissue distribution and appearance
have enjoyed popularity for tissue classification as they exhibit good general-
ization to unseen images [1,2,3]. Encoding spatial prior knowledge for a lesion,
however, is difficult. Tumors may be modeled as outliers relative to the expected
shape [4,5] or image signal of healthy tissues [2,6]. In [2], for example, a criterion
for detecting outliers is used to generate a tumor prior in a subsequent EM seg-
mentation which is treating tumor as an additional tissue class. Alternatively,
the spatial prior for the tumor can be derived from the appearance of tumor-
specific bio-markers [7,8]. The tumor classification methods can be augmented
with spatial regularization using a Markov Random Field prior [9] or a boundary
finding step [2,10] to ensure spatial contiguity of the segmentation results.
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Discriminative approaches directly learn the difference between the appear-
ance of the lesion and other tissues and do not rely on spatial priors
[11,12,13,14,15,16]. They do, however, often require substantial amounts of train-
ing data and typically come at the cost of manual interaction for initialization
and postprocessing. Most require the imaging protocol to be exactly the same
in the training set and in the novel images to be segmented. Discriminative
approaches proposed for tumor segmentation may use specific anatomical [13],
but also generic image features (e.g., wavelets [11]) as input to the classifier.
A spatial regularization via boundary modeling [11,12,13] or Markov Random
Fields [14,15,16] has proved useful when used with discriminative methods as
well.

Both generative and discriminative models face significant challenges when
applied to multi-modal data. Automatic discriminative approaches are limited
to the image modalities of the training set and are sensitive to missing data.
Generative models may generalize straightforwardly to multi-channel observa-
tions [8,7], but do not allow for modeling differences between the biological
processes observed in different modalities. By assuming the same shape and
extend of pathology in all modalities, the standard multi-channel segmentation
may ignore much of the information potentially available in images. Examples
include differences in tissue water (T2, Flair-MRI), enhancement of contrast
agents (post-Gadolinium T1-MRI), diffusion (DTI, DCE-MRI), or relative con-
centrations of selected metabolites (MRSI). Delineating the tumor area in each
of these modalities individually is highly preferred for subsequent quantitative
analysis of tumor shape and evolution.

We present a tumor appearance model for such multi-dimensional sequences
and derive an algorithm for a channel-specific segmentation of the tumor. The
method shares information about the spatial location of the lesion among chan-
nels while making full use of the highly specific multi-modal signal of the healthy
tissue classes for segmenting normal tissues in the brain. In addition to tissue
types, the model includes a latent variable for each voxel encoding the prob-
ability of observing tumor at that voxel. We derive an estimation algorithm
for this model that generalizes the standard atlas-based EM segmentation. In
our experiment with 25 multi-modal image volumes, the proposed approach
performs significantly better than the traditional multivariate tissue classifica-
tion method that assumes a single tumor segmentation that is shared by all
channels.

2 Generative Tumor Model

We use a generative modeling approach, in which we first build an explicit
statistical model of image formation and subsequently use this model to de-
rive a fully automatic segmentation algorithm. Fig. 1 illustrates our generative
model.

We model the normal state of the healthy brain using a spatially varying
probabilistic prior πk for each of the K tissue classes (Fig. 1, blue). This prior
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Fig. 1. Graphical model for the proposed segmentation ap-

proach. Voxels are indexed with i, the channels are indexed

with c. The known prior πk determines the label k of the nor-

mal, healthy tissue. The latent atlas α determines the channel-

specific presence of tumor t. Normal state k, tumor state t,
and intensity distribution parameters θ jointly determine the

multi-modal image observations y. Observed (known) quan-

tities are shaded. The tumor segmentation aims to estimate

p(tc
i |y), along with the segmentation of healthy tissue p(ki|y).

(atlas) is estimated from prior examples and is assumed to be known. At each
voxel i, the atlas defines a multinomial distribution for the tissue label ki:

p(ki = k) = πki. (1)

The normal state ki is shared among all C channels at voxel i. In our experiments
we assume K = 3, representing gray matter, white matter and cerebrospinal
fluid (CSF).

We model the tumor state using a spatially varying “latent” probabilistic
atlas α, similar to [10] (Fig. 1, red). At each voxel i, this atlas provides a scalar
parameter αi that defines the probability of observing tumor at that voxel.
Parameter αi is unknown and is estimated as part of the segmentation process.
We define a latent tumor state tci ∈ {0, 1} that indicates the presence of tumor in
channel c at voxel i and model it as a Bernoulli random variable with parameter
αi. We form a binary tumor state vector ti = [t1i , . . . , t

C
i ]T indicating the tumor

presence for all c observations at voxel i, with probability

p(ti; αi) =
∏
c

p(tci ; αi) =
∏
c

α
tc
i

i · (1− αi)1−tc
i . (2)

Image observations yc
i are generated by Gaussian intensity distributions for each

of the K tissue classes and the C channels, with mean μc
k and variance vc

k, respec-
tively (Fig. 1, purple). In tumor tissue (i.e., if tci = 1) the normal observations are
replaced by intensities from another set of channel-specific Gaussian distributions
with mean μc

K+1 and variance vc
K+1, representing the tumor class. Letting θ de-

note the set of all mean and variance parameters, and yi = [y1
i , . . . , y

C
i ]T denote

the vector of the intensity observations at voxel i, we define the data likelihood:

p(yi|ti, ki; θ) =
∏
c

p(yc
i |tci , ki; θ)

=
∏
c

[
N (yc

i ; μc
ki

, vc
ki

)1−tc
i · N (yc

i ; μc
K+1, v

c
K+1)

tc
i

]
, (3)

where N (· ; μ, v) is the Gaussian distribution with mean μ and variance v.
Finally, the joint probability of the the latent atlas and the observed variables

p(yi, ti, ki; θ, αi) = p(yi|ti, ki; θ) · p(ti; αi) · p(ki) (4)

is the product of the components defined in Eqs. (1-3).
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3 Maximum Likelihood Parameter Estimation

We seek Maximum Likelihood estimates of the model parameters {θ, α}:

〈θ̂, α̂〉 = arg max
〈θ,α〉

p(y1, . . . , yN ; θ, α) = arg max
〈θ,α〉

N∏
i=1

p(yi; θ, α),

where N is the number of voxels in the volume and

p(yi; θ, α) =
∑
ti

∑
ki

p(yi, ti, ki; θ, α).

Observing that evaluating the objective function involves summing over values
of ti and ki in Eq. (4), we use Jensen’s inequality to perform the optimization
using an iterative, EM-style minorization technique [17]. Letting {θ̃, α̃} denote
the current parameter estimates, we can compute the posterior probability of
any of the 2C tumor state vectors ti, writing out the components of Eq. (4):

qi(ti) � p(ti|ki, yi; θ̃, α̃) ∝
∑
ki

p(yi|ti, ki; θ̃)p(ti; α̃i)p(ki), (5)

and
∑

ti
qi(ti) = 1. Based only on the intensity channels that do not show tumor

(tci = 0), we also compute the posterior probability of tissue k at voxel i:

wik(ti) � p(ki|ti, yi; θ̃, α̃) ∝ πki

∏
c

N (yc
i ; μ̃c

k, ṽc
k)1−tc

i ,

and
∑

k wik(ti) = 1 for all ti. Using qi(·) and wik(·), we arrive at closed-form
update expressions that guarantee increasingly better estimates of the model
parameters. The updates are intuitive: the latent tumor prior is an average of
the corresponding posterior estimates

α̃i ←
∑
ti

qi(ti)

(
1
C

∑
c

tci

)

and the intensity parameters are updated with the weighted statistics of the data
for the healthy tissues (k = 1, . . . , K)

μ̃c
k ←

�
i

�
ti

qi(ti)wik(ti)(1 − tc
i ) yc

i�
i

�
ti

qi(ti) wik(ti)(1 − tc
i)

, ṽc
k ←

�
i

�
ti

qi(ti) wik(ti)(1 − tc
i ) (yc

i − μ̃c
k)2�

i

�
ti

qi(ti) wik(ti)(1 − tc
i )

and for the tumor class:

μ̃c
K+1 ←

∑
i

∑
ti

qi(ti) tci yc
i∑

i

∑
ti

qi(ti) tci
, ṽc

K+1 ←
∑

i

∑
ti

qi(ti) tci (yc
i − μ̃c

K+1)
2∑

i

∑
ti

qi(ti) tci
.

We iterate the estimation of the parameters {θ̃, α̃} and the computation of the
posterior probabilities {qi(·), wik(·)} until convergence.
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4 Tumor Segmentation

Once we have an estimate of the model parameters {θ̂, α̂}, we can evaluate the
probability that tumor is visible in channel c of voxel i by summing over all the
configurations ti for which tci = 1:

p(tci = 1|yi; θ̂, α̂) =
∑
ti

tci p(ti|yi; θ̂, α̂) =
∑
ti

tci qi(ti). (6)

We then assign channel c of voxel i to tumor if p(tci = 1|yi; θ̂, α̂) > 0.5.

5 Extensions

To augment the generative model outlined above with further physiological
knowledge, we derive and implement extensions considering the expected shape,
multivariate signal and structural appearance of the tumor.

Little spatial context is used in the basic model, as we assume the tumor
state ti in each voxel to be independent from the state of other voxels (Eq. 6
and Eq. 3). It is only the atlas πk that encourages smooth classification for
the healthy tissue classes by imposing similar priors in neighboring voxels. To
encourage a similar smoothness of the tumor labels, we extend the latent atlas
α to include a Markov Random Field (MRF) prior:

p(t1, . . . , tN ;β, α) ∝
∏

c

∏
i

α
tc
i

i (1− αi)1−tc
i exp

[
− β

2

∑
j∈Ni

tci (1− tcj) + tcj(1− tci )
]
.

Here, Ni denotes the set of the six nearest neighbors of voxel i, and β is a para-
meter governing how similar the tumor states tend to be in neighboring voxels.
When β = 0, there is no interaction between voxels and the model reduces to the
one described in Section 2. For β �= 0, the posteriors qi(ti) are no longer given
by Eq. (5), and their exact computation becomes infeasible. However, relaxing
the MRF to a mean-field approximation [18] we derive an efficient approximate
algorithm. We let

nc
i =
∑
j∈Ni

∑
tj

tcj qj(tj)

denote the currently estimated “soft” count of neighbors that show tumor in
channel c. The mean-field approximation implies

p(ti|αi) 
∏
c

γ
tc
i

i (1−γi)(1−tc
i ), where γi =

αi

αi + (1 − αi) exp
[
− β(2nc

i − 6)
]

to replace the previously defined p(ti|αi) in Eq. (4), leading to smoothed esti-
mates of the tumor segmentations.

Moreover, we want to account for the non-homogeneity in the appearance of
the tumor class, as gliomas show characteristic substructures such as active and
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Fig. 2. Examples of channel-specific segmentation results for four different modalities,

in two patients. The outlines of regions with p(tc
i = 1|yi; �θ, �α) > 0.5 are shown in red.

The proposed method localizes the tumor reliably in post-therapeutic images (below),

where surgery has led to significant deviations from normalcy for healthy tissues.

necrotic areas and edema. We model this via a straightforward extensions of the
tissue classes to include more than one class for tumor in a second modification
to our approach. Finally, to consider higher-order interactions in the multivariate
biological signal yi of healthy tissue, we can relax the conditional independence
of observations across channels by using multivariate Gaussians in the data like-
lihood in Eq. (3). We report tests of these three extensions in the next section.

6 Experiments

We evaluate our approach on a data set of 25 patients with glioma. The data
set comprises T1, T2, FLAIR-, and post-Gadolinium T1 MR images. Tumors
were outlined by a rater in three planes intersecting with the tumor center. We
register all images of a patient to the FLAIR volume by using affine registration
and segment the volume into the three healthy and an outlier class using a
freely available implementation of the EM segmentation with bias correction [1].
Outliers are defined as being more than three standard deviations away from
the centroid of any of the three normal tissue classes.

We apply our algorithm to the bias field corrected volumes and initialize inten-
sity parameters with values estimated in the initial segmentation. When using
multivariate distributions N (·; μ; V ),we initialize off-diagonal element in V to
zero. When modeling the tumor class with multiple Gaussian densities we ini-
tialize the means of additional subclasses to random values. We use outliers in
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Fig. 3. Sensitivity to the MRF parameter β. Indicated

are the median (solid line) and the interquartile ranges

of the average Dice scores of all 25 data set. While

some regularization is beneficial, the segmentation per-

formance is relatively insensitive to the choice of the

only model parameter β.

the initial segmentation to initialize the latent atlas α, setting αi for pixels of
the outlier class to 0.7 and otherwise to 0.3. We typically observe convergence
after 10 to 15 steps. For comparison, we also implement an EM segmentation
treating tumor as one of the tissue classes, with a weak MRF prior for spatial
regularization, similar to [2]. We use the same data and initializations as above,
but augment the atlas by a tumor prior obtained by smoothing the outlier class
of the initial segmentation with a 3cm kernel. This alternative segmentation
is applied to every single image volume individually in a first experiment, and
to the multivariate features of the whole multi-modal volume in a second ex-
periment. To evaluate the classification maps we calculate Dice scores for both
methods [19].

Fig. 2 illustrates results for two different subjects. We note that the tumor
boundaries change across different modalities and the proposed method captures
this variation well, even in post-therapeutic images. The method produces few
false positives which can be easily eliminated in a post-processing step. We eval-
uate the robustness and accuracy of our method in a series of experiments. First,
we test the sensitivity of the performance to the MRF parameter β that governs
the smoothness of the resulting segmentations. It is the only parameter to be
adjusted in our model. We find the performance of the algorithm to be relatively
stable for a wide range of β values (Fig. 3), irrespective of size, location or shape
of the tumor (i.e., β ∈ [1; 50]). For simplicity, we set β = 1 in all further ex-
periments. In the second experiment, we test different model options for normal
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Fig. 4. Benefits of the channel-specific segmentation. Boxplots show median, quartiles

and outliers for the Dice scores of all 25 subjects, for all four modalities. Our channel-

wise segmentation (c, green) improves over both multiple univariate (u, blue) and

multivariate (m, red) segmentation, both in the absolute terms (left) and with respect

to patient-specific differences (right). The right figure shows c−u and c−m.
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tissue and tumor classes. We find little differences between approaches that use
non-zero off-diagonal elements in the covariance matrix of the intensity likelihood
and those that do not. Modeling tumor by three Gaussians improves the result
for some cases, but leads to a somewhat lower performance on average. In a third
experiment, we compare our approach to the two alternative EM segmentation
methods (Fig. 4). Here, we find the proposed channel-specific segmentation to
always perform significantly better (p < 5 · 10−4, paired Cox-Wilcoxon test); it
improves the absolute value of the Dice score over all four modalities for nearly
all data sets by 0.1 to 0.2 (Fig. 4, right).

7 Conclusions

We present a generative model for tumor appearance in multi-modal image vol-
umes of the brain that provides channel-specific segmentations. We derive an
estimation algorithm and demonstrate superior performance over standard mul-
tivariate EM segmentation. Unlike discriminative tumor segmentation methods,
our model is applicable to any set of multi-modal image volumes, and is fully
automatic. Further extensions of the model may consider structure of the tumor,
or temporal evolution in longitudinal data sets.
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(eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 359–366. Springer, Heidelberg

(2008)

16. Wels, M., Carneiro, G., Aplas, A., Huber, M., Hornegger, J., Comaniciu, D.: A

discriminative model-constrained graph cuts approach to fully automated pediatric

brain tumor segmentation in 3D MRI. In: Metaxas, D., Axel, L., Fichtinger, G.,
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Abstract. A rapidly increasing number of medical imaging studies is

longitudinal, i.e. involves series of repeated examinations of the same

individuals. This paper presents a methodology for analysis of such 4D

images, with brain aging as the primary application. An adaptive regional

clustering method is first adopted to construct a spatial pattern, in which

a measure of correlation between morphological measurements and a con-

tinuous patient’s variable (age in our case) is used to group brain voxels

into regions; Secondly, a dynamic probabilistic Hidden Markov Model

(HMM) is created to statistically analyze the relationship between spa-

tial brain patterns and hidden states; Thirdly, parametric HMM models

under a bagging framework are used to capture the changes occurring

with time by decoding the hidden states longitudinally. We apply this

method to datasets from elderly individuals, and test the effectiveness of

this spatio-temporal model in analyzing the temporal dynamics of spa-

tial aging patterns on an individual basis. Experimental results show this

method could facilitate the early detection of pathological brain change.

1 Introduction

A number of advances in medical imaging technologies allow researchers to study
the progression of anatomical or functional changes in a number of diseases
and therapies. High-dimensionality pattern analysis methods have been increas-
ingly used to measure imaging patterns and use them for individual diagnosis
and progression. In the literature of aging and Alzheimer’s Disease (AD), high-
dimensional classification work aims to provide diagnostic predictors for early
marker of AD [1,2,3,4]. However, there is an increasing need for methods that
aim to measure subtle gradual progression of change, especially in neurode-
generative diseases. Compared with the dichotomous classification approaches,
pattern regression methods offer an alternative approach, which tries to estimate
continuous variables from imaging data [5,6,7,8].

Although high-dimensionality pattern analysis methods have potential to pro-
vide biomarkers for early detection of Alzheimer’s disease (AD), they typically
take into account one scan at a time, which can render them less sensitive to sub-
tle longitudinal changes that relate to disease progression. Longitudinal studies

T. Jiang et al. (Eds.): MICCAI 2010, Part II, LNCS 6362, pp. 160–168, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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allow us to measure subtle changes more accurate by repeatedly evaluating the
same subject over time [9,10,11]. For example, Driscoll et al. evaluated 138 non-
demented samples with longitudinal scans up to 10 years, and observed that
brain volume declined at specific regions for healthy people while accelerated
changes were shown in MCI group [11].

To statistically analyze temporal dynamics and capture disease progression,
a general solution is spatio-temporal modeling, which has been quite widely
used in pattern recognition and computer vision areas, such as speech process-
ing and activity analysis [12,13]. Spatio-temporal analysis has also found ap-
plicability in measuring the temporal evolution of brain activation under fMRI
studies [14,15,16]. However, spatio-temporal analysis of brain change in longitu-
dinal studies using advanced statistical analysis tools has been relatively scarce.
Herein, we propose such an approach based on a popular dynamic model, Hid-
den Markov Models (HMM). First, we adaptively extract regional features by
clustering brain voxels with similar correlation measurements to age. Compared
with voxel-wise methods, regional measures can provide more robust and dis-
criminative patterns. Then HMM is constructed to model the temporal evolution
of brain change as a sequence of probabilistic transitions from one discrete state
to the other. To improve the stability of the methodology, a bagging strategy is
adopted to build ensemble HMM models and estimate state path for each sub-
ject statistically. Experiments with brain MRI serial scans from older individuals
show that the regional feature-based HMM is an effective method to analyze the
spatio-temporal change of brain structure. It also can potentially detect abnor-
mal changes due to neurodegeneration, which is accomplished by comparing the
individual state trajectory with changes observed in healthy elderly.

2 Material and Methodology

2.1 Materials

9-year longitudinal data with T1-weighted MRIs from 144 cognitively normal
individuals (CN) were used under BLSA study. More image acquisition details
about BLSA data are described in[10]. Here, the slope of the California Verbal
Learning Test (CVLT) scores for each subject over all years was used to select
training samples, because CVLT test has been widely adopted for cognitive per-
formance evaluation. These slopes were calculated by mixed-effects regression,
and 58 subjects with the higher and lower CVLT score slopes were chosen for
training, while the remaining 86 subjects were used for testing. The character-
istics of participants in this study are shown in Table 1. In this work, brain MR
scans were pre-processed to three tissue density maps, namely gray matter (GM),
white matter (WM) and cerebrospinal fluid (CSF) by extensively validated tech-
niques [2,8]. These three tissue density maps give a quantitative representation
of the spatial tissue distribution in a template space. Brain change is reflected
by volume values in the respective tissue density maps.
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Table 1. Characteristics of participants in the current study

Training Set Testing Set

No. of subjects 58 86

Gender: No. of males/females 29/29 49/37

Baseline age (years) 69.63 ± 8.19 71.04±6.82

Age at last visit (years) 76.27 ± 8.31 76.96±7.85

No. of scans
Year 1 58 86

Year 2 58 86

Year 3 58 76

Year 4 56 72

Year 5 49 68

Year 6 42 65

Year 7 36 59

Year 8 20 53

Year 9 10 39

Total scans 387 620

2.2 Methodology

Regional feature extraction: To generate robust patterns against measure-
ment noise or image pre-processing errors, it is a common approach to group
tissue voxels with similar characteristics. As age is the major risk factor for brain
change, Pearson correlational analysis of morphological measurements and the
corresponding age is adopted to measure the similarity of tissue voxels. How-
ever, given the limited number of samples, how to generate the most informative
features with good generalizability is still very challenging. Leave-k-out bagging
strategy has been proved effective in improving the robustness of measures. Given
a training set D of N samples with longitudinal scans kn, n = 1, ...N , bagging
procedure generates N Pearson correlation coefficients between tissue values and
age, by respectively sampling D− kn examples from the whole training set with
the corresponding replacement. Then correlation confidence, defined as the
quotient of the mean and variance of these correlation coefficients from the same
location u of tissue map i (i = 1, 2, 3 represents GM, WM and CSF respec-
tively), is used to evaluate the discrimination ability and robustness of features.
The larger the absolute value of this correlation confidence is, the more relevant
to brain change this feature is. Here is the mathematical formulation as follows:

ci(u) =
ci
n(u)

V ar(ci
n(u))

(1)

where

ci
n(u) =

∑
n(f i

n(u)− f i(u))(yn − y)√∑
n(f i

n(u)− f i(u))2
∑

n(yn − y)2
(2)
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ci
n(u) is the Pearson correlation coefficient between the tissue values f i

n(u) and
variables yi

n (age in this work) at location u of tissue map i from the nth leave-
k-out case, from which k images of the nth sample are excluded. Here, fi(u)
is the mean of f i

n(u) over all samples, and y is the mean of all sample ages
yn. By extensively examining voxels and their respective correlation coefficients,
correlation confidence takes into account not only the discriminative ability, but
also consistence of feature. The reason is that, outliers can be found via high
variance of correlation coefficients, even some correlation coefficients are high at
the location u from cross-validation procedure.

We adopted the method of [8] and partitioned the brain into clusters of rela-
tively homogeneous correlation with age. Given these regional clusters, features
can be extracted by some statistical analysis on the respective brain regions. In
order to produce a small size of effective features for efficient parameter opti-
mization of spatio-temporal model, a feature subset was selected by the ranking
criterion, which was the absolute value of leave-k-out correlation confidence de-
fined as formula (1).

Spatio-temporal model: To model the brain structure change over time, it
is reasonable to employ a dynamic model with probability distributions, which
indicates the spatio-temporal relationship between the observed brain pattern
sequences and hidden state trajectories. Since brain change in old adults usually
accompanies tissue volume decline irreversibly, Markov process, in which past
observations explicitly influence present measurements, is an appropriate rep-
resentation for the true brain change. Therefore, HMM model with a Markov
process combing unobserved state is applied to statistically analyze the spatial
brain changes in longitudinal progression, then explain them by the correspond-
ing state at each time point individually.

Mathematically, an HMM is defined by a finite set of J states, and transi-
tions among the states are governed by a set of probabilities called transition
probabilities, αi,j = P (St = j|St−1 = i), 1 ≤ i, j,≤ J . Considering the gradual
progression of brain structure with age, a continuous probability density func-
tion is employed to characterise the relationship between states and brain change
measured with regional patterns. Specifically, a weighted sum of M Gaussian dis-
tributions is commonly adopted to approximate the probability density function
bj =

∑M
m=1 cjmN(μjm, Σjm, ot), in which cjm represent weighting coefficients

with stochastic constrains
∑M

m cjm = 1, 1 ≤ j ≤ J , μ and Σ are the mean
vectors and covariance matrices. π(j) = P (S1 = j) is the initial probability of
hidden states.

5 4 3

1 2 3 4 5

Fig. 1. The left-to-right HMM with 5 states
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Our approach aims to characterize progression along a direction, e.g. aging,
disease progression or treatment effects. We therefore explicitly incorporate an
additional constraint in the model, and introduce a left-to-right HMM structure
with 5-states. The state index of left-to-right HMMs decreases or remains the
same as time increases, as illustrated in Figure 1. To simplify the model, obser-
vation density function bj is represented by a single Gaussian distribution for
each state j in this paper.

A bagging strategy is also used to improve the model generalizability. For
each leave-k-out loop, we build a HMM model with the associated parameters
(πn, αn, bn). Given the estimated model parameters, Viterbi decoding is em-
ployed to find the most likely state path for both training and testing sequences.
In order to interpret the state transition, once N state paths are obtained under
bagging procedure for each subject, the state that occurs most frequently at each
time point is chosen as the final state mode. A framework of the spatio-temporal
modelling and analysis is shown in Figure 2.

Sub-sample

Set n (D-kn)

HMM 

Training

Hidden State 

Trajectory n

Relationship 

between brain 

change and 

cognitive 

change

Testing 

Samples

Statistical 

Analysis

 bootstrap sampling

Regional 

Feature 

Extraction

Training 

Samples

(D)

leave-K-out

 bootstrap sampling

leave-K-out

Viterbi

Decoding

Fig. 2. A bagging framework of HMM modeling and result analysis

3 Results and Discussion

Given the bagging procedure, we summarized the average age distributions of
the respective state index values, which were decoded by Viterbi algorithm based
on all ensemble HMM models. Overall, the estimated state index value closely
correlates with age in both training and testing sets as shown in Figure 3, where
the state values decrease with increasing age.

To further evaluate the performance of HMM models, the state transition
path for each individual was constructed. We note that almost half of them
experienced the state transitions with advancing age, and several representative
CNs are illustrated in Figure 4.

In order to investigate the relationship between state transition and cognitive
performance decline, CN individuals in the group with positive CVLT score
slopes (referred to as Non-Cognitive Decline group, i.e. NCD) were compared
with the remaining samples with negative slopes (referred to as Cognitive Decline
group, i.e. CD). We examined the number of state transitions for each subject
from the training set and the whole set, as illustrated in the first two plots of
Figure 5. Though nearly half of them had brain structure change as expected,
a much larger proportion of the CN individuals remained structurally stable
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HMM models. The top subplots show the average age distributions of training set while

the bottom subplots are the results for testing set. The final plots for each set illustrate

the combination of individual average age distributions of five states.

Fig. 4. Individual state paths of several samples in experiments

without any state transition. We also can see that the number of stable subjects
in NCD group was larger than that of CD group. To determine which state
the stable individuals remained in, we plotted the histogram of the number of
state index values for those individuals without transition (the last graph in
Figure 5). Notably, what was common in most “CD” subjects was that they
showed relatively higher prevalence of states 1-2, which are states with the most
abnormal structure, even though they remained relatively stable throughout the
follow-up period.

To further understand the difference of the age-related brain changes between
“relatively healthy” set and “progressive” set, we examined the average ages for
the corresponding states from those two groups, respectively. Here, the samples
with relatively minimal CVLT slopes and also high CVLT scores at baseline scan
(score > 45) were included into the “relatively healthy” set, while those with
rapidly decreasing CVLT slopes were the “progressive” set (slope < −0.5). From
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Fig. 5. Statistics of the number of state transitions for NCD and CD groups

Table 2, at states 1 and 2 (which are the most abnormal states), “progressive”
group members were younger than those from “relatively healthy” group. It is
possible that the “progressive” subjects in these states are the ones with most
aggressively evolving disease. In addition, the age difference between the “nor-
mal” state 5 and the “abnormal” state 1 in “progressive” group was less than
that of the healthy group. For “progressive” group, there was no significant dif-
ference of the mean ages between state 2 and 3. This implied that “progressive”
individuals progress nonlinearly.

Table 2. Average ages against states

���������Average Age

State
State 1 State 2 State 3 State 4 State 5

Relatively healthy group 86.73 77.81 70.54 67.11 65.96

Progressive group 83.34 73.59 71.67 71.16 69.44

Indeed, we found that several individuals demonstrated lower index values
of state 1/2 throughout observing period, even though they had high cognitive
test scores at baseline, and were relatively younger compared with the average
ages of these two states (1/2) as illustrated in Figure 3. Figure 6 shows the state
paths with increasing age of two detected samples.

Fig. 6. State paths of two samples with abnormal decline structurally

Therefore, the individuals with early “abnormal” state paths might develop
cognitive impairment in the near future. To some extent, this is consistent with
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most of MRI studies, i.e., there is an accelerating rate of change among AD-like
people, even for those who seem to be cognitively healthy until later disease
stages. One of the potentials of HMM models is that they might help iden-
tify early state transitions in individuals bound to later develop a disease, and
therefore to intervene early enough in the process.

The distinctive patterns of brain change in aging used in HMM modeling are
shown in Figure 7. We can see that most of these regional patterns are primarily
located at hippocampus, superior temporal gyrus, frontal lobe, cingulate region
and precuneus, which are largely in agreement with previous findings [10,11].

Fig. 7. Regional patterns with brain aging over time are shown by the color-coded

ranking score, correlation confidence

4 Conclusion

We presented a methodology for analysis of longitudinal image data, and applied
it to serial MRI brain scans of an aging cohort. In view of the statistical analysis
between cognitive performance and brain change, we found that considerably
more subjects with state transitions came from CD group. Moreover, subjects
without state transitions from CD group showed high prevalence of state 1 or
2, which implied their cognitive performance might have already declined before
the first visit. In addition, subjects with quickly declining cognitive performance
showed faster and nonlinear brain change, compared with “relatively healthy”
subjects. These findings are largely consistent with previous studies. Therefore,
the HMM model is a promising approach to evaluate the spatio-temporal pro-
gression of brain change over time individually. In this work, model parameters
were learned automatically from the data. However, the HMM structure was
defined manually. This was mainly due to the small size of the data set, which
will be addressed in future with the availability of larger data set.
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Abstract. Cortical surface complexity is a potential structural marker for cer-
tain diseases such as schizophrenia. In this study, we developed a measure of 
fractal dimension (FD) calculated from lowpass-filtered spherical harmonic 
brain surface reconstructions. A local FD measure was also computed at each 
vertex in a cortical surface mesh, visualizing local variations in surface com-
plexity over the brain surface. We analyzed the surface complexity for 87 pa-
tients with DSM-IV schizophrenia (with stable psychopathology and treated 
with antipsychotic medication) and 108 matched healthy controls. The global 
FD for the right hemisphere in the schizophrenic group was significantly lower 
than that in controls. Local FD maps showed that the lower complexity was 
mainly due to differences in the prefrontal cortex. 

Keywords: surface complexity, fractal dimension, spherical harmonics, schizo-
phrenia, MRI. 

1   Introduction 

One aspect of brain structure that may be significantly altered in disease is the cortical 
folding complexity. This can be measured using a metric such as the gyrification 
index (GI), which is defined as the ratio of the inner surface area (or perimeter in a 
cross-section) to that of an outer surface convex hull. The GI can be measured in two 
dimensions by examining cortical slices [1], or in 3D from a reconstructed surface 
mesh. Differences in cortical folding complexity have been found for some regions in 
psychiatric disorders such as schizophrenia [2] and bipolar disorder [3]. However, the 
GI metric has drawbacks, as it depends on the definition of the outer hull, on the plane 
of section for 2D measures, and may depend on brain size. 

These drawbacks can be circumvented using the fractal dimension (FD), which 
does not rely on the definition of an explicit outer hull (for a review, see [4]). It has 
been proposed that the brain is a fractal [5], at least over a certain range of scales, and 
this has been examined using voxel-based information on the overall geometry of the 
white matter [6, 7]. The FD may also be applied to measure cortical folding complex-
ity. Prior studies found significant differences in FD in psychiatric disorders such as 
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first-episode schizophrenia [8], obsessive-compulsive disorder [9], and Williams 
syndrome [10], as well as differences associated with sex [11], normal development 
[12], early-life blindness [13], and IQ [14]. 

Most definitions of the cortical surface FD rely on the box-counting method, where 
regional areas are computed at progressively lower sampling resolutions. Since the 
number of vertices steadily decreases, the position of these vertices can have a large 
impact on the FD metric and may overlook relevant cortical folding information. This 
concern may be addressed by aligning sulci across subjects to approximate the same 
cortical location for each vertex in all subjects [15]. However, alignment is a compli-
cated endeavor that often requires manual delineation of cortical regions. 

Surface complexity can also be assessed using spherical harmonic (SPH) expan-
sions. When using SPH reconstructions, the number of vertices (sampling) is the same 
for all reconstructed surfaces, reducing the influence of individual vertex placement. 
Furthermore, structural differences in some brain disorders may be easier to detect by 
investigating the 3D pattern of regional changes rather than a single global metric [16, 
17]. For instance, pattern classification techniques can combine signals from different 
parts of a map to enhance the specificity of morphometric findings [18-22]. This 
multi-regional information shows promise for developing a more specific brain struc-
tural signature of schizophrenia. Using SPH-derived reconstructions, a local FD can 
be computed at each vertex in the reconstruction, assisting with subsequent pattern-
classification approaches. 

In this study, we first demonstrate that the fractal dimension values obtained from 
SPH-derived reconstructions are a valid measure of surface complexity. This is ac-
complished by measuring the complexity of fractal surfaces with known FD. We then 
applied complexity analysis to MRI-derived cortical surfaces from schizophrenia 
patients and healthy controls. We hypothesized that there may be a core pattern of 
complexity differences that may be detectable in regions commonly implicated in 
schizophrenia (e.g., hippocampus and dorsolateral prefrontal cortex).  

2   Methods 

Our computation of the FD for a brain surface mesh has four steps: (1) Generate a 
surface mesh for each brain hemisphere using the standard FreeSurfer pipeline 
(http://surfer.nmr.mgh.harvard.edu/). (2) Extract the spherical harmonic coefficients 
up to a maximum bandwidth (or l-value) of B = 1536. (3) Reconstruct 20 brain sur-
face meshes from a progressively increasing series of lowpass-filtered coefficients. 
(4) Compute global FD using the summed polygon areas of the reconstructed brain 
surface meshes, and compute local FD using the average area of the neighboring 
polygons for each vertex. Steps related to complexity measures are detailed below. 

2.1   Spherical Harmonic Analysis 

To analyze the harmonic content of a surface mesh, the first required step is to  
re-parameterize the spherical mapping so that it has regularly sampled points with 
respect to θ and φ, where θ is the co-latitude and φ is the azimuthal coordinate. The 
original spherical mapping is from the standard FreeSurfer pipeline.  Then, points are 
generated from equally sampled values of θ and φ for all members in the sets, such that 
there are 2B points per set, where B is the bandwidth (or l-value). For each regularly 
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sampled point, the closest polygon on the spherical mapping is found. Within the clos-
est polygon, a spatial location for the interpolated vertex is approximated using bary-
centric coordinates. The result is a regularly sampled spherical map in which every 
point is associated with a coordinate that gives its location on the original surface. 

Once the surface mesh is re-parameterized, the harmonic content of a spherical 

mesh may be obtained using normalized spherical harmonics : 

 (1) 
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It is possible to solve this system directly by finding the bases first, but a more effi-
cient approach is to use a divide-and-conquer scheme [23]. 

These coefficients can then be lowpass-filtered, such that only lower coefficients 
have non-zero values, and passed through an inverse Fourier transform to produce a 
surface reconstruction. For FD calculations, twenty reconstructions are produced 
using an upper l-value between 4 and 1536. 

2.2   Calculation of Local and Global Complexity Values 

Generally, FD is found by finding the slope of a plot regressing log(area) versus 
log(dimension), over a certain range of scales, where the area is the sum of polygon 
areas in a given reconstruction. When using spherical harmonic reconstructions, the 
plot is modified to use bandwidth (or upper l-value), and the slope can be found by 
regressing log(area) versus log(bandwidth) (Figure 1). Because the area asymptotes 
for higher-bandwidth reconstructions (e.g., the brain surface is accurately recon-
structed if enough coefficients are included), the surface area values included in slope 
calculations were thresholded at 80% of the original surface area.  

In the case of global FD, the area used in the regression is the total area of the re-
constructions; for local FD, the area value assigned to a single vertex is the average 
area of the neighboring polygons. As this area value varies at a local level, the areas 
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were smoothed using a 25-mm Gaussian heat kernel [24]. Statistical significance was 
defined using a vertex-level threshold of p < 0.05. 

 

Fig. 1. Fractal dimension is found by finding the slope of a logarithmic plot of surface area 
versus bandwidth (or upper l-value), up to a maximum bandwidth. Surface areas are normalized 
by the original surface area. A linear approximation is reasonable over this range of scales.  

2.3   Artificial Fractal Surfaces 

To determine whether the FD values obtained from SPH-derived reconstructions were 
valid, we generated two sets of von Koch surface meshes that had either a tetrahedral 
or cubic structure. To avoid self-intersections, the surface meshes slightly deviated 
from true von Koch surfaces – a reduced length was used for projecting structures. 
Despite this deviation, however, the two sets of von Koch surfaces still had character-
istic FD values determined by measuring the slope of a log-log plot of characteristic 
dimension versus surface area (Figure 2; cubic: 2.1974, tetrahedral: 2.2936). These 
surfaces were then processed to generate SPH-derived reconstructions, and the global 
FD values were extracted from the surface area of the reconstructed surfaces. 

 

Fig. 2. Modified von Koch fractal surfaces with either a cubic (a) or tetrahedral (b) topology. 
Each set included surfaces with progressively more detail, obtained by inserting self-similar 
shapes at lower dimensions. A log-log plot of characteristic dimension versus surface area (c) 
resulted in a linear line whose slope was the characteristic FD. 
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2.4   Subject Data 

MRI data was acquired from 87 patients (48 male/39 female; mean age = 35.5 years, 
SD = 11.0) with a DSM-IV diagnosis of schizophrenia and 108 healthy controls (68 
male/40 female; mean age = 32.1 years, SD = 10.0). The patients were recruited from 
the Department of Psychiatry in Jena, Germany, and first screened with a semi-
structured interview before being assessed by two psychiatrists establishing the DSM-
IV diagnosis. Details of this patient group can be found in [25]. 

We obtained a high-resolution structural brain MRI from each subject on a 1.5-T 
Phillips Gyroscan ASCII system using a T1-weighted sequence obtaining 256 sagittal 
slices covering the entire brain (TR = 13 ms, TE = 5 ms, 25° flip angle, field of view 
[FOV] = 256 mm, voxel dimensions = 1 × 1 × 1 mm3) for all subjects. Foam pads 
were used where appropriate to limit head movement. Prior to image processing, each 
image was checked manually for artifacts. All scans passed both the manual and 
automated quality checks.  

3   Results 

Analysis of the von Koch fractal surfaces using SPH-derived reconstructions resulted 
in FD values similar to the FD values calculated analytically (cubic: 2.1540 ± 0.007 
SEM; tetrahedral: 2.2473 ± 0.007 SEM). Table 1 contains the mean global FD values 
for the schizophrenic subgroups and controls. Complexity was significantly lower for 
the right hemisphere in the schizophrenic group. 

Table 1. Mean global FD for schizophrenic and control subjects with SEM. *: p < 0.02. 

 left hemisphere right hemisphere 
Control (c) 2.5328 ± 0.0002 2.5340 ± 0.0002 

Schizophrenic (s) 2.5355 ± 0.0003 2.5264 ± 0.0002 * 

 

Fig. 3. Local average FD values for control (a, C) and schizophrenic (a, S) groups, for the left 
(top row) and right (bottom row) hemispheres. A map of mean complexity differences between 
groups (b) and p-values (c) highlight differences between the groups. In (c), vertices are high-
lighted if p < 0.05, and the values were not corrected for multiple comparisons. 
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The local FD mapping reveals that the lower overall complexity in the right hemi-
sphere is due to differences in the prefrontal and temporal lobes (Figure 3). Local 
complexity is also lower for the prefrontal cortex in the left hemisphere. 

4   Discussion 

We developed a measure of cortical surface complexity that relies on spherical har-
monic reconstructions to derive the fractal dimension of brain surfaces both globally 
and locally (up to single-vertex resolution). Analysis of fractal surfaces demonstrated 
that this method accurately measures the FD of surfaces. The global FD values for 
cortical surfaces were similar to previously published FD values [6, 9, 26], indicating 
that complexity measures of cortical structures based on SPH-derived reconstructions 
may be an accurate measure of complexity. Other groups have reported much lower 
FD values. This discrepancy is due to differences in measuring FD (which was usu-
ally a box-counting approach applied with relatively low-resolution resampled 
meshes) or in mathematical definitions of FD measures [8, 10, 11, 15]. The local 
mapping of complexity was a basic proof-of-concept that lends itself to improvement 
through inter-subject registration, region-of-interest analysis, and pattern classifica-
tion methods. Such approaches would allow the extraction of complexity measures 
for individual lobes and potentially the recognition of schizophrenic patients through 
structural morphometry alone. 

Applied to a large subject pool containing control and schizophrenic subjects, dif-
ferences in cortical structure were significant in the prefrontal lobe, as predicted. 
Right hemispheric complexity was lower for the schizophrenic group. There were 
also significant differences near the hippocampal region, but a more detailed regional 
analysis needs to be conducted before reaching a conclusion. These findings corrobo-
rate earlier hypotheses on aberrant brain development. First, the global FD changes 
are significant in the right hemisphere, which suggest that the abnormalities are later-
alized. Second, the prefrontal and medial temporal localization of FD alterations par-
tially overlaps areas where subtle developmental cellular deficits have been shown 
[27, 28]. This would suggest that altered FD might be a reflection of abnormal early 
development of the cortical sheet. 
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Abstract. The paper proposes a new shape morphometry approach

that combines advanced classification techniques with geometric features

to identify morphological abnormalities on the brain surface. Our aim is

to improve the classification accuracy in distinguishing between normal

subjects and schizophrenic patients. The approach is inspired by natural

language processing. Local brain surface geometric patterns are quan-

tized to visual words, and their co-occurrences are encoded as visual
topic. To do this, a generative model, the probabilistic Latent Seman-

tic Analysis is learned from quantized shape descriptors (visual words).

Finally, we extract from the learned models a generative score, that is

used as input of a Support Vector Machine (SVM), defining an hybrid

generative/discriminative classification algorithm. An exhaustive exper-

imental section is proposed on a dataset consisting of MRI scans from

64 patients and 60 control subjects. Promising results are reporting by

observing accuracies up to 86.13%.

1 Introduction

Computational neuroanatomy using magnetic resonance imaging (MRI) is a
fruitful research field that employs image processing techniques to identify geo-
metric characteristics of different brains [1]. The ultimate goal is to automatically
identify structural brain abnormalities by estimating the differences between
normal subjects and patients affected by a certain disease. Standard approaches
are based on the measurement of volume variations [2] which are useful to ex-
plain atrophy or dilation due to illness, but on the other hand, they lack in
detecting small structural abnormalities at specific locations. To this aim, more
advanced shape analysis techniques have been proposed[3,4,5,6]. In [3] geometric
properties are captured by computing spherical harmonic descriptors on brain
surfaces. Although results are effective, the method requires shapes registra-
tion and data resampling. Such pre-processing is avoided in [4,5], where the
so called Shape-DNA signature has been introduced by taking the eigenvalues
of the Laplace-Beltrami operator as region descriptor for both external surface
and volume. Moreover, possible morphological anomalies can be localized by the
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analysis of the eigenfunctions. Recently a more general shape analysis technique
has been proposed, namely the feature-based morphometry (FBM) [6]. FBM
identifies anatomical structure that can be used as disease biomarkers without a
one-to-one spatial correspondence between all subjects. In order to improve the
capability in distinguishing between healthy and non-healthy subjects, learning
by example techniques [7] are applied (see for example, [8]). Usually, geometric
signatures extracted from the MRI data are used as feature vector for classifica-
tion purpose [9,10,11]. In [9] a support vector machine (SVM) has been employed
to classify cortical thickness which has been measured by calculating the Euclid-
ean distance between linked vertices on the inner and outer cortical surfaces.
In [10] a new approach has been defined by combining deformation-based mor-
phometry with SVM. In this fashion, multivariate relationships among various
anatomical regions have been captured to characterize more effectively the group
differences. Finally, in [11], a unified framework is proposed to combine advanced
probabilistic registration techniques with SVM. The local spatial warps parame-
ters are also used to identify the discriminative warp that best differentiates the
two groups.

In this paper we proposed a new shape morphometry approach. We combine
geometric surface properties extraction with advanced classification techniques.
Firstly, local geometric features are computed from the brain surface to char-
acterize single surface vertices. Then, being inspired by the research on natural
language processing, geometric features are quantized into local shape configu-
rations by defining the set of visual words. In order to improve the shape de-
scription, a generative model is learned to find local patterns of co-occurrences,
by leading to the definition of the so called visual topics. To this aim we em-
ploy a generative model, the probabilistic Latent Semantic Analysis (pLSA –
[12]). Finally, the topic distributions of each subject are fed to a SVM classifier
by defining a proper generative kernel. In this fashion the classifier employs a
discriminative-generative approach which represents one of the most effective
and advanced classification paradigms. In this work, we focus on schizophre-
nia by analyzing a dataset of 64 patients and 60 controls. A Region-of-Interest
(ROI)-based approach is employed by studying the left-Amygdala. The proposed
method is able to satisfy at the same time the main advantages of the previ-
ous methods: i) registration is not required as in [4,5,6], since extracted geo-
metric features are position and scale invariant, ii) morphometric abnormalities
can be localized and visualized as in [3,11], iii) promising accuracy classifica-
tion performances are observed by exploiting advanced classification techniques,
as suggested in [8]. Moreover, the idea of encoding the geometric pattern co-
occurrences as topics of a generative model is new for shape analysis and for the
biomedical domain, for the best of our knowledge.

2 Geometric Feature Extraction

From the set of 2D ROIs of the left-Amygdala shapes the 3D surface is com-
puted as triangle mesh using marching cubes. A minimal smoothing operation is
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applied to remove noise and voxelization effect. We encode geometric properties
of the surface using the Shape Index [13], which is defined as:

si = − 2
π

arctan
(

k1 + k2

k1 − k2

)
k1 > k2,

where k1, k2 are the principal curvatures of a generic surface point. The Shape
Index varies in [−1, 1] and provides a local categorization of the shape into primi-
tive forms such as spherical cap and cup, rut, ridge, trough, or saddle [13]. Shape
index is pose and scale invariant [13] and it has already been successfully em-
ployed in biomedical domain [14]. The shape index is computed at each vertex
of the extracted mesh. Then, all the values are quantized and an histogram of
occurrences is computed. Such histogram represent the descriptor of a given sub-
ject and it basically encodes the brain local geometry of a subject, disregarding
the spatial relationships. Figure 1 shows the 3D surface of the left-Amygdala

Fig. 1. Geometric feature extraction: 3D surface of the left-Amygdala (left), the surface

colored according with Shape Index values (center), and the histogram of Shape Index

occurrences (right)

(left), the surface colored according with Shape Index values (center), and the
histogram of Shape Index occurrences (right). It is worth noting that convex
regions (in blue) are clearly distinguished from concave regions (in red) by the
Shape Index values.

3 Topic Models and pLSA

Topic models were introduced in the linguistic scenario, to describe and model
documents. The basic idea underlying these methods is that each document is
seen as mixture of topics – where a topic is a probability distribution over words.
Intuitively, each topic may be related to a particular set of co-occurrent words,
that are specific of the treated argument. This representation has one clear ad-
vantage: each topic is individually interpretable, providing a probability distri-
bution over words that picks out a coherent cluster of correlated terms. In the
shape analysis context, this can be really advantageous since the final goal is to
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provide knowledge about morphological abnormalities, and infer possible hidden
correlations. In this paper, we focus on probabilistic Latent Semantic Analysis
(pLSA)[12] which takes as input a dataset of N documents {di}, i=1,..., N , en-
coded by set of words. Before applying pLSA, the dataset is summarized by a
co-occurrence matrix of size M×N , where the entry n(wj , di) indicates the num-
ber of occurrences of the word wj in the document di. The presence of a word wj

in the document di is mediated by a latent topic variable, z ∈ T = {z1,..., zZ},
also called aspect class, i.e.,

P (wj , di) =
Z∑

k=1

P (wj |zk)P (zk|di)P (di). (1)

In practice, the topic zk is a probabilistic co-occurrence of words encoded by
the distribution P (w|zk), w = {w1,..., wM}, and each document di is compactly
(Z < M)1 modeled as a probability distribution over the topics, i.e., P (z|di),
z = {z1,..., zZ}; P (di) accounts for varying number of words. The hidden distri-
butions of the model, P (w|z) and P (z|d), are learnt using Expectation-Maximi-
zation (EM), maximizing the model data-likelihood L:

L =
N∏

i=1

M∏
j=1

P (wj , di)n(wj ,di) (2)

The E-step computes the posterior over the topics, P (z|w, d), and the M-step
updates the parameters, PC(w|z) which identifies the model. Once the model
has been learnt, the goal of inference is to estimate the topic distribution of a
novel document. To do this, one can use the standard learning algorithm keeping
fixed the parameters P (w|z).

To perform generative classification with pLSA one has to learn a model per-
class and assign a new sample to the category whose model fits the point best, i.e.,
the model with highest likelihood (see Equation 2). Recently, other approaches
successfully used meaningful distributions or other by-products coming from a
generative model, as feature for a discriminative classifier. The feature vector
resulting after this mapping is called generative score. The intuition is that gen-
erative models like pLSA are built to understand how samples were generated,
and they haven’t any notion of discrimination; on the other hand, discriminative
classifiers are built to separate the data and they are highly more effective if the
data has been previously “explained” by a generative model.

Here turn now to explain how we adopt this ideas to the problem in hand: in
our case the words wj are the quantized geometric features previously presented
and the documents d are the subjects. The number of bins (words) with which
we quantize the continuous shape index values (M=150) has been heuristically
chosen in order to get the best possible performance by classifying directly the
feature histograms. As result, the input of pLSA are histograms of quantized
shape index values and we want to look for co-occurrence of geometric features.
1 Both Z and M are constants to be a-priori set.
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To classify, we learn a pLSA model for normal controls (i.e., PC(w|z)) and one for
schizophrenic patients (i.e., PS(w|z)). Instead of comparing the likelihoods of the
two models to classify, we extract a score φ(d) for each document d according its
estimated pLSA posteriors distribution, to use it with a discriminative classifier.
In forumlae we have that

φ(d) =
[
P (zC |d), P (zS |d)

]
=
[
P (zC

1 |d), · · ·P (zC
Z |d), P (zS

1 |d), · · ·P (zS
Z |d)
]

(3)

Our intuition is that the co-occurrence of geometric features is different between
controls and cases. Since the co-occurrences are captured by the topic distribu-
tions P (zC |d) and P (zS |d), we are defining a meaningful score for discrimination.

4 SVM Classification

One of the most powerful classifier for object recognition is the Support Vec-
tor Machine (SVM). SVM constructs a maximal margin hyperplane in a high
dimensional feature space, by mapping the original features through a kernel
function. Here, the input of the SVM are the score vectors (Eq. 3). In order
to compare data, we employed two kind of kernels: the Histogram Intersection
(HI) kernel and the χ2-kernel. Given two brains A and B, described by their
quantized shape index distributions dA and dB, HI and χ2 kernel functions are
respectively defined as:

KHI(A, B) =
2Z∑
i=1

min
[
φi(dA), φi(dB)

]
; Kχ2(A, B) =

2Z∑
i=1

min
[
φi(dA), φi(dB)

]
(4)

where φi(d) = P (zi|d), and 2·Z is the length of the score vector.
In this fashion, according to the generative/discriminative classification

paradigm, we use the information coming from the generative process as discrim-
inative features of a discriminative classifier. In practice, we measure similarities
in the employed topics during the generation of a sample.

5 Results

The dataset used in this work is composed by 64 patients affected by schizophre-
nia and 60 healthy control subjects, making our dataset much larger than those
commonly used in schizophrenia.

MRI scans were acquired using a 1.5 T Siemens Magnetom Symphony Maestro
Class, Syngo MR 2002B by facing several methodological issues dictated by
international organization to minimize biases and distortions.

We focused our analysis on the left-Amygdala whose abnormal activity is
already investigated in schizophrenia. Regions have been manually traced by
experts, according to well established medical guidelines. After the geometric
feature extraction and pLSA analysis, two generative models are available: one
for normal controls and one for schizophrenic patients.
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Fig. 2. Output of pLSA: best-topic for healthy-model P C(w|z = ẑc) (top) and patient-

model P S(w|z = ẑs) (bottom). Visual words distribution (left) and their projection

onto the surface (right).

In order to obtain a visual feedback of the generative process, we select
one high discriminative topic per class, ẑc and ẑs, respectively for controls and
schizophrenic patients. In Figure 2 (left) the word-distribution for both topics is
plotted (i.e., the best -topic of the healthy model on the top, and of the patient
model on the bottom). Note how the visual words are differently generated by
the two topics. Moreover, in Figure 2 (right) we show the brain surface of a
patient by coloring each vertex according to the relevance of its respective words
for the best -topic of the healthy model (top) and the patient model (bottom).
In this fashion is possible to highlight the surface areas which are more related
to the disease, in a likelihood sense (and vice versa for healthy areas).

The classification stage is employed by a random cross-validation strategy.
We randomly extracted the 75% of the samples as training set, using the rest for
testing. The process is repeated 20 times. Moreover, we investigated the effect
of the performance by varying the number of topics Z necessary to capture all
the co-occurrences.

Results are reported in Figure 3a. Our best result is 86.13% ±2.17 obtained
with 45 topics and histogram intersection kernel. This is impressive if compared
with the SVM classification performed directly on the feature histograms n(w, d)
by using the same validation strategy and kernel (mean accuracy 58.70% ±9.78)
and it shows how beneficial is the proposed generative modeling part.

Although an optimal value of Z should be automatically estimated, our method
is robust to the choice of Z. Indeed, we show satisfactory results, i.e., higher than
80% for each Z ∈ [25, 55].
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Fig. 3. Error bars showing mean accuracy and standard deviation obtained by varying

the number of topics Z. a) The proposed approach. b) PCA dimensionality reduction.

Please note how best classification accuracies have lower standard deviations.

As further test, we reduced the dimensionality of the quantized shape index
histograms dA with principal component analysis (PCA), varying the saved com-
ponents K ∈ [25, 55]. Then, we classified with the same kernels we employed for
the proposed approach. Results for PCA, shown in Figure 3b, slightly exceed
the chance and they demonstrate how pLSA-based dimensionality reduction is
much more discriminative than the one obtained with PCA.

Finally, it is worth noting that our results are in accordance with other sim-
ilar methods. For instance [11] has shown an accuracy of 90.00% in classifying
between 16 first episode schizophrenic and 17 age-matched healthy subjects. In
[10], results showed 91.8% of accuracy between 23 cases and 38 controls (only
female). Our performance is slightly less but we are analyzing a wider database
(no age-sex distinctions).

6 Conclusions

In this paper a new approach for shape analysis is proposed with the aim at
characterizing morphological features in schizophrenia. Surface geometric prop-
erties are carefully modeled by focusing on left-Amigdala. We have shown that a
drastic improvement is observed when the co-occurrences of geometric features
are taking into account for classification. In particular, from the pLSA analysis is
possible to evaluate the relevance of topics and visual words in modeling both the
populations (i.e., healthy and an-healthy people). This open new investigative
perspectives in localizing abnormalities due to the presence of multiple geomet-
ric factors at the same time. With our method, we have obtained satisfactory
results in classification accuracy (i.e., up to 86.13%) which are coherent with
previous studies in schizophrenia. Moreover, we have analyzed a larger number
subjects in comparison with related work by improving the statistical relevance
of the proposed experiments.
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Abstract. Kinetic analysis is an essential tool of Positron Emission To-

mography image analysis. However it requires a pure tissue time activity

curve (TAC) in order to calculate the system parameters. Pure tissue

TACs are particularly difficult to obtain in the brain as the low resolution

of PET means almost all voxels are a mixture of tissues. Factor analysis

explicitly accounts for mixing but is an underdetermined problem that

can give arbitrary results. A joint factor and kinetic analysis is proposed

whereby factor analysis explicitly accounts for mixing of tissues. Hence,

more meaningful parameters are obtained by the kinetic models, which

also ensure a less ambiguous solution to the factor analysis. The method

was tested using a cylindrical phantom and the 18F-DOPA data of a

brain cancer patient.

1 Introduction

Glioblastoma multiforme, the most common brain tumour [7], is an aggressive
malignancy with most patients dying of the disease in less than a year [4]. Treat-
ment generally involves maximal, safe surgical resection of the tumour followed
by chemotherapy and adjuvant radiotherapy [7]. Despite this, tumours typically
recur within months. The frequency of recurrence could potentially be reduced
by specifically targeting regions deemed to contain tumour cells that are likely
to proliferate. To delineate the regions containing fecund cells the use of dy-
namic 18F-DOPA Positron Emission Tomography (PET) is being examined as
an addition to the Magnetic Resonance (MR) Images, the current gold standard.

The brain is a particularly difficult organ in which to analyse dynamics. Tis-
sues, such as gray matter, are distributed throughout the volume and have a
large area of interface with other tissues. This, combined with the low resolution
of PET images means that many voxels consist of multiple tissue types. Hence
approaches that rely on selecting a volume of interest (VOI) and fitting a prede-
fined kinetic model [3] are challenging. Such an approach has been used for the
brain by Schiepers et al., but only to examine the kinetics of the striatum [10].
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Factor analysis of dynamic images [1] [2] does not assume a particular model
and explicitly accounts for mixtures of tissues within voxels. However, even with
a positivity constraint, the solution is neither unique nor simple to locate, ne-
cessitating the use of ad-hoc explorations of the solution space. Sitek et al. [12]
proposed a cost function to search the solution space in a more controlled fashion
and make the solution more unique, and hence more physically realistic. Even
so, factor analysis has been relegated to delineating VOIs in images from which
mean time activity curves (TAC) are extracted to estimate certain functions
or model parameters [11] [10]. Also, factor analysis attempts to explain all data
while ignoring the effects of noise, so the solution is frequently driven by outliers.

Forcing factors or mean TACs to fit a given model can result in more accu-
rate VOIs, as found by Saad et al. [9]. Saad used K-Means clustering rather than
factor analysis for region segmentation. Clustering and kinetic analysis were it-
erated in a two step process. However, K-means clustering assumes voxels have
a single label, i.e. they consist of a single tissue, and cluster centres have lim-
ited physical meaning, despite fitting a kinetic model, unless priors such as the
distribution of TACs and the volume of particular tissue types are known.

This work proposes combining factor analysis and kinetic analysis. Factor
analysis explicitly accounts for mixing of tissues, so physically meaningful pa-
rameters are obtained by each kinetic model, while kinetic analysis ensures fac-
tors give a solution that is unique. This is achieved by minimising the residual
between a model of the brain accounting for several tissue types (one compart-
ment model per tissue) and the TAC associated with each factor. In addition, a
cost is associated with what percentage of data is explained by the model based
on measured image noise. This allows the problem to be naturally formulated
within a single cost function, and no weighting factors need to be selected.

The remainder of the paper is organised as follows. The proposed approach
is presented in §2. Some experiments are performed the results of which are
discussed in §3 before the paper concludes in §4.

2 Methods

2.1 Factor Analysis

Factor analysis is a statistical method used to describe variability among ob-
servations using a small number of unseen variables called factors. Here it is
assumed that each tissue type can be represented by a single factor, fp, where
f is a vector of intensities at different time points and p ∈ {[1; Np] ∩ Z} is used
to index the factors. The time points, tj , are indexed by j ∈ {[1; Nj] ∩ Z}, with
frame lengths Δtj . The voxels are indexed by i ∈ {[1; Ni]∩Z}. The TAC of each
voxel is also represented as a vector, ai, representing a single observation of Nj

variables. The TACs of each voxel are concatenated into an Ni × Nj matrix,
A. Each voxel is formulated as a mixture of factors, i.e. ai =

∑Np

p=1 cipfp or in
matrix form:

A = MFT , (1)
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where M is a Ni×Np matrix of mixture coefficients and F is a Nj ×Np matrix
of concatenated factors. Hence factor analysis is the process of finding a valid
M and F given A, which is an underdetermined problem.

PET data contains substantial amounts of noise, so voxels whose time integral
is below some threshold are discarded. Next, the TACs are normalised by their
dot product, which is equivalent to removing the proportion of tissue with zero
uptake. The normalised TACs are concatenated to form A.

A principal component analysis of A is performed, where each principal com-
ponent is the eigenvector, ωp of the covariance matrix of A. Only the Np−1 eigen-
vectors with the highest eigenvalues, λp, are kept. The mean TAC, a = 1

Ni

∑
i ai,

is also retained and concatenated with the the eigenvectors to form W . Np may
be selected according to how many tissues are expected. The eigenvectors and
mean TAC cannot be used as factors as they contain negative elements, which
have no physical meaning. Hence, an affine transformation of the eigenvectors is
used to obtain positive only factors:

F = (1 R′)(a ω1 . . . ωNp−1)T = RWT , (2)

where R is an Np×Np affine rotation matrix. The values in the R′ portion of R
encode the vertices of a simplex lying on the hyperplane defined by W . Similarly
M becomes a rotation of principal component coefficients: M = (1 L′) = LR−1,
where L′ is (initially) the Ni × (Np − 1) matrix of principal coefficients, so

A = LR−1RWT . (3)

Both L and R are optimised so there are (Ni + Np)(Np − 1) free parameters
to obtain from NiNj equations. However A generally only has a rank of around
Np or slightly more if the number of factors was underestimated, the system of
equations remains under-determined so any solution will not be unique. Enforc-
ing positivity decreases the size of the solution space. Finding the solution using
[1] requires an iterative two step approach. L is updated to ensure positivity
and R updated. Next R is updated make F ’s coefficients positive. This process
is dominated by a QR-decomposition each iteration to find L−1M , which has
complexity O(NiN

2
p ) [6].

Sitek’s approach [12] finds M and F directly, but without care it can converge
to the mean TAC with the other factors differing only by small amounts, giving
the “low” mixing valued by the cost function in the second step.

2.2 Kinetic Analysis

A kinetic model is a linear time invariant model that is fitted to one or more
tissues or volumes, which may or may not be independent. Each tissue is assumed
to consist of one or more compartments, which are assumed to correspond to
physical structures. It is assumed the compartments, Cq, broadly correspond to
vascular, interstitial and inter-cellular spaces. The models for each tissue are by
necessity an over-simplification of reality. More complex models would overfit the
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data resulting in unstable and meaningless model parameters. The parameters
are symbolised by k·

The model parameters are obtained by using least squares techniques to min-
imise the difference between a simulated TAC and data derived TAC. Standard
ordinary differential equation (ODE) solving techniques are used. The compu-
tational cost for solving an ODE is O(Nq/ε) [13], where ε is simulation error, ε
depends on the amplitude time-step ratio. Hence the complexity is O(Nq

Δtmin
fmax

).
An example equation for a 3 compartment model is:(

k1 −k2 − k3 k4

0 k3 −k4

)(
C1(t) C2(t) C3(t)

)T =
d
dt

(
C2(t)
C3(t)

)
(4)

Alternatively, spectral analysis techniques may also be used, where a TAC is
decomposed into a weighted sum of exponential curves. The exponential param-
eters and weights can be converted into kinetic parameters and the methods
have been shown by Gunn et al. to be stable [5], but this technique was deemed
too computationally intensive for this work.

For standard least squares techniques an estimate of the (blood) input func-
tion, C1, is required. This may be estimated directly from measurements of the
radioactivity of the patient’s blood at different timepoints, but this is invasive.
Instead, the less accurate procedure of manually selecting a volume within known
cerebral vasculature was taken. Here, the first 7 frames (or 90s) of the dynamic
sequence are integrated. This trades off the confounding effects of noise (fewer
frames) and metabolism (more frames). The vasculature is then segmented by
manually thresholding the image and eroding the result by 2 voxels. The trans-
verse sinus is used as the arteries are narrow and partial volume effects occur.

2.3 Joint Factor Analysis and Kinetic Analysis

Factor analysis seeks to obtain a set of pure tissue TACs that lie on a hyper-
plane in the space of possible TACs. However the locus of TACs obtainable from
a given compartment model describes a non-linear k-manifold in TAC-space. If
neither system noise nor image noise were present and the system was completely
described by Np compartment models (one model per factor) then the Np factors
would indeed lie on a single (Np − 1)-dimensional hyperplane, with samples
distributed between factors due to partial voluming effects, resulting in a set of
samples enclosed by a simplex. However real data contains substantial amounts
of noise and mixing is generally substantial. Hence hyperplanes frequently do
not intersect the k-manifold. Unlike standard factor analysis approaches, this
work proposes minimising the distance between each factor on the hyperplane
and its closest point on the k-manifold:

Ekinetics(p,kp) =
1

Nj

∑
j

[bp(tj ;kp, C1(tj))︸ ︷︷ ︸
simulated TAC

− (RpW
T )j︸ ︷︷ ︸

hyperplane projection

]2, (5)

where bp is the simulated TAC as a function of t; kp and C1 are parameters.
R is the rotation matrix defined in (3). Each row in R is a single point on the
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hyperplane corresponding to the projection of the simulated TAC bp, and defines
one factor as described in §2.1. The points are easily obtained by whitening the
vector of simulated TAC values at timepoints tj : R ←

(
1 WT · (bp − a)

)
.

Without further constraints, this approach is dependent on obtaining a good
initial choice of parameters and risks the factor converging to a single point,
which would describe the data poorly. Hence, an additional constraint is imposed,
requiring some fraction of the data to be enclosed by the simplex defined by the
Np factors:

Edata = [[
1
Ni

∑
i

φ((ai − a)T ·W ′, R′)]− αnon-outliers]2, (6)

where φ acts as a Np-dimensional indicator function which returns one for points
within the simplex defined by R′ and zero otherwise. Note the parts of R and
W which are not 1, respectively R′ and W ′ are used. αnon-outliers is the expected
proportion of non-outliers, which is estimated by blurring the probability distri-
bution function (PDF) of samples by a Gaussian kernel defined according to the
estimated image noise and measuring the proportion of points that move outside
the largest connected populated region of the PDF. All data points within the
simplex consist of physically meaningful (positive and less than one) proportions
of each factor. Data points outside the simplex have physically non-meaningful
mixtures that are assumed to arise from noise. The final objective function is:

argmin
k

1
Np

∑
p

Ekinetics + Edata. (7)

The algorithm is robust to initialisation, if care is taken to ensure R′ encompasses
most of the data. We select Np points (factors) most distant from the data mean
and from each other. Optimal k-parameters are found for each point using the
Nelder-Mead algorithm from 10 random initialisations. The best initialisation
is iterated to convergence. Both terms in (7) are between 0 and 1 and have
similar scales, hence no weighting parameter is used. The largest computational
cost arises from solving one set of ODEs per factor every iteration. Around 2
minutes are needed for a system of 3 factors each comprising 3 compartments.

Unlike standard factor analysis, (7) is driven by selecting kinetic parameters,
k, not by selecting R. Noise is explicitly included in the model and it is assumed
some data will not be completely described by the model, and hence avoids being
driven by efforts to ensure noisy outliers consist of mixtures that make physical
sense. From the point of view of kinetic analysis, prior regions do not need to be
selected, and the data best matching a given kinetic model is found. The final
solution is also less ambiguous than the solution obtained by simply ensuring
positive mixtures and factors.

3 Experiments and Results

Proving a particular factor analysis method is superior to another is difficult.
Ground truth is unavailable for real data, while simulations cannot currently
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(a) PDF of TACs (b) Clustering (c) Factor Analysis

Fig. 1. (a) Factor Analysis and (b,c) segmentation of PET SORTEO data

realistically model a true biological system. Even the best available simulations
obtained using PET SORTEO, assume only a limited number of factors, differing
due to the variation of just one kinetic parameter [8]. This makes testing some-
what artificial as shown in Fig 1. As the TACs in the PET SORTEO data vary
across one parameter the locus of the data approximately lies on a line within
TAC-space, as shown in Fig. 1a. 3 peaks are observable. Standard clustering
should perform better than factor analysis in this simple case. However, the cen-
tral peak has low density compared to its neighbours so similar segmentations
are obtained as shown in Fig. 1b and c.

Hence, two data sets are used. The proposed approach is compared to the
method proposed by Di Paola [2]. Future work will also examine the methods
proposed by Sitek and Saad.

– A test sequence using a cylindrical phantom containing a liquid solution
into which a radioactive tracer was pumped. Although no ground truth was
available, the system was simple: only one free parameter exists, which may
be extracted in closed form from the TAC within the phantom.

– A brain scan of a patient suffering from cancer, before surgery. The tumour
was distant from the striata (which also takes up FDOPA avidly).

Maximum intensity projections (MIP) of the mixture images from the phantom
scans are shown in 2. Images are multiplied by total intensity to prevent noise
from obfuscating the result. Both methods identify the input compartment (pipe)
and the output compartment (cylinder). Standard factor analysis drives the two
factors to the outlying regions of the data. Joint factor and kinetic analysis does
not not merely try to encompass all data (and nor does it collapse to a point).
Hence it correctly identifies that residual tracer remains in the pipe and has some
similarity to the cylinder, giving an above background intensity in the mixture
2 image.

MIPs of the mixtures images for the brain data are shown in Fig. 3, along
with the TACs of the 3 factors. Standard factor analysis groups parts of the
tumour with the striata, while joint factor and kinetic analysis better separates
the two. Both methods separate the tumour into at least two regions, a core and
a periphery. Plots on Fig. 3 compare factors to mean TACs of delineations of
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(a) Standard Factor Analysis (b) Proposed Approach

Fig. 2. MIP of mixture images, normalised by intensity, for cylindrical phantom
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(a) Standard Factor Analysis (b) Proposed Approach

Fig. 3. (Above) MIP of mixture images, normalised by intensity, for pre-surgery test

set for 3 factors. (Below) Three model derived TACs for Standard factor analysis and

the proposed approach (dashed lines) and two TACs of the manually delineated cere-

bellum and striata (solid lines). Striata segmented from static PET image at 50% of

maximum. Cerebellum crus obtained by registering PET to 9 labelled atlases and using

the majority vote.

the cerebellum crus and the striata. If the joint analysis were better, then two
of the factors should better match the two ROIs. In contrast, merely trying to
encompass all data gives singular looking curves that do not match ROIs, as
shown.

4 Conclusion

This work has proposed a method to jointly perform kinetic analysis and factor
analysis of dynamic data. This overcomes the chicken and egg problem of existing
methods, namely how to select an unknown region in order to accurately obtain
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its characteristic kinetic parameters. A joint approach has the additional advan-
tage of reducing the ambiguity of solutions supplied by existing factor analysis
methods. The constraints are not arbitrary, but based on prior knowledge of the
system. The proposed approach is efficient because a single cost function is min-
imised and requires no weight factors to be arbitrarily selected. The proposed
method was examined using a real data set and gave hopeful results. Future
work will compare the approach to the methods proposed by Sitek and Saad
and examine robustness to errors in the estimated arterial input function. The
proposed approach will also be extended to constrain the solution further using
a Markov Random Field.
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Abstract. Emphysema is one of the most widespread diseases in sub-

jects with smoking history. The gold standard method for estimating

the severity of emphysema is a lung function test, such as forced expi-

ratory volume in first second (FEV1). However, several clinical studies

showed that chest CT scans offer more sensitive estimates of emphysema

progression. The standard CT densitometric score of emphysema is the

relative area of voxels below a threshold (RA). The RA score is a global

measurement and reflects the overall emphysema progression.

In this work, we propose a framework for estimation of local em-

physema progression from longitudinal chest CT scans. First, images

are registered to a common system of coordinates and then local im-

age dissimilarities are computed in corresponding anatomical locations.

Finally, the obtained dissimilarity representation is converted into a sin-

gle emphysema progression score. We applied the proposed algorithm on

27 patients with severe emphysema with CT scans acquired five time

points, at baseline, after 3, after 12, after 21 and after 24 or 30 months.

The results showed consistent emphysema progression with time and the

overall progression score correlates significantly with the increase in RA

score.

1 Introduction

Emphysema is one of the most common chronic obstructive pulmonary diseases
[1]. It is characterized by irreversible destruction of the lung parenchyma and
usually caused by smoking [2].

In clinical practice, the severity of emphysema is commonly assessed using
different lung function tests. Along with the lung function tests chest CT scans
has been used for diagnosis of emphysema and detection of emphysema progres-
sion. The standard CT density scores, such as relative area (RA) below certain
threshold, e.g. -950 HU or -930 HU, and the n-th percentile density (nPD) of the
lungs, were applied to estimate the emphysema progression [3,4]. CT densitom-
etry scores have shown to be more sensitive measures of emphysema progression
than lung function tests [4].
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One of the major drawbacks of the standard CT density scores is their depen-
dency on the inspiratory level [5,6]. Another important drawback is the lack of
sensitivity, since the emphysema progression could only be measured once the
intensity of lung tissue decreases below the standard threshold. Texture analysis
may resolve this problems. This issue was investigated in a recent study, where
a texture-based classification approach was proposed as alternative to the stan-
dard emphysema scores [7]. The results showed that the texture-based approach
outperforms the RA scores in differentiating diseased from healthy subjects.

Several studies proposed how to estimate disease progression from longitudinal
CT scans [5,6]. Authors proposed a method where CT scans are first registered
to a common framework and then emphysema progression is estimated based on
the average intensity decrease between the two successive scans.

In this paper, we propose a more general way of assessing emphysema progres-
sion between a pair of images. First, images are registered to a common system of
coordinates. Second, local image histograms at a given location are obtained and
dissimilarity measures between the histograms are computed. Thirdly, a measure
of progression at the given location is derived from the dissimilarity measures.
Finally, an overall disease progression score between the two images is computed.
This method is applied to detect emphysema progression in a longitudinal study
of patients with Alpha-1 antitrypsin deficiency [4].

2 Method

In this section we describe in details the work flow of the algorithm. The first
subsection (2.1) briefly describes the image registration method that was applied
to establish the spatial correspondence between images. The following subsec-
tion (2.2) presents how local dissimilarities were constructed. The last subsection
(2.3) describes how the local disease progression score on subject level was de-
rived from the set of local dissimilarity measures.

2.1 Registration

The image registration framework presented in [6] is used to register the images
to a common system of coordinates. The framework starts with a preprocessing
step, where the lung fields are extracted from the CT scans and the background
value is set to 0 HU. First, an affine transform is applied to correct for global
deformations. Then a series of multi-resolution B-Spline transforms with decreas-
ing grid resolution is applied to the affinely registered images. Each transform
was optimized using the stochastic gradient descent method.

Finally, the moving image is deformed based on the obtained deformation
field. To minimize the intensity differences in the fixed and moving images caused
by the difference in respiratory level, the intensities of the deformed image are
adjusted with respect to the Jacobian determinant of the deformation field as
proposed in [6]. The baseline image I1 was set as the fixed image, and the
four follow up images I2..5 were set as the moving images in the registration
framework.
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2.2 Local Image Dissimilarity

The registration results in dense spatial correspondence, but small misregistra-
tions in the order of 1 mm remain. To minimize the impact of the misregistration,
we propose to compare points in the different images using a simplified version
of locally orderless images (LOI) [9], where the inner, outer and tonal scales
are fixed. A local histogram is constructed using a weighted window function
centered around a point x0. Given an image I(x0, σ) that is observed under the
fixed inner scale σ, the LOI at a point x0 is defined as follows:

hI(i; x0, α) =
1

(
√

2πα)3

∫ x

0

A(x, x0, α)e−(I(x,σ)−i)2dx, (1)

where α is the outer scale, which corresponds to the size of the window function
A(x, x0, α) and i is an intensity value. Later in text we denote the histogram
using a shorter notation h = hI(i; x0, α).

In order to capture different features, in addition to the original image I
(σ = 0), LOIs are also computed from the blurred image and the gradient
magnitude. The feature images are all observed under the same scale, which
is achieved by blurring the images using a Gaussian kernel with a standard
deviation of σ.

Given the two histograms h1(i; x) and ht(i; x) obtained in the same anatom-
ical point x from the two images I1 and It respectively, we compute a set of
dissimilarity measures D(I1, It)(x) = {di(h1, ht)} between the histograms.

In this paper, we use two classes of dissimilarity measures. The first class
consists of L1-norm and Kullback-Leibler divergence between the two histograms
d1 = ||h1 − ht||L1 , d2 = ||h1 − ht||L2 , d3 = DKL(h1, ht). In the second class, the
dissimilarity between the local histograms is computed as the difference between
the individual measures on each of the histograms di = mi(h1)−mi(ht): the first
four moments, the mode, the energy; and the maximum of difference between
the cumulative distribution functions of the histograms dn = max(cdf(h1) −
cdf(ht)) [10].

2.3 Disease Progression Measure

Since LOIs have a certain region of influence, it is not required to compare each
and every point in the images. Therefore, a sparse representation of the image
is used for comparison instead, where comparison is only performed on a fixed
number of regions, Ns, sampled randomly within the image.

For every sample xi we compute the set of dissimilarity measures DI =
D(I1, It) between the images I1 and It, and the filtered versions of the images
DG = D(I1,σ, It,σ), DGM = D(|∇I1,σ |, |∇It,σ|). The subscripts I, G, GM denote
the original image and response to the Gaussian and Gaussian magnitude filters
respectively. Therefore dissimilarity between the two images at the location xi

is defined by the dissimilarity vector D1,t = {DI , DG, DGM}1,t.
The dissimilarity measures from the first class assess the distance between

the corresponding local histograms. The dissimilarity measure from the second



196 V. Gorbunova et al.

class assess the change in the histogram characteristics. If the histograms differ,
dissimilarity measures from the first class are strictly positive while the dissim-
ilarity from the second class result in both positive and negative values. We are
interested in local changes regardless of the sign therefore only the magnitude
of the dissimilarity measures is considered. Finally, the measure of local changes
p1,t(xi) at the sample xi between the images I1 to It is computed as the L1-norm
of the dissimilarity vector, as follow, p1,t(xi) = ||D1,t||L1 .

3 Experiments

3.1 Data

We conducted experiments on subjects with Alpha 1-antitrypsin deficiency mon-
itored during a period of 30 months. A total of 27 subjects were included into
the experiments. For each subject low-dose CT images were acquired at five time
points: at baseline, after 3, after 12, after 21, and after 24 or 30 months. Out
of 27 subjects 11 were scanned after 24 months. The scans were acquired using
a tube voltage of 140 kVp, exposure 40 mAs, in-plane resolution 0.78 mm and
slice thickness 2 mm without overlap.

Lung function tests were acquired along with the CT scans, of which we used
the forced expiratory volume in 1 second (FEV1). At baseline all the patients
performed lung function tests and average FEV1 for all the subjects was 1.54±
0.68 L, and TLC was 8.02 ± 1.57 L, the ratio FEV1/TLC was 20.27 ± 10.38
%. For the last visit there are 2 missing lung function tests, and the average
over the remaining 25 subjects is FEV1 1.29± 0.71L, TLC 7.45± 2.51 and ratio
FEV1/TLC 17.93± 9.04 %.

3.2 Measuring Local Emphysema Progression

The four follow up CT scans I2, I3, I4, I5 were first registered to the baseline
image I1. The segmented lung fields from the baseline image I1 were eroded
with a structuring element of size of 3 × 3 × 3 voxels and Ns = 2000 positions
were randomly sampled from the eroded lung fields. In our experiments we chose
the Gaussian scale of the filters σ = 1 voxel. The radius of the aperture function
A was set to α = 20 voxels, and the weights were truncated at 3α radius. For
the intensity-based histograms the bin width was set to 1 HU resulting in 1000
bins in total in the intensity range from −1000 to 0 HU. For the histograms of
the filtered images, the number of bins was set to 1000 and the bin edges were
placed uniformly covering the full range of filter responses.

Within a 3 month period changes are expected to be relatively small, there-
fore the dissimilarities observed in this period reflects mostly image dissimilarity
caused by misregistration and interpolation. From this pair of images we ob-
tained the mean and the standard deviation of the dissimilarity vector D1,2.
Further we normalized all the dissimilarity vectors D1,t=2,3,4,5 with respect to
the obtained mean and standard deviation and then computed the corresponding
progression measures p1,t=2,3,4,5.
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4 Results

Table 1 reports the summary of the conventional emphysema progression mea-
surements, the decline in FEV1 (ΔFEV1 in L) and increase of relative area below
the 950HU(ΔRA950 in [%]). The conventional measures were compared with
the proposed feature-based disease progression measures. Disease progression
measure (PM) on a subject level was computed as the average of dissimilarity
measures for all spatial locations. We tested the complete set of dissimilarities
(PM (all)) and only Kullback-Leibler divergence between the local histograms of
the smoothed images as the local dissimilarity measures (PM (KL)) or only local
increase in RA950HU (PM (locΔRA950)). Table 1 presents the average disease
progression measures for all consecutive follow up visits. A time trend analysis
was performed for the disease progression measurements using a linear mixed
model with the time between the baseline and a follow up visit as fixed effect. For
the FEV1 we did not conducted time trend analysis because 9 out of 27 subjects
had missing FEV1 at least at one of the visits. The t-values are reported in the
Table 1. Additionally, correlation coefficients between the progression measured
at the last visit by the proposed methods and by conventional emphysema score
and lung function are presented in the Table 1.

Table 1. Summary of the disease progression measures. Left part presents the average

of the progression measures over all subjects for the follow up visits and the t-value of

the time-trend analysis. The correlation coefficients between the progression measures

obtained from the last visit with p-values in brackets are presented in the right part of

the table.

Average Progression Time-trend Correlation coefficients

# mnths 3 12 21 30(24) t-value ΔRA950 ΔFEV1

ΔFEV1 -0.03 0.01 -0.01 -0.13

ΔRA950 -1.27 0.08 1.33 1.91 6.37 -0.18(0.48)

PM (all) 0.75 0.76 0.89 0.93 3.09 0.51(0.007) 0.11(0.59)

PM (KL) 0.25 0.27 0.30 0.31 7.80 0.45(0.02) -0.18(0.39)

PM (locΔRA950) 0.0 0.46 0.77 1.03 8.80 0.87(< 0.001) 0.11(0.59)

Fig.1 shows samples locations, indicated with circles, overlaying on the 2D-
slices extracted from the registered follow up images. Radius of a circle in the
follow up images is proportional to the dissimilarity measure computed from the
complete set of dissimilarities. Each row represents different subjects.

In order to investigate local consistency of the local disease progression mea-
sures, we tested the simple hypothesis that samples with dissimilarity measure
above a threshold T at the previous follow up visit should not decrease the dis-
similarity measure in the consecutive visits. The threshold on the dissimilarity
measure was selected based on the 25th- and 75th- percentiles, p25 and p75, of the
dissimilarity measures after the 3 months follow up visit, T = p75+1.5(p75−p25)
which corresponds to ∼ 2.7 standard deviations. The total number of samples
with dissimilarity above the threshold T and the relative percentage of those
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Fig. 1. Rows show mean intensity projection over a stack of 9 sequential slices, selected

from different volumetric images. The left most column shows slices extracted from the

baseline image, the remaining columns show corresponding slices extracted from the

registered 3, 12, 21 and 30(24) months follow up visits, respectively from left to right.

All the slices are displayed in the intensity range [-1000,-900]HU. Locations of the

random samples (blue and red markers) in the corresponding stack were projected to

the image slice. In the follow up images the marker size is proportional to the local

dissimilarity measure obtained from the complete set of dissimilarities.

Table 2. Comparison of the local dissimilarity measures. Table presents the overall

percentage of samples with dissimilarity measure above the threshold T ; in brackets the

relative percentage of sampled which increased or preserved the dissimilarity measure

above the threshold in all the successive follow up scans.

Overall percentage [%] (confirmed [%])

# mnths 3 12 21 30(24)

PM (all) 5.24(41.61) 5.68(61.48) 9.01(75.87) 10.49

PM (KL) 1.19(38.73) 1.75(56.07) 3.72(78.12) 4.93

PM (locΔRA950) 2.86(9.07) 4.38(33.94) 8.88(60.54) 11.48

samples that increase or preserve the same dissimilarity measure in all the suc-
cessive visits is reported in the Table 2.

Examples of the samples with disease progression measure above the threshold
T are presented in the Fig.2. Left plot in Fig.2 shows a subject where most of
the samples with the large dissimilarity measure after 3 months were confirmed
with all the consecutive follow up scans. Right plot in Fig.2, where the samples
did not show consistent dissimilarity measure over time.
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Fig. 2. All selected random samples marked in blue color. Locations with the signifi-

cantly large dissimilarity measure obtained from the complete set of features at the 3,

12, 21, 30(24) months follow up visits are indicated in green, yellow, orange and red

markers respectively.

5 Discussion

In this paper we presented a framework for detection of local emphysema pro-
gression. The overall disease progression measure showed significant correlation
(p < 0.01) with increase in the standard CT score, the relative area below
−950HU, between the baseline and the last follow up visit. The correlation with
the decline in FEV1 was not significant for neither the proposed measures nor
for the standard CT score. In our dataset the average FEV1 at baseline was very
low, indicating the severity of emphysema already at the baseline visit. This can
explain the lack of sensitivity to disease progression of the FEV1 measurement.

We analyzed time trend based on the conventional emphysema measurements
and the proposed dissimilarity-based measurements. The time trend was ap-
proximately equally significant for the conventional RA950 disease progression
measure, local increase in RA950 and the measure derived from the Kullback-
Leibler divergence between local histograms of the smoothed images. The time
trend was less significant for the measurement obtained from the complete set of
dissimilarities. One of the possible explanations could be sensitivity of the par-
ticular dissimilarity measure to the change in image appearance not related to
the emphysema progression, for example inflammation or change in local topol-
ogy like collapsing or appearing bullae. Another possible explanation could be
in the construction of the overall combined disease progression score from the
complete vector of dissimilarities.

The current drawback of the proposed method is the simplification of the
complete dissimilarity vector by its norm. The emphysema is usually charac-
terized by the destruction of the lung tissue thus decreasing image intensi-
ties, while inflammation should result in increase of image intensities. In the
current framework the two phenomena could result in equal dissimilarity mea-
sures. The specific dissimilarity measures such as difference in means of the local
histograms is capable of differentiating between the two processes, therefore a
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careful investigation of the dissimilarity measures should be done. Furthermore
an automatic classification approach could be adapted for this problem, where
samples from the image pairs with the 3 months follow up scan represent stable
group while samples from the image pairs with the 30(24) months follow up scan
represent progressed group.

To conclude, we proposed a method for estimating local disease progression.
Results suggested that emphysema progression can be detected before the tissue
intensity decreases below the standard CT threshold of -950HU.
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LNCS, vol. 5242, pp. 863–870. Springer, Heidelberg (2008)

7. Sørensen, L., Lo, P., Ashraf, H., Sporring, J., Nielsen, M., de Bruijne, M.: Learning

COPD sensitive filters in pulmonary CT. In: Yang, G.-Z., Hawkes, D., Rueckert,

D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 699–706.

Springer, Heidelberg (2009)

8. Arzhaeva, Y., Prokop, M., Murphy, K., van Rikxoort, E., de Jong, P., Gietema,

H., Viergever, M., van Ginneken, B.: Automated estimation of progression of in-

terstitial lung disease in CT images. Medical Physics 37(1), 63–73 (2010)

9. Koenderink, J.J., Van Doorn, A.J.: The structure of locally orderless images. Int.

J. Comput. Vision 31(2-3), 159–168 (1999)

10. van Ginneken, B., ter Haar Romeny, B.M.: Multi-scale texture classification from

generalized locally orderless images. Pattern Recognition 36(4), 899–911 (2003)



Unsupervised Learning of Brain States from fMRI Data

F. Janoos1,2, R. Machiraju1,2, S. Sammet2, M.V. Knopp1,2, and I.Á. Mórocz3
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Abstract. The use of multivariate pattern recognition for the analysis of neural
representations encoded in fMRI data has become a significant research topic,
with wide applications in neuroscience and psychology. A popular approach is
to learn a mapping from the data to the observed behavior. However, identify-
ing the instantaneous cognitive state without reference to external conditions is a
relatively unexplored problem and could provide important insights into mental
processes. In this paper, we present preliminary but promising results from the
application of an unsupervised learning technique to identify distinct brain states.
The temporal ordering of the states were seen to be synchronized with the exper-
imental conditions, while the spatial distribution of activity in a state conformed
with the expected functional recruitment.

1 Introduction

Decoding the cognitive state of a subject from neuroimaging data has always been an
important problem in cognitive neuroscience. Recently, this topic has gained promi-
nence with the use of multi-variate pattern recognition (MVPR) to learn complex pat-
terns in fMRI data[1]. Their multivariate nature makes them sensitive to patterns in
groups of voxels that individually do not show much structure but as a whole con-
tribute to mentation. Such techniques has been applied to the study of visual[1] and
auditory perception, motor tasks[2], word recognition[3], lie-detection, etc., and may
have applications in cognitive neuroscience[4], brain-machine interfaces[5], real-time
biofeedback[2], etc. The reader is referred to [1] for a plenary review of this topic.

Typically, MVPR in fMRI tries to learn a mapping between the data and labels de-
scribing the prevailing attribute of interest (viz. presented stimuli and subject responses)
thus only explaining observable attributes of mental processes. However, the identifica-
tion of covert cognitive states which do not directly relate to experimental conditions
is a relatively unexplored problem and could provide important insights into a person’s
subjective experience from a non-invasive measurement of brain activity. In contrast,
sequences of “microstates” have been observed in EEG recordings, ranging from 70ms
to 150ms and corresponding to a typical quasi-stable topography of electric field po-
tentials in the brain[6]. They are believed to reflect the activation of different neuro-
cognitive networks, and may be the “atoms of thought” that constitute the seemingly
continual “stream of consciousness”. While, temporal limitations would prevent access
to these faster phenomena, fMRI is suited to reveal relatively longer lasting cognitive
phenomena, such as attention, intention, planning, working memory, decision making,
etc., that do not necessarily correspond to observable attributes.

T. Jiang et al. (Eds.): MICCAI 2010, Part II, LNCS 6362, pp. 201–208, 2010.
© Springer-Verlag Berlin Heidelberg 2010
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In this paper, we present a method to learn distinct states of activity distribution from
fMRI data in an unsupervised fashion. The Earth Mover’s Distance (EMD)[7] is used
measure the difference between the distributions of activity in the cerebral cortex of
two fMRI scans, and computed using a fast approximation method based on recursive
aggregation. The EMD is used to derive a diffusion distance, which is aware of the ge-
ometry of the underlying low-dimensional manifold spanned by the data. The scans are
then grouped using agglomerative hierarchical clustering in this low dimensional space,
where each cluster represents a characteristic distribution of activity in the brain. The
method was tested on an fMRI study of arithmetical abilities. Clusters corresponding to
distinct mental states were identified. The temporal transitions between the states were
observed to be synchronized with the experimental conditions, even though no infor-
mation about the experiment was used. The observed brain activity in each state was
found to agree with the expected neural recruitment during the corresponding mental
task, thus reaffirming the ability of fMRI to study cognitive states of the brain.

The layout of the rest of the paper is as follows: In Sect. 2, details about the distance
metric and clustering are presented, followed by a discussion of the results in Sect. 3.
Finally, we conclude with some remarks and outline future directions in Sect. 4.

2 Method

Preprocessing: The acquired data are subjected to routine pre-processing in SPM8[8]
(viz. bias-field correction, normalization to an atlas space, segmentation, motion cor-
rection and co-registration). The fMRI data are then de-noised using a wavelet-based
Wiener filter[9], and further motion correction is performed using spatial ICA[10]. The
mean volume of the time-series is then subtracted from each volume, and the white
matter is masked out. All further processing is done in the grey matter to reduce the
dimensionality of the data and to eliminate confounding influences from the white mat-
ter, which theoretically should not exhibit a BOLD effect. Each subject is processed
independently.

Earth Mover’s Distance: To group the fMRI scans S(t), t = 1...T into clusters of
characteristic activity signatures, we need a measure of the difference between two
scans. The Earth Mover’s Distance[7] is well-known metric to compare two signatures
P and Q defined over an arbitrary domain X, given the ability to measure distances
d(x, y), ∀ x, y ∈ X. It is defined in terms of an optimal flow f∗ : X × X → R, that
minimizes the transportation problem f∗ = argminf

∑
x,y∈X

f(x, y)d(x, y), subject
to the constraints: (i) f(x, y) ≥ 0; (ii)

∑
y f(x, y) ≤ P (x); (iii)

∑
x f(x, y) ≤ Q(y);

(iv)
∑

x,y f(x, y) = min{
∑

x P (x),
∑

y Q(y)}, where x, y ∈ X. The Earth Mover’s
distance is then EMD(P, Q) = (

∑
x

∑
y f∗(x, y)d(x, y))/(

∑
x

∑
y f∗(x, y)). Since

the domain X is the set of voxels in the grey matter, the geodesic distance d(x, y)
between two voxels x, y ∈ X is used. This is defined as the shortest path length on
a graph G(X, E), with grey matter voxels as nodes, and (x, y) ∈ E if and only if x
and y are spatially adjacent to each other. Edge weights are w(x, y) = ||x− y||2, their
Euclidean distance in physical space.

One major strength of the EMD over voxel-wise metrics, is that it allows for partial
matches, and small differences between the signatures will result in a small EMD[7].
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While there exist efficient algorithms for computing the EMD based on the transporta-
tion problem, it exhibits a worst-case complexity ofO(|X|3 log |X|). For an fMRI study
with voxel size of 3×3×3mm3, the number of grey matter voxels is≈ 5×104, giving
a running time of O(1014). If the number of scans is T , it will require T (T − 1)/4
number of comparisons, making the pair-wise EMD computation prohibitively expen-
sive. However, since d(x, y) is now a shortest-path distance, not an Euclidean distance,
standard approximations to the EMD are not applicable.

EMD Approximation: The problem is made tractable using a recursive approximation
as follows: Let S1 and S2 be two scans with |X| voxels in the grey matter. Starting with
j = J > 1 create a low resolution graph Gj of |X|/2j nodes. Each node represents
a set Ij

n, n = 1 . . . |X|/2j of 2j voxels, grouped based on their spatial proximity. The
EMD is computed between S1 and S2 on this low-res graph as EMDj(S1, S2). If the
edge weights and vertex values of Gj are calculated appropriately, then EMD(S1, S2)
≥ EMDj(S1, S2), i.e. it is a lower bound on the EMD on the original mesh. If
EMDj(S1, S2) ≥ τj , where τj is a threshold, then we approximate EMD(S1, S2)
by EMDj(S1, S2), otherwise set j = j − 1 and repeat. Continue until j = 0, in which
case EMD(S1, S2) = EMD0(S1, S2).

Next, we explain how to correctly aggregate a set of vertices I ⊆ X into a new vertex
x′, so that the EMD computed on this reduced graph G′(X′, E′) is less than that on the
original graph G(X, E). For explicatory purposes, let

∑
x S1(x) =

∑
x S2(x), though

the reasoning holds for the general case. Let S = S2 − S1 be the difference between
the two distributions. Then, the optimal flow f∗ from S1 to S2 on G is the solution
to the transportation problem, subject to the constraints

∑
y f(y, x) −

∑
y f(x, y) =

S(x) and f(x, y) ≥ 0, for all x, y ∈ X. Now, the total cost can be partitioned as∑
x,y∈X

f∗(x, y)d(x, y) =
∑

x,y∈I
f∗(x, y)d(x, y) +

∑
x,y∈X−I

f∗(x, y)d(x, y) +∑
x∈I,y∈X−I

f∗(x, y)d(x, y).
Firstly, through a conservation of mass argument, we see that the total flow from x ∈

I to all y ∈ X−I must be
∑

x∈I,y∈X−I
f(x, y) =

∑
x∈I

S(x). Let f † be the optimal solu-
tion to the transportation problem on the graph G′ where the value S(x′) =

∑
x∈I

S(x).
Also, let w′(x′, y) = minx∈I w(x, y), and d′ be the shortest path lengths on G′. There-
fore, the last term

∑
x∈I,y∈X−I

f∗(x, y) d(x, y) ≥
∑

y∈X′ f †(x′, y)d′(x′, y). Secondly,
it can be proved though contradiction that the first term

∑
x,y∈I

f∗(x, y)d(x, y) ≥∑
x,y∈I

f◦(x, y)d(x, y), where f◦ is the solution to the transportation problem restricted
to the subgraph I, subject to the constraints: (i) f(x, y) ≥ 0; (ii)

∑
y f(x, y) ≤ S1(x);

(iii)
∑

x f(x, y) ≤ S2(y); (iv)
∑

x,y f(x, y) = min{
∑

x S1(x),
∑

y S2(y)}−
∑

x S(x),
with x, y ∈ I.

This subproblem could again be solved using the above recursive approximation
scheme. However, if |I| is small enough so that the geodesic and �2 distances between
its vertices are approximately equal, then the approximation EMD(P, Q) ≥ ||P̄−Q̄||2
can be used, where P̄ and Q̄ are the centroids of the signatures P and Q respectively[7].

Therefore, through the recursive approximation scheme we get a lower bound as

per EMD(S1, S2) ≥ EMDj(S1, S2) +
∑|X|/2j

n=1 EMD[Ij
n](S1, S2), where EMD[Ij

n]
(S1, S2) is the EMD restricted to the subgraph defined by Ij

n.
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Diffusion Distance: While the EMD provides a good comparison of scans with similar
activity patterns (i.e. low EMD), its suitability to quantify the distance between scans
with larger differences is more uncertain, apart from the fact that for such comparisons,
we have only an approximate EMD. Then, assuming the accuracy of the EMD only in
local neighborhoods on the manifold spanned by BOLD images of brain activity, the
data can be embedded into a lower dimension Euclidean space using the concept of
diffusion distances[11], as follows.

An fMRI volume at each time-point t = 1 . . .T is treated as a vertex on a com-
pletely connected graph, specified by the T × T affinity matrix W, where Wt1,t2 =
exp{−EMD(S(t1), S(t2))2/ 2σ2}. The user-defined parameter σ defines a notion of
proximity between activation patterns. Let Dt,t =

∑T
t′=1 Wt,t′ be the T × T diagonal

degree matrix. Then M = D−1W is a stochastic matrix (i.e.
∑T

t′=1 Mt,t′ = 1) defin-
ing a random walk on the graph, with Mt1,t2 as the probability p(t2|t1) for a transition
from node S(t1) to S(t2).

The probability p(n, t2|t1) that the random walk starting at S(t1) will end at S(t2)
in n–steps is given by Mn

t1,t2 . If the generalized eigen-system of M = ΨΛΦ′, with Λ
the diagonal matrix of eigenvalues 1 = λ1 ≥ . . . ≥ λT ≥ 0, Φ the matrix of right
eigenvectors (φ1 . . . φT ) and Ψ that of left eigenvectors (ψ1 . . . ψT ), then p(n, t2|t1) =
φ1(t2) +

∑T
j=2 λn

j φj(t2)ψj(t1). Note that φ1(t2) is the stationary distribution
limn→∞ p(n, t2|t1) of the random walk, and is independent of starting point S(t1).

The diffusion distance between two vertices (i.e. fMRI scans) is defined as :

D2
n(S(t1), S(t2)) =

T∑
t=1

|p(n, t|t1)− p(n, t|t2)|2φ1(t) =
T∑

j=1

λ2n
j (ψj(t2)− ψj(t1))2.

The parameter n defines the scale of the diffusion process and controls the sensitivity
of the metric on the local geometry, with smaller n making the metric more sensitive to
local differences. It can be seen that D2

n(S(t1), S(t2)) is an Euclidean distance if the
coordinates of S(t) are given by (λn

j ψj(t) . . . λn
T ψj(t)).

The diffusion distance, though not equal to the geodesic distance, is related to the
Laplace-Beltrami and Fokker-Planck operators on the manifold underlying the graph,
and therefore provides a geometrically aware embedding for functions intrinsically de-
fined on it[11]. Moreover, since the spectral gap is usually large, with a few eigenvalues
close to 1 and most ≈ 0, the diffusion distance can be well-approximated by only the
first T̂ � T eigenvectors, with error of the order of O(λn

T̂+1
).

Hierarchical Clustering: After embedding the volumes in this T̂–dimensional Eu-
clidean space, they are grouped into K clusters {c1...cK} using agglomerative hier-
archical clustering. These clusters represent distinctive patterns of distribution of the
BOLD signal and are probable indicators of the distinctive modes/states of cognition.
Next, each cluster ck, k = 1...K is labeled with an integer value 0 ≤ lk < K , using
dynamic programming to minimize

∑T−1
t=1 |lk(t + 1) − lk(t)|, where lk(t) is the label

of cluster ck if S(t) ∈ ck. This results in a time series of labels where most transitions
are between labels close to each other in value.
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3 Results

The method was applied on a data-set of 4 participants, who underwent fMRI while
judging the incorrectness of multiplication results. In each trial, two single-digit num-
bers were either displayed visually or sounded out for 2.5s. After an interval of 0.3s
a solution was displayed or sounded for 0.8s. Subjects had up to 4s to decide, with a
button press, if the solution offered was either: (a) close (within ±25% of the correct
answer), (b) too small or (c) too big. The next trial started after a rest of 1s, and each
trial ranged from 4s to a maximum of 8.6s.

Acquisition was done on a GE 3T LX scanner with a quadrature head coil using a
BOLD sensitized 2D-EPI gradient-echo pulse sequence (TE=35ms, FA=90◦, TR=2s,
voxel size 3.75× 3.75 × 3.75mm3 ). A typical session lasted ≈ 18 minutes, with 150
trials and 525 scans. The algorithms were implemented using MATLAB� and Star-P�

on an 2.6GHz Opteron cluster with 16 processors and 32GB RAM.

Fig. 1. Relative approximation error
(EMDtrue − EMDapprox)/EMDtrue

with respect to EMDtrue. The x–axis is
normalized with respect to the maximum
EMD.

The recursive EMD approximation was
done with J = 10 and thresholds τj were
selected adaptively, so that only a small per-
centage (25%) of the comparisons would need
to be performed again at the next level. This
resulted in a speed up of 103×, with an av-
erage running time of ≈ 23 hrs. per subject.
Fig. 1 shows the relative approximation error
(EMDtrue −EMDapprox)/EMDtrue with
respect to the true EMD. It is observed that
the relative error scales linearly with respect
to the true distance and is acceptably small for
our data-sets.

The parameter σ used in the affinity matrix
W was set such that α% of all the pair-wise
EMDs were less than it, reflecting the assump-
tion that

√
α% of scans should be “close” to

any given scan. We found the results to be reproducible for 5% ≤ α ≤ 20% in our
experiments. For the low dimensional embedding in the diffusion metric space, T̂ = 8
was a conservative value with λT̂+1 < 0.05. The number of clusters K = 11 was
selected for all subjects.

In Fig. 2, the median brain-state labels for the audio and visual presentations of the
trial are shown, for the four subjects. Here, a strong pattern in the assignment of the state
with the phase of the task can be seen. Also, there is a clear separation of labels dur-
ing presentation of the experiment depending on its modality (audio vs. visual), which
converge towards the computation phase, as expected. These findings are especially
significant given that no information about the experiment was used when determining
the brain state. This synchronization of the brain-state labels with the experiment phase
becomes more apparent on examining the intensity distributions for each cluster. The
t-score maps for the first subject are shown in Fig. 3. The t-scores at every voxel were
computed as within-cluster mean divided by within-cluster standard deviation.
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Fig. 2. The median brain-state labels, for all four subjects, during a single trial of the experiment.
The phases of the experiment are color-coded to indicate the 2.5s, 0.3s, 0.8s, 0–4s and 1s inter-
vals of each trial. Red and blue lines show the the median brain-states for the visual vs. audio
presentation of the numbers, respectively. Also shown are with the 25 and 75 percentile bands.

Fig. 3. The within-cluster t–scores for states 1,3,5,6,8,10 for the first subject, overlaid on a high-
resolution structural scan. The color coding indicates the intensity in that region. Also shown is
the temporal ordering of brain-states for the subject in each trial. The other maps are qualitatively
similar and omitted for purposes of concision, while t–scores between [-2,+2] are not displayed
for clarity.

State 1 shows strong patterns in the visual cortex, and its occurrence typically corre-
sponds to the visual presentation of the two numbers. State 3, which usually occurs later,
is active in visual areas related with size estimation. States 5 and 6, associated with the
calculation / judgement phase, are mainly in the frontal and parietal lobes, implicated in
higher level cognition and number size assessment. There is also activity in the motor
cortex and may be related to the button press. In states 8 and 10, which usually coincide
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with the audio presentation of the multiplication problem, the patterns in concentrated
in the auditory cortices in the temporal lobe. These findings are in close agreement with
those reported[12] for this paradigm using conventional analysis. While there are many
unresolved issues in the interpretation of these maps, like negative values and statistical
significance, their physiological consistency points to the validity of our method and
affirms the potential of such approaches to analyze fMRI data.

4 Conclusion

In this paper, we presented a purely data-driven approach to learn the instantaneous state
of the brain from the distribution of intensities in fMRI scans. We used a combination
of the Earth Mover’s Distance and diffusion distance to induce a metric on the space of
fMRI volumes that was aware of its underlying geometry, and performed clustering in
this space. We developed a computationally tractable approximation of the EMD based
on recursive aggregation. Currently we are working on developing faster and better
approximations to the EMD.

The method was applied on a study of arithmetical processing and a pattern in the
sequence of brain states was observed that was highly organized with respect to the
experiment, with distinct changes from one phase to another. Also the effect of differ-
ent experimental conditions on the measured response of the brain was observed. Brain
maps of activity were obtained that were physiologically meaningful with respect to
the expected mental phase, and corresponded with the results of conventional analy-
sis. Though there are many open computational and statistical issues, these results are
remarkable given that they were derived solely from the fMRI data, and that no prior
information about the experiment or subject behavior was used.

The combination use of EMD and diffusion distance is the main reason the method
is able to extract relevant structures from the data. The diffusion distance could be
thought of as an operator that uses locally accurate measures of similarity to induce
a globally consistent Euclidean metric on the space. For it to succeed however, it is
crucial that the underlying measure be accurate when two points are close to each other.
In our experiments, we observed that a voxel-wise Euclidean distance (not reported
here) performed much worse, as compared to the EMD, resulting in significantly less
coherent clusters. This could be because the EMD is less sensitive to small but inevitable
differences between signatures corresponding to the same conceptual brain state.

We are currently exploring methods to use these clusters to classify the brain-states
of previously unseen scans of the same and of other subjects. Another avenue of re-
search is to learn mappings between the brain states and observed behaviors, allowing
for the potential of “brain reading”. We are also interested in using information about
experimental conditions to improve the identification of the brain-states, using semi-
supervised learning algorithms. We believe that such a method coupled with improve-
ments in the temporal resolution of fMRI could give more insight into the temporal
organization of the metabolic fingerprints of cognition. Also of interest is the problem
of learning the simpler cognitive sub-states, that arise from parallel processes in the
different functional circuits of the brain, but which combine in different ways to give
rise to the more complex higher level cognition.
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Abstract. In neuroanatomy, automatic geometry extraction of neurons

from electron microscopy images is becoming one of the main limiting

factors in getting new insights into the functional structure of the brain.

We propose a novel framework for tracing neuronal processes over serial

sections for 3d reconstructions. The automatic processing pipeline com-

bines the probabilistic output of a random forest classifier with geomet-

rical consistency constraints which take the geometry of whole sections

into account. Our experiments demonstrate significant improvement over

grouping by Euclidean distance, reducing the split and merge error per

object by a factor of two.

1 Introduction

Neuroanatomists build 3d reconstructions of neuronal structures and their
synaptic connections in order to gain insight into the functional structure of
the brain. As the identification of post synaptic densities is crucial for this task,
serial section electron microscopy is the only imaging technique so far, which
can provide sufficient resolution. New advances in sample preparation and the
imaging process make the acquisition of large data volumes possible [1,2], but
the image processing work flow needed to evaluate these data sets still relies
heavily on manual labor [3]. This manual intervention renders the process not
only error prone and very tedious for the neuroanatomist, but nowadays also
becomes a serious bottleneck for the evaluation work flow. In order to build
3d reconstructions of neuronal tissue based on transmission electron microscope
(TEM) images, the sample first is embedded into resin, then cut into ultra thin
sections of about 50 nm thickness and finally each section is recorded with the
microscope. The following image processing work flow consists of aligning the
image stack, segmenting structures of interest and building 3d reconstructions
out of these segmentations. While the image resolution is dependent on the mi-
croscope and can easily achieve 4 nm per pixel, the z-resolution is limited by
the section thickness around 40 nm. As a consequence segmentation is usually
performed in two dimensions, using the fine resolution to identify membranes
of neuronal processes like dendrites and axons [4,5,6,7]. The regions surrounded
by the detected membranes then need to be grouped over consecutive sections
to extract the geometry of neuronal processes (see Figure 1). Previous work

T. Jiang et al. (Eds.): MICCAI 2010, Part II, LNCS 6362, pp. 209–216, 2010.
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Fig. 1. Example groupings of regions from two adjacent section images (correspondence

is indicated by color). The grouping problem is especially hard for thin processes,

which have greater flexibility than large structures. In addition structures running

longitudinal to the cutting plane, express significant changes in appearance between

sections (a-c). Example d has no correspondence in the left section.

has addressed this problem by tracking single processes through the image stack
[8,9]. We extend the previous approaches with respect to three important points:
(i) instead of tracking single processes the labeling of the whole data volume is
optimized, allowing for neuronal processes to start or end inside the volume, (ii)
similarity of regions is learned from annotated data, (iii) geometrical consistency
between whole sections is taken into account.

2 Method

We regard the problem of three dimensional geometry extraction as partitioning
an edge weighted graph into connected components representing an image vol-
ume belonging to the same neuronal process. The regions are represented by the
vertices V of the graph and the set of edges E connects each region to all regions
of the two adjacent sections. Each edge is assigned a weight wij according to the
similarity between regions i and j.

We propose the following processing pipeline to build the edge weight matrix
W and to find connected components representing neuronal processes (see Figure
2). First, a set of weight matrices based on features like region overlap or similar-
ity of texture is created. A detailed description of the features is given in Section
2.1. A random forest classifier [10] is trained on manual annotations to predict
the similarity between two regions. The weight matrix predicted by the random
forest classifier only captures the similarity of pairwise regions. Therefore, a fur-
ther step refines the weight matrix using geometrical consistent constraints that
take the geometry of all neuronal processes included in the section into account.
Finally, agglomerative clustering is employed to partition the graph into con-
nected components representing neuronal processes. The hierarchical clustering
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Fig. 2. Processing pipeline for the extraction of 3d geometry of neuronal processes as

proposed in this paper. First, a similarity matrix of pairwise regions is learned by a

random forest classifier. The learned weight matrix is then combined with geometrical

constraints, taking the geometry of all neuronal processes from the whole section into

account. Optimization is performed by expectation maximization. Finally agglomera-

tive clustering is used to extract continuous neuronal processes.

scheme starts from individual objects and then progressively merges the regions
which are most similar to each other. This system mirrors the approach of the
neuroanatomist, who first establishes correspondences between regions that are
easy to detect and then refines the partitioning.

2.1 Similarity Features between Regions

The following paragraphs describe the features that are used to train the random
forest classifier from manually annotated data. For each feature we build a weight
matrix W , each entry representing the edge weight of the corresponding edge in
the graph.

Euclidean distance of region center: Each region i is represented by its center
of mass ci ∈ R

3 . The distance of two regions is then given by the Euclidean
distance between the two centers:

Wdistance(i, j) =
√

(ci − cj) · (ci − cj)T (1)

Overlap of region areas: For each region i, the set Pi contains the position of all
pixels belonging to the region (Pi ∈ R3). The overlap of two regions is measured
by projecting both regions orthogonally to the same plane and building the
intersection of both projections:

Woverlap(i, j) = #(Pi ·A ∩ Pj · A), with A =

⎛⎝1 0 0
0 1 0
0 0 0

⎞⎠ (2)

Difference in region size: Neuronal processes have only smooth variations in
diameter. Therefore the size of corresponding regions should be similar to each
other.

Wsize(i, j) =
(#Pi −#Pj)2

#Pi + #Pj
(3)
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Here #Pi describes the size of region i in number of pixels. The size difference
between two regions is measured by the fraction of the difference in pixels in
relation to the total size of both regions. This normalization accounts for the
comparability of processes with large or small diameter.

Texture similarity: For the neuroanatomist, texture is an important clue for
the extraction of neuronal processes. Intracellular structures like vesicles or mi-
crotubules provide information about the type of neuronal process, e.g. bouton
or axon, and about the consistent grouping of regions. Following the approach
described in [8], we measure the similarity in texture by the cross correlation
coefficient of two regions

Wxcorr(i, j) = Xmax(ri, rj). (4)

Where ri represents the gray values of region i and Xmax denotes the maximal
cross correlation between the two regions.

Smooth continuation: This feature weights the connection between two regions i
and j according to the smoothest continuation to the next sections. The smooth-
ness of a possible continuation is given by the angle θhij between the three region
centers ch, ci and cj (see Figure 3).

ci

cj

hij

ch

ijk

ck

nh

nk

Fig. 3. Illustration of the smooth continuation feature. The smoothness of a possible

continuation is given by the function θ(ch, ci, cj) which measures the angle between the

three region centers ch, ci and cj .

Wsmooth(i, j) =
1
2
· (min

h∈nh

θ(ch, ci, cj) + min
k∈nk

θ(ci, cj , ck)), (5)

with θ(ch, ci, cj) = abs(π−∠(ch, ci, cj)). The set nh contains all regions from the
section above region i and the set nk contains all regions from the section below
region j. Reflection is employed as border treatment to compute the smooth
continuation feature for the first and last section of the stack.

2.2 Geometrical Consistency across Sections

Region correspondences should be assigned in consistency with the overall geom-
etry changes from one section to the next. We address this problem by estab-
lishing geometrical consistency of the correspondences between sections. The
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approach allows for a non linear but smooth transformation between
sections to match correspondent points. Correspondences are not fixed before-
hand, but obtained during the optimization [11] For the non-linear transfor-
mation we use an explicit polynomial kernel expansion off the points ci: φ(ci)
= [1, ci1, ci2, c

2
i1, ci1ci2, c

2
i2, . . . , c

d
i2]

T .
The transformation matrix β projects these points back into the image plane,

leading to a nonlinear transformation. Correspondences are assigned by a binary
matrix M whose entry mij is one, if point ci in one section corresponds to
point cj in the adjacent section and zero otherwise. The energy function to be
optimized depends on the similarity of the correspondent regions as classified by
the random forest, as well as on the quality of the geometric fit:

E(β, M) =
ni∑

i=1

nj∑
j=1

−mij ||φ(ci)β − cj||2 + mij · ln(W (i, j)) (6)

Here the index i runs over the number of regions ni from one section and j
over the number of regions nj from the adjacent section. The variable mij con-
tains the associated value of the assignment matrix M and W (i, j) corresponds
to the edge weight given by the random forest classifier. Maximizing this energy
function can be interpreted as maximizing the data likelihood p(Ci, Cj |β, M)
where Ci and Cj are matrices containing all points from two adjacent sec-
tions. We use expectation maximization to optimize the joint log-posterior,
treating the correspondences as unobservable. The algorithm iterates between
estimating the expectation of the latent variables mij while keeping β fix and
maximizing the joint log-posterior while keeping the expectation values of M
constant.

E-step: In each iteration the variables mij are replaced by their conditional
expectation given β. The expectation values are calculated using the currently
optimized β. Under the condition that M is a valid assignment matrix
(
∑n2

j mij = 1, for all i = 1, . . . n2), we derive the following result:

γij = E[mij |Ci, Cj , β] =
p(Ci, Cj |β, mij = 1)∑n2
l=1 p(Ci, Cj |β, mil = 1)

(7)

M-step: The expectation of the joint log posterior has the same form as the joint
log posterior itself, but with mij replaced by γij . Under the assumption that β
is smooth, i.e the components of β are assumed to be normally distributed,
maximizing for β yields a weighted ridge regression problem with weights γij :

β ← (φ(C̃i)T Γφ(C̃i) + 2λI)−1φ(C̃i)T ΓCj (8)

where Γ is a (ni · nj)× (ni · nj)-dimensional diagonal matrix of the weights γij .
The (ni ·nj)×2 matrix C̃i contains nj copies of each center point ci from the first
section and the (ni ·nj)×2 matrix Cj contains nj possible correspondence points
from the adjacent section for each point ci. The parameter λ is the regularization
parameter defined by the prior distribution p(β). In our experiments λ is set
to 0.001.
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3 Evaluation

The proposed method is evaluated on ssTEM images, resembling average image
quality from neuroanatomy projects. The data set depicts part of the dorsolateral
fasciclin-II tract of the ventral nerve cord of the first instar larva of drosophila, at
abdominal segment 5. It consists of 30 images with 512x512 pixels. The resolution
is 3.7 nm per pixel in the image plane and section thickness is 50nm. The whole
data set was annotated exclusively by a neuroanatomist, providing the ground
truth for the evaluation. The random forest classifier was trained on this data set
using ten fold cross validation to obtain the test error. The remaining pipeline
is free of tuning parameters and therefore just applied to the test results of the
classifier.

As demonstrated by the plots in Figure 4, each step of our processing pipeline
yields significant improvement for the geometry extraction in terms of split and
merge error per object. A perfect solution would assign exactly one label per
ground truth cluster. For each additional label a split error is counted. A merge
error occurs when two ground truth clusters are assigned the same label. If two
ground truth clusters are merged more than once, we follow the definition of [12]
and count this as one error as the same two objects are involved.

The agglomerative clustering is restricted to establish a maximum of two
correspondences for each region, one to the upper and one to the lower section.
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Fig. 4. Evaluation of clustering results according to split/merge error per neuronal

process. Depicted are the results for different weight matrices: (i) Euclidean distance of

region centers only, (ii) weights learned by the random forest classifier, and geometrical

consistent weights. The dotted line corresponds to the best result obtainable without

considering branching processes.
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a b

c

Fig. 5. 3d reconstruction of neuronal processes that were correctly tracked over all 30

sections. A black circle marks an example where regions were correctly grouped despite

not having any overlap in adjacent sections. The neuronal process shown in Figure b

(ground truth) and c (clustering result) shows an example for a split. The large part

including regions moving longitudinal to the cutting direction was correctly grouped

and the remaining part was also identified as one object.

Thus, our model allows for starting and ending of new neuronal processes inside
the volume, but does not account for branching of processes. The dotted line in
Figure 4 marks the best clustering performance achievable by this model.

Examples of extracted geometries are given in Figure 5. The examples demon-
strate, that the proposed method is capable of extracting correct geometries also
in difficult cases of neuronal processes running longitudinal to the cutting plane
and in cases of discontinuities in the geometry due to alignment errors.

4 Conclusion

In this paper we introduced a novel framework for global tracing of neuronal
processes in stacks of serial section transmission electron microscopy images. The
setting is formulated as a partitioning problem on edge weighted region-graphs.
The main contributions of this work are threefold: (i) On the modeling side we
propose the use of a random forest classifier to learn a predictor for neighborhood
relations of regions within the 3d volume. (ii) Predicted region correspondences
are refined taking the geometrical consistency of whole sections into account.
(iii) The unsupervised clustering approach results in a non parametric robust
procedure for partitioning the graph. In depth evaluation of all single steps
of the pipeline and cross validation of the similarity classification demonstrate
significant improvement in terms of split and merge error per object. We are
convinced that the proposed algorithm is a valuable contribution to the field of
neuroscience due to its robustness and general applicability for neuronal process
tracing in 3d volumes.
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Abstract. The deep brain nuclei play an important role in many brain

functions and particularly motor control. Damage to these structures

result in movement disorders such as in Parkinson’s disease or Hunting-

ton’s disease, or behavioural disorders such as Tourette syndrome. In this

paper, we propose to study the connectivity profile of the deep nuclei to

the motor, associative or limbic areas and we introduce a novel tool to

build a probabilistic atlas of these connections to the cortex directly on

the surface of the cortical mantel, as it corresponds to the space of func-

tional interest. The tool is then applied on two populations of healthy

volunteers and patients suffering from severe Huntington’s disease to

produce two surface atlases of the connectivity of the basal ganglia to

the cortical areas. Finally, robust statistics are used to characterize the

differences of that connectivity between the two populations, providing

new connectivity-based biomarkers of the pathology.

Keywords: deep nuclei, diffusion, tractography, Q-Ball imaging, con-

nectivity, surface atlases.

1 Introduction

The deep brain nuclei include the basal ganglia and the thalamus. The basal
ganglia include the caudate nuclei and the putamen, which constitute the stria-
tum, and the globus pallidus. The striatum receives afferents from the cerebral
cortex. Most areas of the neocortex except the primary visual and auditive areas
have projections on to the striatum. The striatum projects to the external and
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internal segments of the globus pallidus and the internal globus pallidus projects
in turn to the thalamus. In Huntington’s disease, these pathways are disrupted.
Imaging can provide biomarkers that may improve the understanding of the
pathophysiology of the disease. Diffusion-weighted (DW) magnetic resonance
imaging (dMRI) is now a well established technique to infer the anatomical con-
nectivity in vivo. dMRI can probe the anisotropy of the displacement of water
molecules at microscopic scales in tissues, revealing their structural organization.
In the case of the brain white matter (WM), the more recent local mathematical
models of the diffusion process proposed in the literature clearly depict some dis-
placement (PDF) or orientational probability distribution (ODF), the maxima of
which corresponds to the direction of the underlying axonal fibers. Tractography
algorithms were developed to more or less robustly recover the global connec-
tome using this local information and are now widely used to perform studies of
the anatomical connectivity and of its disorders.

Several studies have been conducted about the striato-pallido-thalamo-cortical
connectivity [1,2,3]. The first preclinical studies have focused on the functional role
played by the thalamus receiving afferents from the cortex and sending projections
back to it. Then, surprisingly, most of the clinical studies focused on parcelating
the functional territories of the deep structures having the a priori knowledge of
their connectivity to the cortical mantel and a labeling of the cortex into func-
tional areas [4,5], whereas none of them has tried to infer the connectivity profile
of the deep nuclei (and possibly their sub-territories) onto the cortical mantel. We
believe that this approach may be of interest as the deep nuclei are connected to
most of the cortical regions. As shown previously, many motor disorders may be
linked to putative disruption of the neuronal pathways between specific nuclei and
cortical areas. Therefore, building statistical atlases of the connectivity of these
nuclei to the cortical mantel for different populations (healthy volunteers versus
patients) may help understanding which cortical areas are significantly ”discon-
nected” for each deep structure from both a qualitative and quantitative point
of view.

In this paper we propose a novel tool to study the striato-thalamo-cortical
connectivity at the surface of the cortical mantel, dedicated to group studies.
This tool relies on the construction of surface probabilistic atlas that can be used
to quantify the probability of connection of a given nucleus to predefined cortical
regions of interest for a given subject or for a given population. We will show
that the measure of the probabilities provided by this tool can be used to detect
and characterize the axonal disruptions occurring in Huntington’s disease. The
paper is organized as follows: after introducing the methods involving several
image processing steps to project the information onto the cortical surface, the
technique is applied to two populations of controls and patients; robust statistics
are then performed to detect the functional areas of the cortex that were signif-
icantly atrophiated. We show that this tool brings complementary information
to the previous approaches that have focused on the study of the Huntington’s
disease (HD) using dMRI [6,7,8].
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2 Methods

The method is based on the construction of probabilistic atlases at the surface
of the cortical mantel of the connections between the deep nuclei and the cor-
tical areas. This task relies on the use of both T1-weighted data to extract the
deep structures and the cortical mantel and on high angular resolution diffusion-
weighted data (HARDI) to recover the anatomical connectivity. This section is
devoted to the description of the different steps of image processing required to
build the atlases and to analyze them using adequate statistics.

2.1 Structural Database

A database of 17 healthy volunteers and 17 HD patients was acquired on a Tim
Trio 3T MRI system (Siemens, Erlangen) in the frame of a clinical project dedi-
cated to the study of Huntington’s disease (HD, HDTrack project). All subjects
signed an informed consent and the imaging protocol was approved by the Local
Ethical Committee. T1-weighted and DW data were acquired using the follow-
ing sequence parameters: 3D MPRAGE TE/TR=2.98ms/2.3s, FOV=256mm,
matrix 256× 256, TH=1.1mm, 160 slices per slab, RBW=240Hz/pixel; Single-
shot twice refocused spin-echo DW-EPI TE/TR=86ms/12s, FOV= 256mm,
matrix 128x128, TH=2mm, 80 slices, acceleration factor 2, partial Fourier
6/8, RBW=1630Hz/pixel, b=1000s/mm2, 50 diffusion directions uniformly dis-
tributed. EPI distortions caused by susceptibility effects were corrected with
BrainVISA and using a further phase map acquisition to evaluate the distor-
tions along the phase axis. Each DW data was matched to the corresponding
T1-weighted data using a rigid 3D transform.

2.2 Segmentation of the Deep Nuclei and the Cortex

The deep nuclei and cortex were segmented from the T1-weighted data. For each
subject, eight deep structures were automatically delineated using the method
described in [9]: left caudate (LCd), left putamen (LPu), left thalamus (LTh), left
globus pallidus (LGP), right caudate (RCd), right putamen (RPu), right globus
pallidus (RGP), right thalamus (RTh). The automatic segmentations were then
checked by a neuro-anatomist and corrected manually if needed.

FreeSurfer was used to extract the interface between the white matter (WM)
and the cortex for all the subjects. The vertices of the obtained surface meshes are
in direct correspondence [10]. This property is mandatory to conveniently match
the different subjects [11]. In order to synthetize the information stemming from
different subjects, an average surface was computed for the two populations from
the individual interfaces extracted for all the subjects.

2.3 Inference of the Striato-Pallido-Thalamo-Cortical Connectivity

Tractography. In order to infer the connectivity between the deep nuclei
and the cortical surface, a streamline probabilistic tractography algorithm was
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employed as described in [12]. This choice was motivated by efficacy of such
algorithms to deal with complex fiber geometries (crossings, fannings) compared
to streamline deterministic algorithms. Bayesian or global algorithms could have
been chosen, but at the price of much longer computation times. A robust mask
of the brain white matter was built from the T1-weighted data and 10 prob-
abilistic streamlines were processed for each voxel of the mask. An analytical
Q-ball model described in [13] was used to estimate the local underlying orien-
tation distribution function (ODF) using a spherical harmonics order 6 and a
regularization factor equal to 0.006. At each step of the streamlining, the most
likely direction is determined from the ODF and a random direction is cho-
sen in a cone of aperture 30◦ around the optimal direction. This whole brain
tractography leads to individual tractograms containing 106 fibers on average.

The intersection of each fiber with the deep nuclei was computed. Starting
from one of the two extremities of a fiber, if n is the first nucleus to be met by
the points of the fiber, the portion of the fiber linking the chosen fiber extremity
to n is attributed to n. This process provides the fibers crossing each nucleus.

Striato-Pallido-Thalamo-Cortical Connectivity Matrix. A connectivity
matrix was computed to evaluate at each vertex of the cortical surface the num-
ber of fibers linking it to each nucleus. For each nucleus n, the number of fibers
connecting it to each region of the cortex is obtained by computing the inter-
section between the fibers crossing n and the WM/cortex interface. The values
related to each nucleus n are stored in a line of a sparse matrix Craw

s for subject
s. This matrix is then smoothed over the surface to account for a reasonable
uncertainty on the tracking result giving a matrix Cs for the subject s [14].

2.4 Probabilistic Surface Atlases of the Connectivity

The goal is now to merge all the striato-thalamo-pallido-cortical connectivity
information stemming from all the subjects into a single probabilistic atlas. This
task must be repeated for the two different populations.

For any subject s, its connectivity matrix contains for each nucleus n and
for any vertex position v an approximation Cs(n, v) of the number of fibers
connecting n to v. The probability ps(n, v) of connection between n and v is
the ratio between Cs(n, v) and the global number of fibers coming from all the
nuclei that project onto the cortical mantel of the subject s. Let N be the set of
nuclei and Vs be the set of positions of the vertices belonging to the WM/cortex
interface for the subject s. For any n ∈ N and any v ∈ Vs,

ps(n, v) =
Cs(n, v)∑

n′∈N
∑

v′∈Vs
Cs(n′, v′)

(1)

For a given nucleus n, the set of values ps(n, v) associated to the vertices belong-
ing to the WM/cortex interface represents the probabilistic atlas of the connec-
tivity of this nucleus n for the subject s. For a given population P , averaging
the connectivity matrices Cs provides the wanted probabilistic atlas for all the
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nuclei n, since vertices of the individual surfaces provided by FreeSurfer are in
direct correspondence. (∀s, ∀s′,Vs = Vs′ = V).

CP(n, v) =
∑

s∈P Cs(n, v)
card(P)

(2)

The probability pP(n, v) of connection of n ∈ N to v ∈ V is the ratio between
CP(n, v) and the mean total number of fibers coming from all the nuclei that
project onto the average cortical mantel for the population P . For a given
nucleus n, the set of values pP(n, v) computed over all the vertices belonging to
the WM/cortex average interface of P represents the probabilistic atlas of the
connectivity of n, for the population P .

pP(n, v) =
CP (n, v)∑

n′∈N
∑

v′∈V CP(n′, v′)
(3)

Probabilistic atlases have been represented for each nucleus using a gradient
color ranging from red corresponding to a high probability of connection to
gray corresponding to a low probability of connection. Thus, simple qualitative
comparisons can already be performed between the two populations of healthy
subjects and patients.

2.5 Atlas Differences between Populations

The HDTrack database includes 2 populations: healthy subjects (H) and subjects
suffering from severe Huntington disease (HD). Probabilistic connectivity atlases
computed, for each nucleus, on each subject of each population can be used to
perform some statistical comparisons between the two populations.

A Mann Whitney test was used to compare the probability of connection
of each nucleus to the cortex between the two populations. This choice was
motivated by the lack of assumption about the normality of the data.

For a given population P , the probability ps(n, v) was considered as a random
variable XP

n,v taking different values for the different subjects s. Using the Mann-
Whitney test on the two random variables XPH

n,v and XPHD
n,v corresponding to

the two populations of controls and patients, we detected trends of significant
difference (p-value< 0.05) of the connectivity, for the given nucleus n and the
given vertex position v, between the two populations PH and PHD.

3 Results and Discussion

Probabilistic Connectivity Atlases. A probabilistic connectivity atlas was
computed for the two populations (H) and (HD), and for all the nuclei, as de-
picted in figure 1. The left and right columns correspond to the left and right
structures respectively. The intensity of the red color is proportional to the level
of connectivity. We can observe that most of the connections of a given nucleus
are located in the ipsilateral hemisphere. The globus pallidus does not present
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Fig. 1. Surface probabilistic striato-thalamo-cortical connectivity atlases computed for

each population: healthy subjects and patients suffering from Huntington’s disease

any projection to the cortex and is consequently not shown in the figure. As
expected, the caudate nuclei project mostly to the frontal areas and to the pre-
motor and motor areas. The putamen is mainly connected to the motor and
premotor areas, to the frontal ventro-lateral areas, and to the temporal superior
area. The thalami have projections to the entire cortex.

Statistical Comparison Test. For each nucleus, the Mann Whitney test al-
lowed the detection of the vertices presenting a significant connectivity difference
between the two populations. The regions corresponding to these vertices were
represented using a color palette as shown in figure 2.

Reduction of the connections of the caudate nucleus was greater than the re-
duction of the connections of the putamen and thalami, especially in the Broca’s
area, the motor area, and the temporal superior area. The connectivity differ-
ences observed obtained by the comparison of the probabilistic connectivity at-
lases were in good agreement with the symptoms observed on the HD patients.
As an example, the probability of connection of the left caudate, left putamen,
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Fig. 2. Cortical regions presenting a significant connectivity difference between healthy

subjects and Huntington’s patients per nucleus stemming from statistical analysis of

their striato-thalamo-cortical surface atlases

left thalamus and right caudate to the Broca’s area was significantly different
between the two populations. The obtained statistics clearly indicate that the
caudate nucleus has the most atophiated connectivity and this atrophy is more
predominant in the left caudate nucleus.

3.1 Conclusion

In this paper, we introduced a novel tool for the study of the striato-thalamo-
cortical connectivity relying on surface probabilistic connectivity atlases. Pro-
jecting the connectivity profile onto the cortical mantel is relevant as it enables
to detect disruption of these connections directly in the frame of functional areas.
We used this novel tool on a population of healthy subject and on a population
of patients suffering of the Huntington’s disease and we proved that it was ade-
quate to detect differences of the striato-thalamo-cortical connectivity between
the two populations, using robust statistics. The structural lesions that were de-
tected were in good agreement with the known physiopathology of Huntington’s
disease. In the future, this tool will be used to investigate several neurodegen-
erative pathologies involving the basal ganglia, and improvements will be done
to provide accurate information about areas with atrophy, such as performing
longitudinal studies of the pathology.
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Abstract. The quantification of brain asymmetries may provide

biomarkers for presurgical localization of language function and can im-

prove our understanding of neural structure-function relationships in

health and disease. We propose a new method for studying the asym-

metry of the white matter tracts in the entire brain, and we apply it

to a preliminary study of normal subjects across the handedness spec-

trum. Methods for quantifying white matter asymmetry using diffusion

MRI tractography have thus far been based on comparing numbers of

fibers or volumes of a single fiber tract across hemispheres. We pro-

pose a generalization of such methods, where the “number of fibers”

laterality measurement is extended to the entire brain using a soft fiber

comparison metric. We summarize the distribution of fiber laterality in-

dices over the whole brain in a histogram, and we measure properties of

the distribution such as its skewness, median, and inter-quartile range.

The whole-brain fiber laterality histogram can be measured in an ex-

ploratory fashion without hypothesizing asymmetries only in particular

structures. We demonstrate an overall difference in white matter asym-

metry in consistent- and inconsistent-handers: the skewness of the fiber

laterality histogram is significantly different across handedness groups.

1 Introduction

Brain asymmetries provide clues about the brain’s functional organization. For
example, known left-greater-than-right perisylvian asymmetries [1] relate to the
localization of language function to the left hemisphere in most right-handed sub-
jects. But interestingly, increased symmetry of the direct segment of the arcuate
fasciculus fiber tract has been shown to relate to improved verbal recall perfor-
mance [2]. These seemingly contradictory results indicate that much remains to
be learned about how morphological asymmetries may underlie major functional
differences across the hemispheres. Because the study of fiber tract asymmetry
using imaging is a relatively recent field, the development of new methods to
� We acknowledge the following grant support: NIH U41RR019703, R01MH074794,

R25CA089017, P01CA067165, P41RR013218, Brain Science Foundation, and

Klarmin Family Foundation.
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measure white matter (WM) asymmetry using diffusion tensor MRI (DTI) may
provide useful tools for studies of structure and function in healthy and diseased
subjects. Current approaches for assessing WM asymmetries include voxel-based
methods with normalization to a symmetric template and tractography-based
methods where fiber counts, volumes, or FA values are measured.

Brain asymmetries have been extensively studied in healthy right-handed sub-
jects, where the most prominent asymmetries are related to language areas such
as the planum temporale, and to the finding that the frontal lobe is larger on the
right and the occipital lobe is larger on the left (termed petalia and brain torque)
[1]. These asymmetries have been measured (for example) with voxel-based ap-
proaches in structural MRI [3]. Thus far DTI-based methods have mainly demon-
strated white matter asymmetries in the arcuate fasciculus (AF). A voxel-based
statistical analysis using a symmetric template found strong asymmetries of FA
in the arcuate fasciculus (higher FA in the left hemisphere) in consistent right-
handers [4] (though this was not found in another similar study [5]). Despite
different anatomical subdivisions of the AF (superior temporal and middle tem-
poral connections, vs. direct and indirect segments) studies of DTI tractography
in right handers have robustly found greater left-vs-right hemisphere AF volume
[6], and fiber trajectory counts [2]. For the direct segment of AF, 62.5% of right
handers have complete left lateralization and 17.5% have a symmetric AF [2].
Motor-related asymmetries were also shown with more extensive tractography
connectivity to motor cortex in the left hemisphere [7], and higher FA in left
hemisphere tractography [8]. But a different study did not find corticospinal
tract asymmetry in terms of number of fibers [9].

The relationship of brain asymmetry to handedness is more subtle. Voxel-
based methods using structural MRI have found no effect of handedness and no
handedness interaction with asymmetry [3]. However, cortical and DTI meth-
ods have found asymmetries related to motor regions. Central sulcus depth was
deeper in the left hemisphere in male consistent right handers [10], and this
pattern may be reversed in left handers but it did not reach significance in the
group (of 465 subjects). With DTI a reversed pattern in left- and right-handers
was found in a much smaller cohort of 28 subjects: higher FA was detected in the
precentral gyrus in the hemisphere contralateral to the dominant hand [4]. Lan-
guage asymmetries have also been studied in relation to handedness using DTI
tractography, with mixed results so far. One study found no effect of handedness,
with leftward asymmetry of AF tractography regardless of handedness or func-
tional language lateralization [11], whereas another study found AF asymmetry
related to handedness in men but not women [12].

On the basis of these results from the literature it appears that DTI, in com-
parison with structural MRI, may be more sensitive to subtle brain differences
related to handedness. However, results have been inconsistent across studies,
and much of the brain’s white matter has not been systematically explored.
These facts inspire our investigation of a hypothesis-free fiber asymmetry mea-
surement method.
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2 Methods

We propose a generalization of DTI tractography fiber counting or fiber volume
measurement methods, where the “number of fibers” laterality measurement is
extended to the entire brain by using a soft fiber comparison. We apply this
method to a study of 26 left-, right- and inconsistent-handers.

2.1 Algorithm

The algorithm proposed in this paper can be roughly thought of as follows.
Each fiber “looks” in its immediate neighborhood and “counts” the number of
similar fibers near it. It also “looks” in the corresponding region in the other
hemisphere, and “counts” the number of similar fibers there. The relationship
between these two “counts” is expressed as a laterality index (LI) that reflects
any asymmetries in the anatomical extent of the traced structure of which the
fiber is a part. This process is repeated for each fiber in the brain, so each fiber
“votes” for the laterality of the structure it belongs to.

Counting fibers directly is not ideal because it involves hard cutoffs of how
similar or nearby a fiber must be to be counted as part of the structure of interest.
This is not robust due to variable structure sizes within and across subjects.
However, it is possible to use a “soft” count of the number of similar fibers. We
propose to determine fiber correspondence using the soft fiber similarity metric
between each fiber and all other fibers in its hemisphere, and between the mirror
image of that fiber and all the fibers in the other hemisphere. We propose the
following fiber similarity: ∏

i

e
−(fi−ni)

2

σ2 (1)

where the ith point on fiber f is fi and the ith point on another, perhaps neigh-
boring, fiber is ni, and their distance apart is mapped through a Gaussian kernel
to give a number that can be thought of as a local probability of those points
being in the same structure. These probabilities are multiplied along both fibers
to get an overall probability that the fibers are in the same structure. Sigma
(σ) controls the scale of searching for similar fibers: at an extreme σ of 0mm,
all fibers will be completely right- or left-lateralized with a LI of +/-1, while at
a large σ of say 1000mm all fibers will have a symmetric LI near 0. (We chose
σ of 50mm to avoid having large numbers of fibers at +/-1 that gave the his-
togram a “truncated” appearance, but our results were significant with sigmas
from 30-50mm.) The formula relates to similarity metrics used in the fiber clus-
tering field, both within [13] and across hemispheres [14] and was inspired by
the interhemispheric comparison of fiber tracts in a beautifully descriptive study
of temporal connections [15]. We efficiently implemented the similarity metric
using 5 points on each fiber (endpoints, midpoints, and points between them),
accounting for point ordering by computing similarities with points in forward
and reverse orders then taking the maximum.
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Fig. 1. Fiber laterality indices and fiber laterality histograms in example subjects from

each handedness group. Top row: individual subject fibers painted by their LIs, where

blue and cyan are left-lateralized, red and yellow are right-lateralized, and green is not

lateralized, i.e. it is symmetric. The inconsistent-handed subject, center, has relatively

few asymmetric fibers as shown by the prevalence of green color. Bottom row: Fiber

laterality histograms showing the distribution of LIs over all the fibers in the brain of

each subject from the top row.

To convert the similarities to a fiber laterality index for each fiber, we employ
a standard laterality index formula that ranges from -1 (left lateralized) to +1
(right lateralized)

LI =
R− L

R + L
(2)

where R is the total sum of similarity to all fibers in the right hemisphere and L
is the total sum of similarity to all fibers in the left hemisphere. To summarize
the distribution of fiber LIs over the whole brain of each subject we construct
a fiber laterality histogram and we measure the skewness, kurtosis, median, and
interquartile range (a measure of the statistical dispersion of the LI data).

2.2 Data and Subjects Studied

Twenty-six individuals participated: 9 men and 17 women (age M=28.54 years,
SD=9.19). Participants had no history of neurological problems, psychiatric ill-
ness, or head trauma. Handedness was determined via score on the Edinburgh
Handedness Inventory [16], where scores can range from -100, indicating perfect
consistent left-hand preference, to +100, indicating perfect consistent right-hand
preference. Subjects were divided into three handedness groups: consistent left
handers (CLH n=5), inconsistent handers (ICH n=16), and consistent right han-
ders (CRH n=5), using a cutoff handedness score of 75 (the median of the abso-
lute value of the handedness scores). There were 5 borderline cases with absolute
handedness of ±75 that were placed in the inconsistent group. Our dataset was
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specifically gathered to over-represent LH and CLH relative to the population
in order to be able to study these groups.

DTI EPI images were acquired at 3T using an 8-channel head coil and ASSET
matrix=128x128; FOV=25.6cm; Phase FOV=1.0; B value=1000s/mm2; 55 DWI
gradients and 5 baseline T2 images; voxel size=2x2x2.6mm. Whole brain tractog-
raphy was generated by seeding trajectories (fibers) on a 2mm grid throughout
the entire white matter of each subject using Runge-Kutta order two integration
in 3D Slicer (www.slicer.org). DTI tractography was normalized to a common
coordinate system created by congealing (an entropy-based unbiased group regis-
tration method [17]) of all subjects’ fractional anisotropy images. Fibers shorter
than 75mm, fibers crossing the midsagittal plane, and fibers restricted to the
brainstem were discarded before laterality processing.

3 Results

Despite our small sample size, our new method was able to detect significant
group differences based on handedness direction (left/right) and handedness
degree (consistency/inconsistency). Fiber laterality indices (Figure 1) were suc-
cessfully measured for all subjects. We tested for differences across groups in the
skewness, kurtosis, median, and interquartile range (IQR) of the fiber LIs (using
one-way ANOVA). No significant differences were found in median or kurtosis.
The IQR was was not significantly different across the three groups (p = 0.098)
but the measurements (Figure 2, bottom right) indicated a difference between
consistent right handers and other groups (other groups mean 0.26, CRH mean
0.36, p = 0.03 via t-test) that we believe is related to torque. The skewness was
significantly different across the three groups (CLH mean -0.41, ICH mean 0.23,
CRH mean -0.35, p=0.006) because the ICH group was different from both oth-
ers (we hypothesize the ICH brains are more symmetric so their LI histograms
are less skewed). To ensure our results weren’t extremely dependent on the sigma
parameter from eq. 1, we tested sigma values of 30, 40, 50, and 60mm. The sig-
nificant results were reproduced at all scales except 60mm, when significance
decreased slightly past the 0.05 threshold. The histograms were truncated at
+/-1 for lower sigmas so we chose sigma of 50mm for the results reported here.

4 Discussion

To our knowledge this is the first time the asymmetry of white matter tractog-
raphy has been quantified in the entire brain. Our results (highly asymmetric
tracts as well as brain torque) correspond well with known asymmetries in the
highly-studied CRH population. To evaluate the success of our method at de-
tecting asymmetries and to to examine which fiber tracts may be driving the
group differences, we selected fiber tracts with very high LIs for viewing (Figure
3), using as input all CRH subjects. The results appear to correspond very well
with CRH data from the literature: the left arcuate fasciculus was highly left-
ward asymmetric (eg. [6,2]). The left cingulum bundle (left > right FA [18]), the
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Fig. 2. Differences in the fiber laterality index distribution across groups. Left: aver-

age fiber laterality histogram in the three groups (bin counts were normalized within

subject by number of fibers, then averaged across subjects in the group at each bin

location). Note the tails of the green inconsistent-hander distribution are most sym-

metric about 0, and the red consistent-right-hander curve appears wider. Right (box-

plots): A significant skewness difference was measured between inconsistent handers

and the other two groups (top). The interquartile range, bottom, in the three hand-

edness groups was not significantly different (p = 0.098), but it did differ if CLH and

ICH were combined and compared with consistent right handers.

right anterior indirect segment of the arcuate (right > left FA [2]), and the right
uncinate (known to be larger than the left [1]) were highly asymmetric. Addi-
tional asymmetric structures were detected whose asymmetry may not have yet
been reported. Our method also shows evidence of the large-scale asymmetry of
brain torque (Figure 3), and we hypothesize that the the greater IQR we found
in right handers corresponds to their known higher brain torque [1]. In our anal-
ysis strategy, curve “widening” as seen in the red curve in Figure 2 is indicative
of low-level asymmetry as might be seen with brain torque.

Extensions of this study will include quantifying the patterns of asymmetric
tracts in the handedness groups and testing the method with the effects of torque
removed via registration. One point to mention is that we can’t disambiguate the
effects of gender and handedness in this small study because 13 of 16 inconsistent
handers were female. However, the skewness and IQR were not significantly
different across genders.

In summary, we have presented a new way to measure asymmetry in the white
matter of the human brain, the fiber laterality index, and a new way to compare
asymmetry across subjects in the form of a fiber laterality histogram and its sum-
mary statistics. We applied the method to a small study of brain asymmetry and
handedness, detecting significant differences in skewness between consistent- and
inconsistent-handed subjects. Our results regarding skewness support the idea
that inconsistent-handed people have more symmetric white matter. The sign of
skewness is not necessarily expected to reverse for right and left handers (which
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Fig. 3. Left column: Fibers with extreme laterality indices, a composite visualization

including fibers from all consistent right handers. Red-blue images show fibers with ab-

solute value of LI greater than 0.45. Notable blue regions (highly left-lateralized in one

or more CRH subjects) include the arcuate fasciculus and left cingulum, as well as oc-

cipitofrontal connections. Red regions (highly right-lateralized in one or more CRH sub-

jects) include part of anterior thalamic radiation, uncinate, and SLF/anterior indirect

segment of the arcuate. Right column: example CRH subject showing left-lateralization

of occipital fibers (blue) and right-lateralization of frontal fibers (orange and yellow),

potentially corresponding to the known size differences [1] of occipital and frontal lobes

in right handers and showing torque of the occipital fibers towards the midline.

would indicate a mirror-image brain in the two groups) because known asym-
metries do not frequently reverse, as demonstrated by language function where
only some left handers are right-lateralized. So the phenotype of left-handedness
does not fully predict the underlying brain organization. Our additional result of
greater histogram IQR in right-handers may correspond to their known greater
brain torque compared to non-right-handers. Our approach has potential ad-
vantages for future investigations of white matter symmetry: (1) whole-brain
measurement can be performed without limiting tracts of interest based on a
priori hypotheses, and (2) the use of summary statistics from the LI distribution
increases statistical power.
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Abstract. We introduce a fibre tractography framework based on a par-

ticle filter which estimates a local geometrical model of the underlying

white matter tract, formulated as a ‘streamline flow’ using generalized

helicoids. The method is not dependent on the diffusion model, and is

applicable to diffusion tensor (DT) data as well as to high angular resolu-

tion reconstructions. The geometrical model allows for a robust inference

of local tract geometry, which, in the context of the causal filter estima-

tion, guides tractography through regions with partial volume effects. We

validate the method on synthetic data and present results on two types

in vivo data: diffusion tensors and a spherical harmonic reconstruction

of the fibre orientation distribution function (fODF).

1 Introduction

Tractography is the process of reconstructing possible white matter fibre path-
ways from diffusion MRI data. An increasing variety of algorithms dedicated to
this problem are available, as reviewed recently in [1,2]. Many such methods are
developed with a focus on the specific model used to represent the diffusion pro-
cess, e.g. [3,4] for diffusion tensors, or e.g. [5,6] for more complex parametric and
non-parametric models of diffusion. Additionally, directional information from
the diffusion MRI signal is often integrated without a geometrical model of the
pathways to be reconstructed. This is the case for existing methods based on
the unscented Kalman filter, e.g. [2], or particle filters, e.g. [1,7].

In this paper, we propose a novel tractography approach which models the
trajectories of white matter pathways as 3D curves, and infers these curves
independently of the underlying model of the diffusion process. The method
incorporates a geometrical model for co-varying 3D curve sets, called ‘streamline
flows’ (SF) [8,9], which is infered at each position along the fibre with a particle
filter, so that the estimation at each step builds upon previous estimates. With
a small parameter set, the SF model captures within a 3D neighborhood N
the full 3D geometry of a collection of curves that may vary within N in the
tangential direction, as well as in the normal and bi-normal directions. Modeling
fibre tracts as a collection of curves that ‘flow’ together in 3D space, and infering
a local geometrical model for such structures allows for increased robustness in
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tractography to partial volume effects in areas where different fibre populations
with distinct orientations co-exist. This is particularly useful when working with
DT data, as tractography may then proceed to areas not reachable with standard
methods. We demonstrate our method with synthetic and in vivo data, with
diffusion tensors as well as a spherical harmonic reconstruction of the fODF.

2 3D Streamline Flows and the Generalized Helicoid

The work in [8,9] argues for the representation of white matter fibres as sets
of dense, locally parallel 3D curves called ‘streamline flows’, and derives their
differential geometry, which is characterized by three curvature functions: the
tangential, normal and bi-normal curvatures. A local model for such flows is
then proposed in [8,9] which consists of two orientation functions θ(x, y, z) and
φ(x, y, z), which define the local orientation of the flow (its tangent vector) at
every point (x, y, z) in E3 (three-dimensional Euclidean space):

θ(x, y, z) = tan−1

(
KT x + KNy

1 + KNx−KT y

)
+ KBz ,

φ(x, y, z) = αθ(x, y, z) .

(1)

Here α is a constant, and KT , KN and KB are scalar parameters that specify
the values of the tangential, normal and bi-normal curvatures of the flow. This
formulation is justified in [8,9] via minimal surface theory as a smooth local
model for 3D streamline flows with a small parameter set that describes the flow
geometry. In fact, the formulation for θ (and φ) given in (1) is that of a general-
ized helicoid. Generalized helicoids are minimal hypersurfaces in n-dimensional
Euclidean space En, whose geometry has been studied in e.g. [10].

3 Particle Filter Based Tractography

3.1 Theory

This section reviews the particle filter method, described in full elsewhere [11,12].
Details specific to our implementation are given in Section 3.2.

Let St ∈ Rn be a state vector at time t evolving at discrete time steps
according to St+1 = ft(St) + nt, where nt is i.i.d. random noise with known
probability distribution function (pdf). At time t, observations Yt ∈ Rp become
available. These measurements relate to the state vector via the observation
equation Yt = ht(St) + νt, where νt is measurement noise with known pdf. It
is assumed that the initial state distribution p(S0), the state transition func-
tion denoted by ft and the observation likelihood given the state, denoted by
p(Yt|St), are known. The particle filter is a sequential Monte Carlo method which
produces at each time t a cloud of K particles, {S(i)

t }K
i=1, whose empirical mea-

sure follows closely p(St|Y1:t), the posterior distribution of the state given past
observations.

The algorithm starts by drawing K samples (particles) from the initial state
distribution p(S0) in order to approximate it by pK

0 (S) = 1
K

∑K
i=1 δ(S0 − S

(i)
0 ),
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Fig. 1. Two views of a set of two streamline flow examples (one in green and one in

red) generated using (1), each sampled with nine streamlines. Left: An orthographic

projection from above. Right: A 3D view. The flow parameters are as follows: Green:

KT = −0.3, KN = 0, KB = 0, α = 0. Red: KT = 0.2, KN = 0.3, KB = 0.1, α = 0.3.

and then implements Bayes’ recursion at each time step. Assuming that one
can sample from the posterior distribution p(St|Y1:t), an empirical estimate of
this distribution is given by pK

t (St|Y1:t) =
∑K

i=1 ω
(i)
t δ(St − S

(i)
t ), where ω

(i)
t is

the weight associated with the i-th particle. In this paper, the state process is
assumed to be Markovian, i.e., the likelihood can be expressed as p(Yt|S0:t) =
p(Yt|St). This leads to the following recursion relation for the weights [12]:

ω
(i)
t ∝ ω

(i)
t−1

p(Yt|S(i)
t )p(S(i)

t |S
(i)
t−1)

q(S(i)
t |S

(i)
t−1, Yt)

, (2)

where q(·) is the importance sampling density, and p(S(i)
t |S

(i)
t−1) is the prior

distribution that ensures smoothness. The empirical distribution for the posterior
is then given by pK

t (St|Yt) =
∑K

i=1 ω̃
(i)
t δ(St − S

(i)
t ), where ω̃

(i)
t are normalized

weights. Finally, resampling is performed so that particles with low weights are
eliminated [12]. At each time step, the maximum a posteriori (MAP) estimate
SMAP

t given by the particle with the largest normalized weight ω̃MAP
t is stored

and used for tractography as described in Section 3.3.

3.2 Implementation

Our implementation uses a state vector S = {KT , KN , KB, α, mx, my, mz, β},
where the first four components parametrize a local SF model for the underlying
tracts, as defined by (1). The last four determine the orientation of the SF model
in E3, with vector m = [mx, my, mz] and a rotation angle β around m. Two SF
examples generated using (1) are visualized in Fig. 1.

The initial state distribution p(S0) is obtained by setting the mx, my and mz

components of each particle to the principal eigenvector of a DT reconstruction
in each seed voxel. The other five state components are set to 0. The state
transition function ft is then used to propagate the particles with normally
distributed noise nt ∼ N(0, Σ), where Σ is user-defined.
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Algorithm 1. The particle filter based tractography algorithm.
foreach Seed Point do

Compute p(S0) as described in §3.2;

t ← 1;

while (G)FA > threshold and current tract position is inside brain mask do
for i = 1 to K do

S
(i)
t ← S

(i)
t−1 + nt;

Compute ω
(i)
t using (2), as described in §3.2;

ω̃
(i)
t ← ω

(i)
t /
∑K

i ω
(i)
t ;

ω̃MAP
t ← maxi(ω̃

(i)
t );

Perform local tractography using SMAP
t , as described in §3.3;

Perform particle resampling [12];

t ← t + 1;

The observation likelihood pt(Yt|S(i)
t ) is computed by instantiating the stream-

line flow defined by S
(i)
t in a voxel neighborhoodN of size n×n×n. At each voxel

with position vector x = (x, y, z) in N , the ODF Ψx is then evaluated in the di-
rection of the streamline flow at x, as given by (1). The observation likelihood is
then defined as the average of these values:

pt(Yt|S(i)
t ) ≡ 1

|N |
∑
x∈N

Ψx(θ(x), φ(x)) . (3)

Note that no restrictions are placed on Ψ , as it may be a diffusion tensor, or any
other diffusion or fibre ODF.

To ensure smoothness of the tractography, we define a prior based on SMAP
t−1

rather than on S
(i)
t−1, i.e., p(S(i)

t |S
(i)
t−1) ∝ exp(−‖S(i)

t − SMAP
t−1 ‖/σ). Finally, we

set q(·) to q(·) ∼ N(0, Σ). Both σ and Σ are user-defined.

3.3 Tractography Algorithm

Given the MAP estimate SMAP
t obtained at each time step, our method consists

in performing streamline tractography over a short distance following the SF field
defined by SMAP

t . Given a neighborhood N of size n × n× n voxels, we follow
the streamline flow over a distance of n/3 voxels starting from the center of N .
Performing tractography by following the infered streamline flow model allows
for a regularization of the path and for robustness to partial volume effects.

4 Experiments and Results

4.1 Synthetic Data Validation

A synthetic fODF volume that simulates a U-fibre with two 90◦ crossing regions
was generated using the methodology described in [13]. First, a diffusion-weighted



A Geometry-Based Particle Filtering Approach 237

(a) Standard streamline (b) Our method

Fig. 2. Top: a slice though the synthetic fODF volume. Bottom: tractography result

using standard streamline tractography [3] (a) and using our method (b). The tractog-

raphy is overlaid on an image displaying generalized FA. Both tracts were seeded in

the bottom left corner of the path.

MR signal was simulated over a 15×30×5voxel grid using a single tensor model for
each fibre population, with eigenvalues [1200, 100, 100] ∗ 10−6 s/mm2, and back-
ground tensors with eigenvalues [1500, 1500, 1500]∗10−6 s/mm2. The signal from
both fibre populations was then added in the crossing regions, followed by the ad-
dition of Riccian noise over the entire volume to achieve a signal-to-noise ratio
of 7. In a second step, an icosahedral sampling of the unit hemisphere was used
to generate a set of 81 gradient directions. Together with the synthetic diffusion-
weighted signal, they were incorporated in the reconstruction scheme of [13] to
produce an fODF volume, illustrated in Fig. 2. We compared our particle filter
tractography method with a standard streamline method [3] on this dataset, with
results shown in Fig. 2. Our method was run with K = 1000 particles, and a neigh-
borhood N size of 5× 5× 5 voxels. Both methods were seeded with a single seed.
No major difference between the methods is observed, although our method gives
a somewhat smoother path.

4.2 In vivo Data Validation

Diffusion-weighted images of a human brain were acquired on a GE Signa HDxt
3.0T scanner using an echo planar imaging sequence with a double echo op-
tion, an 8 Channel coil and ASSET with a SENSE-factor of 2. The acquisition
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(a) DT - standard streamline (b) SH - standard streamline

(c) DT - our method (d) SH - our method

Fig. 3. Tractography originating from a small seed region (green) in the midsagittal

slice of the corpus callosum. Top row: standard streamline tractography [3] with DT

data (a) and SH data (b). Bottom row: Our particle filter tractography method applied

to DT data (c) and SH data (d). The FA image is shown in the background for gross

anatomic reference. Note the tracts are not exactly in the plane of the FA image and

are located more anteriorly.

(a) DT - standard streamline (b) DT - our method

Fig. 4. Tractography on DT data originating from a seed region (green) in the cortico-

spinal tract. (a): Standard streamline tractography [3]. (b): Our particle filter tractog-

raphy method The FA image is shown in the background for gross anatomic reference.

Note the tracts are not in the plane of the FA image and are located more laterally.

consisted in 51 directions with b = 900 s/mm2, and 8 images with b = 0 s/mm2,
with scan parameters TR=17000 ms, TE=78 ms, FOV=24 cm, 144 × 144 en-
coding steps, 1.7 mm slice thickness, 85 axial slices covering the whole brain.

We demonstrate our tractography method both on DT data as well as on a
spherical harmonic (SH) reconstruction of the fODF obtained with the method of
[13], with order 8 spherical harmonics and a regularization parameter λ = 0.006.
Tractography was initiated in a small region of interest (ROI) located in the
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midsagittal slice of the corpus callosum, with 10 streamline seeds per voxel. We
ran our particle filter method using K = 1000 particles for the DT example,
and K = 100 particles for the SH data. A smaller number of particles for SH
data is sufficient possibly because more directional information is available as
compared to DT. The size of neighborhood N was 5× 5× 5. Tractography was
stopped when the fractional anisotropy (FA) (or the generalized FA for the case
of SH data) was below a threshold, or when tractography reached the border
of the brain mask. For comparison purposes, we repeated the experiments with
the same seeds on the same datasets using a standard streamline tractography
method [3], with the same stopping criteria. In the case of SH data, a ‘branching’
scheme was added to the standard method, so that when more than one peak
is detected in the ODF, another streamline is seeded at that location. It can be
noted from the results in Fig. 3 that our method substantially outperforms the
standard method by recovering the transcallosal projections, with both types of
datasets. False positive fibres obtained on the SH data by the standard method
were removed using exclusion ROIs.

The methods were also compared on DT data with a seed ROI located in the
cortico-spinal tract (CST) of the left hemisphere, with 2 streamline seeds per
voxel and K = 1000 particles for our method. The results are shown in Fig.
4. Again, our method substantially outperforms standard streamline tractogra-
phy. Although the in vivo evaluation presented here is only qualitative, it does
demonstrate the recovery of tracts that are anatomically known to be present
(e.g. [14]), but that the standard method fails to recover.

5 Discussion and Conclusion

This paper introduced a novel method for performing fibre tractography, formu-
lated in a manner independent of the underlying diffusion model. The method
makes use of a particle filter which estimates, at each position along the fibre,
the best streamline flow model for the local fibre tract geometry. Tractography
is then performed in the space of this locally estimated model, which results in
the regularization of the fibre path and the ability to proceed through regions
of partial volume effects, both with with diffusion tensor and high angular res-
olution diffusion data. This aspect of the algorithm is important, since it can
result in significantly improved tractography in contexts when only low angular
resolution acquisitions are available, e.g. in clinical settings. A current limitation
of the method is that it propagates a single path and does not fully utilize all
the information inherent in the local SF field. In future work, we will augment
the algorithm with branching capabilities in locations where the estimated SF
model indicates a fanning fibre configuration. The main drawback of our method
with respect to traditional streamline tractography is the computational cost,
proportional to the number of particles and associated mostly with computing
(3). However, our results indicate that even a relatively small number of particles
can produce improved tractography. Our in vivo results are not as smooth as
those obtained with the standard method, but a more efficient implementation
should allow for a larger number of particles and thus smoother tracts.
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Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 135–

143. Springer, Heidelberg (2008)

10. Barbosa, J.M., Dajczer, M., Jorge, L.P.: Minimal ruled submanifolds in spaces of

constant curvature. Indiana University Mathematics Journal 33, 531–547 (1984)

11. Doucet, A., de Freitas, N., Gordon, N.: Sequential Monte Carlo methods in practice.

Springer, Heidelberg (2001)

12. Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle

filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal

Processing 50(2), 174–188 (2002)

13. Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Regularized, fast and

robust analytical Q-Ball imaging. Magn. Res. Medicine 58(3), 497–510 (2007)

14. Nieuwenhuys, R., Voogd, J., van Huijzen, C.: The Human Central Nervous System:

A Synopsis and Atlas, 3rd edn. Springer, Heidelberg (1988)



Accurate Definition of Brain Regions Position
through the Functional Landmark Approach
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Abstract. In many application of functional Magnetic Resonance Imag-

ing (fMRI), including clinical or pharmacological studies, the definition of

the location of the functional activity between subjects is crucial. While

current acquisition and normalization procedures improve the accuracy

of the functional signal localization, it is also important to ensure that

functional foci detection yields accurate results, and reflects between-

subject variability. Here we introduce a fast functional landmark detec-

tion procedure, that explicitly models the spatial variability of activation

foci in the observed population. We compare this detection approach to

standard statistical maps peak extraction procedures: we show that it

yields more accurate results on simulations, and more reproducible re-

sults on a large cohort of subjects. These results demonstrate that ex-

plicit functional landmark modeling approaches are more effective than

standard statistical mapping for brain functional focus detection.

1 Introduction

With the improvement of acquisition hardware, such as parallel coils and the ad-
vent of high-field MRI scanners, functional Magnetic Resonance Imaging (fMRI)
provides increasingly precise information on the spatial structure of brain activ-
ity, and is expected to ultimately yield individual mappings with a resolution of
2mm. Functional activity is currently believed to be the most accessible marker
to define cortical regions in vivo [1]. However, as far as cross-subject activity de-
tection is concerned, the accuracy of activation position is largely determined by
anatomical normalization procedures, which are also constantly improving (see
[2] for a review). The precise localization of brain foci represents an important
information, in particular for pharmacological MRI, where the impact of drugs
in several subjects for particular brain targets is assessed [3], or in case studies
where one needs to extrapolate the position of identified foci of activity to a new
individual to assess lesion impact or for surgery.

However, fMRI has not been considered as a reliable marker of brain activity
so far [4,3]. This is related to two problems: one is the lack of accuracy in the
location of brain regions, the other one is the lack of sensitivity to detect peaks of
interest, that can thus be missed when comparing functional foci across subjects.

T. Jiang et al. (Eds.): MICCAI 2010, Part II, LNCS 6362, pp. 241–248, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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In this paper, we investigate the reliability and the reproducibility of several
fMRI activation detection procedures; we do not focus on the reproducibility
of supra-threshold regions, but on the positions of activity peaks, for which
we introduce specific metrics. In particular, we propose a fast functional land-
mark detection procedure, that directly aims at modeling the spatial distri-
bution of activity peaks. This is in contrast with more standard approaches
that first compute statistical maps voxel-by-voxel, then extract the peaks of
these maps. This procedure, detailed in Section 2, is conceptually simpler and
faster than existing procedures that perform inter-subject activation position
modeling [5,6,7]. We present two validation procedures in Section 3: one based
on simulations, where the true foci positions are known: we show that, when
there is some jitter in the position of functional foci across subjects, the pro-
posed functional landmark approach clearly outperforms all peak detection pro-
cedures derived from standard group statistical maps. This gain in detection
reliability is characterized by a procedure designed specifically, analogous to
the Receiver Operating Characteristic (ROC) curve, that shows the (sensitiv-
ity, specificity) trade-off of peak detection techniques. We proceed with an ex-
periment based on a very large dataset, where we show that our functional
landmark detection procedure yields more reproducible positions than its alter-
natives by using a jackknife subsampling procedure. More details and results
can be found at the following address: http://parietal.saclay.inria.fr/
research/supplementary-material-miccai-2010.

2 A Spatial Model of Brain Functional Foci

In this paper, we consider that a first-level analysis has been performed in a
dataset acquired in S subjects after normalization in the MNI space, so that
individual contrast, variance and statistical maps are available for certain func-
tional contrasts (combination of condition-related effects).

2.1 Extracting Peak Positions from Standard Group Analyzes

Most activation detection procedures rely on a univariate modeling procedure
that provides group-level statistical maps; these maps are then used to detect
supra-threshold regions or activity peaks. The corresponding statistics can be i)
the classical t-test, that we call random-effects statistic (rfx ); we also consider the
use of data smoothing (12mm Full Width at Half Maximum, FWHM) srfx ; iii)
the conjunction statistic, that assesses that the null hypothesis can be rejected in
k subjects over S [8]; here we consider 2 cases, namely k = S/2 (half conjunction),
that we call cjh, and iv) the case k = S (full conjunction), called cjf. To make
inference results comparable across statistics, the significance has been evaluated
using the same sign swap procedure [9] in all cases: this procedure performs
inference on the positivity of the voxel mean effect in the population, with a
built-in correction for multiple comparisons.

In most fMRI studies, a few positions in the MNI space are reported as ac-
tivation foci by extracting the maps local maxima. These can be ordered by
decreasing importance by considering their associated statistical value.

http://parietal.saclay.inria.fr/research/supplementary-material-miccai-2010
http://parietal.saclay.inria.fr/research/supplementary-material-miccai-2010
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2.2 The Functional Landmark (FL) Model

Here, we describe our new procedure to detect functional landmarks. It is re-
lated to the approach in [6], with several differences that make it simpler and
faster. It consists in 3 steps: a peak extraction procedure in individual data, the
specification of a spatial model at the group level, that includes a modeling of
false positives; the final specification of the group-level foci of activity, with their
position and their statistical significance.

High-level descriptions of individual maps. The FL detection procedure takes
as input each subject t statistical map (φs)s=1..S obtained in the cohort. For a
given map φ we call a terminal blob a set aj of connected voxels that are above a
saddle point of φ, and that contain a unique local maximum of φ. We retain only
the blobs that contain at least smin voxels. In the sequel, we denote the extracted
terminal blobs (as

j)j=1..J(s),s=1..S where s is the individual dataset under study
and j ∈ [1, J(s)] is a region index. The peak position within aj

s is denoted tsj ,
while the average signal within the blob is denoted φs

j . Next, φs
j is converted

to a probability that the blob is indeed active p(H1(as
j)|φs), by learning the

distribution of activations through a mixture model of the corresponding map
φs [10]. In this work, we consider only blobs above a threshold that corresponds
to a p-value p < 0.01 uncorrected, and use smin = 5.

A Dirichlet Process Model for spatial data. The next step consists in selecting
the blobs at similar positions across subjects. Importantly, this is carried out in a
probabilistically consistent framework i.e. by refining the p-values p(Hi(as

j)), i ∈
{0, 1} based on spatial information:

p(Hi(as
j)|tsj , φs) =

p(tsj |Hi(as
j), φ

s)p(Hi(as
j)|φs)

p(tsj |φs)
, (1)

where p(tsj |φs) =
∑1

i=0 p(tsj |Hi(as
j), φ

s)p(Hi(as
j)|φs). We further assume that

p(tsj |Hi(as
j), φ

s) = p(tsj |Hi(as
j)). Next we specify the spatial densities under each

alternative p(tsj |Hi(as
j)): under H0, the selected blobs are distributed uniformly

across the brain, so that p(tsj |H0(as
j)) = 1/|Ω|, where Ω is the brain volume;

under H1, the distribution p(tsj |H1(as
j)) is unknown, but is expected to be clus-

tered in some regions of the brain. To model this density, we use a Gaussian
Mixture Model with an unspecified number of components implemented through
a Dirichlet Process Mixture Model (DPMM) [11]:

γ ∼ DP (θ,G),
(μs

j , Λ
s
j) ∼ γ, ∀j[1, J(s)], ∀s ∈ [1, S]
tsj ∼ N (tsj ; μ

s
j , Λ

s
j), ∀j[1, J(s)], ∀s ∈ [1, S], (2)

As a base measure G we choose a uniform density on the compact brain volume
for the mean parameters, and an Inverse Wishart distribution for the covariance

G = p(μ, Λ) =
1
|Ω|W

−1(Λ; νσ2
I3, ν), (3)
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where σ and ν are the hyper-parameters of the model. The fundamental property
of Dirichlet processes is the following: if XJ = {(xj), j = 1..J} is sampled from a
DPMM, The predictive density of a new sample is: x|XJ , θ,G ∼ θG +

∑J
j=1 δxj .

Model estimation can thus be performed fairly easily using Gibbs sampling; the
algorithm iteratively samples the membership zs

j of as
j from

p(zs
j = k|tsj , z−s, θ) ∝ p(tsj |t−s, z−s, zs

j = k)p(zs
j = k|z−s, θ), where

p(tsj |t−s, z−s, zs
j = k) =

{
N (tsj ; μk, Λk) if n−s

k > 0,
1

|Ω| otherwise,
and

p(zs
j = k|z−s, θ) =

{
n−s

k

θ+N−s if n−s
k > 0,

θ
θ+N−s otherwise,

(4)

where z−s and t−s represents the membership and position variables for the
blobs in subjects other than s; n−s

k is the number of instances of z = k for
all regions in subjects other than s and N−s =

∑
k n−s

k ; n−s
k > 0 amounts to

considering that k is a previously seen component; k is unvisited otherwise. In
our setting, we include an alternative case, in which the blob as

j is a false positive.
The sampling scheme is thus:

p(H0(as
j)|tsj , φs) =

1
Z

1
|Ω|p(H0(as

j)|φs), (5)

p(zs
j = k|tsj , z−s, θ, φs) =

1
Z

{
θ

θ+N−s
1

|Ω|p(H1(as
j)|φs) if n−s

k = 0,
n−s

k

θ+N−sN (tsj ; μk, Λk)p(H1(as
j)|φs) otherwise,

(6)

where the normalizing constant Z is simply obtained by summation. The pa-
rameters (μk)k=1..K and (Λk)k=1..K and the number K of classes are updated
at each iteration based on the current values of (zs

j ). In this work, Q = 1000
iterations are used, as we found that this was sufficient to yield stable estimates.
We choose θ = 0.5 as usually done in the literature, σ = 5mm and ν = 10. These
could eventually be further optimized by cross-validation.

Drawing explicit clusters from the data. Final components are estimated by
clustering all the blobs that have been assigned to the same model components
in at least half of the iterations, hence can be reliably thought to belong to
the same group-level component. Our algorithm provides as output the av-
erage positions (t̄k)k=1..K of the blobs within each cluster. To assess the ev-
idence that the resulting clusters are indeed true landmarks, we estimate a
representativity statistic, which is simply the expectation that an active re-
gion corresponding to that cluster can be found in any subject in the group:
η(k) =

∑S
s=1

(
1−
∏

j:zs
j =k p(H0(as

j)|φs)
)
. It is similar to the population preva-

lence used in [7], but here the probability of each region being active is taken
into account. η(k) takes values between 0 and S. Finally, the computational cost
of the whole procedure is proportional to the total number of blobs, not to the
image size, which makes it much faster than all the alternatives: : by a factor of
6 with respect to [6], by a factor of (about) 400 with respect to [7].
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2.3 Validation Procedures

The quality of the model is established by kernel-based statistics that measure
the discrepancy between different sets of positions. Given two sets of positions
τ = (τ1, .., τF ) and t = (t1, .., tD), we can define the following asymmetric statis-
tic, that measures how close the values in t approximate those in τ :

ψ(t; τ) =
F∑

f=1

maxd=1..D exp
(
−‖τf − td‖2

2δ2

)
(7)

Now, assuming that τ represents a ground truth, ψ(t; τ) can be taken as a
sensitivity measure, while ψ(τ ; t) measures the specificity of the detection: these
quantities are continuous approximations of the number of true and false detec-
tions. As the detected peaks are a monotonous function of some threshold pa-
rameter in all the above described procedures, both quantities do monotonously
increase with respect to the corresponding threshold, so that it is possible to
define (1-specificity, sensitivity) plots that are analogous to ROC curves. In our
experiments, we assess the sensitivity, normalized by a factor 1

F , for values of
the specificity below 1, so that the (specificity, sensitivity) plots remain with the
[0, 1]× [0, 1] interval, and area under the curve (AUC) values can be used.

When dealing with real data, no ground truth is available, but we obtain sets of
positions (tg) = (tg1, .., t

g
D(g)) form different subgroups g = 1..G; then we derive

a concordance index κ(t) = 1
G(G−1)

∑G
g=1

∑
h �=g

1
D(g)ψ(tg; th) κ is comprised

between 0 and 1, a value close to 1 indicating a perfect match between subgroups,
while a value close to 0 indicates a poor correspondence. We use δ = 10mm in
all our experiments.

3 Experiments and Results

3.1 Simulated Data

Data simulation. We have simulated a multi-subject dataset as a set of F = 10
distant active regions with cone-shaped activation patterns. These regions have
been chosen at arbitrary positions in the mask of the standard MNI brain tem-
plate. Data from 10 subjects are simulated as activation peaks corrupted with
spatially correlated noise (FWHM=7mm in each direction) to mimic the spatial
structure of real fMRI datasets; the spatial resolution is 3mm. The simulated
activation strength is 3 times the noise standard deviation, which corresponds
to realistic values. An isotropic spatial jitter of 0, 1.5, 3mm or 6mm standard
deviation in each direction is added to the individual position of the foci. 100
simulations are performed for each jitter value, and the average (specificity, sen-
sitivity) characteristics are computed across all simulations. We compare the
simulated peak positions in the dataset with those obtained from standard acti-
vation voxel-level detection statistics: random effects, with or without smoothing
srfx/rfx, half cjh and full cjf conjunctions, and functional landmarks (fls).
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Fig. 1. (Specificity, sensitivity) curves obtained by averaging over 100 draws of simu-

lated data, with an isotropic jitter of 0, 3 or 6mm from left to right. The blue, black,

cyan, red and green characteristics correspond to rfx, srfx, cjh, cjf and fls respectively.

Table 1. Area under curves corresponding to the (specificity, sensitivity) curves shown

in Fig. 1, based on 100 draws of simulated data

method rfx srfx cjh cjf fls

AUC, jitter=0mm 0.372 0.296 0.983 0.986 0.898

AUC, jitter=1.5mm 0.317 0.330 0.761 0.816 0.868
AUC, jitter=3mm 0.297 0.323 0.560 0.577 0.779
AUC, jitter=6mm 0.007 0.09 0.194 0.221 0.380

Results: The characteristics are presented in Fig. 1 for three jitter values. The
area under curve can be found in Table 1. For non-null jitter the FL approach
achieves the best results, while cjh/cjf perform well only in the absence of jitter.
Random effects yield poor performance, and smoothing helps only slightly in
presence of jitter. A score of 0.38 (fls, jitter=6mm in each direction) means that
3.8 times more true positives than false positives are detected in average.

3.2 Experiments on Real Data

Dataset and procedure. We use here a dataset of 171 right-handed subjects, that
has been described in detail in [12]. The experiment was based on an event-
related fMRI paradigm that comprised ten experimental conditions. Among
other tasks, the subjects had to perform left or right hand movement, which re-
sulted in maps of the differential motor activity that we study here. FMRI data
pre-processing and statistical analysis were performed using the SPM5 software
(www.fil.ucl.ac.uk). In particular, spatial normalization was performed using
default parameters (non-rigid, low frequency deformation). We use the concor-
dance measure to compare the reproducibility of peak positions: the different
position sets are obtained through jackknife subsampling, by drawing G = 12
random disjoint subgroups of 14 subjects from the population. Here, we use the
same significance threshold, chosen as 0.05, corrected for multiple comparisons,
in all procedures. Besides the statistics used in the simulation experiment, we
introduced mixed-effects statistics mfx, as the individual variance maps were
available.

www.fil.ucl.ac.uk
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Fig. 2. (left) Reproducibility index of peak position obtained in the jackknife subsam-

pling procedure for several group analysis techniques. (Right) 2-dimensional example

on an axial slice of the scatter of peaks as observed in 3 groups, using the FL approach

(top), and the rfx statistic (bottom): FLs are clearly more stable across groups.

Results on the real dataset. The reproducibility plots are given in Fig. 2 for all
the methods tested, based on 100 random population splits into disjoint groups.
We observe that the FL positions are more reproducible in average than those
of the other statistics, while rfx and srfx perform worst overall. Similar results
were obtained for other functional contrasts (not shown).

4 Discussion

Here we have proposed a fast procedure for functional landmark detection and
characterization. The approach is conceptually simpler and faster than the al-
ternatives proposed in [5,6,7]; on a standard PC, the procedure takes a couple of
minutes. This is crucial to allow cross-validation procedures, either to assess the
merit of the method in various simulation experiments, such as those presented
here, or merely to optimize the parameters used in the model. Importantly also,
all the parameters are continuous and can be interpreted physically, so that their
impact on the results can be assessed easily, and their choice can be guided by
domain knowledge. Note that all the code used here is freely available in the
nipy software suite (http://neuroimaging.scipy.org/site/index.html).

Going back to the problem of accurate activation position detection, the FL
approach outperforms voxel-based statistics approach, except in simulations with
no spatial jitter. This is expected, as voxel-based statistics are straightforwardly
optimal in that case, but this is not a realistic situation. The FL method is
less sensitive to jitter in the cross-subject activation position than the alterna-
tive approaches. This is confirmed by the experiments on real data, that show
that the FL approach generally yields more stable results than its voxel-based
alternatives. The relatively poor performance of rfx statistic can be explained
by the fact that it down-weights regions where between-subject variability is
large; as these regions coincide with activated regions, this reduces the power
and the reproducibility of rfx. Smoothing does not help a lot in that respect.
Conjunction statistics (especially cjh) perform much better, while mixed effects

http://neuroimaging.scipy.org/site/index.html
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are in-between. It is important to notice that all the approaches tested here have
the same control of false detections: p < 0.05, corrected for multiple comparisons.

On a more technical note, we can notice that the reproducibility metric κ
as well as the ψ measures on simulated data provide a meaningful and sensi-
tive comparison of methods. One possible shortcoming of κ is that it tends to
provide higher values when more detections are performed, simply by chance.
However, this effect can easily be controlled by comparing the actual κ values to
a value obtained by permutation, thus tabulating the value of κ under the null
hypothesis.

Conclusion. We have introduced a new functional landmark procedure for inter-
subject detection of functional regions, that explicitly models the statistical
distribution of activity peaks, and provides more reliable foci positions than
standard group statistical maps. Our detection procedure is fast and its param-
eters are easy to calibrate; it can thus be used easily in practical settings. As
future work, we plan to extend this approach to cortical maps in order to cumu-
late the advantage of functional landmarks and accurate brain surface modeling.
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Abstract. Amyotrophic lateral sclerosis (ALS) is a progressive motor

neuron disease with poor prognosis. Previous DW-MRI based studies in

ALS on WM tracts showed a decrease of FA in tracts related to the mo-

tor system. Recent evidence suggests that extra-motor tracts are also

affected by ALS. This paper aims to analyse the cingulum tracts of

ALS patients and controls. To do so, we introduce kernel matching, a

novel method to obtain optimal correspondence between the white mat-

ter tracts. The orientation of tract tensors in atlas space as well as the

global tract shape are employed as prior information. The method proved

successful to reduce the large variance of tensor shape features along the

cinguli emanating from registration errors. Only after applying the pro-

posed kernel matching method we found a significant increase in the

tensor norm of both cinguli. We hypothesize that the degeneration of

fibers increases tensor norm.

1 Introduction

Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron disease fea-
turing upper as well as lower motor neuron degeneration and poor prognosis.
The exact cause of ALS is currently unknown.

Diffusion weighted MRI (DW-MRI) is a powerful modality to study the de-
generation of white matter (WM) tracts. Previous DW-MRI based studies on
ALS performed either voxel-based analysis (VBA) of WM tracts after a full-
tensor non-rigid registration [1] or tract-based spatial statistics (TBSS) after a
fractional anisotropy (FA)-based registration [2]. Both studies showed a decrease
of FA in tracts related to the motor system such as the corticospinal tract (CST).
Sage [1] reported an increase of the mean diffusivity along the CST.

Recent evidence suggests that extra-motor tracts are also effected by ALS. For
instance, both [1] and [2] found a lower FA in the body of the corpus callosum
(CC). Related fMRI studies showed a decrease of blood oxygen level-dependent
(BOLD) contrast in the medial part of the cingulum during the execution of
motor tasks [3]. So far the cingulum has not been reported to be structurally
involved in ALS.
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The analysis of atlas-tract statistics, such as in [4], relies on a good registra-
tion. Particularly, the assessment of smaller tracts is rather sensitive to regis-
tration errors, which increase the variance in the tensor shape features. These
registration errors result from spatial regularization and ignore small local mis-
matches in order to find a transformation that is continuous at a larger scale
[5]. TBSS provides a method that is less sensitive to registration errors as it
projects tensor features on the closest location of the FA skeleton. While doing
so, differences in orientation between the projected tensor and the target on the
FA skeleton are ignored. Hence, this may result in a misregistration for closely
spaced tracts such as the cingulum and the CC. Alternatively, fibers may be
tracked in subject space, transformed to the atlas space followed by clustering
[6]. Although more accurate, this method is less precise due to the low SNR of
the subjects’ datasets in which tracking is performed.

This paper aims to analyse the cingulum tracts of ALS patients and controls.
Our study employs a novel kernel matching approach that is used for registration
of the cingulum tracts. The kernel matching locally improves tract correspon-
dence by employing the orientation of tract tensors in atlas space as well as the
global tract shape as prior information. By doing so a projection step such as in
TBSS is rendered superfluous. Statistics are computed in subject space to avoid
unnecessary interpolation of the tensor data.

2 Method

2.1 Tract Segmentation in a Population-Specific Atlas

We consider tract segmentation in a population-specific tensor atlas as an ini-
tialization for our kernel matching method. This atlas contains the complete
diffusion information [7] and is built for this study using a non-rigid viscous
fluid registration model [5]. Fiber tractography is performed in the atlas using
the FACT algorithm [8]. The resulting fiber points are clustered and a spline is
fitted through the cluster center points catlas, resulting in a smooth centerline
[9]. Tracts are represented by this set of cluster centers points, the original fiber
points and the cluster-membership of each fiber point to a cluster center de-
fined in [9] as the Gaussian-weighted distance (σ = 3mm, approx. 1 voxel) . The
inverse of each subject-to-atlas transformation is computed, which effectively
transforms atlas tracts back to subject space.

2.2 Optimize Cluster Location in Subject Space by Kernel
Matching

Kernel matching aims at improving the atlas tract to subject transformation.
The atlas tract may be warped in the normal plane τ(catlas) to its local ori-
entation, to achieve correspondence with the local subject tensor orientation.
From the tensors, only orientation information is employed. Given a principal
eigenvector vi = (vx, vy, vz)

T , an orientation mapping can be defined by consid-
ering the outer-product Mi = vivT

i . The resulting 9-tuple can be reduced to a
5-dimensional normalized vector wi [10]:
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wi =

√
3
4

(
v2

x − v2
y, 2vxvy, 2vxvz , 2vyvz ,

1√
3

(
2v2

z − v2
x − v2

y

))
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This operation ensures that antipodal vectors are mapped to the same point in
the 5-dimensional space. We define the similarity 0 ≤ s ≤ 1 in orientation be-
tween two diffusion tensors as s(w1,w2) = 1

2 ((w1 ·w2) + 1). The location of an
atlas cluster center point is updated by adjusting q ∈ τ(catlas) such that a match-
ing kernel η is found in a subject that maximizes kernel similarity, argmaxqS(q).
S(q) is defined as:

S(q) =

{∑
p∈η

s(wp,atlas,wp+q,subject) · s(wp,atlas,wcatlas)

}
. (2)

In this equation, the first term decribes the similarity in orientation between
atlas and subject. The second term ensures that adjacent bundles with a different
orientation are ignored.

The cubic kernel η gives an equal weight to all elements. η is sized 5× 5 × 5
voxels (1.0× 1.0× 1.1 cm3), which is slightly broader than the average width of
the small WM tracts which we are interested in. We limit η to WM voxels that
have FA > 0.2 and mode > 0 (see below) such that their principal eigenvector
is well-defined.

Contrast in WM tract orientation is largest in the direction perpendicular to
the tract. Furthermore, the registration error of the atlas tract is expected to be
smaller than 1.5 cm. Therefore, we update catlas in the plane τ(catlas) normal to
the local tract orientation. τ(catlas) is of small size 1.5× 1.5 cm2, discretized at
a finer 0.5 voxel-size interval resulting in 17× 17 points.

Interpolation of tensor values is done in a Log-Euclidean space to prevent
tensor swelling effects [11]. The atlas tensor field is transformed to subject space
before S(q) is evaluated and tensors are rotated accordingly.

Cluster locations in subject space are updated to the position catlas +q where
S(q) is maximal. The resulting centerline through these updated cluster loca-
tions is regularized by fitting a b-spline followed by projecting each cluster to
the closest point on the spline. One iteration of the algorithm was performed,
as more repetitions did not alter the solution. The location of fiber points is up-
dated by interpolation of the cluster translations using the cluster-membership
[9] as weights.

2.3 Tensor Shape and Tract Statistics

Conventionally, DW-MRI analyses of WM tracts rely on the FA to describe the
tensor shape. Recently, it was shown that the tensor shape is entirely described
by three features: FA, mode and norm, which form an orthogonal set of features
[12]. FA measures the anisotropy, mode the type of anisotropy (ranging from −1
for planar to +1 for linear anisotropy) and norm the amount of diffusivity.

These features are calculated at cluster centers as a weighted sum of the
feature at all fiber points employing the cluster-membership as weights. Patient
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and control feature profiles are compared per cluster center using a t-test with
a modest significance threshold of p < 0.05 (uncorrected), because of a small
population size.

3 Results

3.1 Data Acquisition

Over a period of 3 years we consecutively included all 11 patients that entered
four neuromuscular outpatient clinics in the Netherlands (University Medical
Centres of Amsterdam, Utrecht, Rotterdam, and the Catharina Hospital in Eind-
hoven) and met our inclusion criteria (ALS, bulbar onset of disease) as well as 11
age matched controls. DTI data were acquired on a 3T scanner (Intera, Philips
Healthcare, Best, The Netherlands). The spatial resolution was 2.0 × 2.0 × 2.2
mm, per patient 64 axial slices of matrix size 128x128 were acquired for 32 gra-
dient directions with a diffusion weighting of b = 1000 smm−2. Additionally,
one set of images was acquired without any diffusion-weighting. Eddy current
distortions were corrected for by an affine registration in the phase direction [13].

3.2 Tract-Based Spatial Statistics

TBSS was performed after tensor-based registration (section 2.1). Results are
shown in fig. 1. A decreased FA in the corticospinal tract (CST) and in the
body of the corpus callosum (CC) is observed. The norm is increased in a few

Fig. 1. TBSS results on FA (a) and norm of the left (b) and right (c) cingulum. Marked

voxels show a significant decrease in FA (a) or a significant increase in norm (b,c)

between ALS patients and controls according to a t-test with p < 0.05 (uncorrected).

(a) Shows the FA is lowered for the CST and CC. (b) Shows a small effect for the norm

of the left cingulum in the annotated area. (c) No significant effect is observed in the

right cingulum.
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Fig. 2. Location of right cingulum cluster centers in atlas (a) and in subject before (b)

and after (c) kernel matching. (d) Kernel similarity S(q) evaluated for τ (catlas) around

marked cluster in (b), with the kernel η(catlas + q) displayed at an arbitrary location.

voxels of the left cingulum, whereas no differences could be found in the right
cingulum. According to the authors, TBSS is less suited for this particular area
as the projection direction towards a skeleton with a tubular rather than a
sheet-like topology, such as the inferior part of the cingulum, is not uniquely
defined. In these areas the TBSS method employs a local search for maximum
FA within a circular space in the appropriate axial slice, rather than along a
single perpendicular direction [14].

3.3 Kernel Matching

Both cingulum tracts were tracked in the atlas and a centerline through its
cluster center points was derived. The atlas cluster center points, depicted in fig.
2a, were transformed to subject space. Fig. 2b illustrates that in a representative
subject these cluster center points did not align with the cingulum but instead
were incorrectly positioned in between the cingulum and CC, due to a small
registration error.

Subsequently, kernel matching was applied to obtain better correspondence
between the atlas tracts and the subjects’ tensor orientation field. Figure 2d
shows the kernel similarity S(q) evaluated in the normal plane τ(catlas) of the
annotated cluster center point in fig. 2b. A high contrast in S(q) may be ob-
served for a small region adjacent to the initialized cluster center point catlas.
This region corresponds to the cross section of the subjects’ cingulum bundle
at that particular location. The initial cluster center point (purple) is clearly
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Fig. 3. (a) Defining arc length to parameterize the right cingulum in atlas space. (b,c)

Standard deviation of the norm for the left (b) and right (c) cingulum in controls before

and after kernel matching. Mean norm for both cinguli is approximately 1.5 × 10−3

(d,e) T-test results for the difference in norm between patients and controls evaluated

at the left (d) and right (e) cingulum cluster centers. The dashed line denotes the

significance threshold (p < 0.05).
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suboptimally positioned and will be translated by q to the voxel with maximal
S(q). Kernel matching results in a clear improvement in correspondence between
the atlas tracts and this subjects’ tensor orientation field (see fig. 2c).

Tensor feature profiles of tracts evaluated after kernel matching are expected
to have a lower standard deviation since these tracts are better aligned to the
subject data. This reduction is demonstrated in the norm profiles of both cinguli
of the control group in fig. 3b-c. The standard deviation is reduced up to 30%
for clusters in the anterior and medial parts of the cingulum. Similar reductions
are observed for the FA and mode profiles (data not shown).

Feature profiles that are evaluated before the application of kernel matching
show an increase of tensor norm only in the left cingulum that is similar to
the TBSS result, see fig. 3d. FA and mode profiles do not show an effect (data
not shown). The reduced standard deviation after kernel matching enables a
more accurate comparison of patient and control profiles. This results in an
enlarged significance of the effects observed in the left cingulum and in addition
a similar effect in the right cingulum, see fig. 3d-e. A permutation test as in [1]
without correction for multiple comparisons gives exactly the same results as the
paired t-test. The suprathreshold multiple comparison correction [15] indicates
a significant difference of the entire right CG, but not the left.

KM was also applied to other WM tracts of interest (CST, Inferior Longitu-
dinal Fasciculus, Arcuate Fasciculus and Fornix) resulting in similar decreases
in standard deviation as in the CG tracts. No additional significant differences
between controls and patients were found.

4 Discussion

Both the atlas-tract based method without kernel matching and the TBSS analy-
sis showed a difference in norm for the left cingulum. Only after applying the
proposed kernel matching method we found a significant increase in the tensor
norm of the right cingulum. This effect may be attributed to a higher initial
variance, reduced after kernel matching. We hypothesize that the degeneration
of fibers increases tensor norm. A related increase in tensor FA is also found but
not significant, which may be due to the low number of included patients.

Future work might extend the application of our method to improve the corre-
spondence of more sheet-like tracts by applying kernel matching to the skeleton
points defined in the continuous medial representation suggested by [16]. Here,
the matching may be restricted to translate cluster center points along the nor-
mal line to the sheet structure, instead of the normal plane of the fiber bundle.
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Abstract. Gaussian smoothing of images is an important step in Voxel-

based Analysis and Statistical Parametric Mapping (VBA-SPM); it

accounts for registration errors and integrates imaging signals from a

region around each voxel being analyzed. However, it has also become a

limitation of VBA-SPM based methods, since it is often chosen empiri-

cally, non-optimally, and lacks spatial adaptivity to the shape and spatial

extent of the region of interest. In this paper, we propose a new frame-

work, named Optimally-Discriminative Voxel-Based Analysis (ODVBA),

for determining the optimal spatially adaptive smoothing of images, fol-

lowed by applying voxel-based group analysis. In ODVBA, Nonnegative

Discriminative Projection is applied locally to get the direction that best

discriminates between two groups, e.g. patients and controls; this direc-

tion is equivalent to local filtering by an optimal kernel whose coeffi-

cients define the optimally discriminative direction. By considering all

the neighborhoods that contain a given voxel, we then compose this in-

formation to produce the statistic for each voxel. Permutation tests are

finally used to obtain the statistical significance. The experiments on

Mild Cognitive Impairment (MCI) study have shown the effectiveness of

the framework.

1 Introduction

Voxel-based Analysis and Statistical Parametric Mapping (VBA-SPM) [2][7] of
imaging data have offered the potential to analyze structural and functional data
in great spatial detail, without the need to define a priori regions of interests
(ROIs). A fundamentally important aspect of VBA-SPM has been the spatial
smoothing of images prior to analysis. Typically, Gaussian blurs of full-width-
half-max (FWHM) in the range of 8-15mm are used to account for registration
errors, to Gaussianize data, and to integrate imaging signals from a region, rather
than from a single voxel.

The effect of this smoothing function is critical: if the kernel is too small for
the task, statistical power will be lost and large numbers of false negatives will
confound the analysis; if the kernel is too large, statistical power can also be
lost by blurring image measurements from regions that display group differences
with measurements from regions that have no group difference. In the latter case,
spatial localization is also seriously compromised, as significant smoothing blurs
the measurements out and often leads to false conclusions about the origin of a
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functional activation or of structural abnormalities. Moreover, a filter that is too
large, or that is not matched with the underlying group difference, will also have
reduced sensitivity in detecting group differences. As a result, Gaussian smooth-
ing is often chosen empirically, or in an ad hoc fashion, an obvious limitation of
such VBA-SPM analyses.

However, the most profound limitation of Gaussian smoothing of images is
its lack of spatial adaptivity to the shape and spatial extent of the region of
interest. For example, if atrophy or functional activation in the hippocampus is
to be detected, Gaussian smoothing will blur volumetric or activation measure-
ments from the hippocampus with such measurements from surrounding tissues,
including the ventricles, the fusiform gyrus, and the white matter. Some earlier
work in the literature [5] had shown that spatially adaptive filtering of image
data can improve statistical power to detect group differences, however it didn’t
offer a way to determine optimal data filtering. In general, little is known about
how to optimally define the shape and extent of the smoothing filter, so as to
maximize the ability of VBA-SPM to detect group effects.

In this paper, we present a mathematically rigorous framework for determining
the optimal spatial smoothing of medical images, prior to applying voxel-based
group analysis. We consider this problem in the context of determining group
differences, and we therefore restrict our experiments to voxel-wise statistical
hypothesis testing. In order to determine the optimal smoothing kernel, a local
discriminative analysis, restricted by appropriate nonnegativity constraints, is
applied to a spatial neighborhood around each voxel, aiming to find the direction
(in a space of dimensionality equal to the size of the neighborhood) that best
highlights the difference between two groups in that neighborhood. Since each
voxel belongs to a large number of such neighborhoods, each centered on one
of its neighboring voxels, the group difference at each voxel is determined by
a composition of all these optimal smoothing directions. Permutation tests are
used to obtain the statistical significance of the resulting ODVBA maps.

2 The Proposed Framework

The proposed framework contains three stages: 1) Local Nonnegative Discrim-
inative Projection, 2) Determining each voxel’s statistic, and 3) Permutation
tests.

2.1 Local Nonnegative Discriminative Projection

Learning Set Construction. For a given voxel x in volume X , we construct
its neighborhood N: ‖x− xi‖ < ξ. To render subsquent processing tractable, we
randomly select k− 1 voxels x1, · · · , xk−1 in this neighborhood and represent this
neighborhood using a k dimensional subvolume vector: θ = [x, x1, · · · , xk−1]T .
Provided that there are N subjects, we can obtain N subvolume vectors which form
a data set: Θ = [θ1, θ2, · · · , θN ] for learning. The procedure is illustrated in Fig. 1.
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Fig. 1. Learning set construction

Fig. 2. Illustration of the basic idea of NDP using a toy dataset

The Basic Idea of NDP. The Nonnegative Discriminative Projection (NDP)
algorithm is used to find the optimal discriminative directions which project the
high-dimensional subvolume samples onto a 1-dimensional space maximizing the
classification accuracy. The resultant optimally filter w is nonnegative, because
of the nonnegativity constraint incorporated into the objective function. This
constraint is used to help us interpret the group differences. Specifically, our goal
is not simply to find an image contrast, prescribed by w, which distinguishes
the two groups, but also requires that this contrast tells us something about the
properties of the images we are measuring, e.g. about regional volumetrics or
functional activity. We therefore limit ourselves to nonnegative, albeit arbitrarily
shaped, local filters, each of which prescribes a regional weighted average of the
signal being measured, and therefore can be easily interpreted.

To illustrate the idea of NDP, we show its results on a toy dataset before
describing the formulation. We generated two groups of images containing a
square with intensity varying from one image to another: the first set of squares
had intensities with mean 120.53 and standard deviation 5.79, while the second
had 90.36 and 5.72, respectively. Fig. 2A shows the difference of means from
the two groups. Fig. 2B shows the w obtained from the learning set constructed
according to the neighborhood I; it is basically noise with very small values
of (w)j , indicating that no local filter can be found that distinguishes the two
groups at that neighborhood. Fig. 2C shows the w obtained from the learning
set corresponding to neighborhood II; the estimated w is well aligned with the
underlying group difference, within which it has high values. The bottom-line
here is that a properly estimated w can highlight the underlying difference.

The Formulation of NDP. Using one given learning set, we probe into neigh-
borhood elements’ contributions for discrimination of the two groups. We target
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to find such a nonnegative vector w: the larger the value of (w)j is, the more the
corresponding element (θ)j contributes to the discrimination. Equivalently, (w)j

is the jth coefficient of the regional filter denoted by w. Via w, the learning set
can be projected from the k-dimensional space onto the 1-dimensional space to
be optimally classified, such as Ψ = wT θ. We expect that, in the projected space,
the two classes will be separated as much as possible along w, and at the same
time the samples from the same class get more compact. A measure of the separa-
tion between the two classes is wT SBw, where SB = (m1 −m2) (m1 −m2)T ;
mi = 1

Ni

∑
θ∈Ci

θ; Ci means the ith class; Ni denotes the number of samples
in Ci. And, the intraclass compactness can be described by wT SW w, where
SW =

∑2
i=1

∑
θ∈Ci

(θ −mi) (θ −mi)
T . SB and SW are called the between-

class scatter matrix and the within-class scatter matrix respectively, according
to the classic Fisher LDA [6] in which the criterion function is based on the
generalized Rayleigh quotient. Herein, SB and SW are considered under the
formulation of quadratic programming which is amenable to the nonnegative
constraint as follows:

J(w) = min
w

wT Aw − μeT w

subject to (w)j ≥ 0, j = 1, · · · , k,
(1)

where, A = (γSW − SB + (|λmin| + τ2)I); γ is the tuning parameter; |λmin|
is the absolute value of the smallest eigenvalue of γSW − SB; τ2 << 1 is the
regularization parameter; I is the identity matrix; e = [1, · · · , 1]T ; the second
term eT w is used to achieve

∑k
i=1(w)i > 0 which means the solutions of (w)i

are not all zeros under the nonnegative constraint; μ is the balance parameter.

Theorem 1. A is a positive definite matrix.

Proof. If λmin ≥ 0, the smallest eigenvalue of A is 2λmin + τ2 which is greater
than 0. If λmin < 0, the smallest eigenvalue of A is just τ2. In a words, all
eigenvalues of A are greater than 0. Since SW , SB, and I are all symmetric
matrices, A is a symmetric matrix. Thus, we complete the proof. ��

Since A is positive definite, J(w) is a convex function and has the unique
global minimum. We solve the above optimization problem using the Nonnega-
tive Quadratic Programming (NQP) [11]. According to [11], define the nonneg-
ative matrices A+ and A− as follows: A+

ij = Aij , if Aij > 0; otherwise, it is 0.
A−

ij = |Aij |, if Aij < 0; otherwise it is 0. So it is clear that A = A+ −A−.
Multiplicative updates rule which does not involve the learning rates, is in-

troduced to minimize the objective function iteratively:

(w)i ←
(

(μe)i +
√

(μe)2i + 16(A+w)i(A−w)i

4(A+w)i

)
(w)i, (2)

where i = 1, · · · , k. Eq.2 means that all the elements in w are updated in par-
allel. Since (A+w)i ≥ 0 and (A−w)i ≥ 0, the updated w in Eq.2 is always
nonnegative.
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Theorem 2. The function of J(w) in Eq.1 decreases monotonically to the value
of its global minimum under the multiplicative updates in Eq.2.

proof. An auxiliary function ([9], pp. 659, Definition 1)([11], pp. 2013, Theorem
1) as follows is used to derive the multiple updates:

G(v, w) =
�

i

(A+w)i

(w)i
(v)

2
i −
�
ij

A−
ij(w)i(w)j

�
1 + log

(v)i(v)j

(w)i(w)j

�
−
�

i

(μeT
)i(v)i.

(3)

According to ([9], pp. 659, Lemma 1), J(w) is nonincreasing under the updates:
w = argminv G(v, w) and for each component in w, (w)i = (v)i|G′

i=0, where
G′

i = 2(A+w)i(v)i/(w)i − 2(A−w)i(w)i/(v)i − (μeT )i. So, we can obtain the
updates described as Eq. 2. ��

2.2 Determining Each Voxel’S Statistic

For all the M voxels in one volume, we have M discriminative directions, each
applied to a different neighborhood, as described in Section 2.1. For a given
voxel x, we obtain a list of (w)j values since x may belong to a number of
neighborhoods. To quantify the group difference measured at voxel x , we use
the discrimination degree, which relates to the effect size [3]:

δ =

⎛⎜⎜⎜⎜⎝ |m̃1 − m̃2|√
2∑

i=1

∑
Ψ∈Ci

(Ψ − m̃i)
2

√
N1 + N2 − 2

⎞⎟⎟⎟⎟⎠
φ

, (4)

where, m̃i = 1
Ni

∑
Ψ∈Ci

Ψ , φ is the tuning parameter for reducing potential
outliers in the dataset. Let Δ = {N|x ∈ N} denote the set of neighborhoods that
a voxel x belongs to, then we define the group difference on x by summing up
contributions from all neighborhoods to which it participates:

Sx =
∑
N∈Δ

δN |(wN)j | , j ∈ {1, · · · , k} , (5)

where, wN denotes the coefficients corresponding to voxels in N, (wN)j denotes
that x is the jth element in N, and δN which acts as the weight for wN denotes
the discrimination degree achieved in neighborhood N and is defined in Eq.
4. Sx will serve as the statistic reflecting group differences on the voxel x, and
will be used next to determine statistical significance. Higher values of Sx reflect
stronger group differences.

2.3 Permutation Tests

Assume the null hypothesis that no difference between the two groups, the sta-
tistical significance can be assessed by comparison with the distribution of values
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obtained when the labels are randomly permuted [10]. In particular, we randomly
assign the subjects into two groups, and then implement Section 2.1- Section 2.2
to calculate the statistic for each voxel. The above relabeling is repeated NP

times. For one given voxel, let S0 denote the statistic value obtained under the
initial class labels, and Si, i = 1, · · · , NP denotes the ones obtained by relabeling.
The P value for the given voxel is calculated according to:

P =
NP∑
i=1

[u(Si − S0)] /NP (6)

where, u(t) = 1, if t ≥ 0; otherwise it is 0.

3 Results

In this section, we carry out the study of determining the extent of atrophy in
Mild Cognitive Impairment (MCI) subjects to evaluate ODVBA compared with
the original SPM [2] and the nonparametric permutation based SPM (SnPM)
[10]. The data was obtained from ADNI [1], which has recruited approximately
800 adults including 200 normal controls, 400 individuals with MCI and 200
Alzheimer’s disease (AD) patients. The images were acquired and processed ac-
cording to a number of steps detailed under the ADNI website [1]. We randomly
selected 100 subjects with MCI from the ADNI cohort. 50 of these subjects that
had undergone conversion to AD were referred to MCI-C. The remaining 50
non-converters were referred to MCI-NC. Images were preprocessed according
to the following steps. 1) Alignment to the ACPC plane; 2) Removal of extra-
cranial material; 3) Tissue segmentation into grey matter (GM), white matter
(WM), and cerebrospinal fluid (CSF); 4) High-dimensional image warping to a
standardized coordinate system; 5) Formation of tissue density maps typically
used in the modulated SPM analysis [4]. We used GM for evaluation purposes.

Both SnPM and ODVBA are implemented with 2000 permutations. Fig. 3
shows some selected sections from the results (with P value < 0.001 thresthold) of

Fig. 3. Representative sections with significant regions. The scale indicates the −log(P )

values.
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Fig. 4. Surface renderings of regions

Fig. 5. Representative magnified regions with two levels of P value

SPM, SnPM, and ODVBA, respectively. We can see that the results of ODVBA re-
flect significant GM loss in MCI-C compared with MCI-NC mainly in Hippocam-
pus (Fig. 3A), Inferior Temporal Gyrus (Fig. 3B), Middle Temporal Gyrus
(Fig. 3C), Superior Temporal Gyrus (Fig. 3D), Occipital Lobe (Fig. 3E), Insu-
lar Cortex (Fig. 3F), Fusiform Gyrus (Fig. 3G), Parietal Lobe (Fig. 3H), and In-
ferior Frontal Gyrus (Fig. 3I). In addition, some significant regions detected by
ODVBA are either totally or partially obscured in the results of SPM and SnPM.
Surface renderings in Fig. 4 also demonstrate the results of the three methods. As
we can see, ODVBA reveals a substantially larger and more detailed area of at-
rophy in Temporal Lobe, Parietal Lobe, and Frontal Lobe than SPM and SnPM,
which barely detected the damage. Moreover, these are all regions that are gener-
ally known from histopathology studies to be affected in AD.

Fig. 5 shows two representative magnified regions that were found by the
three methods. Among them, Fig. 5A shows the region near the Hippocampus
and Fig. 5B shows the region around the Temporal Lobe. The results are with P
value < 0.005 threshold and P value < 0.001 threshold respectively. For the Fig.
5A, we can see that SPM and SnPM blurred the regions of the Hippocampus

Table 1. Statistics of Clusters

Cluster P -value<0.005 P -value<0.001

SPM SnPM ODVBA SPM SnPM ODVBA

size t size t size t size t size t size t

#1 10657 7.86 13463 7.65 13816 8.47 2430 8.12 2430 7.35 9568 8.70

#2 398 4.96 737 4.79 2341 8.18 1424 6.81 1424 6.34 855 7.09

#3 325 5.33 359 5.43 1657 6.93 1365 5.27 1365 6.99 575 7.28
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and the Fusiform Gyrus. In contrast, a clear separation of the two regions can
be found in the results of ODVBA. Moreover, the results of SPM with P value
< 0.001 detected no significant atrophy located in the Fusiform Gyrus in that
section. For the Fig. 5B, SPM and SnPM blurred the different gyri and sulci in
the region of the Temporal Lobe; however, ODVBA delineates a more precise
area of significant atrophy in that region.

In Table 1, we list the t value on the three biggest clusters with P values <
0.005 and < 0.001, respectively. The t value is calculated based on the cluster
means on the tissue density maps of the two groups’ samples. We can see that
the t values with clusters of ODVBA are higher than those of SPM and SnPM;
that is, the regions found by ODVBA display a greater difference between the
two groups than SPM and SnPM.

4 Summary

We have introduced a new framework of voxel-based analysis, aiming to detect
differences associated with brain abnormalities existing in two groups. The main
premise of this approach is that the optimal shape and size of the spatial filter
to be applied to the data prior to statistical analysis is not known in advance,
but must be estimated from the data. Moreover, this spatial filtering is not fixed
throughout the image, as customary in the literature, but is spatially adaptive,
depending on the local anatomy and abnormality (which is unknown in advance,
as well). We presented a nonnegative discriminative direction method, which
determines the filter that best distinguishes the two groups being compared.
This approach was evaluated in the study of contrasting MCI-C versus MCI-NC,
and revealed substantially more extensive, and more significant GM atrophy in
regions known to be affected by AD, whereas SPM and SnPM produced inferior
results.
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Abstract. Landmark-based 3D hippocampal shape classification in-

volves high-dimensional descriptor space, many noisy and redundant fea-

tures, and a very small number of training samples. Feature selection

becomes critical in this situation, because it not only improves classifica-

tion performance, but also identifies the regions that contribute more to

shape discrimination. This work identifies the drawbacks of SVM-RFE,

and proposes a novel class-separability-based feature selection approach

to overcome them. We formulate feature selection as a constrained in-

teger optimization and develop a new algorithm to efficiently and opti-

mally solve this problem. Theoretical analysis and experimental study

on both synthetic data and real hippocampus data demonstrate its su-

perior performance over the prevailing SVM-RFE. Our work provides a

new efficient feature selection tool for hippocampal shape classification.

1 Introduction

Identifying the morphological differences between anatomical shapes related to
disorders is important for medical image analysis. However, this is very difficult
because the data are often high-dimensional but training samples are scarce. For
hippocampal shapes, it is common for the SPHARM-PDM, which represents
shapes by corresponded landmarks from parameterized surfaces, to represent
a hippocampus with more than 1,000 landmarks. Stacking their coordinates
leads to a high-dimensional feature vector. However, the number of training
data is commonly around 30-50 only. Even for the advanced classifiers such
as the Support Vector Machines (SVMs), the presence of many irrelevant and
noisy features can significantly deteriorate learning performance. Feature subset
selection becomes a critical step in this situation.

Feature selection has been widely used in medical applications, for example,
the well-known SVM-RFE (recursive feature elimination) method [1]. Despite its
popularity in feature selection, SVM-RFE has three drawbacks: i) Because SVM
maximizes the minimum margin between two groups, SVM-RFE is not robust
against noisy data even with soft-margin SVM; ii) SVM-RFE cannot effectively

� National ICT Australia is funded by the Australian Government’s Backing Aus-

tralia’s Ability initiative, in part through the Australia Research Council. The au-

thors thank the OASIS team and NICTA AASEDP project for providing the data.
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avoid selecting highly correlated discriminative features; and iii) SVM-RFE can-
not flexibly deal with group-based feature selection. In landmark-based 3D rep-
resentation of hippocampus, due to its continuous and overall smooth surface
the change within a small area is not drastic. As a result, the coordinates of
the landmarks in the area are often strongly correlated. The existence of such
feature redundancy causes problems for the k-best feature selection. In the ex-
treme case, if the most discriminative feature is duplicated several times, all of
them will be selected and consequently those less discriminative but complemen-
tary features may be missed. This could significantly degrade the classification
performance. Moreover, to benefit the explanation of the difference between hip-
pocampal groups, the selection of landmarks is needed, that is, to select x, y, z
coordinates (the features in the shape descriptor) of the same landmark simulta-
neously. Such a task may be cumbersome for SVM-RFE that uses the backward
sequential selection. Additional criteria need to be imposed to combine the se-
lection of individual coordinates, which might not be a natural extension.

In this paper we propose a new approach to select discriminative features
in the hippocampal shape study. To address noisy features, we use the trace-
based class separability measure as the feature selection criterion. This cri-
terion has been shown to be robust to the small sample problem and noisy
features [2]. However, this criterion cannot identify redundant features either.
To overcome this problem, we propose a new redundancy-constrained feature
selection (RCFS). The basic idea is to formulate the feature selection problem
as a 0-1 linear fractional programming problem and impose extra constraints
to avoid selecting redundant features. To achieve efficient feature selection, we
study the constraints that maintain the global solvability through the totally
unimodular (TUM) condition in integer programming, and demonstrate that hi-
erarchically clustering features can generate qualified redundancy constraints. In
addition, due to its flexibility of adding linear constraints, RCFS can be easily
extended to select the landmark points. Experiments show that the proposed
RCFS method significantly outperforms SVM-RFE on the hippocampus data
due to its more robust selection criterion, the capability in identifying and re-
moving redundant features, and the flexible extension for landmark selection.

2 Redundancy-Constrained Feature Selection (RCFS)

Let (x, y) ∈ (Rn × Y) be a training sample, where Y = {1, 2, · · · , s} is the label
set. Let li be the number of samples in class i, mi the mean of class i and m the
mean of all classes. The within-class, between-class and total scatter matrices
are defined as

SW =
∑s

i=1

∑li
j=1(xij − mi)(xij − mi)

�, SB =
∑s

i=1 li(mi − m)(mi − m)�,

ST = SW + SB =
∑s

i=1

∑li
j=1(xij − m)(xij − m)�.

When feature dimensionality is much larger than the number of training samples,
which is the case of hippocampal shape classification, the scatter matrices are
rank-deficient and the determinants become zero. Hence, the trace-based form,
tr(SB)/tr(ST ), is used in this paper. It is not difficult to show that
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tr(SB) =

s∑
i=1

li(mi − m)
�

(mi − m) =

n∑
t=1

(
s∑

i=1

li(mit − mt)
2

)
�

n∑
t=1

ft (1)

where mit and mt are the t-th feature of mi and m, respectively. Similarly,

tr(ST ) =

n∑
t=1

(
s∑

i=1

li∑
j=1

(xijt − mt)
2

)
�

n∑
t=1

gt (2)

where xijt is the t-th feature of xij . We have proved in [3] that if the most
discriminative feature t, which has the maximal ft/gt, is duplicated k times,
feature selection by maximizing tr(SB)/tr(ST ) will repetitively select it k times.
Similar results exist for sufficiently correlated features.

Basic Problem. To prevent selecting discriminative but mutually redundant
features, we propose the redundancy-constrained feature selection (RCFS). Let
ω ∈ {0, 1}n be an n-dimensional binary selector (“1” for being select and “0”
for not). Selecting k features can be expressed as finding the optimal ω,

ω�
= arg max

ω

f1ω1 + · · · + fnωn

g1ω1 + · · · + gnωn
= arg max

ω

f�ω

g�ω
(3)

subject to ω ∈ {0, 1}n, ω�1 = k, and ω ∈ Ω.

Ω contains the constraints used to avoid selecting redundant features. With the
Dinkelbach’s algorithm [4], solving Eq.(3) iteratively solve a subproblem,

z(λ) � max
ω

(
f�ω − λg�ω

)
subject to ω ∈ {0, 1}n, ω�1 = k, ω ∈ Ω.

(4)

When z(λ) = 0, the optimal solution of (4) will be the optimal solution of (3).

Global Solvability. When ω ∈ {0, 1}n, adding Ω could make Eq.(4) very
difficult to solve, even if Ω only contains linear constraints and (4) becomes an
integer linear program (ILP). ILP is much more difficult than LP, and there
are no general polynomial-time algorithms. Nevertheless, if satisfying the totally
unimodular (TUM) condition [5] , an ILP problem will reduce to an LP problem
which can be easily solved. Relaxing ω ∈ {0, 1}n to [0, 1]n, Eq.(4) becomes an
LP problem with the feasible region defined as

R(ω) = {ω : Aω ≤ b, ω ≥ 0}. (5)

Geometrically, R(ω) is a polyhedron. According to [5], for each integral vector
b, R(ω) is an integral polyhedron if and only if the matrix A is TUM. Because
the optimal solution of an LP problem is always at one of the vertices of the
polyhedron, the optima of the ILP and LP problems coincide with each other.
Hence, to efficiently solve Eq.(4), A in (5) has to be TUM. A TUM matrix is
a matrix with the determinants of all of its square submatrices being +1, −1,
or 0. It has the following properties. (P1): TUM is preserved when permuting
rows or columns or taking transpose; (P2): TUM is preserved when multiplying
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a row or column by −1 or repeating a row or column; (P3): If A is TUM, [A I]
is TUM, where I is an identity matrix.

Although it is restrictive for A to be TUM, we show that the constraints
obtained by feature clustering gives a qualified A. Let x1, x2, · · · , xn be the
n features of x. We define d(xi, xj) as the “distance” between xi and xj

that reflects their independence or complementary. It can be correlation co-
efficients, mutual information, or any criterion on feature redundancy. We define
d(xi, xj) = 1−|ρ(xi, xj)|, where ρ is Pearson correlation. Let C1, C2, · · · , Cm be m
clusters, forming a mutually exclusive and complete partition of the n features,

{x1, x2, · · · , xn} = C1 ∪ C2 ∪ · · · ∪ Cm and Ci ∩ Cj = ∅, 1 ≤ i < j ≤ m. (6)

We enforce that at most pi (pi ≥ 1) features can be selected from Ci,∑
xj∈Ci

ωj ≤ pi, ∀i = 1, 2, · · · , m. (7)

Let (xr1 , · · · , xrn) be a rearrangement of (x1, · · · , xn) according to their ap-
pearing in C1, · · · , Cm and this applies to ω too. Let In×n be an identity matrix
and 11×ci be a row vector of 1’s. Aω ≤ b in (5) can be explicitly written as⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

11×n

−11×n

−− −− −− −−
11×c1 0 0 0

0 11×c2 0 0

0 0
. . . 0

0 0 0 11×cm

−− −− −− −−
In×n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ωr1

ωr2

...

...

...
ωrn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≤

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

k
−k
−−
p1

...
pm

−−
1n×1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (8)

The middle part of A is an interval matrix. It contains “0” and “1” only and has
consecutive 1’s in each row. Each interval matrix is TUM [5]. It can be proved
that the whole A is TUM by using (P1), (P2) and (P3). Thus, the subproblem
in Eq.(4) can be efficiently solved thanks to the equivalence of ILP and LP.

Constraints Generation. The above method has many algorithmic param-
eters, including m and p1, · · · , pm. Optimally setting them is impractical. We
propose agglomerative hierarchical clustering to handle it. Starting with the n
features, two features (or subclusters) are merged at each level until only k clus-
ters are left, giving a hierarchy of n− k +1 levels. Then, the constrained feature
selection is applied to each level of this hierarchy with all pi in (8) being 1.
Multi-fold cross-validation is used to identify the best selection from different
levels. In doing so, i) we do not need to preset m. Instead, features are clus-
tered at different degrees of redundancy in this hierarchy; ii) we only need to
set pi = 1. Because one cluster at a given level is formed by multiple clusters at
preceding levels, the case of pi > 1 can be implicitly approximated by a group of
pj = 1 in preceding levels; iii) the matrix I in A can be ignored; iv) this will not
significantly slow down feature selection because only LP problems are solved
and the Dinkelbach’s algorithm usually terminates in a few iterations.
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Table 1. Proposed redundancy-constrained feature selection (RCFS)

Input: l training samples {(xi, yi)}l
i=1 and the value of k,

Output: optimal binary selector ω and corresponding k selected features.

Initialization:

hierarchically cluster n features (or 3D points) with correlation coefficient ρ,

establish linear constraints Ω accordingly,

compute gi and fi (i = 1, 2, · · · , n) for each feature,

initialize k components of ω as “1” and the remaining as “0”,

Feature selection on each level with the Dinkelbach’s algorithm:

(1) Set λ = f�ω/g�ω,

(2) Solve the maximization problem in Eq. (4)

(3) If f�ω − λg�ω < ξ (e.g., 10−4), ω is optimal. Otherwise, go to (1).

Cross-validation is used to identify the best selection from different levels

Landmark Selection. 3D landmark selection for hippocampal shapes is very
useful for medical diagnosis and clinical interpretation. The SPHARM-PDM
representation of hippocampal surfaces stacks the x, y, z coordinate values of
all landmarks as a long vector. A straightforward feature selection chooses the
individual coordinates instead of a 3D point as a whole. It is highly likely that,
for a point, one of its three coordinates is selected but the other two are not,
bringing difficulty in interpreting the selection result. A landmark-based selec-
tion is needed, in which the three coordinates of each point are selected (or not
selected) together. Our proposed RCFS can handle this case effortlessly by as-
signing the same ωi to the three coordinates. It can be shown that the matrix
A is still TUM in this case. In contrast, SVM-RFE, as a backward sequential
selection, cannot handle landmark selection naturally. It needs to incorporate
additional criteria to evaluate the importance of a landmark as a whole. This is
not as seamless as our RCFS.

3 Experiments

Synthetic data. A synthetic data set is used to illustrate the efficacy of RCFS
on redundancy removal. Only 2 (x1 and x2) out of 52 features are statistically
relevant to class labels, whereas the others are noises. x2 is more discriminative
than x1. Two classes are sampled from N ((2, 0.25)�, Σ) and N ((2.5, 3)�, Σ)
with Σ = (.24 .38; .38 .81). x1 and x2 are duplicated with random noise re-
spectively. Assuming that k = 2 is known, we test RCFS, SVM-RFE, and the
non-constrained feature selection (NCFS) on 30 training and test groups (100 vs.
500 samples). It is found that RCFS successfully selects (x1, x2) on 28 groups.
In contrast, SVM-RFE only succeeds on 2 groups and keeps selecting x2 and
its duplicate on other groups. NCFS never succeeds and always selects x2 and
its duplicate. With all 54 features, a linear SVM obtains the test error rate
8.01 ± 2.18%. With the 2 features selected by RCFS, SVM-RFE and NCFS, a
linear SVM obtains 1.47± 1.48%, 5.22 ± 1.39% and 5.45± 0.82%, respectively.
As shown, RCFS outperforms both SVM-RFE and NCFS.
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Table 2. Comparison of classification with and without RCFS feature selection

k
RCFS wins RCFS loses Mean (test errors %) p-value (one tailed)
(groups) (groups) RCFS Use all features (paired t-test)

2500 18 8 38.11 39.31 0.1421

2000 14 9 38.93 39.31 0.3533

1500 17 12 36.98 39.31 0.0189

1000 18 8 36.42 39.31 0.0022

500 18 11 37.23 39.31 0.0687∑
84 48 -

Hippocampi in OASIS. We apply our RCFS method to improving the dis-
crimination of hippocampal shapes between AD and the normal control. Subjects
aged from 60 to 79 in the OASIS data set (http://www.oasis-brains.org/) are
used. We categorize subjects with a non-zero CDR rating into the AD group
and the rest into normal control. There are 103 samples for the left and right
hippocampi respectively. Each shape is represented by x, y, z coordinates of 1002
landmarks (3006 features in total) obtained from SPHARM-PDM representation
with degree 15. Experimental results are reported only for the left hippocampi1.
Samples are randomly partitioned into 30 training and test (50 vs. 53 samples)
groups. With all 3006 features used, a linear SVM attains an average error rate
of 39.31%. Due to the complexity of data and the scarcity of training samples,
the test error rates of different groups vary significantly: from 26% to 55%. This
inter-group variation may hide the true difference between different methods. To
give a fair and accurate evaluation, we report the number of groups on which
RCFS wins or loses in addition to the average test error rates. More importantly,
we conduct a paired t-test to test the statistical difference between two methods.
By pairing the test error rates, each time the two methods are compared on the
same data set, which mitigates the influence of the inter-group variation.

The paired t-test is first used to detect the statistical difference between the
test error rates from a linear SVM using the RCFS-selected features and all 3006
features, respectively. As shown in Table 2, significant difference is detected at
the level of 0.05 on 30 test groups for k = 1000 and 1500, at the level of 0.1
for k = 500. This verifies that when a suitable number of features are selected,
employing RCFS can significantly improve classification accuracy. For example,
using only 1/3 of the original features can reduce the average test error rate from
39.31% to 36.42%.

The paired t-test is then used to detect the statistical difference between the
test error rates from a linear SVM using the features selected by RCFS and
SVM-RFE, respectively. As shown in Table 3, RCFS wins much more often than
SVM-RFE does. The lowest average error rate 36.42% is achieved by RCFS when

1 Results for the right hippocampi (with higher classification accuracy than the left)

are omitted here due to the limit of pages. The hypothesis test shows that the

performance of RCFS statistically equals that of SVM-RFE on the right hippocampi.
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Table 3. Performance comparison of RCFS and SVM-RFE

k
RCFS wins RCFS loses Mean (test errors %) p-value (one tailed)
(groups) (groups) RCFS SVM-RFE (paired t-test)

2500 14 8 38.11 39.06 0.1218

2000 18 9 38.93 39.31 0.3710

1500 17 8 36.98 38.99 0.0276

1000 18 7 36.42 39.75 0.0001

500 15 9 37.23 38.87 0.0958∑
82 41 -

k = 1000, as shown in bold. More importantly, the paired t-test indicates that,
RCFS and SVM-RFE are significantly different at the level of 0.001 on the 30
test groups when k = 1000, at the level of 0.05 when k = 1500, and at the level
of 0.1 When k = 500. It can be expected that the improvement of RCFS over
SVM-RFE becomes less obvious when feature selection gains little from selecting
too many or too few features. Even though, RCFS has never performed worse
than SVM-RFE, in terms of number of wins and average test error.

Discriminative landmark selection. The following shows 3D landmark se-
lection by RCFS, and the visual explanation of the obtained shape difference.
Note that SVM-RFE cannot automatically deal with this problem. The land-
mark selection is conducted by selecting k = 250 and k = 125 landmarks re-
spectively on 30 training and test groups for both left and right hippocampi.
For k = 250, a linear SVM obtains the lowest test error rate 26.42% (left) and
24.53% (right) among the 30 test groups. For k = 125, the two lowest error rates

Right Left Right Left

Top View

Bottom View

k = 250 k = 125

Fig. 1. Discriminative landmarks are selected in cases of k = 250 (left) and k = 125

(right) respectively. The selected landmarks are overlaid as the yellow balls on the

mean shapes of the left and right hippocampi.
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Table 4. Comparison of test error rates (%)of RCFS and NCFS for landmark selection

Test Error Rate left right

(%) k = 250 k = 125 k = 250 k = 125

NCFS 30.19 33.96 22.64 26.42

RCFS 26.42 26.42 24.53 22.64

becomes 26.42% and 22.64% respectively. The selected landmarks are overlaid
on the mean shapes of the left and right hippocampi respectively, as shown
in Fig. 1, to reveal the essential shape discrimination. By cross-referencing the
results of k = 250 and k = 125, we can see that the majority of the identified
differences locate in CA1 and subiculum surface zones, especially for the inferior
part (bottom view). This observation agrees with some findings in the literature
[6]. The sparsity of the selected landmarks is automatically determined by the
RCFS algorithm. For example, the selected 125 landmarks of the left hippocampi
are very sparse, while those in other cases are visually more gathered. However,
as shown in Table 4, compared with NCFS where no redundancy constraints
are imposed, RCFS achieves clearly better classification performance, except for
the right hippocampi when 250 landmarks are selected. This demonstrates the
advantage of RCFS.

4 Conclusion

SVM-RFE has been a fairly standard feature selection method used in many
research fields. In this paper, we propose a constrained feature selection method
that shows superior selection performance over SVM-RFE when noisy and re-
dundant features exist. We apply it to identifying essential hippocampal shape
difference between AD and the control. The proposed method can be efficiently
solved as we carefully design the constraints and preserve its global solvability.
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Abstract. Estimation of intracranial stress distribution caused by mass effect is 
critical to the management of hemorrhagic stroke or brain tumor patients, who 
may suffer severe secondary brain injury from brain tissue compression. 
Coupling with physiological parameters that are readily available using MRI, 
eg, tissue perfusion, a non-invasive, quantitative and regional estimation of 
intracranial stress distribution could offer a better understanding of brain 
tissue’s reaction under mass effect.  A quantitative and sound measurement 
serving this particular purpose remains elusive due to multiple challenges 
associated with biomechanical modeling of the brain. One such challenge for 
the conventional Lagrangian frame based finite element method (LFEM) is that 
the mesh distortion resulted from the expansion of the mass effects can 
terminate the simulation prematurely before the desired pressure loading is 
achieved.  In this work, we adopted an arbitrary Lagrangian and Eulerian FEM 
method (ALEF) with explicit dynamic solutions to simulate the expansion of 
brain mass effects caused by a pressure loading.  This approach consists of 
three phases: 1) a Lagrangian phase to deform mesh like LFEM, 2) a mesh 
smoothing phase to reduce mesh distortion, and 3) an Eulerian phase to map the 
state variables from the old mesh to the smoothed one.  In 2D simulations with 
simulated geometries, this approach is able to model substantially larger 
deformations compared to LFEM.  We further applied this approach to a 
simulation with 3D real brain geometry to quantify the distribution of von 
Mises stress within the brain.   

Keywords: ALEF, brain mechanics, mass effect, intracranial stress estimation. 

1   Introduction 

Brain mass effect caused by hemorrhagic stroke or uncurbed tumor growth may cause 
irreversible and life-threatening secondary brain injury.  Because the intracranial 
space is confined by the skull, the accumulation of extra mass will compress brain 
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tissue leading to elevated intracranial pressure, which will further cause downstream 
effects to reduce oxygen supply to cerebral tissue.   

Image registration techniques have been exploited for estimating brain mass effect 
but results are limited.  Most current image registration techniques, such as [1-3] do 
not fully consider the mechanical factors associated with deformation.  As a result, the 
derived geometrical deformation may not truthfully reflect the underlying tissue 
deformation caused by the mass effect.   

In contrast to these image warping methods, FEM biomechanical approaches in 
combination with medical image processing are promising for our goal.  Some 
previously reported applications of FEM in medical imaging included capturing brain 
shift in open cranial surgery [4, 5] and modeling tumor growth inside the brain [6, 7].  
From the FEM point of view, these approaches are categorized as either Lagrangian 
frame based FEM (LFEM) [4, 5] or Eulerian frame based FEM (EFEM) [6, 7], 
depending on how mesh is handled w.r.t. the modeled object.  In LFEM, the mesh 
nodes are fixed on the object and following the same material points throughout 
deformation. In EFEM, the mesh is separated from the object and remains fixed in 
spatial domain without deforming with the object.  Both LFEM and EFEM have 
weaknesses in modeling brain mass effect.  A direct application of LFEM in 
simulating expansion of a mass region is difficult, because the large deformation from 
expansion of the mass region will distort the mesh and terminate the analysis 
prematurely.  In order to solve this problem, an off-line remeshing procedure is 
necessary to generate a “fresh” mesh from the deformed geometry to continue the 
analysis.  As a result, a complex mapping of the state variables (displacement and 
velocity fields) is required to maintain the continuity in analysis.  In order to 
overcome the limitation of mesh distortion in LFEM, Hogea and colleagues have 
adopted EFEM to simulate large deformation in the brain.  EFEM is able to handle 
extremely large deformation by separating mesh from the object.  Because this 
approach fixes the mesh within the spatial domain, there may be multiple types of 
tissues within one grid.  Thus, EFEM imposes an inherent difficulty in boundary 
handling (including boundary tracking, contacting problem, and boundary 
conditions).  This well-known limitation makes EFEM an undesirable method to 
handle the potential contact problems caused by mass effect, which may include 
obstruction of aqueduct, sulci collapse or tissue-skull contact occurs.  Furthermore, 
this work [6] was developed to facilitate image registration between tumor patient 
images with a normal template and no mechanical parametric results (e.g. strain or 
stress) have been given.  In a later comparison work between EFEM and LFEM, 
Zacharaki et al demonstrated that similar results can be obtained with LFEM in 
Abaqus and the EFEM approach [7].  Thus, more justifications are needed for the 
utility of EFEM in modeling brain mass effect, particularly because EFEM was 
designed for modeling fluid dynamics, which has a different nature from solid 
mechanics. 

In this work, we propose to simulate brain deformation caused by mass effect with 
an arbitrary Lagrangian Eulerian method based FEM (ALEF) [8].  This method was 
developed to combine the advantages of LFEM and EFEM.  This algorithm consists  
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of three phases: 1) a Lagrangian phase to deform the mesh (similarly to LFEM), 2) a 
smoothing phase to reduce mesh distortion, and 3) an Eulerian phase to map the state 
variables to the new mesh.  Compared to LFEM, ALEM reduces mesh distortion with 
its inherent mesh smoothing capability.  Compared to EFEM, ALEF allows for 
boundary tracking by limiting the mesh smoothing within the tissue boundary.  In this 
work, we will evaluate the application of this approach in simulating brain tissue 
deformation caused by the expansion of a mass region in both simulated and real 
brain geometries.  We will demonstrate that compared to LFEM, ALEF can simulate 
substantially larger deformation caused by expansion of the mass region. 

2   Methods 

2.1   Geometrically Nonlinear LFEM 

In LFEM, strain tensor matrix is computed via Eq. (1).  In this approach, the material 
points from the original (un-deformed) configuration (with coordinates 0

ix at time 0 in 

Eq. (1)) are tracked throughout the analysis (with coordinates t
ix  at time t).   

0
0 , 0 0 0 0 0

1, * , ( )2
t t t t T t t t

i j i iX x x C X X E C I= ∂ ∂ = = −  (1) 

Usually, when the strain is less than 10%, the higher order terms (i.e. 2nd order) in C 
and E (strain tensor matrix) are negligible, and geometrically linear FEM can be used 
for analysis.  But in our application, the large deformation from expansion of the mass 
region will result in strain values well above 10%, and these high order terms are 
preserved for a more accurate nonlinear simulation.  From the virtual work principle, 
the equilibrium equation is given in Eq. (2) 

0 0 0 0

..
0 0 0 0

0 , 0 , 0 0
t t t B t S S

i j i j i i i i i i i

V V V S

S E d V u u d V f u d V f u d Sδ ρ δ δ δ+ = +∫ ∫ ∫ ∫  (2) 

where, the total work done by the external force (including body force 0
t B

if and 

surface force 0
t S

if ) equals the total sum of the energy deposited within the continuum 

through deformation (1st term in the left-hand-side of Eq. (2)) and acceleration (2nd 
term in the left-hand-side of Eq. (2)).  After matrix assembly, the matrix form used for 
solution was derived as in the format of Eq. (3).  In our work, we chose explicit 
dynamics to solve the equation due to the dynamic feature of brain mass effect.  
Different speed of mass accumulation or pressure development inside the mass region 
will have different pathological implications.  One such example is that brain tissue’s 
reaction towards the accumulation of mass may be different between hemorrhagic 
stroke and brain tumor patients. The static solution neglecting the acceleration and 
speed related force terms in Eq. (3) does not fit for our purpose. 

            
.. .

( )M U DU K U U R+ + =  (3) 
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2.2   Arbitrary Lagrangian Eulerian Method  

ALE method involves a total of three frames, material frame(X), spatial frame (x), and 
the mesh frame (m, a.k.a. reference frame). The mappings χ and ψ represent the 
mappings from the mesh frame towards the material and spatial frames respectively. 
Applying chain rules in connecting these mappings, the physical velocity ( ( , )v m t ), 

referential velocity ( ( , )mv m t ), convective velocity ( ( , )c m t ) are derived as in Eq. (4).   

1( , ) : ( ( , ), ) / m
m X

x m
v m t d X t t dt grad x

t t
ψ χ − ∂ ∂= = +

∂ ∂
      ( , )

( , ) :m
m

m t x
v m t

t t

ψ∂ ∂= =
∂ ∂

 

( , ) ( , ) ( , )m m
X

m
c m t v m t v m t grad x

t

∂= − =
∂

 

(4) 

Similarly, the conservative equations for mass, linear momentum and  energy are 
derived as in Eq. (5), where ρ, v, b, u and σ respectively stand for tissue density, 
velocity in spatial domain, body force, energy term and stress.   

2.3   Mesh Smoothing  

The central idea of ALEF is to include an inline smoothing phase to partially seperate 
the mesh from the object and allow the mesh to move within the regions of the same 
tissue property to reduce distortion.  In this approach, due to its robustness, volume 
based smoothing was employed as in Eq. (6), where Ve represents the volume of 
element, e, which is neiboring to node i (node i is one node of element e) with the 

centroid location ex .  For a node inside one material region, the volume based  

smoothing automatically guarantees the smoothed location remains inside the same 
material region.  For a boundary node, if it is co-planar with its neighboring nodes, it 
is allowed to move on the plane; otherwise, it remains fixed.      

1 1

N N

i e e e
e e

x V x V
= =

=∑ ∑  (6) 

2.4   Uncoupled Solution 

It is apparent that in Eq. (5) all the conservative equations assume a similar structure. 
Thus, operator splitting was used to break the linear advection equations in Eq. (5) 
into two simpler forms as in Eq. (7), where φ  represents ρ, v, u terms in Eq. (5). 

c f
t x

φ φ∂ ∂+ =
∂ ∂

   
0( ,0) ( )x xφ φ=   ->   f

t

φ∂ =
∂

   0c
t x

φ φ∂ ∂+ =
∂ ∂

 (7) 
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dt
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grad v c div b
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We obtain the solution of the Lagrangian phase through Taylor expansion (Eq. (8)). 

1
L n
n n

X

t
t

φφ φ+
∂= + ⋅Δ
∂

  with  n

X

f
t

φ∂ =
∂

 (8) 

After Lagrangian phase, the mesh smoothing (Eq. (6)) were applied to the current 
deformed mesh to reduce distortion (multiple sweeps can be applied if necessary). 
The convective velocity field c was computed through the relative motion of the 
nodes of mesh before and after smoothing. The mapping from the old mesh to the 
smoothed mesh is computed as a second order advection through a flux-limiting 
method [9].  Due to the equivalence between the spatial and temporal derivatives (the 
splitted PDE in Eq. (7)), the time based updating in this Eulerian phase can be 
computed through spatial derivatives (Eq. (9)). 
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∂ ∂ ∂
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3   Results 

3.1   Simulation with Homogeneous Geometry 

We first evaluated the performances of ALEF and LFEM in a simulation using a 
simplified geometry consisting of one homogeneous material with a Young’s 
modulus (YM) = 2000pa and Poisson’s ratio (PR) = 0.45, similar to the white matter 
parameters used in [6].  A small off-center seed circle was inflated with three pressure 
loadings smoothly increased from 0pa to 800pa, 1000pa and 1200pa in 1000 seconds.   

The simulation was performed with Abaqus (SIMULIA, Rhode Island).  When the 
pressure loading was low (800pa), both LFEM and ALEF produced similar results 
(2nd column, Fig. 1).  When pressure was increased to 1000pa and 1200pa, only ALEF 
was able to complete the inflation process successfully.  LFEM terminated 
prematurely and resulted in less expansion of the mass region compared to ALEF.  
The areas of the final mass region obtained with LFEM were respectively 55% 
(1000pa) and 38% (1200pa) of the final areas obtained with ALEF (apparent in the 
areas of the white mass regions in Fig. 1.)  

3.2   Simulation with Multi-shelled Geometry 

In this simulation, a more complex geometry consisting of five shells representing 
skull, gray matter surface, white matter surface, ventricle and the mass region.  
Parameters from linear elastic models as in [6] are used (white matter, YM=2000pa, 
PR=0.45; gray matter, YM=2500pa, PR=0.45; CSF, YM=500pa, PR=0.1).  Three 
simulations were performed with the center of the mass region initialized as the center 
of white matter region (Case 1), 5mm closer to the ventricle (Case 2), and 5mm closer 
to the grey matter (Case 3) from the center location.  In all the three cases, the mass 
regions were inflated with a pressure loading smoothly increased from 0pa to 1000pa 
in 1000 seconds.  As in previous simulation, in all the three cases, ALEF is able to  
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Fig. 1. The initial un-deformed geometry (1st column) and the simulation results with pressure 
loadings: 800pa (2nd column), 1000pa (3rd column) and 1200pa (4th column) in both LFEM (top 
row) and ALEF (bottom row) 

 

Fig. 2. (a) Left panel.  Simulation results with the initial mass region located at the center of the 
white matter region (1st row), 5mm close to the ventricle (2nd row) and 5mm closer towards 
gray matter (last row) from LFEM (2nd column) and ALEF (3rd column).  (b) Right panel.  The 
simulation with a real brain geometry with initial seeded sphere (1st column), after 
deformation(2nd column) and distribution of von Mises stress(last column).   

produce a larger deformation compared to LFEM.  The final area of the mass region 
obtained LFEM are respectively 85%, 85% and 87% of the results of ALEF (apparent 
as the larger white areas in ALEF in Fig. 2a).   

3.3   Estimating von Mises Stress Distribution with Real Brain Geometry 

In this simulation, an artificial sphere as a seed region for mass accumulation was 
planted inside a real 3D brain geometry obtained from MRI (1st column, Fig. 2b).  The 
mechanical parameters as in the previous simulation were used.  The pressure loading 
was 800Pa.  The von Mises stress was computed from the stress tensor matrix for 
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each element (Eq. (10)).  For linear elastic material, the material starts to yield when 
the von Mises stress reaches a critical value (i.e. yield point).  In such a situation, the 
tissue deformation may become irreversible.  Our study demonstrated that at early 
stage of mass accumulation, von Mises stress descended steeply from the immediate 
peri-mass region to distal area (Fig. 2b). 

2 2 2 2 2 2
11 22 11 33 22 33 12 13 23(( ) ( ) ( ) 6( )) / 2vσ σ σ σ σ σ σ σ σ σ= − + − + − + + +      (10) 

4   Discussion 

In this study, we adopted ALEF with explicit dynamics to simulate brain deformation 
caused by mass effect.  We have demonstrated that this approach is more appropriate 
for analysis of large deformation compared to LFEM.  This is critical, since LFEM 
may significantly underestimate the expansion of the mass region.  In this work, the 
comparisons were performed with the simulation results obtained with Abaqus.  A 
more ideal testing with analytical solutions in simulated 2D geometries as the ground 
truth may be more convincing.  But given the popularity of Abaqus in both industrial 
and academic environments, we expect that the conclusion holds even when 
analytical solutions are used as ground truth.   

The improvement in performance of ALEF is not necessarily achieved at the cost 
of prolonged computational time. On the contrary, ALEF may reduce analysis run-
time significantly compared to LFEM. This is because the critical time interval for 
updating the partial differential equations is proportional to the smallest characteristic 
length of the element in the mesh.  In LFEM, the reduction in characteristic length 
caused by mesh distortion will dramatically reduce step size for updating the 
equations. Sometimes convergence becomes impossible and simulation may terminate 
prematurely. In contrast, ALEF can reduce mesh distortion and help the system to 
maintain a larger time step size for faster dynamic simulation.   

Our study may be one of the earliest studies which are able to provide stress 
distribution within brain due to mass effect based upon subject-specific brain 
geometry.  Since our approach is based on explicit dynamics, it is possible to predict 
the progression of brain mass effect and allow for early intervention.  Furthermore, 
combining with advanced MRI techniques such as perfusion and oxygenation 
measurement, a more complete picture of how brain tissue reacts under mass effect 
can be revealed. 

There are a few limitations to our current study.  ALEF’s capability to reduce mesh 
distortion is not effective without a limit.  In extremely large deformation (e.g. 
hundreds of times increase in volume of the mass region), this inline smoothing in 
ALEF may not be able to tackle mesh distortion completely.  In this case, an off-line 
re-meshing program can be executed to obtain a fresh mesh to resume the simulation.  
The pressure loading used for testing was uniformly distributed across mass region, 
and this situation may not hold in certain diseased conditions.  Finally, our analyses 
were performed under the assumption that brain tissue behaves like linear elastic 
materials.  However, ALEF can be adapted to model nonlinear material models such 
as hyper-elasticity [10] with ease.  In this case, the Lagrangian phase of ALEF needs 
to compute the stress as a function of strain rate with the hyper-elastic material. 
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Abstract. Measures from event-related functional MRI, diffusion ten-

sor imaging tractography and cognitive performance in a language-based

task were used to test the hypothesis that both functional and structural

connectivity provide independent and complementary information that

aids in the identification of network components most related to the

neurobiological basis for language and cognitive processing. Structural

connectivity was measured by averaging fractional anisotropy (FA) over

a geometric fiber bundle model that projects local white matter proper-

ties onto a centerline. In the uncinate fasciculus FA was found to predict

performance on a measure of decision-making regarding homonym mean-

ing. Functional synchronization of BOLD fMRI signals between frontal

and temporal regions connected by the uncinate fasciculus was also

found to predict the performance measure. Multiple regression analysis

demonstrated that combining equidimensional measures of functional

and structural connectivity identified the network components that most

significantly predict performance.

1 Introduction

In this paper functional subnetworks in the brain are examined using MRI to
measure both structural connectivity (SC) and functional connectivity (FC).
Additionally, the influence on behavior of both SC and FC is examined to de-
termine the degree to which each provides unique information as well as how
this information may be used to identify the parts of a network that are most
influential on behavioral performance. FC involves co-activation of brain regions
during performance of a task while brain recruitment is monitored with fMRI.
SC is related to the long tract white matter projections that may integrate
recruited brain regions biologically. The use of diffusion tensor imaging (DTI)
in tract-specific studies has received much attention recently and has demon-
strated the utility of atlas-based methodologies [1,2]. Geometric models of fiber
bundles are typically used to create arc-length parameterizations of diffusion
properties [3,4,5]. Statistical analysis of diffusion properties of fiber bundles may
be enhanced by reducing dimensionality by projecting local properties onto a
skeleton [2] or medial-axis [1]. Inspired by the success of these approaches, we
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developed an atlas-based approach for using diffusion tensor tractography to
determine geometric models of fiber bundles that connect functionally defined
cortical regions of interest. Combining FC and SC, and further integrating behav-
ioral data, provides important insight into the nature of the relationship between
structure and function in the brain and their respective roles in determining be-
havior [6,7,8]. In this study, we demonstrate how SC and FC may be used to
examine small, functionally defined subnetworks in the brain during performance
of a common language task. Functionally defined cortical regions are used along
with a population-averaged diffusion tensor atlas to identify the white matter
pathways that provide the basis for biological connectivity. A centerline-based
method is used to provide a geometric model that facilitates the equidimensional
comparison of FC and SC within a network. Behavioral data are used to iden-
tify the relative contributions of function and structure, and the degree to which
each provides unique insight into behavior.

2 Methods

Functionally defined cortical regions and the white matter pathways that con-
nect them are used to measure both structural and functional connectivity in
individual subjects. Multiple regression analysis of cognitive performance scores
is then used to determine the components of the subnetworks that most influence
performance and the relative predictive strengths of the connectivity measures.
A set of ten subjects (6 female, mean age of 23.5 years) had T1, functional and
diffusion tensor images acquired. These are used to examine the relationship
between structure and function and their relationship to performance in the
functional task.

2.1 Subnetworks in the Brain

We investigate a hypothesis that suggests language processing is supported by
the interaction of two cortical subnetworks [9]. This hypothesis specifically fo-
cused on the strategic process of minimizing ambiguity during language produc-
tion, defined as an individuals use of an unambiguous work (e.g. ”cage”) instead
of a semantically ambiguous word (e.g. ”pen”) to make the meaning of an utter-
ance more clear. The cortical regions and MNI coordinates of peak activation are
listed in figure 1. A forced choice paradigm in which subjects were instructed
to make the choice that resulted in the most clear sentence meaning (e.g. re-
duced ambiguity) was used. The proportion of unambiguous choices was used
as the measure of cognitive performance. It has been proposed that this process
of minimizing ambiguity relies on the recruitment of two subnetworks: a lexical
semantic network situated in posterolateral temporal cortex (PLC) and anterior
temporal cortex (ATC) to support retrieval of a word form; a strategic decision-
making network to support probabilistic resources in the dorsolateral prefrontal
cortex (DLPFC) (e.g. evaluating the likelihood that a word like ”pen” has mul-
tiple meanings), risk-based resources in orbital frontal cortex (OFC) (e.g. using
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”pen” in an ambiguous context has a higher ”risk” of being misinterpreted), and
an integration mechanism in inferior parietal cortex (IPC) that brings together
probabilistic and risk information to inform a decision. To evaluate the biolog-
ical feasibility of these networks, the current work evaluated the white matter
connections between the activated regions and measured FC between all regions.

2.2 Analysis of fMRI

For the examination of FC the previously cortical regions were examined. A
region-growing process was used to create 5 regions of equal volume. Each peak
activation coordinate was used as a seed for the region growing algorithm in
which each region was grown iteratively by examining neighboring voxels in the
region and adding each of the 8-connected neighbors in a template-based brain
mask created in MNI space. The process iterated until each region had a volume
of 480mm3. In each subject, an average time-course BOLD fMRI signal was
calculated for each activated region. To estimate FC between regions, a Pearson’s
correlation coefficient was calculated using each regions’ averaged signal.

2.3 Analysis of DTI

Diffusion tensor tractography in individual subjects is highly subject to false-
positive connections, but recent work has shown that the improved SNR provided
by a population atlas provides an appropriate space for identifying fiber bundle
geometry [10]. To achieve this, a multivariate atlas was created from a data set
consisting of 26 healthy young adults for whom both high resolution T1 im-
ages and DTI were acquired. The 10 subjects examined in this study were all
included in this atlas-building data set. The set of all subjects’ high resolution
T1 weighted images were registered to the template using Symmetric Normal-
ization as implemented in Advanced Normalization Tools [11]. This was accom-
plished through the use of a multi-resolution, non-rigid registration algorithm
to optimize a cross correlation metric under the constraints of a diffeomorphic
transformation model [11]. A brain mask of the template was propagated to each
subject’s T1 weighted image. These skull-stripped T1 weighted images were then
registered to the FA image derived from each subject’s diffusion tensor image.
The intra-subject transforms were composed with the T1 atlas transforms in
order to transform the each subjects’ tensor data into template space using the
preservation of principle technique along with log-Euclidean linear interpolation.

The diffusion tensor component of the atlas was used to perform whole brain,
deterministic fiber tractography [12]. Landmarks were manually placed in the
T1 component of the atlas in order to extract well defined white matter fiber
bundles [13]. The functionally activated regions were warped from MNI space
into the template space and dilated by 5mm to extend into the white matter
for use as target regions to identify fiber bundles that connected two regions of
interest. A popular approach to avoiding partial voluming bias is to incorporate
a centerline or skeletonization technique in which an FA value at each point is
determined by finding the maximum FA in the local neighborhood [2,1]. Here
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we use a template-fiber approach where an elliptical cross-section is defined at
each point along the centerline and used to identify local maxima. For each white
matter tract, the atlas-based tractography provided a bundle of streamlines, each
of which was parametrized by arc-length to extend from 0.0 to 1.0. A BSpline
was then fit to the set of all points from all streamlines in each bundle to obtain
a single centerline that lies in the core of the fiber pathway of interest. For each
point along the model pathway, a tangent was calculated and used to determine
a perpendicular plane. The intersection of this plane with each of the streamlines
in the bundle defines a set of points. The normal and binormal vectors were used
to re-parameterize the intersection points into 2D coordinates. Graham’s scan
method was used to determine the convex hull that encloses the set of intersection
points [14], and least-squared method was applied to the points on the hull to
define an elliptical cross-section [15]. These model pathways were then used to
examine each subject’s FA image. At each point along the average pathway,
the maximum fractional anisotropy within the associated elliptical cross-section
was projected to the centerline. To obtain a single SC value for the entire fiber
bundle, the FA values were averaged over the length of the centerline.

2.4 Relating Structure and Function to Behavior

Behavioral data was used to explore the extent to which FC and SC provide
unique and relevant information regarding behavior. The proportion of responses
in which subjects minimized ambiguity was used to identify the components of
the network that most directly influence performance in the functional task.
Multiple regression analysis was performed to examine the relationship between
FC and SC between regions for which there exists a direct white matter con-
nection. Both FC and SC were used as independent variables to quantify their
relationship to the behavioral scores.

3 Results

The functionally activated regions illustrated in figure 1 were used to identify the
white matter tracts of interest revealing a biological network made up of the un-
cinate fasciculus (UF), arcuate fasciculus (AF), superior longitudinal fasciculus
(SLF), inferior longitudinal fasciculus (ILF), inferior frontal-occipital fasciculus
(IFO) and an inferior-superior fiber bundle running along the arcuate fasciculus
that will be referred to as the vertical aspect of the arcuate fasciculus (AFv). The
elliptical cross-sections used to define local maxima along each template fiber are
illustrated in figure 1 and are consistent with known neuroanatomy. The results
of the SC and FC measurements are summarized in table 1. The posterior lateral
temporal cortex (PLC) had the highest average FC values. This region also has
the highest number of white matter connections as it directly connects to every
other cortical region in the network.

To facilitate the comparison of structure and function, the functional analysis
was limited to examining FC between regions that were determined to have direct
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(A) (B)

Fig. 1. A) Functionally activated cortical regions were used to determine an MNI coor-

dinate of peak activation in posterior lateral temporal cortex (PLC=-64 x -38 x 6), ante-

rior temporal cortex (ATC=-54 x 22 x -6), dorso-lateral prefrontal cortex (DLPFC=-50

x 20 x 42), inferior parietal cortex (IPC=-32 x -64 x 58) and orbital frontal (OFC=-54

x 2 x -34) B) The cortical regions were used to identify white matter fiber bundles

that connected any two regions of interest. This resulted in the identification of the

uncinate fasciculus (yellow), arcuate fasciculus (pink), orbito frontal-occipital fascicu-

lus (orange), inferior longitudinal fasciculus (purple), superior longitudinal fasciculus

(light blue) and a vertical aspect of the arcuate fasciculus (green)

biological connections. For each participant, a behavioral score was determined
by the ratio of times that they correctly chose the unambiguous alternative.
The mean score was 0.717± 0.14. For each white matter tract the FC and SC
values were used as independent variables in multiple linear regression on the
behavior scores, using R. The resulting p-values, summarized in figure 2, were
FDR corrected and connectivity in the UF was found to be most significantly
correlated (p = 0.014, r2 = 0.810) to performance. In order to examine relative
strengths, SC and FC are standardized against one another to calculate their
beta coefficients which gives βFC = 0.425 and βSC = 0.681. To illustrate the

Table 1. Functional connectivity was measured using a Pearson’s correlation for each

pair of regions (upper triangular values) and structural connectivity was measured for

each pair of regions that had a direct white matter connection by examining FA (lower

triangular values)

IPC DLPFC OFC ATC PLC

IPC - 0.59 ± 0.29 0.61 ± 0.14 0.49 ± 0.26 0.49 ± 0.22

DLPFC 0.62 ± 0.07 - 0.27 ± 0.33 0.49 ± 0.19 0.69 ± 0.12

OFC - - - 0.38 ± 0.36 0.68 ± 0.15

ATC - - 0.50 ± 0.10 - 0.60 ± 0.24

PLC 0.64 ± 0.08 0.66 ± 0.07 0.68 ± 0.05 0.60 ± 0.12 -
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Fig. 2. Both structural and functional connectivity in each connection were used in a

multiple linear regression analysis of performance. FDR-corrected p-values are shown

here. Connectivity in the uncinate (p = 0.014) was most significantly correlated to

performance.

(A) (B)

Fig. 3. Regression analysis of cognitive performance was examined independently to

examine correlations with (A) structural connectivity and (B) functional connectivity

for the uncinate fasciculus

unique contributions of each connectivity measure, both both FC and SC in the
UF were independently used as independent variable in a regression analysis of
performance. Correlating SC to performance resulted in p = 0.003, r2 = 0.657
while FC to performance resulted in p = 0.034, r2 = 0.379. These results are
illustrated in figure 3. A regression analysis using SC to predict FC resulted in
p = 0.308, r2 = 0.020.

4 Discussion

This study demonstrated that SC and FC provide unique and converging evi-
dence for identifying the components of a brain network that are most signifi-
cantly related to cognitive performance. The use of geometric models for white
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matter fiber bundles provided a robust framework for quantifying tract-wide
metrics of structural integrity that directly correlated to a behavioral measure.
FC between regions was quantified using the Pearson’s correlation of average
BOLD fMRI signals. Using these connectivity measures in a multiple regression
analysis implicated the UF as being the network component that most directly
influences performance. When examined independently, both SC and FC in the
UF significantly correlated to performance, but the relatively weak correlation
between SC and FC suggests that each provides unique information about net-
work connections.

The identification of the UF as the network connection that most mediates
performance is interesting as it provides the connection between a region com-
monly associated with language processing (ATC) and a region commonly impli-
cated for decision-making (OFC). A connection between these regions supports
the hypothesis that ambiguity minimization is supported by the interaction of
two cortical subnetworks. The UF provides the only direct connection between
these regions, but an indirect connection is provided by the ILF and IFO which
both connect to the PLC, a region associated with language processing. While
the UF is not the only direct connection between the OFC and a language pro-
cessing region, it is the shortest connection, and is thus consistent with studies
of both SC [16] and resting-state FC [17] that have revealed evidence suggesting
that shorter connective distances are associated with higher connectivity.

The use of template fibers with elliptical cross-sections provided an effective
geometric model for examining white matter fiber bundle properties, but a great
deal of opportunity exists for the development of more biologically relevant mea-
sures of SC. Here, these models were purely template-based and used to examine
FA in individual subjects. Using these template-based models as a basis for fit-
ting subject-specific models from subject-space tractography could potentially
provide a more sensitive measure of SC and could provide a framework that
explicitly examines the geometry of white matter pathways as well as the prop-
erties of the underlying tissue. Additionally, the use of metrics that leverage the
expected fiber orientation provided by the geometric model may be useful as
they incorporate more widespread information about the fiber tract as opposed
to the purely local measure provide by FA [18].
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Abstract. Accurate and precise identification of multiple sclerosis (MS)

lesions in longitudinal MRI is important for monitoring disease pro-

gression and for assessing treatment effects. We present a probabilistic

framework to automatically detect new, enlarging and resolving lesions

in longitudinal scans of MS patients based on multimodal subtraction

magnetic resonance (MR) images. Our Bayesian framework overcomes

registration artifact by explicitly modeling the variability in the differ-

ence images, the tissue transitions, and the neighbourhood classes in the

form of likelihoods, and by embedding a classification of a reference scan

as a prior. Our method was evaluated on (a) a scan-rescan data set con-

sisting of 3 MS patients and (b) a multicenter clinical data set consisting

of 212 scans from 89 RRMS (relapsing-remitting MS) patients. The pro-

posed method is shown to identify MS lesions in longitudinal MRI with

a high degree of precision while remaining sensitive to lesion activity.

1 Introduction

The use of subtraction imaging to identify MS lesion activity on MRI has been
shown to increase sensitivity to new and resolving lesions and significantly re-
duce inter-rater variability [1,2,3,4]. Previous studies using subtraction images
for lesion identification were done in a manual or semi-automatic fashion, as
the automatic analysis of subtraction images is complicated by the presence of
registration errors, flow artifacts and the high variability of signal intensities for
lesions [3,5]. For this reason, most automated longitudinal MS lesion segmenta-
tion approaches have used more robust statistical approaches that require the
inclusion of images from several timepoints [6,7,8], the analysis of lower resolu-
tion patches [9], or some form of deformation analysis [5,10]. The automatic le-
sion classifier presented here attempts to overcome the limitations of subtraction
imaging by embedding intensity differences into a Bayesian framework that also
incorporates prior classification at a reference timepoint, models that account for
registration error and noise, and neighbourhood information. Our probabilistic
� This work was supported by NSERC Strategic Grant (350547-07).
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(a) (b) (c)

Fig. 1. T2 images for 2 timepoints are shown in (a) and (b) while the subtraction image

between the two timepoints is shown in (c). New lesions appear as hyperintense on the

T2 subtraction image while resolving (disappearing) lesions appear as hypointense.

framework further permits qualification of the degree of confidence to classifica-
tion results at each voxel in the form of a posterior probability for each tissue
class.

Our method was evaluated on (a) a scan-rescan data set consisting of 3 MS
patients and (b) a multicenter clinical data set consisting of 212 scans from
89 RRMS patients with 2-4 longitudinal scans each. The overall classification
system provides a consistent labelling of lesion voxels while remaining sensitive
to lesion activity.

2 Methods

2.1 Problem Formulation

We present the problem of classification as one of inferring a tissue class label,
C

(t)
i , at each voxel i of a multimodal volume at timepoint t, given an image from

a reference timepoint, I(r), and a subtraction image, D(t), between timepoint t
and the reference timepoint. Tissue class labels are restricted to one of cerebro-
spinal fluid (csf), gray matter (gm), white matter (wm), MS lesion (les) and a
partial volume class (pv).

We first formulate the tissue class inference problem by only considering ob-
servations at the voxel in question:
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where we have assumed that C
(t)
i is conditionally independent of I

(r)
i given

C
(r)
i . The right side of equation (1) can be seen as a product of three terms: a
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(a) N k
i for k=0-3 (b) {C(t)

Ni
}

Fig. 2. (a) shows N k
i for k=0-3 while (b) shows a sample tissue label configuration,

where Ni is defined as the 4-voxel neighbourhood in both (a) and (b)

difference likelihood, a tissue transition likelihood, and a prior classification of
our reference image. We incorporate information from neighbouring voxels using
a neighbourhood likelihood model and by recursively growing our observation
space, N k

i , defined as
N k

i =
⋃

j∈Nk−1
i

Nj , (2)

where N 0
i is just the voxel in question (as in (1)), and Ni is a the first-order

neighbourhood. We can express the posterior probability of a class tissue, C
(t)
i

for a kth inference problem as
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where Kk is a normalization constant, P k

{C
(t)
Ni

}
is the probability of a tissue class

label configuration, {C(t)
Ni
} is a configuration of tissue class labels in Ni (see ex-

ample in Fig. 2b) and where the summation implies that we consider all possible
configurations. We assume Markovianity (p(C(t)

i |Cj /∈Ni
, C

(t)
Ni

) = p(C(t)
i |C(t)

Ni
)),

causality (p(C(r)
i |C(t)
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) = p(C(r)

i )), conditional independence of D
(t)
i from C

(t)
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given C
(t)
i , and conditional independence of C
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from C
(r)
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(t)
i . We can

expand P{C
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} as follows:

P k

{C
(t)
Ni

} = p({C(t)
Ni
}|I(r)

Nk
i

, D
(t)

Nk
i

) =
∏

j∈Ni

p(C(t)
j |I(r)

Nk−1
j

, D
(t)

Nk−1
j

) =
∏

j∈Ni

pk−1
j . (5)

This iterative process can be seen as modelling tissue label dependencies lo-
cally while recursively growing the observation space, which, in the limit, would
consider the entire image.
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Likelihood Models

Difference likelihood models are learned from training data for all combinations
of C(r) and C(t), where tissue classes are restricted to one of 5 classes (csf,
gm, wm, les, pv). Transitions from C(r) to C(t) may represent real change (e.g.
wm-les), misregistration (e.g. wm-gm), differences in partial volume effects at
different timepoints, variability or error in segmentation of the training data,
or some combination of these factors. To reduce the number of models that
need to be learned, D(t) is assumed to be conditionally independent of I(r)

given C(r), except for the case of C(r)=les. For this special case, we use PCA
to project our multimodal intensities onto a 1-D subspace that best captures
intensity variations seen in lesions, and separate this subspace into 3 distinct
lesion intensity classes. Difference likelihood models for wm-wm, gm-gm, csf-csf
and pv-pv transitions are modeled as 3D Gaussians as they are well approximated
as such. All other models are represented by 3D non-parametric distributions
using Parzen windows [11].

The neighbourhood likelihood represents the likelihood of observing a neigh-
bourhood configuration C

(t)
Ni

around a voxel with label C
(t)
i . A 4-voxel in-plane

neighbourhood was used, and a neighbourhood configuration was represented
by a count of each tissue class in the 4-voxel neighbourhood. Models were con-
structed as histograms by observing the frequencies of the different neighbour-
hood representations that occured in training data for each tissue class.

The transition likelihood represents the prior probability of transitioning from
one tissue label to any other (or the same) tissue label. This acts as a bias toward
the tissue class at the reference timepoint and towards more plausible tissue label
transitions. Transition likelihoods are learned based on frequency of occurence
in the training data.

The inclusion of a prior term, p(C(r)|I(r)), implies that we have available some
form of probabilistic tissue classification for the reference timepoint. This prior
on C(r) can come from some other automated tissue segmentation scheme, from
manual labeling, or from some combination of both.

3 Experiments

3.1 Preprocessing

All MRI data used in this study consists of sets of T1-weighted (T1), T2-weighted
(T2) and PD-weighted (PD) images at a resolution of 1x1x3mm. Each scan was
corrected for intensity non-uniformity [12], masked to exclude non-brain and
the posterior fossa, linearly (6 DOF) registered to the T2 image at the baseline
scan from the same patient, and intensity normalized to a common intensity
space [13]. The “ground truth” tissue labels were generated from an automatic
tissue segmentation using an in-house classifier based on [14] which then had
voxels classified as lesion manually verified and corrected by experts. Tissue
class labels were restricted to one of csf, gm, wm, les, and pv. These manually
corrected (MC) 5-tissue class segmentations served as a reference for subsequent
training and validation.
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3.2 Scan-Rescan

A scan-rescan data set consisting of 3 relapsing-remitting MS (RRMS) patients
allowed us to validate the precision of the proposed method in the absence of
real physical change. Patients were scanned on a Siemens Sonata 1.5T scanner,
removed from the scanner, and then rescanned. For the scan-rescan data set,
fully manual lesion labels (FM) were also available in addition to the manually
corrected lesion labels (MC). Lesions were required to consist of at least two
contiguous voxels. The MC labels for the reference timepoint were used as a
prior for the Bayesian classifier (BC). Classification was done by first using the
scan as the reference timepoint (BC-S) and classifying the rescan, and secondly
using the rescan as the reference (BC-R) and classifying the scan. Models used for
classification were learned from independent training data. We define new lesion
voxels as those that were not labelled as lesion in the reference scan but labelled
as lesion in the follow-up scan, and resolved lesions those that were labelled as
lesion at reference but not in the follow-up. Means and standard deviations of
lesion volume at reference, new lesion voxels, resolved lesion voxels and change
in lesion volume over the 3 scan-rescan patients are shown in Table 1. Given that
there is no biological change in the scan-rescan period, ideally no lesion activity
would be detected. The number of new and resolving lesion voxels are greatly
reduced when using the proposed Bayesian classifier as compared to both the
FM and MC labels, suggesting greater precision with the proposed method.

Table 1. Scan-Rescan precision for 3 RRMS patients

MC FM BC-S BC-R

Lesion Volume at Reference (voxels) 7466±4278 7517±4098 7466±4278 7466±4404

New Lesion Voxels 1368±853 1657±887 74±8 26±9

Resolved Lesion Voxels 1313±700 1453±906 49±21 28±15

Net Change in Lesion Voxels 55±155 204±321 25±27 -3±20

3.3 Clinical Data

Increased precision is only meaningful if the classifier is still sensitive to true
change. A clinical data set was used to validate the sensitivity of the proposed
method to new and enlarging lesions. This data set consists of 212 total scans
from 89 RRMS patients with 2-4 longitudinal scans each, taken over a period
of 48 weeks with a minimum interval of 12 weeks between scans. Fully manual
lesion labels were not available for this data set, so MC labels were used as ref-
erence for all 212 scans. Meaningful evaluation based on comparison to reference
lesion labels is challenging, due to lack of consensus as to what consitutes a
lesion, ambiguity of lesion boundaries, and lack of precision in labelling of the
same patient over time. A subset of the new lesion voxels from the MC labels
were identified as being new lesions or enlarging portions of existing lesions,
based on a minimum of 3 contiguous new lesion voxels and spatial properties
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Table 2. Apparent Sensitivity to New and Enlarging Lesions as compared to MC

Labels

NE Size ALL >=5 voxels >=10 voxels

Total # NE 63 58 45

Criteria(a) 46 (73%) 45 (78%) 37 (82%)

Criteria(b) 53 (84%) 52 (90%) 44 (98%)

Voxel-wise sensitivity 76.6% 76.9% 77.5%

of connectedness to existing lesions. This set of new or enlarging (NE) lesion
labels was manually verified by experts and ensured as much as possible that
our ground truth definition of NE lesions corresponds to real change in brain
tissue. For each timepoint other than the baseline scan, the scan and MC tissue
labels from the previous timepoint were used as the reference image and prior. In
this way, all scans except for the baseline scan were classified in a pairwise fash-
ion. Four-fold cross-validation was used, with 66 or 67 patients used for training
our models, and 22 or 23 used for testing, on each fold. Performance of our clas-
sifier was measured based on the number of NE lesions that were detected. Two
different criteria were used to decide whether an NE lesion was considered as
detected : (a) identification of a minimum of 50% of voxels in an NE lesion and
(b) identification of 3 or more voxels in an NE. Analysis was done separately for
all NE lesions and subsets of NE lesions that were greater than 5 and 10 voxels in
size. A voxel-wise sensitivity to NE lesions was also measured, which is defined
as the percentage of all voxels in new and enlarging lesions that were classified
as lesion.

Specificity of newly detected lesions was not quantitatively evaluated as we did
not have a filtered subset of MC labels that allowed for a meaningful comparison.
Qualitative analysis showed that for a small subset of scans, significant false
detection of new lesions occured adjacent to the lateral ventricles. Distortion,
atrophy and partial volume effects in the z-direction all contributed to these false
detections. Sensitivity and specificity of resolving lesions were also not explicitly
measured due to lack of suitable ground truth. Qualitative analysis showed good
sensitivity to fully resolving lesions, but resolving portions of partially resolving
lesions were generally underestimated, due to the attractive effect of remaining
lesion in the neighbourhood likelihood model. Very few falsely resolving lesions
were observed.

Table 3. Number of New And Resolving Lesion Voxels for Slices in Figure 3

Slice 1 Slice 2 Slice 3

MC BC MC BC MC BC

Lesion Voxels At Reference 156 156 181 181 347 347

New Lesion Voxels 58 57 100 42 137 2

Resolved Lesion Voxels 77 30 77 41 108 3

Net Change in Lesion Voxels -19 27 33 1 21 -1
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(a) Ref T2 (b) T2 at t (c) Sub. Im. (d) Prior (e) BC (f) MC

(g) Ref T2 (h) T2 at t (i) Sub. Im. (j) Prior (k) BC (l) MC

(m) Ref T2 (n) T2 at t (o) Sub. Im. (p) Prior (q) BC (r) MC

Fig. 3. Sample classification results for three slices from three different patients, where

Slice 1 (a-f) and Slice 2 (g-l) both have new and resolving lesions and Slice 3 (m-r)

exhibits little or no real change. Reference T2 images (Ref. T2), T2 images at the

timepoint t to be classified (T2 at t), subtraction images between the two timepoints

(Sub. Im.), prior classifications at the reference timepoints (Prior), output of the pro-

posed Bayesian classifier for time t (BC), and MC labels for time t (MC), are shown

for each slice. The BC and MC labels are colour-coded as follows: stable lesion voxels

are shown in red, new lesion voxels are shown in green, and voxels that were lesion at

the reference timepoint but have resolved are shown in blue.

Sample classification results for 3 slices of 3 different patients in the clinical
data set are shown in Figure 3, and the lesion activity in those slices as detected
by the proposed classifier and the MC labels is summarized in Table 3. New
and resolving lesions are correctly identified while stable lesions are labelled in a
much more consistent manner than for the MC labels, where lesion boundaries
are shown to fluctuate, and more ambiguous tissue intensities may be labeled
differently at the two timepoints despite lack of apparent change.

4 Discussion and Future Work

In this paper, we introduce an automatic Bayesian classifier that detects MS
lesion activity in longitudinal scans based on subtraction images. Our approach
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attempts to overcome the limitations of subtraction images in terms of registra-
tion error and noise by embedding a prior classification at a reference timepoint
and by building likelihood models that account for artifact and noise. Our ap-
proach was evaluated on both a scan-rescan data set and a large multicenter
clinical data set and has demonstrated increased precision as compared to a
manual classification, while remaining sensitive to lesion activity.

A quantitative evaluation of sensitivity to resolving lesions and specificity of
both new and resolving lesions is needed to fully characterize the performance
of the proposed classifier. The incorporation of non-linear registration or explicit
segmentation of lateral ventricles may aid in reducing false detection of new le-
sions in patients where there is significant atrophy or distortion. The preprocessing
pipeline used was chosen based on convenience. More optimal pipelines specific to
longitudinal data may help reduce noise and artifact in subtraction images [9,15].
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Abstract. The question of how large-scale systems interact with each other is 
intriguing given the increasingly established network structures of whole brain 
organization. Commonly used regional interaction approaches, however, cannot 
address this question. In this paper, we proposed a multivariate network-level 
framework to directly quantify the interaction pattern between large-scale 
functional systems. The proposed framework was tested on three different brain 
states, including resting, finger tapping and movie watching using functional 
connectivity MRI. The interaction patterns among five predefined networks 
including dorsal attention (DA), default (DF), frontal-parietal control (FPC), 
motor-sensory (MS) and visual (V) were delineated during each state. Results 
show dramatic and expected network-level correlation changes across different 
states underscoring the importance of network-level interactions for successful 
transition between different states. In addition, our analysis provides 
preliminary evidence of the potential regulating role of FPC on the two 
opposing systems-DA and DF on the network level. 

1   Introduction 

Recent development of functional connectivity magnetic resonance imaging (fcMRI) 
[1] has greatly improved our understanding of the brain’s functional organization. 
Multiple functional networks including motor-sensory (MS), visual (V), dorsal 
attention (DA), and more recently the default (DF) networks have been delineated 
using this technique [1, 2]. These findings have greatly improved our understanding 
of whole brain functional segregation and integration and reinforced the notion that 
normal brain functioning relies on coordinated activity among sets of distributed yet 
interacted brain regional/functional systems.  

Yet, how different networks interact with each other remains elusive. Fox et al [3] 
looked into the interaction between the DF and DA networks and observed the 
existence of anti-correlation between them even during a resting state. Kelly et al [4] 
further revealed that the strength of this negative correlation is modulated by 
exogenous demands and is positively correlated with behavioral performance, 
underscoring the functional significance of between-network interactions. Moreover, 
other groups [5] have recently proposed the “network degeneration hypothesis” where 
they reported that neurodegeneration may be related to network-level dysfunction and 
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suggested the need of developing new network-based diagnostic assays. Therefore, 
approaches to specifically reveal brain network-level interactions may have profound 
implications not only in informing normal brain function but also offering means to 
discern brain network dysfunction in patients with neurodegenerative diseases. 

While early studies provide invaluable insights into network interaction, one 
potential limitation is that a correlation between two mean time courses which were 
derived through averaging time signals over all brain regions within a network was 
commonly employed to quantify network level interaction [4, 6]. This essentially 
ignores the inter-dependence structure within a network. Although facilitating 
theoretical interpretation and utilizing a straightforward computation, this 
simplification is prone to information loss and/or even becomes untenable when the 
homogeneity assumption is violated.    

In this study, we aimed to develop a multivariate network-level framework capable 
of discerning functional network interactions by integrating several statistical tools, 
including canonical correlation analysis (CCA) [7], multivariate regression, and a 
resampling method. Compared with the existing methods, three novel features make 
our method suitable for network-level analysis: (i) by applying multivariate 
techniques, our method is free from information loss induced by averaging; (ii) 
through dimension normalization, our method is able to handle interactions between 
networks of arbitrary sizes and avoid potential biases; and (iii) leveraging multiple 
regression, our method is not only able to study network-level correlation but also 
partial correlation, adding another dimension to functional analysis.  

Five networks, including the mentioned MS, V, DA, DF, and another more 
recently delineated frontal parietal control (FPC) network [8] were included to test the 
proposed method. Besides, three experimental states, including resting, finger tapping 
and movie watching were examined to (i) detect the dynamics of network-level 
correlation and (ii) test the hypothesis of the FPC’s regulation role during different 
cognitive states. Results showed extensive network-level correlation changes for 
successful transition between different states and provided preliminary evidence  of 
FPC’s regulating role on the two opposing systems, the DA and DF.   

2   Methods 

We develop a multivariate network-level approach for directly quantifying the 
correlation/partial correaltion pattern between large-scale functional systems.  The 
overall flow chart of the proposed method is illustrated in Figure 1.  

 

Fig. 1. Flow chart of the multivariate network-level framework 
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2.1   Multivariate Network Correlation Using Canonical Correlation Analysis  

Time courses from individual regions within each network were averaged first to 
represent the temporal characteristic of the whole network. Given the obvious 
dimension differences among different networks, there is a potential bias in the 
network-level interaction calculation. To overcome this bias, principle component 
analysis (PCA) was performed and the top 4 principle components for each network 
were selected for subsequent multivariate calculations. A retrospective check reveals 
that more than 98% percent of the variance is preserved for all networks, but the 
number of components can be adjusted in a study-dependent manner.  

To quantify the network level interaction, a canonical correlation measure between 
two multivariate vectors was used.  Canonical correlation analysis [7] has been widely 
employed to measure the association between multivariate variables: 

T
mxxX ],...,[ 1=  and T

nyyY ],...,[ 1= . Particularly, for two univariate random 

variables, the canonical correlation is identical to the Pearson’s correlation. The key 
idea of CCA is to maximize the correlation between linear combinations of X  and 
Y denoted by xwxwxwU T

mm =++= ...111
and yvyvyvU T

nn =++= ...112
, 

respectively.  The canonical correlation equals to the largest eigenvalue of the matrix 
of 

yxyyxyxx CCCC 11 −− (or 
xyxxyxyy CCCC 11 −− ). Notice the value of network canonical 

correlation (
xyNCC ) is between 0 and 1 with 0 indicating no dependence and 1 

indicating full dependence.  

2.2   Network-Level Partial Correlation through Multivariate Regression 

In bivariate statistics, partial correlation is used to assess potential mediation effect, 
which is defined as the correlation between two random variables after controlling for 
another “mediator” variable. Specifically, partial correlation zxy /ρ between two 

random variables xand y controlling for another variable z  can be computed as the 

Pearson’s correlation between the residuals xε and yε from two linear regression 

equations: 

xzxx εβ ++= 10
                                              (1)

        
 

yzyy εβ ++= 20
                                             (2)

 

For mediation analysis, zxy /ρ  denotes the correlation remained between x and 

y when all mediating effect of z  is removed and the differences between the 

ordinary correlation xyρ and zxy /ρ , represent the amount of mediation that z exerts 

on the relation between xand y .  

Since the primary focus of this study is to depict correlation between two sets of 
variables, the above computational procedures are generalized to accommodate the 
multivariate property of this problem. For two sets of multivariate 
vectors T

mxxX ],...,[ 1=  and T
nyyY ],...,[ 1= , and another set of independent 
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covariates T
pzzZ ],...,[ 1= , influences from which will be removed, Eq.1 and Eq. 2 

can be written as: 

xEZXX +Β+= 10
                                               (3) 

yEZYY +Β+= 20
                                                (4) 

where xE and yE  are  the residual vectors of X and Y, respectively, after regressing 

on the variable set of Z. Subsequently, the canonical correlation coefficient of 

xE and
yE  can be calculated, representing the partial correlation 

ZXYNPC /
between 

the two sets of variables (networks) X and Y. The difference of 

ZXYXY NPCNCC /− thus represents the potential mediation effects of Z exerting on 

the relation between X and Y.   

2.3   Resampling to Define Significance of Network-Level Correlation  

After calculating network-level correlations, the next question is to determine whether 
a certain correlation is statistically significant. Rather than testing the null hypothesis 
of zero interaction using random signal, we prompt to use a null distribution derived 
from resampling of the actual brain signals. Specifically, this null distribution is 
obtained by randomly permuting a set of reference regions into two sets and 
calculating their network level correlations. The reference regions are chosen to be 
those that demonstrate the minimum possible interactions (according to the absolute 
values of Pearson’s correlation) among each other from the 90 pre-defined brain 
regions covering the whole brain [9]. The rationales behind this choice are (i) the 
wide spread dependence (either positive or negative correlation) between different 
brain regions and (ii) the large number of regions involved in each network. This 
means that even by randomly selecting a number of regions (among the least 
interacted regions) to construct two networks, certain amount of dependence between 
them is possible, which can be reasonably defined as the “baseline” for network-level 
correlations. As a result, network-level interactions that are comparable to this 
baseline should be excluded and only those that are statistically higher should be 
considered.  

More specifically, based on the 90 ROI template [9], we selected a set of 15 
reference regions during each state, which were then randomly distributed to 2 
networks with 6 and 9 regions (equal to the largest possible combination of number of 
regions in the five selected networks, details in Section 3) and the network-level 
correlations were calculated 1000 times to generate the null distribution for each state, 
from which the p-value for each correlation can be defined using appearance ratio. 
This process was done for each subject and the obtained p-values were combined 
across subjects to give a group p-value using the Fisher’s method [10] for each 
correlation. Significant correlations were defined at 05.0=α after correcting for 
multiple comparisons using FDR [11]. The same procedures were done for each of 
the three states examined. 
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3   Materials 

A total of 19 healthy subjects (age 25~33, 7F, all right-handed) were recruited in this 
study. A T2*-weighted EPI sequence was used to acquire fcMRI signal on a 3T 
scanner: TR = 2sec, TE = 32 ms; 33 slices; and voxel size = 4x4x4 mm3. This 
sequence was repeated 150 times (~5 min) for each of the three states. During resting, 
subjects were instructed to relax and remain still but keep eyes closed. During finger 
tapping, subjects were instructed to continuously touching the thumb to each of the 
other fingers in a sequential manner at a roughly consistent pace (~1Hz) with eyes 
closed. For movie watching, the movie clip contains shallow sea scenes.  

After standard preprocessing steps, including time shifting, motion correction, 
spatial smoothing (6-mm FWHM Gaussian kernel), and band filtering (<0.08Hz), 
nuisance sources of variance (white matter, CSF and the mean global signal) were 
removed through regression. Three subjects were excluded from the subsequent 
analysis because of excessive head motion. Images of the first ten time points were 
excluded to allow magnetization reaching a steady state. Spatial normalization to 
MNI template was achieved using nonlinear registration and regional parcellation was 
done base on Tzourio-Mazoyer et al [9].  

 

Fig. 2. ROIs defined for the five networks based on functional correlation map 

The network definition is similar as that done by Van Dijk et al [2], which is based 
on the combined consideration of (i) prior knowledge of network composition and (ii) 
the study-specific functional correlation map. Specifically, regions of interest (ROIs) 
were defined as 8-mm spheres around the detected peaks (high correlation values) to 
construct the corresponding networks. For peak definition, an initial seed in the 
posterior cingulate cortex (PCC) was used to compute a group mean correlation map 
which was then used to indentify peaks within the DF network, including the medial 
prefrontal cortex (MPFC), bilateral inferior parietal lobule (IPL) and hippocampus 
formation (HF). Given the well-established anti-correlation with DF [3], the negative 
peaks of the PCC correlation map were identified for regions in the DA network, 
including the bilateral intra-parietal sulcus (IPS), frontal eye field (FEF) and middle 
temporal area (MT+). For FPC, the seeds were centered at the bilateral aPFC [8] to 
define peaks in nodes, including the anterior cingualte cortex (ACC), dorsolateral 
prefrontal cortex (dlPFC), anterior insula (aINS), and anterior inferior parietal lobule 
(aIPL). In addition, the MS and V networks were similarly defined using the bilateral 
postcentral and calcarine cortex as initial seeds, respectively, to define peaks in 
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precentral/postcentral gyrus (PreC, PoC), supplementary motor-sensory area (SMA) 
for MS and bilateral calcarine (Cal), cuneus (CS), and lateral occipital (LO) for V. 
Note all functional network definitions were based on the resting state data and 
altogether there are 6, 9, 6, 5, and 6 regions for DA, FPC, DF, MS and V, 
respectively, which are presented in Fig.2. 

4   Experimental Results 

The network-level correlation patterns using the spring-embedding plots are presented 
in Fig.3. The width of edges corresponds to the strength of interactions. Moreover, the 
statistical grouping of the set of interaction values are also achieved using the Tukey’s 
test at 05.0=α  to detect those that are significantly higher than the rest during each 
state (red asterisks in Fig.3).   

 

Fig. 3. The network-level correlation pattern during the three examined states. The value 
besides each connection represents the group average network-level correlation. Red asterisks 
indicate statistically stronger correlations using Tukey’s test at 05.0=α .  

During the resting state, only three significant connections exist with FPC at the 
center and connected with DA, DF, and V while MS is left alone. This sparse 
structure shows minimal interactions among networks during resting but the center 
position of FPC implies its significant “bridging” role, which will be specifically 
tested later. During finger tapping, the interaction pattern becomes much more 
extensive: besides the observed 3 interactions during resting, DA now significantly 
interacts with MS, which is highly expected given the apparent attentional 
requirement. In addition, this observation could also suggest DA’s top-down control 
over MS for successful task performance[12]. Moreover, the DA-DF also becomes 
significant which is consistent with the previously reported increased anti-correlation 
between them during goal-directed tasks [4]. Other significant interactions include 
DA-V, and FPC-MS. During movie watching, the changes are less extensive but still 
two more interactions (DA-MS, FPC-MS) emerge which might be due to the 
increased control over eye movement. Overall, minimal network-level interactions 
during resting together with the enhanced interactions during the two task states 
indicate increased coordination/competition between networks during task 
performance.  

Another interesting pattern is that interactions between FPC-DA and FPC-DF 
persist across all three states and they are statistically stronger than other interactions  
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Fig. 4. Mediation analysis on the network-level interaction between DA and DF during three 
examined states. (a) mediation effect of FPC by comparing the interaction values (DA-DF) 
before (green dots) and after regressing out its effect (pink dots); (b) comparisons of FPC’s 
mediation effect on DA-DF with that of V and MS across all three states.  

during both finger taping and movie watching (except DA-MS, which is comparable, 
Fig.3). These findings clearly indicate the importance of this triad system and are 
consistent with the hypothesis [8] that FPC might regulate the two opposing systems-
DA and DF. To directly test this hypothesis, network-level partial correlation between 
DA and DF using FPC as a control network was calculated during each state and the 
interaction values before and after this regression were compared to test the mediation 
role of FPC between these two systems. The results are shown in Fig.4a, where a 
significant reduction of interaction strength is observed for all three states (p=0.0012, 
0.0377, and 0.0105 using one way ANOVA), strongly supporting FPC’s regulation 
role on DA and DF. Moreover, this effect (by taking the difference between values 
before and after regressing out of its effect) is compared among FPC, MS, and V 
(Fig.4b), where it shows that (i) FPC is the only network demonstrating significant 
correlation-reduction effect during resting; (ii) V fails to show any significant effect 
during any state; and (iii) although MS shows significant effect during the two task 
states, its effect is significantly weaker than that of FPC during movie watching. Note 
although causal relationship should be validated before concluding this regulating 
role, our results provide initial support for FPC’s regulating role over the two most 
salient, anti-correlated systems- DA and DF on the network level.  

5   Conclusion 

In this paper, we proposed a new multivariate network-level framework to quantify 
the correlations/partial correlations between large-scale systems and demonstrated its 
application during three different brain states, including resting, finger tapping and 
movie watching. Through direct application of multivariate techniques, our method is 
(i) free of information loss induced by averaging; (ii) able to handle networks of 
arbitrary size through dimension normalization; and (iii) able to detect potential 
mediation effects through multiple regressions. Experimental results show dramatic 
and extensive network correlation changes which are consistent with our expectations  
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and previous findings [8], underscoring the importance of network level coordination 
in task fulfillment. Moreover, network-level partial correlation analysis provides 
support for the potential regulating role of FPC over the two opposing systems-DA 
and DF.  
 
Acknowledgement. This work was supported in part by NSF (BCS-08-26844) and 
NIH (NS RO1055754, UL1-RR025747-01, MH086633, P01CA142538-01 and  
AG033387). 

References 

1. Biswal, B.B., Yetkin, F.Z., Haughton, V.M., Hyde, J.S.: Functional connectivity in the 
motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34, 537–
541 (1995) 

2. Van Dijk, K.R., Hedden, T., Venkataraman, A., Evans, K.C., Lazar, S.W., Buckner, R.L.: 
Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and 
optimization. J. Neurophysiol. 103, 297–321 (2010) 

3. Fox, M.D., Snyder, A.Z., Vincent, J.L., Corbetta, M., Van Essen, D.C., Raichle, M.E.: The 
human brain is intrinsically organized into dynamic, anticorrelated functional networks. 
Proc. Natl. Acad. Sci. USA 102, 9673–9678 (2005) 

4. Kelly, A.M., Uddin, L.Q., Biswal, B.B., Castellanos, F.X., Milham, M.P.: Competition 
between functional brain networks mediates behavioral variability. Neuroimage 39, 527–
537 (2008) 

5. Seeley, W.W., Crawford, R.K., Zhou, J., Miller, B.L., Greicius, M.D.: Neurodegenerative 
diseases target large-scale human brain networks. Neuron. 62, 42–52 (2009) 

6. Jafri, M.J., Pearlson, G.D., Stevens, M., Calhoun, V.D.: A method for functional network 
connectivity among spatially independent resting-state components in schizophrenia. 
Neuroimage 39, 1666–1681 (2008) 

7. Hotelling, H.: Relations between two sets of variants. Biometrika, 312–377 (1936) 
8. Vincent, J.L., Kahn, I., Snyder, A.Z., Raichle, M.E., Buckner, R.L.: Evidence for a 

frontoparietal control system revealed by intrinsic functional connectivity. J. 
Neurophysiol. 100(6), 3328–3342 (2008) 

9. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, 
N., Mazoyer, B., Joliot, M.: Automated anatomical labeling of activations in SPM using a 
macroscopic anatomical parcellation of the MNI MRI single-subject brain. 
Neuroimage 15(1), 273–289 (2002) 

10. Lazar, N.A., Luna, B., Sweeney, J.A., Eddy, W.F.: Combining brains: a survey of methods 
for statistical pooling of information. Neuroimage 16(2), 538–550 (2002) 

11. Benjamini, Y., Yekutieli, D.: The contorl of the false discovery rate in multilpe testing 
under dependency. Ann. Statist. 29, 1165–1188 (2001) 

12. Gordon, A.M., Lee, J.H., Flament, D., Ugurbil, K., Ebner, T.J.: Functional magnetic 
resonance imaging of motor, sensory, and posterior parietal cortical areas during 
performance of sequential typing movements. Exp. Brain Res. 121(2), 153–166 (1998) 



T. Jiang et al. (Eds.): MICCAI 2010, Part II, LNCS 6362, pp. 306–314, 2010. 
© Springer-Verlag Berlin Heidelberg 2010 

A Generalized Learning Based Framework  
for Fast Brain Image Registration 

Minjeong Kim, Guorong Wu, Pew-Thian Yap, and Dinggang Shen 

Department of Radiology and BRIC, University of North Carolina at Chapel Hill 
{mjkim,grwu,ptyap,dgshen}@med.unc.edu 

Abstract. This paper presents a generalized learning based framework for 
improving both speed and accuracy of the existing deformable registration 
method. The key of our framework involves the utilization of a support vector 
regression (SVR) to learn the correlation between brain image appearances and 
their corresponding shape deformations to a template, for helping significantly 
cut down the computation cost and improve the robustness to local minima by 
using the learned correlation to instantly predict a good subject-specific 
deformation initialization for any given subject under registration. Our 
framework consists of three major parts: 1) training of SVR models based on 
the statistics of image samples and their shape deformations to capture intrinsic 
image-deformation correlations, 2) deformation prediction for a new subject 
with the trained SVR models to generate a subject-resemblance intermediate 
template by warping the original template with the predicted deformations, and 
3) estimating of the residual deformation from the intermediate template to the 
subject for refined registration. Any existing deformable registration methods 
can be easily employed for training the SVR models and estimating the 
residual deformation. We have tested in this paper the two widely used 
deformable registration algorithms, i.e., HAMMER [1] and diffeomorphic 
demons [2], for demonstration of our proposed frameowrk. Experimental results 
show that, compared to the registration using the original methods (with no 
deformation prediction), our framework achieves a significant speedup (6X 
faster than HAMMER, and 3X faster than diffeomorphic demons), while 
maintaining comparable (or even slighly better) registration accuracy. 

1   Introduction 

Deformable registration of brain images has been extensively applied for facilitating 
identification of brain abnormality by comparison between normal and abnormal 
groups, and for constructing atlases to reflect structural and functional variation of 
individuals within a population. Most deformable registration methods, regardless 
intensity- or feature-based, aim to estimate deformation fields for better establishing 
structural correspondences between images. Although many methods have been pre-
viously proposed, determining a reasonable template-subject deformation remains a 
challenge due to large inter-subject structural variations. 

It is worth noting that the traditional registration methods usually lack a good de-
formation field initialization mechanism. This generally results in long computation 
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time arising from the need of estimating large complex deformations, and also vulne-
rability to misleading matching due to structural ambiguities. To attack these prob-
lems, we propose a learning based method to improve registration speed and accuracy 
by predicting a good initial deformation for bringing the template closer to the given 
subject. In this way, the remaining deformation from the intermediate template (IT) to 
the given subject becomes small, and thus can be easily estimated by many deforma-
ble registration methods. 

Recently, learning-based statistical deformation models [3-5] based on deformation 
features, i.e., wavelet coefficients, B-spline coefficients, or principal components, 
have been employed to improve registration accuracy by imposing more realistic 
registration constraints. Although these approaches have greatly improved registration 
accuracy, computation cost required for constraining and estimating the deformation 
field is still quite high.  

In this paper, we propose a generalized learning based framework for fast deform-
able registration, the key of which involves employing support vector regression 
(SVR) models for rapidly generating intermediate templates. Specifically, we first 
simulate a large number of training samples with the built image appearance and 
deformation statistical models. Next, we learn the SVR models for correlating image 
appearance features and their deformation coefficients (to the template). The learnt 
SVR models are finally applied to rapidly predict a good initial deformation for a 
given new subject. 

To our knowledge, this current work presents the first attempt to combine, via 
SVR, the statistics of brain image appearances and their deformation coefficients  
for effectively guiding deformable registration. It is not difficult to see that many 
conventional registration algorithms can be easily integrated into our framework for 
immediate improvement, since our framework is based upon image appearances and 
deformation coefficients, not on a specific deformation model.  

Experimental results on real brain images indicate that this SVR-based deformation 
prediction approach allows multi-fold speedup of deformable registration algorithms, 
i.e., 6X and 3X faster for HAMMER and diffeomorphic demons, respectively, while 
retaining similar (or even slightly better) registration accuracy.  

2   Method 

The goal of a deformable registration algorithm is to estimate a dense transformation 
field  for aligning a subject image  to a template , as shown in Fig. 1. Our ap-
proach involves decomposing the overall deformation field  into two parts: the esti-
mated initial deformation field  and the residual deformation field . We 
determine  automatically with the help of the regression model learnt by statis-
tical models of image appearances and deformation coefficients. To build the statis-
tical models, we first register (using HAMMER, or diffeomorphic demons) a number 
of training images, to obtain a set of training deformation fields (Fig. 1(a)). PCA is 
then employed on the deformation fields to capture the principal modes of brain de-
formations (Fig. 1(b)). A set of brain appearances (Fig. 1(c)), obtained by transform-
ing the training images to the template space, are inverse transformed to the subject  
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Fig. 1. Schematic illustration of the proposed registration framework 

space by the deformation fields generated via perturbing the PCA coefficients (for 
generating a large number of samples for training). Using these samples, SVR mod-
els, bridging the intrinsic appearance-deformation statistics, are trained (Fig. 1(d)). 
Then, given a new subject, an initial deformation field, as well as the corresponding 
intermediate template, can be instantly predicted by the trained SVR models (Fig. 
1(d)). Finally, the estimation of residual deformations from the intermediate template 
to the new subject can be performed at a significantly reduced computation cost due 
to their similarity. It is worth noting that all existing registration methods can be used 
for the preparation of training deformation fields (Fig. 1(a)), and for refining the reg-
istration from the intermediate template to the new subject . Details on statistical 
deformation and appearance models, sample simulation, and construction of SVR 
models will be given in the following subsections. 

2.1   Statistical Deformation-Appearance Model for Sample Simulation 

A sufficiently large set of training samples, covering an adequate space of brain shape 
variation, is important for effective training of the SVR models. Instead of simulating 
deformation fields based only on some statistical deformation models, as was pre-
viously done [6], we design a statistical model which incorporates both deformation 
and appearance information for simulating training samples.  

Statistical deformation model: Given a set of  brain images , their respective 
deformation fields  can be estimated by a deformable registration algorithm such as 
HAMMER or diffeomorphic demons. By applying PCA on , we can obtain a statis-
tical deformation model to capture brain shape variations. Specifically, the eigenvec-
tors of deformation covariance matrix represent the principal modes of variation, and 
their eigenvalues indicate the magnitude of deformation variation along the direction 
of each corresponding eigenvector. To characterize the principal shape changes, the 
eigenvectors with the top  largest eigenvalues are used for approximate representa-
tion of the original deformations. The reconstructed counterpart ,  of  ,  can 
be written as: 
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                                             , ∑ , Φ  ,                                         (1) 

where  denotes the mean deformation field, and   and Φ   are the eigenvalues and 
eigenvectors of the deformation covariance matrix. Each deformation field , , is 
represented in a subspace spanned by the eigenvectors using a deformation coeffi-

cient (column) vector , , … , … , , where , Φ / .  

Given that we are often faced with the problem of having a limited number of 
training samples in , we simulate additional brain images based on the statistical 
model of , to increase the robustness of estimating the brain appearance model. We 
generate  new deformation coefficient vectors ,  1 … , 1 …  for each 
coefficient vector ,  by perturbing it with , , i.e., , , , . The range of 
each element of the perturbation vector ,  is determined from the mean and standard 
deviation of the training deformation fields. Thus, a total of 1  simulated 
deformation fields ,  can be generated as below:  

                                         , ∑ , , Φ .                                 (2) 

Statistical brain appearance model: To build a more efficient statistical model 
which is capable of estimating deformation coefficients based on image features, we 
further enlarge the sample dataset by incorporating various brain appearances. Specif-
ically, we first align a set of  training images  onto the template space to get a set 
of  warped images in the template space. We then generate a series of new brain 
images ,  1 … , 1 … 1  by inverse deforming those M warped 
images from the template space to the individual spaces by the 1  deforma-
tion fields generated by Eq. 2. By including  initial training samples, our statistical 
model can generate a total of 1   samples, thus able to characterize a wide 
spectrum of deformation and image appearance.  

In order to obtain an appearance model feasible for training the regression models, 
we employ a few strategies to reduce the dimensionality of  before building the ap-
pearance model. For each sample image , , the background voxels will be first 
cropped away and then the remained image will be down-sampled, obtaining , . To 
better represent the shape variation of each sample image , , we further extract 
brain boundaries along the interfaces between WM, GM, and CSF as the shape de-
scriptors to construct a signature image , . Next, we apply PCA to each signature 
image ,  to represent it by a (low) D-dimensional column vector  , , called as 
signature map ( ).  

2.2   Construction of SVR Models  

After obtaining the deformation coefficient vectors ,  and their corresponding signa-
ture maps , , we start to learn their correlations by support vector regression 
(SVR) models. Specifically, we train  SVR models, with each responsible for learn-
ing the non-linear regression of each row of the deformation coefficient matrix  
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… , …  with respect to the signature maps  … , … . SVR is a supervised learning technique for finding non-
linear mapping functions which correlate a number of input variables (features) to a 
continuous output variable (targets). The features in our case are therefore the signa-
ture maps  and the targets are the rows of the deformation coefficient 
matrix . We note here that a common set of signature maps  is used as 
the features for all regression models, while the  row of deformation coefficient 
matrix  is used independently as the targets for the  regression model.  

For the nonlinear regression, we use a radial basis function (RBF) as the kernel 
function, and optimize several SVR meta-parameters for building more reliable re-
gression models. We first estimate the kernel size based on the distribution of each 
signature map , , i.e., the average of the distances from all possible pairs of , . 
To achieve the global minimum with reliable generalization bound of the regression 
function, we optimize the parameters  and . Parameter  is used to control the width 
of the insensitive zone which penalizes the training data outside this zone. Constant  0  determines the trade-off between the flatness of the regression function and 
the tolerance to deviation larger than . The value of  and  can be calculated as [7]: 

                                 ε · ln /                                     (3) 

                                    max | 3 |, | 3 | ,                                       (4) 

where  is the standard deviation of distances between all pairs of , ,  is an 
empirical constant, and  is the number of signature maps used as features for 
regression.  and  are the mean and the standard deviation of the deformation coef-
ficients , , respectively.  

2.3   Deformation Prediction for New Subject 

After training the regression models, a good initial deformation can be rapidly pre-
dicted for any given subject, to bring the template close to the given subject and thus 
facilitate fast and robust registration. Specifically, for a given subject , its signiture 
map  will be first computed by projection onto the  top eigenvectors (Section 
2.2) after affine alignment to the template by FSL FLIRT. The deformation coeffi-
cients  …  can then be predicted one by one through each SVR model. 
Next, it is straightforward to obtain the initial deformation  for subject  by Eq. 
1 and also the corresponding intermediate template by warping the template with 
respect to . Now we only need to estimate the residual deformation from the 
intermediate template to the subject, instead of the original template to the subject as 
done in many conventional registration algorithms. This step helps save a significant 
amount of computation cost for overall registration, and also circumvents the error-
prone approach of estimating large deformations from the original template to the 
subject. After estimating  (by a conventional registration method, i.e., HAM-
MER or diffeomorphic demons),   and   are concatenated to form a final 
deformation field, from the template to the subject. 
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3   Experimental Results 

We use both HAMMER and diffeomorphic demons for evaluation of our framework 
and demonstration of its generality. Note that our intention here is not to compare 
HAMMER and diffeomorphic demons. 

3.1   Deformation Prediction 

We select randomly  50 images from a MR brain image database for training. By 
using both HAMMER and diffeomorphic demons, we first estimate the deformation 
fields of all these images with respect to a selected template (Fig. 2a). By applying 
PCA, we can build a statistical deformation model with 49 modes from the 49 eigen-
vectors with non-zero eigenvalues. For denser sampling of the deformation field 
space, we apply  4 perturbations, thus giving us a total of 1  250 de-
formation samples, and 1  12500 brain image samples by inverse deform-
ing those 50 aligned images from the template space to the individual spaces. We then 
use half (i.e., 6250) of the deformation-image pairs for training the SVR models, and 
the other half for testing. The averaged prediction error for all deformation coeffi-
cients on the training and testing data is 0.1% and 7.8%, respectively. Since the test-
ing data is not used for training, its error is larger than the training error, which is 
reasonable. This result also indicates that our model is able to predict very good initial 
deformations for the testing data, which can significantly help reduce the computation 
cost and registration robustness as reported below.  

Given a new subject, we can align it linearly to the template space, and further build 
its signature map by down-sampling, feature extraction and dimensionality reduction. 
Then, we can use the SVR models, constructed in the training stage, to predict the 
initial deformation for the subject. To evaluate the quality of the predicted deforma-
tions, we use 50 new images (not used for training) to show their predicted interme-
diate templates in Fig. 2. These results indicate that our method can predict very good  
 

(a) template 

(b) test 
     images 

(c) intermediate  
   templates  
   by employing  
   HAMMER 

(d) intermediate  
   templates  
   by employing  
   diffeomorphic 

  demons 
 

Fig. 2. Demonstration of the intermediate templates (c) and (d) estimated for 5 test images (b), 
by using HAMMER and diffeomorphic demons, respectively. Compared to the original tem-
plate (a), the intermediate templates by both methods are very close to the test images, implying 
that our framework has generality for incorporation of different registration methods. 
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Fig. 4. Average overlap ratios of aligned ROIs. (a) HAMMER with and without our frame-
work, and (b) diffeomorphic demons with and without our framework. 

3.3   Speed 

Lower computation cost requirement is one of the key advantages of our proposed 
framework. We use 50 test images of size 256x256x198 to compare the average de-
formation estimation time of HAMMER and diffeomorphic demons, with and without 
use of our framework. For similar registration accuracy, HAMMER alone took 90 
minutes, and the computation time is reduced to 16 minutes with use of our frame-
work. This indicates about six fold of speed improvement. Diffeomorphic demons 
alone took 219 seconds, and our framework can help reduce the overall computation 
time by threefold to 71 seconds.  

4   Conclusion 

A fast deformable brain registration framework using a novel deformation prediction 
model has been presented. Specifically, regression models are trained to capture the 
correlations between image appearances and deformation coefficients. The learnt 
correlation models are then used to predict rapidly a good initial deformation, as well 
as the corresponding intermediate template, for any given image. Since the shape 
difference between the intermediate template and the given image becomes small, the 
conventional registration methods (i.e., HAMMER and diffeomorphic demons) when 
incorporated into our framework can perform much faster with comparable accuracy. 
Future work includes testing more registration methods in the proposed framework 
such as the B-spline based registration methods. 
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Abstract. Cellular processes are crucial for cells to survive and func-

tion properly. To study their underlying mechanisms quantitatively with

fluorescent live cell microscopy, it is necessary to track a large num-

ber of particles involved in these processes. In this paper, we present

a method to automatically track particles, called clathrin coated pits

(CCPs), which are formed in clathrin mediated endocytosis (CME). The

tracking method is developed based on a MAP framework, and it consists

of particle detection and trajectory estimation. To detect particles in 2D

images and take account of Poisson noise, a Gaussian mixture model is

fitted to image data, for which initial parameters are provided by a com-

bination of image filtering and histogram based thresholding methods.

A multiple hypothesis based algorithm is developed to estimate the tra-

jectories based on detection data. To use the current knowledge about

CCPs, their properties of motion and intensity are considered in our

models. The tracking method is evaluated on synthetic data and real

data, and experimental results show that it has high accuracy and is in

good agreement with manual tracking.

1 Introduction

Clathrin mediated endocytosis (CME) [1] is an essential cellular process that
cells use to take up nutrients, to internalize plasma membrane proteins, and to
recycle lipid components on the plasma membrane. The study of the process is
important in fundamental biological research and virology. It has been found out
that the dysfunctions of the process in neurons are correlated to several diseases
[1], and CME is one of the major pathways through which viruses enter cells [2].
To understand the process quantitatively, it is necessary to track a large number
of particles formed in the process, called clathrin coated pits (CCPs), and obtain
their statistics. Since manual tracking is infeasible for large datasets, automatic
tracking is important for quantitative studies.

The process can be divided into several stages [1] as illustrated in Fig. 1:
clathrin coat assembly, clathrin coat maturation, clathrin coated pits fission into
clathrin coated vesicles (CCVs), and finally vesicles uncoating clathrin. Recent
advancement in fluorescent live cell microscopy, e.g., spinning disc confocal mi-
croscopy (SDCM) and total internal reflection florescent microscopy (TIRFM),
� This work is supported by Keck Foundation.

T. Jiang et al. (Eds.): MICCAI 2010, Part II, LNCS 6362, pp. 315–322, 2010.
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Fig. 1. (a) Different stages of CME. (b) An image taken with SDCM. (c) A sequence

showing a CCP in different stages.

enables us to observe CCPs till fission at single particle resolution. As shown in
Fig. 1, there are innumerable CCPs on the cell membrane.

Tracking consists of detecting CCPs in each 2D image and estimating the
trajectories based on detection data. Although numerous methods for general
point tracking have been proposed [3,4], some assumptions on object motion
may not be valid for fluorescent particles. Many methods for tracking fluores-
cent particles have been developed [5,6,7,8,9,10]. In these methods, fluorescent
particles are assumed to move with a nearly constant or slow varying velocity,
or undergo free diffusion, and their intensities are only related to imaging con-
ditions or their positions. Recently a method [10] is reported for CCP tracking,
whose main focus is on data association algorithms. CCPs are not featureless
points in images and have their own properties different from other fluorescent
particles. CCPs can be created at any time but the rate is limited. Each CCP is
connected to cell membrane and can not move freely, and its intensity changes
in different stages. To achieve a high tracking accuracy, these properties must
be considered.

We present an automatic tracking method based on a MAP framework. A
constrained Brownian model is proposed for CCP motion. A linear Gaussian
model is used to describe CCP intensity over time. For detection, several methods
are used to find reliable positions and intensities of CCPs in each image. A
multiple hypothesis based algorithm is developed to find the best trajectories.

2 Method

2.1 The Tracking Framework

Let It be the image at time t (frame index), St be the joint state of all CCPs at
time t, and T be the total number of images. The goal is to find the set of joint
states that maximizes a posterior probability:{

Ŝ1, ..., ŜT

}
= arg max

S1 to ST

p (S1, ..., ST |I1, ..., IT ) (1)
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Assuming CCPs are statistically independent of each other and the process is
Markovian, then we obtain

p (S1, ..., ST |I1, ..., IT ) ∝ p (S1)
T∏

t=2

p (St|St−1)
T∏

t=1

p (It|St) (2)

p (St|St−1) =
N∏

i=1

p
(
X i

t |X i
t−1

)
(3)

X i
t is the state of the CCP associated with the ith trajectory at time t, and it

consists of position, fluorescent intensity and its derivative. The joint state St =[
X1

t , X2
t , ..., XN

t

]
, and N is the upper bound on the number of CCP trajectories.

p (S1) is assumed to be uniform distribution. p (It|St) and p
(
X i

t |X i
t−1

)
will be

discussed in section 2.2 and section 2.3 respectively.
Since it is difficult to find the optimal solution of Eq.(1) directly when the CCP

number is large, we adopt a conventional strategy, i.e., trajectory estimation af-
ter detection. Detection is to find CCP positions and intensities that maximize
p (It|St) at each time t. Trajectory estimation is to find the correspondences of
CCPs in different frames that maximize the product

∏T
t=2 p (St|St−1). Detec-

tions are performed frame by frame. A multiple hypothesis based algorithm is
developed to find the best trajectories given the detection data.

2.2 Detection

In biological experiments, to visualize the dynamics of CCPs, proteins of interest
(e.g., clathrin or AP-2 complex in each CCP [1]) are fluorescently labeled, and
SDCM or TIRFM is used to obtain time lapse images. The size of each CCP
is comparable to the size of the diffraction limited airy disk. As a result, the
intensity distribution of each CCP can be described by the point spread function
(PSF) which is well approximated by a Gaussian function [11]. During the image
capture process in the CCD camera, several types of noises are generated [5]. The
major one is shot noise [5] which follows a Poisson distribution and is assumed
to be independent at each pixel. Here, we drop the time index of each variable
for simplicity. Let F be the fluorescence image without noises, and b be the
background intensity level, then we obtain

F(x,y) =
K∑

k=1

f (k) exp

(
−
(
x− x(k)

)2
+
(
y − y(k)

)2
2σ2

)
+ b (4)

where
(
x(k), y(k)

)
and f (k) are position and intensity of the detected particle

(CCP) k in the image F .
The detection is to find the set of variables

{
b, x(k), y(k), f (k), k = 1, ..., K

}
that maximize the probability p (I|S) in Eq.(2) at each time t, which is given by

p (I|S) = Poisson (I|F ) =
∏
(x,y)

F
I(x,y)

(x,y) e−F(x,y)

I(x,y)!
(5)
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Fig. 2. TIRFM is used and clathrin is fluorescently labeled. (a) Histogram of an original

image with fitted distributions. (b) Histogram of the local maxima on the filtered image

with fitted distributions. (c) A cropped region. (d) The positions of detected CCPs in

the region.

By taking the logarithm, it is equivalent to find the minimum of the function:

E(b,x(k),y(k),f(k),k=1,...,K) =
∑
(x,y)

(
F(x,y) − I(x,y) log

(
F(x,y)

))
(6)

The optimal solution can be obtained by using gradient based optimization.
Mixture model fitting has been used by some methods [6] to detect fluorescent
particles, for which Gaussian image noise is assumed. Here, we use Poisson noise
model that fits the image noise well. The background intensity level is estimated
by the mean of background intensities. To determine the number of CCPs, we
adopt a bottom-up scheme similar to the approach in [6]. To obtain initial values
of CCP positions and intensities, we use several methods as shown in Fig. 3. First,
local maxima are located by using normalized Laplacian of Gaussian (LoG) filter.
Many of them are induced by noises. To separate signals from noises, Gaussian
mixture models with two components are fitted to the histograms of the original
image and the local maxima (in the filtered image) by invoking EM algorithm.
After thresholding, the surviving local maxima give the initial values.

2.3 Motion and Intensity Modeling

Xt is the state of a CCP at time t and Xt = [xt, yt, ft, gt]
′. (xt, yt) is the position

in the x-y plane, ft is the fluorescence intensity, and gt is the derivative of ft with
respect to t. Here, we drop the trajectory-index of each variable for simplicity.
p (Xt|Xt−1) in Eq.(3) is the state evolution model and can be factorized as

p (Xt|Xt−1) = p (xt, yt|xt−1, yt−1) p (ft, gt|ft−1, gt−1) (7)

p (xt, yt|xt−1, yt−1) is the motion model, and p (ft, gt|ft−1, gt−1) is the model
of fluorescence intensity over time. The factorization is based on the plausible
assumption that intensities are independent with x-y positions for each CCP.

Motion Modeling: CCP motion is mainly caused by two factors. First, tiny
molecules in cytosol randomly bombard CCPs, which causes CCPs to move. Sec-
ond, the forces induced by clathrin coat assembly will cause vibrations of CCPs.
Since each CCP is connected to the plasma membrane, it can only move within
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Fig. 3. TIRFM is used and AP-2 complex is fluorescently labeled. (a) The intensity-

time curve of the CCP. (b) Each red dot indicates the position at each time t, and each

green curve shows the trajectory up to each time t.

a restricted region as shown in Fig. 3. Therefore, we propose the constrained
Brownian motion model to describe CCP motion, given by

p (xt, yt|xt−1, yt−1)

∝ exp

(
− (xt − xt−1)

2 + (yt − yt−1)
2

2σ2
m

)
exp

(
− (xt − xc)

2 + (yt − yc)
2

2σ2
c

)
(8)

where xc = 1
t−t1+1

∑t
τ=t1

xτ and yc = 1
t−t1+1

∑t
τ=t1

yτ . t1 is the starting time
of the trajectory. σm and σc are estimated from training data.

Intensity Modeling: CCP intensity changes over time. Fig. 3 shows a typical
intensity-time curve. The gradual increase of fluorescence intensity corresponds
to CCP creation and growth. The decrease indicates that the connection between
the CCP and cell membrane will be cut off, and then it will disappear quickly
in the image. Therefore, intensity over time is directly modeled by using a linear
Gaussian model, given by

p (ft, gt|ft−1, gt−1)

∝ exp
(
−1

2
[ft − ft−1, gt − gt−1] Q−1 [ft − ft−1, gt − gt−1]

′
)

(9)

where Q is learned from training data.

2.4 Trajectory Estimation

There are many general methods [12] for solving the correspondence problem
given the detection data. We use the multiple hypothesis approach [13] due to
its flexibility, and tailor it to our application.

Suppose the CCP trajectory i starts from time (frame) t1 and ends at time
t2. The lifetime of the CCP is t2 − t1 + 1. The cost of the trajectory is defined
as Ci = −

∑T
t=2 log p

(
X i

t |X i
t−1

)
.
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The cost of the correspondence between the CCP trajectory i in frame t − 1
and the detected CCP k in frame t is defined as C (i, k) = − log p

(
X

(k)
t |X i

t−1

)
.

Here, X
(k)
t is the kth “candidate” for state X i

t , and X
(k)
t =

[
x

(k)
t , y

(k)
t , f

(k)
t , g

(k)
t

]′
.

Measurements of the states are provided by the detection module discussed in
section 2.2. Since the key biological parameter is CCP lifetime, measurement
noises of positions and intensities can be ignored.

To deal with CCP appearing, set X i
t1−1 =

[
xi

t1 , y
i
t1 , bt1 + γσb(t1), 0

]′, which
means the CCP’s intensity is low when it is created. To deal with CCP disap-
pearing, set X i

t2+1 =
[
xi

t2 + Δx, yi
t2 + Δy, bt2 + γσb(t2), 0

]′, which means it will
leave the current position with a low intensity. bt is the background intensity
level, and σb(t) is the standard deviation of background intensities. Δx and Δy
are set to ησm. Multiplication factors (γ and η) are learned from training data.
For t ∈ [1, t1 − 1] ∪ [t2 + 2, T ] , set p

(
X i

t |X i
t−1

)
=constant(> 0), which means

the states are irrelevant when the CCP has not been created or has disappeared.
By using Eq.(3), the total cost is defined as

Ctotal = − log

(
T∏

t=2

p (St|St−1)

)
= −

N∑
i=1

T∑
t=2

log p
(
X i

t |X i
t−1

)
=

N∑
i=1

Ci (10)

With these cost functions, multiple hypotheses can be generated and pruned
to find the correspondences associated with the minimal total cost. We develop
an algorithm based on MHT [13]. The generation of hypotheses is achieved by
random sampling according to the soft-assign matrices [14].

3 Experimental Results

3.1 Evaluation on Synthetic Data

The proposed method is evaluated on synthetic 2D image datasets. Each dataset
is generated from a noise-free image sequence of moving particles (200 images of
120x120 pixels) by adding different level of noises, and the number of particles
(CCPs) is 386. To simulate CCP motion, we fit Gaussian distributions to the his-
tograms of displacements and deviations from the mean positions, and therefore
trajectories can be generated by sampling from these fitted distributions. Each
simulated CCP has a linear intensity-time curve. We choose exponential distri-
bution as the lifetime distribution based on the current knowledge about CCPs.
If a CCP’s intensity is near the background level, it may not be discriminated
from noise. Therefore, the SNR of a dataset is defined as

SNR =
Average CCP Intensity −Average Background Intensity

Standard Deviation of Background Intensities

Since the key parameter is CCP lifetime, tracking accuracy is defined as

Accuracy =
∑

k (Number of Correct Associations for the Trajectory k)∑
k (True Lifetime of the CCP with the Trajectory k)
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Fig. 4. (a) Accuracy-SNR curves. (b) Empirical cumulative distribution functions

(CDFs) of lifetimes. (c) Samples of trajectories obtained by using the proposed method.

(d) Samples of trajectories obtained by using the trajectory estimation module of the

method in [10]. Red dots indicate the positions of the CCPs at t=33 and green curves

show their trajectories up to the time t.

The definition is similar to the metric in [15]. The best match between ground
truth trajectories and estimated trajectories are found by using the matching
algorithm in [15]. Supposing that the estimated trajectory k is matched to the
ground truth trajectory n, if a detected CCP in any frame is associated with
both trajectories, then the estimated trajectory k has a correct association.

We also test the method reported in [10]. It uses pure Brownian motion model
which allows CCPs move freely, and it does not consider intensity variations of
individual CCPs. For detection, its model fitting module is selected because
CCPs are homogeneous in the simulation.

The Accuracy - SNR curves are shown in Fig. 4(a). The proposed method is
consistently more accurate, most likely in part due to the better models.

3.2 Evaluation on Real Data

COS7 cells were electroporated with clathrin light chain GFP construct using
the Amaxa Nucleofector method, and were plated at subconfluent densities into
35mm glass bottom dishes, and allowed to grow for 12 to 48 hours. Then, TIRFM
images were acquired using an inverted microscope equipped with a high nu-
merical aperture (NA=1.49, 60X) lens (Olympus) and a back illuminated Andor
iXon887 EMCCD camera, controlled by Andor iQ software (Andor Technology).

Since ground truth is not available, 30 CCPs are manually tracked by a hu-
man expert biologist, to serve as reference data. To show the effectiveness of
the proposed CCP models, we test the trajectory estimation modules of the
proposed method and the method in [10] based on the same detection data
provided by the method in section 2.2. The results are shown in Fig. 4(b)–(d).
Kolmogorov-Smirnov test (KS-test) is used to measure the difference between
lifetime distributions. The proposed method has good agreement with manual
tracking (p>0.5). The alternative method produces longer trajectories (p<0.01),
which is most likely to happen when new CCPs appear in the vicinities of dis-
appeared CCPs. Thus, better models are helpful to prevent erroneous links.
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4 Conclusion

We have proposed a method to automatically track Clathrin Coated Pits (CCPs)
in clathrin mediated endocytosis (CME). Starting from a MAP framework, we
have developed algorithms for CCP detection and trajectory estimation. Some
properties of CCPs are considered in our models, which is different from related
works. We also consider the Poisson image noise in the mixture model fitting
procedure. The proposed method has been demonstrated on synthetic data and
real data. It will be used by the biologists to investigate mechanisms of CME.

References

1. Slepnev, V.I., Camilli, P.D.: Accessory factors in clathrin-dependent synaptic vesi-

cle endocytosis. Nature Reviews Neuroscience 1, 161–172 (2000)

2. Brandenburg, B., Zhuang, X.: Virus trafficking - learning from single-virus tracking.

Nature Reviews Microbiology 5, 197–208 (2007)

3. Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM Journal of Com-

puting Surveys 38(4) (2006)

4. Veenman, C.J., Reinders, M.J.T., Backer, E.: Resolving motion correspondence

for densely moving points. IEEE Trans. on Pattern Analysis and Machine Intelli-

gence 23(1), 54–72 (2001)

5. Carter, B.C., Shubeita, G.T., Gross, S.P.: Tracking single-particles: a user-friendly

quantitative evaluation. Physical Biology 2, 60–72 (2005)

6. Thomann, D., Rines, D.R., Sorger, P.K., Danuser, G.: Automatic fluorescent tag

detection in 3D with super-resolution: application to the analysis of chromosome

movement. J. of Microscopy 208(1), 49–64 (2002)

7. Sbalzarini, I.F., Koumoutsakos, P.: Feature point tracking and trajectory analysis

for video imaging in cell biology. J. of Structural Biology 151, 182–195 (2005)

8. Yang, G., Matov, A., Danuser, G.: Reliable tracking of large-scale dense particle

motion for fluorescent live cell imaging. In: Proc. of IEEE Int. Conf. Computer

Vision and Pattern Recognition (2005)

9. Smal, I., Niessen, W.J., Meijering, E.: Advanced particle filtering for multiple ob-

ject tracking in dynamic fluorescence microscopy images. In: IEEE Int. Symposium

on Biomedical Imaging: From Nano to Macro, 1048–1051 (2007)

10. Jaqaman, K., Loerke, D., Mettlen, M., Kuwata, H., Grinstein, S., Schmid, S.L.L.,

Danuser, G.: Robust single-particle tracking in live-cell time-lapse sequences. Na-

ture methods 5, 695–702 (2008)

11. Zhang, B., Zerubia, J., Olivo-Marin, J.-C.: Gaussian approximations of fluorescence

microscope point-spread function models. Applied Optics 46(10), 1819–1829 (2007)

12. Poore, A.B., Gadaleta, S.: Some assignment problems arising from multiple target

tracking. Mathematical and Computer Modelling 43, 1074–1091 (2006)

13. Reid, D.B.: An algorithm for tracking multiple targets. IEEE Trans. on Automatic

Control 24, 843–854 (1979)

14. Rangarajan, A., Chui, H., Bookstein, F.L.: The softassign procrustes matching

algorithm. In: Duncan, J.S., Gindi, G. (eds.) IPMI 1997. LNCS, vol. 1230, pp.

29–42. Springer, Heidelberg (1997)

15. Kasturi, R., et al.: Framework for performance evaluation of face, text, and vehi-

cle detection and tracking in video: data, metrics, and protocol. IEEE Trans. on

Pattern Analysis and Machine Intelligence 31(2), 319–336 (2009)



Shape-Based Diffeomorphic Registration on
Hippocampal Surfaces Using Beltrami

Holomorphic Flow

Lok Ming Lui1,2, Tsz Wai Wong2, Paul Thompson3, Tony Chan4,
Xianfeng Gu5, and Shing-Tung Yau1

1 Department of Mathematics, Harvard University, Cambridge, MA, USA
2 Department of Mathematics, UCLA, Los Angeles, CA, USA

3 Laboratory of Neuro Imaging, UCLA School of Medicine, Los Angeles, CA, USA
4 Hong Kong University of Science and Technology, Hong Kong

5 Department of Computer Science, SUNY Stony Brook, Stony Brook, NY, USA

Abstract. We develop a new algorithm to automatically register hip-

pocampal(HP) surfaces with complete geometric matching, avoiding the

need to manually label landmark features. A good registration depends

on a reasonable choice of shape energy that measures the dissimilarity be-

tween surfaces. In our work, we first propose a complete shape index us-

ing the Beltrami coefficient and curvatures, which measures subtle local

differences. The proposed shape energy is zero if and only if two shapes

are identical up to a rigid motion. We then seek the best surface registra-

tion by minimizing the shape energy. We propose a simple representation

of surface diffeomorphisms using Beltrami coefficients, which simplifies

the optimization process. We then iteratively minimize the shape energy

using the proposed Beltrami Holomorphic flow (BHF) method. Experi-

mental results on 212 HP of normal and diseased (Alzheimer’s disease)

subjects show our proposed algorithm is effective in registering HP sur-

faces with complete geometric matching. The proposed shape energy can

also capture local shape differences between HP for disease analysis.

1 Introduction

The hippocampus(HP) is an important subcortical structure of the human brain
that plays a key role in long-term memory and spatial navigation. Surface-based
shape analysis is commonly used to study local changes of HP surfaces due
to pathologies such as Alzheimer disease (AD), schizophrenia and epilepsy[11].
When comparing data on two anatomical surfaces, a 1-1 correspondence must
be computed to register one surface nonlinearly onto the other. On HP surfaces,
there are no well-defined anatomical landmark features that can be used as a
constraint to establish good correspondences. High-field structural or functional
imaging, where discrete cellular fields are evident [15], is still not routinely used.
Finding meaningful registrations between HP surfaces becomes challenging. In-
accuracies in shape analysis are often introduced due to incorrect registrations.
In fact, shape analysis and surface registration are closely related. The results of
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Fig. 1. Representation of surface registration using Beltrami Coefficients

shape analysis can be highly affected by the registration, but a good registration
depends largely on the appropriate choice of shape measure that captures dis-
similarities between surfaces. Therefore, it is of utmost importance to combine
the two processes and define a suitable shape measure to drive the registration.

Here we developed an algorithm to automatically register HP surfaces with
complete geometric matching, avoiding the need to manually label landmark
features. We first propose a complete shape index using the Beltrami coefficient
(BC) and curvatures, which measures subtle local differences. The shape en-
ergy is identically zero if and only if two shapes are equal up to a rigid motion.
We then minimize the shape energy to obtain the best surface registration with
complete geometric matching. We propose a simple representation of surface dif-
feomorphisms using BCs, which simplifies the optimization. We then optimize
the shape energy using the Beltrami Holomorphic flow (BHF) method. The op-
timal shape energy obtained may also be used to measure local shape differences
across subjects or time.

2 Related Work

Surface registration has been studied extensively. Conformal or quasi-conformal
surface registration is commonly used [4,5,14], and gives a parameterization
minimizing angular distortions. However, it cannot guarantee the matching of
geometric information such as curvature across subjects. Landmark-based dif-
feomorphisms are often used to compute, or adjust, cortical surface parameteri-
zations [3,6,12]. These methods provide good registrations when corresponding
landmark points on the surfaces can be labeled in advance. It is, however, diffi-
cult for HP surfaces on which there are no well-defined anatomical landmarks.
Some authors have proposed driving features into correspondence based on shape
information. Lyttelton et al. [8] computed surface parameterizations that match
surface curvature. Fischl et al. [1] improved the alignment of cortical folding pat-
terns by minimizing the mean squared difference between the average convexity
across a set of subjects and that of the individual. Wang et al. [13] computed
surface registrations that maximize the mutual information between mean curva-
ture and conformal factor maps across subjects. Lord et al. [7] matched surfaces
by minimizing the deviation from isometry. The shape indices that drive the
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registration process in these approaches are not complete shape measurements
and do not capture shape differences completely. There are cases when two dif-
ferent surfaces might have the same shape value. This could lead to inaccurate
registration results.

3 Theoretical Background and Definitions

Given two Riemann surfaces M and N , a map f : M → N is conformal if it
preserves the surface metric up to a multiplicative factor. One generalization of
conformal maps is the quasi-conformal maps, which are orientation-preserving
homeomorphisms between Riemann surfaces with bounded conformality distor-
tion, in the sense that their first order approximations takes small circles to small
ellipses of bounded eccentricity [2]. Thus, a conformal homeomorphism that maps
a small circle to a small circle may also be regarded as quasi-conformal. Math-
ematically, f : C → C is quasi-conformal if it satisfies the Beltrami equation:
∂f
∂z = μ(z)∂f

∂z , for some complex valued function μ satisfying ||μ||∞ < 1. μ is called
the Beltrami coefficient (BC), which is a measure of non-conformality. In particu-
lar, the map f is conformal around a small neighborhood of p when μ(p) = 0. From
μ(p), we can determine the angles of the directions of maximal magnification and
shrinking and the amount of them as well. Specifically, the angle of maximal mag-
nification is arg(μ(p))/2 with magnifying factor 1 + |μ(p)|; The angle of maximal
shrinking is the orthogonal angle (arg(μ(p))−π)/2 with shrinking factor 1−|μ(p)|.
The distortion or dilation is given by: K = (1 + |μ(p)|)/(1− |μ(p)|).

4 Proposed Model

4.1 A Complete Shape Index

A good registration depends greatly on the appropriate choice of a shape mea-
sure to capture dissimilarities between surfaces. We propose a complete shape
index Eshape using the Beltrami coefficient and curvatures, which measures sub-
tle local changes completely. Given two HP surfaces S1 and S2. Let f : S1 → S2

be a registration between S1 and S2. The complete shape index Eshape is defined
as follow: Eshape(f) = α|μ|2 + β(H1 −H2(f))2 + γ(K1−K2(f))2 where μ is the
Beltrami coefficient of f ; H1, H2 are the mean curvatures on S1 and S2 respec-
tively; and K1, K2 are the Gaussian curvatures. The first term measures the
conformality distortion of the surface registration. The second and third terms
measure the curvature mismatch. It turns out Eshape is a complete shape index
that measures subtle shape differences between two surfaces. It can be proven
that Eshape(f) = 0 if and only if S1 and S2 are equal up to a rigid motion.
For HP shape analysis, it is good because clinically we are more interested in
shape changes than their orientation. Also, by adjusting the parameters (i.e., α,
β and γ), Eshape can be made equivalent to other existing shape indices. For
example, when β = 0, Eshape is equivalent to the isometric shape index; when
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α = 0, Eshape is equivalent to the curvature index; when β = γ = 0, Eshape

measures the conformality distortion. In our work, we set α = 1 and β = γ = 2
to measure complete shape changes.

We can now minimize Eshape to obtain the optimized surface map f̃ that best
matches the geometry. One advantage of using Eshape is that it can be defined
in the space of BCs. The space of BCs is a simple functional space, which makes
the optimization much easier.

4.2 Surface Map Representation Using Beltrami Coefficients

Surface registration is commonly parameterized using 3D coordinate functions in
R3. This representation is difficult to manipulate. For example, the 3D coordinate
functions have to satisfy certain constraints on the Jacobian J (namely, J > 0),
to preserve the 1-1 correspondence of the surface maps. Enforcing this constraint
adds extra difficulty in optimizing surface maps. The diffeomorphic property
is often lost during the optimization. We propose a simple representation of
surface diffeomorphisms using Beltrami coefficients (BCs). Fixing any 3 points
on a pair of surfaces, there is a 1-1 correspondence between the set of surface
diffeomorphisms between them and the set of BCs on the source domain.

Suppose S1 and S2 are both either genus 0 closed surfaces or simply con-
nected open surfaces. S1 and S2 can be conformally parameterized with a global
patch D[4,14]. Let f : S1 → S2, and given 3 point correspondences. In this work,
we chose the 3 corresponding points based on the initial conformal registration.
But we can easily generalize our method by incorporating a Mobius transforma-
tion that will help us to automatically detect optimal 3-point correspondences.
Denote the parameterizations by φ1 : S1 → D and φ2 : S2 → D. Now, we can
compute the Beltrami coefficient μf associated uniquely to f to represent f (See
Figure 1). The Beltrami coefficient μf can be computed by considering the com-
position map f̃ = φ2 ◦ f ◦ φ−1

1 : D → D. Mathematically, μf is given by the
following formula: μf = ∂f̃

∂z /∂f̃
∂z = 1

2 (∂f̃
∂x +

√
−1∂f̃

∂y )/ 1
2 (∂f̃

∂x −
√
−1∂f̃

∂y ).
The space of BCs is a simple functional space. There are no restrictions on

μ that it has to be 1-1, surjective or satisfy some constraints on the Jacobian.
Using the Beltrami representation makes the optimization process of surface
maps much easier.

4.3 Optimized Surface Registration Matching the Geometry

Eshape gives us a complete shape index which measures local dissimilarities be-
tween two surfaces. Specifically, Eshape(f) = 0 if and only if S1 and S2 are
equal up to a rigid motion. Therefore, the surface map f minimizing Eshape(f)
is the best registration that best matches the geometric information. Given
two HP surfaces S1 and S2. We propose to find f : S1 → S2 that minimizes
E =

∫
EShape(f). To simplify the computation, we can conformally parameterize

S1 and S2 onto the parameter domain D. So, all computations are carried out on
the simple domain D. By representing surface maps with Beltrami coefficients μ,
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Fig. 2. Shape registration with geometric matching using Beltrami Holomorphic flow

we can define the energy on the space of BCs - a much simpler functional space for
the optimization process. Mathematically, the compound energy E can be writ-
ten with respect to μ as: E(μ) =

∫
D α|μ|2 +β(H1−H2(fμ))2 +γ(K1−K2(fμ))2.

The variation of fμ under the variation of μ can be expressed explicitly. Suppose
μ̃(z) = μ(z) + tν(z) + O(t2). Then, f μ̃(z)(w) = fμ(w) + tV (fμ, ν)(w) + O(t2),
where V (fμ, ν)(w) = − fμ(w)(fμ(w)−1)

π

∫
D

ν(z)(fμ
z (z))2dxdy

fμ(z)(fμ(z)−1)(fμ(z)−fμ(w)) Using the
variational formula, we can derive the Euler-Lagrange equation of E(μ) easily.
Specifically, we can minimize E(μ) by the following iterative scheme:
μn+1 − μn = −2(αμn −

∫
z[(βH̃n + γK̃n) ·Gn,det(βH̃n + γK̃n, Gn)] )dt,

where
∫

w
• :=

∫
D
• dw and

∫
z
• :=

∫
D
• dz is defined as the integral over the

variable w and z respectively; H̃ := (H1 − H2(fμ))∇H2(fμ); K̃ := (K1 −
K2(fμ))∇K2(fμ); det(a, b) is the determinant of the 2 by 2 matrix or equiva-
lently, the norm of the cross product of a and b.

We call this iterative algorithm the Beltrami Holomorphic flow (BHF). Note
that starting with a conformal map with μ = 0, the first term of the energy
ensures μ to satisfy ||μ||∞ < 1. Hence, during the BHF process, the maps are
guaranteed to be diffeomorphic and are holomorphic in t.

5 Experimental Results

We tested our algorithm on 212 HP surfaces automatically extracted from 3D
brain MRI scans with a validated algorithm [9]. Scans were acquired from nor-
mal and diseased (AD) elderly subjects at 1.5 T (on a GE Signa scanner). Ex-
periments have been carried out on a laptop with a 2.4 GHz DUO CPU. The
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Fig. 3. BHF registration between two normal subjects. The shape index Eshape is

plotted on the right, which captures local shape differences.

algorithm takes about 4-5 minutes to compute a registration between meshes
with 40K vertices.

Figure 1 shows the Beltrami representations of bijective surface maps. The
left column shows a bijective surface map between the HP surfaces. The middle
column shows the Beltrami (BC) representations of the maps. The right column
shows the reconstruction of surface maps from their BCs. The reconstructed
maps closely resemble the original maps, meaning that BCs can effectively rep-
resent bijective surface maps. Figure 2(A) shows two different HP surfaces. They
are registered using our proposed BHF algorithm with geometric matching. The
registration is visualized using a grid map and texture map, which shows a
smooth 1-1 correspondence. The optimal shape index Eshape is plotted as col-
ormap in (B). Eshape effectively captures the local shape difference between
the surfaces. (C) shows the shape energy in each iteration. With the BHF al-
gorithm, the shape energy decreases as the number of iterations increases. (D)
shows the curvature mismatch energy (E =

∫
β(H1−H2(f))2+γ(K1−K2(f))2).

It decreases as the number of iterations increases, meaning that the geometric
matching improves. (E) shows the Beltrami coefficient of the map in each itera-
tion, which shows the conformality distortion of the map. Some conformality is
intentionally lost to allow better geometric matching.

Figure 3 shows the BHF registration between two normal HPs. The com-
plete shape index Eshape is plotted as colormap on the right. Again, Eshape can
accurately capture local shape differences between the normal HP surfaces.

Figure 4 shows the BHF hippocampal registrations between normal elderly
subjects and subjects with Alzheimer’s disease. The BHF registrations give
smooth 1-1 correspondences between the HP surfaces. We can use the com-
plete shape index Eshape to detect local shape differences between healthy and
unhealthy subjects.

We also study the temporal shape changes of normal and AD HP surfaces,
as shown in Figure 5. For each subject, we compute the deformation pattern
of its HP surfaces measured at time = 0 and time = 12 Months (see [10] for
longitudinal scanning details). The left two panels show the temporal deforma-
tion patterns for two normal subjects. The middle two panels show the temporal
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Fig. 4. BHF registration between normal subjects and subjects with Alzheimer’s dis-

ease. Their local shape differences are captured by Eshape.

Fig. 5. Temporal hippocampal shape changes of normal and subjects with Alzheimer’s

disease

deformation patterns for two AD subjects. The last column shows the statistical
significance p-map measuring the difference in the deformation pattern between
the normal (n=47) and AD (n=53) groups, plotted on a control HP. The deep
red color highlights regions of significant statistical difference. This method can
be potentially used to study factors that influence brain changes in AD.

6 Conclusion and Future Work

We developed an algorithm to automatically register HP surfaces with complete
geometric matching, avoiding the need for manually-labeled landmark features.
We did this by defining a complete shape index to drive the registration. Ex-
perimental results on 212 HP surfaces from normal and diseased(AD) subjects
show our proposed algorithm is effective in registering HP surfaces over time and
across subjects, with complete geometric matching. The proposed shape energy
can also capture local shape differences between HPs for disease analysis. In
future, we will use the BHF algorithm to systematically study the local shape
differences and factors that affect deformation patterns between normal and AD
subjects.
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Abstract. Due to the complex noise structure of functional magnetic resonance 
imaging (fMRI) data, methods that rely on information within a single subject 
often results in unsatisfactory functional segmentation. We thus propose a new 
graph-theoretic method, “Group Random Walker” (GRW), that integrates group 
information in detecting single-subject activation. Specifically, we extend each 
subject’s neighborhood system in such a way that enables the states of both 
intra- and inter-subject neighbors to be regularized without having to establish a 
one-to-one voxel correspondence as required in standard fMRI group analysis. 
Also, the GRW formulation provides an exact, unique closed-form solution for 
jointly estimating the probabilistic activation maps of all subjects with global 
optimality guaranteed. Validation is performed on synthetic and real data to 
demonstrate GRW’s superior detection power over standard analysis methods. 

Keywords: fMRI, graphical models, group analysis, random walker. 

1   Introduction 

Functional magnetic resonance imaging (fMRI) has become one of the most widely-
used modality for studying human brain activity. The standard approach for analyzing 
fMRI data involves separately comparing each voxel’s intensity time course against 
an expected response to generate statistics that reflect the likelihood of activation [1]. 
The drawback to this univariate approach is that voxel interactions are ignored despite 
that each voxel is unlikely to function in isolation. To remedy this limitation, methods 
based on Markov random fields (MRF) [2] and Bayesian statistics [3] have been 
proposed to incorporate voxel interactions in the form of neighborhood information. 
These methods help suppress false declaration of isolated voxels as being active. 
However, the inherently low signal-to-noise (SNR) of fMRI data limits the reliability 
of the neighbors, which reduces the effectiveness of the currently-used regularization 
methods. The core of the problem is that there may just be insufficient information 
within a single subject’s data to obtain satisfactory functional segmentation. 
Additional information is thus needed to disambiguate the state of noisy voxels. 

Most fMRI studies focus on identifying common patterns across subjects, and thus 
exploiting the group dimension presents a direct, intuitive means of enhancing single-
subject segmentations [4]. In standard fMRI group analysis, brain images of all 
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subjects are first warped onto a common template to create a voxel correspondence 
[1]. Activation statistics are then compared across subjects to generate a group map. 
The underlying assumption is that a perfect one-to-one voxel correspondence is 
established after whole-brain warping. However, the vast anatomical variability 
renders this assumption questionable. In fact, even if perfect anatomical alignment is 
achieved, whether a one-to-one functional correspondence exists between voxels is 
debatable. Past studies have shown considerable functional inter-subject variability 
[5], which suggests that such one-to-one voxel correspondence is rather unlikely. 
However, active voxels are typically observed within the same anatomical regions 
across subjects [5]. Thus, integrating inter-subject neighborhood evidence is likely to 
help regularize single-subject segmentations and better distinguish signal from noise. 

In this paper, we propose a new graph-theoretic method, “Group Random Walker” 
(GRW) that extends our previous work [6] on RW for estimating single-subject 
probabilistic activation maps. Treating each voxel as a graph vertex, we extend edges 
to inter-subject in addition to intra-subject neighboring voxels to jointly exploit group 
information and voxel interactions. Integrating group information into each subject’s 
activation map, as opposed to estimating a group map, also facilitates inter-subject 
commonalities as well as differences to be modeled. Moreover, GRW draws upon a 
RW formulation [7] that provides an exact, unique closed-form solution for 
computing probabilistic activation maps with global optimality guaranteed. 

2   Proposed Method 

We propose extending the single-subject neighborhood system to other subjects 
within a group to disambiguate the state of noisy voxels. The intuition behind this 
approach is that true brain activation should appear in similar proximal locations 
across subjects [5], whereas false positives are more randomly scattered across the 
brain. Hence, regularizing inter-subject neighbors reinforces brain areas that are 
consistently recruited across subjects, while suppressing the false positives. Since 
only voxels that are spatially-proximal to each other are encouraged to be in similar 
state in our framework, the stringent one-to-one voxel correspondence requirement in 
standard fMRI group analysis is mitigated. Establishing an inter-subject neighborhood 
system requires first aligning the brain structures of all subjects. However, the vast 
anatomical variability renders accurate whole-brain warping difficult, especially for 
diseased subjects. Therefore, we instead employ a region-based approach, where we 
extract anatomical regions of interest (ROIs) and perform alignment at the regional 
level. This approach ensures that no brain structures will be mistakenly taken as part 
of another structure which has shown to improve activation localization [8]. 

2.1   Group Random Walker  

In the original RW framework, each voxel is represented as a graph vertex with 
weighted edges added between spatial neighbors to bias the paths for which a random 
walker may transverse. Voxels are labeled (e.g. active or non-active) based on the 
probability that a random walker starting at each voxel location will first reach a pre-
labeled seed. This framework, however, not only requires specifying seed voxels but 
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also does not model unary voxel information, such as activation effects in the context 
of fMRI. Therefore, we adopt an augmented RW formulation [7] that facilitates 
incorporation of unary information as label priors. This formulation is equivalent to 
adding an artificial seed vertex for each label and connecting these seeds to every 
vertex in the original graph with label priors being the edge weights [7]. The 
corresponding energy functional is as follows: 

)1()1()(
,1

−Λ−+Λ+= ∑
≠=

ssTskk
K

skk

kTssTs xxxxLxxxE , (1) 

where xs are the unknown posterior probabilities of the voxels belonging to label class 
s, K is the number of labels, Λs is a diagonal matrix containing prior probabilities of 
the voxels belonging to label class s (Section 2.2), and L is a weighted graph 
Laplacian matrix (Section 2.3). This construction is analogous to graph cuts, where 
the first term in (1) models voxel interactions, while the second term models unary 
voxel information. The main difference is that RW minimizes (1) over real-valued 
probabilities instead of binary numbers, which has an exact, unique closed-form 
solution with global optimality guaranteed for an arbitrary number of labels [7]. 
Specifically, xs can be estimated by solving [7]: 
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where λs are the diagonal elements of Λs. To incorporate group information, we 
extend the augmented RW graph structure by inserting edges between each subject’s 
voxels and their inter-subject neighbors. By treating all subjects’ voxels as a single set 
and adding edges in the manner described later in Section 2.3, (2) can be directly 
applied to jointly estimate probabilistic activation maps of all subjects. GRW hence 
inherits all desired properties of the RW formulation. Globally optimal labeling can 
be obtained by assigning voxels to the labels associated with the highest probability. 

2.2   Label Priors 

To compute label priors λs, we first estimate the ROI activation statistics tj of each 
subject using the standard general linear model (GLM) [1]: 

jjj Xy ωβ += , )(/ jjj set ββ= , (3) 

where yj is the time course of voxel j, ωj is assumed to be white Gaussian noise after 
preprocessing, βj are the estimated activation effects, and se(βj) is the standard error of 
βj. X is a design matrix with boxcar functions (time-locked to stimulus) convolved 
with the hemodynamic response (HDR) as regressors [1]. We model tj using a 
constrained Gaussian mixture model (CGMM) [9]. Specifically, tj is assumed to be 
generated from a mixture of K Gaussian distributions with mixing coefficients πk, 
means µk, and variance σk

2. Conjugate priors are used to constrain these parameters: 

∑
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where IG(a,b) and Dir(α) denote inverse Gamma and Dirichlet distributions. Adding 
priors enables us to integrate our knowledge into the model. In particular, we know 
that tj of non-active voxels should theoretically be 0 and t-threshold for active voxels 
is typically set between 3 and 4 based on Gaussian Random Field (GRF) theory [1]. 
We thus encode this prior knowledge on t-values of active and non-active voxels 
through η with τ2 set to 1 to model uncertainty in η. We set K to 2 to classify voxels as 
active or non-active [9]. As for σk

2, we use an uninformative prior by setting a and b 
to 0.5 [9], since little is known about σk

2. α is set to 1/K assuming equal prior class 
probabilities. Gibbs sampling is employed to estimate the probability of voxel j 
belonging to each of the K labels [9], which we use as label priors λs. 

2.3   Weighted Graph Laplacian 

Treating voxels of all subjects as a single set, we define the weighted graph Laplacian 
L based on functional connectivity fij = correlation(Yi,Yj) and spatial distance dij: 
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where wij = fij+exp(-dij), Yj is the magnitude spectrum of the Fourier transform of 
voxel j’s time course yj, eij denote a graph edge between voxels i and j, and Eintra and 
Einter denote the sets of intra- and inter-subject edges. This choice of wij is motivated 
by the well-known bilateral filtering technique, which enables closer spatial neighbors 
with higher functional connectivity to exert greater influence on each voxel, thus de-
weighting contributions from outliers. Edges are added between every given voxel of 
subject p and its 6-connected intra-subject spatial neighbors and c closest inter-subject 
spatial neighbors for every subject pairs (p,q), p≠q. c is empirically set to 3. Note that 
voxel interactions are modeled using correlation(Yi,Yj), instead of temporal 
correlations, since the temporal profile of HDR is known to vary across subjects [9]. 
In contrast, magnitude spectrums, Yi, of active voxels would likely display higher 
similarity across subjects since all subjects are guided by the same stimulus.  

2.4   Empirical Evaluation 

500 synthetic datasets were generated to validate our proposed method. Each dataset 
consisted of 10 subjects with artificial activation injected within real, manually-
segmented anatomical ROIs (Section 3). Voxels within a radius of 8 mm from the 
anatomical centroid were defined as active (circled in red in Fig. 1(b)-(f)). Synthetic 
time courses of the active voxels were generated by convolving a box-car function, 
having the same stimulus timing as our experiment (Section 3), with a canonical HDR 
[1] and adding low frequency drifts and Gaussian noise. To simulate functional inter-
subject variability, signal intensity of the active voxels was set to decrease 
exponentially as a function of distance from the activation centroid, whose location  
was randomly varied across subjects (Fig. 1(a)). This emulates the situation where 
true active regions highly overlap across subjects, but the apparent overlap appears 
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Fig. 1. Synthetic data results. (a) t-maps. (b) iGLM, (c) iCGMM, (d) iRW, (e) gGLM, and (f) 
GRW results shown. Blue dots = detected active voxels. Red circles = ground truth. For all 
SNR, (g) GRW achieved the highest DSC. Note iGLM resulted in a DSC of 0 at a SNR of 0.25. 
(h) GRW’s DSC increased with number of subjects.  

much less due to variation in location at which the fMRI signal concentrates. 
Maximal SNR was set as 0.5 in Fig. 1(a). For comparison, we also tested (i) GLM 
with spatial smoothing using a 8 mm FWHM Gaussian kernel and a threshold based 
on GRF theory for a p-value of 0.05 [1], (ii) CGMM, (iii) RW, and (iv) second level 
GLM, which involved taking the union of all subjects’ ROI point sets to generate an 
ROI template, interpolating spatially smoothed βj onto the template, applying GLM 
on the resulting βj, thresholding based on GRF theory [1], and interpolating the 
thresholded group map back onto the subjects’ native ROI space for comparison 
purposes. We refer to methods (i), (ii), (iii), and (iv) as individual GLM (iGLM), 
individual CGMM (iCGMM), individual RW (iRW), and group GLM (gGLM). 

Qualitative results for the various contrasted methods are shown in Fig. 1(b)-(f). 
Only half of the subjects for one of the synthetic datasets are displayed due to space 
limitation. iGLM detected only a few active voxels, whereas iCGMM detected 
majority of the active voxels but also declared many false positives. Imposing intra-
subject regularization using iRW reduced the number of false positives, but an ample 
amount remained due to lack of reliable intra-subject neighbors. Using gGLM 
detected all the active voxels, but also falsely declared many nearby voxels as active. 
Using GRW detected almost all the active voxels, while exerting much stricter control 
on false positives than gGLM. To quantify the performance, we computed the average 
Dice similarity coefficient (DSC) over the 500 synthetic datasets for a range of SNR. 

FNFPTP2

TP2
DSC

++
= , (6) 
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where TP, FP, and FN denote the number of true positives, false positives, and false 
negatives, respectively. As evident from Fig. 1(g), the poor DSC for iGLM, iCGMM, 
and iRW again illustrates that solely relying on single-subject information may be 
inadequate to obtain satisfactory segmentation at low SNR. However, naively 
incorporating group information can also be problematic as apparent from the gGLM 
results, where increasing SNR reduced DSC. This counter-intuitive result arose from 
the increase in signals leaking into the non-active voxels as a consequence of spatial 
smoothing, as required in gGLM for employing GRF theory and increasing functional 
overlap across subjects. In contrast, increasing SNR resulted in higher DSC for GRW, 
since GRW does not blindly smooth the data. Instead, intra- and inter-subject 
neighborhood information is adaptively controlled based on functional connectivity 
with contributions from dissimilar voxels de-weighted. As a result, GRW achieved 
the highest DSC for all SNR compared to the other examined methods. Also, adding 
group information improved performance over using iGLM, iCGMM, and iRW even 
at higher SNR, where reliable intra-subject information is available. Furthermore, 
increasing the number of subjects increased DSC as shown in Fig. 1(h).  

3   Materials 

After obtaining informed consent, fMRI data were collected from 10 Parkinson’s 
disease (PD) patients off and on medication (4 men, 6 women, mean age 66 ± 8 years) 
and 10 healthy controls (3 men, 7 women, mean age 57.4 ± 14 years). Each subject 
used their right hand to squeeze a bulb with sufficient pressure to maintain a bar 
shown on a screen within an undulating pathway. The pathway remained straight 
during baseline periods and became sinusoidal at a frequency of 0.25 Hz (slow), 0.5 
Hz (medium) or 0.75 Hz (fast) during time of stimulus. Each session lasted 260 s, 
alternating between baseline and stimulus of 20 s duration. Functional MRI was 
performed on a Philips Gyroscan Intera 3.0 T scanner (Philips, Best, Netherlands) 
equipped with a head-coil. T2*-weighted images with BOLD contrast were acquired 
using an echo-planar (EPI) sequence with an echo time of 3.7 ms, a repetition time of 
1985 ms, a flip angle of 90°, an in plane resolution of 128×128 pixels, and a pixel size 
of 1.9×1.9 mm. Each volume consisted of 36 axial slices of 3 mm thickness with a 1 
mm gap. A T1-weighted image consisting of 170 axial slices was also acquired. For 
each subject’s data, slice timing and motion correction were performed using Brain 
Voyager’s (Brain Innovation B.V.). Further motion correction was then applied using 
motion corrected independent component analysis (MCICA) [10]. The voxel time 
courses were high-pass filtered to account for temporal drifts and temporally whitened 
using an autoregressive AR(1) model. No whole-brain warping or spatial smoothing 
was performed. For testing our proposed method, we selected the left primary motor 
cortex (LM1), which is known to activate during right-hand movements. Delineation 
of LM1 was performed by an expert based on anatomical landmarks and guided by a 
neurological atlas. The segmented ROIs were resliced at fMRI resolution for  
extracting preprocessed voxel time courses within each ROI and non-rigidly aligned 
using “Coherent Point Drift”, which has shown greater robustness to noise and 
outliers than conventional techniques such as iterative closest point [11]. 
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Fig. 2. Real data results for 5 PD subjects pre- and post-medication and 5 controls. Blue in (b), 
(d) & (e) indicates detected active voxels. (a) t-maps. (b) iGLM detected only a few active 
voxels in the (c) hand region, whereas (d) gGLM detected the hand region but falsely included 
the hip and leg areas for PDpre. (e) GRW correctly identified the hand region in all subjects. 

4   Results and Discussion 

Results obtained with iGLM, gGLM, and GRW on real data are shown in Fig. 2. 
iCGMM and iRW results were similar to the synthetic case with many isolated false 
positives detected, and were thus excluded. Also, only results for 5 controls and 5 PD 
subjects during the fast condition are displayed due to space limitation, but consistent 
results were observed across all subjects. iGLM detected few active voxels in the 
hand region, whereas gGLM detected the hand region, but mistakenly included the 
hip and leg areas for PD pre-medication. In contrast, GRW correctly identified the 
hand region in all subjects without falsely declaring the hip and leg areas as active. In 
addition, the GRW results suggest a very interesting trend across subject groups. 
Specifically, PD pre-medication seemed to require recruiting a wider area of LM1, 
which normalized back to an extent similar to the controls upon medication. Such 
spatial focusing effect of levo-dopa medication has been observed in past studies [12], 
thus further confirming the validity of our results. This trend is also noticeable in the 
gGLM results, but whether levo-dopa truly over-normalized the extent of activation in 
PD is unclear, since the wider active region in control subjects could have simply 
arisen from gGLM’s weak control over false positives (Fig. 1(e) and Fig. 2(d) PD pre-
medication). In contrast, the stronger control GRW has on false positives provides us 
more confidence with our findings, which greatly eases result interpretation. 
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5   Conclusion 

We proposed a novel graph-theoretic method for enhancing single-subject fMRI 
activation detection. GRW expands the single-subject graph structure to include inter-
subject neighbours, which enables group information to propagate into each subject’s 
activation map without having to establish a one-to-one voxel correspondence. Also, 
the proposed GRW formulation permits joint estimation of all subjects’ probabilistic 
activation maps with global optimality guaranteed. Superior detection power over 
standard techniques was shown on synthetic data for a range of SNR. When applied to 
real data, GRW consistently detected activation in regions implicated with the 
experimental task employed, whereas methods based on single-subject information 
failed. Our results thus demonstrate the effectiveness of incorporating group 
information for dealing with noisy fMRI data in single-subject analysis.  
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Abstract. Tensor based morphology (TBM) is a powerful approach to analyze
local structural changes in brain anatomy. However, conventional scalar TBM
methods are unable to present direction-specific analysis of volume changes re-
quired to model complex changes such as those during brain growth. In this paper,
we describe novel TBM descriptors for studying direction-specific changes in a
subject population which can be used in conjunction with scalar TBM to analyze
local patterns in directionality of volume change during brain development. We
illustrate the use of these methods by studying brain developmental patterns in
fetuses. Results show that this approach detects early changes local growth that
are related to the early stages of sulcal and gyral formation.

1 Introduction

Tensor based morphology (TBM) is now widely used as a method to detect struc-
tural brain differences across a population or across time. TBM studies involve sta-
tistical analysis of deformation fields computed from non-rigid registration of different
anatomies. Scalar TBM, in its original form [1], is still being used to analyze structural
changes caused by neurodegenerative conditions in adult brains [2]. But more recently,
TBM is also being increasingly used for modeling of growth in developing brains [3]
[4] [5]. However, a key weakness of scalar TBM is that it explicitly ignores directional-
ity of volume changes. The multivariate, strain tensor metric proposed by Lepore et al.
[6], captures anisotropic volume changes completely. However, this metric also ignores
volume independent, local orientation changes within the brain, and is unable to specify
the directionality of shape change for intuitive anatomical understanding [7]. Studying
the complex shape changes during brain development is a key motivation for the ex-
tension of TBM to look at patterns of direction specific volume change. For example,
development of the sylvian fissure in the fetal brain is related to superior-inferior expan-
sions in the frontal and temporal lobes along with left-right contractions in the inferior
aspect of the frontal cortex and superior aspect of the temporal cortex [8].

T. Jiang et al. (Eds.): MICCAI 2010, Part II, LNCS 6362, pp. 339–346, 2010.
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In this paper, we propose a method that allows us to study both volumetric and
directional changes associated with growth modeling. Specifically we use polar de-
composition to extract local orientation information from the deformation tensors. This
orientation information is represented in the form of a measure of common direction-
ality of growth, which is then analyzed to detect regions in which the rate of growth
in a direction significantly changes. In this paper we (i) propose a descriptor to quan-
tify population-wide direction change patterns; (ii) combine these with conventional
scalar TBM so as to study population-wide changes in both volume and direction; and
(iii) present a test to extract the primary growth direction at each tissue location. We
evaluate the proposed methods by applying them to a study of fetal brain growth.

2 Methods

For a cross-sectional population of N subjects, we compute a transformation Ti i =
1, 2, ...N for each subject, which maps the anatomical changes required to spatially
normalize that particular subject to the average space. At each voxel p, the local changes
can be derived from the deformation tensor which is defined as the gradient of the

transformation (T p
i [x, y, z]) at that voxel and is given by (Jp

i ) =
[

δ3T p
i [x,y,z]

δxδyδz

]
By computing J at each voxel, we form a map of local changes across the subject

population. In this paper, we use the tensor decomposition properties of the Jacobian
matrices to identify deformation direction.

2.1 Deformation Direction Vector (DDV)

The principal deformation direction can be obtained from the principal component of
the Jacobian matrix at each voxel. In order to avoid stability issues associated with
eigen analysis of any Jacobian matrix , we leverage the polar decomposition property
of J [9] to compute the primary deformation direction indirectly. At each voxel, the
Jacobian matrix, being a second order tensor, can be separated into a rotational and a
strain component.

J = RS (1)

where S is the symmetric, positive definite strain tensor (S = (JT J)
1
2 ). R = S−1J is

the orthogonal, rotation matrix such that R−1 = RT and detR = +1. As illustrated
Figure 1, this decomposition is analogous to first stretching the voxel by S and then
rotating it by R to realize the deformation. Therefore, the direction of deformation,
is computed by extracting the principal eigenvector of strain (e) from S, and rotation
this by R yields the DDV. Here, we would like to emphasize that e only specifies the
principal direction of strain and not the direction of the complete deformation. For each
subject, we compute a DDV map (DDV at each voxel) which is used to analyze local
changes in directionality.

Statistical Analysis DDV. The DDV map can then be used in the TBM framework
to detect population wide changes. In Equation 2, the basis vectors correspond to the
three primary, orthogonal directions in reference anatomy: inferior-superior, left-right
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Fig. 1. Computation of deformation direction vector (DDV) from polar decomposition of Jaco-
bian matrix

and anterior-posterior. The scalar multiplicative factors (x, y, z) from the DDV are sep-
arated to form three directional component maps (DCM). The DCM can be consid-
ered statistically independent within the single deformation tensor, as knowledge of the
scalar component along one direction gives no information about the other two values
in the DDV.

DDV (xi, yi, zi) = xi(1, 0, 0) + yi(0, 1, 0) + zi(0, 0, 1) (2)

Regression: In order to minimize local variations in direction, the DCMs are individu-
ally smoothed by a Gaussian kernel. In this work, we chose the kernel size (σ= 2mm)
experimentally so as to obtain the best final quality of the fitting. Using regression, we
examine if there is a relationship between the basis vectors and variables of interest
related to each subject (such as age or clinical criteria) using the multivariate general
linear model at each voxel [10]. Growth models of DDV with respect to age can be
performed using multivariate, multiple regression as shown in Equation 2.1. Here A
corresponds to the vector of DCM values at each voxel, V1, . . . , Vm are the indepen-
dent variables (age, gender, clinical condition, etc. ) and ε are the errors. (The matrix
dimensions of each of the variables are indicated below each variables in Equation 2.1).
Linear least square methods are used to solve for β1, . . . , βm at each voxel.

A = V1β1 + . . . + Vmβm + ε
(n× 3) (n× 1)(1× 3) (n× 1)

Hypothesis Testing: Resulting regression coefficient (β1, . . . , βm) maps are tested for
significance using a standard t-test. Statistical significance was computed and these
were corrected multiple comparisons using permutation tests [11]. The corrected p-
value maps of the three directional components can then be analyzed individually or
can be combined using Fisher’s meta-analysis method [12] for independent tests. Let
h1

o, h
2
o . . .hk

o be the k independent null hypotheses being tested. Fisher’s meta-analysis
tests the null hypothesis that all the individual null hypotheses are true. The alternate
hypothesis of the meta-analysis is that at least one of the individual null hypothesis
is false. The p-values from the individual tests are combined using the formula κ =
−2
∑k

i=1 loge(pi) where pi is the p-value of the ith individual hypothesis test. The
meta-analysis statistic κ has a chi-squared distribution under the null hypothesis with
2k degrees of freedom.
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The β1, . . . , βm values are estimates of increase or decrease in volume along a partic-
ular direction and the hypothesis tests estimate statistical significance of these changes.
Multivariate hypothesis tests are not well suited for this metric as a meaningful covari-
ance between directions cannot be established.

2.2 Principal Growth Direction (PGD)

In scalar TBM, the definition of volume change is well understood i.e. undeformed
voxels have a Jacobian determinant of 1 and any deviation from this value is considered
as change. For directional properties such a distinct baseline does not exist. Therefore,
here we propose to start by first computing the most common growth direction at each
tissue location across the population being studied and then analyze how directional
growth is varying with respect to this direction at each location. For this we make use of
the DDV map for each subject which provides orientation information specific to each
subject at any given location. As described in Equation 3, PGD at a voxel is defined as
the DDV (of a single subject) which has the least circular distance [13] from DDVs of
all the other (N − 1) subjects.

PGD = arg min
DDVi

⎛⎝ N∑
j=1

1
2

(
1− DDVi ·DDVj

|DDVi||DDVj |

)⎞⎠ ; ∀ i �= j; i = 1, 2, . . .N (3)

The PGD map gives us a baseline which can be used along with the results from the
directional TBM in Section 2.1 to study how these directionality of growth changes
with age and development1.

3 Application – Early Fetal Brain Growth

The following experiments were performed using clinical MR scans of 40 fetal subjects
at gestational ages ranging from 20.57 to 27.86 weeks. The mothers were referred for
fetal MRI due to questionable abnormalities on prenatal ultrasound or a prior abnormal
pregnancy. All women had normal fetal MRI and all newborns have had normal postna-
tal neurodevelopment. Fetal imaging was performed in our institution on a 1.5T scanner
(GE Healthcare, Mulwaukee, WI) without sedation of the mother or the fetus. For each
subject multiple stacks of single-shot fast spin-echo (SSFSE) T2-weighted slice images
(pixel size 1 mm × 1 mm, slice thickness ≈ 3 mm) re acquired in the approximately
axial, sagittal and coronal planes with respect to the fetal brain. The MR sequence pa-
rameters (TR = 4500 ms, TE = 91 ms) were originally designed for clinical scans and
cannot be adjusted for image analysis purposes. High resolution 3D volumes were re-
constructed from 2D slice MR images using the slice intersection motion correction
(SIMC) technique [14]. The reconstructed volumes were automatically segmented into

1 If a PGD cannot be clearly established i.e. the eigenvalues are not well-separated at many
locations, the study can be done on each of the 3 directions separatly. 3 deformation direction
maps are formed and are studied individually. The 3 significance maps are combined using an
OR method or the fisher test.
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individual tissue types (developing grey matter, developing white matter, the germinal
matrix) using an atlas-based approach with probabilistic atlases generated from a spa-
tiotemporal model of the fetal brain [15]. Smoothed tissue segmentation atlases were
then used with a template free elastic registration method [16] to spatially normalize the
subjects. For each subject, the Jacobian matrix maps were computed, from the resulting
deformation fields, to quantify the pattern of deformation required to spatially normal-
ize individual anatomies. For each subject, we computed the DDV maps and performed
multivariate, multiple linear regression on the population with age as the independent
variable and the directional coefficients as the dependent variables. The regression coef-
ficients were tested for statistical significance. We also computed, using the DDV maps,
a PGD map for the subject population.

3.1 Results and Discussion

Figure 2 shows the principal growth direction for the given age range overlaid on the
spatially normalized average MRI, and displayed using the Rview software2. Overall
growth shows a distinct spatial pattern. The intermediate zone (developing white matter
(WM)), along the most dorsal and ventral areas, is growing primarily in the anterior-
posterior (A-P) direction during this period. Along the cortical plate, PGD alternates
between superior-inferior (S-I) and right-left (R-L) growth direction corresponding to
the formation of sulci and gyri respectively. At the sylvian fissure we see that the growth
is primarily along the R-L direction corresponding to the deepening of the fissure. The
ventricles do not show a clear direction of growth as during this period in fetal brain
development, the ventricles do not change significantly in absolute size as the brain
grows.

Fig. 2. Principal growth direction (PGD) vectors for the group of fetal anatomies studied. Each
reference anatomical direction is indicated by one color: red = left-right (R-L); green = anterior-
posterior (A-P); blue = superior-inferior (S-I). The panels from left to right indicate axial, sagittal
and coronal views of the brain.

Figure 3 shows the regions where directional growth has changed significantly with
age. The regions showing significant changes correspond to regions of major cortical
folding. The largest cluster of significant voxels occur at the sylvian fissure where the
significant acceleration of growth in the R-L direction and deceleration along the S-I
direction indicate deepening of the fissure. As indicated by the cross-hairs, we see that
the in addition to growth acceleration in the R-L direction, there is also a A-P growth

2 http://rview.colin-studholme.net
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Fig. 3. Growth rate maps showing regions exhibiting significant change in growth direction with
age. Row (a): Regions showing accelerated growth the associated anatomical direction. Row (b):
Regions showing decelerated growth and the associated anatomical direction. Each reference
anatomical direction is indicated by one color: red = left-right (R-L); green = anterior-posterior
(A-P); blue = superior-inferior (S-I). The panels from left to right indicate axial, sagittal and
coronal views of the brain.

component indicating “flattening” of the superior aspect of the temporal lobe at the
sylvian fissure. To accommodate these changes in the cortical regions, we see that the
intermediate zone underlying the fissure is being “stretched” in the S-I direction its
growth in the R-L direction is restricted by neighboring structures.

Considering both Figures 2 and 3 together, we see that brain growth is character-
ized by spatially varying, directional growth. In some regions this directionality does
not change significantly as the fetus matures. For example, the intermediate zone which
showed a very strong A-P growth direction in Figure 2 does not exhibit significant ac-
celerations and decelerations in any direction in the period of growth considered for this
study. Major shape changes in the cortex occur due to significant changes in directional
growth at sites of sulci and gyri. The effect of these changes in direction on underlying
tissue is determined by the rate of those changes in the given time-period. For example,
the rate of directional change associated with the formation of the calcrine sulcus is not
large enough to significantly change directions in the underlying WM. In comparison,

Fig. 4. For comparison we have included growth rate (specified by regression coefficients, B)
maps computed using scalar TBM. B value maps are overlaid on average MR image. Yellow and
red regions correspond to accelerated growth and shaded blue regions correspond to decelerated
growth when compared to supratentorial brain growth.
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the formation of the sylvian fissure occurs at a more rapid rate and thereby significantly
changes growth directionality both in the cortex and the underlying WM.

4 Conclusion

In this paper, we have introduced two novel descriptors that quantify directionality of
change. This is the first time that local rotational information obtained from the defor-
mation vector is being included in TBM analysis. The two descriptors are complemen-
tary in that the PGD describes the similarities in growth directions among the subject
population and DDV regression allows us to detect changes in growth direction. The
DDV can be incorporated into standard TBM framework and can be used along with
other descriptors of volumetric changes. The clinical value of this method increases
since we are able to specify a single direction of growth for the sake of intuitive under-
standing. The inclusion of directional growth information with standard TBM, allows
us to detect additional changes in tissue structure. Directional information is particu-
larly helpful in the study of brain development. Here, the combination of volume and
direction change patterns are able to better explain the mechanism of brain growth than
the study of volumes changes alone. That being said, the use of these descriptors need
not be restricted to only brain development studies. Any TBM application where brain
structural differences (within or between groups) arise from directional variations in
tissue gain/loss can be studied using the proposed descriptors.
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Abstract. This paper presents a connectivity-based parcellation of the

human post-central gyrus, at the level of the group of subjects. The

dimension of the clustering problem is reduced using a set of cortical

regions of interest determined at the inter-subject level using a surface-

based coordinate system, and representing the regions with a strong

connection to the post-central gyrus. This process allows a clustering

based on criteria which are more reproducible across subjects than in an

intra-subject approach. We obtained parcels relatively stable in localisa-

tion across subjects as well as homogenous and well-separated to each

other in terms of connectivity profiles. To address the parcellation at the

inter-subject level provides a direct matching between parcels across sub-

jects. In addition, this method allows the identification of subject-specific

parcels. This property could be useful for the study of pathologies.

Keywords: human connectome, anatomical connectivity, cortical par-

cellation.

1 Introduction

In-vivo parcellation of the human cortex into functional brain areas is a major
goal in neurosciences and clinical surgery. Anatomical connectivity based on
diffusion-weighted imaging has been used to address this problem, based on the
hypothesis that functional regions have a specific connectional fingerprint [1]. It
presents the advantage of providing optimal basic elements for the construction
of the human connectome [2]. These elements are defined at a scale maximizing
connectivity-based similarities across subjects. However the huge dimension of
connectivity data leads to important difficulties. A first approach consists in
performing clustering of a small area of the brain using cross-correlation between
connectivity profiles towards the full brain [3]. However, the huge dimension of
the data has prevented from performing the clustering at inter-subjects level as
well as on the whole brain cortex.

To overcome some of the limitations, a key idea is to collapse the connectivity
profiles using a set of Regions Of Interest: connectivity weights are summed up
across each ROI. Some approaches use a priori anatomical information such as
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lobar or gyri cortex segmentation [4,5] or regions of interest from invasive tracing
primate studies [6]. When there is a correspondence across subjects between
these segmentations, it provides a direct way to perform the clustering at the
level of the group of subjects [4,5]. The robustness is largely increased because
the clustering is focusing on profiles reproducible across subjects. Nevertheless
using a cortex parcellation to infer another presents an evident bias. Another
approach [7] avoids this by infering automatically the required segmentation from
the connectivity data, independently for each subject. However this method has
shown poor reproducibility across subjects.

The main contribution of this paper is to push this last approach at the
level of the group of subjects. For this purpose, the set of ROIs obtained from
the connectivity data is defined directly at the group level. This is achieved
using a 2D coordinate system providing correspondence between the cortical
surfaces across subjects [8]. Once the profiles have been collapsed using this
set of ROIs, they are clustered following two different stategies. The profiles
are either gathered alltogether or averaged across subjects. In the following the
whole method is applied to parcellate the right post-central gyrus of a group of
ten subjects.

2 Material and Methods

2.1 Data and Pre-processings

The present study has been performed on N = 10 subjects of the NMR database
[9]. Diffusion weighted data were acquired with HARDI scheme, resulting in
high-quality datasets based on 200 directions of diffusion and a b value of 3000
s/mm2. Furthermore, the alignment between diffusion data and T1-weighted im-
ages is achieve by a dedicated MR sequence and distortion corrections. In order
to recover the cortico-cortical anatomical connectivity, a streamline probabilis-
tic tractography [10] is performed in the white matter volume using a field of
Orientation Distribution Functions (ODF) calculated from the DW data with
the analytical QBall model described in [11].

The grey/white matter interface is reconstructed using Freesurfer [12]. We
created a slightly inflated inter-subject average mesh for visualisation purpose
[8]. A point-to-point correspondence between all the meshes provides a way to
analyze the connectivity data in a common space. The post-central gyrus is
determined from the automatic surface labeling process of Freesurfer, which
parcellates the surface into 66 anatomical cortical regions [13].

The cortical connectivity matrix of the post-central gyrus of each subject is
calculated using the previous tractography results and surfacic data [7]. For each
subject we obtained a matrix of size (G, C) where C and G are the number of
vertices of the cortex mesh and of the post-central gyrus respectively. Each line
of these matrices corresponds to the connectivity profile from one post-central
gyrus vertex of one subject towards the full cortex defined in Freesurfer coordi-
nate system. In order to take into account the uncertainty of the tractography,
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a Gaussian smoothing of the connectivity matrix was applied on the surface
(σ = 5 mm).

2.2 Inter-subject Dimension Reduction of the Connectivity Data

In this part the objective is to compress the connectivity profiles in a way max-
imizing similarities across subjects. The sources of variability of connectivity
profiles across subjects are multiple:

1. the artifactual variability created by weaknesses of the diffusion-based track-
ing scheme;

2. the non perfect spatial normalization;
3. the purely anatomical variability acting on areas of the parcels and on density

and repartition of the fibers inside each parcel.

Geodesic smoothing of connectivity information is a first way to overcome the
resulting difficulties. A second complementary way consists in performing a kind
of group analysis detecting the cortical regions with reproducible connectivity to
the input patch (here post-central gyrus). For each subject the post-central gyrus
connectivity profile is computed, that is to say the average of the connectivity
profiles across gyrus vertices (Fig. 1). This gyrus profile is normalized by the
number of tracts reaching the gyrus. Then an average of these profiles across
subjects is performed. The complete surface is masked to keep only nodes that
received at least ten fiber tracts from at least half of the subjects.

The resulting average connectivity profile is then mapped on the average
mesh(Fig. 1), represented as a texture. A watershed is computed for the average
connectivity profile texture in order to split the cortical surface into catchment
basins [7]. Each basin catches a set of tracts supposed to connect the post-
central gyrus with a specific brain area (Fig. 1). This idea justifies the use of
this set of basins to collapse the profiles in an optimal way regarding connec-
tivity. Indeed, because of the inter-subject variability, the regions with a strong
connection to the input patch (appearing in the connectivity profile of each

Fig. 1. Different connectivity profiles and associated watershed basins
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Fig. 2. Contribution of the watershed. A. s1,s2,s3: Zoom on one part of the post-central

gyrus connectivity profile for three subjects; avg. Averaged connectivity profile; wat.
Associated watershed basins. B. The same illustration in 1D.

subject) do not match perfectly when they are mapped onto the average cor-
tex mesh(Fig.2.A.s1.s2.s3). When these profiles are averaged across subjects, the
previous regions are grouped together to form a unique region (Fig.2.A.avg). The
watershed algorithm can then isolate this region as a basin (Fig.2.A.wat). Note
that a more sophisticated fMRI-inspired group analysis could be performed.

To conclude this step, these basins are used to reduce the dimension of the
connectivity profiles: for each subject independently, all the vertices connectivity
profiles (G profiles of size C) are collapsed to get G connectivity profiles of
dimension nbasins (number of basins). This dimension reduction cancels out most
of the inter-individual variability mentioned above. The connectivity information
resulting from each brain area represented by a catchment basin is summarized
to one single weight (Fig.2.B).

2.3 Cortical Parcellation

The reduced connectivity profiles of all the subjects are normalized using L2-
norm and then clustered using two alternative strategies.

First, the post-central gyrus vertices connectivity profiles of all the subjects
(Fig.3.A) are concatenated into a big matrix of size (N ∗ G, nbasins) (Fig.3.B).
Hence the clustering algorithm deals with all the profiles without knowledge of
the underlying subjects. The clustering is performed with the classical kmedoids
algorithm (called PAM in R language [14]) and the Euclidean distance between
profiles as dissimilarity measure. The number of clusters superior to two and
maximizing the average silhouette width of the clustering is chosen. A cluster
usually includes profiles stemming from most of the subjects. Therefore, the end
result is one specific parcellation for each subject, but with a direct matching
between the parcels across the subjects.

In the second approach, the same connectivity profiles are averaged across
subjects for each vertice of the post-central gyrus (Fig.3.C). Then they are
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Fig. 3. Connectivity profiles of gyrus vertices: A. By subject; B. Concatenated for all

the subjects; C. Averaged across subjects (ciA = 1
N

∑N
s=1 cis)

clustered using the same algorithm (PAM). By doing this, one single parcel-
lation is obtained from a connectivity matrix of relatively small size (G, nbasins).

The first approach has the advantage to preserve the inter-subject variability.
Indeed the surface-based coordinate system is just used to define the input patch
and to regroup the vertices into watershed basins for dimension reduction. The
information related to the node localization in the coordinate system is not used
by the clustering. When averaging, individual information is canceled out to
provide a group result.

3 Results

The results are quite encouraging. The parcellations obtained by the two previ-
ous approaches are consistent with each other. For the average subject clustering,
the optimal number of clusters is five (Fig.4) while with the concatenation ap-
proach, the optimal number is seven (Fig.5). For the concatenation approach,
parcels have their own connectivity pattern, which is quite similar across sub-
jects and relatively well-separated from other parcels (Fig.5.B). Note that in

Fig. 4. Average approach: A. Parcellation; B. Averaged connectivity profiles (like in

Fig.3.C) ordered by parcel
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Fig. 5. Concatenation Approach: A. Parcellation for the ten subjects with the amount

of tracts used by the clustering, by subject and parcel in percentage; B. i.Connectivity

profiles of each parcel averaged across subjects and mapped on the inflated average

mesh; ii. Concatenated connectivity profiles (like Fig.3.B) ordered by parcel
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the concatenation approach, while the global number of parcels is seven, some
parcels exist only for a subset of subjects. With a set of subjects composed of
distinct sub-groups (patients vs controls for example) this flexibility could allow
the identification of group-specific parcels.

The correspondence between the parcels found with the two approaches is
straightforward considering the connectivity profiles and the localization (cf.
parcels colors matching between Fig.4 and 5). One of the additional clusters for
the concatenation approach stems mainly from two subjects (claret color in 5). It
could result from artifacts in the underlying diffusion data leading to a spurious
cluster. The second additional cluster (red) results from a split of the green
cluster into two different parcels. This subdivision can not be detected by the
average approach because of the interindividual variability of the localization of
the boundary between green and red parcels. Except the claret parcel, the results
of the concatenation approach are quite reproducible across subjects in terms of
connectivity profiles and localization on the cortex. Note that the topology of
the set of parcels is consistent across subjects and corresponds to the topology
obtained by the average approach. The shapes and areas of each parcel and the
localization of the boundaries between parcels, however, vary largely between
subjects, which is consistent with literature on architectony.

4 Discussion

In this paper, we have shown that addressing the connectivity-based parcellation
problem at an inter-subject level can lead to reproducible results even without
using a priori knowledge for dimension reduction. In the optimal case, the wa-
tershed onto the average connectivity profile across subjects allows to regroup
the subject-specific connections into one ROI used later to reduce the connectiv-
ity dimension. When it is not the case, the application of fMRI-inspired group
analysis could provide better results and deserves our attention in the future.
When dealing with a very large set of brains and targetting the parcellation of
the complete cortical surface, the average approach may be the only reasonable
way because of computational considerations. Note that extending the parcel-
lation algorithm to the complete surface can be done iteratively like in [7]. On
the other hand, when the concatenation approach is affordable, it provides a
very attractive tool. Indeed, the connectome nodes are defined at the level of
each subject, providing a connectivity-based referential to be used for various
applications. For instance this parcellation could be the basis for fMRI or cor-
tical thickness studies. The connectivity-based parcellation, indeed, provides an
architectural spatial normalization of greater value than the traditional normal-
ization based on the cortical surface geometry. Adapting the connectome to each
subject connectivity data is also of great interest to push further the study of
its topology using graph theory [15]. Defining the connectome nodes from the
standard geometry based normalization indeed, is bound to hide the fine scale
structure of the brain connectivity. In addition, the concatenation approach al-
lows the identification of group-specific parcels and could be useful for the study
of pathologies.
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Abstract. Super-resolution techniques provide a route to studying fine

scale anatomical detail using multiple lower resolution acquisitions. In

particular, techniques that do not depend on regular sampling can be

used in medical imaging situations where imaging time and resolution

are limited by subject motion. We investigate in this work the use of

a super-resolution technique for anisotropic fetal brain MR data re-

construction without modifying the data acquisition protocol. The ap-

proach, which consists of iterative motion correction and high resolution

image estimation, is compared with a previously used scattered data

interpolation-based reconstruction method. To optimize acquisition time,

an evaluation of the influence of the number of input images and im-

age noise is also performed. Evaluation on simulated MR images and

real data show significant improvements in performance provided by the

super-resolution approach.

1 Introduction

Imaging moving subjects remains an open issue for Magnetic Resonance Imaging
(MRI). Although the development of ultrafast 2D acquisition sequences has led
to significant improvements for clinical studies (see for instance [1] for fetal
studies), the slice acquisition time is still critical and has to be as short as
possible to reduce the impact of the motion. As a result, sets of thick 2D slices
are generally acquired in clinical studies and interpretation remains limited by
visual inspection.

Several clinical imaging protocols make use of multiple orthogonal 2D multi-
planar acquisitions with non-isotropic voxel size for brain studies. In the con-
text of fetal imaging1, Rousseau et al. in [4] have proposed a registration-based
method to compound multiple orthogonal sets of 2D fetal MRI slices into a sin-
gle isotropic high resolution (HR) volume. This algorithm has been shown to be
capable of reconstructing 3D geometrically consistent images from challenging
clinically acquired data. The image reconstruction process is based on a local
1 Please note that the problem of MR image reconstruction from motion corrupted

data is not specific to fetal or neonatal MR imaging. It can occur also when imaging

ageing patients or patients suffering from neurodegenerative conditions, in heart MR

imaging [2] and freehand ultrasound [3].
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neighbourhood approach with a Gaussian kernel. Although this local interpo-
lation approach is relatively computationally efficient for use during iterative
refinement of slice to volume alignment, the final reconstruction can introduce
additional blurring and does not make use of oversampling of the anatomy pro-
vided by the acquisition of multiple datasets. Jiang et al. in [5] have proposed
a very similar approach for volume reconstruction based on a slice-to-volume
registration and B-spline interpolation. They have applied their method on var-
ious MR brain images: awake neonates, deliberately moved adults and foetuses.
To form 3D images of fetal brain, Kim et al. in [6] have recently proposed a
new registration approach which considers the collective alignment of all slices
directly, via shared structure in their intersections, rather than to an estimated
3D volume. After slice alignment a final volume is reconstructed using sparse
data interpolation. All these approaches consist of two steps (motion estimation
and image reconstruction) and make use of interpolation techniques to recon-
struct a final 3D MR images.

In this paper we begin by assuming that fetal motion can be reliably esti-
mated [4], and focus on the image reconstruction step and we investigate the use
of a super resolution (SR) approach for this specific issue. SR in MRI has been
mostly investigated using a specialized protocol to acquire shifted images, where
the motion between slices is known (translation in the slice direction [7,8,9] or
rotation around a common frequency encoding axis [10]). In this paper, we study
reconstruction techniques with a commonly used fetal imaging protocol: multiple
orthogonal stacks of thick slices where the slice thickness is usually around three
times the dimension of the in-plane resolution. Since the limits of SR algorithms
(maximum magnification factor, minimum number of low-resolution (LR) in-
puts) is still an open question [11,12], here we also experimentally investigate
the number of LR images required to form a given image resolution in order to
optimize the overall imaging time.

2 Problem Statement

2.1 Super-Resolution

The principle of super-resolution (SR) is to combine low resolution images to pro-
duce an image that has a higher spatial resolution than the original images [13].
This is a large research field encompassing many applications. However the ma-
jority of the work has focused on using lower resolution data acquired on a
regular grid and often assuming simple translational motion between the lower
resolution sample grids, unlike multislice brain MR data which is corrupted by
full 3D rigid motion on a slice by slice basis (see Figure 1). Please note that this
data specificity does not affect the way the SR problem is modeled. However, it
introduces additional challenges because SR becomes a reconstruction problem
with scattered anisotropic data.

As in most of common SR approaches, we model the physical problem and
then compute a solution by inverting this observation model:

yr,s = SrBrWsWrx + nr for 1 ≤ r ≤ n, 1 ≤ s ≤ mr (1)
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Fig. 1. Acquired fetal MR image data with anisotropic resolution. It can be noted that

the LR images provide complementary views of the entire brain. From left to right: 1)

axial LR image, 2) sagittal LR image, 3) coronal LR image.

where n is the number of LR images and mr is the number of slices of the
LR image r, yr,s denotes the slice s of the LR image r, x is the HR image, nr

represents the observation noise, Sr is the subsampling matrix, Br a blur matrix,
Ws and Wr are geometric transformations of sth slice of the yr,s and of the rth
low resolution image respectively. The purpose of super-resolution is to remove
the effects of the blurring convolution and to increase the voxel grid density.

For simplicity, the four operators can be combined into a single matrix Hr,s:
Hr,s = SrBrWsWr . The matrix Hr,s thus incorporates motion compensation,
degradation effects, and sub-sampling for each slice yr,s. In this paper, we assume
that the operators Dr and Br, and the noise characteristics are known and
spatially invariant. The operators Ws and Wr are estimated using a similar
method to the one proposed by Rousseau et al. in [4] using the pipeline detailed
in Figure 2. Using this observation model, a straightforward definition of the
data discrepancy functional is:

D(x) =
n∑
r

mr∑
s

ψ(yr,s −Hr,sx). (2)

ψ is usually set as a quadratic functional by assuming that the image noise nr

follows a Gaussian distribution. However, x̂ cannot be uniquely determined by
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Fig. 2. Pipeline used to estimate the matrix W and the HR image x. This pipeline is

performed in an iterative fashion (this is represented by the gray arrow).

minimizing D(x) since the image reconstruction process is an ill-posed problem.
For such inverse problems, some form of regularization plays a crucial role and
must be included in the cost function to stabilize the problem or constrain the
space of solutions.

2.2 Variational Regularization

One of the most important classes of linear deterministic regularization methods
is the one introduced by Tikhonov in [14] for which the regularization term can
be defined as follows:

J(x) =
P∑

p=0

∫
cp(v)|x(p)(v)|2dv (3)

where weights cp are strictly positive and x(p) is the pth order derivative of x.
Much work has been carried out on the derivation of regularization terms of
the form φ(|∇x|) or φ(|x|) where φ is a convex even function, increasing on
R+ (see for instance [15]). If φ(t) = t2, one obtains L2 norm which smooths
strong variations in the image. If φ(t) = t, one obtains L1 norm. One popular
variational regularization functional relies on the total variation:

JTV (x) =
∫
|∇x(v)|dv (4)

Charbonnier et al. in [15]) have proposed several edge-preserving regularization
functionals whose one we use in our experiments is:

JCh(x) =
∫

φ(∇x(v))dv (5)

with φ(t) = 2
√

1 + t2 − 2.
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3 Sufficient Number of LR Images

The principle of SR techniques is to make use of multiple LR images to estimate a
single HR image. As it was pointed out in [11,12], two key points of SR algorithms
are the magnification factor and the number of input images. Lin and Shum
have shown in [12] that considering 2D images, the maximum magnification
factor is 1.6 if the denoising and registration is not good enough and 5.7 under
synthetic conditions. Moreover, when the magnification factor M is an integer,
the sufficient number of LR images is M2.

In the context of fetal MR data, we consider anisotropic data where the slice
thickness is approximately three times bigger than the in-plane resolution. In
this work, the sufficient number of LR fetal MR images is estimated by using
simulated data. To explore the ability to reconstruct a high resolution volume for
typical anatomical brain structures, we applied the SR reconstruction algorithm
on a T1-weighted MR image from the Brainweb dataset [16]. Brainweb is a
simulated brain database which is often used as a gold standard for the analysis
of in vivo acquired data. In order to mimic the clinical fetal imaging protocol
used in routine, orthogonal low resolution images (1 × 1 × 3 mm) have been
created using the observation model described by Equation 1. When using more
than 3 images, the LR orthogonal images are simulated using 1mm shift. In
this noise free case, no noise except the rounding error is introduced to the LR
images and the registration is exact. We also have evaluated the performance
of the proposed method using noisy low resolution images (Gaussian noise with
standard deviation set to 10). Reconstruction algorithms have been applied to
these synthetic images in order to reconstruct an isotropic (1 × 1 × 1 mm)
image.

For quantitative comparison, the peak signal to noise ratio (PSNR) is also
reported in decibels (dB): PSNR = 10 log10

(
d2

|Ω|−1
∑

v∈Ω(x(v)−x̂(v))2

)
where d is

the reference image dynamic. PSNR performance with respect to the number of
considered LR images are reported in Figure. Two SR regularization functionals
(JTV , JCh) are compared with the local scattered data interpolation approach
proposed by Rousseau et al. in [4] (we found, in experiments not presented in this
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Fig. 3. PSNR in function of the number of input Brainweb images. Left: noise free ex-

periment, Right: Gaussian noise experiment. � : SR technique with JCh regularisation,

◦: SR technique with JTV regularisation, �: sparse interpolation technique [4].
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paper, that this interpolation method has similar performance to other scattered
data interpolation techniques such as those using Radial Basis Functions).

Results are reported in Figure 3. When considering the noise free experiment,
it clearly appears that using more than 3 LR images does not lead to significant
improvement. This means that under optimal conditions, only 3 LR images are
required to accurately estimate a HR image using SR techniques. When adding
non negligible noise in LR images, the number of required LR images greatly
increase (except of the interpolation technique for which 3 remains a sufficient
number of LR inputs) and is close to the estimated number obtained by Lin and
Shum in [12]. Such experiment tends to show that efficient denoising method
may have a substantial impact on SR results. In both cases, SR techniques lead
to similar results and outperform the sparse interpolation approach.

4 Experiments on Fetal Brain MR Data

We applied the algorithm to fetal MR scans: T2 weighted HASTE sequence
(TE/TR = 147/3190 ms) on a 1.5 T Siemens Avanto MRI Scanner (SIEMENS,
Erlangen, Germany), resolution : 0.74 × 0.74 × 3.45mm. Pregnant women were
briefed before the exam and signed informed consent. To reduce motion arte-
facts, fetal sedation was obtained with 1 mg of flunitrazepam given orally to the

Fig. 4. Details of a reconstructed fetal brain MR image using 3 orthogonal LR images.

From left to right: A) original low resolution image, B) reconstructed image using local

sparse interpolation [4], C) SR reconstruction using JCh regularisation.
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mother 30 minutes before the exam. The study was approved by the local ethics
committee.

Figure 4 shows one original low resolution image compared to the high reso-
lution reconstructed images for axial, coronal, sagittal views. Results obtained
with the SR approach with JCh regularisation compare favorably with the local
sparse interpolation approach proposed by Rousseau et al. in [4]. It can be espe-
cially noticed that the boundaries of brain structures (like the cortex) are better
recovered. Moreover, the noise present in the LR image has no major impact
on the reconstructed images. However, reconstruction artefacts appear outside
the fetal head (see for instance the surrounding structures). In this case, the
assumption concerning the “rigidity” of the scene is violated and registration
errors disturb the reconstruction process. The result shown in Figure 4 has been
obtained using 3 LR images. Using up to 6 images gives only marginal qualita-
tive improvements. This experiment tends to show that the pipeline described
in Figure 2 may be efficient enough to reduce, in our context, fetal imaging time
by avoiding unnecessary acquisitions.

5 Discussion

The first contribution of this work concerns the use of a SR framework for
HR 3D isotropic fetal brain MR image reconstruction. Contrary to previous
works [4,5,6] where sparse interpolation frameworks were used, an observation
model is introduced in this paper in order to truly take into account physics
of MR image acquisition (point spread function, sub-sampling and noise). This
model allows potentially to recover fine image details compared to interpolation
based approaches. Visual analysis of the obtained results on real data are very
encouraging. Such high resolution image reconstruction algorithm represents an
important step towards analysis of fine scale anatomical details.

The second contribution of this paper is the study of the sufficient number of
LR images based on simulations using the Brainweb images. Considering a set
of orthogonal stack of 2D slices with an anisotropic resolution of 1× 1 × 3mm,
the sufficient number of LR images is three in the case of noise free images.
When adding Gaussian noise, the sufficient number of LR inputs is less than
9. Including an efficient denoising step in the overall image processing pipeline
should lead to a significant decrease of the number of required LR images. As a
consequence, further work is to investigate the building of such pipeline in order
to reduce the fetal imaging time.
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Abstract. In this paper we present a new method for spatial regular-

ization of functional connectivity maps based on Markov Random Field

(MRF) priors. The high level of noise in fMRI leads to errors in functional

connectivity detection algorithms. A common approach to mitigate the

effects of noise is to apply spatial Gaussian smoothing, which can lead to

blurring of regions beyond their actual boundaries and the loss of small

connectivity regions. Recent work has suggested MRFs as an alterna-

tive spatial regularization in detection of fMRI activation in task-based

paradigms. We propose to apply MRF priors to the computation of func-

tional connectivity in resting-state fMRI. Our Markov priors are in the

space of pairwise voxel connections, rather than in the original image

space, resulting in a MRF whose dimension is twice that of the original

image. The high dimensionality of the MRF estimation problem leads

to computational challenges. We present an efficient, highly parallelized

algorithm on the Graphics Processing Unit (GPU). We validate our ap-

proach on a synthetically generated example as well as real data from a

resting state fMRI study.

1 Introduction

Functional magnetic resonance imaging (fMRI) provides a non-invasive measure-
ment of cerebral blood flow in the brain that can be used to infer regions of neural
activity. Traditional fMRI studies are based on measuring the response to a set
of stimuli, and analysis involves testing the time series at each voxel for correla-
tions with the experimental protocol. Recently, there has been growing interest
in using resting-state fMRI to infer the connectivity between spatially distant
regions. A standard approach is to use correlation between pairs of time series as
a measurement of their functional connectivity. The high level of noise present
in fMRI can cause errors in pairwise connectivity measurements, resulting in
spurious false connections as well as false negatives.

In both task-based and resting-state fMRI the impact of imaging noise can be
reduced by taking advantage of the spatial correlations between neighoring voxels
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in the image. A common approach used for instance in Statistical Parametric
Mapping (SPM)[1] is to apply a spatial Gaussian filter to smooth the signal prior
to statistical analysis. However, this can lead to overly blurred results, where
effects with small spatial extent can be lost and detected regions may extend
beyond their actual boundaries. An alternative approach to spatial regularization
that has been proposed for task activation paradigms is to use a Markov Random
Field (MRF) prior [2,3,4,5,6], which models the conditional dependence of the
signals in neighboring voxels.

In this work we propose to use MRF models in resting-state fMRI to leverage
spatial correlations in functional connectivity maps. Unlike previous MRF-based
approaches, which use the neighborhood structure defined by the original image
voxel grid, the neighborhoods in functional connectivity must take into account
the possible relationships between spatially distant voxels. Therefore, we define
the neighborhood graph on the set of all voxel pairs. This results in a Markov
structure on a grid with twice the dimensions of the original image data, i.e., the
pairwise connectivities for three-dimensional images results in a six-dimensional
MRF. The neighborhood structure is defined so that two voxels are more likely
to be connected if they are connected to each other’s spatial neighbors.

We combine the Markov prior on functional connectivity maps with a like-
lihood model of the time series correlations in a posterior estimation problem.
Furthermore, we model solve for the unknown parameters of the MRF and like-
lihood using an Expectation Maximization (EM) algorithm. In the estimation
step the posterior random field is sampled using Gibbs Sampling and estimated
using Mean Field theory.

In the next section we describe our MRF model of functional connectivity
maps. In Section 3 we give the details of the algorithm to estimate the func-
tional connectivity probabilities, including implementation details for the GPU
solver. Finally, in Section 4 we demonstrate the advantages of our approach on
a synthetically generated data set as well as on real resting-state fMRI data.

2 Markov Random Fields for Functional Connectivity

Our framework for functional connectivity is a Bayesian approach in which we es-
timate the posterior distribution of the connectivity between voxels, conditioned
on the fMRI data. Let x = {xij} denote the functional connectivity map, i.e.,
a map denoting whether each pair of voxels i, j is connected, and let y denote
the original fMRI data, or some meausrements derived from the fMRI. In this
work we take y to be the map of correlations between pairs voxel time series.
The posterior distribution is then proportionally given by

P (x |y) ∝ P (x) · P (y |x). (1)

In this work we model P (x), the prior on the connectivity map, using a MRF,
and the likelihood P (y |x) using Gaussian models of the Fisher transformed
correlation values. We now give details for both of these pieces of the model.
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2.1 Markov Prior

Conventional image analysis applications of MRFs [7] define the set of sites of
the random field as the image voxels, with the neighborhood structure given
by a regular lattice. Because we are studying the pairwise connectivity between
voxels, we need to define a MRF in the higher-dimensional space of voxel location
pairs. Thus, if Ω ⊂ Zd is a d-dimensional image domain, then the sites for our
connectivity MRF form the set S = Ω × Ω. Let i, j ∈ Ω be voxel locations,
and let Ni,Nj denote the set of neighbors of voxel i and j, respectively, in the
original image lattice. Then the set of neighbors for the site (i, j) ∈ S is given
by Nij = ({i}×Nj)∪ (Ni×{j}). In other words, two sites are neighbors if they
share one coordinate and their other coordinates are neighbors in the original
image lattice. This neighborhood structure will give us the property in the MRF
that two voxels i, j in the image are more likely to be connected if i is connected
to j’s neighbors or vice-versa. Equipped with this graph structure, S is a regular
2d-dimensional lattice, which we will refer to as the connectivity graph.

We next define a multivariate random variable x = {xij} on the set S, where
each random variable xij is a binary variable that denotes the connectivity (xij =
1) or lack of connectivity (xij = −1) between voxel i and j. If A ⊂ S, let xA

denote the set of all xij with (i, j) ∈ A, and let x−ij denote the collection of all
variables in x excluding xij . For x to be a MRF it must satisfy

P (xij |x−ij) = p(xij |xNij ).

According to the Hammersley and Clifford Theorem[8], x is Markov random
field if and only if it is also a Gibbs distribution, defined as

P (x) =
1
Z

exp (−U(x)) , (2)

where U is the energy function U(x) =
∑

c∈C Vc, with potentials Vc defined for
each clique c in the clique set C. The partition function Z =

∑
exp(−U(x)) is a

normalizing constant, where the summation is over all possible configurations of
x. We use a particular form of MRF—the Ising model—a commonly used model
for MRFs with binary states. In this model the energy function is given by

U(x) = −β
∑

〈ij,mn〉
xijxmn, (3)

where the summation is over all edges 〈ij, mn〉, i.e., all adjacent voxel pairs
(i, j), (m, n) in the connectivity graph. When β > 0, this definition favors simi-
larity of neighbors.

2.2 Likelihood Model

We now define the likelihood model, P (y |x), which connects the observed data
y to our MRF. Because we are interested in the functional connectivity between
pairs of voxels, we compute the correlation between the time courses of each



366 W. Liu et al.

pair of voxels, and get a correlation matrix y = {yij}. Just as in the case of the
random field x, the correlation matrix y is also defined on the 2-dimensional
lattice S. Linear correlation is not the only choice for y. We can use any statis-
tic, as long as it indicates the affinity between two voxel time series. Another
possibility could be frequency domain measures, such as the coherence [9].

Before defining the full data likelihood, we start with a definition of the emis-
sion function at a single site sij ∈ S. This is defined as the conditional likelihood,
P (yij |xij), and is interpreted as the probability of the observed correlation,
given the state of the connectivity between voxels i and j. We model the emis-
sion function as a Gaussian distribution with unknown mean and variance on
the Fisher transformed correlation yij , that is,

P (yij |xij = k) =
1√

2πσk

exp
(
− (F (yij)− μk)2

2σ2
k

)
, (4)

where F denotes the Fisher transform. Notice that each correlation yij on site
sij only depends on the latent variable xij on the same site, and does not depend
on neighbors of xij . Therefore, the full likelihood is given by

P (y |x) =
∏

sij∈S
P (yij |xij). (5)

3 Estimation via Expectation Maximization

Having defined the data likelihood and MRF prior in the previous section, we are
now ready to describe the maximization of the posterior given by (1). For this
we need to determine the model parameters, β in (3) and (μk, σ2

k) in (4). Rather
than arbitrarily setting these parameters, we estimate them using an Expectation
Maximization (EM) algorithm. Exact computation of the full posterior (1) is
intractable, due to the combinatorial number of terms in the partition function Z.
Therefore, we instead maximize the approximate posterior given by the pseudo-
likelihood function [7,8],

PL(x, y) =
∏
ij

P (xij |xNij )P (yij |xij). (6)

In the E-step, the parameters are held fixed and we compute the posterior
probability for each xij , and sample xij from the posterior distribution using
Gibbs Sampling. We then compute the expected value of each connectivity node
by Mean Field theory. After we compute the posterior of current point xij , we
update xij with its expected value 〈xij〉.

In the M-step, the complete data {〈x〉, y} is available, and the parameters can
be estimated by maximizing the joint pseudo-likelihood given by (6) using New-
ton’s method. After several iterations of this EM algorithm, we get parameters
as our MAP estimates.
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GPU Implementation. The whole algorithm involves updating a high di-
mensional connectivity matrix x iteratively, and hence have high computation
cost. We designed a parallel Markov random field updating strategy on graphics
processing unit (GPU). The algorithm take only a few minutes compared with
more than 1 hour on CPU counterpart.

To fit the algorithm into GPU’s architecture, we use some special strategy.
First, because GPU only support 3-dimensional array, we need to reshape x
and y defined originally on higher dimensional graph by linear indexing their
original subscripts. This is especially difficult for brain fMRI data because the
gray matter voxels resides in a irregular 3-D lattice. Specific data structure are
used for mapping between original voxel subscripts and their linear index i and
j. Second, to update each site of MRF in parallel we have to make sure a site
is not updated simultaneously with its neighbors, otherwise the field tends to
be stuck in a checkerboard-like local maximum. Our strategy is to divide all
the sites of the field into several sub-groups, such that a site is not in the same
sub-group with its neighbors. We then can update the sub-group sequentially,
while the data in sub-groups are updated simultaneously. The whole procedure
is summarized in Algorithm 1.

Algorithm 1. MAP estimation by EM
Require: Sample correlation matrix Y.

Init posterior matrix by maximizing conditional likelihood P (yij |xij).

while Δ{β, μ, σ2} > ε do
E step:
(a) Based on the current parameters, compute the posterior by (6).

(b) Repeatedly Do Gibbs Sampling until the field stabilize.

(c) Based on current value of xij , iteratively compute the mean field for all nodes

in S until the field stable.

M step:
(d) With complete data {X,Y}, estimate β , μ and σ2 by maximizing (6).

end while
return posterior matrix X.

4 Results

Synthetic Data. We first construct a synthetic data set consisting of a 100× 1
1-D image, with each pixel a 300-point time course signal. The time course was
constructed with a baseline DC signal of 800, plus additive Gaussian noise of
variance 50. We then added a sine wave signal of frequency 0.2 and amplitude
20 to two distant regions of the image. The goal is to detect the connectivity
between these two distant regions. Between those pixels containing signal the
connectivity is 1, otherwise it is 0 for connectivity between signal and noise, and
between noise time series. The true connectivity map is shown in Fig. 1(a)

To compare our MRF model with conventional Gaussian blurring of the cor-
relation map, we applied both approaches to the synthetic data (Fig. 1). On the
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(a) (b) (c)

(d) (e) (f)

Fig. 1. Test of synthetic data, showing the (a) ground-truth connectivity, (b) correla-

tion of original, noisy data, (c) correlation of Gaussian-smoothed data, (d) connectivity

based on noisy correlations, (e) connectivity based on smoothed data, (f) connectivity

computed using proposed MRF model

correlation map in the top row, we see smoothing does remove noise and results
in a correlation map that looks more like the true connectivity map. However,
it also creates several errors, most noticeably false positives around the diagonal
(Fig. 1(e)). Fig. 1(f) shows the proposed MRF method better detects the true
connectivity regions while removing most false positives.

Resting-State fMRI. Next we tested our method on real data from healthy
control subjects in a resting-state fMRI study. BOLD EPI images (TR= 2.0 s,
TE = 28 ms, GRAPPA acceleration factor = 2, 40 slices at 3 mm slice thickness,
64 x 64 matrix, 240 volumes) were acquired on a Siemens 3 Tesla Trio scanner
with 12-channel head coil during the resting state, eyes open. The data was
motion corrected by SPM software and registered to a T2 structural image.
We used a gray matter mask from an SPM tissue segmentation so that only
gray matter voxels are counted in the connectivity analysis. We do not spatially
smooth the data, in order to see the benefit of replacing spatial smoothing with
our MRF method. Before computing the correlations, the time series at all voxels
are linearly detrended by least squares regression.

Fig. 2 compares the real data results using no spatial regularization, Gaussian
smoothing, and the proposed MRF model. Though the posterior connectivity of
the MRF is computed between every pair of voxels within a slice, for visualization
purposes, only the posterior of the connectivity between one voxel and the slice
is shown. We chose to visualize the connectivity to a voxel in the posterior
cingulate cortex (PCC) because this is known to be involved in the Default
Mode Network [10], with connections to the medial prefrontal cortex (MPFC).
The results show that Gaussian smoothing is able to remove noise, but is unable
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Correlation map and Posterior Connectivity map between seed voxel and slice

containing the seed. First row is subject 1. (a) the correlation map computed from data

without spatial smoothing. (b) correlation map of data after smoothing. (c) Posterior

probability computed from MRF. Second row (d,e,f) is subject 2 with same test.

(a) (b) (c)

(d) (e) (f)

Fig. 3. Thresholded correlation map and Posterior Connectivity map between seed

voxel and slice, overlaid to T2 image. First row is subject 1. (a) the correlation map

computed from data without spatial smoothing. (b) After smoothing. (c) Posterior

probability by MRF. Second row (d,e,f) is subject 2 with same test.
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to find a clear connection between the PCC and the MPFC. Our proposed MRF
model (rightmost plot) is able to remove spurious connections, and also clearly
shows a connection to the MPFC.

To show the strongest connections found by each method, Fig. 3 shows the
thresholded connectivity maps overlaid on T2 structural image. Images in the
first two columns are thresholded such that the top 5% voxel correlations are
shown. For the MRF in the third column, the MAP estimate is shown.

5 Conclusion

We propose a Markov random field and Bayesian framework for spatially regu-
larizing functional connectivity. Future work may include running this pairwise
connectivity analysis on 3D whole brain. Another interesting direction is apply-
ing the method to multiple sessions and subjects.
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Abstract. This paper presents a new modelling technique for the defor-

mation of thin anatomical structures like membranes and hollow organs.

We show that the behaviour of this type of surface tissue can be ab-

stracted with a modelling of their elastic resistance using shell theory.

In order to apply the shell theory in the context of medical simulation,

our method propose to base the geometrical reconstruction of the organ

on the shape functions of the shell element. Moreover, we also use these

continuous shape functions to handle the contacts and the interactions

with other types of deformable tissues. The technique is illustrated using

several examples including the simulation of an angioplasty procedure.

1 Introduction

The human body is composed of various deformable anatomical structures. A key
challenge of soft-tissue modelling is the variousness of the mechanical behaviours.
It seems unrealistic to use a unique model for all tissues. Yet most of previous
works focus on volumetric models that are able to capture the behaviour of
solid organs like the liver or the brain (see for instance [1,2]). In contrast, this
paper seeks to propose a solution for simulating, in real-time, the deformation of
thin anatomical structures whose volume is negligible compared to their surface
area. Examples include hollow structures, such as the wall of blood vessels, or
membranes, such as the Glisson’s capsule surrounding the liver. It is also of
particular interest to us for modelling the colon in our colonoscopy simulator [3].

Shell theory allows the modelling of structure deformations when the thickness
is small compared to its other dimensions [4]. The key idea is to model the
physical shell as a surface but endowed with mechanical properties in the form of
elastic resistance to stretching and bending forces. Rather than resorting to shell
theory, previous works in medical simulation often rely on linear or angular mass-
spring models as in [5,6]. Yet, such models are limited in their ability to describe
certain behaviour, as they do not rely on continuum mechanics: it is difficult to
derive spring stiffness (in particular for angular springs) from elastic properties
(Young’s modulus and Poisson’s ratio). The work of Choi et al. [7] in computer
graphics refers to a fast shell-based modelling for interactive simulation. Their
model relies on simplified energy functions and precomputed modal analysis for
fast and visually realistic results. We propose to rely on a similar approach but
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with more accuracy to be applicable to medical simulation. Our model is not
based on modal analysis but uses a co-rotational formulation and polynomial
shape functions presented in [8].

To model the deformation of complex anatomical structures using shell ele-
ments, the first step is to describe its surface with curved patches. This process
is quite similar to the reconstruction of the surface of objects in computer vision.
Indeed calculating curvature maps of 3D surfaces represented as digitised data
(point clouds or triangulated meshes) has been extensively studied. One of the
most common approach is to use continuous surface patches [9]. The surface is
locally approximated by an analytic representation called surface patch, usu-
ally chosen to be an implicit surface. These works target approaches that are
not noise-sensitive and coherent surface and curve extraction from 3D data [10].
However, our situation is substantially different as we want to model the defor-
mation of the structure. In that regard the curvature of the surface has a physical
meaning: it represents the mid-surface of the shell. We propose to approximate
the surface of anatomical structures with shell elements whose each surface is
described by the shape function used in our shell formulation.

These polynomial shape functions are used in three different ways in our
computational model: (a) to approximate complex geometrical shapes, (b) to
compute internal forces, (c) to compute contact forces onto a curved triangle.
Section 2 presents our Finite Element Modelling (FEM) for shell elements and
how we process contacts and interactions with other models. In section 3 we in-
troduce an automatic process to obtain meshes from image based reconstruction.
Finally the benefits of our approach (meshing of a curved surface, fast compu-
tation and possible interactions with solid models) are illustrated using various
examples showed in section 4. Implementations were carried out within the open
source framework SOFA [11].

2 Co-rotational Triangular Shell Model for Thin
Structures

A complete description and validation of our co-rotational triangular shell finite
element model is available in one of our previous publication [8]. Therefore we
will only remind the key points. We improved and extended a plate model first
introduced by Przemieniecki [12] to a co-rotational formulation. Co-rotational
approaches offer a good trade-off between computational efficiency and accuracy
by allowing small deformations but large displacements. Once combined with
an in-plane membrane formulation we obtain an accurate, yet computationally
efficient, shell finite element method featuring both membrane and bending en-
ergies. In the following we detail the bending stiffness computation in order to
present the polynomial shape functions that are used in the shell model.

Polynomial shape function. To calculate the stiffness matrix for the trans-
verse deflections and rotations shown on Fig. 1, the deflection uz is computed
using a polynomial interpolation:

uz = c1 + c2x + c3y + c4x
2 + c5xy + c6y

2 + c7x
3 + c8xy2 + c9y

3 (1)
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Fig. 1. The different degrees of freedom u of a triangular thin plate in bending

where c1, . . . , c9 are constants. Using a third-degree polynomial expression allows
us to reach a greater precision for both the computation of the bending energy
and the interpolation within the surface of the shell. Let us define the vector
u = {u1u2 . . .u9} of the displacements and slopes at the three corners of the
triangular plate using the following notations:

u1 = (uz)x1,y1 u2 =
(

∂uz

∂y

)
x1,y1

u3 = −
(

∂uz

∂x

)
x1,y1

(2)

and so on for the two other vertices and we can derive a matrix C such as
u = Cc where c = {c1c2 . . . c9}. We can then calculate the strains from the
flat-plate theory using:

exx = −z
∂2uz

∂x2
eyy = −z

∂2uz

∂y2
exy = −2z

∂2uz

∂x∂y
(3)

Symbolically this may be expressed as e = Dc where D derives from (1) and
(3). Noting that c = C−1u, we have e = DC−1u = bu where the strain-
displacement matrix b = DC−1. The stiffness matrix Ke for an element is then
obtained from:

Ke =
∫

v

bT χbdV where χ is the material matrix . (4)

Mechanical interactions with the curved surface of shells. The practical
interest of modelling complex behaviours such as bending and twisting would
remain fairly low for medical simulation if contacts and constraints were not
handled properly. In our case the difficulty comes from different sources. First the
collision detection must be carried out with the curved surface of shell elements
as opposed to the classic detection on plane triangles. Then forces applied to a
given triangle need to be distributed between linear forces and torques onto its
three vertices. As we will see, the same polynomial interpolation function chosen
to compute the bending energy in our FEM formulation is also used to capture
the interactions between the curved surface and other objects.
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In order to detect the collision with the bent surface, we have chosen the
subdivision approach. We first sample the flat surface of each element by recur-
sively dividing each triangle into four smaller ones and the deflection of each
new vertex is computed using (1) according to the displacements and slopes at
the three vertices of the triangular element. This process of subdivision allows
us to render each shell as a curved triangle (Fig. 2 (a) and (b)) and detect any
collision with the curved surface of the shell using any of the classic collision
detection algorithms working on flat triangles.

Once a collision has been detected, it must be processed by distributing the
linear force received on the bent surface between the three vertices of the triangle.
First the linear part of the force is simply transmitted on each node using the
barycentric coordinates of the contact point’s projection onto the triangle.

The main difficulty is to convert the normal component of the force applied
to the bent surface into a torque at each of the three nodes (Fig. 2 (c)). Our
approach is the following: during force computation, we use the change in orien-
tation measured at each node to compute the local deflection of each subvertex
within the triangle. Differentiating the formulation twice yields a relation be-
tween the torque applied at each node and the generated force in bending. We
therefore need to invert the latter formulation to convert a bending force into
torques at each vertex. We start by retrieving the normal component of the
applied force vector Fz. We project the application point of the force into the
triangle’s plane and compute its local coordinates (x, y). We create the polynom
P = Fz(1 x y x2 xy y2 x3 xy2 y3)T . The moments at each vertex are then
obtained with Ω = (C−1)T P . Thus we are able to transmit any force coming
from interactions with the curved surface of shells to the mechanical vertices
used in our FEM formulation.

F

f1
Ω1

f3

Ω3

f2

Ω2

(a) (b) (c)

Fig. 2. (a,b) The triangle formed by the three vertices of the shell has been recursively

subdivided 3 times to allow more accurate rendering and collision detection. (c) The

shape function is used to distribute an external force F onto the triangle nodes.

3 Physics-Based Reconstruction Using Shell Elements

Because the surface of an anatomical structure has a physical meaning, we pro-
pose to patch the surface with triangular elements whose interpolation makes
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use of the same shape function designed for our shell FEM formulation. More-
over, while many flat triangles are required to describe highly curved surfaces,
fewer triangular shell elements are needed to describe the given geometry with
the same precision since they can be curved. In the following we assume that we
have a high resolution triangular mesh obtained from a binary segmented image
of the organ we want to simulate (via a Marching Cube algorithm for instance).
Our goal is to create a mesh featuring the optimal number of shell elements
while staying as close as possible to our targeted geometry.

Therefore we need to ensure that the distance between the surface of our shell-
based mesh and the targeted high resolution mesh will be minimal. An efficient
technique for measuring the error between two surfaces is the Hausdorff distance
[13]. As a reminder the Hausdorff distance between two meshes is the maximum
between the two so-called one-sided Hausdorff distances:

dH(X, Y ) = max
{

sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)
}

. (5)

where d() is the Euclidian distance between two points. The same technique of
subdivision used for rendering allows us to sample the actual surface described
by the shells to compute the Hausdorff distance with the targeted high resolu-
tion mesh.

The first step in the process of generating a shell-based mesh is an important
decimation of the high resolution mesh, using quadric edge collapse technique
implemented in Meshlab [14]. The algorithm tries as much as possible to preserve
mesh boundaries and generates high quality triangular elements. We then apply
a heuristic method derived from the work of Saupin et. al [15] with tetrahedral
meshes based on simple geometrical rules. For each node of the coarse mesh, we
find the three closest triangles on the high resolution mesh and we move the node
to the barycenter of the three centres of mass of those triangles. This technique
locally smoothes the surface of the mesh while converging towards the desired
high resolution mesh. At each iteration of this algorithm we measure the error
between the curved surface of shells and the target using the Hausdorff distance

Fig. 3. The target (a) is a high resolution cylinder mesh of 16,384 triangles and we

start from a very coarse mesh (12 triangles), rendered with flat triangles here (b). In

(c) the coarse mesh is rendered with shells and a one-sided Hausdorff distance colour

map is applied to show the initial error with the high resolution mesh. (d) One-sided

Hausdorff distance colour map after one iteration of our algorithm (48 shells).
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and the process is stopped when the required precision has been reached. A
simple example is shown Fig. 3 to illustrate the method.

4 Results

Meshing of anatomical structures. This approach has been applied to ap-
proximate more complex anatomical geometries with curved shell elements. In
each case the error is expressed as a percentage of the diagonal of the object’s
bounding box.

Computation times. We perform several tests on the aneurysm model at dif-
ferent resolutions to measure computation times (Fig. 6). The shells are resisting
to a uniform pressure load and solved using a Conjugate Gradient (CG) iterative
solver. Implicit integration allows for large time steps (40ms) and the compu-
tation is real-time for 800 shell elements and a reasonable error criterion (5%).
When the computation time must be bounded (critical real-time applications),
one can fix the number of CG iterations to, for instance, 100 and remains real-
time for 1000 shell elements. However, in that case the accuracy of the results is
not checked.

Fig. 4. (a) the targeteted high resolution Glisson’s capsule mesh (8,000 triangles). (b)

the one-sided Hausdorff distance error map after applying only one iteration of our

algorithm to the coarse mesh (1,200 shells).

Fig. 5. (a) the targeteted high resolution aneurysm mesh (28,368 triangles). (b): the

one-sided Hausdorff distance error map on a mesh of 772 shells generated with our

method.
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Coupling between tetrahedra and shells for advanced modelling. Struc-
tures in human body can be either solid (brain, liver, prostate etc.) or hollow
(colon, blood vessels, stomach etc.). However knowing how to model the two
kind of structures is not sufficient to reach a high degree of accuracy, real life
situations are more complex. As an example, the external surface of the liver is
covered by a layer of cells called Glisson’s capsule. Its interaction with the liver
plays an important role into the overall structure’s mechanical behaviour. There-
fore considering the interaction between solid and hollow objects is as crucial as
modelling the two structures separately.

Number of
Shell elements

Computation
time (ms)

Not 
real-time

1000
800

600

400

200

10 20 30 40 50

Conjugate gradient with
fixed 100 iterations

Conjugate gradient with 
fixed 5% error criterion

Fig. 6. Computation time on meshes of 200, 400, 600, 800 and 1000 elements

(a) (b) (c) (d)

Fig. 7. Simulation of an angioplasty procedure. (a, c): A collapsed stent is inserted

into the blood vessel. (b, d): The stent is crushing the fatty deposits which creates a

pressure onto the interior wall and widens the blood vessel.

An example of medical procedure to illustrate this point even further is an-
gioplasty. Angioplasty is the technique of mechanically widening a narrowed or
obstructed blood vessel, typically as a result of atherosclerosis. An empty and
collapsed balloon on a guide wire is passed into the narrowed locations and then
inflated to a fixed size. The balloon crushes the fatty deposits, so opening up
the blood vessel to improved flow. As a proof of concept we tried to simulate
an angioplasty (Fig. 7). The blood vessel is modelled using the shell FEM for-
mulation described in this paper and the fatty deposits are simulated with a
tetrahedral FEM method and are fixed to the interior wall of the blood vessel.
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When the balloon inflates it crushes the deposits and they then apply a pressure
onto the curved surfaces of shells modelling the interior wall. The forces are then
distributed onto the mechanical nodes of the blood vessel mesh as detailed in
section 2, which widens the blood vessel as expected.

5 Conclusion

We propose a framework for real-time modelling of thin anatomical structures.
The novelty of our method relies on the combination of a shell finite element
formulation and a geometric surface reconstruction both based on the same
polynomial interpolation function used to describe the surface of shells. We also
show how contacts and interactions with the curved surfaces of shells can be
handled using the same function. The efficiency of the method is illustrated
through shell-based reconstruction and real-time simulation of the deformations
of various anatomical structures. We also present preliminary results on the
simulation of an angioplasty procedure.
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Abstract. Cubic Hermite meshes provide an efficient representation of

anatomy, and are useful for simulating soft tissue mechanics. However,

their personalization can be a complex, time consuming and labour-

intensive process. This paper presents a method based on image reg-

istration and using an existing template for deriving a patient-specific

cubic Hermite mesh. Its key contribution is a solution to customise a

Hermite continuous description of a shape with the use of a discrete

warping field. Fitting accuracy is first tested and quantified against an

analytical ground truth solution. To then demonstrate its clinical utility,

a generic cubic Hermite heart ventricular model is personalized to the

anatomy of a patient, and its mechanical stability is successfully tested.

The method achieves an easy, fast and accurate personalization of cubic

Hermite meshes, constituting a crucial step for the clinical adoption of

physiological simulations.

1 Introduction

Computational physiology provides tools to quantitatively describe physiological
behaviour across a range of time scales and anatomical levels using mathemat-
ical and computational models [1,2]. The heart is arguably the most advanced
current exemplar of this approach [3,4], and ongoing developments now have the
potential to provide a significant impact in the management of cardiovascular
diseases. One of the key challenges in fulfilling this potential is the personaliza-
tion of models to represent the clinical status of a patient. This work focuses on
the efficient and automated development of patient-specific geometrical descrip-
tion of organs for biomechanical simulations.

A computational model requires the geometrical description of the solution do-
main where material constitutive equations are solved. The most popular choice
is linearly interpolated tetrahedral meshes, mainly due to its conceptual simplic-
ity and availability of tools for an automatic mesh generation [5]. Nevertheless,
they introduce significant numerical error in the solution of the displacements in
the soft tissue deformation problem [6]. Alternatively, cubic Hermite meshes are

T. Jiang et al. (Eds.): MICCAI 2010, Part II, LNCS 6362, pp. 380–387, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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an efficient representation of the geometrical state of an organ, and a more suit-
able choice for biomechanical simulations compared to tetrahedral meshes [6].
Another important requirement is mesh robustness, related to the convergence
of simulation results in changing physiological conditions. For these reasons, cu-
bic Hermite meshes are a popular choice for the simulation of heart mechanical
deformations [7,8,9]. Nevertheless, construction of these meshes can be a com-
plex, time consuming and labour-intense process. There is thus a need for a fast,
accurate, robust and easy to use cubic Hermite personalization method.

There are two broad approaches for the personalization of geometrical meshes:
construction from segmented images [5,10] or customization from an existing
mesh model [11,10]. Whereas the literature for linear meshes is extensive [5], its
translation to Hermite meshes is not straightforward. The change of interpolation
scheme, from linear to Hermite functions, requires a completely different meshing
strategy, like the adaptation of the Iterative Closest Point proposed in [10]. In a
Hermite mesh shape is interpolated, not only from the 3D Cartesian coordinates
of nodes, but also from the derivatives of shape versus local finite element (FE)
coordinates. This enables a compact representation, but results in a complex
mesh construction and customization. This article presents an image registration
based solution for cubic Hermite mesh personalization.

2 Material and Methods

The proposed personalization method combines a fast binary image registration
with a cubic Hermite warping technique. A schematic illustration of the complete
process is provided in Fig.1.

Fig. 1. Dataflow designed to generate patient specific cubic Hermite meshes
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2.1 Image Registration

A binary image registration technique using a fast optical flow algorithm pro-
posed in [11] is chosen for its robustness, accuracy and computational efficiency.
It requires a preliminary segmentation of the patient’s anatomy, which in the
case of heart ventricles from static MRI or CT is a quite mature field of research.
Discrete values of the warping field between the two binary images are defined
at nodes of a regular hexahedral grid superimposed on the binary image of the
template shape. The two main parameters of the registration technique are the
spacing between nodes D and the smoothing weighting factor λ (based on a
Tikhonov regularisation of the linear least squares problem). Registration is ini-
tialised by aligning the principal axis of the shapes after a Principal Component
Analysis of the 3D coordinates of each shape.

2.2 Cubic Hermite Mesh Warping

A cubic Hermite mesh is a set of 3D FE that uses Hermite interpolation func-
tions. Mesh nodes have both coordinate values and derivatives (single, double
and triple cross derivatives) in order to encode a C1 shape. Let u(ξ1, ξ2, ξ3) be
a shape defined in the Cartesian space as a function of the material coordinates
ξ. The four 1D Hermite interpolation basis functions are described in (1), and
interpolation in a line element u(ξ) is given by a linear combination of these four
basis functions (2). This scheme can be extended to 3D as illustrated in Fig.2,
u(ξ1, ξ2, ξ3) is then interpolated from a total of 192 variables in each element.

ψ0
1(ξ) = 1− 3ξ2 + 2ξ3; ψ0

2(ξ) = ξ2(3− 2ξ)
ψ1

1(ξ) = ξ(ξ − 1)2; ψ1
2(ξ) = ξ2(ξ − 1) (1)

u(ξ) = ψ0
1(ξ)u1 + ψ0

2(ξ)u2 + ψ1
1(ξ)du/dξ|1 + ψ1

2(ξ)du/dξ|2 (2)

Warping a cubic Hermite mesh therefore implies calculation of a deformed state
of its three coordinate fields (x, y, z). The total number of degrees of freedom is
therefore Ndof = 3 × 8 × n = 24n, being n the number of nodes of the mesh.
Note that this number will be slightly smaller if the mesh has collapsed elements,
and slightly bigger if there are discontinuities modelled with different versions
of node values. For further details about these meshes see [10].

The solution for the warping of a cubic Hermite mesh is the core contribution
of this work. This third step in Fig.1 calculates the optimal description of a
warped shape with Hermite interpolation functions. This is built on three basic
concepts. First, it is important to realise that the warping of a FE requires know-
ing the warping field throughout the complete domain, and not only in the local
neighbourhood of mesh nodes. Second, the solution uses a FEM technique for
finding an optimal representation of a field in a domain, i.e. it uses a variational
formulation of the problem based on a dot product of functions. And third, a
numerical technique is required to handle continuous domains with computer
discrete representations, i.e. a numerical integration method is used to calculate
the dot product of functions.
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(a) (b)

Fig. 2. Cubic Hermite meshes. (a) A two element mesh, showing the vectors corre-

sponding to the 7 derivatives at each node; (b) template of truncated left and right

ventricles of the heart. This complex shape is represented with only 112 cubic elements

(cubes with black lines) and 183 nodes.

The central idea is that warping of a cubic Hermite mesh is an addition of a FE
description of a warping field. It requires finding the adequate FE description,
with a set of Ndof variables as described before, of the warping field. And this
description is then added to the corresponding Ndof nodal variables describing
the 3 coordinate fields, i.e. the shape. Let us define a variational problem for
finding the C1 continuous function g that approximates w, one of the three
components of the warping field W in the domain defined by the cubic Hermite
template ΘT . Let g be formulated as a linear combination of the set of Ndof/3
basis functions φT of the mesh. Note that each φT is a combination of 3D Hermite
basis from adjacent elements in order to enforce the continuity of the function
and its derivatives. Let us introduce the definition of a dot product of functions:

(g, φj) =
∫

Θ

g·φj =
∫

Θ

∑
i

ciφi·φj =
∑

i

ci

∫
Θ

φi·φj (3)

Finding g becomes the problem of finding the ci coefficients (or nodal values)
which satisfy a set of Ndof/3 equations, one for each basis φT :

(g, φj) = (w, φj)∀φj (4)∑
i

ci

∫
ΘT

φi·φj =
∫

ΘT

w·φj (5)

Mx = b (6)

where vector x is the set of Ndof/3 coefficients ci, and integrals required to
calculate matrix M and vector b are computed using Gaussian Quadrature.
Calculi of vector b uses order 4, and cubic interpolation of the warping field is
used to calculate the data (deformation field) at Gauss Points. The linear system
of the fitting process requires the solution of a sparse matrix system. This matrix
is symmetric and positive definite, allowing the use of fast, low-memory solvers
such as Conjugate Gradients.
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3 Results

3.1 Analytical Workbench for Accuracy and Robustness Analysis

Accuracy and sensitivity to parameters are analysed using a virtual workbench
with known analytical solutions. Three experiments study the accuracy of (1)
proposed warping scheme, step 3 in Fig.1, (2) the binary image registration, step
2 in Fig.1, and (3) the concatenation of the two processes. Template cylinders are
built with dimensions 30, 10 and 5mm in length, outer and internal radius, and
with 24, 81 and 192 elements. Warped versions of these cylinders are generated
under two known warping fields W1 and W2, see Fig.3. Shape error is calculated
in each element as the integral of the RMS error between warped coordinates
field and their ground truth. An order 5 Gaussian Quadrature volume-weighted
integration of error is used, which is independent of the mesh discretisation
resolution and topology.

The warping step is analysed by using a perfect solution of the registration
step, obtained by sampling the ground truth warping fields. This experiment is
repeated for W1 and W2, for the three cylinder mesh resolutions and for a range
of node spacings in the discretisation of the warping field (SW , with 9 values from
1 to 5 mm in steps of 0.5mm). Average shape error is 5.5e−3 and 5.5e−2mm2

for W1 and W2 respectively, and the dependence with the two factors (mesh
resolution and SW ) is illustrated in Fig.4.

The registration step is analysed by comparison of obtained warping fields
with their analytical expression. Binary images are generated from the Ground
Truth shapes. Registration is performed for each W1 and W2, for a total of 49
binary image resolutions (from 0.2mm to 5mm in steps of 0.1mm), and for 9
values of node spacing (D from 2 to 10 voxels). The smoothing coefficient λ is
set automatically by an empirical theorem proposed in [11]. Average registration
volume-weighted error is 1.86 and 0.69mm RMS for W1 and W2 respectively,
results are shown in Fig.5.

(a) Template (b) W1 = (x3, x3, 1) (c) W2 = (sin(z), 0, 0)

Fig. 3. GroundTruth. All three shapes (template, customised by W1 and customised

by W2) are created with three resolutions (24, 81 and 192 elements).
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Fig. 4. Error introduced in the warping of cubic Hermite meshes using a discrete ver-

sion of the ideal warping fields W1 and W2. (a) Dependence on sampling resolution,

(SW ), averaging results with three mesh resolutions. (b) Dependence on mesh resolu-

tion, averaging results with nine sampling resolutions.
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Fig. 5. Registration error (volume-weighted integral) for warping fields W1 and W2.

(a) Dependence on image resolution, averaging results with 9 node spacings. (b) De-

pendence on node spacing, averaging results with 49 image resolutions.

The previous two steps are concatenated, and template cylinder meshes are
warped with the result of binary image registrations. The mesh resolution of 81
elements is chosen for this experiment, since higher resolutions did not introduce
any significant improvement in accuracy, see Fig.4b. The analysis is repeated for
W1 and W2, for all 49 binary image resolutions (from 0.2mm to 5mm in steps of
0.1mm), and for 9 node spacing (from 2 to 10 voxels). The average shape error
for W1 and W2 is 1.90 and 0.702mm RMS respectively, an increment of roughly a
1.5% with respect to the registration error. The dependence on binary resolution
and node spacing is the same as reported for the registration step, see Fig.5.

3.2 Clinical Case

A patient specific cubic Hermite mesh of heart ventricles is constructed following
the process of Fig.1. The template mesh chosen is the result of fitting a mesh to
the anatomy of a first patient following the methodology described in [10] and
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illustrated in Fig.2. A T1 MRI heart study of a second patient (0.88x0.88x0.75
mm voxel resolution) is manually segmented and truncated just underneath of
the opening of valve planes after vertical alignment. The agreement between
segmentation and resulting cubic Hermite mesh is shown in Fig.6, and the av-
erage distance between the two surfaces is measured as 1.32mm. The process
from image segmentation to mesh fitting for this biventricular dataset of 903

voxels requires about one minute. Mechanical stability of personalised geometry
is successfully tested by simulating a passive inflation and an isochronous active
contraction of the heart following the methods described in [7].

Fig. 6. Shape personalization result. Comparison of the isosurface of the binary manual

segmentation (red wireframe) to the Cubic Hermite mesh (white solid).

4 Discussion

Cubic Hermite mesh warping requires the addition of an adequate representation
of the warping field in nodal values and derivatives. The proposed solution finds
an optimal description of this field, leading to reasonable accurate results.

Results show the importance of the registration step, which is limited by
image resolution. Interpolation errors also become significant when the topology
of the mesh is not able to represent the warped shape. These cases require an
interpolation order higher than cubic or higher element refinement, such as case
W2. An inherent limitation of proposed approach is that binary registration only
aligns the surfaces of models, interpolating the warping inside. This is a valid
approach for vessels and computational fluid dynamics [11], and preliminary
results suggest that this is also adequate for the flat walls of the heart.

The proposed method is its simpler and more robust compared to the state of
the art alternatives, the ”host mesh” technique [10] or the mesh generation by
fitting Hermite surfaces from a linear scaffold [10]. Proposed method is fast and
requires minimal user interaction. In comparison, the two alternative methods
greatly depend on users expertise, and it can take hours of manual interaction
and fitting to get satisfactory results. A second advantage is that, because it
uses a voxelized description of the shape and not a selection of pairs of control
points and degrees of freedom as required in a ”host mesh” technique, it is
immune to subjective and sometimes arbitrary selection of parameters. Finally,
warping an existing high quality template mesh under a smoothness constraint
is a reasonable warranty of simulation stability in the resulting mesh. This does
not occur using a mesh generation from an arbitrary initial linear mesh [10].
Further experiments with higher number of cases are nevertheless required to
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generalise and accept these desirable properties. Future works will also address
the characterization and development of a metric of mechanical stability of cubic
Hermite meshes, a metric to be optimised during the personalization process.

5 Conclusion

Proposed method achieves an easy, fast and accurate personalization of cubic
Hermite meshes, constituting a crucial step for the clinical adoption of biome-
chanical physiological simulations.
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Abstract. Reduced order modelling, in which a full system response is

projected onto a subspace of lower dimensionality, has been used previ-

ously to accelerate finite element solution schemes by reducing the size

of the involved linear systems. In the present work we take advantage

of a secondary effect of such reduction for explicit analyses, namely that

the stable integration time step is increased far beyond that of the full

system. This phenomenon alleviates one of the principal drawbacks of

explicit methods, compared with implicit schemes. We present an ex-

plicit finite element scheme in which time integration is performed in

a reduced basis. The computational benefits of the procedure within a

GPU-based execution framework are examined, and an assessment of

the errors introduced is given. Speedups approaching an order of magni-

tude are feasible, without introduction of prohibitive errors, and without

hardware modifications. The procedure may have applications in medical

image-guidance problems in which both speed and accuracy are vital.

1 Introduction

In the last decade significant effort has been devoted to use of computational
biomechanics for enhancing the utility of medical images in the operating the-
atre. A typical scenario is the use of information-rich pre-operative images to
guide interventions. Such images may, for example, delineate target patholo-
gies or vasculature and other vital structures. However, if the relevant biological
structures change shape between imaging and intervention, guidance may be
confounded unless the deformation can be reliably compensated for. Since soft
tissues are, of course, physical structures, their deformation must conform to
physical laws, and this has motivated use of biomechanics to this end [1].

A common issue is the stringent time constraint on simulations performed
intra-operatively, which competes with requirements for accuracy and reliability
in the solution. Continuum mechanics formalism, combined with finite element
solution, is the most common framework. However, despite the maturity of non-
linear formulations in the biomechanics community, these have seldom been used,
largely due to the mentioned time constraints.
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Recently, explicit dynamic algorithms have been shown to be advantageous in
this area [12,13], but a well-known drawback of such methods is the small time
steps required for numerical stability. By virtue of its dependence on material
stiffness, the critical step size Δtcr is much larger for models of very soft tissues
(such as organs) than of common engineering materials, but is still many times
smaller than that required in implicit analyses. In the present work, we examine
the use of reduced order models (ROMs) to alleviate some of the computational
load in explicit analyses, and thereby improve their utility.

The main idea behind ROMs is projection of the full model response onto a
lower dimensional reduced basis. In a displacement-based finite element context,
the complete displacement field is approximated by a set of generalised variables
of much lower dimension. In most developments in this area [6,8], the key benefit
is the reduction in the size of the linear system to be solved at each step, since
mass and stiffness matrices assume the dimensionality of the reduced system.
However, in explicit analyses, these large matrices are removed, and the utility
of the ROMs is less obvious. Our work makes use of a secondary effect for explicit
methods: by performing the time integration in the reduced basis, a much larger
solution time step may be used [6]. This phenomenon does not appear to have
been exploited since its discovery by Krysl and co-workers, despite its potential
benefits.

In the following, we describe an explicit solution method which incorporates
integration in the reduced basis, as described. The computational benefits of the
procedure within a GPU-based execution framework are examined, subsequently,
along with the errors incurred.

2 A Reduced Order Explicit Dynamic FE Algorithm

In the following we draw on the work of Taylor et al. [12,13], in which an explicit
dynamic FE algorithm was employed. We refer the reader to these publications
for further algorithm details.

2.1 Equilibrium Equations

We are concerned with solution of the standard equilibrium equations for a
nonlinear, dynamic, damped finite element model:

MÜ + αMU̇ + K(U)U = Fext, (1)

where M is the (diagonalised) mass matrix, α is a damping coefficient, K(U)
is the stiffness matrix, Fext is a vector of external loads, and U is a vector
of nodal displacements. When explicit time integration is used, the stiffness
term K(U)U may be evaluated element-wise and converted into an equivalent
vector of internal forces Fint (see [12] for details). Thus, at time increment n,
the equilibrium equations read

MÜn + αMU̇n = Feff
n , (2)

where Feff
n = Fext

n − Fint
n is called the effective load vector.
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2.2 Generalised Displacements and the Reduced Basis

The system defined by Eqn. (2), referred to as the full system, has dimension N ,
and its response is encapsulated by the nodal displacements U. For the present
case of a displacement-based finite element method in 3D, we have N = 3Nnodes,
where Nnodes is the number of nodes. The key idea of reduced order modelling
in a finite element context is to approximate the full response with a set of
generalised displacements P of much lower dimension M :

U = ΦP, (3)

where Φ is referred to as the reduced basis. Φ is time-independent, thus: U̇ = ΦṖ,
Ü = ΦP̈. Substituting these into (2) and projecting on Φ yields

M̂P̈n + αM̂Ṗn = F̂eff
n , (4)

in which we have introduced a reduced mass matrix M̂ = ΦTMΦ and reduced
effective load F̂eff = ΦTFeff . Eqn. (4) constitutes an equivalent equilibrium
equation for the reduced system.

2.3 Computing the Reduced Basis

For a full-order dynamic FE model subjected to some loading, we define a matrix
Ū of snapshots:

Ū =
[
u1 − ū u2 − ū . . . uS − ū

]
, (5)

where ui (i = 1, . . . , S) are N -vectors of nodal displacements captured at S

different time points, and ū = (
∑S

i=1 ui)/S is their mean. ui are referred to as
snapshots, and we call the collection of them the training set for the reduced
model. We seek an optimal M -dimensional approximation for the response his-
tory Ū, with M � N . It may be shown that this is given by the eigenvectors
φi (i = 1, . . . , M)1 corresponding to the M largest eigenvalues of the covariance
matrix Cd = ŪŪT/M [6,8]. The desired reduced basis Φ is then given by

Φ =
[
φ1 φ2 . . . φM

]
. (6)

The covariance matrix Cd is N×N . Hence, for practical problems, obtaining the
required eigenvectors is computationally intensive. For S < N (which is usual) a
more efficient approach exists. Begin by computing the first M eigenvectors ψi

of the smaller matrix Cs = ŪTŪ/M . The corresponding eigenvalues are denoted
λi. Scale each eigenvector according to ψ̄i = ψi/

√
λi. The desired basis is then

recovered by projecting back on the matrix of snapshots: Φ = ŪΨ̄, where Ψ̄ is
a matrix whose columns are the scaled vectors ψ̄i.

In the study in [6], the reduced models were trained using snapshots from a
single load case. Models so constructed are able to reproduce very well the full
response to this load, but are less accurate when subjected to different loads. We
have found that the robustness of the reduced models may be greatly improved
by including snapshots from several different load cases in the training set.
1 We refer to these as the first M eigenvectors.



Real-Time Surgical Simulation 391

2.4 Explicit Integration in the Reduced Basis

In an incremental nonlinear analysis, we require a procedure for computing the
new model configuration at each step. Assume, temporarily, that the generalised
displacements Pn−1 and Pn for the previous and current steps, respectively,
are known, and the reduced effective load F̂eff

n has been computed. We de-
fine discrete approximations for current generalised accelerations and velocities,
P̈n = (Pn−1 − 2Pn + Pn+1) /Δt2 and Ṗn = (Pn+1 −Pn−1) /2Δt, respectively,
in which Δt is the solution time step. Substituting these in the equilibrium
equation (4) and rearranging yields an expression for the next set of generalised
displacements:

Pn+1 = γ1M̂−1F̂eff
n + γ2Pn + γ3Pn−1, (7)

where γ1 = 2Δt2/(αΔt+2), γ2 = 2γ1/Δt2, and γ3 = 1−γ2 are constants. Then,
the full displacements may be recovered by multiplying through by Φ:

Un+1 = ΦPn+1

= γ1ΦM̂−1F̂eff
n + γ2ΦPn + γ3ΦPn−1

= γ1ΦM̂−1ΦTFeff
n + γ2Un + γ3Un−1. (8)

M̂ is a dense matrix, but of much smaller size (M ×M where M � N) than
the full mass matrix M. In practice its inverse is easily precomputed and stored,
and occupies minimal storage. A more pertinent issue from the point of view
of parallelisation is that the displacement update is no longer a simple vector
equation. This is addressed in Sect. 3.

The new displacement update procedure (8) consists of projecting the effec-
tive load on the reduced basis, evaluating a generalised acceleration term, and
projecting back on the full system. As mentioned, the principal benefit of do-
ing so is that it increases the stable time step far beyond that of the full system.
While the precise mechanism for this has not been established, it is likely that by
evaluating the accelerations in the reduced basis we remove many of the higher
frequency modes of the full system, thus increasing the effective minimum free-
vibrational period on which the critical limit depends. Many of these frequencies
result from discretisation artifacts and do not contribute meaningful information
to the solution. Many others, though physical, may be neglected also without
significantly altering the solution, as will be seen.

2.5 Consistency of the Nonlinear Formulation

It is important to note that the only modification of the algorithm in [12,13]
is in the time integration procedure; the evaluation of stresses at integration
points and their integration to obtain internal forces Fint are unchanged. Thus,
assuming Eqn. (8) provides a sufficiently accurate approximation for the full
displacements, the large deformation consistency of the nonlinear formulation is
intact.



392 Z.A. Taylor, S. Crozier, and S. Ourselin

3 GPU Implementation Using CUDA

Using the CUDA API [9], the proposed algorithm was implemented for GPU
execution. As mentioned, the introduction of the matrix multiplications in the
displacement update (8) complicates parallel execution. Instead of the single
computation kernel for this process used in [12,13], we require several. Execution
is divided into precomputation and time-loop phases. The precomputation phase
is as described in [12,13] except for the computation of the inverse reduced mass
matrix M̂−1. At each step in the time-loop the execution procedure is now:

1. Compute internal forces Fint
n [GPU]

2. Compute effective loads Feff
n = Fext

n − Fint
n [GPU]

3. Transfer Feff
n to host

4. Compute reduced effective loads F̂eff
n = ΦTFeff

n [CPU]
5. Compute F̂eff

n = M̂−1F̂eff
n [CPU]

6. Compute Un+1 = ΦF̂eff
n [CPU]

7. Transfer Un+1 to device
8. Compute Un+1 = γ1Un+1 + γ2Un + γ3Un−1 [GPU]

Bold, bracketed comments indicate use of CPU or GPU execution. Notably,
steps 4-6 are executed on the CPU, which, owing to the small sizes of the in-
volved quantities, we found to be faster than invoking additional CUDA kernel
launches. Steps 1, 2, and 8 are implemented as CUDA kernel functions. Thus,
the new algorithm requires three kernel launches (plus two data transfers and
some additional CPU computations), compared with two for the full model im-
plementation [12,13].

4 Assessment Using a Brain Shift Model

We assessed the robustness and computational performance of the presented al-
gorithm using a model of the well-known brain shift problem [4]. Many methods
for compensating for the brain motion using finite element analysis have been
proposed [3,7,10,14]. We studied a synthetic scenario in which the skull is imag-
ined to be opened adjacent to the right frontal lobe, and brain motion is induced
in this region.

The brain tissue was modelled as a neo-Hookean hyperelastic material with
shear modulus μ = 1kPa and bulk modulus κ = 50kPa [14]. A model compris-
ing 7480 nodes and 39 323 tetrahedral elements (non-locking Averaged Nodal
Pressure formulation was used [5]) was employed. Loads were applied over 1sec
of simulated time (sufficiently slow to obtain an approximately stable static
solution) to a group of nodes on the right frontal lobe, and surface nodes on
the opposite side of the model (left, posterior) were assumed to be in contact
with the skull and were fixed. In the present context, only the final deformed
configuration of the brain is of interest.

We emphasise that this study is not based on a particular clinical case, and is
intended solely to enable comparison of the reduced order modelling approach
with the well-established regular approach for a clinically relevant scenario. That
is, we seek to establish whether the same results are obtained with each method.
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4.1 A Priori Construction of the Reduced Basis

Reduced bases Φ were constructed by compiling full model response snapshots
from five independent load cases. The applied loads in each case were of similar
magnitude, but varying direction, with the directions covering an angular range
of 40◦. 100 snapshots were extracted from each case, yielding a training set size
of 500. To study the effects of varying basis size, bases with M = 4, . . . , 10 were
constructed. For the studied scenario it was found that errors became impracti-
cally large for M < 4, and decreased extremely slowly for M > 10.

4.2 Performance of the Reduced Order Models

The full and reduced order models were subjected to three test load cases, ran-
domly generated from the range of the training set loads.

Critical Time Step and Solution Time. The variation in the critical time
step Δtcr with basis size is plotted in Fig. 1. Generally, as the basis size M
increases, the time step decreases, approaching the full model value. The con-
comitant improvement in solution time for each basis is shown also. For the
current scenario, a peak speedup of 13.4 times was obtained for M = 4. Even
using the largest basis (M = 10) resulted in a speedup of 4.3 times. The gap
between the time step improvement and the corresponding solution time im-
provement is indicative of the greater computational cost per step of the new
algorithm. We estimate the step-wise cost to be between 1.7 (for M = 4) and
2.3 (for M = 10) times greater for the new algorithm. As observed, though, this
cost is outweighed by the step size increase nonetheless. The proportion of the
overall computation time spent on each algorithm step is shown in Fig. 1, also.
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Fig. 1. (a) Left: Ratios of reduced order model critical time step ΔtROM
cr to full model

step ΔtFull
cr , and ratios of full model overall solution time TFull to reduced model time

TROM, as functions of basis size. Right: Proportion of the computation time taken for

each time-loop algorithm step (Sect. 3) for the smallest and largest bases.

Solution Errors. The nodal solution errors for each load case and each basis
size are shown in Fig. 2. For M < 7, errors began to rise more sharply, though the
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maximum value over all simulations was still < 0.6mm. Using M ≥ 5, ensured
relatively low errors in all cases, while still affording a solution speedup of 9.6
times. Given typical brain MR image resolutions are around 1mm, we feel these
error levels are acceptable for medical imaging applications, and are, moreover,
within the realistically obtainable accuracy of full models [3,7,10,11,14]. The
distribution of error over the mesh for load case 3 is shown in Fig. (2), also.

Fig. 2. Left: Mean and maximum nodal error magnitudes as a function of basis size

for the three test load cases. Right: Inferior view of the deformed mesh for load case 3

(worst case) using the smallest basis (M = 4), with colours mapped to error magnitude

(units are mm). A wireframe model of the undeformed mesh is overlaid.

5 Discussion and Conclusions

We have presented a reduced order nonlinear explicit finite element algorithm for
soft tissue simulation, and described its implementation for graphics hardware
execution. Using a basis size of M = 5, the method affords solution speedups
of nearly an order of magnitude, while confining errors with respect to the full
model to less than 0.24mm (corresponding to about 1-2% of the maximum de-
formation). For the example brain model investigated, overall solution times
were approximately 500ms for a simulated time of 1sec – hence, real-time so-
lution was comfortably achieved. While GPU-based execution was employed, it
should be noted that these speed improvements result entirely from algorithmic
modifications, not hardware differences.

A drawback of the current algorithm is its support for homogeneous essen-
tial boundary conditions, only. In this study, loading was applied via natural
(force-based) boundary conditions. However, as noted in [6], methods exist for
converting essential boundary conditions into equivalent natural ones. Penalty
methods, which form the basis of widely used penalty contact formulations, are
one such example. Our current work involves development of efficient procedures
for this purpose.

Our approach may have applications in motion compensation for image-
guided therapies, for which fast and accurate solutions are required. Particularly
relevant examples include compensation for brain motion during neurosurgery,
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as described, and for respiratory motion during lung radiotherapy [2]. In both
applications, the loading is approximately known prior to the intervention, al-
lowing reasonable training sets to be developed. Solutions for the precise loadings
emerging intra-operatively may then be obtained rapidly and with a high level
of confidence.
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Abstract. A method is proposed to simulate nodules and diffuse in-

filtrates in chest radiographs. This allows creation of large annotated

databases for training of both radiologists and computer aided diagno-

sis systems. Realistic nodules and diffuse infiltrates were generated from

three-dimensional templates segmented from CT data. These templates

are rescaled, rotated, projected and superimposed on a radiograph. This

method was compared, in an observer study, to a previously published

method that simulates pulmonary nodules as perfectly spherical objects.

Results show that it is hard for human observers to distinguish real

and simulated nodules when using templates (AUC-values do not signif-

icantly differ from .5, p > .05 for all observers). The method that pro-

duced spherical nodules performed slightly worse (AUC of one observer

differs significantly from .5, p = .011). Simulation of diffuse infiltrates is

challenging but also feasible (AUC=0.67 for one observer).

Keywords: CT, radiograph, simulation, nodules, diffuse infiltrates.

1 Introduction

Lung diseases are among the largest causes of death and disability in the world.
In most cases early detection, for example in screening using computed tomog-
raphy (CT) or radiography, increases the chance of recovery significantly. Due to
for example dose and cost considerations, chest radiography is by far the most
common radiological exam [1]. It has been shown previously that in chest ra-
diography detection of pulmonary nodules and the detection of focal shadowing
is extremely difficult, even for expert radiologists [2]. For nodules it was found
that when a nodule was missed, it was visible in retrospect in 90% of cases [3].

This shows how important it is to train radiologists in reading chest radio-
graphs (CRs). Also, the development of computer aided diagnosis (CAD) systems
to act as a first or second reader has been shown to improve accuracy [4]. For
both radiologist and CAD training extensive databases with proven radiological
findings are required, but constructing such databases is a laborious process.

In this paper a method is proposed to simulate lesions on CRs. This method
uses CT templates of real nodules and diffuse infiltrates in combination with
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Fig. 1. Flowchart of the method for simulating abnormalities in radiographs

normal CRs which enables generation of large amounts of training data. Section
2 describes the data and Section 3 the method. In Section 4 the results of an
observer study are presented that investigates if simulated lesions are indistin-
guishable from real pathology. Section 5 discusses the results and suggests topics
for further research.

2 Materials

For the nodule templates radiographs and CT images from the NELSON lung
cancer screening trial [5] were used. We used 36 pairs of radiographs and CT
scans obtained within a three month period. The nodules in the radiographs were
subsequently annotated by a radiologist using the CT scan as ground truth.

The templates for generating diffuse infiltrates were obtained from 44 clinical
CT scans with corresponding radiographs. These radiographs were also anno-
tated according to the findings in the CT scan. The annotation was done by an
expert chest radiologist. [6]

Finally, 42 normal radiographs images were selected from the lung cancer
screening database. All radiographs in this study were acquired using a Philips
Digital Diagnost with a cesium iodine scintillator, a 3000 × 3000 pixels acquisi-
tion matrix and .143 mm resolution.

3 Methods

The proposed method is an extension and adaption of a previously published
method by Schilham et al. [7]. The simulation method can be summarized (Fig-
ure 1) as follows: a radiograph and a lesion template (nodule or diffuse infiltrate
segmented from a CT scan) are needed. The segmented lesion is resampled with
3D cubic interpolation to an isotropic resolution equal to the pixel resolution of
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(a) (b) (c) (d)

Fig. 2. Simulation templates: (a) CT slice of a segmented nodule, (b) Projection of a

CT nodule, (c) CT slice of a segmented diffuse infiltrate and (d) Projection of a CT

diffuse infiltrate

the radiograph. As an additional step the lesion can be rotated and scaled. Subse-
quently the pixel values of the radiograph are converted to projected Hounsfield
units. The lesion is then projected to a 2D image and superimposed on a random
location in this image using a contrast value. The final step is conversion from
the projected CT values to pixel values of the radiograph.

CT template acquisition. The segmentation of the nodules from the CT was
performed using a segmentation technique published by Kostis et al. [8]. In some
cases a segmentation was deemed unusable because of the shape of the nodule,
e.g. in the case of a pleural lesion. This resulted in a final number of 20 templates.

Diffuse infiltrates were segmented using a previously developed semi-automatic
method. Twenty-six diffuse infiltrate templates were obtained. Examples of tem-
plates are shown in Figure 2.

Preprocessing and projection of the template. The obtained templates
were resampled to an (almost) isotropic resolution equal to the resolution of the
radiograph pixels using cubic 3D interpolation. Next the template can be rotated
and/or rescaled to allow the creation of a wide range of different lesions from a
single template.

The template has to be projected to a 2D image to allow superimposition of
the template on a radiograph. Using simple raycasting the lesion template can
be projected to a 2D image.

Conversion from radiograph to projected CT. Projection of a CT data
set should in theory be similar to a radiograph. In practice there are several
reasons why this is not the case, such as different x-ray energies and proprietary
post-processing algorithms applied by manufacturers to radiographs. To over-
come these problems, a conversion step from the pixel values encountered in the
radiograph to projected CT is needed.

In this study a simple intensity mapping is used:

ICT = F [Ir] , (1)

where Ir and ICT represent the intensity of a pixel in the radiograph and
the projected CT, respectively, and F is the mapping function. This mapping
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Fig. 3. Relation between intensities in radiographs and average projected CTs deter-

mined by a third-order polynomial. Data points were obtained from measurements in

five radiographs and projected CT images.

function can be determined by measuring the intensities in both images in similar
regions. The intensities were measured in the heart, in the spine and in the lung
fields, and, additionally, the lowest and highest pixel value were added. These
five values, determined in five radiographs and five corresponding projected CTs
from the lung screening trial database, were used to fit a third-order polyno-
mial, and this resulted in the mapping function, shown in Figure 3. It will not
completely undo the effects of the more advanced post-processing steps (edge
detection, unsharp masking) but it was adequate for the purpose of this study.

Superimposition. The final step is to add the projected template to the con-
verted radiograph. Lung masks generated using a published method [9] were
used to make sure that generated nodules were contained completely within the
lung fields.

For diffuse infiltrate templates a different approach was used. A random po-
sition was selected within the lung mask. All the template pixels outside the
mask were discarded. To remove edge artifacts, pixels close to the lung border
(10 pixels, Euclidean distance) were added with reduced intensity (using an ex-
ponential falloff). The superimposition itself is straightforward. First a contrast
measure is defined:

c = log
[
It

Ib

]
, (2)

where c is the template contrast and It and Ib are the mean template and back-
ground intensities, respectively. Next, for each template the mean background
intensity Ib and mean template intensity It were measured in the radiograph
belonging to the CT scan the template was segmented from. This resulted in
a contrast value c for each template. When superimposing the template on a
radiograph, this c is used in conjunction with the mean background intensity at
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the selected template position to determine what the mean template intensity
It should be to achieve the same contrast. The template mean is then adjusted
to this value. This allows realistic superimposition of templates.

For nodules it is easy to implement this automatically because the standard
deviation on Ib is small due to the relatively small size of the templates. However,
for diffuse infiltrate templates this is more difficult as they can span a large region
of the lung, and the contrast can vary considerably within that region. Therefore
the contrast values of simulated diffuse lesions were adjusted manually in this
study. Some simulation results are shown in Figure 4.

(a) (b) (c)

(d) (e)

Fig. 4. Real lesions and simulation examples: (a) Real nodule, (b) Template based

lesion simulation, (c) Perfectly spherical object nodule simulation, (d) Real diffuse

infiltrate and (e) Simulated diffuse infiltrate

Perfect spherical nodule simulation. Samei et al. [10] have validated a
different method for simulation of nodules in CRs. This method uses a math-
ematical representation of a nodule contrast profile. This profile is based on
measurements in a real nodule database and the formula for this mask is:

c[r] = C(
4

D4
r4 − 4.2

D2
r2 + 1) (3)

Here r is the position along the radius, C is the peak contrast value and D is
the diameter. The definition of contrast is the same as in Eq. 2. Using a value
for c and D, a simulated nodule can be added to a radiograph (Fig. 4c).
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Table 1. Area under the curve and corresponding p-values (AUC / p-value) when

compared to AUC=.5 for all observers

Observer All nodules Template method Samei’s method

1 .59 / .2 .49 / 1 .66 / .01

2 .40 / .1 .39 / .2 .41 / .2

3 .57 / .3 .56 / .5 .59 / .2

4 Experiments and Results

To investigate if the template based lesion simulation can generate realistic nod-
ules and diffuse infiltrates in radiographs, two observer studies were performed.
Three observers participated in the studies. Observer 1 and 2 were image anal-
ysis scientists with a expertise in chest CT and radiography. Observer 3 was a
radiologist specializing in chest radiology. Whether a simulated lesion was real-
istic was determined using an analog scale from 1 to 100, represented as a slider
to the observers.

In the first experiment 39 real nodules were used. Using template based lesion
simulation a set of 39 nodules was simulated. In addition, using the perfectly
spherical nodule simulation method, another 39 nodules were simulated. The
parameters used for perfectly spherical nodule generation were a nodule diameter
D between 7 and 22 mm and a peak contrast value C of between .15 and .22,
which was comparable to our templates. This resulted in a total of 117 nodules,
of which 78 are simulated, 39 for each method. In the second experiment the
hypothesis that simulated and real diffuse infiltrates were indistinguishable is
tested. To this end, 23 images containing diffuse infiltrates were acquired from
clinical practice for which annotations by an expert radiologist were available. In
these images between two and four regions were selected for scoring, leading to
a total of 66 regions. In addition, diffuse infiltrate templates were superimposed
on 23 normal radiographs, varying between 3 and 8 templates per image to get a
good coverage of the lung. In these radiographs, 2 to 4 regions were annotated,
leading to a total of 63 regions. The results are presented as receiver operating
characteristic (ROC) curves in figure 5. A non-parametric method [11] is used to
determine if the area under the curve (AUC) differs significantly from .5. Table
1 shows the AUC and p-values of all curves on nodule simulation.

Observer 1 was the only observer to achieve an AUC significantly larger than
chance performance in the nodule experiments, when comparing real nodules
with the nodules simulated as perfect spheres. This observer performed the study
on diffuse infiltrates and attained an AUC of .67, significantly higher than .5
(p = .001), this is shown in figure 5d.

5 Discussion and Conclusion

The results show that it is difficult for the observers to distinguish real and
simulated nodules. Although both observer 1 and 3 do have a AUC higher than .5
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for the all-nodule case, the p-values indicate that this difference is not significant
(p > .05). Figure 5b and c show the results for the methods separately. It can
be seen that observer 1 and 3 perform better on nodules simulated with the
perfectly spherical object nodule method. These nodules seem less realistic than
those obtained by the template based lesion simulation method presented here.
This can also be seen in table 1, where for the spherical nodules the AUC is
significantly different from .5 (p < .05) for observer 1. No significant difference
is found between the AUC and an AUC of .5 for nodules simulated with the
template method for all observers (p > .05). Observer 1 was asked to participate
in the diffuse infiltrate experiment as he performed the best on the nodule cases.
His results show a significant difference between his AUC of .67 and an AUC of
.5 (p = .001). This means that observer 1 can see the difference between some

(a) (b)

(c) (d)

Fig. 5. ROC curves of the observer studies performed on distinguishing simulated

lesions from real lesions: (a) Observer ROC curve of all nodules, (b) ROC curve of

nodules simulated with the template method, (c) ROC curve of nodules simulated

with perfectly spherical object method and (d) ROC curves for diffuse infiltrates
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real and simulated diffuse infiltrates. As the AUC is still low, it seems plausible
that diffuse infiltrates can be generated.

Future work should focus on generating a contrast function to allow better
superimposition of especially diffuse infiltrates. Creating a realistic contrast be-
tween lesion and background is the most challenging aspect in these simulations.
Also, the effect of post-processing could be investigated by using raw radio-
graphs. It could also be helpful to collect more templates for diffuse infiltrates
which exhibit a large variation in appearance.

Concluding, it is possible to simulate nodules in radiographs that are indis-
tinguishable from real nodules. Using a small set of templates, a wide range of
lesions can be created. For diffuse infiltrates, results show that many simulated
lesions are realistic, which is an encouraging result. The proposed method is
the first method that allows the simulation of diffuse infiltrates in CRs, and for
simulating nodules it is more effective than previously published methods.
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Abstract. This paper presents a method for constructing detailed geo-

metric models of tissue microstructure for synthesizing realistic diffusion

MRI data. We construct three-dimensional mesh models from confocal

microscopy image stacks using the marching cubes algorithm. Random-

walk simulations within the resulting meshes provide synthetic diffusion

MRI measurements. Experiments optimise simulation parameters and

complexity of the meshes to achieve accuracy and reproducibility while

minimizing computation time. Finally we assess the quality of the syn-

thesized data from the mesh models by comparison with scanner data

as well as synthetic data from simple geometric models and simplified

meshes that vary only in two dimensions. The results support the extra

complexity of the three-dimensional mesh compared to simpler models

although sensitivity to the mesh resolution is quite robust.

1 Introduction

Diffusion-Weighted Magnetic Resonance Imaging (DW-MRI) is a non-invasive
imaging technique sensitive to the dispersion of water molecules in biological
tissues. It has become an essential tool for probing microstructure. Diffusion
Tensor Imaging (DTI) indices such as mean diffusivity and diffusion anisotropy
provide useful but non-specific markers of white matter integrity. More recent
techniques [1,2,3,4] aim to estimate specific features of tissue microstructure such
as axon diameter and density. However, questions remain about how well these
microstructural indices from diffusion MRI reflect the actual tissue microstruc-
ture since it is difficult to obtain ground truth information.

Synthetic data is a powerful tool for developing, optimizing, evaluating and
comparing diffusion MRI techniques. Unlike scanner data, it provides a ground
truth, thereby allowing performance evaluation of methods in a controlled envi-
ronment. One approach for generating synthetic data is to use a simple model
like the DT [5] which describes the displacement of particles with a Gaussian
distribution. This simple model provides measurements with negligible compu-
tation cost. However, due to its simplicity the DT model ignores features of
the tissue and the diffusion process within. In particular, it does not account
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for restricted diffusion within cells so oversimplifies the signal from real tissue.
To address this limitation, recent diffusion MRI studies [1,2,3,4,6,7] use a va-
riety of multi-compartment models that separate restricted, hindered and free
diffusion. Analytic compartmental models are computationally efficient but are
approximations and limited to describing diffusion in simple geometries such as
cylinders and spheres.

This has motivated work on numerical methods, which allow arbitrary com-
plexity in the diffusion environment and measurement process. The most com-
mon numerical methods for synthesizing diffusion MRI data are based on finite-
difference approaches e.g. [8] and Monte-Carlo methods e.g. [9,10,11]. Finite-
difference methods rely on an approximate solution to the diffusion equation at
a discrete number of points, e.g. on a grid, while Monte-Carlo methods simulate
Brownian motion of spins within geometric models of tissue. Numerical methods
can investigate diffusion environments that are impossible using analytic models.
For example, Hall and Alexander [10] use Monte-Carlo simulations to synthe-
size data in a model of tissue undergoing swelling to simulate oedema where
cylindrical axons swell and abut.

Other work [8,11] base the simulations in models derived from light microscopy
images for a better approximation of the tissue. Lipinski [11] was the first to use
histologic images in combination with two-dimensional Monte-Carlo simulations
to study the diffusion signal. The tissue model is based on a rough segmenta-
tion of a digitized light microscopy image of white matter tissue. More recently,
Chin et al. [8] use a finite-difference approach and construct a tissue model by
replicating a light microscopy image in the third dimension. These numerical
models are an improvement on the simplified geometric models, yet, the single-
slice microscopy images are low-resolution and the models describe the tissue
only in two dimensions. However, numerical methods are more computationally
intensive than analytic models and the implementation of complex realistic en-
vironments is non-trivial, causing optimization and tuning of the simulation to
be especially challenging.

This paper presents a method for constructing three-dimensional tissue mod-
els from a stack of high-resolution Confocal Laser Scanning Microscopy (CLSM)
images. We capture the three-dimensional structure of biological tissue in a more
natural way than previous studies [8,11]. We demonstrate the method using a
biological phantom (asparagus) which is a useful model with similar microstruc-
ture to white matter [12]. Experiments vary simulation parameters and mesh
properties to optimize the precision of the synthesized data while minimizing
computational complexity. We compare results to scanner data and to synthetic
data from simple parametric models and two-dimensional meshes.

Section 2 describes the method for constructing and evaluating three-dimen-
sional tissue models. Section 3 outlines the experiments for optimizing simulation
parameters, exploring the effect of mesh resolution, and evaluating synthetic data
from the mesh by comparison with scanner data and with data generated from
simpler models. Section 4 concludes.
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2 Methods

The full procedure has several stages. First, we acquire DW-MRI data with a
wide range of diffusion times and diffusion weightings with gradient directions
both parallel and perpendicular to the asparagus stem. We identify a region
of interest (ROI) in the DW-MRI data containing one of the vascular bundles
(Fig.1a), which we cut from the stem and image with CLSM (Fig.1b) to ob-
tain a stack of images. The vascular bundles in the asparagus consist of highly-
organised cylindrical fibres with thick walls that exhibit anisotropic diffusion
and the distribution of capillary sizes is similar to brain white matter tissue
[12]. We construct the three-dimensional mesh model (Fig.1c) with the march-
ing cubes algorithm [13] and use it as a substrate in Monte-Carlo simulations
[10] to synthesize DW-MRI data.

Fig. 1. a) DW-MRI image of a transverse section of the asparagus stem. The red square

indicates the ROI, containing one of the vascular bundles, appearing white in the MRI

image. b) CLSM image of the same ROI. c) three-dimensional mesh model shown from

two different angles.

Sample preparation: We place a stem of green asparagus (Asparagus offic-
inalis) in a syringe padded with cotton soaked in pure water. This keeps the
sample hydrated, preventing shrinkage and diffusion changes during the scan.

MRI Acquisition: We acquire DW-MR images with a small bore 9.4T scan-
ner (Varian) with maximum gradient strength 400mT/m and use a controlled
air-flow mechanism to keep the sample temperature constant within ±1 ◦C. The
two-direction encoding scheme has one direction parallel to the asparagus stem
and one perpendicular. We acquire 64 pulsed-gradient spin-echo (PGSE) mea-
surements with six diffusion times, Δ = 10, 30, 50, 70, 80, 100ms, three gradient
durations δ = 3, 10, 20ms and gradient strength |G| varied from 40 to 400mT/m
in ten steps of 40mT/m. The 64 measurements includes all combinations with
Δ > δ and b < 6.5×109 sm−2. We use the minimum echo time (TE) possible for
each measurement and set the repetition time (TR) to 3 s. The total acquisition
time is approximately 40 hours. We correct for T2 dependence by acquiring sep-
arate b = 0 images for each combination of δ and Δ. The in-plane field of view
is 16mm. The matrix size is 256× 256 and the slice thickness is 0.5mm.
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Confocal Acquisition: We cut out four 600μm thick sections which we then
stain with Eosin for 10 minutes and wash thoroughly with phosphate buffered
saline. To avoid any geometric distortions we use vibratome, which is designed
for sectioning soft tissue without freezing or paraffin, and choose to image only
the middle slices. We use a Leica SP2 AOBS confocal multi-photon laser scan-
ning microscope coupled to a Leica DMRE upright microscope (Leica, Milton
Keynes, UK). We receive the laser output with an electro-optical modulator
(EOM) (Linos LIV20) before delivering to the confocal microscope through a
series of optical mirrors. The EOM allows the laser intensity at the objective
to be controlled and optimized. The EOM is set at 90% for imaging to ensure
that the polarization of the incidental laser beam remained consistent across all
specimens. We image the specimens with a 40× 1.25NA oil Plan Apo objective
to give image dimensions of 315μm × 315μm. We acquire optical z-sections of
1μm thickness reaching a maximum depth of 100μm with an image averaging
set to 3 per z-slice. The image size is 1024× 1024 pixels.

Model Construction: To construct the mesh models we assemble the images
into a stack and segment them by thresholding to create binary images that
separate the intra- and extra-capillary space. The intra-cellular volume fraction
is determined by counting the pixels below the threshold. We use the marching
cubes algorithm [13] on the binary stack to produce the three-dimensional mesh
model. Memory limitations require that we downsample the 100 CLSM images
to 144× 144 pixels while keeping the three-dimensional aspect ratio of the vox-
els the same as the original image stack, which also makes computation times
manageable. The algorithm produces a mesh of around 500,000 triangles.

Simulations: The simulation system in [10] generates synthetic measurements
for each combination of scan parameters from diffusing spins constrained by
the structure of the mesh. Each triangle in the mesh acts as an impermeable
reflecting boundary. For computational efficiency the system checks only for
intersections with triangles within the range of each step. Spins are initialized
uniformly across the mesh, in both intra- and extra-cellular regions. Here we
assume the same properties (i.e. diffusivity, relaxation times) for both regions.

3 Experiments

This section outlines three sets of experiments. The first identifies a suitable
combination of number of spins and updates within a fixed simulation runtime.
The second explores the effect of the mesh resolution. The final experiment
compares synthetic data from the three-dimensional mesh with scanner data
and synthetic data from simpler geometric models.

3.1 Simulation Parameter Optimization

The aim is to maximize precision and accuracy of the synthetic measurements
while minimizing computational cost. The complexity of the simulation is order
U = NT where N is the number of spins and T is the number of updates.
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Without a ground truth, the accuracy of the simulation is hard to establish.
However, [10] shows on simpler substrates that with fixed U accuracy tends to
increase up to a certain N and suddenly depart although standard deviation
decreases. Here we search for the same trend to identify the best trade off.

We use the 144 × 144 mesh as substrate with the same acquisition protocol
as the scanner data and diffusivity d = 2.1× 10−9 m2/s, estimated from scanner
measurements with low b value using the monoexponential model. Simulations
with various combinations of N , T for U = 108 are repeated 10 times with
different initial spin positions. Each simulation runs in approximately 48 hours.

Results: The mean signal for the perpendicular direction over all scan parameter
combinations and repeats remains similar as N increases from low N  1× 104

until N  1 × 105 for b = 1.5 × 109 sm−2. All the measurements with different
b values have similar trends with small variations that do not affect the final
choice.

Conclusions: As in [10], we observe a gradual increase in reproducibility as N
increases. The mean signal remains consistent from low N until N  9 × 104

above which it increases noticeably. The increase is most likely a bias introduced
by the timesteps being too long. We choose N = 8× 104 and T = 1250 to keep
reproducibility high while remaining safely within the region of short enough
timesteps.

3.2 Signal Dependency on Mesh Fidelity

This experiment compares meshes constructed from different resolution CLSM
images to investigate the effect of varying mesh resolution on synthetic DW-MRI
data. The highest image resolution we use is 144×144 pixels and the lowest 9×9
pixels with four intermediate stages. We synthesize data from the different reso-
lution meshes using the parameters from experiment 3.1. We calculate the Mean
Squared Error (MSE144) compared to the 144×144 mesh to show differences in
synthesizing data with different resolution meshes, and the MSEMRI compared
to the scanner data to reveal which of these differences are significant.

Fig. 2. Left: Plots of the MSE of the signal in the parallel and perpendicular direction

in comparison with the high-resolution mesh and the scanner data against mesh reso-

lution. Right: Illustration of the different complexity meshes used in the simulations.
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Results: Figure 2 plots the MSE144 and MSEMRI of the normalised signal for
both directions against mesh resolution. We exclude all measurements with S <
0.1 from the plots and the MSE calculations e.g. to avoid significant noise-floor
effects. In the perpendicular direction the MSE144 shows very little variation
between the 144× 144 and 36× 36 resolution meshes. In the parallel direction,
the MSE144 starts to increase at 72 × 72 resolution. The MSEMRI however,
shows little difference in both directions for the meshes with resolution 144×144
to 72× 72.

Conclusions: In both directions the MSEMRI remains similar for the meshes
with resolution 144×144 to 72×72 meshes. At 36×36 we see slight elevation that
becomes more obvious in lower resolution meshes. The results suggest that 72×72
resolution approximates the geometry closely enough to capture variations in
water diffusion that MR signals are sensitive to.

3.3 Model Comparison with Scanner Data

The last experiment assesses the quality of synthetic MRI data of the mesh
models. For comparison, we generate three sets of synthetic data: the 72 × 72
three-dimensional from experiment 3.2, an extruded two-dimensional mesh mod-
els and a packed-cylinder substrate with constant radius. To construct the ex-
truded mesh we choose an image from the stack we used for the three-dimensional
mesh model with f = 0.8 which is consistent with the three-dimensional model,
replicate it to have the same number of slices used to generate the 72× 72 mesh
and run the same meshing algorithm. The packed-cylinder substrate has square-
packed cylinders with radius 25μm. The choice of single radius comes from the
mean capillary radius in the mesh weighted by capillary volume [4]. We pick the
packing density so that the intra-capillary volume fraction is also f = 0.8 .

Fig. 3. Data synthesized from the cylinder model, the extruded mesh and the three-

dimensional mesh with the scanner data from the PGSE experiment. For clarity, the

normalised signal S is plotted only for selected values of Δ and δ as a function of the

gradient strength |G| for the parallel and the perpendicular direction. Markers show

the scanner data; lines show the synthetic data. Mean-squared error, for the parallel

and perpendicular direction, are included for each model.
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Results: Figure 3 compares data synthesized from the three models to the
scanner data by plotting the normalised signal S only for selected values of Δ
and δ as a function of the gradient strength |G| for the parallel and perpendicular
direction. Again we exclude all measurements with S < 0.1 from the plots and
the MSE calculations to avoid significant noise-floor effects. Predictions from
simulations with the cylinders of constant radii and the extruded mesh model
are unable to capture the data as well as the mesh model. For example the
cylinders underestimate the perpendicular signals with Δ = 10, 30ms and δ=
3, 10 ms while the extruded model overestimates them. The three-dimensional
mesh model agrees closely in both directions for Δ = 10, 30, 70ms and δ= 3, 10
ms. The MSE is lower for the three-dimensional mesh model in both directions.

Conclusions: The complex three-dimensional model minimizes the MSE and
captures the data in both directions for Δ = 10, 30, 70ms and δ= 3, 10 ms.

4 Conclusions

This work introduces a method for constructing a detailed tissue mesh model
using CLSM to generate realistic diffusion MRI data. We investigate optimal
simulation and mesh properties for precision and accuracy of the synthesized
data. We test the simulated data from three-dimensional mesh models against
scanner data, simpler extruded mesh models and simple parametric models.
Results with the three-dimensional mesh model are very promising, agree with
scanner data well and match the data better than the extruded and parametric
models in both directions.

The method we propose in this paper can be refined in a number of ways. So
far, we optimize the simulation parameters without a ground truth. In a similar
experiment in [10] they compare results to an analytic model of restriction, how-
ever the mesh model here is much more complex and analytic solutions cannot
provide a ground truth. Another aspect we could further explore is the choice of
diffusivity. We could refine agreement by searching for the diffusivity that mini-
mizes error between the synthetic data and the scanner data. The quality of the
generated mesh also depends on the segmentation process and the downsampling
of the confocal images. So far we use a simple thresholding algorithm. We could
improve the accuracy and smoothness of the mesh by using more sophisticated
segmentation algorithms. To avoid downsampling while preserving the topol-
ogy with the minimum number of triangles we could use a meshing algorithm
combined with decimation [14]. However, preliminary experiments with decima-
tion reveal problems with intersecting triangles that cause the simulation to fail.
Exploitation of more sophisticated meshing remains a focus for further work.

The Monte-Carlo simulation approach with a tissue model of high fidelity
provides a mechanism for high quality data synthesis for testing and developing
diffusion MR algorithms. It also allows for testing of the influence of subtle effects
such as permeability and surface-particle interactions (e.g. particles temporarily
trapped on the surface) that analytic models cannot capture. Future work will
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extend the experiments to other samples in particular to brain tissue to allow
testing and comparison of analytic models in a similar way to [7].
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Abstract. The mechanisms of human cerebral cortex folding and their interac-
tions during brain development are largely unknown, partly due to the difficul-
ties in biological experiments and data acquisition for the developing fetus brain. 
Computational modeling and simulation provide a novel approach to the under-
standing of cortex folding processes in normal or aberrant neurodevelopment. 
Based on our recently developed computational model of the cerebral cortex 
folding using neuronal growth model and mechanical skull constraint, this paper 
presents a computational dynamic model of the brain skull that regulates the  
cortical folding simulation. Our simulation results show that the dynamic skull 
model is more biologically realistic and significantly improves our cortical  
folding simulation results. This work provides further computational support to 
the hypothesis that skull is an important regulator of cortical folding.  

Keywords: Cortex Folding, Simulation, Skull Constraint. 

1   Introduction 

The folding pattern of the cerebral cortex varies greatly between individuals [1],  
and it is believed to have certain relationship with the brain’s cytoarchitecture and 
functional regionalization [2]. The factors that cause these differences have intrigued 
neuroscientists for a long period. Due to the difficulties in biological experiment and 
data acquisition for the developing fetus brain, there are growing efforts in the area of 
computational modeling and simulation that aim to understand the mechanisms of 
cortical folding. For example, Raghavan et al. proposed a continuum mechanics-based 
model of growth to synthesize cortical shapes by using physical laws [3]. Toro et al. 
proposed a computational morphogenetic model to study the fundamental mecha-
nisms of cortical folding [4]. In our recent work [5], by performing a 3D morphoge-
netic model, we demonstrated that folding pattern is dependent on mechanical  
constraints of skull, cell growth rate, and initial geometry of the cortex [5]. We ap-
plied surface modeling to simulate the cerebral cortex morphogenesis and use a static 
skull model to constrain the growth of cerebral cortex. 

In this paper, a dynamic skull model is developed to provide more biologically 
meaningful boundary condition for the cortical folding simulation. Mechanical con-
straint was the first major factor considered when investigating the determinants of 
cortical folding [6]. The hypothesis is that since the cortical area is almost three times 
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Fig. 2. The flowchart of the model and simulation 

larger than the cranial area, the cortex had to convolve to fit into a relatively small 
cranial volume. In previous skull models such as the ones in [3] and [5], the constraint 
force acts on the surface only when it touches the skull. While in this work, the skull 
constraint also considers the cerebrospinal fluid (CSF) pressure, as illustrated in Fig.1. 
Instead of using a cranial skull, we applied a dynamic growing volume to constrain 
the growth of cortex. Since the skull develops with the brain, it is more reasonable to 
model and simulate a dynamic growth skull constraint. The experimental results in 
this paper show that the dynamic skull model improves the cortical folding simulation 
significantly.  

 

Fig. 1. (a) In previous skull models, constraint only acts on cortex surface when it touches the 
skull. (b) As the cortex is surrounded by CSF, the CSF pressure is also considered. 

2   Method 

The flowchart of our model 
and simulation is outlined in 
Fig.2. We reconstruct cortical 
surface from diffusion tensor 
imaging (DTI) data [7] and 
decompose it into multi-
resolution representations via 
the spherical wavelet method 
[8]. The smooth cortical 
surface of the lowest resolution 
is used as the synthesized fetus 
cortex for the folding 
simulation.  The folding simulation is driven by the neuronal growth model in [5] and 
regulated by the proposed dynamic skull model. The cortical shapes generated by the 
simulation models are evaluated by quantitative descriptors of curvature, parametric 
cortical folding measurement [9], and surface distance. It is noted that DTI data, in-
stead of T1 structural data, is used here for surface reconstruction because this will 
facilitate our future investigation of how axonal fibers regulate the cortical folding.  

2.1   Materials and Pre-processing 

Since the acquisition of fetus brain imaging data is quite challenging, we synthesize 
the fetus brain surface as follows. The original cortical surface was reconstructed 
from DTI data of adult brains using the DTI-based tissue segmentation [7] and  
the cortical surface reconstruction method in [10]. Then, we decompose the cortical 
surface into multi-resolution representations via the spherical wavelet algorithm [8], 

 a b 
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Fig. 5. The condition that constrains the develop-
ment of cortex. When cortex point x  is trying to 
deform to the new position x′ , the following con-
dition should be satisfied: x′  should not intersect 
with other brain tissues. 

in which the highly convoluted and complex cortical surface is then decomposed into 
a cascade of lower-resolution surfaces, as shown in Fig.3(a-e). Fig.3(f) shows a fetus 
cortical surface reconstructed from fetus MRI data [5]. We can see that the low-
resolution surface (Fig.3(e)) appears to be similar to the fetus cortex in Fig.3(f). This 
visualization supports the correctness of our method for synthesizing fetus cortical 
surface. Moreover, in this way, we are able to compare the simulation results with 
original surface to evaluate the model. 

 
Fig. 3. (a) Original surface generated from DTI data. (b)-(e) Multi-resolution decomposition of 
cortical surface (the fifth, forth, third and second resolutions). (f) Cortical surface of fetus brain 
reconstructed from real MRI data [5]. 

Notably, the surface decompo-
sition method [8] might produce 
unbalanced surface at low resolu-
tion, in which triangles in certain 
region might be much smaller 
than other regions as shown in 
Fig.4 or intersect with other trian-
gles. Thus, to obtain a balanced 
initial surface, we voxelized  
the low-resolution surface into a 
volumetric image, and recon-
structed a new surface using 
marching cube algorithm.  

2.2   Static Skull 

The development of the cerebral 
cortex is constrained by the cra-
nial volume. We developed a 
volumetric constraint model [5] to 
simulate the effect of static skull 
during the folding of the cortex,  
as illustrated in Fig.5. When any 
vertex of the surface is being de-
formed to a new position x′ , the 
following condition should be 
satisfied: the new position of  
the vertex cannot intersect with 

 

Fig. 4. The flowchart of deformable surface initiali-
zation. (a) Second resolution of the decomposed 
surface. (b) Voxelized surface. (c) Deformable sur-
face. (d) Zoomed-in view of the surface patch in the 
circle in (a). 
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cranial volume. If the condition is not satisfied, another new position x~  for this vertex 
that satisfies the condition should be identified. After finding the new position satisfy-
ing the conditions, the vertex can be deformed to the new position. 

2.3   Dynamic Skull 

Since skull is developing during the cortical folding, its growth should be modeled 
dynamically. Thus, the development of skull that is caused by the outgrowth of cortex 
is considered in our paper, and the dynamic growth of skull is defined as follows. 
Similar to the volumetric constraint model in Fig.5, a constraint function )(nL  is de-
fined on each voxel in the deformable space, where n  is the iteration number. 
When 0)( ≤nL , the voxel is defined as a deformable voxel, which cortex surface 
could deform into at iteration n , otherwise it is defined as constraint voxel. 
When 0=n , )(nL  is the initial skull constraint in which zero value space is defined 

as inner space of initial cortical surface in our experiments. When 0>n , )(nL  is in-
teracting with the cortex folding process by: 

∑−=
n

L nILnL )()0()( λ                                               (1) 

where Lλ  controls the growth speed of the skull and )(nI  is defined on each voxel. At 
iteration n , if any vertex or triangle on the cortex surface is trying to deform to a 
voxel, the value of )(nI  in this voxel is set as one, otherwise it is zero, meaning that 
the attempt of  the cortex deformation into skull voxel will cause the growth of intrac-
ranial volume. 

In this model, the constraint not only acts on the top of gyrus, but also on the lateral 
surface. The cortical surface is encircled by constraint voxel, thus when it grows to 
the outer space, its movement will be limited. This effect is the same as fluid pressure. 
As shown in Fig.1, because brains are surrounded by CSF, the constraint pressure 
should take the CSF pressure into consideration.  

2.4   Development of the Cerebral Cortex 

We used the models in [5] to simulate the development of the cerebral cortex. The 
developed model is composed of the following four key components.  

a) The deformable model. The elasto-plasticity property is adopted on each edge 
of the triangle in the surface. Since the surface could be considered as a zero thickness 
sheet, the bending energy is introduced to model the rigidity of cortex. 

b) The growth model. Growth of cerebral cortex is defined on each triangle of the 
surface. The classic logistic-growth function is adopted to describe the growth of cor-
tical tissues as: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −=
k

A
mA

dt

dA c
c

c 0
0

0 1                                                (2) 

where m is known as the Malthusian parameter, k is the carrying capacity of the sys-
tem and 0cA  is the rest area of triangle. 



416 H. Chen et al. 

 

c) Constraint model. The development of cortex is limited by the boundary con-
dition of cranial volume.  

d) Model solver. The proposed model can be formulated as a time varying partial 
differential equation. The explicit Newmark scheme is adopted to solve the model.  

3   Experimental Results 

In this section, we simulate the proposed computational model of cortical folding with 
static and dynamic skull constraints, and compare the results. Furthermore, we com-
pare the simulations with different cortical growth rates.  

3.1   Comparison of Two Skull Models 

The values of parameters in the growth model are the same in the static skull model 
and dynamic skull model: Lλ =0.1, m =0.009, k =3. The results of folding develop-

ment are illustrated in Fig.6. Fig.6(a-b) show the snapshots of cortex development at 
the iteration number 50, 100, 150, and 200 in static skull model and dynamic skull 
model, respectively. By visual evaluation, it is evident that more realistic folding is 
generated using the dynamic skull model. To quantify this difference, we use the  
average absolute Gaussian curvature and parametric folding pattern [9] as shape de-
scriptor to evaluate the produced convolutions. We also use the distance between 
original surface and deformed surface to evaluate the simulation models. The differ-
ences between the average absolute Gaussian curvatures, folding pattern descriptors 
of the cortex surface in different simulation iterations, and the surface distances of 
five cases we simulated are illustrated in Fig.7(a-c) respectively.  It is evident that the 
folding patterns produced by the dynamic skull models are much closer to those of 
normal brain surfaces obtained from real MRI images. It is also intriguing that when 
iteration number reaches certain 
steps, the average absolute Gaus-
sian curvature of cortical surface 
will reach a steady condition. 
This steady condition is mainly 
because of the fact that after the 
cortex convoluted completely, 
the cortex will only develop ver-
tically and thus curvatures do not 
change much. Fig.7(a) shows that 
the dynamic skull model needs 
only half of the iteration time of 
the static skull model to reach the 
same average curvature. 

3.2   Comparison of Growth Rates 

In this section, we investigate the effect of skull growth rate on the cortical folding 
process using the dynamic skull model. Three groups of simulation were performed 
 

Fig. 6. Demonstrations of cortical development 
results: (a) Static skull model. (b) Dynamic skull 
model. (a)-(b) show the snapshots of cortex at the 
iteration number 50, 100, 150, and 200 respec-
tively. A video of this progress is affiliated in sup-
plementary materials. 
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                                  (a)                                                                  (b)  

 
(c) 

Fig. 7. (a) The difference of the average absolute Gaussian curvature of the cortex surface dur-
ing simulated growth. (b) Folding pattern distributions at 100 and 200 iterations. More details 
of the folding descriptors are referred to [9]. (c) The distance between deformed surface and 
original surface for both dynamic and static skull models. The color bar is on the right.  

 
                               (a)                                                                  (b) 

Fig. 8. (a) Cortical developing in different skull growth rates. a: Lλ =0.05; b: Lλ =0.1; 

c: Lλ =0.2. (b) The difference of the average absolute Gaussian curvature of the developing 

surface with different Lλ . 

100                                          200 
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with different Lλ  arrange from 0.05 to 0.2, which present slow to fast growth rate 
respectively. As shown in Fig.8, slower skull growth rates can generate more convo-
lutions. A slower growth rate means smaller space for cortex to grow at the same time 
and thus more constraint force. By changing growth rate of dynamic skull, we can 
simulate condition with different constraint force - the slower the growth rate is, the 
higher the constraint force will be. This result further indicated that skull constraint is 
an important regulator of the cortical folding process.  

4   Discussion and Conclusion 

Our simulations demonstrate that mechanical constraints imposed by the skull are 
important regulators of cortical folding. However, it should be noted that our simula-
tions indicate that skull constraint is not necessarily the dominant or initializing 
mechanism. Previous experimental observation has also shown that it is difficult to 
conclude that skull restraint initiates the development of cortical folding [11]. Our 
current model of neuronal growth also assumes isometric deformation. However, it 
should be noted that this isometric model is insufficient. In [12], it was demonstrated 
that there are systematic variations in absolute thickness and cell number across the 
cortical landscape, e.g., the gyral columns contain significantly more neurons than 
sulcal columns. Currently, the growth parameter for our simulations are either ho-
mogenous or set differently in manually selected regions. In future work we plan to 
infer or estimate growth parameters from MRI data of the developing brain by meas-
uring cortical thickness or gray matter density. The cortical measurements will then 
be mapped to the simulation space via cortical surface registration algorithms allow-
ing us to investigate how multiple, locally intrinsic and real differentiations influence 
the cortical folding process. 

In this paper, we present a dynamic skull growth model for improved simulation of 
cerebral cortex folding. Our results show significant improvement by the dynamic 
model. In our current model, only neuronal growth and dynamic skull constraints are 
modeled and simulated. In future, we intend to examine, model and simulate more 
premises regarding cortex folding mechanisms. For instance, as previously stated in 
the tension-based theory of morphogenesis [13], cortical patterns are considered to be 
the result of minimization of global tension energy along axons, dendrites, and neuro-
glia. Our future work will extend the computational system to a more general frame-
work that could easily plug-in new mechanical force models, implemented according 
to different biological premises such as the tension-based morphogenesis theory [13]. 
By using above approach, different computational models of cortical folding mecha-
nisms could be independently developed, and could be easily integrated to study their 
interactions. After reaching such a stage, it would be possible to simulate more realis-
tic cortical folding patterns that are similar to those of a real, human cerebral cortex. 
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Abstract. Despite recent efforts in cardiac electrophysiology modelling,

there is still a strong need to make macroscopic models usable in planning

and assistance of the clinical procedures. This requires model personali-

sation i.e. estimation of patient-specific model parameters and computa-

tions compatible with clinical constraints. Fast macroscopic models allow

a quick estimation of the tissue conductivity, but are often unreliable in

prediction of arrhythmias. On the other side, complex biophysical mod-

els are quite expensive for the tissue conductivity estimation, but are

well suited for arrhythmia predictions. Here we present a coupled per-

sonalisation framework, which combines the benefits of the two models.

A fast Eikonal (EK) model is used to estimate the conductivity param-

eters, which are then used to set the parameters of a biophysical model,

the Mitchell-Schaeffer (MS) model. Additional parameters related to Ac-

tion Potential Duration (APD) and APD restitution curves for the tissue

are estimated for the MS model. This framework is applied to a clinical

dataset provided with an hybrid X-Ray/MR imaging on an ischemic pa-

tient. This personalised MS Model is then used for in silico simulation

of clinical Ventricular Tachycardia (VT) stimulation protocol to predict

the induction of VT. This proof of concept opens up possibilities of us-

ing VT induction modelling directly in the intervention room, in order

to plan the radio-frequency ablation lines.

1 Introduction

Cardiac arrhythmias are increasingly being treated by Radio-Frequency (RF)
ablation procedures. These procedures still have unsatisfactory success rates of
only 30−60% for VT, due to non availability of clinical consensus on optimum
RF ablation patterns [1]. There is still a need for substantial guidance in locating
the optimum ablation lines. This guidance can be provided by personalised in
silico cardiac electrophysiology models. Personalisation means estimation of the
patient-specific model parameters which best fit the clinical data. It is required
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to reveal hidden properties of the tissue and to develop predictive models that
can be used to improve therapy planning and guidance. There are a variety of
cardiac EP models developed at various scales. These models can be broadly
categorised into three main categories: Biophysical Models (BM), Phenomeno-
logical Models (PM) and Eikonal Models (EM). BM [2] model ionic currents
and are the most accurate and complex but hardly suitable for parameter es-
timation from clinical data. PM [3] are based on PDEs and mimic only the
shape of action potential and are on intermediate level. EM [4] describes only
the time at which a depolarisation wave reaches a given point. They can be very
fast in computation [5], but less reliable in arrhythmia predictions due to the
complexity of both refractoriness and curvature. To introduce models directly
in the intervention room, the requirements are a low computational complexity,
fast estimation of parameters and reliable predictions. These attributes cannot
be found in one single model, thus here we present a new approach, where we
combine two models to obtain these attributes and show an application to a
clinical dataset. We also show how such personalised model can then be used
to simulate in silico a clinical VT Stimulation protocol and can be potentially
used to plan optimum RF ablation lines. In this paper, we present a coupled per-
sonalisation framework, which is fast and combines the benefits of an Eikonal
(EK) model with those of a simplified biophysical model, the Mitchell-Schaeffer
(MS) model. The fast 3D EK model is used to estimate the tissue conductiv-
ity parameter over the ventricles from the non-contact mapping of endocardial
surface potential, using an adaptive iterative algorithm. This is then used to set
the conductivity parameter of the 3D MS model. Additional parameters related
to APD and APD restitution property of the tissue are then estimated locally
using directly the 3D MS model. This framework is applied to a clinical data
of an ischemic patient, containing of MR data for geometry and scar detection
and electrophysiological data obtained from non-contact mapping. This data is
obtained using Hybrid X- ray/magnetic resonance (XMR) suites [6]. The per-
sonalised 3D MS model is then used to simulate a clinical VT-Stim procedure
to show a potential application of VT induction modelling.

2 Simulation of Electrophysiology Models

Anisotropic Fast Marching Model (EK Model): The EK model simulates
the propagation of the depolarization wave in quiescent tissue, ignoring repolari-
sation phase. The EK model is governed by eikonal-diffusion (ED) equation and
is based on Fast Marching Method (FMM), it can be written as

c0

√
D(x)

(√
∇T (x)tM∇T (x)

)
−∇ · (D(x)M∇T (x)) = τ(x) (1)

where the superscript t denotes transpose, c0 is a dimensionless constant, and
τ(x) is the cell membrane time constant. D(x) is the square of the tissue space
constant along the fiber and is related to the specific conductivity of the tissue in
the fiber direction. The anisotropicity is incorporated in the Diffusion tensor and
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is given by M. The nonlinear term (Eq 1) is solved using a fixed point iterative
method combined with a very fast eikonal solver as explained in [7].

Biophysical Model (MS Model): The MS model [8] is a 2-variable sim-
plified biophysical model derived from the 3-variable Fenton Karma (FK) ionic
model [9]. It models the transmembrane potential as the sum of a passive diffu-
sive current and several active reactive currents including a sodium ion (influx)
current and a potassium ion (outflux) current. Unlike FK model, it does not
model the Calcium ion current. The MS model is described by the following
system of Ordinary Differential Equations (ODE),⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂tu = div(D∇u) + zu2(1− u)
τin

− u
τout

+ Jstim(t)

∂tz =

⎧⎨⎩ (1− z)
τopen

if z < zgate

−z
τclose

if z > zgate

(2)

where, u is a normalised transmembrane potential variable, and z is a gating vari-
able for sodium ion influx which makes the gate open and close, thus depicting
the depolarisation and repolarisation phase. Jin = (zu2(1 − u))/τin represents
the inward sodium ion current which raises the action potential voltage and
Jout = −u/τout represents the outward potassium ion current that decreases
the action potential voltage describing repolarisation. Jstim is the stimulation
current, at the pacing location. The diffusion term in the model is controlled
by the diffusion tensor D. This spatial diffusion can be related to a pseudo-
conductivity. In the longitudinal direction of the fibre, this pseudo-conductivity
is set to d which is one of the parameters we adjust, and to d/2.52 in the trans-
verse directions. The electrophysiology model is solved spatially using P1 Finite
Element Method (FEM), and in time using an semi-implicit scheme as Modi-
fied Crank-Nicolson/Adams-Bashforth (MCNAB) scheme, which is evaluated in
terms of accuracy, stability and computational time [10].

3 Coupled Personalisation Method

Apparent Conductivity Parameter Estimation: Cardiac tissue conductiv-
ity is a crucial feature for the detection of conduction pathologies. The Apparent
Conductivity (AC) of the tissue can be measured by the parameter D(x) in the
EK model. It is initially estimated on the endocardial surface as a global value
using a simple bisection method which matches the average conduction velocity
of the measured Depolarisation Time (DT) isochrones to the simulated ones.
Using it as an initial guess, an adaptive multi-level zonal decomposition algo-
rithm is used, which minimizes the mean-squared difference of the simulated
and measured DT isochrones at each level using a Brent’s Optimisation Algo-
rithm presented in [5]. Due to the absence of transmural electrical propagation
information, we assume no variation across the left ventricle myocardium (ex-
cluding LV endocardium and scars) and hence we prescribe a single value for
the myocardial tissue across the LV wall. The AC values for RV endocardium
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and RV myocardial mass are set at 5.0 mm and 0.64 mm (from literature [4]).
The LV myocardial AC value is estimated by one-dimensional minimisation of
the following cost function (mean-squared difference of simulated and measured
isochrones at endocardium + squared difference of simulated and measured QRS
duration). The simulated QRS duration is calculated as the difference between
the maximum and the minimum depolarisation times in the biventricular mesh
and the measured QRS duration is estimated from the surface ECG.

Coupling of EK and MS Model Parameters: The AC parameter for EK
model dEK (D(x) in Eq 1) is a scale for the diffusion speed of the depolarisation
wavefront in the tissue. The diffusion tensor used in Eq 1 is M = AD̄At, where
A is the matrix defining the fiber directions in the global coordinate system and
D̄ = dEKdiag(1, λ2, λ2). λ is the anisotropic ratio of space constants transverse
and along the fiber direction and is 0.4 in human myocardium [4]. The model
Conduction Velocity (CV) is related to dEK as,

cEK =
c0

√
dEK

τ
in 1D and cEK = αEK

√
dEK + βEK in 3D (3)

where the constants αEK and βEK are introduced to take into account the
curvature effect and numerical diffusion and discretization errors in 3D. The
corresponding conductivity parameter for MS model, dMS is also a scale for
the wave diffusion speed in the tissue. The diffusion tensor D used in Eq 2 is
D = AD̄At, where A is the same as in EK model, but D̄ = dMSdiag(1, r, r) with
r as conductivity anisotropy ratio in the transverse plane and is set to λ2 as in
EK model. The model CV here is related to dMS as,

cMS ∝
√

d

τin
in 1D and cMS = αMS

√
dMS + βMS in 3D (4)

where the constants αMS and βMS are introduced for the same reasons as of
EK model, while τin is kept as a constant. The estimated AC parameter dEK

can then be used to estimate the parameter dMS . The parameter dEK gives
model CV cEK , which is similar to the actual measured data CV (cmsd) after
the parameter estimation step. Thus to have MS model CV (cMS) similar to
the measured data, it has to be similar to EK model CV (cEK). The constants
αEK and βEK represent numerical errors for EK model based on FMM. They
are different from the constants αMS and βMS , which is based on FEM. These
constants are determined in 3D for a mesh representing the slab of a tissue ([0 10]
× [0 10] × [0 10]) (with a mean edge length of tetrahedra same as the ventricular
mesh). We performed several simulations with various dEK and dMS values
and noted the corresponding cEK and cMS values. Then, we fit the analytical
curves given in Eq 3 & 4 in least square sense and determine the constants. The
constants estimated are αEK = 5.21, βEK = 0.07, αMS = 3.12, βMS = 0.31.
Then, the personalised dMS values are computed from corresponding estimated
dEK values using the condition, that cmsd = cEK = cMS after personalisation.

Parameter Estimation for APD: APD for a single heart cycle is defined
by the model as, APDmax = τcloseln (1/hmin) where hmin = 4 (τin/τout) As
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Fig. 1. (a) shows the MR data, segmented mesh with scars (in red), (b) shows XMR

registration of Ensite LV surface with MR data mesh, with values projected from Ensite

to MR LV surface,(c) shows the fibre orientation used, (d) shows the unipolar electro-

grams for detection (black dots) of depolarisation time (upper) and repolarisation time

(lower) from positive(red), negative(blue) and biphasic(green) T waves

we have only one measured APD dependent on three parameters, We chose to
estimate τclose, while keeping the other parameter values from the literature [8].
The reason is that τclose has no sensitivity towards the conductivity parameter
estimation [10], whereas τin and τout do have. This defined relationship remains
valid also in 3D thus allowing us to directly estimate locally at each vertex, the
parameter τclose without model simulations.To have a smooth gradation of APD
from epicardium to endocardium, we diffuse the τclose values spatially in the
LV myocardium from Endocardium to Epicardium. For RV, we fix one value
measured from the QT interval given through surface ECG.

Parameter Estimation for APD Restitution : APD Restitution is a prop-
erty of a cardiac cell and defines its refractoriness. It is also heterogeneously
distributed. It is a relationship between of the next cycle APD and the Dias-
tolic Interval (DI) of the previous cycle. The slope of these restitution curves is
controlled by τopen and depicts the APD heterogeneity present at multiple heart
rates. APD restitution curve for MS model is explicitly derived as, f(DIn) =
τclose ln

(
1− (1− hmin)e−DIn/τopen/hmin

)
, where f(DIn) is the succeeding APD

and DIn is the preceding DI at cycle n. Here, we use the τclose values estimated
as defined before, as it controls the APD at normal sinus rythm. And, the slope
parameter, τopen is estimated here with hmin fixed with values from the liter-
ature [8]. Here we minimise a cost function which minimises the error between
model predicted APD (f(DIn)) and actual measured APD (APDmsd

n+1) for a
number of pacing frequency, where n is the cycle number. The Diastolic Inter-
val (DImsd) is measured from the data as DImsd

n = 1/f − APDmsd
n , where f

is the heart rate, detected from the ECG waveforms. The parameter optimisa-
tion method used here is a non-linear constrained Active-Set Algorithm, with
constraints on τopen to be in the range of literature values [8].
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Fig. 2. Upper row shows the comparison of the measured Depolarisation Time (DT)

isochrones on the LV surface only with model simulated DT isochrones on the whole

heart, lower row shows the same for measured (LV surface only) and model simulated

(whole heart) APD maps

4 Application to Clinical Data

The coupled personalisation framework is applied on a clinical data obtained
during an electrophysiology study in the hybrid X-ray/MR environment. The
electrical measurements obtained using the Ensite system were registered to
the patient anatomy using XMR registration. The electrical data was collected
with high pass filter settings for prominent QRS detection and with low pass
filter for T Wave detection. The depolarisation times were detected from the
dV/dtmax and d2V/dt2 of the unipolar electrograms V . And the repolarisation
times were detected using dV/dtmax for the negative T wave, at the dV/dtmin

for the positive T wave, and the mean time between dV/dtmax and dV/dtmin

for the biphasic T waves. The data was collected from an ischemic patient at
normal sinus rythm and 5 paced modes all at 100 beats per minute. The scars
were segmented manually from the Delayed Enhancement MR data.

Estimated Parameters: The AC parameters estimated using EK model show
a high conduction on the epicardium depicting the purkinje network and shows
a conduction block near the scar as shown in Fig 3(a). The coupled MS model
conductivity parameters are then estimated from AC. The mean absolute error
on simulated depolarisation times with measured, after personalisation is 7.1ms
for EK model and 8.5ms for MS model (≈ 6 − 7% of depolarisation duration
(131ms)). The mean absolute error on APD is 8.71ms (≈ 2% of APD (300ms)),
showing a good fit as well. Fig 3 (b) (white contour) shows the heterogeneity
of the measured APD in terms of the estimated parameter τclose, as shorter on
the lateral wall of the LV compared to the septum. Also near the scar and the
region between the two scars (called isthmus) Fig 3 (b) (black contour), we have
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Fig. 3. (a) shows the conduction velocity estimated from AC maps, (b) shows the

parameter τclose estimated for APD, lower τclose values has low measured APD (white

contour) and vice versa, (c) shows the parameter τopen estimated for APD restitution

and the heterogeneity of the restitution curves for the isthmus (black contour), low

τopen values (red) have steep slopes & high (blue) have flat slopes for restitution curves

Fig. 4. (a) shows unipolar electrograms recorded for a clinical VT-Stim protocol, (b)

shows the simulated protocol for two extrastimuli, with coupling interval of 100 ms. (c)

show DT isochrones(in s) for S1 stimulus and (d) shows for S2, we have a unidirectional

block created in the isthmus. (e) shows DT isochrones for induced monomorphic VT.

a longer APD compared to the neighbours. For the APD Restitution, the mean
absolute error after fitting the resitution curves is 1.13ms, showing a good fit
also seen from the Fig 3(a). There is a APD restitution heterogeneity present for
the lateral and septal walls as shown in Fig 3(c). Isthmus has flatter restitution
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slopes compared to the neighbours, thus having a longer refractory period and
causing a unidirectional re-entry as seen in VT-Stim procedure.

Ischemic Ventricular Tachycardia Stimulation: Programmed ventricular
stimulation is a clinical protocol and consists of a number of extra stimuli in-
troduced at two ventricular sites (RV-Apex & RV-Outflow tract), using various
Cycle Lengths (CL), with varying coupling interval. This protocol is tested di-
rectly on the patient, without any planning, to collect information about the
VT and to plan the RF ablation lines. It may be time consuming or fail, when
VT is not inducible and recurrent. We use the personalised 3D MS model of
the ischemic patient data to simulate in silico this protocol. Here we follow a
conventional VT-Stim protocol with RV-Apex pacing site, 2 extrastimuli and a
shortest coupling interval of 100 ms at 600 ms pacing cycle length. The results
on inducibility are shown in Fig 4 and the causes of rentry were pacing loca-
tion, restitution heterogeneity in isthmus compared to healthy Fig 3(c) and slow
conductivity near the scars.

5 Conclusion

This novel approach of coupling models for fast estimation of hidden parameters
related to the cardiac tissue such as conductivity, APD and APD restitution
could enable the clinical use of cardiac electrophysiology models. The parame-
ter estimation algorithm is used on a real interventional data and the obtained
results are very encouraging. The estimated conductivity, APD and APD resti-
tution parameters are able to identify the healthy areas from the pathological
ones (scar and isthmus). The personalised MS model was able to simulate a
clinical VT-Stim protocol in order to assess the risk of VT and fibrillation. This
opens up possibilities of introducing patient-specific models in clinics to provide
aid in treatment and planning of RF ablation procedures. In future, we need to
evaluate the prediction ability of the personalised models for arrhythmias.
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ported by a Prize from Microsoft Research Cambridge and by the EUHeart
project (FP7/2007-2013 under grant agreement n 224495).
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Abstract. In this paper, we propose an interpolation-based method for

simulating needle images in B-mode ultrasound. We parametrize the nee-

dle image as a function of needle position and orientation. We collect

needle images under various spatial configurations in a water-tank using

a guidance robot. Then we use multi-dimensional tensor-product inter-

polation to simulate images of needles with arbitrary poses and positions

using the collected images. Interpolated needle images are superimposed

on top of phantom image backgrounds. The similarity between the sim-

ulated and the real images is measured using a correlation metric. A

comparison with in-vivo images is also performed. The simulation pro-

cedure is demonstrated using transverse needle images and extended to

sagittal needle images and brachytherapy seed images. The proposed

method could be used in clinical procedure training simulators.

1 Introduction

The simulation of needle insertion under ultrasound guidance would be useful
in the planning and training of a number of clinical procedures. A needle in-
sertion simulator would include a haptic interface to enable interaction with a
deformable tissue model and a real time ultrasound image simulator to provide
visual feedback. The image simulator requires both tissue and needle images to
be rendered. Previous work (e.g. [7,13]) addressed primarily the simulation of
B-mode images of soft tissue; the needle was simply rendered as a bright line in
the longitudinal plane, without details or validation.

Needle images are highly view-dependent, with images changing drastically
with the relative location between the needle and the ultrasound transducer.
Physicians exploit this dynamic effect to judge the position of the needle, es-
pecially in the transverse plane [2]. For example, in prostate brachytherapy [5],
physicians insert the needle until they see its tip, then rotate it to insure that the
tip is at the desired transverse position. For simulation purposes, it is important
to take into account the view-dependency property of needles.

In this paper, we propose to use interpolation on collected needle sample
images to simulate new needle images in real time. The collected images are

T. Jiang et al. (Eds.): MICCAI 2010, Part II, LNCS 6362, pp. 429–436, 2010.
� Springer-Verlag Berlin Heidelberg 2010
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of various needle poses, so the simulator is able to reproduce view-dependent
features of the needle images.

The classical way of simulating ultrasound images by interpolation is by slicing
a 3D volume [8] and applying techniques such as voxel nearest-neighbor [9]. This
approach cannot deal with view-dependent features of needle images. Indeed,
looking at the needle from another angle is not equivalent to rotating the original
image. Approaches based on physical acoustic models [4] are computationally
expensive, while the faster methods using artificial acoustic models [7,13] lack
accuracy. Hybrid methods [11] can be view-dependent and real-time, but they
only simulate point scatterers which are not suitable models of needles, which
have much more complex forms of scattering, such as the “comet tail” artifact.
The idea of using images of an object under various poses and positions to
simulate new object poses has been explored in the field of image-based rendering
(e.g. [6]), but the ray-based parametrization from such references cannot be
adopted to our case because there is no relative motion between the “camera”
and the “light source” in our case – both are the ultrasound transducer.

2 Simulation Methods

It is noted that the image of the needle in water resembles that in the phan-
tom/tissue. The basic idea of the simulation is therefore to first simulate the
needle images in water by interpolating sample images collected in water and
then superimpose the simulated images onto the tissue background.

We make the assumption that the needle image depends only on the local
spatial configuration (position and orientation) of the intersection of the needle
with the imaging plane. In this manner, we can represent the planar needle image
as a function In : R6 → R2 of the six degrees of freedom of the needle.

In the following, we first demonstrate our approach of parametrization, sample
collection, interpolation, and validation on the transverse plane of a transrectal
ultrasound (TRUS) probe. Using a slightly different parametrization, the same
method could be applied to simulate images on the sagittal (longitudinal) plane
and seed images.

2.1 Parametrization

The parametrization for the needle configuration with respect to the TRUS probe
transverse plane is illustrated in Fig. 1a. Assuming the ultrasound beam profile
has a constant thickness with respect to r along the Z (elevation) direction and
the needle is inserted toward the negative Z direction, we define the imaging
plane as the plane through which the needle enters the beam profile. This plane
can be determined experimentally by inserting the needle until the tip starts to
show up. We attach a Cartesian frame Cp at the probe origin O˜p in the imag-
ing plane and another Cartesian frame Cn at the intersection of the imaging
plane and the needle axis P˜n. Zn coincides with the needle axis and Yn indi-
cates the bevel tip direction. We use (r, θ) to denote the polar coordinates of P˜n
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Fig. 1. Coordinate assignments for: (a) Transverse (b) Sagittal plane

in {O˜p, Cp}, and l to denote the needle depth. We describe the rotation trans-
formation between Cp and Cn using roll-pitch-yaw angles (ρ, α, β). The needle
image is assumed to be a function In(r, θ, l, ρ, α, β) of these spatial variables. We
have shown experimentally that the needle image is invariant with respect to θ.
Indeed, if we keep other spatial parameters constant and vary θ, the image will
only rotate by θ but will not change in intensity or shape otherwise:

In(r, θ, l, ρ, α, β) = Rθ(In(r, 0, l, ρ0, α0, β0)) (1)

where Rθ is a 2D rotation transform of the image with respect to the ultrasound
probe center and (ρ, α, β) and (ρ0, α0, β0) are related by the same rotation trans-
form.This rotation invariance is due to the curvilinear geometry of the TRUS
probe. To obtain images at an arbitrary θ, we rotate the image at θ = 0. Thus
the function to be sampled and interpolated is In(r, 0, l, ρ0, α0, β0) : R5 → R2.

2.2 Tensor-Product Interpolation

Assuming that sample values of In are available through a collection method
as described in the next section, the interpolation scheme seeks to estimate val-
ues of In at non-sample points. The speed of interpolation is of major concern.
Nearest neighbor is the fastest interpolation method available, and is twice as
fast as linear interpolation [12]. To strike a balance between speed and accuracy,
we look for a scheme that is a hybrid of the nearest neighbor and linear inter-
polation. A suitable method is the tensor-product interpolation which enables
the use of different piecewise polynomial interpolations – nearest neighbor and
linear interpolations being special cases – along different dimensions [1]. The
choice between the nearest neighbor and the linear interpolation for each dimen-
sion is based on the fact that during the needle insertion, the needle position
on the imaging plane and its orientation are constrained by the tissue, therefore
not likely to change much. It is the depth and roll angle that are under the
physician’s control and therefore responsible for the continuous changes of the
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Fig. 2. Visualization of the interpolation process. Here only 3 dimensions are drawn.

Each vertex represents a sample image. The red cross represents the queried configu-

ration (r, l, ρ0).

needle images. Using linear interpolation for l, ρ enables us to simulate these
changes, and using nearest neighbor for other dimensions speeds up the inter-
polation considerably. Furthermore, using nearest neighbor for r will eliminate
artifacts caused by averaging two images with features at different locations (e.g.
the bright tail).

A general account of the tensor-product interpolation scheme is available
in [1]. A key feature of the method is that changing the sequence of interpo-
lation does not change the result, therefore we could perform nearest neighbor
interpolation first to reduce the computational cost. Specifically we use nearest
neighbor interpolation for r, α, β and linear interpolation for l, ρ. An operational
procedure of the scheme applied to our problem is as follows and the key steps
are visualized in Fig. 2:

1. Given the queried coordinate (r, l, ρ, α, β), calculate the rotated coordinate
(r, l, ρ0, α0, β0) in Eq. 1;

2. Find the enclosing hypercube in the 5-dimensional sample space that con-
tains the rotated coordinate: (r, l, ρ0, α0, β0) ∈ [ra, rb] × [lc, ld] × [ρe, ρf ] ×
[αg, αh]× [βi, βj ].

3. Find the nearest neighbors for r, α0, β0; say ra, αh, βj respectively;
4. In the rectangular subspace [lc, ld] × [ρe, ρf ]|(ra,αh,βj) ∈ R2, use linear in-

terpolation to get the interpolant image Ĩn. This is just bi-linearly inter-
polating In(ra, lc, ρe, αh, βj), In(ra, lc, ρf , αh, βj), In(ra, ld, ρe, αh, βj), and
In(ra, ld, ρf , αh, βj);

5. Now Ĩn corresponds to a simulated needle image with the needle at coordi-
nates (ra, 0) in the imaging plane. To simulate the image at (r, θ), we first
translate Ĩn by (ra − r) and then rotate by θ according to Eq. 1 to finally
get the approximated In(r, θ, l, ρ, α, β).

It can be shown that steps 1-4 of the above algorithm have a computational cost
of O(Np), where Np is the number of pixels of the images being interpolated.
In the current implementation Np = 80 × 350 and is the size of needle images
cropped from the original 640× 480 images (the rest is black background). The
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speed of step 5 above largely depends on the interpolation method used for
the spatial image rotations. In Matlab, using the nearest-neighbor will result in
real time performance but may introduce aliasing artifacts or “jaggies”. This
was eliminated in an OpenGL implementation where linear interpolation can
be computed in real time. On a PC with an Intel 2.2GHz dual core CPU, the
overall algorithm can achieve an average frame rate of 44 FPS for a resolution
of 640× 480 in the Matlab implementation without major optimization efforts.

2.3 Sample Collection and Superimposition

All data collection was done in a water tank of size L×W×H = 50 × 30 ×
20 cm3 filled with degassed water at 20�. Brachytherapy needles (Bard�, 18
gauge) were imaged with the TRUS probe of an ultrasound machine (Ultrasonix
SonixRP). The machine parameters were set to be the same as in a brachytherapy
procedure, except for disabled Time Gain Control, single focus, and sound speed
c = cwater. The time gain control was disabled during the data collection because
in water there is very little attenuation with increasing depth; single focus was
used because multiple focal points may sometimes cause split images in water.
The samples were collected in the water tank rather than in a phantom because
in water moving from one needle configuration to another leaves no needle tracks.
Furthermore, the needle images in water are much more clearly defined.

A needle guidance robot previously developed [10] was used for the data col-
lection. Since the robot does not move in l or ρ, we controlled these two variables
by hand. The robot was programmed to remotely connect to the SonixRP and
capture images automatically after each desired configuration was reached.

The range and sample numbers of each dimension are shown in the caption of
Fig. 3. The ranges of α, β were kept small, as in a real brachytherapy procedure.
Only positive rotation angles were collected due to symmetry.

The accuracy of the tensor-product interpolation depends on the spatial sam-
pling rate. To ensure that the sampling rate is high enough, test images were
first captured on a fine sample grid, then part of these images were used to
interpolate the rest. Correlation was then used to compare the results, and the
interpolated images were found to be similar to the real images when the sample
numbers in Fig. 3 were used. As an example, for the roll angle ρ, when using
images collected at every 180◦ to interpolate images of 45◦ ρ intervals, the corre-
lation between the interpolated and the real images was 0.93; when using images
collected at every 90◦, the correlation was 0.97.

To simulate the needle images in the tissue, background images of a gelatine
tissue mimicking phantom were collected, onto which the interpolated needle
images in water were superimposed by addition. Superimposition by taking the
maximum of the foreground and the background has also been tested, but the
results looked less realistic. It was concluded that superimposition by addition
gives satisfactory results. Note that the success of addition relies on the ap-
proximate linearity of the imaging process, which may be influenced by machine
settings such as the time-gain-compensation.
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3 Results and Validation

To validate the simulation method, 43 needle images in both the water tank and a
homogeneous gelatine phantom with cellulose scatterers were collected using the
same machine settings as used when the needle image samples were collected. The
needle configurations were chosen to be different from those previously collected.
Blank phantom background images were also collected before each insertion for
use in the superimposition. Because images of the same modality are being
compared, classical normalized cross-correlation is used as the similarity metric.

To begin with, we only measure the similarities between the areas adjacent to
the needle in the images. This is justified because it is the needle image that is
localized most of the time during the brachytherapy procedure and because the
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background contributes to the false positive measure of the correlation score. For
each of the 43 image pairs, an 80× 80 region around the the needle image was
cropped out and correlations were calculated. The mean correlation between the
simulated and the real needle images in water is corw = 0.86 out of 1. The mean
correlation between the simulated (after superimposition) and the real needle
images in phantom is corp = 0.79.

In some occasions, a bright tail is visible distal to the needle image due to
reverberation inside the needle. Our interpolation and superimposition method
produces images similar to real images when the tail is present. The correlation
between regions that contain the tail region and the phantom images has a
typical score of 0.89, as shown in Fig. 3d.

The simulation results were also compared with several in vivo needle images
collected during a brachytherapy session. To obtain a similar background for
superimposition, the needles in the in vivo images were first erased by copying
surrounding background using the image editing software GIMP (GNU Image
Manipulation Program). Then the simulated needle images were superimposed.
Example results are shown in Fig. 3e. Since there were no direct measurements of
the needle position and orientation in-vivo, the simulated images were generated
with the assumptions that the needle tip was in the imaging plane and that the
needle was parallel to the Z axis (0 pitch and yaw angles). It is evident from
Fig. 3e that under these conditions the simulated needle images are similar to
the in vivo ones. The difference may be attributed to the different ultrasound
machines being used for data collection – an Ultrasonix� machine was used for
the sample image collection; a BK Medical� machine was used in the hospital.

Using slightly different parametrization and collection methods, the same
method could be extended to simulate needle insertion in the sagittal plane and
radioactive seeds in both planes in real-time (Fig. 1b sagittal plane coordinate
assignment; Fig. 3f and 3g results)).

4 Discussion and Future Work

This paper presents a first view-dependent real-time needle image simulation
method that is also suitable for simulating other wire-like objects such as ra-
dioactive seeds. The use of a robot to collect pose-dependent sample images
proves to be accurate, efficient, and repeatable. The simulated images are not
only visually appealing, but also accurate. The accuracy was validated objec-
tively using a correlation metric and by comparison with in vivo data. The
simulation method is compatible with existing real-time deformable tissue im-
age simulations. Indeed, the needle simulation described here has recently been
successfully incorporated into a real-time prostate brachytherapy simulator [3].It
should be noted that the range of positions that our method can handle is only
limited by the physical movement range of the brachytherapy robot used for
data collection. Given more samples, the method can readily deal with a larger
parameter range with little increased computational cost.

The simulation may potentially serve as a real-time “front-end” for a physi-
cally based simulator where sample images are simulated rather than collected.
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Furthermore, the collected image sample database may potentially be used as
training database for seed detection purposes.

In this paper, it was assumed that the needle does not change its pitch and
yaw angles during the insertion. However, if the needle is not rigid, the pitch and
yaw angles might be continuously changing when the needle is pushed sideways.
Linear interpolation for these angles and piecewise rigid approximations may be
needed to better simulate a bending needle.
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Abstract. Postprocedural analysis of gastrointestinal (GI) endoscopic

videos is a difficult task because the videos often suffer from a large

number of poor-quality frames due to the motion or out-of-focus blur,

specular highlights and artefacts caused by turbid fluid inside the GI

tract. Clinically, each frame of the video is examined individually by the

endoscopic expert due to the lack of a suitable visualisation technique. In

this work, we introduce a low dimensional representation of endoscopic

videos based on a manifold learning approach. The introduced endoscopic

video manifolds (EVMs) enable the clustering of poor-quality frames and

grouping of different segments of the GI endoscopic video in an unsuper-

vised manner to facilitate subsequent visual assessment. In this paper,

we present two novel inter-frame similarity measures for manifold learn-

ing to create structured manifolds from complex endoscopic videos. Our

experiments demonstrate that the proposed method yields high precision

and recall values for uninformative frame detection (90.91% and 82.90%)

and results in well-structured manifolds for scene clustering.

Keywords: Endoscopy, manifold learning, video segmentation,

clustering.

1 Introduction

GI endoscopy is a widely used clinical technique for visualising the digestive
tract. Current diagnosis and surveillance of GI diseases, ranging from Barrett’s
Oesophagus to oesophageal or colorectal cancer, are performed by visual as-
sessment in GI endoscopy followed by necessary biopsies. Clinically, endoscopic
videos also serve the postprocedural analysis performed by the expert and sub-
sequent image processing for quantitative analysis. Currently, postprocedural
analysis is typically performed by the endoscopic expert via visual assessment of
each frame in the sequence. Such an analysis is complicated and time consuming
mainly due to two reasons. First, in a typical endoscopic video sequence, there
are usually a large number of poor-quality frames due to the blur caused by fast
motion or out-of-focus imaging of the endoscope, specular highlights and arte-
facts caused by the turbid fluid inside the GI tract (Fig.1). Second, each frame
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(a) (b) (c) (d) (e)

Fig. 1. a) illustrates an ideal frame acquired by a state-of-the art GI endoscope. (b-e)

show several challenges encountered in endoscopic videos; frames with motion blur b),

specular highlights c), bubbles caused by the liquid inside the organ d) and blur caused

by out-of-focus e).

in the sequence is inspected individually by the expert, as there exists no easily
manageable visualisation technique for GI endoscopic videos.

In endoscopic video analysis, the focus is mainly directed towards detecting
abnormalities [1,2,3] and uninformative frames [4,5]. These methods focus on
defining specific features such as colour or texture and then detecting the frames
containing them in order to present the expert only the detected informative
frames instead of the whole content of the endoscopic video. Recently, repre-
sentative frame extraction for content summary has also been investigated to
aid the postprocedural analysis of wireless capsule endoscopy [6]. The aim of
our work is to cluster the GI endoscopic videos in an unsupervised manner in
order to allow the expert to easily eliminate or visualise only the parts of inter-
est during postprocedural analysis. To this end, we introduce endoscopic video
manifolds (EVMs); a low dimensional representation of endoscopic videos based
on manifold learning that allows for clustering of different scenes as well as of
poor quality frames.

Successful manifold learning algorithms have been proven to be beneficial for
a range of image processing tasks, e.g. [7,8]. The main novelty of these methods
in comparison to feature or intensity based image representation techniques lies
in analysing a set of images based on their similarities. In [8], Pless proposed
a video representation using a low dimensional image space and a trajectory
for analysing natural video sequences. In this work, we will explore the use of
manifold learning techniques to perform clustering on GI endoscopic videos.

The contribution of this work is twofold: firstly, from the medical point of
view, we propose EVMs as a generic approach to cluster poor-quality frames as
well as different segments of the GI endoscopic video in an unsupervised man-
ner. This allows the experts to easily analyse the segment of interest. Secondly,
in terms of theoretical contribution, we propose two inter-frame similarity mea-
sures for manifold learning, namely rotation invariant energy histograms and
divergence of the optical flow field, which create structured manifolds from the
complex endoscopic scenes. The first measure enhances the spectral differences
between an ideal and a poor-quality frame while the second measure leads to
closer localisation of similar frames on the manifold by considering temporal
constraints among them. The design of these similarity measures is necessary as
we are confronted with the difficult imaging conditions of endoscopy.
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2 Methods

We address two tasks: clustering of poor-quality frames and endoscopic scenes.
For each task our method creates a manifold representation using an appropriate
inter-frame similarity measure and performs a clustering on the created EVM.

2.1 Overview of the Framework

An endoscopic video I can be represented by the set of its n individual frames
{I1, I2, · · · , In}. Each frame is a data point in the high dimensional input space
I1, I2, · · · In ∈ Rw×h, where w and h are the width and height of the frames,
respectively. Thus, the number of degrees of freedom (DoF) is equal to w × h.
However, due to the continuity of the video sequence, and therefore the large
similarity between consecutive frames, the actual DoF is much smaller than this
discrete representation enables. So, the high dimensional data points actually
lie on a lower dimensional manifold I1, I2, · · · , In ∈ M, where M is a manifold
embedded in Rw×h. We compute the low dimensional EVM as follows:

1. Defining the similarities: For each pair (Ii, Ij), of the given n data points
i, j ∈ {1, · · · , n}, first a similarity measure is defined W : I × I → R. W deter-
mines which images are considered to be similar and therefore kept as neighbours
on the manifold. Thus, the similarity measure determines the structure of the
manifold and should be designed carefully for each particular application. In the
sections 2.2 and 2.3 we present the similarity measures designed for the addressed
clustering tasks.

2. Computing the adjacency graph: Given the similarity matrix W , where
the values W (i, j) state the similarity between the frames Ii and Ij , first, k-
nearest neighbours of each data point are computed. Then, the adjacency graph
is created as:

A(i, j) =

{
1 if i ∈ N k

j

0 otherwise,
(1)

where N k
j states the k-nearest neighbours of the j-th data point. Then, a con-

nected component analysis is performed on the adjacency graph and the low
dimensional manifold is computed for each component separately.

3. Learning the manifold: In this work, we use the local manifold learning
based on Laplacian Eigenmaps (LE) [9]. The choice of this local method is driven
by the observation that for the GI endoscopic videos distant data points on the
manifold (corresponding to non-similar images) do not yield meaningful simi-
larity measures. Therefore, local methods which do not take these similarities
into consideration are better suited for our application compared to the global
methods as used in [7,8]. To compute the LE, the eigenvalues and eigenvectors
{f1, · · · , fm} of the Laplacian matrix L = D −A are determined, where D rep-
resents the degree matrix D(i, i) =

∑
j A(i, j). The m-dimensional (m � w×h)

representation of a frame Ii on the EVM is then given by [f1(i), · · · , fm(i)]�.
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Fig. 2. Rotation invariant energy histograms. a) and b) show an ideal frame and its

power spectrum, respectively. c) and d) show a blurred frame and its power spectrum,

respectively. e) shows energy histograms of the ideal and blurred frames.

4. Clustering on the manifold: Finally, the clustering of the uninformative
frames and video segments is performed on the corresponding EVM using the
K-means algorithm [10]. Thus, the endoscopic video I is represented as a set of l
clusters I = {C1, · · · , Cl}. The results of the clustering depends on the structure
of the manifold and thus on the chosen similarity measure. As next we present,
the construction of the EVMs for the two addressed tasks.

2.2 EVM for Clustering Uninformative Frames

In order to create an EVM, where the poor-quality frames are closely localized,
we propose to use a new inter-frame similarity measure based on the power
spectrum of the images. In the frequency domain, the energy of an ideal frame is
more distributed over low and high frequencies compared to a poor-quality frame
whose energy is mainly accumulated only in low frequencies (Fig.2). Therefore,
the EVM is created using the inter-frame similarity measure based on rotation
invariant energy histograms. To this end, first the power spectrum of a frame Ii is
represented in log-polar coordinates Fi(f, θ), where f and θ state the frequencies
and the orientations, respectively. Then the rotation invariant power spectrum is
computed as: Fi(f) =

∑
θ Fi(f, θ) and an histogram with B bins hist(Fi(f), B)

is created. Finally, the EVM is created by using the following similarity measure
for all pairs of frames (Ii, Ij):

WEH(Ii, Ij) = π − acos

⎛⎝
〈
histb(Fi(f), B), histb(Fj(f), B)

〉
||histb(Fi(f), B)|| · ||histb(Fj(f), B)||

⎞⎠ , (2)

where histb states the b-th bin of the histogram, 〈·, ·〉 is the dot product and
||hist|| denotes the norm of the B-valued histogram vector. In this paper, we
use b = 30 for our experiments. However, it is noted that there has not been a
significant difference in the manifold structure for different values of n.

2.3 EVMs for Clustering Endoscopic Scenes

For clustering endoscopic scenes, we create two different EVMs; the first one based
on the endoscope motion considering the temporal constraints (Sec.2.3a) and the
second one considering the appearance similarities of all frames (Sec.2.3b).
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Fig. 3. Divergence of optical flow field. a) and b) show two consecutive frames with

ideal conditions and c) illustrates the small and constant divergence field of the optical

flow between a) and b). d) and e) show two consecutive frames with different conditions

(one ideal and one non-informative frame). e) illustrates the varying divergence field

with of the optical flow field between them.

a) Optical Flow Based EVMs: Changes in a GI-endoscopic video are caused
mainly by the motion of the endosopce. Therefore a measure of the camera
motion indicates directly a change in the observed scene. We propose using the
optical flow divergence which measures the smoothness of camera motion field.
This measure will lead to a high similarity between two images only if the scene
and the imaging conditions (such as blur, specular highlights) are similar (Fig.3)
If the optical flow field Φj

i (x, y) from i-th frame (Ii) to j-th frame (Ij) is a smooth
motion field, then the divergence at each location will be close to 0. Thus, the
similarity between Ii and Ij is computed as:

WDOFF(Ii, Ij) = 1− ψj
i

max(ψj
i )

, ψj
i =

w∑
x=1

h∑
y=1

|∇Φj
i (x, y)|, Φj

i : I ×I → R
2

(3)
where ∇ is the divergence operator ∇ = ∂/∂x + ∂/∂y. In order to consider
temporal constraints, the k-nearest neighbours of a frame Ii are searched only
within the frames {Ii−s, · · · , Ii+s}, where s is the size of the search window (25
frames in this study). For the computation of the optical flow method, we use
without loss of generality the optical flow method of Black and Anandan [11].

b) Intensity Based EVMs. Finally, we also create EVMs using the Normalised
cross correlation (NCC) as similarity measure: WNCC(Ii, Ij)=NCC(Ii, Ij).

3 Experiments and Results

The experiments are conducted on two upper GI narrow-band endoscopic videos
consisting of 1834 and 1695 frames. The datasets are acquired by an endoscopic
expert at two different GI-endoscopic procedures. The ground truth labelling of
poor-quality frames is performed manually by the expert for both videos.

3.1 Clustering Uninformative Frames

For this task, two EVMs are created using WEH and WNCC similarity mea-
sures. For quantitative analysis, recall and precision values of each clustering are
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Fig. 4. a)Recall and b)precision values for clustering uninformative frames on EVMs

created with WEH and WNCC. Note that for the 2. dataset WNCC starts finding uninfor-

mative clusters only after 35 clusters, whereas WEH shows a more stable performance.

Intra-cluster distances of clustering on EVMs using c) WNCC and d) WDOFF as com-

pared to clustering of original images using WNCC similarity measure.

Table 1. Best recall and precision values of for clustering poor-quality frames

Video 1

Max. Num. Max. Num.

Recall Clusters Precision Clusters

WNCC 82.90% 15 74.13% 72

WEH 73.71% 67 88.35% 4

Video 2

Max. Num. Max. Num.

Recall Clusters Precision Clusters

WNCC 74.13% 72 90.91 % 40

WEH 71.21% 8 81.25% 30

evaluated over the number of clusters from 1 to 80. After clustering on the EVMs,
clusters with more than 50% uninformative frames are labelled as uninforma-
tive. Particularly for this task, WEH yields nicely structured manifolds, where
informative and uninformative frames are well separated as shown in Fig.5(a1)-
(a3). This is also reflected in the recall-precision curves (Fig.4a-b), where using
7 clusters on this EVM one can cluster apart 70.16% of all uninformative frames
(recall) with a precision of 65.61%. Best recall and precision values are summa-
rized in Table 1.

3.2 Clustering Endoscopic Scenes

The clustering of different segments is performed on optical flow (Sec.2.3a) and
intensity based EVMs (Sec.2.3b). Inclusion of temporal constraints for optical
flow based EVM requires the use of a larger number of clusters. Therefore, the
optical flow and the intensity based EVMs are clustered using 30 and 15 clusters,
respectively. The results are compared to K-means clustering perfomed on the
original images using the same number of clusters (15 and 30) and WNCC simi-
larity measure. (Fig.5b,c) show the EVMs and examples of the clustered frames.
For quantitive evaluation normalized intracluster distances (icd) are measured

for all clusters Ci : icd(Ci) =
∑

x∈Ci
x−x̄i

maxx∈Ci
x−x̄i

, where x̄i denotes the centre of clus-
ter Ci. Fig.4c,d show the decrease in icd when using the WDOFF and WNCC

manifolds. This implies that the proposed similarity measures lead to structured
manifolds that allow for better separability of the clusters. We further evaluate
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Fig. 5. (a1) and (a3) show the 3-dimensional EVMs of 1. and 2. endoscopic video,

respectively. The red points illustrate the poor-quality frames in the ground truth

labelling. (a2) and (a4) show the clustering results on the EVMs for the 1. and 2. video,

respectively. The use of WEH in manifold learning leads to structured EVMs where the

poor-quality frames are clustered together. (b1) and (b3) Largest connected component

of 3-dimensional EVM created using WDOF F (Section 2.3) and the clustering on these

EVMs for the 1. and 2. dataset, respectively. (b2) and (b4) show 15 example clusters

for the 1. and 2. video; each column correspond to one cluster, where the rows show the

first, center and the last frames of each cluster, respectively. (c1) and (c3) 3-dimensional

EVM created using WNCC (Section 2.3) and the clustering on these EVMs for the 1.

and 2. dataset, respectively. (c2) and (c4) show clustering results using 15 clusters for

the 1. and 2. video, respectively.
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our results against manual labelling, where contiguous informative frames are
labelled to be in the same cluster. The correlation between the ground truth and
EVM clusterings is measured by the normalized mutual information, which is
independent of the number of clusters. Clustering on WNCC EVM yields 84.77%
and 76.37%. Better results, 87.31% and 75.11%, are obtained with the proposed
optical flow based clustering.

4 Conclusion

In this paper, we have proposed an effective framework for clustering endoscopic
videos using EVMs. Key technical contribution of the paper includes: 1) we have
addressed the task of clustering uninformative frames and endoscopic scenes from
a different point of view than the methods in the literature, namely within a
generic framework using the inter-frame similarities in an unsupervised manner.
Our method provides a compact visualisation of the endoscopic video for sub-
sequent analysis. 2) we have introduced two inter-frame similarity measures for
manifold learning, namely rotation invariant energy histograms and divergence
of optical flow field. Our experiments demonstrate that the proposed similarity
measures yield well structured manifolds and thus lead to accurate clustering.
The mathematical framework behind manifold learning has the particular ad-
vantage of being extendable by definition of the similarity measures. Therefore,
even if particular characteristics of the imaging system changes, EVMs can be
easily adopted by changing only the similarity measure.
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Abstract. Image focus quality is of utmost importance in digital micro-

scopes because the pathologist cannot accurately characterize the tissue

state without focused images. We propose to train a classifier to measure

the focus quality of microscopy scans based on an extensive set of image

features. However, classifiers rely heavily on the quality and quantity of

the training data, and collecting annotated data is tedious and expen-

sive. We therefore propose a new method to automatically generate large

amounts of training data using image stacks. Our experiments demon-

strate that a classifier trained with the image stacks performs comparably

with one trained with manually annotated data. The classifier is able to

accurately detect out-of-focus regions, provide focus quality feedback to

the user, and identify potential problems of the microscopy design.

1 Introduction

The adoption of digital microscopes in pathology studies enables the digitiza-
tion of large tissue slides, which can then be stored, transferred, and analyzed
electronically. As a crucial component of a digital microscope, the quality of the
autofocus system directly determines the quality of the tissue scans. If the image
is unfocused, the user will not be able to accurately characterize the tissue state
as either diseased or healthy, and poor focus quality dampens the user’s experi-
ence and can cause the user to loose confidence in the system. There is therefore
a demand for developing focus quality assessment tools that detect such focus
errors in whole slide images (WSI). Such ability to automatically measure im-
age focus quality provides feedback to the pathologist as to the quality of the
acquisition, and when such measures are fed back to the microscope itself, the
system is able to correct problems even before the pathologist sees it.

Many approaches have been developed previously for predicting the focus
plane for tissue imaging. Most of these approaches calculate some features on
the image taken at a given microscope depth. For example, Liron et al. [1] mea-
sured the intensity of the reflected red laser light, Santos et al. [2] used various
image gradient and histogram based metrics, Firestone et al. [3] compared mea-
surements of the entropy and the range of the image intensity, and the authors
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of [4,5] adopted the normalized variance of image intensity. Other features in-
clude the sum of the absolute value of the image Laplacian [6] and the integrated
amplitude modulus [7]. After the features are measured at one depth, the mi-
croscope depth is shifted, and the features are calculated again. If calculations
are made at a sufficient number of depth locations and these locations span
the actual location of the optimal focus, they will be sufficient to calculate the
correct focus plane [8,9]. The requirement to acquire multiple images through
the true focal plane can be prohibitively time consuming, especially for a high-
throughput system. Furthermore, when the image quality measure is made on
images after the acquisition step, the intermediate images may not be available,
so the quality must be assessed on a single image.

To enable focus quality measurement on a single image, we trained classifiers
to divide the image into in-focus and out-of-focus regions. This framework is
considered a “no reference” approach since it enables the measurement of focus
quality without the need for other images. Classifiers rely heavily on the quality
and quantity of the training data, which is expensive and tedious for pathologists
to generate, so we introduce a method of automatically generating training data
using image stacks. Our quantitative experiments on annotated dataset and
image stacks demonstrate that the classifiers can robustly separate in-focus from
out-of-focus regions, provide useful feedback to the user about the focus quality,
and even identify issues in the microscopy design such as stage tilt.

2 Region Classification for Focus Quality Assessment

We treat the image focus quality assessment as a binary classification problem,
wherein the goal is to classify each WSI as either in-focus or out-of-focus. Guid-
ance from pathologists indicate that a useful measure of focus quality is to divide
the WSI into regions, classify each region as in-focus or out-of-focus, and calcu-
late the percentage of in-focus regions. Some advantages of classifying smaller
regions are that the image slide may be slightly tilted so that the focus depth
varies slowly across the image, and it is likely that only part of the entire image
is out-of-focus since the microscope does not fail completely for a scan in many
cases. Therefore, we evenly divide each WSI into smaller regions and classify
each region independently.

For classification, we represent an image region I by a vector of features,
the choice of which is an important step to avoid features that bias away from
the true focus [10]. We therefore utilize an extensive set of 44 features, most
of which have been studied or suggested in previous microscope auto-focusing
works [10,3,11]. The definitions and brief descriptions of these features are given
in Table 1. We then adopt an AdaBoost classifier, which combines the outputs of
a set of sequentially selected weak classifiers into a strong classifier to minimize
the overall classification risk [12,13]. In our implementation, the weak classifier
is generated by the linear discriminant analysis [14].

In general, the samples for training the classifier are manually cropped from
images through careful visual inspection by expert pathologists. However, we
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Table 1. Feature equations and descriptions. x and y are image coordinates. M and

N are the width and the height of the image, respectively.

Neighborhood contrast features (24)
Mean, variance, skew, and kurtosis of contrast calculated for each neighborhood

Neighborhood N sizes: 5x5, 9x9, and 17x17
Neighborhood (N ) contrast max(x,y)∈N I(x, y) − min(x,y)∈N I(x, y)

Normalized neighborhood (N ) contrast
max(x,y)∈N I(x, y) − min(x,y)∈N I(x, y)

max(x,y)∈N I(x, y)

Gradient and Laplacian features (3)
Sx and Sy are the Sobel operators.

Lx and Ly are Laplacian filter output in x and y directions.

Tenenbaum Gradient [5,15] 1
MN

∑
x

∑
y Sx(x, y)2 + Sy(x, y)2

Laplacian sum [6] 1
MN

∑
x

∑
y |Lx(x, y)| + |Ly(x, y)|

Laplacian energy [16] 1
MN

∑
x

∑
y(Lx(x, y) + Ly(x, y))2

Local image statistics features (7)
μ = 1

MN

∑
x

∑
y I(x, y) is the average of image intensity.

pi is the probability of observing a pixel of intensity i in the image.

Intensity variance [5] 1
MN

∑
x

∑
y(I(x, y) − μ)2

Normalized intensity variance [5] 1
MNμ

∑
x

∑
y(I(x, y) − μ)2

Auto correlation (x) [17] 1
MN

∑
x

∑
y I(x, y)(I(x + 1, y) − I(x + 2, y))

Auto correlation (y) [17] 1
MN

∑
x

∑
y I(x, y)(I(x, y + 1) − I(x, y + 2))

Standard deviation correlation (x) [17] 1
MN

∑
x

∑
y I(x, y)I(x + 1, y) − μ2

Standard deviation correlation (y) [17] 1
MN

∑
x

∑
y I(x, y)I(x, y + 1) − μ2

Shannon entropy [3] −
∑

i pi log2(pi)

Wavelet features (10)
Image decomposed into approximation A and detail D images.

Wk is a wavelet channel with k ∈ 0, 1, 2
Ea is the energy of A, Ed(k) is the energy of the kth detail image

αk and βk are the parameters for the generalized Gaussian
distribution (GGD) representation for Wk

Channel energy 1
MN

∑
x

∑
y |Wk(x, y)|

Defocus ratio [11]
Ea

Ed(1) + Ed(2)

Wavelet GGD parameters [18] P (Wk(x, y)) =
βk

2αkΓ (1/βk) exp

{
−
( |Wk(x,y)|

αk

)β

k

}

will demonstrate that this tedious and slow process can be expedited by a clever
utilization of tissue image stacks. Finally, given the in-focus/out-of-focus assign-
ments from the classifier for all regions in a WSI, the focus quality is measured
as the percentage of the regions that are out-of-focus. In addition, if there is
time for re-acquisition, the images of the worst focus can be re-acquired.

3 Automatic Training Data from Image Stacks

To generate training data, images were manually collected from various tissue
scans by two pathologists. The dataset consisted of image patches at two dif-
ferent magnification levels: 20× and 40×. For each magnification level, they
labeled approximately 30 in-focus and 30 out-of-focus regions with the average
size around 200× 200 pixels. We extracted the 44 features from Table 1 for ev-
ery image region covered by a 128× 128 window, placed at intervals of 16 pixels
in both x and y directions. Although this dataset was annotated by experts, a
drawback is that its size is limited because the process of selecting such regions
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focal plane (fp)

fp-0.7 μm

fp+0.7 μm

fp-2.0 μm

fp+2.0 μm

fp-5.0 μm

fp+5.0 μm

Acquisition setup fp−2μm focal plane fp+2μm

Fig. 1. Illustration of the generation of training data from image stacks. Images within

0.7μm of the focal plane are considered in-focus, and images between 2.0μm and 5.0μm
away from the focal plane are considered out-of-focus.

is tedious and time-consuming. Trained with a small number of samples, the
generalization of the classifier is limited.

To overcome the limited amount of data, we developed a method of automat-
ically generating large amounts of training samples using image stacks. Image
stacks are a set of images of the same tissue taken at different depths, with the
focal plane manually determined. Figure 1 shows the general setup. According to
pathologists, they consider a small range of slices around the focal plane to be in
focus, and a range of slices far from the focal plane to be out-of-focus. Based on
experience, they suggested the following thresholds: between −0.7μm and 0.7μm
was selected as “in-focus”, and between 2.0μm and 5.0μm and between −5.0μm
and −2.0μm were selected as “out-of-focus”. The images between 0.7μm and
2.0μm and between −2.0μm and −0.7μm were determined to be too subtle to
be accurately measured, and the images beyond ±5.0μm are too out-of-focus to
be useful in practice.

Using these thresholds, we generated an expanded image set that consisted
of 37 tissue stacks, each of which includes 77 images scanned from −5μm to
−2μm, −0.7μm to 0.7μm, and 2μm to 5μm with an incremental step of 0.1μm.
The focus plane of each stack was carefully selected and verified by an expert
before and after scanning. Each microscope image had a size of 2048×2048 pixels
and was evenly divided into 256 non-overlapping samples each of size 128× 128.
Altogether, this led to 142,080 positive samples and 587,264 negative samples.

4 Experiments and Results

We have tested various parameters, such as the slide window size (128 or 256),
and the initial weights for positive and negative samples, but we did not observe
significant changes in the classification accuracy, which suggests the robustness
of the classifier. For the results presented in the following, we chose a window
size of 128 pixels, and equal initial weights for positive and negative samples.
Table 2 provides a comparison of the classification accuracy of the AdaBoost
classifiers trained with either the manually labeled samples or the image stacks.
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Table 2. The average training and testing accuracy for a 10-fold cross validation on

the manually labeled dataset (ManualSet) and the automatically generated dataset

(StackSet). Both sets had high accuracy, but StackSet achieved better results than

ManualSet, especially for 40× magnification. The training accuracy is the classifica-

tion accuracy when testing on the training data (which gives an upper bound on the

accuracy), and the testing accuracy represents the result on new test data. The test

accuracy is close to the training accuracy, indicating no over-fitting during training.

ManualSet-100iter. ManualSet-30iter. StackSet-30iter.

20X 40X 20X 40X 20X 40X

Training Accuracy (%) 91.939 87.062 91.918 86.319 92.806 93.421

Testing Accuracy (%) 90.854 86.679 90.996 85.683 92.772 93.371

(a) (b) (c)

Fig. 2. Illustration of the sensitivity of the classifier trained with stacks. The classifi-

cation results were overlaid on the images which were labeled by pathologists as (a,b)

“in-focus” and (c) “out-of-focus”. The overlaid blue and red colors represent in-focus

and out-of-focus assignments, respectively. Closer inspection indicated that the focus

quality indeed varies throughout the tissue, and the classifier were able to detect this.

The average training and testing accuracy are from a 10-fold cross validation,
where we randomly, but evenly, divided the samples into ten subsets, and in each
round, we chose nine of them for training and one for testing. For each classifier,
30 boosting iterations were considered, and we also show 100 boosting iterations
for the manual set. In addition, two different magnification levels of 20× and
40× were trained separately because the characteristics of tissue images under
these magnifications are significantly different.

The table indicates the advantage of the proposed automatic data generation
method. First, the classifiers obtained using the automatically generated data
(StackSet-30iter) achieved better accuracy than those trained with the manual
data for both 20× and 40× images. In particular, for 40× images the improve-
ment is nearly 8%, indicating the usefulness of the vast amount of training
samples provided by the image stacks method. Second, while the performance
gap between 20× and 40× images for the manual data indicated that the 40×
class is more difficult than the 20× class, the gap was bridged by using the
stacks. Third, the classification accuracy does not improve much by increasing
the training iterations to 100 for the manual data (ManualSet-100iter) suggest-
ing that the poorer accuracy results from the limited amount of annotated data.
Thus, the table demonstrates that using image stacks to automatically generate
training data is an effective method and leads to impressive accuracy.
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(a) Result of training with manually annotated data.
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(b) Result of training with image stacks.
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(c) 20× in-focus measure (d) 40× in-focus measure

Fig. 3. (a) Classification results on 20× and 40× stacks using classifiers trained with

manually labeled data. The blue color represents in-focus assignment, and the red

represents out-of-focus assignment. Ideally, a region is classified as in-focus near its

focal plane, and as out-of-focus when far away. However, the lower-right regions of the

20× stack were always classified as out-of-focus, while almost all regions of the 40×
stack were classified as in-focus. This indicates the poor generalization of the classifiers.

(b) Classification results on the same 20× and 40× stacks as in (a) using classifiers

trained with automatically generated data. The classification results show a clear trend

throughout both stacks of each region going from out-of-focus to in-focus and back. (c)

and (d) show plots of the percentage of in-focus tissue regions over each entire stack.

The classification was carried out independently for each image of the stack, but they

still show a clear and smooth trend of increasing towards the focal plane at 1μm as

expected for the image stacks.



452 D. Gao et al.

In Figure 2, we show some classification results overlaid on example test im-
ages, which were labeled by the pathologists as (a,b) “in-focus” and (c) “out-
of-focus”. The classifier indicated that the images were not fully in-focus or
out-of-focus but rather included a mixture of in-focus and out-of-focus regions,
and a closer inspection confirmed this. For example, the top-right portion of the
tissue in Figure 2(c) (shown in blue) was in clear focus. The automatic classifier
was sensitive enough to detect such labeling ambiguities.

To evaluate the generalization of the trained classifiers, we tested them on
a 20× and a 40× image stack that were not used previously in either training
or testing. Figure 3 shows these images scanned at different microscope depths
overlaid with the classification results. Ideally, the in-focus/out-of-focus assign-
ments by a classifier would change consistently along the stack, so that a region
is classified as out-of-focus when scanned far away from the focal plane, and as
in-focus when scanned at or close to the focal plane. However, as illustrated in
Figure 3(a), the classifiers trained with the manual set generalized poorly in most
of the regions. For example, it always classified the lower-right tissue regions of
the 20× stack as out-of-focus and classified almost all regions of the 40× stack
as in-focus. On the other hand, as shown in Figure 3(b), the classifiers trained
with image stacks produced consistent results showing that most regions in both
20× and 40× stacks went from out-of-focus to in-focus and to out-of-focus again
along the depth axis. In Figure 3(b), a small portion of tissues in the 20× scans
was classified at out-of-focus throughout the entire stack. The pathologists ver-
ified that these are the edge regions of the tissue which lie at a different focal
plane than the tissue and are indeed out-of-focus throughout the entire stack.

Figure 3(b) also shows that, in both stacks, as the stack images go from out-
of-focus to in-focus, the in-focus regions propagate from the lower-right corner
to the upper-left. This phenomenon seemed to indicate a problem that the stage
which holds the tissue slide was not orthogonal to the optical axis of the camera.
We reported this stage tilt problem that was automatically identified by the
algorithms to the microscope design team, and they verified and corrected this
issue. Thus, the classification results provided not only a means of feedback to
the user but also crucial information for improving the microscope design.

Finally, we show the classification results for the WSI as the percentage of
in-focus regions. Figures 3(c) and (d) present percentage measures for the stacks
of Figure 3(b). Both curves show a smooth trend to increase towards the depth
of 1μm, indicating the true location of the focal plane, which was verified by a
pathologist. Although the classification was done for each image independently,
the trend follows closely the expected focus trend for image stacks.

5 Conclusions

We proposed an approach to evaluate the focus quality of whole slide images
and introduced a way of generating training data from image stacks to train the
classifiers. An extensive set of features were extracted and a boosting classifier
was trained for classifying images as “in-focus” or “out-of-focus”. Our experi-
mental results not only showed that the classifiers trained with the image stacks
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performed better than the limited manually labeled data, but also demonstrated
the impressive accuracy of the results and their generalization ability.
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Abstract. The current procedure for diagnosis of Crohn’s disease (CD)

from Capsule Endoscopy is a tedious manual process which requires the

clinician to visually inspect large video sequences for matching and cate-

gorization of diseased areas (lesions). Automated methods for matching

and classification can help improve this process by reducing diagnosis

time and improving consistency of categorization. In this paper, we pro-

pose a novel SVM-based similarity learning method for distinguishing

between correct and incorrect matches in Capsule Endoscopy (CE). We

also show that this can be used in conjunction with a voting scheme

to categorize lesion images. Results show that our methods outperform

standard classifiers in discriminating similar from dissimilar lesion im-

ages, as well as in lesion categorization. We also show that our methods

drastically reduce the complexity (training time) by requiring only one

half of the data for training, without compromising the accuracy of the

classifier.

1 Introduction

Wireless Capsule Endoscopy [1] is a non-invasive technology that is gaining pop-
ularity for diagnosis of Gastrointestinal (GI) diseases. The main advantage it
provides, compared to traditional push endoscopy, is the increased comfort to
the patient. The capsule endoscope, which is slightly larger than a common vi-
tamin pill, contains lighting and imaging hardware, a wireless transmitter and a
battery. It is taken orally by the patient and is propelled by peristalsis along the
GI tract. Images are captured at the rate of 2fps by the device as it travels along
the GI tract, and wirelessly transmitted to an archiving device that is attached
to the patient’s abdomen. The archiving device is then returned to the clinician
who inspects the images (in the order of 50,000) to determine a diagnosis.

This diagnostic procedure, often 1-2 hours [1], requires the clinician to in-
spect several views of a pathology and evaluate it in a consistent manner. The
low frame rate and lack of control of the imaging device, however, do not guar-
antee that subsequent images in the video sequence contain the same pathology.

� Supported in part by National Institutes of Health with Grant 5R21EB008227-02

and Johns Hopkins University internal funds.

T. Jiang et al. (Eds.): MICCAI 2010, Part II, LNCS 6362, pp. 454–462, 2010.
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Advances in the area of computer vision and machine learning can be used to
improve both time and consistency of this evaluation process. In this paper,
we consider the particular case of improving the diagnosis of CD. CD is an in-
flammatory bowel disease which is characterized by discrete, well-circumscribed
erosions and ulcers (lesions) in the small intestine (Fig. 1). During inspection,
the clinician locates lesions and assigns severity labels to them. Upon completing
evaluation of each lesion individually, the overall diagnosis is determined.

There are two ways in which this process can be improved. The first is by au-
tomatic matching for locating multiple views of a selected pathology. Seshamani
et al. [2] propose a meta matching procedure that incorporates several simple
matchers and a binary decision function that determines whether a pair of im-
ages are similar or not. The second diagnostic improvement is the enhancement
of CD lesion scoring consistency with the use of a predictor which can determine
the severity of the lesion based on previously seen examples.

Both of these problems can be approached from a similarity learning perspec-
tive. Learning the decision function for meta matching is a similarity learning
problem [3]. Lesion severity prediction is a multi-class classification problem
which involves learning semantic classes of lesions based on appearance char-
acteristics. Multi-class classification can also be approached from a similarity
learning approach as shown in [3,4]. In this paper, we approach both of these
problems as supervised pairwise similarity learning [5,6,7] problems .

2 Pairwise Similarity Learning

The pairwise similarity learning problem is the following: Given a pair of data
points, determine if these two points are similar, based on previously seen exam-
ples of similar and dissimilar points. A function that performs this task is called
a pairwise similarity learner (PSL). A PSL is made up of two parts: a rep-
resentation function, and a classification function. In addition, the PSL is also
required to be invariant to the ordering of pairs. One method of assuring order
invariance is by imposing a symmetry constraint on the representation function
[2]. However, doing so can introduce a loss of dimensionality and possibly a loss
of information that may be relevant for the classification task.

Order invariance of the PSL can also be ensured by imposing symmetry con-
straints on the classifier. We refer to such a classification function as a pairwise
symmetric classifier. Several SVM-based pairwise symmetric classifiers have
been proposed in the literature [5,6,7]. Within the SVM framework, symmetry
is imposed by ensuring that the kernel function satisfies order invariance. In all
prior work concerning pairwise symmetric classifiers, a pair is described by only
one type of feature and the underlying assumption is that one distance metric
holds for the entire set of points. However, this assumption may not hold when
multiple features are used to describe data. The area of Multiple Kernel Learn-
ing [8,9,10] has investigated several methods for combining features within the
SVM framework.

In this paper, we present a novel pairwise similarity classifier for PSL using
multiple features and nonsymmetric representations.
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3 Mathematical Formulation

Consider a pair of images (I, J) and a set X consisting of m image descriptors
(features). Applying any Xi ∈ X to each image in the pair generates a represen-
tation x̃ = (x1, x2) where x1 = {Xi(I)} and x2 = {Xi(J)}. A label y ∈ {1,−1}
is associated with each pair x̃, where y = 1 implies a pair of similar images and
y = −1 implies a pair of dissimilar images. The PSL problem can be written as
follows: given a training set with n image pair representations and their associ-
ated labels Tm = {(x̃i, yi)|i = 1 . . . n}, compute a classifier C that can predict
the label of an unseen pair x̃:

C(x̃) = C((x1, x2)) =
{

1, if x̃ represents a pair of similar images
−1 otherwise (1)

Order invariance requires C((x1, x2)) = C((x2, x1)). We refer to this as the
pairwise symmetric constraint. An SVM trained on the set T would classify
an unseen pair x̃ = (x1, x2) as:

C(x̃) =
∑

∀(xi,yi)∈T
αiyiK(x̃, x̃i) + b (2)

where b and αi’s are learned from training examples and K is a Mercer kernel. It
is easy to note that this classifier will satisfy the pairwise symmetric constraint if
K satisfies: K(x̃, x̃i) = K((x1, x2), (xi1, xi2)) = K((x2, x1), (xi1, xi2)). We refer
to such a kernel as a pairwise symmetric kernel (PSK).

3.1 PSKs for One Descriptor

Mercer Kernels can be generated from other Mercer Kernels by linear combi-
nations (with positive weights) or elementwise multiplication [11]. We use this
idea to generate PSKs from simpler Mercer Kernels. Let us assume that we have
two pairs: (x1, x2) and (x3, x4) and a base mercer kernel K, which can op-
erate on a pair of points. A PSK (which operates on two pairs of points) can
be computed by symmetrization of the base kernel. In [5], a second order PSK
called the MLPK is introduced: K̂((x1, x2), (x3, x4)) = (K(x1, x3)+K(x2, x4)−
K(x1, x4)−K(x2, x3))2. This kernel is a linear combination of all second order
combinations of the four base Mercer kernels. This kernel can be rewritten in
terms of 3 PSKs as K̂ = K1 + 2K2 − 2K3 where:

K1=K(x1, x3)2 + K(x2, x4)2 + K(x1, x4)2 + K(x2, x3)2

K2=K(x1, x3)K(x2, x4) + K(x1, x4)K(x2, x3)
K3=K(x1, x3)K(x1, x4) + K(x1, x3)K(x2, x3) +

K(x2, x4)K(x1, x4) + K(x2, x4)K(x2, x3)

The MLPK kernel is different from a second order polynomial kernel due to
the additional base kernels it uses. A classifier trained with the MLPK kernel
is comparable to a classifier trained with a second order polynomial kernel on
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double the amount of data (with pair orders reversed). SVM complexity can
indeed be exponential in the number of training points (in the worst case) [12].
Secondly, a larger training dataset will generate more support vectors which
increase run time complexity (classification time). Thus, the PSK is greatly
beneficial in the reduction of both training and classification time.

3.2 PSKs with More than One Descriptor

For one descriptor, we obtain 3 second order PSKs(K1, K2 and K3). So, given
a set of m descriptors, we can generate a total of 3m second order PSKs:
Q = {K ′

i|i = 1 . . . 3m}. The problem now becomes the following: Given a set of
PSKs find a weight vector d ∈ �3m that can generate a kernel K̂ =

∑3m
i diK

′
i

where di ∈ d, K ′
i ∈ Q. We use Simple Multiple Kernel Learning (SimpleMKL) [8]

for automatically learning these weights. This method initializes the weight vec-
tor uniformly and then performs a gradient descent on the SVM cost function
to find an optimal weighting solution. The proposed Generalized Pairwise
Symmetric Learning (GPSL) training algorithm is outlined below.
Input: Training set Tm and m base kernels.
Output: Weight Vector dbest, SVM parameters α and b

– For each of the m features, compute K1,K2 and K3 (described in section 3.1)
between all training pairs to generate the set Qtrain = {K ′

i|i = 1 . . . 3m}
– Apply SimpleMKL to find a weight vector dbest.
– Learn the SVM parameters α and b using a kernel generated as a linear

combination of kernels in Q using dbest.
To predict similarity of an unseen pair x̃:
– Compute the set Qtest using the test point and training examples.
– Generate a linear combination of these kernels using dbest

– Predict the similarity of the pair using the learned α and b.

3.3 Multiclass Classification

The multiclass classification problem for images is as follows: Given a training
set consisting of k images and their semantic labels I = {(Ii, li)|i = 1 . . . k, li ∈
{1 . . . p}}, where Iis are the images and lis are the labels belonging to one of
p classes, compute a classifier that can predict the label of an unseen image
I. From a similarity learning approach, this problem can be reformulated as
a binary classification and voting problem: Given a training set of similar and
dissimilar images, compute the semantic label of a new unseen image I. This
requires two steps: 1) Learning similarities, and 2) Voting, to determine the label
of an unseen image. We use the same method outlined in the GPSL algorithm
above for similarity learning. Voting is then performed by selection of n voters
from each semantic class who decide whether or not the new image is similar or
dissimilar to themselves. We refer to this algorithm as GPSL-Vote:

– Given I, compute a new training set consisting of all combinations of pairs
and their similarity labels: T = {((Ii, Ij)k, yk)|(Ii, li), (Ij , lj) ∈ I, yk ∈
{1,−1}} where yk = 1 if li = lj and yk = −1 otherwise .
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– Train the GPSL using this set.
For a new image I,

– For each of the p semantic classes, select r representative images: {I1 . . . Ir}
where (Ii, yi) is such that yi = p. This generates a set of q = pr images.

– Compute a set of pairs by combining each representative image with the new
image I: {(I, I1) . . . (I, Iq)}

– Use the trained GPSL to predict which pairs are similar.
– For each semantic class, compute the number of similar pairs.
– Assign the new image I to the class with the maximum number of votes.

4 Experimental Results

4.1 Data Acquisition

Our Capsule Endoscopy study repository contains 47 anonymized studies ac-
quired with an approved Institutional Review Board (IRB) protocol. Each study
may contain up to 8 hours of data acquired at 2 images per second. The CE study
database contains annotated images and videos containing Crohn’s Disease (CD)
lesions manually selected by our clinical collaborators. In all our experiments, the
size of the selected image is on the order of 150X150 pixels. All our experiments
are performed using MATLAB.

Fig. 1. Examples of Mild (left), Moderate

(center) and Severe Crohn’s Disease lesions

Annotated Lesion Data. Lesion
annotation which was conducted by
Dr. Dassopoulos involved selection of
an image containing a lesion, and link-
ing each image to a video segment
consisting of 100-200 frames centered
around the selected image. Each le-
sion image is then labelled as: Mild,
Moderate or Severe (Fig. 1).

Annotated Matching Pairs. Each video sequence that is linked to a lesion
image may contain multiple views of the same lesion. All views of the lesion
within the video form a lesion set (Fig. 2). Various lesion sets contain between
2 and 25 image frames. We first manually segmented all regions containing le-
sions and then generated pairs within a lesion set as follows: Similar pairs were

Fig. 2. A lesion set containing multiple views of the same lesion
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generated by pairing segmented lesion regions within the lesion set. Dissimilar
pairs were generated by pairing segmented lesion regions with 150X150 regions
sampled 60 pixels away from the annotated center of a segmented lesion.

4.2 CE Lesion Matching Experiments
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Bottom: Comparison of the perfor-

mance of the base kernel, MLPK
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combinations

The objective of these experiments is to show
the effectiveness of our pairwise symmetric
classifier for discriminating between similar
and dissimilar CE lesion images. Here, a le-
sion is considered similar to another one only
if it is a different view of the same pathology.

Pair representation: Each image in a pair
was represented by a set of descriptors:
MPEG-7 Homogeneous Texture Descriptors
(HTD) [13], color weighted histograms (WH)
and patch intensities (PI). WHs were gener-
ated by dividing the color space into 11 bins
and populating a feature vector with points
weighted by their distance from the image
center. PIs were generated by dividing the
image into 16 patches and populating a vec-
tor with the mean intensity in each patch.
The number of histogram bins and patches
were determined empirically. A nonsymmet-
ric pair consists of two sets of these descriptors
stacked together. For the symmetric reprsen-
tation, descriptors element-wise squared dif-
ference was carried out between the two sets.
A chi-squared base kernel was used for
WH and a polynomial base kernel of or-
der 1 was used for the other two descriptors
in all experiments in this section.

Experiments: We first show the following
experimentally: MLPK with a non-symmetric
representation is better than using a nonsym-
metric kernel with a symmetric representa-
tion. Our full data set contains 724 lesion
image pairs. We used 30% of the data for
testing and the rest for training of the HTD,
WH and PI descriptors. Training of the
HTD, WH and PI with the symmetric rep-
resentation resulted in accuracies of: 52.2%,
67.88% and 82% respectively. Training with
the nonsymmetric representation resulted in
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accuracies of: 64.2%, 75.22% and 88% for HTD,WH and PI respectively.
Thus, we observe that generating a symmetric representation can cause a
loss of information that is relevant for classification. Since MLPK is a sec-
ond order kernel, the next question that arises is “How does an SVM
trained with MLPK differ from an SVM trained with a second order poly-
nomial kernel trained on double the data (generated by switching pair or-
ders to enforce symmetry)?” To investigate this, we performed the following

Table 1. Four different experimental setups, varying in se-

lection of a kernel and the amount of training data

Experiment Kernel Type Data
2nd-Double 2nd order poly Double training set
MLPK-Double MLPK Double training set
2nd-Full 2nd order poly Full training set
MLPK-Full MLPK Full training set

experiment. We first
randomly selected 70%
of the data as the full
training set and the
rest as the full test-
ing set. We then dou-
bled our data within
each set by switching
the order of pairs, to
generate 1012 pairs for
the double training
set and 436 pairs for the double testing set. We performed classification (sim-
ilar vs dissimilar pairs) using each descriptor 10 times by varying the type of
training set and the type of kernel used (Table 1). Testing was always performed
on the double testing set. Fig. 3 (bottom) shows the average accuracy and train-
ing time for all desriptors. The standard deviation of accuracies ranged from
2-4.5%. We observe that the MLPK greatly drops the training time when half
the data is used without compromising much on accuracy, unlike the second
order polynomial kernel.

Finally, we show the effect of combining MLPKs generated from multiple fea-
tures. We consider three algorithms for comparison: SVM with a base kernel,
SimpleMKL using MLPK generated from the same base kernel (a total of m
kernels) and GPSL (a total of 3m kernels also calculated from the same base
kernel). We applied 5-fold CV to all three algorithms using all combinations of
the three descriptors. Fig. 3 (bottom) shows the resulting accuracies. We observe
that GPSL outperforms SVM with a base kernel in all cases. SimpleMLK with
MLPK also performs much better than SVM with a base kernel in all cases,
except the HTD descriptor.

4.3 CE Lesion Classification

Table 2. Accuracies of Different Classifiers used for

lesion classification

Algorithm Accuracy
SVM-Separate(Best Descriptor) 72 %
SVM-MKL 72 %
GPSL (Similarity learner) 71.75 %
GPSL-Vote 76 %

Next, we considered the prob-
lem of classifying mild vs se-
vere lesions (Fig. 1). A set of
10 lesions (5 in each class)
were picked and three types of
features were extracted: Har-
alick texture descriptor and
Cross Correlation responses
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of the blue and green bands with the same bands of a template lesion image. We
then performed and compared three classification experiments: SVM with each
descriptor separately (SVM-Separate) to directly classify lesion images, SVM
with all features combined by SimpleMKL (SVM-MKL) to directly classify le-
sion images and finally with GPSL-Vote (which uses pairwise similarity learning).
CV in all cases was performed on a “leave-two-out” basis, where the testing set
was made up of one image from each class. All other images formed the training
set. This generated a total of 25 total runs. In the case of GPSL-Vote, the sim-
ilarity training dataset was generated using all combinations of pairs which are
in the training set (totally 45 pairs). All pairs containing the two left-out images
and a training image formed the test set. The results shown in Table 2 show the
mean accuracy of all 25 runs. We observe that the SVM-MKL algorithm does
only as well as the best classifier. However, GPSL-vote outperforms this, even
for a small dataset with a small number of features.

5 Conclusion

We have demonstrated the use of pairwise symmetric learners for lesion matching
and categorization. Our results show that the use of pairwise symmetric clas-
sifiers not only allows for nonsymmetric representation of data but also drasti-
cally reduces training time without compromising the accuracy of the classifier.
We have also demonstrated the use of PSK’s across multiple features for lesion
match classification as well as semantic lesion classification in CE imagery. One
extension of this work is the application of our classifier to a real-time matching
system to increase the time efficiency of the clinician. Although the GPSL-vote
experimentation was performed on a small dataset, the results are very encour-
aging. Some of the natural extensions of this work include experimentation with
more descriptors and larger datasets for GPSL-vote.
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A Fully Automated Approach to Segmentation of
Irregularly Shaped Cellular Structures in EM Images
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Abstract. While there has been substantial progress in segmenting natural im-
ages, state-of-the-art methods that perform well in such tasks unfortunately tend
to underperform when confronted with the different challenges posed by electron
microscope (EM) data. For example, in EM imagery of neural tissue, numerous
cells and subcellular structures appear within a single image, they exhibit irreg-
ular shapes that cannot be easily modeled by standard techniques, and confusing
textures clutter the background. We propose a fully automated approach that han-
dles these challenges by using sophisticated cues that capture global shape and
texture information, and by learning the specific appearance of object boundaries.
We demonstrate that our approach significantly outperforms state-of-the-art tech-
niques and closely matches the performance of human annotators.

1 Introduction

State-of-the-art segmentation algorithms which perform well on standard natural image
benchmarks such as the Pascal VOC dataset [7] tend to perform poorly when applied to
EM imagery. This is because the image cues they rely upon tend not to be discriminative
enough for segmenting structures such as mitochondria. As shown in Fig. 1(a), they ex-
hibit irregular shapes not easily captured using standard shape modeling methods. Their
texture can easily be confused with that of groups of vesicles or endoplasmic reticula.
Mitochondrial boundaries are difficult to distinguish from other membranes that share a
similar appearance. Overcoming these difficulties requires taking all visible image cues
into account simultaneously. However, most state-of-the-art techniques are limited in
this respect. For example, TextonBoost uses sophisticated texture and boundary cues,
but simple haar-like rectangular features capture shape [14]. In [5], SIFT descriptors
capture local texture and gradient information, but shape is ignored.

Previous attempts at segmenting neural EM imagery include a normalized cuts based
approach in [8]. More recently, [3] used a level set approach which is sensitive to ini-
tialization and limited to one object. [15] is an active contour approach designed to
detect elliptical blobs but fails to segment mitochondria which often take non-ellipsoid
shapes. In [4], a convolutional neural network considers only local information using
a watershed-based supervoxel segmentation. Finally, [12] uses a classifier on texton
features to learn mitochondrial texture, but ignores shape information.

� This work was supported in part by the MicroNano ERC project and by the Swiss National
Science Foundation Sinergia Project CRSII3-127456.

T. Jiang et al. (Eds.): MICCAI 2010, Part II, LNCS 6362, pp. 463–471, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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(a) Original EM image (b) Superpixels (c) Superpixel graph

(d) SVM prediction (e) Graph-cut segmentation (f) Final segmentation

Fig. 1. Overview. (a) A detail of the original EM image. (b) Superpixel over-segmentation. (c)
Graph defined over superpixels. White edges indicate pairs of superpixels used to train an SVM
that predicts mitochondrial boundaries. (d) SVM prediction where blue indicates a probable mi-
tochondrion. (e) Graph cut segmentation. (f) Final results after automated post-processing. Note:
the same image is used in this figure for clarity; images in the training & testing sets are disjoint.

In this paper, we propose to overcome these limitations by:

1. Using all available image cues simultaneously: We consider powerful shape cues
that do not require an explicit shape model in addition to texture and boundary cues.

2. Learning the appearance of boundaries on a superpixel graph: We train a clas-
sifier to predict where mitochondrial boundaries occur using these cues.

An overview of our approach appears in Fig. 1. We first produce a superpixel over-
segmentation of the image to reduce computational cost and enforce local consistency.
The superpixels define nodes in a graph used for segmentation. We then extract so-
phisticated shape, texture, and boundary cues captured by Ray [10] and Rotational [9]
features for each superpixel. Support vector machine (SVM) classifiers are trained on
these features to recognize the appearance of superpixels belonging to mitochondria,
as well as pairs of superpixels containing a mitochondrial membrane. Classification re-
sults are converted to probabilities, which are used in the unary and pairwise terms of
a graph-cut algorithm that segments the superpixel graph. Finally, an automated post-
processing step smooths the segmentation. We show qualitatively and quantitatively
that our approach yields substantial improvements over existing methods. Furthermore,
whatever mistakes remain can be interactively corrected using well known methods [6].

2 Our Approach

2.1 Superpixel Over-Segmentation

Our first step is to apply a novel k-means based algorithm [13] to aggregate nearby pix-
els into superpixels of nearly uniform size whose boundaries closely match true image
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boundaries, as seen in Fig. 1(b). It has been shown that using superpixels can be advan-
tageous because they preserve natural image boundaries while capturing redundancy
in the data [5]. Furthermore, superpixels provide a convenient primitive from which
to compute local image features while reducing the complexity of the optimization by
reducing the number of nodes in the graph.

2.2 Segmentation by Graph Partitioning

Graph-cuts is a popular approach to segmentation that splits an undirected graph G =
(V , E) into partitions by minimizing an objective function [16]. As shown in Fig. 1(c),
the graph nodes V correspond to superpixels xi. Edges E connect neighboring super-
pixels. The objective function takes the form

E(c|x, w) =
∑

i

ψ(ci|xi)︸ ︷︷ ︸
unary term

+ w
∑

(i,j)∈E
φ(ci, cj |xi, xj)︸ ︷︷ ︸

pairwise term

, (1)

where ci ∈ {foreground, background} is a class label assigned to superpixel xi.
The so-called unary term ψ assigns to each superpixel its potential to be foreground or
background based on a probability P (ci|f(xi)) computed from the output of an SVM

ψ(ci|xi) =
1

1 + P (ci|f(xi))
. (2)

The pairwise term φ assigns to each pair of superpixels a potential to have similar or
differing labels (indicating boundaries), based on a second SVM output

φ(ci, cj |xi, xj) =
{ 1

1+P (ci,cj|f(xi),f(xj))
if ci �= cj ,

0 otherwise.
(3)

The weight w in Eq. 1 controls the relative importance of the two terms. Our segmen-
tation is achieved by minimizing Eq. 1 using a mincut-maxflow algorithm.

2.3 Superpixel-Based Shape and Local Features

The SVMs in Eqs. 2 and 3 predict which superpixels contain mitochondria and which
neighboring superpixels contain a mitochondrial boundary. As discussed in Section 1,
shape, texture, and boundary cues are all essential to this process. Features f(xi) ex-
tracted from the image at superpixel xi combine these essential cues

f(xi) = [fRay(xi)�, fRot(xi)�, fHist(xi)�]� , (4)

where fRay represents Ray descriptors that capture object shape, fRot are rotational fea-
tures describing texture and boundaries [9], and fHist are histograms describing the local
intensity. These features, shown in Fig. 2, are detailed below.

Ray Descriptors describe the shape of local objects for each point in the image in a
way that standard shape modeling techniques can not. Typically, other methods repre-
sent object shape using contour templates [1] or fragment codebooks [2]. While these
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Fig. 2. For each superpixel, the SVM classifiers in Eqs. 2 and 3 predict the presence of mitochon-
dria based on a feature vector f we extract. f captures shape cues with a Ray descriptor fRay,
texture and boundary cues with rotational features fRot, and intensity cues in fHist.

approaches can successfully segment a single object with known shape, they tend to fail
when the shape is highly variable or when many objects appear in the image.

For a given point xi in the image, four types of Ray features are extracted by project-
ing rays from xi at regular angles Θ = {θ1, . . . , θN} and stopping when they intersect
a detected edge (r) [10]. The distance from xi to r form the first type of feature fdist.
The other three types of features compare the relative distance from xi to r for rays in
two different directions (fdiff), measure the gradient strength at r (fnorm), and measure
the gradient orientation at r relative to the ray (fori). While [10] uses individual Ray fea-
tures as AdaBoost learners, we aggregate all features extracted for a single point into a
Ray descriptor fRay = [fdist fdiff fnorm fori]�. We make it rotation invariant by shifting
the descriptor elements so that the first element corresponds to the longest ray. Fig. 3
demonstrates the Ray descriptor’s ability to compactly represent object shape.

Rotational Features capture texture and image cues indicating boundaries such as
edges, ridges, crossings and junctions [9]. They are projections of image patches around
a superpixel center xi into the space of Gaussian derivatives at various scales, rotated
to a local orientation estimation for rotational invariance.

Histograms complement fRay and fRot with simple intensity cues from superpixel xi’s
neighborhoodN . fHist is written fHist(I, xi) =

∑
j∈N∪{i} h(I, xj , b) where h(I, xj , b)

is a b-bin histogram extracted from I over the pixels contained in superpixel xj .

2.4 Learning Object Boundaries

Most graph-cut approaches model object boundaries using a simple pairwise term
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Fig. 3. Ray descriptors built from features in [10] provide a compact representation of local shape
for each point in an image. The descriptors are stable when subjected to rotation, scale, and
affine transformations, but change dramatically for other shapes including vesicles, dendrites, and
randomly rearranged tiles from the original image (puzzle). d is the Euclidean distance between
the descriptor extracted from the original image and descriptors extracted from other images.

φ(ci, cj |xi, xj) =

{
exp
(
− ||I(xi)−I(xj)||2

2σ2

)
, if ci �= cj

0 , otherwise,
(5)

which favors cuts at locations where color or intensity changes abruptly, as in [16].
While similar expressions based on Laplacian zero-crossings and gradient orientations
exist [16], very few works go beyond this standard definition. As illustrated in Fig. 4
(left), this approach results in a poor prediction of where mitochondrial boundaries ac-
tually occur, as strong gradients from other membranes cause confusion. By learning
what image characteristics indicate a true object boundary, we can improve the
segmentation [11]. We train an SVM using features extracted from pairs of
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Standard pairwise cuts Learned pairwise cuts

Fig. 4. (left) Boundaries predicted by a standard pairwise term (Eq. 5) correspond to strong gra-
dients, but not necessarily to mitochondrial boundaries. (right) A learned pairwise term (Eq. 3)
using more sophisticated cues [f�i , f�j ]� results in better boundary predictions. Red lines indi-
cate strong probable boundaries, yellow lines indicate weaker boundaries.

superpixels containing true object boundaries, indicated by white graph edges in Fig. 1.
The pairwise feature vector fi,j is a concatenation of fi and fj extracted from each
superpixel fi,j = [f�i , f�j ]�, providing rich image cues for the SVM to consider.

3 Results

We tested our approach on a data set consisting of 23 annotated high resolution EM
images. Each image is 2048 × 1536 pixels, and the entire data set contains 1023 total
mitochondria. We used k = 5 k-fold cross validation for training and testing. Our
evaluation compares segmentation results for the following methods:

TextonBoost A boosted texton-based segmentation algorithm [14],
Fulkerson09 A superpixel-based algorithm using SIFT features [5],
Standard-f∗ Our algorithm trained with the standard pairwise term of Eq. 5 and histogram

and rotational features [fHist�fRot�]�,
Standard-f Our algorithm trained with the standard pairwise term of Eq. 5 and feature

vector f incorporating shape and texture cues given in Eq. 4,
Learned-f Our complete algorithm trained with the learned pairwise term of Eq. 3 and

feature vector f incorporating shape and texture cues given in Eq. 4.

Parameter settings for [14] used 50 textons and 2000 rounds of boosting. For [5], Quick-
shift superpixels were used, and SIFT descriptors were extracted over 9 scales at a fixed
orientation and quantized into 50 clusters. For our approach, we used superpixels con-
taining approximately 100 pixels, extracted Rays at 30◦ angles, computed rotational

Table 1. Segmentation Results

TextonBoost [14] Fulkerson09 [5] Standard-f∗ Standard-f Learned-f

Accuracy 95% 96% 94% 96% 98%

VOC score [7] 61% 69% 60% 68% 82%
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features using first to fifth Gaussian derivatives with σ = {3, 6, 9, 12}, and built his-
tograms with b = 20 bins. A post-processing step depicted in Fig. 1(f) was used to
smooth the results produced by all the algorithms.

Discussion. Table 1 summarizes results for the entire data set. Our approach achieved
a pixel-wise accuracy of 98%. By the same metric, TextonBoost and Fulkerson09 also
performed well, but visually the results are inferior, as seen in Fig. 5. This is because
mitochondria account for very few pixels in the image. The VOC score = TP

TP+FP+FN ,
introduced in [7]1, is designed to be more informative in such cases, and reflects the su-
perior quality of our segmentations. Because it is pixel-based and lacks shape cues, Tex-
tonBoost poorly estimates mitochondrial membranes. The use of superpixels in Fulker-
son09 seems to improve results slightly over [14], but the lack of shape cues or learned
boundaries still degrades its performance. Comparing the Standard-f∗ and Standard-
f variations of our approach, we see that adding shape cues boosts performance, and
learning boundaries in the pairwise term leads to a further increase in Learned-f .

4 Conclusion

We proposed a fully automated approach to segment irregularly shaped cellular
structures that outperforms state-of-the-art algorithms on EM imagery. We also demon-
strated that Ray descriptors increase performance by capturing shape cues without hav-
ing to define an explicit model. Finally, we showed that a learning approach to the
pairwise term of the energy function further helps find true object boundaries.

Acknowledgements. We wish to thank Graham Knott and Marco Cantoni for providing
us with high-resolution imagery and invaluable advice. We also thank German Gonzalez
for providing code for Rotational Features.
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Fig. 5. Segmentation results on EM images. Column 1 contains the 2048×1536 micrograph at
reduced resolution. Columns 2-4 contain details from column 1. Row 1 contains the original
EM image. Row2 contains the expert annotations. Further rows contain results of the various
methods. The lack of shape cues and learned boundaries result in inaccurate segmentations for
TextonBoost and Fulkerson09, especially near distracting textures and membranes. Our method
without shape or learned boundaries, Standard-f∗, performs similarly. By injecting shape cues
in Standard-f , we see a significant improvement as more mitochondria-like shapes appear in the
segmentation. However, some mistakes in the boundary persist. In Learned-f we add the learned
pairwise term, eliminating the remaining errors and producing a segmentation that very closely
resembles the human annotation.
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Abstract. Full reconstruction of neuron morphology is of fundamen-

tal interest for the analysis and understanding of neuron function. We

have developed a novel method capable of tracing neurons in three-

dimensional microscopy data automatically. In contrast to template-

based methods, the proposed approach makes no assumptions on the

shape or appearance of neuron’s body. Instead, an efficient seeding ap-

proach is applied to find significant pixels almost certainly within com-

plex neuronal structures and the tracing problem is solved by computing

an graph tree structure connecting these seeds. In addition, an automated

neuron comparison method is introduced for performance evaluation and

structure analysis. The proposed algorithm is computationally efficient.

Experiments on different types of data show promising results.

1 Introduction

The tasks of extracting neuron structures from microscope images and accurately
measuring their topologic properties are important for a large number of studies
in biology and medicine. Although this is an extensively studied problem in
the literature and there are some commercial products available, no automated
method has promised reconstruction that requires no or few manual corrections.
This prevents the implementation of high-thoroughput neuron structure analysis,
without which biologists can be easily overwhelmed by their data.

Most existing methods are based upon the fact that a neuron is a branching
tree structure. They formulate the problem of reconstructing a neuron as de-
termining where the branches go and how they bifurcate. For this reason, the
problem is also called neuron tracing. The branches can extend in any direction
in the three-dimensional (3D) space. Therefore a successful strategy for realistic
tracing applications has to operate in 3D. In 1994, Cohen et al. [1] introduced
a 3D tracing method based on skeletonization and graph extraction. The same
strategy was applied by Koh et al. [2] but with a modified medial axis to locate
dendritic branch centerlines. However, 3D skeletonlization is computationally
expensive and the noise in the microscopy data presents a significant challenge
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P

Fig. 1. An example of seeding. (Left) Initial seed candidates (green) from local maxi-

mum. (Middle) The diagram showing seed refinement. The ray between one candidate

to candidate p determines whether it is an valid voter (blue) or not (yellow). (Right)

The final seeds for tracing.

for the thinning operation. Based on structure continuity, parametric models were
proposed for filament tracing [3]. Alkofahi et al. [4] proposed applying predeter-
mined deformable templates to detect the local dendritic boundary and then per-
forming an exploratory tracing of the dendrite. He et al. [5] proposed combining
local color-based estimates of the probability that an image pixel belongs to a fila-
ment with the global tree properties of the complete set of filaments. If the neurite
structures in the stack are all connected, template based tracing works well. How-
ever, for common realistic cases, the structures of interest appear to be discontin-
uous due to imaging conditions and noise. An optimization scheme based on the
Minimum Spanning Tree (MST) [6] is usually applied to tackle this challenge.

2 Method

In this work, we follow the optimal tree idea to reconstruct the 3D topology
of neuronal structures. Similar to the human operator’s exercise, our method
first detects a set of seeds which should be dense enough to describe the major
characteristics of the neuronal structures, but also be considerably compact for
redundancy control and computational efficiency.

Optimal Seeding. The ideal set of seeds consists of the points on the underlying
objects which stands for a good representative to each neurite segment. Before
detecting seed points, a global thresholding on the input 3D data is applied to
remove noise (isolated particles) and save computation time. Based on the fact
that noise often appears as small local maximal regions in the background area
of microscope images, the global threshold is obtained by applying the triangle-
thresholding method [7] on the histogram of local intensity maxima in the input
image.

Our seeding method consists of two steps. In the first step, candidate seeds
are detected by searching local intensity maixma. The local window is a cube
on the stack grid and only one candidate is identified in each valid cube. A
cube is considered as valid only if it contains sufficient foreground voxels which
can be measured with the signal-to-noise ratio SNRc = (μf − μb)/σb, where μf

is the mean intensity value of the foreground in the cube, μb and σb denotes
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Fig. 2. An example of path searching. (Left) The strongest path detected for seed #37

(blue) with the isotropic weight function in Eq. (1). The corresponding intensity profile

of the path is shown beside. (Right) The strongest path detected with the anisotropic

weight function in Eq. (2) which favors smoothness.

the background’s mean and standard deviation, respectively. In order to remove
the high-frequency components and improve the detection accuracy, a Gaussian
kernel is applied to filter the local intensity maxima. An example of this initial
sampling is presented in Fig. 1(Left).

Secondly, a decimation operation is applied to those candidates for final re-
liable seeds. The local scale of the neurite structure is first estimated with the
distance transformation [8]. Then for candidates with lower scale values, indicat-
ing they are isolated speckles or close to boundary, votes from other candidates
are collected for refinement decision. In specific, for candidate p which has the
lowest scale in the set, other candidates can recommend for elimination if they
have a strong ray connection R to p (ĪR > It) (Fig. 1(Middle)). Candidate p
will be removed from the set if there are recommendations from diverse orienta-
tions (e.g., the maximum included angle of the voter rays is considerably large).
This condition lets us avoid eliminating terminal seeds mistakenly. This seed-
ing approach is robust to the intensity variation and leads to varying seeding
density (Fig. 1(Right)) according to the local complexity of the structures, thus
simplifying the tracing problem.

Linking Strength among Seeds. With the representative seeds detected
above, tracing neuronal structures can be considered as finding the optimal con-
nections of those seeds. Considering the image grid as a discretized weighted
grid graph G = (V, E, W ), where vertex set V consists of the grid points, E
contains the regular straight line segments in the grid and W are some features
associated with the segments. By modeling the stack grid as a graph, one voxel
is connected with its 26-connected neighbors. Given a pair of nodes v0 to vn, a
path between them is a list of unique nodes. The cost of a path is the sum of
each edge weight in the path.

Let P denote the set of all unit-speed paths in the search region R from v0 to
vn, i.e., the set of functions � : [0, N ] → R, for which �(0) = v0 and �(N) = vn.
The formulation of finding a shortest path between two vertices is to compute
a path �∗ ∈ P such that W(�∗) = min�∈PW(�), where W : P → [0,∞] denotes
the overall cost of the path: W(�) =

∑N
t=0 ρ(�(t)), for each � in P . One of the

efficient algorithm to find shortest path on the sparse graph is the one introduced
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Fig. 3. Path Merging. (Left) Initial paths among seeds. (Middle) The ’touching’ po-

sitions between nearby paths. (Right) The updated paths with the new branching

locations (red arrows).

by Johnson [9] by storing the path lengths with a priority queue. The complexity
of Johnson’s algorithm is O(|E| log |V |).

The cost weighting function ρ varies according to the voxel’s relative positions
ρ(vi) ∝ d(vi) where d(vi) = |vi − vi+1|. To emphasize the difference between
foreground and background regions, a region-based cost term I is incorporated
in the weighting function as:

W(�) =
N−1∑
i=0

d(vi)I(vi) =
N−1∑
i=0

d(vi)
S(vi) + S(vi+1)

2
, (1)

where S(·) is a Sigmoid-filtered version of the input stack which generates a
large weight value if two voxels belong to different regions, indicating the path
is crossing a significant boundary.

One limitation of the above cost-weighting function is that it considers only
situations where the metrics are isotropic. It cannot account for the inherent
properties of neurite structures and doesn’t provide a smoothing constraint for
the path searching. In our case, the neurite structures have a tree-liked topology
and most of the components are of considerable smoothness. One way to apply
this prior knowledge is to search paths with the isotropic metric first and then
apply a post-processing on the resulting graph. This strategy is straightforward
but error-prone. See Fig. 2 for an example. A more efficient way to solve this
problem is to introduce a smoothness constraint into the weighting function as:

W(�) =
N−1∑
i=0

d(vi)
S(vi) + S(vi+1)

2
K(vi), (2)

where term K(vi) is a smoothness measurement of path segment defined as

K(vi) =
i∑

t=0

γtkt =
i∑

t=0

γt
−−−−→vt−1vt · −−−−→vtvt+1

|−−−−→vt−1vt||−−−−→vtvt+1|
, (3)

and γ is a constant determining the influence scale of a grid point to its neighbors.
Term −→pq denotes the vector from p to q. With this incremental smoothness term,
the orientation of the previous path flow and the bending force will be involved to
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determine the cost of the new extension. With the anisotropic weighting function
in Eq. (2), the path detected between each pair of the seeds would be a short
and smooth path riding on regions with similar properties (the foreground in
our case). The total cost of the path is defined as the linking strength between
the pair of seeds.

Computing the Optimal Tree. Once the linkage paths between each pair of
seeds are determined, a weighted graph N (S, C, L) is constructed, where set S
contains all the seeds. Set C consists of the optimal paths �ij(si, sj ∈ S) with the
associated edge weights in L which could be the corresponding linking strength
computed above. Then a globally optimal tree with the minimum sum of edge
distances can be discovered by the MST algorithm. In order to avoid the mis-
connection between close seeds with a sharp dark gap, a gap indicator function
is incorporated in the the final vertex distance function as:

F(�) = αW(�) + (1 − α)D(�), (4)

where D is a gap indicator function defined as

D(�) = 2/(1 + eIm(�)/Ī). (5)

Term Im denotes the minimum intensity along the path and Ī is the mean
intensity of the foreground. All the metrics are normalized for the combination.

In realistic applications, it cannot be guaranteed that there would be seeds in
the critical locations of the neurite structures such as bifurcations or terminals.
Actually, it is difficult to detect the branching locations in the 3D microscopy
data due to the various size of structures, imaging resolution and noise. Instead
of pursuing detecting those positions directly from the images, our method solves
this challenge by considering the paths between the seeds. As demonstrated in
Fig. 3, there are multiple paths near the bifurcation positions that are very close
to each other. This indicates a converge in those locations. By merging those
’touching’ path segments, more accurate bifurcation nodes are derived.

3 Experimental Results

We tested our method on 24 stacks consisting of three different data sets. The
first data set consists of 16 3D stacks of projection neurons of adult Drosophila
with GH146-Gal4 carrying UAS>CD2, y+ >CD8-GFP and Hs-flp transgenes.
The CD2 Flip-out cassette is removed with a mild heat shock in the third instar
larvae and individual neurons are visualized with anit-GFP. The second testing
set contains five confocal microscopy stacks of drosophila olfactory axonal pro-
jection neurons labelled with GFP. The last data set consists of three confocal
stacks showing the arborizations of individual neurons with the main presynaptic
sites (button-liked structures) in the fly lamina component. Most of the stacks
have a clear view of a single neuron in a cluster. Figure. 4 demonstrates one
example from each of the testing data sets. For all tests, we set γ = 0.9 and
α = 0.7.
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Fig. 4. (Left) Projection Neuron of adjust drosophila. (Middle) Confocal section of

drosophla olfactory axonal projection. (Right) Confocal section shows the aborisations

of neurons in the lamina of drosophila.

Fig. 5. An example of matching between two traces. Only bifurcation and terminal

matching are demonstrated for clear view (Right). The red components in (Middle)

and (Right) show the unmatched parts on the ground-truth and automatic result,

respectively. In this case: MES = 0.93, ADE(xyd, zd) = (5.54 ± 1.180, 2.24 ± 0.431).

To quantitatively study the performance of the tracing system, it is essential
to select reliable metrics to validate the automatic traces in comparison with
some gold-standard or ground-truth such as manual annotation. In our experi-
ment, the ground-truth is generated by different people or by the same person
at different times with the aid of the visualization tool V3D [10] . Instead of
applying the average euclidean distance in [11], which is intuitive but vulnera-
ble to the biocomplexity, we pursue the correspondences between key nodes in
the neurite structure (such as branchings and terminals) that are of the major
interest. In particular, for one node pi, consider the set of paths in the trace
originating from pi to all other nodes. These paths provide a rich description
of the entire topology of the trace relative to pi. Assuming there are sufficient
nodes in the trace, this representation is highly precise.

For computational efficiency, two features are calculated to describe each path
�ij , including the accumulated length and the included angle between vector −−→pipr

and −−→pipj, where pr refers to the root node. The statistics of those two features is
a histogram hpi counting the relative locations of the other nodes regarding to pi.
Then given two different traces T1 and T2, the matching cost C(p, q) of two nodes
p ∈ T1 and q ∈ T2 is estimated by comparing their descriptors using the χ2 test.
In all the experiments demonstrated in this paper, we choose 20 bins for included
angle and 10 bins for path length respectively. Therefore, the total number of bins
for each histogram is M = 200. This descriptor is robust since it is translation
and scale invariant. In order to maintain the spatial ordering of those nodes, the
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Table 1. The Evaluation on Automatic Tracing for Different Data Sets

Dataset Avg. Size # Stacks MES(std.) XY-dist(std.) Z-dist(std.) Time(s)
1 512x512x70 16 0.87(0.073) 3.42(1.402) 1.18(0.403) 24.6
2 512x512x73 5 0.86(0.042) 2.36(0.723) 0.76(0.181) 28.1
3 1024x1024x32 3 0.99(0.011) 1.04(0.867) 0.45(0.588) 56.2

Overall N/A 24 0.89(0.074) 2.90(1.194) 1.00(0.380) 29.3

dynamic programming is applied to find the optimal matching π which minimizes
the total matching cost: Z(π) =

∑
p∈T1

π(p)∈T2

C(p, π(p)), where C(p, 0) = η is the

skipping penalty which can be an instant or be determined based on the size of
lost branches (directly from p). By maintaining the spatial ordering, crossing or
overlapping matches are avoided. The resulting corresponding critical nodes then
serve as a set of landmarks, partitioning the trace into independent segments for
further analysis. Fig. 5 illustrates an example of the matching results.

With the established correspondences, we calculate two metrics to evaluate the
automated tracing results. One is the Miss-Extra-Score (MES) which is defined
as MES = (SG−Smiss)/(SG+Sextra), where SG is the total length of all segments
in the Ground-Truth trace, Smiss and Sextra are the total lengths of missing and
extra segments in the automatic trace respectively (compared with the Ground-
Truth). MES provides a global view on how many parts of the neuron have been
traced and how many undesired components are introduced by the automatic
tracing program.

Another metric is the Average-Displacement-Error (ADE) which is defined
as the average displacement of those matched components. It is a numerical
measurement to describe the local accuracy of the automatic trace. ADE is
valid based on the assumption that the ground-truth and automatic trace have
the same root position. Because the resolution on Z-dimension is usually lower
than that on XY-dimension in microscopy data, the measurement is calculated
in xy- and z- dimension separately.

The results on each tested stack are plotted in Fig. 6. The majority of failure
cases are found in data with blur or broken dendritic fragments, either due to
insufficient dye penetration or an imaging deficiency. Table 1 summarizes the
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Fig. 6. The comparisons between automatic traces with the ground-truth. (Left) The

MES score. (Right) The ADE error measured in XY and Z dimension respectively.
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overall performances on the three testing data sets. Compared to the manual
annotations, the automated 3D tracing system yielded overall MES of 0.89. The
overall ADE is 2.90 and 1.00 on xy- and z- dimension respectively. The com-
putation time varies with the stack size and the density of the neuron network.
For the testing data, the average computation time is about 30s. Our system is
implemented in C++ and the average computation time is obtained on a Mac
Pro with 2.8GHz intel Xeon CPU and Leopard operation system.

4 Conclusion

We have developed an automated system capable of tracing neuronal structures
in 3D microscopy data. Incorporating anisotropic path searching and merging,
this approach is efficient for neuron tracing and bifurcation localization. In ad-
dition, a robust method is introduced for trace comparison, which can also be
used for neuron recognition and structure analysis in other applications. As
demonstrated in the paper, the proposed method can be applied to a variety of
biomedical image tracing problems because of the robustness of global optimality
and the flexibility to design a problem-specific objective function.

Acknowledgments. We thank Aljoscha Nern for generating the presynaptic
site brain images and Margaret Jefferies for help of text editing the manuscript.
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Abstract. Learning medical image interpretation is an evolutive pro-
cess that requires modular training systems, from non-expert to expert
users. Our study aims at developing such a system for endomicroscopy
diagnosis. It uses a difficulty predictor to try and shorten the physician
learning curve. As the understanding of video diagnosis is driven by vi-
sual similarities, we propose a content-based video retrieval approach to
estimate the level of interpretation difficulty. The performance of our re-
trieval method is compared with several state of the art methods, and its
genericity is demonstrated with two different clinical databases, on the
Barrett’s Esophagus and on colonic polyps. From our retrieval results, we
learn a difficulty predictor against a ground truth given by the percent-
age of false diagnoses among several physicians. Our experiments show
that, although our datasets are not large enough to test for statistical sig-
nificance, there is a noticeable relationship between our retrieval-based
difficulty estimation and the difficulty experienced by the physicians.

1 Introduction

Objective. The understanding of pathologies through the analysis of image
sequences is a subjective learning experience which may be supported by mod-
ular training systems. Particularly, the early diagnosis of epithelial cancers from
in vivo endomicroscopy is a challenging task for many non-expert endoscopists.
There is a crucial need to shorten their learning curve. Our objective is to de-
velop a modular training system for endomicroscopy diagnosis, by adapting the
difficulty level according to the expertise of the physician.

The training simulator, illustrated in Fig. 1 on the right, consists in a quiz.
Given a level of difficulty, a pool of endomicroscopic videos whose average diffi-
culty matches the current level is randomly chosen from the set of the training
videos. By iterating this process with increasing levels of interpretation difficulty,
the physician may be able to learn faster.

State of the art in estimating interpretation difficulty. Typical studies
on query difficulty estimation consider textual queries, and not image queries.

T. Jiang et al. (Eds.): MICCAI 2010, Part II, LNCS 6362, pp. 480–487, 2010.
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Fig. 1. Left: 6 mosaic images of Barrett (B: Benign, N: Neoplastic). Right: Screenshot
of www.cellvizio.net Self-Learning Tool, with the added difficulty level information.

Besides, they usually do not predict the difficulty of the query interpretation
but rather the performance of the query in order to estimate the quality of its
retrieval results. However, given the tight analogy between text retrieval and im-
age retrieval, the difficulty criteria used by these methods, most of which were
presented in a survey by Hauff et al. [1], may also be useful for our study. In
particular, Zhao et al. [2] estimated the performance of a textual query from
similarity scores, but also from term frequency - inverse document frequency
(TF-IDF) weights [3] extracted during the indexing time. In all these studies,
the predictor validation process takes as ground truth an indicator of the perfor-
mance of the retrieval system, such as the Average Precision (AP). Nevertheless,
Scholer and Garcia [4] demonstrated that the correlation between the estimated
difficulty and the measured retrieval performance highly depends on the cho-
sen retrieval system. Considering human performance in rating x-ray images as
a ground truth, Schwaninger et al. [5] proposed a statistical approach to es-
timate the image query difficulty solely from image measurements. Turpin and
Scholer [6] highlighted the fact that it is not easy to establish, for simple tasks like
instance recall or question answering, a significant relationship between human
performance and the performance of a retrieval system that uses precision-based
measures to predict the query difficulty.

For our study, we consider videos as queries. We propose to learn a query dif-
ficulty predictor using relevant attributes from a Content-Based Video Retrieval
(CBVR) method. We have two types of ground truths. For video retrieval, a
diagnosis ground truth is the set of histological diagnoses of the biopsies associ-
ated to all the videos of the database. For interpretation difficulty, a difficulty
ground truth is given by the percentage of false video-based diagnoses among
several physicians on a subset of the video database. Histological diagnosis and
video-based diagnosis both consist in differentiating benign from neoplastic (i.e.
pathological) lesions. In these conditions, we aim at establishing a relationship
between the physicians performance and our predictor.

Materials. Probe-based confocal laser endomicroscopy (pCLE) allows the en-
doscopist to image the epithelial surface in vivo, at microscopic level with a
miniprobe, and in real-time (12 frames per second) during an ongoing endoscopy.

The first pCLE database is of colonic polyps videos acquired by physicians
at the Mayo Clinic in Jacksonville, Florida, USA. 68 patients underwent a

www.cellvizio.net
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surveillance colonoscopy with pCLE for fluorescein-aided imaging of suspicious
colonic polyps before their removal. For each patient, pCLE was performed of
each detected polyp with one video corresponding to each particular polyp. Our
resulting Colon database is composed of 121 videos (36 benign, 85 neoplastic)
split into 499 stable video sub-sequences (231 benign, 268 neoplastic). 11 en-
doscopists, among whose 3 experts and 8 non-experts, individually established
a pCLE diagnosis on 63 videos (18 benign, 45 neoplastic) of the database. On
the non-expert diagnosis database, interobserver agreement was assessed in the
study of Buchner et al. [7], with an average accuracy of 72% (sensitivity 82%,
specificity 53%). On the expert diagnosis database, Gomez et al. [8] showed
an interobserver agreement with an average accuracy of 75% (sensitivity 76%,
specificity 72%). Thus, although pCLE is relatively new to many physicians, the
learning curve pattern of pCLE in predicting neoplastic lesions was demonstrated
with improved accuracies in time as observers’ experience increased.

The second pCLE database is related to a different clinical application,
namely the Barrett’s Esophagus, and was provided by the multicentric “DONT
BIOPCE” [9] study (Detection Of Neoplastic Tissue in Barrett’s esophagus with
In vivO Probe-based Confocal Endomicroscopy). Our resulting Barrett database
includes 76 patients and contains 123 videos (62 benign, 61 neoplastic) split into
862 stable video sub-sequences (417 benign, 445 neoplastic). 21 endoscopists,
among whose 9 experts and 12 non-experts, individually established a pCLE
diagnosis on 20 videos (9 benign, 11 neoplastic) of the database.

For all these training videos, the pCLE diagnosis, either benign or neoplastic,
is the same as the gold standard established by a pathologist after the histological
review of biopsies acquired on the imaging spots.

2 Estimating the Interpretation Difficulty

For difficulty estimation, our ground truth is given by the percentage, for each
query video, of false diagnoses among the physicians.As the understanding of
video diagnosis by the physicians is driven by the observation of visual similari-
ties between the query video and training videos, it makes sense to predict the
query difficulty based on similarity results of video retrieval.

To learn a difficulty predictor, our idea is to exploit, as relevant attributes, the
results of our video retrieval method applied to the training database. Potential
relevant attributes are the class cq ∈ {−1, +1} of the video query q, the classes
ci∈{1,k} ∈ {−1, +1} of its k nearest neighbors and the similarity distances δi∈{1,k}

to them. Given the small number of videos tested by the involved physicians,
too many attributes for difficulty learning may lead to over-fitting. For this
reason, we decided to extract one efficient and intuitive difficulty attribute α
from the retrieval results. For each query video, we considered the retrieval error
between the average of the neighbors’ votes and the class of the query: αq =
1 − cq(

∑
i∈{1,k} ciwci)/(

∑
i∈{1,k} wci) , where w−1 = 1 and w+1 is a constant

weight applied to the neoplastic votes. Introducing w+1 allows us to take into
account the possible emphasis of neoplastic votes with respect to the benign
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votes. Our query difficulty predictor P is thus defined as P (q) = αq for each query
video q. Its relevance can be evaluated by a simple correlation measure between
the estimated difficulties of all tested videos and their ground truth values. In
this case, as there is no learning process, cross-validation is not necessary.

3 Video Retrieval Method

As one of the most popular method for Content-Based Image Retrieval (CBIR),
the Bag-of-Visual-Words (BoW) method presented by Zhang et al. [10] aims at
extracting a local image description that is both efficient to use and invariant
with respect to viewpoint changes and illumination changes. Its methodology
consists in first finding and describing salient local features, then in quantizing
them into K clusters named visual words, and in representing the image by its
signature which is the histogram of visual words. The similarity distance between
two images is then defined as a distance, e.g. χ2, between their signatures.

As the field-of-view (FOV) of single images may sometimes be insufficient to
establish a diagnosis, we revisited the standard BoW method in a preliminary
study [11] to retrieve videos, and not only single images. We consider each video
as a set of stable sub-sequences corresponding to a relatively smooth movement
of the pCLE probe along the tissue surface. We then use a video-mosaicing tech-
nique to project the temporal dimension of each sub-sequence onto one mosaic
image with a larger FOV and of higher resolution. Thus, each video is considered
as a set of mosaic images.

We adapt the BoW method to retrieve endomicroscopic mosaic images. In
colonic polyps, a mesoscopic crypt and a microscopic goblet cell both have a
rounded shape, but are different objects characterized by their different sizes.
Our description should thus not be invariant with respect to scaling. Noticing
that discriminative information is densely distributed in pCLE mosaic images,
we decided to apply a dense detector made of overlapping disks of constant radius
on a regular grid. For the description step, we used the Scale Invariant Feature
Transform (SIFT) descriptor, whose combination with our dense detector keeps
all the BoW related invariants except scale invariance. After mosaic image de-
scription, we define the signature of a video as the normalized sum of the visual
word histograms associated to each of the constitutive mosaic images. Fig. 2
shows a CBVR example, where the retrieved videos are not only similar but also
unblinded, i.e. displayed along with their contextual and diagnostic information.

Fig. 2. Retrieval example of our CBVR method on the Colon. From left to right: the
blinded query video and its 5 most similar videos, represented by single frames.
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4 Evaluation of the Relevance of the Retrieval Method

Evaluating the relevance of retrieval results is a difficult problem. Because of the
subjective appreciation of visual similarities, it is quite difficult to have a ground-
truth. A simple evaluation method is to perform a classification based on the
retrieval results and to estimate its accuracy. As our focus is on retrieval and not
on classification, we chose one of the most straightforward classification method,
the k-NN method, even though any other method could be easily plugged in.
We consider two classes, benign (vote = −1) and neoplastic (vote = +1).When
considering k neighbors for a query, we compute the value of the weighted sum
of their votes according to their similarity distance to the query, and we com-
pare this value with an absolute threshold θ to classify the query as benign or
neoplastic. θ can be used to arbitrate between sensitivity and specificity.

In the current work, we apply for the first time our video retrieval method to
two different pCLE databases, Colon and Barrett. Given their relatively small
sizes, we use for each of them the whole database both for training and testing. If
we only perform a leave-one-out cross-validation, the independence assumption
is not respected because there are several videos acquired from the same patient.
Since this may cause bias, we chose to perform a leave-one-patient-out (LOPO)
cross-validation: all videos from a given patient are excluded from the training set
in order to be then tested as queries of our retrieval and classification methods.

For method comparison, we will take as references the following CBIR meth-
ods, which we extended to CBVR by applying our signature summation tech-
nique: the HH-SIFT method presented by Zhang et al. [10] a sparse detector, the
standard approach of Haralick features, the texture retrieval Textons method of
Leung and Malik [12], and an efficient image classification method presented by
Boiman et al. [13], referred as “BruteForce”, that uses no clustering.

For our retrieval method, we considered disk regions of radius 60 pixels for
the Colon database, and 20 pixels for the Barrett database whose discriminative
patterns appear at a finer scale. We then chose 20 pixels of grid spacing to get a
reasonable overlap between adjacent regions and thus be nearly invariant with
respect to translation. For the number K of visual words provided by the K-
Means clustering, among the values from 10 to 30000 in the literature, we chose
the value K = 100 whose performance appeared to be sufficient for our needs.

The accuracy results of video classification on Barrett are presented in Fig. 3
on the left. In agreement with the presented ROC curves, the accuracy results
obtained on Colon are even better. Our retrieval method outperforms all the
compared methods with a gain of accuracy greater than 12 percentage points
(pp.) on Colon, and greater than 9 pp. on Barrett. McNemar’s tests show that,
when the number k of neighbors is fixed, the improvement of our method with
respect to all others is statistically significant: p-value < 0.011 for k ∈ [1, 10]
on Colon and p-value < 0.043 for k ∈ [1, 2] ∪ [4, 8] on Barrett. This shows the
genericity of our retrieval method, which is successfully applied to two different
clinical application, with: 93.4% of accuracy (sensitivity 95.3%, specificity 88.9%)
at k = 3 neighbors on the Colon database, and 85.4% of accuracy (sensitivity
90.2%, specificity 80.7%) at k = 7 neighbors on the Barrett database.
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Fig. 3. Left: Method comparison for the LOPO classification of pCLE videos with
θ = 0 on Barrett. Middle and right: Corresponding ROC curves at k = 5 neighbors, on
Barrett (middle) and on Colon (right).

5 Results of the Difficulty Estimation Method

Results on the Barrett database. We experimented our difficulty predic-
tor presented in Section 2 on the Barrett database. The best correlation results
were obtained with k = 10 neighbors and a neoplastic weight w+1 = 0.4. The
correlation values reach 0.78 when learning from the subset of videos diagnosed
by all the physicians, 0.63 when learning only from the experts and 0.80 when
learning only from the non-experts. The corresponding joint histogram is pre-
sented in Fig. 4, along with the histogram of the difficulty ground truth values.
We observe a noticeable relationship between ground truth and our proposed
difficulty estimation, which confirms the efficiency of our retrieval-based at-
tribute for intuitive difficulty estimation.

Perspectives for the Colon database. On the Colon database, the difficulty
estimation results are not as good as on the Barrett database. With k = 10
neighbors and a neoplastic weight w+1 = 6, the correlation values reach 0.45
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Fig. 4. Left: Difficulty ground truth histogram on Barrett. Right: Joint histogram,
x-axis is the difficulty of all the physicians and y-axis is our estimated difficulty. 21

physicians, 9 expert and 12 non expert, individually diagnosed 20 videos.
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Fig. 5. Left: Difficulty ground truth histogram on Colon. Right: Joint histogram, x-axis
is the difficulty of all the physicians and y-axis is our estimated difficulty. 11 physicians,
3 expert and 8 non expert, individually diagnosed 63 videos.

when learning from the subset of videos diagnosed by all the physicians, 0.30
when learning from experts and 0.45 when learning from non-experts.

In order to improve these results, we propose to investigate a machine learning-
based approach, which will need more relevant attributes. As the video dataset
for which we have the difficulty ground truth is relatively small, we decided to
add one discriminative power attribute β and to learn the difficulty predictor
from the two attributes α and β by using a robust linear regression model. Our
discriminative power attribute β reflects the deviation of the ”signed” discrimina-
tive power of the query signature, with respect to the benign and the neoplastic
classes: β = std(

∑
i∈{1,K} fid(i)). In this formula, the visual word i has a fre-

quency fi in the video query and its “signed” discriminative power d(i) is given
by the adapted Fisher criterion: d(i) = (μ−1−μ+1)|μ−1−μ+1|/(0.5 (σ2

−1+σ2
+1)),

where μc and σc are respectively the mean and the variance of the frequency
distribution of the visual word i in the videos belonging to class c.

The correlation values obtained by the robust linear regression model with
cross-validation reach 0.48 when learning from the subset of videos diagnosed
by all the physicians, 0.33 when learning only from the experts and 0.47 when
learning only from the non-experts. Even if these correlation results are less con-
vincing than those obtained on the Barrett database, the correlation tendency
can be qualitatively appreciated. The corresponding joint histogram is presented
in Fig. 5. To automate the optimal attributes selection and to explore more po-
tentially relevant attributes for difficulty estimation, further experiments based
on model selection need to be investigated, for example using the Akaike infor-
mation criterion. Besides, selection criteria commonly used in active learning [14]
may help to provide a better difficulty estimation.

6 Conclusion
To our knowledge this study proposes the first approach to estimate interpre-
tation difficulty for endomicroscopy training, based on an original method of
Content-Based Video Retrieval. Our experiments have demonstrated that there
is a noticeable relationship between our retrieval-based difficulty estimation and
the difficulty experienced by the physicians. Moreover, we showed the promising
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genericity of our difficulty estimation method by applying it on two different clin-
ical databases, one on the Barrett’s Esophagus and the other on colonic polyps.
Our method could also be potentially applied to other imaging applications.

On one hand we have the diagnosis ground truth for all the videos belonging
to our two large databases, on the other hand we have the difficulty ground truth
on a small subset of each database. The method proposed in this work can then
be used to estimate the interpretation difficulty on the remaining videos. The
complete databases could thus be used in a training simulator that features dif-
ficulty level selection. This should make endomicroscopy training more relevant.
Finally, a clinical validation would be required to see whether such a structured
training simulator could help shorten the physician learning curve.
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Abstract. We propose a technique for recovering the position and depth

of pronuclei of human zygotes, from Z-stacks acquired using Hoffman

Modulation Contrast microscopy. We use Local Binary Pattern features

for describing local texture, and integrate information from multiple

neighboring areas of the stack, including those where the object to be

detected would appear defocused; interestingly, such defocused areas pro-

vide very discriminative information for detection. Experimental results

confirm the effectiveness of our approach, which allows one to derive

new 3D measurements for improved scoring of zygotes during In Vitro

Fertilization.

1 Introduction

During In Vitro Fertilization (IVF), fertilization is the union of a sperm with
an oocyte; the resulting zygote contains genetic material (DNA) from both the
father and the mother. Usually, several zygotes per patient are successfully fer-
tilized, but only a limited number can be cultured (no more than three in many
countries). It is therefore necessary to select the zygotes to be cultured. Cur-
rently, embryologists perform zygote selection on the basis of a morphological
evaluation of the zygotes [4], which are observed through an optical microscope
equipped with Hoffmann Modulation Contrast (HMC) optics.

Several scoring systems have been designed in order to recognize zygotes with
high potential of implantation; yet, none seems to be strong enough to reliably
predict whether an IVF cycle results in a pregnancy [11]. Within such scoring
systems, the relative position of the pronuclei (see Fig. 1) is a factor of major
importance, but so far, only 2D information has been available for measurement.
Yet, the zygote has a spherical shape and thus represents a thick sample with
respect to the microscope depth of field: it is therefore possible to acquire several
images at different, equally-spaced focus planes. This is a common practice in
automated microscopy, and the resulting set of images is named focus stack (or
Z-stack): in each of the images of the stack, structures lying at the corresponding
depth appear in-focus, whereas other structures appear blurred.
� Contact: alessandrog@idsia.ch – Additional material at
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Fig. 1. A Zygote. Top row : 5 of the 24 images in the source focus stack. Note that

different structures are visible in different images, depending on their depth. Bottom:

parts of the zygote, and detail of pronuclei appearance, when they are both in sharp

focus: this is possible because they lie at the same depth in this specific case. Right:

edge detection, even with manually-tuned parameters, fails due to weak borders.

In this paper we present a technique to localize pronuclei in a focus stack,
determining both their 2D position and depth; this allows us to perform a par-
tial 3D reconstruction of the zygote morphology, from which a larger and more
consistent array of measurements can be performed.

Detecting pronuclei in HMC image stacks is challenging because of their wide
appearance variability (see Figure 2) and large amounts of clutter. We exploit
Local Binary Patterns (LBP) [7] as a texture feature for pronuclei detection, thus
leveraging on the peculiar (albeit complex and unpredictable) appearance of the
pronucleus’ interior. Additionally, our detector integrates information from sev-
eral neighboring focal planes: our experimental findings show that even texture
data from focal planes where the pronucleus appears defocused provide informa-
tive features.

Images from human embryology have only recently been subject to attention
from the image processing community, because of their complex appearance, and
the limited need of processing large amounts of data, as samples were observed
only once per day. The availability of new systems integrating microscopes in
incubators [10] will produce much more frequent observations, and increase the
need of automated processing: moreover, significant advantages of performing
objective, quantitative measurements have been shown by Beuchat et al. in [2],
where various 2D zygote features, including pronuclei positions and sizes, are
measured from a single image (where all such features are assumed to be in
focus) with user assistance.

In [6,5] we presented algorithms for processing image stacks, with the goal of
segmenting the outer shape of the zygote, or the blastomeres in an embryo. The
present work fits in the same approach of also determining the object’s depth
from the image stack. Unfortunately, pronuclei lie at unpredictable positions
and depth, and do not provide sufficiently visible outer edges, nor apparent
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Fig. 2. Top: Defocused appearance of pronuclei (left and right), vs best focused plane

(center). Bottom: positive (left) and negative (right) examples.

area features; this prevents the direct application of segmentation techniques
such as active contours [3] or level sets [12], unless the pronuclei 3D location is
first determined, which is the problem we are dealing with in this paper. Then,
having determined a reasonable initialization, a simple snake-based approach can
provide a precise segmentation and size measurement, exploiting weak large-scale
gradients through strong shape priors.

Several recent works deal with the detection of cell nuclei or other subcellu-
lar structures; the problem is radically different in fluorescent-microscopy ap-
proaches or when nuclei are stained, both of which are not viable options for
human zygote observation; ray features [13] have recently proven useful in cap-
turing the irregular shapes of neuron nuclei. In our scenario their application
would not be justified, as pronuclei lack clear edges but have regular shapes.

2 Texture Features at Multiple Focal Planes

HMC is a complex optical microscopy technique, which visualizes differences in
optical density as variations in light intensity: it is routinely used in IVF labs
for observing zygotes, as it provides a large amount of contrast for transparent
specimens and eases human observation as the objects appear three-dimensional
and side-lit, as if a virtual light source was illuminating them from a side (ap-
parent lighting direction). In particular, images of pronuclei share the following
appearance traits.

1. Pronuclei do not generally exhibit clear edges at any focal plane, which limits
the utility of approaches based on edge detection – such as hough transform,
which would perform well due to the predictable circular overall shape; they
also lack a predictable large-scale appearance, which could be captured by
haar-like features.

2. The interior of pronuclei has a peculiar, subtle texture when in focus; more-
over, nucleoli are often visible, but have a very variable size, distribution and
appearance in the pronucleus.

3. Different zygote images are subject to large photometric variations, even
when imaging parameters are unchanged.

4. Zygote images are often cluttered by large amounts of high-contrast debris,
as well as vacuoles and other structures mimicking the large-scale pronuclei
appearance.
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Fig. 3. Composition of the feature vector, which is obtained from 8-neighbor LBP

features computed in 7 different windows at 3 scales

We use Local Binary Patterns (LBP) features for dealing with this challenging
scenario [7]. Such descriptor is amongst the most powerful options for texture
analysis and has the advantage of simple implementation and fast performance,
and has been successfully used in several biomedical applications [14,8]. LBP
features allow us to represent the characteristic interior texture of the zygote,
and, as the descriptor is histogram-based, it captures the presence of nucleoli
regardless of their actual position in the pronucleus (point 2); moreover, the
invariance of the descriptor to grayscale transformations make it robust to the
marked unpredictability in photometric characteristics between images described
in point 3 above.

In order to capture larger-scale, structural characteristics of pronuclei, we con-
catenate LBP descriptors computed on multiple neighboring windows; a similar
approach has been used for face description [1]. For a given point p = (x, y, z),
we compute a feature vector by considering data from 7 different 41x41 windows
of the image stack. Window w1 is centered on p, whereas windows w2 to w5
are positioned around it (see Figure 3). We also consider windows w6 and w7,
centered on the same (x, y) position as p, but containing data from focal planes
below and above p, respectively. In each window, we compute LBP descriptors
using 8 neighbors and uniform mapping, which originates a 59-bin histogram;
features are computed for 3 different scales, at radii 1, 2 and 3. Feature vectors
for each of the 3 scales at each of the 7 windows are concatenated, thus creating
a global feature vector for point p composed by 7 · 3 · 59 = 1239 variables, which
summarizes data from multiple focal planes. We will then use statistical classi-
fication to predict, on the basis of these 1239 variables, whether point p belongs
or not to a pronucleus.

Extensions of LBP features to a third dimension have been successfully pro-
posed for several applications [17], mostly dealing with dynamic content. One
common approach is to consider the texture characterizing x− t and y− t space-
time slices (LBP-TOP). In our evaluations, texture in x−z or y−z slices proved
uninformative in dealing with focus stacks, regardless of the scale factor along
the z axis; this is probably due to marked anisotropy in such slices because of
the effects of defocus: therefore, we only include descriptors for x − y planes in
our final feature vector.
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Fig. 4. Detection results

3 Experiments

We experimented our technique on 193 focus-stacks representing zygotes, ac-
quired during routine IVF observations using an IX51 microscope equipped with
20x HMC optics and a 720x576 camera. Each stack is composed by 24 frames,
acquired at focal planes with a z spacing of roughly 5μm. Zygotes and pronuclei
have an apparent diameter of approximately 300 and 50 pixels, respectively. The
approximate position and depth of pronuclei in each image stack is labeled by
an operator, by means of an ad-hoc focus-stack viewer. In total, our dataset
contains 347 labeled pronuclei (1.8 per image stack on average).

In order to detect pronuclei in a new image, feature vectors are computed
for each point on a 5x5 grid, on all the images in the stack; the process is not
computationally demanding, because LBP codes can be precomputed on the
whole image. Processing can be significantly sped up by limiting the evaluation
to points inside the zygote oolemma, which can be robustly found using the
technique in [6], thus limiting to 50 seconds the time for processing a full stack
in our MATLAB implementation. Each point is classified for the presence of a
pronucleus by means of the classifier described in the following section. Positive
responses, which constitute a small fraction of the tested points, are used to
initialize snake-based detectors; this automatically handles multiple positive re-
sponses from a single pronucleus, as multiple snakes initialized near a pronucleus
converge and finally overlap.

From the previously described labeled data, we built a data set of 347 positive
examples (i.e., points belonging to the pronucleus) and 11927 negative examples,
which are centered on random points farther than 15μm from any pronucleus
center.

Classification. First, we split the data into two halves, each containing some
6000 instances; we used the selection set to perform feature selection and to
select the classification algorithm; we used the test set to eventually measure the
performance of the chosen classifier. We performed all classification experiments
using WEKA [16].

We started by computing the information gain (IG) of each feature; the IG
is a standard index of predictivity for features: better features have a higher
IG. As shown in Figure 5 (central plot), the distribution of IG is highly skewed,

Keeping the test set separate from the data used for selecting features and classifi-

cation algorithm is necessary to avoid optimistic measures of accuracy [9].
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Fig. 5. Left : ROC curve, accuracy and area under curve (AUC) measured on the test

set. Center : distribution of the IG across the 1239 features. Right : number of selected

features in each window, after IG analysis.

namely few features have high IG, while most features have a very low one. We
retained the features having IG > IGmax/3, where IGmax is the maximum IG
among all features. In this way, we selected 152 features; the average IG of the
selected features is about five times larger than the average IG of the non-selected
features. Most selected features are from regions w1, w6 and w7, as shown in
Figure 5 (right plot). This shows that focal planes where the pronucleus appears
defocused (w6 and w7) provide useful texture information.

The IG analysis, although useful for a preliminary screening, analyzes only one
feature at a time and cannot capture interaction between features. To identify
and remove correlated features, we then used the the correlation-based feature
selector (also available within WEKA), further reducing the features to 45.

By experiments on the selection set we select SVM with linear kernel and
TAN (Bayesian network with tree-augmented structure) as the best performing
classifiers; they are slightly but significantly better than ADABoost with deci-
sion stumps [15]. Eventually, we trained the classifiers on the selection set and
evaluated them on the test set, measuring for both accuracy of 99% and AUC
(area under the ROC curve) higher than 0.99.

Further Classification Experiments. An usually desirable property of texture
features is rotation invariance, which can be obtained in LBP features by us-
ing a different mapping between LBP codes and histogram bins [7]. However,
rotation-invariant features are much less powerful than those obtained with uni-
form mapping; the IG of the best 10 rotation-invariant features is on average 2.5
times smaller than that of the best 10 features with uniform mapping. Moreover,
classification accuracy drops to 96% (both for SVM and TAN) when rotation
invariant features are used; such an accuracy corresponds to that of a trivial
classifier, which always returns the label “negative”.

We compared the LBP-based approach described in this paper to Haralick tex-
ture features computed in a single 40x40 window around the candidate point;
features are computed on normalized intensities using 8 equally-spaced intensity
bins, and considering two orthogonal displacements; such naive approach yielded
significantly worse results in terms of both IG (about four times smaller for the
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10 best Haralick features compared to best 10 features with our LBP-based de-
scriptor) and classification accuracy (which drops to 96%); figure 5 (left) reports
a dotted line for the resulting ROC curve.

We investigated to what extent the high accuracy of the classifiers shown in
Figure 5 was due to the unbalance of the data set; in fact, a classifier always
returning the class “negative” would have achieved an accuracy of 96%. We
therefore built a data set of some 700 examples, evenly distributed between pos-
itive and negative. Both TAN and SVM achieved 95% accuracy, thus confirming
the high predictivity of LBF from multiple focal planes (recall that in this case,
simply returning “negative” would only achieve 50% accuracy).

Localization and Segmentation. In order to precisely localize pronuclei and deter-
mine their size, from each positively-classified point we initialize a single circular
active contour, with three DOF for position and one additional DOF for size.
Such naive low-dimensional model is evolved using gradient descent in order to
minimize an energy measure, determined from large-scale image gradients near
its border, which are expected to have directions consistent with the apparent
lighting due to HMC, as described in [6]. Candidate pronuclei are determined
by solutions not overlapping in 3D space more than 30% of their volume, and
amount to an average of 3.4 per image.

We consider a candidate being correctly segmented if three conditions are met:
(a) its center is within 3 μm (10 pixels) of the manually-labeled center; (b) its
depth less than 2 stack slices away from the labeled depth – which is the depth
where the pronucleus edges appear sharpest; (c) its radius not differing more than
2 μm from the actual one. We visually determined that circular models meeting
these constraints manage to exactly fit the pronucleus shape in all instances,
and routinely exceed the precision of manual labeling of the center of pronuclei.
This prevents us from quantifying localization error, as exact ground truth is
not available.

In our dataset, 93.3% of pronuclei are correctly segmented and appear in the
final list of candidates; in our present implementation, candidates are displayed
to users during routine evaluation of the zygote image stacks, and are manually
confirmed with a single click on each – after which the related position, depth
and size measurements are saved in the database and used as additional features
for statistical evaluations. Naively selecting the two lowest-energy candidates
provides correct results for both pronuclei in 84.0% of our image stacks, whereas
in 14.3% of the instances only one of the two pronuclei is correctly detected.

4 Conclusions

We presented a technique for detecting pronuclei in focus stacks, and deter-
mining their depth, by exploiting texture information from several focal planes
simultaneously. Experimental results show promising results, which enable users
to perform zygote scoring with an insight of the zygote’s 3D morphology. As
future works, we plan to deal with timelapse data, which poses a new set of
challenges for automated processing.
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Abstract. The effectiveness and clinical benefits of image guided surgery are 
well established for procedures where there is manageable tissue motion. In 
minimally invasive cardiac, gastrointestinal, or abdominal surgery, large scale 
tissue deformation prohibits accurate registration and fusion of pre- and intra-
operative data. Vision based techniques such as structure from motion and 
simultaneous localization and mapping are capable of recovering 3D structure 
and laparoscope motion. Current research in the area generally assumes the 
environment is static, which is difficult to satisfy in most surgical procedures. 
In this paper, a novel framework for simultaneous online estimation of 
laparoscopic camera motion and tissue deformation in a dynamic environment 
is proposed. The method only relies on images captured by the laparoscope to 
sequentially and incrementally generate a dynamic 3D map of tissue motion 
that can be co-registered with pre-operative data. The theoretical contribution of 
this paper is validated with both simulated and ex vivo data. The practical 
application of the technique is further demonstrated on in vivo procedures. 

Keywords: Image Guided Surgery, Minimally Invasive Surgery, Tracking, 
Simultaneous Localization And Mapping (SLAM), Augmented Reality.  

1   Introduction 

For Minimally Invasive Surgery (MIS), the use of pre- and intra-operative image 
guidance has well established benefits. However, its application to procedures with 
large tissue deformation, such as those encountered in cardiovascular, gastrointestinal 
and abdominal surgery, is still limited. In order to establish a common in vivo material 
frame of reference that follows tissue deformation, in situ 3D reconstruction is 
necessary. In this regard, the use of fiducial markers and optical tracking, as well as 
intra-operative imaging such as ultrasound, MR and x-ray fluoroscope have been 
explored extensively. However, the use of vision techniques based on images from 
laparoscopes/endoscopes during MIS has clear advantages. It does not require the 
introduction of additional equipment to what is already a very complex surgical setup. 
Furthermore, it defines a single co-ordinate system for intra-operative 3D 
reconstruction, imaging device localization and visualization, therefore removing the 
need for registration between multiple data streams to a global coordinate system.   

The vision based techniques used for MIS currently include Simultaneous 
Localization And Mapping (SLAM) [1, 2] and Structure from Motion [3, 4]. They 
have been applied to a variety of anatomical settings such as the abdomen [1, 2], 
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colon [3], bladder [4] and sinus [5], with the assumption that the structure is relatively 
static. Structure from Motion has been formulated for used in non-rigid environments 
however, it requires offline batch processing, thus making it difficult for real-time 
applications. In [6], for example, it is used to estimate a static cardiac surface at a pre 
selected point in the cardiac cycle. The 3D structure of the deforming cardiac surface 
is estimated online in [7] by tracking regions of interest on the organ. It is important 
to note that in approaches such as this, it is assumed that the laparoscopic camera is 
fixed, which is not realistic for in vivo applications.   

The purpose of this paper is to present a novel online approach for simultaneous 
estimation of camera motion and deforming tissue structure. The system presented 
extends the current SLAM framework, not only to cope with camera motion, but also 
to learn a high level model for compensating periodic organ motion. The learnt 
motion model is explicitly incorporated into the statistical SLAM framework, 
enabling dynamic tissue motion to be estimated even when it is outside the camera’s 
current field-of-view. The basic steps of the proposed algorithm is schematically 
illustrated in Fig 1, those specific steps for dealing with dynamic tissue motion are 
highlighted in yellow. We term this Motion Compensated SLAM (MC-SLAM), 
which to our knowledge, is the first work for simultaneous online estimation of 
camera motion and dynamic structure. To assess the accuracy of the proposed 
framework, the proposed method is validated with synthetic and ex vivo data and its in 
vivo application is also demonstrated. 

2   Methods 

2.1   Motion Modeling 

To illustrate the practical use of the MC-SLAM framework, we will use MIS liver 
surgery as an example. It has been shown that the motion of the liver is correlated to 
the periodic motion of the diaphragm and therefore respiration [8]. In this work we 
exploit this correlation to create a high level model of respiration that can be used to 
predict the dynamic 3D position of tissue in the abdomen. The respiration model is 
estimated by measuring the 3D motion of points on the liver, as shown in Fig 1b), 
with a stereo laparoscope. The 3D position of points on the liver are estimated by 
matching regions of interest in the left and right stereo images and triangulating using 
the camera’s intrinsic and extrinsic parameters. The temporal motion of the 3D points 
is estimated by tracking the regions of interests along time using an approach outlined 
in [9]. This approach learns what information is unique about a region and how best 
to distinguish it from its surroundings, making it well suited to MIS data.  

In this work, the liver is assumed to move and deform freely in 3D. Fig. 2a) 
illustrates the 3D coordinates of a region on the liver surface. The data was collected 
from a static laparoscope during an in vivo porcine experiment. The signal is periodic 
in all three axes. The point is periodically moving along a path or principal axis in 3D 
space which corresponds to the superior-inferior axis [10] and can be approximated as 
locally linear as shown in Fig 1b). Each point on the liver has an individual principal 
axis of motion. However, its position on that axis is correlated to the respiration cycle.  

By determining the principal axis of motion and observing the temporal motion 
characteristics, a model of respiration can be inferred. 
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Fig. 1. (a) A schematic illustration of the main steps of the proposed MC-SLAM framework.  
Additional steps for dealing with dynamic tissue motion are highlighted in yellow. (b) An 
example illustration of respiratory modeling from organ motion, which involves: 1) the motion 
of a region or feature point (of a liver) is tracked temporally in 3D, 2) the principal axis of 
motion (a vector representing the dominant direction of organ motion) is estimated, 3) the 
periodic motion along this axis is examined and a respiration model is fitted to the data.  

In order to relate the 3D coordinate space to the principal axis of motion, Principal 
Component Analysis (PCA) is used. The result of PCA for the data in Fig. 2a) is 
shown in Fig. 2b). The first component of PCA is shown in blue, which clearly 
represents respiration induced tissue motion. The second component contains a small 
variance caused by hysteresis. A typical respiratory cycle is asymmetrically periodic 
[10] with a longer dwell time at exhalation as shown in Fig. 2c). This can be 
represented as 

2
0( ) cos ( )n t

z t z b
π

φ
τ

= − −
 

(1) 

where 0z is the position of the liver at the exhale, b  is the amplitude, τ  is the 
respiration frequency, φ  is the phase and n describes the shape or gradient of the 
model. Eq. 1 is used to model the data in the first component of PCA (shown in Fig. 
2b). The parameters of Eq. 1 are estimated using Levenberg-Marquardt minimization 
algorithm where the problem is posed as a least squares curve fitting. 

The respiration cycle can be estimated using any point on the liver, assuming it can 
be tracked throughout the respiratory cycle. The transformation from the global 
coordinate system to the respiration coordinate system is unique to each point. This 
means that points on the surface of the liver can move and deform in independent 
directions but share the same respiration model. Given a model of respiration, it is 
therefore possible to estimate the dynamic tissue motion using the inverse PCA 
transformation matrix and a given point in the respiration cycle. 

In MIS, respiration is normally regulated by a ventilator. The respiration cycle can 
therefore be considered periodic with small fluctuations in the frequency and 
amplitude caused by the ventilator. In the following section, we show how the 
periodic respiration and associated ventilator noise can be modeled in an Extended 
Kalman Filter (EKF) to prevent error propagation and synchronization issues.  
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Fig. 2. (a) The 3D global coordinates of a region on the surface of the liver illustrating periodic 
organ motion. (b) Result of PCA as applied to (a), illustrating the respiration cycle extracted 
from organ motion in (a). The first 3 PCA components are shown and the first component 
corresponds to the principal axis of motion. (c) is a graphical representation of  the asymmetric 
respiration model described by Eq. 1. 

2.2   Motion Compensated SLAM (MC-SLAM) 

In SLAM [1, 2], it is generally assumed that the map is rigid. In MC-SLAM, a 
periodic motion model is introduced to compensate for the dynamic tissue 
deformation, thus enabling dynamic mapping and accurate localization of the camera. 
Conceptually, this introduces three novel steps into the SLAM framework shown in 
Fig. 1a). The first is to learn an initial estimate of the periodic respiration model using 
the method described in the previous section. The second and third steps are the 
prediction of the respiration motion model and prediction of the tissue motion within 
the map. In conjunction with these steps, we have introduced a new state vector, 
prediction model and measurement model. 

MC-SLAM’s probabilistic framework is an Extended Kalman Filter (EKF). The 
state vector x̂  is composed of three elements representing the camera v̂x , the periodic 

respiration model m̂  and the map 1̂ ˆ( )iy y . The covariance matrixP is square where 

ˆ ˆvx m
P  is the covariance between state elements v̂x and m̂ .   
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 (2) 

The camera’s state vector v̂x  contains the position Wr , orientation RWR , 

translational velocity Wv  and angular velocity Rw  of the camera. The periodic 
respiration model 0ˆ ( , , , )Tm b zα τ= is represented by the parameters derived from  

Eq. 1, such that  2
0( ) cos ( )nz t z b α= −  where  /tα π τ= , t  is the time step, 0z is 
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the exhale position of the liver, b is the amplitude, τ  is the frequency and 3n =  in 
accordance with [10]. Phase φ is not included as the system is initialized at 0φ = . 

The thi  map feature ˆ ( , )iy y eig=  is derived from the PCA transformation. 

( , , )x y zy y y y=  is the mean position of the feature in 3D space during a respiration 

cycle and ( , , )x y zeig eig eig eig=  is the eigenvector describing the transformation from 

3D space to the periodic respiration model.  
The state prediction model predicts camera, respiration and map motion. The 

camera motion is predicted using a “constant velocity, constant angular velocity” 
model. The state prediction model includes the addition step to predict the point in the 
respiration cycle and subsequently the motion in the map. The prediction model m

vf  

and process noise covariance m
vQ for the periodic respiration m̂  are 

1 0 0

0 1 0 0

0 0 1 0

0 0 0 1

m
v

t

f =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

 

0

3 2

2

0 0
3 2

0 0
2
0 0 0

0 0 0

m
v

b

z

t t

t
tQ

t

t

τ τ

τ
τ=

⎡ ⎤Φ Φ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥Φ⎢ ⎥Φ
⎢ ⎥
⎢ ⎥

Φ⎢ ⎥
⎢ ⎥
⎢ ⎥Φ⎢ ⎥⎣ ⎦

 (3) 

where τΦ is noise in the frequency, bΦ is noise in the amplitude and 
0z

Φ is noise in the 

exhale position. The predicted position of the thi  map feature in the world coordinate 
system W

iy  is computed using the predicted respiration parameters and îy  such that 
2

0( cos ( ))W n
iy eig z b yα= − + . 

The measurement model transforms the state space into the measurement space. 
Features in the map are measured relative to the camera. A feature’s position in the 
camera coordinate system is estimated using ( )R RW W W

L ih R y r= − , where RWR  and 
Wr  are the predicted camera rotation and position in the world coordinate system. 
W
iy is the position of the feature in the world coordinate system as predicted by the 

respiration model. The measurement model is  
2

0( ( cos ( )) )R RW n W
Lh R eig z b y rα= − + −     (4) 

 

and the partial derivatives (used in the EKF) of the measurement model with respect 
to m̂ are 

1ˆ
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dm
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dz
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The features are tracked in the image using [9]. During system initialization the 
camera is assumed static for one respiration cycle. Once initialized, new features can 
easily be added to the system when the camera is moving.  
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Table 1. Parameters for respiration modeling 

 τ  (Frames) b  (cm) 0z  (cm) 

Simulated Estimated 32.38 3.09 0. 95 
Simulated Ground Truth 31.83 3 1 

Ex Vivo Estimated 52.47 0.85 0.33 
Ex Vivo Ground Truth 52 0.9 0.3 

3   Results 

The proposed MC-SLAM framework is validated on a simulated data set with known 
ground truth. It is also validated on an ex vivo tissue experiment with induced 
deformation and applied to in vivo footage. For quantitative validation with the 
simulated data, a virtual stereo laparoscope was navigated through a 3D virtual 
environment with periodic motion applied to a 3D mesh  using Eq. 1 and the parameter 
settings shown in Table 1. The mesh was textured with an image of the liver. 

Camera localization is evaluated in Figs. 3a-c) where MC-SLAM is compared to the 
ground truth and results from the static SLAM framework. The mean position error 
and standard deviation are 0.25cm and 0.19cm for MC-SLAM and 1.31cm and 0.6cm 
for static SLAM respectively. As the map and camera position are simultaneously 
estimated, accurate camera estimation is essential. The position error in MC-SLAM is 
attributed to rapid changes in acceleration of the camera’s motion which are not well 
modeled. In this simulation, the dominant map motion is in the Z axis and it is evident 
that this map motion is absorbed into the static SLAM’s estimation of the camera’s 
position as there is a periodic error in the Z axis (Fig. 3c). Rotation is accurately 
recovered by both systems. To validate the method for modeling respiration, the 
estimated parameters are compared to the ground truth in Table 1. 

For the ex vivo experiment performed, the ground truth position of the laparoscope 
was obtained using the approach in [11]. An ex vivo porcine liver sample was used 
and tissue motion was induced with a custom mechanical device. The device 
consisted of a cam, stepper motor and a sliding tray. Asymmetric motion is induced 
using Eq. 1 where z , n  and b are defined by the cam profile and τ is defined by the 
stepper motor. Quantitative evaluation of laparoscope localization is shown in Fig 3d-
f). The recovered motion using MC-SLAM closely follows the ground truth. Static 
SLAM however, periodically oscillates away from the ground truth. The mean error 
and standard deviation are 0.11cm and 0.07cm for MC-SLAM and 0.56cm and 
0.25cm for static SLAM respectively. In addition, static SLAM is more prone to  
data association errors as shown in Fig. 3d-f) between frames 800-1000.  
The estimated and ground truth parameters of the respiration model are compared in 
Table 1 and Fig. 4a). 

Figs. 4b-e) show the intra-operative laparoscopic images of the ex vivo tissue 
augmented with a virtual tumor which is manually and rigidly registered to the MC-
SLAM map. The tumor is visualized using the Augmented Reality (AR) technique 
presented in [12]. Figs. 4b-c) are captured from a static laparoscope and illustrate the 
position of the tumor at full exhale and full inhale. Figs. 4d-e) demonstrate the system 
working in the presents laparoscopic and tissue motion. In Fig. 4e), the camera 
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Fig. 3. Quantitative comparison of estimated laparoscope position in the world coordinate 
frame with MC-SLAM (green), static SLAM (red) and ground truth (black dashed). (a-c) 
simulated data XYZ axes. (d-f) ex vivo data XYZ axes.  

 

Fig. 4. Ex vivo experiment results, (a) the estimated respiration model; blue - observed data, 
green - respiration model, black dashed - ground truth. (b-e) Illustration of Image Guided 
Surgery with pre-operative data visualized [12] intra-operatively. (a-b) show a static 
laparoscope and the tissue at (b) exhale and (c) inhale position. (d) combined laparoscope and 
tissue motion. (e) laparoscope motion results in the target moving outside the current field-of-
view. The dynamic target position is estimated relative to the current position of the 
laparoscope and visualized using view expansion [13]. 

 

Fig. 5. In vivo experiment results; (a) the estimated respiration model (green) and observed data 
(blue); (b-e) illustration of Image Guided Surgery on in vivo footage with virtual pre-operative 
data visualized [12] intra-operatively; (b-c) images from a static laparoscope with the tissue at 
(b) exhale and (c) inhale position; (d-e) show combined tissue and laparoscope motion during 
abdominal exploration  

navigates away from the tumor and its position is visualized outside the current field-
of-view using dynamic view expansion [13]. This illustrates the capability of the 
system to predict the dynamic 3D position of tissue even when the tissue is not in the 
camera’s current field-of-view.  

For the in vivo experiment, the ground truth data was not available. The estimated 
respiration model is illustrated in Fig. 5a) and Figs. 5b-e) illustrate results with the use  
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of AR visualization. A virtual tumor is manually and rigidly registered to the MC-
SLAM map. Figs. 5b-c) show intra-operative in vivo images captured from a static 
laparoscope. Figs. 5b) and 5c) show the tissue position at the full exhale and full 
inhale point in the respiration cycle. This illustrates tissue displacement resulting from 
respiration which was estimated at 1.08cm. The motion of the augmented tumor 
demonstrates the dynamic nature of the MC-SLAM map and progression beyond the 
rigid environment assumption. In Fig. 5d) and Fig. 5e), the laparoscope is navigated 
by the surgeon to explore the abdomen. Throughout the exploration the augmented 
data is displayed in a visually consistent manor in the presents of both laparoscope 
and tissue motion.     

4   Conclusions 

In this paper, we have presented a novel MC-SLAM system for simultaneous 
laparoscopic localization and dynamic tissue mapping. The system explicitly 
incorporates a periodic model of respiration into the statistical framework. This 
enables the system to predict and anticipate changes in tissue structure and estimated 
organ motion even when it is not in the laparoscope’s current field-of-view. The 
method has been validated on simulated and ex vivo data and its clinical relevance has 
been demonstrated with in vivo data. Future work will focus on non-rigid registration 
of pre-operative data, faster initialization and more sophisticated motion models. 
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Abstract. Co-located optical and virtual colonoscopy images provide

important clinical information during routine colonoscopy procedures.

Tracking algorithms that rely on image features to align virtual and opti-

cal images can fail when they encounter blurry image sequences. This is a

common occurrence in colonoscopy images, when the endoscope touches

a wall or is immersed in fluid. We propose a region-flow based matching

algorithm to determine the large changes between images that bridge

such interruptions in the visual field. The region flow field is used as

the means to limit the search space for computing corresponding feature

points; a sequence of refining steps is performed to identify the most

reliable and accurate feature point pairs. The feature point pairs are

then used in a deformation based scheme to compute the final camera

parameters. We have successfully tested this algorithm on four clinical

colonoscopy image sequences containing anywhere from 9-57 consecutive

blurry images. Two additional tabletop experiments were performed to

quantitatively validate the algorithm: the endoscope was moved along a

slightly curved path by 24 mm and along a straight path by 40 mm. Our

method reported errors within 1-5% in these experiments.

Keywords: colonoscopy, tracking, failure recovery, image matching.

1 Introduction

The simultaneous use of pre-segmented virtual and optical colonoscopy images
during routine endoscopic procedures provides useful clinical information to the
gastroenterologist. Tracking algorithms must be employed to keep both image
sequences aligned throughout the procedure. In medical images this presents a
number of challenges: images can become blurry (endoscope touching a wall, fluid
immersion), bright areas or tools may appear, etc. In these instances, endoscopic
images over short periods of time may be devoid of features, causing tracking
algorithms to fail. The goal of this work is to investigate new methods to skip
such interruptions in the visual field and seamlessly continue tracking. Optical
colonoscopy image sequences (our application of interest here) are particularly
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(a) (b) (c)

Fig. 1. Region flow vs. optical flow for describing large motion, (a) source image with

overlaid optical flow vectors, (b) source image with overlaid region flow vectors, (c)

target image after a 20 frame blurry sequence. White and green squares in the target

image represent 3 selected regions in the image, and correspond to the white and green

squares in the source images, after application of optical and region flow vectors. Region

flow does a better job tracking the image motion. The lengths of the vectors in the

source images represent the magnitude of the motion velocity.

challenging, due to deformation and other artifacts, and necessitate very robust
algorithms.

The problem we study in this work can be stated as follows: given tracked im-
ages prior to a blurry image sequence, determine camera parameters (translation
and rotation velocities) after the sequence, so as to continue tracking. There have
been two general approaches to handling blurry images in endoscopic sequences:
the use of a magnetic sensor[1,2] for tracking bronchoscopy images, and recovery
from failures. It is unclear that this will work well with colonoscopy images, due
to the more severe deformation effects, making sensor calibration a difficult task.
An alternate approach is to use computer vision algorithms to locate and match
corresponding features along the temporal dimension[3]. Termed wide-baseline
matching[4,5], these methods find temporal correspondence through local com-
parison of feature descriptors, and results depend on the distinctness of the
image features. Optical flow has also been used to track images[6], but typically
does not work well for large changes between images. Fig. 1 illustrates an ex-
ample, with Figs. 1(a),1(c) representing optical images bridging a blurry image
sequence. The white squares in these images represent corresponding pairs gen-
erated by the optical flow field; they do not match up with the green squares,
which roughly represent the positions of the true corresponding pairs.

In this work we present a computer vision algorithm to accurately match cor-
responding features representing large motion between images, to improve the
robustness of tracking algorithms. Central to this approach is the use of region
flow, a dense feature matching strategy that provides a basis and framework
for understanding large motion. As indicated by the work of Brox et al.[7] and
Liu et al.[8], dense feature correspondences can improve the accuracy of many
vision applications, such as structure-from-motion, object recognition, and im-
age retrieval. In the problem addressed here, region flow computation is a key
and novel step of our method, for two reasons, (1) permitting the algorithm
to limit the search space for accurately identifying corresponding features, and
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(2) point-to-point correspondence relies on the intensity constancy model, which
is generally not true for large motion; instead, invariance of a region’s intensity
distribution is a more reasonable assumption. The region flow matching step
is followed by a sequence of refinements, that lead towards accurate compu-
tation of corresponding feature point pairs, and involves region-to-region and
point-to-point matching steps, and false feature rejection. Finally, an image de-
formation based egomotion estimation method is used to recover camera parame-
ters; we constrain the 2D-2D image deformation based egomotion determination
problem[9] to a 3D-2D pose estimation problem by using depth values from a
colon model. Fig. 2 details the various steps of our region flow based approach
to handling large motion and thereby provide the means to skip blurry image
sequences.

We demonstrate initial results using this method on four clinical colonoscopy
sequences containing blurry images; two of these are in the sigmoid colon and
the remaining two in the ascending colon. A table top validation experiment
was also performed to quantify the accuracy of the method by acquiring two
sequences in which the endoscope was moved 24 mm along a slightly curved
path and 40 mm along a straight path.

2 Methods

The flow of our algorithm for recovering motion parameters after a blurry image
sequence is described in Fig. 2. We describe in more detail the major steps of
our method.

2.1 Region Flow Computation

Computing region flow is the key to efficiently determining feature point corre-
spondences between images representing large motion.

Let I1(x, y) and I2(x, y) be a pair of normalized images, with −→u = (ux, uy)
representing the region flow vector at point (x, y). The similarity between two
regions of I1(x, y) and I2(x, y) with relative displacement −→u can be measured
by Normalized Cross-Correlation(NCC) and given by

NCC(x, y, ux, uy) =
∫∫

I2(x + ux, y + uy)I1(x, y)dxdy (1)

Similar to optical flow computation[10], we use a global energy function to com-
pute region flow, within a minimization framework.

E(ux, uy) =

∫∫
min(|1.0 − NCC(x, y, ux, uy)|, α)︸ ︷︷ ︸

Data constraint

+ λ min((|∇ux| + |∇uy |), β)︸ ︷︷ ︸
Smoothness constraint

dxdy

(2)

where α and β are truncation values to prevent over-smoothing. λ is a parameter
to balance data and smoothness constraints.
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Fig. 2. Region flow based algorithm for recovering motion parameters after a blurry

image sequence

Implementation. In general, region flow computation involves matching re-
gions in the source image with regions in the target image, at every pixel, an
O(n4) computation, for N ×N sized images. In our implementation, we reduce
the computation by (1) downsampling images by a factor of 4 in each dimension,
and (2) restrict the largest image motion(we allow up to 150 pixel displacement
on a 500 by 400 image), so that the corresponding search space in the tar-
get image is reduced. The minimization procedure of Eq. 2 is performed using
the coarse-to-fine belief propagation procedure described in Felzenwalb[11]. The
minimization results in a set of region flow vectors that provide a good approxi-
mation to the image motion. Fig. 1(b) illustrates an example colonoscopy image
with overlaid region flow vectors. The region flow vectors follow the image motion
between the two images, Figs. 1(b) and 1(c).

2.2 Corresponding Pairs Computation

Region-to-Region Matching. In this step, corresponding regions are identi-
fied using the region flow field and a local matching procedure. A set of stable
feature points are detected by the SIFT algorithm[5] in the source and target
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(a) (b) (c) (d)

Fig. 3. Corresponding Pairs Computation. Top and bottom images represent images

before and after the blurry image sequence, (a) Region-to-Region matching. Green

squares indicate the matched regions using the region flow field. Local search using

NCC is performed to find the best region pair (b) Point-to-Point feature matching.

Using SIFT descriptor as a metric, the best SIFT feature point pair is determined

between source and target regions. (c) False feature match rejection using epipolar

geometry, (d) local matching using only (locally defined) SIFT feature descriptors,

illustrating significant errors.

images. The corresponding regions in the target image are identified using the
region flow vectors and a local neighborhood search. In Fig. 3(a), the green
squares joined by the white lines represent corresponding regions containing at
least one SIFT feature point in the source image and 0 or more SIFT feature
points in the target region. In the implementation, the mapped region is locally
adjusted using NCC as a metric to find the best region match.

Point-to-Point Feature Matching. In this step, each corresponding region
pair is refined to a corresponding point pair. If the target region does not contain
a SIFT feature point, it is removed. For target regions with multiple SIFT fea-
ture point candidates, the candidate with the closest SIFT descriptor(a distance
metric) is chosen as the best candidate. Fig. 3(b) illustrates the selected feature
point pairs after this step.

False Feature Match Rejection. With the chosen feature point pairs, epipolar
geometry is built using the RANSAC algorithm[4]. Outliers that do not satisfy
the epipolar geometry constraints are removed, as seen in Fig. 3(c).

Finally, Fig. 3(d) illustrates the same example using just SIFT feature point
matching. It can be clearly seen that the lack of global motion information results
in significant mismatches.

2.3 Image Deformation Based Egomotion Estimation

In the final step, we estimate the camera motion parameters of the image after
the blurry images. We use a deformation based method.
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Fig. 4. Egomotion Estima-

tion

In Fig. 4, the visual angle θ1 of two world coor-
dinate points P and Q from the camera projection
center O1 is defined as the angle between the pro-
jection rays of P and Q. If−→v o1p1 and−→v o1q1 are the
normalized projection rays, the disparity between
θ1 and θ2 can be expressed in terms of vectors or-
thogonal to −→v o1p1 and −→v o1q1 as follows(see [9]):

θ2 − θ1 =
−→
T � (dP−→v ⊥

o1p1
+ dQ−→v ⊥

o1q1
) (3)

where dP = 1
|P−O1| , and dQ = 1

|Q−O1| and
−→
T =

(Tx, Ty, Tz) is the translation velocity. Eq. 3 depends only on
−→
T . As depth

values can be obtained from the virtual colon model, the computation of
−→
T

is linearized. Once
−→
T is known, we can compute the Focus of Expansion,

FOE = (fTx/Tz, fTy/Tz). Rotation velocities
−→
R = (Rx, Ry, Rz) are then com-

puted by embedding the FOE in a polar coordinate system, as described by
Reiger[12].

Fig. 5. Validation. A table top experiment was performed to move the endoscope a

fixed distance. The resulting video was used to test the algorithm. (a) The table top

experimental setup: the endoscope was placed on a surface with distance markings and

moved along a predefined path, (b,c) Acquired images at the beginning and end of the

sequence.

3 Experimental Results

We have tested our algorithm on four clinical colonoscopy sequences, distributed
in different segments of the colon. We have also performed a validation experi-
ment to quantify the accuracy of the algorithm.

3.1 Validation Experiment

Our goal in this experiment was to move the endoscope precisely a certain dis-
tance and acquire images between the end points. Since depth of the colonoscope
from its starting point was needed, a flat surface was held at right angles at the
edge of the desk, thus the depth is the same for all points in the projected image.
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(a) (b)

(c) (d)

Fig. 6. Results on 4 Colonoscopy Sequences. OC-VC image pair before and after blurry

sequences, (a) 520 polyp surgery sequence in sigmoid colon with a 57 image blurry

sequence (b) 160 image polyp removal sequence in sigmoid colon with a 21 image blurry

sequence, (c,d) 450 image sequence with 2 blurry image sequences of 9 and 19 images.

The tracking system tracked through both blurry images sequences successfully.

Fig. 5 illustrates the experimental setup and image pair of one of the acquired
sequences. Two sequences were tested with this setup, (1) colonoscope moved
along a straight path by 40 mm, (2) colonoscope moved along a slightly curved
path, with the end to end (Euclidean) distance of 24mm. Analyzing these two
sequences using our algorithm resulted in distances of 39.6mm and 22.96mm
respectively.

3.2 Clinical Colonoscopy Experiments

Fig. 6 illustrates 4 example colonoscopy sequences with blurry image sequences.
The top rows illustrate the optical images before and after the blurry images.
The corresponding virtual colonoscopy images are in the bottom rows. Regions
marked by green circles indicate corresponding features to establish accuracy.
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Experiment 1: Polyp Surgery in the Sigmoid Colon. This sequence con-
tains 520 images, with a blurry image sequence from frame 304 to 361, due to
the colonoscope touching the colon wall. In Fig. 6(a) the polyp can be clearly
seen in the OC and VC images, including scale changes in the polyp. The fold
in the virtual image is likely due to deformation.

Experiment 2: Polyp Removal in the Sigmoid Colon. This sequence rep-
resents the removal of the polyp, and contains 160 images, with a blurry image
sequence between 90 and 111. Injection of water (bright area) in the vicinity of
the removed polyp caused the blurry image sequence. Though somewhat harder
to see, the green circles estimate the location of the polyp quite well in the OC
and VC images.

Experiments 3,4: Ascending Colon. This sequence in the ascending colon
contains 450 images and contained two blurry sequences, from 277 to 286 and
321-340; in both cases, the colonoscope was very close to a fold. Our algorithm
was able to track continuously through the two blurry sequences, as seen by the
well aligned OC and VC images in Figs. 6(c),6(d).

Our initial results are very promising. Despite the large changes in images in
these sequences and the artifacts (especially deformation) in colonoscopy images,
the region flow field accurately captures the global motion characteristics, easing
the corresponding pairs computation. In all of these experiments, it is possible
to identify features (folds, polyps, etc.) that provides qualitative accuracy and
confidence in the tracking system. It is worthy to note that our tracking system
tracked continuously through the two blurry image sequences in Figs. 6(c),6(d)
without interruption.

4 Conclusions

We have presented a region flow based algorithm to handle large motion induced
changes in colonoscopy video; this frequently happens when the colonoscope
touches a wall or fold, or is immersed in fluid. The region flow field provides the
computational basis for accurate and robust corresponding pairs computation,
which in turn permits estimating camera parameters. We show through a val-
idation experiment and four clinical colonoscopy sequences the effectiveness of
our algorithm to keep the tracking system functioning as it encounters blurry
image sequences; in our experiments, blurry image sequences ranged from 9 to
57 consecutive images. We are currently looking at two issues in improving our
method, (1) carefully examine the computational considerations in computing
region flow, and (2) improve the robustness of the egomotion estimation.
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Abstract. Endoscopy guided probe-based optical biopsy is a new method for 
detecting sites for tissue biopsy. These sites need to be re-targeted precisely and 
accurately in subsequent images of the same endoscopy session for treatment or 
for visual guidance of surgical instruments. A new system for re-targeting bi-
opsy sites and for characterising analytically their uncertainty is presented. It 
makes use of epipolar lines derived from multiple endoscopic views of the same 
site. It was tested on real patient data acquired during colonoscopy and gastro-
scopy. Gold standards of the biopsy site were obtained by Argon Plasma Co-
agulation tattooing. Re-targeting precision and accuracy were better than 
0.8mm which is sufficient for most clinical endoscopic applications. 

1   Introduction 

Optical endoscopic techniques are being investigated for tissue interrogation in vivo, 
in situ. They aim to target biopsies better and should ultimately result in non-invasive 
replacements for traditional histological or cytological analyses of pathologies, in par-
ticular malignancies in accessible surfaces such as the epithelium of colon, oesopha-
gus, or bladder [1]. A probe is often passed via an endoscope working channel and 
placed in contact with the tissue to interrogate a 0.5mm diameter site (Fig. 1 a)). It is 
a significant challenge to accurately re-target within the same session a site examined 
by optical biopsy, in order to take a co-localised tissue biopsy (Fig. 1 b), c)) [2, 3]. 

Navigation systems were developed for endoscope camera tracking in a pre-
operative CT image and for instrument guidance [4, 5]. Large re-targeting errors may 
occur since the tissue in the organ being investigated is likely to deform significantly 
between the CT examination and the endoscopy. A simultaneous localisation and 
mapping system for the oesophagus could also solve the re-targeting [6]. This ap-
proach requires salient points that remain visible over the course of the examination 
for reliable results. This is difficult during endoscopy as only a small tissue extent is 
illuminated. In our paper, a biopsy site pTi whose position is known in a previous  
endoscopic image Ii is mapped onto a target image T. This mapping is the fundamen-
tal matrix FiT. It is the composition of the camera’s intrinsic parameters with its 3D 
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motions [7]. A point in Ii is mapped onto T as an epipolar line, indicating the locus of 
possible matching points. An accurate line recovery requires the imaged tissue to be 
rigid or to only move rigidly in 3D space. Endoscopic images of the oesophagus typi-
cally show approximately 3cm x 3cm of tissue and this can be considered locally rigid 
[8]. Periodic tissue motions can be approximated by the affine transformation [8]. 

Re-targeting a biopsy site as the intersection of 2 epipolar lines was reported in [9]. 
We extend this method with epipolar lines derived from the locations of the biopsy 
site pTi in N different views Ii to improve accuracy and precision. We have imple-
mented a robust system for biopsy site re-targeting in gastroenterology. It uses com-
puter vision algorithms well-adapted to endoscopy [8, 10]. It measures analytically 
the re-targeting precision as an estimate of the accuracy. (i) First, we present a method 
for accurate and precise re-targeting of a potential tissue sampling point, which cannot 
be defined macroscopically in endoscopic images alone. (ii) Secondly, we present a 
method to characterise the re-targeted biopsy site uncertainty. Zhang defined the  
uncertainty of a vector as its covariance matrix and computed analytically the funda-
mental matrix uncertainty [11]. We applied this computation to the re-targeting prob-
lem. The analytical precision of the re-targeted biopsy site could be computed from its 
uncertainty in order to provide the endoscopist with a confidence measure. (iii) Fi-
nally, this system might be applied to any conventional or probe-based optical biopsy. 

?

b)a) c)

?

 

Fig. 1. Re-targeting problem: (a) endoscopic view with a probe; (b,c) forceps, for example, 
need to be guided to the biopsy site detected with the probe in order to take a biopsy 

2   Method 

2.1   Biopsy Site Re-targeting from Multiple Endoscopic Views 

Consider two views Ii and T of the same region (Fig. 2 a)). The epipolar line eli = 
FiT.pTi = [elix, eliy, elim]T is derived from the biopsy site pTi = [pTix, pTiy, m]T expressed 
in homogeneous coordinates in Ii and from the fundamental matrix FiT. Ideally, this 
line passes through the true biopsy site and the epipole eiT. It is the intersection of the 
line joining the 2 camera centres with the image plane T. Epipolar lines eli derived 
from the images Ii have an associated error [7, 11], so they do not pass through the 
true biopsy site and they do not have a unique intersection. The site is estimated as the 
re-targeted biopsy site p = [px, py, m]T that must satisfy the condition of triangulation 
with its match pTi [7]. This means that the two rays passing respectively through 
Camera centre i and pTi, and through Camera centre T and p, must meet at the posi-
tion of the biopsy site P in the 3D space (Fig. 2 a)). Two rays corresponding to the 
pair of matched points pTi ↔ p will meet in space if and only if the points satisfy the 
familiar relationship termed algebraic distance [7]: 
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0TT =⋅+⋅+⋅== melpelpel imyiyxixiTiiT elppFp . (1) 

As each pair of points pTi ↔ p has to satisfy equation (1), the biopsy site p is com-
puted as the point that minimises the sum of all the squares of the algebraic distances: 
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If the weights wi are all set at 1, we minimise the algebraic distances that are not 
physically meaningful, while a measure in the 2D image plane T is a meaningful 
quantity [11]. It can be the distance from the biopsy site p to eli. Thus, wi is deter-
mined as follows: 
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Fig. 2. Re-targeting principle: (a) the locus of the re-targeted biopsy site is indicated by the epi-
polar line eli in T; (b) Framework of the re-targeting 

2.2   Uncertainty and Analytical Precision of the Re-targeted Biopsy Site 

The inaccuracy of the epipolar lines eli cause uncertainty of the re-targeted biopsy site 

p. The covariance matrix of p noted ( )( )[ ]
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uncertainty. From this matrix, a 95% confidence region around p can be displayed or 
the precision of p can be provided. Given Λp, the precision of p is defined as: 

yx varvar pp +=precision . (4) 

A general random vector y∈ IRk is handled instead of p∈ IR2 for the derivation of Λ. 
The covariance matrix Λy(statistical) of y may be computed statistically from L samples 

yi of y. Thus, the mean of y is [ ] ∑
=

=
L

i
iiL L

E
1

1
yy and Λy(statistical) is approximated by: 

( )( )[ ]∑
=

−−
−

=
L

i

T

iLiiLi EE
L 1

][][
1

1
yyyyΛ cal)y(statisti . (5) 



 A System for Biopsy Site Re-targeting with Uncertainty 517 

As the statistical method is time-consuming, Zhang [11] computed analytically 
Λy(analytical) when y is measured from a random vector x∈ IRq so ( )xy ϕ= . This computa-
tion was applied to the fundamental matrix for uncertainty characterisation [11]. The 
matrix Λy(analytical) is derived from Λx and from the Jacobian matrix Dφ of φ as follows: 

[ ]( ) [ ]( )TEE xDΛxDΛ xal)y(analytic ϕϕ= . (6) 

When y is recovered from x by the minimization of a criterion function, φ is unknown 
and Dφ is computed with the implicit function theorem, which states: 

Proposition: Let a criterion function C: IRq × IRk → IR be a function of class C∞, x0 ∈  
IRq the measurement vector and y0∈ IRk a local minimum of C(x0, z). If the Hessian H 
of C with respect to z is invertible at (x, z) = (x0, y0) then there exists an open set U’ 
of IRq containing x0 and an open set U” such that for (x, y) in U’×U” there is an 
equivalence between the two relations ‘y is a local minimum of C(x, z) with respect to 
z’ and ‘there exists a C1 function φ such that y = φ(x)’, and: 
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where S is the value of the criterion C at the minimum. 
In the case of the re-targeting of a biopsy site p with a series of N independent epi-

polar lines so p minimises the equation (2), the derived criteria Ci have the form: 
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2.3   Re-targeting System 

The epipolar lines eli can be derived for the biopsy site re-targeting once the funda-
mental matrices FiT have been computed for each pair of images Ii ↔ T (Fig. 2 b)). 
Feature detection and matching: Images Ii and T need to be registered by detecting 
features in both images and by matching them. The endoscope acquires between Ii 
and T a series of intermediate images showing a probe in contact with the tissue and 
suddenly the tissue alone. As the displacement between two consecutive images is 
small, a feature detector and tracker through a video stream like the Shi and Tomasi 
tracker [12] is well-adapted. Features correspond to corners and are at the centre of 
template windows of Ii. They are tracked between two consecutive images, assuming 
a small translation of the template. A refinement of the template position is performed 
between the first image Ii, where the features were initially detected, and the current 
image, assuming an affine deformation. 
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Outliers’ removal and computation of the fundamental matrix: The tracker may 
generate outliers that are wrong feature matches. They are detected using the Maxi-
mum A Posteriori Sample Consensus (MAPSAC) method [13]. This is a Monte 
Carlo-like process that draws samples of the matches to estimate the fundamental ma-
trix FiT and the inliers that return the best fit. Seven matches are drawn for each sam-
ple to estimate FiT with the 7-point algorithm [7]. The result is refined by non-linear 
optimisation under the constraints that the rank of FiT is 2 and its norm is equal to 1. 
 
Biopsy site re-targeting and use of the uncertainty: A 95% error ellipse can be dis-
played around the re-targeted biopsy site and the precision can be returned. 

3   Experiments and Results 

3.1   Validation of the Analytical Precision by Simulations 

Goal and method: The analytical precision (Eq. 4, Eq. 8) was compared to the statis-
tical precision (Eq. 5). Three-D points from an irregular semi-tubular surface (Fig. 3 
a)) were projected onto image planes Ii and T of various poses of a simulated camera. 
Eighty eight images were used to have the same number of images as for endoscopic 
sequences. They were 700 pixels x 700 pixels big as for endoscopic images. The pro-
jected points were the features. The biopsy site to re-target was selected from these. 

A first experiment checked the goodness of the analytical precision in the presence 
of noise on the features. For each pair Ii ↔ T, 20% of the matches were displaced from 
20 pixels to 40 pixels to create outliers. For a Gaussian noise of standard deviation 
varying from 0.5 pixels to 4 pixels and added to the inliers, the re-targeted biopsy site 
p and its analytical precision were estimated. This experiment was repeated 100 times 
to estimate, statistically, the covariance matrix and precision as in (Eq. 5) and (Eq. 4). 

A second experiment checked the goodness of the analytical precision in the pres-
ence of outliers among the matches. A certain percentage of the matches were dis-
placed as previously to create outliers in each pair Ii ↔ T, and a Gaussian noise of 
standard deviation 1.5 pixels was added to the inliers. The percentage of outliers was 
varied from 0% to 40%. The analytical precision was computed for each percentage 
and the statistical precision was computed from 100 repeats of the experiment. 

Results and discussion: The analytical and statistical precisions had similar values 
(Fig. 3 b) and c)). In addition, the re-targeted biopsy site tended to be less precise 
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Fig. 3. a) Generated 3D points on an irregular semi-tubular surface; re-targeting precisions as 
functions of b) the noise on the features and of c) the percentage of outliers among the matches 
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when the noise and the percentage of outliers increased. Hartley and Zhang [7, 11] 
explained that the epipolar lines are determined with less accuracy in the presence of 
greater noise or with a higher percentage of outliers. Thus, they pass further away 
from the true biopsy site and their inaccuracy propagates to the re-targeted site. 

3.2   Analytical Precision and Accuracy of the Re-targeting with Patient Data 

Goal and method: The analytical precision and the accuracy of the re-targeting were 
estimated with real patient data from gastroscopy and colonoscopy. The data were ac-
quired with both white-light and narrow band imaging wide-field endoscopes. Eight 
sequences were acquired on 4 patients during routine Barrett’s Oesophagus surveil-
lance procedures. Three other sequences were acquired on 2 patients during colono-
scopy. For the gastroscopies, Argon Plasma Coagulation (APC) was used to create 
marks or gold standards of the biopsy site at the tissue surface. The re-targeting was 
tested on sequences showing the APC mark under various viewpoints (Fig. 4). For 
some sequences, images Ii showed the probe touching the mark and image T showed 
the mark alone (Fig. 4). For each sequence, the biopsy site position was tracked 
manually from I1 to T for the re-targeting in T. A region of interest around the mark 
in T was used as a mask to remove the corresponding features which would positively 
influence the accuracy of the fundamental matrix. As no mark was made in the colon, 
the biopsy site was selected as the probe tip or a vessel corner. The gold standard in T 
was given by interactive, manual tracking. The APC mark or the size of the probe 
provided a scale in T to convert the measures from pixels to millimetres. The preci-
sion was computed analytically. The accuracy of the re-targeting was computed in the 
2D image T as the distance between the re-targeted biopsy site and the gold standard. 
This distance and the precision value are small enough to approximate the corre-
sponding tissue extent as a plane. Under this assumption, the precision and the accu-
racy in millimetres in the 2D image are representative of the true measures in 3D. 
 
Results and discussion: The accuracy and the analytical precision were 0.8mm or 
better (Table 1). The analytical precision was a reliable estimate of accuracy, show-
ing that bias was minimal thus helping increase confidence in the re-targeting result. 

The most precise and accurate results were obtained with sequences that were ac-
quired without a probe in the FOV: robust features were detected with great disparity 
on the vessels and were tracked more easily. This guarantees accurate epipolar lines 
[7, 11]. In addition, the endoscope camera was moved freely and the resulting epipo-
lar lines formed a bundle subtending a large angle. Their intersections were, therefore, 
close to the true position of the biopsy site and restricted the search space for the re-
targeting. For Patient 4 Sequence 2 and Patient 5 Sequence 1, the images were more 
blurred than the other sequences, raising the possibility that the features were tracked 
with greater uncertainty and the epipolar lines were consequently less accurate. Only 
a small number of epipolar lines were used for the estimations, and they all subtended 
small angles to each other. Thus, their intersections could be further away from the 
true position of the biopsy site and the re-targeting was done with more uncertainty. 
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Fig. 4. Three endoscopic sequences: a), b), c), d) are images extracted from a gastroscopic se-
quence where the biopsy site (mark) was observed under various viewpoints; e), f), g), h) are 
from a gastroscopic sequence with a probe; and i), j), k), l) are from a colonoscopic sequence 

Table 1. Precision (Eq. 4) derived analytically from (Eq. 8) and accuracy (distance between the 
gold standard and the re-targeted biopsy site) of the re-targeting in pixels and in millimetres 

Sequence Location Probe? FOV (pixels ; cm) Precision 
(pixels ; mm)

Accuracy 
(pixels ; mm) 

Patient 1 Sequence 1 Oesophagus Yes (339 x 216 ; 2 x 2) (1.2 ; 0.12) (1.3 ; 0.13) 
Patient 1 Sequence 2 Oesophagus No (339 x 216 ; 5 x 2) (0.3 ; 0.05) (0.4 ; 0.08) 
Patient 2 Sequence 1 Oesophagus No (283 x 180 ; 3 x 2) (1.0 ; 0.05) (1.3 ; 0.07) 
Patient 3 Sequence 1 Oesophagus No (283 x 180 ; 6 x 2) (0.6 ; 0.06) (0.9 ; 0.09) 
Patient 3 Sequence 2 Oesophagus Yes (283 x 180 ; 5 x 1) (3.0 ; 0.20) (6.3 ; 0.42) 
Patient 4 Sequence 1 Oesophagus Yes (376 x 280 ; 1 x 1) (2.6 ; 0.10) (4.1 ; 0.16) 
Patient 4 Sequence 2 Oesophagus Yes (376 x 280 ; 7 x 2) (4.4 ; 0.44) (4.5 ; 0.45) 
Patient 4 Sequence 3 Oesophagus Yes (376 x 280 ; 1 x 1) (15.0 ; 0.40) (15.0 ; 0.40) 
Patient 5 Sequence 1 Colon Yes (515 x 475 ; 3 x 3) (5.1 ; 0.72) (5.7 ; 0.82) 
Patient 5 Sequence 2 Colon No (515 x 475 ; 3 x 3) (0.9 ; 0.11) (1.5 ; 0.18) 
Patient 6 Sequence 1 Colon No (442 x 395 ; 3 x 3) (1.5 ; 0.10) (2.0 ; 0.13) 

4   Conclusion 

A biopsy site can be re-targeted in endoscopic images with N epipolar lines, derived 
from previous images where the biopsy site position is known and seen under differ-
ent views. These views can be generated by twisting the head of the endoscope and by 
moving it gently up and down, while the probe remains at its location at the tissue sur-
face. Sophisticated optics of endoscopes makes it easier to detect subtle features such 
as mucosal vascular patterns for epipolar line computation. This paper presents also a 
method for the analytical characterisation of the uncertainty of the re-targeted biopsy 
site to provide the endoscopist with a confidence measure, for example the precision, 
with which he/she can return to the original site. The system was tested on colono-
scopy and gastroscopy data of patients. Analytical precisions and distances between 
the gold standard and the re-targeted biopsy site were better than 0.8mm. 

Continued development will focus on a system of image-guided interventions. Such 
a system would detect microscopic pathologies by probe-based optical biopsy in com-
bination with wide-field endoscopy and pre-procedure medical imaging (CT/MRI). It 
would also guide instruments to identified targets. To this end, the biopsy site indicated 
by the tip of the probe needs to be localised automatically. Moreover, as the endoscope 
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may have fast motions and occlusions in the field of view may occur due to air/water 
bubbles, the Shi and Tomasi tracker may fail to track the features. Thus, future work 
will need to focus on the feature detection and matching. 
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Abstract. A video recording of an examination by Wireless Capsule En-

doscopy (WCE) may typically contain more than 55,000 video frames,

which makes the manual visual screening by an experienced gastroen-

terologist a highly time-consuming task. In this paper, we propose a

novel method of epitomized summarization of WCE videos for efficient

visualization to a gastroenterologist. For each short sequence of a WCE

video, an epitomized frame is generated. New constraints are introduced

into the epitome formulation to achieve the necessary visual quality for

manual examination, and an EM algorithm for learning the epitome is

derived. First, the local context weights are introduced to generate the

epitomized frame. The epitomized frame preserves the appearance of all

the input patches from the frames of the short sequence. Furthermore,

by introducing spatial distributions for semantic interpretation of im-

age patches in our epitome formulation, we show that it also provides a

framework to facilitate the semantic description of visual features to gen-

erate organized visual summarization of WCE video, where the patches

in different positions correspond to different semantic information. Our

experiments on real WCE videos show that, using epitomized summariza-

tion, the number of frames have to be examined by the gastroenterologist

can be reduced to less than one-tenth of the original frames in the video.

1 Introduction

In the early beginning of this century, Wireless Capsule Endoscopy (WCE) was
introduced for the examination of the gastrointestinal tract, especially the small
intestine where the conventional endoscopy is unable to reach [5]. Wireless cap-
sule endoscopy is a non-invasive imaging technique. It has now changed the way
doctors and clinicians performing the examination. The examination is no longer
a real-time process as in traditional endoscopy. After the data recording (in the
form of a video) is done by the capsule going through the entire gastrointestinal

T. Jiang et al. (Eds.): MICCAI 2010, Part II, LNCS 6362, pp. 522–529, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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tract, clinicians have to sit down in front of a computer to review a video contain-
ing possibly more than 55,000 frames, and select the frames he or she considers
important. This process is very time consuming, requiring full concentration of
the gastroenterologists throughout.

Existing computational methods on WCE image processing focus on disease
detection, e.g. bleeding detection [6, 7, 8, 10, 9, 11] so that gastroenterologists
do not need to go through the entire video sequence. However, in actual clinical
practice, the gastroenterologist would always like to confirm the detection results
generated by the software and not taking any risk of missing something in the
WCE examination. This motivates us to explore computational methods that
can reduce the time spent in the examination by gastroenterologist. To our
knowledge, up to now, the only relevant work to address this problem is by
Iakovidis et. al [1]. They proposed an unsupervised summarization method of the
WCE video by selecting the most representative images from the video. First,
the frames in the whole video are clustered based on symmetric non-negative
matrix factorization initialized by the fuzzy c-means algorithm. Then, one or
a few representative frames are selected from each cluster. It can reduce the
number of frames to be examined down to about 10% compared to the original
video. However, such key frame extraction technique would inevitably miss some
information in the 90% thrown away frames, even though they are similar to the
representative frames in global appearance.

In this paper, we propose a novel method of epitomized summarization of the
WCE video for efficient visual examination by gastroenterologist. The epitome
model can generate a condensed summary of the original video. To ensure the
necessary visual quality of the generated epitome for clinical examination, we
introduce the constraint for local context preservation. We further introduce the
spatial distributions for various semantic interpretations of the local features.
Hence, we show that the epitome model can be used to generate semantically
organized summarization which is helpful to let the doctor to naturally focus on
the important visual information. The most significant benefits of the proposed
method are that it produces a highly condensed summarization (less than 10%
of original video volume) with almost no loss of visual information and provides
a framework to flexibly organize the visual information in the summarization.

The rest of the paper is organized as follows. Section 2 describes the epitomized
summarization model, i.e. the general formulation, the introduced constraints,
and the derived learning algorithm. Section 3 presents the experimental results
and quantitative evaluations on real data from the hospital. The conclusions are
given in Section 4.

2 Epitomized Summarization

Epitome modeling
The epitome model seeks an optimally condensed appearance representation
under which all the patches in the input image can be explained from the epit-
ome [4]. It does not take into account the visual quality of the epitome. The
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patches in the epitome may be distorted and artifacts may be introduced in
order to explain different input patches. Also, important features with large lo-
cal variances conveying higher degree of saliency of the local context may be
smoothed out in the epitome. These adversary effects render certain areas in the
epitome not recognizable to human, as shown in Fig. 1. In addition, the patches
from the images could be placed anywhere in the epitome due to the flat prior
of mapping. As a result, the epitome is too cluttered for visual examination by
human. We introduce the constraints for local context preservation and semantic
organization to generate the epitomized summarization of high visual quality for
visualization.

To generate the epitomized summarization of a short sequence, we extend
the image epitome [3] to learn the epitome from a set of N input image frames
{In}N

n=1. The learning algorithm compiles a large number of patches drawn from
these training images. Similar to [2, 3], the epitome model is formulated as a
specified generative model.

Let {Znk}P
k=1 be a set of P patches from the image In. Each patch Znk

contains pixels from a subset of image coordinates Snk in In. For each patch
Znk, the generative model uses a set of hidden mapping Tnk from the epitome
e to the coordinates i ∈ Snk in In. Given the epitome e = (μ,φ) and mapping
Tnk, a patch is generated by copying the corresponding pixels from the epitome
mean and variance map,

p(Znk|Tnk, e) =
∏

i∈Snk

N (zi,k,n; μTnk(i), φTnk(i)) (1)

where coordinate i is defined on the input image. Under this generative model,
it is assumed that each patch from every image is generated independently. The
joint distribution is:

p({{Znk, Tnk}P
k=1}N

n=1, e)=p(e)
N∏

n=1

P∏
k=1

p(Tnk)wnk

∏
i∈Snk

N (zi,k,n; μTnk(i), φTnk(i))

(2)
where p(e) = const, wnk is introduced for local context preservation, and
Gaussian-like spatial distributions for p(Tnk) are used for semantic organization
of visual features in the epitome.

Local context preservation
In many cases, distinctive local contexts contain significant local variation and
often occupy small parts in the WCE images. To preserve the visual quality of
distinctive local contexts in the epitomized summarization, a patch weight is
introduced which favors the patch containing rich local context, i.e. having large
local variance. The patch weight is defined as wnk = f(σ2

Znk
), where f() is an

increasing function of the variance. In this paper, a sigmoid function is used

wnk =
(
1 + exp{−38(σ2

Znk
− 0.1)}

)−1
+ 0.003 (3)

The effect of patch weight on the learning of the epitome from WCE images is
shown in Fig. 1. Since the smooth parts of the normal tissues are abundant, more
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Fig. 1. The epitomes learnt from a sequence of 10 consecutive image frames. The left

10 images are the original frames with size of 288×288 pixels. The right two images are

the enlarged epitome images. The epitome size is 200×200 pixels. The first epitome is

generated by existing epitome formulation, and the second is the epitomized summa-

rization generated by proposed method. The first epitome is too cluttered for human

interpretation. In the second epitome, one can find the fine details in the regions of

normal tissues from all the original frames.

details of rich context from all the 10 frames are learnt and placed in the region
for normal tissues in the epitomized summarization. Semantic Organization
A number of techniques for WCE image classification have been developed in the
past decade. Even though the accuracy of the classification is not perfect, but
if the semantic information of the classification can be integrated in the WCE
summarization, it will be helpful for doctors to interpret the WCE videos.

In this work, we trained a Neural Network (NN) to classify each patch as
one of three categories: Normal tissues, Non-informative contents (i.e. bubbles,
fluids, and feces), and Suspected tissues (i.e. bleeding, tumor, lesion etc.). In a
short sequence, if there are suspected tissues, we would like to place the related
patches in the central region of the epitome summarization. The patches of
normal tissues and non-informative contents are placed gradually further away
from the central area in the epitome. In this way, if there are suspected tissues,
it is easy to catch the attention of the gastroenterologist. This arrangement
of patches in the summarized epitome according to the semantic attributes is
naturally helpful to the gastroenterologist.

To implement the semantically organized epitome, we use three spatial distri-
butions for the patches of the three semantic categories, as shown in Figure 2.
For an input patch Snk from one image frame of the short sequence, let Tnk(i) be
a mapping from the epitome e to the image coordinate i, and T0 be the mapping
to the center of the epitome. The prior of the mapping is defined as

p(Tnk) =

⎧⎪⎪⎨⎪⎪⎩
1

CS
exp
{
− ‖Tnk(i)−T0‖2

σ2
S

}
, if Snk ∈ Suspected tissues

1
CN

exp
{
− ‖Tnk(i)−T0‖2

σ2
N

}
, if Snk ∈ Normal tissues

1/|e|, if Snk ∈ Non-informative contents

(4)

where σS < σN , |e| is the size of the epitome, and CS and CN are normalization
constants.
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Fig. 2. The spatial distributions of the priors for patches of different semantic cat-

egories. The center one is for Suspected tissues, the surrounding one is for Normal

tissues, and the flat one is for Non-informative contents.

EM learning
The epitomized summarization is generated by learning a generative model. Sim-
ilar to [3], the variational inference is used to derive a new EM algorithm for the
epitome formulation (2). The epitome’s parameters and mapping distributions
are estimated by optimizing the log likelihood of the observed patches using
the approximate posterior to compute the lower bound on the log likelihood as
in [3], we have the following updating equations: In the E-step, the posterior
distribution over the hidden mappings Tnk is set to:

q(Tnk) ∼ p(Tnk)wnk

∏
i∈Snk

N (zi,n,k; μ̂Tnk(i), φ̂Tnk(i)) (5)

In the M-step, from ∂B/∂μj = 0 and ∂B/∂φj = 0, the epitome mean μ̂j and
variance φ̂j are updated as:

μ̂j =

1
N

∑N

n=1

∑M

m=1
znm +

∑N

n=1

∑P

k=1

∑
i∈Snk

∑
Tnk(i)=j

q(Tnk)
zi,n,k

2φ̂j

M +
∑N

n=1

∑P

k=1

∑
i∈Snk

∑
Tnk(i)=j

q(Tnk)
2φ̂j

(6)

φ̂j =

∑N

n=1

∑P

k=1

∑
i∈Snk

∑
Tnk,Tnk(i)=j

q(Tnk)(zi,n,k − μ̂j)2∑N

n=1

∑P

k=1

∑
i∈Snk

∑
Tnk,Tnk(i)=j

q(Tnk)
(7)

When the EM learning is complete, the epitomized summarization, i.e. the
condensed representation of the short sequence, is generated with minimal loss
of information.

3 Results

To illustrate and evaluate the performance of epitomized summarization of WCE
videos, experiments were conducted on real WCE data from the hospital. In these
experiments, two kinds of epitomized summarization were generated and eval-
uated. The difference between them is the computing of the prior distribution
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Fig. 3. Three more examples of learned epitomized summarization. From top to bot-

tom, the examples show the cases of containing bleeding, bubbles, and substantial

changes between consecutive frames. From the examples of bleedings, one can find the

visual features of bleedings are concentrated and enhanced in the central regions in the

semantically organized epitomes.

p(Tnk). For the normal epitomized summarization, we randomly select a frame
from the short sequence to initialize the epitome. That is equivalent to initialize
the prior distribution p(Tnk) with an image frame. So that learnt epitome sum-
marization looks like the frames in the sequence, but not the same as any one
of them. For the second type of epitomized summarization, the distributions for
semantic descriptions given by (4) are used to generate the semantically orga-
nized epitome. When reviewing such epitomes, the doctors may naturally pay
more attentions to the suspected tissues appearing in the central region and
less attention to the non-informative contents appearing around the margins of
the epitome image. Three more examples of normal epitomized summarization
(NES) and semantically organized epitome summarization (SOES) are shown in
Figure 3. For each row in the figures, the 10 images on the left (in two rows of
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Fig. 4. The curves of the criteria over the length of the sequence N , where the left one

is for ASSD, the middle one is for MSSD, and the right one is for PSNR
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five columns) are the consecutive frames of the short sequence, and right-most
two columns are the learnt NES and SOES. In these examples, the image size is
288×288 pixels, the epitome size is 200×200 pixels, and the patch size for epit-
ome learning is 8×8 pixels. These examples show the visual quality of the epito-
mized summarization for the cases of bleedings, normal tissues, non-informative
contents, and large motion between consecutive frames, etc. To quantitatively
evaluate the visual quality of epitomized summarization, three criteria are used.
First, for each patch Znk in the images of the sequence, we can find an epitome
patch ei which has the smallest difference with the image patch. The loss of the
patch can be characterized as the normalized SSD (sum of squared difference):

SSDnk = min
ei∈e

1
|ei|
‖Znk − ei‖22 (8)

where |ei| is the size of the patch. Based on this, three statistics can be com-
puted as

ASSD =
1

NP

N∑
n=1

P∑
k=1

SSDnk (9)

MSSD = max
∀n,k

{SSDnk}k=1:P,n=1:N (10)

PSNR = 20 log10

(
MAXI√
ASSD

)
(11)

where ASSD is the average of SSDs for all patches of the image frames from
the sequence, MSSD is the maximal SSD for all the patches of the images in
the sequence which characterizes the maximum loss, and PSNR is the peak
signal-to-noise ratio.

We randomly select 50 sequences from the WCE videos of 7 patients, among
them, half of the sequences contains various cases of bleedings. Each sequence
maximally contains 30 consecutive frames, so that totally 1500 frames are used
in the testing.

Let N be the length of the short sequences for summarization. Obviously, the
larger the N is, the larger the reduction rate (RR = N : 1) is, but the loss of
visual information will also increase (i.e. the ASSD will increase and PSNR
will decrease). The loss of visual information with respect to the sequence length
are evaluated. The curves of ASSD, MSSD and PSNR for N being 5, 10, 15,
20 and 25 are shown in Figure 4. It can be seen that there is no significant
change of visual information loss even for N = 25. When N = 15 is used, i.e. at
the point of RR = 15 : 1, the criteria values are: ASSD = 0.00297, MSSD =
0.0200, and PSNR = 25.33, which means the visual quality is acceptable for
human examination [12]. The evaluation results indicate that, using epitomized
summarization, it is possible to reduce the number of images down to less than
10% of the original videos with almost no loss of visual information for human
examination.
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4 Conclusion

We have proposed a novel approach of epitomized summarization of WCE videos
to reduce the time spent on manual review of the recording by gastroenterologist.
By introducing the constraints for local context preservation and semantic orga-
nization into the existing epitome framework, we show that the epitome technique
can not only generate a highly condensed summarization with almost no loss of vi-
sual information, but also generated semantically organized visual summarization
to naturally capture doctor’s focus on relevant information. Quantitative evalua-
tions have shown that it can reduce the frame number down to less than 10% with
almost no loss of information. In our future work, we plan to extend the semanti-
cally organized epitome for WCE image registration [13].
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Abstract. In this paper, we study the problem of finding organization

patterns of chromosomes inside the cell nucleus from microscopic nucleus

images. Emerging evidence from cell biology research suggests that global

chromosome organization has a vital role in fundamental cell processes

related to gene expression and regulation. To understand how chromo-

some territories are neighboring (or associated) to each other, in this

paper we present a novel technique for computing a common association

pattern, represented as a Maximum Association Graph (MAG), from

the nucleus images of a population of cells. Our approach is based on an

interesting integer linear programming formulation of the problem and

utilizes inherent observations of the problem to yield optimal solutions.

A two-stage technique is also introduced for producing near optimal ap-

proximations for large data sets.

1 Introduction

Chromosome territory refers to a confined region within the cell nucleus where
each chromosome is located. Empirical findings suggest that high level spatial
organization of chromosome territories affects fundamental molecular biology
processes [1,2,3]. In recent years, a significant amount of effort has been focused
on studies of its influence on genomic structure and responsibility for specific
nuclear functions, such as morphogenesis, transcription and splicing. Investigat-
ing association (spatial proximity) among chromosome territories is a necessary
component for any study of the higher-order chromatin distribution effect on
nuclear functions. However, despite recent developments in microscopy imag-
ing and labeling techniques, accurately detecting such a pattern still remains a
challenge.

To investigate this problem, one promising approach is to first represent the
high level organization of the chromosome territories in each cell nucleus as a
� This research was partially supported by NSF through CAREER award CCF -

0546509, ROI grant IIS-0713489 and NIH grant GM-072131.
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(a) (b)

Fig. 1. When finding a possible alignment from (a) to (b) GMG algorithm will choose

the one with cost 4 (relabeling vertex 5 to 6, adding new vertex 5 and two incident

edges). However, in matching where relabeling is disallowed, the only possible alignment

is of cost 7 (removing two edges incident to vertex 5 and inserting vertex 6 with four

incident edges).

graph, called association graph, and then find the common structural pattern
from a set of association graphs corresponding to a population of cells. In each
association graph, vertices represent the individual chromosome territories, and
edges (between pairs of vertices) indicate the two corresponding chromosome
territories are spatially proximate (or associated) to each other. Each vertex
has a label which is its chromosome number. Since each chromosome has two
homologs (or copies), a label is shared by a pair of vertices.

To find the common structural pattern from a set of association graphs, one
way is to use the concept of graph median [4]. In the graph median problem, the
input is a set of graphs with possible labels associated with nodes. The objective
is to compute a new graph, called median graph, so that the distance between the
median graph to the input graphs is minimized, where the distance between two
graphs is normally defined as their edit distance. For the median graph problem,
early results [4,5] are all of heuristic nature and do not have a bounded running
time. Recently, a polynomial time combinatorial algorithm, called Generalized
Median Graph(GMG) [6], was introduced by Mukherjee et al. Their algorithm
uses a generalized distance function which allows vertex labels and edge weights,
and produces near optimal solutions.

Despite its obvious advantages, the GMG (or any other median graph) al-
gorithm also has two limitations when used for finding the association patterns
from association graphs. First, due to its emphasis on finding the structural sim-
ilarity between graphs, the GMG tends to match vertices with similar degrees. A
possible outcome is that the GMG could match two vertices with different labels.
While this is in accordance with the edit distance definition, it gives misleading
semantic interpretation in our application to nuclear images, since mismatching
has little biological meaning (see Figure 1). Second, the GMG requires graphs
with unique predefined labeling. However, in association graphs, each label is
shared by a pair of vertices. This is because in nuclear images each chromosome
(including its two copies) is uniquely identified by its color, see Fig.2. Thus we
are facing the challenge of how to correlate labels of chromosome copies among
different cells. Even in the cases when professional expertise is at hand, it is not
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Fig. 2. Three different cell images (from the input set), obtained by superimposing

z-stack images, containing eight chromosome colors(labels)

always possible to come up with a reliable mechanism for mapping copies of the
same chromosomes between different cells.

To overcome all these difficulties, we propose in this paper a novel technique
called Maximum Association Graph. Our approach maximizes the structural
similarity between the computed new maximum association graph (MAG) and
the set of input association graphs. During the matching process, it explicitly
disallows matching of the vertices with different labels, and automatically es-
tablishes the correspondence of the same copy of the chromosome over all cells,
thus eliminating the possible human errors. Also, it allows the user to specify a
frequency threshold for determining the existence of an edge in the association
pattern MAG (i.e., an edge in MAG if and only if it appears in a certain percent-
age of the input graphs). With this threshold, we could obtain the association
patterns at different similarity levels.

Our approach is based on an mixed integer linear programming (MILP) for-
mulation, and can be solved optimally using an optimization software pack-
age CPLEX for middle sized data sets. For large data sets, we also propose a
two-stage approximation technique for obtaining near optimal polynomial-time
solution.

2 Method

2.1 Maximal Structural Matching

Let LV be a finite set of node labels and IL ⊆ N be the set of indices. A labeled
undirected graph G, in which existence of more than one vertex with the same
label is permitted, is defined as a triple G ≡ (V, E, fv) where V is the vertex set,
E is the edge set, and fv : V −→ (LV , IL) is a mapping which to every vertex v
in V assigns unique pair (l, k), where l ∈ LV and k ∈ IL. We call node v a k-th
instance (copy) of label l in G. In this way, each edge e ∈ E between v1 and
v2 is uniquely identified with 4-tuple (l1, k1, l2, k2), where f(v1) = (l1, k1) and
f(v2) = (l2, k2).

Let G = {G1, G2, . . . , Gn} be a collection of graphs where for every Gi =
(Vi, Ei, f

v
i ), the following conditions hold: Vi ⊆ V and Ei ⊆ E, and there is
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no restriction on the cardinality of nodes in the graphs in G, i.e., |Vi| �= |Vj |,
Gi, Gj ∈ G.

Structural pattern for G is obtained as maximal association graph, Ĝ =
(V̂ , Ê, fv), where V̂ =

⋃
i Vi and Ê ⊆ V̂ × V̂ . As noted before, finding such

a graph, Ĝ, identifies the maximal set of edges between nodes in V̂ that are con-
sistent with labeling in all input graphs. This induces label preserving mapping
from vertices in every input graph Gi to the set of vertices in Ĝ. Which mapping
is valid for particular node in some input graph is not known in advance, hence
to obtain the optimal solution, we must look for all mapping simultaneously.
This condition leads to the choice of mathematical optimization as a natural
problem modeling tool. Although technique can be easily extended to deal with
more general situation, we restrict our presentation to the case when each label
has exactly two copies in every graph.

2.2 Mixed Integer Linear Programming Formulation

In our approach, we actively try to match vertices between every input graph and
the resulting Ĝ. A matching of an edges follows implicitly. Since, only matching
of nodes with the same label is allowed, each node v in i-th graph representing
k-th instance of label j, denoted as v = (j, k), v ∈ Vi, can be matched to k̂1-
th or k̂2-th instance of j-th label in graph Ĝ. These two possible matchings
have corresponding binary variables: αi,j,k,k̂1

and αi,j,k,k̂2
. Value of one denotes

that particular matching holds in the global solution. Similarly, for each node
in G, we introduce corresponding variables for all possible assignments. Thus,
the set of constraints guaranteeing that each node in G has one and only one
corresponding node in Ĝ is given as:∑

k

αi,j,k,k̂ = 1, ∀i, j, k̂ (1)∑
k̂

αi,j,k,k̂ = 1, ∀i, j, k

For each potential edge in Ê between instance k̂1 of vertex labeled ĵ1 and instance
î2 of vertex labeled ĵ2 there is a corresponding binary variable γ̂ĵ1,ĵ2,k̂1,î2

, which
has the value of 1 if there is an edge between vertices (ĵ1, k̂1) and (ĵ2, k̂2) in Ĝ,
and 0 otherwise.

For each induced matching of an edge between instance k1 of vertex labeled
j1 and instance i2 of vertex labeled j2 in Gi to an edge between instances k̂1

and k̂1 of corresponding vertex labels in Ĝ there is an associated real variable
βi,j1,j2,k1,k2,k̂1,k̂2

.
Formally, we denote an existence of an edge between vertices (j1, k1) and

(j2, k2) in the input graph Gi with γi,j1,j2,k1,k2 . Now, we can formulate matching
constraint for such an edge as:

βi,j1,j2,k1,k2,k̂1,k̂2
= αi,j1,k1,k̂1

∗ αi,j2,k2,k̂2
∗ γ̂ĵ1,ĵ2,k̂1,k̂2

∗ γi,j1,j2,k1,k2 (2)
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In other words, an existing edge (j1, j2, k1, k2) in input graph Gi can be matched
to an existing edge (ĵ1, ĵ2, k̂1, k̂2) in Ĝ if and only if its belonging vertices (j1, k1)
and (j2, k2) are matched to (ĵ1, k̂1) and (ĵ2, k̂2) in V̂ . Constraints given in (2)
are in the nonlinear form, however using standard strategy of product term
linearization in a constraint we can transform each constraint of this type to a
set of inequality constraints.

For an edge in Ĝ to be present, its matching defined analogue must appear
in at least a predefined percentage P of input graphs. This is ensured with the
following set of constraint:∑

i

βi,j1,j2,k1,k2,k̂1,k̂2
≥ γ̂ĵ1,ĵ2,k̂1,k̂2

∗ P ∗ |G| (3)

where P denotes the specified frequency threshold and |G| is the cardinality of
input set.

Setting the expression for optimization function as the maximization of both
number of edges in resulting graph as well as number of possible edge matchings
from the set of input graphs we obtain the final mixed integer programming
form.

2.3 Extensions to the Method

Including Pairwise solutions. In a restricted case we consider a pair of node
labels and their belonging copies. Subgraphs obtained by isolating them from all
other node instances in each graph from the input set G are passed as an input
to algorithm, eq. (1-3). Solution for this subproblem provides the upper bound
on the number of associations between four nodes in Ĝ, two for each label from
the chosen pair. In the first phase we solve MILP for each of

(|LV |
2

)
pairs in order

to obtain the upper bound for each of γ̂ĵ1,ĵ2,k̂1,k̂2
, Ĝ edge indicator variable. In

the second phase we find the MILP solution, eq. (1-3), for original input set,
but this time, adding set of upper bound constraints obtained in the first phase.
Introducing new constraints is meaningful since it reduces feasible space and
decreases overall running time without affecting the quality of the solution.

Two-stage algorithm. Mixed integer linear programming proposed above, eq.
(1-3), can be solved optimally applying standard techniques of branch and cut
available in commercial or free solvers. However, when dealing with large graphs
or with increasing the size of input sets running time may considerably increase.
Therefore we develop a modification for trading a little of accuracy for great
reduction in the running time. We divide input sets in subgroups, and then solve
problem on each of them optimally. We merge subgroup solutions by solving the
MILP, eq. (1-3), again but this time on subgroup solutions given as input. We
assign a proper weight to every edge denoting the number of graphs in which
it appears. Exhaustive enumeration analysis suggests that a solution obtained
in this way is close to the one obtained by solving MILP without partitioning.
Over 95% of edges were preserved in approximative solution comparing to the
optimal one.
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3 Experimental Results

To test the validity of the method we calculated a maximum association graph
on the input set of 15 randomly generated graphs. Graphs were created in the
form of adjacency matrices mimicking the sparsity property of graphs obtained
from cell nucleus images by having roughly the same number of edges. Adjacency
matrices had at most 16 vertices with each vertex label appearing at most twice,
which correlates with our real data graph size. A random graph A and then its
complement Ã were generated. We populated the first set with P ∗ 15 number
of permuted versions of graph A, and the second set with (100% − P) ∗ 15
number of permuted versions of graph Ã. Merging two sets together we obtained
the input set. Using CPLEX as MILP solving tool, we were able to get the
optimal solution i.e. calculated maximum association graph was identical to the
generated input graph A in all test cases.

Further, the validation process considered graphs with added noise. We de-
signed a procedure similar to those proposed in [7,8]. Following the steps from
the previous paragraph a random graph A was created. We used graph A as the
basis for populating the input set: For each new member of input set a copy
of A, A′, was made and randomly permuted with label preserving permutation
matrix. To introduce the noise, removal of each edge in A′ was considered with
the probability denoted as noise parameter, E. In this way we ensured that all
generated graphs were proper subgraphs of A having the expected number of as-
sociations equal to the value of noise parameter, E. Maximum association graph
was compared with each graph in the input set individually. Cardinality of max-
imum matching was calculated (using permutation matrices) and normalized by
the size of maximum possible matching for the whole input set (obtained by
matching with the base graph A). Average values for two methods are shown in
Table 1. They correlate (are slightly above or below) to the values of expected
maximum number of associations that are allowed by introduced random per-
turbations. Also, we notice the agreement between the results of two proposed
methods.

(a) (b)

Fig. 3. 2D segmented sections of chromosome territory in cell nucleus images
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(a) (b)

Fig. 4. Derived graphical representation of chromosome territory in cell nucleus

For qualitative evaluation of the proposed method we discuss experiments
related to our motivating biological image analysis application. A previously de-
veloped procedure [9] using so called FISH technique was used for labeling 8
pairs of the larger chromosomes (numbers 1, 2, 3, 4, 6, 7, 8, 9) from the human
lung fibroblast cell line WI38. The 3D microscopy z-stack image acquisition pro-
cess was repeated for a total number of 45 cells, see Fig.2. After the registration
and segmentation processes were performed, masks for individual chromosome
pairs were created for each raw image, see Fig.3. Nearest border to border dis-
tances were calculated for every combination of chromosome pairs. To obtain the
individual graph representation for each cell, pairwise associations were derived
using a threshold value for distance of 4 pixels, which corresponds to 0.28 μm,
see Fig.4. In the graph, each individual chromosome is represented as a labeled
vertex. We distinguish between two instances of the same label by denoting
them as copy a and copy b, respectively. Spatial proximity (adjacency) between
chromosomes is expressed as an edge between vertices.

We report on the following observations. MAG results for different values of
frequency threshold (100% − 40%) indicate consistency among the structural
patterns. For example, the majority of the edges that appear at P = 60% also

Table 1. Average matching similarity with a graph from the input set

Percentage of Matching

Noise parameter (E) 15% 30% 40%

MAG 0.84 0.72 0.62

Two-Stage Method 0.83 0.69 0.60

Table 2. Average Sorensen’s index value with a graph from the input set

Algorithm MAG 65% MAG 55% MAG 50% GMG

Sorensen Index 0.28 0.37 0.46 .40
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appear at lower values for the threshold and we can almost perfectly align out-
put graph for higher P as a sub-graph of computed maximum associated graph
for lower P. Moreover, the model captures the essential association information
from the constituent graphs. This is reflected in calculated Sorensen index val-
ues which show increased similarity with the decrease of frequency parameter
P. Table 2 contains obtained values and provides comparison with the GMG
method [9,6].

4 Conclusions

In this paper we used the specific form of mathematical optimization approach
for computing the maximum association graph in context of a real world vision
problems in biological image analysis. This formulation can be easily extended
to handle the more general case, where arbitrary number of instances of vertices
with the same label are present. This is relevant for the study of cancer cells
where more than two copies of certain chromosomes are typically present within
the cell nucleus. In the future, we plan to examine chromosome territories asso-
ciations for larger number of pairs and further study the structural differences
among different chromosome territory subgroups using the techniques described
in this contribution. We believe that the idea of maximum association graph
will find general applicability in learning patterns from graph representations,
in particular constructing comprehensive three-dimensional arrangement of all
23 pairs of chromosome in a diploid somatic cell nucleus.
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Abstract. With the ultimate goal to quantify important biological

parameters of microtubules, we present a method to estimate the 3D

positions of microtubules from multi-angle TIRF data based on the cal-

ibrated decay profiles for each angle. Total Internal Reflection Fluores-

cence (TIRF) Microscopy images are actually projections of 3D volumes

and hence cannot alone produce an accurate localization of structures

in the z-dimension, however, they provide greatly improved axial res-

olution for biological samples. Multiple angle-TIRF microscopy allows

controlled variation of the incident angle of the illuminating laser beam,

thus generating a set of images of different penetration depths with the

potential to estimate the 3D volume of the sample. Our approach incor-

porates prior information about intensity and geometric smoothness. We

validate our method using computer simulated phantom data and test

its robustness to noise. We apply our method to TIRF images of micro-

tubules in PTK2 cells and compare the distribution of the microtubule

curvatures with electron microscopy (EM) images.

1 Introduction

The study of biological processes of microtubules has been greatly aided by total
internal reflection fluorescence (TIRF) microscopy. A microtubule is a hollow
cylinder, constructed by 13 protofilaments, about 25 nm in diameter. They have
biomedical importance due to their functions as conveyer belts for vesicles inside
the cell and to regulate cell migration and division.

The objective-type TIRF microscope has the advantage of commercially acces-
sible and is becoming a powerful tool to study sub-cellular structures. However,
we have to calibrate the microscope and measure the axial decay profile. Once
properly calibrated, TIRFM provides a high signal to noise ratio by illuminating
a limited specimen region immediately adjacent to the substrate. By varying
the incident angle, we can obtain TIRF projections with different penetration
depths d.
� This work is supported in part by a funding from the KECK Foundation.
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There is some previous work on estimation of depth/distance information from
multi-angle TIRF microscopy images. Truskey et al. collected TIRF images at
different penetration depths d for well-spread bovine aortic endothelial (BAEC)
stained with a membrane-bound carbocyanine dye, and determined the depth
z by using a simplified model of TIRFM optics and fitting the image intensity
versus penetration depths[1]. Ölveczky et al. used the inverse Laplace transform
to estimate the fluorophore distribution C(x,y,z) and implemented it for a simple
geometry and top-hat distribution of fluorohpore(either 0 or 1) to determine
cell-substrate distances for the whole x-y plane[2]. More complex structures like
spheres were modeled by Rohrbach to estimate the diameters of isolated granules
and the distance between vesicles in the solution and the coverslip[3]. Stock et al.
constructed a four-layer model (glass substrate, aqueous extracellular medium,
plasma membrane and the cytoplasm) with different refractive indices and used
nonlinear regression to calculate the distance between the plasma membrane and
the glass substrate[4]. Estimations of more complicated 3-D structures have not
been attempted to date.

In this study we present a novel method that employs multi-angle TIRF mi-
croscopy technique to estimate the geometry of 3D curvilinear structures (e.g.
microtubules). Fig.1 is an example of multi-angle TIRF images of microtubules
with the penetration depths increasing from left to right. Instrumentation was
constructed to calibrate the axial profile of the TIRF microscope thus taking into
consideration factors that make the profile deviates from theoretically predicted
exponential. A maximum a posteriori (MAP) framework is developed to take
TIRF images of different penetration depths as input and estimate z positions
along segmented microtubules. The method is validated using a computer gener-
ated phantom with known geometrical structure and fluorophore distributions.
TIRF imaging process is simulated with the phantom and the resulting multi-
angle projection images are used as input for 3D estimation. We then apply
the method to in vitro microtubules and estimate multiple regions from several
data sets.We evaluate the accuracy of the algorithm by imaging microtubules
in vitro using different sets of penetration depths and compare the results. The
distribution of curvatures along the microtubules are computed and compared
with electron microscopy images which are used as ground truth.

Fig. 1. Multi-angle TIRF images. Left: thinner penetration depth. Right: deeper pen-

etration depth.
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2 Methods

2.1 TIRF Imaging Theory

An evanescent field is produced when total internal reflection of a laser beam
occurs at the interface between a substrate and a sample[5]. Theoretically, the
axial profile of the evanescent field behind the interface follows an exponential
decay with a single parameter d, which refers to the penetration depth:

I(z, d(θ)) = I0(d(θ)) · e−z/d(θ) (1)

The penetration depth d is associated with the incident angle:

d(θ) = λ/4π · (n2
i · sin2 θ − n2

t )
−1/2 (2)

where ni and nt are the refractive indices of the substrate and the sample, θ is
the incident angle of the laser beam.

The following formula describes how a TIRF image is formed [3]:

I(d(θ)) = φI0(d(θ))
∫ ∞

0

[Q(z)PSF(z)] C(z)e−z/ddz (3)

Here I represents the multi-angle TIRF images we record, C is the actual flu-
orophore concentration, and I0(θ) is the intensity directly behind the glass in-
terface. φ denotes the quantum efficiency of the fluorophores and CCD camera,
Q(z) and PSF (z) are the collection efficiency and point spread function.

To calibrate the axial profile and calculate penetration depth, we place a large
spherical silicon bead with known diameter on the glass cover slip and place it in
the center of the field of laser illumination[6]. For each specific penetration depth,
we can combine the projection image with the geometry of the bead to infer the
axial decay profile. The calibration result is shown in Fig.2a. Note that the
profiles measured are normalized so we also measured I0(d(θ)) to compensate.

2.2 Challenges in Multi-angle TIRFM

Assuming a completely constant light source, the photon distribution over a set
of bins of equal time is a Poisson probability distribution. Thus, the standard
deviation of the number of photon N collected by the CCD camera is

√
N ,

therefore, the relative uncertainty is given by
√

N/N = 1/
√

N . This is the
major factor leading to falling signal-to-noise ratio along axial direction as we
increase the penetration depth to image a thicker part of the sample. Another
important factor comes from the background fluorophore in the solution which
will also be collected by the camera. Assuming an exponential decay of the axial
profile, we calculate the signal-to-noise ratio as a function of depth to be:

S/N ∝
[

N√
N

]
·
[

1∫∞
0

e−z/ddz

]
=
√

N · 1
d
∝ e−z/2d

d
(4)
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Fig. 2. (a) The decay profiles for different incident angles are calibrated and fitted

with exponential decay to find the penetration depths (b) Left: Shot noise/background

fluorescence lead to decreasing S/N, with the decreasing rate inversely proportional

to the penetration depth. Right: Ratio of S/N between d=80nm and d=500nm shows

that the latter has a larger value when z is deeper than 350nm.

where the two terms in the right hand side brackets correspond to the shot
noise(photon collecting process) and background fluorescence respectively. This
characterizes a major difference between multi-angle TIRF depth estimation
from other estimation problems like tomography, where all images are projections
of the entire volume and signal-to-noise ratio is the same. With multi-angle
TIRFM, there will be a trade-off between the amount of information and the S/N
ratio, i.e. as you probe deeper into the sample with increasing penetration depth,
S/N ratio will drop rapidly. So while it will be a good idea to use images with
deep penetration depth as reference images for segmentation purposes, it will be
necessary to revisit structures that also exist in low penetration depth images
due to better S/N ratio. While the low penetration depth images provides good
S/N ratio for near-the-interface structures, the S/N ratio drops considerably
faster than deep penetration depth images (Fig.2), so for very deep structures,
they won’t provide S/N ratio as good as the latter since the signal intensity
deteriorates dramatically.

2.3 MAP Framework with Non-informative Prior

To estimate the z positions for points along the microtubules, we first segment
them by manually selecting microtubule tips and finding the shortest path to cells
or microtubule organizing centers[7]. Since the point spread function will smear
out the microtubule to have a width of several pixels, we fit a Gaussian curve
along the perpendicular direction to the microtubule to achieve subpixel accu-
racy of the actual coordinates[8]. We represent the microtubule centerline repre-
sented as [(x(s), y(s)], where s is the curve length. Let M be the number of points
sampled along the microtubule, and N be the number of different angles we use
to obtain TIRF images. Points where microtubules cross each other are excluded
to avoid confusion. A MAP framework is employed to estimate the actual depth
information [z1, z2, ..., zM ] along the microtubule [(x1, y1), (x2, y2), ...(xM , yM )]
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from a set of TIRF images [I1, I2, ..., IN ] corresponding to different penetration
depths with axial decay profiles [f1, f2, ..., fn].

Our objective function is the posterior distribution of the depth z:

E = log p(z|I1, ..., In; f1, ..., fN )
∝ log p(I1, ..., IN |z; f1, ..., fN )p(z)

= log

⎡⎣M∏
i=1

⎛⎝ N∏
j=1

(
p(Ij(xi, yi)|zi; fj)

)wj(zi)v(zi)

⎞⎠ p(zi)

⎤⎦
= log

⎡⎣M∏
i=1

⎛⎝ N∏
j=1

(
fj(zi)Ij,ie−fj(zi)

Ij,i!

)wj(zi)v(zi)
⎞⎠ pd(zi)pg(zi)

⎤⎦ (5)

Breaking up the joint density function p(I1, ..., IN |z; f1, ..., fN) into products of
p(Ij(zi)|fj , zi) is based on an assumption that assumes independence between
projection images Ij corresponding to different penetration depths, which arises
from independence between f ’s and z’s. p(Ij(xi, yi)|zi; fj) is the likelihood func-
tion that illustrates the model of the CCD camera photo collection process,
which is well approximated by a Poisson distribution. The prior distribution is
consist of the depth prior pd and the geometric prior pg.

The weight coefficient wj is chosen to be proportional to the S/N ratio corre-
sponding to penetration depth dj , thus penalizing projections with low reliability
and put more weight on

wj(zi) ∝ (S/N)j(zi) =
N · e−zi/2dj /dj∑N

j=1 e−zi/2dj /dj

(6)

The weight coefficient v is chosen to be a increasing function of z to compen-
sate the diminishing likelihood functions as z increases. v is determined heuristi-
cally to be a piecewise constant function which exhibits more numerical stability.

Since we have no prior information nor preference on the parameter z we wish to
estimate, we use non-informative prior (Jeffreys prior) distribution in our model.
It has the property to be invariant under reparameterization fj ’s. Jeffreys prior is
proportional to the square root of the determinant of the Fisher information:

pd(zi) ∝
√

det I(zi) =

√√√√ N∑
j=1

(f ′
j(zi))2

fj(zi)
(7)

It turns out that pd is a decreasing function of z, which agrees with our intention
to encourage near-substrate positions in many biological circumstances (e. g. a
cell with a leading edge).

Geometric prior is used to add local smoothness constraint along the micro-
tubules [9], α and β control the ”elasticity” and ”rigidity” of the microtubules:

pg(zi) = α

∥∥∥∥∂z

∂s

∥∥∥∥2
(xi,yi,zi)

+ β

∥∥∥∥∂2z

∂s2

∥∥∥∥2
(xi,yi,zi)

(8)

Maximizing the objective function results in our estimation of the depth z.
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3 Results

3.1 Computer Simulation Using Phantom Data

To validate our estimation method, we generate a 128×128×40 computer simu-
lated phantom with each voxel of size 160nm×160nm×50nm, which corresponds
to the resolution of the TIRF microscope. We put curvilinear structures in the
volume and simulate the TIRF imaging process by projecting the volume into
TIRF projection images using different penetrations depths. Background noise
is modeled as the ratio of standard deviation of fluorophore concentration in so-
lution and the concentration on the object of interest (assumed to be uniform).
Poisson distribution is used to model the photon collecting process of the CCD
camera which generates a TIRF image.

We use the set of projection images as input to our method and estimate
the depth of the tubular objects. The optimal number of angles used is a trade-
off between single frame estimation accuracy and time resolution of image se-
quences. Assuming a constant background noise level, we estimate the volume
using different number of input angles. As we can see in Fig.3, estimation ac-
curacy using only one input angle is unacceptable. Basically, our algorithm just
turn into a trivial case of solving an equation like I = I0exp(−z/d) if there is
just one projection image for a single incident angle. When the number of angle
is equal to 2, we begin to see improvements for shallow structures near the in-
terface. Difference between the results from 5 and 10 input angles is not visually
detectable.

Robustness is studied by computing depth estimation error versus noise level
and depth estimation error versus depth of object of interest. Resulting plots
show a linear relation between the estimation error and background noise, which
suggests that our algorithm is quite robust to noise, especially when the struc-
tures being studied is close to the glass interface. While the target structures
get deeper into the evanescent field, we would expect a linear deterioration of
estimation accuracy. Fortunately, most of the biological structures we study(plus
end of the microtubules) are close to the substrate and generally won’t exceed
a maximum depth of 1000nm.

Fig. 3. Estimation error vs number of input angles. Black: Original phantom. Red:

Estimated structures.
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3.2 Estimation Results for in vitro Microtubules

In our experiments TIRFM images were acquired using an inverted microscope
equipped with a high numerical aperture (NA=1.495, 60X) oil-immersion lens
(Olympus) and a back-illuminated electron-multiplying charge-coupled device
camera (512 x 512, 16-bit; iXon887; Andor Technologies), and controlled by
Andor iQ software (Andor Technology). Excitation was achieved using a 514nm
line of argon laser, and exposure times were 0.1-0.2 s. PTK2 cells were fixed
with 2.5% paraformaldehyde and 3% glutaraldehyde in 0.1 M cacodylate buffer
(pH 7.4) for 2 hours at room temperature, then postfixed for 2 hours at room
temperature with 1% OsO4 in 0.1 M cacodylate buffer (pH 7.4), dehydrated
through a series of increasing ethanol concentrations.

Fig.4a and Fig.4d present the estimation results for 5 individual microtubules
in a peripheral area of a cell. The z axis in Fig.4d is exaggerated for demonstra-
tion purpose. In Fig.4b we crop out multiple regions of a cell, and estimate them
at the same time. Fig.4e shows the 3D view of the estimated volume.

To further validate our method, we pick a single microtubule and repeat
the estimation process using different sets of penetration depths. Fig.4c shows
that the estimation results differ by less than the diameter of the microtubules
(25nm), which is considered highly precise. Since the penetration depths and
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Fig. 4. (a)&(d) Estimation results from a single peripheral region. (b)&(e) Estimation

results from multiple peripheral region. A magnified view of the bottom region is shown

in (a). (c) Comparison of estimation results using different sets of penetration depth

and TIRF images. (f) Comparison of histograms of curvatures from the estimation

(left) and EM data (right).
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their corresponding TIRF images are acquired independently, the fact that the
estimation results agree with each other further validate our algorithm. Fig.4f
compares the distribution of curvatures along the estimated microtubules and in
the electron microscopy images we use as a ground truth due to its much larger
magnification and the ability to image an axial section. We can see they follow
similar distributions, and mostly important, have the same maximum curvature,
which is a significant characteristic of microtubules.

4 Discussion

The purpose of this study is to develop and validate a method based on MAP
framework and optimization techniques to estimate 3-D structures from a set
of 2-D projection images generated using multi-angle TIRF microscopy. Our
method takes the measured decay curves and corresponding projection images
as input, and estimates the axial position of the objects of interest. Computer
simulations are used to validate the noise robustness of the algorithm, and also
determine the optimal number of input angles we should use. We apply the
method to in vitro microtubule images and obtain satisfactory results. The es-
timation method presented here will be useful for quantifying useful parameters
related to microtubules’ behavior (movement, growth, etc).
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Abstract. Non-parametric image registration is still among the most

challenging problems in both computer vision and medical imaging. Here,

one tries to minimize a joint functional that is comprised of a similarity

measure and a regularizer in order to obtain a reasonable displacement

field that transforms one image to the other. A common way to solve this

problem is to formulate a necessary condition for an optimizer, which in

turn leads to a system of partial differential equations (PDEs). In gen-

eral, the most time consuming part of the registration task is to find a

numerical solution for such a system. In this paper, we present a gener-

alized and efficient numerical scheme for solving such PDEs simply by

applying 1-dimensional recursive filtering to the right hand side of the

system based on the Green’s function of the differential operator that

corresponds to the chosen regularizer. So in the end we come up with a

general linear algorithm. We present the associated Green’s function for

the diffusive and curvature regularizers and show how one may efficiently

implement the whole process by using recursive filter approximation. Fi-

nally, we demonstrate the capability of the proposed method on realistic

examples.

Keywords: Nonparametric Image Registration, Green’s Function, Re-

cursive Filter.

1 Introduction

The problem of image registration arises in many application of medical image
processing and computer vision. Given two images, a reference R and a template
T , we try to find a suitable transformation that aligns the template to the
reference.

In this paper, we focus on non-parametric image registration, where we mini-
mize a joint functional depending on a (dis)similarity measure and a regularizer.
The optimization leads to a system of partial differential equations, the so-called
Euler-Lagrange equations. In the literature one may find various ways for solving
the PDEs, see [7] for an overview. In this paper, we introduce a generalization
of solving this problem by convolution. For speed purposes, this convolution is
approximated by 1-dimensional recursive filtering. The paper is organized as fol-
lows. We start by describing the registration problem in more detail followed by a

T. Jiang et al. (Eds.): MICCAI 2010, Part II, LNCS 6362, pp. 546–553, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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short introduction to the Green’s function approach. In particular we comment
on an efficient way to determine the Green’s function based on eigenfunction
expansion. In the following we come up with a recursive filter approximation
approach for the presented filters and present the resulting algorithm. Finally,
we provide numerical examples for CT lung data.

2 Image Registration

In this section we will state the mathematical formulation for the non-parametric
image registration problem and give an overview of well-known methods. For d-
dimensional images R, T : Rd → R, we are looking for a non-parametric transfor-
mation φ(x) = x− u(x), where u : Rd → R is such that the deformed template
Tu(x) := T (x − u(x)) is similar to the reference R. In this context, the vector
field u is called displacement field. This problem can be solved by minimizing
the joint functional

J [u] = D[R, T ;u] + αS[u], (1)

where D is a image similarity or distance measure and S is a regularization or
smoothing term. The smoothing term constrains the transformation to a set of
”reasonable” ones, which may be used to advantage for the given application.
The regularization parameter α controls the relative contributions of the two
terms.

2.1 Distance Measures

To measure similarity of the two images we have to define an appropriate distance
measure D. Frequently used measures are the sum of squared differences (SSD),
normalized gradient fields [5] or mutual information [12]. In this paper, we will
exemplarily use SSD, that is given by

DSSD[R, T ;u] :=

∫
Ω

(Tu(x)−R(x))2 dx. (2)

2.2 Regularizers

Basically regularizers measure the smoothness of the wanted the transformation.
Popular regularization terms are defined as follows:

Sdiff[u] :=
1

2

d∑
j=1

∫
Ω

‖∇uj(x)‖2 dx, (3)

Scurv[u] :=
1

2

d∑
i=1

∫
Ω

(Δul(x))
2

dx, (4)

Selas[u] :=

∫
Ω

μ

4

d∑
j,k=1

(
∂xj uk + ∂xk

uj

)2
+

λ

2
(∇ · u)

2
dx. (5)
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For fluid registration Sfluid[u] := Selas[v]. In this context ∂xj denotes the partial
derivative in direction xj , ∇ the gradient,∇· the divergence and Δ the Laplacian
operator. Furthermore v : Rd → Rd is the velocity field and λ, μ are called
Lamé constants. The regularization terms shown above are known as diffusive,
curvature, elastic, and fluid registration, respectively (see [7]).

2.3 Numerical Solutions

For an optimal displacement field u the Gâteaux derivatives of the joint func-
tional in Equation (1) vanishes. This leads to the corresponding set of non-linear
Euler-Lagrange equations

αA[u] = f(x,u(x)), (6)

where the differential operator A and the force f are the Gâteaux derivatives of
S and D, respectively (under the assumption of specific boundary conditions).
The resulting differential operators for the various regularization terms (3), (4),
and (5) are

Adiff = Δ, (7)

Acurv = Δ2 and (8)

Aelas = μΔ + (λ + μ)∇∇ · . (9)

The differential operator for fluid registration is similar to the elastic one, but
operates on the velocity field as opposed to the displacement field as discussed
in e.g. [7]. A fixed-point-type iteration scheme, such as

A[uk+1] = f(x,uk(x)), (10)

is a practical way to linearize and solve these equations. We have various op-
tions in providing a numerical scheme for first discretizing and solving the PDEs.
The main work is the solution of the resulting linear system. This can be done
by successive overrelaxation (SOR) [3], multigrid methods [6], additive operator
splitting (AOS) for diffusive regularization and homogeneous Neumann bound-
ary conditions [7] or by Fourier methods [2], to name few popular options. An
alternative method, as suggested by Bro-Nielsen and Gramkow, for fluid regis-
tration [1] is to solve the Euler-Lagrange equations by means of the convolution
operation

uk+1 = G ∗ fk, (11)

where G is an appropriate filter kernel which turns out to be the Green’s function
w.r.t. the differential operator under the assumption of translational invariance.
In the following we will assume this condition is fulfilled although boundary
conditions are applied. This approach can be generalized to other regularizers
as well.
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3 Green’s Function

The Green’s function is used to solve linear inhomogeneous ordinary or partial
differential equations, e.g. in electromagnetic theory [10]. We consider sufficiently
smooth functions u, f ,g : Rd → Rd, an open set Ω ⊂ Rd with smooth boundary
∂Ω and the linear operator A for the Euler-Lagrange equations (6). Therefore,
we have

AGi(x;y) = δ(x− y)ei for x ∈ Ω (12)

Gi(x;y) = g(x) for x ∈ ∂Ω, (13)

where Gi =
(
Gi

1 . . . Gi
d

)T
, is called vector Green’s function in the direction

ei, i ∈ {1, . . . , d}. Then G(x;y) :=
(
G1(x;y) . . . Gd(x;y)

)
is called dyadic

Green’s function, using which the following equation must hold:

A[G](x;y) = I · δ(x− y), (14)

where I ∈ Rd×d is the identity.

3.1 Green’s Function Calculation

To the best of our knowledge, there is no established and commonly accepted
way to derive Green’s function for a differential operator. Here, we will introduce
the method of eigenfunction expansion.

Eigenfunction Expansion. The idea of the eigenfunction expansion is to ex-
press the solution of a differential equation by a weighted sum of orthonormal
eigenfunctions Φi, i.e.

u(x) =

∞∑
i=1

aiΦi(x), ai =
Φi(y)

κi
, (15)

where κi is the eigenvalue that corresponds to the eigenfunction Φi (see e.g.[1]).
Equation (15) leaves us with two problems. How to compute the eigenfunctions
and eigenvalues for a given operator and how to deal with the infinite sum. For
the latter problem an answer is also given in [1]. In the following, we present
the eigenfunction expansions for diffusive and curvature registration for the 2-
dimensional case. The extension to the 3-dimensional case is straightforward.
The Green’s function for the elastic regularizer coincide with the one of the fluid
registration. The only difference is the fact that it is applied to the displacement
instead of the velocity.

Diffusive Registration. The Green’s function for the diffusive operator Adiff

under zero boundary conditions on the domain Ω =]0, 1[2 is given by a scalar
Green’s function

G(x;y) = −
∞∑

k=1

∞∑
l=1

Φ(y)

κk,l
Φ(x). (16)
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with eigenfunctions and eigenvalues

Φk,l(x) = sin(kπx1) sin(lπx2) resp. κk,l = −π2
(
k2 + l2

)
. (17)

One can shown that the diffusive operator is separable and therefore the displace-
ment field can be computed by u1(x) = (G ∗ f1) (x) and u2(x) = (G ∗ f2) (x).

Curvature Registration. As in the case of the diffusive registration, the op-
erator for the curvature registration is separable as well. We also consider zero
boundary conditions and the domain Ω =]0, 1[2. The eigenfunctions and eigen-
values are given by

Φk,l(x) = sin(kπx1) sin(lπx2) resp. κk,l = π4
(
k2 + l2

)2
. (18)

3.2 Deriving a Recursive Filter

In this work the Green’s function G(x;y) is given in its continuous eigenfunction
representation. The force field is given by Equation 2. Both of them are dis-
cretized on a finite grid. We get the Green’s filter G and the discrete force field
F. The discrete displacement field U is now given by the convolution U = G∗F.
This operation has high computational costs, i.e. O(N2), where N is the num-
ber of voxel. To reduce these costs the idea of 1-dimensional recursive filtering
will be introduced. In the following we will compute a separable filter approx-
imation where the recursive filtering in each direction can be handled step by
step. This allows us to use an implementation of diffusive and curvature regis-
tration with the computational costs of the demons approach using a recursive
implementation of the Gaussian.

We start with the 2-dimensional case. In terms of computing a separable
recursive filter approximation for the Green’s filter G ∈ Rn1×n2 , we need a
separable approximation G̃ ∈ Rn1×n2 of G of the form

G̃ = x⊗ y, resp. G̃ = xyT , (19)

where x ∈ Rn1 and y ∈ Rn2 . This is the case if rank(G̃) = 1 . We choose this
approximation to be optimal in terms of the Frobenius norm (‖ · ‖F ) that com-
putations are easy to handle. This optimal approximation is called a rank-one
approximation and can be achieved by a singular value decomposition (SVD)[4].
A singular value decomposition is possible for all matrices G. Let G = USVT ,
where U =

(
u1 . . .un1

)
∈ Rn1×n1 and V =

(
v1 . . .vn2

)
∈ Rn2×n2 are or-

thogonal matrices and S ∈ R
n1×n2 is a diagonal matrix. Then G̃ = uvT =(√

s11u1)
) (√

s11v1)
)T

. For the 3-dimensional case the application of the SVD
is not possible in this way. A rank-one approximation of a third order tensor
can be seen as a generalization of the SVD and is often called multidimensional
SVD. This problem can be attacked by the generalized Rayleigh-Newton itera-
tion as described by Zhang and Golub[13]. The separable approximation G̃ is

then given by G̃ = x⊗ y ⊗ z.
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The d-dimensional convolution can now be substituted by d 1-dimensional
convolutions what is already a nice speed-up. But the 1-dimensional convolution
has still high costs. That is where recursive filtering becomes an issue. The
recursive filter approximation of the 1-dimensional filters is done by using Matlab
implementation of Prony’s method [8] with a zero padding to emphasize the zero-
boundary conditions in the filter. It should be mentioned that the combination of
causal and anti-causal recursive filter approximation does not lead to a perfect
symmetry in this implementation. However, in our case this aspect is hardly
noticeable. This recursive filtering scheme can now be implemented with O(N)
computation cost.

4 Numerical Examples

In the following evaluate the capability of the Green’s function registration on the
POPI breathing thorax model of the Léon Bérard Cancer Center & CREATIS
lab, Lyon, France [11]. Before starting the evaluation we leave some words on the
algorithm. We modified the fixed-point type iteration scheme (Equation (10)).
Instead of computing the whole displacement field in one iteration, we compute
update steps uk by recursive filtering the force field. The final displacement
field after n iteration steps is then given by u =

∑n
k=1 uk. The modification

is already mentioned in [7] for elastic registration. To have more control over
the iteration step we included an Armijo line search for these updates. To allow
larger deformations we start with an affine-linear preregistration followed by a
multi-level Green’s function registration. The choice of the distance measure is
the SSD (Equation 2). This is not the best choice for the registration of lung
volumes but the aim of this paper is to show the capability of the proposed
linear algorithm. Stopping criteria on each level is a difficult topic. Here, we
consider the relative distance measure d̄k = DSSD(R, T ;uk)/DSSD(R, T ;0). The
algorithm stops when the change of the relative distance d̄ is less than 1%, i.e.
d̄k − d̄k−1 < 0.01. Furthermore a maximum number of iterations is given that is
descending as the level is ascending.

The POPI-model provides a 4D-CT series of the lung, including ten 3D-CT
volumes (v0, . . . , v9) representing ten different phases of an average breathing
cycle. For evaluation purposes a set of corresponding landmarks is given for all
these volumes. For the registration the preprocessed versions of these volumes
with removed background and reduced image size are used. This results in an
image size of 482 x 360 x 141 with resolution 0.976562mm × 0.976562mm ×
2mm. Our registration works on an image size of 256 × 256 × 128 computed
by linear interpolation. Therefore the resulting working resolution on the finest
level is 1.8387mm × 1.3733mm × 2.2031mm. We perform a curvature and a
diffusive recursive Green’s function registration on these data. An exemplarily
result for the diffusive registration is shown in Figure 2. To coincide with the
results presented with the model computed with a demon-based approach, we
use the second volume v1 as the reference and all others as templates. For each
registration the mean and standard deviation of the 40 landmarks are given for
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Reg Data μ/σ pTRE μ/σ cTRE μ/σ dTRE μ/σ pMax cMax dMax

10 0.48 / 0.54 1.3 / 0.3 0.67 / 0.35 0.68 / 0.34 1.8 1.79 1.75

12 0.49 / 0.62 1.4 / 0.2 0.71 / 0.37 0.69 / 0.42 2.1 1.69 1.57

13 2.19 / 1.82 1.4 / 0.4 1.58 / 0.89 1.33 / 0.70 2.3 3.63 2.70

14 4.33 / 2.51 1.2 / 0.4 1.42 / 0.83 1.20 / 0.73 2.3 5.03 4.32

15 5.75 / 2.64 1.3 / 0.5 1.50 / 0.99 1.42 / 0.92 2.6 6.27 5.48

16 6.10 / 2.92 1.1 / 0.4 1.43 / 0.84 1.30 / 0.72 2.0 5.29 4.20

17 5.03 / 2.33 1.3 / 0.5 1.42 / 0.88 1.34 / 0.76 2.4 4.66 3.56

18 3.68 / 1.57 1.1 / 0.3 1.12 / 0.80 1.12 / 0.72 1.7 3.76 3.71

19 2.07 / 1.06 1.1 / 0.3 0.95 / 0.68 0.88 / 0.58 1.9 3.18 2.97

Total 3.35 / 1.78 1.2 / 0.4 1.20 / 0.74 1.17 / 0.66 2.6 6.27 5.55

Fig. 1. Results of the recursive curvature Green’s function registration on the POPI-

model in mm. The row with the registration index v1v2 presents the registration result

of the registration of volume v1 and volume v2. Presented are the mean and standard

deviation of the initial landmarks (second column) and the TRE of the registration pre-

sented with the POPI-model (pTRE, third column), the curvature registration (cTRE,

fourth column) and diffusive registration (dTRE, fifth column). The last three columns

show the maximal TREs for POPI, curvature and diffusive.

the initial situation as well as the mean and standard deviation of the TRE.
Additionally the maximal TRE is presented (see Figure 1).

Considering the working resolution these results are very satisfying. The mean
μ of the TRE of the three methods is nearly the same. However, the standard
deviation σ recursive Green’s function registration is larger. This might have two
reasons. Firstly, the errors occur mainly in the x3-component where we use a
lower resolution. The other and probably more important reason results from the
used distance measure. As mentioned before we apply the SSD without further
preprocessing to take the lung density change into account as proposed in [9]. To
achieve better results, a next step would be to incorporate this preprocessing or
to use a more suitable distance measure for this specific application. This would
also help to catch the outliers. Another important information from the table is
the fact that the curvature Green’s function registration produces less accurate
but smoother results than the diffusive one, so the behavior of the regularizers
are preserved in this method.

Fig. 2. The absolute difference of the template and the reference before (left) and after

the diffusive (middle) and curvature (right) recursive Green’s function registration for

an exemplarily slice
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5 Conclusions

This papers presents a generalization of the registration by a convolution with
the Green’s function. It was shown that also for the diffusive and curvature
regularization filter kernels can be established and recursively approximated.
This helps us to speed up the computation in such a way a linear algorithm
could be presented. The numerical section presents promising results of this
approach by registering a set of CT lung data. Next steps include e.g. the search
for the best filter kernel size on each level and the use of application specific
distance measures.
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Abstract. Registration uncertainty may be important information to

convey to a surgeon when surgical decisions are taken based on regis-

tered image data. However, conventional non-rigid registration methods

only provide the most likely deformation. In this paper we show how to

determine the registration uncertainty, as well as the most likely defor-

mation, by using an elastic Bayesian registration framework that gener-

ates a dense posterior distribution on deformations. We model both the

likelihood and the elastic prior on deformations with Boltzmann distri-

butions and characterize the posterior with a Markov Chain Monte Carlo

algorithm. We introduce methods that summarize the high-dimensional

uncertainty information and show how these summaries can be visual-

ized in a meaningful way. Based on a clinical neurosurgical dataset, we

demonstrate the importance that uncertainty information could have on

neurosurgical decision making.

1 Introduction

An important, but somewhat neglected, topic in the field of non-rigid regis-
tration is: how can we quantify and visualize the registration uncertainty. The
importance can be easily understood in the realm of neurosurgery. Important
functional areas of the brain are commonly defined in the pre-operative do-
main. Whenever these eloquent areas are located adjacent to a tumor, it is
critical that their location are accurately mapped intra-operatively. Current im-
age guided navigation systems use rigid registration to establish the mapping
between the pre- and intra-operative space, but we are beginning to see a shift
towards non-rigid registration which is necessary to accommodate for the non-
rigid movement of brain-tissue caused by for instance brain-shift. Conventional
registration methods estimate the most likely deformation and consequently the
most likely location of a functional area. However, non-rigid registration can be-
have chaotically in the sense that small changes of input parameters can yield
dramatically different results. Some results may be categorized as ”registration
errors” while others represent viable alternate explanations of the underlying
physical reality based on incomplete imaging data. Furthermore, factors such as
resection of tissue, degraded intra-operative image quality and blood and edema
around a tumor, can all contribute to an increase in the registration uncertainty

T. Jiang et al. (Eds.): MICCAI 2010, Part II, LNCS 6362, pp. 554–561, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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in the vicinity of tumors. Hence, for a neurosurgeon, the uncertainty in the esti-
mated location of functional areas can be just as important information as the
most likely estimate of the location.

Few authors have attempted to quantify the full uncertainty of the estimates
produced by non-rigid registration methods. Hub et al. [1] developed a heuristic
method for quantifying uncertainty in B-spline image registration by perturbing
the B-spline control points and analyzing the effect on the similarity criterion.
Kybic [2] consider images to be random processes and proposed a general boot-
strapping method to compute statistics on registration parameters. It is a com-
putationally intensive approach, but is applicable to a large set of minimization
based registration algorithms. In [3], Kybic assumes normally distributed reg-
istration parameters and use the Hessian of the similarity criterion to compute
confidence intervals of the registration parameters. Some reported applications
of uncertainty estimation in other medical applications include; visualization of
uncertainty in image guided needle insertions [4], uncertainty in dose control in
radiation oncology [5] and determining uncertainty in fiber orientation of diffu-
sion tensors [6].

In contrast to the frequentist approach of Kybic [2], we presented in [7] an
elastic non-rigid Bayesian registration framework that estimates the posterior
on both deformation and elastic parameters. We were, firstly, interested in dis-
tinguishing different tissue types based on the posterior distribution on elastic
parameters, secondly, in analyzing how simultaneous estimation of elastic and
registration parameters could potentially improve registration results.

The emphasis of this paper is that, 1) non-rigid registration results come
with a level of uncertainty and 2) conveying the uncertainty, and not only the
most likely estimate, is clinically important. We characterize the posterior dis-
tribution on deformation parameters with the framework in [7] and show several
techniques for summarizing and visualizing the uncertainty of the estimated
posterior distribution.

2 A Bayesian Framework for Elastic Image Registration

This section provides a short summary of the registration framework in [7]. Let
f(x), m(x), x ∈ Ω be a fixed (pre-operative) and moving (intra-operative) d-
dimensional image respectively with Ω ⊂ Rd. We estimate, with a Bayesian
model, a deformation t(x), x ∈ Ω, such that m(t(x) + x) is similar to f .

2.1 Bayesian Generative Model

Both the moving image and the deformation are modeled as random variables,
while the fixed image is a model parameter. This leads to the following joint
probability model, p(m, t) = p(m|t)p(t), where we assume that the observed
moving image is dependent on the deformation. According to the theorem of
conditional probability, we can write the posterior as:

p(t|m) =
p(m, t)
p(m)

=
p(m|t)p(t)

p(m)
. (1)



556 P. Risholm et al.

We model the likelihood, p(m|t), with a Boltzmann distribution using a tem-
perature, Ts, and a Sum of Squared Difference (SSD) similarity energy function.
Similarly, the prior on the deformation, p(t), is modeled with a Boltzmann dis-
tribution with temperature, Tr, and a linear elastic energy function. The elastic
energy acts as a regularizer on the deformation and is controlled by the Lamé
parameters μ and λ. In [7], we were predominantly interested in generating pos-
terior distributions on the elastic parameters, while this work focuses on the
uncertainty of the deformation parameters. Hence, we keep the elastic param-
eters fixed as model parameters. The energy functions were computed with a
linear elastic Finite Element (FE) model.

2.2 Markov Chain Monte Carlo (MCMC) Simulation

Unfortunately, it is not possible to analytically compute the posterior in Eq. (1),
nor feasible to draw deformation samples directly from it. A common approach
to generate samples from intractable posterior distributions is by way of the
Metropolis-Hastings (MH) algorithm [8]. Candidate samples are drawn from a
simple proposal distribution, t∗ ∼ N(t, σt), in our case a Normal distribution,
and accepted or rejected according to an acceptance criteria which guarantees
that we generate random samples from the posterior distribution. In contrast
to [7], where deformations were only sampled for boundary nodes, we sample
deformations for all nodes in the FE-mesh. Consequently, we build up a posterior
distribution on deformations, as well as marginal posterior distributions on the
movements of individual nodes.

The sampling can easily be extended to reject samples that lead to improbable
configurations of the deformation field, for example by rejecting samples that
move a node in the mesh into an improbable region, or rejecting samples that
lead to folding of the elements.

3 Uncertainty Visualization in Non-rigid Registration

From the marginal posteriors on node deformations we can estimate the most
likely deformation, as well as the uncertainty of this estimate. The most likely
deformation is a simple object and is easily visualized, e.g. in the form of de-
formed versions of the pre-operative image data. Conversely, the full posterior on
deformations is a high-dimensional object and is difficult to visualize. In this sec-
tion we present; 1) ways of summarizing the uncertainty using robust statistics
and, 2) how these low-dimensional uncertainty summaries can be visualized.

3.1 Inter-Quartile Ranges

The difference between the third and first quartile of a distribution, often called
the inter-quartile range (IQR), is a robust statistic that conveys the dispersion of
a distribution. It is robust in the sense that it provides meaningful information
even for non-Gaussian distributions. We propose to use IQRs of the marginal



Summarizing and Visualizing Uncertainty in Non-rigid Registration 557

distributions as a measure of uncertainty and visualize them, either as ellipsoids,
or as a scalar map:

IQR Ellipsoids. At each node in the FE-mesh we compute the IQRs of the x, y
and z samples and fit an ellipsoid to these ranges. An IQR ellipsoid provides
a 3D view of the extent of the marginal distribution on deformations at this
node.

Maximum IQR Scalar Map. Sometimes it is easier to interpret a scalar mea-
sure of the statistical dispersion. A maximum IQR scalar map can be gen-
erated by visualizing the maximum of the three IQRs (there is one IQR for
each dimension) at a point. This measure, however, is not able to convey
any bias towards dispersion in a single dimension.

3.2 Summarizing and Visualization of Marginal Distributions

In neurosurgery, a non-rigid mapping between the pre- and intra-operative image
spaces is established mainly to update the intra-operative space with functional
information from the pre-operative space. The functional information is com-
monly in the form of either a surface model outlining eloquent functional areas
extracted from functional Magnetic Resonance Imaging (fMRI), or streamlines
describing fiber tracts extracted from Diffusion Tensor Imaging (DTI). For each
deformation sample, we deform both the surface models and line data into the
intra-operative space. If we draw N samples to characterize the posterior, then
we have N deformed versions of the pre-operative models in the intra-operative
space. Depending on whether we have surface models (fMRI) or line data (DTI),
we apply different techniques for reducing the high-dimensional data to a low-
dimensional space that is more suitable for visualization:

fMRI: Marginal Volume. We construct a marginal integer image volume, or
a histogram volume [9], such that for each deformed surface model (fMRI
activated volume) we increment the value at each voxel that is inside the
surface model and divide by N . This is the probability for a voxel to be in
the fMRI activation volume.

DTI: Marginal Visitation Volume. For the deformed fiber tracts we use a
technique called visitation count [6]. A visitation count volume is constructed
by tracing the deformed tractography streamlines through the volume and
incrementing values in each voxel a streamline crosses. This is the marginal
distribution that a fiber crosses a voxel.

Marginal Confidence Bounds. Given a marginal volume, we can extract iso-
contours and thereby render marginal confidence bounds. For instance, the
25% confidence bound is the contour where voxels outside the bound were
inside the deformed model in less than 25% of the samples.

The marginal volume and the marginal visitation volume can be visualized either
using volume rendering to provide a 3D view of the uncertainty, or with a col-
ormap that conveys the marginal density overlaid on a 2D slice of the anatomical
data.
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4 Results

From registration of a clinical neurosurgical dataset, we present results in the
form of visualizations of the registration uncertainty. The dataset consists of
pre-operative anatomical MRI, fMRI and DTI, and a post-operative anatomical
MRI used as a proxy for an intra-operative image of a patient with a large glioma
lesion in the left frontal region near speech areas.

4.1 Dataset

The anatomical images consisted of a pre-operative 512x512x144 T1 MR image
with spacing (0.5mm, 0.5mm, 1.0mm) and a post-operative 256x256x130 T1 MR
image with spacing (0.94mm, 0.94mm, 1.4mm) acquired two days post surgery.
We extracted tractography streamlines from DTI images and an iso-surface from
an fMRI activation volume of the language center located closest to the tumor. A
FE mesh covering the brain was constructed with 933 nodes and 4262 tetrahedral
elements. The dataset can be seen in Fig. 1. Notice that the post-operative image
is contrast-enhanced which makes it difficult to identify the size of the resection
due to the bright appearance of blood and edema around the resected area.

Fig. 1. [a b c; d e]: Dataset. (a)-(b) Pre- and post-operative image. (c) A 3D compos-

ite view of the pre-operative volume augmented with the tumor (blue), speech area

(red) and the diffusion fiber tracts. (d) Absolute difference image between the two

corresponding slices in (a)-(b) before registration. (e) Absolute difference image af-

ter registration. Notice the large intensity disagreement around the tumor because of

edema and blood. Also notice that, due to contrast enhancement, blood vessels are

bright in the post-operative image but dark in the pre-operative image which might

lead to an increase in registration uncertainty.
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Fig. 2. [a, b, c]: Inter-quartile visualizations overlaid on the post-operative image. (a)-

(b) Axial and coronal maximum IQR maps. Pink areas have maximum IQR of 7.5 mm

which decreases down to 1.7 mm for red. Notice the large maximum IQRs around the

tumor. We suspect the reason is twofold: 1) the large intensity difference around the

tumor due to blood and edema and 2) after resection there is no longer a one-to-one

correspondence between the pre- and post-operative image. (c) Composite visualization

of intersecting axial, coronal and sagittal planes overlaid with the maximum IQR map

and a few IQR ellipsoids. Notice the elongation of the ellipsoid at the tumor.

4.2 Deformation Parameter Estimation

To speed up computations, three parallel MCMC samplers, each generating ap-
proximately 11 samples per second, were used. We assumed the chains had
mixed, and samples could be pooled together, when the potential scale reduction
[8] dropped below 1.2 for each scalar estimand. The elastic parameters were set
to λ = 25, μ = 1, and the temperatures and the size of the jumping kernels
(Ts = 1.5, Tr = 800 and σt = 0.03) were set to achieve an acceptance rate of
approximately 25%. We let each sampler generate 300 000 samples, discarded
the first 100 000 samples, used a thinning factor of 10 and pooled together the
remaining samples for a total of N = 60 000 samples that were used for the
estimations. The difference image between the pre- and intra-operative image
after registration using the most likely deformation can be seen in Fig. 1(e).

4.3 Uncertainty Visualization

In Fig. 2 we visualize IQRs computed from the marginal posteriors in the form
of scalar maps and ellipsoids. Notice that the uncertainty is large around the
tumor site. The uncertainty, as well as the most likely location of the deformed
functional information, is visualized in Fig. 3 using marginal volumes, marginal
visitation count volumes and marginal confidence bounds. In Fig. 3(a) we see
that the most likely boundary of the activated functional area is far from the
area of resection, however, the probability map in Fig. 3(b) shows that there is
some probability that parts the functional area might have been touched during
surgery. This suggests the importance of uncertainty visualization in surgical
decision making.
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Fig. 3. [a, b, c; d, e]: Marginal volumes. (a) Sagittal slice with the most likely estimate

of the fMRI activated area outlined with a white contour. (b)-(c) Close up of (a). In

(b) we render the marginal fMRI activation volume using a colormap. The probabil-

ity density decreases across the iso-contours from purple to red. (c) Rendering of the

marginal quartile bounds. The most likely estimate in (a) is close to the 50% marginal

quartile bound. (d) A coronal slice overlaid with marginal confidence bounds of the

fMRI activation area as well as the density colormap of the marginal visitation count

volume. (e) A composite view of three orthogonal planes, with volume rendering of

the marginal visitation count volume and the density of the marginal activation vol-

ume as a colormap. In the conventional approach to registration, in which only the

optimal deformation is presented, the display would only show (a), which would give

the impression that the resection did not touch on the fMRI activated area (the high

intensity area is due to blood and edema caused by the resection). However, if we take

the uncertainty information in (b) into account, we may conclude that there is mod-

erate probability that the surgeon touched the fMRI activated area. This additional

information might have significant impact on surgical decision making.
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5 Discussion

While the specific registration uncertainty presented in the examples is clearly a
preliminary result, we believe, firstly, that in the future, with increased compu-
tational power, better modeling, and more highly developed algorithms, it will
be practical to obtain dense information about the uncertainty of the estimated
registration, and secondly that it will be important to share that information
with the surgeon in a meaningful way. Our goal in this paper has been to explore
the latter issue, and to promote the importance of these issues to the research
community. We introduced several visualization methods to convey registration
uncertainty, and the experiments show that it can be important to convey this
information, especially for functional areas located close to tumors. Some com-
ments from neurosurgeons that were shown the uncertainty visualizations were:
1) this is really important information that should be integrated in their sur-
gical guidance systems and 2) the slice renderings of the marginal volumes are
very informative (e.g. Fig. 3(b)) because they convey information similar to the
original fMRI activation volumes which clinicians know how to interpret. Future
work should include the functional uncertainty in the registration model.

Acknowledgments. We are grateful to M.D. Alex Golby for her comments. This
work was supported by NIH grants R01CA138419, P41RR13218, U54EB005149
and U41RR019703.

References

1. Hub, M., Kessler, M., Karger, C.: A stochastic approach to estimate the uncertainty-

involved in b-spline image registration. IEEE Trans. on Med. Im. 28(11), 1708–1716

(2009)

2. Kybic, J.: Bootstrap resampling for image registration uncertainty estimation with-

out ground truth. IEEE Trans. on Im. Proc. 19(1), 64–73 (2010)

3. Kybic, J.: Fast no ground truth image registration accuracy evaluation: Comparison

of bootstrap and hessian approaches. In: ISBI, pp. 792–795 (2008)

4. Simpson, A.L., Ma, B., Chen, E.C.S., Ellis, R.E., Stewart, A.J.: Using registra-

tion uncertainty visualization in a user study of a simple surgical task. In: Larsen,

R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 397–404.

Springer, Heidelberg (2006)

5. McCormick, T., Dink, D., Orcun, S., Pekny, J., Rardin, R., Baxter, L., Thai, V.,

Langer, M.: Target volume uncertainty and a method to visualize its effect on the

target dose prescription. Int. J. of Rad. Onc. 60(5), 1580–1588 (2004)

6. Jones, D.K., Pierpaoli, C.: Confidence mapping in diffusion tensor magnetic reso-

nance imaging tractography using a bootstrap approach. Magn. Res. in Med. 53(5),

1143–1149 (2005)

7. Risholm, P., Samset, E., Wells, W.M.: Bayesian estimation of deformation and elas-

tic parameters in non-rigid registration. In: Workshop on Biomedical Image Regis-

tration (to appear, 2010)

8. Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Bayesian Data Analysis, 2nd

edn. Texts in Statistical Science. Chapman & Hall/CRC (July 2003)

9. Fan, A.C., Fisher, J., Wells, W.M., Levitt, J., Willsky, A.: MCMC curve sampling

for image segmentation. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI

2007, Part II. LNCS, vol. 4792, pp. 477–485. Springer, Heidelberg (2007)



Coupled Registration-Segmentation: Application
to Femur Analysis with Intra-subject Multiple

Levels of Detail MRI Data
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Abstract. The acquisition of intra-subject data from multiple images

is routinely performed to provide complementary information where a

single image is not sufficient. However, these images are not always co-

registered since they are acquired with different scanners, affected by

subject’s movements during scans, and consist of different image at-

tributes, e.g. image resolution, field of view (FOV) and intensity distri-

butions. In this study, we propose a coupled registration-segmentation

framework that simultaneously registers and segments intra-subject im-

ages with different image attributes. The proposed coupled framework

is demonstrated with the processing of multiple level of detail (LOD)

MRI acquisitions of the hip joint structures, which yield efficient and au-

tomated approaches to analyze soft tissues (from high-resolution MRI)

in conjunction with the entire hip joint structures (from low resolution

MRI).

Keywords: Segmentation; Registration; Deformable models; Hip joint;

Level of detail.

1 Introduction

The acquisition of intra-subject data from multiple images is routinely performed
to provide complementary information where a single image is not sufficient. As
an example, the acquisition of MRI images of the hip joint at multiple levels of
detail (LOD) is often used to identify bone changes and soft tissue abnormalities,
which might explain the development of arthritis. In this protocol, exemplified in
Fig. 2, a low resolution MRI that covers a large field of view (FOV) is acquired to
image the whole hip joint structures (i.e. entire femur bone), whereas a high res-
olution MRI with limited FOV and centered at the hip joint is acquired to reveal
the fine details of the soft tissues. Similarly, the use of multiple images of joints
acquired in different postures was demonstrated to be an effective approach for
biomechanical motion analysis, which required these images to be aligned (e.g.,
[1]). From these examples, there is a crucial need for image registration where
multiple acquisitions are not always co-registered. In addition, the segmentation
� Corresponding author.
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of the structures of interest (SOIs), shared among the acquisitions, is commonly
required for quantitative correspondence.

The ability for concurrent segmentation and registration has been demon-
strated to be a powerful method in recent years. A seminal paper by Yezzi
et al. [2] presented a variational framework for simultaneous segmentation and
registration using deformable models, and gave birth to a variety of methods
[3,4,5,6,7] with extensions such as the support for more than 2 images or non-
rigid transforms. In other studies, voxel-based approaches, formulated as a max-
imum a posteriori (MAP) estimation problem were proposed [8,9]. Atlas-based
methods [5,9] were also presented, but were limited to data with atlas availabil-
ity. Further, atlas-based methods generally involved non-rigid transforms, and
were thus not appropriate to e.g. a rigid structure imaged in different positions.

In this paper, we propose a coupled registration-segmentation framework
based on deformable models for intra-subject images acquired with different
protocols. The framework is able to handle intra-subject images characterized
by varying FOV in which SOIs can be partially visible and thus have a limited
correspondence which seriously complicates their direct registration. Further,
our framework is atlas-free, does not limit the number of images or SOIs, and
does not restrict the nature or evolution strategies of the deformable models. Its
effectiveness is demonstrated in the registration-segmentation of femurs in intra-
subject MRIs acquired at multiple LODs (hereon referred to as “multiple LOD
MRIs”). Our coupled framework will simultaneously segment and register the
multiple LOD MRIs, and thus enable an efficient and automated approach to the
analysis of (pathological) soft tissues from images of the joint (high-resolution)
in conjunction with the entire hip structure (low-resolution).

2 Coupled Registration-Segmentation

2.1 Framework Overview

In this work we propose to segment and register the same SOIs in N images
I1, . . . , IN (Ii : Ωi → �, Ωi ∈ �D(D = 2, 3)). For the sake of brevity, we only
present our methodology in case of a single SOI, while the proposed approach
can be easily extended to multiple SOIs. We assume that the segmentation is
achieved by using N deformable models (DM) represented by shapes S1, . . . , SN ,
composed of a same number n of points xi

j : Si = {xi
1, . . . , x

i
n}. No restrictions are

made on the nature of the DM (e.g., curves [4], simplex meshes [10]), except that
their shapes must share the same number of points and be in point correspon-
dence. Similarly, DMs can adopt any type of evolution strategies (e.g., Gradient
flow [2], Newtonian law equations [11]) as long as they can be expressed as an
update operator Ψ(Si), which returns new state of the shape at each evolution
step.

The registration consists in computing the mappings gi←j to transform Sj to
Si. Similarly to [7], instead of computing the N2 possible mappings gi←j , we
estimate the mappings gi that transform a common shape S̄ to each shape Si. In
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case of linear transforms and shapes in point correspondence, we propose to ex-
press these mappings gi by using a generalized Procrustes alignment (GPA) [12].
During this procedure, mean shape S̄ = {x̄1, . . . , x̄n} and mapping gi estimates
are iteratively updated. The mappings are estimated in a least square sense:

gi = argmin
g

∑
j

∥∥xi
j − g(x̄j)

∥∥2 = argmin
g

∑
j

dg(xi
j)

2 . (1)

An overview of the steps involved in our coupled registration-segmentation
framework is depicted in Fig. 1, in which segmentation and registration are
used in an interleaved manner. The steps are repeated until segmentations con-
vergence. First shapes Si are updated given the segmentation update operator
Ψ . Then the resulting shapes Ψ(Si) are aligned with the GPA. The final stage
performs a linear “blending” at the point level between shapes Ψ(Si) and the
back-transformed mean shapes gi(S̄) to get new shapes S′i:

S′i = λgi(S̄) + (1− λ)Ψ(Si) . (2)

Parameter λ ∈ [0, 1] is used as a stiffness coefficient, which expresses the degree
of constraint applied by the registration to the segmentation. Theoretically, if
shapes only differ by a linear transform λ should be set to 1. However, in practice
it is better to slightly relax λ at the beginning of the segmentation. This provides
more freedom to the segmentation, especially when the shapes are not initialized
closely enough and they need to be significantly deformed. In this paper, we
linearly increases λ from 0.7 to 1.

(weighted)
generalized
Procrustes
alignment

Blending

Segmentation Registration Update

Fig. 1. Coupled registration-segmentation step: initially, a segmentation step is exe-

cuted, evolving N shapes Si → Ψ(Si); resulting shapes Ψ(Si) are then aligned with

a (weighted) GPA to yield alignment mappings gi and mean shape S̄); finally, shapes

Ψ(Si) and back-transformed mean shapes gi(S̄) are blended to produce new shapes
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2.2 Weighting Procedure

A major issue with the aforementioned step is that all shape points are equally
treated in the registration. If these points are invalid from a segmentation view-
point (e.g. point not lying on organ boundary or out of the image FOV), they
will corrupt the registration. As a result, bad estimates of the mean S̄ and
mappings gi will be computed. Hence we apply a simple yet efficient solu-
tion that uses a weighted GPA. Given weights wi

j associated with point xi
j of

shape Si, the weighted alignment is obtained by weighting (i) the mean (i.e.
x̄j =

∑
i wi

jx
i
j/
∑

i wi
j) and (ii) the least square minimization in Eq. (1), by

replacing the distance terms dg(xi
j) with wi

jdg(xi
j).

In this paper, we express the weight wi
j as the sum of “reliability” terms

F k(θ(xi
j)): wi

j =
∑

1≤k≤N F k(θ(xi
j)). The quantity θ(xi

j) = θi
j is a features

vector computed from the image Ii, the shape Si and the point xi
j . The intra-

reliability term F i(θi
j) accounts for the segmentation quality at xi

j in image
Ii. Similarly, inter-reliability terms F k(θi

j), k �= i additionally consider the cou-
pling with other images. These terms depend on the segmentation strategy and
available prior knowledge (see next Section for examples). If we consider (i) the
features vector θi

j as the observation of a random variable Θ, (ii) the event w

“θi
j is the features vector obtained in case of optimal segmentation at xi

j”, and
(iii) F k(θi

j) = pk(w|θi
j) as a posteriori probability function, wi

j computation is
analog to a “sum rule” commonly used in multi-classifiers approaches.

3 Coupled MRI Bone Registration-Segmentation

Our experiments are related to the hip joint image analysis to detect abnormal
bone shape (changes) that may yield the formation of arthritis [13]. We further
suggest that the automated alignment of multiple LOD MRIs, together with
its segmentation will better support clinical diagnosis and biomechanical stud-
ies. We adopted our previous MRI bone segmentation approach [11], which uses
DMs that are semi-automatically initialized and driven by dynamic law equa-
tions. The evolution is coupled with shape priors expressed as multi-resolution
statistical shape models (SSM). Convergence is obtained when shapes variations
between two evolution steps are small with respect to a chosen threshold. Image
forces used in the DM evolution are based on gradient directions and on the
normalized cross correlation ratio NCC(qi

j , rq
i
j) between intensity profiles [10]

qi
j extracted at each point xi

j and reference profiles rqi
j . When the segmenta-

tion is near completion, the effects of shape priors are turned off enabling the
segmentation of fine details not captured by the SSM.

Two acquisition protocols VIBE (VB) and TrueFISP (TF) were used to get
the low (1.3× 1.3× 5 mm3, Fig. 2a) and high (0.6× 0.52× 0.52 mm3, Fig. 2b)
resolution MRIs, respectively. As depicted in Fig. 2, their FOV differ significantly
where the TF focuses on the joint while the VB covers the full femur bone. The
computation of weights of Sec. 2.2 is critical. Weights are constantly updated
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during the segmentation as follows: shape points out of their corresponding image
FOV have null weights (lowest weight), otherwise the NCC ratio is used to
define the intra-reliability F i(θi

j) and inter-reliability F k(θi
j) as NCC(qi

j , rq
i
j)

and NCC(qi
j , q

k
j ), respectively. By giving higher weights to a shape point whose

IP is similar to the other shapes’ IPs, robust estimates of the mean shape and
alignment transforms are obtained. This provides thus an effective way to express
point reliability. The NCC is invariant to linear intensity changes, thus being
useful for our MRIs acquired with different protocols.

4 Results

Fifteen volunteers were scanned based on Sec. 3 imaging protocols. For each
subject, multiple LOD MRIs (TF and VB) were processed with our proposed
coupled registration-segmentation framework. For comparative analysis, the VB
was also segmented using the same deformable model as in the coupled approach.
This is referred to as a single segmentation. The VB image was segmented in-
stead of the TF in order to have a more reliable and objective estimate since in
[11] images with small FOV were not used. For quantitative analysis, the Dice’s
similarity coefficient (DSC) was used to compare the automated femur segmen-
tation results with that of manual delineations (as the ground truths) defined
by experienced researchers under the supervision of a radiologist. A DSC of 1.0
was given to segmentation results having identical overlap to the ground truth.
In the first experiment, multiple LODs of VB and TF were used, in which the

a) b) c) d) e)

Fig. 2. a) VB and b) TF images of a same subject acquired at different LODs and

positions. The higher LOD of the TF is clearly able to image the cartilages and the

femoral head in greater details than with the VB. On the other hand, VB provides

full imaging of the femur. These multiple LOD images offer a unique possibility to

simultaneously analyze in correspondence, the full femur together with the fine detailed

soft tissue structures. The alignment resulting from our coupled approach is shown in

c) with corresponding white segmentation contours overlaid in d). In comparison, single

segmentation results of a) are shown in e).
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a) b) c) e)d)

5.8 (mm)

4.3

2.9

0.0

1.4

Fig. 3. a) A close-up transversal view of a femoral head visible in the TF. Results

from b) single and c) coupled segmentation are overlaid as white contours. The white
arrows indicate poorly segmented areas in b) which are markedly corrected in c) using

the additional information from the TF MRI. Average distance errors computed from

the single d) and coupled e) segmentation results are mapped on an arbitrary femur

shape. The black arrow indicates the Fovea Capitis for which larger error differences

are observed.

subjects’ leg exhibited low flexion/abduction/adduction amplitudes (i.e. close to
the “neutral” position) as shown in Fig. 2a) and b).

The result of our coupled approach is shown in Fig. 2c) and d), where both
LOD MRIs have been automatically aligned (superimposed together) and seg-
mented, respectively. Here, we can see that the alignment appears to be satis-
factory and the segmentation shape correctly contours the bone in both VB and
TF MRIs. The surrounding soft tissues, i.e. muscles, were slightly misaligned,
although visibly accurate. This was expected since the alignment was based on
a rigid mapping of the femur bone and thus did not take into account the soft
tissue deformations. In Fig. 2e), the segmentation result using only the VB is
presented. Visual differences to the coupled approach results are very subtle.
The visual findings are validated with the average DSC measures of 0.917±0.03
and 0.925±0.01 for the single and coupled segmentations, respectively.

Although the improvements with the coupled approach are small for the entire
femur segmentation (≈1% increase in DSC), the coupled approach is markedly
more accurate in the segmentation of the finer details that were only available
in the TF (Fig. 3). A distance error (in mm) was calculated between the ground
truth and the segmentation results for both the single (Fig. 3d) and the coupled
(Fig. 3e) approaches, averaged among all the subjects, and finally mapped on
an arbitrary reference shape. These distance errors better reveal that the finer
information from the TF contributed to a better segmentation (e.g., fine details
of the fovea capitis). In this first experiment, the position of the leg was neu-
tral for both the VB and the TF MRIs. However, in clinical practice, it often
happens that stronger alignment differences between the image acquisitions are
observed due to patient movement between the scans. Large leg rotation patterns
make the alignment more challenging and locally affect the intensity distribution
around the bones. In order to analyze the capability of our coupled framework
in the presence of large movement between the scans, we gathered 15 additional
datasets of the same subjects performing large leg rotation patterns during the
TF acquisition, as shown in Fig. 4.
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a) c)b)

Fig. 4. Segmentation and alignment result of a multiple LOD MRIs of VB and TF

shown in a) coronal b) transversal and c) sagittal view slices. In this example, the

subject performed a large rotation movement of the leg.

These figures illustrate the strong misalignment that needed to be recovered
between the bone extracted in the VB and the TF MRIs. As shown in Fig. 4,
the registration of the femur performed well, where we can clearly see the shape
outline of the femur between the VB and the TF. Similarly to the previous ex-
periments (Fig. 2), the quantitative measures of the femur segmentation were
almost identical (DSC of 0.917±0.03 and 0.924±0.01 for single and coupled ap-
proaches respectively). This suggests that our framework is robust in regards to
the mis-alignment orientation of the LOD MRIs as long as these MRIs share a
common SOI. We conducted further tests to evaluate our coupled approach in
the case where more than two LOD MRIs were available. When our framework
was applied to multiple LOD MRIs consisting of a VB and two TF (neutral and
large movement), all three images were successfully aligned and the segmenta-
tion accuracy was in line with all the other experiments (alone and coupled DSC
results of 0.917±0.03 and 0.929±0.01, respectively).

5 Discussion and Conclusion

This study presented a framework for simultaneous registration and segmenta-
tion of intra-subject multi-modal images. We exemplified our framework with
the application to multiple LOD MRIs. The experimental results demonstrated
that our framework was able to robustly align the multiple LOD MRIs that were
different in resolution and FOV. At the same time, the combined information in
the multiple LOD MRIs was exploited in the segmentation, thus improving the
results when compared to the segmentation using a single MRI. We measured
our segmentation results to those derived from manual delineation and found the
results to be highly accurate. Since the accuracy of the registration is dependent
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on the segmentation in our coupled approach, we suggest that our registration is
equally accurate. With our coupled registration-segmentation framework, high
and low resolution images of the hip joint structures were simultaneously aligned
and segmented, thus offering quantitative correspondence for use in e.g. clinical
diagnosis and biomechanical analysis. Current effort is put in automating the
initialization of the DMs. Our future work will involve the evaluation of our cou-
pled framework to a wider variety of imaging modalities as well as the extension
to non-rigid transforms.
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Abstract. Groupwise registration has received more and more attention in the 
area of medical image analysis, due to its importance in analysis of population 
data. One popular way for groupwise registration is to alternatively estimate the 
group mean image and register all subject images to the estimated group mean. 
However, for achieving better registration performance, it is important to al-
ways keep the sharpness of the group mean image during the registration, which 
has not been well investigated yet in the literature. To achieve this, we propose 
to treat each aligned subject, as well as its anatomical regions, differently when 
constructing the group mean image. Specifically, we propose a new objective 
function to generalize the conventional groupwise registration method by using 
a dynamic weighting strategy to weight adaptively across subjects and spatial 
regions, to construct a sharp group mean image in each stage of registration. By 
integrating this strategy into diffeomorphic demons algorithm, the performance 
of our groupwise registration can be significantly improved, compared to the 
conventional groupwise registration method that starts with a fuzzy group mean 
image.  

1   Introduction 

Groupwise registration becomes more and more popular in recent years due to its at-
tractiveness in analyzing population data [1, 2]. Compared to the traditional pairwise 
registration algorithm, groupwise registration aims to simultaneously estimate the 
transformation fields for all subjects without explicitly specifying an individual sub-
ject as a template, in order to avoid any bias in the subsequent data analysis.  

One of the most popular groupwise registrations is proposed by Joshi et al. [1]  
in 2004. In their method, the groupwise registration is implemented by alternatively 
constructing the group mean image and estimating the transformation fields of all 
subjects towards the tentative group mean. However, one major drawback of this me-
thod is that it usually produces a very fuzzy group mean image in the beginning, due 
to the simple averaging of all subjects that are not well aligned initially. As a result, 
the fuzzy group mean image fails to offer the correct guidance to the subsequent 
pairwise registrations as we can see in the experiments. Thus the anatomical details 
can hardly be recovered from the initial fuzzy group mean image due to the difficulty 
of establishing the reliable correspondences between sharp subject images and the 
fuzzy group mean image during the iterative registration procedure.  
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Recently, Fletcher et al. [2] extended Joshi’s method to the Riemannian manifold 
and proposed to use the geometric mean of the group to handle the possible outliers 
which may deviate the Fréchet mean far away from the real population center.  
However, they used an equal weight for each subject in the group to compute the 
geometric mean. Also, the importance of the sharpness of the mean image in group-
wise registration is not addressed. 

Another interesting related work is the tree-based groupwise registration [3]. In 
their method, the pseudo-geodesic median image is selected as the root template after 
learning the intrinsic manifold on the whole data set. Since a fixed image (i.e., the 
root image) is used as the final template to register all other subjects, the bias is in-
evitably introduced in this scenario due to the discrepancy between the template and 
the real population center, although in this case a sharp individual image is used as the 
template to guide the groupwise registration. 

We propose to improve the performance of groupwise registration methods that fo-
cus on iteratively registering subjects to the group mean image [1, 3, 4]. We will first 
point out the importance of always keeping a sharp mean image during the groupwise 
registration. Second, we generalize the conventional groupwise registration method by 
presenting a new objective function, for achieving the sharp group mean image with-
out introducing biases. To accomplish it, we learn the distance between the two  
images on local patch of the manifold, instead of the straightforward but coarse mea-
surement defined as the overall intensity difference of the whole brain [1-3]. Another 
contribution of this paper is that we treat each subject differently throughout the regis-
tration. Specifically, only the registered subjects that are close enough to the tentative 
mean image will be involved in updating the mean image since equally treating  
the subjects in the early stage will lead to the irreversible loss of structure details, es-
pecially when most subjects are not well aligned in the beginning. With the improve-
ment of registration, subjects are more likely to agglomerate to the population center. 
At that time, more subjects will be allowed to participate into the construction of the 
mean image and their contributions will become more equal. Working under this sce-
nario, the group mean image in our method will gradually approach to the population 
center, as shown by our experimental results. Finally, we demonstrate the advantage 
of our method by integrating it into the Diffeomorphic Demons registration algorithm 
[5], and also compare its performance with the conventional groupwise registration 
algorithm [1]. With extensive experiments in evaluation of the overlap ratios on 16 
NIREP Data and 40 LONI data, our proposed method outperforms the conventional 
groupwise registration method in both registration accuracy and consistency. 

2   Methods 

In the framework of unbiased groupwise registration [1], the transformation fields are 
estimated by iteratively registering  subjects to the latest estimated group mean im-
age. In the -th round of registration 1, … , , the group mean image  is gener-
ated by averaging upon the warped subjects | 1, … , , 1, … ,  w.r.t. 
the current estimated transformation fields | 1, … , , 1, … , , where 

 are calculated by considering  as the template and  (original subjects) as the 
moving images. It is worth noting that  are the linear transforms in the initial  
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registration stage. In the following, we first point out in Section 2.1 the importance of 
always keeping the sharp mean image throughout the whole groupwise registration 
procedure. Then we propose an improved objective function in Section 2.2, and finally 
optimize it in Section 2.3.   

2.1   The Importance of Keeping Sharp Mean Image in Registration 

Unbiased groupwise registration method [1] seeks to alternatively estimate the group 
mean and register each subject to the tentative group mean. However, the initial group 
mean image , generated right after the linear alignment, is generally very fuzzy, 
since the subjects are not well aligned in the beginning of registration. According to 
our knowledge, few articles have addressed the importance of keeping the sharp mean 
image during the registration. Indeed, the fuzzy mean image would undermine the 
groupwise registration performance in two ways: 1) it is difficult to register an indi-
vidual subject with clear anatomical structures to the mean image with fuzzy struc-
tures; 2) a fuzzy mean image will challenge the convergence of optimization since it 
might not provide sufficient anatomical information to guide the registration. The 
importance of a sharp mean image in groupwise registration is demonstrated in Fig. 1 
by 61 toy images with three branches in distribution, with each branch representing 
one type of cortical folding. For simplicity, only three images are shown in each 
branch. Before registration, the mean image is very blurry (as shown in Fig. 1(a)). If 
the groupwise registration starts from this fuzzy mean, it will result in an unsatisfacto-
ry mean image (i.e., the one shown in Fig. 1(b)), since the fuzzy mean image in the 
beginning is not able to informatively guide the whole groupwise registration of indi-
vidual images.  
 

 

Fig. 1. A toy example to demonstrate the importance of keeping the sharp mean image in the 
groupwise registration. The synthetic data and their fuzzy mean are shown in (a). (b) shows the 
groupwise registration results starting with the fuzzy mean image (shown in the blue box of 
(a)). (c) demonstrates the results by the proposed method which starts with the sharp mean 
(shown in red box) and keeps tracking the sharp mean image during the registration.  

However, if we selected a subject close enough to the population center (i.e., the 
image in the red box of Fig. 1(a)) as an initial group mean, the anatomical sharpness 
could be preserved during the registration. Our method is specifically designed to 
estimate the sharp mean image, which is close to the population center, even in the 
early stage of the groupwise registration. With this method (detailed in the next sec-
tion), we can achieve much more reasonable results as shown in Fig. 1 (c). 

 

(a) (b) (c) 

Fuzzy mean  
after liner registration 

Group mean by 
conventional method 

Group mean  
by our method 
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2.2   Objective Function of Groupwise Registration 

In this section, we first present an objective function in our groupwise registration 
with sharp mean, which generalizes the conventional unbiased groupwise registration 
algorithm [1]. 

The objective function in conventional groupwise registration is given as: , arg min, , , (1) 

where ∑  is the simple average of the warped images after the 

previous round of registration. The term ,  is the manifold distance between 
the identity transformation  and . 

One major drawback of this method is that the contributions (or the weights) are 
the same for not only all subjects in the population, but also all voxels in each subject. 
However, different subjects may be aligned at different degrees with the mean image, 
thus the equal weighting of them could lead to a fuzzy mean image. Also, each ana-
tomical region may be aligned differently with the mean image, therefore the use of 
the same weight (generally obtained from the entire subject) for each anatomical re-
gion may lead to different amounts of fuzziness across different regions of the mean 
image. Our method attacks this problem in two ways as described next.  

First, we propose a distance measurement for each voxel  w.r.t. the current mean 
image  and the warped subject image  as:    , , , , , (2) 

where  denotes a local image patch around voxel , with size . The term  meas-
ures the intensity difference between the corresponding local image patches, 

 and , in the images  and  around the voxel . It is worth 
noting that  approaches to the global image distance when  is very large, while  
becomes voxel-wise difference in Eq. 2 when  is zero. Since the registration results 
are usually refined from global shape to local shape, the value of  is large in the ini-
tial stage of registration and then gradually deceases with the progress of registration.    

Second, to treat each subject differently, we introduce a hidden variable  
( . . ∑ 1) to indicate the contribution of each subject  in the construc-
tion of group mean image on a particular voxel . In the initial stages, all subjects are 
not well aligned (especially right after linear registration). If we equally weight each 
subject (i.e., the entropy of the weighting set | 1, … ,  is high), it will lead 
to a fuzzy mean image as demonstrated in Fig. 1. To keep the sharp mean throughout 
registration, only the warped subjects  which are close enough to the previous mean 
image  are qualified to have a large weight of , while other subjects are 
penalized with small weight . With the progress of registration, all subjects will 
likely agglomerate to the population center. Thus, all , as long as they are close 
enough to the mean image, will contribute almost equally to the construction of the 
mean image. Since they are already well aligned, little fuzziness will be brought to the 
group image. In this paper, the dynamic changes of weights | 1, … ,  
from strictly binary to loosely uniform are controlled by requiring the entropy of the 
weighting set | 1, … ,  to be increased with the progress of registration.  
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By replacing the distance measurement with Eq. 2 and adding the dynamic control 
of weights across subjects to the objective function, we get a new objective function 
for groupwise registration as: , , · , , , · ·log , . (3) 

where the scalar  controls the penalty of large distance from  to . We will 
show its important role when explaining the solution to Eq. 3 in Section 2.3. 

2.3   Solutions to Our Groupwise Registration  

The solution to  in Eq. 3 can be immediately calculated by setting  ⁄ 0: exp , , , . (4) 

Here  acts as the inverse temperature in the annealing system based on our observa-
tions in Section 2.2. Initially, the degree of  is low, i.e., only the subjects that are 
very close to the population center will be considered to build a new group mean im-
age, in order to keep the mean image sharp. With the progress of groupwise registra-
tion, all subjects become closer to the population center. At that stage, the temperature 
 will be increased to encourage almost equally weighting of all warped subjects . It 

is worth noting that  is the simple average of linearly aligned subjects in the con-
ventional groupwise registration [1], which could be very fuzzy. In our case, when we 
set the temperature  close to zero in the beginning,  can be computed from only 
an individual subject that is the closest to the population center, compared to the other 
subjects in the group. The advantages of this initialization are: 1) it can have a sharp 
group mean image to allow for better registration with all subjects; 2) it is closer to 
the final population center than any other subjects. Note that  in our method will 
not introduce bias since we will gradually increase the value of   to ensure that it 
reaches the real population center without sacrificing the registration accuracy. This 
argument is supported by examples in Figs. 2 and 3.  

Fig. 2 demonstrates the difference between the conventional and our groupwise 
registration methods in updating the group mean image, by taking 61 images in Fig.1 
as an example. The solid dots (with different colors) in Figs. 2(a) and 2(c) denote for 
typical images shown in Fig. 1. In the conventional method,  (black cross) is the 
equal average of all s, which can be easily deviated by the outliers or less regis-
tered images (i.e., a faraway dot from the black cross in Fig. 2(a)). Also, during the 
iterative registration procedure, each image  is equally considered, regardless of 
their registration accuracy (as shown within a large circle in the (a)). However, in our 
method, we first select an individual image, which is the closest to the population 
center (i.e., red solid dot in the top of (c)), as a group mean image . Another main 
difference between the conventional and our methods is that in our method only the 
well aligned subjects will contribute to the construction of the mean image. With the 
progress of registration, the value , equal to the size of gray circle in (c), will in-
crease, and thus more and more well aligned images will be considered for construc-
tion of the group mean image, thus also avoiding bias in the end. To demonstrate the  
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Fig. 2. Different strategies used to update the group mean image in the conventional method (a) 
and our registration method (c). 61 original subjects used in Fig. 1 are projected onto a 2D 
space by PCA and shown in blue dots in (b) and (d), respectively. Their registration results by 
the conventional and our methods are also shown in (b) and (d) with red dots. It can be seen 
that our registration results are always clustered around the real population center in both initial 
(top) and final (bottom) registration stages.  

advantage of our adaptive strategy in updating the group mean image, we first project 
61 images used in Fig. 1 onto a 2D plane by PCA (as shown with blue dots in Figs. 
2(b) and 2(d)). The distribution of 61 images shows a three-branch shape, with its 
center at the joint point of the three branches. The registration results  and  are 
also projected onto the same 2D plane, and are displayed in red dots for both the con-
ventional and our methods in (b) and (d), respectively. It can be observed that our 
registration results always stay around the real population center, while the mean im-
age by the conventional method is deviated from the population center in the begin-
ning and keeps staying there until the end of registration.  

After determining the weight  for each subject  by Eq. 4, the remaining op-
timization of Eq. 3 will be solved iteratively by updating the group mean image  
and performing pairwise registration between each subject  and the group mean im-
age . Therefore, by fixing  and , we can first calculate the group mean 
image in the -th round of registration by minimizing  w.r.t. : ∑ · ∑⁄ . (5) 

Then, the transformation field  in the -th round of registration can be solved by 
optimizing the following energy function: arg min , , , , , (6) 

This is a well-known quadratic objective function discussed in many gradient-based 
registration algorithms. The solution to Eq. 6 can be found in [5].  

Compared to the conventional method, the advantage of our objective function can 
be summarized as: 1) the group mean image is a weighted average of aligned subjects 
(Eq. 5), instead of a simple equal average. Weights are adaptively determined not only 
for each aligned subject , but also for each image location ; 2) the contribution  
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of each subject is dynamically changed throughout the groupwise registration in the 
annealing scenario; 3) the sharpness of group mean is always preserved throughout 
the registration.  

3   Experiments 

Eighteen elderly brain images are used in our first experiment to demonstrate the ad-
vantage of our groupwise registration method, compared to the conventional group-
wise registration algorithm [1]. Some typical brain images are displayed in the left 
panel of Fig. 3. Conventional groupwise registration method starts from a very fuzzy 
mean (with its 3D rendering shown in blue box). On the contrary, our method begins 
with a clear group mean image (as shown in red box), which is close to the population 
center. The evolution of the mean image by the conventional and our registration me-
thods is provided in the top and bottom rows, respectively. It is clear that although the 
final group mean images are similar by both methods, ours is much sharper than that 
by the conventional method. Also, this experiment has demonstrated that our method 
will not introduce bias in the final group mean image as the group mean images by 
two methods (ours and the conventional unbiased registration algorithm) are very 
similar. To quantitatively measure the overlap ratio, we first vote a reference image 
based on the warped results of all (tissue-segmented) subject images, since no tem-
plate is used in our groupwise registration method. Then, overlap ratio is calculated 
between each warped subject and the reference image one by one. The average over-
lap ratio on three tissues (WM, GM, and CSF) is 64.95% by our method and 60.24% 
by the conventional method, indicating a 4.71% improvement. 
 

 

 

Fig. 3. The evolution of the group mean image. Left panel shows several typical images from 
18 elderly brains used in this experiment. In the right panel, the evolution of the conventional 
groupwise registration starting with a fuzzy mean (in blue box) and our method with a sharp 
mean (in red box) are displayed in the top and bottom rows, respectively.  

To further validate our argument on the importance of using the sharp mean image 
during the groupwise registration, we perform two different registration approaches, 
i.e., the conventional groupwise registration with fuzzy mean and our groupwise reg-
istration with sharp mean, on 16 NIREP data (with 32 manually labeled ROIs) and 40 
LONI data (with 54 ROIs), by measuring the overlap ratios of their aligned ROIs.  
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Fig. 4. Average overlap ratios on NIREP and LONI datasets. Two groupwise registration algo-
rithms (i.e., our method in red and the conventional method in blue) are performed on NIREP 
and LONI datasets, with the average overlap ratios of all ROIs (at different registration stages) 
reported in (a) and (b), respectively. 

The calculation of overlap ratio is similar as those described above. Figs. 4(a) and 
4(b) show the average overlap ratios achieved by the two methods on NIREP and 
LONI datasets, respectively. It is obvious that our method with sharp mean (in red 
curves) outperforms the conventional method (in blue curves) during the whole regis-
tration procedure.  

4   Conclusion 

We have demonstrated the importance of keeping the sharp group mean image during 
the groupwise registration procedure, in order to improve the overall registration per-
formance of the whole population. Specifically, we generalize a popular unbiased 
groupwise registration method by presenting a new objective function to achieve the 
groupwise registration with the sharp mean. By using various datasets with manually 
labeled ROIs, we have shown that our method can perform better than the conven-
tional groupwise registration method, in terms of consistently aligning the ROIs 
across different subjects. We also demonstrate that our method can eventually pro-
duce a much sharper group mean image than the conventional method.  
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Abstract. We present a registration algorithm that can handle the dis-

continuity of deformation with an ultimate goal to investigate how pul-

monary lobes deform to accommodate chest wall shape changes. We first

show that discontinuities can exist in both normal and tangent directions.

Such discontinuities are accounted for by a spatially varying diffusive regu-

larization which restricts smoothing inside objects. Meanwhile, a distance

term is combined with the sum of squared intensity differences (SSD) to

explicitly match corresponding interfaces and intensity patterns. The ca-

pability of this new method is demonstrated using two-dimensional

(2-D) synthetic examples with complete or incomplete “fissures” and three-

dimensional (3-D) computed tomography (CT) lung datasets.

1 Introduction

Nonrigid image registration has become an important non-invasive tool to assess
organ motion from a pair of medical images. Most earlier registration algorithms
assume or imply a continuous and smooth deformation field. However, those al-
gorithms might introduce unphysiological artifacts near object interfaces if the
adjacent objects slip against each other. Thus, developing physiologically mean-
ingful registration algorithms that account for discontinuities is becoming an
important issue [1,2,3,4,5,6]. Of particular interest to this paper is discontinuity
near lobar fissures in human lungs.

It is well known that human lungs are separated into five lobes by means of
infolded reflections of the visceral pleura and lobes can slide against the chest
wall and adjacent lobes [7]. Such motion may provide a means to reduce lung
parenchymal distortion and avoid regions of high local stress. Conversely, it has
previously been shown that lobar fissures fibrose and essentially disappear in an-
imals (sloths) which undergo very little chest wall shape changes [8]. Recently,
some registration algorithms have been proposed to account for discontinuity of
deformation near lung borders or lobar fissures [2,3,4,5]. In [2,3,4], discontinu-
ities are accounted for by registering regions of interest alone or separately with
segmentation masks. Voxels outside of the region of interest are not taken into
� E.A. Hoffman is shareholder in VIDA Diagnostics, Inc.

T. Jiang et al. (Eds.): MICCAI 2010, Part II, LNCS 6362, pp. 578–585, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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consideration during registration or are set to a uniform value before registration
to form a high intensity contrast on the border. By this means these methods
avoid inter-object regularization and match corresponding borders with an im-
plicit penalty of the high intensity contrast between object and “background”.
However, such mask-based registration methods require a complete interface.
Commonly, incomplete lobar fissures are observed in human lungs and the de-
gree of incompleteness ranges from nearly complete absence to nearly complete
presence of the fissure [9]. This means that lobes might be only partially sepa-
rated and, thus, mask-based registration methods discussed above would be inca-
pable of dealing with incomplete fissures. Different from mask-based registration,
Kabus [1] introduced a spatially dependent weighting function to suppress the
influence of smoothness near the interfaces of neighboring objects, thus, allow-
ing for opening or closing of a gap between regions. Recently, Schmidt-Richberg
et al. [5,6] proposed a direction-dependent regularization that restricts smooth-
ing in normal directions while allowing discontinuity in tangent directions. An
underlying assumption for their approach [5] is that normal components of dis-
placements on the interface of neighboring objects are continuous. However, this
assumption might not be true for lobar fissures since normal directions of fissures
change during respiration, leading to discontinuities in both normal and tangent
directions (it will be explained in details later). Furthermore, Schmidt-Richberg
et al.’s approach cannot ensure corresponding interfaces to be matched between
two images if the intensity contrast near the interface is weak, such as in the
case for CT images of lobar fissures.

In this paper, we present a novel registration algorithm to deal with disconti-
nuity of deformation occurring near lobar fissures. We show that discontinuities
can exist in both normal and tangent directions and then present the new reg-
istration to account for such discontinuities. The proposed method is validated
using two-dimensional (2-D) synthetic examples with complete or incomplete
“fissures” and then applied to three-dimensional (3-D) computed tomography
(CT) lung datasets.

2 Methods

2.1 Background

Given a pair of N -dimensional (N -D) images R and F , referred to as the reference
and floating images, the goal of a registration algorithm is to find a deformation
field to match images R and F . If there is only one homogeneous object, we
should expect a smooth and continuous deformation field. However, slippage or
discontinuity may occur on interfaces if there are more than one object. Fig.1
illustrates three sliding cases, where the interfaces before and after motions are
denoted by ∂Ω1 and ∂Ω2, respectively. A pair of adjacent points p+ and p− on
∂Ω1 is deformed into corresponding points q+ and q− on ∂Ω2. Due to slippage,
q+ and q− are separated but still locate on ∂Ω2. In left panel of Fig.1, interfaces
before and after motion are planes with unchanged normal directions; in the
middle both interfaces are planes but normal directions are different; and in the



580 Y. Yin, E.A. Hoffman, and C.-L. Lin

p+

p−

q+

q−

∂Ω1

∂Ω2n1

n2

p+
p−

q+ q−

∂Ω1

∂Ω2

n1

n2

p+

p−

q+ q−

∂Ω1

∂Ω2

n1

n2
n2

Fig. 1. A sketch illustrating sliding in three cases. Left: interfaces before and after

motions are planes with unchanged normal directions; Middle: interfaces before and

after motions are planes but with changed normal direction; Right: an initial plane

interface is deformed into a curved surface after motion.

right an initial plane interface is deformed into a curved surface with different
normal direction at q+ and q−. It is clear that normal components (with respect
to n1) of displacements for p+ and p− are continuous only for the first case while
discontinuities exist in both normal and tangent directions for the other two cases
where the normal directions change. Based on these observations, we should
not expect continuous normal components of displacement near lobar fissures
since their motions are usually complex with changed normal directions. Thus,
a new registration method is needed to investigate discontinuity of deformation
between lung lobes.

2.2 Registration Method

Image registration is a process of determining an optimal deformation field to
match images R and F . For non-parametric registration algorithms, deformation
field is usually expressed in the form of displacement field s : p → s(p) for each
voxel p. s(·) is usually solved by minimizing a global energy

E = Sim(R, F, s) +
1

σ2
T

Reg(s), (1)

where Sim is the similarity measure that defines how well images R and F match.
Reg is the regularization term that avoids unstable and non-smooth solutions
and σT is a weight coefficient to control the amount of regularization.

In order to capture discontinuities of deformation in both the normal and
tangent directions, as we observe in Section 2.1, we need to suppress the regu-
larization near the interface of neighboring objects while maintain regularization
inside objects. Meanwhile, we have to ensure corresponding interfaces from im-
ages R and F to be matched to prevent gaps or intersections. For the first point,
we adopt a spatially variable diffusive regularization:

Reg(s) =
N∑

l=1

∫
Ω

β(p)‖∇sl(p)‖2, (2)

where β(p) is a varying weight coefficient and sl is the lth component of s. A
desirable β should restrict the regularization inside objects and one of choices is
a Dirac-shaped function [1,5]: β(p) = 1/(1 + αnexp(−αφ2

R(p)), where α and n
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are control parameters and we choose α = n = 1000 in this work. φR(p) is the
Eucilidean distance at voxel p to its closest point on the interface in image R.

For the similarity term in Eq. (1), we combine the sum of squared intensity
differences (SSD) and a distance penalty term. The distance term measures
distances of all points on an interface in image R to the corresponding interface
in image F and the idea is similar to surface matching algorithms using distance
transformation [10]. The combined similarity measure is in the form of

Sim(R, F, s) =
∫

Ω

‖R− F ◦ s(p)‖2 + γ

∫
∂Ω

‖φF ◦ s(p)‖2, (3)

where φF is the Eucilidean distance field from the corresponding interface in
image F and γ is a weight coefficient.

Although Eq. (1) could be solved directly [1], the coupling of the similarity
and regularization terms usually makes it computationally complicated. In this
work, we solve Eq. (1) based on a Demons framework [11] and rewrite it as

E =
∫

Ω

‖R−F ◦c‖2+γ

∫
∂Ω

‖φF ◦c‖2+
1
σ2

x

∫
Ω

‖c−s‖2+ 1
σ2

T

N∑
l=1

∫
Ω

β‖∇sl‖2, (4)

where the third term is called as the correspondence term and σx accounts
for a spatial uncertainty. c is usually expressed in a composition of s and a
small updated deformation u: for example, s ◦ (Id + u). By introducing the
correspondence term, the coupled optimization can be decoupled into a two-step
procedure. It starts from an initial displacement field s0. The first step is to solve
ut by minimizing the first three terms with st being given. The second step is to
solve st+1 by minimizing the last two terms with ct = st ◦ (Id + ut) being given.

3 Results

3.1 2-D Synthetic Experiments

The performance of the proposed algorithm is first evaluated by 2-D synthetic
images. Three synthetic cases are designed with complete or incomplete internal
interfaces, denoting fissures, as shown in Fig.2. A line A-A is chosen for each case
for comparison between registration-predicted displacements and exact solutions.

The deformation field and intensity patterns are designed to deform “fissures”
into designated positions while keep undeformed outside of objects. Fig. 3 shows
intensity patterns (gray-scale images with intensity range [0, 255], 128× 128
pixel size, and 1× 1 mm2 pixel spacing), deformation fields, and registration re-
sults for the three cases above. The reference images are presented on the first
three panels in the 1st row, respectively, and they are all registered to the same
floating image as shown on the last panel in the 1st row. The warped image,
difference image and deformation fields are shown from the 2nd to 4th rows, re-
spectively, with each column corresponding to each case in Fig. 2. Comparisons of
x− and y-components of displacements (u, v) between predicted results and ex-
act solutions along A-A are shown from left to right in Fig. 4 for the three cases,
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Fig. 2. Sketches for 2-D synthetic cases. Left: Complete Plane-Parabolic, a complete

plane “fissure” is deformed into a parabolic surface; Middle: Complete Plane-Plane,

a complete plane “fissure” is deformed with changed orientation; Right: Incomplete

Plane-Plane, an incomplete plane “fissure” is deformed with changed orientation. The

reference line A-A is marked in red.

respectively. It can be seen that overall the proposed approach could recover
the true deformation field for all the three cases. Discontinuities of both normal
(u) and tangent (v) components of displacements for cases with complete or
incomplete “fissures” are captured and are consistent with the ground truth.

3.2 3-D CT Experiments

In this section, we apply the proposed algorithm to 3-D CT lung datasets with
complete lobar fissures. Three pairs of datasets from three human subjects (2
males, 1 female, age: 20-26 years, normal non-smokers) are used. All datasets
were acquired with a Siemens Sensation 64 multi-detector row CT scanner
(Forchheim, Germany) during breath-holding at 60% and 80% of vital capacity
under an approved protocol by our institutional review board. Subjects were
studied as part of a project seeking to establish a normative lung atlas. We
chose these two lung volumes somewhat arbitrarily from datasets with multiple
volumes. The volume change (about 0.8 liters) was only slightly greater than
a typical tidal volume and thus was suitable for this early evaluation. In-plane
dimension is 512× 512 with an approximate spatial resolution of 0.6× 0.6mm2.
The z-direction dimension ranges from 600 to 800 with a spatial spacing of
0.5mm. Complete lobar fissures are detected by using the Pulmonary Worksta-
tion 2 (VIDA Diagnostics, Iowa, United States) with the algorithm derived in
[12]. Similar to [3], we limit our current analysis to the upper and lower lobes of
the left lung. Original dataset are cropped to include left lung only. Although we
notice that changes in voxel intensity due to respiration might affect registration
accuracy [3,13,14], we expect that the influence is small here since volume dif-
ferences are relatively small. Landmarks located at vessel bifurcations are used
to assess registration accuracy. Each registration pair has 40–60 landmarks and
they are distributed in the whole left lung. The mismatch errors are 1.25 ± 1.67
(6.49 ± 5.29), 0.80 ± 0.39 (5.80 ± 3.71), and 1.70 ± 1.35 (8.31 ± 2.82) for
three registration pairs, respectively, where units are mm and numbers in (·)
denote errors before registrations. Fig. 5 shows the floating image, reference im-
age, warped image and displacement field from left to right from one subject,
representative of the three subjects studied. Discontinuity near the fissure is
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Fig. 3. Results for cases (from 1st to 3rd column): “Complete Plane-Parabolic”, “Com-

plete Plane-Plane”, “Incomplete Plane-Plane”. Reference images are shown and are

registered to the same floating image (the last one) in the 1st row. The warped im-

age, difference image, and overlay of exact (red dashed) and predicted (black solid)

deformation grids are presented from the 2nd to 4th rows.
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Fig. 4. Comparisons of u and v-components of displacements along A-A for three cases:

left, “Complete Plane-Parabolic”; middle, “Complete Plane-Plane”; right, “Incomplete

Plane-Plane”
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Fig. 5. 3-D lung CT experiment. From left to right: the floating image, reference image,

warped image, and displacement field. Oblique fissure is highlighted in green for the

floating image and in red for the reference and warped images. The white arrow in the

right panel shows a region of low displacement.

clearly visualized. The white arrow in the right panel shows a region with low
displacement where motion is restricted by the proximity of the heart.

4 Discussion and Summary

In this work, we proposed a novel registration method to capture discontinuities
of deformation. We first show that discontinuities can exist in both normal and
tangent directions. Such discontinuities are accounted for by a spatially variable
diffusive regularization. In addition, we incorporate a distance penalty term into
SSD to explicitly match both intensity patterns and interfaces. The new method
is evaluated using 2-D synthetic examples with complete or incomplete “fissures”,
and results show that it is capable of capturing discontinuity of deformation in
both normal and tangent directions. The method is then applied to 3-D CT
lung datasets with complete fissures. An important next step is to apply the
proposed method to datasets with both complete and incomplete fissures to
investigate the influence of degree of fissure incompleteness on regional lung
mechanics, which will help develop a breathing lung model for computational
fluid dynamics simulation of pulmonary air flow [15,16,17].

In the current work, fissure interfaces for both images to be matched are
required and a penalty term with the Eucilidean distance is used to match the
corresponding interfaces. The interfaces are assumed accurate and investigation
of potential effects of their accuracy on registration results would be necessary
for future work. An additional issue related to the penalty term is how to prevent
gaps or intersections during registrations. Currently we have not checked such
uplausible results but we did checked distances of all voxels on the interfaces to
ensure that most of them are within one voxel by changing the weight coefficient.
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Abstract. In this work we discuss the generalized treatment of the de-

formable registration problem in Sobolev spaces. We extend previous

approaches in two points: 1) by employing a general energy model which

includes a regularization term, and 2) by changing the notion of distance

in the Sobolev space by problem-dependent Riemannian metrics. The

actual choice of the metric is such that it has a preconditioning effect

on the problem, it is applicable to arbitrary similarity measures, and

features a simple implementation. The experiments demonstrate an im-

provement in convergence and runtime by several orders of magnitude

in comparison to semi-implicit gradient flows in L2. This translates to

increased accuracy in practical scenarios. Furthermore, the proposed gen-

eralization establishes a theoretical link between gradient flow in Sobolev

spaces and elastic registration methods.

Keywords: Deformable Registration, Sobolev Spaces, Riemannian Man-

ifolds, Preconditioning.

1 Introduction

The goal of intensity-based deformable registration is the minimization of the
similarity measure between a source image IS , warped by a deformation φ, and
a target image IT . The d-dimensional images are defined as I : Ω ⊂ R

d → R,
and the deformation φ∈H, φ : Ω→Rd is defined in a Hilbert space H, and is
expressed in terms of the identity transformation and the displacement u∈H as
φ = Id + u. The problem is generally modeled as a minimization of an energy
consisting of a similarity measure ED and a regularization term ER, that is

E(φ) = ED(φ) + λER(φ) . (1)

There are numerous choices for ED and ER, cf. [1,2]. The optimization of (1)
by a gradient flow in H consists of iterative application of the evolution rule

∂tφ = −τ · ∇H E(φ) // update as negative multiple of gradient (2)

φ = φ⊕ ∂tφ // application of the update (3)

Here,∇H is the gradient inH, and⊕ defines the appropriate update operation [3].
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A common choice for H is the space of square integrable functions L2, cf.
e.g. [2]. In [4,3], Sobolev spaces are discussed as a choice for H. Compared to
L2, Sobolev spaces have the advantage to contain only functions with certain
regularity properties, which is favorable for deformable registration. Due to this
inherent regularity, problems which are ill-posed in L2 can be well-posed in
Sobolev spaces. This is the case for the minimization of (1) with λ = 0. In L2,
this is an ill-posed problem and a regularization term ER is necessary to allow a
numerical treatment, while the problem is well-posed in an appropriate Sobolev
space. This has been recognized and put to use in [4,3]. In these approaches, no
regularization term ER is used, and the required smoothness is instead achieved
by choosing an appropriate “geometric setting” by employing Sobolev spaces [3].

The motivation behind omitting ER in these works was to enable the recov-
ery of large deformations, which can be prohibited by strong regularization. This
motivation is the same as in the so-called fluid approaches [5], which were shown
to be equivalent to minimization of ED in a suitable Sobolev space [4]. The
increased flexibility of fluid approaches comes at the cost of inhibited propaga-
tion of φ into homogeneous and low contrast image regions, which is otherwise
achieved by ER in the general model (1). Thus, depending on input data, omit-
ting ER altogether can present a drawback.

In this work, we generalize previous approaches for deformable registration in
Sobolev spaces in two points. The first point is that we consider the complete
energy from (1), including the regularization term ER. Compared to traditional
fluid-type Sobolev-based approaches (obtained for λ=0), the inclusion of ER is of
advantage for treatment of images with large low contrast regions. Besides, this
generalization provides a theoretically interesting interpretation of elastic regis-
tration methods, by identifying the semi-implicit time discretization of a gradient
flow in L2 (cf. e.g. [2]) as steepest descent in a suitable Sobolev space. In [6],
regularization is used together with a Sobolev space setting. This is conceptu-
ally quite a different approach and the regularization is performed on velocities,
adding a temporal dimension to the problem.

The second generalization is the use of problem-dependent Riemannian
metrics for definition of Sobolev spaces. The use of Sobolev spaces in [4,3] is
directed at restricting the space of deformations to a certain class, such as dif-
feomorphisms. Our approach builds on these results by preserving the geometric
setting, and extends it by changing the notion of distance in these spaces by
Riemannian metrics. This provides us with a flexible theoretical framework, al-
lowing to change the properties of the underlying space, such that its numerical
treatment becomes more efficient. We design the Riemannian metrics based on
the specific problem and the input data, such that the metric has a precondi-
tioning effect on the optimization problem. We present a strategy to generate
the Riemannian metric for arbitrary similarity measures used for registration of
medical images, and show that the resulting algorithm exhibits a significantly
improved convergence, resulting in much shorter overall runtimes.

By the rationale for the metric choice, our method relates to work on pre-
conditioned gradient descent [7,8]. In contrast to these methods which assume a
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mono-modal scenario and employ SSD, the proposed technique makes no such
assumptions, and is shown to work in multi-modal settings with MI.

It is important to note that while the choice of H influences the path of the
optimization process and the resulting local minimum, it does not affect the
definition of (1), such that the optimization operates on the same energy. Thus,
by selection of an appropriate metric, we can hope to construct “shorter” paths
on the given energy, resulting in more efficient methods.

2 Method

After a brief introduction of Sobolev spaces, and a discussion of previous uses
for deformable registration in Sec. 2.1, we generalize the standard approach by
using Riemannian metrics for definition of Sobolev spaces in Sec. 2.2. Section
2.3 motivates the selection of metrics based on preconditioning, and in Sec. 2.4,
we propose the construction of such metrics for registration purposes. Section
2.5 highlights relations of some well-known methods to the proposed approach.

2.1 Sobolev Spaces and Sobolev Gradients

The following discussion is based on [9,10]. The Sobolev space Hk on Rn is
a Hilbert space of functions whose derivatives up to the order k are square
integrable, that is Hk = {f : ‖f‖Hk < ∞}, with

‖f‖Hk =

(
k∑

i=0

〈f (i), f (i)〉L2

) 1
2

≡ 〈f, f〉
1
2
Hk . (4)

The Hk scalar product can be written in terms of the L2 scalar product with
the use of the vector-valued differential operator L : H → Hk, L = (D0 . . . Dk),
consisting of differential operators Di of order i, as

〈f, f〉Hk =

k∑
i=0

〈f (i), f (i)〉L2 = 〈Lf,Lf〉L2 = 〈L∗Lf, f〉L2 , (5)

where L∗ is the adjoint of L, and the differential operator L∗L has the form

L∗L =

k∑
i=0

(−1)iΔi . (6)

To express the Sobolev gradient by the L2 gradient, we use the definition of
gradient in the space H as the entity ∇Hf which can be used to represent the
directional derivative ∂hf by ∂hf = 〈∇Hf, h〉H. By applying this for H=L2 and
H=Hk, we can equate the resulting right hand sides, and use (5), yielding

〈∇L2f, h〉L2 = 〈∇Hk f, h〉Hk = 〈L∗L∇L2f, h〉L2 . (7)
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From this, we can express the Sobolev gradient in terms of the L2 gradient as

∇Hk f = (L∗L)
−1∇L2f . (8)

In previous works, some modifications of the operator L∗L have been proposed.
In [3], a general form

L ∗
αLα = (αL)∗(αL) =

k∑
i=0

(−1)iαiΔ
i , (9)

is considered, with αi∈R. Two specific instances of (9) are considered in more
detail in [3]. We focus on the first one with α0 =1, and α1 =α∈R, resulting in

L ∗
αLα = Id− αΔ . (10)

2.2 Generalization of Sobolev Gradients to Riemannian Manifolds

We generalize (4), by introducing Riemannian metric tensors Mi to the single
scalar products by

‖f‖Hk
M

=

(
k∑

i=0

〈Mif
(i), f (i)〉L2

) 1
2

, (11)

thus treating the single derivatives in Riemannian manifolds. In contrast to
the use of scalars αi in (9), we employ Riemannian metric tensors Mi =M ′

i
∗
M ′

i ,
which are by definition symmetric positive definite, and vary smoothly in the
space of deformations. With the operator LM = (M ′

0D
0 . . . M ′

kDk), we get

L ∗
MLM =

k∑
i=0

(−1)i ∇i�Mi∇i . (12)

According to (8), the gradient with respect to H1
k reads

∇Hk
M

f = (L ∗
MLM )

−1∇L2f . (13)

Please note that we do not change the class of functions contained in the Sobolev
space, but only the notion of distance, because the positive definiteness of all
Mi ensures the existence of 0 < c, C < ∞ such that

c · ‖f‖Hk ≤ ‖f‖Hk
M

= (〈LMf,LMf〉L2)
1
2 ≤ C · ‖f‖Hk . (14)

Thus Hk = {f : ‖f‖Hk < ∞} = {f : ‖f‖Hk
M

< ∞} = Hk
M .

In the remainder of the paper, we will restrict our treatment to k=1. The ob-
tained results are however readily transferable to general settings. Corresponding
to (10), for the generalized formulation of H1

M we get

L ∗
MLM = M0 − div(M1∇) . (15)

In summary, the computation of the update in (2) for H1
M is now based on

∇H1
M

E(φ) = (M0 − div(M1∇))
−1

(∇L2ED(φ) + λ∇L2ER(φ)) . (16)
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2.3 Selection of Metric Based on Preconditioning

The general formulation from (16) provides us with a framework in which we
can choose the metrics Mi such that the resulting algorithms have advantageous
properties. We propose to select these metrics such that the convergence of
the algorithm is improved. This can be done by interpreting (13) as the result
of preconditioning of the given problem in the L2 setting. Preconditioning is
a standard technique for improvement of convergence rate [11]. To this end,
consider the second-order Taylor approximation of f in a Hilbert space H

f(x + αh) = f(x) + α〈h,∇Hf(x)〉H +
α2

2
〈h, HH(f)h〉H +O(α3) . (17)

For a critical point x′ with ∇f(x′) = 0, the first order term in (17) disappears
and H dominantly describes the shape of f about x′, so that the condition of H
has a direct impact on the convergence of gradient-based methods, see also [10].

As for the gradient in Eq. (8), we can express HH1
M

in terms of HL2 by

HH1
M

= (L ∗
MLM )−1 HL2 . (18)

Now, we can influence the condition of HH1
M

by an appropriate choice of L ∗
MLM

as an approximation to HL2 , thus improving the convergence properties. The
choice of L ∗

MLM should be simple, efficient, and numerically stable.

2.4 Metric Selection for Deformable Registration

While the structure of ED =
∫
DD is general as the integration can be performed

over the spatial domain (e.g. for SSD), or the intensity domain for statistical mea-
sures (CC, CR, MI), the regularization is mostly formulated as a least-squares
term in the spatial domain, so that with a differential operatorDR we can rewrite
(1) as E(φ)=ED(φ)+1/2 ·λ〈DRu,DRu〉H. The corresponding L2 Hessian reads

HL2(E) = HL2(ED) + λHL2(ER) = HL2(ED) + λD∗
RDR . (19)

2.4.1 Preconditioning of Regularized Energies by Sobolev Gradients
The first observation is that the use of Sobolev spaces can result in precondition-
ing of the general energy from (1). To this end, the Sobolev space must be based
on the same differential operator DR which is employed for the regularization,
that is L=(Id,DR). Thus, with M0 = Id and M1 = λId in (15) we get

L ∗
MLM = Id + λD∗

RDR , (20)

which provides a preconditioner for general energies with regularization terms,
since L∗L from (20) is an approximation to HL2(E) in (19). This tells us that
the steepest descent can be expected to converge much faster in Sobolev spaces
than in L2, since it can be seen as a preconditioned version.

Please note that Sobolev spaces based on (20) are of the form (9) and were
employed in [4,3]. In these works however, the above preconditioning argument
does not hold since no regularization term ER is employed.
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Fig. 1. Mono-modal random study. Results in (e) are the mean of 100 trials, w.r.t.

computation time. Displacements in (b)-(d) are color-coded, c.f. (a). The proposed

method clearly outperforms the semi-implicit L2 flow in terms in speed and accuracy.

2.4.2 Further Preconditioning by Generalized Sobolev Gradients
The next step to improve the condition of HH1

M
in (18) is to choose M0 such

that M0 ≈ HED . It is crucial that: 1) the approximation can be computed
efficiently, and 2) the approximation is applicable to arbitrary similarity mea-
sures. Simple standard preconditioning techniques such as Jacobi precondition-
ing (M0 =diag (H)) proved ineffective in our experiments.

We propose to compose the Riemannian metric M0 as a block diagonal matrix,
where each d×d block M0(x)∈Rd corresponds to a spatial position x∈Ω. The
single blocks M0(x) are scaled structure tensors of the energy term for single
spatial positions x∈Ω, evaluated at the current estimate u, that is

M0(x) = σId +
1

‖∇L2ED(u)(x)‖ ∇L2ED(u)(x) ∇L2ED(u)(x)� , (21)

where σ ∈ R is a small stabilization parameter, which assures the positiveness
of M0, and ∇L2ED(u)(x)Rd are the sub-vector of the energy gradient at single
spatial positions x∈Ω. This choice is applicable for arbitrary similarity measures,
it results in a highly sparse, symmetric positive definite d-diagonal metric M0,
which is extremely efficient to compute as ∇L2ED(u) is already calculated in
every iteration. Furthermore, the solution of the resulting linear system with the
operator (M0−λΔ) can be performed by standard fast linear system solvers [12].

The motivation for the choice of (21) is based on the analysis of the Gauß-
Newton optimization for an energy based on SSD and diffusion regularization.
It can be shown that in this case, the effect of the preconditioning by the Gauß-
Newton method can be seen as an approximate normalization of the magni-
tudes of the point-wise sub-vectors ∇L2ED(u)(x). This choice is closely related
to the analyses of the demons method provided in [13] and [14]. For more
details please see the supplementary material at http://campar.in.tum.de/
personal/zikic/miccai2010/index.html.

2.5 Relation to Other Methods

It is interesting to observe that some well-known methods can be seen as special
cases of the proposed approach. Starting from the evolution rule derived in Eq.

http://campar.in.tum.de/personal/zikic/miccai2010/index.html
http://campar.in.tum.de/personal/zikic/miccai2010/index.html
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Fig. 2. Random study in a multi-modal setting, using MI, demonstrates applicability

to statistical similarity measures. (b)-(e) depict entities from one trial.

(16), we note that for M0 =Id, and M1 =λτId the Sobolev flow is equivalent to
semi-implicit discretization of time in the Euler-Lagrange term arising in the L2-
based gradient flow approach [2]. Furthermore, the classical optical flow method
by Horn and Schunck [15] can be seen as a generalized Sobolev flow, and is
obtained by employing diffusion regularization, and SSD as similarity measure,
with M0 =J�

f Jf , with Jf being the Jacobian of f =IT − IS ◦ φ, and M1 =λId.

3 Evaluation

We perform 2D random studies in a controlled environment with known ground
truth to demonstrate the improvement in convergence and precision, which result
from the proposed approach. We compare the proposed method to the standard
semi-implicit approach as described in Sec. 2.5. Per study, we perform 100 trials
in each of which the source image is warped by a random ground truth de-
formation φGT , generated by B-Spline FFDs, with maximal displacements of
5mm. Method parameters (α, τ) for the semi-implicit approach are carefully
tuned for best possible performance. We monitor the mean euclidean distance
between φGT and the estimated deformation (end-point error) in every iteration.
A standard multi-level scheme is employed.

The first study is performed on a CT image with SSD as similarity measure, cf.
Fig. 1. We demonstrate the applicability of the proposed approach to statistical
similarity measures by a study with MI in a multi-modal scenario (Fig. 2). To this
end, we employ an MR-T2 image (from http://www.insight-journal.org/RIRE/),

with intensities rescaled to [0, 1] as IS , and register it to IT = ĨS ◦ φGT which

includes a non-linear modification of intensities by ĨS(x) = IS(x) · (1 − IS(x)),
in order to simulate a multi-modal scenario. We observe a clear improvement
in terms of convergence speed and the actual runtime for the proposed method.
The effectively resulting accuracy is also drastically improved, especially in low
gradient regions. This is consistent with our choice of the metric in 2.4.2. We
observed the same behavior in experiments for SAD and CC as similarity mea-
sures. While the single iterations of the proposed method take longer than for the
semi-implicit approach, due to the extreme improvement of convergence rate, far
less iterations are needed, which results in a significant reduction of the overall
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runtime. For example, the results in Fig. 1 feature 30 iterations for the proposed,
and 550 for the semi-implicit method.

It is important to note that the decrease of the energy is very similar for both
approaches (cf. supplementary material) . Based on the inspection of energy logs
alone, the semi-implicit method might be considered converged even if the actual
error is still significant, c.f. Figs. 1, 2. This premature convergence is a serious
pitfall for real applications in which the actual error cannot be measured.

4 Summary

We propose a generalization of previous work on deformable registration in
Sobolev spaces by using an explicit regularization term in the energy model, and
by modification of the notion of distance by introduction of Riemannian met-
rics. The general framework in combination with the choice of the Riemannian
metric based on the idea of preconditioning leads to a simple and yet powerful
method, which outperforms flow strategies in L2 in terms of speed, and improves
the resulting accuracy, especially in low-gradient areas, thus preventing possible
premature convergence in real applications.
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6. Beg, M., Miller, M., Trouvé, A., Younes, L.: Computing large deformation metric

mappings via geodesic flows of diffeomorphisms. International Journal of Computer

Vision, IJCV (2005)

7. Haber, E., Modersitzki, J.: A multilevel method for image registration. SIAM Jour-

nal on Scientific Computing (2006)

8. Klein, S.: Optimisation methods for medical image registration. PhD thesis, Image

Sciences Institute, UMC Utrecht (2008)

9. Neuberger, J.: Sobolev gradients and differential equations. Springer, Berlin (1997)

10. Renka, R.: A simple explanation of the sobolev gradient method (2006)

11. Nocedal, J., Wright, S.: Numerical optimization. Springer, Heidelberg (2000)

12. Saad, Y.: Iterative methods for sparse linear systems. SIAM, Philadelphia (2003)

13. Pennec, X., Cachier, P., Ayache, N.: Understanding the demon’s algorithm: 3d non-

rigid registration by gradient descent. In: Taylor, C., Colchester, A. (eds.) MICCAI

1999. LNCS, vol. 1679, pp. 597–605. Springer, Heidelberg (1999)

14. Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Diffeomorphic demons:

Efficient non-parametric image registration. NeuroImage (2009)

15. Horn, B., Schunck, B.: Determining optical flow. Artificial Intelligence (1981)



An Efficient EM-ICP Algorithm for Symmetric
Consistent Non-linear Registration of Point Sets
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Abstract. In this paper, we present a new algorithm for non-linear reg-

istration of point sets. We estimate both forward and backward deforma-

tions fields best superposing the two point sets of interest and we make

sure that they are consistent with each other by designing a symmetric

cost function where they are coupled. Regularisation terms are included

in this cost function to enforce deformation smoothness. Then we present

a two-step iterative algorithm to optimise this cost function, where the

two fields and the fuzzy matches between the two sets are estimated in

turn. Building regularisers using the RKHS theory allows to obtain fast

and efficient closed-form solutions for the optimal fields. The resulting

algorithm is efficient and can deal with large point sets.

1 Introduction

The most popular methods in the literature for the non-rigid registration of two
point sets are probably those extending the original ICP algorithm of Besl &
McKay [1], such as the EM-ICP of Granger & Pennec [2] or the TPS-RPM of
Chui & Rangarajan [3]. The common viewpoint of these methods is to consider
the points of the first set as the means of a Gaussian Mixture Model (GMM)
and the points of the other set as samples of this GMM. The unknown non-
rigid transformation best superposing the two point sets can then be estimated
according to the maximum likelihood principle and using (typically) the EM
algorithm. This optimisation then boils down to a simple iterative estimation
of fuzzy point-to-point correspondences (encoded in what is often termed the
match matrix) and of the non-rigid transformation in turn. This simple two-step
(point matching and transformation estimation) algorithm is very attractive,
but inherently asymmetric, which makes it difficult to obtain inverse consistent
registration (i.e. the registration of one set to the other provides the inverse
transformation of that obtained when switching the two sets) in this EM-ICP
framework. Such a property is very desirable, especially when building an at-
las from a set of anatomical structures. First trials towards a symmetric point
matching include the work by Rangarajan et al. who used the Sinkhorn theorem
to enforce the match matrix to be doubly stochastic [3]. Most other works focused

T. Jiang et al. (Eds.): MICCAI 2010, Part II, LNCS 6362, pp. 594–601, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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on the estimation of the transformation: Joshi & Miller [4] showed how to build
a diffeomorphism between two sets of matched points, but without guaranteeing
inverse consistency. In parallel, Johnson & Christensen proposed a method to-
wards this goal, but using thin-plate splines where invertibility is not ensured [5].
These solutions are theoretically attractive but computationally redhibitory in
case of large point sets, which limits their use to simple anatomical structures.

In this paper, we propose a symmetric formulation of the registration prob-
lem in an EM-ICP framework, that allows to jointly compute the forward and
the backward deformation fields linking the two point sets (Section 2). Our cost
function is composed of two data attachment terms, two consistency terms (to
enforce both transformations to be compatible with each other) and two regu-
larisation terms over both fields. We provide an iterative two-step algorithm to
minimise this new criterion, in which the first step is quite similar to that of
the original EM-ICP algorithm and the second step consists of two interleaved
approximation problems. Using the Reproducing Kernel Hilbert Space (RKHS)
theory and the Fourier analysis, we devise efficient regularisers leading to closed-
form solutions based on sparse linear algebra for these two problems (Section
3). This results in an efficient algorithm allowing non-linear registration on large
3D point sets (Section 4). Finally, we give some perspectives (Section 5).

2 A Framework for a Consistent and Symmetric EM-ICP

2.1 Cost Function

Let X = {x1, ..., xN} and Y = {y1, ..., yM} be two point sets representing two
anatomical structures to be registered. Let T X and T Y be respectively the back-
ward and forward unknown transformations superposing X and Y . Let AX (resp.
AY ) be the match matrix describing the correspondences between T X(X) and
Y (resp. T Y (Y ) and X). Let α and β be real positive values weighing the in-
fluence of the different terms. Following the EM-ICP framework in its energetic
formulation [3], we consider the matrices AX and AY as hidden variables of the
problem and we design our cost function as :

E(T X , T Y , AX , AY ) = [Ed(Y, T X(X), AX) + Ed(X, T Y (Y ), AY )

+αEc(T
X ◦ T Y , I) + αEc(T

Y ◦ T X , I)

+βEr(T
X) + βEr(T

Y )], (1)

where:
• Ed(Y, T X(X), AX) is a data attachment term defined as:

Ed(Y, T X(X), AX) = 1/N
[∑

i,j

AX
i,j ||yi − T X(xj)||2 + σ2

∑
i,j

AX
i,j log(AX

i,j)
]
, (2)

where
∑

i,j is the sum over the points yi ∈ Y and xj ∈ X , and
∑

i AX
i,j = 1 ∀j.

The parameter σ can be seen as the Gaussian noise variance on X and Y . In
practice σ controls the fuzziness of A.

• Ec(T
Y ◦ T X , I) is a consistency term that measures the discrepancy be-

tween transformations T X and T Y . Without this term, estimations of T X and
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T Y would be completely independent. This new term couples them and forces
them to be compatible with each other. We design it as: Ec(T

Y ◦ T X , I) =
1/N

∑
xj∈X ||T Y ◦ T X(xj)− xj ||2.

• Er(T
X) = R(T X) is a regularisation term penalising discontinuities of T X .

• Ed(X, T Y (Y ), AY ), Ec(T
X ◦ T Y , I) and Er(T

Y ) are built the same way.

2.2 Minimisation

The cost function (1) can be optimised by an iterative two-step algorithm that
consists in minimisation over AX ; AY and T X ; T Y in turn:

init T̃ X and T̃ Y as the identity function

i) ÃX ; ÃY = arg minAX ,AY E(T̃ X , T̃ Y , AX , AY )

ii) T̃ X ; T̃ Y = arg minT X ,T Y E(T X , T Y , ÃX , ÃY )

Step i) has a closed-form solution. To achieve robustness, we replace the square
cost function in Ed by a truncated quadratic cost function. Then Step i) can
be efficiently solved using a kd-tree [2]. For Step ii), we optimise iteratively the
criterion with respect to each one of the two unknowns T X and T Y :

init estimate the optimal T̃ X and T̃ Y dropping the consistency term Ec

ii.a) T X = T̃ X and T Y = T̃ Y

ii.b) T̃ X = arg minT X E(T X , T Y , ÃX , ÃY )

ii.c) T̃ Y = argminT Y E(T X , T Y , ÃX , ÃY )

Intuitively, this algorithm consists in alternatively estimating T X as a compro-
mise between data attachment (Ed(Y, T X(X), AX)), regularisation (Er(T

X)) and
consistency with T Y (Ec(T

Y ◦T X , I)) and T Y as a compromise between the three
other symmetric terms. Implementing this last scheme requires further specifica-
tion of T and R. We define the transformation T X as the initial position plus a
displacement field: T X(xj) = xj + tX(xj) and R is a regulariser on tX (similarly
for T Y and tY ). Then Step ii.b) can be written as:

ii.b) t̃X = arg mintX 1/N
∑

i,j AX
i,j ||yi − xj − tX(xj)||2 + βR(tX)+

α/N
∑

j ||t̃Y (xj + tX(xj))+tX(xj)||2+α/M
∑

i ||tX(yi+ t̃Y (yi))+ t̃Y (yi)||2
Step ii.c) has a similar expression.

Due to the terms
∑

j ||t̃Y (xj +tX(xj))+tX(xj)||2 in step ii.a) and
∑

i ||t̃X(yi+

tY (yi)) + tY (yi)||2 in Step ii.b), which are somewhat redundant with their sym-
metric counterparts, the two problems are very intricate. Thus, similarly to what
is done by Chui et al. [7] in a related context, we drop them, which allows to
reformulate Steps ii.a) and ii.b) as two independent approximation problems:

ii.b) t̃X = argmintX 1/N
∑

i,j AX
i,j ||yi − xj − tX(xj)||2

+βR(tX) + α/M
∑

i ||tX(yi + t̃Y (yi)) + t̃Y (yi)||2
ii.c) t̃Y = arg mintY 1/M

∑
i,j AY

i,j ||xi − yj − tY (yj)||2
+βR(tY ) + α/N

∑
j ||tY (xj + t̃X(xj)) + t̃X(xj)||2

In practice, only a few iterations are necessary to decrease importantly the
criterion. Then, R could be chosen as a TPS regulariser and the two approxi-
mations problems would consist in solving linear systems of size proportional to
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N ×M , which would be impracticable in terms of time and memory complexity
for large point sets. Below, we propose an alternative efficient strategy.

3 Efficient Solutions for the Approximation Problems

3.1 Formalism

One can show that the two above mentioned problems can be restated as:

f̃ = argmin
f

∑
i,j

pjAi,j ||ui − (vj + f(vj))||2 + βR(f). (3)

where U = {u1, ..., uN}, V = {v1, ..., vM} and
∑

i Ai,j = 1 ∀j. The positive
values (pj) are introduced for the sake of generality and allow to consider some
points of V as outliers by simply fixing pk = 0 when vk is an outlier.

First, one can show that this problem is equivalent to (considering that the
derivatives vanish at the optimum and noting that

∑
i Ai,j = 1, ∀j):

f̃ = argmin
f

∑
j

pj ||cj − (vj + f(vj))||2 + βR(f), with cj =
∑

i

Ai,jui. (4)

This reduces the size of the problem from card(U)× card(V ) to card(V ).
Now, we focus on building a tractable (in terms of minimisation) and powerful

(in terms of reliability of the model) regulariser R. For that, we consider our
problem in a space of admissible solutionsH that we span using a positive definite
kernel (pdk) k 1 : H = {f |f(.) =

∑∞
i=0 k(qi, .)wi, wi ∈ IR3, qi ∈ IR3; ||f ||H <

∞}C where ΩC denotes the completion of the set Ω. This space is endowed
with the inner product: < f, h >H=

∑∞
i,j=0 wT

i k(qi, qj)wj . The space H is a
Hilbert space with reproducing kernel k (or more compactly a RKHS) [8]. Then
we assume that f ∈ H and define our regulariser R(f) as ||f ||H:

f̃ = argmin
f∈H

∑
j

pj ||cj − (vj + f(vj))||2 + β||f ||H. (5)

One of the key advantage of RKHS is that one can show [9] that the values
taken by the solution f̃ at the points v1, . . . , vj , . . . , vM can be expressed as

f̃(vj) =
∑M

i=1 k(vi, vj)wi and then formulate the last minimisation problem as:

(w̃) = argmin
(w)

∑
j=1..M

pj ||cj−
(
vj +

∑
i=1..M

k(vj , vi)wi

)
||2 +β

∑
i,j=1..M

wT
i k(vj , vi)wj

Vanishing the derivatives gives a linear system whose solution can be expressed
in a closed-form as: W = (d(P )K + βI)−1d(P )[C −V ], where V = [v1, ..., vM ]T ,
C = [c1, ..., cM ]T , W = [w1, ..., wM ]T , K = (k(vi, vj)i,j) is the M by M matrix
associated to kernel k and d(P ) is the diagonal matrix formed by the pj values.
The challenge is now to choose a kernel corresponding to a relevant regulariser.

1 More generally, we could use a vectorial positive definite kernel k (in our case, k(., .)
would be a 3×3 matrix). By simply considering a scalar pdk, we indirectly restrict

our study to vectorial pdk k of the form k(., .) = k(., .)I . However, note that all the

results of this section can be extended to vectorial pdks.
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3.2 Choosing A Kernel

In order to design a suitable k, one can use an interesting relationship with Fourier-

based stabilisers. Let ∀f integrable, R(f) = 1
(2π)3

∫∞
−∞

|f∗(ω)|2
φ∗(||ω||/b)dω, where ∗ is the

Fourier transform operator, φ : IR → IR is an integrable function and b is a real
positive rescaling factor. Let F = {f : IR3 → IR3|R(f) < ∞}. Interestingly, one
can state that if the function (qi, qj) → φ(||qi − qj ||) is a pdk thus F is a RKHS
whose reproducing kernel is given by k(qi, qj) = b×φ(b×||qi−qj||) and such that
∀f ∈ F , ||f ||F = R(f) [8,10]. This dual view is convenient as it allows to design a
wide variety of efficient regularisers directly into the Fourier domain.

In order to design an efficient regulariser, we have to choose 1
φ∗ as a high-pass

filter. This way, high frequencies of the deformation will be drastically penalised
whereas low frequencies will only be penalised a little. Generally, φ∗

[0,∞] is a
monotonically decreasing function and the most important element that charac-
terises its influence on the regularisation is the way it decreases that indicates the
amount of penalisation with respect to frequencies. Particularly, the frequencies
for which φ∗(||ω||/b) is null are forbidden. The two parameters β and b allow to
handle the regularisation properties: β is a quantitative parameter (it indicates
the amount of smoothness) whereas b is more qualitative (in a way, it defines
what the term ”smoothness” means). Finally, note that an undesirable effect of
this approach is to penalise the null frequency i.e. the average of the field (as
1/φ∗(0) is not null). One removes this penalisation by simply ensuring that the
deformation field has the same norm before and after regularisation. Figure 1
shows the influence of b and β when approximating a noisy field when choosing
φ as the Wu kernel [8].

Original field Wu function with beta=5, b=10 Wu function with beta=5, b=40 Wu function with beta=100, b=40 

Fig. 1. Effect of parameters β and b on the approximation of a noisy field

3.3 Efficient Choices

Although we propose a closed-form solution for the approximation problem, it
consists in solving a M×M system. This is can be problematic when M increases
(in term of memory usage and of computational time). Suppose that we choose
a compactly supported pdk (i.e. for ∀x, ∀y such that ||y|| > r; k(x, y) = 0), then
i) d(P )K + βI is a sparse matrix that can be computed using a kd-tree and ii)
computing W consists in solving a sparse system. Some interesting compactly
supported pdk corresponding to low-pass filters have been proposed in the liter-
ature (such as Wendland, Wu or Buhmann functions). Moreover, techniques to
generate a wide variety of them have been proposed [8]. Alternatively one can
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use a highly decreasing function and approximate it by zeroying all its values
over a given threshold. We experimentally find the compact support kernel of
Wu (φ2,3) as the one providing the best results and we will use it in the following.

4 Evaluation and Application

We use three databases of 20 surfaces each, composed of pairs of lateral ventricles
of control subjects (15,000 points, segmented from T1-weighted MRI
using itksnap.org), caudate nuclei of patients with dysphasia (2,000 points, seg-
mented from T1-weighted MRI with an in-house software) and osseous labyrinths
of modernH. sapiens (30,000 points, segmented from CT images with amira.com).
We perform the following validation experiments.

Experiment 1. We choose one surface in each dataset and deform these 3
surfaces 100 times using randomly generated non-linear transformations (using
TPS). Then we register the original and deformed surfaces and compute the
overall residual distance between the known corresponding points and the Haus-
dorff distance between the surfaces. These two error measures are then averaged
over the 100 simulations for each of the three surfaces.

Experiment 2. We manually select 6 landmarks on each of the 40 pairs of
ventricles and labyrinths (the 20 nuclei are not used in this experiment). Then
we choose one of the surfaces in each of the two datasets to be the template,
and register all the 19 other surfaces to this template. We evaluate the mean
residual errors on the landmarks, the Hausdorff distance between the surfaces,
and we average these errors over the 19 subjects for each of the two datasets.

For both sets of experiments, we evaluate 3 strategies: asymmetric EM-ICP for-
mulation using an order-one Tikhonov regularisation [6] (Method 1), asymmetric

Fig. 2. Registration of lateral ventricles. From left to right: (i) two misaligned

pairs of lateral ventricles A and B (from Exp. 1); (ii) A to B and (iii) B to A with

the asymmetric EM-ICP with RKHS; (iv) A to B and (v) B to A with the symmetric-

consistent EM-ICP with RKHS. Point-to-point and Hausdorff registration errors are

given below each figure. The asymmetric formulation leads to registration errors close to

the horns. The location of these errors depends on what surface is used as the template.

With the symmetric consistent formulation, no order-dependent registration error is

visible, and the overall registration quality is visually and quantitatively improved.
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Fig. 3. Registration of caudate nuclei. Same display as in Fig. 2, but with caudate

nuclei and a color mapping of the point-to-point errors. We draw the same conclusions

as in Fig. 2.

Table 1. Average registration errors for the 3 tested methods and the two
experiments on the 3 datasets. The first error is the mean point-to-point (for

Exp. 1) or landmark-to-landmark (Exp. 2) error, and the second error is the Hausdorff

distance. Both errors are averaged over the 100 (Exp. 1) or 19 (Exp. 2) registrations.

Method 3 (symmetric-consistent EM-ICP with RKHS regularisation) gives the lowest

error for each experiment and dataset.

Experiment 1 Experiment 2

Method 1 Method 2 Method 3 Method 1 Method 2 Method 3

nuclei 2.26/1.87 0.73/1.76 0.64/1.37 - - -

ventricles 2.15/7.80 1.55/5.15 1.53/1.48 2.21/3.41 1.84/2.23 1.67/1.01

labyrinths 0.29/0.85 0.23/0.75 0.21/0.23 0.32/0.65 0.28/0.62 0.24/0.19

formulationusingRKHS-based regularisation(Method2)and symmetric-consistent
formulation using RKHS (Method 3). The results are displayed on Tab. 1. Fig. 2
andFig. 3 illustrate the addedvalue of the symmetric consistentRKHS formulation
compared to the asymmetric one on ventricles and nuclei.

The parameters for Method 3 are initialised as: α = 8, β = 400, σ2 = 20× S,
b = 250 × S where S is the size (in metre) of the object; β, σ2, b are then
decreased throughout the algorithm until they reach the respective values of 20,
5×S and 150×S. The same is done for Method 1 for β and σ2 and for Method
2 for β, σ2 and b. The run time to register point sets of 5,000 points is 2 min for
Method 1, 5 min for Method 2 and 12 min for Method 3 on a standard PC.

Application to statistical shape modelling. Two major tracks have been
followed in the literature to extend the EM-ICP formalism to build statistical
shape models [7,12]. By using our contributions, these methods can be made
symmetric and consistent (allowing to reduce the bias during the computation

Fig. 4. Mean shape and first mode of variation (± 2
√

λ1) on 20 caudate
nuclei. The first mode can be interpreted as a bending.
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of the mean shape) and one can drastically increase the size of the input data.
Fig. 4 shows the mean shape and the first mode of variation for 20 caudate nuclei
by adapting the method of Hufnagel et al. [12].

5 Conclusion

Our contributions are twofold. First, we proposed a symmetric and consistent
EM-ICP framework where we enforce coherency between backward and forward
deformations. Note that none of these transformations is guaranteed to be invert-
ible, though. Second, we designed new efficient regularisers for EM-ICP based
registration. These new regularisers are expressed within the RKHS formalism
which leads to computationally attractive solutions (especially when using ker-
nels with compact support). A particular class of kernels provides regularisers
with a simple interpretation in the frequency domain. Overall, our algorithm
allows to perform registration on large data sets. Future works will include i)
comparing our regulariser with others such as Coherent Point Drift [11] or TPS;
ii) comparing our statistical shape modelling with other techniques [7,12].

Acknowledgements. We thank José Braga for the labyrinths data and Aline
Carsin for segmenting the caudate nuclei.
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Cláudio T. Silva1, and Sarang Joshi1

1 Scientific Computing and Imaging Institute, University of Utah
2 Department of Psychiatry, University of North Carolina

Abstract. Deformable image registration in the presence of considerable

contrast differences and large-scale size and shape changes represents a

significant challenge for image registration. A representative driving appli-

cation is the study of early brain development in neuroimaging, which re-

quires co-registration of images of the same subject across time or building

4-D population atlases. Growth during the first few years of development

involves significant changes in size and shape of anatomical structures but

also rapid changes in tissue properties due to myelination and structur-

ing that are reflected in the multi-modal Magnetic Resonance (MR) con-

trast measurements. We propose a new registration method that generates

a mapping between brain anatomies represented as a multi-compartment

model of tissue class posterior images and geometries. We transform inten-

sity patterns into combined probabilistic and geometric descriptors that

drive the matching in a diffeomorphic framework, where distances between

geometries are represented using currents which does not require geomet-

ric correspondence. We show preliminary results on the registrations of

neonatal brain MRIs to two-year old infant MRIs using class posteriors and

surface boundaries of structures undergoing major changes. Quantitative

validation demonstrates that our proposed method generates registrations

that better preserve the consistency of anatomical structures over time.

1 Introduction

Image registration is a basic task in defining a standard space for analyzing
populations that change over time, which is essential to determine development
in normal growth and neurological disorders. The growth process can involve
large-scale size and shape changes, as well as changes in tissue properties and
appearance. These factors pose significant challenges in image registration, as
image intensities need to be interpreted differently at different stages. A strong
example is the human brain at early development stages.

A driving research question is to determine the process of white matter myelina-
tion, which manifests as two distinct white matter appearance patterns primarily
during the first year of development. Other clinical research questions are related

� Supported by NIH grants 5R01-EB007688, P41-RR023953, Conte Center MH064065,

and NSF grant CNS-0751152.
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to finding a link between cognitive development and the rapid, locally varying
growth of specific anatomical structures. To approach these questions, a robust
registration method is necessary for mapping longitudinal brain MRI to a refer-
ence space so that we can perform reliable analysis of the tissue property changes
reflected in the MR measurements. Knickmeyer et al.[1] showed that the total
brain volume grows by 100% the first year and 15% the second year, whereas the
cerebellum shows 220% volume growth for the first and another 15% for the sec-
ond year, indicating the very different growth rates of different anatomical struc-
tures. Through regression on shape representations, Datar et al.[2] illustrated that
the rapid volume changes are also paralleled by significant shape changes which
describe the dynamic pattern of localized, nonlinear growth. These challenges re-
quire a method that does not rely on raw intensity measurements, while also being
capable of estimating large structural deformations. Xue et al.[3] addressed these
issues by proposing a registration scheme for neonatal brains by registering in-
flated cortical surfaces extracted from the MRI.

We propose a new registration framework for longitudinal brain MRI that makes
use of the underlying anatomies, which are represented by both class posteriors
and boundary surfaces. This framework is able to match internal anatomical re-
gions and simultaneously preserving a consistent mapping for the boundaries of
relevant anatomical objects. We show results of registering neonatal brain MRI to
2-year old brain MRI of the same subjects obtained in a longitudinal neuroimag-
ing study. Our method consistently provides transformations that better preserve
time-varying structures than obtained by intensity-only registration.

2 Registration between Anatomies

We propose a registration method that makes use of the underlying anatomy in
the MR images. Fig. 1 shows an overview of the registration process. We begin
by extracting anatomical descriptors from the images, followed by computing a
transformation that minimizes the distance between the anatomical descriptors.

2.1 Anatomical Descriptors

We represent brain anatomy as a multi-compartment model of tissue classes and
manifolds. We associate each position x with a vector of tissue probability den-
sities. In a given anatomy, we capture the underlying structures by estimating,
for each image, the class posterior mass functions associated with each of the
classes. Given Ω as the underlying coordinate system of the brain anatomies,
each anatomy Ai=1,··· ,N is represented as

Ai = {pi,c=1(x), · · · , pi,c=Nc(x),Mi,j=1(2), · · · ,Mi,j=Ns(2) ⊂ Ω} (1)

where Nc is the number of probability images, Ns is the number of surfaces, pc(x)
is the class posterior for tissue c at location x, and Mj(2) are 2-dimensional
submanifolds of Ω (surfaces).
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Fig. 1. Overview of the proposed registration method that can handle large defor-

mations and different contrast properties, applied to mapping brain MRI of neonates

to 2-year olds. We segment the brain MRIs and then extract equivalent anatomical

descriptors by merging the two different white matter types present in neonates. The

probabilistic and geometric anatomical descriptors are then used to compute the trans-

formation h that minimizes the distance between the class posterior images, as well as

the distance between surfaces represented as currents.

The classification of brain MR images with mature white matter structures
into class posteriors are well studied. We extract the posteriors from 2-year old
brain MR images using the segmentation method proposed by van Leemput et
al.[4]. The method generates posterior probabilities for white matter (wm), gray
matter (gm), and cerebrospinal fluid csf. These probabilities can then be used
to generate surfaces from the maximum a posteriori tissue label maps.

The classification of neonatal brain MR images is challenging as the white
matter structure undergoes myelination, where the fibers are being covered in
myelin sheathes. Several have proposed methods that make use of prior informa-
tion from an atlas or template that takes into account the special white matter
appearance due to myelination [5] [6]. We use the method described by Prastawa
et al.[6] for extracting the tissue class posteriors of neonatal brain MRI which
includes for myelinated wm, non-myelinated wm, gm, and csf. These can then
be used to create an equivalent anatomy to the 2-year old brain by combining
the two white matter class probabilities and surfaces.

For the results in this paper, we use the probabilities {pwm(x), pgm(x), pcsf (x)}
and we use the surfaces of white matter, gray matter, and cerebellum. The cere-
bellum surfaces are generated from semi-automated segmentations that are ob-
tained by affinely registering a template image followed by a supervised level set
segmentation. The cerebellum has a significant role in motor function and it is
explicitly modeled as it undergoes the most rapid volume change during the first
year of development and thus presents a localized large-scale deformation.

2.2 Registration Formulation

Given two anatomies A1 and A2, the registration problem can be formulated as
an estimation problem for the transformation h that minimizes
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ĥ = arg min
h

E(h · A1,A2)
2 + D(h, e)2 (2)

where h · A1 is the transformed anatomy, E(·, ·) is a metric between anatomies
and D(·, e) is a metric on a group of transformations that penalizes deviations
from the identity transformation e.

We define distance between anatomies E by defining a norm on an anatomy as
a combination of the L2 norm on the class posteriors and a Reproducing Kernel
Hilbert space norm on the manifolds defined as “currents” through Glaunes
[7]. The currents norm does not require geometric correspondence and thus can
be used to register manifolds with different resolutions. For an oriented surface
M(2) in R3 the norm [M(2)] is the vector valued Borel measure corresponding
to the collection of unit-normal vectors to M(2), distributed with density equal
to the element of surface area ds and can be written as η(x)ds(x), where η(x) is
the unit normal and ds(x) is the surface measure at point x. When M(2) is a
discrete triangular mesh with Nf faces, a good approximation of the norm can
be computed by replacing [M(2)] by a sum of vector-valued Dirac masses:

‖[M(2)]‖2k =

Nf∑
f=1

Nf∑
f ′=1

〈η(f), η(f ′)〉 k(c(f), c(f ′)), (3)

where k(·, ·) is a shift-invariant kernel (e.g., Gaussian or Cauchy), Nf is the
number of faces of the triangulation, and for any face f , c(f) is its center and
η(f) its normal vector with the length capturing the area of each triangle.

Having defined the norm on probability images and surfaces, the dissimilarity

metric between anatomies
∥∥∥[A1]− [A2]

∥∥∥2
k

is given by:

Nc∑
c=1

∫
Ω

|p1,c(x) − p2,c(x)|2dx +

Ns∑
j=1

‖[M1,j(2) ∪ (−M2,j(2))]‖2k (4)

where the distance between two surface currents ‖[M1,j(2)−M2,j(2)]‖k =
‖[M1(2) ∪ (−M2(2))]‖k is computed as the norm of the union between surface
M1(2) and surface M2(2) with negative measures.

We use the large deformation framework [8] that generates dense deformation
maps in Rd by integrating time-dependent velocity fields. The flow equation

is given by ∂hv(t,x)
∂t = v(t, hv(t, x)), with h(0, x) = x, and we define h(x) :=

hv(1, x), which is a one-to-one map in Rd (diffeomorphism). We define an en-
ergy functional that ensures the regularity of the transformations on the velocity
fields: ‖v(t, ·)‖2V =

∫
Rd 〈Lv(t, x), Lv(t, x)〉 dx, where L is a differential operator

acting on vector fields. This energy also defines a distance in the group of dif-
feomorphisms:

D2(h, e) = inf
v,pv(1,·)=h

∫ 1

0

‖Lv(t)‖2V dt. (5)

The registration optimizations in this paper are performed using a greedy ap-
proach by iteratively performing gradient descent on velocity fields and updating
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the transformations via an Euler integration of the O.D.E. At each iteration of
the algorithm the velocity field is calculated by solving the p.d.e Lv = F (h)

where F (h) is the variation of
∥∥∥[h · A1] − [A2]

∥∥∥2
k

with respect to h. This varia-

tion is a combination of the variation of the L2 norm on the class posteriors and

of the currents norm; computed using the gradient
∂‖[M(2)]‖2

k

∂xr
:

∑
f |xr∈f

[
∂η(f)

∂xr

] Nf∑
f ′=1

k(c(f ′), c(f))η(f ′) +
2

3

Nf∑
f ′=1

∂k(c(f), c(f ′))

∂c(f)
η(f ′)tη(f) (6)

given that points {xr, xs, xt} form the triangular face f and its center c(f) =
xr+xs+xt

3 and its area-weighted normal η(f) = 1
2 (xs − xr)⊗ (xt − xr).

2.3 Efficient Norm Computation Using Particle Mesh
Approximation on GPU

The major challenge of implementing the currents norm (Eq. 3) for realistic
brain surfaces is the high computational cost to compute the dissimilarity met-
ric of all pairs of surface elements, which is O(N2

f ) where Nf is the number
of faces (can be up to millions). For computational tractability, Durrleman et
al. [9] used a sparse representation of the surface based on matching pursuit
algorithm. An efficient framework based on the standard fast Gauss transform
[10] requires the construction and maintenance of the kd-tree structure on the
fly, which is slow on the current CPU model. Our method, however, exploits the
Particle-Mesh approximation to reduce the complexity to M log M where M is
the volume size of the embedded grid. The grid size is chosen as the size of the
input images to limit the approximation error to the same order of matching
term for the class posteriors. This approximation have been extensively studied
in the cosmological N-body simulation literature (see Hockney and Eastwood
[11] for details). Particle mesh framework shares the same computational grid
with the class posteriors, moving the computation to the grid level and enabling
an efficient parallel computation.

Even with the particle mesh approximation of the norm computation, the
total complexity of the method is still very high. On a high-end workstation
with 8-CPU cores, a highly optimized multi-threaded implementation in C++
takes several hours for one matching pair, hence can not be used for parame-
ter exploration and real-time analysis. Fortunately, this computational cost can
be amortized using the massive parallel power and bandwidth provided by the
graphics processing unit (GPU). Based on the GPU framework by Ha et al.[12],
we developed an implementation that runs entirely on the GPU. The main bene-
fit of a GPU implementation is the ability to exploit parallel efficiency of regular
grid presentation.

Computing the currents u and gradient between a surface with 160535 trian-
gular faces and another with 127043 faces takes approximately 504 seconds on
an AMD Phenom II X4 955 CPU, while it takes 0.33 seconds on an NVIDIA
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(a) (b) (c) (d)

Fig. 2. Registration results of neonates mapped to two-year olds. From left to right: (a)

neonatal T1 image after affine registration, (b) reference T1 image at 2-years, followed

by (c) neonatal T1 after deformable mutual information registration using B-splines,

and (d) after combined probabilistic and geometric registration. From top to bottom:

subject 0012, 0102, 0106.

GTX 260 GPU. The speed gain is in order of three magnitudes over the equiva-
lent CPU implementation using particle mesh, while the computing time for the
exact norm on CPU is difficult to measure since it takes significantly longer. The
proposed algorithm typically converges in 1000 iterations, so on average it takes
less than eight minutes to register two anatomies. This allows us to perform pa-
rameter exploration and real-time analysis on a single desktop with commodity
GPU hardware. The efficiency of the GPU method also provides an opportunity
to apply the algorithm for high quality atlas formation using our framework on
a GPU cluster, which gives us the ability to perform statistical tests that are
previously impossible due to excessive time requirements.

3 Results

We have applied the registration method for mapping neonatal MRI scans to two-
year MRI scans of the same subjects in ten datasets. The datasets are taken from
an ongoing longitudinal neuroimaging study with scans acquired at approximately
two weeks, one year, and two years of age. Due to rapid early brain development,
each longitudinalMRscanshows significantchanges inbrain sizeand in tissueprop-
erties. For comparison, we also applied the standard intensity based deformable
registration using mutual information (MI) metric and B-spline transformation
proposed by Rueckert et al.[13] which has been applied for registering 1-year old
and 2-year old infants. The T1 weighted images before and after registration using
the different approaches for the first three subjects are shown in Fig. 2.

A quantitative study of the performance of the registration method is per-
formed by measuring the overlap between the transformed segmentation maps
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Subject 0012 0102 0106 0121 0130 0146 0156 0174 0177 0180

White matter
MI 0.329 0.155 0.281 0.384 0.379 0.230 0.257 0.300 0.350 0.301

P+G 0.497 0.397 0.442 0.453 0.482 0.414 0.461 0.440 0.478 0.442

Cerebellum
MI 0.755 0.212 0.588 0.515 0.732 0.820 0.713 0.569 0.631 0.777

P+G 0.881 0.821 0.875 0.878 0.858 0.899 0.907 0.885 0.896 0.892

Fig. 3. Overlap measures comparing the registered segmentation maps against the

reference segmentation maps for the white matter and cerebellum structure, obtained

through deformable mutual information registration (MI) and our proposed method

(P+G)

Subject 0012 0102 0106 0121 0130 0146 0156 0174 0177 0180

MI on CPU 92 63 103 92 101 112 106 99 91 96

P+G on GPU 9 8 8 8 8 7 9 8 7 7

Fig. 4. Time elapsed, in minutes, for registration using deformable mutual information

on CPU (MI) and our proposed approach (P+G) on GPU with 1000 iterations of

gradient descent

of neonates to the segmentation maps of two-year olds. Since we consider the
segmentation maps at two years of age to be the standard, we use the following
overlap metric:

Overlap(h · S0, S2) =
|h · S0 ∩ S2|

|S2| (7)

where h · S0 is the transformed neonate segmentation map, S2 is the reference
two-year segmentation map, and | · | indicates the volume of a binary map.
Please note that this metric gives considerably lower values than the standard
Dice coefficient. Fig. 3 shows the quantitative analysis for the white matter and
cerebellum segmentation maps. Registration using both probabilistic and geo-
metric descriptors provides consistently better results and are generally more
stable for the structures of interest. In particular, our method better preserves
the shape of the cerebellum, which has weak intensity boundaries in regions
where it touches the cerebrum and thus cannot be registered properly using
only image based information. Another significant challenge is that the cere-
bellar growth is distinctly different from the growth of neighboring structures.
Registrations using our approach on the GPU takes 8 minutes on average, while
registration on the CPU using mutual information metric and B-spline transfor-
mation takes 100 minutes on average. Detailed time measures are listed in Fig. 4.
We have also performed validation using only the probabilistic descriptor, which
generates results that are less accurate compared to our method (particularly
for the cerebellum) while more accurate than image registration using MI.

4 Conclusions

We have proposed a registration framework that makes use of the probabilistic
and geometric structures of anatomies embedded in the images. This allows us to
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enforce matching of important anatomical features represented as regional class
posteriors and tissue boundaries. Our framework allows us to register images
with different contrast properties by using equivalent anatomical representations,
and we have demonstrated results for registering brain MRIs with different white
matter appearances at early stages of growth. The overlap validation measures
in Fig. 3 show that geometric constraints, particularly for the cerebellum, is
crucial for registering structures undergoing significant growth changes. In the
future, we plan to apply this framework in early neurodevelopmental studies
for analyzing the effects of neurological disorders such as autism and Fragile X
syndrome. The proposed registration framework is generic and independent of
the application domain, it can thus be applied to any registration where one
encounters large-scale deformation and different appearance patterns.
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Abstract. In this paper, we present a fine and coarse approach for the

multiscale registration of 3D medical images using Large Deformation

Diffeomorphic Metric Mapping (LDDMM). This approach has particu-

larly interesting properties since it estimates large, smooth and invertible

optimal deformations having a rich descriptive power for the quantifica-

tion of temporal changes in the images. First, we show the importance

of the smoothing kernel and its influence on the final solution. We then

propose a new strategy for the spatial regularization of the deformations,

which uses simultaneously fine and coarse smoothing kernels. We have

evaluated the approach on both 2D synthetic images as well as on 3D

MR longitudinal images out of the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) study. Results highlight the regularizing properties of

our approach for the registration of complex shapes. More importantly,

the results also demonstrate its ability to measure shape variations at

several scales simultaneously while keeping the desirable properties of

LDDMM. This opens new perspectives for clinical applications.

1 Introduction

Recent years have seen the development of new non-rigid registration techniques
allowing large diffeomorphic deformations. Such deformations are by definition
smooth and invertible, properties that are highly desirable in image registra-
tion. In particular, the framework of Large Deformation Diffeomorphic Metric
Mapping (LDDMM) [4, 10] encodes the optimal flows of deformation in time-
dependent velocity fields, that are geodesic. The optimal flow between two regis-
tered images is then the shortest path between the images according to a metric
regularizing the deformation. The LDDMM approach has therefore convenient
properties for the statistical comparison of images and the creation of atlases.
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A practical implementation of the this framework for image registration has
been proposed in [4] and successfully applied to inter-subject local shape com-
parison and atlas creation. However, although it was designed to allow large
deformations, its practical use in real medical images is often limited to rela-
tively small deformations. Alternatives approaches have been proposed in the
literature: For instance, a symmetric interpretation of [4] using cross correlation
to measure the similarity between source and target images was proposed in [3].
Other approaches, allowing multimodal registration for atlas creation [9] or us-
ing Navier-Stokes equation [5] were also proposed. Importantly, a class of diffeo-
morphic registration techniques, using stationary velocity fields, have emerged
recently. Such parameterizations are efficient in terms of memory requirements
and computational time while providing registrations similar to those obtained
using the LDDMM time-dependent velocity fields [1,2,8,13]. However, although
these alternatives also estimate diffeomorphic deformations, none of them has
been explicitly designed to estimate geodesic transformations.

In an attempt to improve the practical usability of LDDMM for 3D med-
ical imaging, we address in this paper a fundamental aspect of the LDDMM
framework: the choice of the metric. The metric is indeed directly related to
the smoothing kernel of the deformations and therefore controls their spatial
regularization. In practice, small kernels will favor deformations that match lo-
cal details and large kernels deformations that match global structures. Since
3D medical images may contain complex anatomical structures, with features
varying at different scales, multiscale registration techniques are of high inter-
est. However, the classical coarse to fine strategies based on Gaussian kernels
are theoretically (and practically) not appropriate in the context of LDDMM
since the registration at the final scale only reflects the shape variations at the
finest scale. The key contribution here is then the development of a theoretically
well-justified simultaneous fine and coarse registration strategy in the LDDMM
framework. The idea underlying this paper is related to the strategy proposed
in [7] which consists in registering images at several scales simultaneously.

In Sec. 2, we present our multiscale extension of [4]. Importantly, we show
that this extension is particularly suitable to describe the deformations of shapes
whose features exist across several scales. We then discuss in Sec. 3, its behaviour
for registrations requiring large deformations and its ability to detect shape
variations at several scales simultaneously. We finally present the usability of
our approach on medical images by comparing 3D MR longitudinal images out
of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study.

2 Registration Using Multi-kernel LDDMM

2.1 Registration Using LDDMM

We first give a brief summary of the classical LDDMM registration algorithm [4].
Let IS be a source image, defined on a spatial domain Ω, and registered on a
target image IT through the time-dependent diffeomorphic transformation φt of
Ω, t ∈ [0, 1]. This transformation is defined by a time dependent velocity field vt,
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t ∈ [0, 1] as follows: ∂tφt = vt(φt), where φ0 = Id and t ∈ [0, 1]. For notational
convenience we introduce φt,s

.
= φs ◦φ−1

t . The registration problem then consists
in finding the velocity fields vt that minimizes the sum of a similarity and a
deformation energy:

E(v) =

∫ 1

0

1

2
||vt||2V dt +

1

2
||IS ◦ φ−1

1 − IT ||2L2 . (1)

The second term measures the similarity between the deformed source and target
images, here, the sum of squared differences of the intensities in both images.
To define the energy of the deformation, the time dependent velocity field v
is assumed to lie in L2([0, 1], V ), where the Hilbert space V is expressed by a
smooth matrix valued kernel k(., .) describing the velocity fields that can be
used for the registration. Even though there is a wide family of available kernels
associated with V , most approaches use Gaussian kernels:

K(x) = (2π)−d/2|Σ|−1/2 exp

(
−1

2
xT Σ−1x

)
, (2)

where Σ is the covariance matrix of the Gaussian kernel. In our work, we assume
isotropic covariances, i.e. Σ = σIdRd , where the key parameter σ controls the
level of the spatial correlation of the deformations. The minimization algorithm
is described hereafter. We denote JS

t = IS ◦ φt,0, JT
t = IT ◦ φ1,t and |Dφt,1| the

Jacobian of φt,1 at time t. The minimization of the variational problem of eq. 1
is performed by using a steepest gradient descent approach. This involves the
iterative use of the gradient of E in L2([0, 1], V ), ∀t:

∇vEt = vt −K �
(
|Dφv

t,1|∇JS
t (JS

t − JT
t )
)
, (3)

where � denotes the convolution operator. The velocity field is then updated
by computing vk+1 = vk − ε∇vk

tj
E, where ε controls the step size during the

gradient descent. After convergence towards the minimum energy solution, the
resulting time dependent diffeomorphism is a geodesic path in the group of dif-
feomorphisms for which the associated velocity field satisfies the Euler-Lagrange
equation.

2.2 Multi-kernel LDDMM

As discussed in introduction, the comparison of shapes can only be performed
at a single scale when using [4] with classical Gaussian kernels. To perform the
registration at several scales simultaneously, we simply define the kernel K as
the weighted sum of N Gaussian kernels Kn of different sizes as follows:

K(x) =
N∑

n=1

Kn(x) =
N∑

n=1

an(2π)−3/2|Σn|−1/2 exp

(
−1

2
xT Σ−1

n x

)
, (4)

where Σn and an are respectively the covariance matrix and the weight of the
nth Gaussian function. As in eq. 2, each Σn is only defined by a characteristic
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length σn: Σn = σnIdRd . Eq. 4 allows to construct a wide range of kernels with
several scales of interest while preserving the promising statistical properties
of the LDDMM. The optimization is then performed simultaneously at several
scales so that complex shapes can be compared in this framework. Note that the
choice of the weights (an)n∈[1,N ] (discussed in more detail in sec. 2.4) is a key
issue here, since it controls the influence of the deformations at different scales.

2.3 Separating the Contribution of Each Kernel

Interestingly, our multi-kernel extension of [4] can be re-written to distinguish
the contribution of each kernel Kn in the total deformation. A velocity field vn is
associated with each kernel Kn. The energy gradient described in eq. 3 becomes:

∇vnEt = vn,t −Kn �
(
|Dφv

t,1|∇JS
t (JS

t − JT
t )
)
, ∀n, (5)

and the velocity field is updated by using:

vk+1
n = vk

n − ε∇vk
n,tj

E, ∀n. (6)

This formulation of the gradient descent is equivalent to the original one and
provides the same deformations. Using the equations 5 and 6, the sum of the
fields vn is indeed equal to the total velocity field: v =

∑N
n=1 vn. The deformation

of the source image can also be computed using ∂tφt =
∑N

n=1 vn,t(φt) and φ0 =
Id. Observing the contribution of a kernel Kn at a point x of the deformed
image is then naturally done by observing the amplitude of the deformation

(AOD) generated by vn,t along φt(x), t ∈ [0, 1]: AODn(x) =
∫ 1

0
|vn,t(φt ◦ x)|dt.

Obviously, using vt instead of vn,t in this equation gives the length of the total
deformation from x. As seen in section 3.2, the AOD is an interesting descriptor
of the local deformations for shapes whose features exist across several scales.

2.4 Weight of the Kernels

Our multiscale strategy depends on a set of parameters an, n ∈ [1, N ], each of
them controlling the weight of the deformations at scale n. These weights re-
flect indirectly the amplitude of the deformations expected between the different
scales. We introduce the apparent weights a′

n, n ∈ [1, N ] that give to the user an
intuitive control of the deformation at each scale. Importantly, similar values of
a′

n induce deformations having similar amplitudes at each scale n. The weights
are then computed using an = a′

n/gn(Kn, IS , IT ) where gn is the typical ampli-
tude of the updates in eq. 6 between IS and IT , if Kn has a weight equal to 1. For
each Kn, the value of gn can be estimated by observing the maximum update of
the velocity field v in a pre-iteration of the registration of IS on IT using only the
kernel Kn with an = 1. This simple technique is shown to work efficiently both
on 2D synthetic images and 3D medical images. More importantly, for images of
the same type (e.g. MR brain images with a fixed acquisition protocol) and the
same kernels Kn, the values of gn were observed stable. The method can then
be used for an atlas creation or multiple comparisons by systematically using
the same kernels with same weights.
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3 Evaluation

3.1 Application to 2D Synthetic Images

As discussed above, the kernel controls the spatial behavior of the deformations.
For an isotropic Gaussian kernel with standard deviation σ, the parameter σ is
the characteristic length defining the scale at which the registration is performed.
To illustrate the behavior of the deformation as a function of the kernel, we
show in Fig. 1 an example of deformation in which a square (IS) is registered
to a rectangle containing an indentation (IT ) using a small kernel (σ = 1.5
pixels), a large kernel (σ = 5 pixels) and the sum of kernels with the same
apparent weights. Note that the deformation grid obtained using the small kernel
seems to highlight a non-invertible deformation. Refining this grid shows that
the deformation is actually invertible but with very high Jacobians.

(a) (b) (c) (d)

Fig. 1. Large diffeomorphic deformation of a 2D binary image. (a) Source image IS

and target image IT and deformations using: (b) a large kernel, (c) a small kernel and

(d) the sum of these kernels.

As expected, at a large scale the square is registered on the rectangle with a
small perturbation while at a small scale the registration fully resolves the shape
differences. Using the sum of these kernels, the deformation appears relatively
similar to the one obtained using only the small kernel, even though the match-
ing quality is slightly lower. However, as shown in the deformation grids of Fig. 1
the multi-kernel approach generates deformations that are clearly smoother and
more intuitive than those obtained using the small kernel for similar final de-
formation. This is due to the simultaneous consideration of two scales all along
the flow of deformation. Hence, in order to match objects with several scales
of interest, our multi-kernel technique appears efficient since the registration of
small and large scales is treated simultaneously with appropriate kernels. More
discussions are given in [11].

3.2 Application to 3D Brain MR Images

To assess the ability of the proposed method in dealing with medical images, we
applied it to the discrimination of MR brain images of patients with Alzheimer’s
disease (AD) and healthy age-matched controls. For each subject group, we
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downloaded 30 pairs of images taken at baseline and after 24 months follow-up
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study [12]. All T1-
weighted 1.5T MR-images were pre-processed using the standard ADNI pipeline.
We aligned all images with the MNI152 brain template using affine registration
before extracting a region of interest of 1283 voxels around the hippocampus. By
using this strategy instead of more accurate intra-subject pre-registrations, the
baseline and follow-up images present variations due to the atrophy of the tissues
and due to the inaccurate pre-registration. Therefore, comparing them at large
and small scales simultaneously and quantifying the differences at small scale
only is pertinent. For each subject, we then registered the baseline and follow-up
MR images using several strategies: (LK) Using a large kernel of characteristic
size σ1 = 25mm which is obviously higher than the deformations we want to
measure, (SK) using a small kernel of characteristic size σ2 = 1.5mm closer to
the apparent transformations, (SGK) using the sum of these Gaussian kernels
with apparent weights a′

2 = 2a′
1 and means of g1 and g2 in each group, and

finally (LSK) using the small kernel σ1 to register the deformed baseline images
resulting from the deformation (LK), with the follow-up image. This last strategy
corresponds to a coarse to fine approach.

Fig. 2. (Left) Baseline and follow-up MR images of the hippocampus out of an AD

subject. (Right) AOD using the sum of kernel. The contributions SGK1 and SGK2 of

the large and small kernels is separated here.

We compared the temporal changes in hippocampus using several descriptors
by automatically segmenting the hippocampus in all baseline images and trans-
forming these volumes using the flow of deformations resulting from the registra-
tion of the grey level images. We measured, for each subject, the hippocampal
atrophy using: A = (Vs − Vt)/Vs, where Vs and Vt are the hippocampal vol-
umes in the segmented baseline image and after deformation to the second time
point respectively. We also measured the amplitude of the deformations (AOD)
from each point x of the hippocampal surface and separated the contributions
of the large (SGK1) and the small (SGK2) kernels for (SGK) using the tech-
nique described in subsection 2.3. Here the AOD have been non-dimensionalized
by the cubic root of Vs to remove the bias due to inter-subject variations of
the initial hippocampal volume. For comparison purpose, we also computed
from the same points of the surface the determinant of the Jacobian (det(J))
of the final deformations φ1. Group-dependent average values and P-values of
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non-parametric Mann-Whitney tests between the groups, which measure the
discriminative power of each descriptor, are presented in table 1.

The global measure of the atrophy is similar to the measures reported in the
literature [12] for (LSK) and (SGK) and turns out to be the most discriminant
descriptor. The local measures of displacement AOD and det(J), averaged on
the surfaces, appear to have a similar discriminant power, with slightly bet-
ter results for AOD. In AOD: (LK) The differences between the groups reflect
the variations at large scale but the influence of the small scales is not com-
pletely negligible. (SK) The discrimination is surprisingly good but biased by
the deformations at large scale. (LSK) The discrimination is good. (SGK) The
discriminative power is in between (LK) and (LSK) if the deformations (SGK1)
and (SGK2) are not distinguished. However, when separated, the large struc-
tures are registered with few influence of the small ones and vice-versa so the
discrimination is better using (SGK2) than (LSK). Note that by using a′

2 = a′
1

the results are similar with a slightly smaller discriminative power of SGK2. Sim-
ilarly, in LSK the image is resampled after the registration at large scale. The
results would be improved by integrating the first deformation in φ0 instead.

Table 1. Average values of atrophy, AOD and determinant of the Jacobian in the

hippocampal, observed in the AD and healthy (H) groups. P-values of non-parametric

Mann-Whitney tests measure the discriminative power of each descriptor. The lower

the P-value, the clearer the distinction.

% Atrophy Average AOD Average det(J)
mean AD mean H P-val. mean AD mean H P-val. mean AD mean H P-val.

LK 1.9 1.4 0.68 0.67 0.56 0.054 0.99 0.99 0.95
SK 8.2 1.4 1.3e-6 0.57 0.30 2.2e-5 0.96 0.99 2.1e-4
LSK 9.6 2.8 1.9e-6 0.51 0.29 2.8e-4 0.96 0.98 0.06
SGK 8.1 2.0 3.6e-7 0.72 0.52 1.7e-3 0.96 0.99 6.9e-5

SGK1 - - - 0.47 0.46 0.49 - - -
SGK2 - - - 0.41 0.20 2.4e-6 - - -

4 Conclusion

We have presented an approach of fine and coarse registration in the context
of LDDMM for 3D medical images. This approach is of particular interest since
the images often contain anatomical structures that exhibit variations at several
scales of interest that cannot be properly measured using a simple or a coarse
to fine LDDMM registration. The approach we developed makes use of the sum
of several Gaussians to define the kernel underlying the deformations. Our tests
have shown that this method estimates natural-looking deformations when reg-
istering images presenting variations at two different scales while keeping dif-
feomorphic properties. More importantly, it appears that our fine and coarse
approach may have better abilities than standard coarse to fine approaches to
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discriminate two groups of images by measuring the amplitudes of the deforma-
tions generated at a scale of interest. Note, that these scale-dependent amplitudes
of deformations are local, so localized measures of shape evolution can be per-
formed. Future work will consist in the validation of a multi-resolution approach
and the assessment of the geodesic properties of the estimated deformations. A
deeper characterization of the apparent weights is also an important perspective
of this work. More experiments and applications of our technique will also be
carried out on MR cerebral images as well as on CT cardiac images.
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Abstract. Accurate measurement of longitudinal changes of anatomical structure 
is important and challenging in many clinical studies. Also, for identification of 
disease-affected regions due to the brain disease, it is extremely necessary to reg-
ister a population data to the common space simultaneously. In this paper, we 
propose a new method for simultaneous longitudinal and groupwise registration 
of a set of longitudinal data acquired from multiple subjects. Our goal is to 1) 
consistently measure the longitudinal changes from a sequence of longitudinal 
data acquired from the same subject; and 2) jointly align all image data (acquired 
from all time points of all subjects) to a hidden common space. To achieve these 
two goals, we first introduce a set of temporal fiber bundles to explore the spa-
tial-temporal behavior of anatomical changes in each longitudinal data of the 
same subject. Then, a probabilistic model is built upon the hidden state of spatial 
smoothness and temporal continuity on the fibers. Finally, the transformation 
fields that connect each time-point image of each subject to the common space 
are simultaneously estimated by the expectation maximization (EM) approach, 
via the maximum a posterior (MAP) estimation of probabilistic models. Promis-
ing results are obtained to quantitatively measure the longitudinal changes of 
hippocampus volume, indicating better performance of our method than the con-
ventional pairwise methods.  

1   Introduction 

Longitudinal study of human brains is important to reveal subtle structural and functional 
changes due to the brain disease [1, 2]. Although many image registration algorithms have 
been developed, most of them, regardless of feature-based or intensity-based, register the 
serial images independently when applied to longitudinal data. However, the independent 
registration implies the independent measurement of brain changes in serial images, and 
could lead to inconsistent longitudinal measurement especially for the small structures 
with tiny annual changes (e.g., atrophy in hippocampus due to aging [3]).  

Several methods have been reported to measure the temporal anatomical changes. 
Shen and Davatzikos [3] proposed the 4D-HAMMER registration to cater for the 
longitudinal application. However, one limitation of their method is to build a 4D 
template by repeating one specific 3D image as templates for different time-points, 
which may introduce bias in longitudinal data analysis. Recently, Durrleman et al. [4] 
presented a spatial-temporal atlas estimation method to analyze the variability of the 
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longitudinal shapes. This method uses the regression model to infer the shape evolu-
tion, and then jointly estimates the deformations as well as the dynamics of temporal 
changes. However, this method also needs to explicitly specify a template in advance.  

In this paper, we propose a novel longitudinal registration method for image se-
quences acquired at multiple time-points of multiple subjects. Our method integrates 
both advantages of groupwise registration and longitudinal registration, thus achiev-
ing the spatial-temporal consistency for the registration results. Specifically, the trans-
formation fields of all images, regardless of subjects and acquisition times, are first 
simultaneously estimated towards a hidden common space. Second, the spatial-
temporal consistency of deformations within serial images of each subject is regulated 
by a set of temporal fiber bundles [5] to convey the spatial dependence and temporal 
continuity. Finally, these two steps are naturally integrated by a probabilistic model 
on fiber bundles and further solved via an EM framework. Promising results of the 
proposed method are obtained on both simulated and real longitudinal brain data with 
hippocampus atrophy, indicating better performance of our method than the conven-
tional pairwise registration methods.  

2   Methods 

Given a set of longitudinal image sequences, , | 1, … , , 1, … ,  
where ,  represents the image acquired from subject  at time point , our first goal 
is to align them to a common space following the transformation field ,  defined 
from the common space to the individual image space of , . We define the mean 
shape of all aligned brain boundaries as | 1, … , , where  denotes the 
position of the -th point of the mean shape in the common space. Then, for each , 
its transformed positions in the space of subject , denoted as Φ , , |1, … , , can be regarded as a temporal fiber within the subject , which facilitates 
the regulation of the temporal continuity for the longitudinal data. Fig. 1 illustrates the 
main idea of our registration method. As shown in Fig. 1(a), all corresponding points 
in the longitudinal sequences of different subjects (i.e., colored dots) are linked to the 
common space (i.e., red star) based on their respective deformation fields , , and 
also their longitudinal changes within each subject (i.e., dash curves) are captured by 
the temporal fiber bundles Φ , . Fig. 1(b) shows more details on registering a set of 
longitudinal data. Specifically, the mean shape  is given in the top, with all its in-
stances ,  shown in the middle, where all images of each longitudinal data are 
connected by the embedding temporal fibers Φ , . To establish the point correspon-
dences w.r.t. the common space, only the most distinctive voxels, called as driving 
voxels , , are used for to drive the transformation of each image , . Examples of 
driving voxels are given in the bottom of Fig. 1(b) as red points overlaid on brain 
slices. Note that each transformation field ,  is steered by the correspondences de-
termined between ,  and , , with the estimated transformation fields of the 
same subject regularized along each temporal fiber Φ , , to achieve the temporal con-
tinuity. The hidden states of spatial-temporal characteristics on fiber bundles will be 
described by a probabilistic model introduced in Section 2.1. We will present a solu-
tion to this probabilistic model in Section 2.2, where the estimation of transformation 
fields ,  is regarded as the MAP estimation of model parameters.  
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Fig. 1. The schematic illustration of the proposed method for simultaneous longitudinal and 
groupwise registration. In (a), not only all subjects are jointly warped onto the common space, 
but also the longitudinal changes are consistently measured by fibers in longitudinal data of 
each subject. In (b), an overview of our method is provided. For each image, the driving voxels ,  (shown in red in the bottom) will be used to steer the estimation of transformation field , , 
by establishing their correspondences with the mean shape in the common space (as shown in 
the top). Meanwhile, the temporal consistency within each longitudinal data can be regulated 
along the temporal fiber bundles, as displayed by lines in the middle of (b).  

2.1   Probabilistic Model for Registration of Longitudinal Data Sets  

Our registration aims to simultaneously minimize the variability of serial images of 
all subjects, while enforcing the temporal continuity within the longitudinal data of 
each subject. In general, the transformation field ,  (defined in the common space) is 
used to pull each data ,  from its own space to the common space. The bending 
energy is used as a smoothness constraint to regularize each , , since thin-plate 
splines (TPS) [6] is efficient to give the optimal ,  with minimal bending energy. In 
the following, we will use the operator ,  to denote the bending energy of each 
transformation field ,  in the spatial domain. 

Gaussian Mixture Model on the Driving Voxels: Attribute vector has been widely 
used as a morphological signature to guide image registration. In this paper, we fol-
low the method in [7] to calculate an attribute vector  at each location  in 
each subject image , . Based on attribute vectors, the set of driving voxels in , , 
denoted as , , | 1, … , ,  where ,  is the total number of the driving 
voxels in , , can be selected for steering the registration [7]. Here, we regard each ,  as the random variable drawn from a Gaussian mixture model (GMM) whose 
centers are the deformed point set , . Accordingly, we introduce a hidden varia-
ble , 1, … ,  (where  is the number of temporal fibers) to indicate the spatial 
assignment of a specific GMM center in generating , . The complete density func-
tion of ,  can be given by: 

, | , , , , , ; , , , exp , , , (1) 

where ,  is the covariance matrix of the normal distribution ; , Σ). For sake of 

simplicity, the isotropic covariance matrix ,  is assumed.  

Given the spatial assignment , , the attribute vector on , , i.e., ,  , can be 
also viewed as a random variable generated from another GMM whose centers are the 
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respective attribute vectors on all other images, denoted as ,   ( ,
). We introduce a subject assignment , ,  to denote the index of image 

data for reference. Similarly, the conditional density function of ,  is defined as:          , | , , , , , , , , , , ,  

, ; , , , exp , , , (2) 

where we assume again the isotropic covariance matrix. 
By denoting the occupancy probabilities of ,  and ,  as , ,  and , , , , respectively, the posterior probability of , , ,  

given the transformation field ,  and the mean shape  can be given as: 

    , , , | , , , · , · exp , , , ,  

, , , , , , , , . (3) 

Spatial-Temporal Heuristics on Fiber Bundles: For each subject , the temporal 
fiber bundles capture the longitudinal consistency of the estimated deformations, as 
shown in Fig. 1. In other words, we can take advantage of the temporal fiber bundles, 
designated by , , , … , ) from the common space, to regulate the temporal 
smoothness from ,  to ,  along the -th fiber. A traditional kernel-based 
approach can be used here to assure the temporal continuity. In particular, the position 
of ,  after kernel smoothing is defined by: 

, · , , (4) 

where  is a Gaussian kernel and  the kernel width. The principle of Gaussian ker-
nel smoothing leads to the minimization of the deviation between ,  and , . We use the operator , , ,  to measure the residual 
energy after performing temporal smoothing on each position of a fiber, which ac-
counts for the smoothness in temporal domain. It is worth noting that more sophisti-
cated kernel-based regression methods are also applicable here. 

Unified Probabilistic Model for Registration of Longitudinal Data Sets: Consider-
ing , , , , , ,  as the model parameters and , , ,  as 
the observation, the joint probability ,  is given by:  

, · , · , · , , , | , ,, , 
, , , , , , (5) 

where  due to no prior knowledge on .  
Hereafter, our registration problem turns to infer the model parameters  that best 

interpret the observation , i.e., arg max , .   
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2.2   Solutions to Our Longitudinal Registration 

Finding the best model parameters  by MAP estimation on ,  is intractable 
since many parameters  might explain the observation  very well. “Free energy 
with annealing” [8] is one of the variational Bayes inference approach to solve this 
problem by minimizing the distribution distance between |  and , , which 
bounds for maximizing the likelihood of the observation . However, here the 
posteriori distributions of some variables ( , , , , and ) are hard to compute. In-
stead, we perform the point estimation on , , , , and  by maximizing their expec-
tation w.r.t. the maintained posteriori distributions of ,  and , , which falls to 
the EM principle. By omitting some constant terms and taking logarithm to Eq. 5, we 
obtain the free energy for our registration algorithm as: 

, , , , , · , · , , , , · , · log , · , · log ,,

2 , 2 , , (6) 

where  and  are the “temperatures” for spatial assignment and subject assignment, 
respectively, in annealing scenario. It is worth noting that  and  will gradually 
decrease to encourage the assignment changing from fuzzy to strictly binary.  

The spatial assignment ,  and subject assignment ,  can be obtained by mini-
mizing  w.r.t. ,  and , , respectively: 

, exp , · , , , , , , , ∑ ,  (7) 

, exp , · , , , , , , , ∑ , (8) 

Next, Eq. 6 can be optimized by decoupling it into two sub-problems, i.e., (SP1) 
tracking the longitudinal changes along the fiber bundles; and (SP2) simultaneously 
estimating the transformation fields ,  and updating the mean shape .  

SP1: Longitudinal Tracking along Fiber Bundles: Once the mean shape  and 
transformation ,  of each image have been determined, temporal continuity is pre-
served by tracking the composite variables from ,  to ,  in each temporal 
fiber . Here, kernel-based smoothing is performed along each fiber of individual 
subject, to enforce the temporal continuity by Eq. 4 and minimizes the energy func-
tion  in Eq. 6 w.r.t. , .  

SP2: Groupwise Registration: This step aims to refine ,  and  by minimizing the 
energy function  with fixed , , and , . This can be considered as a groupwise 
registration problem, which is solved in three iterative steps. First, the transformation ,  w.r.t. to all driving voxels ,  in ,  is updated as a weighted mean location 

according to the observations of ,  and , , i.e., , ∑ , · , · ,, . 
Second, by considering  as the source point set and ,  as the target point 
set, TPS interpolates the dense transformation field ,  for each , . Finally, by  
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minimizing  with respect to , the mean shape  is updated as ∑ ∑ , ∑ , , ,, , where ,  is the inverse of the transformation 
field , .  

3   Experiments 

The ultimate goal of our longitudinal registration algorithm is to consistently measure 
the subtle anatomical changes to facilitate the diagnosis (or early prediction) of dis-
eases, i.e., brain dementia.  To evaluate the performance of our method, two sets of 
data (one with simulated atrophy in hippocampus, and another with manually labeled 
hippocampi in year 1 and year 5 of 9 elder brains) are used for demonstration in this 
section. For comparison, we have also used a 3D pairwise registration algorithm [9] to 
independently measure the longitudinal changes of hippocampi for these data.  

Experiments on Simulated Atrophy in Hippocampus: Three subjects with manual-
ly labeled hippocampus regions at year 1 are used as the baseline data ( 1) to si-
mulate atrophy on their hippocampi. Then, we yield the next time-point image ( 2) 
by simulating ~5% hippocampal shrinkage. Repeating this procedure, we finally ob-
tain 3 sets of longitudinal data with hippocampal volume shrinking at an annual rate 
of ~5% in the five years. Considering the numerical error in simulation, the total si-
mulated atrophy is 15.86% within the five years. 

Our algorithm can simultaneously estimate the transformation fields of these 5 3 
images from their own spaces to the hidden common space, and keep spatial-temporal 
continuity on the estimated transformation fields for each subject.  Fig. 2(a) shows the 
curves of the estimated hippocampus volume loss by a 3D pairwise registration me-
thod and our proposed method in blue and red curves, respectively. It is obvious that 
our method outperforms the 3D pairwise registration method, with more consistent 
measurement of longitudinal changes. The averaged hippocampus volume loss esti-
mated by the two methods is also displayed in Fig. 2(b). The final estimated hippo-
campus volume loss is 12.8% by the 3D pairwise registration method and 15.73% by 
our method, which shows the capability of our method in more accurate measurement 
of anatomical changes.  

Experiments on Real Elderly Brains: Nine elderly subjects, each with annual MR 
scans in 5 years, are evaluated in this experiment. For comparison, we independently 
warp these 9 5 subjects to a selected template by the 3D pairwise registration  
method. The registration results of all five time-points of the two subjects are shown 
in the top two rows of Fig. 3(a). We also perform our longitudinal registration method 
to simultaneously align these 45 subjects to the hidden common space without speci-
fying the template. The registration results of the same two subjects across 5 years are 
displayed in the top two rows of Fig. 3(b). It can be observed that our method 
achieves more consistent alignment in global brain shapes. We further enlarge the 
right pre-/post-central gyrus area, as shown in two bottom rows. As indicated by the 
pink crosses, the registration results along the time axis are not continuous for the 3D 
method, while the longitudinal registration results of our method are more consistent, 
due to the introduction of the spatial-temporal heuristics. Noting that the percentage 
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of hippocampal shrinkage detected from year 1 to year 5 is 3.84% by 3D method and 
5.38% by our method, compared to 5.65% by two experienced raters.  

 

Fig. 2. Experimental results on measuring simulated hippocampus volume loss in the 5 years. 
(a) shows the hippocampus volume loss for a typical subject in the 5 years and (b) shows the 
averaged hippocampus volume change in the 5 years. The total simulated atrophy in the 5 years 
is 15.86%. The estimated atrophy is 15.73% by our method and 12.8% by the 3D method, 
indicating more accurate results achieved by our method. 

 

Fig. 3. Registration results on two typical subjects (with 5 scans) by 3D pairwise registration 
method (a) and our proposed method (b). The top two rows show the 3D rendering of two 
aligned subjects in 5 time points. Visually, our method achieves more consistent results in the 
global brain shapes (particularly for the regions indicated by the red ellipses). The bottom two 
rows show an enlarged region at right pre-/post-central gyri area. As indicated by pink crosses, 
our method outperforms the pairwise registration method in temporal continuity.  

The registration performance can be further evaluated by computing the overlap 
ratio on brain tissues between each aligned image and the reference image. In our 
algorithm, since no explicit template is used, the reference image is voted from all 
aligned images by setting the tissue at each voxel as the majority of tissue labels from 
all aligned images. First, by considering all 45 aligned images together, the average 
overlap ratio of white matter (WM), gray matter (GM), ventricle (VN) are 67.2%, 
59.2%, 79.0% by the 3D method, while 72.6%, 63.9%, and 82.1% by our method. 
Second, by considering all 5 aligned scans of each subject as a separate group,  
the mean and standard deviation of overlap ratios from 9 subjects are (79.7%2.5%), (71.3% 2.4%), (86.3% 1.7%) by the 3D method on WM, GM, and VN, 

 

(a) Longitudinal hippocampus volume change of a subject (b) Averaged longitudinal hippocampus volume change 

 

t1 t2 t3 t4 t5 t1 t2 t3 t4 t5 
(a) By 3D registration method (b) By our proposed method 
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respectively, compared to (82.1% 1.4%), (74.5% 2.1%), (86.6% 1.3%) by 
our method. Obviously, these two sets of results consistently demonstrate that our 
method outperforms the 3D method in accurately aligning all 45 images to the com-
mon space (first experiment), as well as better preserving the temporal continuity in 
each subject (second experiment).  

4   Conclusion 

We have presented a novel method for longitudinal registration of serial images, by 
taking advantages of both spatial-temporal heuristics and implicit template in register-
ing a group of longitudinal data. Specifically, the spatial-temporal continuity is 
achieved by enforcing smoothness constraint along fiber bundles in each subject. 
Further, we simultaneously estimate all transformation fields which link all images to 
the hidden common space without specifying any template, thus avoid introduction of 
any bias to subsequent data analysis. 

In future, we will investigate more powerful kernel regression methods to regulate 
the temporal smoothness along the temporal fiber bundles. Also, we will test our 
longitudinal registration method in clinical applications, e.g., measuring longitudinal 
brains change in MCI study.  
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Abstract. A novel registration method between 3D ultrasound and

stereoscopic cameras is proposed based on tracking a registration tool

featuring both ultrasound fiducials and optical markers. The registra-

tion tool is pressed against an air-tissue boundary where it can be seen

both in ultrasound and in the camera view. By localizing the fiducials

in the ultrasound volume, knowing the registration tool geometry, and

tracking the tool with the cameras, a registration is found. This method

eliminates the need for external tracking, requires minimal setup, and

may be suitable for a range of minimally invasive surgeries. A study of

the appearance of ultrasound fiducials on an air-tissue boundary is pre-

sented, and an initial assessment of the ability to localize the fiducials in

ultrasound with sub-millimeter accuracy is provided. The overall accu-

racy of registration (1.69 ± 0.60 mm) is a noticeable improvement over

other reported methods and warrants patient studies.

1 Introduction

Augmented reality in surgery often involves the superposition of medical images
of a patient’s anatomy onto a camera-based image of the overlying tissues. With
sufficient registration accuracy, the surgeon is then able to localize the internal
anatomy (subsurface features such as lesions or nerves) for improved surgical
guidance. Prior work in augmented reality for surgical applications has been ap-
plied to x-ray, computed tomography (CT), magnetic resonance imaging (MRI)
and ultrasound (US) [1]–[7]. This paper explores the ability to display an exter-
nal three-dimensional ultrasound (3DUS) volume in a laparoscopic camera view
during minimally invasive surgery.

To date, registration between an US volume and camera images has generally
involved two tasks: calibrating the ultrasound volume to the pose of the US trans-
ducer, and tracking both the US transducer and the cameras in 3D space. For
the first task, numerous techniques for US transducer calibration have been pre-
viously investigated; Lindseth [8] and Mercier [9] offer extensive reviews on the
subject of US transducer calibration. The second task, tracking of the cameras
and an US transducer, can be performed using magnetic trackers, optical track-
ers, or robot kinematics [5]–[7]. While these techniques have proven useful in the
operating room, they still have their shortcomings: time-consuming transducer
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calibrations, additional tracking equipment, line-of-sight issues, modifications to
the US transducers and cameras for tracking, and consequently the consump-
tion of valuable time and space in the operating room. In addition, cumulative
errors in transducer calibration and equipment tracking contribute to errors in
registration that may be amplified by a lever-arm effect.

We address the above issues by introducing a new technique for registering
stereoscopic cameras and 3DUS using a registration tool. Fiducials attached to
the registration tool are held against the air-tissue boundary and imaged through
the tissue. Their locations in the US volume are determined, and through the
known geometry of the tool and the tracking of the tool by the stereoscopic
cameras, a 3DUS to camera registration can be found. This provides a direct
transformation from the US to the stereoscopic cameras, thus eliminating errors
related to calibrating the US transducer and tracking the US transducer and
the cameras. Registration of 3DUS to the cameras directly across the air-tissue
boundary is the key innovation of this paper.

We envisage using the novel registration system in laparoscopic surgery, where
structures being operated on can be imaged more effectively with external or en-
docavity US, or with laparoscopic US from a different direction than the camera
view. For example, during partial nephrectomy, the kidney can be imaged with
external US through the abdomen, or with laparoscopic US from one side of
the kidney while the camera and laparoscopic instruments operate from the
other. Similarly, in laparoscopic radical prostatectomy, endorectal US can im-
age the prostate as in prostate brachytherapy, while the surgery proceeds with
the trans-abdominal or trans-perineal approach. In both cases, registration is
required to overlay the US image onto the endoscopic camera view. We propose
that it be carried out with the technique described in this paper.

2 Methods

Our study had two goals: to determine the accuracy of locating US fiducials on
an air-tissue boundary, and to determine the feasibility of using these fiducials to
register 3DUS to stereoscopic cameras. We first examined the accuracy of local-
izing spherical fiducials on an air-tissue boundary in US. Air-tissue boundaries
exhibit high reflection at their surfaces that may make it difficult to accurately
localize fiducials. We considered five variables that could affect the accuracy of
fiducial localization: (1) fiducial size, (2) lateral position in US image, (3) angle
of air-tissue boundary, (4) boundary depth, and (5) stiffness of tissue.

Next, we implemented a direct closed-form registration method between 3DUS
and a stereoscopic camera by localizing surface fiducials in both the 3DUS vol-
ume and the stereo camera (Figure 1a). This method is described below.

We begin by defining four coordinate systems, the stereo camera system
{o˜0, C0}, the optical marker system {o˜1, C1}, the US fiducial system {o˜2, C2}
and the 3DUS system {o˜3, C3}. The transformation from {o˜1, C1} to {o˜0, C0},
0T1, is found by stereo-triangulating the optical markers on the registration tool.
The transformation from {o˜2, C2} to {o˜1, C1}, 1T2, is constant and known from
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the tool geometry. The transformation from {o˜3, C3} to {o˜2, C2}, 2T3, is found
by localizing three fiducials that define {o˜2, C2} in the 3DUS system {o˜3, C3}.

The three fiducial locations in coordinate system {o˜3, C3}, 3x0,
3x1 and 3x2,

define two perpendicular vectors with coordinates

3v1 =3 x1 − 3x0 (1)
3v2 =3 x2 − 3x0 , (2)

that can be used to define the unit vectors of frame C2 in system {o˜3, C3}:

3i2 =
3v1

||3v1||
(3)

3k2 =
3v1 × 3v2

||3v1 × 3v2||
(4)

3j2 = 3k2 × 3i2 . (5)

The origin o˜2 has coordinates 3x0 in {o˜3, C3}. The homogeneous transformation

from the 3DUS system {o˜3, C3} to the US fiducial system {o˜2, C2}, 3T2, is then

3T2 =

[
3i2

3j2
3k2

3x0

0 0 0 1

]
(6)

and 2T3 = 3T2
−1

. The overall transformation between the stereo camera system
{o˜0, C0} and the 3DUS system {o˜3, C3} is then

0T3 = 0T1
1T2

2T3 . (7)

A homogenous transformation can then be constructed to register the 3DUS
frame to the stereo camera frame. Lastly, with known camera parameters (focal
length, image center, distortion coefficient, etc.), the registered US volume in
the camera frame can be projected onto the two stereoscopic images.

2.1 Experimental Setup

Figure 1b shows the experimental setup used in this study. 3DUS volumes were
captured using a Sonix RP US machine (Ultrasonix Medical Corp., Richmond,
Canada) with a mechanical 3D transducer (model 4DC7-3/40). A three-axis
mechanical micrometer stage was used for accurate positioning of registration
tools relative to the fixed US transducer and stereo cameras.

Surface Fiducial Localization. Sets of steel spherical fiducials arranged in
precisely known geometry were pressed against tissue-mimicking phantoms, im-
aged and localized in the 3DUS volumes. The steel plates contained three sets
of fiducials spaced 10 cm apart, with each set consisting of a center fiducial and
eight surrounding fiducials at a radius of 10 mm (Figure 2a). The fiducials were
seated in holes cut into the plate on a water jet cutter with dimensional accuracy
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(a) (b)

Fig. 1. a) Schematic of the registration method, b) Experimental Setup

of 0.13 mm. Fiducial diameters of 2 mm, 3 mm and 4 mm were imaged through
phantoms with thicknesses of 3 cm, 6 cm and 9 cm, stiffnesses of 12 kPa, 21 kPa
and 56 kPa, and boundary angles of 0 degrees, 20 degrees and 40 degrees. The
phantoms were made from polyvinyl chloride (PVC) using a ratio of liquid plas-
tic to softener of 1:1 (12 kPa, low stiffness), 2:1 (21 kPa, medium stiffness), and
:0 (56 kPa, high stiffness) to create phantoms that mimicked tissue properties
[10]. To create fully developed speckle, one percent (mass) cellulose was added
as a scattering agent.

The five independent variables evaluated were varied independently about a
control case (3 mm fiducials, 6 cm depth, 21 kPa stiffness, 0 degree angle, and
central location). The surface fiducial plates were pressed lightly into the PVC
tissue phantoms, and imaged through the phantoms. The fiducials were then
manually localized in the US volume, and the Euclidean distances between the
outer fiducials and the center fiducials were compared to the known geometry
to determine the accuracy of localization. For every variable level, 10 tests with
8 error measurements were performed (n = 80). The focal depth was set to the
boundary depth in all tests.

(a) (b) (c)

Fig. 2. a) Fiducial localization test plate, b) Registration tool, c) Registration accuracy

test tool
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Registration. For the registration experiments, a Micron Tracker H3-60 op-
tical tracking system (Claron Technology, Toronto, Canada) was used as the
stereoscopic cameras. This provided a stable and accurate pre-calibrated camera
system and allowed the analysis of registration accuracy to focus mainly on lo-
calizing the registration tool in US. The registration tool was also built on a steel
plate cut on a waterjet cutter (Figure 2b). On the top surface are three Micron
Tracker markers spaced 20 mm and 15 mm apart forming an ”L” shape; on the
bottom surface are three surface fiducials (3 mm) seated in holes cut directly
in line with the Micron Tracker markers. Registration accuracy was measured
using the test tool shown in Figure 2c. The test tool consists of a steel frame, a
nylon wire cross which can be accurately localized by US in a water bath, and
three Micron Tracker markers which allow the tracker to determine the location
of the wire cross in the camera frame.

We first determined the homogeneous transformation relating points in the US
frame to the camera frame using the registration tool. We then evaluated the accu-
racy of the transformation using the test tool placed in a water bath. The crosswire
location in US registered into the camera frame was compared to the location of
the crosswire in the camera coordinates. This was done by saving a US volume
of the crosswire in a water bath, and then draining the water to track the optical
markers on the test tool in the stereoscopic cameras. Registration error was de-
fined as the Euclidean distance between the position predicted by registration and
the tracked position of the crosswire in the cameras. The errors were transformed
into the US frame so that they could be specified in the lateral, elevational and
axial directions. To ensure accurate scales, the US volumes were generated using
the correct speeds of sound for the phantoms and for water.

3 Results

The results of the fiducial localization experiments are shown in Table 1. Hy-
pothesis testing was used to determine the statistical signficance of variables.
Given two groups x and y, unpaired student t-tests determine the probability
p that the null hypothesis (μx = μy) was true. A one-way analysis of variance
(ANOVA) is a generalization of the student t-test for more than two groups and
produces probability statistics {F, p}. For both the student t-test and ANOVA, a
generally accepted probability for suggesting statistical significance is p < 0.05.

The ANOVA results showed that the size of the fiducial, the depth of the
boundary, and the angle at which the boundary was imaged affect the accuracy
of fiducial localization (ANOVA: Fsize = 7.34, psize = 9.96E − 04; Fdepth =
15.5, pdepth = 1.11E − 06; Fangle = 8.49, pangle = 3.61E − 04). However, the
tissue stiffness does not significantly change the accuracy of fiducial localization
(ANOVA: Fstiffness = 0.0414, pstiffness = 0.960). T -tests results showed that
the lateral position of the fiducials on the boundary plays a significant role in
the accuracy of localization (t-test: p = 7.10E − 18).

In our registration experiment, four unique poses of the registration tool were
used for a physical configuration of the camera and US transducer. The registra-
tion errors were computed at twelve different locations in the US volume. To test
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Table 1. Mean, standard deviation and median of errors associated with localizing

bead fiducials at air-tissue boundaries. Significantly different from control case = (*)

Variable Value Mean ± Std Dev. (mm) Median (mm) RMS Error

Fiducial Size 2 mm 0.94 ± 0.34* 0.89 1.00

3 mm 0.82 ± 0.28 0.78 0.87

4 mm 0.70 ± 0.20 0.67 0.73

Boundary Depth Long (9 cm) 0.54 ± 0.18* 0.55 0.57

Med. (6 cm) 0.82 ± 0.28 0.78 0.87

Short (3 cm) 0.66 ± 0.20* 0.64 0.69

Tissue Stiffness High (12kPa) 0.81 ± 0.30 0.78 0.86

Med. (21kPa) 0.82 ± 0.28 0.78 0.87

Low (56kPa) 0.80 ± 0.19 0.80 0.82

Boundary Angle 0◦ 0.82 ± 0.28 0.78 0.87

20◦ 0.78 ± 0.28 0.75 0.83

40◦ 1.04 ± 0.35* 0.97 1.10

Lateral Position Center 0.82 ± 0.28* 0.78 0.87

On Boundary Offset (10 cm) 0.60 ± 0.28* 0.59 0.66

Table 2. Mean errors (n = 12) between points in a registered 3DUS volume and its

location in the stereo-camera frame

eLateral (mm) eElevational (mm) eAxial (mm) eTotal (mm)

Registration 1 0.90 ± 0.44 0.77 ± 0.33 1.08 ± 0.75 1.75 ± 0.56

Registration 2 1.02 ± 0.45 0.60 ± 0.32 1.14 ± 0.99 1.83 ± 0.74

Registration 3 0.65 ± 0.43 0.76 ± 0.33 1.01 ± 0.63 1.55 ± 0.53

Registration 4 0.57 ± 0.40 0.82 ± 0.30 1.03 ± 0.79 1.60 ± 0.58

Average 0.78 ± 0.45 mm 0.74 ± 0.32 mm 1.07 ± 0.78 mm 1.69 ± 0.60 mm

the repeatability of this method, the registration was repeated four times on the
same images. Table 2 shows that the average error among all the transformed
points for all transformations was 1.69 mm, with a minimum error of 1.55 mm
and a maximum error of 1.84 mm. The time required to perform a registration
was approximately equal to the acquisition time of a 3DUS volume (2 sec).

4 Discussion

The fiducial localization tests showed that errors associated with localizing sur-
face fiducials at an air-tissue boundary ranged from 0.54 mm to 1.04 mm. Several
variables had a significant effect on accuracy. The smaller fiducials (2 mm) pro-
duced higher localization errors, suggesting that the fiducials became lost in the
boundary reflection. The larger fiducials presented larger features that were eas-
ier to detect. Boundary depths farther away from the US transducer produced
lower localization errors, as fiducial centers were more difficult to localize when
approaching the near field [11].
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Two results from the localization error analysis that have practical implica-
tions are that tissue stiffness does not significantly affect the accuracy of fiducial
localization and that only large angles (e.g. 40 degrees) significantly affect the
localization accuracy. Our registration method should therefore remain accurate
for tissues with a wide variety of stiffnesses and shapes. The lateral location of
the fiducials on the air-tissue boundary, however, was significant to the localiza-
tion accuracy. The air-tissue boundary exhibited greater specular reflection near
the axis of the US transducer, and thus fiducials offset laterally from the axis
were less obscured by specular reflection and could be more accurately localized.

The registration experiment showed that using fiducials on an air-tissue bound-
ary for direct registration between 3DUS and stereo cameras is feasible with an
accuracy of 1.69 ± 0.60 mm. The largest errors were in the axial directions since
the tail artifacts of the surface fiducials obscured the true depth at which the
fiducials were located in the US volume (Figure 3). Repeated registrations on the
same data and registrations using different physical locations of the registration
tool all gave consistent overall and component errors, suggesting a model of the
reverberation tail could improve localization and registration accuracy further.
Nevertheless, based on the overall errors, our registration method is a promising
alternative to using tracking equipment, where errors for similar US-to-camera
registration systems are within 3.05 ± 0.75 mm [5] for magnetic tracking and
2.83 ± 0.83 mm [6] for optical tracking. It is clear that the main source of error
for the new registration method is the localization of registration tool fiducials,
as any localization errors would be amplified by a lever-arm effect.

Fig. 3. Example images of an air-tissue boundary (left) and a 3 mm fiducial pressed

against an air-tissue boundary (right)

The proposed registration is ideal for situations where the camera and the US
transducer are fixed. However, if the US transducer or the camera is moved, a new
registration can simply be acquired. Alternatively, in the case of robot-assisted
surgery, the robot kinematics can be used to determine the new locations of the
camera or the US transducer and maintain continuous registration to within the
accuracy of robot kinematic calculations from joint angle readings.

A few practical issues with the proposed registration method should be con-
sidered. First, stereo-camera disparity plays a significant role in the accuracy
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of registration. The registrations presented in this paper were performed using
the Claron Micron Tracker; this represents an ideal case, as the cameras have a
large disparity (12 cm) and a tracking error of ± 0.2 mm. In minimally invasive
surgery, laparoscopic stereo-cameras having much smaller disparities would be
used, possibly resulting in higher errors (although the cameras are imaging a
much shallower depth so that the effect of disparity is lessened). This can be
compensated for by maximizing the size of the registration tool, producing a
well-conditioned system for computing the transformations. Such a registration
tool could be designed to fold and fit through a trocar for laparoscopic surgery.

Another way to improve registration accuracy is to introduce redundancy
into the registration data. Our registration tool featured only the minimum
three fiducials required to extract the six degrees of freedom transformation
between the US volume and the stereoscopic cameras; with more fiducials on the
registration tool, averaging could be used to reduce errors. In addition, higher
accuracies can be achieved by considering different poses of the registration tool
in both the US and the camera frame [12].

5 Conclusions

In this study, we evaluated the accuracy of localizing fiducials pressed against an
air-tissue boundary in ultrasound. We have shown that this method can be used
to perform 3D ultrasound to stereo camera registration for augmented reality in
surgery. This method provides a direct closed-form registration between a 3DUS
volume and a stereoscopic camera view, does not require calibration of the US
transducer or tracking of cameras or US transducers, and provides improved
accuracies over tracking-based methods. Future work will utilize laparoscopic
stereo-cameras in the registration technique, and investigate in-vivo studies to
confirm an acceptable level of accuracy is achieved in an intra-operative setting.
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Abstract. We seek to automatically establish dense correspondences

across groups of images. Existing non-rigid registration methods usu-

ally involve local optimisation and thus require accurate initialisation.

It is difficult to obtain such initialisation for images of complex struc-

tures, especially those with many self-similar parts. In this paper we

show that satisfactory initialisation for such images can be found by a

parts+geometry model. We use a population based optimisation strat-

egy to select the best parts from a large pool of candidates. The best

matches of the optimal model are used to initialise a groupwise registra-

tion algorithm, leading to dense, accurate results. We demonstrate the

efficacy of the approach on two challenging datasets, and report on a

detailed quantitative evaluation of its performance.

1 Introduction

Groupwise non-rigid image registration is a powerful tool to automatically es-
tablish dense correspondences across large sets of images of similar but varying
objects. Such correspondences are widely used, for instance to construct sta-
tistical models of shape or appearance [1]. These models have a wide range of
applications in medical image processing, such as segmentation of anatomical
structures or morphometric analysis.

Existing groupwise techniques [2,3,4] generally treat registration as an opti-
misation problem which is solved with local minimisation methods. As such they
are sensitive to initialisation and will fail if “good-enough” starting points are
not found. This problem is prominent when registering images of objects with
considerable shape variation and multiple similar sub-structures, such as radi-
ographs of the human hand (Fig. 1a). The reason is that non-rigid registration
methods usually use an affine transformation to find an approximate initialisa-
tion, then refine this with local optimisation. Unfortunately this is insufficient for
objects with complex structures because there are too many local minima. For
instance, Fig. 1b shows the average of a set of hand radiographs after affine align-
ment. This shows that the registration failed to register the fingers adequately
on many of the examples.

Where objects have a number of distinctive parts, these can be individually
located and used to initialise further registration. However, important classes of
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a) Hand Examples b)Affine mean c) Spine examples

Fig. 1. Examples of hand and spine radiographs used in experiments

object (such as the human hand or spine) contain multiple repeating structures,
leading to inherent ambiguity when attempting to match any given part. An
effective way to resolve this ambiguity is to use a geometric model of a set of
parts, that is, the parts+geometry model [5,6]. Such models are often created
so as to optimise their ability to detect or discriminate objects [7]. In this paper
we optimise them so as to achieve accurate correspondence.

In [8] we have shown that careful selection of a small number of parts on a
single image can be used to construct a parts+geometry model from the whole
set, which can lead to good sparse correspondences. These can be used to ini-
tialise a dense registration, leading to accurate results. In this paper we describe
an algorithm which avoids the manual intervention, and automatically selects a
good set of parts for a sparse model, so that the whole process of correspondence
establishment is still fully automatic.

The work most similar to ours is that of Langs et al. [9,10]. They describe a
method of constructing sparse shape models from unlabelled images, by finding
multiple interest points and using minimum description length (MDL) principle
to determine optimal correspondences, finding the model which minimises the
description of the feature points. Another related approach was developed by
Karlsson and Åström [11], who built patch models to minimise an MDL function,
estimating the cost of explaining the whole of each image using the patches (by
including a cost for the regions not covered by patches).

Both of the above approaches represent shape with a Point Distribution Model
[1]. Such representations are useful for local optimisation, but cannot efficiently
deal with multiple candidates. By instead learning a parts+geometry model,
where the geometry is modelled with a sparse graph, we can take advantage
of dynamic programming (DP) algorithms which can efficiently find the global
optima where multiple candidates are present. Like Karlsson and Åström, our
cost function is based on explaining the whole of an image region, but in our
case this is done by constructing a model of the whole image using non-rigid
deformation based on the centres of the part models. In addition our goal is
somewhat different—we seek a sparse set of parts which can be used to initialise
a local optimisation based groupwise registration scheme.

Our main contributions are 1) automatic selection of a suitable subset of
feature parts which are likely to be well localised; 2) unsupervised learning
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of a parts+geometry model which can be used to obtain the optimal sparse
correspondences; 3) a comparison of two different methods of locating the parts.

2 Part Models

We first construct a set of candidate parts which represent structures that are
present in most of the images. Given a set of such parts we can automatically
construct a geometric model of their relative positions (see Sect. 3). The aim
then is to select a subset of parts which leads to the model that determines the
best set of dense correspondences between the training images.

We describe the position x = (x, y), scale s and orientation θ of each part
with a pose parameter p = {x, s, θ}. We have experimented with two methods
of representing and localising parts—patch based and SIFT based:

Patch Models: Each part is represented as a statistical model of the inten-
sities over an oriented square region centred at x. Let g(I,p) be the intensities
sampled from the region defined on image I with the pose parameter p, nor-
malised to have a mean of zero and unit variance. The quality of fit to such a
model is evaluated as fi(g(I,p)) = β

∑n
j=1 |gj − ḡij |/σij , where ḡi is the vector

of mean intensities for the region and σij is an estimate of the mean absolute
difference from the mean across a training set. β is a normalisation factor chosen
so that the standard deviation of the best fits across the training set is unity1.

Locating candidates for each part involves a multi-resolution search at a range
of scales and orientations, in which local optima are located at a coarse scale and
refined at finer scales. This approach allows us to quickly search large regions,
usually resulting in a few tens of hypotheses.

In order to obtain a set of part models for an unlabelled image set, we arbi-
trarily choose one image as the reference image2. Then we use it to generate a
group of patches for a range of sizes, arranged in an overlapping grid pattern
(Fig. 2a). We use the region within a given patch to build a part model, and
search the rest of the images for the best match on each. We rank the best
matches by the quality of fit, and rebuild the model from the best 50% of these.
The resulting model is then used to search the images again to find its matches.

To select the models which are likely to have good localisation ability from
the set, we sort them by how well the optima is localised 3, and select the best.
The set of retained models is denoted as Rsub. Figure 2b shows some examples
of the selected part models.

SIFT Models: We can also represent each part using a SIFT signature4 [12].
To search for candidates for a part we compute interest points using 1) an edge
1 We find this form (which assumes the data has an exponential distribution) is more

robust than normalised correlation, which is essentially a sum of squares measure.
2 we find that the algorithm is insensitive to the choice of the reference image.
3 This is evaluated by qi = minδx ‖ḡ(I,pi + δx) − ḡ(I,pi)‖2, where ḡ(I,pi) =

1
N

�N
k=1 g(Ik,pi,k), pi,k is the pose of the best match of the part model i on image

Ik, δx is the displacement of the model (1 ≤ |δx| ≤ 4 in this paper). If q is small

then the model is not good at localising.
4 http://www.vlfeat.org

http://www.vlfeat.org


638 P. Zhang, S.A. Adeshina, and T.F. Cootes

(a) (b) (c) (d) (e)

Fig. 2. (a) An overlapping grid. (b) Typical patch models. (c) A parts+geometry

model. (d) Sparse points used for correspondence. (e) The resulting mean reference.

detector and 2) a variant of a local symmetry point detector [13], which returns
local minima of a smoothed edge strength image. We then rank the points using
their matches to the part signature and retain the best 50.

To generate a set of initial candidate part models, we locate interest points on
every image. We then select those on the reference image which pass a variant
of forward-backward matching [14]. A point is selected and added to Rsub if for
at least 50% of the rest of the images in the set, the best match in the other
image also matches back to the original point.

3 Parts+Geometry Models

Model Definition: Given a set of m parts from Rsub, we can automatically build
a parts+geometry model G (see below), which can be used to disambiguate the
multiple responses of a single part model. An example is given in Fig. 2c. G repre-
sents the object of interest using the parts together with a collection of pairwise
geometric relationships between each part, which are defined by a set of arcs ω.
For each part, we take its best K matches on each image as its match candidates.

Let fi(p) be the cost associated with part i having pose p. The relationship
between part i and part j can be represented in the cost function, fij(pi,pj).
This can be derived from the joint pdf of the parameters. In the following we take
advantage of the fact that the orientation and scale of the objects are roughly
equivalent in each image, and simply use a cost function based on the relative
position of the parts, fij(pi,pj) = ((xj−xi)−dij)TS−1

ij ((xj−xi)−dij), where dij

is the mean separation of the two parts, and Sij is an estimate of the covariance
matrix. If the objects are likely to undergo significant scaling or orientation
changes across the set, more sophisticated function can be used.

To find the best match of G on an image, we must select one match candidate
point pi for each part (from its K match candidates) so as to minimise the
following function

C =
m∑

i=1

fi(pi) + α
∑

(i,j)∈ω

fij(pi,pj). (1)
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The value of α affects the relative importance of part and geometry matches.
Given multiple possible candidates for each part, we can use graph algorithms
to locate the optimal solutions to (1). We use a method which is similar to that
used in [15], in which a network is created where each node can be thought of as
having at most two parents. The optimal solution for this can be obtained with
a variant of DP algorithm, in O(mK3) time. If K is modest, this is still fast.
Model Construction: Given a set of parts in the reference image, we can
construct a set of connecting arcs, ω, in such a way that each point other than
the first two is connected to two parents [8]. The geometric relationships for each
arc (i, j) ∈ ω are initialised with Gaussians (with standard deviation set to 25%
of the length of the arc in the reference image). We then refine the model by
applying it to the responses on each image, ranking the results by final fit value
(per image), and re-estimating the geometric distributions from the results on
the best 50% of the images—essentially a form of robust model building.
Model Evaluation: The match of G to each image defines a set of sparse
correspondences. To evaluate the performance of G we estimate how effectively
a model built from its matches can represent the original image set (a description
length). To calculate this we augment the points from each best match and with
a set of fixed border points on each image (Fig. 2d). We then align the sets of
points and compute the mean. We create a triangulation of the mean and use
it to warp each image into the reference frame. We compute the mean intensity
in the reference frame (Fig. 2e). Finally, we warp the reference image into the
frame of each target image, and compute the sum of absolute differences over
the region of interest U(G) =

∑N−1
k=1

∑
x∈R

∥∥Ik(x)− I0(W−1(x))
∥∥ , where Ik(x)

is the target image intensity at x, R is the region of interest in the target frame
and W (y) is the transformation from reference I0 to target Ik.
Model Selection: Each subset of parts from Rsub leads to a model, whose
quality can be measured as U . Selecting the best subset of parts is thus a com-
binatoric problem. We solve it using a population based optimisation algorithm,
which is similar to the Genetic Algorithm, to find the G with the minimal U .
We create an initial population by randomly sampling subsets from Rsub. For
each set we generate a G then evaluate it. We then rank the members of the
population (each a candidate set of parts) by U . We discard the worst 50%, and
generate new candidates from pairs of candidates randomly selected from the
best 50%. To generate a new subset we simply randomly sample from the union
of parts from the two candidate parent sets. Repeating the above process leads to
the best G, whose best matches define the optimal set of sparse correspondences.

4 Establishing Dense Correspondences

To obtain an accurate dense registration, we use the sparse correspondences to
initialise a non-rigid registration algorithm [4]. We use a coarse to fine algorithm
to improve efficiency and robustness. The approach is to compute a robust mean
(Fig. 3b) using the current estimate of the deformation field, then to refine the
correspondences to improve the match to this mean (Fig. 3c).
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5 Experiments

To demonstrate the approach, we applied it to two different datasets: 1) 94
radiographs of the hands of children (aged between 11-13), taken as part of
study into bone ageing (Fig. 1a). Each image has been marked with 37 points by
a human expert; 2) 106 radiographs of the lumbar spine (Fig. 1b). Each image
has 337 manual landmarks placed around the outline of the vertebrae. Both sets
of images have a resolution of 0.2mm per pixel and a height of about 1300 pixels.

By systematically initialising patch models in an overlapping grid on the ref-
erence image at a range of sizes, we automatically constructed over 1900 and 500
part models for the hand and spine sets respectively. We ranked by their local-
isability and selected the best 500 for the hands and the best 100 for the spines.
We used the population based optimisation to select the best parts+geometry
models from the two sets, for a range of different numbers of parts. An example
of the resulting parts+geometry models for the hand set is shown in Fig. 3a. The
resulting correspondences were used to estimate an initial dense correspondence,
from which a robust mean was estimated (Fig. 3b). Groupwise non-rigid regis-
tration was applied, giving the final result shown in Fig. 3c. Equivalent results
for the spine set are shown in Fig. 3d-f.

We also repeated the experiment on the hands using the SIFT based models.
To evaluate the accuracy of the result we compare with a manual annota-

tion. We used the resulting dense correspondences to warp each set of manual
landmarks into a reference frame, computing their mean. We then projected this
mean back to each individual image (Fig. 4) and calculated the mean absolute
difference between each mean point and the original manual annotation. For the
spines, we calculated the mean distance between the mean points and the curve
formed by the original manual landmarks.

Table 1 shows the statistics of the resulting point location errors for different
numbers of parts for the two datasets. There is not a clear relationship between
the number of parts and performance—once sufficient parts are available to
cover the main components of the object, adding further elements is unlikely to
improve performance and may lead to a decline. We found that the patch based

(a) (b) (c) (d) (e) (f)

Hand set Spine set

Fig. 3. Examples of the best parts+geometry models and registered means
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Table 1. Point location errors (mm) of the dense correspondence

a) Hand set b) Spine set (patch based only)

Parts
SIFT based Patch based

Mean Med. 90% Mean Med. 90%

5 4.2 3.6 6.5 3.3 2.4 7.8

10 2.0 1.2 3.7 2.2 1.7 4.0

15 1.7 1.1 2.9 1.1 1.0 1.6

20 1.4 1.1 2.3 1.3 0.9 2.5

25 1.1 0.9 1.9 1.1 0.9 1.7

30 1.6 1.3 2.9 1.0 0.8 1.4

Parts Mean Med. 90%

5 6.8 3.1 21.9

10 5.2 2.5 13.2

15 5.0 3.1 9.7

20 6.2 3.9 14.5

Fig. 4. Examples of projection of average points onto individual image

part models generally lead to better results than their SIFT based counterparts,
though locating them is more computationally expensive.

Computing the equivalent error for the hands after performing a standard
affine initialisation gives a median error of 12.0mm, which is little improved by
further dense registration due to local minima. The parts+geometry method
gives substantially better results, demonstrating the importance of good ini-
tialisation. Comparison with other published approaches is not easy. The most
similar approach in the literature [10] evaluates on a set of only 20 hand ra-
digraphs (0.34mm/pixel), obtaining a mean error of 2.0mm and a median of
1.7mm (though on a larger set of points)—our method appears to give signifi-
cantly better results.

6 Conclusions and Future Work

We have described an approach for automatically locating dense correspondences
across a set of images, by using the sparse matches of a parts+geometry model
to initialise groupwise non-rigid registration. It is able to achieve good results
on two challenging datasets. The technique potentially can be used for a wide
range of other datasets.

In the above we show results for particular choices of numbers of parts. Poten-
tially it will be possible to use the framework to estimate the optimal number of
parts (as is done by [11]). However, our objective is not to explain the whole im-
age with the parts+geometry model, just to obtain good enough correspondence
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for the dense registration. The most efficient method of selecting the appropri-
ate number is currently under investigation. Moreover, we have used a relatively
simple topology for the geometric model in order to allow efficient global opti-
misation. In future we will try using more highly connected graphs.
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Abstract. We propose a new, adaptive local measure based on gradient

orientation similarity for the purposes of multimodal image registration.

We embed this metric into a hierarchical registration framework, where

we show that registration robustness and accuracy can be improved by

adapting both the similarity metric and the pixel selection strategy to the

Gaussian blurring scale and to the modalities being registered. A compu-

tationally efficient estimation of gradient orientations is proposed based

on patch-wise rigidity. We have applied our method to both rigid and non-

rigidmultimodal registration taskswith differentmodalities.Our approach

outperforms mutual information (MI) and previously proposed local ap-

proximations of MI for multimodal (e.g. CT/MRI) brain image registra-

tion tasks. Furthermore, it shows significant improvements in terms of

mTRE over standard methods in the highly challenging clinical context

of registering pre-operative brain MRI to intra-operative US images.

Keywords: multimodal image registration, image-guided neurosurgery.

1 Introduction

Traditional multimodal image registration techniques rely on the assumption that
features exposed in one modality (e.g. blobs, borders) will be similarly observ-
able in a second modality, although possibly with a different intensity response. In
this paper, we consider contexts where this assumption is fundamentally violated,
as in image-guided neurosurgery, where the objective is to match pre-operative
Magnetic Resonance Images (MRI) of patient brains to intra-operative ultrasound
(US) images. Inherently, the two modalities convey very different information. US
images indicate changes in acoustical impedance in the direction of the sound wave
and therefore expose tissue boundaries and liquid-filled structures relatively well.
They do not, however, provide distinctive intensity maps relating to different tis-
sue types, as in MRI. This problem, immediately observable in Figure 1, poses
serious challenges to most intensity based techniques, including traditional and

T. Jiang et al. (Eds.): MICCAI 2010, Part II, LNCS 6362, pp. 643–651, 2010.
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Fig. 1. US brain image acquired during neurosurgery and corresponding pre-operative

MRI slice. Notice that the tumor appears as a noisy, diffuse bright blob in the US. In

the MRI, the tumor has a bright boundary and a dark center.

normalized mutual information (MI) [1,2,3]. Previous work on MRI/US registra-
tion with intensity-based similarity metrics has focused on pre-processing the im-
ages to improve their intensity correspondences [4,5] and/or building a mask of
the US image where an intensity-based similarity metric has a higher probability
of finding correspondence[6].

In this work, we propose a registration framework which embeds a new local-
ized similarity metric expressed as an orientation similarity measure based on
a local approximation to MI. Other local MI metrics have been devised [7,8],
however, our metric is adaptive, in that it can loosen or tighten its constraints
depending on the modalities being registered and the scale at which the images
are being registered. We also propose a computationally efficient method for
estimating gradient orientations. Experiments with real multimodal (e.g. Com-
puted Tomography (CT) and MRI) brain image registration tasks indicate that it
outperforms both standard MI and other established orientation similarity met-
rics. Furthermore, it shows significant improvements over standard Normalized
MI (NMI) in the highly challenging clinical context of registering pre-operative
brain MRI to intra-operative US.

2 Method

2.1 Local Mutual Information - Previous Work

In [7], the authors developed a local similarity metric based on the analytical
limit of MI as the window of observation approaches the voxel size. The expres-
sion for local MI (LMI) is obtained by modeling both images with a first-order
Taylor expansion and is a monotonically decreasing function of the angle, θ,
between the gradient orientations,

LMI(θ) = Cd + log2 | sin(θ)| (1)

where Cd is a constant that depends on the dimension of the image.
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It is not possible to build an energy function by simply summing Eqn. 1 over
a set of points in the image, since an extremum would appear whenever any
of the points has a minimal inner angle. To circumvent this issue, the authors
simplify the expression to,

LMI2(θ) =
1

2
cos2(θ) (2)

which has a smoother shape and whose energy function exhibits an extremum
only when there is a collective coherence in terms of orientation similarity.

In related work [8], the authors preserve the dynamics of the original expres-
sion and eliminate the singularity by including an ε factor,

LMI3(θ) = log2 (ε + | sin(θ)|) (3)

The two localized metrics have significantly different coherence-selectivity trade-
offs. A coherent metric, such as Eqn. 2, can be loosely defined as one that is
maximal when a majority of points show some degree of image correspondence.
In contrast, a selective metric, such as Eqn. 3, has stricter correspondence con-
straints and therefore exhibits an extremum as soon as a few points comply with
such constraints. A measure that favors coherence will tend to be smoother but
less accurate because it will effectively average over all sampled pixels.

2.2 Adaptive Local Mutual Information

Our work builds on previous work [7,8] in which MI is locally approximated by
a metric appropriately derived from the energy function. We propose an adap-
tive local orientation-based similar metric (ALMI) that addresses the coherence-
selectivity trade-off directly as follows:

ALMI(θ; K, θc) = 2− 1

1 + e−K(θ−θc)
− 1

1 + e−K(π−θ−θc)
(4)

The selectivity of this smooth sigmoid-based function is adaptable by varying the
curvature, K, and cutoff angle, θc. Figure 2 illustrates how the two previously
proposed measures compare to various configurations of our proposed expression.
An important advantage of ALMI is that it saturates smoothly to a maximum
as θ → {0, π}. This property allows the energy function to reach a stable state
as the optimizer approaches an extremum.

2.3 Adaptive Selectivity and Sampling

In addition to the metric proposed above, we propose an adaptive multiscale pixel
selection scheme and a strategy to parametrize the similarity metric. Rather than
adopting a standard low-pass image pyramid [9] in which the images are both
blurred and down-sampled at each level, we use a smoothing image pyramid in
which only the scale of Gaussian blurring is increased at each level. Figure 3
illustrates how the gradient orientations change with different blurring scales.
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0 π/4 π/2

LMI2

0 π/4 π/2

LMI3

0 π/4 π/2

ALMI(5,π/4)
(8,π/6)

(12,π/9)
(20,π/18)

d(LMI2) d(LMI3)

Fig. 2. The top row shows the two previous proposed localized measures and our

proposed measure as a function of θ. The bottom row shows their respective derivatives.

Fig. 3. Gradient Orientations (short blue lines) at different blurring scales, σ ∈ 0, 1, 2, 4

As the scale of diffusion is increased, the spatial support of a structure (i.e.
the extent of image area where the gradient orientations accurately indicate the
orientation of a structure of reference) tends to increase proportionately to the
ratio of the current scale to the previous scale.

Further performance gains can be attained by focusing computations on a
cleverly selected subset of voxels in the images. In this work, our conjecture is
that the gradient magnitude is a valid indicator of the reliability of an estimated
orientation and therefore we select high gradient voxels. The performance of our
method is improved by adapting this sampling mask, as well as the parameters
of the ALMI similarity metric in relation to the current Gaussian scale and
the quality of the modalities being registered. We express the adaptive masking
function M(x) as,

M(x) =

{
1 if |∇If (x)| > g(pσ)
0 otherwise.

(5)
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where pσ =
(

σ
σ1

)
pσ1 and g(p) is the threshold value that captures the top p

percentile of the fixed image gradient magnitude.1

2.4 Cost Saving Approximations

A metric based on gradient orientations incurs a computational cost related
to evaluating the gradient at each point of interest. We propose a simplifying
implementation in which the gradients are computed only once for both the
fixed and the moving image. Subsequent gradient orientations of the transformed
moving image are estimated from the initial orientations.

In order to permit non-rigid registrations, we make the simplifying assumption
that the transformation in the voxel neighborhood can be well approximated by a
locally rigid transformation. Hence, we can estimate the gradient orientation of a
point by multiplying the gradient orientation of the point prior to transformation
with an estimated rotation matrix as follows:

θ(x) = � (∇If (x),∇Im(T (x)))

≈ � (∇If (x), R · ∇Im(x′ = T (x)))

Such a scheme eliminates the effect of intensity-interpolation artifacts and min-
imizes the expense of using high quality gradient operators.

3 Experiments

In this section, we present the results of evaluating our method, implemented
within the Elastix toolbox [10], with two clinical datasets. Section 3.1 details the
results of CT/MR rigid registration cases from a public dataset, while Section 3.2
details the results of rigid and non-rigid registrations with real MR and US
images during image-guided neurosurgery.

3.1 Rigid Registration of CT/MR Brain Images

We evaluated the performance of our method with a series of CT/MR brain reg-
istration cases from the Retrospective Image Registration Evaluation (RIRE)2

project. Since both modalities preserve structure and a large extent of that struc-
ture has low curvature, we chose a selective profile (K = 20, θc = π/18) for all
resolutions.

Table 3.1 lists the results of our proposed method with an adaptive mask-
ing techniques (ALMIm) and without (ALMI). We also show the results of
registration with previous proposed local metrics based on orientation similar-
ity (LMI2,LMI3), a standard MI technique, a standard NMI technique and a

1 In our experiments, we found that setting pσ1 = 0.1 (i.e. sampling from the top 10%

at the finest resolution) consistently yielded very good results.
2 http://www.insight-journal.org/rire
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more sophisticated technique which maximizes NMI with Generalized Partial
Volume Interpolation (NMIGPV) [11].3 The mTRE is evaluated over the Vol-
umes of Interest (VOI) of all cases. ALMI-based registrations on average show
an improved accuracy over the previous proposed orientation similarity metrics.
In addition, the metrics with high selectivity generally perform better than the
coherent metric, LMI2. The standard MI and NMI methods exhibit relatively
large mTREs, possibly because they do not embed any scheme to reduce the
effect of interpolation-induced artifacts [12,3]

Table 1. Registration Results expressed in mTRE (in mm) of the VOIs of six patients

MI NMI NMIGPV LMI2 LMI3 ALMI ALMIm

Intensity Based Orientation Based

CT/T1 3.20 3.43 0.87 2.31 1.42 1.14 1.00

CT/T2 1.90 5.03 1.11 2.87 1.56 1.45 1.39

CT/PD 4.11 3.88 0.90 2.36 0.82 1.07 0.91

3.2 MRI/US for Image Guided Neurosurgery

We apply our framework to the clinical context of image-guided neurosurgery
where intra-operative US images are acquired during open craniotomies and
matched to pre-operative MRI in order to correct for brain shift (linear and
non-linear). Figure 1 shows extracted planes from a registered US and MR vol-
ume. Notice that apart from key structural components like the right lateral
ventricle and the fissure, the ultrasound does not have a global intensity or ori-
entation mapping with respect to the MR slice. However, we can argue that the
US high gradient pixels do exhibit a loose orientation correspondence with the
corresponding MR pixels.

Figure 4 illustrates our proposed similarity metric evaluated with four different
configurations formed by a choice of a selective ALMI or a non-selective ALMI,
and a choice of full sampling or sampling of the high gradient regions. The
energy function between the US and MR slice of Figure 1 is evaluated in the
parametric space of translational displacements in the x and y axis. We can
observe that choosing a non-selective ALMI greatly reduces the number of local
extrema. Furthermore, sampling only the high gradient regions of the US further
reduces the number of local extrema, increasing the probabilities of a successful
registration. Hence, we implement a strategy based on ALMI that relaxes the
orientation similarity constraint as finer resolutions are approached.

Multimodal image registration experiments are performed on four tumor cases
acquired at the Montreal Neurological Institute. The cases include: 1) high-grade
glioma in the left frontal lobe, 2) high-grade glioma in the left occipital lobe,

3 The results of the rigid CT/MR registration were obtained directly from the RIRE

website, where fellow researchers upload the results from their implementations using

the same real datasets. We chose to compare our method against those results so as

to avoid biases introduced by implementing other techniques.



Hierarchical Multimodal Image Registration 649

Fig. 4. The energy functions in the top row use a relaxed orientation matching con-

straint, evaluated with (K = 5, θc = π/4) while the energy functions on the bottom

row use a strict orientation matching constraint, evaluated with (K = 5, θc = π/4).
The energy functions in the left column evaluate all overlapping pixels, while the energy

functions on the right column evaluate only the top 10% high gradient US pixels.

3) high-grade glioma in the right parietal lobe, and 4) low-grade glioma in the
left temporal lobe. Each case includes a pre-operative gadolinium- enhanced T1-
weighted MRI and a 3D ultrasound image acquired on the dura before starting
the resection. Ultrasound images were acquired with an HDI 5000 (ATL/Philips,
USA) using a P7-4 MHz phased array transducer at a depth setting of 6.5 or 8
cm. Each acquisition consisted in 200-600 tracked images that were reconstructed
into a 3D volume at a resolution of 0.3 x 0.3 x 0.3 mm. To validate registration,
an expert (neurosurgeon) chose 7 to 11 corresponding anatomical points in both
modalities. With every estimated transformation, we transform the locations of
the anatomical points in the modality of the fixed image (US), evaluate the
distance (i.e. error) from the corresponding anatomical points in the moving
image (MR), and compute their mean.

Table 2 shows the results of the four cases after a rigid registration and after
a subsequent non-rigid registration characterized by a B-Spline transformation.
We compared our strategy against a standard multiresolution registration that
maximizes NMI, and against a state-of-the-art method that pre-processes the
US and MR volumes and then maximizes NMI [6]. Both NMI based registration
techniques have relatively high registration errors in this domain. Only in cases
3 and 4, where there was only a small displacement, did the rigid registration
show improvement. Non-rigid registrations led to consistent divergence from the
ground truth. Conversely, our proposed approach manages to reduce the mTRE
in all cases, three of them with an average accuracy below 2 mm. Furthermore,
applying a non-rigid transformation further improved the accuracy in the first
two cases, and slightly degraded the second two cases.
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Table 2. MRI/US Registration Results expressed in mTRE (in mm) of expert selected

anatomical points of interest

Case Initial NMI Pre-processing + NMI ALMI

Rigid Nonrigid Rigid Nonrigid Rigid Nonrigid

1 10.50 14.75 17.12 16.03 13.81 1.87 1.40

2 10.86 17.52 20.80 13.94 13.94 2.96 2.53

3 2.62 1.98 5.70 2.31 4.28 1.63 1.86

4 3.24 2.91 7.44 3.66 8.07 1.93 2.06

4 Discussion

We have presented a new approach for multimodal image registration based on
an adaptive localized similarity metric and an adaptive image masking scheme,
We have provided basic guidelines for the choice of ALMI parameters in relation
to the quality of the modalities being registered and the Gaussian blurring scale.
Nevertheless, in an extended version of this work, we will seek to provide a
more detailed analysis of the influence of different parameter selections. We
also introduced a computationally efficient implementation that evaluates the
image gradients only at the start of each resolutions optimization. We have
shown improvements in accuracy and robustness across various modalities. We
have also demonstrated that the approach is general enough to tackle a difficult
problem such as MRI/US registration.
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Abstract. Non-linear image registration is a standard approach to track

soft tissues in medical images. By estimating spatial transformations

between images, visible structures can be followed over time. For clinical

applications the model of transformation must be consistent with the prop-

erties of the biological tissue, such as incompressibility. LogDemons is a

fast non-linear registration algorithm that provides diffusion-like diffeo-

morphic transformations parameterised by stationary velocity fields. Yet,

its use for tissue tracking has been limited because of the ad-hoc Gaussian

regularisation that prevents implementing other transformation models.

In this paper, we propose a mathematical formulation of demons regu-

larisation that fits into LogDemons framework. This formulation enables

to ensure volume-preserving deformations by minimising the energy func-

tional directly under the linear divergence-free constraint, yielding little

computational overhead. Tests on synthetic incompressible fields showed

that our approach outperforms the original logDemons in terms of incom-

pressible deformation recovery.The algorithm showed promising results on

one patient for the automatic recovery of myocardium strain from cardiac

anatomical and 3D tagged MRI.

1 Introduction

Tissue tracking in sequences of medical images is an important task in many
applications, either for therapy guidance or diagnosis. However there is no easy
way to achieve it, even interactively. A standard approach is now to use non-
linear image registration to estimate the spatial transformation between different
images, for instance brain shift [7]. However, for such clinical applications one-
to-one mapping must often be ensured and the model of transformations that is
used must be consistent with the properties of the tissue to track. In particular,
constraining the registration to be volume-preserving showed great improvement
when tracking incompressible tissues such as the heart [3,9].

Mathematical frameworks based on diffeomorphic deformations [2,4] have
been developed to get one-to-one mappings between the images to register.
Among them, logDemons [14] is an efficient demons-based registration algorithm
that provides diffeomorphic transformations parameterised by stationary veloc-
ity fields. However, although mathematical justifications of demons optimisation
have been provided [14], theoretical foundations of the Gaussian regularisation
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still has to be consolidated [11], which makes the algorithm difficult to adapt to
other deformation models.

Several approaches for incompressible image registration have been proposed.
A first method is to constrain the Jacobian determinant of the transformations to
equal 1. However, this constraint is computationally demanding due to its non-
linearity [12]. Linear approximations have been proposed [3] but volume drifts
may appear at large deformations. Velocity fields can be made incompressible by
constraining them to be divergence-free. Thus, incompressible fluid registration
is achieved by projecting the update velocity onto the space of divergence-free
vector fields [13]. Nevertheless, the fluid model might not be appropriate for
tracking biological soft tissues like myocardium. In [9], we proposed an incom-
pressible demons algorithm where the update velocity field was made divergence-
free using Helmholtz decomposition. However, the approach was suboptimal as
the constraint did not consider demons Gauss-Newton minimisation space. Fur-
thermore, volume drifts were controlled using the linear approximation of the
condition on deformations, which does not hold on large deformations.

This paper presents an efficient and consistent framework for demons-based
incompressible registration. We first propose a mathematical justification of the
Gaussian regularisation, which enables to integrate the incompressibility con-
straint seamlessly by working on the space of divergence-free velocity fields. The
main advantages of this are: i) the constraint is linear with little computational
overhead, ii) the parameter of the deformations are constrained: no volume drifts
appear, iii) the transformation minimises a constrained energy functional: the
optimal incompressibility field according to the logDemons minimisation scheme
is found. The algorithm was validated against synthetic data and applied on clin-
ical cardiac MRI to estimate 3D myocardium motion.

2 Methods

2.1 Background: Log-Domain Diffeomorphic Demons

LogDemons algorithm estimates a dense non-linear transformation φ that best
aligns a template image T to a reference image R [14]. φ belongs to the space
generated by the one-parameter subgroups of diffeomorphisms G. They are pa-
rameterised by stationary velocity fields v through the exponential map φ =
exp(v) [1]. The images R and T are registered by minimising in the space of
velocities, called log-domain, the energy functional: E(v,vc) = 1/σ2

i ‖R − T ◦
exp(vc)‖2L2

+ 1/σ2
x ‖ log(exp(−v) ◦ exp(vc))‖2L2

+ 1/σ2
d ‖∇v‖2, where σ2

i re-
lates to the noise in the images and σ2

d controls the regularisation strength. This
equation is function of two variables: The velocity field v parameterises the trans-
formation φ to recover whereas vc parameterises an intermediate transformation
φc = exp(vc) that models the correspondences between the voxels of the two im-
ages. During the optimisation step, E(v,vc) is minimised with respect to vc. This
amounts to finding the optimal matching between R and T without considering
the regularisation. Under the diffeomorphic update rule φc ← φ◦exp(δv), the op-
timal update velocity writes δv(x) = −(R(x)−T ◦ φ(x))/(‖J(x)‖2+σ2

i /σ2
x)J(x).
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J(x) is the symmetric gradient J(x) = (∇R(x)+∇(T ◦φ)(x))/2. The correspon-
dence velocity vc is then updated using the first order approximation of Baker-
Campbell-Hausdorff (BCH) formula vc = Z(v, δv) = v + δv + 1/2[v, δv] +
1/12[v, [v, δv]] + O(‖δv‖2), where the Lie bracket [·, ·] is defined by [v, δv] =
(∇v)δv − (∇δv)v. This approach has experimentally shown promising results
in terms of image registration and statistics on diffeomorphisms [4,14]. Finally,
the regularisation step estimates the optimal regularised transformation φ by
minimising E(v,vc) with respect to v, which is approximated by smoothing the
correspondence velocity vc with a Gaussian kernel Gσ. However, how Gσ relates
to E(v,vc) remains to be consolidated [11].

2.2 Revisiting Demons Gaussian Regularisation

A consistent mathematical formulation of demons regularisation is required to
integrate incompressibility in logDemons. In [10], the authors demonstrate that
Gaussian filtering solves the Tikhonov estimation problem with equal weight-
ing of the spatial derivatives in the Taylor series sense. We thus replace the
logDemons regulariser ‖∇v‖2 by the Tikhonov regulariser to get:

Ereg(v) =
1

σ2
x

‖ log(exp(−v) ◦ exp(vc))‖2L2
+

∫
Ω

+∞∑
k=1

( ∑
i1+...+ik=k

‖∂i1..ik
v‖2

σ2
xσ2k

d k!

)

In this equation, Ω is the image domain and ∂ik..il
denotes the composition of

spatial derivatives ∂ik
..∂il

. The parameter σ2
x has been introduced into the reg-

ulariser to simplify calculations. More importantly, the regularisation weight σ2
d

is now function of the derivative orders to preserve the shape of the impulse
response related to the regulariser [10]. The previous equation is minimised by
linearising its first term using the zeroth order approximation of BCH formula,
log(φ−1 ◦ φc) = vc−v. The resulting equation, which is exactly a Tikhonov esti-
mation problem, is minimised in the Fourier domain. The optimal velocity field
v verifies

∑∞
k=0(w

T w)k/(σ2k
d k!)v̂(w) = exp(wT w/σ2

d) v̂(w) = v̂c(w), which is
exactly demons Gaussian smoothing Gσ, with σ2 = 2/σ2

d. The width of the
Gaussian kernel corresponds to the strength of the regularisation.

This formulation is built up on two key elements. First, the correspondence
field φc decouples the regularisation from the optimisation, making the minimi-
sation of the registration energy independent of the optimisation. Second, the
coupling term ‖ log(φ−1 ◦ φc)‖2 is approximated as a least-square problem to
get the Gaussian smoothing. These two elements must be ensured in any demons
algorithm to justify the Gaussian regularisation.

2.3 Incompressible LogDemons

The proposed regulariser enables to integrate the incompressibility constraint
into the algorithm. A transformation φ is locally incompressible if its Jacobian
determinant det(∇φ) = 1. In fluid dynamics, one uses the infinitesimal ver-
sion: a fluid is said incompressible if the divergence of its velocity v is null. For
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diffeomorphic transformations one can show that the converse is true: integrat-
ing divergence-free velocities over time yields incompressible deformations [6].
Making LogDemons incompressible thus consists in constraining the velocity
fields v to be divergence-free. Demons optimisation step is not modified, as it
optimises vc only, but demons regularisation energy is now optimised under the
divergence-free constraint, which amounts to minimising the Lagrange function:

P(v, p) =
1

σ2
x

‖vc − v‖2L2
+

+∞∑
k=1

( ∑
i1+...+ik=k

‖∂i1..ik
v‖2

σ2
xσ2k

d k!

)
− 2

σ2
x

∫
Ω

p ∇ · v (1)

In this equation, the Lagrange multiplier p is a scalar function of the Sobolev
space H1

0 (Ω) that vanishes at infinity. Optima of (1) are found by solving
∂vP(v, p) = 0:

v +

∞∑
k=1

(−1)k

σ2k
d k!

Δkv = vc −∇p (2)

with p = 0 at the domain boundaries ∂Ω. The divergence of (2) under the optimal
condition ∇ · v = 0 yields Δp = ∇ · vc with 0-Dirichlet boundary conditions,
which can be solved independently of v to get p. g = vc − ∇p is thus the L2

projection of vc onto the space of divergence-free vector fields. From Sec. 2.2,
we deduce the optimal incompressible velocity field: v ← Gσ � g.

Particular care must be taken when incompressibility is required within a
subdomain Γ ⊂ Ω only, for tracking localised incompressible organs like the
heart. This is achieved by defining p ∈ H1

0 (Γ ), p = 0 on Ω/Γ . Although Gaus-
sian smoothing theoretically preserves the divergence, in practice unconstrained
velocities close to Γ boundaries (∂Γ ) may leak inside the incompressible do-
main due to the Gaussian convolution, ultimately resulting in volume drifts.
Yet, vector derivatives and well-designed Gaussian filters, like Deriche recur-
sive filters, commute. We therefore replace the theoretical “project-and-smooth”
strategy by a “smooth-and-project” approach that preserves divergence. To limit
numerical instabilities, a smooth domain transition is implemented in a nar-
row band around Γ by diffusing the pressure field p using heat-transfer equa-
tion [6]. Algorithm 1 summarises the main steps of our method, henceforth
termed iLogDemons, which was implemented using ITK [5] and PETSc.

3 Experiments and Results

3.1 Experiments on Synthetic Datasets

iLogDemons were tested on synthetic datasets with known ground truth. Eight
3D volume-preserving whirl transformations φα were created with whirl an-
gles α = 10◦ to 80◦ [13]. Within the whirl domain, the L2-norm varied from
0.52 mm to 4.78 mm while the Jacobian determinant stayed close to 1 (worse
value |∇φα=80◦ | = 1 ± 0.04 (mean ± standard deviation SD)). A 3D isotropic
Steady-State Free Precession (SSFP) MRI of the heart, cropped to focus on the
heart, was warped with the φα’s and altered with slight Gaussian noise (Fig. 1).
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Algorithm 1. iLogDemons: Incompressible LogDemons Registration

Require: Initial stationary velocity field v0. Usually v0 = 0 (i.e. φ0 = Id).

1: loop {over n until convergence}
2: Compute update velocity δvn, given vn−1.

3: Fluid-like regularisation: δvn ← Gσf 
 δvn.

4: Update the correspondence velocity: vn ← Z(vn−1, δvn).

5: Diffusion-like regularisation: vn ← Gσ 
 vn.

6: Solve: Δp = ∇ · vn, p = 0 on the incompressible domain boundaries.

7: Project the velocity field: vn ← vn −∇p.

8: return v, φ = exp(v) and φ−1 = exp(−v).

The 8 warped images T were registered to the test image R using LogDemons
and iLogDemons (σx = 1 mm, σ2 = 1 mm and σ2

f = 1 mm). Relative mean
square errors in grey level intensities (RMSE = ‖R − T ◦ φ‖L2/‖R − T ‖L2),
Jacobian determinant and distance to the true field φα (DTF = ‖φ − φα‖L2)
are reported in Fig. 1. Deformation fields estimated by iLogDemons were almost
incompressible. Jacobian determinants were always equal to 1 ± 0.02 indepen-
dently of the strength of the deformation to recover. Image matching accuracy
was not affected by the incompressibility constraint (0.6% decrease). But most
importantly, iLogDemons significantly improved the accuracy of the deforma-
tions. Mean and SD of DTF were systematically lower (average improvements of
29% and 36% respectively). The larger the deformation, the more significant the
improvement. This points out the importance of the choice of the deformation
model. Regions with homogeneous grey levels provided little information to ac-
curately estimate the underlying deformation (Fig. 1, yellow arrow). The incom-
pressibility constraint coped with this limitation by ensuring that the estimated
deformation was of the same type as the true field. Similar conclusions were
drawn on experiments with other parameters (σx = 2, σ2 = 2, σ2

f = {0.5, 2}).

3.2 Application to Cardiac Deformation Recovery

iLogDemons were then used to estimate the 3D left-ventricular myocardium
strain from standard anatomical cine MRI of the heart. Such images have good
in-plane and temporal resolutions but large slice thickness, which hampers the
accurate estimation of cardiac through-plane motion (Fig. 2). As the volume of
the heart is almost constant during the cardiac cycle, incompressible registration
is believed to improve the estimation of the cardiac deformation.

Anatomical short axis cine SSFP MRI (cMRI) of a patient with heart failure
were acquired with multiple breath-holds (Achieva, Philips Medical System, 30
frames, 1.5 mm2 isotropic in-plane resolution, 10mm slice thickness). 3D tagged
MRI (tMRI) were also acquired during the same exam (CSPAMM, 23 frames,
0.9mm isotropic resolution, tag size≈ 3mm). No manual tracking of the tag grids
was available since this task is extremely difficult due to the 3D motion. All the
images fully covered both ventricles and no slice misalignments were detected.
The cMRI were linearly resampled to get isotropic voxel sizes. The tMRI were
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Fig. 1. Top row : Results on images warped by 3D synthetic volume-preserving whirls

with increasing whirl angle. Bottom row : Streamlines of true and estimated whirl de-

formations (whirl angle α = 60◦). iLogDemons provided incompressible deformations

and outperformed LogDemons in terms of deformation field accuracy (yellow arrow).

spatially and temporally aligned to the cMRI using DICOM information. Be-
cause the transformations provided by demons algorithm are resampling fields,
myocardium deformation was estimated by recursively registering all the frames
of the cardiac sequence to the end-diastole (ED) time frame, as in [9]. Registra-
tion parameters were σx = 1 mm, σ2 = 2 mm, σ2

f = 0.5 mm (the smoothing was
increased to accommodate the lower image quality). A 2-level multi-resolution
scheme was used and registration was stopped as soon as RMSE stopped de-
creasing. Incompressibility constraint was applied only within the myocardium
as volume of surrounding structures like blood pools vary.

First, we estimated the myocardium motion by tracking the heart in the 3D
tMRI using iLogDemons. For visual assessment, the deformations were applied
to virtual planes manually positioned at ED (Fig. 2, bottom panel). Realistic
deformations consistent with the tag grids were obtained, which was further con-
firmed by the temporal variation of the radial, circumferiential and longitudinal
myocardium strains (Fig. 2, green curve). These results were similar to those ob-
tained with logDemons, as the tag grids provided enough texture information in
the myocardium to guide the registration. Hence, as no ground truth was avail-
able, we considered the iLogDemons estimation as reference. We then estimated
the 3D motion of the heart from the cMRI and compared the results with the
reference tMRI motion (Fig. 2, blue and red curves). Visually, the warped virtual
planes showed that incompressibility constraint did help to recover the longitudi-
nal motion despite the large slice thickness of the cMRI. Estimated longitudinal
and circumferential strains confirmed this finding. iLogDemons was closer to the
reference than the logDemons (59% of improvement for radial strain, 84% for
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Radial Strain in % Circumferential Strain in % Longitudinal Strain in %

Cine MRI Short-Axis (In-Plane Motion) Long-Axis (Through-Plane Motion)

Fig. 2. Top panels: Myocardium strains computed from short-axis cine MRI and tMRI.

Mean and standard deviation computed over the entire left ventricle. Bottom pan-
els: Close-up of the tMRI at end-systole with warped tag planes overlaid. iLogDemons

better estimates longitudinal and circumferential motion and strain.

circumferential strain and 42% for longitudinal strain). Radial strain amplitude
was more reasonable and the variations of the circumferential and longitudinal
strains presented realistic patterns [15], where logDemons estimated an abnormal
lengthening at the beginning of the cardiac contraction.

4 Discussion and Future Works

We have adapted logDemons algorithm to provide incompressible deformations.
This has been possible by showing that demons Gaussian smoothing minimises
an infinite order Tikhonov regulariser. This framework opens the way to new
regularisers, such as elastic regularisation. As a result, incompressibility could
be ensured by constraining the velocities to be divergence-free. The proposed in-
compressibility constraint does not introduce any new parameter. Those listed in
this paper are present in any recent demons algorithm [14]. One could constrain
the correspondence velocity to find the optimal incompressible update defor-
mation. Yet, non-reported experiments showed that this does not significantly
improve the results compared to iLogDemons: The updates are usually small
and thus near-incompressible. The next step is to modify the demons energy
to automatically handle incompressibility in subdomains of the image. From a
clinical point of view, we are currently validating this method for the automatic
estimation of 3D myocardium strain from standard cardiac images.
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2. Beg, M., Miller, M., Trouvé, A., Younes, L.: Computing Large Deformation Metric

Mappings via Geodesic Flows of Diffeomorphisms. IJCV 61(2), 139–157 (2005)

3. Bistoquet, A., Oshinski, J., Skrinjar, O.: Myocardial deformation recovery from

cine MRI using a nearly incompressible biventricular model. Medical Image Anal-

ysis 12(1), 69–85 (2008)

4. Bossa, M., Hernandez, M., Olmos, S.: Contributions to 3D diffeomorphic atlas

estimation: application to brain images. In: Ayache, N., Ourselin, S., Maeder, A.

(eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 667–674. Springer, Heidelberg

(2007)

5. Dru, F., Vercauteren, T.: An ITK implementation of the symmetric log-domain

diffeomorphic demons algorithm. Insight Journal (May 2009)

6. Evans, L.C.: Partial Differential Equations (June 1998)

7. Ferrant, M., Nabavi, A., Macq, B., Jolesz, F., Kikinis, R., Warfield, S.: Registration

of 3D intraoperative MR images of the brain using a finite element biomechanical

model. IEEE TMI 20(12), 1384–1397 (2001)

8. Hinkle, J., Fletcher, P., Wang, B., Salter, B., Joshi, S.: 4D map image reconstruc-

tion incorporating organ motion. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI

2007. LNCS, vol. 4584, p. 687. Springer, Heidelberg (2007)

9. Mansi, T., Peyrat, J.M., Sermesant, M., Delingette, H., Blanc, J., Boudjemline,

Y., Ayache, N.: Physically-constrained diffeomorphic demons for the estimation of

3D myocardium strain from cine-MRI. In: Ayache, N., Delingette, H., Sermesant,

M. (eds.) FIMH 2009. LNCS, vol. 5528, pp. 201–210. Springer, Heidelberg (2009)

10. Nielsen, M., Florack, L., Deriche, R.: Regularization, scale-space, and edge detec-

tion filters. In: JMIV, pp. 291–307. Springer, Heidelberg (1997)

11. Pennec, X., Cachier, P., Ayache, N.: Understanding the “demon’s algorithm”: 3D

non-rigid registration by gradient descent. In: Taylor, C., Colchester, A. (eds.)

MICCAI 1999. LNCS, vol. 1679, pp. 597–605. Springer, Heidelberg (1999)

12. Rohlfing, T., Maurer Jr., C., Bluemke, D., Jacobs, M.: Volume-preserving nonrigid

registration of MR breast images using free-form deformation with an incompress-

ibility constraint. IEEE TMI 22(6), 730–741 (2003)

13. Saddi, K.A., Chefd’hotel, C., Cheriet, F.: Large deformation registration of

contrast-enhanced images with volume-preserving constraint. In: SPIE Medical

Imaging, vol. 6512 (2007)

14. Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Symmetric log-domain

diffeomorphic registration: A demons-based approach. In: Metaxas, D., Axel, L.,
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Abstract. Intra-operative registration is one of the main challenges re-

lated to computer-assisted interventions. One common approach involves

matching intra-operatively acquired surfaces (e.g. from a laser range

scanner) to pre-operatively acquired planning data. In this paper, we pro-

pose a new method for correspondences search between surfaces, which

can be used for the computation of an initial alignment. It generates

graph representations and establishes correspondences by maximizing a

global similarity measure. The method does not rely on landmarks or

prominent surface characteristics and is independent on the initial pose

of the surfaces relative to each other. According to an evaluation on a set

of liver meshes, the method is able to correctly match small submeshes

even in this presence of noise.

1 Introduction

Computer-assisted interventions generally require registration of pre-operative
planning data with the patient’s anatomy. Usually this registration is performed
through the use of landmarks. Another approach to achieve this is to acquire
intra-operative surfaces (e.g. with a laser range scanner) and match them to
surfaces extracted from the planning data. Some commercial systems integrate
such surface acquisition technologies for marker-less registration (e.g. BrainLab
VectorVision�). However, a complete view of the organ of interest is usually not
available in intra-operative situations, making only the acquisition of a partial
surface possible, which must be matched to a reference surface [1]. Furthermore,
many physical factors, such as lightning and reflexivity, may influence the ac-
quisition devices and generate noise. In general, the process of surface matching
comprises three steps: feature extraction, correspondence search and transforma-
tion computation [2]. Regardless of the choice of a transformation class (rigid,
affine, free-form deformation) and the method for computing it, the matching
result depends crucially on the correspondences established in the second step.

Despite the various surface matching methods that have been presented so
far (e.g. [3,4]), we found that most of them rely on the identification of points in

� T.R dos Santos is financed by the CAPES/DAAD (Brazil/Germany) scholarship
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prominent regions and disregard the spatial relation between descriptors, thus
neglecting contextual information that can be crucial for the correct and unam-
biguous match of small submeshes. In this paper, we present a graph matching-
based method for finding correspondences between region features which does
not rely on prominent characteristics or on an initial alignment of the meshes.
This method is based on the determination of a maximal global similarity, in-
stead of searching for common subgraphs, making it robust to noise.

2 Methods

Our method for correspondences search is performed according to the following
procedure (Fig. 1): First, the input meshes are segmented (sec. 2.1). Next, a
graph representation is generated from both meshes (sec. 2.2). A graph matching
method based on the maximization of a global similarity measure is used for
establishing correspondences (sec. 2.3). A method for the elimination of false
assignments is employed in the last stage of the graph matching procedure. The
established correspondences can then be used to rigidly align the two surfaces,
using e.g. the centroids of the assigned region pairs as corresponding points.

Fig. 1. The correspondence search pipeline. In order to match two surfaces, they are

smoothed, segmented and graph representations are created. Those graphs are than

matched in order to establish correspondences between the surfaces, by the maximiza-

tion of the global node assignment similarity.

2.1 Mesh Segmentation

In this step, the input meshes are subdivided into regions that share similar
descriptors. In theory, any method for mesh segmentation can be used here. In
this paper, we adopted two curvature-based measures that describe the local
shape of a particular mesh: the shape index and curvedness, which are both
position and orientation independent [5]. Given two adjacent vertices, v1 and v2,
the distances in shape index (!s) and curvedness (!c) between v1 and v2 are
computed according to the following equations:

!s(v1, v2) = |s(v1)− s(v2)| (1)
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!c(v1, v2) =

⎧⎪⎨⎪⎩
max(c(v1),c(v2))
min(c(v1),c(v2))

− 1 min(c(v1), c(v2)) > 0

0 c(v1) = 0 ∧ c(v2) = 0

∞ otherwise

(2)

Because of the fact that the curvedness scales inversely with size [5] and is thus
dependent on the actual size of the object, computing its distance as a quotient
leads to a scaling invariant measure. In the case where one of the vertices is
associated with a planar surface region (c(v) = 0), there is either no variation,
when both vertices are planar, or it is set to ∞ (maximal distance).

Starting at any vertex v, we use local distances of shape index and curved-
ness between it and its neighbors to segment the mesh. Vertices with descriptor
distances smaller than given threshold values (ts for shape index and tc for
curvedness) are assigned to the same region. Each region R is then represented
by a 2-tuple R̄ = (s̄R, c̄R), which is composed of the means of the shape indices
and the curvedness values of all points contained in it.

2.2 Graph Construction

Once a surface S has been partitioned into regions, an attributed graph GS =
(VS , ES) can be constructed, where VS is a set of nodes and ES is a set of arcs.
Every n ∈ VS represents a surface region R and is attributed with the respective
representative R̄. Every arc e ∈ ES represents a neighborhood relation between
two regions Ri and Rj on S. Each arc e is oriented from the region with lower
curvedness to the region with higher curvedness.

2.3 Graph Matching

Given two graphs GA = (VA, EA) and GB = (VB , EB), a similarity matrix
between their nodes is computed. This matrix is then used to compute an as-
signment between the nodes, such that the global similarity (the sum of the
similarity of all assigned node pairs) is maximal.

Let us define the matrix SV = [pnBnA ]|VB |×|VA|, which holds the similarity
scores between the nodes of GA and GB. SV is composed of two parts

SV ← ST + SR (3)

where, ST = [qnBnA ]|VB |×|VA| represents the topological similarity scores, and
SR = [rnBnA ]|VB |×|VA| represents the region similarity scores. Once, the similari-
ties have been computed, SV is used to determine an optimal global assignment.

Topological similarity scoring. The topological similarity scores are com-
puted locally for each pair of nodes in (VB×VA) through a neighborhood scoring
method [6]. According to this method, two nodes are considered similar if their
topological neighborhoods are similar. Starting with initial node scores, the sim-
ilarity between two particular nodes is computed as the sum of the similarity
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between their neighbors. This procedure is repeated until a convergence limit is
reached. In this way, scores between nodes propagate along to neighboring nodes
at each iteration step.

Let us assume two nodes nA ∈ VA and nB ∈ VB, and the functions s(e) that
returns the source node of a particular arc e, and t(e) that returns the target
node. The scores are computed iteratively as follows:

qk
nBnA

←
∑

s(eB)=nB ,s(eA)=nA
(qk−1

s(eB)s(eA) + qk−1
t(eB)t(eA))+∑

t(eB)=nB ,t(eA)=nA
(qk−1

s(eB)s(eA) + qk−1
t(eB)t(eA))

(4)

until |qk
nBnA

− qk−1
nBnA

| ≤ ε for every nA and nB, where ε denotes the convergence
limit.

Instead of setting q0
ij = 1, for every i and j, as proposed by Zager and Verghese

[6] in the case where no previous information about the nodes is available, we use
the region similarity scores to initialize it, with cut off thresholds of ∞. Zager
and Verghese [6] have proven equation 4 converges independent of the initial
values chosen.

Region similarity scoring. Topological similarity by itself would be insuffi-
cient for finding corresponding node pairs because many nodes are topologically
identical. To address this issue, we also compute the similarity between the
regions using their representatives R̄ (sec. 2.1). The similarity scores between
them are evaluated through a Gaussian kernel, which assigns higher scores to
smaller descriptor distances, while giving smaller scores to higher distances. As-
suming two region representatives R̄1 and R̄2, we denote their shape index and
curvedness distances as !̄s(R̄1, R̄2) and !̄c(R̄1, R̄2) respectively (sec. 2.1). The
Gaussian kernel is defined as follows:

g(!, σ, τ) =

{
−∞ d > τ

e−
�2

σ2 d ≤ τ
(5)

where ! is the distance, σ is the kernel width and τ is the threshold. Having
nA ∈ VA and nB ∈ VB , the region similarity matrix is computed as follow:

rnBnA ← g(!̄s(R̄A, R̄B), σs, τs) + g(!̄c(R̄A, R̄B), σc, τc) (6)

for every nA and nB. In the equation σs and τs denote the shape index kernel
width and threshold parameters, and σc and τc denote the curvedness ones.

Assignment computation. In this stage, an assignment between the nodes
of both graphs is computed, such that the global similarity is maximal. This
problem is known as assignment problem and there are several methods to solve
it [7]. Those methods take a cost matrix and create assignments between each
row element to a column element, such that the sum of the costs of the assigned
elements is maximized. We use the node similarity scores matrix SV as a cost
matrix and apply the popular Munkres’ algorithm [8].
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Elimination of false assignments. In order to reduce false matches among
the assigned nodes, we adopt the premise that, if a particular node nA ∈ VA was
assigned to a node nB ∈ VB , there must be some other nodes in the neighborhood
of nA that were assigned to nodes in the neighborhood of nB. If this premise is
not confirmed, then the assignment between these nodes is probably incorrect
and is removed.

Let Nh
n denote the topological neighborhood with radius h of a particular

node n, and C(NhA
nA

, NhB
nB

) be a function that returns the number of nodes in
the set NhA

nA
that are assigned to nodes in NhB

nB
. If nA was assigned to nB in

the assignment computation stage, this assignment is eliminated if the following
equation does not hold:

C(NhA
nA

, NhB
nB

) ≥ β (7)

where β denotes the minimal number of node assignments that must exist bet-
ween NhA

nA
and NhB

nB
in order to maintain the assignment between nA and nB.

3 Evaluation

We performed three evaluation studies on five liver meshes, to assess the robust-
ness of the proposed method with respect to the submesh size (sec. 3.1), the
influence of the shape descriptor (sec. 3.2), and the influence of noise (sec. 3.3).
In all studies, an initial alignment between the shapes was obtained through
a transformation that matched the centroids of the assigned regions in a least
squares sense.

3.1 Evaluation of Robustness with Respect to the Submesh Size

The following experiment was performed for each reference surface: For each
integer i in [1, 50], 500 random submeshes (samples) with an area making up
i% of the area of the reference mesh were generated with a region growing
method. Each of the samples was translated and rotated with a random rigid
transformation, and the proposed correspondence search algorithm was applied
to initially realign the submesh with the reference mesh. Subsequently, ICP was
performed to adjust the positioning.

To assess the accuracy of the alignment, the percentage of correctly classified
regions and the percentage of incorrectly classified regions was determined. Fur-
thermore, the quality of the final match (after ICP) was evaluated by calculating
all distances between the transformed submesh vertices and their corresponding
vertices in the reference mesh. The match was considered correct, if all distances
were smaller than 10−6 (note that all meshes were scaled to fit into the unit box).
The parameters were chosen empirically on a set of different meshes as follows:
ts = 0.3; σs = σt = 0.1; τs = τc = 0.5; hA = hB = 2; β = 8. The curvedness
threshold (tc) was set according to the submesh size to be matched: The smaller
the submesh size, the smaller the threshold. This way, a reduction of the size of the
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graphs and thus to a reduction of processing time could be achieved for relatively
big submeshes. The curvedness threshold was linearly increased from 0.1 to 2.

3.2 Curvature Classes vs. Continuous Curvature Measures

To evaluate the influence of the the shape descriptor on the presented correspon-
dence search method, we repeated the first experiment with an alternative mesh
segmentation method. As originally proposed by Besl et al. [9], the surfaces were
partitioned based on curvature classes, which are determined through the sign
of the Gaussian and mean curvatures.

3.3 Evaluation on Noisy Data

In the case of noisy data, the parameters of the segmentation algorithm must be
chosen carefully and in an application-specific manner. Two livers were used to
empirically optimize the mesh segmentation parameters for each submesh size
i ∈ {10%, 20%, 30%, 40%, 50%}. The smaller the submesh gets, the smaller the
tolerance in the mesh segmentation, yielding bigger graphs. Bigger graphs in-
crease the number of nodes that are common to both meshes and help identifying
correct correspondences.

The parameters were chosen empirically on a set of different meshes as follows:
σs = 0.05; σt = 0.15; ts =(0.15, 0.15, 0.12, 0.12, 0.1) and tc =(0.15, 0.13,
0.12, 0.1, 0.03) for submeshes of size (50%, 40%, 30%, 20%, 10%) respectively;
hA = hB = 2; β = 2. For each submesh size, a set of 50 random submeshes were
extracted, and a random vector with direction and magnitude drawn randomly
from the interval [0, 8] mm was added to each vertex to simulate noise in the data.
The submeshes were then smoothed through the method proposed in [10]. Unlike
in the previous experiments, the segmentation of the submesh was potentially
different from the segmentation of the corresponding area in the reference mesh
due to the noise in the data. Hence, there was generally no isomorphism in
the graphs, making an evaluation of the correctly assigned nodes impossible.
However, vertex correspondences were known. We assessed the quality of the
alignment by computing the percentage of submesh vertices that were assigned
to their corresponding ones in the reference mesh after the final iteration of ICP.

4 Results

The results of our evaluation are shown in Figures 2 and 3. When there was
partial isomorphisms between the graphs (Fig. 2a), i.e. there was no noise added
to the data, the percentage of correct and incorrect node assignments averaged
over all five livers ranged from 83.5%± 6.1% and 0.3%± 0.3% respectively (sub-
mesh size: 1%) to 97.9% ± 3.1% and 0.1% ± 0.1% respectively (submesh size:
50%). The correct transformation was found in almost all cases (94.9%± 11.9%
for submesh size: 1%, 100.0%± 0.0% for submesh size: 50%). Depending on the
submesh size, processing times for the correspondence search including mesh
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(a) Continuous measures (b) Curvature classes

Fig. 2. Results of the surface matching experiment described in sections 3.1 (a) and

3.2 (b). For each reference mesh, the mean percentage of correct matches and incorrect

matches after the initial alignment averaged over 500 samples is shown as a function

of the submesh size. Correct ICP represents the quality of the final match (after ICP)

as described in section 3.1. The values are averaged over the five reference surfaces.

Fig. 3. Results of the experiment described in section 3.3, where the proposed corre-

spondence search method was evaluated with noisy data. The mean percentage (aver-

aged over 50 samples) of submesh vertices that were assigned to their corresponding

vertices in the reference mesh, after the final iteration of the ICP, is shown as a function

of the size of the submesh. The values are averaged over the five reference surfaces.

segmentation and graph generation ranged from 1 ms to 1.64 s. All processing
times were measured using a non-threaded 2.4 GHz Intel machine.

The segmentation based on curvature classes yielded significantly worse re-
sults than the segmentation based on shape index and curvedness (Fig. 2b). In
the former case, we obtained a percentage of correct and incorrect node assign-
ments ranging from 1.0% ± 3.7% and 0.1% ± 0.2% respectively (submesh size:
1%) to 94.9% ± 1.9% and 0.3% ± 0.3% respectively (submesh size: 50%). For
small submeshes (≤ 10%) the ICP did not converge into the global optimum.
Processing times for correspondence search ranged from 1 to 10 ms.

For noisy data (Fig. 3), the mean percentage of submesh vertices that were
assigned to their corresponding vertices in the reference mesh, after the final
iteration of the ICP, ranged from 32.5%±19.3% (submesh size: 10%) to 82.9%±
6.1% (submesh size: 50%). Processing times ranged from 29 to 100 seconds.
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5 Discussion

Although surface matching has been subject to considerable research efforts
in the past decades, partial surface matching with small submeshes remains
challenging. This holds especially when no prominent mesh features are available
and in the presence of noise. According to our evaluation, the method presented
in this paper is highly accurate, yielding a perfect match in almost all cases
for submeshes without noise and that made up at least 5% of the size of the
reference meshes used in the study. In the presence of noise, good matches were
still obtained for submeshes larger than 30% of the mesh size.

We are aware of the fact that we used a relatively simple method for mesh
segmentation by combining a classical region growing approach with a surface
descriptor that is rather unstable in the presence of noise. However, the good
performance of our algorithm despite these conditions demonstrates the potential
of the graph-based registration approach. On the other hand, the results obtained
with curvature classes indicate that the performance depends considerably on
the descriptor and segmentation technique chosen.

Although our approach leaves room for future improvements, we conclude,
that (1) our correspondence search algorithm proved to be accurate and robust
even for very small submeshes given that these meshes represent exact instances
of some reference mesh part and (2) that the results on noisy data are promising
and suggest further development of the approach for intra-operative registration
purposes.
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Abstract. Bioluminescence imaging (BLI) offers the possibility to study

and image biology at molecular scale in small animals with applications

in oncology or gene expression studies. Here we present a novel model-

based approach to 3D animal tracking from monocular video which

allows the quantification of bioluminescence signal on freely moving an-

imals. The 3D animal pose and the illumination are dynamically esti-

mated through minimization of an objective function with constraints

on the bioluminescence signal position. Derived from an inverse problem

formulation, the objective function enables explicit use of temporal conti-

nuity and shading information, while handling important self-occlusions

and time-varying illumination. In this model-based framework, we in-

clude a constraint on the 3D position of bioluminescence signal to enforce

tracking of the biologically produced signal. The minimization is done

efficiently using a quasi-Newton method, with a rigorous derivation of

the objective function gradient. Promising experimental results demon-

strate the potentials of our approach for 3D accurate measurement with

freely moving animal.

1 Introduction

Non-invasive visible light imaging is now a widely accepted technology allowing
researchers to follow many biological processes in animals [1]. The detection of
the light emitted by a probe provides functional information and localization of
the processes to be studied. The main limitation of such a modality is the diffi-
culty to localize the signal in 3D especially in bioluminescence imaging techniques
(BLI). Indeed photons emitted by bioluminescent cells are strongly scattered in
the tissue of the subject and light propagation is diffusive by nature. Therefore
different devices and reconstruction methods have been considered to solve this
problem [2] but they all require surface acquisition. Furthermore, most of the
existing techniques assume that animals have been anesthetized or are immobile,
limiting the interest of this modality in functional experiments [3]. However new

� The authors thank Dr. S. Bonzom (Biospace Lab) for his technical assistance and

would like to acknowledge the contribution of Dr. R. Boisgard (CEA-LIME, Orsay,

France) for in vivo experiments.

T. Jiang et al. (Eds.): MICCAI 2010, Part II, LNCS 6362, pp. 668–675, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Model-Based Multi-view Fusion of Cinematic Flow and Optical Imaging 669

optical imaging devices are now able to image and quantify these processes in
freely moving animals in 2D case [4,5].

Prior work trying to tackle these problems includes different techniques of
computer vision and various hardware configurations. In Kuo et al. [6], mouse
surface topography is obtained using a structured light combined with a single
view detector. However this technique does not support freely moving animals
because the hardware configuration does not enable cinematic acquisition. The
use of temporal information involves either animal tracking or registration of
the surface for different poses. In Papademetris et al. [7] a framework that cap-
ture articulated movement of the subparts in serial x-ray CT mouse images is
proposed. This work has been enhanced to the whole body of the mouse with
the use of a skeleton atlas [8] but is restricted to x-ray modality which provides
intrinsically 3D information.

Pose estimation and tracking are well known problems in the computer vision
community. Discriminative methods aim to recover pose from a single frame
through classification or regression techniques [9]. However the high dimen-
sionality of the space spanned by all possible pose restricted these methods
to recognition of a limited set of predefined poses. Model-based methods are
good candidates for continuous tracking over consecutive frames with small or
predictable inter-frame displacements [10,11]. Another interesting aspect of
model-based methods is that multi-view data can be handled without solving
any correspondence problem between the images. Moreover the matching errors
with 2D features on all the cameras can simply be summed to define a single
error that should to be minimized.

The aim of this paper is to estimate the animal pose during a cinematic ac-
quisition with a freely moving animal while providing accurate bioluminescence
measurement. Our approach is a model-based one where the multi-channel flows
are considered as an observation of the scene. In this context an articulated
skeleton has been designed to deform the surface mesh towards producing differ-
ent poses. The estimation of the 3D pose is solved through the optimization of
on objective function that aims to generate the observed views from the model
while detecting a consistent optical imaging signal across time. We propose a ro-
bust derivation of the criteria with respect to scene parameters using a classical
gradient optimization.

2 Model Based Articulated Tracking

The proposed approach is inspired from [11] and is extended to the multi-view
and multi-channel context. The multi-channel data Ii = {Vi,j , Oi,j}, consists of
the information obtained by the video acquisition of the moving object Vi,j in
the different views j as well as the biological data Oi,j that are simultaneously
recorded on the same views. The goal of our approach is to evaluate the 3D
pose with the population of the images by taking advantage of both channels
and multi-views. In order to estimate the 3D pose that would correspond to the
different observations, the problem will be cast as an energy minimization one.
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2.1 Multi-views Pose Estimation

The mouse surface is deformed according to pose changes of an underlying articu-
lated skeleton using Skeleton Subspace Deformation (SSD) [12,13]. The skeleton
comprises 20 bones with 64 degrees of freedom (DOF). Each DOF corresponds
to an articulation angle whose range is bounded to avoid unrealistic poses of
the mouse. The mouse pose is fully determined by a vector Θ = [w, t,q] that
comprises 57 articulation parameters vector w, the 3D translation vector t and
a quaternion q that specifies the global position and orientation of the mouse
body with respect to the world’s coordinate frame. In order to adapt the size of
the mouse, three additional morphological parameters are introduced for each
bone. These scale factors are added to the Θ parameters that are optimized while
fitting the model to the observations in the first frame and are kept constant for
the subsequent frames.

The lighting is modeled as four point sources placed at an infinite distance
and an ambient light. It is parameterized using three directional components for
each light and with an additional ambient component, which produces a vector
L of 13 parameters. The complexity of the lighting conditions is enforced by
the fact that in our experiments light sources produce localized light spots due
to high directivity of the light at output of the optical fibers. The mouse skin
surface is assumed to be Lambertian. The mouse is white and we can assume
the albedo to be constant over its entire surface. Thus we do not require the use
of a texture mapped onto the surface due to the small variations of the albedo.

For a given pose Θ and an illuminant L, we define Vsyn,j(x;Θ,L) to be the
RGB intensities of the corresponding synthetic image comprising the mouse and
the background evaluated at the point location x from the jth camera. This is
formulated using a classical perspective projection, the hidden surface removal
and the Gouraud shading model. The tracking process attempts to recover for
each successive frame the pose parameters Θ and the illuminant L that produce
the three synthesized images that best match the three observed ones, denoted
by Vobs,j, with j = 1, . . . , 3 the index of the camera. In the following objective
function:

EV (Θ,L) =

3∑
j=1

∫
Ω

ρ
(
Vsyn,j(x;Θ,L) − Vobs,j(x)

)︸ ︷︷ ︸
Rj(x;Θ,L)

dx, (1)

the main term is defined by summing the residual errors Rj(x;Θ,L) between
the synthetic images and the observed images V for each of the three cameras.

2.2 Bioluminescence Position Constraints

In order to take advantage of the information provided by the BL images Oobs,i,j ,
we compute in the first image the 3D position of the bioluminescence by auto-
matic detection of the BL spot in each view. The 3D position XO

obs of the light
source can be estimated using a standard triangulation method. We do not adopt
complex bioluminescence tomography methods because the tumors position is
not expected to be far from the mouse surface. In case of tumors, we assume
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that this point is rigidly fixed to its nearest bone in the model. For each frame i,
we detect automatically the position of the bioluminescence spot PO

obs,i,j in each
view if possible. We aim at minimizing the sum of retroprojection error between
these points and XO

obs. We are now able to compute the expected position of
XO

obs given any new candidate mouse pose parameter vector Θ.

EO(Θ) =
3∑

j=1

‖Πj(X
O
obs(Θ)) − PO

obs,i,j‖2 (2)

where Πj corresponds to the operation of 3D to 2D projection using the jth BL
detector. EO sums over the three views the 2D distances between the projection
of the predicted bioluminescence source position XO

obs and the actual observation
extracted in the new Oi,j image. This new term enforces the pose estimation
of the mouse with respect to the BL signal during the tracking and enables to
exploit in minimization process the biological information provided by secondary
camera.

2.3 Tracking with Energy Minimization

During the tracking we determine, for each frame, the pose and the illumination
parameters by minimizing an objective function which combines the two previous
formulas. A factor β weights the two energies and is chosen empirically to be
the squared inverse of the maximum expected deviation between the observed
signal and the one fixed to the model. The minimization is done efficiently using
a quasi-Newton method that requires the gradient of the objective function EV .
The gradient with respect to the lighting parameters is obtained by using the
differentiation chain rule on the residual intensities. The gradient with respect to
the pose Θ is not straightforward to derive due to discontinuities in the residual
image along the occlusion boundaries when Θ varies. The adequate treatment
of these discontinuities when computing the gradient is done using the proposed
occlusion forces in [11].

3 Experimental Validation

Experiments were conducted using an innovative device capable of recording
simultaneously scene video and optical data at 43 fps. The scene video V is
acquired under near IR lighting and the BL signal O is recorded by an intensi-
fied CCD (Photon Imager, Biospace Lab). The two signals are simultaneously
recorded and spatially registered [4]. Towards acquiring simultaneously different
views of the animal and the BL signal emitted without large hardware modifica-
tions, we have considered two mirrors. Mirrors are defined by planes which are
placed on the device stage with a angle of 90 degrees somewhere in the V camera
field of view. The image of the mouse seen in each mirror can be interpreted as
the image seen from a virtual camera, whose position and orientation are ob-
tained by reflection with respect to the corresponding mirror plan (Fig. 1-C).
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The parameters of the cameras are determined using the calibration toolbox.
Mirror parameters are manually optimized with a known object to provide vir-
tual camera positions and orientations. Illumination is provided by four optical
fibers placed at the top of the the scene and at each extremity of the scene. The
mouse can move in an area of 5 cm by 18 cm.

The mouse model used for the pose estimation is composed of a skeleton
of 20 bones manually segmented from static micro-CT acquisitions (Skyscan
1178, Skyscan) and guided by a anatomical book [14](Fig. 1-A). The mouse
surface is modeled as a three dimensional, closed and orientable triangulated
surface of 1252 facets (Fig. 1-B). The mesh of the mouse was created with the
micro-CT surface and elements of computer graphic project on mouse animation.
The extremities of legs have not been modeled because it appeared through
experiment that tracking these parts of the mouse is difficult given the quality of
our observations while not being useful for our application (tumor cells embedded
on the top of the mouse).

Fig. 1. Model and observations. On the left the skinned mouse model. On the right,

fusion of the observed video and bioluminescence signal in the multi-view device.

This framework was applied to image a freely moving mouse (NMRI) bearing
a PC12 tumor injected ten days before experiments in the dorsal part of neck
(10000 cells in 0.5μL). In addition, we have drawn onto the surface of the mouse
landmarks to measure locally the 3D position of the mouse surface. To validate
our approach, we tested our method on 4 acquisitions which represent a total of
580 frames. Visual assessment and 3D cinematic analysis of the bioluminescence
signal are used to demonstrate the interest of the method for measurement on
freely moving animal.
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Fig. 2. Two sequences (A and B) processed with our tracking method. Each row cor-

responds to: the observed image, the final residual image, the synthetic final image and

the model with the final pose and the bioluminescence backprojected to the surface.
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3.1 Comparison with Triangulated Data

In order to evaluate our estimation of the pose, we manually annotated through-
out the first sequence 800 couples of points in two different views. For each of
these couples, we assigned a 3D position on the mesh with its first annotation.
In the other frames, the new position of this point on the mesh was estimated
with a triangulation method. Computing a 3D distance between the position of
the reference with the corresponding pose provides a way to estimate the error
produced by our method. In the first sequence, this error was about 5 mm with
our 800 visual correspondences.

3.2 Visual Assessment

In order to check the usability of our pose estimation, we studied the biological
signal throughout a sequence using visual assessment. Fig. 2 shows 6 frames
extracted from the videos provided as additional material (respectively sequence
1 and 3). The low residual implies the correspondence between synthetic data
and observations. Residual artifact are due to difficulty to render light spots
generated by optical fibers with our illumination model. The backprojection of
the BL signal on the surface is computed with all the views recorded by the
camera O with a temporal smoothing of 5 frames and a spatial smoothing of
3 mm. In the great majority of frames the signal of interest is registered to
the corresponding place of the emission surface. To our knowledge, this type of
measurement is compatible with optical imaging experiments.

3.3 3D Cinematic Analysis

To evaluate the possibility to perform studies on freely moving animals with this
new tool we computed for the first frame a region of interest (ROI) based on
the faces which corresponds to the tumors position. In each following frame we
compared the signal measured on these faces with the reference one to evaluate
the stability and robustness of the pose estimation regarding to the biological
data. Along our 4 sequences more than 75% of the signal was kept on the right
faces (Table 1).

Table 1. ROI tracking: the two first lines indicate the characteristics of the first ROI

while the last evaluates the quantity of the signal following the ROI throughout the

sequence

SEQ 1 SEQ 2 SEQ 3 SEQ 4

Number of faces: 61 41 42 49

Size of ROI (cm2): 1.83 1.27 1.60 1.65

Mean of ROI intensity similarity: 88% 81% 83% 75%
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4 Discussion

In this paper we have proposed a novel approach for multi-view fusion of cin-
ematic flow and optical images of mice. The method explores an analysis-by-
synthesis approach where a model involving articulations, surface properties and
appearance properties is optimized with respect to the different views. Such op-
timization is done jointly on the visual/optical image space through the certain
constancy hypothesis on the bioluminescence imaging. Promising results demon-
strate the ability of the method to deal with freely moving animals and enhance
the optical imaging signal towards improved preclinical exploitation. Future work
consists of introducing explicit modeling of the bioluminescence sources, and a
continuous manner on incorporating constancy on the optical imaging space.
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Abstract. In this paper, we introduce a novel approach to bridge the gap between
the landmark-based and the iconic-based voxel-wise registration methods. The
registration problem is formulated with the use of Markov Random Field theory
resulting in a discrete objective function consisting of thee parts. The first part of
the energy accounts for the iconic-based volumetric registration problem while
the second one for establishing geometrically meaningful correspondences by
optimizing over a set of automatically generated mutually salient candidate pairs
of points. The last part of the energy penalizes locally the difference between
the dense deformation field due to the iconic-based registration and the implied
displacements due to the obtained correspondences. Promising results in real MR
brain data demonstrate the potentials of our approach.

1 Introduction

Image registration is a fundamental problem in medical image analysis. Due to its im-
portance, great efforts have been made to tackle this problem resulting in numerous
approaches. The existing methods fit mainly into two categories.

In the first class of methods, geometric (e.g. [1,2,3]), landmarks are detected and
subsequently matched to establish correspondences between the images being regis-
tered. Such an approach exhibits strength and limitations. On one hand, if landmarks
are appropriate determined, solving the registration problem is straightforward and the
method is not sensitive to the initial conditions and can cope with important deforma-
tions. On the opposite side, the registration result is usually accurate in the vicinity of
the interest points and its accuracy deteriorates away from them while often the extrac-
tion of landmarks is also problematic.

The second class of methods, iconic (e.g.[4,5,6,7]), takes advantage of the intensity
information of all positions and tries to recover the deformation that optimizes a cri-
terion based on it. Methods of this class exhibit globally better accuracy at the cost of
greater computational effort. These approaches consider all points contributing equally
to the objective function, thus discarding the importance of the salient points of the im-
age. Furthermore, they are very sensitive to the initial conditions and often unable to
deal with large deformations. Last but not least, their performance deteriorates when
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considering multi-modal image fusion where defining an appropriate similarity met-
ric is far from being trivial, while at the same time the optimization of the objective
function becomes more challenging.

During the last years, efforts have been made to bridge the two main classes of ap-
proaches by taking advantage of both complementing types of information, resulting
in a hybrid approach (e.g.[8,9,10,11,12,13]). Among these methods, the way the two
types of information are used varies widely. Most methods decompose the registration
problem in two separate steps, each one exploiting information of one type. Typically,
landmark information is used either to provide a coarse registration that is subsequently
refined by using the intensity information [8] or more often, after having established
point correspondences, use them in the objective function to ensure that the optimal
deformation field will comply with them [10,11,12,13]. However, by considering geo-
metric and iconic information in a non-coupled way, the solution of each subproblem
(point correspondence, dense registration) cannot fully profit from the solution of the
other. We refer to [9], where an objective function is proposed that combines an iconic-
based dense field and geometric constraints and is optimized by alternating between
three steps: estimate the dense deformation field, the point correspondences and regu-
larize.

In this paper we couple the point correspondence and the dense registration problem
into an unified objective function where the two problems are solved simultaneously
in an one step optimization. We employ a Markov Random Field formulation towards
introducing individual costs for the family of parameters and their interactions. More-
over, due to the discrete nature of the proposed objective function any intensity-based
criterion can be used. To the best of our knowledge, only one other hybrid method can
claim that [10], but it cannot guarantee the convergence as a ping-pong effect is possi-
ble between iterations. Moreover the proposed method is able to constrain the recovered
dense deformation field to be diffeomorphic contrary to the rest of the hybrid methods.
Last but not least, the influence of the landmarks is done in a local way and in respect
to the deformation model used without the use of heuristics and any assumption on the
number or the nature of the landmarks.

2 Iconic-Landmark Registration

Let us consider two images I1 : Ω1 #→ R, I2 : Ω2 #→ R , a set of points of interest
P1 ∈ Ω1, and a set of potential candidates for the points p1 ∈ P1, P2 ∈ Ω2 such that
|P2| > |P1|. By | · | we denote the cardinality of the set. The aim of the algorithm is
to estimate the deformation field T : Ω1 #→ R3, such that an iconic criterion defined in
the whole image domain is satisfied, and to recover the correspondences between the
two different point sets such that the estimated solutions are consistent with each other.

A grid-based deformation model is going to be used, resulting in a decreased num-
ber of variables to be estimated. The dense deformation field is going to be given by
interpolating the displacements of the grid points. Let us consider a deformation grid
G : [1, Sx]× [1, Sy]× [1, Sz] then,

T (x) = x +D(x) where D(x) =
∑
p∈G

η(‖x− p‖)dp. (1)
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η(·) is a weighting function that measures the contribution of each control point to the
displacement fieldD(·). In the case of the cubic B-spline that are going to be used here,
the weights are given by the cubic B-spline basis functions depending on the distance of
the voxel from the control point. The specific deformation model allows diffeomorphic
deformations to be guaranteed through the use of hard constraints [5].

The goal will be reached by coupling the dense deformation field estimation and the
point correspondence problem in one with the use of the Markov Random Field (MRF)
theory. The typical first-order MRF energy is of the form:

EMRF =
∑
p∈G

Vp(lp) +
∑
p∈G

∑
q∈N (p)

Vpq(lp, lq) (2)

where the first term (unary potentials) encodes the information stemming from the ob-
served variables (intensity values) and typically acts as the data term of the energy. The
second term (pairwise potentials) encodes relations between pairs of latent variables
and typically acts as a regularizer. By lp the label attributed to variable p is denoted.

2.1 Point Correspondence Problem

For the point correspondence part, the goal is to estimate which point p2 ∈ P2 corre-
sponds to each of the points p1 ∈ P1. We are assuming that the true underlying anatom-
ical correspondence is included in the set of potential candidates P2. The two point sets
should capture the important geometric information of the two images in order to act as
the additional constraints that will enhance the performance of the registration.

Any method for establishing candidate correspondences can be used. Herein, multi-
scale and multi-orientation Gabor filters are used to locate points of interest in the
image domain. Gabor filters are able to provide distinctive description for voxels be-
longing to different anatomical regions by capturing local texture information [14,15].
Local texture information reflects the underlying geometric and anatomical character-
istics. Thus, points exhibiting a high response to Gabor filters are most likely placed in
salient anatomical regions whose matching can be used to guide the registration pro-
cess. In other words, the set P1 consists of points whose response to the Gabor filters
is significant and that are distributed in space. Then, the set P2 of potential correspon-
dences can be populated by taking for every p1 ∈ P1, the top K candidate points in an
appropriately defined sphere in terms of a similarity criterion that is based on the dif-
ference between D-dimensional Gabor attribute vectors A(·) weighted by the mutual

saliency. The role of the mutual saliency, ms(p1, p2) =
meann∈sin

(sim(A(p1),A(n)))

meann∈sout (sim(A(p2),A(n)))

[15] (sin and sout are appropriately defined regions around the points and are adaptive
to the scale from which Gabor attributes are extracted), is to narrow down the selec-
tion to candidate points that are mutually salient indicating matching reliability. The
similarity is given by

sim(p1, p2) =
1

1 + 1
D‖A(p1)−A(p2)‖2

. (3)

In a MRF framework, the point correspondence problem can be solved by minimiz-
ing an appropriately defined labeling energy. What we search is which label (or index
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of candidate point) to attribute to each p1 ∈ P1 to establish a correspondence. Thus,
the label set is defined as Lgm = {l1, · · · , lK}, where the label assignment lji corre-
sponding the j-th potential candidate point to the i-th point/node. The optimal labeling
l� = (l1, · · · , lN ) will minimize the discrete objective function. For that purpose, we
are going to construct a graph Ggm = (Vgm, Egm) where the set of the nodes Vgm co-
incides with the point set P1 and each edge in Egm encodes a geometric compatibility
constraint.

The discrete objective function is of the type of Eq.2. The unary potentials will quan-
tify the level of similarity between the landmark and its assigned candidate point.

Vp(lp) = exp

(
−ms(p, p′) · sim(p, p′)

2σ2

)
(4)

where p′ is the point in P2 that is corresponded to p through a label assignment lp and
σ is a scaling parameter.

The regularization term will impose a geometric consistency on the established cor-
respondences. What we would expect from the recovered pairs is that the distance be-
tween adjacent pairs should be preserved by their corresponded ones, thus avoiding
having landmarks flipping positions. The pairwise potential is defined as:

Vpq(lp, lq) = ‖(p− q)− (p′ − q′)‖ (5)

where in bold the physical position of the point is denoted. We consider that an affine
registration step has preceded, as a consequence no normalization is needed.

2.2 Iconic Registration

For the estimation of the dense deformation field we follow the approach proposed in
[6]. The reasons behind this choice lie in the fact that due to the discrete nature of the
formulation a wide range of similarity measures can be used. Moreover, the method is
computational efficient while producing precise results. For completeness reasons, the
iconic registration method is going to be presented briefly in this section.

Given the deformation model, we aim at optimizing the displacements of the grid
points. In the proposed discrete framework this is equivalent to assign a label to each
grid node such that the displacement associated to it decreases the energy. For the iconic
registration part, the label set Lic is quantized version of the deformation space where
each label l corresponds to a displacement dl. To impose the diffeomorphic prop-
erty, the maximum displacement, to which a label is corresponded, is 0.4 × δ where
δ is the grid spacing [5]. In order to solve the optimization problem, a regular graph
Gig = (Vic, Eic) is going to be constructed. Its nodes coincide with the nodes of the de-
formation grid G and edges exist between neighboring nodes assuming a 6-connectivity
scheme.

The unary potentials are defined as follows:

Vp(lp) =

∫
η̂(‖x− p‖)ρ(I1(x + dlp), I2(x))dx (6)
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The data term is based on an iconic similarity measure ρ(·) and η̂(·) is a function that
determines how much a voxel x influences a node p. It is defined as

η̂(‖x− p‖) =
η(‖x− p‖)∫

Ω η(‖y − p‖)dy or η̂(‖x− p‖) =

{
1, if η(‖x− p‖) > 0,

0, else.
(7)

for the case of voxel-wise and more sophisticated statistical criteria respectively. The
regularization term in the simplest case can be a vector difference between the displace-
ments that are encoded by the two different labels normalized by the difference of the
control points,

Vpq(lp, lq) =
‖dlp − dlq‖
‖p− q‖ (8)

2.3 Simultaneous Geometric - Iconic Registration

In order to tackle both problems at the same time, a new graph G = (V , E) should be
considered. The node system of the new graph is simply the union of the nodes of the
subproblemsV = Vic∪Vgm. The edge system of the graph will comprise of the edges of
each subproblem and appropriate edges that will connect the two graphs and will encode
the consistency between the solutions of the two subproblems E = Eic ∪ Egm ∪ Ecn.

The unary potentials and the pairwise potentials will be the same as the ones previ-
ously detailed except from the ones that correspond to the new edges and have yet to be
detailed. In order to impose consistency upon the solutions of the two subproblems, the
difference between the displacement field due to the grid-based deformation model and
the displacement implied by the recovered correspondence should be minimal at the
landmark position. Given a cubic B-spline FFD deformation model and considering,
without loss of generality, only one landmark, then

0 = ‖D(x∗)− (p′
∗ − p∗)‖ = ‖

M∑
i=1

βi(x∗)dpi − dp∗‖ =

‖
M∑
i=1

βi(x∗)dpi −
M∑
i=1

βi(x∗)dp∗‖ ≤
M∑
i=1

βi(x∗)‖dpi − dp∗‖ (9)

where the displacement of the voxel x∗ is dp∗ = p′
∗ − p∗ and the properties of the

cubic B-spline,
∑M

i βi(·) = 1, βi(·) ≥ 0, and the triangular inequality were used.
M = 4× 4× 4, the number of the grid nodes that control the displacement of a voxel.

The previous relation (Eq.9) can be modeled by adding edges between the nodes of
the irregular grid Vgm and those nodes of the regular grid Vic that control the displace-
ment of the position in which the landmark is placed. The pairwise potentials are given
by the following equation

Vpq(lp, lq) = w‖dlq − (p′ − p)‖. (10)

p, p′ and dlq are defined as previous. w is a weight based on the cubic B-spline basis
as a function of the distance of the landmark from the control point q. This formulation
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results in minimizing an upper bound of the energy while permitting us to model the
problem by pairwise relations between the latent variable and thus allowing for the use
of any standard MRF optimization technique.

3 Experimental Validation

3.1 MRF Optimization

In order to optimize the resulting MRF problem, the convergent Tree-Reweighted (TRW)
Message Passing algorithm was used [16]. The TRW algorithm aims to address the
MRF optimization problem by tackling the simpler dual of its Linear Programming
(LP) relaxation. Any solution of this problem is a lower bound to the energy of the orig-
inal problem. Thus, the TRW algorithm aims to maximize the bound and thus reach a
solution. TRW is known to have a state of the art performance among the various dis-
crete optimization methods and has proven its applicability in various tasks in the fields
of computer vision and medical imaging.

3.2 Experimental Results

To validate the proposed method, a data set of 11 T 1-weighted brain images of different
subjects was used. The resolution of the images is 256 × 256 × 181 with an isotropic
voxel spacing of 1mm. The volumes were manually annotated into 11 classes (back-
ground, cerebrospinal fluid, white matter, gray matter, fat, muscle, muscle/skin, skull,
around fat, dura matter and bone marrow). The Sum of Absolute Differences (SAD)
was used as iconic similarity criterion.

To visually assess the quality of the registration, a template image is chosen and all
the rest are registered to it. Then the mean image, its difference with the template as
well as the standard deviation image are calculated for the images before and after
the registration (Fig.1). The blur mean image and the great values for the standard
deviation before registration depict the difficulty of the registration task. On the bottom
row, the mean image has become sharper indicating that the images have been spatially
normalized. The values of the standard deviation have decreased especially in the area
of the ventricles. The results of the registration can be also seen when comparing the
two difference images and noting that the difference image (c2) is darker than (c1).

To further quantify the performance of the algorithm, we performed all possible 110
pair-wise registrations and the provided voxel-wise manual segmentations are used to
measure the accuracy of the proposed method. We select each one of the images as
target and register the rest to it. The obtained deformation fields are then used to warp
the segmentations. Finally, we compare the deformed segmentations with the manual
ones by calculating the DICE overlap measure, its sensitivity and specificity. The re-
sults are presented graphically in Fig.2 in the form of box plots. When comparing the
obtained results to the initial DICE coefficients, it becomes evident the impact of the
registration. Moreover, we compare the proposed method with the one that only uses
the iconic information to show the added value of the use of the landmark information.
The iconic registration is performed by discarding the landmark information in the pro-
posed framework. In a similar way, DICE, sensitivity and specificity are computed for
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Fig. 1. (a)Template image. Top row: the mean image, the difference between the template and the
mean image, the standard deviation image for the data-set before registration. Bottom row, the
respective images for the group after registration.
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Fig. 2. From left to right, DICE coefficients, sensitivity and specificity for gray matter and white
matter segmentations initially (Init) and after applying the iconic registration method (ICR) and
the simultaneous geometric-iconic registration method (SIGR) respectively. The first three results
are for the gray matter while the next ones for the white matter.

the iconic registration and are presented in Fig.2. From the comparison of the DICE
values, it can be concluded that the addition of the landmark information has amelio-
rated the registration result as the DICE values for the geometric - iconic registration
are greater than the values of the iconic one. Moreover, it can be concluded that the
addition of the landmark information has rendered the registration less sensitive to the
initial conditions. This can be justified by the difference between the worst case results
produced by both methods.

4 Discussion

In this paper we have proposed a novel approach to couple geometric (landmark) and
iconic (voxel-wise) registration. The proposed method is, to the best of our knowledge,
the first to propose an one-shot optimization on the joint parameter space, and there-
fore inherits ability to capture large deformations, independence with respect to the ini-
tial conditions, smooth and continuous diffeomorphic dense field, while being able to
account for various similarity metrics and arbitrary number and position of landmarks.
Promising results demonstrate the potentials of this elegant formulation.
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The bias introduced from the landmark extraction process is an important limitation
of the method. Such a limitation can be dealt with the use of the notion of missing cor-
respondences. This is something that we are willing to address in the near future. The
use of higher order model interactions between graph nodes is also interesting, since it
could make the framework rigid or similarity invariant. Last but not least, the encourag-
ing results that were obtained in the intra-modality case suggest that the application of
the proposed method in the problem of multi-modal image fusion could be of significant
interest.
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tisubject non-rigid registration of brain MRI using intensity and geometric features. In:
Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, p. 734. Springer,
Heidelberg (2001)

10. Azar, A., Xu, C., Pennec, X., Ayache, N.: An interactive hybrid non-rigid registration frame-
work for 3d medical images. In: IEEE ISBI (2006)

11. Biesdorf, A., Wörz, S., Kaiser, H.J., Stippich, C., Rohr, K.: Hybrid spline-based multimodal
registration using local measures for joint entropy and mutual information. In: Yang, G.-Z.,
Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5761, pp.
607–615. Springer, Heidelberg (2009)

12. Hellier, P., Barillot, C.: Coupling dense and landmark-based approaches for nonrigid regis-
tration. In: IEEE TMI (2003)

13. Papademetris, X., Jakowski, A.P., Schultz, R.T., Staib, L.H., Duncan, J.S.: Integrated inten-
sity and point-feature nonrigid registration. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.)
MICCAI 2004. LNCS, vol. 3216, pp. 763–770. Springer, Heidelberg (2004)

14. Zhan, Y., Shen, D.: Deformable segmentation of 3-d ultrasound prostate images using statis-
tical texture matching method. In: IEEE TMI (2006)

15. Ou, Y., Davatzikos, C.: Dramms: Deformable registration via attribute matching and mutual-
saliency weighting. In: Prince, J.L., Pham, D.L., Myers, K.J. (eds.) IPMI 2009. LNCS,
vol. 5636, pp. 50–62. Springer, Heidelberg (2009)

16. Kolmogorov, V.: Convergent tree-reweighted message passing for energy minimization.
IEEE PAMI 28 (2006)



T. Jiang et al. (Eds.): MICCAI 2010, Part II, LNCS 6362, pp. 684–691, 2010. 
© Springer-Verlag Berlin Heidelberg 2010 

Groupwise Registration by Hierarchical Anatomical 
Correspondence Detection 

Guorong Wu1, Qian Wang1,2, Hongjun Jia1, and Dinggang Shen1 

1 Department of Radiology and BRIC, University of North Carolina at Chapel Hill 
{grwu,jiahj,dgshen}@med.unc.edu 

2 Department of Computer Science, University of North Carolina at Chapel Hill 
qianwang@cs.unc.edu 

Abstract. We present a novel feature-based groupwise registration method to 
simultaneously warp the subjects towards the common space. Due to the com-
plexity of the groupwise registration, we resort to decoupling it into two easy-
to-solve tasks, i.e., alternatively establishing the robust correspondences across 
different subjects and interpolating the dense deformation fields based on the 
detected sparse correspondences. Specifically, several novel strategies are  
proposed in the correspondence detection step. First, attribute vector, instead of 
intensity only, is used as a morphological signature to guide the anatomical cor-
respondence detection among all subjects. Second, we detect correspondence 
only on the driving voxels with distinctive attribute vectors for avoiding the 
ambiguity in detecting correspondences for non-distinctive voxels. Third, soft 
correspondence assignment (allowing for adaptive detection of multiple corres-
pondences in each subject) is also presented to help establish reliable corres-
pondences across all subjects, which is particularly necessary in the beginning 
of groupwise registration. Based on the sparse correspondences detected on the 
driving voxels of each subject, thin-plate splines (TPS) are then used to propa-
gate the correspondences on the driving voxels to the entire brain image for  
estimating the dense transformation for each subject. By iteratively repeating 
correspondence detection and dense transformation estimation, all the subjects 
will be aligned onto a common space simultaneously. Our groupwise registra-
tion algorithm has been extensively evaluated by 18 elderly brains, 16 NIREP, 
and 40 LONI data. In all experiments, our algorithm achieves more robust and 
accurate registration results, compared to a groupwise registration method and a 
pairwise registration method, respectively.  

1   Introduction 

Registration of a population data has received more and more attention in recent years 
due to its importance in population analysis [1-4]. Since groupwise registration me-
thod is able to register all images without explicitly selecting the template, it can 
avoid bias in template selection and thus becomes attractive to the precise analysis of 
population data, compared to the pairwise registration methods. However, it is com-
plicated for groupwise registration of multiple images simultaneously. 

Although groupwise registration can be achieved by exhausting pairwise registra-
tions between all possible subject combinations in the population [4], this type of 
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method suffers from very heavy computation. Recently, more favorable approaches 
were proposed to align all subjects simultaneously by following the groupwise  
concept explicitly. Specifically, Joshi et al. [1] proposed to perform groupwise regis-
tration by iteratively (1) registering all subjects to the group mean image, and (2) 
constructing the group mean image as the Fréchet mean of all registered images. Also, 
Learned-Miller [3] proposed a congealing method to jointly warp the subjects towards 
a hidden common space by minimizing the sum of stack entropies in the population. 
Balci et al. [2] further extended the congealing method to non-rigid image registration 
by modeling the transformations with B-Splines. However, as the method itself is 
intensity-based, it is intrinsically insufficient to establish good anatomical correspon-
dences across images. Furthermore, although the groupwise registration can be solved 
through steepest descent optimization [2, 3], it is unfortunately sensitive to local  
minima. Also, since the cost function is estimated based on only ~1% randomly sam-
pled voxels (regardless of their morphological importance), the registration perfor-
mance could be seriously affected.  

To the best of our knowledge, the issue of anatomical correspondence in groupwise 
registration, which is very critical to measure the inter-subject difference, has not 
been well addressed in the literature. In this paper, we propose a novel feature-based 
groupwise registration method for achieving robust anatomical correspondence detec-
tion. Specifically, we formulate our groupwise registration by alternatively (1) esti-
mating the sparse correspondences across all subjects and (2) interpolating the dense 
transformation field based on the established sparse correspondences.  

In Step (1), we use attribute vector, instead of intensity only, as a morphological 
signature to help guide correspondence detection. Furthermore, the robustness of 
correspondence detection based on attribute vectors is achieved in two ways. First, 
we only detect correspondences for the most distinctive voxels, called as driving vox-
els, in the brain images, and then use their detected correspondences to guide the 
transformations of the nearby non-driving voxels. Second, multiple correspondences 
are allowed to alleviate the ambiguities particularly in the beginning of registration, 
and these one-to-many correspondences are gradually restricted to one-to-one corres-
pondence with progress of registration in order to achieve accuracy for the final regis-
tration results. It is worth noting that this soft assignment strategy is also applied to all 
subjects in the population, where the contributions from different subjects are dynam-
ically controlled through the registration. In Step (2), TPS is utilized to interpolate the 
dense transformation fields based on the sparse correspondences.  

We have compared the performance of our groupwise registration with the con-
gealing method [2] and the pairwise HAMMER registration algorithm [5, 6] by eval-
uation on 18 elderly brains, 16 NIREP dataset with 32 manually delineated ROIs, and 
40 LONI dataset with 54 manually labeled ROIs. Experimental results show that our 
method can achieve the best performance.  

2   Methods 

Given a group of subjects | 1 … , the goal of the groupwise registration 
is to find a set of transformations ={ | , , , , 1, , } that are able to transform each subject towards a hidden common space 
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with its individual displacement . Fig. 1 schematically illustrates the concept of 
our groupwise registration. To connect each pair of subjects through the common 
space, the inverse transformation fields ={ | , , , , 1, ,  } should be calculated as in Fig. 1. Thus the composite 
transformation  can be used to warp subject  to , and also  can be 
used to warp subject  to  (as shown in the right panel of Fig. 1). In the following, 
we use  to index the subject under consideration and  for any other subject except  . Also, we call  the set of forward transformations and  the set of backward 
transformations, which enter and leave the common space, respectively. In the fol-
lowing, we will present the energy function in Section 2.1, and then provide a solution 
to groupwise registration in Section 2.2.  

 

Fig. 1. The schematic illustration of the proposed groupwise registration algorithm. All subjects 
in the group are connected by the forward transformations  (i.e., red solid arrows) to the 
common space (i.e., a purple circled region), and by the backward transformations  (i.e., 
blue dashed arrows) coming from the common space. The right panel shows the composite 
transformations bridging subjects  and . 

2.1   Energy Function in Groupwise Registration 

As pointed in Fig. 1, all subjects will agglomerate to the hidden common space by 
following the simultaneously estimated transformation fields. To identify the anatom-
ical correspondence among all subjects, we propose using attribute vector as a  
morphological signature of each voxel  for guiding the correspondence detection. 
Without loss of generality, the geometric moment invariants of white matter (WM), 
gray matter (GM), and cerebrospinal fluid (CSF) are calculated from a neighborhood 
of each voxel  for defining its attribute vector  [5]. Further, we hierarchically 
select distinctive voxels (with distinctive attribute vectors) as driving voxels in the 
image [5], by adaptively setting thresholds on the attribute vectors. Here, the driving 
voxels are represented as , | 1, … , , 1, … , , where  is the number of 
the driving voxels in subject . In our groupwise registration, we establish the sparse 
correspondences only on the driving voxels due to their distinctiveness, and let these 
driving voxels steer the dense transformation, by considering them as control points in 
TPS-based interpolation [7].  
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The overall energy function of groupwise registration can be defined to minimize 
the differences of attribute vectors on the corresponding locations across different 
subjects and also preserve the smoothness of estimated transformation fields: 

, , (1) 

where  is an operator to compute the bending energy of transformation field . 
However, directly optimizing  is usually intractable. Thus, we introduce the 

sparse correspondence fields | , 1, … ,  in our method. Here, 
each  is a set of correspondence vectors defined for subject : for each driving vox-
el ,  in subject , it gives the latest estimated corresponding location (pointing to 
the common space), while for each non-driving voxel, it keeps the previous estimated 
transformation. As the result, the energy function in Eq. 1 becomes: , , , (2) 

The advantage of introducing  is that it decouples the complicated optimization 
problem into two simple-to-solve sub-problems, i.e., alternatively (SP1): estimating 
the correspondence field  via correspondence detection; and (SP2): interpolating the 
dense transformation  with regularization on . 

Estimating the Correspondence Field  (SP1): In this step, we take advantage of 
the driving voxels to establish the correspondence on each driving voxel ,  of sub-
ject  by inspecting each candidate in a neighborhood , w.r.t. each of other subjects 

 one by one. For evaluating each candidate, several useful strategies are employed 
here to achieve robust correspondences. First, not only the voxelwise but also the 
regionwise difference on attribute vectors is proposed by computing the distance of 
each pair of corresponding attribute vectors within a neighborhood . Second, mul-
tiple spatial correspondences are allowed on each driving voxel ,  by introducing a 
spatial assignment ,,  to indicate the likelihood of the true correspondence  w.r.t. 

subject . Also, we use ,  to describe the likelihood of subject  being selected as 
a reference image for correspondence detection of ,  of subject , according to the 
similarity of local morphology between  and . 

Therefore, by fixing  in Eq. 2, the new energy function  in this step can be de-
fined as:  

, , , , , , , , , , ,  

, , , , , ,, · , , , ,
,

 

, , , · ,, · ,, · , · ,  

(3) 

where , , , ∑ ,  measures the regionwise 
difference of attribute vector ,  and its corresponding counterpart in  w.r.t. the 
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current estimated correspondence  and the previous obtained inverse transformation 
field . There are totally three terms in the energy function . The first term  

measures the matching discrepancy on each driving voxel , , where the criteria in 
evaluating the candidate  w.r.t. subject  are: 1) the spatial distance between ,  and  in the common space should be as small as possible according to the 
ICP principle [8]; 2) not only the candidate location  but also its neighborhood 
should have the similar attribute vectors based on the measurement , , , .  

Soft assignment is very important for brain image registration to reduce the risk of 
mismatching, particularly in the beginning of registration. All voxels in the search 
neighborhood  have the chance to become correspondence candidate, but their 
contributions to the true correspondence vary according to the matching criteria.  To 
increase the registration accuracy and specificity, it is also necessary to evolve to one-
to-one correspondence in the end of registration. Therefore, the second term , , ,  is used to dynamically control the soft assignment by requiring the 
entropy of ,  and ,  gradually to decrease with progress of registration.  

The third term in  ensures that the correspondence field  be close to the pre-
vious estimated transformation field , by minimizing the difference between each 
pairs of  and .  
Interpolating the Dense Transformation Field  (SP2): After updating the corres-
pondence in each driving voxel, the energy function in this step is given as: 

, , . (4) 

By regarding the driving voxels as control points in each subject, TPS interpolation 
can be used to estimate the optimal  that fits the transformation on ,  to ,  
and reaches the minimal bending energy (the second term) [7,9]. 

2.2   Implementation for Groupwise Registration 

In our method, we alternatively optimize SP1 and SP2 in each round of registration. In 
SP1, the explicit solutions of ,,  and ,  are obtained by letting ,,⁄ 0 and 

,⁄ 0:  

  ,, · ,                      ,, ,, ∑ ,,,  (5) 

 , · ∑ ,,, , , , ∑ , (6) 

where , , , ,  denotes the bracket part in , , , , , and  and  are constants. After ,,  and ,  are determined by 

Eqs. 5 and 6 on each , , the correspondence ,  is updated by moving it to the 
mean location of all candidates under the guidance of ,, · , : 
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, , · ,, ·
,

. (7) 

It is worth noting that we introduce a multi-resolution strategy to implement our pro-
posed groupwise registration method for fast and robust registration. Specifically, in each 
resolution, the size of the search neighborhood  decreases gradually with the progress 
of registration, for achieving more specific detection of correspondences. Moreover, in 
the initial state of registration, only a small set of voxels with distinctive features, such as 
those locating at ventricular boundaries, sulcal roots and gyral crowns, are selected as 
driving voxels. After that, more and more driving voxels are added to drive the registra-
tion and eventually all voxels in the brains join the groupwise registration.  

By taking the driving voxels as control points, TPS is used to interpolate the dense 
transformation field after we repeat the calculations of Eqs. 5~7 for each driving vox-
el , . To avoid the cumbersome inversion of large matrix in TPS (proportional to 
the number of control points), we perform TPS interpolation in overlapping blocks 
(32 32 32) and also down-sample the driving voxels in each block. 

3   Experiments 

In our experiments, we have extensively evaluated the performances of our groupwise 
registration method in atlas building and ROI labeling. For comparison, we use the 
congealing groupwise registration method [2] with its available codes, 
http://www.insight-journal.org/browse/publication/173. To demonstrate the advantage of group-
wise registration over pairwise registration, the registration results by a pairwise reg-
istration method, namely HAMMER [5], are also provided.  

To demonstrate the group overlap of labeled brain regions after registration, we 
specifically vote a reference by assigning each voxel with a tissue label that is the 
majority of all tissue labels at the same location from all aligned subjects. Then, the 
overlap ratio between each of the registered label images and the voted reference can 
be calculated. Here, we use the Jaccard Coefficient metric as the overlap ratio to 
measure the alignment of the two regions (  and ) with the same label, defined as: , | || |.  (8) 

18 Elderly Brain Images: 18 elderly brain images, each with 256 256 124 
voxels and the resolution of 0.9375 0.9375 1.5 , are used in this experiment. 
The group mean images produced by the congealing method and our groupwise regis-
tration method are both displayed in Fig. 2. Through visual inspection, the group 
mean of our method is sharper and gains better contrast (especially around ventricles) 
than that of the congealing method, indicating better performance of our registration 
method. The overlap ratios on WM, GM, and VN, as well as the overall overlap ratio 
on the whole brain, by our method and the congealing method, are provided in Table 
1. It can be observed that our method achieves better results than the congealing me-
thod in each tissue type. On the other hand, it is interesting to compare the perfor-
mance between groupwise and pairwise registrations of these 18 brain images. In 
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HAMMER-based pairwise registration, 5 out of 18 subjects are randomly selected as 
the templates to align all other 17 remaining subjects. The average overlap ratios 
produced by these five different templates, as well as the standard deviations, are 
shown in the first row of Table 1, which verify again the power of our groupwise 
registration in consistently registering the population data. 

NIREP Data and LONI Data: In this experiment, we employ pairwise HAMMER, 
congealing method, and our groupwise registration method to align 16 NIREP data 
(with 32 manual ROIs) and LONI40 dataset (with 54 manual ROIs). Table 2 shows 
the average overlap ratios on these two datasets by the three registration methods. 
Obviously, our groupwise registration method achieves the most accurate registration 
results among all three registration methods. In particular, Fig. 3 shows the perfor-
mance of registration accuracy at the left and the right precentral gyri of 16 NIREP 
brains by the two groupwise methods. The average overlap ratio is 45.95% by con-
gealing and 57.34% by our method. The brighter color indicates the higher consisten-
cy of registration across different subjects, while the darker color means the poor 
alignment. Again, our method achieves much better alignment.  

 

Fig. 2. The groupwise registration results by the congealing method and our method. It can be 
observed that our group mean image is much sharper than that by the congealing method, indi-
cating a more accurate and consistent registration by our method. 

Table 1. Overall overlap ratios of WM, GM, and VN by pairwise HAMMER algorithm, con-
gealing method, and our groupwise registration method 

 WM GM VN Overall 
Pairwise HAMMER 63.86% ( 3.87%) 57.25% ( 2.18%) 76.51% ( 3.70%) 65.64% ( 3.15%) 
Congealing Method 59.68% 51.09% 70.61% 59.43% 

Our Method 75.81% 63.61% 81.16% 73.52% 

4   Conclusion 

In this paper, we have presented a new feature-guided groupwise registration method 
and also demonstrated its applications in atlas building and population data analysis. 
Specifically, by taking advantage of the driving voxels (with distinctive features) 
automatically detected from all images, we develop a feature-based groupwise regis-
tration method by alternatively estimating the correspondences on the driving voxels 
and updating the dense transformation fields by TPS. Extensive experiments have 

 

(a) The group mean image by congealing method (b) The group mean image by our method 
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been performed to compare the performance of our method with that of the congeal-
ing method and the pairwise HAMMER algorithm. All experimental results show that 
our method can achieve the best performance. 

Table 2. Overall overlap ratios of the aligned ROIs in NIREP and LONI datasets by pairwise 
HAMMER algorithm, congealing method, and our groupwise registraion method 

 Pairwise HAMMER Congealing Method Our Method 

NIREP (32 ROIs) 56.58% 52.07% 61.52% 

LONI (54 ROIs) 54.12% 60.60% 67.02% 

 

Fig. 3. 3D renderings of the aligned left and right precentral gyri by the congealing method and 
our groupwise registration method  
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