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Preface

The 13th International Conference on Medical Image Computing and Computer-
Assisted Intervention, MICCAI 2010, was held in Beijing, China from 20-24
September, 2010. The venue was the China National Convention Center (CNCC),
China’s largest and newest conference center with excellent facilities and a prime
location in the heart of the Olympic Green, adjacent to characteristic construc-
tions like the Bird’s Nest (National Stadium) and the Water Cube (National
Aquatics Center).

MICCAI is the foremost international scientific event in the field of medical
image computing and computer-assisted interventions. The annual conference
has a high scientific standard by virtue of the threshold for acceptance, and
accordingly MICCAI has built up a track record of attracting leading scientists,
engineers and clinicians from a wide range of technical and biomedical disciplines.

This year, we received 786 submissions, well in line with the previous two
conferences in New York and London. Three program chairs and a program
committee of 31 scientists, all with a recognized standing in the field of the
conference, were responsible for the selection of the papers. The review process
was set up such that each paper was considered by the three program chairs,
two program committee members, and a minimum of three external reviewers.
The review process was double-blind, so the reviewers did not know the identity
of the authors of the submission.

After a careful evaluation procedure, in which all controversial and gray area
papers were discussed individually, we arrived at a total of 251 accepted papers
for MICCAI 2010, of which 45 were selected for podium presentation and 206
for poster presentation. The acceptance percentage (32%) was in keeping with
that of previous MICCAI conferences. All 251 papers are included in the three
MICCAI 2010 LNCS volumes.

We are greatly indebted to the reviewers and to the members of the program
committee for their invaluable efforts in critically assessing and evaluating the
submissions in a very short time frame.

The annual MICCAI event has, in addition to its main conference, a rising
number of satellite tutorials and workshops, organized on the day before and the
day after the main conference. This year’s call for submission for tutorials and
workshops led to a record number of proposals, of which a significant fraction
had to be rejected because of space and time limitations. The final program
hosted eight tutorials, which together gave a comprehensive overview of many
areas of the field, and provided rich educational material especially aimed at
PhD students and postdoctoral researchers.

The 15 workshops gave - mostly younger - researchers the opportunity to
present their work, often in an early stage of their investigations, so that they
could obtain useful feedback from more experienced scientists in the field. The
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workshop subjects highlighted topics that were not all fully covered in the main
conference, and thus added to the diversity of the MICCAI program. In par-
ticular, several workshops offered so-called challenges in which researchers were
in competition to best segment or register a set of clinical images with ground
truth provided by medical experts. We are grateful to the tutorial and workshop
committees, in particular to the chairs Dinggang Shen and Bram van Ginneken,
for making these satellite events a success.

Highlights of the conference were the two keynote lectures. Professor Alan C.
Evans of the McConnell Brain Imaging Centre, Montreal Neurological Institute,
McGill University, Montreal, Canada described recent activity in brain network
modeling with an emphasis on anatomical correlation analysis in his presenta-
tion “Network Analysis of Cortical Anatomy”. Professor Guang-Zhong Yang of
the Royal Society/Wolfson Medical Image Computing Laboratory, Imperial Col-
lege, London, UK outlined key clinical challenges and research opportunities in
developing minimally invasive surgery systems in his presentation “Snake and
Lobster - A Feast for MICCAI?”.

MICCAI 2010 would not have been feasible without the efforts of many people
behind the scenes. We are particularly indebted to the local organizing commit-
tee in Beijing, consisting of Nianming Zuo, Yong Liu, Ming Song, Bing Liu,
Bizhen Hong, Shaomei Wang, and Gangqin Zhang, all of the Institute of Au-
tomation of the Chinese Academy of Sciences, for their excellent work before
and during the conference, and to Jacqueline Wermers for her outstanding assis-
tance with the editorial work in compiling the three Springer LNCS books that
contain the proceedings of this conference.

We are obliged to the Board of the MICCAI Society for the opportunity to
organize this prestigious conference, and to many of the Society Board and Staff
members for valuable and continuous advice and support through all phases of
the preparation.

A special word of thanks goes to our sponsors, who generously provided
financial support of the conference as a whole, or of specific activities. This
greatly helped us with the overall organization of the meeting, as well as allowed
us to award prizes for best papers in various categories and travel stipends to
an appreciable number of student participants.

It was our great pleasure to welcome the attendees to Beijing for this exciting
MICCAI 2010 conference and its satellite tutorials and workshops. The 14th
International Conference on Medical Image Computing and Computer-Assisted
Intervention will be held in Toronto, Canada, from 15-21 September 2011. We
look forward to seeing you there.

September 2010 Tianzi Jiang
Nassir Navab
Josien Pluim

Max Viergever
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Hornegger, Joachim
Howe, Robert
Hu, Mingxing
Hu, Zhenghui
Huang, Heng
Huang, Qi-xing
Huang, Xiaolei
Huo, Xiaoming
Hyde, Damon
Ingalhalikar, Madhura
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Noël, Peter
Nolte, Lutz
Noonan, David
Oda, Masahiro
O’Donnell, Lauren
O’Donnell, Thomas
Ogier, Arnaud
Oguz, Ipek
Olabarriaga, Silvia
Olmos, Salvador
Olszewski, Mark
Orkisz, Maciej
Otake, Yoshito
Ourselin, Sébastien
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Awards Presented at the 12th International Conference
on Medical Image Computing and Computer-Assisted
Intervention, MICCAI 2009, London

MICCAI Society Enduring Impact Award
The Enduring Impact Award is the highest award of the Medical Image Com-
puting and Computer-Assisted Intervention Society. It is a career award for
continued excellence in the MICCAI research field. The 2009 Enduring Impact
Award was presented to Ron Kikinis, Harvard Medical School, USA.

MICCAI Society Fellowships
MICCAI Fellowships are bestowed annually on a small number of senior members
of the Society in recognition of substantial scientific contributions to the MICCAI
research field and service to the MICCAI community. The first fellowships were
presented in 2009, to
Nicholas Ayache (INRIA Sophia-Antipolis, France)
Alan Colchester (University of Kent, UK)
Takeyoshi Dohi (University of Tokyo, Japan)
Guido Gerig (University of Utah, USA)
David Hawkes (University College London, UK)
Karl Heinz Höhne (University of Hamburg, Germany)
Ron Kikinis (Harvard Medical School, USA)
Terry Peters (Robarts Research Institute, Canada)
Richard Robb (Mayo Clinic, USA)
Chris Taylor (University of Manchester, UK)
Russ Taylor (Johns Hopkins University, USA)
Max Viergever (University Medical Center Utrecht, The Netherlands).

MedIA-MICCAI Prize
The 2009 MedIA-MICCAI Prize for the best paper in the special MICCAI issue
of Medical Image Analysis, sponsored by Elsevier, was awarded to
Vicky Wang (University of Auckland, New Zealand)
for the article “Modelling passive diastolic mechanics with quantitative MRI of
cardiac structure and function”, authored by Vicky Y. Wang, Hoi I. Lam, Daniel
B. Ennis, Brett R. Cowan, Alistair A. Young, and Martyn P. Nash.

Best Paper in Navigation
The prize for the best paper in the MICCAI 2009 conference in the area of nav-
igation, sponsored by Medtronic, was awarded to
Wolfgang Wein (Siemens Corporate Research, Princeton, USA)
for the article: “Towards guidance of electrophysiological procedures with real-
time 3D intracardiac echocardiography fusion to C-arm CT”, authored by Wolf-
gang Wein, Estelle Camus, Matthias John, Mamadou Diallo, Christophe Duong,
Amin Al-Ahmad, Rebecca Fahrig, Ali Khamene, and Chenyang Xu.
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Best Paper in Computer-Assisted Intervention Systems and Medical Robotics
The prize for the best paper in the MICCAI 2009 conference in the area of
computer-assisted intervention systems and medical robotics, sponsored by In-
tuitive Surgical, was awarded to
Marcin Balicki (Johns Hopkins University, USA)
for the article “Single fiber optical coherence tomography microsurgical instru-
ments for computer and robot-assisted retinal surgery”, authored by Marcin
Balicki, Jae-Ho Han, Iulian Iordachita, Peter Gehlbach, James Handa, Russell
Taylor, Jin Kang.

MICCAI Young Scientist Awards
The Young Scientist Awards are stimulation prizes awarded to the best first
authors of MICCAI contributions in distinct subject areas. The nominees had
to be a full-time student at a recognized university at - or within the two years
before - the time of submission. The 2009 MICCAI Young Scientist Awards were
presented to
Tammy Riklin Raviv (MIT, USA), for the article “Joint segmentation of im-
age ensembles via latent atlases”
Christopher Rohkohl (Friedrich-Alexander University, Germany), for the ar-
ticle “‘Interventional 4-D motion estimation and reconstruction of cardiac vas-
culature without motion”
Peter Savadjiev (Harvard Medical School, USA), for the article “Local white
matter geometry indices from diffusion tensor gradients”
Lejing Wang (TU Munich, Germany), for the article “Parallax-free long bone
X-ray image stitching”
Yiyi Wei (INRIA Lille, France; LIAMA CASIA, China), for the article “Toward
real-time simulation of blood-coil interaction during aneurysm embolization”.
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Abstract. MR image data can provide many features or measures al-

though any single measure is unlikely to comprehensively characterize

the underlying morphology. We present a framework in which multi-

ple measures are used in manifold learning steps to generate coordinate

embeddings which are then combined to give an improved single repre-

sentation of the population. An application to neonatal brain MRI data

shows that the use of shape and appearance measures in particular leads

to biologically plausible and consistent representations correlating well

with clinical data. Orthogonality among the correlations suggests the

embedding components relate to comparatively independent morpholog-

ical features. The rapid changes that occur in brain shape and in MR

image appearance during neonatal brain development justify the use of

shape measures (obtained from a deformation metric) and appearance

measures (obtained from image similarity). The benefit of combining sep-

arate embeddings is demonstrated by improved correlations with clinical

data and we illustrate the potential of the proposed framework in char-

acterizing trajectories of brain development.

1 Introduction
A number of machine learning techniques have been developed for converting
data from a high to a low dimensional representation more suitable for further
processing steps such as clustering or regression. This class of methods, described
under the terms ‘manifold learning’ or ‘dimensionality reduction’, have recently
begun to be applied to the field of medical image analysis. Medical images, or
derived features, are natural candidates as raw data for manifold learning where
a typical structural magnetic resonance (MR) image, for example, can contain
around a million voxels.

The intuition underlying the application of manifold learning to medical im-
ages is that, while each image may be viewed as a single point in a very high-
dimensional space, a set of such points for a population of images may be well
� Corresponding author.

T. Jiang et al. (Eds.): MICCAI 2010, Part III, LNCS 6363, pp. 1–8, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 P. Aljabar et al.

represented by sub-manifold of the space that is likely to be non-linear and of a
significantly lower dimension. Although it may be possible to learn a manifold
directly from the image data, it is more typical to use measures that relate pairs
of images in a dataset.

As an example, pairwise similarity (based on model description length) was
used in [1] in an application of Laplacian eigenmaps [2] to identify coherent
sets of landmarks in images that can be clustered. The ‘shape maps’ produced
have clear applications in medical imaging data where landmark based analy-
sis is common. The Laplacian eigenmap approach was also applied in [3] where
similarities between images were derived from structural segmentation overlaps
and the resulting embedding was used to discriminate clinical groups of elderly
patients with Alzheimer’s Disease (AD) and controls. Another manifold learning
algorithm, Isomap [4], was used to estimate the manifold structure of brain MRI
acquired from AD patients and controls [5]. In that study, distance measures
between image pairs are derived from the non-rigid deformations aligning them.
Pairwise distances derived from the deformations were also used to empirically
construct a manifold for images in [6] using a k-NN graph building approach. By
‘navigating’ the resulting sparse graph, in which edges join pairs of similar im-
ages represented by the nodes, it becomes possible to estimate transformations
between pairs of very different images by concatenating successive transforma-
tions between pairs of similar images. Navigation of a low-dimensional coordinate
embedding was also used in [7] where it was shown that accurate atlas-based seg-
mentations may be obtained by propagating manually labelled structures from
a small group of healthy brain images to a large set of images acquired from
subjects with a range of pathology.

In this work, we contribute a framework in which separate manifold learning
steps, based on different pairwise measures, can be applied to MR images. The
resulting coordinate embeddings are then fused to produce a single combined
embedding. The use of multiple pairwise measures allows the decomposition of
morphology into different aspects. We give a motivating example using neonatal
brain MR images which show both shape changes associated with growth and
complementary signal changes due to microscopic structural processes such as
myelination. The two pairwise measures used were therefore chosen to repre-
sent shape and appearance in the data. We compare the embeddings with non-
imaging data for the subjects and the separate shape- and appearance-based
embeddings correlate in a consistent way with these clinical data. The results
also indicate the benefit of fusing embeddings as this leads to improved correla-
tion and provides a useful representation for characterizing trajectories of change
during the important period of neonatal brain development.

2 Methods

Our approach begins with registrations to obtain measures reflecting shape and
appearance relations for image pairs in the data set. Each measure produces
a coordinate embedding via a manifold learning technique appropriate for the
measure. The separate embeddings are then fused by scaling and concatenation
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and, after a final dimensionality reduction step, a combined embedding charac-
terizes the manifold in which the image data reside. A schematic illustration of
the proposed approach (as applied to neonatal MRI) is provided in Figure 1.

Pairwise
registrations

Appearance
measures

Combined
embedding

Shape
measures

Appearance
embedding

ya yc

Shape
embedding

ys

 

Fusion & dimension
reduction

Images

Fig. 1. An overview of the proposed framework as it is applied to neonatal brain MRI

2.1 Pairwise Measures between Images

Given images IA, IB : Ω ⊂ R3 → R and a non-rigid deformation φ : R3 → R3

between them, we derive an appearance measure for the pair from their intensity-
based similarity and a shape measure from φ. These measures are chosen for ap-
plication to neonatal data but other measures possible in different applications.

The intensity similarity of the images is given by a function on the pairings
{(IA(x), IB(φ(x))) : x ∈ Ω} and we define the pairwise appearance measure to
be the normalised cross correlation

Ma(IA, IB ;φ) =
∑

(IA(x) − μA)(IB(φ(x)) − μB)√∑
(IA(x) − μA)2

∑
(IB(φ(x)) − μB)2

where μA and μB are the average intensities.
The pairwise shape measure is based on a metric induced by φ. In a diffeo-

morphic setting, such as the one given in [8], φ(x) is defined as the point at t = 1
of an integral curve φ(x, t) of a time-varying velocity field v(x, t) : R3 ×R → R3.
The metric induced on an image pair is then defined as the minimal value of the
energy integral

∫ 1

0 ‖v(x, t)‖2
Ldt such that φ aligns the images and L denotes a

choice of differential operator.
Local structure is important when learning the low-dimensional manifold

and distances between images in local neighbourhoods play a greater role in
characterizing manifold geometry than longer range distances. In our context,
this means that transformations between similar images carry more weight. In
this case, transformations can be approximated in a small deformation setting:
φ(x) = x + u(x) for a displacement field u. We follow the work of [5] and [6]
in adopting this approximation and define a pairwise shape measure between
images as

Ms(IA, IB;φ) = ‖u(x)‖2
L

where u(x) is obtained from registering IA and IB and L = Id + α∇, with Id
and ∇ denoting the identity matrix and divergence operator and α is a weighting
parameter.

Both the shape and appearance measures depend on the resolution of the
transformation that aligns the image pair, i.e. the scale at which local structure
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in the images is aligned. A coarse transformation only accounts for large-scale
shape differences between the images; small-scale variations remain to influence
the appearance measure, Ma, for the images. We found that differences in ap-
pearance are more diffuse under a fine transformation and the way image pairs
relate is encoded more in the deformation u(x) between them. In this case, the
shape measure becomes more informative. These considerations are similar to
those arising in voxel-based morphometry (VBM) studies [9] which seek local
group differences in aligned image sets. The resolution of the aligning trans-
formations must allow such differences to remain detectable. In contrast, when
images are finely aligned, group differences become encoded in the aligning trans-
formations and deformation-based morphometry (DBM) becomes possible [10].

2.2 Manifold Learning and Fusion of Embeddings

The pairwise measures for shape (Ms) and appearance (Ma) are used as input
data for separate manifold learning steps, with each giving a coordinate embed-
ding for the image data. Since Ma represents a similarity measure and Ms a
distance measure, manifold learning techniques specific to each type of measure
are applied: A Laplacian eigenmap [2] is used for Ma and Isomap [4] is used for
Ms. In each case, the image data can be viewed as nodes in a graph where edges
are assigned weights derived from Ma or Ms.

For N images I1, . . . , IN , the Laplacian eigenmap approach assigns a weight
Wij to each edge measuring the similarity of images Ii and Ij . We set Wij =
Ma(Ii, Ij). The method then seeks a coordinate embedding yi, i = 1, . . .N for
the data that minimises the cost function:∑

i,j

Wij‖yi − yj‖2

where ‖ · ‖ is the L2 norm. The local structure of the data can be modelled by
selecting a neighbourhood size K such that Wij is set to zero when Ij is outside
the K-nearest neighbourhood of Ii.

The Isomap algorithm assigns a distance Dij to edges reflecting the distance
between end nodes. We set Dij = Ms(Ii, Ij). Local structure is modelled by
constructing a sparse graph in which edges are restricted to be those of the K-
nearest neighbourhood for each node. The manifold structure is then obtained
using geodesic distances Dij between all pairs of nodes estimated by summing
the values of Dαβ along the shortest path between each node pair in the graph.
A coordinate embedding yi, i = 1, . . .N is then generated to minimise the cost
function ∑

i,j

(Dij − ‖yi − yj‖)2

Isomap and Laplacian eigenmaps are examples of spectral methods since they
produce embedding coordinates from eigendecompositions of matrices derived
from the edge weights of the graph. Although the use of a single algorithm is
possible by converting between distance and similarity measures (for example
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with heat kernel functions [2]), we elected to avoid this and apply manifold learn-
ing techniques specifically developed for each type of measure. This also means
that additional parameter choices during conversion are avoided. We distinguish
shape embedding coordinates ys

i from the appearance embedding ya
i . In each

case a target dimension, dα, α ∈ {a, s}, needs to be chosen and the coordinates
may be explicitly written as yα

i = (yα
i,1, . . . , y

α
i,dα).

The embedding coordinates ys
i and ya

i were then fused by uniformly scaling
each set so that the variance of the first coordinate, yα

i,1, α ∈ {a, s}, becomes
one and subsequently concatenating. This provides (da + ds)-dimensional coor-
dinates (fay

a
i , fsy

s
i ) for the appropriate scale factors fa and fs. Overlap in the

descriptions of the data provided by the two input embeddings was then re-
moved by applying a further dimensionality reduction step to the concatenated
coordinates. This was achieved by finding all pairwise L2 distances for the con-
catenated coordinates. A final Isomap step applied to the distances provides a
combined coordinate embedding yc

i with dimension dc.

3 Data and Results

3.1 Image Data and Pre-processing

The images studied were 140 T2W scans of neonatal subjects. Fast-spin echo
scans were acquired on a 3 Tesla Philips Intera scanner (TR = 1712ms, TE =
160ms, FA = 90◦) with resolution 0.86×0.86×1mm. Mean gestational age (GA)
at birth was 29.4±2.9 weeks (range 23.4–34.9) and mean age at scan was 36.8±4.8
weeks (range 28.6–47.7). A clinical expert selected a reference scan displaying
an intermediate level of maturation for the group (GA at birth/scan 32.0/36.3
weeks). All scans were aligned to the reference using affine transformations and
resliced to remove global size and orientation differences. Each image pair was
non-rigidly registered using free-form deformations [11] (FFDs). The resolution
of the transformations was varied using a coarse-to-fine optimisation giving three
FFDs, with control point spacings of 20, 10 and 5mm, for each pair of images.

3.2 Results

The target dimension, dα, α ∈ {a, s, c}, for each embedding was empirically
selected by varying it and calculating the correlation between the input edge

yc
i,1 ys

i,1 ya
i,1 yc

i,2 ys
i,2 ya

i,2

GA (S) 0.93* 0.88* 0.92* 0.01 0.07 0.03
W (S) 0.91* 0.85* 0.89* 0.01 0.08 0.04
HC (S) 0.92* 0.88* 0.88* 0.10 0.18 0.07
GA (B) 0.18 0.21 0.07 0.68* 0.61* 0.49*
W (B) 0.24 0.24 0.17 0.48* 0.45* 0.35†
HC (B) 0.24 0.26 0.16 0.54* 0.56* 0.35†

Table 1. Correlation of clinical

data and embedding components

for each method. Gestational age

(GA), weight (W) and head circum-

ference (HC) data were obtained at

scan (S) or at birth (B).

[* p < 10−4, † p < 10−3]
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Fig. 2. Scatter graphs of combined embedding components with different age data.

Left: yc
i,1 against gestational age (GA) at scan. Right: yc

i,2 against GA at birth.

weights and the embedding distances. For the Laplacian eigenmap method, the
best correlation was obtained for da = 5 and reduced thereafter. Using Isomap,
the correlation increases asymptotically as the dimension increases and the min-
imal dimension for which the correlation exceeded 0.7 was selected to avoid
over-fitting. This led to choices of ds = 4 and dc = 5. For the Isomap steps, the
residual variance was 0.30 for ys

i and a much lower value of 0.05 when deriving yc
i ,

reflecting already near-linear structure of the input data. The best control point
spacing for the transformations was empirically chosen as above and matched
expectations regarding the transformation resolutions for each type of measure
with an intermediate spacing of 10mm used to derive ya

i and a finer spacing of
5mm for ys

i .
The explanatory power of each set of embedding coordinates was assessed by

its correlations with clinical data for the group which were recorded at birth
and at scan. These were gestational age, head circumference and weight. The
first component in each embedding, ys

i,1 and ya
i,1, correlates strongly with the

measures obtained at scan (see Table 1) and there are weaker but still significant
correlations for the second components ys

i,2 and ya
i,2 with data obtained at birth.

Viewing the entries in Table 1 as a 2×2 block matrix with 3×3 elements, we
note that the off-diagonal values are much lower than those on the diagonal which
suggests orthogonality among the correlations. Within each diagonal block, the
correlations for the combined embedding are, with one exception, greater than
the corresponding correlations for the separate embeddings demonstrating the
benefit of combining them.

Scatter graphs for the combined embedding components against ages at scan
and at birth are shown in Figure 2. Visualisations are given in Figure 3 for the
manifold structure of the image data provided by the first two components of
the combined embedding. A continuous trajectory yc(t) through the combined
embedding coordinates, parametrised by the age at scan t, was defined using
kernel regression as yc(t) = 1

ν

∑
i K(ti − t)yc

i where ti is the age at scan for
image Ii, K represents a Gaussian kernel and ν is a normalising constant. The
trajectory (projected onto two dimensions) for our data is shown in Figure 3 as
a solid line. Figure 4 illustrates reconstructions of images at five equally spaced
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Fig. 3. Left: Scatter graph of combined embedding components yc
i,1 and yc

i,2 with colour

coding for age at scan. The solid line shows a regressed trajectory for age at scan (see

text). Right: The same scatter graph illustrated with image data.

Fig. 4. Reconstructions of images along

the trajectory for age at scan in Fig-

ure 3 (N.B. Original image data were

normalised for global size).

points on the trajectory estimated using the method described in [5]. It should
be noted that the reconstructions retain the global size normalisation of the
pre-processed image data.

4 Discussion

We have presented a framework for applying manifold learning steps to imaging
data using different measures of morphology. We have utilised shape and ap-
pearance measures although other applications may require different measures
specific to their clinical context. Shape and appearance are important aspects of
neonatal brain development and we derive their measures from image similarities
and deformations. The measures provide coordinate embeddings after applying
different manifold learning techniques appropriate to each type of measure used.
Correlations with clinical data suggest overlap in the descriptions that the sepa-
rate embeddings provide despite their separate derivations. This level of consis-
tency across embeddings and the strong correlations with clinical data indicate
that the manifold learning steps provide biologically relevant representations.
The proposed method also combines separately obtained embeddings through
scaling, concatenation and dimensionality reduction. While the separate embed-
dings may overlap in the information they provide, the improved correlations
after combination also indicates some independence in the descriptions.

Considering the patterns of correlation between embeddings and clinical data,
strong correlations between the first feature of all embeddings and age at scan is
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perhaps unsurprising as it is the dominant factor affecting brain shape and MR
appearance. It is also expected that correlations with weight and head circumfer-
ence should parallel correlations with age (because size measures are themselves
correlated with age) but this at least provides further proof of principle for the
results. The second components, however, correlate with gestational age at birth
which suggests that, after scan age, variation in brain morphology is mainly
determined by age at birth. A possible explanation for this is that gestational
age at birth measures the degree of prematurity for an infant which in turn may
affect morphology. The apparent orthogonality among the observed correlations
(Table 1) suggests an independence to the morphological features described by
the first and second components in each embedding.

Finally we have shown in a preliminary example how trajectories may be
described in the embedding coordinates using kernel regression and, following
the work in [5], how image reconstructions of such a trajectory may be obtained.
The trajectory parameter was age at scan but clearly other clinical covariates
can be used. This ability to use the proposed approach to characterize change
in cohorts, with respect to chosen covariates, has clear clinical potential, for
example in identifying pathology or in tracking growth.
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Abstract. Updating segmentation results in real-time based on repeated user in-
put is a reliable way to guarantee accuracy, paramount in medical imaging ap-
plications, while making efficient use of an expert’s time. The random walker
algorithm with priors is a robust method able to find a globally optimal proba-
bilistic segmentation with an intuitive method for user input. However, like many
other segmentation algorithms, it can be too slow for real-time user interaction.
We propose a speedup to this popular algorithm based on offline precomputation,
taking advantage of the time images are stored on servers prior to an analysis
session. Our results demonstrate the benefits of our approach. For example, the
segmentations found by the original random walker and by our new precomputa-
tion method for a given 3D image have a Dice’s similarity coefficient of 0.975,
yet our method runs in 1/25th of the time.

1 Introduction

Segmentation is a crucial task in medical imaging. Manual segmentation by an expert is
accurate, but is also very time consuming, while fully automatic and accurate segmenta-
tion techniques are not yet a reality, thus semi-automatic techniques become a necessity.
While many semi-automatic techniques assume only user initialization, repeated user
interaction is necessary to guarantee the accuracy required for medical imaging. There-
fore, it is critical to speed up these techniques, especially in 3D, in order to minimize
the time spent waiting between a user inputing information and seeing the results [1,2].

A full survey of semi-automatic algorithms is beyond the scope of this work [3,4]. At
a high level, semi-automatic algorithms can be divided into several classes. One class
involves the specification of an approximate boundary, which evolves towards the cor-
rect segmentation by minimizing a cost function derived from shape priors and image
information [5, 6]. Another class of algorithms requires the user to specify sequential
points on or near the boundary, and then the boundary is filled in between these points
using a minimal path approach [7, 8]. A third class of algorithms asks the user to pro-
vide seeds, or pixels within specific regions, and then uses these seeds as a basis for the
segmentation [9, 10].

An example of the last class of algorithms is the seeded random walker (RW SD)
[10], which is a graph-based approach to image segmentation that, along with its ex-
tensions, has garnered hundreds of citations in only a few years. It boasts many ad-
vantages, including weak boundary detection, robustness to noise, trivial generalization

T. Jiang et al. (Eds.): MICCAI 2010, Part III, LNCS 6363, pp. 9–16, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



10 S. Andrews, G. Hamarneh, and A. Saad

to simultaneous multi-region and 3D segmentations, a globally optimal solution en-
suring repeatability, a probabilistic segmentation that can be very useful in directing
a user to areas of uncertainty, and the straightforward user input method of providing
seed pixels - all important features in medical imaging. On the downside, once seeds
are given, RW SD computes the segmentation by solving a large system of equations,
which can be slow. In [1], this problem is alleviated by introducing RW with precom-
putation (RW PREC). Since medical images usually exist “offline” on servers for some
time before they are segmented, some precomputation can be done before user input
that allows a fast approximation to the segmentation once seeds are given, or “online”.
The speedup RW PREC provides allows for user interaction with RW SD in real-time.

Unfortunately, RW SD has some limitations, specifically the segmentation is cal-
culated based only on localized image data and disconnected regions must be seeded
individually. These problems are addressed in [11], where regional intensity priors are
introduced into the formulation. The priors result in more accurate segmentations and
the ability to segment disjoint regions easily. However, in RW with priors (RW PR),
the image graph is not completely known offline, since priors are usually derived from
the seeds and precomputation must be performed before seeds are given. This obsoletes
the methods introduced in [1], which require the graph to be known. An algorithm with
the robustness of RW PR and the online speedup of RW PREC would be a very useful
interactive segmentation tool.

In this paper, we make the following contributions. First, starting with the random
walker equations from [11], we derive an offline precomputation and an online approx-
imation that allows for a significant online speedup that can be used in conjunction with
priors. Secondly, we derive some additional precomputations that are performed offline
to further speed up the online segmentation. Combining the robustness of RW PR and
the online speedup of RW PREC, we create a useful interactive segmentation tool ap-
plicable to a more general class of problems than RW PREC. Code demonstrating our
method is available from http://mial.cs.sfu.ca.

2 Methods: Random Walker Improvements

We begin by giving a brief review of existing RW algorithms for later reference. In the
following derivations, we consider binary segmentations, but we note that our methods
extend trivially to multiple labels, just as all previous RW algorithms discussed do.
RW SD [10] constructs a graph and then defines L as the graph’s Laplacian matrix and
x as a vector of the probabilities that each node belongs to the object being segmented.
We define N , S, U = N−S >> S as the numbers of nodes in the graph, seeded nodes,
and unseeded nodes, respectively. In RW PR [11], λ is introduced as a vector of the
prior probabilities for each node, weighted by a scalar γ. In RW PREC [1], the first K
eigenvalue/eigenvector pairs of L are found and stored in matrics Λ and Q respectively,
so L ≈ QΛQT . These are used to construct a pseudo-inverse for L, E = QΛ−1QT .
For all three algorithms, all of the variables involved are expressed in terms of their
components corresponding to seeded (S) and unseeded (U ) nodes:

http://mial.cs.sfu.ca
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L =
[
LS B
BT LU

]
, x =

[
xS

xU

]
, E =

[
ES R
RT EU

]
, Lx = f =

[
fS

fU

]
, g =

[
gS

gU

]
,

(1)

where g is a constant eigenvector corresponding to the zero eigenvalue of L.
In RW PR, xU , the vector of RW probabilities for the unlabeled pixels, is obtained

by solving a U × U system of equations (with I defined as the identity matrix):

(LU + γIU )xU = −BTxS + γλ , (2)

where γ = 0 gives RW SD. In RW PREC, several equations of size S × S are given
whose solutions can be used to approximate xU in the case that γ = 0. This method [1]
is reviewed in [12]. When priors are added to the RW formulation (γ > 0), the graph is
no longer known offline, and this precomputation method is rendered useless.

2.1 Precomputation with Priors

Following [1], our goal is to derive a method for using offline precomputation to speed
up the online computation for the more general RW PR, where the image graph is al-
tered after seeds are given. We define L and x as in RW PR [11]. Following preliminary
steps similar to RW PREC, we derive

(IU + γEU )xU − gUα = RT fS + γEUλ . (3)

The details of the derivation are available in [12]. To proceed in our derivation, we
will assume for the moment that we can calculate J−1

U = (IU + γEU )−1 and define
B̂ = BJ−1

U . Now, replacing B with B̂ in the derivation and taking fS = f̂S + f̄Sα and
P̂ = (IS − B̂RT ), we derive

P̂ f̂S = LSxS + γB̂EUλ, P̂ f̄S = B̂gU , α =
gT

S f̂S + γgT
Uλ

γ − gT
S f̄S

. (4)

The details are again in [12]. Now that we have fS we plug it back into (3) to get

xU = J−1
U (gUα + RT fS + γEUλ) . (5)

The issue still exists of how to compute J−1
U efficiently, as defining JU requires the

seeds and inverting a matrix of size U is too expensive of an operation to perform during
the online phase. We will define J to be the extension of JU to size N given by

J = (I + γE) ≈ (QQT + γQΛ−1QT ) ≈ Q(IK + γΛ−1)QT (6)

⇒ J−1 ≈ Q(IK + γΛ−1)−1QT (7)

since QQT ≈ IN , which implies that QUQ
T
U ≈ IU . Thus

QU (IK + γΛ−1)−1QT
UJU ≈ IU ⇒ J−1

U ≈ QU (IK + γΛ−1)−1QT
U . (8)

Since (IK + γΛ−1) is a diagonal matrix with all positive entries, it is easily invertible,
and can be inverted during the offline phase. The simple multiplication of QU to both
sides during the online phase produces an adequate approximation to J−1

U , fulfilling our
goal of a RW formulation combining priors and precomputation (RW PR PREC).
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2.2 Increased Speed Using Extended Precomputation

By using the proposed RW PR PREC, we can reduce the online solving of (2) from
RW PR, an equation of size O(U), to solving (4), two equations of size O(S). How-
ever, due to the low connectivity of the graph, LU is very sparse, and (2) can be solved
in O(U) time. The online phase of RW PR PREC must take O(U) time also, since it
returns a probability vector of size U . We want to perform as few O(U) cost computa-
tions as possible by minimizing the number of matrix multiplications between matrices
of size O(U). Analysis and optimizations of these asymptotic run times were not con-
sidered previously in [1], which we do here by analysis of matrix operations.

Currently, in the offline phase, we compute Q and Λ−1, but now we will precompute
additional matrices to be used to speed up the online phase. The speedup will come from
being able to retrieve the components of these matrices corresponding to the seeded
nodes in O(S) time. We note that Q is an N × K matrix and for storage space con-
siderations we do not want our precomputed matrices to be larger than that. The details
of the additional precomputations are in Algorithm 1, denoted OPT RW PR PREC. By
precomputing these 4 matrices, we save (SK +K +K2)U scalar multiplications, with
the detailed calculations in [12]. We note that when not using priors, with RW PREC,
A1 can still be used for additional speedup.

Algorithm 1. OPT RW PR PREC:

Offline:
1: Calculate Q and Λ−1 from L
2: A1 = LQ
3: A2 = QT Q
4: A3 = (IK + γΛ−1)−1

5: A4 = QT g
Online:
6: P̂ = (IS − (A1S − LSQS)A3(A2 − QT

SQS)Λ−1QT
S )

7: P̂ f̂S = LSxS + γ(A1S − LSQS)A3(A2 − QT
SQS)Λ−1(QT

Uλ)

8: P̂ f̄S = (A1S − LSQS)A3(A4 − QT
SgS)

9: α =
gT

S f̂S+γgT
U λ

γ−gT
S

f̄S

10: fS = f̂S + f̄Sα
11: xU = QUA3((A4 − QT

SgS)α + (A2 − QT
SQS)Λ−1(QT

SfS + γ(QT
Uλ)))

3 Results

We would like our results to show that using our precomputed data we make the RW
online phase fast enough for interactive segmentation without compromising much ac-
curacy. Therefore, we present results showing our high speed gains on real 2D and 3D
data while maintaining negligible (and controlled) reduction in accuracy. We note that
the speed increase allows much quicker seed editing and thus will translate to much
improved accuracy per time spent by user.
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The experiments here were performed using unoptimized MATLAB code run on an
Intel Core 2 Duo (2.4GHz) with 4GB of RAM. The algorithms were implemented by the
authors, utilizing Grady’s MATLAB Graph Toolbox [http://www.cns.bu.edu/
˜lgrady]. A negative exponential function was used for the edge weights, wij =
exp(−β(|ia − ib|)), where ia is the intensity of pixel a. All experiment data was col-
lected over 100 trials, and all parameters were chosen empirically and fixed across all
compared methods. The only parameter effecting the speed of our method is K , the
number of retained eigenvectors.

(a) Seeds (b) Without Pre-
computation
ton = 0.552 s
toff = 0 s

(c) With Precomp.
K = 20

Dice = 0.585
ton = 0.043 s
toff = 8.15 s

(d) With Precomp.
K = 40

Dice = 0.962
ton = 0.063 s
toff = 14.63 s

(e) With Precomp.
K = 80

Dice = 0.996
ton = 0.097 s
toff = 36.64 s

(f) With Precomp.
K = 160

Dice = 0.998
ton = 0.178 s
toff = 136.17 s

Fig. 1. (color figure) Com-
parison of results with and
without precomputation
for segmentation using
priors on an image of size
N ≈ 72, 000 pixels. For
K, the number of eigen-
vectors used, we report
Dice, the Dice similar-
ity coefficient between
RW PR’s segmentation
and OPT RW PR PREC’s
segmentation, ton, the
online time taken, and
toff , the offline time taken.
We note that we are only
concerned with ton, and
with K = 80, our method
achieves excellent results
in less than a fifth of the
time taken when not us-
ing precomputation. Red
and green correspond to
different region boundaries.

The accuracy of the segmentations generated by our algorithms are evaluated by
their similarity to the segmentations generated by RW PR; the accuracy of RW PR is
well justified in other works [11]. We note that the speed and accuracy of our algorithms
depend on the image only throughK , and while we leave analytical methods for finding
optimal K as future work, it was reported in [1] that K = 40–80 is often enough for 2D
images, as our results in Section 3.1 corroborate, and we needed no more than K = 350
for larger 3D images as is seen in Section 3.2.

The resolution and noisiness of an image affect how large of a K is needed, and
different noiseless images at the same resolution can require different values of K to
be accurately segmented using precomputation. As seen in Fig. 1, even larger values of
K provide online runtimes much faster than can be achieved without precomputation,
so choosing K large enough to guarantee accuracy is our prime concern. As different

http://www.cns.bu.edu/~lgrady
http://www.cns.bu.edu/~lgrady
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Fig. 2. Comparison of the run-
times of the original RW PR
(blue) and our proposed methods
RW PR PREC (green) and
OPT RW PR PREC (red) for
different resolutions of the image
in Fig. 1. Note the standard
deviation for the online runtimes
are all under 0.05 seconds.

images affect the speed and accuracy of our algorithms only through how large K needs
to be, and since we do not yet have an image dependent way to choose K (except based
on resolution and noise), results for a variety of images would be redundant. Thus we
focus our results on single 2D and 3D images at varying resolutions and with varying
levels of noise. We note that offline runtime increases with K , but does not affect the
application to interactive segmentation.

3.1 2D Results

Tests were performed on the 2D image in Fig. 1 of size N = 265 × 272 ≈ 72, 000
pixels with an 8-connected image graph, β = 30, γ = 0.001, and two regions, where
one region was divided into multiple disconnected sections and seeds were only put in
one of these sections. These segmentation times do not include calculating the priors,
an efficient step which was performed online, and is similar in all cases. The priors
were calculated using a non-parametric density estimation with a Gaussian kernel [11].
Fig. 1 shows the Dice similarity coefficient and the average runtimes in seconds for
both the online and offline phases of OPT RW PR PREC for different values of K and
compares the results to RW PR, showing excellent speedup and minimal accuracy lost.
Fig. 2 compares the runtimes of the different methods for different sized resolutions of
the image in Fig. 1, again showing our precomputation gives excellent speedup.

3.2 3D Results

Tests were performed on a 3D CT image of the knee in Fig. 3 of size N = 55×55×36 ≈
109, 000 voxels, a 26-connected image graph, and two regions, bone and non-bone.
The bone region consists of 3 disconnected subregions (the femur, tibia, and patella).
We tested the algorithms using priors by segmenting all the bones but placing seeds
only in the tibia. We used RW PR and OPT RW PR PREC with β = 100 and γ =
0.01 and compared their average runtimes and the Dice similarity coefficient of their
resulting segmentations. The average runtime of RW PR was about 40.5 seconds, and
when K = 350 eigenvectors are used, the average runtime of OPT RW PR PREC was
about 1.56 seconds. The Dice similarity coefficient between RW PR’s segmentation and
OPT RW PR PREC’s segmentation was 0.975. Thus our method achieved a speedup of
25 times over RW PR while maintaining excellent accuracy. The standard deviation of
the runtimes of RW PR was less than 1.0 s, and the standard deviation of the runtimes
of OPT RW PR PREC was less than 0.1 s.
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(a) Without Precomputation (b) With Precomputation

Fig. 3. The bones of a
knee segmented with S =

100 seeds in one of the
bones. (a) was found us-
ing RW PR in 40.5 sec-
onds and (b) was found
using OPT RW PR PREC
with K = 350 in 1.56 sec-
onds. Dice’s similarity co-
efficient between the two is
0.975.

3.3 Robustness to Noise

Here, we test the robustness to noise of OPT RW PR PREC. We measured the simi-
larity of the segmentations provided by the exact and approximate algorithms using the
Dice similarity coefficient. The pixel intensities in our test images range from 0 to 1 and
various levels of Gaussian noise with standard deviations σ ∈ [0, 1] were added to the
2D image in Fig. 1 of size N = 265×272 ≈ 72, 000 pixels with an 8-connected image
graph, β = 30, and γ = 0.001. From Fig. 4a we see that OPT RW PR PREC still
provides good segmentations for small amounts of noise up to σ = 0.2 (with Dice’s
similarity coefficient > 0.95) if a large enough K is used. As the noise increases to
σ = 0.7, Dice decreases. We can see the same trend in Fig. 4b, where K = 200 eigen-
vectors are used in the precomputation and the noise ranges from σ = 0 to 1.

(a) Dice vs. K (b) Dice vs. Noise

Fig. 4. Effect of K and noise on segmentation accuracy. (a) compares the Dice similarity co-
efficient between the segmentations found using RW PR and OPT RW PR PREC. Results are
shown for two levels of noise and for multiple numbers of eigenvectors. (b) shows the Dice simi-
larity coefficient between the segmentations at varying levels of noise with K = 200 eigenvectors
and 20 trials for each level of noise. We see that large enough K lets us account for reasonable
amounts of noise.

4 Discussion and Conclusions

The above tests give some strong results. We see from Figs. 1 and 2 that the additional
precomputation of OPT RW PR PREC greatly outperforms RW PR in 2D, achieving
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a segmentation in about one fifth of the time and with over 99% similarity. From Fig.
3, we see the results are more pronounced in 3D, with OPT RW PR PREC achieving
speedups of a factor of 25 over RW PR while still finding an almost identical segmenta-
tion with over 97% similarity. Furthermore, Fig. 2 shows that all the algorithms appear
to increase linearly in runtime with the number of pixels, as predicted in Section 2.2.

Overall, we have derived a way of combining both precomputation and the use of
priors into the popular RW algorithm. This allows RW to perform much faster segmen-
tations when seeds and priors are either given or changed. Additionally, we’ve shown
that some precomputations can be performed in addition to finding Q and Λ−1 that
can greatly speed up the online phase of the algorithm. These improvements in speed
provide a feasible way to enable the real-time editing of a wider variety of 2D and 3D
images than was previously possible by allowing updating of both seeds and priors. This
allows the user to ensure the accuracy of complex segmentations with minimal effort.
Thus our contributions increase the usability and effectiveness of RW algorithms.

Future work will relate to using information from the image to automatically deter-
mine K , which needs to be set high enough to maintain accuracy. However, since the
effect of a larger K is seen mostly in the offline phase which doesn’t effect interactivity,
we currently simply err on the side of caution when selecting K .
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Abstract. Changes in corpus callosum (CC) size are typically quanti-

fied in clinical studies by measuring the CC cross-sectional area on a

midsagittal plane. We propose an alternative measurement plane based

on the role of the CC as a bottleneck structure in determining the rate

of interhemispheric neural transmission. We designate this plane as the

Minimum Corpus Callosum Area Plane (MCCAP), which captures the

cross section of the CC that best represents an upper bound on inter-

hemispheric transmission. Our MCCAP extraction method uses a nested

optimization framework, segmenting the CC as it appears on each candi-

date plane, using registration-based segmentation. We demonstrate the

robust convergence and high accuracy of our method for magnetic res-

onance images and present preliminary clinical results showing higher

sensitivity to disease-induced atrophy.

1 Introduction

The corpus callosum (CC) is an anatomic structure that acts as a communication
bridge connecting the two brain hemispheres [1]. Certain neurological diseases
are known to affect the shape and size of the CC. In particular, there have
been numerous studies correlating CC measurements to multiple sclerosis [2],
schizophrenia [3], autism [4], and many other mental and physical ailments. The
accurate measurement of CC area changes is dependent on the repeatable iden-
tification of the cross-sectional plane of interest in all studied images. In previous
studies, changes in CC size have been quantified by measuring its sagittal cross-
sectional area on a midsagittal plane (MSP).

MSP identification approaches can be classified as either symmetry- or feature-
based. Symmetry-based approaches assume bilaterally symmetric hemispheres,
with the MSP chosen to maximize this symmetry. Published approaches sug-
gest different symmetry criteria; e.g., intensity ratios [5], cross-correlation [6],
or edge-based [7]. In feature-based approaches, the MSP is defined as the plane
best matching the cerebral interhemispheric fissure. The Hough transform [8],
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orthogonal regression of B-spline snakes [9], and minimization of white matter
area (including the cerebellum) [10], are examples of the feature-based approach.

It has been shown that even small errors in the MSP selection confound the
interpretation of actual CC area changes due to pathology [11,12]. Therefore, it
may be clinically more meaningful to define the plane for CC atrophy measure-
ment according to the characteristics of the CC itself rather than more global
attributes such as brain symmetry or the interhemispheric fissure.

It is known that the cross-sectional area of the CC is proportional to the num-
ber of nerve fibers passing through it [1], and correlates with neural transmis-
sion [13, 14, 15, 16]. Therefore, in this paper, we propose adopting the minimum
CC cross-sectional area as the primary factor in defining the bottleneck (upper
bound) of interhemispheric communication and hypothesize that the minimum
CC cross-sectional area is a potentially more representative measure of CC de-
generation as compared to areas of other cross sections.

We emphasize that we are proposing a new plane for the measurement of CC
atrophy, and not a new criterion for MSP extraction. We refer to this plane as
the Minimum CC Area Plane (MCCAP). We note that multiple planes in a given
brain may have the same minimum CC area. However, since we postulate that
all of these planes restrict the neural transmission similarly, the identification of
any one of these planes results in satisfying our objectives for measuring the CC’s
structural health. We also note that the rate of CC degeneration may not be
uniform for the whole CC and hence it is possible that the parameters defining
the MCCAP may vary over time for the same patient.

2 Method

2.1 Overview and Definitions

We extract the MCCAP from a brain magnetic resonance imaging (MRI) volume
by first defining an objective function that measures the cross-sectional area Acc

of the CC in a given extracted plane. Then, using an iterative optimization
procedure, Acc is minimized with respect to the set of plane parameters Pext

(Fig. 1). Using an ASL coordinate system, the parameters of Pext are the angles
Rx and Ry (in degrees) between the plane normal vector and the grid axes in
the anterior and superior directions, respectively, and the distance Tz (mm) of
the plane from the origin. The CC is segmented on every candidate plane by
deformably registering a pre-segmented 2D template image from the same MRI
volume to the extracted slice on the candidate plane. An alternative approach
that one might suggest is to pre-segment the whole CC-bridge in 3D and find
the plane with minimum CC area within the segmented volume. However, by
using registration-based segmentation we avoid the complications of a full 3D
segmentation, which is difficult to validate, even for anatomical experts.

2.2 Template Preparation

To create the template for the deformable registration step (Sec. 2.3), we extract
the central sagittal slice from the MRI volume and provide an expert-segmented
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Fig. 1. Flow diagram of our method

for finding the MCCAP. There are

4 primary steps. 1) A 2D slice is

extracted (upper right) from the

volume using Pext. 2) The pre-

segmented 2D template is registered

(lower right) to the extracted slice

through deformable registration. 3)

The displacement field from the reg-

istration step is applied to the seg-

mentation of the 2D template to seg-

ment the CC on the extracted slice.

4) The CC area and its derivatives

with respect to Pext are used (upper

left) for updating the values of Pext

for the next iteration. Steps 1–4 are

repeated until convergence.

CC on this slice. This central slice is positioned, either during acquisition or
with post-processing, to align with the MSP. We hypothesize that most MSPs
are spatially not very far from the MCCAP because the CC narrows from both
sides toward the center of the brain and hence only a small spatial transformation
is needed to reach the MCCAP from the MSP. In addition, we employ a multi-
level optimization (Sec. 2.5) to further reduce the chances of converging onto a
local minimum between the MSP and the MCCAP.

2.3 Deformable Registration-Based Segmentation

We nonlinearly register the presegmented 2D template to the extracted slice and
apply the deformation field to the CC segmentation on the template to segment
the CC on the extracted slice [17]. The area of the deformed CC on the tem-
plate is taken to be the area of CC on the extracted slice. We use deformable
registration using the discrete optimization (DROP) method [18] because it is
initialization-free, does not require gradient calculations, and the Markov ran-
dom field energy it adopts is optimized quickly using an efficient primal dual
approach [19]. We use the sum of squared intensity differences as the similarity
metric because the template and target come from the same scan.

2.4 Area Optimization

We minimize Acc with respect to Pext. During each iteration of the optimizer,
∂Acc

∂Tz
, ∂Acc

∂Rx
and ∂Acc

∂Ry
are calculated using central differencing. A sequential

quadratic programming method is employed for optimization. The optimizer
updates an estimate of the Hessian of the Lagrangian at each iteration using the
BFGS formula [20, 21]. We set the lower and upper search bounds empirically
at −2.0◦ and 2.0◦ for Rx and Ry, and at −2.0 mm and 2.0 mm for Tz. The
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bounds are in place largely for computational tractability, but they also ensure
that the optimizer does not converge to a degenerate case in which a plane does
not intersect with the CC bridge and has therefore zero CC area.

2.5 Multi-level Optimization

In addition to initializing with the MSP, to further decrease the possibility of
converging to a local minimum of the MCCAP, we use a multi-level optimization
scheme, where, in each step, the level of image smoothness is decreased and the
optimization algorithm is initialized at the MCCAP parameters from the previ-
ous step. Smoothing is realized via 3D isotropic Gaussian filters with standard
deviations: 10, 5, 3, 2, 1.8, 1.6, 1.4, . . . , 0.6, 0.4, and 0.2 mm (set empirically
based on 3D visualizations of the variations in CC area over the entire search
space, computed using brute force search in several sample MRI volumes). The
size of each filter in each dimension is five times the standard deviation.

3 Results

We performed three experiments. In the first two experiments (Sec. 3.1 and Sec.
3.2), we used 3D T1 MRI brain scans of 20 normals from the internet brain seg-
mentation repository (IBSR)(http://www.cma.mgh.harvard.edu/ibsr/). Each
volume consists of 60 to 65 coronal slices, each of dimensions 256 × 256, and
was positionally normalized using the midpoints of the decussations of the ante-
rior and posterior commisures and the midsagittal plane at the level of posterior
commisure as points of reference for rigid transformation [22]. The repositioned
scans were then re-sliced into 3 mm thick coronal slices with 1 × 1 mm pixels.
In the third experiment (Sec. 3.3), we used 3D T1 MRI axial brain volumes of
10 secondary progressive MS patients and 5 normals. Each dataset dimension is
256 × 256 × 160, with voxel size 1.17 × 1.17 × 1 mm. The MSP was extracted
by an MRI technologist trained on the Philips Achieva 3.0 Tesla scanner by
initiating a 3-plane localizer in the coronal, axial, and sagittal planes, using the
interhemispheric fissure as the internal landmark, and correcting for ear to shoul-
der tilt on the coronal plane and right to left rotation on the axial plane. We
use an MSP obtained by careful manual placement because it gives us greater
confidence in accuracy than automatic MSP methods that would still have to
be visually inspected.

3.1 Achievement of Global Minima

We show that the MCCAP area found by the proposed optimization method is
generally very close to the ground truth. We performed a brute force (BF) search
in the space of Tz, Rx and Ry, with search resolution 0.1 mm, 0.1◦, and 0.1◦,
respectively, and calculated the CC area on each slice to find the minimal CC
area, up to the resolution of the search parameters. The upper and lower limits on
Pext were set as in Sec. 2.4. We compared the CC areas on the MCCAP using our

http://www.cma.mgh.harvard.edu/ibsr/
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Fig. 2. Normalized error (%) in MCCAP areas (shown in logarithmic scale) is cal-

culated as the difference between the MCCAP area computed by either optimization

method and the minimum CC area computed by brute force, normalized by the min-

imum brute force area. The results from the multi-level optimization method is in

general closer to the ground truth (global optimum). Log(x+1) plot is used to take

care of zero and negative values.

optimization algorithm with single- (Sec. 2.4) and multi-level optimization (Sec.
2.5) with BF results. With BF considered as ground truth, the error is computed
as: Normalized Error (%) = (AreaMCCAP - AreaBF) / AreaBF×100% (Fig. 2). In
all cases except one, the minimum area from multi-level smoothing optimization
is within 3.12% of the corresponding brute force result. In 7 cases, the minimum
area from multi-level method is even smaller than brute force result due to the
limited resolution of brute force search. The multi-level method produced a lower
MCCAP area in comparison to the single-level in 85% of the cases (17 out of 20
subjects) by up to 26%. In the remaining 3 cases, the CC areas on the MCCAP
found using the single-level optimization are slightly smaller (within 1.4%) than
the multi-level counterpart, which may be due to the parameters of the multi-
level smoothing resulting in over fitting of the optimizer at lower resolutions.
This supports the assertion that the multi-level method yields results closer to
the ground truth.

To investigate the uniqueness of the MCCAP, we compared the MCCAP
parameters from the multi-level and brute force methods, and found that the
parameters of the extracted planes can be substantially different (differences in
Tz = 0.5 ± 1.2 mm, Rx = 0.51 ± 0.66◦, and Ry = 0.65 ± 0.82◦), even when
their computed minimal areas are very close. This supports the intuition that
the MCCAP is not necessarily unique for a given brain MRI volume.

3.2 Quantitative Results for Method Robustness

To evaluate the robustness of our method, we compared the CC areas on the
MCCAP in all 20 subjects for different initializations with respect to a default
initialization of Tz = Rx = Ry = 0. The different initializations simulate minor
variations in head position or slice angle, assuming some effort has been made



22 N. Changizi et al.

−2 −1 0 1 280
85
90
95

100
105

Translation parameter (T  )

−2 −1 0 1 280
85
90
95

100
105

First rotation parameter (R  )

A
ve

ra
ge

 n
or

m
al

iz
ed

 C
C

 a
re

as

−2 −1 0 1 280
85
90
95

100
105

Second rotation parameter (Ry)

z

x

Fig. 3. Averaged normalized MCCAP

areas for different initializations (while

varying each parameter, the other two
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ization. Convergence of our method to
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area for different initializations demon-

strates the robustness of the proposed

method.

to center the volume. Fig. 3 shows that our method is robust to a wide range
of initializations and is likely to converge very closely to a global minimum.
The variance in MCCAP areas in all initializations is less than 1.4%. Also note
that comparing the mean error between the MCCAP and brute force (from
section 3.1) which is 1.08% with the 9–10% reduction in Fig. 3 shows that we
recover approximately 90% of area difference between MSP and brute force.

3.3 MCCAP vs. MSP in Multiple Sclerosis Patients

We compared the discriminatory value of the CC areas calculated using an MSP
vs. the MCCAP in distinguishing between multiple sclerosis (MS) patients and
healthy controls. The means and standard deviations of the CC areas computed
using the MSP and two MCCAP optimization methods are shown in Fig. 4.
The multi-level smoothing optimization seems to be the best method at dis-
tinguishing the two groups. Note the larger separation of areas between the
MS and normal groups using MCCAP multi-level optimization, as compared to
the MSP. The area reduction for the normals (∼12%) is much lower than for
the patients (∼50%), which we attribute to the true 3D shape differences be-
tween the groups. We quantified the advantage by computing the standardized
mean differences between the normal and MS groups for MSP and MCCAP
values using (Normal − MS)/

√
σNormal

2/nNormal + σMS
2/nMS, where σ is the
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standard deviation of each group and n is the sample size. If a method yields
a bigger standardized mean difference, this suggests that it is better at dis-
tinguishing the two groups. The standardized mean difference for multi-level
optimization is 10.51 which, compared to 7.97 for the MSP, is a 24% increase.
Further, the p-values, associated with rejecting the hypothesis that the two pop-
ulations come from the same distribution, show statistically significant differ-
ences between the normal and the MS subjects for all of the tested methods:
pMSP = 1.94e-5, pMCCAP−single = 2.82e-6, pMCCAP−multi = 1.4e-7. These initial
results are supportive of our hypothesis that the interhemispheric communica-
tion bottleneck is an important bio-marker for MS, and that the MCCAP is
better motivated than MSP to measure this bottleneck.

4 Conclusion

The plane with minimum CC area is proposed for the first time as the plane for
studying CC atrophy. This choice is based on the hypothesis that the MCCAP is
the cross section that is most representative of the bottleneck of interhemispheric
transmission. We have developed an accurate and largely automatic method that
employs an optimization process for extraction of the MCCAP along with the
simultaneous segmentation of the embedded CC. We have shown that our opti-
mizer converges closely to the global optimum area and is robust with respect to
initialization. Preliminary results demonstrate better class separation between
MS patients and normal subjects when the areas from the MCCAP are com-
pared to those from an MSP. Future work includes longitudinal studies with
larger data sets and more rigorous statistical tests (e.g. not necessarily assuming
a normal distribution) to assess the usefulness of the MCCAP in monitoring
disease progression and response to therapy.
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Abstract. In order to evaluate the quality of segmentations of an im-
age and assess intra- and inter-expert variability in segmentation perfor-
mance, an Expectation Maximization (EM) algorithm for Simultaneous
Truth And Performance Level Estimation (STAPLE) was recently devel-
oped. This algorithm, originally presented for segmentation validation,
has since been used for many applications, such as atlas construction
and decision fusion. However, the manual delineation of structures of in-
terest is a very time consuming and burdensome task. Further, as the
time required and burden of manual delineation increase, the accuracy
of the delineation is decreased. Therefore, it may be desirable to ask
the experts to delineate only a reduced number of structures or the seg-
mentation of all structures by all experts may simply not be achieved.
Fusion from data with some structures not segmented by each expert
should be carried out in a manner that accounts for the missing informa-
tion. In other applications, locally inconsistent segmentations may drive
the STAPLE algorithm into an undesirable local optimum, leading to
misclassifications or misleading experts performance parameters.

We present a new algorithm that allows fusion with partial delin-
eation and which can avoid convergence to undesirable local optima in
the presence of strongly inconsistent segmentations. The algorithm ex-
tends STAPLE by incorporating prior probabilities for the expert per-
formance parameters. This is achieved through a Maximum A Posteriori
formulation, where the prior probabilities for the performance parame-
ters are modeled by a beta distribution. We demonstrate that this new
algorithm enables dramatically improved fusion from data with partial
delineation by each expert in comparison to fusion with STAPLE.

1 Introduction

Among numerous tools for the evaluation of automatic segmentation algorithms
with respect to manual delineations [1,2,3,4], an algorithm named STAPLE (for
Simultaneous Truth And Performance Level Estimation) [5] was proposed by
Warfield et al. as a novel way to compute simultaneously a reference segmenta-
tion and performance parameters from a set of segmentations. This algorithm
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is very versatile as it allows the evaluation of intra- and inter-rater variability
as well as the comparison of segmentation algorithms with respect to multiple
manual segmentations. It has therefore been used for many applications. Among
them, it has been either embedded in new atlas construction methods [6], uti-
lized to fuse segmentation decisions in multiple atlas-based segmentation [7], or
to compute atlas segmentations from registered manual delineations [8].

Manual delineation is a very time consuming and burdensome task, even more
when several structures have to be segmented in each image. Applications of
manual segmentation, such as delineation of brain structures for neuroscience
research, may be accelerated, and the quality of each segmentation improved, by
having more experts who each delineate fewer structures. Some structures may
then be missing in each rater segmentation. Performance estimation however
requires observations of segmentation decisions of each structure by each rater.
This can cause STAPLE to fail to provide accurate estimates of the reference
standard and expert performance parameters. It would therefore be extremely
valuable to take into account the missing structures to get accurate estimates
of the reference and performance parameters. This would also help for existing
datasets delineated in clinical conditions where structures are missing.

With this objective, Landman et al. [9] proposed an ad-hoc solution by fixing
the parameters for missing structures and ignoring background voxels. This ap-
proach cannot be extended easily to take into account any prior on the expert
parameters. This would however be valuable as the estimation of the parameters
and reference segmentation may be incorrect when strong inconsistencies exist
between the input segmentations. Inconsistent delineations may indeed lead the
algorithm to an undesired local maximum where the performance parameter es-
timates converge to values incompatible with our prior information about rater
performance. We can introduce an explicit prior model for rater performance
parameters to drive the estimation algorithm to a better local optimum.

We propose a new algorithm that incorporates a prior probability for the
performance parameters estimated through STAPLE. This is performed by ex-
tending the expression of the expected value of the complete data log-likelihood
to a Maximum A Posteriori formulation incorporating prior probabilities as a
beta distribution on each performance parameter. We applied our algorithm to
label fusion with missing structures, and demonstrate its efficiency for improving
label fusion and reducing manual rater delineation burden.

2 Method

2.1 Summary of STAPLE

We first summarize the principle of STAPLE [5]. It takes as an input a set
of segmentations from J experts (either manual or automatic segmentations).
These segmentations may be binary or multi-category segmentations, i.e. sev-
eral structures are delineated with each structure represented by one specific
label. The labeling of each voxel, in an image of I voxels, provided by the seg-
mentation generators is referred to as segmentation decisions dij , indicating the
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label given by each expert j for voxel i, i ∈ [1 . . . I]. The goal of STAPLE is
then to estimate both a reference standard segmentation T , and parameters
θ = {θ1, . . . , θj , . . . , θJ} describing the agreement between each expert and the
reference standard. Each θj is represented by an L × L matrix, where L is the
number of labels, and θjs′s is the probability that the expert j gave the label s′
to a voxel i when the reference standard label is s, i.e. θjs′s = P (dij = s′|Ti = s).

If the reference standard was known, then estimating the performance pa-
rameters for each expert would be straightforward. However, as this reference
standard is unknown, an Expectation-Maximization approach [10,11] is used to
estimate T and the expert performance parameters through the maximization
of the expected value of the complete data log-likelihood Q(θ|θ(k)):

Q(θ|θ(k)) =
∑

i

∑
j

∑
s

Wsi log(θjdijs) (1)

where Wsi denotes the posterior probability of T for label s: P (Ti = s|D, θ(k)).
The EM algorithm, which is guaranteed to converge to a local maximum, pro-
ceeds to identify the optimal estimate θ̂ by iterating two steps:

– E-Step: Compute Q(θ|θ(k)), the expected value of the complete data log-
likelihood given the current estimates of the expert parameters at iteration
k: θ(k). This requires computing P (T |D, θ(k)), i.e. the Wsi values [5].

– M-Step: Estimate new performance parameters θ(k+1), maximizing Q(θ|θ(k)).

2.2 Introducing Priors: A Maximum a Posteriori Formulation

We consider the possibility of utilizing a prior probability for the performance
parameters to modify the local maximum to which the estimator converges.
This can be done by utilizing Maximum A Posteriori (MAP) estimation rather
than Maximum Likelihood. MAP estimation is equivalent to augmenting the ex-
pected value of the complete data log-likelihood Q(θ|θ(k)) with a term log(P (θ))
corresponding to the prior probability of the parameters:

QMAP (θ|θ(k)) = Q(θ|θ(k)) + log(P (θ)) (2)

As the performance parameters for each label are independent, P (θ) can be
expressed as a product of the independent probabilities P (θjs′s). The appropriate
form for the prior probability density function for each parameter θjs′s must be
chosen. Several properties are desirable for this prior distribution:

– θjs′s is a probability and therefore must take its values in [0, 1],
– it must be able to model any prior on the parameters (close to 1 e.g. diagonal

parameters, close to 0 e.g. non-diagonal parameters, or uniform prior),
– a function for which the logarithm is easily obtained as well as its derivatives.

The beta distribution, Bα,β , is particularly well suited to these requirements.
Its support ranges between 0.0 and 1.0 and it allows, based on two parameters
α and β, to consider a broad range of prior distributions for the parameters for
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each expert (particularly the specific combination α = β = 1 corresponds to the
uniform prior used in the regular STAPLE). Further, the relative weight of each
prior in Q can be modified by modeling the prior distribution as:

(Bα,β(x))γ =
(

1
Z
xα−1(1 − x)β−1

)γ

(3)

with γ ≥ 0.0 a scaling parameter. Z is the normalizing constant of the beta distri-
bution. Moreover, the logarithm and the derivatives of Bα,β are easily computed.

2.3 Solving the MAP Formulation in the Multi-category Case

We associate each parameter θjs′s with a prior defined as a γ-weighted beta dis-
tribution (Bα,β(x))γ . The new expected value of the complete data log-likelihood
function for the expert j is then expressed as:

Q′
MAP (θj |θ(k)) = γ

∑
s′

∑
s

(
(αjs′s − 1) log(θjs′s) + (βjs′s − 1) log(1 − θjs′s)

)
+
∑

i

∑
s

Wsi log(θjdijs) (4)

The computation of the posterior probability of the reference standard segmen-
tation P (T |D, θ(k)) remains the same as in [5]. It indeed only depends on the
current estimates θ(k) and not on the prior on these parameters. However, the
M-Step is modified by the prior distribution on the parameters.

M-Step: A Fixed Point Iterative Solution. The new estimates of the expert
performance parameters are computed by differentiating Q′

MAP with respect to
each θjs′s and equating the derivatives to 0 under the constraint that

∑
s′ θjs′s =

1. This leads to the following system for the parameters of each expert j:

θjs′s =

(∑
i:dij=s′ Wsi

)
+ γ(αjs′s + βjs′s − 2) + γ

βjs′s−1

θjs′s−1∑
n′

[(∑
i:dij=n′ Wsi

)
+ γ(αjn′s + βjn′s − 2) + γ

βjn′s−1

θjn′s−1

] (5)

In this form, we can readily see that, for a particular label s and the set of
decisions s′, the expression in the numerator is calculated once for each s′ and the
denominator is simply the sum of the numerators. When using a uniform prior
on parameters (αjs′s = βjs′s = 1) this system further simplifies to the regular
STAPLE M-Step [5]. It also admits a closed form in two specific cases: first in the
binary case, where the non-diagonal parameters are entirely determined by the
values of the diagonal parameters, and also when all prior parameters βjs′s = 1.

In the general multi-category case, with βjs′s �= 1, this system of equations
does not admit any closed form solution. We therefore propose a simple iterative
method to solve this system of equations. Equation (5) is a continuous mapping
of the form θj = f(θj), with f : ]0, 1[N→]0, 1[N (where N is the number of
parameters to compute for expert j). The iterative approach consists of applying
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the f mapping recursively to the current estimate, i.e. computing the sequence
{xn}n≥1 where xn+1 = f(xn) until convergence to the fixed point. Because of
the configuration of the mapping f , Schaefer’s fixed point theorem applies, which
guarantees that a fixed point solution to this system (θj = f(θj)) exists.

The {xn} sequence can be initialized from the previous parameters estimates
θ
(k)
j or from the regular STAPLE parameters estimates. These initializations

ensure that the sequence rapidly converges to the fixed point θ(k+1)
j = f(θ(k+1)

j ).

3 Results

We have applied our algorithm to multi-label segmentations fusion with missing
data. The manual segmentation of all structures in the entire brain is very long
and costly. Repeated segmentations of the same images are necessary to estimate
intra- and inter-rater variability, but this further increases the burden on each
rater. It would be much more practical if each rater could focus on only a subset
of structures, therefore lowering the segmentation burden of each rater. However
this leads to segmentations in which some structures are missing and in which
different error rates, associated with different raters, are present.

To simulate this situation, we have used a database of 15 adult images (T1
images, size 256 × 256 × 175, 1 mm3) where all structures (CSF, subcortical,
cortical and cerebellar grey matter, white matter, cerebellar white matter) were
delineated over the whole brain (see images (a,c,e,g) on Fig. 1). For each im-
age, we then removed randomly 4 structures out of 6 (by replacing their labels

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1. Database of Segmentations. Individual manual segmentations registered
on an average image. (a,c,e,g): original segmentations, (b,d,f,h): segmentations with 4
missing structures. Legend: red, blue, green: cortical, sub-cortical and cerebellar grey
matter, yellow: white matter, pink: CSF, cyan: cerebellar white matter and brainstem.
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with background label 0, see images (b,d,f,h) on Fig. 1) in such a way that all
structures are segmented an equal number of times overall subjects.

We have aligned these images in a common template using Guimond et al.’s
method [12], and run STAPLE first without taking into account missing struc-
tures (regular STAPLE algorithm as proposed in [5]). Then, we have run MAP
STAPLE with a weight γ = 10, assuming a prior distribution close to 1 (α = 5,
β = 1.5) on diagonal elements for the delineated structures, on the background
for missing structures, and a prior close to 0 (α = 1.5, β = 5) on other pa-
rameters. These results as well as a regular STAPLE on the dataset without
missing structures are presented in Fig. 2. Another option to account for miss-
ing structures would be to consider the case where raters were asked to delineate
structures on an image where voxels are initially given an illegal label (e.g. -1)
and ignore in STAPLE those voxels with the illegal label. We implemented this
option with and without priors on parameters and the conclusions were similar.

(a) (b) (c)

(d) (e) (f)

Fig. 2. Results on Label Fusion with Missing Data. (a,d): reference label fusion
(all structures used), (b,e): label fusion with a third of the segmentations, (c,f): label
fusion with a third of the segmentations with prior information.

Not taking into account the missing structures in the STAPLE algorithm
leads to erroneous label fusion. We can indeed see on images (b) and (e) in
Fig. 2 that the interface between cortical grey matter and white matter gets
segmented as the background. Because missing structures are not taken into
account, experts who segmented the structures obtain poor performance scores



Incorporating Priors on Expert Performance Parameters 31

and the background becomes the most typical structure in this region. On the
contrary, when taking into account the missing structures (images (c) and (f))
by introducing an appropriate prior for the performance parameters values, the
label fusion is much closer to what would be expected and also very close to
regular STAPLE with all structures.

Table 1. Quantitative Evaluation of MAP STAPLE. Dice scores between the
STAPLE reference estimated from all segmentations (images (a,d) on Fig. 2) and from
the dataset with missing delineations using the regular STAPLE or MAP STAPLE.
Legend: CGM, CeGM, SCGM: cortical, cerebellar and sub-cortical grey matter, WM,
CeWM: brain and cerebellar white matter, CSF: cerebrospinal fluid.

Structure CGM CeGM SCGM WM CeWM CSF
Regular STAPLE 0.678 0.959 0.957 0.866 0.940 0.939
MAP STAPLE 0.939 0.960 0.958 0.947 0.939 0.939

This qualitative evaluation is confirmed by the Dice scores (shown in Table 1)
between the results from the two methods and the reference segmentation ob-
tained from all structures. The MAP STAPLE formulation therefore facilitates
the accurate estimation of the reference segmentation and performance param-
eters by enabling accurate label fusion when expert raters are each asked to
delineate only some of the brain structures.

4 Conclusion

We have presented a new algorithm to incorporate in STAPLE prior information
for each of the expert performance parameters. This is obtained by utilizing a
Maximum A Posteriori formulation for the expected value of the complete data
log-likelihood and modeling the prior probability for each expert performance
parameter with a beta distribution, whose parameters α and β allow for any
prior distribution. We have derived a simple fixed point iterative solution for
the performance parameters estimates for the most general multi-category case.
Further, we identified specific cases where closed forms can be derived.

The MAP formulation we have presented may have many applications in vali-
dation studies and label fusion. We have illustrated our algorithm on a database
with missing delineations (e.g. some structures are not segmented and assigned
the background level), showing how MAP STAPLE allows to deal with these im-
ages and produce meaningful results. This experiment is particularly interesting
as it will allow in the future for the design of validation experiments with multi-
ple experts and multiple structures while minimizing the delineation burden for
the experts. Apart from this application, this algorithm may be used to drive the
STAPLE algorithm out of undesirable local maxima and obtain realistic tissue
classifications even in the presence of strongly inconsistent input segmentations.
This could be of great interest in the future to take into account registration
errors or inconsistencies among manual segmentations.
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In the future, we will use this algorithm to define new validation protocols with
a lower delineation burden on the experts. This could be achieved for multiple
structures as proposed here, or, for large structures, by asking the experts to
delineate different slices and fuse them using our multi-category MAP algorithm,
assigning each slice with a different label. Finally, the parameters α, β for each
θjs′s and the weight γ may have an important effect on fusion results. We will
perform a cross-validation study on these parameters and determine if γ can be
optimized automatically to get the best trade-off between prior and data.
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Abstract. We present a method for automatically segmenting the blood

vessels in optic nerve head (ONH) centered spectral-domain optical co-

herence tomography (SD-OCT) volumes, with a focus on the ability to

segment the vessels in the region near the neural canal opening (NCO).

The algorithm first pre-segments the NCO using a graph-theoretic ap-

proach. Oriented Gabor wavelets rotated around the center of the NCO

are applied to extract features in a 2-D vessel-aimed projection image.

Corresponding oriented NCO-based templates are utilized to help sup-

press the false positive tendency near the NCO boundary. The vessels

are identified in a vessel-aimed projection image using a pixel classifica-

tion algorithm. Based on the 2-D vessel profiles, 3-D vessel segmentation

is performed by a triangular-mesh-based graph search approach in the

SD-OCT volume. The segmentation method is trained on 5 and is tested

on 10 randomly chosen independent ONH-centered SD-OCT volumes

from 15 subjects with glaucoma. Using ROC analysis, for the 2-D vessel

segmentation, we demonstrate an improvement over the closest previous

work with an area under the curve (AUC) of 0.81 (0.72 for previously re-

ported approach) for the region around the NCO and 0.84 for the region

outside the NCO (0.81 for previously reported approach).

1 Introduction

Spectral-domain optical coherence tomography (SD-OCT) is a noncontact, non-
invasive imaging technique used to obtain high resolution images of the retina
or optic nerve head (ONH). It is a powerful modality to qualitatively assess reti-
nal features and pathologies or to make quantitative measurements of retinal or
ONH morphology.

Due to the fact that the retinal blood vessels absorb the wavelengths of light
used in SD-OCT, the vessels in these volumes are mostly not directly visible.
However, this causes vessel shadows to appear below the position of the vessels.
As reported by Wehbe et al. [1], the retinal vessels are located right above the
vessel shadows in the z-direction of the OCT volume and these shadows can be
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used to detect the location of the vessels. The segmentation of vessels in SD-
OCT could lead to a more objective diagnosis of diseases, be used for OCT-to-
OCT or OCT-to-fundus registration, help remove the influence of vessels (when
desirable), and aid in the detection of other retinal anatomic structures.

However, vessel segmentation in SD-OCT volumes of the ONH is not a trivial
problem for a number of reasons. 1) The vessel shadows have a weak visibility
in OCT due to the 3-D structure of the ONH. 2) Many vessels can overlap in
regions, especially the region inside the neural canal opening (NCO), where the
individual vessels cannot be discerned. 3) The presence of the NCO boundary,
which crosses with the vessels, causes false positives for the vessel segmentation.
4) The vessel shadows have a decreased contrast with the background within the
NCO, due to more variable tissue properties in the ONH.

Niemeijer et al. [2] previously presented an automated vessel segmentation al-
gorithm for SD-OCT volumes of the ONH. In their algorithm, they first created a
2-D projection image from the 3-D volume and then utilized a pixel classification
approach to segment the vessels in the projection image. Features were computed
using Gaussian filter banks. However, their approach mainly segmented the ves-
sels in the region outside the NCO and the vessels inside the NCO were excluded
from the analysis. In addition, the algorithm exhibited a large numbers of false
positives near the NCO. For example, the top row of Fig. 1 shows the NCO
boundary (blue arrows) and typical false positives (red arrow) near the NCO
from Niemeijer’s vessel segmentation approach.

In this work, we present a 2-D pixel classification algorithm to segment the
blood vessels in SD-OCT volumes centered at the ONH, with a special focus
on better identifying vessels near the NCO (Section 2.2). We approach this by
incorporating pre-segmented NCO location (Section 2.1) information into the
classification process. We then utilize these 2-D vessel profiles to segment the
3-D vessels in the SD-OCT volumes (Section 2.2).

2 Methods

2.1 Neural Canal Opening Pre-segmentation

In order to incorporate the NCO information into the 2-D vessel classification
process, a graph-theoretic approach is first applied to identify the location of the
NCO [3]. More specifically, the ONH-centered raw OCT volume is first flattened
by identifying four intraretinal surfaces using a graph-search-based multilayer
segmentation algorithm in 3-D, fitting a thin-plate spline to a segmented surface
by ignoring the central ONH region, and then translating the columns so that
this surface becomes a flat plane [4]. For surface 2, 3, and 4, the average posi-
tions outside an estimated NCO region are radially interpolated into the inside
region. A 2-D projection image is obtained by computing the mean intensity
values from a small number of slices between the interpolated surface 2 (orange)
and 4 (yellow) (Fig. 1e). Thus the 3-D NCO segmentation problem is converted to
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1. Niemeijer’s vessel segmentation approach and our neural canal opening seg-

mentation. (Top row) An example illustration of the NCO boundary (indicated with

blue arrow) and false positives of NCO (indicated with red arrow) by Niemeijer’s ves-

sel segmentation approach [2]. (a) Central slice of an OCT volume. (b) Corresponding

fundus image. Note that the blue-arrow indicated contour is the NCO boundary. (c)

OCT projection image. (d) Vessel segmentation result showing the typical false posi-

tives near the NCO. (Bottom row) An example illustration of our NCO segmentation

algorithm [3]. (e) 3-D four surface segmentation with the interpolation of the radial

average positions outside the estimated NCO to inside the NCO for surface 2 (orange),

3 (green), and 4 (yellow). (f) NCO-aimed projection image from the layer between

the interpolated surface 2 and 4. Segmented NCO and cup overlapping with (g) the

projection image and (h) a cross-sectional slice of the OCT volume.

a 2-D problem. The projection image is referred as the “NCO-aimed projection
image” (Fig. 1f). The outer boundary in the projection image corresponds to the
NCO and the inner boundary corresponds to the cup at the level of the NCO
reference plane.

In order to perform the graph search, the NCO-aimed projection image is
transformed to polar coordinates by unwrapping from the geometric center of
the image. A signed edge-based term favoring a dark-to-bright transition from
the transformed projection image is used as the cost function. In our case, the
unwrapped cost image can be modeled as a weighted, directed graph similar to
the one described by Li et al. [5] but reduced to a two-dimensional problem.
We use the graph search to simultaneously segment the optimal NCO and cup
boundaries. The NCO and cup boundaries are finally smoothed using a B-spline.
The bottom row of Fig. 1 illustrates the NCO-aimed projection image creation
and NCO pre-segmentation.
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2.2 Blood Vessel Segmentation

For the 2-D vessel segmentation, oriented Gabor wavelets around the center of
the NCO are utilized to extract features in a 2-D vessel-aimed projection image.
The corresponding oriented NCO-based templates are utilized along with the
Gabor wavelets to suppress the false positive tendency near the NCO boundary.
A supervised pixel classification algorithm is applied to automatically segment
the blood vessels in the vessel-aimed projection image. Based on the 2-D ves-
sel location information, the 3-D vessels are detected by applying a triangular-
mesh-based graph search to the isotropic SD-OCT volume [6]. These steps are
described in more detail below.

Vessel-aimed projection image creation. The main difficulty of vessel seg-
mentation within SD-OCT volumes is the weak visibility of the vessel pattern.
In the previous approach [2], they proposed to use a 2-D projection of the ves-
sel pattern from the 3-D volume to segment vessels. They compared two dif-
ferent projection images: the “naive” projection image computed by averaging
the whole OCT volume which decreased the contrast between the vessels and
background and the “smart” projection image computed by averaging the layer
between surface 2 and 4 which provided a good contrast. However, the “smart”
projection image also had some disadvantages. For example, near and inside the
NCO, the layer between surface 2 and 4 would frequently become very thin (and
be subject to layer segmentation errors) and thus the projection image would not
necessarily demonstrate an optimal contrast between vessels and background in
this region.

In this work, we create a new type of projection image by averaging the layer
between surface 2 and an under planar surface defined by the deepest position
of the top surface. In columns for which the deepest position is above the inter-
polated surface 4, the projection image is created as that used for the “smart”
projection image. The created new projection is referred as the “vessel-aimed
projection image”. Compared with the “naive” and “smart” projection images
[2], the vessel-aimed projection image relies less on the surface segmentation
and can take advantage of the vessel information inside the NCO. An illustra-
tion of the bounding surfaces for the three different projection images is shown
in Fig. 2a.

2-D vessel segmentation. In the vessel-aimed projection image, the blood
vessels generally radially distribute around the NCO center. Gabor wavelets
demonstrate some desirable characteristics: spatial frequency, spatial locality,
and orientation selectivity. The nature of the Gabor wavelets makes them well
suitable for the feature generation of the blood vessel detection. Recall that a
Gabor wavelet ψμ,ν(z) [7] can be defined as:

ψμ,ν(z) =
||kμ,ν ||2

σ2
e−

||kμ,ν ||2||z||2
2σ2

[
eikμ,νz − e−

σ2
2

]
, (1)

where z = (x, y), || · || is the norm operator, μ and ν define the orientation and
spatial frequency scale of the Gabor kernel, and σ is related to the standard
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Illustration of the 2-D vessel segmentation using our approach and Niemeijer’s

approach. (a) The bounding surfaces used for the creation of three potential projection

images: “naive” (bounding surfaces of whole volume as indicated with green arrows),

“smart” (orange surface 2 and yellow surface 4 as indicated by yellow arrows), and

“vessel-aimed projection image” (orange surface 2 and dashed red surface where possi-

ble as indicated with red arrows; same as “smart” where the red dashed surface is above

the interpolated surface 4). (b) Vessel-aimed projection image as used in this work. (c)

A schmatic illustration of the Gabor wavelet responses and the NCO-based templates

oriented at 165 degrees. Blue arrow = NCO contour. Purple arrows = template pair

centered on the NCO boundary. (d-e) 2-D vessel segmentation posterior probability and

thresholded binary images of our approach. (f) 2-D vessel segmentation of Niemeijer’s

approach. (g-h) 3-D vessel segmentation of our approach and Niemeijer’s approach.

derivation of the Gaussian window in the kernel and determines the ratio of the
Gaussian window width to the wavelength. The wave vector kμ,ν is defined as

kμ,ν = kνe
iφμ , (2)

where kν = kmax

fν in which kmax is the maximum frequency and fν is the spatial
frequency between kernels in the frequency domain. φμ = πμ

n in which n is the
total number of orientations. Based on the vessel profiles, in our application, we
choose kmax = π

2 , σ ∈ {1, 2, 3}, f=
√

2, ν ∈ {1, 2, 3}, n=18, and μ ∈ {0, ..., 17}.
Additionally, to increase the signal and decrease the noise, three spatial fre-

quency scale additions are applied between ν=2 and ν=3 in σ ∈ {1, 2, 3}. To-
gether a Gabor wavelet family with 3 Gaussian scales, 3 spatial frequency scales,
3 spatial frequency scale additions, and 18 orientations is generated.

In order to suppress the false positive tendency near the NCO, the oriented
templates are utilized along with the corresponding Gabor wavelets in the feature
space (Fig. 2c). Specifically a pair of pre-defined templates is first created based
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on the previously segmented NCO location information and so-called NCO-based
templates. The center of the template pair is that of NCO and the center of each
of them lies on the NCO boundary. The shapes of the templates are defined as:

{x1 − xc − r1}2

W 2
+

{y1 − yc}2

H2
= 1, (3)

and
{x2 − xc + r2}2

W 2
+

{y2 − yc}2

H2
= 1, (4)

where (xc, yc) is the NCO center, r1 and r2 are the distances of the center of
each template to the center of NCO, and W and H are the maximum width
and height of the templates which are defined based on prior knowledge of NCO
profiles.

The NCO-based templates rotate in the same orientations with the Gabor
wavelets. Wherever the templates rotate, the average background pixel value is
assigned to those regions. The main advantage of the NCO-based templates is
that it could suppress the false positive tendency from the NCO and at the same
time does not affect the true positive of vessels, based on the assumption that
the vessels are not parallel with the NCO.

After the feature extraction, each feature is normalized to zero mean and unit
variance. A k-NN classifier with k = 31 is applied for the pixel classification.
Each pixel in the vessel-aimed projection test image is assigned a soft label.
Together they form a posterior map. Finally a threshold filter is utilized on the
posterior probability map to obtain a binary segmentation image and a voting
filter is applied to remove noise and small vessels. Fig. 2d and 2e show an example
result of the 2-D vessel segmentation.

3-D vessel segmentation. In order to perform the 3-D vessel segmentation,
the flattened SD-OCT is first transformed to an isotropic volume. Surface 1
and 2 are also correspondingly transformed. As mentioned above, the blood
vessels themselves in the SD-OCT volume of the ONH are not visible. What we
measure in the 2-D vessel-aimed projection image are the vessel shadows. The
“true” vessels are located right above the vessel shadows [1]. We assume the
vessels are approximately the three middle voxels between surface 1 and 2 in the
z-axis of the SD-OCT volume. An initial binary 3-D vessel model is created by
projecting the segmented 2-D vessel locations to the layer of the three middle
voxels. A marching cube algorithm is applied to the initial model to construct
a triangular mesh. The magnitude of the Gaussian derivative of the volumetric
SD-OCT is combined with that of the vessel-aimed projection image to create
the cost image. The globally optimal surfaces of the 3-D vessels are achieved
by solving a maximum flow problem on the constructed triangular-mesh-based
graph from the combined cost image. An example of the 3-D vessel segmentation
result is shown in Fig. 2g.
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3 Experimental Methods and Results

15 ONH-centered SD-OCT volumes from 15 subjects with glaucoma are ac-
quired using a CirrusTM HD-OCT (Carl Zeiss Meditec) device. Each volume
has 200 × 200 × 1024 voxels corresponding to 6 × 6 × 2 mm3. Of the 15 vol-
umes, 5 of them are randomly selected as the training set and 10 of them the test
set. Each pixel in the vessel-aimed projection image is manually labeled as “ves-
sel” or “non-vessel” with the help of experts. The small vessels by observation
are excluded from the “vessel” category and labeled as “non-vessel”.

The performance of the 2-D vessel segmentation is evaluated using Receiver
Operating Characteristic (ROC) curves. Our present approach of the 2-D vessel
segmentation is compared with Niemeijer’s approach [2] in terms of the areas
under the curves (AUC) for the regions around the NCO (±15 pixels from the
NCO boundary) and outside the NCO boundary. An example visual comparison
of the 2-D and 3-D vessel segmentation between Niemeijer’s and our approach
is illustrated in the bottom row of Fig. 2. Fig. 2e and 2g show the results of the
2-D and 3-D segmentation of our approach and Fig. 2f and 2h of Niemeijer’s
approach, respectively. As can be seen, the clear false positive near the NCO
exists in the previous approach. However, in the present approach, it is greatly
suppressed and the vessels around the NCO are detected. Table 1 demonstrates
the 2-D quantitative segmentation results by comparing the AUCs of the region
outside the NCO and the region around the NCO (±15 pixels from the NCO
boundary) of the two algorithms. Our present algorithm gives a greater AUC in
both regions, especially in the region around the NCO.

Table 1. AUC comparison of 2-D vessel segmentation of our and Niemeijer’s algor.

AUC of the region around NCO AUC of the region outside NCO

Our algor. Niemeijer’s algor. Our algor. Niemeijer’s algor.

0.81 0.72 0.84 0.81

4 Discussion and Conclusion

We developed an approach for automatically segmenting the retinal blood vessels
by focusing on the region around the NCO in ONH-centered SD-OCT volumes.
To our knowledge, this is the first such algorithm to segment the blood vessels
by utilizing a-priori NCO segmentation information, along with rotated Gabor
wavelets and corresponding rotated NCO-based templates to suppress the false
positive tendency near the NCO. The result is promising considering the diffi-
culty of the vessel segmentation in ONH-centered SD-OCT volumes. Compared
with the closest previous work, the 2-D vessel segmentation results are greatly
improved both visually and quantitatively, especially for the region around the
NCO. However, the accuracy of the 2-D vessel segmentation is still not perfect.
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Some of the potential error sources include the following. 1) The OCT data were
from patients with glaucoma and the image quality (noisiness and contrast) was
not as good as that from normal scans, thereby causing the broken appearance of
some of the smaller vessels. 2) The expert may not have always traced very small
vessels they deemed “incomplete,” whereas the algorithm would have found por-
tions of these vessels, thus (incorrectly) causing the identification of these regions
as false positives. In the future, for the 2-D vessel pixel classification, the texture
information around the NCO might be helpful for more accurately identifying
the NCO and blood vessels. For the graph construction, using an arc-weighted
graph [8] and considering the graph column crossing problem of vessel bifurca-
tions [9] would also help improve the algorithm performance.
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4. Garvin, M.K., Abràmoff, M.D., Wu, X., Russell, S.R., Burns, T.L., Sonka, M.: Au-

tomated 3-D intraretinal layer segmentation of macular spectral-domain optical co-

herence tomography images. IEEE Trans. Med. Imag. 28(9), 1436–1447 (2009)

5. Li, K., Wu, X., Chen, D.Z., Sonka, M.: Optimal surface segmentation in volumet-

ric images – a graph-theoretic approach. IEEE Trans. Pattern Anal. Machine In-

tell. 28(1), 119–134 (2006)
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Abstract. Identification of Gad-enhancing lesions is of great interest in

Multiple Sclerosis (MS) disease since they are associated with disease

activity. Current techniques for detecting Gad-enhancing lesions use a

contrast agent (Gadolinium) which is administered intravenously to high-

light Gad-enhancing lesions. However, the contrast agent not only high-

lights these lesions, but also causes other tissues (e.g. blood vessels) or

noise in the Magnetic Resonance Image (MRI) to appear hyperintense.

Discrimination of enhanced lesions from other enhanced structures is

particularly challenging as these lesions are typically small and can be

found in close proximity to vessels. We present a new approach to address

the segmentation of Gad-enhancing MS lesions using Conditional Ran-

dom Fields (CRF). CRF performs the classification by simultaneously

incorporating the spatial dependencies of data and labels. The perfor-

mance of the CRF classifier on 20 clinical data sets shows promising

results in successfully capturing all Gad-enhancing lesions. Furthermore,

the quantitative results of the CRF classifier indicate a reduction in the

False Positive (FP) rate by an average factor of 5.8 when comparing

to Linear Discriminant Analysis (LDA) and 1.6 comparing to a Markov

Random Field (MRF) classifier.

1 Introduction

Multiple Sclerosis (MS) is a disorder of the central nervous system and is a
common disease among young adults. Magnetic Resonance Imaging (MRI) is
widely used to study this disease and assess its temporal progress. In particu-
lar, MRI is well established as the optimal imaging technique for detecting MS
lesions which are believed to be highly correlated with the presence of disease
activity in the absence of clinical changes. Moreover, using a contrast agent (e.g.
Gadolinium) with T1-weighted (T1w) imaging can help to identify areas which
represent the initial stage of lesion development. It is generally believed that the
number and volume of enhancing lesions are important indicators of disease ac-
tivity in MS. These indicators have generally been determined by using operator
guided segmentation methods. However, in addition to being laborious and time
� This work was supported by NSERC Strategic Grant (350547-07).
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c© Springer-Verlag Berlin Heidelberg 2010
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consuming, manual detection is prone to intra - and - inter expert variability
making the analysis of the results very complicated. Therefore, it is desirable to
have a fully automatic segmentation scheme for detection of enhanced lesions
in studies with large ensemble of patient data. Unfortunately, automatic iden-
tification of enhanced lesions is a challenging task due to the presence of many
non-lesion enhancements, which appear as small regions and are very similar to
Gad-enhancing lesions (unlike T2-weighted lesions, Gad-enhancing lesions are
usually very small).

Even though there have been many studies for MS lesion detection on T2-
weighted (T2w) MR images, only a few have investigated assessment of enhanced
lesion detection. Bedell et al. [1] suggested using a special pulse sequence for T1w
with contrast (T1c) imaging which increases the contrast between blood sig-
nal enhancement and lesion enhancement. In addition to the need for a special
pulse sequence, this algorithm also requires user inputs for initial seed place-
ment for detection of cerebro-spinal fluid to eliminate enhanced areas caused
by circumventricular organs particularly in the region of choroid plexus. Miki et
al. [2] proposed using a fuzzy connectivity to delineate enhanced lesions. Their
approach is not fully automatic, as it requires human confirmation after each
enhanced area is found by the algorithm. The study by Narayana et al. [3] also
uses special pulse sequence as in [1]. Although it is a fully automatic approach,
it requires prior segmentation of T2w lesions. In this paper, we propose a novel
fully automatic probabilistic technique which is one step towards a clinical tool
for detection of enhanced lesions. Our framework does not need human interven-
tion and also uses only the commonly acquired MRI sequences (i.e T1w before
and after contrast, T2w and FLAIR). Furthermore, our approach does not rely
on pre-segmentation of T2w lesions in other sequences. We model the enhanced
lesion identification problem as a probabilistic classification task in which for
each instance (i.e. pixel in the MRI) we seek to find the best labeling. This is
achieved by computing the posterior distribution over the joint distribution of
labels given the observations. A deterministic decision can be sought afterwards
in order to have a binary classification result.

Our framework uses a discriminative model based on Conditional Random
Fields (CRFs) [4,5] to model the posterior distribution of labels. There are two
advantages to CRF-based models. First, they directly model the posterior dis-
tribution, and hence avoid modeling the joint distribution of observations and
labels. Modeling the joint distribution is a complicated and expensive task and
often leads to simplifying assumptions that may not generally be valid (especially
in the field of medical imaging). The second benefit of a CRF-based model is
that the the spatial dependencies among instances can be modeled in a principled
manner [5]. In order to model these dependencies, both labels of neighbouring in-
stances, as well as their observations are taken in to account. This is in contrast
to traditional approaches for modelling data dependencies (e.g. MRF), where
typically only the neighbouring labels are considered. Although consideration of
label dependencies may be sufficient in some applications, incorporating obser-
vation dependencies provides a more powerful source of information that can be
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exploited to achieve better classification results. Particularly, in the case of en-
hanced lesion identification, many False Positives (FPs) which occur due to the
enhancement of vascular structures can be avoided by incorporating the neigh-
bouring observations. The experimental results of applying the CRF classifier
on a multi-centre clinical data sets from patients with various stages of relaps-
ing remitting MS show significant improvements over traditional classification
approaches.

The remains of this paper is organized as follows: Section 2 reviews the back-
ground of the CRF and elaborates on our CRF-based classifier. We then present
the classification results of Gad-enhanced lesions in Section 3. Section 4 summa-
rizes the paper and discusses the possibilities for further developments.

2 Method

Traditional classification techniques such as Decision Trees, Linear Discriminant
Analysis (LDA) and Support Vector Machines (SVM) assume data instances are
independent and identically distributed. While this assumption is valid for many
data mining problems, in the context of image region labeling, it is important to
incorporate contextual information in the form of spatial dependencies between
pixels in the image. Since labels of neighbouring pixels are typically correlated,
integration of spatial information generally yields smoother and more reliable
results.

Markov Random Fields (MRF) have been extensively used to capture contex-
tual constraints by allowing the classification of one instance to depend on the
labels of neighbouring instances. In fact, MRF is a generative approach which
models the joint probability distribution of the image observations and their cor-
responding labels. Letting xi ∈ d and yi ∈ {1, 0} show the observation vector
and the label of the ith instance respectively, MRF models the posterior distri-
bution over all labels Y = {y1, ..., yn} given all observations X = {x1, ...,xn}
as:

p(Y|X) ∝ p(X,Y) = p(X|Y)p(Y) (1)

The priori distribution, p(Y), is commonly modeled as a Markov field based on
the neighbouring labels. Since this prior does not depend on the observations,
the label interactions are modeled neglecting the observed data. This may lead
to over smoothing of regions. Furthermore, for tractability purposes, the obser-
vations are assumed to be independent given the labels. Thus the likelihood can
be expressed with a simple factorized form of p(X|Y) = Πip(xi|yi). As a result
of this restrictive independence assumption, the interactions among observations
are not generally modeled in MRF.

Many discriminative approaches such as CRF [4], and its derivatives (Discrim-
inant Random Field (DRF) [5] and Support Vector Random Field (SVRF) [6])
have been proposed to overcome shortcomings of MRF by integrating dependen-
cies among observations into the model. In a discriminative framework, we di-
rectly model the posterior distribution p(Y|X) without building the joint distribu-
tion. Particularly, discriminative approaches relax the conditional independence
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assumption of the observations and allow modeling of observation dependent
interactions. Incorporating the neighbouring observations should help achieve
better classification results. Specifically, in the context of enhanced lesion iden-
tification, many FPs can be excluded, due to the fact that many vascular struc-
tures (especially those within CSF) have different neighbourhood observations
than enhanced-lesions.

As graphical models are widely used to represent probabilistic relationships
between instances, we continue using graphical notations to explain the formu-
lation of discriminative methods. In a graphical model G(V;E), instances are
shown with a set of nodes (V) and their conditional (in)dependencies are rep-
resented by (missing)edges (E). Inspired by the model suggested by Lafferty et
al. [4], CRF-based models formulate the posterior probability of labels given the
observations as:

p(Y|X) =
1
Z

Πi∈V φi(yi|X)Πi,j∈E ψi,j(yi, yj |X) (2)

where Z is the normalization term and φi is the “association” potential which
models dependencies between the label of the ith node, yi, and the set of all (or
a part of) observations X. ψi,j , is the “interaction” potential which represents
dependencies between the labels of neighbouring nodes given the observations
X. As it can be observed from the above expression, an important difference
between the prior distribution in MRF and the “interaction” potential in CRF
is the incorporation of observations for modeling the neighbourhood interactions
of labels. This implies that CRF can optimally learn the interaction of adjacent
labels based on their observations. One immediate advantage of this is to mod-
ify the smoothness among labels by taking into account the observed data and
therefore prevent over smoothing [5]. Moreover, we notice that observations are
not considered independent in the “association” term, in contrast to the con-
ditional independent assumption for observations that is usually made in MRF
models. In the following section we elaborate on how we model φi and ψi,j for
the problem of enhanced lesion detection.

2.1 Association Potential

Similar to previous work [5,7] we use LDA to capture the interactions of the
label of each instance and the observations. Even though φi can be a function of
all the observations in principle, to keep the model simple, we assume that only
the observations at each instance are included in the association potential [7,8].
Therefore, the association potential can be written as:

φi(yi = 1|xi) = σ(wT xi) =
1

1 + exp(−wT xi)
(3)

where w is the “association” parameter vector which is obtained in the training
phase (Section 2.3).
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2.2 Interaction Potential

The “interaction” potential in CRF allows for learning the relationships between
the neighbouring labels given the observed data. Accordingly, we define obser-
vation dependent terms for adjacent instances and use a set of parameters to
modulate the coupling between the labels of adjacent instances as well as their
observed data. In particular, we use the following expression for the interaction
potential:

ψi,j(yi, yj |x) = exp(yi, yjθ
T Fi,j) (4)

where θ is the “interaction” parameter vector obtained in the training phase
(Section 2.3). Fi,j = [f(xi,xj) 1] consists of a data dependent term, f(xi,xj),
as well as a constant. The data-dependent term computes the similarity of ad-
jacent observations to modulate the smoothness over neighbouring instances
accordingly. Moreover, the constant term takes into account the interaction of
adjacent labels.

2.3 Parameter Learning and Inference

Simultaneously determining the optimal parameters of the “association” poten-
tial and the “interaction” potential can be performed numerically as a convex
optimization problem. The parameters of the model Θ = {w, θ} are learned in
the training phase within a maximum likelihood framework as follows:

L(Θ) = log p(Y|X,Θ) (5)
= ΣM

m=1[(ΣiεV φi(yi|Xm) + Σi,jεE ψi,j(yi, yj |Xm)) − log Zxm ] (6)
Θ∗ = arg max

Θ
L(Θ) (7)

with M being the total number of training sets. Note that since the observation
is not modeled, the normalization term is a function of observations Xm for each
training set m. Once the parameters are learned during training, the problem of
classification is to find the most probable set of labels Y∗.

Y∗ = arg max
Y

p(Y|X,Θ) (8)

The inference problem can be solved with different approaches (e.g. iterated
conditional modes, graph cuts, belief propagation technique). We adapted a
loopy belief propagation algorithm [9] to solve this problem.

3 Experiments and Results

3.1 Data Pre-processing

We evaluate the performance of the CRF classifier on a multi-centre clinical data
set consisting of 25 multidimensional MRI volumes. This data set is acquired
from patients with relapsing remitting (RR) MS, all having a heavy load of
Gad-enhancing lesions (9 on average). Each acquisition is composed of three
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sequences: T1w (before and after contrast) T2w and FLAIR. All volumes are
3mm thick axial slices with 1mm × 1mm intra-plane resolution. For each patient,
the Gad-enhancing lesions were manually labeled by 3 experts resulting in a silver
standard where the “ground truth” lesion pixels result from a consensus among
the experts. Prior to classification, MRI data needs to be preprocessed in order
to correct for imaging artifacts. These pre-processing steps include bias-field
inhomogeneity correction using N3 [10] as well as removal of non-brain regions
from the MRI [11]. Furthermore, the intra-subject sequences are registered to
their T1-w space [12] and the intensity range of all sequences is normalized [13].

The CRF classifier is trained on 5 MRI volumes and tested on the remaining
20 and its performance is compared against LDA and MRF classifiers. The LDA
classifier is defined as in Eq 3 which only includes the “association” potential (i.e.
no spatial dependency is captured). Our MRF classifier is formulated similar to
CRF (Eq 2) where the only difference is that the “interaction” potential (Eq 4)
is modified to be only dependent on the labels (i.e., f(xi,xj) is removed). With
this definition, we highlight the improvements of CRF which are gained due to
incorporation of the data dependent term.

3.2 Qualitative Results

Figure 1 illustrates two qualitative examples of the classifier results. In each
row we show: (a) a T1c slice along with the classification results of the three
classifiers: (b) LDA, (c) MRF and (d) CRF. In each case, green and red colors
represent True Positives (TP) and FPs, respectively. The selected slice in the
first row has enhanced structures that are both lesions and non-lesions while
the example in the second row only has a heavy load of non-lesion enhanced
structures. As it can be seen, all three classifiers were able to capture enhanced
lesions (TP). However, CRF outperforms LDA and MRF in successfully deleting
all the FPs by using the neighbourhood intensity information (in addition to the
label information considered by MRF).

3.3 Quantitative Results

The performance of CRF is quantitatively evaluated against LDA and MRF.
To that end, the TPs and FPs are defined as follows: if more than 50% of a
lesion is captured, the region is counted as a TP, and any falsely detected region
with area greater than two pixels is considered a FP. The quantitative results
showed that all 141 Gad-enhancing lesions in the cohort of 20 test volumes were
detected by all three classification methods. The absolute number of FPs per
each patient is depicted in Figure 2(a). Comparing the results, we note that
CRF outputs significantly less FPs. In fact, the FP rate in the CRF results
is reduced by an average factor of 5.8 and 1.6 upon comparing to LDA and
MRF, respectively. It should be noted that many of the FPs, especially in the
CRF and MRF results are regions with only two pixels. Due to the presence of
Gad-enhancing lesions with an area of two pixels, no further post-processing was
applied to the classification results to eliminate FPs with small areas. Moreover,
comparison of the dice coefficient (Figure 2(b)) for the three classifiers suggests
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(a) (b) (c) (d)

Fig. 1. Two examples of the classification results. (a) T1w image, (b), (c) and (d)

classification results for LDA, MRF and CRF respectively. TPs and FPs are shown in

green and red, respectively.

an improvement by a factor of 2.1 and 1.3 over LDA and MRF, respectively.
However, it should be noted that since Gad-enhancing lesions are very sparse
and small, dice coefficient is not suited as a measure of choice for evaluation.
This is observed in cases 3, 4, 6, 9 and 17 where low values are observed even
though the algorithm performs acceptably in terms of TP and FP. Therefore, TP
and FP statistics present a more reasonable measure on classifier performance.

(a) (b)

Fig. 2. (a) Numbers of FPs and (b) Dice value for the 20 patients in all three methods

4 Discussion

In this paper we propose a new approach to address the problem of enhanced
lesion segmentation in MRI. Our framework uses a CRF-based classification tech-
nique to model the spatial relations of the data in a principled manner. Unlike
commonly used MRF approaches, where only spatial dependencies of adjacent la-
bels are modeled, the CRF classifier learns the interactions among neighbouring
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instances by simultaneously considering their labels and observations. Our clas-
sifier is validated on 20 multi-centre real clinical data set from RR MS patients
with varying loads of Gad-enhancing lesions. Since there are many non-lesion
enhanced structures in the T1c image, excluding FPs is of critical importance in
this problem. The experimental results show the advantage of incorporating data
spatial dependencies particularly to reduce the number of FPs by an average fac-
tor of 1.6 compared to MRF. However, in the current model, both “interaction”
and “association” potentials are assumed to have simplified linear models. In the
future, we will exploit more sophisticated models to increase the discrimination
power of the classifier, by considering shape-based neighbourhood information
(inspired by the fact that most vascular structures have line-like shapes). Fur-
thermore, we would also like to investigate the performance of the CRF classifier
for the more general problem of lesion segmentation in T2w MRI.
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Abstract. In this paper we propose a novel and robust system for the

automated identification of major sulci on cortical surfaces. Using mul-

tiscale representation and intrinsic surface mapping, our system encodes

anatomical priors in manually traced sulcal lines with an intrinsic at-

las of major sulci. This allows the computation of both individual and

joint likelihood of sulcal lines for their automatic identification on cor-

tical surfaces. By modeling sulcal anatomy with intrinsic geometry, our

system is invariant to pose differences and robust across populations and

surface extraction methods. In our experiments, we present quantitative

validations on twelve major sulci to show the excellent agreement of our

results with manually traced curves. We also demonstrate the robustness

of our system by successfully applying an atlas of Chinese population to

identify sulci on Caucasian brains of different age groups, and surfaces

extracted by three popular software tools.

1 Introduction

The automated identification of major sulci on the human cortex is a challeng-
ing problem with important applications in brain mapping[1]. While their form
and location can vary quite significantly, there is no difficulty for an anatomist
to observe the regularity of major sulci based simply on the geometry of corti-
cal surfaces regardless of their size, orientation, and the software used to extract
them from MRI images. From an engineering point of view, this simplicity is crit-
ical for a computational system to achieve the same level of robustness, which
essentially lies in its ability of modeling sulcal anatomy with the geometry of
cortical surfaces. To this end, we propose in this work a novel system for au-
tomated sulci identification by integrating local geometry, i.e., curvature, with
global descriptors derived from the Laplace-Beltrami eigen-system [2,3,4] and
intrinsic surface mapping [5].
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Fig. 1. Atlas construction

At the core of our system is an intrin-
sic atlas of major sulci that represents
prior knowledge in training data and en-
ables the integration of curvature informa-
tion into major sulci. This atlas-based ap-
proach is most related to learning-based
methods for sulci identification in pre-
vious work [6,7,8,9,10]. Principal compo-
nent analysis were used to model sulcal
basins [6] and sulcal lines on the sphere
[7]. Boosting methods were used in [9,10]. The Markovian relation of multiple
sulci was incorporated with graphical models [8,10]. The main novelty in our
system is that the modeling of cortical anatomy is based entirely on intrinsic
geometry, which eliminates the use of coordinates in conventional MRI atlases
such as the Talairach atlas. This makes our system robust to pose differences and
variations across populations. We demonstrate this robustness by using an atlas
constructed from a Chinese population to detect twelve major sulci on Caucasian
brains of different age groups and surfaces extracted by different software tools.

The rest of the paper is organized as follows. In section 2, we describe the
construction of the intrinsic atlas for the modeling of sulcal anatomy. The sulci
identification algorithm based on this atlas is developed in section 3. Experimen-
tal results are presented in section 4. Finally conclusions are made in section 5.

2 Atlas Construction

As illustrated in Fig. 1, there are two main steps in the construction of the atlas.
In the first step, a multiscale representation of the cortical surface is constructed.
In the second step, surface maps at a selected scale are computed to bring
manually traced sulcal lines to an atlas surface. We describe the two steps in
detail next.

2.1 Multiscale Surface Representation

t = 0. t = 10.

t = 100. t = 1000.
Fig. 2. Multiscale repre-

sentation of a cortical sur-

face

Let M = (V , T ) denote the triangular mesh represen-
tation of a cortical surface, where V and T are the set
of vertices and triangles. We construct the multiscale
representation of M by using the eigen-system of its
Laplace-Beltrami operator ΔM, which is defined as

ΔMf = −λf. (1)

The spectra of ΔM is discrete and we denote the
eigenvalues as λ0 ≤ λ1 ≤ · · · and the correspond-
ing eigenfunctions as f0, f1, · · · . To numerically compute the eigenfunctions,
we use the finite element method and solve a generalized matrix eigenvalue
problem[2,3,4].
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(a) (b)

Fig. 3. (a) Intrinsic feature functions. (b) Embedding in the feature space.

Let X(·, 0) : M → R3 denote the coordinate function on M, i.e., X(p, 0) = p
for p ∈ M. Using the eigen-system, we can express the heat diffusion of the
coordinate function as

X(p, t) =
∞∑

n=0

e−λntfn(p)
∫
M

fn(q)X(q, 0)dM (2)

By replacing the coordinates of the vertices on M with X(·, t), we have a mul-
tiscale representation of M. For numerical implementation, we approximate the
diffusion with the first 300 eigenfunctions that are computed efficiently with the
spectrum shift technique [11]. As an illustration, we show in Fig. 2 the multi-
scale representation of a cortical surface at the scale t = 0, 10, 100, 1000. With
the increase of the scale, we can see the surface exhibits more regularity that is
common across population. However, sulcal landmarks on the original surface
might be overly distorted in terms of length and angle if t is too large. In our
work, we usually choose t = 100 as a tradeoff between surface regularity and
landmark distortion.

2.2 Atlas Construction via Intrinsic Surface Mapping

To construct the atlas at a selected scale, we extend the intrinsic surface mapping
technique developed for sub-cortical surfaces in [5] to cortical surfaces. Given a
pair of surfaces Mt

1 and Mt
2 at a scale t, we compute two maps u1 : Mt

1 → Mt
2

and u2 : Mt
2 → Mt

1 by minimizing the following energy:

E =
∫
Mt

1

[ 3∑
j=1

αj
D(ξj

1 − ξj
2 ◦ u1)2 + αIC(I − u2 ◦ u1)2 + αH ‖ Ju1 ‖2

]
dMt

1

+
∫
Mt

2

[ 3∑
j=1

αj
D(ξj

2 − ξj
1 ◦ u2)2 + αIC(I − u1 ◦ u2)2 + αH ‖ Ju2 ‖2

]
dMt

2 (3)

where ξj
i (i = 1, 2; j = 1, 2, 3) are the feature functions defined on the surfaces

that characterize their intrinsic geometry. In each integral, the first term pe-
nalizes the difference of feature functions, the second term encourages inverse
consistency, and the third term uses the harmonic energy [12] for smoothness reg-
ularization, where Ju1 and Ju2 are the Jacobian of the maps. The regularization
parameters αD, αIC , αH control the weight of different terms.

To model the sulcal anatomy intrinsically, we define three feature functions
on cortical surfaces as shown in Fig. 3(a) by using the Reeb graph of the
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first and second eigen-function of its Laplace-Beltrami operator [5]. We can see
these functions characterize the frontal-posterior, superior-inferior, and medial-
lateral profile of the surface intrinsically. By projecting each point p ∈ Mt

i to
(ξ1

i (p) ξ2
i (p) ξ3

i (p)), we construct an embedding of each surface in the feature
space. As shown in Fig. 3(b), the two cortical surfaces align much better in the
embedding space, which enables us to find a good initial map between them by
simply looking for the nearest point on the other surface. Starting from the ini-
tial maps, we iteratively evolve them by solving a pair of PDEs on the surfaces
in the gradient descent directions [5].

By choosing one of the surface M in the training set as the atlas surface,
we compute the maps from all other surfaces in the training data to this atlas
surface M. All the manually traced sulcal lines can then be projected onto the
atlas surface as shown in the third row of Fig. 1. Since both the multiscale
representation and surface mapping are established via intrinsic geometry, we
denote the collection of sulcal lines projected onto the atlas surface M as the
intrinsic atlas of major sulci.

3 Automated Identification of Major Sulci

Using the atlas of major sulci, we develop in this section an automated system
for their identification on cortical surfaces. Given a new surface M, the skeletal
representation of its sulcal region is first computed based on the mean curva-
ture of M [13] as shown in Fig 4(a). The skeleton is decomposed into a set of
branches B = {B1, B2, · · · }, where each branch is a polyline on M. The mul-
tiscale representation Mt of M and the map u : Mt → M is then computed.
With the map u, the branches are projected onto the atlas surface and denoted
as B̂ = {B̂1, B̂2, · · · , }. Our goal is to extract anatomically consistent sulcal lines
from these skeletal branches.

Let Si = {S1
i , S

2
i , · · · , SJ

i } denote the set of training curves for the i-th sulcus
on the atlas surface. Given the prior model Si, the challenge is how to model the
likelihood of skeletal branches in B̂. The difficulty arises from the fact that B
contains only partial observations of major sulci as they frequently cross gyral
regions. To bridge the gap between the prior model of complete sulci and the
partial observation in skeletal branches, we propose below a projection operator
to model the likelihood of a branch on a major sulcus. Given a curve segment C
on M , its projection onto the training data Si is defined as:

PSi(C) = {y(x) ∈ Sj
i , x ∈ C|||x − y|| = minz∈Sj

i
||x − z||} (4)

where Sj
i = arg minj dH(C, Sj

i ) and dH is the Hausdorff distance. Given a
branch B̂k and its projection PSi(B̂k), we calculate the Hausdorff distance Dk =
dH(B̂k, PSi(B̂k), and the projection ratio Rk = ||PSi(B̂k)||/||B̂k||, where || · || de-
notes the length of a curve. Using the distance Dk and projection ratio Rk, we can
pick a set of candidate branches as N̂ = {B̂k ∈ B̂|Dk ≤ THD1, Rk ≥ THD2}
where THD1 and THD2 are thresholds which we choose as 15mm and 0.5 in
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our practice. The candidate branches are plotted together with the training set
over the atlas surface in Fig. 4(b).

(a) (b) (c) (d)

Fig. 4. (a) Skeletal branches of the

sulcal region. (b) Candidate branches

(black) together with the training

curves of the superior frontal sulcus.

(c) Sample paths (black) and the most

likely path (red). (d) The detected

curve on the original surface.

Using the candidate branches in N̂ , we
construct a directed graph to generate a
set of sample paths on M as candidate
curves for the sulcus. Given two nodes B̂p

and B̂q in N̂ , whose points are ordered
according to the indices of their projec-
tion on Si, we form a new curve Cp,q =
(B̂p, B̂q) by connecting the end point B̂e

p

of B̂p with the start point B̂s
q of B̂q. Once

again we compute the projection of Cp,q

onto Si to evaluate the likelihood of Bp

and Bq belonging to the same sulcus. Let
Dp,q and Rp,q denote the distance and projection ratio of Cp,q. If Rp,q ≥ THD2,
we add an edge from B̂p to B̂q and define the weight as 1

Dp,q||B̂e
p−B̂s

q ||
, where the

distance ||B̂e
p − B̂s

q || is included to encourage the connection of close branches.
Starting from any branch without parents, we perform random walks on the
graph to generate sample paths on the atlas surface. The probability of taking
an edge during any walk is in proportion to its weight.

Let Ci = {C1
i , C

2
i , · · · } be the set of sample paths for the i-th sulcus. For a

candidate curve, its distance to the training data is defined as:

d(Ck
i ;Si) = min

j
(d(Ck

i , S
j
i ) + d(Sj

i , C
k
i )) (5)

where d(·, ·) is the average distance from points on a curve to the other curve.
We also define the “sulcality” of each curve as:

Sulcality(Ck
i ) =

∑
B̂p⊂Ck

i

||B̂p||/||Ck
i || (6)

which measures how good the path follows the sulcal regions. We then define
the likelihood of each curve as

L(Ck
i |Si) = e−d(Ck

i ;Si)/Sulcality(Ck
i ) (7)

and choose the detection result as the sample curve in Ci with the maximum
likelihood. As an illustration, we show on M the set of sample paths and the
path with the maximum likelihood for the superior frontal sulcus in Fig. 4(c).
The branches in this path are then connected via a curvature-weighted geodesic
on the original surface to obtain the detected sulcus as plotted in Fig. 4(d).

Let Ci1 and Ci2 denote the candidate curves of the i1-th and i2-th sulcus, we
define the joint distance from a pair of curves Cp

i1 ∈ Ci1 and Cq
i2 ∈ Ci2 to the

training curves Si1 and Si2 as:

d(Cp
i1, C

q
i2; Si1, Si2) = min

j
(d(Cp

i1, S
j
i1) + d(Sj

i1, C
p
i1) + d(Cq

i2, S
j
i2) + d(Sj

i2, C
q
i2)) (8)
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The joint likelihood of the two curves is then defined as:

L(Cp
i1, C

q
i2|Si1, Si2) = e−d(Cp

i1,Cq
i2;Si1,Si2)/(Sulcality(Cp

i1)∗Sulcality(Cq
i2)) (9)

The joint detection results are the pair of curves in the sample space Ci1 × Ci2

achieving the maximum likelihood.

4 Experimental Results

In this section, we present experimental results on four different datasets, includ-
ing surfaces extracted from 3 software tools, to demonstrate our sulci detection
system.

4.1 Atlas Construction and Quantitative Validation

In the first experiment, we applied our method to pial surfaces extracted from
the 3T MRI images of 65 Chinese young subjects (18 ∼ 27 years) by Freesurfer
[14]. The left hemispheres were used in this work. Twelve major sulci as listed in
Table 1 were manually traced on each surface. We used 40 surfaces as training
data to construct the intrinsic atlas of major sulci, which is shown on the third
row of Fig. 1, and the algorithm developed in section 3 was used to identify
the twelve major sulci on the other 25 surfaces for testing and quantitative
validation. For robustness, the central and post-central sulcus were detected
jointly by maximizing the joint likelihood in (9). The other 10 sulci were detected
separately by maximizing the likelihood in (7).

(a) (b) (c)

Fig. 5. Detection results on testing data. (a)

Lateral view. (b) Medial view. (c) Overlay with

manually traced curves (black).

As an illustration, the results
from 4 subjects in the testing data
are plotted in Fig. 5. For bet-
ter visualization, we plotted the
detected curves on the surfaces
at the scale t = 10 in Fig. 5(a)
and (b). As shown in Fig. 5(c),
the automatically detected sulcal
lines align very well with manu-
ally traced sulci plotted in black.
Quantile statistics of two dis-
tances dam and dma of each sulcus
were listed in Table 1, where dam

is the distance from points on a
detected curve to the correspond-
ing manually traced curve, and
dma denotes the distance from
points on each manual curve to
the detected sulcus. For example,
the first number in the column of
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Table 1. Quantile statistics in testing data. (S1:central; S2:post-central; S3:pre-

central; S4:superior-temporal; S5:intraparietal; S6:inferior-frontal; S7:superior-frontal;

S8:olfactory; S9:collateral; S10:parietal-occipital; S11:cingulate; S12:calcarine.)

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

dam(mm)

70% 3.2 5.1 3.6 3.6 3.5 5.2 3.6 3.0 4.7 1.7 3.7 1.7

80% 3.6 8.2 4.8 4.8 4.6 8.2 5.6 3.3 6.6 2.3 5.1 2.1

90% 5.2 11.1 7.7 8.4 8.0 10.2 8.7 4.2 8.9 4.4 7.7 3.8

dma(mm)

70% 3.6 6.6 5.5 4.2 4.4 8.0 4.7 3.3 5.7 2.2 4.6 3.9

80% 4.6 9.3 7.8 6.4 6.5 9.8 6.9 3.7 7.7 3.4 6.9 7.3

90% 7.1 12.3 11.2 10.6 10.1 11.7 10.2 5.1 11.2 6.0 9.2 11.5

S1 means that 70% of the points on the automatically identified central sul-
cus are within a distance of 3.2mm to the manually traced curve. While there
is variability across different sulci, we can see the quantile statistics show the
automated results accurately capture the main body of the major sulci.

4.2 Robustness

Fig. 6. Row 1-4: results on elderly subjects. Row 5: results

on BrainSuite surfaces. Row 6: results on BrainVisa surfaces.

In the second ex-
periment, we applied
the atlas built from
the Chinese popula-
tion in the first ex-
periment to detect
sulci on three differ-
ent datasets of Cau-
casian brains. The
first dataset consists
of the left pial sur-
faces of eight elderly
subjects (63 ∼ 85
years) extracted by
Freesurfer. The sec-
ond dataset is com-
posed of the left pial
surfaces of two young
adults extracted by
BrainSuite [15]. The
third dataset consists
of white matter sur-
faces of two young
adults extracted by
BrainVisa [16]. For
better visualization, we also plot the detected curves on all surfaces at the scale
t = 10 in Fig. 6. These results demonstrate the robustness of our method across
ethnic and age groups, and different software tools for surface extraction.
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5 Conclusion

In summary, we have developed a novel system for the automated detection
of major sulci on cortical surfaces. Quantitative validations on twelve major
sulci showed excellent agreement between our system and manual tracing. We
also demonstrated the robustness of our system across different populations and
surface extraction tools. For future work, we will augment our system with the
intrinsic modeling of gyral landmarks to further improve its performance.
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Abstract. We present a new approach for quantifying the degradation of knee 
cartilage in the medial meniscal tear (MMT) model of osteoarthritis in the rat. A 
statistical strategy was used to guide the selection of a region of interest (ROI) 
from the images obtained from a pilot study. We hypothesize that this strategy 
can be used to localize a region of cartilage most vulnerable to MMT-induced 
damage. In order to test this hypothesis, a longitudinal study was conducted in 
which knee cartilage thickness in a pre-selected ROI was monitored for three 
weeks and comparisons were made between MMT and control rats. We ob-
served a significant decrease in cartilage thickness in MMT rats and a signifi-
cant increase in cartilage thickness in sham-operated rats as early as one week 
post surgery when compared to pre-surgery measurements.    

Keywords: Osteoarthritis, Preclinical MRI, Cartilage segmentation, Surface 
registration, Thickness statistics. 

1   Introduction 

One of the major hallmarks of osteoarthritis (OA) is degradation of the articular carti-
lage in weight bearing joints [1]. The morphology of the articular cartilage is consid-
ered to be the primary marker of OA progression. Magnetic resonance imaging (MRI) 
has been used to assess the anatomical/functional integrity of the knee structure and 
has shown great potentials in clinical studies [2][3][4][5][6]. However, in preclinical 
research where small animals are widely used to study the pathogenesis of OA and 
evaluate efficacy of drugs [7], the use of MRI has been limited due to the challenges 
of small animal in-vivo imaging and image analysis.  Because of mediocre image 
contrast and thin cartilage structure relative to the image resolution, the full extent of 
the cartilage surface and its spatial morphological variation cannot be accurately de-
termined in MR images of knee joints in small animal preclinical imaging without 
advanced image manipulation. 

This paper presents a MR imaging and data analysis method to assess knee cartilage 
in the rat medial meniscal tear (MMT) model. The MMT model is a surgically-induced 
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ployed by Pfizer Inc. Nothing should be interpreted as an opinion of NCTR/FDA. 



58 Z. Xie et al. 

model of OA that results in rapid degradation of cartilage [7]. Results from a previous 
in-house MRI study indicated that the MMT model induced cartilage degeneration in a 
similar region on the medial tibia for all rats. However, the degeneration was not no-
ticeable if we use the average thickness of whole cartilage as a metric. To maximize 
the sensitivity in detecting and quantifying MMT-induced morphological changes in 
articular cartilage, we propose a statistical strategy to guide the selection of a region of 
interest (ROI) on the medial tibia and hypothesize that this strategy can localize an area 
of cartilage most vulnerable to MMT-induced damage. To test this hypothesis, we 
performed a pilot study to identify the ROI based on the MR images of five MMT and 
six sham-operated rats. The same ROI was then applied to the images collected in a 
longitudinal study in which MR images of two groups of rats (MMT vs. sham) were 
scanned before surgery, and again one and three weeks after surgery. In order to de-
termine repeatability, every rat was re-scanned four times in one day. Average thick-
ness of the cartilage inside the predefined ROI was measured blindly for each image. 
Results show that the proposed method can detect MMT-induced cartilage degenera-
tion as early as one week post surgery.   

2   Materials and Methods 

2.1   Animals and Experimental Design 

All animal handling procedures were carried out in compliance with the NIH Guide 
for the Care and Use of Laboratory Animals under a protocol approved by the Pfizer 
Global Research and Development Animal Care and Use Committee. 

The first part of this experiment was a pilot study which was used to identify the 
regions of the cartilage that were most vulnerable to MMT-induced damage. Eleven 
male Sprague-Dawley rats (415±22g) were used in the pilot study. Five rats were 
randomly selected to receive MMT surgery and the other six rats served as a control 
(sham-operated) group. OA was surgically induced by transection of the medial col-
lateral ligament and medial meniscus of the femoro-tibial joint as described previ-
ously [8]. To reduce the bias caused by the pain of the surgery, rats in control group 
received sham preparation in which the medial collateral ligament was exposed, but 
not transected. Knee joint MR images were acquired three weeks after the surgery. A 
ROI was determined based on the thickness statistics of the medial tibial cartilage in 
these images. 

In the longitudinal scan-rescan study, eight male Sprague Dawley rats (MMT N = 
4, and sham N = 4) underwent MMT or sham surgery. MRI was performed prior to 
surgery and then again one and three weeks post surgery. In order to determine re-
peatability of the image acquisition, each animal was re-scanned four times during a 
single imaging session (one day). Rats were taken out of the magnet and removed 
from the cradle between the scans, their legs were massaged for 2 minutes and they 
were repositioned back into the cradle and MRI scanner. The average thickness of the 
cartilage inside the predefined ROI was computed from the acquired images. 

2.2   Image Acquisition 

Knee joint MRI was performed on a 7T Bruker Biospec scanner equipped with 12 cm 
ID gradient insert (up to 20 G/cm). Animals were anesthetized using isoflurane  
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(3% induction with 1.2-1.5% maintenance) in oxygen. Rats were placed in a supine 
position on heated cradle, their right knee was flexed to an angle of 105° and secured 
to the animal holder to prevent motion. An actively decoupled, curved quadrature 
receive-only surface coil (mouse brain coil, Bruker BioSpin) was placed on the knee 
and the cradle was then placed inside the magnet. RF excitation was delivered using a 
72mm ID birdcage volume resonator. An i.v. bolus of Magnevist® (0.4ml/kg), fol-
lowed by a constant infusion (0.44 ml/kg/hr) was delivered to improve synovial fluid-
cartilage delineation. Optimal slice planning was performed using information ob-
tained from quick orthogonal images in the coronal, axial and sagittal planes. High 
resolution 3D SPGR anatomical images were acquired in the sagittal plane with the 
following acquisition parameters: TE = 3.6ms, TR = 25 ms, FA = 30º, NA = 6, MTX 
=  512 × 170 × 64, resolution of 29 × 116 ×231 μm. The left pane of figure 1 shows 
the representative MR image of the knee joint of a rat. 

2.3   Image Analyses 

The tibia and tibial cartilage in collected images were segmented automatically using 
internally developed tools (see below). Segmentation results were reviewed and errors 
were manually corrected by a trained expert who was blinded to the treatment group. 
After the segmentation, a cartilage thickness map on the tibial surface from each im-
age was created and mapped to a template tibial surface. A statistical analysis was 
performed on aligned cartilage thickness maps to detect the regions where the carti-
lage thickness was significantly different between the MMT and control groups.  

The tibia was segmented for two purposes: first, it provided a spatial reference for 
the location of the cartilage which helped the segmentation of tibial cartilage; second, 
it was used to align cartilages from different images to identify the regions which 
were most vulnerable to MMT-induced damage. 

 

Tibia Segmentation. A surface-to-image registration method was used to segment 
the tibia on the MR image [9]. Briefly, we selected one MR knee joint image as a 
template and delineated the tibia in the image using a semi-automatic tool [10]. The 
segmentation was converted to a surface representation of the tibia. The template tibia 
surface was fitted to other MR images with weighted external force constraints in 
which weights and forces were determined by gradients and local intensity profiles 
obtained from images. To accomplish this fitting, edge points obtained from each MR 
image set were searched along normal directions of the template tibia surface and the 
local intensity profiles at these points were extracted and compared to those obtained 
from the template image. Correlation between intensity profiles was used to select the 
best-matched edge point. Transformations were then computed to minimize the sum 
of weighted square distance between transformed atlas surface points and their corre-
sponding best-matched edge points; the weights were again determined by the level of 
correlation between intensity profiles. To stabilize this fitting process, a sequence of 
transformations consisting of translation, rigid, affine, and multi-level B-splines, was 
employed to iteratively morph the bone surface of atlas into the individual tibial struc-
ture in the MR image. An example of the segmentation result is presented in the right 
pane of figure 1.  
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Cartilage segmentation. Various methods have been proposed for cartilage segmen-
tation [11][12]. Our method segments medial tibial cartilage in three sequential steps: 
cartilage edge identification, tibia evolution, and cartilage labeling. The first step 
identifies edge pixels of the cartilage from all edge pixels detected by the Canny-Edge 
algorithm in the whole image. The edge identification is guided by the prior informa-
tion about the intensity pattern of the cartilage edge and its location relative to the 
tibia surface. The model is similar to the one described by Kapur et al. [13]. In the 
second step, the identified edge pixels attract a curve to the cartilage boundary based 
on a deformable model. Since the tibial cartilage is a thin tissue connected to the tibia, 
we expand the tibia boundary to the identified cartilage edge pixels rather than evolv-
ing a seed inside the cartilage. The final step labels the new included region of the 
tibia as tibial cartilage. An example of the segmentation result is presented in the right 
pane of figure 1. 

 

 

Fig. 1. MRI image of the knee joint (left) of a rat and its segmentation of tibia (green), femur 
(yellow), and tibial cartilage (magenta, right) 

 
ROI determination. The region of cartilage most vulnerable to MMT-induced dam-
age was identified using statistical parametric mapping based on the images from 11 
rats (MMT N = 5, and sham N = 6) in the pilot study. After cartilage segmentation, a 
cartilage thickness map was computed by sampling cartilage thickness estimates on 
each vertex of the tibial surface. One example of a cartilage thickness map is shown 
in the left pane of figure 2.  All cartilage thickness maps from 11 subjects can be 
aligned to a template by registering each individual tibial surface to the template tibial 
surface using the method described by Xie and Farin [14].  Once the thickness map is 
created and mapped to the template tibial surface, statistical analysis can be per-
formed at each vertex of the tibial surface across the subjects in the same way as pro-
posed by Lerch and Evans or by Worsley et al [15, 16]. The right pane of figure 2 
illustrates the procedure of this thickness statistical analysis.  
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Fig. 2. Cartilage thickness map on the tibial surface (left) and thickness statistical analysis 
(right). After aligning all cartilage thickness maps to the same template, cartilage thickness at 
the same vertex can be compared across the subjects to determine group differences. 

Using the thickness statistics, we created a p-value map which shows the signifi-
cance of the thickness difference between two groups at each vertex. The left picture 
of figure 3 shows the p-value map on the template tibial surface. The dark region has 
a p-value less than 0.001, which indicates that the cartilage thickness in these regions 
is significantly different between the two groups. The dark region in the middle of the 
cartilage was selected and the ROIs were programmatically delineated for the subse-
quent analysis of the regional cartilage thickness. The right pane of figure 3 shows the 
ROI defined on the tibial surface. 

 

  

Fig. 3. Left, p-value map after thickness statistical analysis between MMT and sham groups. 
Right, defined ROI (region enclosed by the red line) based on thickness statistical analysis. 

3   Results 

After images in the longitudinal study were collected and segmented, a thickness map 
was created for each image. The ROI defined from the pilot study was transformed to 
the thickness map by registering the template tibial surface to the tibial surface of the 
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subject. The average thickness of the cartilage inside the ROI was computed for every 
image.  

To compare each group, the ANOVA model included terms for Scan, Weeks, 
Group as fixed effects, and Scan×Weeks×Group as an interaction term. In order to 
consider the repeated measure, an animal within the scan was introduced as a random 
effect. Figure 4 shows the least squares mean of cartilage thickness and standard error 
for each group at each nominal time point (i.e. Weeks 0, 1 and 3).  
 

 
Fig. 4. Least squares means estimates for mean thickness over time and for each group of rats 

 
Based on the statistical analysis, the MMT group had significantly thinner cartilage 

compared to the sham group at weeks 1 and 3 (p= 0.0030 and p = 0.0181, respec-
tively). Within the MMT group, the cartilage thickness was significantly decreased at 
weeks 1 and 3 when compared to the pre-surgery scan at week 0 (p=0.0238 and p= 
0.0073, respectively). For the sham group, the cartilage thickness was significantly 
increased at weeks 1 and 3 compared to week 0 (p=0.0238 and p= 0.0073, respec-
tively). 

The coefficient of variation (CV) of the mean thickness was computed for each rat. 
For the MMT group the CV varied between 4.87% and 27.53%.  For the sham group, 
the CV was in the range between 4.45% to 20.62%.  

To verify that MMT induced damage was located on a similar region as we de-
tected in the pilot study, we performed thickness statistics for the data collected at 
weeks 1 and 3. Figure 5 shows the p-value map between the MMT and sham groups 
at week 1 (left) and week 3 (right). We can see the dark region (with p-value less than 
0.001) located in a similar region to the one from the pilot study (left pane of the 
figure 3).  
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Fig. 5. P-value map generated by statistical comparison between MMT and Sham controls 1 
week (left) and three weeks (right) post surgery 

4   Discussion 

In this study we demonstrated that MMT surgery induces a consistently located carti-
lage lesion on the medial tibial plateau of the rat knee joint. We have proposed a 
method to identify this region based on MR images from a pilot study. The identified 
region was then used as the region of interest to monitor MMT-induced cartilage 
degradation in a longitudinal study. Results of the longitudinal study showed for the 
first time that the proposed method could detect a significant decrease in cartilage 
thickness as early as one week post surgery, which indicates the increased sensitivity 
of the proposed approach. Surprisingly, the sham-operated group showed the increase 
in the cartilage thickness, which may be attributed to several factors. First, the ani-
mals used for this study were still growing, and sham data may reflect just this. Sec-
ond, the surgery by itself may serve as a stimulator of cartilage growth, which means 
that similar studies should always be performed with sham operated animals as a 
control group. In our study we showed that the use of sham operation increased the 
power of statistical analysis as seen in figure 4. 

The biggest concern of this study is the repeatability. In the worst case, the CV of 
the mean thickness of 4 repeat scans was 27.53%. We believe this is due to limited 
image resolution and contrast to noise ratio. Our in-plane resolution is 29 × 116 μm. 
Considering the average cartilage thickness is 200 μm, one pixel in the image will 
account for at least 15% of the cartilage thickness. The situation is even worse if we 
take into account the big slice thickness which is 231 μm). A slight difference in im-
aging position and orientation may cause a significant variation in the final measure-
ment. Higher image resolution is highly desired to improve the repeatability and sen-
sitivity for evaluation of potential protective effects of disease modifying compounds 
for osteoarthritis in the MMT model. 

Theoretically, this approach could be translated to human studies, which will also 
benefit from the higher resolution (due to larger objects and wide availability of fast 
parallel imaging techniques) and better contrast in clinical MRI. 
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Abstract. This paper proposes a novel technique for constructing a neu-

roanatomical shape complex atlas using an information geometry frame-

work. A shape complex is a collection of shapes in a local neighborhood.

We represent the boundary of the entire shape complex using the zero

level set of a distance function S(x). The spatial relations between the dif-

ferent anatomical structures constituting the shape complex are captured

via the distance transform. We then leverage the well known relationship

between the stationary state wave function ψ(x) of the Schrödinger equa-

tion −�
2∇2ψ + ψ = 0 and the eikonal equation ‖∇S‖ = 1 satisfied by

any distance function S(x). This leads to a one-to-one map between ψ(x)

and S(x) and allows for recovery of S(x) from ψ(x) through an explicit

mathematical relationship. Since the wave function can be regarded as a

square-root density function, we are able to exploit this connection and

convert shape complex distance transforms into probability density func-

tions. Furthermore, square-root density functions can be seen as points

on a unit hypersphere whose Riemannian structure is fully known. A

shape complex atlas is constructed by first computing the Karcher mean

ψ̄(x) of the wave functions, followed by an inverse mapping of the esti-

mated mean back to the space of distance transforms in order to realize

the atlas. We demonstrate the shape complex atlas computation via a

set of experiments on a population of brain MRI scans. We also present

modes of variation from the computed atlas for the control population

to demonstrate the shape complex variability.

1 Introduction

In the past two decades, human brain MRI analysis has attracted immense at-
tention for the purposes of diagnosis and treatment of neurological diseases. In
this context, the construction of neuroanatomical shape atlases of the human
brain has been of particular interest and its importance has been emphasized
in a number of recent studies [1]. In brief, an atlas provides a reference shape
or image for a population of shapes/images which can be useful in numerous
applications including but not limited to, statistical analysis of the populations,
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the segmentation of the structures of interest and the detection of the disease
regions based on the shape variations between the atlas and the subject etc.
Most existing atlases are based on isolated, single anatomical shapes [11,10,12]
which do not contain any inter-structural information for example, the spatial
relationships among different neighboring structures and the effect of volume
shrinkage or expansion of structures in its neighborhood. However, many neu-
rological disorders are diagnosed by the structural abnormalities (e.g. volume
change) ascribed to several brain structures rather than a single structure. Ma-
nia, which is most often associated with bipolar disorder serves as an example, as
in [2] all the brain structures associated with the neural pathways were examined
and the authors claimed that the patients with mania have a significant overall
volume difference in the regions including the thalamus, hippocampi and the
amygdala. In [3], Seidman et al. concluded that one remarkable vulnerability of
schizophrenia, is the structural abnormalities in the thalamus and the amygdala-
hippocampus region. Therefore, a neuroanatomical shape complex atlas which
captures the structural relationships will be of primary clinical importance.

2 Previous Work

In the context of atlas construction for multiple brain structures, most of the ef-
forts in the past were focussed on building full brain image atlases. For instance,
in [5,4], several image atlas construction methods for the entire brain were pro-
posed based on 3-D brain MRI. However, it is a nontrivial task to extend these
techniques to shape atlas construction. Therefore, we will not be discussing these
image based methods any further in this paper and only focus on shape atlas
construction instead. One of the most common shape representations in the lit-
erature is to represent shapes using feature point sets or landmarks. As in [6],
several research articles on point set atlas construction for anatomical structures
(e.g. hippocampi) have been published where they model the shapes using mix-
ture of densities and estimate the unbiased shape atlas via information theoretic
methods. In[8], Cootes et al. developed a diffeomorphic statistical shape model
which analyzes the parameters of the deformation field instead of the traditional
landmark positions. Other methods that represent shapes in 2D using paramet-
ric curves or in 3D using parametric surfaces have also received considerable
attention in the literature [7]. Since statistical shape analysis in curve/surface
space is very difficult, methods using this representation have usually resorted
to computing means etc. of spline parameters. In [9], a characteristic 3D shape
model dubbed the m-rep, is proposed and based on this representation, an atlas
is constructed via computation of the Karcher mean of the population [10]. Re-
cent work in [11] describes an interesting model for continuous spherical shapes
used to analyze the anatomical shape differences in the hippocampus of control
group and blind subjects.

To summarize, in all the techniques discussed thus far, the shape atlas is de-
veloped only for a single structure. In this paper, we propose a novel technique
for constructing an atlas of a neuroanatomical shape complex of multiple struc-
tures. The novelty lies in the relationship we exploit between the stationary state
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Fig. 1. Illustration of our framework. We visualize the distance transform and square-

root density in the 2-D case. Each sample data turns out to be a red point on the high

dimensional sphere and the blue point is the Karcher mean.

wave function ψ(x) of the Schrödinger equation −�
2∇2ψ+ψ = 0 and the eikonal

equation ‖∇S‖ = 1 for the Euclidean distance transform problem which serves
as a “bridge” that connects the distance transform representation of the shape
to its square-root-density. The choice of a square-root density representation is
motivated by the fact that the manifold of square root densities is a unit Hi-
bertian sphere and its geometry is well understood. This allows us to use the
intrinsic geometry of the sphere to compare shapes represented by square-root
densities. Additionally, the inter-structural relationship is well captured in our
distance transform representation of the shape complex. In section 4, we demon-
strate our technique by presenting examples of atlas construction for the shape
complex of 8 structures from a population of 15 3-D brain MRI with all the
structures labeled by an expert neurologist.

3 Shape Complex Atlas

3.1 From Distance Transforms to Square-Root Density Functions

In our model, each shape complex data sample is represented by the distance
transform function, the zero level set of which gives the individual boundaries of
the various shapes constituting the shape complex. At least two decades of effort
have gone into level set and distance function representations of shapes [13] - the
principal advantage being the ability to combine different shapes into a single
scalar field representation. However, since variational and partial differential
equation methods are at the foundation of level sets, it is a non-trivial task
to employ statistical methods on scalar field distance function representations.
Alternatively, there exists a class of methods that perform shape analysis by
representing single shapes using probability density functions [6], and obtaining
very good results. For instance, despite sacrificing the ability to represent a
set of shapes or a shape complex, in this framework, the mean, variance and
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principal modes of the shape population are all easily computed. One of the main
contributions of this paper is to successfully bridge the two disparate domains -
variational and level set methods on the one hand and probabilistic methods on
the other - and directly obtain the density function of a shape complex from a
distance function representation.

In [15], Gurumoorthy and Rangarajan apply the Schrödinger equation to the
Euclidean distance transform problem. They solve the Schrödinger wave equation
instead of the corresponding static Hamilton-Jacobi equation for the distance
transform. While they emphasize the main advantage of their approach to be
the linearity of the Schrödinger equation (as opposed to the non-linearity of
the Hamilton-Jacobi equation), we wish to draw upon the obvious, historical
precedent in quantum mechanics of motivating the Schrödinger wave function
as a square-root density [16]. Inspired by this voluminous previous work, we
adopt the interpretation of the stationary state Schrödinger wave function for
the Euclidean distance function as a square-root density.

Let ψ(x) be the stationary state wave function and let � - Planck’s constant
- be a free parameter in this model. The static wave equation for the Euclidean
distance function problem is1

�
2∇2ψ(x) = ψ(x). (1)

Claim: When ψ(x) = α exp(−S(x)
�

) and satisfies Eqn. (1), S(x) asymptotically
satisfies the eikonal equation ‖∇S‖ = 1 as � → 0. Here α is a normalization
constant such that ψ(x) is a square-root density, i.e.

∫
ψ2(s)ds = 1.

Proof: From the definition of a square-root density, α2 = 1∫
exp(−2S(x)

�
)dx

, which is

a constant for each S(x). Taking the 2-D case as an example, when ψ(x1, x2) =
α exp(−S(x1,x2)

�
), we have the second partials for the Laplacian as

∂2ψ

∂x2
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=
α

�2
exp(

−S

�
)(

∂S
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)2 − α

�
exp(

−S

�
)
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∂x2
1

∂2ψ

∂x2
2

=
α

�2
exp(

−S

�
)(

∂S

∂x2
)2 − α

�
exp(

−S

�
)
∂2S

∂x2
2

.

From Eqn.(1), we have ( ∂S
∂x1

)2 + ( ∂S
∂x2

)2 − �(∂2S
∂x2

1
+ ∂2S

∂x2
2
) = 1 which implies

‖∇S‖2 − �∇2S = 1.

Since ∇2S is bounded, we obtain ‖∇S‖ = 1 as � goes to 0. ��
The derivation above allows us to recover the distance transform function from
the square-root density representation by computing the inverse map of

ψ(x) = α exp(
−S(x)

�
), (2)

that is
S(x) = � log(α) − � log(ψ(x)). (3)

1 Please see [15] for a more detailed derivation.
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This important relationship builds a direct connection between the two realms,
i.e. the level set framework and probability density functions. Hence, a shape
complex of complicated topology can be represented using a single distance
transform function and further statistical analysis of the shape population can
be accomplished in the space of the unit hypersphere as a result of a transition
from the distance function to the square-root density representation.

3.2 Space of Square-Root Densities

Note that Eqn. (1) does not entail that the solution is a square-root density.
Rather, it merely builds a relationship between exponentiated distance func-
tions and the Schrödinger equation. We further restrict the solution to be in the
square-root density space via Eqn. (2) and Eqn. (3). The principal reasons for
focusing on the square-root density space rather than the exponentiated function
space is as follows.

– Probability density functions are very useful shape representations as shown
by several researchers in the literature. For instance, one can compute mo-
ments of the density and get global/local shape descriptors [18] while this
cannot be done with an un-normalized exponentiated distance function. One
can also match either the densities or their moments for the purpose of reg-
istration.

– Probability density functions allow us to relate our unknown parameter
(Planck’s constant) � to uncertainty.

– Furthermore, the space of exponentiated functions is positive semidefinite
while the square-root density space is the hypersphere which leads to a closed
form metric (and geodesic) that is efficient to compute.

Due to the fact that the manifold for square-root density functions is a unit
sphere in Hilbert space, a variety of Riemannian operations, such as geodesic
distance, exponential map and log map [17] are in closed form. Equipped with
this basic infrastructure, we are now able to construct an atlas for the shape
complex by computing the Karcher mean of the given shape complex population
in the space of unit hypersphere. We illustrate the idea of our framework on a
simple example in Fig.1. Note that here the notion of atlas corresponds to the
mean computed from the the L2 norm. However, any norm is applicable in our
framework, for example, estimating the median of the population via the L1

norm. As a matter of fact, with the square-root density representation, we are
capable of performing many different kinds of statistical analysis.

4 Experimental Results

In this section, we demonstrate the strength of our technique via a set of ex-
periments on a population of real shape complex data. The images are affine
registered using an ITK-based mutual information registration algorithm [14].
Before going into the details of the experimental results, we first clarify two
empirical issues related to the experiments.
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Fig. 2. 6 samples from the group of 15 subjects and the two different views of the atlas

with � = 0.4

Fig. 3. Atlas corresponding to different � values. As � increases, the atlas becomes

more smooth.

De-normalization of ψ̄: Since ψ̄(x) is the geodesic mean on the sphere
of the sample square root densities, it is valid to assume that ψ(x) has
the same formulation as each shape complex data sample (represented by
ψi(x) = αi exp(−Si(x)

�
), i = 1, . . . , n), that is, ψ̄(x) = ᾱ exp(−S̄(x)

�
). Therefore,

S̄(x) = −� log(ψ̄(x)) + � log(ᾱ).
To recover S̄(x), we first need to estimate ᾱ. One approach is to heuristically

approximate log(ᾱ) using the average of log(α1), . . . , log(αn). Here we describe
a more principled solution. Assume φ(x) = exp(−S(x)

�
), is the un-normalized

version of ψ (the exponentiated function). Note that we lose one degree of free-
dom by normalization, hence an extra constraint needs to be imposed. We ap-
proximate ψ̄(x) by the linear combination of the un-normalized density φ due
to the linearity imposed by Eqn. (1). The problem is finally reduced to solve
b∗ = arg minb ||

∑n
i=1 biφi(x) − ψ̄(x)||2. This assumption is in accordance with

the observation that the density has peaks on the locations corresponding to
the zero level set of the distance function. The normalization parameter ᾱ is ap-
proximated using

∑
i b

∗
i and it scales the un-normalized exponentiated distance
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Fig. 4. The shape variation along the first principal direction

function so that we can obtain a zero-level set shape complex atlas. Since this
is just one way of obtaining a zero-level set atlas, a numerically more stable
flux-based method might be a better future work direction.

Visualization: We transfer the labels of each structure in the shape complex
by mapping the label image to our atlas. (This is done only for visualization
purposes.) The transformation parameters of the mapping is computed by a
non-rigid warping from a binary image of the shape complex template to the
binary image estimated from the shape atlas. We leave the automatic labeling
of the shape complex atlas for future work.

In Fig. 1, we illustrate the idea of our framework on a simple 2-D example.
The 2-D image is taken from one slice of the 3-D MRI of the shape complex.
The flowchart shows that we first estimate the distance transform from the shape
and then compute the square-root density via Eqn. (2). The shape of the atlas
is recovered from the Karcher mean of the densities via Eqn. (3).

We finally apply our proposed framework to the real shape complex data
set. The data set contains 15 controls of 3-D brain MRI with the following
8 structures labeled: left/right hippocampus, entorhinal cortex, amygdala and
thalamus. We show 6 samples from the group of 15 subjects and the atlas con-
structed as the mean shape in two different angles of view in Fig. 2. While we
have not emphasized this in our presentation, the parameter � acts as a smooth-
ing/regularization term for atlas construction and is expected to act as an un-
certainty control - similar to the role played by Planck’s constant in physics. We
demonstrate the variation of the atlas when different � is used in Fig.3. As �

increases, the atlas becomes more smooth. In this paper, we fix � = 0.4 in the
experiments. When Principal Geodesic Analysis [10] is applied to our data set,
we can recover the modes of deformation and the shape variation along the first
principal direction is shown in Fig. 4.

We implemented this method using Matlab� on a 2.33GHZ PC. It takes 4
minutes to construct an atlas from 15 labeled brain MRI with dimension of the
ROI being 90 × 91 × 87. This serves to anecdotally illustrate the computational
time involved.

5 Conclusions

In this paper, we presented a novel and efficient algorithm that constructs a
neuroanatomical atlas for shape complex data with complicated topology. We
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derived the relationships between the Euclidean distance transform and the
square-root density wave function representation and this successfully builds
on a connection between the realms of the level set framework and probabil-
ity density functions. Our model is not only capable of preserving the spatial
relationships among the different structures in the shape complex but also of
carrying out a variety of statistical analyses of the shape complex population.
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Abstract. We present a new non-parametric model constraint graph

min-cut algorithm for automatic kidney segmentation in CT images. The

segmentation is formulated as a maximum a-posteriori estimation of a

model-driven Markov random field. A non-parametric hybrid shape and

intensity model is treated as a latent variable in the energy functional.

The latent model and labeling map that minimize the energy functional

are then simultaneously computed with an expectation maximization

approach. The main advantages of our method are that it does not as-

sume a fixed parametric prior model, which is subjective to inter-patient

variability and registration errors, and that it combines both the model

and the image information into a unified graph min-cut based segmen-

tation framework. We evaluated our method on 20 kidneys from 10 CT

datasets with and without contrast agent for which ground-truth seg-

mentations were generated by averaging three manual segmentations.

Our method yields an average volumetric overlap error of 10.95%, and

average symmetric surface distance of 0.79mm. These results indicate

that our method is accurate and robust for kidney segmentation.

1 Introduction

Kidney segmentation and volumetric measurement from Computed Tomogra-
phy (CT) datasets has been proven to be an effective and accurate indicator
for renal function in many clinical situations. These include urological treat-
ment decision-making, radiotherapy planning, and estimation of the glomerular
filtration rate of living donors [1,2,3]. CT imaging is widely used for kidney anal-
ysis and diagnosis since it provides essential anatomical information, including
kidney morphology and renal vessel characteristics.

Automatic kidney segmentation is a challenging task. The main factors are
unclear borders between the kidney, the liver and the spleen, image acquisition
artifacts, image noise, and various pathologies, such as tumors and nephrolithia-
sis. The interactive graph min-cut based segmentation method provides globally
optimal segmentation based on both weighted voxel adjacencies and prior mod-
els of the object and the background [4]. However, extensive user interaction

T. Jiang et al. (Eds.): MICCAI 2010, Part III, LNCS 6363, pp. 73–80, 2010.
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is required to provide estimates of the prior intensity models, and to prevent
“segmentation leaks” with predefined spatial constraints. This user interaction
limits its routine clinical use for kidney segmentation [5].

A variety of methods have been proposed to incorporate fixed paramet-
ric shape information to spatially constrain the graph-min cut optimization.
Slabaugh and Unal [6] constrain the optimization to a narrow band of a pre-
defined ellipse. Freedman and Zhang [7] use a level-set representation of the
shape prior to compute the probability of each voxel to belong to the object
class. Ali et al. [8] use the Poisson distribution and distance maps to compute
the shape term of the graph for the segmentation of 2D kidney slices from DCE-
MRI. Freiman et al. [9] use a local tubular descriptor to adapt the graph-cut
segmentation to vascular structures. All these methods require the explicit for-
mulation of a specific shape model which is inadequate as a general solution for
kidney segmentation due to the large inter-patient shape variability. In addition,
an interactive initialization is often required to properly position the shape model
in the image domain [6,7]. Although Freiman et al. [9] use an automatic initial-
ization, their method is designed specifically for carotid arteries segmentation,
and cannot be directly applied to the segmentation of other organs.

Recently, Kumar et al. [10] and Malcolm et al. [11] proposed to use adaptive
parametric shape models to constrain the min-cut optimization. In their method,
the model parameters are considered as a latent variable, and an iterative ap-
proach is used to simultaneously estimate the shape model parameters and to
compute the segmentation. The drawback of parametric shape models is that
they are less suitable for medical images in which the inter-patient organ shape
variability is relatively large, and where various types of pathologies are present
[12,13].

In this paper we present a non-parametric global shape constrained graph
min-cut approach for the automatic segmentation of kidneys from CT images.
Our approach defines a non-parametric hybrid model that couples both shape
and patient specific intensity information as a latent variable. An Expectation
Maximization (EM) algorithm is then used to simultaneously estimate the latent
model and to produce the kidney segmentation. The main advantages of our
method are that: 1) it iteratively refines both the shape and the intensity models
during the segmentation to increase its accuracy; 2) it uses a non-parametric
shape representation that allows weighting of the training instances, and; 3) it
uses the graph min-cut framework to perform global optimization on the entire
volume in each iteration, as opposed to level-sets [13] or Maximum A-Posteriori
(MAP) estimation [12], which perform only local optimizations. Experimental
evaluation of our method on 20 kidneys from both contrasted and non-contrasted
CT datasets yield an average volumetric overlap error of 10.95% (std: 3.7%).

2 Method

The input of our method is a set of training images {Ii} with their corresponding
segmentations {Mi},i ∈ {1 . . .N} and the image I to segment. The output is
the kidney segmentation M . The EM approach is applied as follows:
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1. Initially, each training dataset is registered to the current image.
2. E-step: Non-parametric shape and intensity models are computed with

adaptive weighting of each training dataset.
3. M-step: The kidney segmentation is computed with the graph min-cut tech-

nique with edges weights derived from the kidney model.

The kidney model is refined with respect to the current image by iterating
over steps 2 and 3 until convergence. Next, we formalize our framework and
describe each step of the algorithm in detail.

The graph min-cut approach [4] defines segmentation as a voxel labeling prob-
lem. The optimal labeling is defined as the Maximum A-Posteriori (MAP) esti-
mation of a Markov Random Field (MRF) M that minimizes an energy function
E(M) incorporating both a prior model and voxel neighborhood information:

E(M) =
∑
x

(
φ(x|m(x)) +

∑
y

ψ(m(x),m(y))

)
(1)

where x is the voxel coordinates vector, y is a neighboring voxel of x, and
m(x) ∈ {mObj,mBkg} are the object and background voxel labels, respectively.
The prior model likelihood term φ(x|m(x)) is defined as:

φ(x|m(x)) =

{
−log(p(x ∈ Obj|ΘObj)) if m(x) = mObj ,

−log(p(x ∈ Bkg|ΘBkg)) if m(x) = mBkg .
(2)

where p(x ∈ Obj|ΘObj) is the likelihood of voxel x to belong to the object
or background classes given a prior model Θ. In the original graph min-cut
approach [4], this likelihood term is computed using a fixed prior intensity model,
which is usually acquired via user interaction. The voxel neighborhood term
ψ(m(x),m(y)) penalizes neighboring voxels with different labels. It is usually
proportional to a contrast-based term that reduces the penalty when neighboring
voxels have large intensity differences.

Instead of using a fixed intensity model, we define the prior model Θ as
a combination of both shape and intensity information. This prior model is
pre-computed from the training datasets. We refine the initial estimate Θ by
considering it to be a latent variable in the energy functional, which now takes
the form of E(M,Θ). An EM approach is then used to simultaneously estimate
the unknown model Θ and to find the segmentation M [10,11]. We describe the
EM steps and the iterative process in detail next.

2.1 E-Step: Non-parametric Hybrid Model Estimation

Given a set of training images {Ii} with their corresponding segmentations
{Mi},i ∈ {1 . . .N} and a new image to segment I, our goal is to construct
a prior model Θ that combines both shape SObj and intensity IObj information.
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(a) Original CTA (b) Initial shape model (c) Initial likelihood map

Fig. 1. Model components. The red contour denotes the ground-truth segmentation.

(a) Axial slice from the kidney CT dataset to segment, (b) The shape model, and; (c)

Intensity based Likelihood image. Bright voxels represent high probability to belong to

the object class based on the shape/intensity information. Note that using each com-

ponent solely, does not provide enough information to obtain accurate segmentation.

The presented model components were taken from a first iteration of the algorithm.

The shape information is computed from the object segmentation in the train-
ing datasets {Ii}. The probability of voxel x to belong to the object class based
on the shape model is defined as:

p(x|SObj) =
1
N

N∑
i=1

αiχ(x,Mi) (3)

where N is the number of training datasets, αi is a weighting parameter, and
the function χ is:

χ(x,Mi) =

{
1 if Mi(Φi(x)) ∈ Obj,

0 otherwise
(4)

where Φi is a geometrical transformation that maps training dataset Ii to the
current image I. The transformations Φi are computed using an intensity-based
B-Spline registration algorithm [14]. The parameter αi indicates how close is
dataset i to the current patient image I. In the first iteration, αi is proportional
to the Mutual Information (MI) between Mi(Φi) and I. Subsequently, αi is pro-
portional to the Dice coefficient between current segmentation and the training
segmentation Mi.

The intensity model is defined as a patient-specific non-parametric estimation
of the Intensity Probability Distribution Function (IPDF), which is estimated
using intensity histogram of the voxels in current image I, that belong to the
object. In the first iteration, only voxels with high confidence to belong to the
object based on the shape model are included in the histogram computation. In
subsequent iterations, all the voxels that were labeled as object in the previous
iteration are used. The intensity-based background likelihood is set to be its
complement, i.e., 1 − p(I(x)|Obj). Fig. 1 illustrates the different components of
our model.
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2.2 M-Step: Graph min-cut MAP-MRF Optimization

Given an estimation of the prior model Θ, the goal now is to compute the MAP-
MRF that best model the given image I. The graph min-cut formulation for
MAP-MRF estimation is as follows.

Let G = (V,E) be the image graph. Graph nodes V = {v1, . . . vn, vs, vt}
are defined such that node vx corresponds to voxel x and terminal nodes vs

and vt correspond to the object and background classes. Graph edges E =
{(vx, vs), (vx, vt), (vx, vy)} consist of three groups: 1) edges (vx, vs) from voxels
to the object terminal node; 2) edges (vy, vt) from voxels to the background
terminal node, and; 3) edges (vx, vy) between adjacent voxels. The cost of a cut
that divides the graph into the object class and the background class is defined
as the sum of the cut edges’ weights. The segmentation is the bipartite graph
partition that minimizes the cut cost.

Edge weights are assigned as follows. Edge weights w(vx, vs) represent the
likelihood of voxel x to belong to the kidney (object) based on hybrid intensity
and geometric model Θ:

w(vx, vs) = − log(p(x ∈ Obj|ΘObj)) = − log(p(I(x)|IObj) · p(x|SObj)) (5)

Edge weights w(vx, vt) represent the likelihood of each voxel to belong to the
background class. We define it as the complement of the object prior model:

w(vx, vt) = − log(1 − (p(x ∈ Obj|ΘObj))) (6)

Edge weights w(vx, vy) penalize for nearby voxels x,y that have different
labels. This edge weight is a combination of the local intensity difference and
the spatial location of the edge with respect to the prior shape model SObj :

w(vx, vy) = exp
(
− (I(x) − I(y))2

σ

)
· ψ(m(x),m(y)|SObj) (7)

where σ is a normalization constant that represents the standard deviation of
the intensity values inside the object, and ψ(m(x),m(y)|SObj) is computed using
Eq. 3. The minimal cut of the graph is then computed as described in [4].

2.3 The Iterative Solution

The iterative process starts with the computation of the pairwise registration
transformations Φi that map each training dataset to the current image do-
main. Since the pairwise registrations are independent, they can be computed
in parallel by spanning simultaneous registration processes on computer clusters
[15]. The method described in [16] can be used as an alternative, to reduce the
number of required registrations. Although this initialization step may be com-
putationally intensive, it prevents the accumulation of individual registrations
errors that pervade in existing parametric methods [12].
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(a) (b) (c) (d)

Fig. 2. Representative results from four kidneys with comparison to the ground truth.

Our algorithm result (red contour) and the ground truth segmentation (green contour)

are overlaid on the CT slices. (a) Coronal view of a left kidney from CTA, (b) Axial

view of a right kidney from CT, (c) Sagittal view of a right kidney from CTA, and

(d) Coronal view of a right kidney from CTA. Additional images and 3D movies are

available on: http://www.cs.huji.ac.il/~freiman/kidney_seg

In the E-step, the shape and intensity model Θ is computed. The shape model
is first computed with Eq. 3 and then the intensity model is computed as de-
scribed in Sec. 2.1. In the M-step, the updated estimation of the segmentation
M is computed based on these models. Both steps are iteratively repeated until
Θ and M remain stable.

3 Experimental Results

We evaluated our method on 20 kidneys from 10 CT datasets of size 512×512×
350 − 500 voxels, 0.5 − 1.0 × 0.5 − 1.0 × 1.0 − 1.5mm3, with and without con-
trast agent administration. The datasets were acquired on a 64-row CT scanner
(Brilliance 64 - Phillips Healthcare, Cleveland, OH) and were chosen randomly
from the hospital archive to represent wide variety of patients with different ages
and pathologies. Three different observers annotated both the left and right kid-
ney on each dataset. The STAPLE algorithm [17] was used to estimate the
ground-truth from the three manual segmentations. In addition we measured
the intra-observer performance with respect to the estimated ground-truth.

We evaluated our method using the Leave-One-Out (LOO) approach, where
all datasets except the one tested were used for training. Fig. 2 presents repre-
sentative results of kidney segmentation.

Both volumetric and surface based measures were computed. Table 1 sum-
marizes the average (std) results for the evaluated metrics as compared to the
human observers performance. Our method yields an average volumetric overlap
error of 10.95% (std: 3.7%) which is better than the previously published error of
17% for semi-automatic kidney segmentation from CT images [2] . The average
volumetric overlap error of the observers was 4.67% (std: 0.28%). The average
running time using computer cluster to perform the registrations in parallel
was 13:54 min (std: 0:27 min). Although our automatic method did not achieve

http://www.cs.huji.ac.il/~freiman/kidney_seg
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Table 1. Comparison metrics for kidney segmentation. The first column is the observer

number. The second column is the Absolute Volume Difference (AVD) from the ground-

truth in %. The third column is the Average Symmetric Surface Distance (ASSD) in

mm. The fourth is the Root Mean Square Symmetric Surface Distance (RMS SSD) in

mm. The fifth column is the Maximal Symmetric Surface Distance (MSSD) in mm.

The sixth column is the Volumetric Overlap Error (VOE) in %. The first row presents

the results of our method. The additional three rows present the observers performance

compared to the ground-truth.

AVD (%) ASSD (mm) RMS (mm) MSSD (mm) VOE (%)
mean std mean std mean std mean std mean std

Our 6.2 4.09 0.79 0.34 1.52 0.73 10.46 3.96 10.95 3.7

Observer 1 2.72 2.53 0.32 0.18 0.72 0.28 6.76 2.19 4.88 2.11

Observer 2 2.37 2.13 0.27 0.17 0.66 0.38 5.87 3.31 4.36 2.15

Observer 3 2.45 2.11 0.3 0.18 0.71 0.39 6.29 3.35 4.78 2.39

the human performance, it produces clinically acceptable results for volumetric
measurements and surgical planning with no need for user interaction.

4 Conclusion

We have presented a new iterative non-parametric model-based graph min-cut
approach for kidney segmentation in CT images. Given a set of training images
with their segmentations, our method computes the kidney segmentation based
on MAP-MRF estimation of the current image. The algorithm treats the model
parameters as a latent variable in a discrete energy functional. An Expectation-
Maximization approach is then used to iteratively estimate the model and to
obtain the MAP-MRF estimation using the graph min-cut technique. We eval-
uated the performance of our method on 20 kidneys. Our results show that the
proposed method is accurate, robust, easy to use, and provides relevant clinical
measurements for many applications. In the future we plan to apply the proposed
method to other organ segmentations from various imaging modalities.

The datasets that were used in this work are now publicly available for further
evaluation and comparison with other algorithms on: http://www.cs.huji.ac.
il/~caslab/kidneyEval.
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Abstract. From the image analysis perspective, a disadvantage of MRI

is the lack of image intensity standardization. Differences in coil sensi-

tivity, pulse sequence and acquisition parameters lead to very different

mappings from tissue properties to image intensity levels. This presents

challenges for image analysis techniques because the distribution of im-

age intensities for different brain regions can change substantially from

scan to scan. Though intensity correction can sometimes alleviate this

problem, it fails in more difficult scenarios in which different types of

tissue are mapped to similar gray levels in one scan but different inten-

sities in another. Here, we propose using multi-spectral data to create

synthetic MRI scans matched to the intensity distribution of a given

dataset using a physical model of acquisition. If the multi-spectral data

are manually annotated, the labels can be transfered to the synthetic

scans to build a dataset-tailored gold standard. The approach was tested

on a multi-atlas based hippocampus segmentation framework using a

publicly available database, significantly improving the results obtained

with other intensity correction methods.

1 Introduction

Magnetic resonance imaging (MRI) is the modality of choice for brain imaging
due to its excellent contrast in soft tissue. MRI images are a function of three
properties of the tissue: the spin-lattice relaxation time T1, the spin-spin re-
laxation time T2, and the proton density ρ [1]. The way in which these physical
properties are mapped to image intensities depends heavily on the imaging pulse
sequence. The acquisition is typically designed to enhance the contribution of
one of the properties and minimize the impact of the other two, leading to the
well-known T1-weighted (T1-w), T2-w and ρ-w imaging. Acquisition of real T1

and T2 maps[2] is possible but not very extended yet. Automated analysis of T1-
w, T2-w and ρ-w images is difficult because the statistical distribution of voxel
intensities can change significantly from scan to scan. Intensity standardization
methods can alleviate this problem by trying to match the histogram of one scan
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to that of a target volume. However, they cannot completely solve the problem
because the image intensity of a scan is a function of three physical properties of
the tissue, and the relationship between gray levels in two volumes is in general
not one-to-one. A mapping can be found if three or more channels are available
for both the source and target images[4], but this is seldom the case.

Meanwhile, multi-atlas segmentation is becoming increasingly popular in
brain image analysis[5]. The main idea is to register a number of manually-
labeled volumes to a target scan, propagate the annotations with the resulting
transforms, and fuse the propagated labels to generate a probabilistic map that
can be thresholded at a certain level (typically 0.5) to yield the final segmen-
tation. If the atlases and the target scan have been acquired using different
protocols, it is possible to use mutual information (MI) as the metric for the
registration and then use a simple fusion scheme in which the mode of the labels
at each location is taken[5]. If the image intensities are matched, the segmenta-
tion results can be improved by estimating the local success of the registration
as the gray level difference between each registered atlas and the target volume
at each point, and then using these differences to give a higher weight to the
more accurately registered atlases in the label fusion scheme.

In this study, a MRI standardization method based on synthetic MRI is
presented. A number of scans for which three channels (T1-w, T2-w and ρ-w)
are available are used to synthesize T1-w volumes matched to a specific target
dataset. Manual annotations of the hippocampus made on the original T1-w scans
can be made, propagated to the synthetic volumes and finally used to segment
the hippocampus in the target dataset in a multi-atlas setup. The hippocam-
pus was selected as the target of the segmentation because its morphometry is
relevant in many diseases (Alzheimers, Parkinsons, schizophrenia...) and, as a
consequence, there are publicly available datasets with manual annotations that
can be used to validate the technique. The performance of the proposed method
in the multi-atlas framework is compared with the cases in which other intensity
standardization algorithms are used.

2 Materials and Methods

2.1 Data

Two datasets are used in this study; one for training and one for evaluation. The
training dataset consists of 10 volumes acquired with a Siemens 1.5T scanner
using two different pulse sequences: 3D MP-RAGE for the T1-w scans (1×1×1
mm3 resolution, TR/TE/TI = 1,900/4.38/1,100ms., flip angle α = 15◦) and
double-echo spin echo for the T2-w and ρ-w (TR/TE1/TE2 = 3,300/17/100ms.,
1.4 mm slices with 1×1 mm3 resolution). The left and right hippocampus were
manually delineated in the T1-w scans by two trained neuroscientists. These
scans play the role of atlases in this study.

Fifteen scans from the publicly available Hippocampus Segmentation
Database (HSD, www.radiologyresearch.org/HippocampusSegmentationDatabase)
were used with testing purposes. Ten of them belong to patients with temporal
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lobe epilepsy and may have atrophic hippocampi, which makes the segmen-
tation harder. These 15 scans were acquired with a 1.5T GE scanner using a
inversion recovery spoiled gradient echo sequence (IR-SPGR) with TR/TE/TI
= 7.6/1.7/500 ms, flip angle α = 20◦. Two mm coronal slices were acquired
with a 0.78×0.78 mm2 in-plane resolution. The same two neuroscientists who
annotated the three-channel dataset also delineated the hippocampus in a
subset of coronal slices of 10 scans with inter-reader variability evaluation
purposes.

2.2 Synthetic MRI Generation

Estimation of true T1, T2 and ρ: The first step in the generation of synthetic
MRI images is to calculate the true physical properties of the tissue i.e. the true
T1, T2 and ρ maps of the training dataset. In an ideal situation, a large number
of volumes would be acquired with different parameters (typically TE/TR) and
then fed to a least-squares or expectation maximization algorithm to compute a
robust estimate of the physical values [6]. However, in this study we assume the
typical clinical scenario in which the available volumes are T2-w and ρ-w scans
acquired with a double-echo sequence and a T1-w scan acquired with a fast T1

sequence such as SPGR or MP-RAGE. To minimize the impact of noise on our
estimates, the volumes were first denoised with an implementation of the Perona-
Malik filter[7]. Then, the scans were skull-stripped with the BET algorithm[8]
and subsequently bias field corrected with the N3 method[9]. Finally, the T1-
w scans were registered to the T2 and ρ-w scans. The software package ITK
(www.itk.org) was used to maximize a MI metric over a rigid transform (i.e.
rotation and translation), which suffices to align the scans because they are
images from the same patient acquired a few minutes apart.

Now, assuming the pulse sequences for the training dataset (i.e. double-echo
spin echo, MP-RAGE), the signal models for the T2-w, ρ-w and T1-w scans are[1]:

S2(r) = k2 · ρ(r) · (1 − e
− T R2

T1(r) )e−
T E2
T2(r) (1)

Sρ(r) = kρ · ρ(r) · (1 − e
− TRρ

T1(r) )e−
T Eρ
T2(r) (2)

S1(r) = k1 · ρ(r) · f(T1(r)) (3)

where r is the position vector, TR1 and TR2 = TRρ are the repetition times and
TE1, TE2 and TEρ are the echo times. The constants k1, k2 and kρ account for
global gains due to coil sensitivity, digital signal stretching and other constant
multiplicative factors. The function ρ(r) is proportional to the magnetization,
which is in turn proportional to the proton density, but also affected by other
factors such as flow attenuation. The function ρ(r) is arbitrarily rescaled so that
its maximum is one. The function f(T1), which neglects T ∗

2 effects, has a complex
expression which is not reproduced here; the reader is referred to [10] for the
details. Nevertheless, f(T1) is strictly increasing and hence invertible, which will
be useful in the proposed algorithm.

The system of equations can be solved if prior knowledge on the characteristic
T1 and T2 of some type of tissue is used; otherwise k1, k2 and kρ cannot be
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Table 1. Gauss-Siedel algorithm to estimate the true T1, T2 and ρ maps

1. Estimate T2(r) from equations 1 and 2 as T2(r) = (TE2 − TEρ)/ log
k2Sρ(r)

kρS2(r)

where the ratio
k2
kρ

can be obtained as
k2
kρ

=
S̄2,W M

S̄ρ,W M
exp

(
TE2−TEρ

T2,W M

)
2.Assuming T1(r) = 0, use equation 1 to initialize ρ′(r) ← S2(r) exp

(
TE2
T2(r)

)
k2 ← max

r
ρ′(r) and ρ(r) ← ρ′(r)/k2

3.Estimate k1 using the current values of ρ(r): k1 ← S̄1,WM/[f(T1,WM ) · ρ̄WM ]

where ρ̄WM is the median value of ρ(r) in the white matter mask.

4.Update the real T1 volume using equation 3: T1(r) ← f−1 (S1(r)/k1ρ(r))

5.Update ρ′(r) ← S2(r) exp[TE2/T2(r)]/ [1 − exp (−TR2/T1(r))], as well as

k2 ← max
r

ρ′(r) and ρ(r) ← ρ′(r)/k2

6.Go to step 3 until convergence; seven or eight iterations often suffice. Figure

1 shows the T1, T2 and ρ maps for an axial slice of one of the training cases.

Fig. 1. T1, T2 and ρ maps for an axial slice of one of the cases in the training dataset

estimated. We propose using the white matter, which can be segmented in the
T1-w scan with the method from [11]. Even if the segmentation is not perfect, we
can use the median value (a robust estimate) of the images in the mask S̄1,WM ,
S̄2,WM and S̄ρ,WM to match the predicted and theoretical values of T1 and T2

in the white matter: T1,WM=785 ms (at 1.5T), T2,WM=92 ms[12]. The physical
parameters are then estimated with the Gauss-Siedel method (Table 1).

Synthesizing dataset-matched volumes: Once the real T1, T2 and ρ maps
have been estimated, it is straightforward to compute how the volumes would
look like if they had been acquired with the T1-w IR-SPGR pulse sequence of
the HSD dataset. The approximate signal equation for IR-SPGR is [1]:

SHSD ∝ ρ(r)[1 − 2e−
T I

T1(r) + e
− T R

T1(r) ]

The intensities can be computed up to a multiplicative constant. The constant
is estimated by matching the median intensity of the brain (a very consistent
intensity landmark) in the synthesized and test volumes.



Synthetic MRI Signal Standardization: Application to Multi-atlas Analysis 85

2.3 Multi-atlas Segmentation

The multi-atlas segmentation framework from [13] was used in this study. The
atlases are registered to the (skull-stripped, bias field corrected) scan and the
absolute difference image is calculated for each registered atlas. These difference
images are blurred and inverted (previous addition of a small constant ε to
prevent division by zero) to yield the weight images λi(r), i ∈ {1, . . . , Natlas},
where r is again the position vector. Then, for each structure s to segment (i.e.
the left and right hippocampus), the probability volume is given by:

Ps(r) =
∑Natlas

i=1 λi(r)Li(r)∑Natlas

j=1 λj(r)
(4)

where Li(r) represents the propagated labels from atlas i (one if inside, zero if
outside). The probability volume is blurred and thresholded at 0.5 to generate
a binary map, out of which the largest connected component is extracted as
the final segmentation. The performance depends on the quality of the weight
images, which in turn depends on the image standardization.

3 Experiments and Results

3.1 Experiment Setup

Two experiments were designed in this study. In both of them, the first step
was to register and match the intensities of the atlases to the test images. ITK
was used to optimize a B-spline nonrigid transform using a MI metric between
the T1-w volumes. Then, the image intensity of the atlases was matched to that
of the test image using our approach (which uses three channels) as well as
three other methods (based solely on the T1-w volume): 1) histogram stretching,
disregarding the top and bottom 1% of the histogram; 2) histogram equalization;
and 3) landmark-based matching[3] using eight landmarks (including the median
white and gray matter intensities given by the method from [11]).

The first experiment quantizes the influence of the method on the mean
joint histogram of the samples and the registered, intensity-corrected atlases.
In the second experiment, the impact of the presented approach on a multi-atlas
method to segment the hippocampus is assessed. The dependence of the perfor-
mance on the intensity-matching strategy is analyzed (the registration was the
same for all the methods) and compared to the inter-user variability in the man-
ual annotations, which defines the boundary for the performance of the system.
In both experiments, the width of the Gaussian kernels to smooth the difference
image and the likelihood map was set to σ=1 mm, whereas the regularization
parameter to invert the difference image was set to ε = 10−3.

3.2 Results

Joint histogram: The success of a intensity-matching strategy can be eval-
uated by building the mean joint histogram of the test images and registered,
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Fig. 2. Mean joint histogram of the images of the HSD dataset (rows) and the cor-

responding atlases (columns) after registration and intensity matching using different

strategies. The color map follows a logarithmic scale. The weighted average distance

from each bin to the diagonal is displayed above each joint histogram.

intensity corrected atlases. If the registration and matching were perfect, the his-
togram would be a diagonal matrix, but in practice the result is a cloud around
the diagonal. The weighted average distance from each bin to the diagonal can
thus be used as a performance metric. This measure is displayed, along with the
histograms, in Figure 2. Our physical model outperforms the landmark-based
approach, which in turn outperforms histogram equalization and stretching.

Multi-atlas segmentation: In order to evaluate the performance of the seg-
mentation with an overlap measure (the Dice coefficient in this study), it is
important to analyze the impact of the inter-reader variability on the measure
first. For that purpose, the neuroscientists who annotated the scans in this study
also delineated the hippocampus in a subset of slices of the test dataset (see sec-
tion 2.1). The neuroscientists were not shown the ground truth annotations from
the test dataset in order to prevent bias in their delineations. The average Dice
coefficient was 0.783 ± 0.086 for the left hippocampus and 0.825 ± 0.033 for
the right; these values are not significantly different according to a proportion
equality test (p ≈ 0.45). These values for the overlap measure are consistent
with other values reported in the literature [14], and represent a boundary for
the performance our algorithm can achieve.

Table 2 displays the Dice coefficients achieved by the multi-atlas scheme for
the original fusion method from [5] (i.e. taking the mode of the labels) and for
the intensity-based fusion from equation 4 when the different intensity matching
methods are used. The algorithms outperform one another in the same order as in
the previous experiment: our method provides again the highest performance. A
paired t-test shows that our method is better than the landmark-based approach
(which provides the second largest overlap) at a level of significance α = 0.05.
In absolute terms, the mean Dice coefficient provided by the proposed method
(0.755) is in the range of results of other recent methods in the literature in
which the training and test datasets have been acquired with different scanners
and/or pulse sequences (for example [15]). The segmentations for the first two
volumes of the HSD dataset are shown in figure 3.
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Table 2. Dice coefficients for the multi-atlas segmentation of the left and right hip-

pocampus. The last column is the p-value of a paired t-test comparing our method

with the landmark-based approach.

Method Mode[5] Hist. stret. Hist. equal. Landmark-based This study p

Left 0.678±0.226 0.702±0.117 0.713±0.142 0.718±0.133 0.748±0.126 0.0306

Right 0.695±0.212 0.711±0.089 0.722±0.125 0.733±0.106 0.761±0.096 0.0562

Both 0.686±0.215 0.706±0.102 0.718±0.132 0.725±0.119 0.755±0.110 0.0403

Fig. 3. Segmentation of the left and right hippocampus in the first two volumes of the

test dataset: three orthogonal planes and 3D rendering

4 Discussion

A MRI image intensity standardization method based on synthetic MRI and its
application to multi-atlas segmentation have been presented in this paper. De-
spite approximations such as neglecting T ∗

2 effects and despite the fact that only
three channels are used to estimate the T1, T2 and ρ maps (unlike other syn-
thetic MRI methods that use many more), the method provides a fairly accurate
intensity mapping between different acquisition protocols. Though a multi-atlas
framework was used to test the method, any other image analysis application
could in principle benefit from the algorithm. The results for the hippocampus
segmentation are reasonable given that only ten atlases were utilized, and they
should improve if more atlases were available and a proper atlas selection process
could be carried out. The performance is also limited by the fact that the anno-
tations of our dataset and HSD are not very consistent; this inter-user variability
gives an idea of how difficult automated hippocampus segmentation is.

A potential disadvantage of the proposed algorithm is that, whereas T2 is
relatively independent of the magnetic field strength of the scanner, T1 presents
a dependence on this parameter. This study is based on images acquired at 1.5T.
As of today, most scans are acquired at 1.5T or 3T, which are the standard
clinical field strengths. It would therefore be possible to annotate a set of atlases
acquired at 3T to cover most of the clinical scans currently acquired in the
World. Another possibility would be to modify the T1 map of the atlases to
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account for the field strength difference using a model of the relationship between
them. Addressing this problem, testing the method on more scans from different
datasets and utilizing more atlases in the segmentation remain as future work.
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Abstract. The interpretation of medical images benefits from anatomical and 
physiological priors to optimize computer-aided diagnosis (CAD) applications. 
Diagnosis also relies on the comprehensive analysis of multiple organs and 
quantitative measures of soft tissue. An automated method optimized for medi-
cal image data is presented for the simultaneous segmentation of four abdomi-
nal organs from 4D CT data using graph cuts. Contrast-enhanced CT scans 
were obtained at two phases: non-contrast and portal venous. Intra-patient data 
were spatially normalized by non-linear registration. Then 4D erosion using 
population historic information of contrast-enhanced liver, spleen, and kidneys 
was applied to multi-phase data to initialize the 4D graph and adapt to patient 
specific data. CT enhancement information and constraints on shape, from Par-
zen windows, and location, from a probabilistic atlas, were input into a new 
formulation of a 4D graph. Comparative results demonstrate the effects of ap-
pearance and enhancement, and shape and location on organ segmentation. 

Keywords: multi-phase CT, segmentation, 4D graph, shape, enhancement. 

1   Introduction 

In current CT-based clinical abdominal diagnosis, radiologists rely on analyzing 
multi-phase CT data, as soft tissue enhancement can be an indicator of abnormality. 
This makes multi-phase data (with/without contrast) readily available. Diagnosis also 
relies on the comprehensive analysis of groups of organs and quantitative measures of 
soft tissue, as the volumes and shapes of organs can be indicators of disorders.  

Computer-aided diagnosis (CAD) and medical image analysis traditionally focus on 
organ- or disease-based applications. However there is a strong incentive to migrate 
toward the automated simultaneous segmentation and analysis of multiple organs for 
comprehensive diagnosis or pre-operative planning and guidance. Additionally, the 
interpretation of medical images should benefit from anatomical and physiological 
priors, such as shape and appearance; synergistic combinations of priors were seldom 
incorporated in the optimization of CAD. 
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The segmentation of abdominal organs was initialized from probabilistic atlases in 
[10] using relationships between organs and manual landmarks. Alternatively, multi-
dimensional contrast-enhanced CT data were employed in [5,7,13]. In [5,13] the seg-
mentation used independent component analysis in a Bayesian framework. A 4D 
convolution was proposed in [7] constrained by a historic model of abdominal soft 
tissue enhancement. These intensity-based methods are hampered by the high vari-
ability of abdominal intensity and texture. More recently, a hierarchical multi-organ 
statistical atlas was developed [9]; the analysis was restricted to the liver area due to 
large variations to be statistically modeled for inter-organ relationships. 

On a different note, graph cuts [2] have become popular for image segmentation, 
due to their ability to handle highly textured data via a numerically robust global 
optimization. A major drawback remains the manual initialization of such applica-
tions [4,8,16]. In [1,6] model-based information was included for the heart and kid-
ney; however the models were aligned using markers. Compact shape priors were 
used in [4], but medical data often involves complex shapes. A shape model was also 
integrated in [15] as a density estimation for shape priors, initially proposed for level 
sets in [3], but a symmetric shape distance can be biased if shape initialization is poor. 

We propose a new formulation of a 4D directional graph to automatically segment 
abdominal organs, at this stage the liver, spleen, and left and right kidneys using 
graph cuts. The approach is optimized to medical images through the use of location 
probabilistic priors that are intrinsic to medical data, an enhancement constraint char-
acteristic to the clinical protocols using abdominal CT, and an asymmetric shape 
distance that avoids shape bias to build Parzen windows. The method is optimized 
globally and starts with historic (entire patient population) 4D intensity data to auto-
matically initialize the graph, then migrating to patient specific information for better 
specificity. Comparative results at different stages of the algorithm show the effects of 
appearance, shape and location on the accuracy of organ segmentation. 

2   Methods and Materials  

2.1   Data, Preprocessing and Model Initialization 

Eight random abdominal CT studies (normal and abnormal) were obtained with two 
temporal acquisitions. The first image was obtained at non-contrast phase (NCP) and 
a second at portal venous phase (PVP) using fixed delays. The CT data were collected 
on LightSpeed Ultra and QX/I scanners [GE Healthcare] at multiple time points. 
Image resolution ranged from 0.62 to 0.82 mm in the axial view with a slice thickness 
of 5 mm. The algorithm was trained and tested with a leave-one-out strategy. 

The liver, spleen, and left and right kidneys were manually segmented (by two re-
search fellows supervised by a board-certified radiologist) in the 8 CT cases using the 
PVP CT volumes to provide a gold standard for testing the method. Histograms of the 
segmented organs (objects) and background in NCP and PVP were computed and 
modeled as sums of Gaussians, as in Figure 1. While there are partial overlaps be-
tween the object and background distributions (especially at NCP), the combination 
of multi-phase data ensures a better separation. 

Although images were acquired during the same session and intra-patient, there 
was small, but noticeable abdominal inter-phase motion, especially associated with 
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breathing. The preprocessing follows the work in [7]. Data were smoothed using 
anisotropic diffusion [12]. NCP data were registered to the PVP images. The demons 
non-linear registration algorithm was employed [14], as the limited range of motion 
ensures partial overlaps between organs over multiple phases. The deformation field 
F of image I to match image J is governed by the optical flow equation  
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( )22

JIJ
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F

−+∇
∇−= ;          (1) 

 

 

 

Fig. 1. Fitted sums of Gaussians to historic data of organs/objects (top row) and background 
(bottom row). NCP data is shown on the left column and PVP data on the right. Historic data 
we refer to the training cases in the leave-one-out strategy.   

A probabilistic atlas (PA) was constructed from a different set of 10 non–contrast 
CT from healthy cases, independent from the data above, with manually segmented 
liver, spleen and kidneys. Organ locations were normalized to an anatomical land-
mark (xiphoid) to preserve spatial relationships and model organs in the anatomical 
space. The tip of the xiphoid (an ossified cartilaginous extension below the sternal 
notch) was extracted manually in the data used in the location model. A random im-
age set was used as reference and the remaining images registered to it. Structural 
variability including the size of organs was conserved by a size-preserving affine 
registration. The location bias was minimized by the normalization by the xiphoid. 
The 10 unprocessed CT data were further used to build shape constraints via a Parzen 
window distribution, as explained in the construction of the 4D graph. 

4D Convolution 

From smoothed historic data of contrast-enhanced CT, the min and max intensities for 
the organs were estimated: mini,t = µi,t - 3σi,t and maxi.t = µi,t + 3σi,t, where i=1..3 for 
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liver, spleen and kidneys, µp,t and σp,t represent the mean and standard deviation, and 
t=1,2 for NCP and PVP. As in [7], a 4D array K(x,y,z,t)=It(x,y,z) was created from 
multi-phase data. A convolution with a 4D filter f labeled only regions for which all 
voxels in the convolution kernel satisfied the intensity constraints. L represents the 
labeled image and lj the labels (j=1..4 for liver, spleen, left kidney and right kidney). 
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The labeled organs in L appear eroded as a result of the 4D convolution. In our 
method, L provided seeds for objects (Io) in the 4D graph and was used to estimate the 
patient-specific histograms. The eroded inverted L provided the background (Ib) seeds 
and the related histograms. To report the segmentation results by 4D convolution (see 
Results), L was dilated to compensate for the undersegmentation of organs. 

4D Graph 

Graph cuts (GC) were chosen for the inherent capability to provide a globally optimal 
solution [2]. The input to our problem is two sets of registered abdominal CT scans 
per patient: the NCP and PVP sequences. Hence every voxel p in the graph has two 
intensity values p

ncpI  and p
pcpI . Let A = (A1, A2, …, Ap, …, AP) be a binary vector with 

components Ap that can be either objects of interest (i.e. liver, spleen and kidneys) 
denoted by O or background B, where B∩O= Ø. Typical graphs perform data labeling 
(t-links), via log-likelihoods based solely on 2D or 3D interactive histogram fitting, 
and penalize neighborhood changes (n-links) through likelihoods from the image 
contrast [2]. We first extend the formulation to analyze 4D data, and then incorporate 
penalties from the contrast enhancement of CT soft tissue, Parzen shape windows, 
and location from a priori probabilities. While location knowledge was incorporated 
in the labeling of objects, shape information penalized boundaries not resembling the 
references. The cost function E to minimize becomes 

( ) ( ) ( ) ( ) ( ) ( )( )∑ =
++++= 4

1i shapeboundarylocationenhancedata AEAEAEAEAEAE ;  (3) 

The first three terms define the objects (t-links) and the last two energies find the 
cuts (n-links) with i=1..4 for liver, spleen, left kidney and right kidney. In this applica-
tion, dataE is a regional term that computes penalties based on 4D histograms of O and 

B; the probabilities P of a voxel to belong to O or B are computed from patient spe-
cific histograms of NCP and PVP data. 
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enhanceE penalizes regions that do not enhance rapidly during the acquisition of 

NCP-PVP CT data (i.e. muscles, ligaments and marrow). σncp and σpvp are the standard 
deviations of noise associated with NCP and PVP. 
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Similarly, location constraints from a normalized probabilistic atlas (PA) were im-
plemented in ( )( )∑

∈
−=

Pp
plocation OpSAE |ln)( , where Sp represents the probability of p to 

belong to O. Sp was obtained by registering PA to the test images by a sequence of 
coarse-to-fine affine registrations. 

boundaryE assigns penalties for 4D heterogeneity between two voxels p and q, with 

q∈Np a small neighborhood of p. λ, μ and δ are constants and weigh the contribution 
from object/background, and the directionality of the graph at boundaries/shape, re-
spectively (all set to value 0.5 for equal contributions). dist(p, q) is the Euclidean 
distance between p and q. 
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The last condition in (6) penalizes transitions from dark (less enhanced) to brighter 
(more enhanced) regions considering image noise, to correct the edges of O. This is 
an intrinsic attribute of medical data (e.g. the abdominal muscles are darker than O). 
Additional penalties were implemented from the seeds for O and B from Io and Ib. 

Shape constraints were introduced using Parzen windows [11] estimated from the 
reference liver shapes from the 10 non-contrast CT data. First, the result of the 4D 
convolution (L) was used to align the shape references using scaling, rotation and the 
location of the centroids. An asymmetric normalized dissimilarity measure D was 
used to avoid the bias introduced by L; H is the Heaviside step function  
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The Parzen shape probability PS of s given n shape references was calculated [3] to 
encourage cuts that minimize the shape dissimilarity  
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We compared results obtained after the 4D convolution to those achieved using in-
tensity-based 4D GC, and after including shape and location correction. The influence 
of patient specific versus population (historic) statistics on the accuracy of organ 
segmentation was also analyzed. We computed the Dice coefficient, volume error, 
root mean square error, and average surface distance. Non-parametric statistical tests 
(Wilcoxon paired test) were performed to assess the significance of segmentation 
improvement at different steps of the algorithm at 95% confidence interval. 
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3   Results 

Quantitative results from applying our method to the segmentation of liver, spleen and 
kidneys are shown in Table 1 at different stages of the algorithm. Figure 2 presents a 
typical example of liver, spleen and kidneys segmentation. Another example is shown 
in 3D in Figure 3 along with the errors between manual and automated segmentations.  

The use of 4D graph-cuts (GC) improved the results significantly over those of the 
4D convolution for all organs, as seen in Table 1. Employing shape and location in-
formation brought a further significant improvement for the segmentation of the 
spleen and liver. Significantly better segmentations by using patient specific data over 
historic data were noted for both kidneys (not shown in Table 1). 

Table 1. Statistics (mean±std) for the liver, spleen, left kidney and right kidney segmentation 
results from data of low resolution (5mm slice thickness). Columns present the Dice coefficient 
(DC), volume estimation error (VER), root mean square (RMSE) error and average surface 
distance (ASD). 4D C represents the convolution, GCI is GC based solely on image intensity 
(including 4D appearance and enhancement) and 4D GCSL includes shape and location con-
straints. Highlighted cells mark the organs where a significant improvement was obtained 
relative to the previous step of the segmentation algorithm (p<0.05). 

 ORGAN DC (%) VER (%) RMS (mm) ASD (mm) 

LKidney 88.7±3.7 10.9±8.9 2.3±0.4 1.1±0.3 
RKidney 89.6±3.4 13.6±6.8 2.1±0.5 1.1±0.3 

Spleen 79.9±10.1 14.9±16.9 4.5±1.9 2.7±1.7 

4D C  
(Historic Data) 

Liver 89.1±3.7 7.3±4.6 6.7±1.5 3.4±1.0 

LKidney 92.6±2.4 5.4±6.9 1.8±1.2 0.8±0.6 
RKidney 92.8±1.9 5.6±5.8 1.8±0.8 0.8±0.4 

Spleen 89.6±2.7 11.4±6.9 3.0±1.4 1.5±0.9 

4D GCI 
(Patient Data) 

Liver 94.0±1.2 6.2±2.8 4.4±2.0 1.8±0.7 

LKidney 91.9±2.4 4.5±4.6 1.7±0.5 0.8±0.3 
RKidney 92.6±1.3 5.2±2.9 1.7±0.4 0.8±0.3 

Spleen 90.7±1.4 8.2±5.0 2.2±1.0 1.2±0.5 

4D GCSL  
(Patient Data) 

Liver 94.9±0.8 4.1±2.0 3.4±1.8 1.4±0.4 

4   Discussion 

We proposed a new formulation for a 4D graph-based method to segment abdominal 
organs from multi-phase CT data. The method extends basic graph cuts by using: 1) 
temporal acquisitions at two phases and enhancement modeling; 2) shape priors from 
Parzen windows; and 3) location constraints from a probabilistic atlas. Enhancement 
information allowed improving regional bias within tissues, thereby better modeling 
the biological properties. Location probabilistic priors, intrinsic to medical data, and 
shape information from the asymmetric computation of Parzen shape windows (to 
avoid shape bias) supplied additional constraints for the global optimization of the 
graph. A Parzen distribution was preferred as a non-parametric probability model that 
converges to the true density with increasing number of samples.  
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Fig. 2. A typical example of liver (blue), spleen (green), right kidney (yellow) and left kidney 
(red) automated segmentation on 2D axial views of the CT data 

 
Fig. 3. 3D images of the automatically segmented abdominal organs; (a) is a posterior view and 
(b) an anterior view. The liver ground truth is blue with segmentation errors in white; spleen is 
green with errors in yellow; right kidney is yellow with errors in green; left kidney is red with 
errors in white. The pixilation is due to image low resolution (5mm slice thickness). 

Livers, spleens and kidneys were segmented from multi-phase clinical data follow-
ing the typical acquisition protocol of abdominal CT images. An automated initializa-
tion of the graph was employed. Historic data from a patient population were used to 
initialize the graph based on an adaptive 4D convolution. Then patient specific image 
characteristics were estimated for improved specificity and input into the directional 
graph. Results from image data with low spatial resolution showed overlaps over 90% 
and average surface distances less than 1.5mm for all organs. 

The method avoided the inclusion of heart segments in the segmentation of liver, 
but had the tendency to underestimate organ volumes, in particular that of the spleen. 
Parts of the inferior vena cava may be erroneously segmented in the mid-
cephalocaudal liver region, especially when contrast enhancement is low, and 
represent one of the sources of error in the liver segmentation (Figure 3). Partial 
volume effects (low image resolution), small registration errors, and the estimation of 
object and background distributions may also contribute to undersegmentation. 
Results are expected to be superior on data with high spatial resolution. 

As expected, using graph cuts based only on intensity significantly improved the 
segmentation of all four abdominal organs over the 4D convolution. However, 
moving from historic to patients specific statistics only improved the segmentation of 
kidneys, probably due to the prevalence of liver and spleen statistics in the object (O) 
histogram. Optimizing the graph with shape and location contraints brought a 

a b
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significant improvement only in the segmentation of spleen and liver, as kidneys, 
already well segmented at the previous step of the algorithm due to strong image 
contrast at edges from fast enhancement, vary less in shape. In the future we will 
include more shape/location references and variation to improve the segmentation. 
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Abstract. Quantitative information about the geometry of the carotid artery bifur-
cation may help in predicting the development of atherosclerosis. A geodesic ac-
tive contours based segmentation method combining both gradient and intensity 
information was developed for semi-automatic, accurate and robust quantification 
of the carotid bifurcation angle in Black Blood MRA data. The segmentation me-
thod was evaluated by comparing its accuracy to inter and intra observer variabili-
ty on a large dataset that has been acquired as part of a longitudinal population 
study which investigates the natural progression of carotid atherosclerosis. Fur-
thermore, the method is shown to be robust to initialization differences. The bifur-
cation angle obtained from the segmented lumen corresponds well with the angle 
derived from the manual lumen segmentation, which demonstrates that the me-
thod has large potential to replace manual segmentations for extracting the carotid 
bifurcation angle from Black Blood MRA data. 

1   Introduction 

Carotid arthrosclerosis, i.e. plaque build-up in the arterial wall, is one of the major 
causes of stroke. To resolve the mechanisms behind plaque formation, many research 
institutes are investigating plaque formation, plaque growth and the factors affecting 
plaque formation and growth [1]. Thomas et al. showed that the inter subject variation 
in geometry of the carotid bifurcation significantly increase with age and early atheros-
clerotic disease progression [1]. Whether an individual’s geometry will predict the 
development and progression of atherosclerosis is still unclear and needs to be investi-
gated. An automated method for accurate and robust quantification of carotid geometry 
is valuable, especially when studying the relation between carotid artery geometry and 
disease progression in large clinical trials or population studies. 
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MRI is a promising modality for imaging diseased arteries and the arterial wall due 
to its capability to visualize both the arterial lumen as well as the plaque composition 
[2]. The current work is carried out in the context of a population study[3], where 
Black Blood MRA (BBMRA) is used for lumen visualization as it allows contrast 
agent free, non-invasive imaging.  

Several authors investigated the segmentation of carotid artery bifurcation in 
BBMRA images, using explicit contour or surface deformation schemes [4][5][6][7]. 
However, these papers lack quantitative evaluation or the evaluation is limited to a 
few patients. Yuan et al. employed a closed contour snake and a weighted distance 
transform to detect the edge of both the lumen and the outer wall in BBMRA, but 
quantitatively evaluated their method on only five subjects [4]. Ladak et al. [5] ap-
plied a semi-automatic technique based on discrete dynamic contours to outline the 
inner and outer boundaries of vessels and evaluated the accuracy on the measurement 
of vessel wall area for 12 subjects. More recently, Jin and Ladak [6] extended their 
work with an explicit 3D deformable model to segment the lumen of the carotids 
using a manually drawn centerline as initialization. The method was quantitatively 
evaluated on five datasets. Adame et al [7] segmented the carotid lumen in BBMRA 
using fuzzy c-means clustering and a minimum cost path as a preprocessing step to-
wards characterizing plaque composition. However, the accuracy and reproducibility 
of this lumen segmentation method was not evaluated quantitatively. 

We present a method that uses a 3D geodesic active contour approach to segment 
the lumen from BBMRA, and show how the resulting surface can serve as basis to 
subsequently extract and quantify the bifurcation angle describing the carotid artery 
geometry. In contrast to most of the previously presented approaches, we utilize an 
implicit surface representation. Additionally, we combine both image gradient and 
image intensity terms in the energy function that steers the level set segmentation. 
The image intensity term is based on an estimate of the local fore- and background 
intensities, using k-means clustering. Moreover, we perform an extensive quantitative 
evaluation of both the segmentation accuracy, reproducibility on a large set of sub-
jects. Finally, we quantify the bifurcation angle for both the semi-automatically seg-
mented and the manually annotated lumen to study the accuracy of quantification. 

2   Segmentation and Quantification Method 

The segmentation and quantification method consists of three steps. First, we prepro-
cess the BBMRA to correct for intensity inhomogeneity and to reduce noise. Second, 
we apply a geodesic active contour approach to segment the lumen, and finally we 
extract the carotid bifurcation angle from the resulting segmentation. The parameters 
of the preprocessing steps are listed in the next section.  

2.1   Preprocessing: Bias Correction, Noise Suppression and Normalization 

Preprocessing is applied to alleviate segmentation errors that are caused by severe 
intensity inhomogeneity or the low SNR in MR sequences. We applied a bias field 
correction approach for BBMRA as proposed by Sled et al. [8] to correct for intensity 
inhomogenity. After bias correction, an anisotropic diffusion filter [9] is employed to 
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reduce image noise while preserving edges and hence the geometry. Finally, we apply 
intensity normalization to the images such that the mean intensity is zero and the 
standard deviation is one. In this way the intensity variation between different scans 
can be ignored. Fig.1(a-c) shows the original image and images after bias correction 
and noise reduction. 

2.2   Segmentation 

After preprocessing we apply a geodesic active contour (GAC) [10] to segment the 
carotid lumen from the BBMRA. The GAC evolution is initialized with a centerline 
with an initial surface that is defined by a tube with a radius of 1 mm that is generated 
along the lumen centerline. The centerlines of both the internal and external carotid 
arteries were annotated by an experienced observer, using an in-house developed 
annotation tool[11]. 

As the low image resolution in MRI, image gradient is not sufficient for defining 
the lumen boundary, thus the energy function optimized with the GAC approach in-
corporates both intensity and gradient information and is defined as follows:  

 | |   (1) 

where C(p) is a contour parameterized by p, α a weighting factor that balances the 
influence of both terms. All parameters including weighing factors are optimized in 
an exhaustive parameter optimization (see section 3.2).  

The first term of the stopping function in Eq.(1) is a gradient-based term which is 
commonly used as energy function for geodesic active contours. The function 
g(x)=1/(1+cx) is monotonically decreasing. The second term of Eq.(1) incorporates 
the intensity information through an intensity potential term , which is defined as 
a monotonically increasing function of the intensity dissimilarity to the intensity of 
the estimated lumen boundary , and goes to zero if the dissimilarity goes to zero: 

 | |    (2) 

with  an intensity value. Shown in Fig1.(d), the boundary intensity  is estimated 
with the following linear function of the lumen fore- and background intensity:  

      0 1  (3) 

where  is the estimated mean intensity within a circle with radius of 1mm cen-
tered around centerline points in every slice and  is estimated via k-means 
clustering using two clusters and is selected to be the cluster center with the highest 
value. This clustering is performed slice-based, to account for slight inter slice inten-
sity variation that remain after bias-correction. This equation is inspired by the work 
of Hoogeveen et al [12], where it is shown that the lumen boundary in time-of-flight 
MR lies at  = 0.5 and in phase-contrast MR at  = 0.1. We will optimize  in the 
training session for BBMRA. 

The level-set equation describing the evolving surface u that corresponds to mini-
mizing the energy function of evolution of Eq.(1) is Eq.(4) where   is the local 
minimum curvature commonly used for segmenting tubular structures[11]. 

 κ | | ·   (4) 
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(a) (b) (c) (d)  

Fig. 1. (a) An original BBMRA, (b) unbiased BBMRA, (c) denoised BBMRA, (d) the corres-
ponding cross-sectional intensity profile of denoised BBMRA 

2.3   Quantification 

We quantified the carotid bifurcation angle according the definition of Thomas [1] 
and Antiga [14] using the VMTK (Vascular Modeling Tool Kit) implementation [15]. 

3   Experiments and Results 

3.1   Data Acquisition and Reference Standard 

Proton Density Weighted (PDW) BBMRA images were obtained from 49 subjects 
that were randomly chosen from participants in a population study [3]. All the sub-
jects had one healthy and one diseased carotid artery (as assessed with ultrasound). 
The MRI data was acquired with an in-plane resolution of 1.10x0.81 mm2, a slice 
thickness of 0.90 mm, a field of view of 13x13 cm2 and a matrix size of 160x128. The 
images were interpolated on the scanner to a pixel size of 0.51x0.51 mm2 before 
processing. The image quality was visually assessed by a trained observer and the 
datasets were grouped into four classes according to their image quality, i.e. bad (1), 
normal (17), good (29), and excellent (2). The single image with bad image quality 
was excluded from the study, as the image quality did not permit quantification of the 
bifurcation angle. All other scans from 48 subjects were included in the experiments.  

We randomly selected around 20% of these images (4 normal and 6 good) for 
training. We also randomly selected another 30% (5 normal, 9 good and 1 excellent) 
to obtain the inter and intra observer variability as well as the robustness to initializa-
tion using different centerlines. The intra and inter annotation was done three months 
later than the first annotation. 

3.2   Parameters Selection and Optimization 

The parameters of the bias field correction method were set as proposed in [16] (i.e. 
shrinking factor 2 and fitting levels 4), except for the number of iterations, which was 
set to 600 after visual assessment. The parameters for the edge enhancing diffusion 
were optimized by visual inspection and were chosen as follows: Gaussian gradient 
scale 1 mm, and 10 iterations with a time step of 0.15. 

The remaining parameters of the method,  , ,   and  were optimized in three 
steps. We used the Dice Similarity Coefficient (DSC) [17] between the reference 
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standard and our segmentation as optimization criterion. First we optimized , by 
performing a geodesic active contour evolution on the intensity information alone: 

 | | | |  (5) 

The DSC was maximized at values for  around 0.55, corresponding more or less 
to the criterion proposed by Hoogeveen et al. for time-of-flight MR images [12]. The 
second step was to optimize c according to:   | | | |                                                      6  

The DSC was maximized when c equals 10. Third, we optimized  according to 
Eq.(1), where we fixed  to 0.55 and  to 10. The DSC was maximal at =0.12. 

To confirm the selection of these three parameters, we fixed  to 0.12 and  to 
0.55 and varied parameter c and we fixed parameters  and  at their optimum and 
varied . These two optimizations resulted in exactly the same optimum, confirming 
the validity of the chosen parameters. Fig.2 shows the BBMRA after preprocessing, 
the gradient edge potential, the intensity dissimilarity as well as the combined stop-
ping function for optimized ,  as well as c. 

 

(a) (b) (c) (d)  

Fig. 2. (a) A preprocessed BBMRA and various stopping functions based on: (b) gradient only,  
(c) intensity only, and (d) a combination of intensity and gradient using the optimized parameters. 

3.3   Segmentation Performance 

The accuracy and reproducibility of the segmentation approach was quantitatively 
evaluated by comparing the segmentation results with annotated surfaces by one ob-
server using DSC (0.87), average absolute surface distance (0.38mm) and maximum 
absolute surface distance (1.41mm) for 38 subjects (76 carotid arteries).  

Furthermore, for the randomly selected 15 subjects (30 carotid arteries) we com-
pared the manual annotations of the first observer to manual annotations of a second 
observer to quantify the inter-observer variance and we compared the manual annota-
tions of the first observer to a second annotation by the first observer in order to quan-
tify the intra-observer variability. Moreover, we quantified the reproducibility of the 
method by initializing the method with two different centerlines. The results are 
summarized in Tab.1(a-c). An example segmentation is shown in Fig. 3. 

Tab. 1(a-c) shows that the DSC and average mean absolute surface distance as well 
as the maximum absolute surface distance between the semi automatic segmentation 
(A1) and the three manual ones (O11, O12 and O2) are close to the inter observer 
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variability (O11 and O12 vs O2). The results also show that, as expected, the intra 
observer variability is marginally better than the inter observer variability.  

The segmentation reproducibility, which was evaluated by running the segmenta-
tion using a second centerline initialization (manually annotated by the first observer), 
was high, with a DSC of 0.98 (A1 vs A2 in Tab.1). This demonstrates that the method 
is robust to initialization differences. 

Table 1. Pair-wise comparisons (a) DSC and Pearson coefficient between bifurcation an-
gles(rAngle). (b)Average mean (meanAD) and max abs distance(maxAD). 

 

A paired t-test was used to determine the significance of DSC increase for the 
combined energy function compared to a gradient only and intensity only function. In 
both cases, the segmentation was significantly improved, from respectively 0.86 
(p=0.002) and 0.85 (p=10-5) to 0.87 when evaluated on all the 76 testing datasets.  

 

(a)        (b) (c) (d)  

Fig. 3. (a) A 3D segmentation result (DSC: 0.92) (white: perfectly segmented; green: abs sur-
face distance>0.2mm; red: abs surface distance>0.5mm) (b-d) Cross sectional view of  segmen-
tation in three slices (red: manual segmentation; green: our method) 

3.4   Quantification of Bifurcation Angle 

Carotid bifurcation angles are quantified using both the manual segmentation and the 
automatic segmentation method. Fig.4(a) shows the scatter plot of the angles obtained 
from segmentations of our method and the first observer for 76 carotid arteries. The 
Pearson coefficient between the angles by our method and the first observer for 76 
carotid arteries is 0.896. Fig.4(b) shows that the bifurcation angles derived from our 
method is slightly under-quantified but 72 out of 76 cases are within mean 1.96std . 

For 30 datasets we measured the inter and intra observer variability. Tab.1(d) indi-
cates that the correlation between the bifurcation angle obtained with the presented 
method, and the bifurcation angle extracted from both manual segmentations, is higher 
than the correlation in bifurcation angles between the two annotations of the observer  
 

    A1 A2 O11 O12 O2     
A1 1 0.98 0.88 0.88 0.89 
A2 0.95 1 0.88 0.89 0.89 
O11 0.85 0.81 1 0.94 0.92 
O12 0.83 0.81 0.67 1 0.93 
O2 0.89 0.89 0.82 0.73 1 

 A1 A2 O11 O12 O2 
A1 0.00 0.06 0.36 0.35 0.23 
A2 0.84 0.00 0.36 0.35 0.30 
O11 1.47 1.46 0.00 0.13 0.18 
O12 1.58 1.41 0.87 0.00 0.16 
O2 1.16 1.34 0.89 0.88 0.00 

rAngle 
DSC 

maxAD 
meanAD 

0.5mm 

1.41mm 

0mm 
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Abstract. We propose a simple strategy to improve automatic medical

image segmentation. The key idea is that without deep understanding of

a segmentation method, we can still improve its performance by directly

calibrating its results with respect to manual segmentation. We formulate

the calibration process as a bias correction problem, which is addressed

by machine learning using training data. We apply this methodology

on three segmentation problems/methods and show significant improve-

ments for all of them.

1 Introduction

Automatic image segmentation plays an important role in medical applications.
Due to the limitations of the imaging process and the difficulty of transferring
manual segmentation protocols into algorithms, automatic segmentation is chal-
lenging. We show that without deeply understanding the limitations of an exist-
ing segmentation method, one easy/straightforward way to make improvements
is through a calibration process to directly transfer its results closer to manual
segmentations. To this end, we propose to use machine learning techniques to
correct segmentation errors.

From a theoretical perspective, the segmentation errors produced by a seg-
mentation algorithm can be categorized into two classes: 1) random errors and
2) consistent bias. The random errors are caused by random effects, e.g. imag-
ing noises or random anatomical variations. They can be reduced by averaging
techniques such as multi-atlas based segmentation. In this paper, we focus on
addressing the other type of errors, consistent bias1. Bias are systematic errors
mostly caused by mistranslating manual segmentation protocols into the criteria
followed by the automatic segmentation method. By definition, bias occurs con-
sistently across different segmentation trials when certain conditions are met.
� This work was supported by the Penn-Pfizer Alliance grant 10295 (PY) and NIH

awards K25 AG027785, R21 NS061111, R01 AG010897, and P01 AG12435.
1 The meaning of bias in this paper is different from its common use to describe MRI

field inhomogeneity. By bias, we mean those errors in the initial segmentation that

are systematic, i.e., follow a pattern from training subject to training subject.
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For example, a manual segmentation protocol may assign a specific label to a
voxel if and only if a certain criterion, e.g. the voxels next to it all have low in-
tensities, is met. However, because of the translation error an automatic method
may follow a slightly different criterion, e.g. the average intensity of its neigh-
bors is low. In this example, the automatic segmentation method makes errors
whenever a voxel’s neighbors have a low average intensity but have at least one
bright voxel.

Since bias occurs consistently, it is feasible to detect and correct them. Al-
though it may be difficult to figure out the exact cause behind each bias, it is
relatively easy to capture the patterns that are strongly correlated to the bias.
Hence, one can detect bias via capturing the correlated patterns. For example,
the example above demonstrates a simple bias whose correlated appearance pat-
tern, i.e. a voxel’s neighbors have a low average intensity but have at least one
bright voxel, can be learned using training images. In reality, the bias may ap-
pear in more complex and less intuitive patterns. Although it may be difficult for
the human to identify such bias, most machine learning techniques are capable
of providing satisfactory solutions.

In related work, Morra et al [3] use machine learning to directly learn how
to perform segmentation. During training, they use intermediate classification
results to improve the classifier’s performance. The main difference with our
method is that they do not use any other segmentation methods and train
the classifier from scratch. By contrast, our contribution lies in proposing the
idea of improving the performance of existing segmentation algorithms relative
to a specific manual segmentation protocol via learning-based bias correction.
Our approach takes full advantage of other segmentation algorithms to sim-
plify learning. To validate our method, we apply it to three segmentation prob-
lems/methods and show significant improvements for all of them.

2 Learning-Based Explicit Bias Correction (EBC)

To improve segmentation results produced by a segmentation method, we pro-
pose a two-step procedure for bias correction (see Fig. 1): 1) bias detection that
finds the mislabeled voxels produced by the host segmentation method and 2)
bias correction that corrects the mislabeled voxels found by bias detection.

2.1 Bias Detection as a Binary Classification Problem

Given a segmentation produced by a host segmentation method, our goal is
to identify mislabeled voxels. With manual segmentations, it is straightforward
to formulate the bias detection problem as a binary classification problem. For
each label we train one classifier using all voxels assigned to this label to separate
correctly labeled voxels from mislabeled.

To train classifiers, we use AdaBoost [2]. For effective learning, abundant in-
formative features are crucial. The simplest feature is the raw image appearance,
i.e. pixel-wise intensities. For more discriminative representations, textures are
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Fig. 1. Flow chart of our explicit bias correction approach

often used as well. One common approach to construct texture features is to use
an over-complete description for each voxel and its neighborhood by convolving
the image with a filter bank. In our experiment, for more efficiency we use the
following features. We denote AΔX(i) = I(Xi + ΔX) − I to be the appearance
feature for voxel i with coordinate Xi at the relative location ΔX . I is intensity.
To compensate for different intensity ranges, we normalize the intensities by the
average intensity of the region of interest (ROI), I. To train a bias detection
classifier for a label, the ROI contains all voxels assigned to the label by the host
method (see experiments). More robust features with scale and rotation invari-
ance can be used as well. Since the brain image data used in our experiments all
have similar scales and orientations, we use these simple features.

Low level texture features can capture image related bias, e.g. the host seg-
mentation method always makes errors when a certain appearance pattern oc-
curs. To capture non-image related bias, e.g. the host method always shifts
the segmentation a few voxels, we include the segmentation produced by the
host segmentation method for learning. We denote these features by LΔX(i) =
s(Xi + ΔX), where s is the segmentation produced by the host method.

To include spatial information, we use the coordinate feature SX(i) = Xi −
X, where X are the average coordinates of the ROI. To enhance the spatial
correlation, we include the joint feature obtained by multiplying spatial features
with appearance and label features, i.e. AΔX(i)SX(i) and LΔX(i)SX(i). Overall,
we use ∼ 1000 features in all experiments.

For each feature, a weak classifier is constructed using a simple threshold.
AdaBoost combines these weak classifiers into a single strong classifier.

2.2 Learning-Based Bias Correction

Bias detection outputs candidate mislabeled voxels. We need to reassign labels
to them. Again, we use a learning-based method. Given mislabeled voxels in the
initial segmentations, applying the same learning algorithm with the same fea-
tures used for bias detection we train a binary classifier for each label to separate
it from others. To assign a new label to a candidate mislabeled voxel detected
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by bias detection, we re-evaluate the voxel by each bias correction classifier and
assign the label whose corresponding classifier gives the strongest response to
the voxel. Since bias correction is only for detected candidate mislabeled voxels,
the computational cost is much lower than re-evaluating the whole image when
the host segmentation method can produce accurate results.

2.3 Variants of the Learning Algorithm

In our method, we explicitly perform bias detection and bias correction. This
strategy is efficient because for bias correction only the potentially mislabeled
voxels need to be relabeled. One variant of our bias correction method is that we
skip the bias detection step and directly perform bias correction on the initial
segmentation. Instead of only using mislabeled voxels, we use all voxels in ROI
for training. We call this method implicit bias correction (IBC). Note that IBC
has higher computational complexity for both training and testing. IBC is closely
related to [3], where instead of segmentation results produced by other segmen-
tation methods the segmentation labels produced by the learning algorithm itself
are included in the learning process.

One way to view the segmentation feature produced by other host segmen-
tation methods is that like the low level texture filters any host segmentation
method can be considered as a high level, task specific filter. If the host seg-
mentation method works reasonably well, i.e. better than random guesses, the
produced segmentation provides useful information for the segmentation task.
To demonstrate the usefulness of host segmentation methods for learning, we
compare with a variant of IBC that each classifier is learned without using seg-
mentation results produced by any other segmentation methods. We call this
variant the direct learning (DL) approach. So given training images and their
manual segmentations, we train one classifier for each label to separate voxels
belonging to this label from other voxels. The features used for DL, is only image
and spatial features. For IBC and DL, the ROI is the whole segmentation pro-
duced by the host method plus some dilation. Dilation is necessary only when
the background label needs to be corrected (see experiments for examples).

3 Experiments

We apply our methods to three segmentation problems. The problems are image
registration based hippocampal segmentation, whole brain extraction using BET
[7] and brain tissue segmentation using FAST [8].

3.1 Hippocampal Segmentation

The hippocampus plays an important role in memory function [6]. Macroscopic
changes in brain anatomy, detected and quantified by magnetic resonance imag-
ing (MRI), consistently have been shown to be highly predictive of AD pathology
and highly sensitive to AD progression [5]. Compared to clinical measures and
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neuropsychological testing, MRI-derived biomarkers require an order of magni-
tude smaller cohort size to detect disease-related changes over time. Accordingly,
automatic hippocampus segmentation from MR images has been widely stud-
ied e.g. [1,3,4]. In this section, we test our methods with one semi-automatic
hippocampal segmentation method [4].

We use the data in the Alzheimer’s Disease Neuroimaging Initiative (ADNI,
www.loni.ucla.edu/ADNI). Our study is conducted using only 3 T MRI and
only includes data from mild cognitive impairment (MCI) patients and controls.
Overall, the data set contains 139 images. The image has 1.00 × 1.00 mm in
plane resolution and 1.2 mm slice thickness. For cross validation evaluation, 70
subjects are randomly selected for training, and the remaining 69 for testing.
The reported results are the average of 10 cross-validation experiments.

A landmark-guided atlas-based segmentation method [4] is applied to segment
the hippocampi for each image. This method is designed to minimize user efforts
while maximizing the benefit of human input to the algorithm. It requires a
user to approximately label six key landmarks of the hippocampus through a
user-interface. The partial labeling is combined with image similarity terms to
guide volumetric diffeomorphic normalization between an individual brain and
an unbiased template, with fully labeled hippocampi. It is shown that such
simple human interactions help increase minimum performance levels relative to
fully-automatic segmentation algorithms and provides high inter-rater reliability.

Whole hippocampal segmentation is a binary segmentation problem (we do
experiemnts on left side and right side separately). Once the mislabeled voxels
are identified we can fix them by simply switching their labels and vice versa.
Hence, for the binary segmentation problem EBC is equivalent to IBC.

Since the results produced by [4] are accurate, we define the ROI for bias
correction to be the initially segmented hippocampi plus one voxel dilation. On
average, this ROI includes 99.5% hippocampal voxels. By contrast, the ROI
obtained from the initial segmentation plus two voxel dilation covers 99.9% hip-
pocampal voxels but also includes significantly more irrelevant voxels, which
increases the chances for our bias correction to make mistakes. Since DL does
not use the results produced by [4], DL should take the whole image as ROI.
However, for direct comparison with our methods, we apply the same ROI for
DL. Since the ROI excludes significant non-hippocampus distracters, using ROI
simplifies the learning problem. Hence, in this experiment DL partially benefits
from the results produced by [4].

On average, each hippocampus contains 1603 voxels. [4] produces 465 mis-
labeled voxels. Note that the errors include hippocampal voxels mislabeled as
background and background voxels mislabeled as hippocampi. Our bias cor-
rection method achieved 35.7% fewer errors (299 mislabeled voxels). Using the
larger ROI, i.e. initial segmented hippocampi plus two voxel dilation, results in
slightly worse results of 305 mislabeled voxels. By contrast, DL produces worse
segmentations with 523 mislabeled voxels. Fig. 2 shows example segmentation
results. In terms of average Dice overlaps, [4], DL and IBC/EBC resulted in
0.862, 0.832 and 0.903 respectively.
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Fig. 2. Hippocampal segmentation. Left to right: original image, manual segmentation,

segmentation produced by [4], after bias correction.

3.2 Brain Extraction/Segmentation in MR Images

In this section, we test brain segmentation. The data set contains 18 T1-weighted
MR brain images and their manual segmentations, which are available at the In-
ternet Brain Segmentation Repository (IBSR). The manual segmentation con-
tains labels for gray and white matter and ventricles. These images have been
positionally normalized into the Talairach space (rotation only) and have been
preprocessed by intensity inhomogeneity correction routines. These images have
the same slice thickness of 1.5 mm with three in plane resolutions: eight have
0.94 × 0.94 mm; six have 1.0 × 1.0 mm; four have 0.84 × 0.84 mm.

Using this data, we test two methods: the Brain Extraction Tool (BET) [7],
and the FMRIB’s Automated Segmentation Tool (FAST) [8]. For cross validation
evaluation, 9 subjects are randomly selected for training, and the remaining 9
for testing. The results are the average of 10 cross-validation experiments.

Fig. 3. Brain extraction. Left to right: original image, manual brain extraction, initial

brain extraction by BET, after bias correction.

Brain extraction. The BET algorithm is applied with the default parame-
ter setting to segment the images into brain and non-brain regions. Again, for
this binary segmentation problem EBC is equivalent to IBC. Since the BET
algorithm is relatively accurate and most segmentation errors are mislabeling
background voxels as brain tissues, we define a ROI for bias correction by per-
forming a one-voxel dilation of the BET result, similar to how the ROI was
defined in the binary hippocampus segmentation experiment. On average, this
ROI covers 99.3% manually labeled brain. DL still partially benefits from BET’s
results by using the same ROI.
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On average, each brain contains 9.7 × 105 voxels. BET produces 1.1 × 105

mislabeled voxels. Our bias correction method achieved 29% fewer errors (8.0 ×
104 mislabeled voxels). By contrast, DL produces worse segmentations with 9.1×
104 mislabeled voxels. In terms of average Dice overlaps, BET, DL and IBC/EBC
resulted in 0.948, 0.956 and 0.961 respectively.

Brain tissue segmentation. In this experiment, the FAST [8] algorithm is
applied for segmenting gray matter, white matter and cerebrospinal fluid (CSF)
for all 18 subjects used in the previous experiment. To apply FAST, the binary
brain segmentation is assumed to be provided.

Since the manual segmentation in IBSR merges CSF outside ventricles into
gray matter (see Fig. 4), the CSF produced by FAST that overlaps gray matter
in manual segmentation is also considered correct. For quantitative evaluations,
we merge the CSF into gray matter for both manual and automatic segmentation
and compare the consistency of white matter and merged gray matter. See Fig.
4 for segmentation examples.

Fig. 4. Brain tissue segmentation. left to right: original image, manual, initial segmen-

tation produced by FAST, after bias correction by IBC, and EBC.

Out of the average brain volume, 9.7 × 105 voxels, the FAST algorithm pro-
duces 8.9×104 mislabeled voxels. For EBC, the bias detection step achieved the
precision(# of correct detection

# of detection ) of 92% with the recall(# of correct detection
# of true bias )

of 84%. The bias correction step correctly classified 91% of the detected mis-
labeled voxels. Overall, EBC achieved 21% fewer errors (7.0 × 104 mislabeled
voxels). IBC achieved 17% fewer errors (7.4 × 104 mislabeled voxels). Note that
EBC outperforms IBC with even fewer computational costs. By contrast, DL
produces worse segmentations with 8.1 × 104 mislabeled voxels. Table 1 reports
the average Dice overlaps. Like in the previous experiments, our bias correction
methods outperformed DL and the host segmentation method.

Table 1. Brain tissue segmentation results in Dice overlap

method FAST(Dice) DL(Dice) IBC(Dice) EBC(Dice)

gray 0.936 0.944 0.948 0.951
white 0.862 0.891 0.899 0.905
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4 Discussion

Combining segmentations/methods has been proven to be a good strategy to
improve performance. One can view our bias correction as a combining method
that integrates a pure machine learning based segmentation method with the
host segmentation method. One main difference from previous combining meth-
ods is that the machine learning method can automatically adapt itself through
training to optimally combine with the host segmentation method. As demon-
strated in our experiments, as long as the machine learning algorithm uses com-
plementary information to the host segmentation methods the combined results
consistently outperform the host segmentation methods and the machine learn-
ing method when applied separately. The information integration interpretation
also suggests that using the same machine learning algorithm used in bias cor-
rection to improve the results produced by our bias correction may not give as
much improvement because of the significant information overlap. However, a
learning method using different features or learning models may still help.
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Abstract. We address the problem of 3-D Mesh segmentation for cate-

gories of objects with known part structure. Part labels are derived from

a semantic interpretation of non-overlapping subsurfaces. Our approach

models the label distribution using a Conditional Random Field (CRF)

that imposes constraints on the relative spatial arrangement of neigh-

boring labels, thereby ensuring semantic consistency. To this end, each

label variable is associated with a rich shape descriptor that is intrinsic

to the surface. Randomized decision trees and cross validation are em-

ployed for learning the model, which is eventually applied using graph

cuts. The method is flexible enough for segmenting even geometrically

less structured regions and is robust to local and global shape variations.

1 Introduction

Surface segmentation involves the partitioning of a surface mesh into non over-
lapping sub-meshes, each representing a part of the underlying 3-D object. Such
decomposition into parts has traditionally been addressed through metrics de-
rived from geometric properties of a surface, such as curvature, dihedral angles,
and protrusion [1,2,3]. Such raw geometric properties are typically local or re-
gional in nature, and completely ignore the compositional arrangement of con-
stituent parts. Consequently, the accuracy of these methods gets challenged in
two major ways: (1) previously unseen shape variations may, in general, result
in erroneous labeling if the descriptor is not strong enough, (2) neighboring sur-
face regions with similar geometric properties could actually belong to different
parts, i.e., they are interpreted differently. These issues may be resolved through
explicit constraints on the relative spatial arrangement of neighboring labels.

In this paper, we present an object model-based approach for the segmentation
of categories of 3-D objects with known compositional structure. Our method
employs a labeling of various parts, which densely covers a 3-D surface mesh.
The parts are derived from a semantic interpretation of compact non-overlapping
regions on a surface. For instance, typical parts of a car include hood, trunk,
roof, and so on.
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c© Springer-Verlag Berlin Heidelberg 2010
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The label distribution is modeled using a CRF whose undirected graph is iso-
morphic to the mesh topology. Each label variable is associated with a rich local
shape descriptor that is intrinsic to the surface. Prior knowledge about the ob-
ject structure is incorporated via constraints on the spatial layout of neighboring
labels in a mesh graph. For instance, the windshield and the roof are neighbors,
but the roof must be detected “above” the windshield, not vice-versa. In short,
the proposed layout constraints directly address the limitations of the afore-
mentioned methods by penalizing the assignment of ambiguous and/or spatially
incorrect labels.

The capability of the model is demonstrated on the example of human outer
ear 3-D surface meshes. Mesh segmentation is highly significant in digital hearing
aid design [4]. It serves as a pre-requisite for automatic surface manipulation in
order to reduce the amount of human intervention in the design process [5].

1.1 Related Work and Our Contribution

An extensive review of algorithms for 3-D mesh segmentation can be found in
[6]. Most of these methods achieve segmentation exclusively via raw geometric
information derived from a surface. Instead, our method utilizes a rich descrip-
tor coupled with spatial ordering constraints. There has been little work that
exploits explicit constraints on the spatial arrangement of parts. Coupled with
our descriptor, they help in resolving over- and under-segmentation even if the
parts have boundaries in geometrically less structured regions. [7] used a CRF
model for partially occluded objects in 2-D images, which may extend directly
to 3-D volumetric data. However, its application to 3-D meshes is more com-
plicated due to the absence of natural (grid) directions on a curved 2-manifold
embedded in 3-D space.

2 Layout Consistent Segmentation of Surfaces

Given a surface representation of a 3-D object in the form of a polygonal mesh
X := (V,E), where V = {vi} is the set of vertices, and E = {ek} is the set of
edges. Our goal is to infer a labeling h : V → L, vi �→ hi := h(vi), that assigns a
label hi to each vertex vi ∈ V .

Inference is usually based on some characteristic observations on a mesh X ,
in the form of local shape descriptors {xi}. In this paper, we develop a model
that structures the labels H := {(vi, hi)|vi ∈ V } in the form of an undirected
graph G. We assume that G is isomorphic to X .

The relationship between neighboring labels is directly associated with the re-
lationship between the corresponding local mesh characteristics. This allows the
compositional constraints to be imposed through the joint probability distribu-
tion of (X,h), which in turn may be modeled as a Markov Random Field (MRF)
[8]. However, this requires that the local mesh characteristics are statistically in-
dependent from those of their immediate neighbors. In this paper, we allow a
richer shape representation involving a complex neighborhood. Consequently,
optimizing the MRF model becomes difficult, if not intractable.
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Canal

Concha

Helix Bottom

Fig. 1. Part adjacency graph and correspond-

ing mesh representation of a human outer ear.

Parts (circles) are linked (solid) according to ad-

jacency of anatomical regions, i.e., Canal, Con-
cha, Helix, and Bottom. The colors indicate the

anatomical interpretation (dashed) of the parts.

The Canal is composed of 3 subparts.

Part boundary

Part B

Part A

Fig. 2. Neighboring labels on G.

Two nodes are connected via a link

(dashed). Part membership of the

nodes is indicated by the color, i.e,

yellow means part A and red means

part B. The labeling along the di-

rected link from red to yellow is in-

correct.

The problem can be resolved by the conditional distribution model of CRFs
[9]. The joint distribution over elementary events (X,h) may be written as

P (X,h; θ) = P (X ; θ)P (h|X ; θ). (1)

The conditional distribution P (h|X ; θ) is sufficient for label estimation, so that
the marginal P (X ; θ) can be dropped. Because the model is conditional, complex
dependencies among input variables do not need to be explicitly represented
which allows the use of rich local shape descriptors. Assuming pairwise statistical
dependencies between neighboring labels a model for the conditional distribution
P (h|X ; θ) is given by

P (h|X ; θ) =
1

Z(θ,X)

∏
(i,j)

ξij(hi, hj , X ; θ)
∏

i

νi(hi, X ; θ), (2)

where νi is a unary potential function that models the posterior distribution of
the labels at vertex vi in a mesh X . ξij is the pair-wise potential that constrains
the spatial arrangement over the neighboring labels. Note that the partition
function Z can be dropped, since we are not interested in actual probabilities.
Consequently, Eqn. (1) reduces to an energy functional whose maximization leads
to the optimal labeling. A “price” to pay here is that the potential functions
tend to be more complex than those in a pair-wise MRF. On the other hand,
the dependency on X allows us to exploit the mesh geometry for explicitly
enforcing constraints on the spatial layout of neighboring labels. In the following
discussion, we develop these layout constraints through a part adjacency graph.

Definition 1 Part Adjacency Graph (PAG). A PAG for a class of objects is
an undirected graph with nodes representing constituent object parts. Undirected
links between nodes indicate which parts are adjacent to which other parts. The
underlying binary relation is symmetric and reflexive.
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Fig. 1 depicts a simplified PAG of the human outer ear together with the corre-
sponding anatomical interpretation of the parts. A natural constraint for neigh-
boring labels in a mesh graph G can be derived from its PAG.

Definition 2 Soft Layout Consistency (SLC). Let G be a graph represent-
ing the structure between label variables, and let hi and hj, (i �= j) be the labels
of two neighboring vertices. Let Gadj be the PAG for the class of objects under
consideration. The labels hi and hj are soft layout consistent if (hi, hj) ∈ Gadj.

Definition 2 explicitly ensures local spatial coherence, and implicitly encourages
regional compatibility of the labels. However, the constraint is “soft” in the sense
that it does not capture the relative spatial arrangement of neighboring parts
(e.g., above, below, left, right, back, front). For instance, an inferred labeling on a
human body surface may put the neck on top of the head, since this arrangement
will still be consistent according to Definition 2. Figure 2 illustrates the main
idea on the example of two parts. Note that while moving along the directed
link, a change from label hi = A to a label hj = B is correct. However, a change
from label hi = B to hj = A is incorrect.

For two neighboring labels hi and hj , i �= j there are three possible types of
transitions:

Part interior: hi = hj ,
Adjacent parts: (hi, hj) ∈ Gadj , hi �= hj . Note the symmetry here.
Inconsistent: (hi, hj) /∈ Gadj, hi �= hj .

Erroneous label assignments as shown in Fig. 2 should be penalized, but this
requires an understanding of the spatial order or arrangement of the neighbor-
ing labels. Similar to [7] the value of the pairwise potential varies according to
transition type as follows:

− log ξij(hi, hj , X ; θ) =

⎧⎨⎩
0 Part interior,
γ1 Adjacent parts,
γ2 Inconsistent.

(3)

Let g(hi, hj) ∈ {0, 1} be denoted as directional consistency function that char-
acterizes the consistency of soft-layout consistent labels hi and hj in a mesh
graph G (assuming hi �= hj). We define the behavior of g(·) as follows. With
reference to the spatial order defined by the arrow in Fig. 2, if hi = A, hj = B
then g(A,B) = 1, and if hi = B, hj = A then g(B,A) = 0. We discuss the choice
of the directional consistency function in Section 3.3.

Definition 3 Strict Layout Consistency (StLC). Let hi and hj, (i �= j) be
two neighboring labels in a mesh graph G. Furthermore, let Gadj be the PAG for
the class of objects under consideration. The labels hi and hj are strict layout
consistent if one of the following conditions holds, (1) hi = hj, (2) (hi, hj) ∈ Gadj

∧ g(hi, hj) = 1.
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For two neighboring labels hi and hj , i �= j we define transitions to be one of
the following types:

Part interior: hi = hj ,
Adjacent parts: (hi, hj) ∈ Gadj ∧ g(hi, hj) = 1,
Inconsistent: (hi, hj) /∈ Gadj ∨ g(hi, hj) = 0.

The consistency function g(·) needs to know the spatial arrangement of the labels
hi and hj on a mesh X . Hence, for StLC, the pairwise potentials in Eqn. (3)
make use of the mesh geometry X (see Section 3.3).

3 Learning and Inference

In this section, we learn the potentials in Eqn. (1) using a supervised algorithm.
This requires that all training surfaces are pre-labeled. Once the potentials are
learned, the negative logarithm of Eqn. (1) may be efficiently minimized using
the α-expansion algorithm [10].

3.1 Local Shape Descriptors

The unary potentials use “local” information of a mesh. As mentioned earlier a
mesh X is represented by a set of local shape descriptors {xi}. Each local shape
descriptor xi is associated with a vertex vi. The choice of descriptor is driven by
invariance requirements to geometric transformations of a surface and the need
for robustness to non-ideal conditions, such as noisy 3-D scans.

We propose the Geodesic Shape Context (GSC) which is invariant to rigid
transformations and scale. A GSC is obtained by binning the geodesic distances
measured from a vertex vi to all other vertices on a mesh [11].

We now define two types of features at each vertex: (1) the cumulative mean
curvature of vertices inside each bin. This yields a function of cumulative mean
curvature versus the bin index, (2) a difference between the cumulative curva-
tures of the neighboring bins. Both features are normalized between 0 and 1.
Each vertex is hence represented by two feature vectors, which we collectively
refer to as the GSC. Note that the GSC at a vertex vi has a global support
region, i.e., it covers the entire mesh relative to vi

1. The GSC leads to a very
rich representation of the underlying geometry compared with [12] capturing
variations in curvature such as the amount of bending.

3.2 Unary Potentials

Local shape descriptors, including GSCs, normally reside in a high dimensional
space which makes learning of a model for the unary potentials challenging due
to the amount of required training data. We use randomized binary decision
trees for the unary potentials. The procedure for learning a binary decision tree
and inference of νi(hi, X ; θ) are similar to [7]. A set of trained decision trees (a
forest) returns a distribution over the labels at a vertex vi ∈ V .
1 We call it local shape descriptor only to reflect that it is computed at a location vi

and is not a global representation of the entire shape.
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3.3 Pairwise Potentials

The parameters of the pairwise potentials, γ1, γ2 are learned using cross valida-
tion by a search over a reasonable range of positive values of the parameters.

Spatial ordering of neighboring parts. We characterize the spatial order of
neighboring labels hi, hj, (hi �= hj) in terms of the relative spatial arrangement
of neighboring parts on a mesh. First, we define the geodesic center of a part on
a mesh as the average geodesic distance of all vertices in this part from a pole.
To this end, we assume that a consistent pole can be detected on each mesh.
The average of this measure across all training surfaces is denoted as expected
geodesic center of the part.

The notion of ordering is established by noting that a configuration of neigh-
boring labels is more likely when each label is assigned closer to its expected
geodesic center. Formally, let qi, qj denote the geodesic distances of vi and vj

from the pole, and let qA and qB denote expected geodesic centers of parts A
and B. qA and qB are pre-computed across training surfaces as mentioned in the
previous paragraph. We define the directional consistency function g(hi, hj) for
neighboring vertices vi, and vj as:

g(hi, hj) =
{

1 |qi − qA| + |qj − qB| < |qi − qB| + |qj − qA|,
0 otherwise. (4)

Note, that the mesh X is required as input of the pairwise potentials in order
to evaluate the directional consistency function among neighboring labels.

3.4 Inference

The α-expansion algorithm was used for approximate MAP inference of the
labels due to its convergence properties (see [10,13,14] for details).

4 Evaluation

We validated the proposed method on a data set of 216 outer ear impressions,
which in turn were laser scanned to reconstruct 3-D triangular mesh representa-
tions. The resulting meshes had open boundaries and were composed of roughly
5000 vertices. An expert was asked to manually label the meshes along anatom-
ical lines using a CAD software system. In this way 6 compact regions are ob-
tained as illustrated in Fig. 1. Such anatomical regions play a significant role in
the design of personalized hearing aid devices [4]. Note that various boundaries
divide geometrically less structured regions into parts, which makes segmenta-
tion challenging.

The data set was randomly divided into a training set of 180 meshes and a
test set of 36 meshes. First, the unary potentials were learned on the training
set. A resolution of 20 bins turned out to be reasonable for the GSCs. Next,
the pairwise potential parameters were found via cross-validation against the
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GT Coarse Potts (Accuracy: 3.12) StLC (Accuracy: 5.22)

GT Coarse Potts (Accuracy: 3.85) StLC (Accuracy: 4.72)

GT Coarse Potts (Accuracy: 3.08) StLC (Accuracy: 4.78)

GT Coarse Potts (Accuracy: 2.24) StLC (Accuracy: 4.90)

Fig. 3. Example segmentations. “Coarse” means: γ1 = γ2 = 0. For comparison the

segmentation accuracy is depicted for the Potts model and the StLC model.

training set. The final parameters for StLC were: γ1 = 1, γ2 = 4. We provide
comparison with the Potts model [15] with the cost of dissimilar neighboring
labels equal to one and zero otherwise.

Some examples are depicted in Fig. 3. The first column shows the ground-
truth (GT). The second column presents the coarse segmentation result, achieved
as the MAP estimate from the decision trees. This corresponds to γ1 = γ2 =
0, which amounts to no smoothness or layout constraints. The third column
represents the Potts model with λ = 1. Notice how various regions have become
smoother. The fourth column represents the StLC model. The results indicate
that StLC yields the best agreement with the GT.

Quantitative comparison was carried out as follows. For a label, first the
intersection and the union of the estimated region and the corresponding GT is
computed. The ratio of area of the former to that of the latter yields a measure of
segmentation accuracy per part. The segmentation accuracy of a test candidate
is defined as the sum of the part scores. The average of this measure across all
test individuals using the coarse model was 2.31, for the Potts model 2.97, and
for the StLC model 4.52 with 6 being the best score.
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5 Conclusions

We have presented an object model-based 3-D mesh segmentation algorithm for
3-D objects with known part structure, and evaluated its performance on a data
set of outer ear 3-D meshes with promising results. The method is particularly
attractive for the segmentation of organs where the layout of different anatomical
regions is already known, such as functional segmentation of the brain.
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Abstract. Clinical trials of anti-angiogenic and vascular-disrupting agents often 
use biomarkers derived from DCE-MRI, typically reporting whole-tumor sum-
mary statistics and so overlooking spatial parameter variations caused by tissue 
heterogeneity. We present a data-driven segmentation method comprising 
tracer-kinetic model-driven registration for motion correction, conversion from 
MR signal intensity to contrast agent concentration for cross-visit normaliza-
tion, iterative principal components analysis for imputation of missing data and 
dimensionality reduction, and statistical outlier detection using the minimum 
covariance determinant to obtain a robust Mahalanobis distance. After applying 
these techniques we cluster in the principal components space using k-means. 
We present results from a clinical trial of a VEGF inhibitor, using time-series 
data selected because of problems due to motion and outlier time series. We ob-
tained spatially-contiguous clusters that map to regions with distinct microvas-
cular characteristics. This methodology has the potential to uncover localized 
effects in trials using DCE-MRI-based biomarkers. 

Keywords: DCE-MRI, PCA, k-means, tracer kinetic modeling, image registra-
tion, imputation, outlier detection, minimum covariance determinant. 

1   Introduction 

Biomarkers derived from quantitative Dynamic Contrast-Enhanced MRI (DCE-MRI) 
data are used in clinical trials to support early decisions on the viability of emerging 
anti-angiogenic and vascular-disrupting agents [1].  A common approach is to acquire 
a time series of 3-D images at regular time intervals bracketing the injection of a con-
trast agent and then apply voxel-by-voxel analyses to generate 3-D parameter maps, 
e.g. using tracer-kinetic modeling [2].  Standard practice [1] is to report statistics for a 
volume of interest (VOI) that identifies the target tissues, e.g. a whole tumor.  This 
practice discards the spatially-heterogeneous information in the parametric maps.  
Several recent studies have presented quantitative analyses that aim to describe this 
heterogeneous structure [3-5]. 
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Our proposal is to partition tumors into 3-D sub-regions using a novel segmenta-
tion based on the DCE time series data.  To obtain a consistent partitioning for multi-
ple scan visits, we pool data from all visits for a given patient.  Thus we may apply 
statistical analyses to tumor sub-regions to reveal localized variations in treatment re-
sponse that would be masked in a whole-tumor VOI analysis.  Our method requires 
no prior knowledge or assumptions about the form of the time series data. 

A preliminary study [6] found that segmentation using dimensionality reduction by 
standard principal components analysis (PCA) and clustering by standard k-means 
was not feasible with motion-corrupted or missing data and was highly susceptible to 
outliers.  In this study we present a procedure incorporating registration, missing 
value imputation and outlier detection and we demonstrate its robustness. 

2   Methods 

2.1   Data Acquisition and Data Set Selection 

In a clinical trial of an angiogenesis inhibitor [7], patients had 6 MRI visits: 2 pre-
treatment scans, within 7 days prior to treatment; and 4 post-treatment scans (4 hours, 
2, 8 and 12 days after treatment).  All lesions were liver metastases arising from pri-
mary colorectal tumors.  At each visit we acquired 3-D spoiled gradient echo (SPGR) 
images on a Philips 1.5 T Intera scanner for baseline T1 estimation (3 images with flip 
angles of 2o, 10o and 30o) and for the dynamic time series (75 images: flip angle 20o, 
temporal resolution 4.97 s, voxel matrix 128 x 128 x 25).  Omniscan (Amersham 
Health, Amersham) was injected as a single bolus (dose 0.1 mmol/kg) after the 5th 
dynamic image, at a rate of 3 ml/s using a power injector (Spectris MR).  To compen-
sate for visit-to-visit variations in bolus arrival time we removed all time series im-
ages prior to the first appearance of contrast agent in the aorta in a central slice, giving 
a variable number (T) of time points (range 65-68).  A research radiographer manu-
ally defined 3-D tumor VOIs on co-localized T1-and T2-weighted images. 

To test the segmentation, we selected 3 tumors in 3 patients with specific data 
characteristics: Patient 1 had significant motion corruption but few time series that 
were sufficiently different from the norm to be classed as outliers; Patient 2 had low 
motion but several outliers and Patient 3 had both motion and outliers. 

2.2   Motion Correction 

DCE-MRI presents difficulties for established registration methods, which readily 
deal with contrast variations but may fail when new image features arise due to con-
trast enhancement.  We used tracer-kinetic model-driven registration (TKMDR) for 
the time-series images—for details of the registration procedure see [8].  Standard 
TKMDR does not correct motion of the pre-contrast variable flip-angle images rela-
tive to the time series, leaving the possibility of misregistration of T1(0) maps and 
leading to corruption of the cross-visit normalization (Section 2.3).  We therefore ad-
ditionally used a linear registration [9] to align each variable flip-angle image to the 
pre-contrast TKMDR synthetic target images. 
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2.3   Cross-Visit Normalization 

Raw DCE-MRI data from different patient visits are subject to unpredictable varia-
tions in scanner gain and potentially in native tumor relaxation time characteristics, so 
before pooling we normalized the time-series data to ensure that the scaling differ-
ences did not cause voxels from different visits to map to distinct clusters.  Tracer ki-
netic models are typically expressed in terms of the tracer concentration [CA](t) [2], 
which we used to normalize the data based on the physics of the data acquisition.   

The conversion required the equation: 

[ ]( ) ( ) ( )⎟⎠
⎞⎜

⎝
⎛ −= 0

111
111 TtTrtCA  , (1) 

where r1 is the spin-lattice relaxivity constant, and t is time.  We used the standard 
SPGR equation [10] to estimate the pre-contrast longitudinal relaxation time, T1(0), 
from the variable-flip angle images and to derive T1(t) from the dynamic images.   

2.4   Dimensionality Reduction with Missing Value Imputation 

Each single-voxel [CA](t) series is a vector in a T-dimensional data space (T ≥ 65), 
and it was desirable to reduce dimensionality prior to clustering.  In addition, particu-
larly in the presence of noise, low T1 values may give rise to physiologically unfeasi-
ble [CA](t) values from equation (1)—filtering to remove the most extreme values  
resulted in missing data for the corresponding vector elements.  We employed a modi-
fied PCA to address both issues. 

The N x T data matrix for PCA pooled the time series data for each voxel of the 
tumor VOI for each visit for the given patient (N is the number of voxels in the pooled 
VOIs).  Missing-value imputation was based on approximate reconstruction of the 
data via PCA, using the equation: 
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where y  is a T-dimensional time series data vector, the subscript t is the time point 

index, T is the number of time points, p t is a T-dimensional principal component 

(PC) i.e. an eigenvector (obtained via singular value decomposition) of the sample 
covariance matrix for the data, wt is a scalar weighting factor (derived from the PCA), 

ŷ  is the estimate of y  obtained using r PCs (see below) and ε  is a T-dimensional re-

sidual vector.  For each missing element of each y , imputation required an initial  

estimate that was iteratively refined by replacement with ŷ  until the sum of the ele-

ments of ε  for all missing values became arbitrarily small [11].  Standard practice 
initializes using the data matrix row or column means [12], but as time-series data are 
correlated we initialized using the mean of the adjacent non-missing time points.  To 
obtain a close approximation, we selected r such that the PCA explained 97.5% of the 
variance.  We then back-substituted the imputed values into the original time series in 
place of the missing values.  We used the resulting PCs for dimensionality reduction, 
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retaining the subset of d principal components indicated by examination of log-
eigenvalue plots (d ≠ r: d ranged from 3 to 7 PCs and r was typically around 40 PCs). 

2.5   Outlier Detection 

The filtering of erroneous [CA] values (Section 2.4) was extremely conservative, to 
avoid unintended distortion of the data.  The remaining artefactually high [CA] values 
resulted in time series that deviated sufficiently from the norm to be considered out-
liers.  These outliers may be detected in the multivariate space defined by the retained 
PCs by thresholding the Mahalanobis distance (M) at a critical value (MC) obtained 
from the χ2 distribution with degrees of freedom (d) equal to the number of PCs re-
tained for dimensionality reduction at a chosen percentile α (typically 97.5%) [13]: 

( ) ( );1∑ − −′−= ppppM   ( )( )αχ 2
dC invM =  (3) 

where Σ is the sample covariance matrix and the prime indicates matrix transposition.  
The vectors p and p  are the truncated d-dimensional PCs from Section 2.4. 

If p  and Σ are estimated as the classical mean and sample covariance matrix then 
each will be strongly affected by the outliers we wish to detect (the masking problem 
[13]), so we employed a robust Mahalanobis distance using the minimum covariance 
determinant (MCD) estimators of p  and Σ [14], as obtained with the FAST-MCD al-

gorithm from the Matlab Library for Robust Analysis [15] (we increased α to 99.99% 
to reduce the potential misclassification of valid data as outliers).  For the purposes of 
this study, any voxel time series with Mvoxel > MC was considered to be an outlier, and 
the entire [CA](t) series was removed from further analysis. 

2.6   Clustering 

We performed 10 repetitions of multi-start k-means clustering [16] in the data space 
of the retained principal components.  Initial cluster centers were chosen randomly—
different randomizations could converge to different solutions, so we retained the so-
lution with the minimum sum of the squared Euclidean distance from each data point 
to its cluster mean vector.  Clustering was done separately for each patient, but the 
data from all visits for the same patient were pooled.  We set k = 7 to reflect typical 
tumor structure in a DCE-MRI data set: voxels could correspond to tumor enhancing 
rim, tumor non-enhancing core or surrounding liver and to partial voluming among 
these tissue types.  Alternative arrangements are clearly possible.  Only the retained 
principal components of the [CA](t) series data were used in the clustering proce-
dure—no spatial regularization or other spatial (e.g. neighborhood or connectivity) in-
formation was used, and clusters were therefore not constrained to be spatially-
contiguous.  For visualization purposes, we gave each cluster an integer label. 

3   Results 

Figure 1 shows sample imputation results for two voxel time series, each of which 
had 3 missing values.  The imputed values generally lie within the range of the time 
series data, and do not significantly alter its observed pattern. 
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Fig. 1. Contrast agent concentration time series before (line with solid circles) and after (open 
circles) imputation of missing data for two voxel time series (Patient 3, post-registration) 

 

 

Fig. 2. Distance-Distance scatterplots of robust versus classical Mahalanobis distance: (a) pre- 
and (b) post-registration for Patient 1; (c) post-registration for Patient 3.  Hatched lines show 
MC values calculated using Equation (3); dashed lines in (a) and (b) show the line of equality.  
The data have been pooled for all visits. 

The pre-registration Distance-Distance plot for Patient 1 (Figure 2a) shows two 
data sub-populations.  The post-registration plot (Figure 2b) indicates that these were 
due to motion, which has been adequately corrected.  The close correspondence of ro-
bust and classical Mahalanobis distance also indicates that the Patient 1 data had very 
few outliers.  Figure 2c illustrates that outliers persist after registration for Patient 3.  
The Distance-Distance plot for Patient 2 was similar to Figure 2c and is not shown. 

Figure 3 illustrates the effect of TKMDR on the segmentation results.  While the 
differences are relatively subtle, the post-registration cluster images are visibly less 
fragmented in nature (though the effect is subtle).  After treatment, the typical enhanc-
ing-rim pattern of tumors is evident in that the blue and blue-green clusters corre-
spond to low contrast agent uptake (clusters 1 and 7 in Figure 4d) while the red and 
orange clusters correspond to higher uptake (clusters 3 and 5 in Figure 4d).  This is 
consistent with a post-treatment reduction in angiogenesis and/or microvessel density. 

Table 1 provides further evidence of the presence of outliers in the very small clus-
ters among the “Raw” data for Patient 2 (≤0.15% of voxels) and Patient 3 (≤0.35% of 
voxels).  The very small clusters for Patient 2 had physiologically unfeasible mean 
[CA](t) series (cf Figure 4a and 4b).  Outlier removal eliminated the very small clusters 
(Table 1 “Patient 2: MCD”) and returned all cluster mean [CA](t) series to fall within 
the physiological range (Figure 4c).  For Patient 2, the clusters after registration and  
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Fig. 3. Segmentation maps for clustering after outlier removal for Patient 1.  Clusters are indi-
vidually colour-coded using integer labels.  

Table 1. Number of voxels per cluster for each patient before and after outlier removal using 
the robust MCD-based Mahalanobis distance.  The data have been pooled for all visits. 

 Patient 1 Patient 2 Patient 3 
Cluster Raw MCD Raw MCD Raw MCD 

1 661 664 12 6383 764 462 
2 654 757 7 6327 819 291 
3 603 649 12603 3533 346 123 
4 1073 471 23283 1251 8 260 
5 758 619 1 6582 2 85 
6 494 1015 56 4426 1 509 
7 1054 1116 1 5300 344 452 

 
outlier removal were stratified in mean [CA](t) (Figure 4c), but for Patient 1 the clus-
tering resulted in different mean [CA](t) curve shapes (compare solid lines with dashed 
lines in Figure 4d), reflecting more complex enhancement characteristics. 

4   Discussion 

The methodology of this paper used TKMDR for motion correction, conversion of 
MR signal to [CA](t) for cross-visit normalization, iterative PCA for missing data im-
putation and dimensionality reduction, and a robust Mahalanobis distance via MCD 
for outlier detection.  After applying these techniques to DCE-MRI [CA](t) series 
data, tumor sub-segmentation could be performed using standard k-means clustering. 

The iterative PCA imputation provided reasonable [CA](t) estimates (Figure 1), al-
though one imputed value in each example fell lower than its neighbors—this may re-
flect the true data structure but could indicate a need to fine-tune the procedure by re-
taining more PCs, or increasing the number of iterations. 

As the clustering procedure did not incorporate spatial regularization or any other 
spatial information, it is encouraging that the segmentation results showed a high 
level of spatial contiguity, in that the voxels of any given cluster were generally found 
grouped in the same spatial location (Figure 3) rather than being loosely scattered 
through the image volumes. 
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Fig. 4. Cluster mean [CA](t) series for Patient 2 before (a, b) and after (c) outlier removal, and 
for Patient 1 after outlier removal (d).  Note the scale change in (a), for which all clusters have 
[CA] values that exceed the maximum of c.20 mmol/l observed in the aorta.  The data have 
been pooled for all visits. 

The clustering results can be skewed by even a small number of outliers if they lie 
far enough from the bulk of the data, as illustrated by the unphysiological mean 
[CA](t) series for the very small clusters for Patient 2 (Table 1 and Figure 4a).  Identi-
fication and removal of the outliers restored the mean [CA](t) series to the physio-
logical range (Figures 4c and 4d). 

In the absence of outliers, Distance-Distance plots take the form of Figure 2b be-
cause the MCD and classical estimates for the data centroid and covariance matrix 
match, as do the corresponding Mahalanobis distances.  Outliers pull the classical es-
timates towards themselves [13], so their robust Mahalanobis distances are greater 
than the classical ones, as in Figure 2a and 2c.  Registration could reduce the number 
of outlier time series (Figure 2a and 2b) but not in all cases (Figure 2c) and its effect 
on cluster structure was subtle (Figure 3).  Note that our additional registration of the 
variable flip-angle images to the pre-contrast TKMDR synthetic target images (Sec-
tion 2.2) ensured that T1(0) and T1(t) in Equation (1) arose from the same voxels when 
applying cross-visit normalization. 

Outliers have been defined as data that are sufficiently different from the norm to 
suggest a different generative mechanism [12].  For this study we simply removed 
outliers to robustify the clustering, but it would be informative to gather outliers into 
additional clusters, which could be examined to understand their origin.  While some 
outliers will arise from artefactually low T1(t) values (Section 2.4), some may also 
provide insight into treatment effects.  Finally, as ground truth is impossible to estab-
lish with patient data, simulation studies would provide further validation. 

5   Conclusions 

We have described a method for unsupervised, data-driven segmentation for DCE-
MRI time series data, applicable to multi-visit clinical trials.  The method uses regis-
tration for motion-correction, imputation of missing data values and statistical outlier 
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identification and rejection.  The resulting clusters are in general spatially contiguous 
and have physiologically reasonable mean [CA](t) series.  Our procedure will allow 
statistical analyses to be applied to sub-regions of tumors to reveal localized varia-
tions in treatment response that would be masked in a whole-tumor VOI analysis.  
Such results could, for example, influence decisions on whether or not to proceed 
with the development of a particular drug. 
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Abstract. Quantitative magnetic resonance analysis often requires accurate, ro-
bust and reliable automatic extraction of anatomical structures. Recently, tem-
plate-warping methods incorporating a label fusion strategy have demonstrated 
high accuracy in segmenting cerebral structures. In this study, we propose a 
novel patch-based method using expert segmentation priors to achieve this task. 
Inspired by recent work in image denoising, the proposed nonlocal patch-based 
label fusion produces accurate and robust segmentation. During our experiments, 
the hippocampi of 80 healthy subjects were segmented. The influence on seg-
mentation accuracy of different parameters such as patch size or number of train-
ing subjects was also studied. Moreover, a comparison with an appearance-based 
method and a template-based method was carried out. The highest median kappa 
value obtained with the proposed method was 0.884, which is competitive com-
pared with recently published methods. 

Keywords: hippocampus segmentation, nonlocal means estimator. 

1   Introduction 

The crucial role of magnetic resonance (MR) imaging has been demonstrated in the 
detection of pathology, the study of brain organization and in clinical research. How-
ever, the vast amount of data produced everyday in clinical settings prevents the use 
of manual approaches to data analysis. The development of accurate, robust and reli-
able segmentation techniques for the automatic extraction of anatomical structures is 
becoming an important challenge in quantitative MR analysis. To achieve this task, 
several automatic methods have been proposed, such as deformable models or region 
growing [1-2], appearance-based models [3-4] and atlas/template-warping techniques 
[5-9]. Recently, template-warping techniques that use a library of templates (i.e., MR 
images with manual expert-based segmentation) have been investigated intensively 
because of their high accuracy to segment anatomical structures. Barnes et al. [5] 
proposed to register the most similar template from a library of pre-labeled subjects to 
segment the hippocampus (HC). However, the use of only one template may result in 
a biased segmentation. To avoid this problem, it is possible to use several similar 
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templates [6-7, 9-11]. This requires a label fusion strategy [6, 8-9, 11] to efficiently 
merge the information derived from the selected templates. In such approaches, two 
main assumptions are made. First, constraints on structure shape are used implicitly 
due to the one-to-one correspondence between the voxels of the image to be seg-
mented and those of the warped templates. This presents the advantage of forcing the 
resulting segmentation to have a similar shape to those of expert-labeled structures in 
the template library. However, according to the regularization used during registra-
tion, some details can be lost and local high variability cannot be captured. Second, 
label fusion techniques usually assign the same weight to all samples during a vote 
procedure and consider only the absolute number as a criterion. This approach is 
sensitive to registration error, since it does not take into account the anatomical rele-
vance of each sample [10]. Therefore, we propose a patch-based scheme with a 
weighted label fusion, where the weight of each sample is only driven by the similar-
ity of intensity between patches.          

In this study, we describe a fully automated patch-based method and the different 
steps required for its utilization, such as the library construction. Our method is ap-
plied to the HC segmentation of healthy subjects. During experiments the influences 
of different parameters were studied, and a comparison with two other methods was 
performed. Finally, we discuss further improvements and questions revealed by this 
new approach. 

2   Materials and Methods 

2.1   Overview 

First, the patch library is constructed by removing image acquisition variability and 
linearly aligning the subjects of the library in a common space. For each voxel of the 
image to be segmented, the surrounding patch is then compared to the patches con-
tained in the library. Finally, the expert-based information is merged using a nonlocal 
means approach [12] to produce the final segmentation. 

2.2   Dataset  

The HC dataset consists of 80 subjects selected from 152 T1-weighted (T1w) MR 
images of young, healthy individuals acquired in the context of the International Con-
sortium for Brain Mapping (ICBM) project. The volunteers were scanned with a 1.5T 
Philips GyroScan imaging system (1 mm thick slices, TR = 17 ms, TE = 10 ms, flip 
angle = 30 °, 256 mm field of view). The local ethics committee approved the study 
and informed consent was obtained from all participants. The 80 selected subjects 
were manually segmented by an expert. This data subset comprises 39 males and 41 
females of similar ages (mean age: 25.09 ± 4.9 years). The resulting segmentations 
obtained an intra-class reliability coefficient (ICC) of 0.900 for inter- (4 raters) and 
0.925 for intra-rater (5 repeats) reliability.  

2.3   Patch Library Construction 

Denoising: All images in the database were first denoised with the three-dimensional 
(3D) block-wise nonlocal means filter proposed for MR images in [13].  
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Inhomogeneity correction: To ensure that each tissue type has the same intensity 
within a single image, the well-known N3 intensity non-uniformity correction of Sled 
et al. [14] was used.   

Linear registration to stereotaxic space: Each subject was linearly registered to 
the MNI 152 template into the stereotaxic space using ANIMAL [15].  

Intensity normalization: Finally, the intensities of the images were set in [0-100] 
and were normalized together by using the method proposed in [16]. Since our 
method involves the matching of a sub-region of anatomical structures based on in-
tensity, the contrast and the luminance information are preserved by performing the 
global normalization of the entire 3D image.  

2.4   Search Strategy within the Library 

Initialization mask: Instead of performing the segmentation of the entire image 
under study, we define an initialization mask around the structure of interest. Many 
different strategies can be used to propose an accurate initialization, such as the 
matching of the best subject [5] followed by a morphological dilation of the mask. In 
this study, we chose a very fast and simple approach that consists in using the union 
of all the expert segmentations in the training database as the initial mask. In this way, 
we ensure that the structure is completely included in the mask and demonstrate the 
robustness of our method to coarse initialization (median Dice kappa of initial mask 
was around 0.4).  

Subject selection: A selection is also performed at the subject level. This strategy is 
similar to the selection of best subjects in label fusion methods [7]. In our method, we 
use the sum of the squared difference across the initialization mask instead of using 
normalized mutual information over the entire image, as suggested in [7]. This strategy 
was chosen because our patch comparison is based on the L2-norm. Thus, we want to 
prioritize subjects with similar anatomy as well as similar luminance and contrast. The 
N closest subjects are finally retained for use during the patch comparison. 

Patch pre-selection: As proposed for denoising purposes [13], we pre-select the 
patches to be compared. In fact, the main part of computational time is dedicated to 
computing the intensity-based distance between patches. By using simple statistics 
such as mean or variance, it is possible to discard a priori the most dissimilar patches 
[13]. In the proposed approach, we use luminance and contrast criteria to achieve this 
pre-selection. Based on the first and second terms of the well-known structural simi-
larity measure (SSIM) [17], the pre-selection procedure can be written as follows: 
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where μ represents the means, and σ, the standard deviations of the patches centered on 
voxel xi (voxel under consideration) and voxel xs,j at location j in the subject s. If the value 
ss is superior to a given threshold th (0.95 for all experiments), the intensity distance be-
tween patches i and j is computed. The patch mean and variance are pre-computed as 
maps of local means and local variances, thus avoiding multiple computations.  

Search area definition: Initially, the nonlocal means denoising filter was pro-
posed as a weighted average of all the pixels in the image, with patch-based similarity 
used to assign the weights [12]. For computational reasons, the entire image cannot be 
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used and the number of pixels involved has to be reduced. As for denoising [12-13], 
we use a limited search area Vi, defined as a cube centered on the voxel xi under 
study. Thus, within each subject, we search similar patches in a cubic region around 
the location under study. This search area can be viewed as the inter-subject variabil-
ity of the structure of interest in stereotaxic space. This variability can increase for a 
subject with pathology or according to the structure under consideration. 

2.5   Nonlocal Patch-Based Label Fusion 

Nonlocal means estimator: For all voxels xi of the image to be segmented (included 
in the initialization mask), the estimation of the final label is based on a weighted label 
fusion v(xi) of all labeled samples in the selected library (i.e., inside the search area Vi 
for the N considered subjects): 
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where ys,j is the label given by the expert to voxel xs,j at location j in subject s. The 
weight w(xi, xs,j) is computed as: 
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where ||.||2 is the L2-norm, normalized by the number of elements, computed between 
each intensity of the elements of the patches P(xi) and P(xs,j). If the structure similarity 
ss between patches is less than th, the weight is not computed and is set directly to 
zero. Finally, by considering the labels y defined as {0,1}, the final label L(xi) is 
computed as: 
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In the event that all patches in the library have ss < th, –1 is returned to indicate 
that the selected library does not allow a decision to be made. 

Local adaptation of h: As usual in estimation problems using a robust function, 
the tuning of the decay parameter h plays a crucial role. When h is very low, only a 
few samples are taken into account. When h is very high, all samples tend to have the 
same weight and the estimation is similar to a classical average. The value of h should 
depend on the distance between the patch under consideration and the library content. 
To automatically achieve this local adaptation of h, we propose an estimation of h(xi), 
based on the minimal distance between the patch under consideration and the selected 
subpart of the library: 
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where ε is a small constant to ensure numerical stability in case the patch under con-
sideration is contained in the library.  
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2.6   Validation Framework 

A leave-one-out procedure was performed for the 80 subjects. Dice’s kappa was then 
computed by comparing the expert-based segmentations with the segmentations ob-
tained with our method. The impact of the patch size, search area size and number of 
training subjects was studied. Moreover, the proposed patch-based method was com-
pared with an appearance-based approach using level-set shape constraints [3], and a 
template-based technique inspired by the work of Barnes et al. [5] that uses ANIMAL 
[15] for the nonlinear registration of the best subject. For the appearance-based method, 
only one modality was used during the process. We used the 79 remaining subjects to 
construct the training dataset involved in PCA computation. For the template-based 
method inspired by [5], the best subject was selected using the normalized mutual in-
formation, as suggested in [7], and then nonlinearly warped to the subject under study 
with ANIMAL within a multi-resolution framework until a resolution of 2 mm. 

3   Results 

The Dice kappa values obtained with the initial standard mask was 0.44, which corre-
sponds to coarse initialization.  

 

  
Fig. 1. Dice Kappa values according to the patch size (left) and the search area size (right). The 
results are obtained with 20 training subjects. 

Impact of the patch size: First, we studied the impact of patch size on segmenta-
tion accuracy. The kappa results are presented at left in Fig. 1. The best median Dice 
kappa was obtained with a patch size of 7x7x7 voxels for the HC dataset (K = 0.882). 

Impact of the search area size: We also studied the impact of the search area size 
on segmentation accuracy. The kappa results are presented at right in Fig. 1. The best 
median kappa was obtained with a search area of 9 x 9 x 9 voxels  (K = 0.882).  

Impact of the number of training subjects: The last important parameter of the 
proposed method is the number of selected training subjects. During this experiment, 
segmentation accuracy was studied for N=2 to N=30 selected training subjects. As 
described previously, the N best training subjects are selected from the 79 remaining 
ones. The results are presented in Fig. 2. The median kappa value was 0.848 for 2 
subjects and 0.884 for 30 subjects. As expected, increasing the number of selected 
training subjects increased the accuracy of the segmentation.  
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Fig. 2. Dice Kappa values according to the number of training subjects obtained with a patch 
size of 7x7x7 voxels and search area size of 9x9x9 voxels 

Comparison with appearance-based and template-based methods: Finally, the 
proposed patch-based method was compared with two other methods. Figure 3 pre-
sents the kappa values obtained for each method. The results presented for our 
method were obtained with N = 20. The appearance-based method obtained a median 
kappa value of 0.800; the best template approach obtained 0.837, whereas the pro-
posed method obtained 0.882. One can note that by using only 2 training subjects 
(K=0.848) our method already outperforms the two other methods. Figure 4 shows 
HC segmentations obtained by the methods compared. 

 

 

Fig. 3. Kappa values obtained by the three methods. The patch-based approach obtained sig-
nificantly better results compared to the two others methods with a  p-value << 0.001 in both 
cases using Kruskal-Wallis tests.  
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Computational time: The computational time was proportional to the number of sub-
jects; for each subject, around 40 seconds were required. Compared with other ap-
proaches, the appearance-based method [3] took around 1 minute to provide the segmen-
tation of the HC. The best template-based approach inspired by [5] required around 6 
minutes to achieve the nonlinear registration of the cropped images already linearly regis-
tered into stereotaxic space. However, the comparison of computational time is difficult 
since our method was coded in MATLAB© and not in C like the other two methods. 

 

   
Best subject Κ= 0.909 Κ= 0.852 Κ= 0.791 

    
Median subject Κ= 0.882 Κ= 0.822 Κ= 0.835 

    
Worst subject Κ= 0.802 Κ= 0.733 Κ= 0.652 

Segmentations of 
expert 

Patch-based Best Template Appearance-
based 

Fig. 4. Segmentation results with the three methods compared, for the best (top), a median 
(middle) and the worst (bottom) subjects obtained with our method 

4   Conclusion 
We proposed a novel patch-based approach to automatically segment anatomical 
structures using expert segmentation priors. Despite its simplicity, the accuracy of the 
proposed method has been demonstrated within our validation framework. The high-
est Dice kappa values obtained during experiments were 0.884 for N = 30 training 
subjects. Moreover, comparison with an appearance-based [3] and a template-based 
method [5] highlighted the competitive results obtained by the proposed nonlocal 
patch-based approach. Comparing published methods is always difficult due to differ-
ences within the databases used for validation, the studied populations, the quality of 
expert segmentations and the reported quality metrics. However, tendencies in 
method evolution and their respective performances can be obtained by studying 
published results. Recently published results [1, 5, 7] indicated kappa values lower 
than 0.88. To the best of our knowledge, only the methods based on nonlinear warp-
ing of the best templates and involving a label fusion step [9-11] obtained a kappa 
value equal to or greater than 0.88. Gousias et al. [11] reported a mean kappa of 0.88 
with the use of a b-spline-based nonlinear registration on a 2-year-old brain. Lotjonen 
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et al. [10] proposed two intensity-based models to improve label fusion. With the 
graph-cut-based method, they obtained a kappa of 0.88, and with the EM-based algo-
rithm, a kappa of 0.885. Collins and Pruessner [9] obtained a median kappa of 0.886 
by using nonlinear registration of 11 best templates and a classical voting scheme for 
label fusion. By comparison, our proposed method offers the main advantages of its 
simplicity for similar segmentation accuracy (K = 0.884). As a result of the proposed 
automatic adaptation of the robust function parameter, our approach can be used eas-
ily and implemented in a fully automatic manner. 
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Abstract. In this paper, we re-examine the cellular automata(CA) al-

gorithm to show that the result of its state evolution converges to that of

the shortest path algorithm. We proposed a complete tumor segmenta-

tion method on post contrast T1 MR images, which standardizes the VOI

and seed selection, uses CA transition rules adapted to the problem and

evolves a level set surface on CA states to impose spatial smoothness. Val-

idation studies on 13 clinical and 5 synthetic brain tumors demonstrated

the proposed algorithm outperforms graph cut and grow cut algorithms

in all cases with a lower sensitivity to initialization and tumor type.

1 Introduction

Segmentation of tumors on medical images is not only of high interest in serial
treatment monitoring of ”disease burden” in oncologic imaging, but also gaining
popularity with the advance of image guided surgical approaches [1]. Outlining
the tumor contour is a major step in planning spatially localized radiotherapy
(e.g. Cyberknife, iMRT) which is done manually on post contrast T1 MRI in
current clinical practice. On T1 images acquired after administration of a con-
trast agent (gadolinium), blood vessels and the parts of the tumor, where the
contrast can pass the blood-brain barrier are observed as hyper intense areas.

Region-based active contour models are widely used in image segmentation
[2]. In general, these region-based models have several advantages over gradient-
based techniques for segmentation, including greater robustness to noise. How-
ever, classical snakes had the problem of being ”only as good as their initial-
ization”, even when using level-set snakes in 3D. Because the tumor class does
not have a strong spatial prior, many small structures, mainly blood vessels,
are classified as tumor as they also enhance with contrast. Ho et.al. used fuzzy
classification of pre and post contrast T1 images to obtain a tumor probability
map to evolve a level-set snake [3]. Liu et.al. have adapted the fuzzy connect-
edness framework for tumor segmentation by constructing a rectangular volume
of interest selected through identifying the first and last slice of the tumor and
specifying a set of voxels in the tumor region [4].

Interactive algorithms have become popular for image segmentation problem
in recent years. Graph based seeded segmentation framework has been gener-
alized such that graph cuts (GC) [5], random walker (RW) [6], shortest paths,

T. Jiang et al. (Eds.): MICCAI 2010, Part III, LNCS 6363, pp. 137–146, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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and power watersheds [7] have been interpreted as special cases of a general
seeded segmentation algorithm, which solves a minimization problem involving
a graph’s edge weights constrained by adjacent vertex variables or probabilities.
In [8], the connection between GC, RW, and shortest paths was shown to de-
pend on different norms: L1 (GC); L2 (RW); L∞ (shortest paths), in the energy
that is optimized. Although it was reported that the shortest paths and RW
produce relatively more seed-dependent results, it can be argued that the global
minimum of an image segmentation energy is worth as good as the ability of
its energy to capture underlying statistics of images[9], and a local minimum
may produce a solution closer to the ground truth than that of a global min-
imum. Hence, with good prior information provided as in the case of a seeded
image segmentation problem, efficiently finding a good local minima becomes
meaningful and worthwhile.

On the other hand, cellular automata (CA) algorithm motivated biologically
from bacteria growth and competition, is based on a discrete dynamic system de-
fined on a lattice, and iteratively propagates the system states via local transition
rules. It was first used by Vezhnevets et.al. [10] (grow-cuts) for image segmenta-
tion, which showed the potential of the CA algorithm on generic medical image
problems.

In this paper, we re-examine the CA algorithm to establish the connection
of the CA-based segmentation to the graph-theoretic methods to show that the
iterative CA framework converges to the shortest path algorithm, for the first
time, to our knowledge. Next, as our application is in the clinical radiotherapy
planning, where manual segmentation of tumors are carried out on CT fused
post contrast T1-MR images by a radio-oncology expert, we modify the CA
segmentation towards the nature of the tumor properties undergoing radiation
therapy by adapting relevant transition rules. Finally, a smoothness constraint
using level set active surfaces is imposed over the resulting CA states. We present
our framework for brain tumor segmentation in Section 2, and demonstrate its
performance via validation studies on both synthetic, and radiation therapy
planning expert-segmented data sets in Section 3, followed by discussions and
conclusions.

2 Method

2.1 Cellular Automata: Its Connection to Graph Theoretic
Methods

A graph consists of a pair G = (V,E) with vertices (nodes) v ∈ V and edges e ∈
E ⊆ V ×V . The weight of an edge, eij , is denoted by wij and is assumed here to
be nonnegative and undirected (i.e., wij = wji). We will use closed neighborhood
NG[v] where vi ∈ NG(vi). The edge weights are similarity measures calculated
using measured data (e.g. voxel intensity) for vertices: wij = f(Ii, Ij) ∈ (0, 1]
and self-similarity wii = 1. State of a vertex s(vi) = si is specified with a real
value x(vi) = xi ∈ [0, 1] and a label li ∈ {BG,FG, · · · } pair. Starting with
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initial states of vertices, in each iteration, vertices of graph G is updated by the
following rule:

lt+1
i = lti∗ and xt+1

i = wi∗ix
t
i∗ where i∗ = arg max

j∈NG[vi]
wjixj (1)

Note that since the vertex itself is also included in its neighborhood, Eq. (1) also
covers the static case:

st+1
i = st

i if xi ≥ wjixj for ∀vj ∈ NG[vi] \ vi (2)

Vertex states are initialized by user supplied seeds pi ∈ P such as:

s0(vi) = (1, l(pi)) for vi ∈ P and s0(vi) = (0, ∅) for vi /∈ P (3)

This map converges since
∑

i xi is upper-bounded and monotonically increasing:

lim
t→∞ st+1

i = st
i for ∀vi ∈ V (4)

Now, let us derive some properties on the final map. Consider any vertex vi of
a graph G, and assume that a latest update occurred on this vertex at time ti.
The vertex which updates vi is vi∗ . Final state for vi is:

st≥ti

i = (wi∗ix
ti

i∗ , l
ti

i∗) (5)

If any update occurs on vi∗ at time ti∗ ≥ ti by vi∗∗ , this should satisfy the
condition:

xti∗
i∗ = wi∗∗i∗x

ti∗
i∗∗ > xt<ti∗

i∗ that gives wi∗ix
ti∗
i∗ > wi∗ix

t<ti∗
i∗ (6)

However, this will also cause an update on vi at t > ti∗ > ti, which violates the
condition in (5). Then, at the converged map, there exists a neighbor vi∗ for
each vertex vi such that:

si = (wi∗ixi∗ , li∗) (7)

If we go one step further:

si∗ = (wi∗∗i∗xi∗∗ , li∗∗) and si = (wi∗iwi∗∗i∗xi∗∗ , li∗∗) (8)

We can follow this path for any vertex until we reach a seed which is never
updated:

s(vi) = (
∏

Ω(pi→vi)

wjk, l(pi)) (9)

Therefore, this algorithm cuts the graph G to independent subgraphs for each
seed, consisting of spanning trees with seeds at root nodes.

If we set edge weights depending on similarity of image (I : R3 → R) neigh-
borhoods as:

wjk = e−B||∇jkI|| (10)
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where ||∇jkI|| denotes a Euclidean norm on the difference between intensities
of two adjacent vertices vj and vk. Maximization the product of wjk’s along the
path Ω becomes equivalent to minimization of the summation of ||∇jkI||’s along
the same path.

∑
Ω(pi→vi)

||∇jkI|| is a discrete approximation to a geodesic or
shortest path between the seed pi to a voxel vi. Each voxel is then assigned to
the foreground label if there is a shorter path from that voxel to a foreground
seed than to any background seed, where paths are weighted by image content.
With this interpretation, cellular automata algorithm solves the shortest paths
energy form formulated in [8].

The equivalence, which we showed, between CA updates by Eq. (1) and short-
est path algorithm is illustrated in Fig. 1.

The main advantage of using CA algorithm is its ability to obtain a multilabel
solution in a simultaneous iteration. Another advantage is that the local transi-
tion rules are simple to interpret, and it is possible to impose prior knowledge,
specific to the problem, into the segmentation algorithm.

Fig. 1. (a) The graph is initialized with similarities as edge weights and vertex values

1 for seeds, 0 elsewhere; (b-c) intermediate propagation steps for CA; (d) shows the

final vertex values obtained from CA which can also be obtained as the shortest path

from each vertex to a seed

2.2 Seed Selection Based on Tumor Response Measurement
Criteria

As each path, defining the labeling of a vertex ends at a seed, the efficiency of
the algorithm can be increased by choosing the background seeds on a closed
surface around the volume of interest (VOI) because the result of labeling inside
the VOI is equivalent to using the whole data set.

Robustness to seed selection is an important property of a segmentation algo-
rithm, as it is natural to expect similar results for the same tumor while allowing
the user to guide the segmentation process interactively by imposing constraints
in different way. In RECIST tumor response criteria [11], a general procedure to
follow-up tumor progress is to measure the maximum observable tumor diameter.
Our seed selection algorithm employs the same idea to follow the familiar clini-
cal routine to which the clinicians are used to. Focusing on tumor segmentation
problem, we utilize the following seed selection procedure (see Fig. 2a, 2b):

– Ask user to draw a line along the maximum visible diameter of the tumor.
– Crop the line 15% from each end and thicken to 3 pixels wide to obtain fg

seeds.
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– Choose bounding box of the sphere having 20% longer of the line as VOI.
– Use the 1 voxel wide border of this VOI as background seeds.

One obvious drawback is that the input seed information is obtained from
only a single slice of the tumor volume, hence it is not guaranteed that the
depth of the tumor will also coincide with the VOI. However, our experimental
studies revealed that spherical assumption for the tumor is mostly valid.

2.3 Adapting Transition Rule to Tumor Characteristics

In the seeded tumor segmentation application for heterogeneous tumors, which
mostly consist of a ring enhancing region around a dark necrotic core (and also
irregular borders), most of the foreground seeds fall in the necrotic region. This
causes the segmentation algorithm to get stuck at necrotic to active transition
borders. To overcome such problems, a prior knowledge is added to the edge
weight function as follows:

wjk = e−β
l,sgn(Ij−Ik)
tumor ||Ij−Ik|| where sgn denotes sign function. (11)

Enhancing tumor cells are brighter than the normal tissue, and more centrally
located necrotic core is darker, hence by adjusting β parameter, the weight reduc-
tion (strength loss) of a tumor state while passing through a ramp up gradient
is adjusted to be lower than other cases:

β
l,sgn(Ij−Ik)
tumor =

{
0.7 if lk is foreground and sgn(Ij − Ik) = +1
1.0 otherwise (12)

Although, some of the properties we derived for this algorithm is no more valid,
and due to asymmetric edge values, we can no more interpret the algorithm
in the undirected graph framework, our experimental results revealed that the
new tumor CA (tCA) algorithm significantly improved the results obtained,
especially on glioblastomas.

2.4 Using Level Set on Strength Maps

Smoothing is an important prior in segmentation of brain tumors from post con-
trast T1 images, because of three main reasons: First, an area surrounded by
tumor tissue is considered as a tumor region even the intensity characteristics
likely to be healthy. Secondly, it is possible to include misclassified necrotic re-
gions to tumor region, which are usually surrounded by enhanced tissue. Finally,
it is possible to exclude nearby structures such as arteries that are enhanced by
adminstration of the contrast agent.

As described in Section 2.1, cellular automata algorithm assigns a label l, and
a likelihood value xi in the interval (0,1] to each voxel vi. The latter indicates
how much it is likely to assign one of the labels to the voxel. Remapping values
of the final map X = {xi}i∈V to the interval (-1,1) for all voxels in V , we obtain
a new map M :
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Mi =

{
xi−min(X)

max(X)−min(X) if li is foreground

− xi−min(X)
max(X)−min(X) if li is background

(13)

with values Mi at a voxel i. Finally, a level set snake is evolved on map M with
a piecewise constant region assumption of [2], however by using a local Gaussian
kernel to define inner and outer regions around the propagating surface, to obtain
the final tumor segmentation map.

Steps of the proposed cellular automata based tumor segmentation algorithm
is shown in Fig. 2. First, the user draws a line over the largest visible diameter
of the tumor (a); using this line, a VOI is selected with foreground-background
seeds (b); tCA algorithm is run on the VOI to obtain a label map and strengths
at each voxel (c); label maps and strengths are combined to obtain the signed
strength values, i.e. map M, such that contours have value of zero (d). The map
M is used to evolve a level-set snake. In (d), initial level set contour is depicted
in white, and final evolved contour is shown in black. Comparison to expert
segmentation (blue) is visualized in (e), overlayed with tCA result (red), and
tCA-Level set result (yellow).

Fig. 2. Steps of the proposed tumor segmentation method: see text for explanations

3 Results and Discussion

An expert-segmentation during a radiation therapy planning session is compared
against results of Graph Cut (GC), Random Walker (RW), Grow-cut, and the
tCA over a slice (see Fig 3). It can be observed that highly varying necrotic and
enhancing tumor characteristics present challenges to all computer algorithms,
which fail to capture the expert segmented boundaries. Cellular-automata based
algorithms grow-cut and tCA could propagate further towards the enhanced
tumor margins.
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Fig. 3. Comparison of graph based al-

gorithms: Expert in Green; RW in Blue

(Dice: %70), GC in White (Dice: %80);

Grow cut in Yellow (Dice: %87), tCA

in Red (Dice: %89)

Fig. 4. Segmentation of enhancing and

necrotic regions of the tumor using multil-

abel cellular automata

3.1 Enhancing/Necrotic Core Segmentation Qualitative Results

Cellular automata segmentation algorithm is applied on heterogeneous tumors
with enhancing and necrotic regions, whose delineation is important especially in
assessment of radiotherapy response. In the first step, tCA-LS method is applied
to obtain a total tumor mask. Tumor and necrotic seeds are chosen by applying a
threshold to intensity histogram of the segmented region. For background seeds,
a one voxel boundary around the VOI is used. tCA algorithm is initialized with
these 3 label seeds on a single slice of three tumors and the results are given in
Fig 4.

3.2 Validations on Synthetic Data

Dice similarity measure, Dice(A,B) = 2 × s(A ∩ B)/(s(A) + s(B)), is used to
quantify the overlap between obtained segmentation maps and expert manual
segmentations extracted from radiotherapy planning sessions for each tumor.
To measure the robustness of the method, for each tumor case, overlap for 5
different initialization lines are calculated and mean and standard deviation of
the overlap are given, and the performance is compared between GC, Grow-cut,
tCA, tCA-LevelSet(LS)1.

Five synthetic brain tumor datasets, available online from University of Utah2

are used for validation and the dice measures are reported in Table 1. Synthetic
Tumor 5, which is not enhanced with contrast agent and out of scope of the
proposed algorithm, is included for the completeness of the Utah dataset (see
Fig 5g).

3.3 Validations on Tumors That Undergo Radiation Therapy
Planning

Validations on clinical data set were carried out over high resolution (≈
0.5x0.5x1.0 mm) post Gd T1 weighted 3D FLASH MRI scans of 13 tumors of
1 Due to unavailability of RW method in 3D, it was not included in the validation

tests.
2 http://www.ucnia.org/softwaredata/5-tumordata/10-simtumordb.html
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Table 1. Dice overlap ± std deviations over 5 different initial seed lines for each tumor

for synthetic tumor data set from [12]

Graph cut Grow cut tCA tCA-Level Set

Synthetic Tumor 1 6.6 ± 2.5 83.8 ± 1.1 87.4 ± 0.9 90.4 ± 0.7
Synthetic Tumor 2 58.0 ± 32.3 77.8 ± 3.2 81.4 ± 3.6 84.6 ± 4.4
Synthetic Tumor 3 96.5 ± 0.0 96.2 ± 0.3 96.3 ± 0.3 97.6 ± 0.2
Synthetic Tumor 4 91.1 ± 0.7 89.3 ± 1.0 91.9 ± 0.8 93.0 ± 0.9
Synthetic Tumor 5 11.6 ± 7.4 73.6 ± 2.7 73.1 ± 3.3 69.1 ± 5.7

Average Overlap 52.8 ± 42.5 84.1 ± 9.0 86.0 ± 9.1 86.9 ± 11.0

Table 2. Dice overlap ± std deviations over 5 different initial seed lines for each tumor

demonstrate improved overlap with the proposed method

Graph cut Grow cut tCA tCA-Level Set

Tumor 1 Metastasis 76.8 ± 0.0 79.5 ± 2.0 80.2 ± 1.6 83.5 ± 0.3
Tumor 2 Gliosarcoma; Grade IV 15.0 ± 5.5 53.5 ± 7.4 57.6 ± 6.0 69.8 ± 5.5
Tumor 3 Grade II Astrocytoma 34.5 ± 16.0 76.9 ± 3.1 83.2 ± 1.0 89.1 ± 1.2
Tumor 4 Metastasis 17.0 ± 37.1 72.6 ± 5.8 74.6 ± 4.0 79.5 ± 3.2
Tumor 5 Metastasis 39.0 ± 6.5 44.4 ± 5.1 46.5 ± 3.0 51.5 ± 2.6
Tumor 6 Metastasis 5.1 ± 8.6 51.7 ± 5.3 54.6 ± 4.9 60.5 ± 3.7
Tumor 7 Metastasis 76.6 ± 2.5 73.8 ± 1.9 74.8 ± 1.5 81.3 ± 1.8
Tumor 8 Metastasis 69.3 ± 0.3 76.6 ± 0.9 76.9 ± 1.0 81.6 ± 0.9
Tumor 9 Metastasis 55.3 ± 1.9 63.3 ± 5.1 65.2 ± 4.2 68.4 ± 4.0
Tumor 10 Meningioma 71.6 ± 10.0 61.1 ± 6.8 65.5 ± 6.3 76.9 ± 3.9
Tumor 11 Meningioma 83.0 ± 0.1 69.8 ± 3.4 73.1 ± 2.7 83.5 ± 1.3
Tumor 12 Meningioma 44.9 ± 24.5 49.0 ± 8.8 52.7 ± 7.5 64.1 ± 5.9
Tumor 13 Meningioma 68.6 ± 1.7 67.7 ± 1.6 68.0 ± 1.8 71.7 ± 1.8

Average Overlap 50.5 ± 26.5 64.6 ± 11.7 67.1 ± 11.4 74.0 ± 10.8

7 patients obtained from Anadolu Medical Center. As the ground truth for seg-
mentation, we used the tumor contours outlined manually by a radio-oncologist
for radiotherapy planning. The clinical classification of tumors along with the
segmentation performances are tabulated in Table 2.

The results we observed with the GC approach exhibit similar problems re-
ported before in [7] such as shrinking bias due to minimum cut optimization.
The shortest path algorithms, equivalently CA, showed lack of the shrinking bias
problem. The proposed tCA-LS algorithm exhibit a lower coefficient of variation
(std/mean) on the average compared to the other methods used in validation.

3.4 Qualitative Results

We present qualitative results of both synthetic and real tumors using the pro-
posed tCA-LS algorithm in Figure 5. The result on a synthetic tumor with a
non-enhanced region having no boundary to healthy tissue is given in Fig 5(e).
The metastasis (Tumor 6) in Fig 5(f) is a small tumor (1.4cc) with weak bound-
aries, which produces a low overlap score even for small errors on the boundaries.
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The synthetic tumor in Fig 5(g) is not enhanced by the contrast agent, and the
result obtained leaks outside due to the lower intensities than surrounding tissue
and weak boundaries. For the metastasis in Fig 5(h), surrounding bright tissue
is misclassified as tumor, even after smoothing with a level set.

Fig. 5. Examples of typical (top row) and challenging cases (bottom row) obtained by

tCA-LS: Expert segmentation in Blue, tCA-LS in Red

4 Conclusion

The proposed segmentation algorithm for the problem of tumor delineation, has
only two main parameters: βl,+

tumor, l ∈ {fg, bg} and mean curvature term weight
in the level set evolution. One future work includes optimizing both curvature
term and the tumor sensitivity parameter βl

tumor over a larger tumor database,
although the results over 18 tumors of varying degrees showed that the algorithm
performs with high overlap ratios even with the fixed heuristic values. Another
item is to investigate the issues related to the VOI and seed selection procedure.
Our current work includes assessment of the tumor response to therapy, which
is built on the given segmentation framework.
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Abstract. Learning-based approaches have become increasingly prac-

tical in medical imaging. For a supervised learning strategy, the quality

of the trained algorithm (usually a classifier) is heavily dependent on

the amount, as well as quality, of the available training data. It is often

very time-consuming to obtain the ground truth manual delineations. In

this paper, we propose a semi-supervised learning algorithm and show

its application to skull stripping in brain MRI. The resulting method

takes advantage of existing state-of-the-art systems, such as BET and

FreeSurfer, to sample unlabeled data in an agreement-based framework.

Using just two labeled and a set of unlabeled MRI scans, a voxel-based

random forest classifier is trained to perform the skull stripping. Our sys-

tem is practical, and it displays significant improvement over supervised

approaches, BET and FreeSurfer in two datasets (60 test images).

1 Introduction

Supervised learning approaches have become increasingly popular and practi-
cal in brain MRI segmentation [1,2,3]. These algorithms produce classifiers that
utilize a large number of features by applying modern learning algorithms. How-
ever, supervised learning often demands large amounts of training data with
consistent manual labeling, which are difficult to obtain. Recent semi-supervised
learning approaches [4,5,6,7] have provided new mechanisms to take advantage
of the information in unlabeled data to train a better system.

In this paper, we propose a semi-supervised approach to skull stripping, which
is the first element in most neuro image pipelines, and therefore critical for their
overall performance. The goal of skull stripping is to segment the brain from non-
brain matter in MRI in a robust manner. Skull stripping is expected to follow
the major folds on the surface; if the deeper sulci are to be extracted for surface
analysis, subsequent post-processing techniques can be used. Automated skull
stripping is challenging due to the large variations in image intensity and shape
in MRI scans. Expert systems exist in this domain (e.g. BET [8], FreeSurfer [9]),
but none of them offer a fully satisfactory performance.

We propose taking advantage of these expert systems and unlabeled data to
train a voxel classifier to segment the brain by: 1) training on the labeled data;
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and 2) iteratively re-training the classifier including samples from the unlabeled
data for which the expert systems agree but the classifier is not confident yet.
This approach is related to the tri-training algorithm [10] from the co-training
family[7]. Co-training requires having two or more conditionally independent
views (sets of features) for the data, which is often difficult [11], whereas tri-
training works on single-view data by simultaneously training three classifiers.
The system described in this study can be seen as a special case of tri-training in
which two well-developed skull stripping algorithms (BET and FreeSurfer) play
the role of two of the classifiers in the framework. The output for a test image
is based solely on the trained classifier, so running BET and FreeSurfer on the
image to be analyzed is not necessary.

2 A Semi-supervised Skull Stripping Algorithm

2.1 Proposed Method

Training: The trainining process (see top half of flowchart in Figure 1) is di-
vided in four stages: registration, preprocessing of unlabeled data, feature extrac-
tion and learning. The first step is to coarsely align all the volumes, labeled and
unlabeled, to a template brain scan. The first volume in the dataset was arbitrar-
ily chosen to be the template. This alignment makes it possible to use position
features in the posterior classification. ITK (www.itk.org) was used to optimize
an affine transform using a mutual information metric and a multi-resolution
scheme. Using a nonlinear registration method could make the classifier rely
too much on the registration through location features, making the method less
robust.

The next step is to preprocess the unlabeled volumes. The brain is first seg-
mented using BET and FreeSurfer. The binary outputs of the two methods are
then “softened” using a signed distance transform (positive if inside the brain,
negative if outside). The distance map is mapped to the template space using the
transforms from the registration step. The warped maps are used to calculate
preliminary brain masks in the unlabeled scans by averaging the two maps for
each volume and thresholding the result at zero, and they will also be used in
the posterior semi-supervised learning step.

The third step in the training stage is feature extraction. A pool of 58 image
features is used in this study: (x, y, z) position, Gaussian derivatives of order up
to two at five different scales (σ = {1.0, 2.0, 4.0, 8.0, 16.0}, in mm), and gradient
magnitudes at the same scales. A subset of voxels from the training volumes is
randomly selected for training purposes under the constraints that: 1) all scans
contribute the same number of voxels; 2) 50% of the voxels have to be positives
according to the annotated boundary (for the labeled scans) or the preliminary
mask from the previous step (for the unlabeled); and 3) 50% of the voxels have
to lie within 5mm of the boundary and 75% within 25mm. The features are
normalized to zero mean and unit variance.

Finally, a classifier can be trained using the labeled and unlabeled data.
Breiman’s random forests[12] were used as the base classifier because they
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Fig. 1. Flowchart for the training and test stages of the proposed algorithm

compare favorably to other state-of-the-art algorithms[13]. Feature selection is
performed through training a preliminary classifier with all the features and 20%
of the available data and then retraining with the features that provide the high-
est mean decrease in accuracy in the out-of-bag data. For the semi-supervised
learning, the random forest is first trained solely on the labeled scans, and then
updated in an iterative fashion using “interesting” voxels from the unlabeled vol-
umes i.e. those for which both distance maps (BET and FreeSurfer) are greater
than a given positive threshold (5 mm in all the experiments in this study).
Among those voxels, the ones for which the classifier predicts a negative label
with highest probability (i.e. those with fewest trees voting for positive) are
shifted from the unlabeled set to the labeled data with positive labels. Then the
procedure is repeated with negative voxels using the opposite of the previous
threshold. The iteration concludes with retraining the random forest.

Testing: The testing pipeline (see bottom half of flowchart in Figure 1) is
similar to the training process, with the important difference that BET and
FreeSurfer do not need to be run on the data in this stage. When a new volume
is presented to the system, the first step is to register it to the template. The
optimized transform is stored to warp the final mask back to the original space
later on. From the aligned scan, features are extracted from every voxel and fed
to the random forest. The output is a volume with the number of trees that have
voted positive at each location. Upon division by the total number of trees, this
volume can be interpreted as a probability map for the voxels being part of the
brain. The map can then be smoothed and thresholded at 0.5 to binarize the
data and obtain the preliminary mask. After applying a morphological opening
operator to smooth this mask, the largest connected component is extracted,
holes in it are filled, and then it is warped back to the original space using the
inverse of the affine transform to obtain the final output.
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Theoretical justification: Even though a formal theoretical analysis of the
proposed method is out of the scope of this paper, in this section we try to
provide a brief justification of why it works. Theoretically, the analysis is very
similar to that of tri-training[10], which is in turn very related to [14] and mostly
follows the PAC (probably approximately correct) learning theory. Let H∗ and
H be the ground-truth and our classifier, respectively. It can be shown that,
for Pr[d(H,H∗) ≥ ε] ≤ δ, where d(·) is the difference between H and H∗, one
needs to have a sequence of m samples where m ≥ 2

ε2(1−2η)2 ln(2N
δ ). η < 0.5 is

an upper bound on the error rate by the expert systems, N is the number of
possible hypotheses and δ is the confidence in PAC learning.

The error bounds on the unlabeled data for BET and FreeSurfer can be di-
rectly estimated using labeled data. Our task is then to design a new rule by
combining the experts to make a joint decision that achieves a small error rate
η. This can be translated into a function that weights each unlabeled data point
with a positive/negative label as:

w±
i (X |Hi, F1, F2) ∝ A±[F1(X), F2(X)]

where i denotes the i-th iteration, Hi is the trained classifier at iteration i, F1(X)
and F2(X) give a measure of how likely X is to be a positive according to the
two expert systems, and A± measures the level of agreement and confidence
of F1 and F2 for positive/negative samples. In the proposed method, F1(X)
and F2(X) are the distance maps provided by BET and FreeSurfer. For the
agreement function, success in pilot experiments led to the use of (H [·] is the
Heaviside function): A± = H(±F1(X) − 5mm) ·H(±F2(X) − 5mm).

In this setting, one iteration would ideally suffice because two of the classi-
fiers (BET and FreeSurfer) in the tri-training framework are fixed. The itera-
tive scheme we propose to train the classifier can be seen as a bootstrapping
process[15]: m is large but only a limited number of training samples are used.
We define an empirical criterion to select samples which will potentially improve
the classifier: agreement between BET and FreeSurfer but not with the classifier.

3 Experiments and Results

3.1 Data

Two different datasets are used in this study. The first one, henceforth dataset
A, consists of 10 T1-weighted volumes from the LPBA40 dataset[16]. The brain
surface was annotated by an expert radiologist in all the scans. The second
dataset, henceforth dataset B, consists of 152 T1-weighted scans from healthy
subjects acquired with an inversion recovery rapid gradient echo sequence on a
Bruker 4T system. Manual delineations of the brain by an expert physiologist
are available for 52 of the scans.

3.2 Setup of Experiments

Impact of the number of annotated scans (dataset A): In this exper-
iment, the 10 volumes from dataset A are segmented using a cross-validation
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scheme. For scan i ∈ {1, . . . , 10}, and assuming Nlab annotated examples: 1) 10
random subsets of Nlab elements are extracted from the pool P = {1, . . . , 10} \
{i}; 2) for each subset, a classifier is trained using the Nlab extracted elements
as labeled data and the remaining Nunlab = 9 − Nlab elements in P as un-
labeled; 3) volume i is processed with the 10 resulting classifiers; and 4) the
performance metric for scan i is the average of the performances of the 10 out-
puts for that scan. Four different metrics are used in this study: classification
error rate, Jaccard index of the segmentation (related to the Dice coefficient as
D−1 = (1 + J−1)/2), mean surface-to-surface distance, and the 95% quantile
of this distance, which is a measure of robustness. The error rate and the Jac-
card index are computed using only the voxels that are within 12.5 mm of the
annotated boundary for easier interpretation of the results. The settings of the
parameters were the following: 100,000 training voxels for the supervised clas-
sifier (independently of the number of images); 10 loops of the semi-supervised
update with 2,500 voxels each; 500 trees for the random forest; σ = 1 mm to
smooth the likelihood map; and a 2 mm radius spherical element for the opening.

Evaluation on a larger dataset and impact of the number of unlabeled
scans (dataset B): In this experiment, two randomly selected scans of the 52
labeled volumes from dataset B are used to train the initial classifier, and the
100 scans without annotations play the role of unlabeled data. The remaining 50
scans are used for evaluation. Then, the experiment was repeated by randomly
removing elements from the pool of unlabeled scans in order to asses the impact
of the amount of available unlabeled instances Nunlab. The parameters were all
set to the same values as in the previous experiment. No cross validation was
performed, which is reasonable given the size of the dataset.

3.3 Results

The results from the first experiment (dataset A) are shown in Figure 2, which
compares the semi-supervised strategy with a supervised version (i.e. same algo-
rithm with no semi-supervised update), BET and FreeSurfer. Though FreeSurfer
generally outperforms BET, the latter works better in this particular dataset.
The semi-supervised approach outperforms all the others at every value of Nlab,
whereas the supervised method requires Nlab = 2 ∼ 3 to improve the results of
BET, except for the robustness measure. As expected, the difference between
the semi-supervised and supervised methods decreases as Nlab increases, since
the number of unlabeled volumes Nunlab = 9 −Nlab also becomes lower.

Table 1 shows the p-values for a paired t-test comparing the results given by
the semi-supervised method and BET, and also for a test comparing the semi-
supervised version against the supervised. Compared with BET, all the metrics
improve significantly for Nann = 2 at α = 0.05 (also for Nann > 2, not displayed
due to lack of space). Compared with the supervised approach, the difference
is significant at Nann = 1 but not at Nann ≥ 2 except for the 95% quantile,
due to the low robustness of the supervised method with a small number of
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Fig. 2. Different performance metrics for dataset A depending on the number of labeled

volumes used in the training Nlab, as well as results provided by BET and FreeSurfer

Table 1. Paired t-test comparing the performance metrics provided by the semi-

supervised learning and the supervised version / BET

Method Error rate Jaccard index Mean distances 95% quantile

BET (Nlab = 1) 2.7·10−1 2.3·10−1 1.4·10−3 2.7·10−1

BET (Nlab = 2) 4.0·10−5 6.2·10−5 1.3·10−19 5.0·10−2

Supervised (Nlab = 1) 2.9·10−2 1.6·10−2 5.6·10−3 1.1·10−2

Supervised (Nlab = 2) 1.9·10−1 1.5·10−1 8.3·10−2 1.3·10−2
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Fig. 3. Different performance metrics for dataset B depending on the number of unla-

beled volumes Nunlab used in the training, as well as results by BET and FreeSurfer.

The values of the metrics at zero give the performance for the supervised method.

training scans. This lack of significance is caused by the low number of available
unlabeled volumes, as confirmed by the second setup.

Figure 3 shows the results for the experiments on dataset B, where the number
of annotated scans is two. The performance keeps growing until Nunlab = 100,
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Table 2. Paired t-test comparing the performance metrics provided by the semi-

supervised learning and the supervised version / BET for Nunlab = 100

Method Error rate Jaccard index Mean distances 95% quantile

BET 2.8·10−6 3.6·10−6 1.4·10−15 2.3·10−5

Supervised 8.3·10−3 4.2·10−3 1.2·10−11 2.4·10−4

Fig. 4. Brain surfaces for a sample scan from dataset B: (a) ground truch, (b) BET,

(c) semi-supervised. 3-D renderings for two scans: (d) dataset A, two labeled and nine

unlabeled; (e) dataset B, two labeled and 50 unlabeled.

which, next to having a larger test data sample, provides a larger statisti-
cal significance for the improvement with respect to the supervised version
(Table 2). The significance with respect to BET from the first experiment is
preserved. Figure 4(a-c) shows three orthogonal slices of a fairly difficult scan
from dataset B segmented with BET, the unsupervised algorithm (100 unlabeled
examples) and the manual annotations. The output from BET is unacceptable
in the frontal lobe, whereas the more robust semi-supervised version is still able
to detect the correct boundary. Figure 4(d-e) displays renderings of two segmen-
tations by the proposed semi-supervised algorithm, one from each dataset.

4 Discussion

A semi-supervised method for skull stripping which utilizes a small amount of
labeled data has been presented in this paper. We take advantage of two factors
to boost the performance of a classifier: the existence of expert systems and
the abundance of unlabeled data. This situation is not uncommon in medical
imaging, since large amounts of unlabeled scans and well-developed segmentation
methods are often accessible. A key parameter of the system is the threshold of
the distance transform at which unlabeled data are allowed to be sampled from.
This depends on the performance of the expert systems and is justified in section
2.1: the success of a semi-supervised learning approach relies on the classification
error by the other classifiers (experts in our case). If all the experts have high
agreement but wrong predication, using unlabeled data may even degrade the
performance. Future work related to this study includes: 1) testing the supervised
algorithm on a large number of scans with more labeled examples; 2) designing
more robust features that do not rely as much on the pure voxel intensities and
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allow the algorithm to segment the brain precisely in cases where the gray levels
are not very consistent with the training data; and 3) assessing the performance
on scans from patients with pathology.
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Abstract. Radiotherapy planning requires accurate delineations of the

critical structures. To avoid manual contouring, atlas-based segmenta-

tion can be used to get automatic delineations. However, the results

strongly depend on the chosen atlas, especially for the head and neck

region where the anatomical variability is high. To address this problem,

atlases adapted to the patient’s anatomy may allow for a better regis-

tration, and already showed an improvement in segmentation accuracy.

However, building such atlases requires the definition of a criterion to

select among a database the images that are the most similar to the pa-

tient. Moreover, the inter-expert variability of manual contouring may be

high, and therefore bias the segmentation if selecting only one image for

each region. To tackle these issues, we present an original method to de-

sign a piecewise most similar atlas. Given a query image, we propose an

efficient criterion to select for each anatomical region the K most similar

images among a database by considering local volume variations possibly

induced by the tumor. Then, we present a new approach to combine the

K images selected for each region into a piecewise most similar template.

Our results obtained with 105 CT images of the head and neck show

that our method reduces the over-segmentation seen with an average

atlas while being robust to inter-expert manual segmentation variability.

1 Introduction

The purpose of radiotherapy planning is to optimize the dose received by the
tumor while controlling the dose on the surrounding Organs At Risk (OARs).
This requires the accurate delineation of the Clinical Target Volume (CTV)
and the OARs. In clinical routine, this task is often performed manually, which
is tedious and prone to inter-expert variability. To ease this task, atlas-based
segmentation may be used to get automatic delineations, and showed satisfying
results for the brain [1] and promising results for the head and neck region [2].

In the head and neck, the anatomical variability among patients is high,
mainly due to corpulence and neck flexion. Previous studies showed that an
average atlas has difficulties to cope with this high variability, and may result
in over-segmentation for some structures [2]. Utilizing an atlas that is specifi-
cally adapted to the anatomy of the patient to delineate may help to improve
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the registration quality, and therefore the accuracy of the segmentation. To this
end, one solution is to compute population-specific atlases, for example by clus-
tering the database into homogeneous sub-groups [3] and computing an average
atlas for each sub-group. To be even more specific to the patient (and not only
to a given population), other approaches [4,5] have been developed to consider
each manually delineated image of a database as a potential atlas, and to select
the most appropriate one for each new query image to segment. By extension,
and to enhance robustness, it has been proposed to select several of the most
appropriate images, register them independently to the patient and combine the
segmentation results [6]. All these approaches bring up two questions: how to
select the most appropriate images for a given patient and how to fuse them.

The selection criterion must be able to account for the anatomical variabil-
ity in the database (various corpulence, neck flexion, various tumor size and
grade), and it must be fast enough to be used in clinical routine. Selection cri-
teria based on meta-information (e.g. age [6]) have been used, but they are not
suitable when dealing with anatomical variability independent of simple meta-
information. Therefore, criteria based on intensities [6,4] have been proposed.
However, our database is composed of pathological images, which may corrupt
intensity based criteria. Commowik et al. proposed to estimate the amount of de-
formation needed to warp each image onto the patient image, using the average
atlas to reduce computation time [5]. This criterion is computationally interest-
ing but it still requires inverting and composing many deformation fields. Our
first contribution is to propose an efficient selection criterion based on the degree
of contraction and dilation of the structures. This criterion is well-suited for our
case as it may account for the local volume variations caused by the tumor.

Regardless of the nature of the selection criterion, it may be applied globally
on the images [6,5], or locally in order to cope with the local changes of each
region [7,8,9,10,4]. Because of the high anatomical variability and as our database
is composed of pathological images, a local selection seems more appropriate to
consider the local impact of the tumor on the surrounding anatomical structures.

Once the most appropriate images have been selected for each region of in-
terest, the fusion step has to be performed. In [9], a framework was proposed to
build a piecewise most similar atlas from a set of images selected on predefined
regions. This showed an improvement in segmentation accuracy with respect to
an average atlas. However, it was restricted to the selection of a single image
for each region, which makes it more sensitive to the selection step (e.g. outliers
may exist in the selection process). Moreover, it may also be sensitive to the
relatively high inter-expert variability in the head and neck region. Our second
contribution is then to provide a framework to combine Kl selected images for
each region Rl into one template for segmentation, taking into account the rel-
ative values of the selection criterion to weight each selected image accordingly.

We illustrate the capacities of our framework with 105 CT images of the head
and neck region, showing its ability to reduce the over-segmentation seen with an
average atlas while being less sensitive to inter-expert segmentation variability
than a piecewise atlas computed using only one image per region.
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2 Method

We present a new method to design an atlas locally adapted to the patient P
to delineate on predefined regions. We assume that a database of N manually
delineated images {Ij}j∈[1...N ] is available. Moreover, we suppose that an aver-
age atlas M has been built from this database. The average atlas construction
provides for each image Ij a transformation warping it on M . We denote by
TIj←M the non-linear part of the transformation allowing to resample Ij on M ,
and JIj←M the corresponding image of the Jacobian determinant values.

2.1 Efficient Local Selection of the Most Similar Images through
Volume Variation Estimation

We wish to select among the images {Ij}j∈[1...N ] the ones that are the most
similar to the query patient P on predefined regions {Rl}l∈[1...L]. The regions
Rl are defined once and for all on the average atlas M . Typically, one may
define them as a dilation of the anatomical structures of interest. For a given
region Rl in M , we define our criterion as a comparison of the average degree
of contraction/dilation when deforming Ij on M and when deforming P on M .
To do this, we first average on Rl the logarithms of the determinants of the
Jacobian matrices for each non-linear deformation TIj←M , as described below:

J̄Rl
(Ij ← M) =

1
card(Rl)

∑
x∈Rl

log(JIj←M (x)) (1)

In the same way, after registering M and P , we can estimate J̄Rl
(P ← M) from

TP←M . Then, the images {Ij}j∈[1...N ] can be ranked from the most similar to
the least similar to the patient P on Rl according to the distance dRl

(Ij , P ) =
‖J̄Rl

(P ← M)−J̄Rl
(Ij ← M)‖. This criterion is well-suited for the local selection

of the most similar images. Our images indeed present tumors of various sizes and
grades that can induce local volume variations of the CTV and of the surrounding
OARs. Moreover, it is very efficient as the J̄Rl

(Ij ← M) are pre-computed.
It only requires performing one non-linear registration between P and M and
computing J̄Rl

(P ← M). By comparison, other methods either require multiple
registrations [3,4] or many inversions and compositions of deformation fields [5].

2.2 Construction of a Piecewise Most Similar Atlas Incorporating
Selection Weights

For each region Rl, the Kl images of the database having the lowest distances
dRl

(Ij , P ) are selected to build the piecewise most similar atlas and are denoted
{Ĩl,n}n∈[1...Kl]. Further, we associate each image Ĩl,n with a selection weight αl,n,
based on dRl

(Ĩl,n, P ), that reflects its relative degree of similarity to P on Rl.
To compute αl,n, we used the Gaussian kernel, i.e. αl,n = Gμ,σ(dRl

(Ĩl,n, P )),
as it allows us to discriminate distances that are very large. The Gaussian can
be centered either on zero, or on the minimum distance found for the region
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Rl (we chose the second solution). As to the standard deviation σ, it controls
the rejection of images with a large distance and was computed from the whole
distribution of distances on Rl. The weights are then normalized for each region,
so that for each l,

∑Kl

n=1 ᾱl,n = 1. In addition, we also consider spatial weights
to allow a smooth transition when interpolating between the regions Rl in the
construction of the piecewise atlas. The spatial weight of the region Rl at location
x is defined as wl(x) = 1/(1+βdist(x,Rl)) where dist(x,Rl) refers to the minimal
distance to Rl at location x. It is then normalized so that

∑L
l=1 w̄l(x) = 1.

Construction of the Piecewise Most Similar Image. The construction
process may be seen as a classical atlas construction [11] where the images have
varying weights depending on the spatial location of each voxel (w̄l(x)) and on
the selection distances (ᾱl,n). We iterate over the following steps (M̃0 = M):

1. Register the images Ĩl,n on the current reference M̃k. This step provides
affine transformations AĨl,n←M̃k

and non-linear transformations TĨl,n←M̃k

2. Compute the new average image Mk+1 by interpolating the intensities of the
warped Ĩl,n using the two sets of weights w̄l,k(x) and ᾱl,n

3. Compute an average diffeomorphism T̄k from the TĨl,n←M̃k
and the weights

4. Apply T̄−1
k to Mk+1 to get the new reference M̃k+1 = Mk+1 ◦ T̄−1

k
5. Update the regions of interest by applying T̄−1

k to Rl,k: Rl,k+1 = Rl,k ◦ T̄−1
k ,

and update the spatial weights w̄l,k+1(x) accordingly

This process is similar to [9]. However, it is much more general as it allows
the combination of several images for each region Rl. This is achieved by the
following equations for steps 2 and 3. First, the intensities are interpolated by:

Mk+1(x) =
L∑

l=1

[
w̄l,k(x)

(
Kl∑

n=1

ᾱl,n

(
Ĩl,n ◦ AĨl,n←M̃k

◦ TĨl,n←M̃k

)
(x)

)]
(2)

The inner term (sum over n) computes a weighted average of the selected im-
ages for a region Rl, while the outer term uses the spatial weights to combine
the contributions from each region Rl. Similarly, in step 3, we compute an av-
erage polydiffeomorphism T̄k using the Log-Euclidean framework [12] 1. This
framework ensures to remain on the manifold of diffeomorphisms and leads to
an autonomous Ordinary Differential Equation that can be easily integrated:
ẋ =

∑L
l=1

[
w̄l,k(x)

(∑Kl

n=1 ᾱl,n log
(
TĨl,n←M̃k

)
(x)

)]
.

Construction of the Associated Segmentation. After building the piece-
wise most similar template, we need to compute its associated segmentation
from the delineations of the selected images. The images of our database have
been delineated for a clinical purpose, and some contours are missing for some
structures. To deal with this difficulty, we chose to define one region Rl for each
anatomical structure in the construction of the template image.
1 The deformations in the head and neck region are close enough to the identity,

ensuring that the computed logarithms are correct, as specified by Arsigny et al.
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The construction of the associated segmentation is then achieved in two steps.
First, we compute a probability map for each structure independently using the
selected manual segmentations and the selection weights ᾱl,n. Then, we assign
each voxel of the template image to the structure that has the highest probability.

3 Evaluation

We evaluated the proposed framework with N = 105 CT images of the head and
neck region. On these images, the CTVs and OARs were manually delineated
following the guidelines in [13]. The structures involved are the lymph node levels
II, III and IV (CTVs), the parotids, the spinal cord, and the brainstem (OARs).
We performed a Leave-One-Out analysis, each patient being successively ex-
cluded from the database and delineated with each of the three following atlases
built from the N − 1 remaining images: (1) AVE: average atlas built as in [2],
(2) PW 1: piecewise most similar atlas built with Kl = 1 image for each region,
and (3) PW 10: piecewise most similar atlas built with Kl = 10 images for each
region. As registration algorithm, we used the framework described in [2].

3.1 Qualitative Results

Fig. 1 shows the three different atlases (b,c,d) computed for a given patient (a)
whose neck flexion is above average. The spinal cord contours show that the
average atlas (b) and the piecewise atlas PW 1 (c) both have a relatively low
neck flexion, whereas the neck flexion of PW 10 (d) looks much more similar to
the patient’s one (see arrows). When registering head and neck images, a different
neck flexion between the atlas and the patient is a common issue, often leading
to registration errors and low segmentation accuracy. Therefore, our method’s
ability to provide a correct neck flexion may increase segmentation quality.

Fig. 2 illustrates some qualitative segmentation results on the parotids and on
the lymph nodes levels III-IV using the three atlases. Compared to the manual
contours (a), the automatic contours provided by the average atlas (AVE) (b)
are too large, which was already observed in [2]. As mentioned in [9], PW 1 (im-
age (c)) allows to reduce the over-segmentation. However, it was built from only

(a) (b) (c) (d)

Fig. 1. Illustration of the atlases used for a given patient. For the given patient

(a), comparison between the average atlas (AVE) (b), the piecewise most similar atlases

PW 1 (c) and PW 10 (d). The atlases shown were affinely registered on the patient.
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(a) (b)

(c) (d)

Fig. 2. Qualitative segmentation results of each method. (a) Manual contours.

Automatic contours with AVE (b), with PW 1 (c) and with PW 10 (d). Black land-

marks attached to the manual contours are also shown to draw the comparison.

one image for each region, and it is therefore likely to be biased by the inter-
expert variability of delineation. The two small arrows on image (c) show the
influence of local specificities of the selected segmentations on each region. More-
over, by construction, PW 1 segmentations can present some discontinuities. For
instance, the large arrow on image (c) shows some non-connected lymph node
levels III and IV, which is anatomically inconsistent. The automatic contours
obtained with PW 10 (image (d)) are much less dependent on the inter-expert
variability as 10 segmentations were fused for each structure. Moreover, the ob-
tained contours are closer to the manual contours than both contours from AVE
(b) and PW 1 (c), which results in shorter correction time for the clinician.

3.2 Quantitative Results

We now compare the performance of the three atlases AVE, PW 1 and PW 10 in
terms of segmentation accuracy. To this end, sensitivity and specificity were aver-
aged for each structure over all the Leave-One-Out tests. The results are presented
in Fig. 3. First, as observed in [9], PW 1 shows an improvement of the specificity
with respect to AVE, which is related to the reduction of the over-segmentation.
However, this improvement is achieved at the expense of the sensitivity. With
PW 10, the specificity is even higher than with PW 1 and the decrease in sensitiv-
ity is lower. For all structures, we also performed paired t-tests on the Dice values
for each pair of methods. Whereas PW 1 has significantly lower Dice than AVE
and PW 10 (P < 0.05), the differences between AVE and PW 10 are statistically
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Sensitivity

Specificity

Fig. 3. Quantitative segmentation results. Average sensitivities and specificities

for atlas-based segmentation using the atlases AVE, PW 1, and PW 10.

not significant (P > 0.05), illustrating that the overall overlap is similar while
PW 10 significantly reduces the over-segmentation. Therefore PW 10 combines
the advantages of both PW 1 (avoiding over-segmentation) and AVE (avoiding
errors due to inter-expert variability).

4 Conclusion

We presented a new approach to build a piecewise most similar atlas to the
patient. We first introduced an efficient criterion to select among a database the
images that are the most similar to the patient for each region. This criterion
is well adapted to model the impact of the tumor on the CTVs and the OARs
as it is based on the local degree of contraction/dilation. Then, we presented
a novel approach to build from the selected images a piecewise atlas and its
associated segmentation. We applied our algorithm with 105 CT images of the
head and neck region. The proposed approach was compared to other atlas-based
approaches (single average atlas and piecewise most similar atlas built from a
single image per region). We showed that our approach combines the advantages
of both techniques. It indeed enables reducing the over-segmentation observed
with the average atlas, and it is less dependent on the inter-expert segmentation
variability than the piecewise atlas built from a single image per region.

The number Kl of images selected for each region plays an important role, as
well as the standard deviation σ of the Gaussian in the selection weights. Here
we used arbitrarily Kl = 10 mainly for computational reasons, but we will study
the influence of these two parameters to find out the optimal solution between
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the average atlas (Kl = N , infinite σ) and the method proposed in [9] (Kl = 1).
Future work will also include a separate evaluation of the selection criterion and
the piecewise atlas construction method. Finally, we will assess our framework
on different groups of patients, e.g. on corpulent patients or patients with high
neck flexion for which the average atlas provides low segmentation accuracy.
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STRO project (IP CE503564) funded by the European Commission, and was also
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James C. Ross1,2,3, Raúl San José Estépar2,3, Gordon Kindlmann4, Alejandro Dı́az5,6,
Carl-Fredrik Westin2,3, Edwin K. Silverman1,6, and George R. Washko6

1 Channing Laboratory, Brigham and Women’s Hospital, Boston, MA
2 Laboratory of Mathematics in Imaging, Brigham and Women’s Hospital,

Harvard Medical School, Boston, MA
3 Surgical Planning Lab, Brigham and Women’s Hospital, Boston, MA

4 Computer Science Department and Computation Institute, University of Chicago, Chicago, IL
5 Pontificia Universidad Catolica de Chile, Chile

6 Pulmonary and Critical Care Division, Brigham and Women’s Hospital, Boston, MA�

Abstract. We present a fully automatic lung lobe segmentation algorithm that is
effective in high resolution computed tomography (CT) datasets in the presence
of confounding factors such as incomplete fissures (anatomical structures indi-
cating lobe boundaries), advanced disease states, high body mass index (BMI),
and low-dose scanning protocols. In contrast to other algorithms that leverage
segmentations of auxiliary structures (esp. vessels and airways), we rely only
upon image features indicating fissure locations. We employ a particle system
that samples the image domain and provides a set of candidate fissure locations.
We follow this stage with maximum a posteriori (MAP) estimation to eliminate
poor candidates and then perform a post-processing operation to remove remain-
ing noise particles. We then fit a thin plate spline (TPS) interpolating surface to
the fissure particles to form the final lung lobe segmentation. Results indicate
that our algorithm performs comparably to pulmonologist-generated lung lobe
segmentations on a set of challenging cases.

1 Introduction

Anatomically, the lungs consist of distinct lobes: the left lung is divided into upper and
lower lobes, while the right lung is divided into upper, middle, and lower lobes. Each
lobe has airway, vascular, and lymphatic supplies that are more or less independent of
those supplies to other lobes. Fissures (left oblique, right oblique, and right horizontal)
define the boundaries between the lobes and present as 3D surfaces that have greater
attenuation (i.e. are brighter) than the surrounding lung parenchyma in CT datasets.

Several pulmonary diseases preferentially affect specific lobes: tuberculosis and sili-
cosis tend to affect the upper lobes while interstitial pulmonary fibrosis tends to occur in
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the lower lobes [1]. In the case of chronic obstructive pulmonary disease (especially em-
physema), there are ongoing efforts to produce clinically relevant disease subtypes for
better diagnosis and patient management. Performing lobe-based quantitative analysis
can assist such efforts, especially in the context of epidemiological studies. Addition-
ally, lobe specific measurements can help determine whether patients are good candi-
dates for procedures such as lung volume reduction surgery [2]. These issues motivate
the need for automatic and reliable lobe segmentation algorithms.

Advanced disease states (e.g. emphysema), atelectasis, and certain imaging proto-
cols (low-dose, and expiratory acquisitions) can make it difficult to detect fissures in
certain regions, and so-called incomplete fissures are not uncommon [3]. In [4] the au-
thors address the issue of missing fissures. They use contextual information drawn from
segmentations of the lung, fissure, and bronchial tree in conjunction with a multi-atlas
selection mechanism to segment datasets that exhibit incomplete fissures. In a similar
vein [5] does not rely on the presence of fissures but instead rely on the absence of
vessels in the vicinity of the fissures (leveraging the dedicated blood supplies to each
lobe). [1] uses vascular and airway tree segmentations to provide contextual clues for
fissure locations. These approaches, however, rely on reliable segmentations of auxil-
iary structures (although [4] do not require such structures to be segmented, segmenta-
tion accuracy diminishes when they are not used in the presence of missing fissures).

[6] has shown that by selecting a small set of points along each of the three fissures,
thin plate spline (TPS) interpolation is sufficient to accurately delineate the major lobes.
However, the points in this study were manually selected. We build on this work and au-
tomatically identify fissure locations by adopting and extending the particle system for
ridge surface extraction previously described by [7]. Other fissure identification and en-
hancement schemes have been proposed, namely [8]. We choose the particle approach
because it is a fast and flexible way in which to sample likely fissure locations from the
image data, and it fits seamlessly into the TPS surface fitting stage.

Following particle convergence, maximum a posteriori (MAP) estimation is used to
both estimate the parameters of a smoothly fit TPS surface and to classify the particles
as being members of either fissure or non-fissure classes. Making the assumption that
fissures are locally planar, a post-processing stage is used to reject any remaining non-
fissure points. We then use the methodology described in [6] to acquire the final lung
lobe segmentation.

The paper is outlined as follows. In section 2 we describe the steps in our approach:
lung segmentation, particles based sampling, MAP estimation, post-processing, and
TPS fitting. In section 3 we describe the data used in our study and report the results of
our algorithm on these datasets as compared to pulmonologist-established ground truth.
In section 4 we discuss our results and draw conclusions about our methodology.

2 Methods

In this section we describe our approach to lobe segmentation. We begin by performing
lung segmentation, which produces a labeling of the left and right lungs. Lung segmen-
tation algorithms have been described elsewhere ([6],[9]), so we do not discuss this step
here. Below we briefly review the method described by [6], by which interpolating sur-
faces are fit through a sparse set of points to define lobe boundaries. Next we discuss
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the sampling method used to identify candidate fissure points, which is based on [7]
specialized for ridge features. Following this we describe the MAP estimation that en-
ables the elimination of non-fissure points from the sampling stage. Finally, we present
a post-processing stage that eliminates remaining noise points. The final set of points is
then used to define the lobe boundaries as in [6].

Thin Plate Spline Interpolation. Our goal is to identify a set of points along each
fissure through which a TPS surface can be fit that accurately captures the lobe bound-
aries. [6] suggested that a small set of such points is sufficient to identify these surfaces.
The TPS interpolating surface is the minimally curved surface that passes through all
the selected points. The equation is given by

f (x, y) = a1 + a2x + a3y +
n∑

i=1

wiU (|Pi + (x, y)|) (1)

where U(r) = r2 log r is the radial basis function. The coefficient vector, a =
(a1, a2, a3), and the weight vector, w = (w1, . . . , wn) are determined from the n iden-
tified fissure points,P , such that the height function’s bending energy is minimized [10].
In the procedure we will outline below, a TPS surface is fit independently for each of
the three fissures of interest.

Particles Sampling. Once the lung field is segmented we rescale the intensity from
[−1024HU,−200HU ] to [0, 216] to maximize contrast and then compute a sampling
of features that include the fissures. We adopt a particle system for feature extraction
described by [7]. As the fissure surface between lung lobes has higher radio-opacity than
the lobes themselves, the fissure can be isolated as a ridge surface, defined by [11] as
the loci of points where the gradient of the image is orthogonal to the minor eigenvector
of the Hessian. For the particle system, a smooth image domain is computed by cubic
B-Spline interpolation, and the particles are constrained to lie within ridge surfaces by
a Newton optimization that maximizes the image intensity, restricted to motion along
the Hessian minor eigenvector e3 (with corresponding negative eigenvalue λ3).

The iterative solution of the particle system involves adding, moving, or removing
particles to minimize the collective energy of the system, which is the sum of energy
from all pair-wise particle interactions, governed by a single rotationally symmetric po-
tential φ(r) around each point. As described in [7], having a small negative well in φ(r)
allows the particle system’s population control to be formulated in the same energy
minimization that moves particles into a uniform close-packing onto ridge surfaces.
Particles are also removed when the local image properties suggest that they are no
longer within a well-defined ridge surface, for which we adopted two heuristics. First,
ridge surface strength −λ3 (how concave-down the image is, cutting across the fissure)
had to satisfy −λ3 > 4, 000, an empirically determined threshold that depends linearly
on image contrast. Second, the mode of the Hessian eigenvalues γ1 (the third standard-
ized moment of the three eigenvalues) had to satisfy γ1 < −0.3; a perfect ridge surface
might have Hessian eigenvalues {0, 0,−1} ⇒ γ1 = −1. The system is initialized by
seeding 6, 000 particles randomly throughout the lung field, and then run for 100 iter-
ations. Due to the population control mechanism, the final number of particles ranges
from 15, 000 to 20, 000 depending on the case. We select parameters for the particle
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Fig. 1. Sagittal CT slice (right lung) and glyphs illustrating particles-based image sampling. The
system is initialized with a random distribution of particles (left image). Upon convergence, the
fissures are well sampled (pale green glyphs in right image). Additional, non-fissure locations
that locally behave like ridges are also detected.

system that tend to make it very sensitive at the price of specificity. That is, we attempt
to find a dense sampling of true fissure locations and permit a great deal of other lo-
cations that locally behave like ridge surfaces to be detected. Figure 1 illustrates the
sampling procedure.

MAP Estimation. After point selection, we use MAP estimation to separate true fissure
particles from noise. We formulate the problem as follows. Let S = {p1, . . . ,pn} be
the set of n particle points detected in our image where each particle point, p, is given
by (x, e3), x being the spatial location, (x, y, z), of the particle and e3 being the Hessian
eigenvector in the direction normal to the local planar image feature at x. We seek the
parameters, Θ, of a probability distribution that best explains the subset of particles,
D ⊂ S, that lie on the true fissure (note that these steps are carried out for each of the
three fissures). We assume the elements of D are independent and identically distributed
(i.i.d.) random variables. The parameters,Θ = (z1, · · · , zl), that we seek are the heights
of l control points (we use l = 10) of a “smoothed” TPS surface that is loosely fit to
our data, and it is with respect to this surface that the probability that a particle point is
a fissure point (p(p|ω), where ω is the class of true fissure particles) is defined. We will
refer to this surface as STPS and denote it as fs. It is important to distinguish between
the STPS surface and the TPS surface that will be fit through our final set of fissure
points. (The construction of the STPS surface will be described below). We represent
the class-conditional probability distribution given a specific choice of Θ as

p(p|ω,Θ) = N(μh, σh|Θ)N(μθ , σθ|Θ) (2)

where N represents the normal distribution. Here h indicates the height difference in
the z-direction between the particle and the STPS surface: z − fs(x, y), and θ is the
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Fig. 2. STPS control points for each of the three fissures: right oblique (left), left oblique (middle),
and right horizontal (right). Yellow indicates the pulmonologist-selected points on the training
scans, mapped to the unit cube and projected onto the X-Y plane. Black indicates the ten control
points used for our MAP estimation.

angle formed between the particle’s eigenvector, e3, and the surface’s normal vector at
(x, y). The intuitive description of this distribution is that if a particle is far away from
the surface and/or not parallel in orientation with respect to the surface normal, it is
unlikely to be a fissure particle. Note that we assume independence between h and θ.

To construct the STPS, we use a parameterization scheme that enables MAP estima-
tion. Each parameter is a control point in our domain (the X-Y plane). By selecting a
dispersed set of control points we can fit a surface to the data by controling their heights
(z-values). For each fissure, a different set of control points is needed, and the repre-
sentation needs to be coordinate frame agnostic. We begin by generating manually seg-
mented CT datasets following [6]: two pulmonologists manually select points on each
of the three fissures to segment the lobes. We then map the manually selected points to a
common coordinate frame by applying the transform needed to map the corresponding
lung’s bounding box to the unit cube (via scaling and translating); this is done indepen-
dently for the left and right lung. Once all the points are in the unit cube’s coordinate
frame, we project their coordinates onto the X-Y plane, which serves as the domain for
the STPS function. Note that our approach to placing all points in the same coordinated
frame is in lieu of a more elaborate registration scheme. Given that the datasets were
acquired with similar patient position (head-first, supine scans) this scheme is sufficient
for our purposes. Once all the manually selected points across all the training datasets are
projected on the unit cube’s X-Y plane, we have a good idea of where the control points
need to be for each fissure STPS. Performing simple k-means clustering then allows us
to choose a small set of points that will then be used for subsequent MAP estimation.
Figure 2 illustrates the control point selection within the unit cube.

After the control points are chosen, priors for each fissure, p(Θ) are constructed. This
is done by determining the parameter vectors for each of the three fissures across all the
training datasets. We compute the z-value at each control point using the TPS surface
for each fissure in our training set. Thus, for a given fissure the parameter vector can be
represented as Θ = (z1, · · · , z10). All of this is done within the unit cube, and it is done
idependently for each fissure. Once we have our population of parameter vectors, we
compute the mean and covariance matrix and represent the priors with a multivariate
normal distribution.
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With all these terms defined, we can now represent the function we wish to maximize
as ln p(D|Θ) + ln p(Θ) where

p(D|Θ) =
n∏

k=1

p(pk|ω,Θ) (3)

is the likelihood of Θ given our data.
This is the standard MAP formalism, but we note that this mechanism assumes that

all of our data, p, are drawn from the same distribution. In our case this is not true given
that we initially compute the likelihood function across all data points in S. However,
we perform an iterative search for Θ using a gradient descent optimizer (applied to the
negative of the log likelihood), and at the end of each convergence we prune away the
most unlikely candidate points and then continue the search for Θ. For the pruning step
we evaluate the probability of each point, p(p|ω,Θ), and cast away a percentage of the
points least likely to be fissure points (we use 30% for our experiments). This “enriches”
our dataset over several iterations, increasing the ratio of true fissure particles to non
fissure particles until what remains is very close to D, the set of true fissure points.

Post-Processing. After the MAP estimation stage, we are left with a set of particles
along the given fissure of interest. However, some non-fissure particles survive owing
to their high probability of being fissure particles as measured by our likelihood func-
tion. In order to eliminate these, we perform a final post-processing stage. We make
the assumption that fissures are locally planar structures and construct connected com-
ponents in the following manner. For each remaining particle we compute the vector
between its position, p, and the positions of every other particle. If the magnitude of
this vector is above a threshold (chosen to be 5mm in our study), no direct connection
is said to exist between them. If the particles are in close proximity to one another,
we compute the angle formed between the vector that connects them and each of their
eigenvectors, e3. If the angles are sufficiently different than right angles (we use a tol-
erance of 20◦), we assume that they represent different planar structures, and we do
not form a connection between them. This is illustrated in the figure below. After all
possible connections are made, small connected components are rejected, and we are
left with our final set of points through which we compute the TPS that represents the
lobe boundaries as in [6].

Fig. 3. Connected components analysis. The middle particle, m, is considered connected to the
right particle, r, given their proximity and orientation (ϕm,r ≈ ϕr,m ≈ π/2), but the leftmost
particle, l, and the middle particle would not be connected, given their discrepancy in orientation
(ϕl,m > π/2).
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Fig. 4. CT slices of the datasets used in this study. Arrows indicate partial fissures. Case 1: low
dose, expiratory scan, severe emphysema; Case 2: low dose, expiratory scan, high BMI, right
horizontal fissure nearly absent (feature directly below arrows appears as fissure in this slice);
Case 3: low dose, expiratory scan, moderate emphysema; Case 4: inspiratory scan, moderate
emphysema; Case 5: low dose, expiratory scan, marked fissure aberration; Case 6: inspiratory
scan, high BMI, mild diffuse interstitial abnormalities.

3 Results

Fig. 5. Sagittal view of right lung
(case 3) with algorithm output dis-
played semi-transparently. Note agree-
ment between segmented boundaries
and fissure locations, visible just below
the red boundary lines.

Here we provide results on a set of challenging
cases. For our study we have chosen cases that
exhibit incomplete fissures (as determined by pul-
monologists and defined as the absence of clearly
visible fissure delineating adjacent lobes) and a
range of other factors which make the lobe seg-
mentation task difficult (expiratory acquisitions,
low dose, high body mass index (BMI), disease
presence). The scans have in-plane spacing rang-
ing from 0.52mm to 0.74mm and z-spacing rang-
ing from 0.625mm to 0.75mm. More case details
are presented in figure 1.

Table 1 shows the results of our algorithm on
the test cases, and figure 5 illustrates an output
segmentation mask superimposed on a slice of the
CT image from which it was derived. We com-
pared our algorithm’s performance to segmenta-
tions produced by two pulmonologists (readers 1
and 2), and we additionally compared the readers
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Table 1. Algorithm performance comparison to pulmonologist segmentations. Units are in mm.
LO = left obliuqe, RO = right oblique, RH = right horizontal. Note also comparison between
readers 1 and 2.

Reader 1 vs. Alg. Reader 2 vs. Alg. Reader 1 vs. Reader 2

LO RO RH LO RO RH LO RO RH

Case 1 1.63 ± 1.56 0.86 ± 0.96 2.95 ± 2.67 1.82 ± 1.90 2.12 ± 2.01 3.54 ± 5.78 2.75 ± 2.72 2.58 ± 2.36 4.08 ± 3.69

Case 2 3.39 ± 3.19 2.34 ± 3.05 1.21 ± 1.33 1.68 ± 1.69 2.83 ± 3.63 1.02 ± 1.03 2.75 ± 2.59 1.10 ± 1.32 0.80 ± 0.70

Case 3 2.11 ± 2.57 1.81 ± 2.08 1.08 ± 2.96 2.38 ± 2.57 1.29 ± 1.30 1.25 ± 1.43 1.32 ± 1.23 1.29 ± 1.24 0.66 ± 0.81

Case 4 1.82 ± 1.97 4.35 ± 4.65 1.87 ± 2.38 1.84 ± 1.70 6.07 ± 6.99 2.93 ± 5.72 2.83 ± 2.69 2.68 ± 2.72 2.39 ± 2.15

Case 5 0.82 ± 0.92 1.50 ± 1.50 2.92 ± 2.57 1.28 ± 1.71 1.37 ± 1.43 4.68 ± 4.95 1.44 ± 1.54 0.81 ± 0.82 6.44 ± 8.14

Case 6 1.04 ± 1.28 2.52 ± 2.87 1.35 ± 1.27 1.69 ± 1.76 2.29 ± 2.28 4.27 ± 3.99 0.99 ± 1.07 4.01 ± 3.75 4.32 ± 7.73

Average 1.80 ± 1.92 2.23 ± 2.52 1.90 ± 2.20 1.78 ± 1.89 2.66 ± 2.94 2.95 ± 3.82 2.01 ± 1.97 2.08 ± 2.04 3.12 ± 3.87

to each other. To measure segmentation agreement, we computed the average Euclidean
distance between the fissures in question. As can be seen, the algorithm performs com-
parably to the pulmonologists.

4 Discussion and Conclusion

The algorithm execution time was on the order of 30-45 minutes, although we did not
attempt to measure this exactly. This was a proof of concept study, and we made no
attempt to optimize the algorithm. The most time consuming stage is the MAP estima-
tion, which involves a series of fitting and pruning stages. The fitting stage uses gradient
descent to find the optimal heights of our (10) control points. It may be possible to gen-
erate equally good results with many fewer control points; we did not investigate this.
Reducing the dimensionality of the search space would improve execution time. We
also continued the fitting-pruning until we were left with a user-specified fraction of
the original number of points. Post-processing was then applied. The fraction that we
used was arbitrarily chosen, but terminating the fitting-pruning earlier would reduce
execution time and may not adversely affect results.

In summary, we present a fully automatic method for lung lobe segmentation that
performs very well on challenging cases. Whereas other methods tend to rely on seg-
mentations of auxiliary structures (vessels, airways) to augment algorithm performance,
we only rely on existing fissure image features, even though they may be scarce. We
do not deny that other structures can provide contextual clues for fissure localization,
but generating segmentations of these structures, especially for patients with advanced
disease, presents its own challenges. Furthermore, we believe that obtaining these struc-
tures is not necessary and that sufficient fissure information is directly obtainable pro-
vided these image features are carefully selected.
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Abstract. The segmentation of soft tissues in medical images is a chal-

lenging problem due to the weak boundary, large deformation and seri-

ous mutual influence. We present a novel method incorporating both the

shape and appearance information in a 3-D graph-theoretic framework

to overcome those difficulties for simultaneous segmentation of prostate

and bladder. An arc-weighted graph is constructed corresponding to the

initial mesh. Both the boundary and region information is incorporated

into the graph with learned intensity distribution, which drives the mesh

to the best fit of the image. A shape prior penalty is introduced by adding

weighted-arcs in the graph, which maintains the original topology of the

model and constraints the flexibility of the mesh. The surface-distance

constraints are enforced to avoid the leakage between prostate and blad-

der. The target surfaces are found by solving a maximum flow problem

in low-order polynomial time. Both qualitative and quantitative results

on prostate and bladder segmentation were promising, proving the power

of our algorithm.

1 Introduction

Automated segmentation of medical image has increasingly become a valuable
tool for medical diagnosis and treatment planning. Though intensive research
has been done, accurate segmentation of 3-D soft tissues is still a challenging
problem. The main difficulties lie in the following aspects [1,2]: First, soft tissues
often present a large variation in both shape and size. Second, the target objects
often lack strong boundaries and have similar intensity information. Third, many
soft tissues have serious mutual influence between each other.

To overcome those difficulties, many methods have been proposed to employ
both learned shape and appearance information. One of the widely used methods
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is the AAM model of Cootes et al.[3]. The shape and appearance of an object is
modeled using principal component analysis (PCA). Freedman et al.[1] presented
a segmentation algorithm based on matching probability distributions from a
learned model of shape and appearance to the image. Rousson et al. developed a
method to incorporate both shape and appearance model using bayesian formula-
tion [4]. The deformable shape model with shape prior information was employed
in [5] and [6] for prostate and bladder segmentation. Recently, graph-based meth-
ods with a global optimality guarantee have attracted a lot of attention. Freedman
et al.[7] proposed an interactive shape prior segmentation based on graph cut algo-
rithms. Malcolm et al.[8] employed an iterative graph cut frameworkwith the prior
shape information learned from kernel PCA. Besbes et al.[9] used an incomplete
graph representation for shape modeling and aimed to optimize the connectivity
of the graph nodes.

In this paper, we introduce a novel approach incorporating both shape infor-
mation and object intensity distribution information for prostate and bladder
segmentation. Our method is developed based on the framework reported by
Kang et al.[10,11] and Qi et al.[12]. In [12], two coupled geometric graphs are
constructed for the prostate and the bladder, respectively. The weights of both
graph nodes and arcs are utilized to represent edge-based image energy and a
linear soft smoothness penalty. To avoid the possible overlapping of the prostate
and the bladder, the hard surface interacting constraints are enforced in the par-
tially interacting regions. The surface segmentation problem is then transformed
into that of finding a minimum-cut in a transformed graph.

While the proposed method in [12] was successfully applied for simultaneous
segmentation of the prostate and the bladder, it still has several limitations.
First, only gradient-based edge weight is employed in the original formulation,
which often performs poorly in the presence of weak boundaries, e.g., multiple
adjacent objects with similar intensity profiles. Second, only a linear soft smooth-
ness penalty is considered, which limits the flexibility of the shape constraints.
In this work, we show how to incorporate the learned intensity distribution in-
formation into the graph search framework by using both boundary energy and
region energy terms. A convex shape penalty function is also enforced, which
allows the incorporation of a wider spectrum of constraints.

2 Optimal Graph Search with Appearance and Shape
Information

2.1 Graph Modeling

Our method is mainly based on the graph search framework proposed in [12].
For completeness, we briefly review the framework. As the first step, two initial
models are constructed for the prostate and the bladder using the same method
as described in [12]. Based on these two initial models, two triangulated meshes
M1(V1, E1) and M2(V2, E2) are constructed respectively, where Vi (i ∈ 1, 2)
denotes the vertex set of Mi and Ei denotes the edge set of Mi. Fig. 1(a),(b)
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(a) (b) (c)

Fig. 1. (a) Triangulated mesh for the prostate. (b) Triangulated mesh for the bladder.

(c) Corresponding graph construction. p(v) represents the column with respect to the

vetex v. Dots represent nodes n ∈ Gi.

show the constructed meshes for the prostate and the bladder. The weighted
graph Gi(N,A) is built from the mesh Mi as follows. For each vertex v ∈ Vi,
a column of K nodes n(v, k) is created in Gi, denoted by p(v) (Fig. 1(c)). The
positions of nodes reflect the positions of corresponding voxels in the image
domain. The length of the column is set according to the required search range.
The number of nodes K on each column is determined by the required resolution.
The direction of the column is set as the triangle normal. The nodes on the
same column are connected by the directed arc from n(v, k) to n(v, k − 1) with
infinity weight. Each column also has a set of neighbors, i.e., if (vx, vy) ∈ Ei,
then p(vx) and p(vy) are neighboring columns. The feasible surface Si in the
graph Gi is defined as the surface containing exact one node in each column.
To avoid the overlapping of two target surfaces, a “partially interacting area”
is defined according to the distance between two meshes, which indicates that
the two target surfaces may mutually interact each other at that area. To model
the interaction relation, the two graphs G1 and G2 “share” some common node
columns in that partially interacting area, and the target surfaces S1 and S2

both cut those columns, as shown in Fig. 2a. In addition, the distance between
the two surfaces at the interacting area is required to be at lease δl voxels and at
most δh voxels, which prevents the leakage between prostate and bladder. This
surface distance constraint is incorporated by adding inter-surface arcs between
corresponding nodes on those columns at the interacting region (Fig. 2b).

The optimal set S of two surfaces corresponding to the prostate and the
bladder can then be found by minimizing the following energy:

E(S) =
2∑

i=1

Eboundary(Si) +
2∑

i=1

Eshape(Si) (1)

The boundary energy term serves as an external force, which drives the mesh
towards the best fit to the image data. The shape energy term functions as an
internal force, which keeps the shape of the original model and restricts the
flexibility of the mesh. In the original framework, a gradient-based edge cost is
employed for boundary information, which may fail for surface detection when
no strong boundary exists. For shape energy term, a linear soft smoothness
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shape compliance is employed. The linear function limited the flexibility of the
constraints. In the subsequent sections, we show how to incorporate the learned
appearance information using both the boundary energy term and an additional
region energy term. Specifically, two surfaces for the prostate and the bladder
naturally divide the volume into 3 regions denoted by R0, R1 and R2, which
corresponds to the region enclosed by the prostate surface S1, one between S1

and the bladder surface S2 at the partially interacting area, and the region
enclosed by S2, respectively. Our region energy term Eregion(Ri) reflects the
region property of all voxels inside Ri. In addition, we incorporate a shape prior
penalty using a convex function. Thus, the energy function used in this paper
is, as follows.

E(S) =
2∑

i=1

Eboundary(Si) +
2∑

i=0

Eregion(Ri) +
2∑

i=1

Eshape(Si) (2)

(a) (b)

Fig. 2. (a) Graph construction for mutually interacting objects. An example 2-D slice

is presented. Note that in the interacting region, for each column with green nodes,

there actually exists two columns with the same position, one for Graph G1, one for

Graph G2.(b) Inter-surface arcs are added between the column p(v1) ∈ G1 and the

column p(v2) ∈ G2. p(v1) and p(v2) have the same position in the interacting region.

The surface distance constraint is set as 1 ≤ S1 − S2 ≤ 3.

2.2 Boundary Energy Design

For each node n(v, k) ∈ Gi, we have an on-surface cost cSi(v, k) with respect
to surface Si, which is inversely related to the possibility that the node belongs
to the target surface Si. The boundary energy term Eboundary(Si) is defined
as the summation of the on-surface costs associated with all nodes on surface
Si, i.e., Eboundary(Si) =

∑
n∈S cSi(v, k). The on-surface weight of node n(v, k),

denoted by wSi(v, k), is then assigned such that the total weight of a closed set in
the graph Gi equals to the boundary energy Eboundary(Si) of the corresponding
surface Si:

wSi(v, k) =
{
cSi(v, k) if k = 0
cSi(v, k) − cSi(v, k − 1) if 0 < k ≤ K − 1 (3)

The on-surface cost function design plays a key role in accurate surface delin-
eation. In soft-tissue segmentation, there is often no clear boundary information
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between adjacent tissues. The intensity gradient at the interface of adjacent tissues
is also low. To overcome the difficulty, we incorporate the object class-uncertainty
information into our cost function. Given a prior knowledge of intensity probabil-
ity distributions of each object, the class-uncertainty can be computed for each
intensity value, which yields the uncertainty level of the classification. Suppose
the image is divided into m objects, denoted by oi, i ∈ [0, 1, ...,m − 1]. For any
given node n(v, k) with image intensity g(v, k), the posteriori probability p(oi|g) is
obtained from the training set using Bayes rules. The uncertainty measure for the
classification that n(v, k) with an intensity of g falls into any object is the entropy
of all posteriori probability values, with the form: h(g) =

∑
i −p(oi|g)log(p(oi|g)).

As demonstrated in [13,14], intensities with high class uncertainty measures are
tend to appear close to object boundaries rather than inside homogeneous regions.
Combined with the gradient information, the uncertainty measure is expected to
provide an enhanced on-surface cost at the locations absent a clear boundary. Let
∇(v, k) denote the gradient magnitude at node n(v, k), our boundary cost func-
tion has the following form:

cSi(v, k) = −(∇(v, k) + αh(g(v, k))) (4)

where α is a constant parameter. Here we set α = 0.5 according to the experi-
ments on the training set.

2.3 Incorporation of Region Information

The graph search framework allows easy incorporation of region information by
assigning proper weights for the graph nodes. As described in Section 2.1, R0,
R1, and R2 denote the region enclosed by the prostate surface S1, one between
S1 and the bladder surface S2 at the partially interacting area, and the region
enclosed by S2, respectively. For each node n(v, k), the in-region cost associated
with Ri is assigned as cRi(v, k) (i = 0, 1, 2). The region energy term is then
defined as the following form: Eregion(Ri) =

∑
n(v,k)∈Ri

cRi(n(v, k)). The in-
region weight of node n(v, k) in graph Gi , denoted by wRi(v, k), is assigned
such that the total weight of a closed set in graph G equals to the region energy
term

∑2
i=0 Eregion(Ri) (with a constant difference)[15]:

wRi(v, k) = cRi−1(n(v, k)) − cRi(n(v, k)) (5)

For region cost design, the posterior probability learned from the training set is
used with the form:

cRi(n(v, k)) = −p(n(v, k) ∈ Ri|g(v, k)), i ∈ {0, 1, 2} (6)

2.4 Shape Constraints

The shape energy keeps the topology of the original mean shape. In our frame-
work, two types of shape constraints are enforced: the hard shape constraint and
the shape-prior penalties.
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Suppose p(vx) and p(vy) are neighboring columns in the graph. If n(vx, k1)
of p(vx) and n(vy, k2) of p(vy) are nodes on the surface Si, we let Si(vx) = k1

and Si(vy) = k2. Then the hard shape constraint is defined as follows: Δl ≤
Si(vx) − Si(vy) ≤ Δh. Δl and Δh are specified shape constraint parameters
between p(vx) and p(vy). To enforce the hard shape constraint, a directed arc
with +∞ weight is put from each node n(vx, k) to the node n(vy , k − Δh). On
the other hand, we have a directed arc with +∞ from the node n(vy, k) to
n(vx, k + Δl).

The shape-prior penalties are set as f(Si(vx)−Si(vy)), where f(·) is a convex
function penalizing the shape changes of Si between neighboring column p(vx)
and p(vy). Based on this definition, our shape energy term has the form:

Eshape(Si) =
∑

(vx,vy)∈Ei

f(Si(vx) − Si(vy)) (7)

To incorporate the shape energy, additional inter-column arcs are employed.
The main idea is to distribute the convex shape prior penalty f(Si(vx)−Si(vy))
to the corresponding cuts between the columns in G based on the (discrete
equivalent of) second derivative of f(·), f ′′(h) = [f(h + 1) − f(h)] − [f(h) −
f(h − 1)], as described in [16,17]. Since f(h) is a convex function, f ′′(h) ≥ 0.
For each h = Δl + 1, Δl + 2, ..., Δh − 1, if f ′(h) ≥ 0, an arc from n(vx, k) to
n(vy, k − h) is assigned with an arc-weight of f ′′(h). If f ′(h) ≤ 0, an arc from
n(vy, k) to n(vx, k + h) is assigned with the weight of f ′′(h)(Fig. 3(b)). Using
this construction, the total weight of the arcs spanning between two neighboring
columns p(vx) and p(vy) equals to the shape prior penalty f(Si(vx) − Si(vy)).

For prostate and bladder segmentation, a second order shape prior penalty is
employed with the form: f(h) = β · h2, where β is a constant parameter learned
from the training set. In this project β = 5.

(a) (b)

Fig. 3. Arc construction for shape constraints. (a) Hard shape constraints. (b) Shape-

prior penalties. Note that here we suppose f ′(0) = 0. S cuts the arcs with a total

weight of f(2).

2.5 Optimization

Once the graph is constructed, an optimal cut C∗ = (B∗, B̄∗) (B∗∪B̄∗ = N) can
be found in G(N,A), minimizing the total weight of nodes in B∗ and the total
arc weight of C∗. The optimal cut actually corresponds to the optimal set S of
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two surfaces S1 and S2, which minimizes the total energy E(S). As described
in [18], the optimal cut can be found by solving a maximum flow problem in a
transformed graph G′ in a low-order polynomial time.

3 Experiments and Results

The experiments were conducted for simultaneous segmentation of prostate and
bladder. 3-D CT images from different patients with the prostate cancer are
used. The image size ranges from 80 × 120 × 30 to 190 × 180 × 80 voxles. The
image spacing resolution ranged from 0.98 × 0.98 × 3.00 mm3 to 1.60 × 1.60 ×
3.00 mm3. Out of 21 volumes, 8 were randomly selected as the training data and
our segmentation was performed on the remaining 13 datasets. Our workflow
mainly consisted of three major steps. Step 1. Initial model construction. We
use the similar method as described in [12]. Since the prostate often shows a
good statistical coherency in shape among different datasets [4], a mean shape
is obtained from the training set and roughly fitted into the image as the initial
model. For bladder, a 3-D geodesic method is employed, the result provides the
basic topological structure information. Step 2. Iterative single mesh deformation
for prostate and bladder, separately. Using iterative graph search, we can find
target surfaces which are far away from the initial model. In our experiment, we
set iteration times as 3, which is proved enough according to the experimental
result. Step 3. Simultaneous graph search for bladder and prostate. The possible
overlapping was avoided by adding surface distance constraint between the two
meshes.

For quantitative validation, the result was compared with the expert-defined
manual contours. For volumetric error measurement, the Dice similarity coeffi-
cient (DSC) was computed using D = 2|Vm

⋂
Vc|/(|Vm|+|Vc|), where Vm denotes

the manual volumetric result and Vc denotes the computed result. For surface
distance error, both mean and the maximum unsigned surface distance error
were computed for the bladder and the prostate surfaces between the computed
result and the manual delineation. The result is shown in Table 1. Compared
with the result reported in [12], the unsigned surface distance error has improved
from 1.38±1.08 mm to 1.01±0.94 mm for the prostate and from 1.04±1.00 mm
to 0.99 ± 0.77 mm for the bladder.

Table 1. Overall quantitative results. Mean± SD in mm for the unsigned surface

distance error.

Surface DSC Mean(mm) Maximum(mm)

Prostate 0.797 1.01±0.94 5.46±0.96

Bladder 0.900 0.99±0.77 5.88±1.29

For a visual performance assessment, the illustrative result with both com-
puted contours and manual contours was displayed in Fig.4(a). The 3-D repre-
sentation was shown in Fig.4(b).
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(a) (b)

Fig. 4. (a) Sagittal, coronal and transverse slices with the computed result (blue for

prostate and yellow for bladder) and the manual result (magenta for prostate and red

for bladder). (b) 3-D representation of the prostate (blue) and the bladder (yellow).

The execution time on a WinXP PC (2.13 × 2GHz, 2GB memory) was ap-
proximately 8 minutes per dataset.

4 Discussion and Conclusion

We have presented how to incorporate boundary, region and shape information
into an optimal 3-D graph search framework for multiple objects segmentation.
The general formulation has been adapted to the simultaneous segmentation of
the prostate and the bladder. Both qualitative and quantitative validation were
employed. The result shows the power of our algorithm.
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Abstract. Cortical multiple sclerosis lesions are difficult to detect in

magnetic resonance images due to poor contrast with surrounding grey

matter, spatial variation in healthy grey matter and partial volume ef-

fects. We propose using an observer-independent laminar profile-based

parcellation method to detect cortical lesions. Following cortical surface

extraction, profiles are extended from the white matter surface to the

grey matter surface. The cortex is parcellated according to profile inten-

sity and shape features using a k-means classifier. The method is applied

to a high-resolution quantitative magnetic resonance data set from a fixed

post mortem multiple sclerosis brain, and validated using histology.

1 Introduction

Multiple sclerosis (MS) is classically defined as a white matter (WM) disease even
though the involvement of grey matter (GM) in MS pathology has been recog-
nized since the beginning of the 20th century. Recent immunohistochemistry
(IHC) studies have shown that cortical GM lesions are common and widespread
in MS brains [1,7], yet these lesions remain extremely difficult to detect in vivo
using MRI. The characterization and segmentation of cortical lesions in vivo is
essential to improve our understanding of the natural course of the disease and
monitor its progression.

The lack of sensitivity of MRI is due to the different pathophysiology of GM
in comparison to WM lesions, in particular the absence of inflammation and
edema. The contrast between cortical lesions and surrounding normal appearing
grey matter (NAGM) is further dampened by the lower myelin content of GM in
comparison to WM (∼10%), particularly in the superficial cortical layers. The
morphology of subpial lesions, that extend from the pial surface and can span
several gyri, may also cause them to be concealed by partial volume effects with
cerebral spinal fluid (CSF). In addition to poor local contrast, intensity driven
lesion segmentation is also hindered by the presence of biological variation across
healthy GM and additional variation caused by diffuse MS pathology.

The most promising MRI sequence for in vivo lesion detection thus far is
double inversion recovery (DIR) [6], yet according to histology reports cortical
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lesions remain under-detected by this technique. Quantitative MR imaging tech-
niques, such as relaxometry and magnetization transfer imaging, have reported
abnormalities in MS patients in vivo; however, cortical lesions are not segmented
from the NAGM in these techniques mainly due to low spatial resolution. A com-
bined post mortem high resolution quantitative MRI and quantitative histology
study of cortical lesions by Schmierer et al [9] clearly delineated cortical lesions
and showed that T1 is a predictor of neuronal density and T2 of myelin content.

The cortical lesion segmentation technique proposed here is based on a quan-
titative architectural analysis method originally applied to histological data [8].
Under the assumption that the changes in myelo- and cyto-architecture laminar
profiles will be reflected in the quantitative MR profiles, cortical parcellation
based on laminar profile shape analysis is used to detect and delineate lesions.
The methods consist of standard image processing tools adapted to analyze a
unique very high-resolution 3D quantitative MRI data set of a fixed post mortem
MS hemisphere, and validation using IHC.

2 Methods

2.1 Post Mortem Brain Tissue

The right hemisphere of an MS patient (79 year old female, 30 years disease dura-
tion, cause of death aspiration pneumonia) was provided by the Douglas Hospital
Research Centre Brain Bank. The hemisphere was fixed in 10% buffered formalin
after a post mortem delay of 41.25 hours, and had been fixed for approximately
4 years.

2.2 Magnetic Resonance Image Acquisition

All images were acquired on a Siemens TIM Trio 3T MRI scanner with a 32-
channel receive-only head coil. The hemisphere was placed in an MR-compatible
cylindrical container filled with formalin. 3D sagittal images were acquired with
0.35 mm isotropic resolution, 512×512×240 matrix size and 6/8 partial Fourier
phase encoding. The total acquisition time was of ∼55 hours.

Relaxometry was performed using the variable flip angle method also known
as DESPOT [3]. T1 and relative proton density, M0, maps were calculated from
two spoiled gradient echo (SPGR) images with a constant echo time (TE) of
3.35 ms and repetition time (TR) of 7.7 ms. The flip angles, optimized for the
range of relaxation times of the fixed post mortem brain, were 4◦ and 22◦. T2

maps were derived from the measured T1 times and two balanced steady state
free precession (bSSFP) images with a fixed TE of 3.84 ms and TR of 7.7 ms,
and optimal flip angles 20◦ and 70◦. Each sequence was repeated 49 times, for
a total scan time of ∼38.5 hours.

The magnetization transfer ratio (MTR) was calculated from two proton den-
sity weighted SPGR acquisitions with α, TE and TR set to 25◦, 4.09 ms and 25
ms respectively. The second acquisition included the MT saturation pulse pro-
vided on the Siemens Trio 3T scanner: a 500◦ Gaussian pulse of 10ms, 1200 Hz
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off-resonance with a 100 Hz bandwidth. 13 repetitions were acquired for a total
scan time of ∼16.5 hours.

Due to the strong variations in the RF transmission field at 3T, we acquired a
B1 map [10] to correct the nominal flip angles for both DESPOT techniques. The
B1 map was derived from two magnetization prepared turbo-spin echo (TSE)
images with α, TEchoSpacing and TR were set to 20◦, 15 ms and 2 s respectively,
with a turbo factor of 7. The acquisition was 2D with 2 mm isotropic resolution
and 128× 128× 50 matrix size. The TSE readout was preceded by an α and 2α
pulse for the first and second acquisition respectively, followed by a time delay
equal to half the echo-spacing.

2.3 Histology and Immunohistochemistry

Coronal slices, 1 cm thick, were cut, photographed and scanned at a lower reso-
lution (0.35 × 0.35× 1 mm3) to facilitate the manual alignment of the histology
to the whole hemisphere MRI. Tissue blocks representing cortical lesions and
NAGM in the MR images were selected from several different cytoarchitectonic
areas for paraffin embedding. Sections were cut at 5 μm, and reacted with anti-
bodies directed against myelin basic protein (MBP), and processed in a Ventana
Benchmark XT with diaminobenzidine (DAB) as chromogen. Slides were digi-
tized using a Zeiss MIRAX Scan automated slide scanner.

2.4 Image Processing

Preprocessing. The individual raw images were linearly aligned prior to aver-
aging [2]. The average images were used to calculate the quantitative MR maps:
T1, M0, T2 and MTR. The M0 and T2 maps were non-uniformity corrected [11]
for reception field inhomogeneity and banding artifacts respectively.

The MTR map, which most resembles in vivo T1-weighted contrast, was used
for cortical surface extraction. The MTR image was linearly and then non-
linearly aligned to the right hemisphere of the ICBM152 non-linear atlas and
masked. The non-uniformity corrected MT-weighted SPGR image was used in
combination with the MTR map for discrete tissue classification [14]. As shown
in Figure 1, the formalin is clearly distinguishable from the surrounding GM in
the sulci on the MT-weighted SPGR image due to the high contrast and reso-
lution. The discrete tissue classification results were subsequently corrected for
partial volume effects [12] and fuzzy tissue maps were created for WM, GM and
formalin. Stereotaxic masks were applied to remove the brain stem and cerebel-
lum from the tissue maps, and to label the subcortical GM and ventricles as
WM. Small manual corrections of the masks were required due to the deforma-
tion caused by the fixation, otherwise the preprocessing was fully automated. An
edge map of the GM/formalin interface was created by calculating the gradient
of the sum of the WM and GM fuzzy tissue maps.

Cortical Boundary and Laminar Profile Extraction. The cortical bound-
ary surfaces were extracted using FACE (Fast Accurate Cortex Extraction) [4,5],
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Fig. 1. Cortical surface extraction. Left: High-resolution MT-weighted SPGR image

of the fixed MS hemisphere. Right: The WM and GM surfaces superimposed on the

MT-weighted image in red and green respectively.

which uses deformable surfaces and a force balancing scheme. An initial surface
was created by applying an iso-surface algorithm to the WM map to create a
closed surface consisting of a triangulated mesh. This initial surface was then
deformed iteratively to the WM/GM boundary under the influence of forces
derived from the fuzzy tissue maps and gradient image. The WM surface was
expanded under the influence of deformation forces derived from the surface
normals, a gradient vector field, and the GM/formalin edge map. The resulting
surfaces, shown superimposed on the MT-weighted image in Figure 1, consisted
of approximately 240 thousand vertices uniformily distributed over the cortex.

Correspondence between vertices on the GM and WM surfaces was deter-
mined by a combination of the GM surface normals and the nearest point on
the opposite WM surface. The nearest point Euclidean distances were used to
constrain the results from the surface normals. The laminar profiles were ex-
tracted by sampling 20 points between corresponding vertices on the WM and
GM surfaces using linear interpolation.

Laminar Profile Analysis. The laminar profile shape analysis is based on
an observer-independent quantitative architecture analysis technique for corti-
cal mapping of histological data [8]. This technique has been applied to high-
resolution MRI to parcellate the visual cortex in vivo [13]. The first and last 10%
of samples were removed to avoid contamination from neighbouring tissues. A 10-
parameter feature vector was extracted from each laminar profile, including the
mean amplitude and first four central moments of the profile and its absolute first
derivative [8, 13]. The feature vectors derived from the 4 quantitative MR maps
(T1, M0, T2 and MTR) were concatenated, for a total of 40 features per profile.
Each feature was z-scored to equally weigh the k-means classification. The profiles
were classified into 4 clusters using a k-means classifier with a squared Euclidean
distance metric. The seeds of the 4 clusters were sampled at random.
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3 Results

The MBP IHC and segmentation results of a section of the superior frontal gyrus
are shown in Figure 2. In the MBP section, the myelin fibers are stained brown
such that the dark brown area corresponds to the densely myelinated WM and
the lighter brown area corresponds to cortical GM. The light supbial band along
the sulcus corresponds to a demyelinated cortical MS lesion. The corresponding
laminar profile-based parcellation results differentiate the lesion, labeled white,
from the neighbouring NAGM, labeled green.

The cortical segmentation results are shown on the mid-cortical surface, i.e.
the median of the WM and GM surfaces, in Figure 3. The cortex was classified

Fig. 2. Validation of cortical parcellation results with histology. Left: Tissue section

of the superior frontal gyrus immuno-stained against MBP. Right: Corresponding par-

cellation results superimposed on an MR image. The NAGM is labeled green, and the

demyelinated cortex is labeled white.

Fig. 3. Cortical parcellation results displayed on the mid-cortical surface
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Table 1. Quantitative MRI results of the fixed MS hemisphere. Mean (standard devi-

ation).

Normal appearing GM Cortical lesion

T1 (ms) 187 (13) 236 (12)

T2 (ms) 58 (6) 74 (2)

M0 3658 (81) 3914 (69)

MTR (%) 7.35 (1.06) 7.52 (1.2)

Fig. 4. Mean cortical profiles of the quantitative MR maps for each class of the cortex

into four different laminar patterns. The first class, labeled green, corresponds to
NAGM. The classes labeled blue and white represent different types of cortical
pathology. The fourth class represents non-cortical tissue.

Three cortical lesions were delineated in the MBP immuno-stained sections,
and corresponding regions of interest (ROIs) drawn in the quantitative MRI
maps. ROIs of NAGM were also chosen for comparison. Paired Student’s T-tests
were performed to determine the significance of the differences observed.The
quantitative MRI results for the NAGM and cortical lesions are listed in Table 1.
The differences in T1, T2, M0 and MTR between cortical lesions and NAGM
were all statistically significant (p<0.0001). The M0 values were taken from the



Segmentation of Cortical MS Lesions on MRI 187

non-uniformity corrected image. The ROIs were placed in regions that were not
affected by the banding artifacts in the SSFP images. T1 and T2 relaxation times
are higher in the cortical lesions in comparison to the NAGM. These results are
in agreement with a previous fixed post mortem study by Schmierer et al [9]. The
relative proton density M0 is also increased in cortical lesions. We also observed
a small but significant increase in MTR in the cortical lesions in comparison to
the NAGM, whereas a decrease in MTR was reported by Schmierer et al in GM
lesions.

The mean cortical profiles of the quantitative MR maps for each class are
plotted in Figure 4, where 0% cortical depth corresponds to the GM/formalin
boundary and 100% cortical depth to the WM/GM boundary. The areas labeled
blue on the surfaces in Figure 3 show an increase in T1 and T2 times in compar-
ison to the NAGM labeled green, in particular towards the superficial cortical
layers. These regions are also characterized by an increase in M0 and a decrease
in MTR near the tissue boundaries. The areas labeled white (black dotted line
in Figure 4) are characterized by a more uniform laminar profile and an increase
in T1 and MTR in comparison to the NAGM in green.

4 Discussion

We presented an automated laminar profile shape analysis technique for the
segmentation of cortical MS lesions. The technique was demonstrated on a high-
resolution 3D quantitative MR data set of a fixed MS hemisphere and validated
with IHC. This unique combined post mortem quantitative MRI and IHC study
is essential to improve our understanding of the relationship between MR pa-
rameters and the pathological substrates of cortical lesions.

This segmentation technique could also be applied to in vivo data with a
lower SNR and CNR. Diffuse smoothing along the cortical mantle could be
applied to improve sensitivity of profile-based morphometry to cortical lesions,
in particular subpial lesions given their morphology. Furthermore, this data set
can be used to guide the design of new in vivo acquisition techniques with optimal
sensitivity to cortical pathology. We believe that this combined optimized image
acquisition and analysis approach is very promising for in vivo lesion detection,
which is essential to understand the natural course of the disease and monitor
its progression.

A potential source of error in the cortical parcellation method is the inaccuracy
in tissue classification and subsequent surface extraction. Cortical lesions could
be misclassified as formalin/CSF, for instance, and thus remain undetected by
this method.
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Abstract. Segmentation is a fundamental problem in medical image

analysis. The use of prior knowledge is often considered to address the

ill-posedness of the process. Such a process consists in bringing all train-

ing examples in the same reference pose, and then building statistics.

During inference, pose parameters are usually estimated first, and then

one seeks a compromise between data-attraction and model-fitness with

the prior model. In this paper, we propose a novel higher-order Markov

Random Field (MRF) model to encode pose-invariant priors and perform

3D segmentation of challenging data. The approach encodes data sup-

port in the singleton terms that are obtained using machine learning, and

prior constraints in the higher-order terms. A dual-decomposition-based

inference method is used to recover the optimal solution. Promising re-

sults on challenging data involving segmentation of tissue classes of the

human skeletal muscle demonstrate the potentials of the method.

1 Introduction

Knowledge-based segmentation consists in recovering a region of anatomical in-
terest in a new image. The process often combines data support with manifold
learning on the space of adequate solutions. The data term is usually either edge-
based or region driven. In the first case, one seeks to position the solution onto
pixels exhibiting important intensity discontinuities, which is achieved through
a weighted surface integral. Region-based methods assume that the object and
the background have distinct statistical properties and seek to create a partition
that maximizes the posterior probability density with respect to them. Both
methods fail to address the case of anatomical regions of interest being part of
the same tissue class, where either edges are not present or statistical separation
is not feasible. The case of calf muscle segmentation is a typical example.

Prior knowledge is often encoded through constraining the solution space. This
is achieved either through linear models describing the variation of the training
set (ASMs) [1], or through projection and minimization of the distance to the
learned manifold. The use of simple statistical means (atlas-based methods)
[2], parametric or non-parametric priors considered in an explicit [3] or implicit
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level set formulation [4] were considered. Such techniques exhibit two important
limitations, the first is related to pose invariance and the second is related to their
ability to capture statistics on high-dimensional spaces from a small number of
training examples. The pose estimation problem arises both in the training and
in the inference steps and introduces certain bias on the segmentation process
since data are often to be registered in the reference space. The ratio samples
versus dimensionality of representations is also a well-known problem in medical
imaging.

In this paper, we propose a novel approach that is able to address segmenta-
tion for challenging data sets while being pose invariant and being able to capture
local variations from small training sets. To this end, we employ a higher-order
Markov Random Field (MRF) formulation. The representation of the shape
is a point distribution model (PDM) that is used to provide the entire sur-
face through conventional interpolation algorithms. Prior knowledge is modeled
through the use of higher-order relative statistics of the PDM. These are in-
variant to rotation and scale while they can be learned from a small number of
training examples. The entire manifold is described through the accumulation
of such local constraints. This representation is associated with the randomized
forest [5] learning approach that provides an efficient detection algorithm for
points of interest exhibiting some statistical properties. These properties can
be derived from Gabor-filter-based scale/rotation invariant features. In order to
optimize the higher-order MRF’s energy, we propose to decompose the original
problem, which is difficult to solve directly, into a series of sub-problems each
of which corresponds to a factor tree [6,7]. The inference in a factor tree can
be done exactly and very efficiently using max-product belief propagation algo-
rithm [7]. In order to evaluate the performance of the method, we have considered
the challenging application of segmentation of the calf muscle. The closest work
refers to the segmentation algorithms in [8,9,10]. Opposite to these algorithms,
our approach explores the 3D space and higher-order interactions between the
model variables, inherits natural invariance with respect to the global pose (op-
posite to [9]), exploits invariant features with respect to this pose (opposite to
[9,10]), builds pose invariant statistics (opposite to [8,9,10]) and provides an one-
shot optimization result that does not depend on the initial conditions or the
reference pose parameters.

The reminder of this paper is organized as follows: we present the higher-
order shape prior, the MRF segmentation formulation and the MRF optimization
method in section 2. The experimental validation composes section 3, while
section 4 concludes the paper.

2 Knowledge-Based Segmentation

2.1 Shape Modeling

The shape model consists of a set V of control points/landmarks that are lo-
cated on the boundary of the object (Fig. 1(a)). Let xi (i ∈ V), a 3-dim vector,
denote the 3d position of landmark i and x = (xi)i∈V denote the position of
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Fig. 1. Shape Model. (a) Distribution of the landmarks on the muscle boundary. (b)

Two perpendicular slices with a triplet of landmarks (the blue asterisks). (c) The

learned Gaussian distribution on rc for the triplet shown in (b).

all the landmarks. Given a training set T composed of M aligned shapes, i.e.,
T = {x(m)}m∈{1,2,...,M} [11], we aim to learn a prior probability distribution on
the different configuration of the shape model from the training set. Instead of
learning the statistics on the pair of landmarks (e.g., [8]), which is not appro-
priate to get a scale-invariant modeling, we propose to learn the statistics of the
measurements that are scale-invariant. To this end, let us consider a triplet of
points, c ∈ C = {(i, j, k)|i, j, k ∈ V and i �= j, j �= k, k �= i} and learn statistics
on the relative lengths (ricjc , rjckc , rkcic) of the sides [12], which are defined as
(take ricjc for example): ricjc = licjc/(licjc + ljckc + lkcic), where licjc denotes
the Euclidean distance between points ic and jc. An important advantage to use
the relative lengths is that they can be computed much faster than the angle
measurements which are also scale-invariant. For a triplet, it is sufficient to only
consider the relative lengths of two sides since the third one is a linear combina-
tion of them (i.e., rkcic = 1 − ricjc − rjckc). Thus, without loss of generality, we
use a Multivate Gaussian Distribution (Fig. 1(c)) to model the distribution of
rc = (ricjc , rjckc)T , i.e., pc(rc) = N (rc|μc,Σc), where the mean μc and the co-
variance matrix Σc can be learned from the training set by maximum likelihood:

μc =
1
M

M∑
m=1

r(m)
c (1)

Σc =
1
M

M∑
m=1

(r(m)
c − μc)(r

(m)
c − μc)

T (2)

Finally, we get the higher-order shape model P = (V , C, {N (·|μc,Σc)}c∈C),
where V and C determine the topology of the model while {N (·|μc,Σc)}c∈C
characterizes the statistic geometry constraints between the triplets.

2.2 Landmark Candidate Detection

Given such a prior model, segmentation can be viewed as finding a mapping
between the model points and a new volume. This can be expressed as a corre-
spondence problem that requires detection for the model points in the image or
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finding a set of correspondences for each point i (i ∈ V). To this end, we first
learn a classifier for each landmark, and then compute a score for each possible
localization, and finally select the L positions that have the best scores. In the
experiments, we adopt Randomized Forest [5] to perform the classification.

A randomized forest is composed of a set of T random decision trees. In the
decision trees, an internal node consists of a random test on an input feature
vector, the result (true or false) of which decides which (left or right) child node
the feature vector goes to. And a leaf consists in a histogram h = (h1, . . . , hW )
(W is the number of classes), which is obtained during the training phase by
counting the number of labeled feature vectors that arrive at this leaf. During
the testing phase, an unlabeled feature vector is dropped in each decision tree τ
and reaches the leaf lτ , and the normalized histogram of lτ provides a probability
estimation for the feature vector belonging to each class w:

P (w|lτ ) =
hw∑
i hi

(3)

Finally, we average the probabilities of all the trees to obtain the probability
over the forest:

P (w|(l1, . . . , lT )) =
1
T

∑
τ

P (w|lτ ) (4)

We consider all the voxels in a volume as the possible localization of the land-
marks. Each voxel is associated with a feature vector which is used as the input
for the classifiers. Different features can be considered towards achieving a high
quality detection. In order to well capture the local image structure information,
we can use a series of 3d Gabor filters [13] with different scale, rotation param-
eters. We adopt the method proposed in [14] to sample these parameters such
that scaling/rotation of the image becomes a translation of these parameters
and then estimate the Fourier Transform Modulus (FTM) of the filter output to
eliminate variations due to these translations (because the FTM is translation
invariant). Due to the symmetry of FTM, it is enough to consider only half of
the FTM domain by removing the redundant coefficients. In such a way, we get
a feature vector for each voxel that is scale and rotation invariant.

Fig. 2 shows the detected candidate results for four landmarks at different
locations on a testing muscle data.

2.3 Higher-Order MRF Segmentation Formulation

The shape model, together with the evidence from the image support, is formu-
lated within a higher-order MRF towards image segmentation.

Let G = (V , C) denote a hypergraph with a node set V and a clique set
C, UG = {Uq(·)}q∈V the singleton potentials defined on the node set V , and
HG = {Hc(·)}c∈C the clique potentials defined on the clique set C. And then
let MRFG(UG ,HG) denote a higher-order MRF with topology G as well as the
potentials UG and HG. In our problem, we associate a landmark to a node i
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(i ∈ V), a triplet to a third-order clique c (c ∈ C), with one-to-one mappings1.
The latent variable Xi corresponding to node i is a 3-dim vector denoting the
position of node/point i. xG represents the configurations of all the nodes, i.e.
xG = (xi)i∈V . The candidate set of each variable is denoted by Xi (i ∈ V). Thus
the candidate set XG of all the variable of the MRF is defined as: XG =

∏
i∈V Xi,

which composes all the possible configurations of the shape model. The candidate
set Xi for each node consists of the detected landmark candidates (section 2.2).

The segmentation problem is transformed into estimating the optimal posi-
tions of the landmarks, i.e., the optimal configuration xG

opt of MRFG , which is
formulated as a minimization of the MRF’s energy E(xG):

xG
opt = arg min

xG∈XG
E(xG) (5)

where the energy of MRFG is defined as:

E(xG) =
∑
q∈V

Uq(xq) +
∑
c∈C

Hc(xc) (6)

where xc denotes the configuration (xq)q∈c of clique c. The singleton potentials
UG and third-order clique potentials HG are presented as follows:

The singleton potential Uq(xq) (q ∈ V) is the negative log-likelihood which
imposes penalty for the landmark q being located at position xq in image I:

Uq(xq) = − log p(I|xq) (7)

where we define p(I|xq) using the classifier’s output probability value for land-
mark q being located at xq (Eq. 4).

The higher-order clique potential Uc(xc) (c ∈ C) encodes the statistic geome-
try constraints between the triplet c of points and is defined as:

Uc(xc) = −α · log pc(rc(xc)) (8)

where α > 0 is a weight coefficient, rc(xc) denotes the mapping from the position
of the triplet c to the 2-dim relative lengths of the sides, and the prior distribution
pc has been defined in section 2.1.

2.4 MRF Decomposition and Optimization

In order to perform inference in the proposed higher-order MRF, we adopt the
well-known dual-decomposition optimization framework [15,16]. The key idea of
such a framework is: instead of minimizing directly the energy of the original
problem, we maximize a lower bound on it by solving the dual to the linear
programming (LP) relaxation [15].

To this end, we first decompose the original problem (corresponding to MRFG)
into a set of sub-problems (corresponding to {MRFGs}s∈S , where S is the set
1 Due to such one-to-one mappings, in this section, we reuse the notation V and C to

denote the node set and the clique set, respectively.
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Fig. 2. Landmark detection results. The red hexagram represents the ground truth

while the blue plus signs represent 50 detected candidates. The reference segmentation

surface is provided to visually measure the distance between candidates and the ground

truth.

of sub-problems), each of which is smaller and solvable. More concretely, we
decompose the original hypergraph G = (V , C) into a set of sub-hypergraphs
{Gs = (Vs, Cs)}s∈S such that V = ∪s∈SVs and C = ∪s∈SCs. In order to form
{MRFGs}s∈S corresponding to the sub-problems, the original MRF potentials
are decomposed into the sub-hypergraphs such that U =

∑
s∈S UGs and H =∑

s∈S HGs , which can be achieved simply by setting UGs
q = UG

q

|{s|q∈Vs}| and HGs
c =

HG
c

|{s|c∈Cs}| . The dual-decomposition [15] states that the sum of the minimum
energies of the sub-problems provides a lower bound to the minimum energy of
the original MRF. Furthermore, the problem of maximizing such a lower bound
over its feasible set is then convex. Like [16], we adopt a projected subgradient
method to perform this maximization so as to combine the solution of the sub-
problems to get the solution of the original problem.

The most challenging component is how to define the sub-problems to decom-
pose the original problem2. For the purpose of solving the inference, we adopt
factor graph [6,7] to represent the MRFs. To this end, we introduce additional
nodes for the factors corresponding to the singleton potentials Uq(xq) (q ∈ V)
and the third-order clique potentials Hc(xc) (c ∈ C). Considering both the com-
plexity and the quality of the optimum, we propose to decompose the original
factor graph into a series of factor trees (i.e., factor graphs without loop) such
that a higher-order clique factor appears in one and only one factor tree. The
inference in a factor tree can be done exactly and very efficiently using max-
product belief propagation algorithm [7] with complexity O(NLK), where N , L
and K denote the number of nodes, the number of candidates for each node,
and the maximum order (K = 3) of the factors, respectively.

3 Experimental Results

We used the data set that was previously used in [17] to validate the proposed
method. This data set consists of 25 3D MRI subjects whose calf part was
imaged. The voxel spacing is of 0.7812×0.7812×4 mm and each volume consists
of 90 slices of 4mm thickness acquired with a 1.5 T Siemens scanner. Standard
2 We cannot use the decomposition scheme proposed in [16], since the higher-order

clique potentials are not pattern-based.
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Fig. 3. Experimental Results. (a) Surface reconstruction results (green: reference seg-

mentation. red: reconstruction result). (b) Boxplots of the average landmark error

measure in voxel (1. our method. 2. method in [17]. 3. standard ASM method.). On

each box, the central mark in red is the median, the edges of the box are the 25th and

75th percentiles, the whiskers extend to the most extreme data points.

of reference was available, consisting of annotations provided by experts for the
Medial Gastrocnemius (MG) muscle.

We performed a leave-one-out cross validation on the whole data set. For
comparison purpose, we considered as alternative segmentation methods3 the
ones presented in [17]. We present in Fig. 3(a) the surface reconstruction results
using the estimated position of the landmarks and thin plate spline (TPS), while
in Fig. 3(b) the average distance between the real landmark position and the one
estimated from our algorithm, and the ones reported in [17] including the one
obtained using standard active shape models. We reduce landmark localization
error by an average of factor 2 in terms of voxel error compared to [17] that is
considered to be the state of the art. The analysis of the results shows that the
proposed prior and the inference using higher-order graphs globally perform well
while the main limitation is introduced from the landmark candidate detection
process. Since the method establishes correspondences between the model and
the detected landmarks, in the absence of meaningful candidates the method fails
to recover optimally the global shape. Regarding computational complexity, the
method is linear with respect to the number of higher-order cliques and cubic
with respect to the number of landmarks candidates per point.

4 Conclusion

In this paper, we have proposed a novel approach for 3D segmentation using pose
invariant higher-order MRFs. Our method models the prior manifold through
accumulation of local densities involving pose invariant combinations of points.
Segmentation is expressed as a higher-order MRF optimization problem, where
machine learning techniques and pose invariant features are considered to de-
termine candidate positions for the model points. Promising results that clearly

3 Opposite to [17], we have considered a subset of 50 from the 895 model landmarks

uniformly distributed in the model-space (Fig. 1).
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outperform the prior art in very challenging data sets demonstrate the potentials
of the method.

Extending the framework to deal with missing correspondences is the most
promising direction to overcome the challenge of correctly estimating the position
of all the landmarks of the model. Redundancy is a natural property inherited
from the exhaustive construction of the higher-order model. The optimization
of the graph connectivity towards reducing the computational complexity of the
method is a straightforward direction as suggested in [8] through dimensionality
reduction on the graph space. Last, but not least the case of spatio-temporal
higher-order priors on anatomical structures with dynamic behavior is currently
under investigation.
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Abstract. In this paper we present a Markov random field (MRF)

driven region-based active contour model (MaRACel) for medical im-

age segmentation. State-of-the-art region-based active contour (RAC)

models assume that every spatial location in the image is statistically

independent of the others, thereby ignoring valuable contextual infor-

mation. To address this shortcoming we incorporate a MRF prior into

the AC model, further generalizing Chan & Vese’s (CV) and Rousson

and Deriche’s (RD) AC models. This incorporation requires a Markov

prior that is consistent with the continuous variational framework char-

acteristic of active contours; consequently, we introduce a continuous

analogue to the discrete Potts model. To demonstrate the effectiveness

of MaRACel, we compare its performance to those of the CV and RD

AC models in the following scenarios: (1) the qualitative segmentation

of a cancerous lesion in a breast DCE-MR image and (2) the qualita-

tive and quantitative segmentations of prostatic acini (glands) in 200

histopathology images. Across the 200 prostate needle core biopsy his-

tology images, MaRACel yielded an average sensitivity, specificity, and

positive predictive value of 71%, 95%, 74% with respect to the segmented

gland boundaries; the CV and RD models have corresponding values of

19%, 81%, 20% and 53%, 88%, 56%, respectively.

Keywords: Segmentation, medical imaging, prostate cancer, breast can-

cer, MRI, digital pathology.

1 Introduction

An active contour (AC) model performs segmentation by evolving a curve to-
wards the minimum of an energy functional. Based on the type of image informa-
tion driving the model, an AC may be categorized as either boundary-based [1]
or region-based [2]. Region-based AC (RAC) models (the type of model consid-
ered in this work) employ statistical information derived from the segmented
regions to drive the AC. Additionally, RACs employ level sets [3] instead of pa-
rameterized contours [2, 4]. The attraction of level sets lies in their ability to
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implicitly handle topological changes such as boundary splitting and merging.
An early RAC model, called the region competition model [5], used generalized
Bayes and minimum description length criteria to formulate the curve evolution
function. Inspired by the Mumford-Shah functional, Chan & Vese’s (CV) [2] and
Rousson and Deriche’s (RD) [4] RAC models used statistics derived from the
intensities of each region to drive their ACs.

The shortcoming of most RAC models lies in their assumption that each
spatial location in the image is statistically independent of the others. Unfor-
tunately, this assumption does not hold for most (or perhaps any) real images.
To address this assumption, we propose the integration of Markov random fields
(MRFs) into the RACs. MRFs [6] provide an effective and tractable (via the
Markov property) means for modeling spatial information within a Bayesian
framework [6].

The contribution of this paper is an MRF-driven RAC model (MaRACel).
Specifically, MaRACel incorporates a Markov prior into the RD model [4]. Intu-
itively, the effect of integrating this prior is similar to performing a probabilistic
morphological close operation: edges randomly occurring (due to noise) in the
regions are much less likely to result in spurious boundaries. For the Markov
prior we introduce a continuous analogue of the discrete Potts model. This con-
tinuous extension is needed to ensure compatibility with variational calculus, the
foundation of AC models. To demonstrate the superiority of MaRACel over the
popular CV and RD models we qualitatively and quantitatively compare their
performances in the task of segmenting prostatic acini (glands) in 200 digitized
images of core needle biopsies.

(a) (b) (c) (d)

Fig. 1. Qualitative segmentation results for tumor boundary segmentation for breast

DCE-MR image. (a) Single slice of DCE-MR image with manual segmentation of tumor

region (in blue); segmentation results (in green) for (b) CV model, (c) RD model and

(d) MaRACel.

To better highlight the need for MaRACel, we provide an illustrative example
(Figure 1) of the automated detection of a lesion on a dynamic contrast en-
hanced (DCE) breast MR image [7]. The segmentation results for the RD and
CV models, shown in columns (b) and (c), reveal the failure of these models to
eliminate spurious noisy regions. (Note that CV model performs so poorly that
the model does not evolve beyond its initial contours.) This is a result of the
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RD and CV models’ inability to account for the fact that spatially proximate
pixels are more likely to belong to the same regions. As evinced in column (d),
this issue can be rectified by incorporating a Markov prior — such as the Potts
model — into the AC, thereby encouraging neighboring pixels to share the same
class (i.e. be included in the same segmented region).

The remainder of the paper proceeds as follows: Section 2 establishes the
statistical model for describing random images and introduces the MRF prior.
Section 3 discusses how the curve evolution function can be derived from this
statistical model. In Section 4 we apply MaRACel to the segmentation of pro-
static glands, qualitatively and quantitatively evaluating its segmentation per-
formance. Finally, we offer concluding remarks in Section 5.

2 Statistical Framework for the MaRACel Model

Let C=(C, f) define a color image, where C⊂R2 establishes the image region and
f :C→R3 reflects the intensities of the three color channels. Let x :C→{Λ1, Λ2}
be a function mapping each point in C to one of two discrete classes {Λ1, Λ2}.
Thus x segments the image into regions C1 and C2 (e.g. the foreground and the
background), where C1∪C2 =C and c∈Ci implies xc =Λi.

The goal is to determine the function x that best segments the region C
given the observed colors f . Since we use a Bayesian framework, we consider the
functions f and x as observations of the random processes F and X . Furthermore,
the optimal segmentation (with respect to probability of error) is given by the
maximum a posteriori (MAP) estimate [8]:

max
x

P (X=x|F= f) ∝ max
x

P (F= f |X=x)P (X=x) (1)

Thus, maximizing the a posteriori probability P (X = x|F = f) is equivalent to
maximizing the product of the conditional P (F= f |X =x) and prior P (X =x)
probabilities.

Note that P (X=x), which signifies the probability of the event {Xc = xc, ∀c∈
C}, should not be confused with P (Xc =xc), which indicates the probability of
the event {Xc = xc} at c. Additionally, when it does not cause ambiguity we
will henceforth omit the random variables from the probability functions, e.g.
P (x) ≡ P (X=x).

2.1 Estimating the Prior Probability

To simplify the prior probability we invoke the Markov property: P (xc|x-c) =
P (xc|xηc), where x-c abbreviates {x(r) : r∈C, r �= c}, xηc abbreviates {x(r) : r∈
ηc, r �= c}, and the neighborhood ηc of c is any bounded region such that s ∈
ηc ↔ c∈ηs, c /∈ηc, and c, s∈C. Using these simplified conditional probabilities,
the prior probability of the event {Xc = xc, ∀c∈C} can be approximated by the
normalized pseudo-likelihood [9] as follows:

P (X=x) ≈ 1
Z

2∏
i=1

∏
c∈Ci

P (Xc =Λi|xηc)
dc (2)
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where Z ensures summation to one and dc represents the bin volume which guar-
antees the correct continuum limit [10]. We choose to model each of the condi-
tional distributions in (2) using a continuous analogue of the Potts model [11]:

P (Xc =Λi|xηc) =
1
Zc

exp
{
−λ

∫
ηc∩Ci

dc

}
=

1
Zc

exp {−λ A (ηc, Λi)} , (3)

where Zc is a normalizing constant, A (ηc, Ci) signifies the area of the region
defined by ηc ∩ Ci, and λ ∈ R is an appropriately selected constant. Note that
the greater the value of λ, the greater the tendency for neighboring points in the
MAP estimate to belong to the same class.

2.2 Estimating the Conditional Probability

We next estimate the conditional probability P (f |x). Since each vector Fc given
{Xc = xc} is assumed conditionally independent of all other Fc, P (f |x) can be
expressed as follows:

P (f |x) =
2∏

i=1

∏
c∈Ci

P (fc|Xc =Λi)dc, (4)

where dc again assures the correct continuum limit [10].
Similar to [5, 4], we assume each conditional probability P (fc|Xc = Λi) is

distributed normally with the following mean μi and covariance Σi:

μi =
1

|Ci|

∫
Ci

fc dc and Σi =
1

|Ci|

∫
Ci

(fc − μi)(fc − μi)Tdc. (5)

where |Ci| =
∫

Ci
dc is the area of region Ci.

3 Variational Framework for the MaRACel Model

3.1 Energy Functional of MaRACel Model

We now wish to perform MAP estimation within the active contour framework.
We begin by using Equations (1), (2), and (4) to express the log of the a poste-
riori probability — whose maximum will correspond to that of the a posteriori
probability — in integral form:

logP (x|f) = logP (f |x) + logP (x) (6)

=
2∑

i=1

∫
Ci

logP (fc|Xc =Λi) + logP (Xc ≈Λi|xηc)dc − log(Z).
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This formulation can be rewritten as an energy functional [2]:

E(φ) = −
∫

C

{α [H(φ) logP (fc|Xc =Λ1) + (1−H(φ)) logP (fc|Xc =Λ2)] (7)

+ β [H(φ) logP (Xc ≈Λ1|xηc) + (1−H(φ)) logP (Xc ≈Λ2|xηc)]
−γ|∇H(φ)|} dc,

where H(·) is the Heaviside function and φ :C → R is a level set function such
that φ(c) > 0 if c ∈ C1 and φ(c) < 0 if c ∈ C2. Thus, the φ that minimizes
E(φ) establishes the boundary that corresponds to the MAP estimate (under
the pseudo-likelihood approximation in (2)). Note that the final term γ|∇H(φ)|
in (7) results from incorporating the boundary length for the purpose of regu-
larization; this term was not derived from (6), and thus the minimizer of (7) will
not precisely correspond to the MAP estimate.

3.2 Curve Evolution Functional of MaRACel Model

Applying the Euler-Lagrange equations to (7) and then substituting in (3) and
(5) yields the curve evolution function for MaRACel

∂φ

∂t
=δ(φ)

{
α
[
(fc − μ2)TΣ−1

2 (fc − μ2) − (fc − μ1)TΣ−1
1 (fc − μ1)

+ log
|Σ2|
|Σ1|

]
+ β(A(ηc, C1) −A(ηc, C2)) + γdiv

(
∇φ

‖∇φ‖

)}
,

(8)

where β = α · λ. Note that the relationship between MaRACel and the RD and
CV models is as follows: Setting β = 0 in the MaRACel evolution function (8)
reduces it to the RD model. If we further stipulate that Σ1 and Σ2 are both
identity matrices, the RD model devolves into the CV model.

4 Experimental Results and Discussion

To illustrate the effectiveness of our proposed model, we now qualitatively and
quantitatively compare the gland segmentation performance of MaRACel to
those of the CV and RD models. Note that since cancerous and benign glands
have unique morphologies, the ability to accurately delineate their boundaries is
essential in both automated cancer detection [11] and Gleason grading (i.e. the
stratification of prostate cancer by aggressiveness).

4.1 Model Parameters and Data Description

The initial contours for the CV, RD, and MaRACel models are given by an array
of circles dispersed regularly across the image. (These circles were unintentionally
depicted by the poor segmentation results in Figure 1(b).) Empirically, we found
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that we achieve more robust performance if the MRF weighting term β in (8)
begins at zero and then increases with each iteration (i.e. as the segmentations
become more accurate) before leveling off. Thus β is determined as follows:
β= 2β0

π arctan[0.2(t− 1)], where t is the time in iterations. The values for α, β0

and γ in (8) are 5, 0.1 and 15, respectively. The neighborhood ηc is a 21 × 21
window centered at pixel c (and excluding c). Thus the area A(ηc, Ωi) in (8) is
simply the number of pixels with class Λi that lie within the window ηc (excluding
the center pixel c).

The dataset includes 200 images obtained from Hematoxylin & Eosin (H&E)
stained prostate biopsy samples digitized at 20x optical magnification using an
Aperio whole-slide digital scanner. Each image includes one or more prostatic
glands. The glands in each of the 200 images were manually segmented (to
provide ground truth for quantitative evaluation).

4.2 Qualitative Results

The goal is to accurately delineate the boundaries of the glandular lumens for
each image in column (a) of Figure 2. The segmentation for the RD and CV
models, shown in columns (c) and (d) in Figure 2, reveal the inability of these
models to eliminate the small, spurious regions that appear due to noise. That is,
the CV and RD models find background regions within the glands. The segmen-
tation results for MaRACel are given in column (d). MaRACel removes these
false regions, yielding a single segmented region for each glandular structure.

4.3 Quantitative Results

For each image the set of pixels lying within the manual delineations of the glands
is denoted as A(G). The set of pixels lying within any boundary resulting from
the specified AC model is denoted as A(S). The sensitivity (SN), specificity
(SP), and positive predictive value (PPV) are then defined as follows: SN =
|A(S)∩A(G)|

|A(G)| , SP = |C|−|A(S)∪A(G)|
|C|−|A(G)| , and PPV = |A(S)∩A(G)|

|A(S)| , where | · | denotes
the cardinality of the set. We compute SN, SP and PPV for each image, and
then determine the average and standard deviation across the 200 images. These
statistics are reported in Table 1 for the CV, RD and MaRACel models.

Table 1. Quantitative evaluation of segmentation results for the CV, RD and MaRACel

models. The average and standard deviation of the SN, SP and PPV over the 200

histopathology images are provided.

Sensitivity (SN) Specificity (SP ) Positive Predictive Value (PPV )

CV 0.19 ± 0.06 0.81 ± 0.01 0.20 ± 0.06

RD 0.53 ± 0.10 0.88 ± 0.11 0.56 ± 0.11

MaRACel 0.71 ± 0.10 0.95 ± 0.01 0.74 ± 0.10
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(a) (b) (c) (d) (e)

Fig. 2. Qualitative segmentation results for prostatic glands in digitized biopsy samples.

(a) original images; (b) manual segmentations of the glandular boundaries (in blue); seg-

mentation results (in green) for (c) CV model, (d) RD model and (e) MaRACel.

5 Concluding Remarks

In this paper we presented MaRACel, a generalization of Chan & Vese’s and
Rousson and Deriche’s active contour models, that incorporates Markov random
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fields into the AC. Currently, the region-based AC models only extract global
statistical information and ignore valuable local contextual information. Incor-
porating an MRF prior into the AC provides a means for modeling this con-
textual information which is so essential in rejecting spurious edges and other
forms of noise. To validate our model we quantitatively and qualitatively com-
pared MaRACel with Chan & Vese’s and Rousson and Deriche’s AC models
in the task of identifying glandular boundaries in prostate histopathology im-
ages. MaRACel significantly outperformed the other models in terms of average
sensitivity, specificity, and positive predictive value.
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Abstract. Prior to performing a robot-assisted coronary artery bypass

grafting procedure, a pre-operative computed tomography scan is used to

assess patient candidacy and to identify the location of the target vessel.

The surgeon then determines the optimal port locations to ensure proper

reach to the target with the robotic instruments, while assuming that

the heart does not undergo any significant changes between the pre-

and intra-operative stages. However, the peri-operative workflow itself

leads to changes in heart position and consequently the intra-operative

target vessel location. As such, the pre-operative plan must be adequately

updated to adjust the target vessel location to better suit the intra-

operative condition. Here we propose a technique to predict the position

of the peri-operative target vessel location with ∼ 3.5 mm RMS accuracy.

We believe this technique will potentially reduce the rate of conversion of

robot-assisted procedures to traditional open-chest surgery due to poor

planning.

1 Introduction

The quest for alternate approaches to conventional cardiac therapy has increased
the number of minimally invasive procedures being performed, leading to less
trauma, shorter hospital stays, faster return to normal activities, and improved
cosmesis [1,2,3,4]. Robot-assisted (RA) surgery represents a paradigm shift in
the delivery of health care for both the patient and the surgeon [5] and it has
been adopted as standard of care at many institutions worldwide [5]; one of the
popular cardiac interventions performed under robot-assistance is the coronary
artery bypass grafting (CABG) procedure.

In current clinical practice, a pre-operative computed tomography (CT) scan
of the patient is used to assess his/her candidacy for undergoing a RA-CABG
procedure. Based on the pre-operative scan, the surgeon identifies the location
of the surgical target — the left anterior descending (LAD) coronary artery, ex-
amines whether there is sufficient workspace inside the chest wall for the robot
arms, and ultimately estimates the optimal locations of the port incisions to
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ensure proper reach of the surgical targets with the robotic instruments. How-
ever, it is not unusual that after setting up the patient for the robot-assisted
procedure, the surgeons encounter difficulties due to the inability in reaching
the target, robot arm collisions or reduced dexterity [6]. In fact, 20-30% of the
RA-CABG interventions require conversion to traditional open-chest surgery [7],
mainly due to the migration of the heart during the peri-operative workflow, not
accounted for in the pre-operative plan.

Fig. 1. Pre-operative planning stage showing patient’s cardiac CT scan (a), the coro-

nary vessel displayed relative to the valve annuli (b) and the port placement to ensure

proper reach of the target vessel with the robotic instruments (c) Note: the yellow lines
represent intercostal spaces.

It is believed that the workflow stages - lung collapse and CO2 chest in-
sufflation - will induce an overall shift of the heart inside the thoracic cavity,
which may invalidate the surgical plan based solely on the pre-operative data.
Therefore, is critical to estimate the global heart displacement during the typical
peri-operative workflow and improve the pre-operative plan by estimating the
intra-operative location of the target vessel. However, the global migration of
the heart has never been measured, nor has the change in location of the LAD
between the pre- and intra-operative stages. The contribution of this paper is
twofold. First, we provide an estimate of the heart migration measured from
clinical patient data by registering the pre-operative cardiac CT (containing
the LAD location identified from the CT dataset - Fig. 1) to images acquired
peri-operatively using tracked US. Secondly, to overcome the clinical limitation
arising due to the invisibility of the LAD in the US images, we conducted an in
vitro study where we simulated the clinically observed heart shift and demon-
strated the feasibility of our technique towards predicting the LAD location.

While no known accuracy constraints have been reported for this specific
application, our collaborating cardiac surgeons have recommended that a target
prediction accuracy on the order of one intercostal space (∼ 10-15 mm, depending
on patient size) is desired. From a clinical feasibility perspective, this constraint is
valid: as long as the intra-operative LAD location is correctly predicted to within
one intercostal space from its actual location, it can be reached by positioning
the trocar on either side of the adjacent rib.
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2 Materials and Methods

2.1 Clinical Procedure Workflow

In a typical RA-CABG procedure, the patient is first imaged pre-operatively
(Stage0) in the same position as during the intervention. Peri-operatively, fol-
lowing intubation and anesthesia delivery (Stage1), the left lung is collapsed
(Stage2), and the chest is insufflated (Stage3) to provide sufficient work space.

Image Acquisition. We employed real-time 2D trans-esophageal echocardio-
graphy (TEE) to monitor the heart during the interventional workflow. The
images were acquired using a spatially tracked TEE probe modified by embed-
ding a 6 DOF Aurora magnetic sensor coil (Northern Digital Inc., Waterloo,
Canada) inside the encasing of the transducer [8]. Images were collected from
three different views in order to capture all of the necessary cardiac features.
For our work, mid-esophageal-4-chamber view images were captured at 20 ◦ in-
crements from 0 ◦ to 180 ◦ for the mitral valve annulus (MVA) and the left
ventricular apex (LVAp). Five long-axis view images with 10 ◦ increments and
one short-axis view of the aorta at 30 ◦ were also acquired to visualize the aortic
valve annulus (AVA) and the left coronary ostium (LCO). US image data were
acquired by an expert anesthetist and repeated three times at each workflow
stage.

Fig. 2. a) Patient heart instance at Stage1 acquired using tracked US and showing

the valve annuli; b) Stage1 (orange) and Stage2 (gray) instances of the heart show-

ing relative heart displacement and corresponding segmented valvular structures; c)

Initial peri-operative US instance (Stage1) registered to the pre-operative dataset and

displayed within the CT coordinate space.

Estimating Global Heart Displacement. The peri-operatively acquired in-
stances were then transferred into the CT coordinate system by aligning ho-
mologous features corresponding to the first peri-operative (Stage1 US) and the
pre-operative (Stage0 CT) datasets (Fig. 2). These two stages are physiologi-
cally equivalent given the same patient position and dual-lung ventilation, and
hence minimal anatomical variations are expected. As a result, the peri-operative
displacements can be estimated with respect to the principal body axes.
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Fig. 3. Visual representation showing an automatically segmented epicardial model of

a patient’s heart animated using the sequential peri-operative transforms based on the

valvular structures. Note: Stage1 is shown in red, Stage2 in green and Stage3in blue.

We have shown the migration patterns in four patients undergoing RA-CABG
procedure [9]. Our clinical data have suggested that the heart undergoes consid-
erable displacement during the workflow, which should not be ignored during the
planning process. As an example, we show the change in position of the epicar-
dial surface of one patient’s heart segmented from the CT dataset and animated
using the sequential peri-operative transforms (Fig. 3). Moreover, in spite of
the observed displacements, the morphology of the identified features remains
relatively consistent throughout the workflow [9], suggesting that no significant
non-rigid deformations are occurring. Based on these clinical observations, we
next conducted an in vitro validation study to assess the accuracy with which a
newly-developed technique involving a rigid-body feature-based registration can
predict the peri-operative location of the LAD vessel.

2.2 Predicting the LAD Location: Feature-Based Registration

Since the LAD can only be clearly seen in the pre-operative CT image and
not in the peri-operative US images, its peri-/intra-operative location has to
be deduced based on the rest of the data available peri-operatively. Therefore,
we chose to predict its location via a registration algorithm that involves four
features - LCO, MVA, AVA and LVAp - easily identifiable in both modalities and
sufficiently close to the target vessel to provide improved accuracy in the region of
interest. The LAD begins at the left coronary ostium and usually runs toward the
apex, while the mitral and aortic valves are located on either side of the starting
point of the LAD. A rigid-body registration driven by the above features was then
applied to map the pre-operative dataset to the peri-operative datasets, therefore
predicting the LAD location at each subsequent stage. The Euclidean distance
between each set of homologous features was initially computed, followed by the
optimization of the cost function shown in Eq. 1 performed using the downhill
simplex method [10].

cost = αdistLCO + βdistLV Ap + γ(distMV A + distAV A) (1)
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Since distances between the LCO and the LVAp were selected as the main
constraints for the registration, the optimal values for the weighting factor pa-
rameters were emphirically determined as follows: α = 1.0, β = 1.0, and γ = 0.6,
yielding an optimal alignment.

2.3 In vitro Experimental Validation

Experimental Apparatus: Considering that the LAD cannot be identified
peri-operatively using US imaging, we conducted an in vitro validation study to
assess the accuracy with which our technique can predict the LAD location. The
experimental apparatus was set up in a configuration similar to that typically
found in the OR: we simulated the migration patterns of the heart induced
during RA-CABG procedures by altering the position and orientation of a heart
phantom (The Chamberlain Group, Great Barrington, USA).

Sixteen CT-visible fiducials were attached to the surface of the phantom:
ten were used to assist with the CT-to-phantom registration and the remaining
six were used to “define” the path of the LAD vessel. The position of the heart
phantom was tracked throughout the study using a 6-DOF NDI Aurora magnetic
sensor rigidly attached onto the phantom. Two different modalities (CT and
US) were employed for image acquisition: a pre-operative CT scan was acquired
and a virtual surface model was constructed using automatic segmentation tools;
peri-operative images at each workflow stage were acquired using a magnetically-
tracked TEE probe similar to the one used in the OR (Fig. 4). The LAD vessel
was initially identified from the CT image and its peri-operative location was
predicted based on its pre-operative location using the proposed registration.

Fig. 4. a) Image and (b) virtual surface model of the heart phantom showing the LAD

path; c) Peri-operative US image acquisition protocol showing imaging of the apex and

coronary ostia using incrementally tracked 2D US images.

Intra-operative Image Acquisition: Since TEE is the standard of care for
monitoring during cardiac procedures, in this study we collected the required
tracked US images following the clinical workflow. The position of the heart



210 D.S. Cho et al.

was altered twice, to mimic the actual intervention (i.e. lung collapse and chest
insufflation). In each position, the image acquisition was repeated three times
and the entire protocol was also repeated three times to minimize human errors.
The four features were then extracted from the images using a custom-developed
segmentation tool. All features were defined in the same 3D coordinate space;
the mitral and aortic valves were represented as “rings”, while the ostium and
the apex were represented as points.

Assessing Intra-operative Target Vessel Location: The six fiducials po-
sitioned along the LAD path were used to assess the target registration error
(TRE) between the predicted LAD fiducial locations and their gold-standard
locations, at each stage in the workflow. The gold-standard LAD fiducial lo-
cations were determined by recording the LAD fiducial locations at each stage
using a magnetically tracked pointer and confirmed using the point-based reg-
istration transform corresponding to each peri-operative stage. The predicted
LAD location was identified by mapping the pre-operative LAD fiducials using
the feature-based registration transform described in section 2.2.

3 Evaluation and Results

We simulated three different RA-CABG-related workflows by altering the posi-
tion and orientation of the heart phantom at three different stages. For each of
the nine poses, we acquired three sets of tracked US images, defined the features
of interest, and used the proposed registration algorithm to predict the location
of the LAD vessel. Table 1 summarizes the TRE between the actual locations of
the LAD target fiducials (the ground truth) and their predicted locations from
the registration.

Table 1. LAD TRE: Mean ± SD and RMS (mm)

LAD Stage0 to Stage1 Stage0 to Stage2

Point Mean ± SD RMS Mean ± SD RMS

1 3.1 ± 0.9 3.2 2.9 ± 1.7 3.4
2 2.9 ± 1.3 3.2 3.4 ± 1.6 3.8
3 3.4 ± 1.4 3.7 3.3 ± 1.6 3.7
4 3.9 ± 1.9 4.3 3.8 ± 1.3 4.0
5 4.4 ± 2.3 5.0 3.9 ± 1.7 4.3
6 4.9 ± 2.6 5.5 4.5 ± 2.1 5.0

Overall 3.7 ± 1.9 4.2 3.6 ± 1.7 4.0

Table 2. RMS Feature Localiza-

tion Error (mm)

Feature Stage0 Stage1 Stage2

LVAp 2.3 4.7 4.0
AVA 1.4 1.3 1.2
MVA 0.6 1.9 1.5
CO 1.1 4.0 2.1

For a visual interpretation of the LAD TRE, Fig. 5 shows the virtual model
of the heart phantom along with the gold-standard and predicted LAD paths
at both Stage1 and Stage2 in the peri-operative workflow, showing clinically-
adequate alignment, well under the 10-15 mm intercostal space constraint.
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Fig. 5. a) Pre-operative heart phantom model at Stage0 showing the LAD vessel; Visual

display of the LAD TRE at Stage1 (b) and Stage2 (c), showing the gold-standard LAD

(seashell white) obtained using the point-based registration transform and the predicted

LAD (purple) determined using the proposed feature-based registration transform.

4 Discussion

This work constitutes the first steps towards optimizing pre-operative planning
for RA-CABG procedures. Motivated by a recent clinical study that revealed
substantial migration of the heart during the peri-operative procedure work-
flow, our goal is to predict the intra-operative location of the target vessel, to
provide the surgeon with an optimized surgical plan that better reflects the
intra-operative stage.

As a bridge to the in vivo validation, considering the limitations arising due
to poor visualization and identification of the LAD coronary vessel in clinical
US images, the in vitro phantom study was performed to assess the accuracy
with which the proposed feature-based registration technique can predict the
location of a target vessel. Our results have shown a root-mean-squared (RMS)
TRE on the order of ∼ 3.5 mm across the twenty-seven peri-operative poses
simulated in our study. Moreover, considering that the target vessel location is
predicted using a feature-based registration algorithm, we next assessed the error
associated with the feature localization. Table 2 includes a summary of the RMS
localization error associated with the identification of each of the four features
used to drive the registration: LCO, LVAp, MVA and AVA. As observed, the
point-based localization of the LVAp and the LCO was consistently challenging,
mainly due to the 2D nature of the US images used to identify a 3D structure.

These feature localization errors in fact explain the increasing TRE at the
LAD fiducials closer to the apical region at both peri-operative stages. Consid-
ering that the anastomosis target site is typically located along the LAD path
two thirds of the way from the ostia towards the apex, we have implemented a
more robust apex localization approach from the US data which led to improved
target registration error near the inferior end of the LAD. The new algorithm
uses the apical region as a registration constraint as opposed to a single point,
and include a robust estimator to reduce the TRE, as suggested by Ma et al. [11].
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Nevertheless, in spite of these slight inaccuracies, our results are well within the
10-15 mm clinically-imposed constraint dictated by a typical intercostal space,
allowing sufficient tolerance (over 10 mm) in the event that these errors amplify
when using clinical data.

5 Conclusions

Driven by the clinical motivation to improve the pre-operative planning of RA-
CABG procedures, here we have proposed and evaluated a technique used to
predict the intra-operative target vessel location. Our technique was validated in
an in vitro study simulating the clinically-observed RA-CABG procedure work-
flow and yielded 3.5 mm RMS accuracy in predicting the peri-operative LAD
location. These results agree with the clinical constraints imposed by this ap-
plication and provided an equally successful in vivo evaluation in our upcoming
animal studies, currently under research ethics approval, employing DynaCT
(Siemens, Erlangen, Germany) for intra-operative validation, we believe this
technique has the potential to significantly improve the current pre-operative
planning of RA-CABG procedures, and consequently lead to reduced rates of
conversion to traditional open-chest surgery.
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Abstract. Prostate biopsy is the clinical standard for the diagnosis of

prostate cancer, and technologies for 3D guidance to targets and record-

ing of biopsy locations are promising approaches to reducing the need for

repeated biopsies. In this study, we use image-based non-rigid registra-

tion to quantify prostate deformation during needle insertion and biopsy

gun firing, in order to provide information useful to the overall assess-

ment of a TRUS-guided biopsy system’s expected targeting error. We

recorded mean tissue displacements of up to 0.4 mm, accounting for 16%

of the clinically-motivated maximum desired RMS error of a guidance

system.

1 Introduction

Prostate cancer is one of the most common cancers among men, second only
to skin cancer [1]. Prostate biopsy is currently the standard clinical practice to
obtain a definitive diagnosis of cancer. Two-dimensional (2D) transrectal ultra-
sound (TRUS) is the most common imaging modality used for image guidance
in prostate biopsy due to its low cost and high frame rate. Recently, 3D mag-
netic resonance imaging (MRI) and TRUS-guided biopsy systems [2,3,4] have
shown promise for the accurate guidance of biopsy needles to predefined targets.
Such systems also provide a 3D record of biopsy locations, which is useful in
planning targets for subsequent sessions if pathological analysis of biopsy sam-
ples reveals the need to rebiopsy the same or nearby targets in a later session.
Biopsy target locations can also be determined based on other modalities such
as MRI, requiring MRI-US registration. The need for accurate 3D guidance and
recording of biopsies is clear; reports have shown that cancer detection rates
during second and third biopsy sessions are only 20% and 7%, respectively, for
2D TRUS-guided biopsy [5].

Since the smallest tumours considered to be clinically significant have vol-
umes of 0.5 cm3 or greater [6], corresponding to a spherical tumour with a
radius of approximately 5 mm, the RMS error of a TRUS-guided biopsy sys-
tem in delivering a needle to a target must be no more than 2.5 mm in order
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to biopsy clinically significant tumours 95% of the time. There can be multiple
potential sources of error that can cause the actual target biopsy location to be
different from the expected target, including: (1) tolerances in the design and
construction of mechanical needle guidance systems, (2) errors in imaging and
calibration to the needle guidance systems, (3) patient and prostate motion and
deformation during the procedure due to interaction with the TRUS probe and
discomfort during biopsy, (4) prostate deformation due to slow biopsy needle
insertion in preparation for biopsy gun firing, and (5) prostate deformation due
to rapid biopsy needle insertion after firing the biopsy gun. There is previous re-
search in measurement of and correction for the first three sources of error [4,7].
However, to the best of our knowledge, prostate deformation due to needle in-
sertion through the rectal wall and biopsy gun firing has not yet been quantified
in the context of prostate biopsy. Although the cumulative effect of all five of
the above sources of error has been measured using MRI in the context of a
specific MR-compatible robotic biopsy system [8], the specific contributions of
needle insertion and biopsy gun firing to the overall error were not reported.
In addition, we hypothesize that deformations in response to needle insertion
and biopsy gun firing are different in the context of TRUS-guided biopsy due to
several important differences in physical configuration. In contrast to the robotic
procedure measured in [8], where an endorectal coil in a cylindrical housing is
placed parallel to the rectal wall for imaging, TRUS-guided biopsy is typically
conducted using an end-firing ultrasound transducer, where the transducer tip
is manipulated against the anterior rectal wall in order to obtain images. The
MR-guided robot in [8] inserts needles into the prostate through the rectal wall
at an oblique angle to the endorectal coil housing, whereas in end-firing TRUS
biopsy, the needles are parallel to the probe axis. It is reasonable to expect that
these differences in physical configuration may lead to differing mechanical dy-
namics at the time of biopsy needle insertion and gun firing, resulting in different
prostate deformation characteristics. The effect of needle insertion on prostate
motion has been studied extensively in the context of brachytherapy procedures
[9,10], where the patient is under genereal anesthesia and the brachytherapy
needles are inserted slowly (relative to the firing speed of a biopsy gun) through
the perineum. We hypothesize that the effect of the needle in the context of
biopsy is different due to the reactions (e.g. in the form of pelvic floor muscle
contractions) of an awake, uncomfortable patient and the high speed of needle
insertion by the biopsy gun.

In this work, we apply intensity-based, non-rigid image registration to measure
the deformation observed in the prostate during (1) the manual insertion of the
biopsy needle into the prostate, and (2) the firing of the biopsy gun to acquire the
tissue sample during hand-held, 2D TRUS-guided biopsy procedures. At a high-
level, our procedure is as follows: (1) acquire video-rate sequences of 2D TRUS
images during the acquisition of each prostate biopsy sample from a series of
clinical biopsy sessions; (2) for each biopsy, select three frames, occurring before
needle insertion, before biopsy gun firing, and after biopsy gun firing; (3) non-
rigidly register these three frames together, validating the registration method
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by measurement of its target registration error (TRE); and (4) quantify prostate
deformation by taking clinically relevant measurements of the deformation vector
fields given by the registration algorithm.

Fig. 1. Images in a biopsy sequence, and the names used for the three indicated reg-

istrations throughout this paper. In all of our images, the needle is to the left of the

transducer, as shown in the rightmost image.

2 Method

Using a hand-held 2-dimensional (2D) transrectal ultrasound (TRUS) probe, we
acquired TRUS images at 30 frames per second during clinical TRUS-guided
prostate biopsy sessions of 9 patients (3 by one physician and 6 by another) .
From each biopsy sample taken, we extracted 3 frames; we refer to each of these
frame triplets as a “biopsy sequence”. A biopsy sequence (figure 1) consists of:
(1) the frame occurring immediately prior to the physician’s insertion of the
needle through the rectal wall, (2) the frame occurring immediately prior to the
firing of the biopsy gun, and (3) the frame occurring immediately after the firing
of the biopsy gun. From our 9 patients, we obtained 96 biopsy sequences; an
example of a sequence is given in figure 1.

Moving Image

Fixed Image

Demons
Registration

Deformation
Field

Deformation
Measurements

TRE
Calculation

Fiducial
Points

Boundary
Segmentation &
Needle Location

Fig. 2. High level method used in this paper
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Fig. 3. (a) Distance from the needle axis (D1) and distance to the piercing point (D2).

(b) Area to the left and right of the prostate from the probe axis.

Our method is given at a high level in the block diagram shown in figure 2.
From each biopsy sequence, we choose a pair of images, with the image from the
earlier time point designated as the moving image, and the image from the later
time point designated as the fixed image. We then nonrigidly register the moving
image to the fixed image, yielding a deformation field describing the motion and
deformation of the prostate from the earlier time point to the later time point.
The deformation field consists of vectors, each having two components that de-
scribe the magnitude and the direction of the displacement at each location.
In order to validate the chosen registration algorithm, we measure the target
registration error (TRE) of manually marked, intrinsic fiducials (calcifications),
using the method described in [7]. The spatial relationship between the needle
and probe is fixed, and we oriented all the images in this study such that the nee-
dle lies at the same location in image space, to the left of the probe. We quantified
the deformation fields given by registration using the following clinically-relevant
calculations: (1) the mean deformation as a function of distance to the biopsy
needle (distance D1 in figure 3(a)), (2) the mean deformation as a function of
distance to the piercing point where the needle enters the prostate (distance D2
in figure 3(a)), and (3) the mean deformation as a function of the lateral position
of the probe relative to the prostate, determined using the ratio of prostate areas
to the left and right of the transducer (figure 3(b)). The latter two measurements
require a prostate segmentation, which we perform manually in this study.

Our immediate use of non-rigid registration in figure 2 (i.e. without perform-
ing an initial rigid alignment) is due to our observation that rigid motion of
the prostate within the biopsy sequences is minimal (mean rigid misalignment
of 0.2 mm translation and 1 degree rotation). It is also intuitive that needle
insertion and gun firing cause local deformations within the prostate. Therefore,
we directly use a non-rigid registration algorithm having sufficient flexibility to
measure these local deformations. A sample deformation vector field generated
by the registration of an image prior to needle insertion to an image immedi-
ately after gun firing is shown in figure 4. Figure 4(a) represents the magnitudes
of the deformation field vectors, including a manually contoured boundary of
the prostate and location of the needle. Figure 4(b) and (c) represent the lat-
eral and axial deformation fields respectively, to illustrate the anisotropy of the
deformation field with respect to the orientation of the biopsy needle.
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Fig. 4. (a) Deformation field vector magnitude with prostate boundary and needle

location indicated. (b) Lateral (x) components of the deformation field (c) Axial (y)

components of the deformation field.

3 Results

The TREs of our tested non-rigid registration algorithms are given in table 1. All
tested algorithms improved the TRE, with the Demons algorithm providing the
best overall results. However, it is worthy of note that the fiducial localization
error (FLE) for trans-rectal ultrasound (TRUS) images has been determined in
previous work to be 0.2 mm [7], which indicates that our reported TREs are
approaching their lower bound. Nevertheless, the Demons algorithm was chosen
for use in this study because (1) it provided the best overall TRE, (2) it is
based on optical flow. Optical flow techniques have been shown to be useful in
tracking fine-scale structure in ultrasound images in the presence of small tissue
motion [11], which is expected in our study where tissue motion is localized in
the vicinity of the needle.

Table 1. Comparison of TRE before and after registration

Registration Method Registration 1 TRE(mm) Registration 2 TRE(mm)

Before registration 0.31 0.21

Demons 0.29 0.14

Symmetric forces demons 0.32 0.16

Bspline 0.28 0.16

Figure 5(a) shows the relationship between the mean deformation magnitude
and the perpendicular distance from the line of the needle insertion within the
prostate for Registration 3. The curve plateaus to the right at a mean defor-
mation value of approximately 0.28 mm. Figure 6 decomposes the deformation
down into needle insertion (Registration 1) and gun firing (Registration 2) sep-
arately. Figure 5(b) shows the mean deformation magnitude as a function of the
distance of the deformation vector from the insertion point of the needle into
the prostate in Registration 3. Since we are measuring very small deformations,
a valid concern is the potential effect of any noise present in the images on
our measurements of the deformation fields. Figures 5 and 6 show the means of
the unsigned vector magnitudes, i.e., 1

N

∑N
i=1

√
x2

i + y2
i , which accumulate the
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contributions of noise throughout the vector field, and may account for the un-
expected positive plateau at approximately 0.28 mm. To address this issue, we
show in figure 7(a) (corresponding to figure 5(a)) the magnitudes of the signed

means of the vector components, i.e.,
√

( 1
N

∑N
i=1 xi)2 + ( 1

N

∑N
i=1 yi)2. Similarly,

figure 7(b) gives the corresponding information to figure 5(b). We take the signed
means of the vector components under the assumption that the true tissue mo-
tion is regular and any noise is irregular, with a tendency to self-cancellation
when taking the signed mean. This effect is illustrated by the lower plateaus
observed in figure 7. To explore the relationship between deformation and the
relative positions of the probe and the prostate, we plotted the mean deforma-
tion magnitude of vectors within 5 mm of the needle (which is the clinical region
of interest for biopsy targeting) versus the ratio of areas within the prostate to
the left of the probe axis and to the right of the probe axis in figure 8.The point
on the x axis at 0.5 depicts the situation where the probe is aligned with the
central axis of the prostate. We used linear regression to fit a line to the resulting
cluster of points; the correlation ratio was found to be -0.15.
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Fig. 5. Mean (red) and +/- 1 standard deviation (blue) of unsigned deformation vector

field magnitudes for Registration 3, (a) as a function of distance from the needle, and

(b) as a function of distance to the piercing point within the prostate

4 Discussion

In the graph in figure 5(a), the deformation to the left of the probe (nearer to the
prostate edge) is approximately 0.1 mm higher than to the right. There is a slight
trend of increased magnitude of deformation toward both edges of the prostate.
Figure 6 decomposes this deformation into needle insertion (Registration 1) and
gun firing (Registration 2) separately. The shapes of the two graphs in figure 6
are similar to that obtained for Registration 3 (figure 5(a)). However, note that
the deformation after gun firing is approximately 0.1 mm higher than that due
to needle insertion before gun firing. This shows that a significant portion of the
deformation of Registration 3 (figure 5(a)) is due the firing of the gun.
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Fig. 6. Mean (red) and +/- 1 standard deviation (blue) of unsigned deformation vector

field magnitudes as a function of distance from the needle for (a) Registration 1, (b)

Registration 2
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Fig. 7. Mean (red) and +/- 1 standard deviation (blue) of the magnitudes of the

signed vector component means for Registration 3, (a) as a function of distance from

the needle, and (b) as a function of distance to the piercing point within the prostate
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Fig. 8. Deformation magnitude as a function of the left:right (relative to the transducer

centerline) ratio of prostate areas

Figure 5(b) shows a concentration of deformation within 5 mm of the insertion
point of the needle into the prostate. At the piercing point, the deformation
is approximately 0.4 mm. The deformation at the piercing point is about 0.2
mm higher than the deformation in the surrounding region. Registration 1 and
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Registration 2 also showed a similar trend and the deformation was larger in
Registration 2 (biopsy gun firing) than in Registration 1.

5 Conclusion

Observed mean tissue displacements as a consequence of needle insertion and
gun firing are as high as 0.4 mm. These displacements could account for 10%-
20% of the allowable 2.5 mm RMS error permitted in a biopsy system designed
to successfully sample spherical targets with 5 mm radius 95% of the time. We
observe that the majority of the deformation due to needle insertion and biopsy
gun firing occurs lateral to the needle, away from the center of the prostate, and
at the needle’s piercing point at the prostate boundary.
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Abstract. Cone-beam computed tomography (CBCT) is an important

image modality for dental surgery planning, with high resolution images

at a relative low radiation dose. In these scans the mandibular canal is

hardly visible, this is a problem for implant surgery planning. We use

anisotropic diffusion filtering to remove noise and enhance the mandibu-

lar canal in CBCT scans. For the diffusion tensor we use hybrid diffusion

with a continuous switch (HDCS), suitable for filtering both tubular as

planar image structures. We focus in this paper on the diffusion dis-

cretization schemes. The standard scheme shows good isotropic filtering

behavior but is not rotational invariant, the diffusion scheme of Weick-

ert is rotational invariant but suffers from checkerboard artifacts. We

introduce a new scheme, in which we numerically optimize the image

derivatives. This scheme is rotational invariant and shows good isotropic

filtering properties on both synthetic as real CBCT data.

1 Introduction

Cone-beam computed tomography (CBCT) is an increasingly utilized imaging
modality for dental surgery planning [1], due to the low hardware cost and high
resolution images at a relative low radiation dose. For the surgical planning of
implants, the mandibular nerve canals have to be segmented. In these scans the
mandibular nerve canals are hardly visible. In implant placement, the segmenta-
tion is used to guard the safety margin around the canals during surgery. CBCT
scanners have a relatively low radiation dose [1] thus the small mandibular canal
is characterized by low contrast in a noisy image, see figure 4. The research goal
of this paper, is to find a method to improve image contrast in CBCT scans for
small structures.

Currently the best way to improve contrast in a CT image is to apply it-
erative reconstruction methods with regularization to suppress streak-artifacts
and to improve smoothness in uniform regions [2]. In practice CBCT systems
do not provide the required raw-scanner data for this approach. Therefore post
reconstruction noise filtering is the practical method to improve image quality.
A medical image is often assumed to have piecewise smooth regions with oscilla-
tory noise, separated by sharp edges. There are many methods available in the
literature to denoise such an image [3], in this paper we focus on edge enhancing
diffusion filtering.

T. Jiang et al. (Eds.): MICCAI 2010, Part III, LNCS 6363, pp. 221–228, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Linear diffusion equals Gaussian filtering in which the diffusion time controls
the smoothing scale. To preserve the edges Perona-Malik introduced regularized
non-linear diffusion (RPM) [4]. Edge preservation is achieved by lowering the
scalar diffusion constant in the neighborhood of steep edges. This method results
in piecewise smooth regions, however, image edges remain noisy. Instead of using
a scalar diffusion constant, a tensor can be used to adapt the diffusion to the un-
derlying image structure. So we smooth with small elongated kernels along edges,
and Gaussian like kernels in uniform regions. The tensor can be constructed in
two ways, as a coherence-enhancing diffusion (CED) [5] or as an edge-enhancing
diffusion (EED). Recently the CED and EED algorithms were combined in an
hybrid diffusion filter with a continuous switch (HDCS) [6]. If the local image
structure is tubular HDCS switches to CED and if it is planar to EED.

The focus of this paper are the discretization schemes of the anisotropic dif-
fusion tensor. We will evaluate the performance of the standard discretization
scheme and the rotational invariant scheme of Weickert [7], and introduce a
new scheme in which optimal filtering kernels are constructed using numerical
optimization.

This paper is organized as follows, in the second section we introduce the dif-
fusion filtering algorithm and discretization schemes. The new optimized scheme
is introduced in the third section. Followed by evaluation of the diffusion schemes
on synthetic and real images, and by the final section with discussion and con-
clusions.

2 Diffusion Filtering

Anisotropic diffusion filtering is an iterative edge preserving smoothing method.
It describes the local image structure using a structure tensor also referred to as
the ”second-moment matrix”, for details see [5]. This descriptor is transformed
into a diffusion tensor D. The diffusion equation is commonly written in an
iterative forward difference approximation [7]:

∂u

∂t
= ∇ · (D∇u) ⇒ uk+1

∼= uk + (∇ · (D∇u)) (1)

Where u (u = u(t, x, y, z)) is the image, x, y, z the pixel coordinates and t the
diffusion time. In the discrete function the continues time is replaced by, τ the
time step-size and k the number of the iterations. The eigenvectors of the diffu-
sion tensor D are set equal to the eigenvectors v1,v2,v3 with v1 = [v11, v12, v13]
of the structure tensor (note the symmetry):

D =

⎡⎣D11 D12 D13

D12 D22 D23

D13 D23 D33

⎤⎦ with Di j =
∑

n=1..3

λn vn i vn j (2)

The eigenvalues of the diffusion tensor are λ1, λ2, λ3 . Because our CBCT scans
contain planar and tubular structures as well, we choose to use HDCS, with
switches between CED and EED eigenvalues depending on the local image struc-
ture, for details see [6].
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We can write the divergence operator equation 1 in 3D as:

∇ · (D∇u) = ∂xj1 + ∂yj2 + ∂zj3 (3)

With j1, j2, j3 the flux components which are described by:

j1 = D11 (∂xu) + D12 (∂yu) + D13 (∂zu) (4)
j2 = D12 (∂xu) + D22 (∂yu) + D23 (∂zu)
j3 = D13 (∂xu) + D23 (∂yu) + D33 (∂zu)

For the standard discretization of the divergence operator central differences
are used:

∂y (D12 (∂xu)) =
1
2

(
D12(i,j+1,k)

u(i+1,j+1,k) − u(i−1,j+1,k)

2

−D12(i,j−1,k)

u(i+1,j−1,k) − u(i−1,j−1,k)

2

) (5)

The other terms are written in the same way [8], and are combined to a pixel-
location dependent 3×3 or 3×3×3 convolution stencil. Non-negative discretiza-
tion makes the modification that stencil elements remain positive for various
gray values. Rotation invariant anisotropic diffusion is important with curved
like structures such as the mandibular canal. Weickert [7] showed that larger
stencils than 3 × 3 (2D) are needed to fix the number of degrees of freedom to
allow rotation invariance. This is achieved by implementing the equations 3 and
4, with Scharr’s rotational invariant 3×3 filters for the image derivatives ∂x and
∂y, resulting in an rotational invariant implicit 5 × 5 stencil.

3 Optimized Scheme

Another way to write the divergence operator using the product rule [9] is:

∇ · (D∇u) = div(D)∇u + trace(D(∇∇T u)) (6)

We obtain for the divergence part of the equation:

div(D)∇u =(∂xu)(∂xD11 + ∂yD12 + ∂zD13)
+(∂yu)(∂xD12 + ∂yD22 + ∂zD23)
+(∂zu)(∂xD13 + ∂yD23 + ∂zD33)

(7)

We write the Hessian part of the equation as:

trace(D(∇∇T u)) = (∂xxu)D11 + (∂yyu)D22 + (∂zzu)D33

+2(∂xyu)D12 + 2(∂xzu)D13 + 2(∂yzu)D23

(8)

Equation 7 is discretized using 3 × 3 × 3 derivative kernels, and the Hessian of
equation 8 with a 5 × 5 × 5 second derivative kernel. In 2D the spatial kernels
can be written as:
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Mxx =

⎡⎢⎢⎢⎢⎣
p1 p2 p3 p2 p1

p4 p5 p6 p5 p4

−p7 −p8 −p9 −p8 −p7

p4 p5 p6 p5 p4

p1 p2 p3 p2 p1

⎤⎥⎥⎥⎥⎦Mxy =

⎡⎢⎢⎢⎢⎣
p10 p11 0 −p11 −p10

p11 p12 0 −p12 −p11

0 0 0 0 0
−p11 −p12 0 p12 p11

−p10 −p11 0 p11 p10

⎤⎥⎥⎥⎥⎦ (9)

Mx =

⎡⎣ p13 p14 p13

0 0 0
−p13 −p14 −p13

⎤⎦ (10)

The kernel values p = [p1, p2..., p14] can be found analytically or by numerical
optimization. We choose numerical optimization, because it can optimize the
whole process, while analytical derivation is only feasible for separate parts of
the process, with simplifications such as ignoring numerical round of effects. We
optimize the diffusion kernel using the following cost function:

p = arg min
p

(ef (p) + αeg(p)) (11)

This function finds a balance between the edge orientation invariant filtering
performance ef , and isotropic diffusion performance eg, with weight constant
α. With the first term ef we want to find the best edge enhancement for edges
with several orientations and spatial frequencies. Therefore we use the difference
between an image with circles of varying spatial frequencies without noise I,
and an image with Gaussian noise added Inoise, which is diffusion filtered. With
F (Inoise,p) the diffusion filtering of the image with noise using kernel values p:

ef (p) =
∑
x

|F (Inoise,p) − I|, with I = sin(x2 + y2) (12)

With the second term eg we want to achieve Gaussian like diffusion in uniform
regions. We use an image Ipoint which is zero except the center pixel equal to one.
The term eg is set to the difference between the isotropic noise filtered image
Ipoint and a least squares fitted Gaussian kernel. We set both diffusion tensor
eigenvalues to one, corresponding to a uniform region.

eg(p) = argmin
a

∑
x

(
F (Ipoint,p) − 1

π
√
a

exp (−|x|2/a)
)2

(13)

We use the Matlab Nelder-Mead Simplex minimizer [10] because it is robust
against local minima. Also a quasi Newton minimizer is used [11], because the
minimizer has a high convergence speed. We use 10 iterations of the Simplex
Method followed by minimizing until convergence with the quasi Newton opti-
mizer. This is done iteratively until the simplex method also converges. Param-
eters used for the circle image are, size 255 × 255, τ = 0.1, iterations 5, σ = 1,
ρ = 10, CED eigenvalues, Gaussian noise variance 0.1, and x and y coordinates
in the range [−10, 10]. The parameters of Ipoint are image size 51 × 51 and 5
iterations, constant α = 200. The computed kernel values p are:
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0.008 0.049 0.032 0.038 0.111 0.448 0.081
0.334 0.937 0.001 0.028 0.194 0.006 0.948

It is important to note that the scheme is optimized for rotational invariance,
but that the derivative kernels are not rotational invariant, for instance Mx

approximates a central difference instead of a Scharr like kernel.
In 3D the approach is the same, a spherical function in an image volume is

used, with 33 instead of 14 unknown kernel variables. The optimized kernels are
available in our open source diffusion toolbox1.

4 Evaluation

We evaluate the properties of the standard, rotation and optimized diffusion
scheme with respect to three image based criteria. The first is noise removal in
uniform regions, the second preservation and enhancement of image edges inde-
pendent of rotation and size. The final test is the combined filtering performance
on a real CBCT dataset.

In this first test we look at noise smoothing in uniform regions. To do this
we use the image Ipoint introduced in the optimization section, with the same
filtering parameters and 100 iterations. Figure 1 shows the image results and
difference between a least squares fitted Gaussian 2D function and the diffusion
result. Ideal uniform diffusion is equal to Gaussian filtering, thus the standard
diffusion and the optimized scheme perform well. The rotation invariant result
does not look like a Gaussian, this is because the scheme is based on Sobel like
derivative kernels, which do not use the local pixel value but only the neighboring
values.

(a) (b) (c) (d) (e) (f)

Fig. 1. Uniform Diffusion of a pixel with standard discretization (a), rotation invariant

(c), optimized scheme (e). Sub figures (b), (d) and (f ) show the difference between the

image result and least squares fitted 2D Gaussian function. The values in (b) are in

the order of 1 · 10−5, (d) in the order of 1 · 10−2 and (f ) in the order of 1 · 10−4.

In the second test we look at rotation invariant edge enhancement, using the
circle image with Gaussian noise Inoise, the same parameters as in the optimiza-
tion section and 100 iterations.

Figure 2 shows that only the rotational invariant and optimized scheme
are edge orientation independent. The rotational invariant scheme suffers from
checkerboard artifacts due to the Scharr derivative kernels which only uses neigh-
bor pixels and not the current pixel.
1 Source code, http://www.mathworks.com/matlabcentral/fileexchange/25449



226 D.-J. Kroon, C.H. Slump, and T.J.J. Maal

(a) (b) (c) (d)

Fig. 2. The sub figures show the test image (a), after diffusion with the standard

scheme (b), with the rotational invariant scheme (c), and the optimized scheme (d)

The final test is performed on 8 CBCT preprocessed human-head datasets of
400 × 400 × 551 voxels. The preprocessing consist of clustering the data sets in
to three intensity classes background, tissue and bone, using bias field corrected
fuzzy clustering [12], which is robust to streak artifacts. The resulting image
data serves as ground truth for the edges. The edges are detected by applying
a threshold on the gradient magnitude. Uniform regions are defined as the pix-
els which are at least six voxels away from an edge. Finally Gaussian noise of
variance 0.01 is added to the image data. The image data is filtered with the
standard and the optimized scheme using HDCS eigenvalues, with parameters
σ = 0.5, ρ = 2, τ = 0.15, HDCS parameters λe = 30, λh = 30, λc = 15 and 26
iterations, see figure 3. Time to filter one dataset on an Intel Core 2 Duo desktop
PC is approximately 25 minutes for the diffusion, and about 2.5 hours for the
NLM filter.

(a) (b) (c) (d) (e)

Fig. 3. Small part of HDCS filtered bone structure, ground truth (a), Gaussian noise

added (b), standard scheme (c), rotation invariant (d) and optimized scheme (e)

We compare the performance between the standard, the optimized diffusion
scheme, and the original non-local means (NLM) [13] . The summed squared
pixel distance between Gaussian low pass filtered and original diffusion results is
used as a performance value. A steep edge contains high frequencies which will
be removed by the low pass filter, resulting in a large pixel distance. In uniform
regions high frequency noise will also be removed, thus a large pixel distance is
a sign of noise which is not removed by the diffusion filtering. We calculate the
smoothing pixel distance values for the edge pixels and for the uniform regions.
The results are shown in table 1.
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Table 1. Pixel distance between Gaussian smoothed and raw edge preserving diffusion

filtering results of standard, optimized diffusion scheme and NLM

Edge Uniform region

dataset raw optimized standard NLM raw optimized standard NLM

1 6.2 · 104 2.0 · 104 1.1 · 103 1.4 · 103 4.6 · 104 1.6 · 103 7.6 1.9
2 6.6 · 104 2.1 · 104 1.5 · 103 2.1 · 103 4.7 · 104 1.2 · 103 6.7 1.5
3 6.4 · 104 2.1 · 104 1.2 · 103 1.4 · 103 4.6 · 104 1.4 · 103 6.5 0.7
4 6.5 · 104 2.0 · 104 1.5 · 103 2.2 · 103 4.7 · 104 1.2 · 103 6.2 3.1
5 6.9 · 104 2.3 · 104 1.3 · 103 2.3 · 103 4.6 · 104 1.5 · 103 6.9 0.6
6 6.7 · 104 2.6 · 104 2.0 · 103 1.6 · 103 4.5 · 104 2.2 · 103 9.9 0.3
7 7.0 · 104 2.2 · 104 1.5 · 103 1.9 · 103 4.7 · 104 1.3 · 103 6.8 2.6
8 6.4 · 104 2.2 · 104 1.3 · 103 1.8 · 103 4.6 · 104 1.4 · 103 6.7 1.6

The NLM algorithm and standard scheme gives the best smoothing perfor-
mance for uniform regions, with a 200 times smaller distance compared to the
optimized scheme. This is because the optimized scheme preserved the edges
of some random noise structures. The same noise structures are also visible in
the rotation invariant scheme in image 3. In the HDCS eigenvalues there is a
threshold value λh to separate between noise and a image structures. But in this
case the signal to noise ratio is too low to allow a good separation between noise
and real image structures. Also on the real object edges the optimized scheme
gives the highest pixel distance. This can be due to remaining noise on the edges
or due to a steeper image edge than with standard scheme. Figure 3 shows it is
because the image edges are more pronounced.

The original 8 CBCT datasets were also filtered with the three methods, and
slices were shown to three medical experts which use cone-beam CT. They pre-
ferred the optimized filtering despited the fact it sometimes enhances noise struc-
tures. They explained that the other methods lose small important details, while
the optimized filtering enhanced some hardly visible structures. Noise structures
are not a major problem because the anatomy is known.

Finally we show the filtering results of all schemes on an CBCT scan which is
geometric transformed to make the jaw flat, see figure 4. The optimized scheme
gives the best enhancement and preservation of the mandibular canal.

(a) (b) (c) (d)

Fig. 4. Small part of HDCS filtered scan (a), mandibular canal (arrow), standard

scheme (b), rotation invariant (c) and optimized scheme (d). The optimized scheme

better preserves the original edges and image structure.
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5 Conclusion

The introduced 2D/3D anisotropic diffusion scheme, shows better edge enhance-
ment in our synthetic and CBCT data, compared to the standard, rotation in-
variant scheme and NLM. Filtering is Gaussian in uniform image regions without
checkerboard artifacts. The results show that the better edge preservation also
causes high noise structures to be preserved. Despite this artifact the medical
experts preferred the introduced method because it enhanced also hardly visible
anatomical structures. The cause of the problem is not the optimal scheme, but
has to be solved by a better separation between noise edges and real edges in
the diffusion tensor construction part.
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Abstract. Flexible, ergonomically enhanced surgical robots have important ap-
plications to transluminal endoscopic surgery, for which path-following and 
dynamic shape conformance are essential. In this paper, kinematic control of a 
snake robot for motion stabilisation under dynamic active constraints is ad-
dressed. The main objective is to enable the robot to track the visual target  
accurately and steadily on deforming tissue whilst conforming to pre-defined 
anatomical constraints. The motion tracking can also be augmented with man-
ual control. By taking into account the physical limits in terms of maximum fre-
quency response of the system (manifested as a delay between the input of the 
manipulator and the movement of the end-effector), we show the importance of 
visual-motor synchronisation for performing accurate smooth pursuit move-
ments. Detailed user experiments are performed to demonstrate the practical 
value of the proposed control mechanism. 

1   Introduction 

Recent technological advances in surgery are driven by early intervention, consistent 
surgical outcome and accelerated patient recovery. This requires surgical procedures 
with improved quality, accuracy and minimally invasive access, made possible by 
preoperative and intra-operative imaging combined with flexible, ergonomically en-
hanced surgical robots [1]. Technically, the development of snake robot is motivated 
by the recent investigation of natural orifice or single port transluminal endoscopic 
surgery [2], for which path-following and dynamic shape conformance are important. 
Procedures that are clinically relevant to such devices include, for example, drug de-
livery systems for embryonic stem cell transplant into scarred myocardium, minimally 
invasive bilateral pulmonary vein isolation, and transmural epicardial ablation. The 
increased flexibility of these hyper-redundant robots also imposes significant chal-
lenges on kinematic control. For surgical navigation, the relative pose of the camera at 
the instrument tip during articulated movement is also important to consider ensuring 
stable vision and the avoidance of disorientation. Further challenges include the sin-
gularity problem while solving the inverse kinematics as the resultant inverse kine-
matic solutions may exceed the allowable workspace or the physical constraints of the 
robot actuation. For in vivo applications, the internal organs are in constant motion, so 
how to ensure path-following whilst maintaining dynamic shape conformance is a 
significant technical challenge.  
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Previous work [3] has introduced a modelling scheme of dynamic active con-
straints with a volumetric pathway. It is able to adapt to tissue deformation, thus pro-
viding an explicit safety manipulation margin for the entire articulated device, rather 
than only the tip of the robot. Such a constraint is also used in this study, which has 
two main purposes. First, we will introduce a control scheme for stabilising the cam-
era reference frame at the end-effector relative to the deforming tissue so that the rela-
tive pose and distance of the camera to the tissue are maintained. The search for the 
optimal joint configuration of the robot is formalised as a minimization problem, in 
which the measures of the visual stability and the conformation to the allowable spa-
tial constraint are introduced into the objective function. Secondly, the dynamic fre-
quency response due to physical actuation limit is also considered. We hypothesise 
that for manipulation of such a robot when performing smooth pursuit movement, it is 
important to match the kinematic response of the manipulator controlled by the opera-
tor to that of the end-effector to ensure natural, stable user interaction. Detailed quan-
titative performance and usability assessment was carried out on a group of subjects 
using the proposed control scheme in a virtual environment with fully controllable 
joint parameters to demonstrate the practical value of the method.  

2   Methods 

2.1   Kinematics of Articulated Robot under Dynamic Active Constraints   

In this paper, the robot model consists of a series of rigid links connected by universal 
joints. Each universal joint is operated by two actuators providing two rotational DoFs 
along perpendicular axes. For the prescription of active constraints, it is assumed that 
the anatomical pathway is pre-defined through the use of pre- and intra-operative 
data. The spatial constraint follows the tissue surface and dynamically adapts to tissue 
deformation in real-time. 

A 4×4 matrix ( )1 ,i
iT α β−  describing the homogenous transformation between the 

frame of link i and the frame of link i-1 can be expressed in terms of two angular val-
ues α and β of the universal joint actuating link i. The transformation between the 
world coordinate system W and the link l (with L links in total) is expressed in Eq. 
(1), where 0

wT  is a constant matrix describing the pose of the first link with respect to 
the world reference frame. 

( ) ( )1
0 2 1 2

1

,  : 1,...,
l

w w i
l l i i i

i

T T T q q l L−
−

=

⎧ ⎫= =⎨ ⎬
⎩ ⎭
∏q   (1) 

The vector [ ]1 2,...,l lq q=q  represents the values of the joint angles affecting the pose 
of the link l. The pose of the end-effector on the distal link (i.e. the camera) is there-
fore determined by the set of angular joint values [ ]1 2,..., Lq q=q .  

2.2   Optimal Robot Configuration for Visual Stabilization 

For visual stabilisation and optimal joint control, the objective function used measures 
how well the joint configuration q tracks and visualizes a moving target. This in-
cludes the following two sub-objective functions.   
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Sub-objective 1: To minimize the collision depth to the constraint pathway enclosing 
the robot, i.e., 

( ) ( )( ){ }1 1 1
1

exp 1  : 0 −
=

= ⋅ − < ≤∑
L

i i i i
i

ObjV w k p k kq q    (2) 

To simplify proximity queries, articulated devices are usually modelled as a series of 
primitives such as cylinders and spheres to represent the links and rotational joints 
[4]. However, to compute the deviation outside of the constraint, the robot is repre-
sented by a set of surface vertices. Assuming the vertex coordinates of link l are 

1...x l
j V= , ( )x , , ,1

T
x y z= , the deviation of the robot link l due to joint configuration q is 

calculated as: 

  ( ) ( )( ){ }1...max w l
l l j V

j
p I Tq q x ==      (3) 

where ( )I x  in Eq. (3) is an implicit function of a 3D Cartesian point and its iso-value 
is the shortest Euclidean distance from the input coordinate to the constraint surface 

t∂Ω  varying with time t, where tΩ  denotes the forbidden region outside of the con-
straint zone. If a point is within the pathway, the output value is zero, as defined in 
Eq. (4). 

( ) min :         if 

0                                             otherwise
t t t tI

x x x x
x ∂Ω ∂Ω

⎧ − ∈∂Ω ∈Ω⎪= ⎨
⎪⎩

   (4) 

The objective function in Eq. (2) weighted by 1w  is devised as a sum of exponential 
functions mapped from the deviations caused by each robot link. The exponential 
constants 1−≤i ik k  are set so that the constraint is reinforced on proximal links closer 
to the base of the robot. This ensures that the major portion of the robot adapts to the 
deformation without deviating outside of the pathway during the motion tracking.  

Sub-objective 2: To maintain an optimal viewing angle at a given distance to the 
target, i.e., 

( ) { }12
2 cos tar tar

w
ObjV q d n

π
∧

−= − ⋅   (5) 

The joint configuration is updated frame-by-frame so as to keep steady visualization 
of the moving target by compensating for motion disparity. Large motion disparity 
relative to the camera coordinate frame causes residual images which often adversely 
affect the surgical performance. It can be reduced by aligning the relative coordinate 
frame along the tissue surface normal. We assume that the motion of the visual target 

( )tar tx  and its surface normal ( )tar tn  are estimated accurately by online tissue track-
ing (e.g. [5]). By aligning the camera coordinate frame to the robot end-effector, we 
can express the vector tard  pointing from the camera to the target, and the camera 
viewing direction camd  as follows:   

( )[ ]0,0,0,1
Tw

tar tar LT= −d x q  , ( )[ ]0,0,1,1
Tw

cam L Rd q=   (6) 

where ( )w
L R q  is also a homogenous matrix given by the rotation elements of ( )w

LT q . 
To eliminate viewing disparity between time frames, the problem can be re-
formulated so as to satisfy the following non-linear constraints: 

( )2 2
diff tar cd d dd= − ≤ Δ         and       { }1 ˆcosv tar camθ θ−= ⋅ ≤ Δd d      (7) 
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where cd  is the optimal distance, dΔ and θΔ  are respectively the tolerances of the 
viewing distance and angle to the target and the caret ^ indicates the vector is in unit 
length. By constraining the target movement on the image plane, we devise the cost 
function as in Eq. (5) such that the search converges to the configuration in which the 
visual direction is in parallel to the surface normal tarn of the target. 

2.3   Joint Space Motion Planning  

To avoid local minima and enable the solution to converge towards an optimum, the 
initial configuration 0q of joint space motion is determined based on the profile of the 
constraint pathway. We assume that the target moves periodically, s.t. 

( ) ( )+tar tart t Tx = x , and there exists a time moment 0t  at which the target is tempo-
rarily at rest s.t. ( )0 0′ =tar tx . Having set the robot initially in a straight configuration 

0=q  with the camera pointing at target ( )0tar tx  at distance cd , each joint value 
0 0 0

1 2,...,
T

Lq qq ⎡ ⎤= ⎣ ⎦  is then computed in descending order from joint L to 1 by impos-
ing the condition of minimal deviation outside of the constraint. The solution 0q is 
within a physically allowed range of angular displacements [ ],lb ubq q . 

In addition to the optimization constraints introduced in Eq. (7), the physical limit 
of robotic actuation is also addressed by bounding the joint velocities [ ],lb ubq q  ac-
cording to the maximum motor speed and acceleration. Assuming a very short time 
interval tΔ  between frames, the velocity limit can be converted to an angular dis-
placement range referring to the 1iq −  optimised at the previous frame i-1. Thus, the 
overall constraint is expressed as:  

( ) ( )1 1

i
lb ub

i i i
lb ubt t− −

⎧ ≤ ≤⎪
⎨ Δ ⋅ + ≤ ≤ Δ ⋅ +⎪⎩

q q q
q q q q q

   (8) 

Once the optimal configuration of ( )tq  is obtained frame-by-frame and interpolated 
to obtain a periodic robot motion, the motion is validated for implementation under 
the physical torque allowance maxτ  of each joint. Given the motion in terms of 
( ) ( ) ( ), ,t t tq q q⎡ ⎤⎣ ⎦ and the mass of each link, the required dynamic torque can be 

computed over the entire motion by using an iterative Newton-Euler dynamics algo-
rithm [6]. In case of unfeasible motion, the corresponding configurations are re-
optimised under a stricter velocity constraint [ ],′ ′

lb ubq q . The valid motion ( )tq  is then 
generated by combining all the feasible optimal configurations.  

2.4   Human-Robot Interaction 

To facilitate area, rather than single feature exploration, manual control is provided 
for manipulating the robot while dynamically tracking the tissue motion. Having 
computed the robot tracking motion for points surrounding the target, each motion 
can be parameterised by Hermite interpolation using only two parameters ( ),u v . The 
parameterised motion function becomes ( ), ,u v tQ , s.t. ( ) ( )10,0, t tQ q= , 
( ) ( )21,0, t tQ q= , ( ) ( )30,1, t tQ q=  and ( ) ( )41,1, t tQ q=  by assuming a four-point 

neighbourhood, where [ ], 0,1u v∈  and ( ) : 1...4i t iq =  are the optimised motions gen-
erated by tracking the neighbouring targets. After parameterization, the resultant joint 
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velocity q  not only depends on the tracking motion itself, but also on the varying rate 
of the two parameters, ( ),u v  

      ( ) ( ) ( ) ( ) ( ), , , , , ,
, ,    :   , ,uv uv

u v t u v t u v t
u v t u v t u v

t u v

Q Q Q
q q q

∂ ∂ ∂
= + = +

∂ ∂ ∂
 (9) 

2-DoF operator control is obtained by manual variation of the parameters using a hap-
tic device for exploring the surrounding region of the target. In this case, it is neces-
sary to provide a damping force to hinder the excessive robot dynamics generated by 
manual control. A threshold Δq  is set to limit the joint velocities ( ), ,uv u v tq  due to 
the manual control and added on the existing tracking motion. This can be considered 
as a safety margin for defining the damping coefficient as: 

( ) ( ) ( ){ }  :  , , min , ,  ,  1...2
, ,

= = Δ − =b i
i

c
f b u v t q q u v t i L

b u v t
  (10) 

where b is the minimal difference between Δq  and iq  among all the joints. When 
one of the joint velocities is reaching the safety margin, stronger force is applied to 
stop the hand motion before 0→b . Because of the physical limitations of the haptic 
device an elastic force is implemented instead, but the avoidance of excessive robot 
dynamics is still ensured. 

3   Experiments and Results 

The proposed tracking method is generic for snake type robots. To evaluate its per-
formance under realistic conditions, epicardial ablation for modified MAZE proce-
dure is considered. The target motion with sequence of 50 frames is first extracted 
from a 4D model reconstructed by the CT data. The target motion relative to the static 
camera coordinate frame is depicted in Fig. 1(a), which is highly correlated to the 
cardiac motion at 1Hz and the peak-to-peak displacement is about 6.1mm. The simu-
lated 5-link (L=5) articulated robot features 10 rotational DoFs limited by 

, ,,i lb i ubq q⎡ ⎤⎣ ⎦ = [ 40 ,40 ]− ° ° , , ,,i lb i ubq q⎡ ⎤⎣ ⎦ = [ ] 125 ,25 s−− ° °  with 1,..., 2i L=  and 

max 16.6τ = mNm. The mass, radius and length of each link are 33g, 6mm and 20mm, 
respectively. Manipulating the robot not exceeding the dynamic active constraints is 
always considered a higher priority during the minimization, s.t. 1 2w w> . The proc-
essing time required mainly depends on the deviation distance calculation in Eq. (2). 
The computational complexity is approximately proportional to the number of verti-
ces in the model. The minimization was performed off-line and preoperatively (we 
used MatLab on a PC with Intel Core2 Duo CPU T7100 and 2GB RAM). The time 
for proximity queries on 767 vertices of a 5-link robot is below 15ms.  

The robot motion aiming to track the moving target is planned smoothly without 
exceeding the actuation limits, and the quantitative performances of the visual stabili-
zation are shown in Fig. 1(b-e). Compared to the stationary robot without tracking 
enabled, the viewing angle relative to the target surface normal is slightly reduced to 
ensure a perpendicular view of the surface (Fig. 1(b)). However, the parameters char-
acterizing the stability of the visual target along the camera are the viewing distance 

tard  and angular accuracy vθ  (Eq. (7)) as shown in Fig. 1(c-d).  
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Fig. 1. (a) 3D time-varying position of the visual target; (b) viewing angle between camera 
direction and target surface normal; (c) viewing distance between the camera and the target;  
(d) angle reflecting how accurately the camera is pointing at the target during motion tracking; 
(e) angular travelled distance of each joint; (f) robot configurations aiming at different 
neighbouring targets 

Compared to existing methods (e.g. [7]), the proposed approach eliminates the need 
of expressing the inverse kinematics of the end-effector in a closed-form, ensuring that a 
solution is always obtainable without having to deal with the presence of reduced-rank 
Jacobian singularities. Our method aims to determine an optimal configuration (i.e. 
minimum deviation from constraint and stable visualization) among a wide range of 
feasible solutions without having to specify the pose of the end-effector. As shown in 
the results, the camera can be stabilised at a predefined distance to the target 

8.2cd = mm. Also, the angular deviation can be highly reduced below 8°, ensuring 

accurate target visualization at the centre of the image by compensating any rapid 
movement. The improved stability is attributed to the satisfaction of the nonlinear con-
straints in Eq. (7). The advantage of using an articulated robot with high kinematic re-
dundancy is to provide adequate flexibility to satisfy the strict criteria in the complex 
nonlinear constraints (i.e. 0.1dΔ = mm and 8θΔ = ° ) under the actuation limits. 
Greater tolerances might be needed in case of low angular resolution of the joint actua-
tor. Fig. 1(e) shows the angular travelled distance of the joints, demonstrating the 
movement burden is shared between joints. This ensures the tracking capability can be 
resumed by re-planning the joint motion in case of limited performance, such as motion 
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lock of a particular joint due to malfunction. In addition, singularities due to solutions 
with large joint angle differences between two consecutive timeframes are also avoided. 

Once the joint motion is planned for tracking the neighbouring targets (Fig. 1(f)), 
visual exploration of the surrounding region can be performed by the operator. 
Curved reference paths and spherical target objects conforming to the deformation are 
pre-defined on the tissue surface within the region. With the virtual camera mounted 
on the simulated end-effector, the operator can see those objects being stabilised visu-
ally within the central part of the screen. The performance of the visual exploration 
can be recorded during the task. 

Table 1. Measured performance indices averaged across the ten subjects studied 

 Feature targeting  Path following  
 W/O haptic With haptic  W/O haptic With haptic  
 Mean SD Mean SD Imp% Mean SD Mean SD Imp%

Complet. Time (Sec) 135.3 15.9 133.6 14.9 1.3 110.1 78.5 65.6 15.5 40.4 

Dis. Travelled (mm) 937.4 92.0 925.2 72.1 1.3 668.8 462.0 416.3 91.1 37.8 

Deviation (deg) 12.8 2.9 10.4 1.7 18.3 9.7 6.1 5.8 1.0 40.4 
 

 
Ten subjects were recruited to assess the performance of the method, for which 

haptic feedback is provided to limit the hand manipulation so that its movement is in-
sync with the frequency response of the end-effector. Subjects were asked to operate 
the haptic device (Omni Phantom, SensAble Tech. Inc., USA) for targeting multiple 
spherical targets in sequence or on a curved path. This allows for a comparison of the 
performance for either individual feature targeting or smooth pursuit for path follow-
ing. Each task was performed twice, with and without the haptic force for maintaining 
the manual control within the safety velocity margin. The task order was randomized 
to minimize the effect of learning. Subjects were allowed to familiarise with the con-
trol interface before performing the tasks. Note that all the tests were held under mo-
tion tracking and stabilisation. When target tracking is disabled, the operator can fully 
utilise the actuation and have fast-response control in varying ( ),u v . However, not 
only the deformation is rapid, but also the variation of ( ),u v  is not designed for tissue 
tracking. Consequently, the operator is not able to track the target objects. A conser-
vative velocity limit -14.5 sqΔ = °  was set to constrain uvq (Eq. (9)) for preventing the 
joints from exceeding their angular velocity limits while performing tissue tracking. 
Without haptic feedback, the subject introduces fast and wide movements, but a se-
vere delay is imposed depending on the physical limit of the end-effector. Such a de-
lay is common (and important to consider) in human-robot interaction especially 
when the user pushes the robot to its performance limit. The performance indices re-
corded in this study include task completion time, the total displacement of the robot 
end-effector and the path/target deviation, computed as the average of the total angu-
lar deviation between the camera viewing direction of the target or path and the opti-
mal angle vθ  deduced from Eq. (7). The mean and standard deviation of these indices 
measured with and without the use of haptic force for the tasks of feature targeting 
and path following are summarized in Table 1. The results clearly show a significant 
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improvement in performing the path following task when visual-motor perception is 
synchronized. This implies that smooth pursuit movement requires matching of the 
kinematic response of the robot end-effector to the manipulation input of the operator. 

4   Discussion and Conclusions 

In this paper, we have proposed a control method to stabilise the visualisation of a 
deforming tissue using an articulated robotic device. Results have shown that visual 
stabilisation is particularly important when using a flexible redundant robot since the 
pose of the camera at the distal tip is affected by the joint configuration. To avoid 
disorientation, it is necessary to ensure that the area of interest is always within the 
field-of-view of the camera and at a stable relative viewing angle. Residual motion of 
the image due to tissue deformation can be minimised by aligning the direction of 
camera along the surface normal. The experimental results of the proposed method 
demonstrate the capability of a redundantly articulated robot for compensating dy-
namic tissue deformation. Further investigation of the proposed method is also con-
ducted when integrating manual control with haptic interaction. In this case, the dy-
namic frequency response of the robot is affected by physical actuation limits. Such a 
delay causes a mismatching between the visual feedback and the motion input of the 
operator and we have shown that for pursuit movement it can significantly influence 
the task performance. A damping haptic force is therefore used to matching the fre-
quency response of the user-controlled manipulator with that of end-effector. Such 
knowledge should be of importance to the actual deployment of snake robots for ro-
botic-assisted transluminal endoscopic procedures.   
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Abstract. In the last decade the use of interventional X-ray imaging,

especially for fluoroscopy-guided procedures, has increased dramatically.

Due to this the radiation exposure of the medical staff has also increased.

Although radiation protection measures such as lead vests are used there

are still unprotected regions, most notably the hands and the head. Over

time these regions can receive significant amounts of radiation. In this

paper we propose a system for approximating the radiation exposure

of a physician during surgery. The goal is to sensibilize physicians to

their radiation exposure and to give them a tool to quickly check it.

To this end we use a real-time 3D reconstruction system which builds a

3D-representation of all the objects in the room. The reconstructed 3D-

representation of the physician is then tracked over time and at each time

step in which the X-Ray source is used the radiation received by each

body part is accumulated. To simulate the radiation we use a physics-

based simulation package. The physician can review his radiation expo-

sure after the intervention and use the collected radiation information

over a longer time period in order to minimize his radiation exposure by

adjusting his positioning relative to the X-ray source. The system can

also be used as an awareness tool for less experienced physicians.

1 Introduction

In contrast to even 10 years ago the use of interventional X-ray imaging and
therefore the dosage received by the physician has increased dramatically, es-
pecially for fluoroscopy-guided procedures. In fluoroscopy the X-ray source may
be turned on for more than 30-60 minutes [10] during which the physician is
standing very close to the patient and therefore the X-ray source. Due to the
increase in the use of fluoroscopy-guided procedures, interventional radiologists
have nowadays a much greater risk of radiation damage. Although the dose
received in a single intervention is not large, it is well known, that long-term
radiation exposure even at low doses can lead to negative effects on the body,
which in the extreme can lead to cell mutations and cancer. The physician is
usually protected by a lead vest and sometimes a lead collar around his neck.
However, this leaves some body parts still exposed to the radiation, most notably
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the head, the arms and the hands. Especially the hands are at danger since they
are used to work on the patient and therefore closest to the radiation source
[10,15]. To control the radiation received a dosimeter is typically worn under
the lead-vest. However, since the dosimeter is worn under the protective vest,
its readings are not representative of the radiation received by the unprotected
body parts. Moreover since it is placed at the level of the chest it is further away
from the X-ray source than for instance the hands and therefore only of limited
use. We therefore want to present a solution to physicians, especially the less
experienced ones, which allows them to quickly gauge their radiation exposure
during an intervention and over the course of a longer time frame, in order to
sensibilize them for the dangers associated with X-ray radiation and the options
of limiting their exposure. To this end we propose a real-time 3D-reconstruction
system combined with a geometric tracking algorithm which allows us to recon-
struct and track the physician in the interventional room during the procedure
and - with the knowledge about the position and movement of the X-ray source
- to approximate his radiation exposure.

Contributions. The contributions of this paper are twofold: On the technical
side we present a powerful methodology for tracking the physician from his real-
time 3D-reconstruction and for modeling the scatter radiation created by the
X-ray source. The tracking is a non-trivial problem since the physician has to be
tracked based only on his geometry and correspondences have to be established
between corresponding body parts in different reconstructions. The simulation
of the scatter radiation is done using a physics framework for simulating particle
physics [5]. In the simulation we model the C-arm and the part of the patient
irradiated considering physical interaction effects such as Compton Scattering,
Rayleigh Scattering and the Photoelectric Effect. The simulation results are used
to determine the radiation deposited in an object at a given position relative to
the C-arm, such as the physician.

On the medical side we show a concept for a system which sensibilizes the
physician to his radiation exposure and which helps him to take more informed
decisions when using X-ray devices to minimize his risk for radiation related
dangers. The system displays a color-coded map of the physician after each
intervention which shows his radiation exposure during the procedure and if
desired the accumulated radiation for a given time frame. This allows the physi-
cian to keep track of his long-term radiation exposure. The system can also be
used for making inexperienced physicians more aware of the dangers of radiation
exposure.

2 Related Work

There have been many medical studies concerning the radiation exposure of pa-
tients and surgeons during different interventions [13,1,15,6]. In [15] for instance
the radiation exposure of the patient and the surgeon is modeled mathemat-
ically. However, only estimates about the average distance of the surgeon to
X-ray source are used. Many studies conclude that the radiation exposure of the
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physician during fluoroscopy-guided interventions is very high in the area of the
hands [10] and in the lower extremities [13]. This has sparked some discussion
about the possibility of protecting the surgeon and making him more aware of
the dose he has already received. Our system attacks at this point since it allows
the physician to check his exposure easily in an everyday setting.

There has also been work on simulating the radiation exposure for training
novel physicians [16,2]. In this work the C-arm was modeled in a simulation and
the radiation dose was measured at several spherical detectors around the C-
arm. However, the position of the physician was not taken into account and the
system was not meant for use in interventional rooms but for training. We are
not aware of any work which tracks the physician during the intervention and
which accumulates his radiation exposure over the course of an intervention.

On the technical side, which builds the foundation of our system, there has
been a lot of work which was mainly published in the computer vision literature.
For the real-time 3D-reconstruction of the scene we use the visual hull algorithm
described in [7]. The visual hull [9] is an approximation of the true shape of an
object which is computed from silhouette images by intersecting the silhouette-
backprojections. The recovered shape is the shape maximally consistent with
the input silhouette images.

The tracking stage of our system is responsible for establishing dense corre-
spondences between the independent 3D-reconstructions of the scene computed
at each time frame. As we are interested in the movement of the physician, our
work relates directly to the vast body of literature addressing markerless hu-
man motion-capture in multi-camera environments. Most of these vision-based
tracking algorithms use kinematic models in the form of a skeleton as discussed
in the survey by Moeslund et al. [11]. Such skeletal models allow to effectively
constrain the problem and reduce its dimensionality but they usually require
manual initialization of the joint positions, as well as lengthy parametrization of
the tracked person’s body characteristics from generic mesh models. In contrast
to these approaches, we chose to use the framework recently presented by [3].
This algorithm doesn’t rely on strong priors on the nature of the tracked object
and instead deforms the first reconstructed mesh to fit the geometry in the rest
of the sequence.

3 Reconstruction and Tracking System

We use a multi-camera system [8] to reconstruct the shape of the objects inside
the interventional room in real-time. The system consists of 16 optical cameras
mounted on the ceiling as well as a few PCs to perform the reconstruction and
the radiation modeling (see Figure 1). In an offline phase, the initial position
of the C-arm inside the reconstruction volume is determined and the cameras
are calibrated. In addition, background images of the room are acquired. In the
online phase, the background images are used to segment the foreground objects.
The segmented images are subsequently used to perform the 3D-reconstruction
by intersecting the backprojections of the object silhouettes in space. The recon-
struction of the physician is then tracked using a mesh deformation framework.
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Fig. 1. View of our reconstruction studio. The cameras are marked by red circles.

In a final step, the scatter radiation created by the C-arm is modeled and ac-
cumulated using the reconstruction of the physician. Once the system has been
set up, very little maintenance work is required. In the following sections we will
describe each component of the system in more detail.

3.1 System Architecture

We use a distributed system for performing the 3D-reconstruction. A total of
four PCs with four cameras each is connected through a Gigabit-Ethernet net-
work. The PCs acquire the camera images, perform the background subtraction
using the method presented in [4] and then perform a partial 3D-reconstruction
using their locally available silhouette images [7]. The results are sent to a mas-
ter PC which combines the partial reconstructions and performs the radiation
accumulation. The results are then visualized.

We decided to place the cameras on the ceiling so that they do not take away
any workspace from the operating room and to protect them from accidental
collisions with other objects, which would require a recalibration of the system.
The cameras are synchronized in order to perform a consistent reconstruction.

3.2 Calibration

Before the system can be used the cameras have to be calibrated extrinsically
and intrinsically. To this end we use a calibration toolbox designed for multi-
camera environments [14]. It is based on a calibration point which is moved
around in the room and detected in the cameras. The method is easy to use and
delivers an accurate calibration. Typical calibration times are in the range of
15 minutes. The recovered camera coordinate system is registered to the room
coordinate system using target points at known positions in the room.

3.3 Segmentation

It is necessary to extract the foreground objects in the camera images in or-
der to perform the 3D-reconstruction. This is done using a robust background
subtraction method [4]. Reference images are acquired before the intervention
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and are used during runtime in order to detect the changed parts in the scene.
This results in the silhouette images which are the input for the reconstruction.
In the case of static foreground objects, such as a surgical table, problems can
arise, because these objects will occlude other objects which in turn cannot be
fully reconstructed since they are not fully seen in the silhouette images. We
solve this problem by masking out static objects in the silhouette images, ef-
fectively declaring them to foreground. This automatically adds them to the
reconstruction.

3.4 Reconstruction

The silhouette images are used in a GPU-based visual hull computation method
[7]. First the reconstruction volume is discretized into voxels. Each voxel is then
checked for its occupancy by projecting it into all available silhouette images.
If it is empty in at least one of the silhouette images it is marked as empty,
otherwise it is marked as occupied. In order to speed this up an octree model of
the reconstruction volume is used and the computations are streamlined on the
GPU.

3.5 Tracking

The result of the 3D-reconstruction stage is a sequence of meshes independently
reconstructed at each time frame. We use the non-rigid mesh registration frame-
work presented by [3] to iteratively deform a reference mesh to fit the geometry
in the rest of the sequence. The reference mesh is taken from the first frame
of the sequence. We prefer this tracking method to skeletal-based alternatives
as it does not need an initialization of the pose and of the body characteristics
of the tracked person. The only requirement is that the tracked physician must
be clearly distinct from the rest of the reconstructed geometry in the reference
frame. The output of the tracking algorithm is a dense trajectory for each vertex
of the reference mesh across the sequence, which is necessary to accumulate the
radiation exposure over time.

4 Radiation Modeling

We model the scatter radiation created by the interaction of the X-rays with
the patient’s body using the particle-physics simulation system GEANT4 [5].
Using this system it is possible to model the different physical effects, which lead
to the production of scatter radiation, namely Compton Scattering, Rayleigh
Scattering and the Photoelectric Effect. We model the scene similar to [16]. In
that work the authors also use the GEANT4 system to model X-ray scatter
radiation. We model the C-arm as an intensifier tube and a detector both made
out of iron. This has the effect that radiation is blocked above the detector and
below the source. The patient is modeled as a cylinder containing water. As has
been shown in [16,2] the model, although simplified from reality, still provides
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reasonable simulation results which make it useful for educating physicians about
their radiation exposure. After having modeled the C-arm and the patient we
create a X-ray beam originating from the radiation source and direct it in a
narrow cone at the patient body. In order to obtain the energy deposited by the
X-rays in the environment we place a so-called detector sphere around the scene
in our simulation and register the energy of the particles which fall onto it. By
placing several such spheres with different radii and all centered on the source
of the scatter radiation, i.e. the patient, we can estimate the distribution of the
radiation inside the room and thereby the radiation received by the physician.
We precompute an X-ray irradiation volume using the settings of the C-arm
and compose it with the tracked mesh in the previous step. This allows us
to accumulate the radiation received by each vertex and by interpolation the
radiation received by the whole mesh.

5 Results

To validate our system we recorded an interventional scenario in our lab con-
sisting of a C-arm, a patient and a physician. The physician is moving around

Fig. 2. Results on a sequence recorded in our lab. The three rows show the radiation

exposure at the beginning, the middle and the end of the intervention. The first column

shows one of the input images, the second column shows the tracked 3D-scene and the

final column shows the physician in his reference pose with the color-coded radiation

exposure. Red represents a high radiation exposure while blue represents a low radiation

exposure.
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the C-arm while the C-arm is constantly radiating. This is a typical scenario for
a fluoroscopy-guided intervention, since in fluoroscopy the C-arm is also almost
constantly radiating. The frame rate at which the reconstruction system is run-
ning is 20 fps. Once we obtain the reconstruction of the physician, we start the
tracking algorithm. The physician is then tracked during the entire sequence.
With the knowledge of the position of the X-ray source and the patient we can
compute the source of the scatter radiation which is subsequently computed us-
ing the radiation simulation framework. Since we have the tracked mesh of the
surgeon with corresponding vertices over time, we can simply add up the radia-
tion at each vertex position for each frame. By performing this addition over the
whole sequence we obtain the final radiation dose collected by the physician for
each vertex of his reconstruction. These values are then interpolated to obtain
the radiation on the whole mesh. This is reasonable since the mesh consists of
only small triangles. Finally, we visualize the accumulated radiation using a heat
map (see Figure 2 and the videos included as additional material). The scaling
on the heat map is set so that the maximum amount of radiation received by
the physician is marked as bright red. This makes it easier to visually gauge the
exposure. It can be seen, as also observed in [15], that the hands receive most of
the radiation.

6 Discussion

We understand our system as a proof-of-concept. Our goal was not to develop
a system which can be directly used in an operating room, but to show what
problems have to be addressed, which methods are available to solve them and
how they can be combined in a sensible way. In particular the exposure computed
by our system needs to be validated by experimental measurements and the
dynamic and static environment of the interventional room needs to be taken
into account in more detail. The use of our system is not limited to the estimation
of the radiation exposure. The availability of a real-time 3D-reconstruction of the
interventional environment can also be used for workflow analysis [12], collision
detection [8] and documentation purposes.

7 Conclusion

We presented a system for modeling the radiation received by a physician during
an intervention. Our system builds on a real-time 3D-reconstruction of the inter-
ventional room which is used for tracking the 3D-mesh of the physician using a
mesh deformation framework. The radiation is modeled using a particle-physics
simulation package. The contribution of the paper is the combination of real-
time 3D-reconstruction and mesh-based tracking to help the physician estimate
his radiation exposure and to allow him to collect statistics about his long-term
exposure. Our system can also be used for making novice physicians more aware
of their radiation exposure. Future work includes validating the radiation es-
timation by using sensors attached to the physician, creating profiles for each
physician and bringing the system to a real operating room.
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Abstract. Recent developments in optical spectroscopic techniques have per-
mitted in vivo, in situ cellular and molecular sensing and imaging to allow for 
real-time tissue characterization, functional assessment, and intraoperative 
guidance. The small area sensed by these probes, however, presents unique 
challenges when attempting to obtain useful tissue information in-vivo due to 
the need to maintain constant distance or contact with the target, and tissue de-
formation. In practice, the effective area can be increased by translating the tip 
of the probe over the tissue surface and generating functional maps of the un-
derlying tissue response. However, achieving such controlled motions under 
manual guidance is very difficult, particularly since the probe is typically 
passed down the instrument channel of a flexible endoscope. This paper de-
scribes a force adaptive multi-spectral imaging system integrated with an articu-
lated robotic endoscope that allows a constant contact force to be maintained 
between the probe and the tissue as the robot tip is actuated across complex tis-
sue profiles. Detailed phantom and ex-vivo tissue validation is provided. 

Keywords: fluorescence spectroscopy, articulated robot, force control, in vivo 
tissue characterization. 

1   Introduction 

Point based spectroscopic approaches such as diffuse reflectance, Raman and fluores-
cence spectroscopy have been shown to be clinically useful for in vivo assessment of 
cancer, atherosclerosis and ischemia. Current techniques under development include 
visible diffuse light spectroscopy applied in the colon to detect colonic ischemia [1], 
the use of fluorescence spectroscopy to detect atherosclerotic lesions [2] and the use 
of Raman sensing to detect cervical cancer [3]. There has been increasing focus in 
recent years on simultaneous large area surveillance with high spectral resolution [4], 
(and therefore high sensitivity and specificity), potentially with multiple labels and 
multimodal spectroscopy. Simultaneously the continued development of targeted 
fluorescence probes that provide a specific spectral profile offer a further example of 
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the importance of being able to trace a path across the tissue surface in order to inves-
tigate the localization of the marker whilst still achieving a good detection of the 
marker fluorescence on top of the optical background signal. 

In practice, due to the small sensing area of these techniques and the common re-
quirement of tissue contact, performing large area surveillance and repeated examina-
tion is difficult due to in vivo tissue deformation and the difficulty in manually main-
taining the probe-tissue distance. Previous results have shown  that these techniques 
are affected by the pressure exerted between the probe and the tissue surface [5] due 
to the following effects: (a) the coupling efficiency between the fibres and the tissue, 
which depends on the refractive index mismatch between the two; (b) the change in 
the optical scattering properties of the tissue due to compression; and (c) the increase 
in signal from deeper tissue layers with increasing pressure due to the displacement of 
the upper layers, (which can be a particularly important consideration when sensing 
layered tissues such as epithelial structures).  

The purpose of this paper is to demonstrate a force adaptive multi-spectral imaging 
system integrated with an articulated robotic endoscope.  This allows a constant con-
tact force to be maintained between the probe and the tissue as the robot tip is trans-
lated across complex tissue profiles.  A similar approach for measuring contact forces 
remotely has been employed for both fixed transformations between the sensor and 
contact site [6] [7] and flexible transformations [8].  An additional technical advan-
tage of the system described in this paper is that the estimation of distal tip position 
allows for localization of specific spectral responses within the field of view.  De-
tailed validation is provided using a multi-spectral phantom as well as results demon-
strating successful force adaptive acquisition of tissue autofluorescence on ex-vivo 
liver tissue samples. 

2   Methods 

2.1   Articulated Robotic Endoscope Design and Operation 

The articulated robotic endoscope used in this paper features five controllable degrees 
of freedom arranged into three serially connected link segments and attached to a 
500mm long rigid aluminum shaft. The degrees of freedom are arranged into two uni-
versal joints (intersecting pitch and yaw) at the distal and medial joints and a single 
yaw DoF at the proximal joint. Each DoF is independently addressable and capable of 
actuating ±45°, enabling the device to servo its tip over a large area (±90° vertically 
and ±135° horizontally).  An advantage of the serially connected joint architecture is 
that the proximal/medial joint(s) can be used to avoid obstacles, such as anatomical 
structures or other instrumentation, to safely position the distal joint at a more advanta-
geous position.  As can be seen in Fig. 1(a), the distal joint alone can then continue 
scanning to provide the operator with both visual feedback and the ability to interact at 
the target site.  

The diameter of the shaft and articulated segments is 12.5mm so as to be compati-
ble with existing trocar ports. Each DoF is actuated by an embedded 4mm diameter 
Brushless DC micromotor (Namiki Precision Jewel Ltd, SBL04-0829) with a 337:1 
planetary gearbox. The rotary motion of the motor is converted to joint rotation via an 
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internal mechanism (patent pending).  Joint position is estimated by counting a single 
pulse output from the motor drive electronics for each full rotation of the motor. The 
length of the proximal and medial segments is 44mm while the distal segment is 
36mm long. The device also features three internal channels (2*3mm, 1*1.8mm). The 
latter houses power and signal lines for the motors while the two other channels can 
be used for various additional instrumentation. An IntroSpicioTM

 115 Micro CCD 
video camera (Medigus Ltd, Israel) and a custom fluorescent imaging probe, which 
will be further described in Section 2.2, are used for this study.   

 

 

Fig. 1. (a) Schematic illustrating the force adaptive linear servoing mechanism. Moving parts 
are marked in red. It consists of four key components: a clamp (1) which attaches to the robot 
shaft, a Maxon RE10 Brushed DC motor driving a rack and pinion linear slider (2), a Nano17 
F/T sensor (3) and a housing to clamp and thus translate the imaging probe (4) (b) A CAD 
schematic illustrating the concept of the robotic scanning device using controlled actuation of 
the distal tip. The 1.8mm Medigus Camera and fluorescent imaging probe are also marked. 

2.2   Force Sensitive Probe Operation 

One key component of the articulated robotic device is a force sensitive linear ser-
voing mechanism, into which the proximal end of the fluorescent imaging probe is 
clamped. The mechanism is located approximately 500mm from the distal opening of 
the robot’s 3mm biopsy channel at the tip of the device. An embedded ATI Nano17 6-
axis Force/Torque sensor (SI-12-0.12) measures the axial load along the central axis 
of the imaging probe. Naturally, inaccuracies in the absolute force measurement will 
be introduced due to friction in the instrument channel, which will increase with the 
tortuousity of the robot (due to frictional interface effects along the length of the 
probe). However, the purpose of the system is not to provide the operator with an 
accurate absolute force measurement between the probe and the tissue, but rather to 
maintain a constant force during image acquisition. It is assumed that the force meas-
ured remotely from the tip and transmitted through the probe is sufficiently represen-
tative of the tip interaction force to drive the controller. Additionally, the probe is 
only expected to undergo a linear translation of less than 3-4mm during operation 
which significantly reduces the negative effects of the long transmission distance. 
These issues will be further discussed in Section 3. 

(a) (b) 
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Fig. 1(a) illustrates the F/T sensor clamped into the rack and pinion based linear 
servo mechanism. The pinion (24t, MOD 0.25) is actuated via a brushed DC geared 
motor (Maxon RE10 6V, 16:1 gearhead, MR Type Integrated 256cpr Quadrature 
Encoder). The rack is seated in a groove which constrains all but a translational de-
gree of freedom along the centerline of the imaging probe. A rack and pinion system 
was chosen for back-drivability, ease-of-use and so as to provide a fast response time. 
The probe is fed directly into the internal biopsy channel to prevent undesirable de-
flections or buckling as it is loaded axially. 

A closed-loop force control scheme was created in the LabView development envi-
ronment. The force along the centerline of the probe is measured by the force-torque 
sensor and acquired using a NI-6221 acquisition card at 500Hz. This signal is then fed 
to a Proportional-Integral controller and the output signal is processed by a differen-
tial operational amplifier (so as to allow bipolar control of the motor) which in turn 
forms the input of a pulse-width modulation-based speed controller for the DC motor 
(Maxon, LSC 30/2 linear 4Q Servoamplifier). The speed controller has an internal 
feedback loop which uses the integrated quadrature encoder to regulate the motor 
speed according to the input signal described above.  

Fluorescence emission measurements were taken using a 2 mm diameter flexible 
fibre-optic probe (Romack, V.A., USA) consisting of 7 hexagonally assembled fibres, 
each having a 200µm core diameter and a 0.22 numerical aperture.  Excitation light 
was provided by a 375nm laser diode collimated with a 4.6mm focal length lens and 
focused into a central excitation fibre with an 8mm focal length lens.  The fluores-
cence emission light collected by the six fibers surrounding the central fibre was ar-
ranged into a linear array which was imaged onto the 80µm wide slit of a spectro-
graph (Specim Ltd, Finland). A 405nm long-pass filter was inserted in to block the 
reflected excitation light and the light was dispersed by a prism-grating-prism element 
of the spectrograph and detected with a cooled CCD camera (Retiga EXI, QImaging, 
1392×1040 pixels).  The camera and the beam shutter were also controlled through 
LabView (exposure time phantom, 1ms; exposure time liver, 10ms; region of interest 
1392x110) and the autofluorescence spectrum was acquired in a single shot with a 
frame-rate of 130ms. Image acquisition from the onboard Medigus camera is also 
synchronized with the autofluorescence signal acquisition, which allows the immedi-
ate localization of the probed site within the camera field of view. 

3   Experimental Design and Results 

Three experiments were performed in order to access the efficacy of system. The first 
was a system characterization to evaluate what contact force should be used, the sec-
ond employed a fluorescent stained phantom to validate the ability of the system to 
accurately reconstruct a multi-spectral map and finally, the third experiment was 
performed on ex-vivo fowl liver to demonstrate the ability of the system to maintain 
sufficient contact with the tissue to acquire autofluorescence spectra. The first set of 
experiments were performed to characterize: a) the effect of different angular dis-
placements of the distal tip on the minimum force required to advance the imaging 
probe; and b) the effect of different contact forces on the intensity of the resulting 
spectroscopy image.  
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To characterize the effect of different angular displacements, the distal tip was ser-
voed to five different positions (straight and locations in each of the four quadrants of 
the Cartesian co-ordinate system).  At each position, the setpoint of the force control-
ler was increased in increments of 10mN until the probe advanced and made contact 
with a fluorescein stained silicone phantom. The results show that larger forces are 
required to move the imaging probe when the tip is deflected than when it is straight 
(20mN straight, 30 – 40mN at deflections of ±12° on each axis of the universal joint) . 
This is due to friction interference effects between the imaging probe and the channel 
inside the robot as it deflects. All subsequent experiments were carried out with a 
minimum setpoint of 40mN and for all experiments described in this paper, only the 
distal tip of the robot was actuated.  

Further experiments were performed to characterize the spectral response of the 
probe for different contact forces with ex-vivo fowl liver tissue (Fig. 2). The probe 
was advanced into contact with the tissue and the contact force was increased in 
10mN increments up to a limit of 150mN as spectroscopic images were acquired.  
The results indicated that while the magnitude of the tissue autofluorescence remains 
constant for all contact forces, the effect of ambient light on the spectral trace  de-
creases in proportion with increasing contact force. The presence of this signal is due 
to diffusion of the illumination light through the tissue to the detection fibers even 
though the probe is in full contact with the tissue. Based on feedback from the on-
board camera, it can be seen that as the tissue undergoes higher deformation due to 
high contact forces, less ambient light is detected. However, these same high contact 
forces do not affect the intensity of the autofluorescence signal from the tissue. These 
results indicate that with this system we can maintain a low but constant force that 
achieves a sufficient optical signal without applying excessive load to the tissue.  

 

 

Fig. 2. Plot of Intensity versus Wavelength for contact forces of 0mN, 40mN, 90mN and 
150mN. The synchronized images from the onboard camera illustrate the probe-tissue interac-
tion for the four contact forces (clockwise from top left) 0mN, 40mN, 90mN and 150mN. 

In order to validate the ability of the system to accurately trace a trajectory and re-
construct the underlying multi-spectral fluorescence images, a double stained phan-
tom was developed. The silicone phantom featured four horizontal lines mounted on a 
flat surface. The first and third lines consisted of yellow fluorescent dye while the 
second and fourth lines consisted of green fluorescent dye.  The lines were approxi-
mately 1.5mm thick and were separated by a gap of approximately 1.5mm.   
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Fig. 3. Plot of the trajectory of the robot tip as it passes over the green and yellow fluorescence 
dye. Three results sequences displaying the spectral information (bottom) the onboard camera 
(top- right) and an external camera for visual confirmation of the spectral result (top-left) are 
also shown. 

In order to obtain continuous multi-spectral measurements along 2D scan patterns, 
each of the separate components (robot control, linear actuator control, onboard cam-
era acquisition and fluorescence image acquisition) were synchronized and the robot 
was driven under joystick control along a trajectory. This synchronization allows the 
spectral information at each acquisition to be localized along the tip trajectory using 
the estimation of tip position recorded from the motor pulses. The location of each 
image can be confirmed by the use of the onboard camera and a second, external 
camera which was used solely for validation purposes. Additionally, the cameras were 
used to confirm that the probe maintained contact with the surface at all times. Since 
the probe tip moves in an arc during robotic joint actuation the linear servoing 
mechanism must actuate the probe in order to maintain contact during all stages of the 
image acquisition. A similar situation would arise with biological tissue where the 
surface to be probed would have a different profile to the arc traced by the robot tip. 

Fig. 3 shows the robot tip trajectory projected onto a 2D plane (located at the robot 
distal face when the robot is straight) and a sample of three result sets from three 
example points along the trajectory. Each result sequence shows the spectral image 
acquired at that location (bottom), the onboard camera view (top-right) and the exter-
nal camera view (top-left). The location of the spectral peak at different locations 
(paper: 460nm, yellow dye: 515nm, green dye: 505nm and 640nm) clearly illustrate 
the ability of the system to differentiate between the different wavelengths recorded at 
the different locations. The results on the right hand side of Fig. 3 are particularly 
interesting as different fibers within the imaging probe display different excitation 
wavelengths. During these acquisitions, the probe was straddling the boundary of 
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more than one excitation. This indicates that higher resolution multi-spectral informa-
tion can be obtained by incorporating the relevant spatial distribution of the fibers in 
the probe.  

 

 

Fig. 4. (middle) 2D plot of the trajectory of the probe tip with five results sets indicated. Each 
results set displays the spectral information and the synchronized onboard camera image. 

 

Fig. 5. Plot of the X and Y co-ordinates of the probe tip (green and red respectively) verses the 
force measured by the F/T sensor (blue) 

To demonstrate the ability of the system to employ the protocol described above to 
record autofluorescence from biological soft tissue a similar experiment was per-
formed on ex-vivo fowl liver. These results are shown in Fig. 4. Images from the 
onboard camera are highlighted as well as the spectral information captured by the 
probe. The magnitude of the autofluorescence peak in the spectra (peak approx. 
510nm) remains constant for all acquisitions, indicating that good contact is main-
tained throughout the experiment. Fig. 5 illustrates the relationship between the 
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movement of the tip and the measured force during this acquisition sequence. As can 
be seen from the plot the force controller maintains a constant contact force of 40mN 
for the duration of the run. Deviations from the constant 40mN force occur after 
approx. 43 and 66 samples. These deviations are due to changes in the tissue surface 
profile which cause the probe to almost lose contact with the tissue or become buried 
deeper into the tissue. In each of these cases the controller servos the probe to main-
tain the 40mN force. This motion can be observed in the onboard camera.  

4   Discussion and Conclusion 

The results presented in this paper demonstrate the ability of a robotically-assisted 
approach for consistent spectroscopic sensing by overcoming the challenges of man-
ual probe manipulation. By decoupling the operator from the complex manipulations 
required to obtain such images, the focus of the clinical investigation can be shifted 
towards identifying potential target sites and interpreting the spectroscopic informa-
tion.  The ability of the proposed system to obtain continuous multi-spectral informa-
tion along 2D scan patterns across complex surface profiles, while maintaining a 
constant contact force, has clear potential clinical applications in areas such as tumour 
margin identification and localization of fluorescence markers.   
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Abstract. We present a novel tracking system for patient head mo-

tion inside 3D medical scanners. Currently, the system is targeted at the

Siemens High Resolution Research Tomograph (HRRT) PET scanner.

Partial face surfaces are reconstructed using a miniaturized structured

light system. The reconstructed 3D point clouds are matched to a ref-

erence surface using a robust iterative closest point algorithm. A main

challenge is the narrow geometry requiring a compact structured light

system and an oblique angle of observation. The system is validated

using a mannequin head mounted on a rotary stage. We compare the

system to a standard optical motion tracker based on a rigid tracking

tool. Our system achieves an angular RMSE of 0.11◦ demonstrating its

relevance for motion compensated 3D scan image reconstructions as well

as its competitiveness against the standard optical system with an RMSE

of 0.08◦. Finally, we demonstrate qualitative result on real face motion

estimation.

1 Introduction

The tomographic reconstruction of 3D and time varying 3D medical images from
a series of scanning modalities including X-Ray computed tomography (CT),
magnetic resonance imaging (MRI), and positron emission tomography (PET)
requires sequential data recording over time. Patient motion during this time will
result in a lower image quality or even render the examination useless, cf. [1] for
PET imaging. The probability of patient motion occurring grows with increas-
ing acquisition time. For structural or anatomical imagery, patient motion can
sometimes be estimated and compensated directly from the scan recordings, e.g.
in cardiac MRI [2] and lung CT [3]. For functional 3D scans such as PET and
fMRI lower contrast and more spatially sparse events hampers the direct esti-
mation of motion from the recordings themselves. Our focus is on the Siemens
High Resolution Research Tomograph (HRRT) PET brain scanner, which is a
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brain dedicated scanner with a spatial resolution down to 1.4 mm [4]. Movement
induced image degradation increases with increasing scanner resolution and thus
head motions end up counteracting the technological advances of high resolution
scanners. Due to the low count rate and resulting low contrast information the
patient motion is assumed known for most of the suggested motion correction
methods in PET imaging [5,6,7,8]. An optical real-time motion tracking system
has been preferred (Polaris System, Northern Digital Inc.) [9]. This system reg-
isters a rigid tracking tool with 3-6 infrared reflecting markers. The tracking tool
is fixed to the patient’s head using different types of band-aid, helmets, wet-caps,
or goggles. However, it has been reported that, using fixation, these methods can
cause artifacts on the PET images [10]. We have previously described a struc-
tured light (SL) based system for 3D face surface reconstruction that: (1) does
not need any markers; (2) fits to the narrow geometry of the Siemens HRRT
PET scanner; and (3) can potentially be built into future PET scanners [11].

In this paper we will show how 3D point clouds captured using this system
by use of resistant and robust iterative closest point (ICP) registration to a tem-
plate surface can be used to estimate rigid body motion of the head inside the
scanner patient tunnel. In the method proposed, the pose estimation is based
on the rigid alignment of scans to either a pre-computed reference scan or the
previous scan. The alignment is a special case of the 3D point cloud registra-
tion. Point correspondence cannot be assumed and since the scanner output are
patches, there will only be partial overlap between reference/previous scans and
the current scan. Our method is based on the classical ICP algorithm [12] that
aligns two point clouds with no prior correspondence. Several efficient variants of
the ICP algorithm have been published [13]. The possible enhancements of the
normal ICP includes matching based on differential properties of point sets and
rejection of invalid point matches. Due to the partial overlap of our scans, we
employ a point rejection approach, where points falling on the border of the tar-
get are rejected. It is therefore necessary to detect borders of the 3D scan. This
is non-trivial to do with raw points clouds. To overcome this, we represent our
target as a triangulated surface that has been computed using a state-of-the-art
surface reconstruction algorithm [14]. Compared, to the popular Poisson surface
reconstruction algorithm [15], the Markov Random Field surface reconstruction
algorithm [14] deals particularly well with human body scans. We provide a
quantitative evaluation of the performance of the structured light system for
pose estimation.

2 Experiments and Methods

The SL system consists of a DLP projector (DLP Pico Projector, Texas In-
struments) with HVGA resolution (480 × 320) and two grayscale CCD cameras
(Chameleon, Point Grey Research) with a resolution of 1280 × 960 as described
in [11]. The SL system was mounted on the gantry of the HRRT PET scanner
as shown on Fig. 1 just above the patient tunnel. The performance of the new
tracking approach is evaluated by a set of experiments on the HRRT PET scan-
ner with simultaneous tracking using the Polaris Vicra system. A mannequin
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head was placed inside the patient tunnel as a patient would be. It was mounted
onto a nano rotary motor stage from Thorlabs. The stage made it possible to
perform highly controllable rotation of the head. The stage was programmed
to rotate in steps of 5 degrees from -15 to 15 degrees and the movements were
repeated four times. At each stationary position a set of images were captured
with the SL system.

The Polaris tracking tool was fixed to the forehead of the mannequin head
using a band-aid as used for patients to track the head motions during the
PET acquisition. While the Thorlabs stage provides baseline rotation data, the
Polaris system recorded the motions of the head simultaneously with the image
capturing of the SL system. Fig. 1 shows the set up of the experiments where the
SL system is seen in the front and the Polaris sensor is seen in the back behind
the patient tunnel. Fig. 1(a) shows the head in the reference position at 0 degrees
where the region of interest (ROI) is seen as the bright region around the bridge
of the nose. This ROI is chosen due to the limited facial movements of the bridge
of the nose. At each of the seven positions of the four runs of experiments 3D
point clouds are reconstructed using phase-shifting interferometry (PSI) [16].
PSI is used to determine the correspondence between the two image planes;
the projector image plane and the image plane of one of the cameras. From
a series of three captured interferograms (2D images) the wavefront phase is
computed and converted to line positions on the projector image plane. Thus
a given phase of the cosine patterns on the captured images correspond to a
position on the projector image plane after phase unwrapping. Since the phase
is periodic, the phase has to be unwrapped to achieve a continuous phase image.
Several methods to perform phase unwrapping exist. Experiments showed that
the method described in [17] perform well with our data.

The points on the image planes are converted into 3D coordinates using a
simple pinhole model for both the cameras and the projector and assuming

Fig. 1. Photographs of the mannequin head inside the HRRT PET scanner with the

SL system in the front mounted to the HRRT PET gantry. (a) The motor stage is seen

in the bottom and the Polaris sensor in the back. (b) Mannequin head rotated to the

right (the tracking tool can just be discerned above the forehead).
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the calibrations parameters for all three components are known. The details of
system calibration and 3D coordinate computations can be found in [11].

We use the scan acquired at 0◦ as the reference and in the following, the
pose of the head is estimated relatively to this reference in the following. We
want to estimate the rigid body transformation from the current 3D scan to
the reference scan. The scans are unstructured point clouds where approximate
estimates of the point normals exist. We are using a specialised version of the
ICP [12] algorithm. Initially, a surface is created based on the reference scan.
Both cameras produce a point cloud representation of the part the head in its
field of view. These two point clouds are aligned and merged to create a reference
scan that covers the field of view of both cameras. The surface is created using the
novel Markov Random Field surface reconstruction algorithm [14]. It is based
on an implicit description of the surface combined with a regularization step
that makes it well suited for human body scans. Since the surface reconstruction
algorithm by default computes surfaces that extend beyond the point cloud, a
post-processing step is needed where the surface is cropped to fit the point cloud.
This is done by removing parts of the surface that are not supported by reliable
input points. Support is defined as being within a distance, d, of an input point.
d is estimated as the average neighbour distance in the input point cloud. The
result is a polygonised surface patch, where the edge vertices are defined by
having only one adjacent triangle. For each point in the current scan, the closest
point on the triangulated surface is found using a kD-tree based approach. If
the point falls on an edge vertex, the point match is discarded. The remaining
point matches are used to compute the rigid body transformation using the
solution found in [18]. Using this method the transformation bringing the current
scan into alignment with the reference surface is computed. The transformation
consists of an estimated 3 × 3 rotation matrix R and a translation vector t.

To be able to compare the rotation estimate from our method and the Polaris
system with the baseline rotation provided by the Thorlabs stage, the rotation
angle θ, direction of rotation axis v, and a point on the line c is determined
as [18]:

θ = arccos ((trace(R) − 1)/2)

v = 1/(2 ∗ sin(θ)) ∗
[
R32 −R23 R13 −R31 R21 −R12

]T
c = (I − R)−1t

3 Data and Results

Fig. 2 shows the 3D point clouds at the different positions for one of the four
experiment runs with the right (red) and left (blue) camera respectively. The
image to the left represent the position at -15 degrees and the image to the right
at a position of 15 degrees. These are aligned into the reference surface seen in
the center. As seen, the point clouds are highly detailed with little noise and
outliers, supporting a high spatial resolution of the system. Two results of the
ICP alignment are shown in Fig. 3 at ±10 degrees from the right camera. The



Motion Tracking in Narrow Spaces: A Structured Light Approach 257

Fig. 2. 3D point clouds of the mannequin head at the seven positions. Left to right

from -15 degrees to 15 degrees. Blue images represent the left camera and red images

represent the right camera. The center images at 0 degrees are the reference surfaces.

Fig. 3. Results of the ICP alignment of the right camera at two positions ±10 degrees.

Alignments into the reference position are shown on top of the reference surfaces. The

colors represent the errors as the distance to target in mm.

errors between the target and the aligned points are in the order of 0-0.2mm
with the largest errors around the eyes. As previously mentioned, the motion
of the Thorlabs stage is considered the ground truth motion. The errors of the
estimated motion are plotted as a function of the ground truth motion in Fig.
4. The red and blue points represent the right and left camera respectively and
the black points are the results from the Polaris system. The errors of the SL
system are less than 0.2 degrees from the performed rotation when using the right
camera (red) for negative rotations and the left camera (blue) for the positive
rotation with a RMS error of 0.11 degrees. This is a similar result as the Polaris
system, which has a RMS error of 0.08 degrees. There are two main reasons
why the results are less accurate when the head is rotated toward the camera;
the overlap with the target around the bridge of the nose becomes less and the
overlap around the eye becomes larger. The eye is a non-robust region due to
edges and hair. This is an even larger problem on humans. In the future, this
region will be excluded prior to alignment.

The system has been tested on a human test subject in the HRRT setup.
The purpose is to demonstrate the clinical usability of the system. Currently,



258 O.V. Olesen et al.

−15 −10 −5 0 5 10 15

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Rotation of the head (degrees)

E
r
r
o
r
 
(
d
e
g
r
e
e
s
)

 

 

right camera
left camera
Polaris

Fig. 4. Comparison of the SL system and the Polaris system; differences between the

estimated rotations and the performed ones as a function of the performed rotations.

we are only aiming for a quantitative evaluation and therefore no ground truth
data was recorded and no PET acquisition was done. The subject moved 1-3 cm
between each scan. The results can be seen in Fig. 5, where the reference scan
is represented as a grey reconstructed surface. Two following scans are aligned
to the reference scans and the aligned point clouds are seen. It is clearly seen,
that the reference scans are less complete than for the mannequin. This is due
to problems with shadows around the nose. We are currently optimising the
hardware configuration of the system with respect to real humans in the clinical
setting. In Fig. 5, the colour coding of the aligned scans represents the individual

Fig. 5. Test with real human scannings. Point clouds aligned to the reconstructed

surface of the reference scan (grey surface) and the point errors are colourcoded. The

medians of the point errors are 0.13 and 0.17 mm.
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per-point alignment error. It is computed as the distance from the point to the
closest point on the reference scan. The median values of these point errors are
0.13 and 0.17 mm for the two scans in Fig. 5. These results are representative
for the experiments we have performed on human volunteers. While not optimal,
the magnitude of this error indicates that the system will be able to accurately
determine the pose changes for real humans in the clinical environment.

4 Summary and Conclusions

We have presented a structured light system adapted for motion compensation
in high-resolution PET scanners. While the systems accuracy is comparable with
the current state-of-the-art optical trackers, it is more flexible and easier to adapt
to the narrow patient tunnels of PET scanners. Furthermore, the system is fully
automatic and does not rely on markers that are notoriously difficult to use in
a clinical setting. The system was tested on a setup, where a mannequin head
mounted on a robot system created baseline data. The results show, that the
proposed framework was able to estimate the head rotation with an accuracy
better than 0.2◦ for a head movement between −15◦ and 15◦. Furthermore,
preliminary experiments were performed on human test subjects. Quantitative
analysis shows that the system is able to robustly estimate the pose changes
for human subjects, strongly indicating that the method will be useable in the
clinical practise.
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Abstract. Tissue deformation tracking is an important topic of minimally 
invasive surgery with applications ranging from intra-operative guidance to 
augmented reality visualisation. In this paper, we present a technique for visual 
tracking of irregular structures with an arbitrary degree of connectivity in space. 
The variational formulation of the proposed method ensures that correlation is 
maximised between tracked points and their computed new positions while the 
overall structure shape variation is minimised, thus maintaining spatial 
coherence of the tracked structure. The proposed method is applied to surgical 
annotation and tracking in 3D for telementoring and path-planning. The results 
are validated both on a CT-scanned phantom model and in vivo, showing an 
average alignment error of 1.79 mm (± 0.72 mm).  

1   Introduction 

Tissue deformation tracking during MIS has been the focus of considerable research 
efforts with the goal of enhancing the user experience particularly during robotically 
assisted procedures. For MIS, issues such as limited field-of-view, large-scale tissue 
deformation and disorientation can be addressed by image mosaicing, virtual motion 
compensation, ablation guidance [1], imposition of dynamic active constraints and 
motor channelling [2], all of which hinge on reliable image feature tracking 
techniques [3].  While these techniques could be used in conjunction with 2D feature 
tracking plus stereo matching, a 2D approach to tracking does not reflect the physical 
structure of the object and is unsuitable for integrating a priori motion information. 

In this paper, a structure tracking approach is proposed. It differs from feature or 
point based tracking methods in that its optimality criteria are global to the structure 
tracked and it can operate in any dimensional space, in contrast to unconstrained 
feature tracking where the optimality is local to each feature tracked. While existing 
methods for structure tracking operate on regular grids in 2D, the proposed method 
relies on the construction and tracking of networks from sparse point clouds with 
arbitrary degrees of connectivity in d dimensions. A novel feature correlation function 
tailored to MIS data is formulated and the proposed method is applied to MIS 3D 
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spatio-temporal telestration for path planning and telementoring. The method is 
evaluated with both a synthetic heart model with known ground-truth 3D geometry 
and deformation, as well as in vivo data acquired during a Totally Endoscopic 
Coronary Artery Bypass (TECAB) procedure.   

2   Method 

The proposed method consists of three distinct steps. First, a network is built from a 
collection of points given the parameters about their dimensionality and connectivity 
level. Then, as their motion fields are updated, a point-wise correlation is computed 
for each possible position in the search space for all points in the cloud. Finally, a 
variational technique is used to maximise correlation between the points and their 
proposed updated positions whilst minimising the overall network shape variation. 

2.1   Network Building 

Given a sparse collection of points in d dimensions, a connected network can be built 
given a scoring function and the maximum degree of connectivity k allowed. The 
maximum degree of connectivity is determined by the highest total number of links a 
point in the network has, divided by two: for instance, a regular 2D mesh would have 
a degree of connectivity of 2. Determining the degree of connectivity required implies 
a trade-off between strong geometric regularisation constraints for high degrees due to 
the larger  number of dependencies and the inability of fully capturing the 
characteristics of the underlying structure being represented for low degrees. 

To construct a network given a set of points and a degree k, the d-dimensional 
space is first partitioned into 2k equal sections. For each space partition and each pair 
of points that could be connected by a line within the partition under consideration, 
their Ld norm is computed, and the pair separated by the minimum distance is 
connected.  

 

 

Fig. 1. (a) Sparse set of 2D points. (b) Result of the algorithm with degree of connectivity k=1 
and (c) k=2. (d) Regular 2D point grid. (e) Result of the algorithm with k = 1 and (f) k=2. 
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The process is iterated until no more points can be linked without breaking the 
limit of two connections for every k. For regular grids and k=d, the process converges 
towards a conventional lattice structure, as shown in Fig. 1 above for d=2: 

2.2   Correlation Estimation 

Variational approaches to optical flow estimation commonly involve solving the 
following minimisation problem [4]:  

( )( ) ( )( )min ,
u

g x u x u x dλ ψ
Ω

⎧ ⎫⎪ ⎪⎪ ⎪+ ∇ Ω⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
∫  (1)

In the expression above, g(x) is the data term measuring the correlation between the 
point x and the displaced candidate x+u(x), the second term is a regularisation 
constraint enforcing a smooth displacement field, and λ is a factor weighing the 
relative contribution of data and regularisation terms. 

The nature of the data term depends on the optimisation procedure adopted: faster 
techniques involve the use of differentiable data terms [5], whereas more 
sophisticated non-differentiable penalty functions are coupled with complete searches 
[6]. Recently, Giannarou et al. [7] proposed an affine-invariant anisotropic corner 
detector tailored for MIS applications and robust to lighting variations and image blur. 
Detected features are described as ellipses whose size, orientation and radii ratio 
summarise the structural information of the feature patch examined. 

In this study, a non-differentiable penalty function based on the intersection area 
between the ellipses representing the original and candidate points is used. The 
measure is then weighed by the difference in colour intensity distribution between the 
two patches, in order to include both structural and intensity information: 

( )( ) ( ) ( )( )( ) ( )( ) ( )( )( ), 1 ,g u I I u P I P I uϕ
′Ω

′ ′= − + ⋅ +∑x x x x x x x x  (2)

In (2), I(x) and I’(x) are the previous and current intensity images for which the flow 
needs to be calculated, ϕ(I(x),I’(y)) is the ratio of overlapping area to total area 
between the ellipses representing points x and y in the previous and current frames, 
and the summation term is the Bhattacharyya coefficient of the channel intensities 
distributions in the two patches Ω’. The penalty function is bounded between 0 and 1. 

The overlapping area between two generic non-axis aligned ellipses can be 
calculated first by finding their intersections: two polynomials share a common root if 
and only if their Bezout determinant is zero, which in the elliptical case is a quartic 
whose zeros can be efficiently found with a polynomial solver. Given a set of 
intersections Φ, the area Aint can be found by integrating anticlockwise along the 
elliptical arcs between intersection points according to Green’s theorem: 
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In Eq. (3), R, r and θ are the major radius, minor radius and orientation of the ellipse 
whose arc two consecutive intersections lie on. The integrating variable t is the angle 
between the ellipse centre and a point.  The overlapping area to total area ratio is then: 

( )
( )

int,
A

R r R r
ϕ

π
=

+x x y y

x y  (4)

2.3   Variational Optimisation 

The problem formulated by Eq. (1) can be solved with differentiable data terms in the 
case where ψ is the TV-L1 operator [8]. The general principle can be extended to 
cases when non-differentiable penalty functions are used [9]. Here we further extend 
the method to irregular graphical structures with an arbitrary degree of connectivity. 
As Eq. (1) is nonconvex in u, an auxiliary vector field v is introduced to decouple the 
pointwise penalty term from the regularity term, leading to the convex approximation: 

( )( ) ( ) ( )( ) ( )( )2

,

1
min ,

2u v
g v v u u dλ ψ

θ
Ω

⎧ ⎫⎪ ⎪⎪ ⎪+ − + ∇ Ω⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
∫ x x x x x  (5)

Such an approximation is convex in u and nonconvex in v, and it can be shown that 
u→v as θ→0. Its solution involves alternating two optimisation steps while 
decreasing θ between iterations: for non-differentiable data terms, the optimal v (with 
constant u) is found by a complete search. For each iteration i, the optimal element of 
u (with constant v) for each dimension d can be found by the following scheme: 
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 (6)

Above, p is a collection of d k-dimensional auxiliary vectors each initialised at p0 = 0. 
The irregular element spacing throughout the graphical model is reflected by the 
gradient operator which weighs the variation of neighbouring elements proportionally 
to the reciprocal of their Euclidean Ld norm, constraining closer elements more than 
farther away ones. 

2.4   Applications to MIS 

The above theoretical framework is applied to stereo MIS video for the specific case 
of d=3 and k=1. This corresponds to an arbitrary connected trace (open or closed) in 
3D space, and can be applied to, for example, tracking custom freehand inputs 
overlaid on the visualised 3D scene for preoperative path-planning or surgical 
training. Such interfaces have been investigated for natural scenes [10] with the 
additional requirement of prior offline processing, and for telementoring in MIS [11] 
using conventional algorithms on static scenes. The proposed algorithm allows using 
directly prior 3D velocity information to restrict the search space for the optimal 
motion vector and it adds robustness to the process due to the penalty term tailored to 
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MIS data. Also, it yields subpixel accuracy if a fine discretisation of the 3D space is 
adopted. More importantly, contrarily to unconstrained point tracking it strives to 
preserve the shape of the original annotation due to its regularisation term.  

Under this scheme, the user is prompted to draw an annotation on a still frame 
from one of the stereo channels. Stereo matches for the annotation points are found on 
the remaining channel with the algorithm from [12], the matching pairs are then 
triangulated yielding a 3D representation of the original annotation. The annotation is 
then tracked across the incoming frames with the algorithm presented. The penalty 
function is modified to be an average of the two penalties from the projection of the 
3D candidate point on the left and right channel and their comparisons with the 
previous frames, thus enforcing inter-channel consistency. Fig. 2 below schematically 
illustrates the proposed technique. 

 

 

Fig. 2. An illustration of the proposed method. A 3D point (a) can be moved to a new position 
(b) within a rectangular parallelepipedal window depending on the correlation expressed by the 
penalty function (c). Uneven displacement between connected points results in stronger 
constraints from the regularisation term. 

3   Experimental Setup and Results 

The proposed technique has been tested both with a synthetic phantom model and in 
vivo to evaluate its performance. Both sequences were recorded in standard definition 
at 25fps from a da Vinci surgical platform with known stereo camera parameters, and 
input to an Intel Core 2 Duo 2.4GHz system with 2GB of RAM for processing. With 
the above setup, the algorithm operates at ~1.5fps. For all sequences, the algorithm 
considers a velocity search space of 2mm3 per point per frame sampled at intervals of 
0.025mm, with values for λ and τ set to 1.1 and 0.8 respectively. 

Phantom experiment. The method was first applied to the dynamic sequence of a 
silicone phantom heart (Chamberlain Group, MA, USA) beating at 90bpm. A closed 
contour with 39 control points was defined in correspondence of a section of the left 
anterior descending artery (LAD). Fig. 3 (a) and (b) below show the reconstructed 
annotation volume over a section of the sequence with highlighted diastolic frames. 
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The tracked annotation shows a small drift of its left and bottom segment, while its 
centroid remains focused on the region of interest. The upper and right sections 
remain stable throughout. The drift is due to the fact that the annotation is crossing 
two completely uniform areas without feature information. The regularisation 
constraint however limits the amount of drift by driving the whole volume in a 
uniform direction determined by the annotation segments crossing feature points. 
Tracking regularity over the whole sequence is quantitatively shown in Fig. 3 (c): 

 

 

Fig. 3. (a) Selected diastolic frames with the tracked annotation corresponding to ridges in (b). 
(b) Reconstructed annotation volume over time. (c) Distance of annotation points from the 
camera over the sequence. 

It can be seen that the overall drift is less than 2mm, while it stabilises in the latter 
half of the sequence. All other points are stable throughout. The closed-loop 
configuration is maintained during the sequence, as shown by the surface’s sinusoidal 
characteristics, and alternating cardiac phases for all points are evidenced by the ridges 
in the plot. 

In vivo experiment. The algorithm was further evaluated with a TECAB sequence by 
delineating an open segment on the pericardium. The sequence presents some 
significant deformation, with tissue sections becoming occluded from the heart 
contractions. Fig. 4 below shows the performance of the technique together with 
selected frames: 
 

 

Fig. 4. (a) Initial contour. (b) First diastole. (c) First systole. (d) Second diastole. (e) Distance 
from camera centre of the tracked points along the annotation over time. 
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Despite the degree of tissue deformation shown in Fig. 4 (b), (d) and the lack of 
explicit occlusion handling, the proposed method was able to maintain the annotation 
regularity and recover the tissue motion as shown in Fig. 4 (e), where the diastoles 
and systoles corresponds to the troughs and peaks in the surface plot respectively. 

Furthermore, the top half of the images containing the first 15 points of the 
annotation was motionless throughout the sequence. This is reflected by the surface 
plot in Fig. 4 (e), where motion characteristics are clearly discernible between the first 
and last portion of the annotation. 

Validation results. To facilitate validation, the phantom heart was augmented with 15 
silicone fiducials for registration visible on its surface and scanned with a Siemens 
Somatom Sensation 64 CT scanner. The resulting volumes had a spatial resolution of 
0.41×0.41×0.5 mm and a temporal resolution of 0.33s. During the scan the heart rate 
was set to 90bpm, yielding twenty 3D volumes covering the entire cardiac cycle. 

The cardiac volumes were then manually registered with the video sequence, so 
that the correspondence between frame number and cardiac phase was known. For 
quantitative validation, two annotations have been considered: the open contour 
shown in the phantom experiment section, and a closed contour delineating the LAD. 
For both sequences, the initial 3D annotation was stored internally together with its 
corresponding cardiac phase; the distance between the initial 3D points and the 
estimated annotation position was then computed whenever the frame under 
consideration mapped to the initial cardiac phase. Table 1 below quantifies the overall 
performance of the algorithm:   

Table 1. Numerical evaluation of the performance from the proposed algorithm 

Error statistics (mm)  Mean Standard 
deviation 

Maximum Minimum 

Open contour 2.133 0.810 3.695 0.912 
Closed contour 1.792 0.721 3.561 0.433 

 
Overall, the open and closed contour sequences show similar performance. The 

relatively small error in the case of closed contours is due to stronger constraints 
imposed. Also, given two segments of equal lengths the closed segment would cover 
a more localised area of the heart surface which could exhibit a higher degree of 
motion cross-correlation. 

4   Discussion and Conclusions 

In this paper, we have presented a novel technique for 3D tracking of arbitrary 
structures with applications to annotation tracking in MIS. Robustness is provided by a 
novel penalty function while motion consistency is enforced by a TV-L1 regularisation 
constraint. Tracking directly in 3D space enforces inter-channel consistency and allows 
for the reduction of the search space with prior motion information without explicit 
motion models. The technique has been tested on phantom and in vivo with an average 
discrepancy during validation of 1.79 mm (± 0.72 mm). The regularity of the algorithm  
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during phantom experiments shows its validity, and future work will focus on a real-
time implementation exploiting the method’s suitability for parallel processing, a 
reinitialisation procedure for cyclic motion and occlusion detection. 
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Abstract. An accurate and robust method to detect curve structures,

such as a vessel branch or a guidewire, is essential for many medical imag-

ing applications. A fully automatic method, although highly desired, is

prone to detection errors that are caused by image noise and curve-like

artifacts. In this paper, we present a novel method to interactively detect

a curve structure in a 2D fluoroscopy image with a minimum requirement

of human corrections. In this work, a learning based method is used to de-

tect curve segments. Based on the detected segment candidates, a graph

is built to search a curve structure as the best path passing through user

interactions. Furthermore, our method introduces a novel hyper-graph

based optimization method to allow for imposing geometric constraints

during the path searching, and to provide a smooth and quickly con-

verged result. With minimum human interactions involved, the method

can provide accurate detection results, and has been used in different

applications for guidewire and vessel detections.

1 Introduction

In medical imaging, an accurate and robust method to detect curve structures,
such as a vessel branch in angiogram, or a guidewire or a catheter in fluoroscopy,
is required in many practical applications. Although a fully automatic method
is always highly desired, current automatic methods are prone to the errors that
are caused by image noise, and curve-like artifacts. In some applications where
a large error is not tolerated, human interactions are introduced to make correc-
tions. There are also some cases where human interactions are needed to specify
a curve structure of particular interests. For examples, clinicians need to specify
a vessel branch where interventions will take place, or users are more interested
in a guidewire instead of a catheter, as shown in Figure 1. Such situations high-
light the necessity to have interactions in practical systems. In this paper, we
present a novel method based on a graph optimization to interactively detect
a curve structure in a 2D fluoroscopy image with a minimum requirement of
human corrections.

There are existing methods to automatically detect curve structures, such as
guidewire [1], and vessels [2], while less research has been done on the interactive
curve detection. Some existing interactive detection and segmentation methods
[3,4] apply a graph cut algorithm, which needs user inputs to initial positive
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(a) (b) (c) (d)

Fig. 1. Graph based interactive detection. (a) an original frame; (b) detected curve

segments shown on red; (c) an original graph shown in dark green, and the second

stage graph shown in bright green; (d) an interactively detected guidewire in blue.

and negative samples. However, the graph cut based methods mainly aim at
the region segmentation, while in 2D fluoroscopy, the curve structure such as
guidewire can be thin. The work [5] by Mazouer and his colleagues is close to the
work in this paper. It detects guidewire segments in a hierarchical manner, and
then finds the guidewire by minimizing the connectivity cost between segments
using Dynamic Programming. However, the method only considers the pair-wise
segment connectivity, and ignores the curve geometry constraints. When the
image quality of 2D fluoroscopy is poor, the method is prone to image noises, and
cannot converge to a satisfactory accuracy. It is shown in [5] that false detection
rate drops to 4% after 7 user clicks, but there are no further improvements even
given more user clicks.

To address the aforementioned problems, this paper presents a novel graph
based framework and a hyper-graph based extension for interactive detection.
The method automatically detects curve segments, which, together with user in-
teractions, are used to construct a graph. In the graph, the nodes represent the
curve segments, and the edges represent the curve connectivity. The method then
formalizes the curve detection as to find the shortest path in the graph given user
inputs. To impose curve geometric constraints, our method introduces a hyper-
graph, where the geometric constraints can be imposed as an inherent property.
The presented work integrates the automatically detected curve segments, user
interactions, and generic geometric constraints into one framework, and provides
a smooth and quickly converged detection result. Extensive experiments demon-
strate that with minimum human interactions involved, the method can detect
various curve structures, such as guidewire and vessels, in 2D fluoroscopic images.

2 Interactive Detection Based on Graph Optimization

The presented interactive method consists of three components: automatically
detecting curve segments, constructing a graph based on automatic detections
and user interactions, and detecting a curve based on graph optimization. In
this section, we first introduce the framework based on a conventional graph,
and then extend it based on a hyper-graph in the next section.
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2.1 Hierarchical Learning-Based Curve Segment Detection

The method adapts a hierarchical learning based method that is similar to the
method presented in the work [1]. One difference is that the detectors used in
this method only aim at detecting curve segments, not a whole curve. The de-
tection includes two steps: first to detect piece-wise curve segments, and then
to detect pair-wise connections between two curve segments. In the first step,
the piece-wise segment detector detects a single piece of curves, namely a short
line segment with a constant length. Such a curve segment has three parameters
(x, y, θ), where (x, y) is the segment center location and θ ∈ [−90, 90] is the seg-
ment orientation. Such a learning based detector is trained from offline collected
data. All the points on the annotated curves are considered positive training
samples, while negative samples are randomly obtained from the regions con-
taining no curve structures. The piece-wise segment detector uses Haar features
[6] and the PBT classifier [7]. To detect segments of different orientations, an im-
age is rotated at discrete angles to search the rotation angles of curve segments.
Figure 1.(b) shows detected piece-wise curve segments of a guidewire.

Since the piece-wise detector usually produces a lot of false alarms, a pair-
wise curve segment detector is used to prune false detections. In the pair-wise
segment detection, every pair of two curve segments are classified if they belong
to a curve, based on the image intensity and geometric features. Such geometric
features include the center distance and angle difference between two segments.
The same as the piece-wire segment detector, a PBT classifier is used to train the
pair-wise curve segment detector. The probabilistic output form the pair-wise
segment detector, noted as pi,j , quantifies the connectivity between the i-th and
j-th curve segments.

2.2 Graph Representation for Interactive Detection

In this method, a graph is used to organize all the detected curve segments,
and the curve structure detection is then formalized as an optimization problem
based on the graph. As shown in Figure 2. (a), each node in a graph represents a
detected segment, and an edge between two nodes represents a possible connec-
tion between them. We denote the node as nk for the k-th segment, and denote

(a) (b)

Fig. 2. Graph representation for curve detection (a) an original graph; (b) a hyper-

graph
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the edge as eij for the detected connection between i-th and j-th node. Each
edge eij is associated with a cost cij , while the cost ck associated with the k-th
node is usually ignored in the original graph.

The edge cost in our method is defined by the probabilistic outputs of the
pair-wise detector, because it quantifies the connection between two nodes. Here
we define the cost of an edge as in Eqn. (1):

cij = −log(pi,j). (1)

By this definition, the higher the probability is, the lower the cost is. Such
a definition allows for formalizing the interactive detection as an optimization
problem in the graph, as in Eqn. (2):

Γ = arg
L

min
∑

(i,j)∈L

ci,j = arg
L

max
∑

(i,j)∈L

log(pi,j), (2)

where Γ is the detected curve, and L is a valid path in the graph. Therefore, the
curve detection is to find a best path in the graph, given the edge cost defined as
in Eqn. (1). Given two end points on the curve, one as the source and the other
as the destination node, the curve detection can be solved by a classical shortest
path algorithm, such as the Dijkstra’s algorithm [8,9] used in this method.

In the interactive detection, the source and destination nodes are specified by
the first two user clicks, e.g., the first input point as the source node, and the
second as the destination node. Each user click will create a new curve segment,
whose position is defined by the user click, and whose orientation is interpolated
from neighboring detected segments using the extension field [10]. The source
and destination segments generated from user clicks are then used in the short-
est path computations. After the first two clicks, additional user clicks may be
needed to improve an interactive detection result. The additional user interac-
tions are used to generate new curve segments in the same way as mentioned
above. The user interaction continues until a satisfactory result is obtained.

3 Extension to Hyper-Graph Based Optimization

The graph optimization provides a solid framework for interactive detections.
However, the best path solved in Eqn. (2) only involves the minimization of
costs based on the classification scores from the pair-wise segment detector.
Geometric properties of the curves, such as curve smoothness, have not been
taken into considerations. Without geometric constraints, the detected curves
can easily be distracted by false detections, and could generate unwanted results.
A problematic detection result is shown in Figure 3.(b). Such path-related curve
smoothness constraints are difficult to be incorporated in the conventional graph
optimization algorithms, such as Dijikstra’s. To address this issue, our method
further extends an original graph to a hyper-graph which can accommodate
geometric constraints in the detection framework.

The basic idea of constructing a hyper-graph is to model a segment of curve
path, which involves more than a pair of nodes, as a hyper-edge (an edge in the
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hyper-graph, denoted as Ei,j), and also to model an edge in the original graph
as a hyper-node (a node in the hyper-graph, denoted as Nk) in the hyper-graph.
A simple example is shown as in Figure 2. An original graph G is shown in
Figure 2.(a), and its corresponding hyper-graph GH is shown in Figure 2.(b).
The hyper-node Ni is transformed from one of original graph’s edges ej,k, and
a hyper-edge Ei,j in GH is transformed from a path (em,n → nm → em,l) in G,
where j, k,m, n, l are indices. In this way, a hyper graph is constructed from an
original graph, and such a graph transformation is unique and reversible.

In the hyper-graph, a hyper-node inherits the edge cost in the original graph,
i.e. CNk

= cij if Nk corresponds to eij . For the cost of a hype-edge, since a
hype-edge corresponds to a part of path on a curve, the cost of the hype-edge
is then defined to impose the desired geometric constraints. In this method, two
types of geometric constraints, shortness and the smoothness, are used to define
the edge cost as in Eqn. (3):

CE(i,j) = α(1 + cos(∠(E(i,j)))) + βlog(
1

1 + exp(−|(E(i,j)|/B)
), (3)

where ∠(E(i,j)) is the angle at the center of curve path that corresponds to
the hyper-node, and |E(i,j)| is the arc length of the path. The first term 1 +
cos(∠(E(i,j))) imposes the non-negative smoothness measurements of a curve
path, and the second term log( 1

1+exp(−|E(i,j)|/B)) favors a shorter curve. The
parameters α and β balance the two types of geometric constraints, and B is a
parameter in the sigmoid function. These parameters are empirically set in this
method.

Given the constructed hype-graph and the redefined costs on edges and nodes,
a graph shortest path algorithm finds the optimal curve, based on the criteria
form both pair-wise connectivity and geometric constraints, as in Eqn. (4):

Γ = arg
L

min
∑

Nk∈L&E(i,j)∈L

CNk
+ CE(i,j) (4)

(a) (b) (c)

Fig. 3. Using hyper-graph to impose geometric constraints. (a) a frame; (b) the result

based on the original graph; (c) the result based on the hyper-graph. The green lines

represent interactive detections, and red lines are annotations.



274 P. Wang et al.

– Given the original graph G, the source node ns, and the destination node nd

– Construct a hyper-graph GH

1. Set each edge in G as a hyper-node in GH , and copy the edge cost in G as a

node cost in GH

2. Connect two hyper-nodes if they share a node in G, and compute the hyper-

edge cost as in Eqn. (3)

– Find the shortest path in the hyper-graph GH

1. Get a set of edges {ei,s} that connect to ns in G, and a set of edges {ej,d}
that connect to nd in G.

2. Compute a bundle of shortest distance. Each shortest distance is for a pair of

hyper-nodes in GH . In each pair, one hyper-node corresponds to one of {ei,s},
and the other corresponds to one of {ej,d}

3. Select the optimal path from the bundle of shortest pathes

4. Map the shortest path in GH back to the original path in G

Fig. 4. Algorithm of hyper-graph based curve detection

Slightly different from the original graph, the single-source shortest path al-
gorithm needs to be run multiple times to find a bundle of shortest paths in
the hyper-graph, because each source node in the original graph corresponds to
multiple edges in the hyper-graph, as shown in Figure 2. From the bundle of
shortest paths, an optimal curve with the least cost is selected as the final de-
tection result. Figure 4 summarizes the hyper-graph based detection algorithm.
Figure 3 shows an example of the improved detection of using hyper-graph. The
numerical evaluations are further conducted in Section 4.

When constructing a hyper-graph from an original graph, the size of hyper-
graph grows linearly with the number of edges and nodes in the original graph.
With the increased graph size, the computation time increases drastically. To
address the computation problem, a two-stage method is used. In the two-stage
method, the original graph and the hyper-graph methods are applied sequen-
tially. In the first stage, a shortest path is found in the original graph. The curve
segments that are far way from the initial detection are removed, therefore the
hyper-graph built in the second stage is more compact. By using this two-stage
detection strategy, the method can enjoy both the fast computation in the orig-
inal graph and the benefits of geometric constraints in the hyper-graph. Figure
1.(c) and (d) show an example of the two-stage detection.

4 Evaluations

The presented interactive method can be applied to detect various curve struc-
tures, such as catheters, vessels, and guidewires in 2D fluoroscopy. For the quan-
titative evaluations, we select a set of 500 frames over 50 fluoroscopic sequences,
which mainly contain guidewires. The image set includes challenging scenes
for curve detection, such as various shapes and low signal-to-noise ratio. Some
of testing images and results are shown in Figure 5.(a). All the wires in the
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(a)

(b) (c)

Fig. 5. Exemplar interactive detection results. (a) detected guidewires, where the green

lines represent interactive detections with only two clicks, and red lines are annotations;

(b) an image with a vessel branch in it, and the interactive detection result; (c) an image

with a guiding catheter in it, and the interactive detection result.

Fig. 6. Accuracy comparison of different methods with only 2 clicks

sequences are manually annotated as the ground truth. To measure the inter-
active detection accuracy, we compute two quantities: the false detection rate,
and the missing detection rate. The false detection rate is the percentage of false
detections that are at the distance of at least 3 pixels away from annotations.
The missing detection rate is the percentage of annotated pixels that are at the
distance of at least 3 pixels away from detection curves. We also measure the
mean, standard deviation, and median of the distance between the detection
results and annotation results. The experiments are conducted on a dual core
2.4 GHz Desktop PC with 3 GB of RAM.

In the first experiment setting, only two user clicks are provided, and the
detection accuracy is measured under the minimum interaction. Figure 6 and
Table 1 show the accuracy comparison between different methods with only two
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Table 1. Quantitative evaluations on interactive detections with only two clicks

Detection Error (in pixels) Running time (in seconds)

median mean std (excluding segment detections)

[5] 10.7 18.7 6.7 0.19

Graph 8.3 15.1 6.7 0.02

Hyper-Graph 6.8 12.5 5.7 1.23

2-stage 7.2 13.2 6.1 0.78

Table 2. Quantitative evaluation on interactive detections with multiple clicks

Number of user clicks 2 3 4 5 6 7 8 9 10

False detection rate 17.8% 13.1% 8.4% 5.4% 3.8% 2.6% 2.0% 1.4% 1.0%

median (pixel error) 6.51 2.29 1.25 0.99 0.95 0.92 0.91 0.88 0.87

mean (pixel error) 7.58 3.72 2.06 1.36 1.19 1.07 1.06 0.96 0.94

std (pixel error) 13.60 8.76 5.16 2.19 1.83 1.14 1.55 0.66 0.74

user clicks. For a fair comparison, we select optimal parameters for each method.
In our sensitivity test, the performance of all the methods are not sensitive to the
parameter settings in a neighbor of optimal parameters. From Figure 6, it can be
observed that the graph based methods perform better than the previous work
[5], which gets an average error rate of 25% for the testing set containing diverse
shapes. The method based on the hyper-graph, with an error rate of 17%, has
further improved from the original graph based method which has an error rate
of 19%. The computation time for the hyper-graph is slightly higher than that
of the original graph. To get the advantage of accuracy from the hyper-graph
and the advantage of efficiency from the graph, the two-stage algorithm gets the
error rate of 17% with acceptable running time.

In the second experiment setting, multiple user clicks are provided. The users
are asked to continuously provide clicks until the detection results are satisfac-
tory. Table 2 summarizes the detection rates and pixel errors with multiple user
clicks. The detection accuracy progresses with more user inputs. Usually after
4 clicks, the pixel error converges to less than 1 pixel. In the work[5], its per-
formance does not improve after 7 clicks, which means that the performance of
their algorithm may reach its limits due to the lack of geometric constraints.
The method can also be applied to detect other curve structures such as vessel,
and catheter. Two examples are shown in Fig. 5.(b) and (c).

5 Conclusion

The paper provides a novel and practical method that can effectively and effi-
ciently detect curve structures in 2D images. A novel graph based framework has
been presented to combine automatically detected curve segments, user interac-
tions, and geometric constraints for a smooth interactive detection. The method
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has been applied to the guidewire and vessel detections, and encouraging results
have been obtained. The future work will be to apply the method to detect more
types of curve structures, and to handle complex curve structures, such as loops.
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Abstract. Articulating digital dental models is often inaccurate and very time-
consuming. This paper presents an automated approach to efficiently articulate 
digital dental models to maximum intercuspation (MI). There are two steps in 
our method. The first step is to position the models to an initial position based 
on dental curves and a point matching algorithm. The second step is to finally 
position the models to the MI position based on our novel approach of using  
iterative surface-based minimum distance mapping with collision constraints. 
Finally, our method was validated using 12 sets of digital dental models. The 
results showed that using our method the digital dental models can be accu-
rately and effectively articulated to MI position. 

Keywords: digital dental models, automated, digital dental articulation, collision 
avoidance. 

1   Introduction 

With the giant leap of computer technology, more and more dental offices are going to 
digital and replacing their traditional stone dental casts with digital dental models. The 
digital dental models are the exact replica of the teeth. They are usually generated by 
scanning dental impressions or stone dental models, or directly scanning the teeth 
intraorally. By incorporating the digital dental models into a 3D head model [1, 2], the 
orthodontic and orthognathic treatment can be entirely planned within a computer, and 
thus significantly improve the treatment outcome and decrease the planning time [3]. 
However, the utilization of digital dental models also creates a new problem in which 
the reestablishment of the dental occlusion to a maximum intercuspation (MI) position 
has become more difficult and time consuming than before. A main goal of the ortho-
dontic and orthognathic treatment is to reestablish patient’s occlusion. When doctors 
use plaster dental models to establish the occlusion, the physical action of aligning 
upper and lower dental models into MI position is quick and accurate, usually in a 
matter of seconds.  The same is not true in the virtual world, where the dental arches 
are represented by two 3D images that lack collision constraints. The computer system 
does not stop the images from moving through each other once the models have made 
contact.  In addition, the operator has no tactile feedback when articulating the digital 
models. Virtual articulation of an arch of 14 upper teeth against 14 lower teeth into 
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their best possible intercuspation is a complex task. Ideally, the 14 buccal cusps and 4 
incisal edges of the mandibular teeth will make maximal contact against the 
corresponding fossae, marginal ridges and lingual surfaces of the maxillary teeth at MI 
position. At the same time, the palatal cusps of the maxillary teeth also need to make 
contact against the fossae and marginal ridges of the lower teeth. Moreover, the dental 
midlines should be coincidental, and the transverse relationship between the teeth 
should be appropriate. Finally, all of this needs to be accomplished without creating 
unwanted areas of overlap. Because of these difficulties, it usually takes close to an 
hour to achieve the “visually best possible” intercuspation in the computer. More im-
portantly, it is almost impossible to be certain that what is seen in the computer repre-
sents the true best possible alignment. Therefore, there is an urgent need to develop a 
method that is capable of efficiently articulating the upper and lower digital dental 
models to MI position. 

To this end, the purpose of this study is to develop an effective approach to auto-
matically articulate the digital dental models. Our approach includes two steps. The 
first step is to position the models to an initial position based on dental curves and 
point matching algorithm. The second step is to finally position the models to the MI 
position based on iterative surface-based minimum distance mapping (ISMDM) algo-
rithm with collision constraints. Finally, our method was validated using 12 sets of 
digital dental models.  

2   Algorithm Development 

2.1   Data Acquisition and Preparation 

Three sets of stone dental cases were randomly selected from our dental model ar-
chive. An experienced doctor first hand articulated each set of the stone casts to MI 
position. They were then mounted on a specially designed mounting jig to keep their 
MI relationship. The mounted models were finally scanned using a 3D laser scanner 
(0.1mm of scanning accuracy) by a commercially available service (GeoDigm Corp, 
Chanhassen, MN). This resulted in a set of digital dental models at MI position and 
saved in stereolithography (.STL) format. Because of the triangulated surface of the 
model, the upper and lower digital models were slightly outwards expanded and pene-
trated to each other with a range of 0.08−0.20 mm at MI position, which did not exist 
in their physical form (stone casts). These scanned models served as a gold standard. 
Prior to the algorithm development, the lower models were disarticulated in 3D by 
randomly rotational and translational transformations.  

2.2   Initial Alignment 

The main purpose of initial alignment is to obtain approximate dental occlusion before 
two dental models are finally articulated to an accurate and collision-free position and 
orientation. When the two dental models are initially disarticulated and located at an 
arbitrary orientation and position in a Cartesian coordinate system, it is necessary to 
estimate a transformation to bring them relatively close to each other. Two pairs of 
corresponding curves are extracted and matched from the upper and lower dental mod-
els. The first pair is the buccal cusps of the lower arch (Fig.1b) corresponding to the 



280 J.J. Xia et al. 

central groove of the upper arch (Fig.1a), while the 
second pair is the palatal cusps of the upper arch corre-
sponding to the central groove of the lower arch. These 
curves can be viewed as 3D continuous curves (not 
necessarily fitting polynomial curves) along the dental 
arches. In this article we only use the first pair as an 
example. 

Based on the above assumptions, we developed an 
automated approach to initially position the models. In 
the first step, we identify the feature points on cusps, 
incisal edges, central grooves, pits, and fossae to ap-
proximately represent the dental curves along the 
arches. In the second step, the dental curves of the  
upper and lower arches are matched using a point matching algorithm to complete the 
initial alignment.  

Step 1: Identification of Feature Points on Upper and Lower Occlusal Surfaces 
A 2D range image (the heights of the digital model in the z - coordinate) is first calcu-
lated for lower arch. Based on the range image and the two-step curve fitting ap-
proach [4], we can then compute a 2D fourth-order polynomial dental fitting curve 
that fits buccal cusps and incisal edges of lower arch in least square. Finally, with the 
aid of 2D fitting curves, the 3D feature points of the lower occlusal surface can be 
extracted by detecting the peaks along the lower fitting curve. Similarly, the 3D fea-
ture points of upper occlusal surfaces can be identified by detecting the central groove 
along the upper fitting curve.  

Step 2: Point Matching Algorithm 

Let 1
0{ }N

i i
−
=p  and 1

0{ }K
j j

−
=q  be sets of 3D feature points of the upper and lower dental 

models obtained in Step 1.  The two sets of points are matched by applying our point 
matching approach as if the dental curves fit together when dental models are in the 
MI. Our point matching algorithm (an improved iterative closest points algorithm [5]) 
is based on graduated assignment combining “softassign” method [6] and a weighted 
least squares optimization [7]. The initial alignment becomes to find a transformation 
( , )R t and a correspondence between two sets of feature points { }ip and{ }jq , and to 

minimize an energy function in the standard point matching algorithm [6].  

2.3   Final Alignment 

After the dental models are aligned to an approximate occlusion, they can be finally 
digitally articulated using our algorithm, Iterative Surface-based Minimum Distance 
Mapping (ISMDM). The criterion based on maximal contact of the teeth at MI is the 
key to develop the ISMDM. The dental model articulation can be modeled by consecu-
tive executions of translations and rotations with continuous changes of rotational 
origin on the lower dental model. In order to automatically achieve maximal contact 
between upper and lower teeth and reach the MI position, we model this movement by 
iteratively minimizing distance of surfaces between lower and upper teeth. This 
method is based on the idea of the iterative closest point algorithm [8] that is generally 

(a) 

(b)

Fig. 1. Upper (a) and lower 
(b) dental curves 
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used in shape matching, registration, and alignment of two similar datasets from the 
same object.  In addition, an important component in our ISMDM method is that we 
add constraints to prevent the two surfaces from overlap [9]. The detailed computa-
tional algorithms are described as follows. 

The Modelling of Dental Occlusion 
Let 1

0{ }M
i i

−
=u  and 1

0{ }J
j j

−
=v  be 2 sets of M  and J  vertices in the meshes of the digital 

upper and lower dental models, respectively. In the following, we assume the upper 
model is in a static position. The transformations and rotations are only performed on 

the lower dental model. The transformed jv  is modeled as:  

( , ) ( - ) + +j j′ ≡v R t R v o o t
                                             

 (1) 

where o  is a rotational origin (the pivot point) of the rotation matrix R , and t  is the 
translation vector. Maximizing contact area is equivalent to maximizing the number 
of contacting vertices in { }jv . However, not every vertex in { }jv  will make contact 

when the models are in the MI. Those contact areas are even more difficult to be pre-
dicted precisely. Therefore, we model the distance of surfaces between lower and 
upper teeth as: 

                              1
2

0

1
| | - | | .

j

J

S i j

j

d
J

−

=

≡ ∑ u v
                                                 (2) 

jiu  is a point closest to jv  and given by: 

{ }
|| - ||

j
i

i jarg min
∈

=
u u

u u v                                                    (3) 

where {0,1, , 1}ji M∈ − . Instead of directly maximizing contact area, we increase the 

chances of making contact by minimizing Sd .  

Because the 2 digital models should not penetrate to each other, adding collision 
constraints is the most important step in digital dental occlusion. The avoidance of 
collision is formulated as constraints and will be incorporated into the optimization 
programming. Let jP  be a plane with a unit normal vector jn  and a point jr  on it. 

When the transformed vertex ( , )j′v R t  is not allowed to be at the opposite side of the 

plane jP , the constraint can be expressed as  

( )( , ) 0.
T

j j j′ >-v R t r n
                                                   

 (4) 

jr  can be given by   

                                    
jj i jδ−r = u n                                                         (5) 

where δ  is allowable penetration depth (0.1mm of tolerance to compensate outwards 
expansion of triangulated surface) for the lower teeth. The unit normal vector jn   

can be chosen by calculating the average normal at the vertex 
jiu . Since some areas 
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between upper and lower teeth will never make contact during the MI, a large number 
of constraints added to the algorithm may be redundant. In order to reduce the number 
of constraints, it is not necessary to add a constraint to a point pair jv  and 

jiu if the 

distance between them is beyond a threshold ρ . 

Minimization of the Distance of Occlusal Surfaces and the Algorithm 

Given a rotational origin o , we calculate the rotation matrix R  and the translation 

vector t  which minimize 

1
2 2

0

( , ) || - ( , ) ||
j

J

S i j

j

d

−

=

′≡∑R t u v R t , 

  

subject to ( )( , ) 0
T

j j j′ >-v R t r n
             

 (6) 

The rotation matrix consists of non-linear terms which can be linearized by small-
angle approximation [10, 11]. When the 2 dental models are getting occluded, the 
increment needed to seat the lower model will gradually become smaller. Therefore, 
errors caused by this approximation will become less significant. Approximate the 

rotational matrix R  by linearizing it as  

1 - -

1 -

1

z y

z x

y x

θ θ

θ θ
θ θ

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

R                                                     (7) 

where xθ , yθ , and zθ  are rotational angles with respect to x − , y − , and z −  axes. 

Define , , T
x y zθ θ θ= ( )θ and jL  as:   

, ,

, ,

, ,

0 - -

- 0 .

0

j z z j y y

j j z z j x x

j y y j x x

v o v o

v o v - o

v - o v - o

⎛ ⎞+ +
⎜ ⎟
⎜ ⎟≡ +
⎜ ⎟
⎜ ⎟
⎝ ⎠

L
                                   (8) 

( )( )j −R - I v o  can be rewritten as: ( )( ) .j j− =R - I v o L θ
  

Let 
jj j i= -b v u , 

( ) ( , , , , , )T T T T
x y z x y z, t t t θ θ θ≡ =x t θ , and j j⎡ ⎤≡ ⎣ ⎦L L I . The objective function in Equation 

(6) becomes:       

         1 1 1
2 2

0 0 0

( , ) + 2 || ||

J J J
T T T

S j j j j j

j j j

d

− − −

= = =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= +⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∑ ∑ ∑R t x L L x b L x b

.                      (9) 

With the linearization of rotation matrix, the objective function 2 ( , )Sd R t  be-

comes a quadratic form, and (4) becomes a linear constraint. The minimization of (6) 
can be solved by quadratic programming.  

3   Validations and Results 

Twelve sets of the stone dental casts were used to validate our approach. They were 
randomly selected from our dental model archive. The models used for algorithm 
development were excluded. The selection criteria included no early contact and a 
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stable occlusion. All the models had relatively normal 
and full dentition except 4 pairs were partial edentulous. 
The models were scanned at MI position using the 
method described in 2.1. These digital dental models at 
MI position served as a control group. 

The models were positioned in Cartesian coordinate 
system. The origin O  was the centroid of the boundary 
box of the lower model (Fig 2). Three landmarks com-
monly used in clinic were digitized. They were mesiobuccal cusps of the first right 
and left molars (A and B), and central dental midline (C). The coordinates of each 
landmark were used later to compare with the same landmarks in the experimental 
group. 

In order to establish an experimental group, lower models and their landmarks 
were duplicated. Because the models were scanned at MI position, it was necessary to 
disarticulate the duplicated lower model from its original position. The lower model 

was first randomly rotated around the X-, Y-, Z- axes angles between 1 1
3 3

,π π⎡ ⎤−⎢ ⎥⎣ ⎦ , 

respectively. It was then randomly translated in millimeters between [-20,20] along 
the X-, Y-, and Z- axes, respectively. During the rotational and translational transfor-
mations, the landmarks were “glued” on the lower model and transformed with it. We 
believed that these transformations were randomly enough to disarticulate the lower 
models from their MI position. These disarticulated lower models served as an ex-
perimental group. The centroid O , the x-, y- and z- coordinates, and the landmarks A, B 
and C in the control model became centroid O′ , the x′ − , y′ −  and z′ − coordinates, 

and the landmarks A′ , B′  and C ′ in the experimental model.   
In the experimental group, the upper 

and lower models were first articulated 
using our initial alignment algorithm, 
followed by our ISMDM algorithm with 
the following parameters: 60S =  (iterations 
of ISMDM), 0.2ρ =  mm and 0.1δ = mm. 
Fig.3 showed a plot of average distance of 
surface Sd  versus iteration k  for all 12 

sets of the models using the ISMDM algo-
rithm.  During the articulation process, the 
upper model remained static while the 
lower model sought its MI position. In the 
initial alignment, the point match algo-
rithm is applied only to the feature points of the models. This may cause collisions 
between the lower and upper teeth. After they are fed into the ISMDM, the collision 
constrain will force the lower model out of the upper model until the models are free 
of collision. This is why the average distance ds between surfaces of lower and upper 
models is smaller at the beginning than it is at the final position after 60 iterations. 
The entire process was completed using a regular office PC computer with an Intel P4 
2.2GHz CPU and 4GB memories. 

Fig. 2. Coordinate system 
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Finally, the validation was completed by calculating the transitional and rotational 
deviations of the lower models between the experimental and control groups. Based 
on our clinical experience, there would be no clinical significance if the translational 
deviation of the lower dental models between the control the experimental groups is 

less than 0.5mm in each X, Y and Z direction and the angular deviation is less than 1  
on sagittal, coronal, and axial planes, respectively. 

Translational Deviations between the Experimental and Control Groups 
The means and standard deviations (SD) of the translational differences between the 
experimental and control models were computed. The mesiobuccal cusp of the first right 
molar ( , )A A′  and the first left molar ( , )B B′ , the central dental midline ( , )C C′ , and the 

centroid ( , )O O′  were computed in x − , y − , and z − axis, respectively (Table 1). It 

indicated that the models were articulated successfully with a small degree of transla-
tional deviation with no clinical significance.  

Table 1. Translational Deviations (mean ± SD, calculated in mm) 

 Initial alignment Final alignment (ISMDM) 
 x y z x y z 

(A’, A) 
-0.0938±  
 0.5873 

0.4451±  
1.2834 

1.6366±  
0.6841 

-0.0661±  
 0.3828 

-0.1206±  
 0.5621 

0.1318±  
0.2185 

(B’, B)  
-0.1471±  
 0.5935 

0.5708±  
1.0660 

1.6332±  
0.5336 

-0.0697±  
 0.3794 

-0.1793±  
 0.4606 

0.1707±  
0.1151 

(C’, C) 
-0.0596±  
 0.7824 

0.5433±  
0.7382 

0.5394±  
0.6998 

-0.1088±  
 0.3380 

-0.1449±  
 0.2059 

0.1214±  
0.2830 

(O’, O) 
-0.0917±  
 0.4310 

0.5912±  
0.6965 

1.3714±  
0.4399 

-0.0735±  
 0.2926 

-0.1481±  
 0.1829 

0.1464±  
0.1026 

Angular Deviations between the Experimental and Control Groups 
The angular differences between the experimental and control models were computed 
on sagittal (Y-O-Z), coronal (X-O-Z), and axial (X-O-Y) planes, respectively. In order 
to computer the angular deviation, the models in experimental group were moved 
translationally so that the centroid O′  was matched to the centroid O in the control 
group.  Afterwards, z′ − axis was projected onto the Y-O-Z plane. The sagittal angu-
lar deviation ˆ xω  was defined by the angle between the projected z′ − axis and 

z − axis on the Y-O-Z plane.  By the same token, by projecting the z′ −  axis onto the 
X-O-Z plane, the coronal angular deviation ˆ yω  was defined by the angle between the 

projected z′ − and z − axis on the X-O-Z plane. Furthermore, by projecting the 
y′ − axis onto the X-O-Y plane, the 

axial angular deviation ˆ zω  was de-

fined by the angle between the pro-
jected y′ − axis and y − axis on the 

X-O-Y plane. Finally, the means and 
SDs of the angular deviations be-
tween the experimental and control 

 

Table 2. Angular Deviations 
 

 Initial alignment Final alignment 
ˆxω  -2.3016± 2.0818 -0.0850± 0.7459 

ˆ yω  0.0102± 0.4752 -0.0624± 0.2322 

ˆzω  -0.1507± 2.2328 0.0717± 1.1453 
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models were computed (Table 2). It indicated that the models are successfully articu-
lated with only a small degree of rotational deviation that had no clinical significance. 

4   Discussion 

We have developed an automated approach to digitally articulate dental models. This 
approach consists of two major steps. The first step is the initial alignment, which 
using the point match algorithm to match the feature points of dental curves in order 
to bring the models relatively close to each other. The second step is the final align-
ment, which uses the ISMDM algorithm to minimize the average distance of surfaces 
of the models in order to articulate the upper and lower models to the MI without 
overlapping. This approach has been validated using 12 sets of the dental models. The 
results showed the models were successfully articulated with a small degree of devia-
tion that did not have clinical significance.  

Our approach is robust. First, the initial alignment algorithm itself can bring the 
models to a closed position to the final occlusion. This can significantly reduce the 
number of executions of nearest point searching of ISMDM.  Second, each lower 
model can be effectively docked to a final occlusion after the average distance of 
surface Sd  converges at 30k <  using our ISMDM algorithm. The deviations are 

small enough to meet clinical standard. Third, our ISMDM algorithm has successfully 
overcome the notorious uncontrollable overlapping problem between the upper and 
the lower models. This is done by applying linear constraints and allowable tolerance 
of penetration depthδ . In this experiment, we set the penetration depth was 0.1mm. 
Fourth, as indicated in validation, our ISMDM algorithm can also be used to articulate 
the partially edentulous models.  

Finally, our approach is different from others. Hiew et al. [9] used the right and 
posterior surfaces of the model bases, rather than based on the occlusal criteria, to 
perform the dental model alignment. Zhang et al. [12] designed a two-stage occlusal 
analysis algorithm to manually alignment the models in the computer. Finally, 
DeLong et al. [13] utilized a “3-point alignment” method by first identifying 3 pairs 
of contacting points on both the upper and lower stone models, digitizing them onto 
the digital models, and finally matching the corresponding points using a fitting algo-
rithm to bring the digital models together. The results were visually checked and 
process was repeated until the visual outcome was satisfactory. We found it is almost 
impossible to be certain that what is seen in the computer truly represents the best 
possible alignment. Comparing to the above methods, our method is practical and can 
be immediately used in the patient treatment planning process.    
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Abstract. We present a new image-based respiratory motion compen-

sation method for coronary roadmapping in fluoroscopic images. A tem-

poral analysis scheme is proposed to identify static structures in the

image gradient domain. An extended Lucas-Kanade algorithm involving

a weighted sum-of-squared-difference (WSSD) measure is proposed to

estimate the soft tissue motion in the presence of static structures. A

temporally compositional motion model is used to deal with large image

motion incurred by deep breathing. Promising results have been shown

in the experiments conducted on clinical data.

1 Introduction

Motion compensation is an important issue for image guided coronary angio-
plasty procedures. Besides live fluoroscopic images, imaging techniques such as
coronary roadmapping and multimodal image fusion have been introduced to
provide clinicians additional image guidance. In coronary roadmapping [1,2], a
dynamic coronary roadmap is obtained from dye-injected images showing vas-
cular structures under cardiac motion. When the contrast medium disappears,
the 2D roadmap can be superimposed on live fluoroscopy to provide immediate
feedback in properly directing guidewires or placing stents. Similarly, 3D vessel
roadmap extracted from cardiac CTA or MRA can be overlaid on live fluoroscopy
[3,4,7], to provide detailed vessel information such as calcification and tortuosity
which are important success factors for percutaneous coronary interventions. In
both cases, reliable motion compensation is required to dynamically move 2D or
3D coronary roadmaps to properly match live fluoroscopy, especially when the
contrast medium has disappeared and the coronary structures are not visible
from fluroscopic images.

Cardiac and respiratory motion are the main sources of motion observed in
coronary fluoroscopic images. The technique of ECG gating is commonly used
to deal with cardiac motion, where roadmap images are overlaid on cardiac
gated frames. Motion over the respiratory cycle is generally less reproducible
and there are a few drawbacks associated with respiratory gating [5]. Differ-
ent motion models including translation, rigid body and affine transformations
� Corresponding author.
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as well as statistical models have been investigated by several studies [5,6,7],
to characterize the effect of respiration on the heart and coronary arteries. In
contrast to the previous work which rely on 3D volumetric data or biplane ac-
quisition, we explore a 2D image-based approach and present a new method to
estimate the image motion incurred by respiration from monoplane fluoroscopic
images. The motion estimates allow dynamic overlay of coronary roadmaps to
match live fluoroscopy.

Image-based motion estimation has been explored in the context of digital
subtraction angiography [11,12] which dealt mainly with cardiac motion cor-
rection. Image-based cardiac and respiratory cycle synchronization techniques
have been discussed in [8]. Other techniques rely on guidewire tracking [9,10]
to locate a coronary artery in fluoroscopic images. An interesting observation
about cardiac fluoroscopy is that regardless of whether the contrast medium,
guidewires or other devices are present or not, image motion of the soft tissues
of the heart is consistently visible and measurable, which suggests the motion
of the coronary arteries especially when the contrast medium is not seen. This
motivates us to explore the motion information embedded in the broader im-
age region of the heart, rather than focusing on local anatomical landmarks
or devices. In addition, mixed layers of static bone structures and moving soft
tissues in cardiac fluoroscopic images pose a challenge in recovering soft tissue
motion. Our proposed method of image-based respiratory motion compensation
through recovering soft tissue motion is a new idea for coronary roadmapping us-
ing monoplane fluoroscopic images. To our knowledge, it is also the first attempt
to recover soft tissue motion with a special handling of static structures.

2 Method

In X-ray imaging, image intensity is determined by the energy flux which under-
goes exponential attenuation through layers of tissues. With logarithmic postpro-
cessing, the intensity can be described as an additive superposition of multiple
tissue layers undergoing different movements. Previous work focused on sepa-
rating transparent layers from one or multiple images [13,15,16], based on the
assumption that the layers remain static, or their motion is either known before-
hand or irrelevant to layer separation. Jointly recovering layers and their motion
from fluoroscopic images remains an open problem.

2.1 Image-Based Motion Estimation

For motion compensation, the goal is to extract the coronary motion incurred
by respiration. We consider a simplified model with two main layers, a static
structure layer including bone tissues and a moving soft tissue layer of the heart
including coronary arteries. Denote It(x), Is(x) and Id

t (x) as the intensity value
of pixel x in the fluoroscopic image, the static layer and the soft tissue layer at
time t respectively. They are related through additive superposition.

It(x) = Is(x) + Id
t (x) (1)
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In coronary roadmapping, a 2D or 3D coronary roadmap is initially overlaid on
one or multiple dye-injected fluoroscopic images through vessel-based registra-
tion [4]. These fluoroscopic images are referred to as the reference images. Once
the contrast medium disappears, we perform motion compensation by recover-
ing soft tissue motion between the reference images and live fluoroscopic images.
The recovered motion is used to appropriately place the roadmap in the dye-free
live images. Denote It0(x) as a reference image. An incoming live image It is
related to It0 through soft tissue motion

It0(x) = Is(x) + Id
t0(x) (2)

It(x) = Is(x) + Id
t0(W (x;P )) (x ∈ Ω) (3)

W (x;P ) denotes the model charactering soft tissue motion between t0 and t with
parameters P . Ω denotes the image area of the heart exclusive of the coronary
arteries due to contrast disappearance. Our problem is to estimate the soft tissue
motion W (x;P ) from It0 and It.

Without the layer of static structures Is, we have It0 = Id
t0 , It = Id

t and
It(x) = It0(W (x;P )). Motion estimation can be solved by the well-known Lucas-
Kanade (LK) algorithm [14], which uses a Gauss-Newton gradient descent method
to minimize the sum of squared difference (SSD)

SSD(P ) =
1

NΩ,P

∑
x∈Ω−1

P

||It(x) − It0 (W (x;P ))||2 (4)

where Ω−1
P = W−1(Ω;P ) and NΩ,P is the number of pixels in Ω−1

P . The motion
parameters are iteratively updated with small increments.

δP = H−1
∑

x∈Ω−1
P

�IT
t0(

∂W
∂P )T (It(x) − It0(W (x;P ))) (5)

(H =
∑

x∈Ω−1
P

(∂W
∂P �It0)(

∂W
∂P �It0)T )

This involves the calculation of image gradients �It0 and the Jacobian of the
motion transformation function ∂W

∂P .

2.2 Dealing with Static Structures

With a layer of static structures such as bone tissues, visible skin markers and
devices, the image intensities It, It0 have an added component Is which remains
static over time. Without a proper treatment, the static structures would have
an adverse effect on the estimation of soft tissue motion. Here we present a novel
approach to deal with static structures in the estimation of soft tissue motion.
Note that the motion parameters obtained by (5) are essentially determined by
two gradient terms, the spatial image gradient �It0 and the temporal image
gradient It(x) − It0 (W (x;P )).

�It0 = �Id
t0 + �Is

It(x) − It0(W (x;P )) = Id
t (x) − Id

t0(W (x;P )) + Is(x) − Is(W (x;P )) (6)
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Ideally the soft tissue motion should be estimated from the dynamic components
�Id

t0 and Id
t (x)−Id

t0 (W (x;P )), which would require knowing Is exactly to remove
�Is and Is(x) − Is(W (x;P )) from the spatial and temporal gradient terms.
Instead of requiring the full knowledge of Is, we explore the gradient fields
�It,�It0 to identify local image structures with strong image gradients which
are likely to come from static structures. This is motivated by the fact that
salient image structures characterized by high gradient values are sparse and
distributed locally in Is. For the vast homogeneous areas in Is, �Is is negligible,
i.e. �Is ≈ 0, Is(W (x;P )) ≈ Is(x) given that the motion is small, thus we have

�It0 (x) ≈ �Id
t0(x) (7)

It(x) − It0(W (x;P )) ≈ Id
t (x) − Id

t0(W (x;P ))

This means that if we ignore the local image structures that have high gradient
values and remain static across It and It0 , we can obtain an approximate solution
for soft tissue motion using It and It0 .

To identify the local static structures with strong gradients, motivated by [16],
we compute in the gradient field the local correlation coefficient between images
acquired at different times.

ρ(x) =
Cov(|�It(x′)|, |�It0 (x′)|)√

(V ar(|�It(x′)|)V ar(|�It0 (x′)|))
|x′∈N (x) (−1 ≤ ρ(x) ≤ 1) (8)

Cov(|�It|, |�It0 |) and V ar(It/t0 ) are the covariance and variance terms com-
puted in a local neighborhood N (x). The correlation coefficient ρ(x) is bounded
between −1 and 1. The more consistent the local structures are across images,
the higher the correlation coefficient is. ρ(x) = 1 when the local structures are
exactly the same in both images. In practice, when multiple incoming fluoro-
scopic images or reference images are available, the local correlation coefficient
over multiple images is computed as the statistical mean of the local correlation
coefficient between every image pair.

Using the local correlation coefficient, we propose to estimate soft tissue mo-
tion by minimizing a weighted SSD (WSSD) term defined as follows.

WSSD(P ) = 1
K
∑

x∈Ω−1
P

κ(x)κ(W (x;P ))||It(x) − It0(W (x;P ))||2 (9)

κ(x) = 1
2 (1 − ρ(x)) (0 ≤ κ(x) ≤ 1) (10)

K =
∑

x∈Ω−1
P

κ(x)κ(W (x;P ))

The weighting function κ(x) determines the contribution from each pixel to the
estimation of soft tissue motion. For static structures across multiple images,
the local correlation coefficient ρ(x) is close to 1 and κ(x) is close to 0, and in
the gradient domain their contribution to the WSSD is negligible. Therefore the
motion parameters obtained by the WSSD method are determined mainly by
the gradient structures of the moving tissues. To solve the WSSD problem, we
extend the LK algorithm and iteratively update the motion parameters by

δP = H̃−1
∑

x∈Ω−1
P

�IT
t0(

∂W
∂P )Tκ(x)κ(W (x;P )(It(x) − It0 (W (x;P ))) (11)

H̃ =
∑

x∈Ω−1
P

κ(x)κ(W (x;P ))(∂W
∂P �It0)(

∂W
∂P �It0)T
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Note the warped weighting function κ(W (x;P )) suppresses the contribution
from the static structures in the warped image It0(W (x;P )), similar to what
κ(x) does to It(x). Affine motion model is used in our experiments to describe
the image motion of the soft tissues incurred by respiration. To improve the
motion capture range, we adopt a pyramid implementation to estimate and
propagate image motion from coarse to fine resolutions.

Fig. (1) shows how the proposed WSSD-based method works with static struc-
tures. We started with a real coronary image as the reference and introduced
rotation, scaling and translation to generate a test image. A layer of static grid
structures was added to the reference image and the test image through (1).
The weighting function computed from the local correlation coefficients well
captures the static grid structures. A vesselness map generated by the approach
presented in [12] was used to simulate the roadmap overlays. Compared to the
standard SSD-based method, the WSSD-based method performs more accurate
motion compensation when static structures are present and the roadmap over-
lay matches the actual coronary arteries more precisely.

2.3 Compositional Motion Model

To compensate large image motion incurred by breathing, we introduce a tem-
porally compositional motion model. Assume that the roadmap image is initially
overlaid on a reference image It0 acquired at t0 and for incoming fluoroscopic
images, respiratory motion compensation is carried out on cardiac gated frames.
At time t1, motion compensation is performed between It1 and It0 to transform
the roadmap image to match It1 . Denote the motion between It1 and It0 as
W (x;P1,0). As the respiratory phase moves away from t0, for instance at t2, the
soft tissue motion observed in the fluoroscopic image can be quite large, which
makes direct motion estimation between It2 and It0 difficult. Instead, we first es-
timate the motion W (x;P2,1) between It2 and It1 assuming the motion between
It2 and It1 is much smaller than the motion between It2 and It0 . We then use
the compositional motion model W (x;P2,0) = W (W (x;P2,1);P1,0) to initialize
the motion parameters P2,0, and continue with the extended LK algorithm to
refine the motion model W (x;P2,0) between It2 and It0 . Essentially, It1 serves as
an online reference image to relate the live fluoroscopic image It2 to the prede-
termined reference image It0 . In our implementation, multiple online reference
images covering a normal respiratory cycle are used in the motion compensation
of live fluoroscopic images.

3 Results

To test the accuracy of the proposed method for motion compensation, we used
fluoroscopic images from 7 clinical cases of chronic total occlusion or stenosis
treatment. The data was acquired on Angiographic C-arm systems (AXIOM
Artis, Siemens Medical Solution) from different angles. Each image frame has
512 × 512 pixels and the pixel size is either 0.216mm or 0.308mm. These cases
were chosen because they all had guidewires present throughout the entire image
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Fig. 1. WSSD-based motion estimation. Top row (left to right): original coronary im-

age; reference image with a vesselness map shown in red simulating a coronary roadmap;

test image. Bottom row (left to right): weighting function computed from local corre-

lation coefficients; overlay of vesselness map after WSSD-based motion compensation;

overlay of vesselness map after standard SSD-based motion compensation.
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Fig. 2. Distribution of the misalignment error. (a) Error in pixels. (b) Error in mil-

limeters.

sequences, which provided the ground truth of vessel centerlines for evaluation.
Images with dye injection or visible guidewires were used as the reference images
for the initial roadmap overlay. In each reference image, we manually labeled the
centerline or the guidewire of one coronary artery to simulate the initial roadmap
overlay. We performed motion compensation on a total of 106 frames, and used
the estimated motion parameters to transform the initial roadmaps to match the
test images. In each test image, we manually labeled the guidewire and used it as
the ground truth for the coronary centerline. We then compared the ground truth
of the coronary centerlines with the motion compensated roadmap overlays. As a
misalignment measure, the distances between the motion compensated roadmap
and the ground truth labels were calculated.

Since the fluoroscopic sequences used in testing were captured by long focal
length perspective models, i.e., near orthographic projection of the 3D volume,
pixel spacing in 2D images can be mapped to the distance between correspond-
ing points in the 3D space through scaling by a factor. This is valid in the
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Fig. 3. Coronary roadmapping shown in pairs of an original image and the image with

roadmap overlay. Roadmaps in reference images are shown in red. Motion compensated

roadmaps in test images are shown in blue.

plane orthogonal to the viewing direction, regardless of the 3D geometry of the
imaged subject or its depth. Fig. 2 shows the distribution of the misalignment
error in pixels and in millimeters. The mean, median and standard deviation
of the misalignment are 4.1064, 2.2361 and 4.9317 pixels, or 1.1443, 0.6469 and
1.3801mm respectively. The two error distributions are slightly different because
of the different pixel sizes in the testing sequences. A few examples of motion
compensated roadmap overlays are shown in Fig. 3.

4 Discussions

We have presented a novel image-based method of respiratory motion compen-
sation for coronary roadmapping in fluoroscopic images. An extended LK al-
gorithm based on weighted SSD is proposed to robustly estimate soft tissue
motion when layers of static structures are present. For coronary roadmapping,
the coronary locations are essentially inferred from the soft tissue motion when
the contrast medium is not present. Even though a simplified two-layered com-
positional model and a global affine motion model are used to characterize the
content and the dynamics of the fluoroscopic images of the heart over respira-
tory cycles, the initial results on real clinical data look very promising. Future
directions include investigation of more elaborated models including local motion
models to better characterize soft tissue motion incurred by respiration.
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Abstract. In the context of minimally invasive surgery, clinical risks are highly 
associated with surgeons' skill in manipulating surgical tools and their knowl-
edge of the closed anatomy. A quantitative surgical skill assessment can reduce 
faulty procedures and prevent some surgical risks. In this paper focusing on si-
nus surgery, we present two methods to identify both skill level and task type 
by recording motion data of surgical tools as well as the surgeon's eye gaze lo-
cation on the screen. We generate a total of 14 discrete Hidden Markov Models 
for seven surgical tasks at both expert and novice levels using a repeated k-fold 
evaluation method. The dataset contains 95 expert and 139 novice trials of sur-
gery over a cadaver. The results reveal two insights: eye-gaze data contains skill 
related structures; and adding this info to the surgical tool motion data improves 
skill assessment by 13.2% and 5.3% for expert and novice levels, respectively. 
The proposed system quantifies surgeon's skill level with an accuracy of 82.5% 
and surgical task type of 77.8%.  

1   Introduction 

The performance of a minimally invasive surgery highly depends on surgeons' dexter-
ity in using surgical tools and their knowledge of the anatomy. This fact highlights the 
significance of Objective surgical skill evaluation. 

A procedure of Functional Endoscopic Sinus Surgery (FESS) involves inserting an 
endoscope with a tiny camera on the end into the sinus cavity to provide the surgeon 
with a clear view of the surgical field and the ability to use instruments in treating the 
pathology. The surgeon's performance is limited due to indirect observation of the 
anatomy and inflexibility of the tools' movements inside the sinus cavity. FESS in-
volves even higher risks due to the sinus’ close proximity to the brain, major arteries 
and critical tissues such as optic nerves.  

A skill evaluation system reveals the characteristics hidden in motion data to accu-
rately associate given test sequences to their corresponding skill level. They have 
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been assessed in many studies by either tracking the surgeon's body motion in the 
operating room [1] or hand motion while performing a specific surgical task [2][3][4]. 
The Imperial College Surgical Assessment Device (ICSAD) system tracks the sur-
geon's hand motions during a surgery using electromagnetic (EM) markers [4]. In 
their system, they use a simple feature vector of the number of movements, hand 
speed, and procedure time to define an observed motion. Authors in [5] propose a 
system for scoring an image-guided percutaneous needle-based surgery by a feature 
vector of the successful trials, distance to target, and number of needle retractions. 
Here, we focus on the analysis of kinematic parameters of motion including transla-
tion and rotation of both the tool and the camera. 

In laparoscopic surgeries, skill level is evaluated by measuring force and motion 
data [3]. The promising results with tele-operated robotic systems [2][6][7] show that 
Hidden Markov Models (HMM) enable us to recognize skill level and subtasks from 
motion data. Results in [8] show that rotated view of camera in laparoscopic surgeries 
increases the complexity of the task. In this paper, motion data is not recorded from a 
robotic system. We collect surgical tool motion data by attaching EM sensors to them.  

An infrared-based eye tracking system can be used to measure the gaze position as 
an important factor in skill evaluation [9]. These trackers are used in other fields such 
as psychology [10]. Eye-gaze information plays a key role in eye-hand coordination, 
performance and adjustment of the surgical tools. To the best of our knowledge there 
is no prior published work in surgical skill evaluation featuring this system. 

Our work differs from previous studies in that we generate 14 models (two skill 
levels in seven surgical tasks) and used them to recognize skill level and task type. 
Motions of the surgical tools and the surgeon's eye-gaze are recorded while perform-
ing different FESS tasks. We address the two following questions: First, is there any 
skill indicative structure in surgeon's eye-gaze motions? Second, how significant is 
the addition of eye-gaze data to surgical skill evaluation performance?   

2   Experiment Setup 

In this experiment, subjects are asked to find and touch a given anatomy inside the 
sinus cavity of a cadaver by using an endoscope and a nasal pointer. A group of seven 
anatomical targets are defined: Anterior Genu (AG), Eustachian Tube (ET), Fossa of 
Rosenmuller (FR), Opto Carotid Recess (OCR), Optic Nerve (ON), Pituitary Gland 
(PIT), and Superior Turbinate (ST). Figure 1 is the block diagram of the proposed 
experiment which illustrates the data collection setup and the proposed methodology. 
 

 

Fig. 1. System block diagram 
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Motion data from different trials of surgical tasks were collected from a group of 
11 different subjects in two levels: 5 expert and 6 novices (Table 1). We defined an 
expert as a surgeon possessing knowledge of sinus anatomy structure and operation of 
the endoscope.  Our novice subjects were those with no prior endoscopic experience. 

Each subject performs two trials of surgeries. Each trial consists of 14 tasks: two 
sets of all seven tasks in random order. The duration of tasks vary between 5 to 46 
seconds. We discard tasks involving irregular procedures (i.e. cleaning the endoscope 
tip, or leaving tools idle on the bed). The number of trials for each task in two possi-
ble skill levels is listed in the rows of Table 1. A total of 95 tasks are collected from 
expert surgeons and 139 tasks from novice surgeons.  

The motion data of each trial is recorded using two trackers and a video stream: (1) 
The EM tracker collects motion data of both the endoscope and the nasal pointer at a 
frequency of 40 Hz, using two 5-DOF coil sensors attached to them. Sixteen variables 
are recorded per frame: a time stamp, a 3D translation and the four parameters of a 
rotation quaternion per sensor. (2) The eye-gaze tracker records 2D eye-gaze loca-
tions on the monitor (800x1200 pixel) at a frequency of 50 Hz. Three parameters are 
recorded per frame: a time stamp and a 2D eye-gaze location on the screen. (3) The 
video stream (352x240 pixel, 30 fps) is recorded from the endoscope tower.  

Table 1. Number of performed tasks per skill level 

                    Task 
Skill          

AG ET FR OCR ON PIT ST 

Expert 11 14 14 14 11 14 17 
Novice 15 19 21 24 16 23 21 

 
Later, we perform a pivot calibration for EM-tracker dataset and an eye-gaze cali-

bration in order to register identified pupil position to the ground truth. In this ex-
periment we initially study skill information of each of these trackers individually and 
then assess their aggregated performance.  

3   Methodology: Hypotheses and Tests 

In this paper we answer the aforementioned key questions: First, is there any skill 
indicative structure in surgeon's eye-gaze motions? Second, how significant is the 
addition of eye-gaze data to surgical skill evaluation performance?    

We run two tests to find the answer for each question: a Skill Level Assessment 
(SLA) and a Task Performance Assessment (TPA). The former evaluates the skill 
level of the surgeon given a particular task, while the latter identifies the surgical task 
for a given expertise level.  An additional pre-observed test is run on each dataset to 
verify that the generated models recognize their trained sequences properly. Referring 
to Figure 1, 14 configurations of SLA and 49 trials of TPA are carried out for a given 
skill level. 

3.1   SLA: Skill Level Assessment  

The intent of this test is to identify skill level of a given known task. To do so, we 
evaluate different trials of the task against HMMs of both expertise levels and meas-
ure True Positives, True Negatives, False Positives, and False Negatives ratios in a 
cross validation context.  The Positives and Negatives are associated to expert and 
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novice skill level, respectively. Our first hypothesis is True Positives and True Nega-
tives are higher than False Positives and False Negatives for each model. The more 
the disparity they have, the higher the skill level performance is. 

3.2   TPA: Task Performance Assessment  

We use this test to recognize the type of the performed task for a given expertise 
level. We find the most similar task to the test task by evaluating it against all HMMs 
in the same expertise level. A noise model REJ is generated from random parts of the 
datasets to measure the False Rejection Probability. Our second hypothesis is that the 
performance of TPA is high when we compare the test task against its matching 
model and is low when compared to other tasks models.  

3.3   Data Preparation  

To prepare motion data for training the task models, a task-wise segmentation is run 
on the synchronized datasets. We are able to split the videos based on the performed 
tasks. We need to mark the motion data to help synchronize with the corresponding 
video. During the clinical procedures, subjects are asked to look at a fixed point in the 
surgical field while touching it with the pointer tip for a few seconds in between the 
trials. To extract the fixed points in the motion data, we follow two assumptions: (1) 
the tool-tip is not in motion, and (2) the endoscope does not move significantly while 
touching the fixed points. The gradient of the motion is zero for a stationary object.  

In equation 1, the function f(x) is used to extract those stationary moments in the 
tool and endoscope motion datasets. The function g(x) is a binary signal which repre-
sents the same moments in the video stream. Both f and g are variables of time and S 
is the convolution of fixed-point moments in the video and the tools. The global 
maxima of S is used to sync the tool motion data with the performed tasks in the 
video.  We carry out the same procedure for the eye-gaze dataset to synchronize it 
with the performed task. This allows us to segment all of the datasets task-wise.  
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In a clinical procedure, an expert surgeon tries to avoid critical tissues inside the 
sinus cavity by constantly monitoring them on the screen while holding the tools 
away from them inside the sinus. This leads to a group of imaginary points in the sur-
gical field which constrain the surgeon's path toward the desired anatomical target. To 
discover the path, we apply k-means clustering algorithms to the motion datasets. We 
use a range of 4-9 for variable k in tool dataset, and 2-6 in eye-gaze dataset to deter-
mine the number of clusters with higher accuracy. Each frame of motion sequences is 
replaced by its corresponding cluster.  

3.4   Evaluation Method 

The HMMs are generated and tested using a k-fold method. The k-fold is run 14 times 
by changing the let-out task randomly. Each model is trained using the Baum-Welch 
algorithm with 100 iterations and an error tolerance of 0.01.  
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The HMMs are evaluated using Equation 2 to classify a test sequence. Probability 
function P is the log likelihood of an observation sequence (Of) to a given model Mm, 
where the set O is generated from the trials of k-fold method. Comparing the resulting 
probabilities, the model C with the highest log likelihood is taken as the most prob-
able source for that observed task. Then, we measure the percentage of similarity be-
tween the given test sequence O and a given HM model Mm by counting the number 
of identified models (Function V).  
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4   Results and Discussions 

Question 1: Is there any skill indicative structure in the surgeon's eye-gaze motions? 
As explained in the previous section, we execute both SLA and TPA tests for each 
skill level and performed task. Table 2 shows the results of skill level recognition for 
a given task. Additionally, Table 3 shows the accuracy of recognizing the type of the 
performed task for a given expertise level. To test the accuracy of the HMMs, the pre-
observed test is run for each level of expertise and a result of 100% recognition is 
achieved for all the following datasets.  

Our first hypothesis is confirmed by comparing the result of each column in Table 3. 
True Positives and True Negatives are significantly larger than False Positives and False 
Negatives, except for the expert level task PIT which is misclassified as the novice 
level. However Table 3 indicates that task PIT can be successfully classified at a given 
expertise level.  The disparity between False and True classification in Table 2 shows 
that surgeon eye-gaze data includes structure for skill-level recognition. 

Table 2. Skill Level Assessment of a given task, using eye-gaze dataset 

Task 
Skill 

AG ET FR OCR ON PIT ST 

TPR 85% 95% 88% 87% 75% 42% 82% 
FNR 15% 5% 12% 13% 25% 58% 18% 
FPR 12% 25% 11% 4% 23% 7% 19% 
TNR 88% 75% 89% 96% 77% 93% 81% 

Table 3. Performed Task Assessment for a given skill level, using eye-gaze dataset 

Skill level Expert Novice 
Trained

Test
AG ET FR OCR ON PIT ST REJ AG ET FR OCR ON PIT ST REJ 

AG 91.7 - - 8.3 8.3 - - - 85.8 7.1 - - 7.1 - 21.4 7.1
ET - 100 - - 8.3 8.3 - 8.3 - 85.8 - - 7.1 - - 7.1
FR - - 75 - 8.4 8.3 - - - - 100 - 7.1 - - 7.1
OCR - - 8.3 75 - - 8.3 - 7.1 - - 92.9 7.1 - - -
ON - - - - 50 - - - - - - - 64.5 - - -
PIT 8.3 - 8.3 - - 75 - - - - - - 7.1 100 14.3 -
ST - - 8.4 16.7 - 8.4 92.7 - 7.1 - - - - - 64.3 -
Reject (REJ) - - - - 25 - - 91.7 - 7.1 - 7.1 - - - 78.7

%accuracy 91.7 100 75 75 50 75 92.7 91.7 85.8 85.8 100 92.9 64.5 100 64.3 78.7  



300 N. Ahmidi et al. 

The columns of Table 3 show that the performed task is always classified to the 
correct HMM (the diagonal of each square repeated in last row). The notable differ-
ence between the recognized models and the REJ model confirms the second hy-
pothesis that eye-gaze data can be used for task evaluation as well.  

Question 2: Can eye-gaze data improve surgical skill evaluation?   
First, we execute SLA and TPA for the motion data of the tools to measure the accu-
racy of the system. Then, we make a new system of HMMs by combining both eye-
gaze and tool datasets. To quantify the improvement achieved, we compare the per-
formance of these two systems.  

  
• System1: skill evaluation using tool datasets 
Tables 4 and 5 show the results for SLA and TPA using EM tracked tool datasets. In 
Table 4, the columns show that the skill level is recognized correctly for each task, 
except for task AG. It reveals that both expert and novice participants perform that 
task with the same level of expertise. Carotid artery is one of the largest objects in the 
nose and one of the most prominent so we would expect it to be the easiest to find.  It 
is also the most understood even by novices, since they are taught specifically from 
the start to always identify this structure.  The anatomy was distorted by removing 
part of the skull base (planum) to make the task harder. Therefore, some subjects mis-
identified structures.    

Table 4. Skill Level Assessmet of a given task, using tools dataset 

Task 
Skill 

AG ET FR OCR ON PIT ST 

TPR 50% 79% 75% 80% 75% 82% 73% 
FNR 50% 21% 25% 20% 25% 18% 27% 
FPR 31% 18% 11% 25% 11% 11% 25% 
TNR 69% 82% 89% 75% 89% 89% 75% 

Table 5. Performed Task Assessment for a given skill-level, using tools dataset 

Skill level Expert Novice 

Trained  
Test 

AG ET FR OCR ON PIT ST REJ AG ET FR OCR ON PIT ST REJ 

AG 100 43 50 28.6 42.9 35.7 14.4 50 64.4 7.1 - 7.1 - 7.1 - 14.3 
ET - 57 - - - - - 7.1 14.3 64.4 - 7.1 - 7.1 - 7.1 
FR - - 50 - - - 7.1 - - 14.3 78.6 - 7.1 7.1 7.1 - 
OCR - - - 64.3 - - 7.1 - 7.1 - - 71.6 - - 7.1 - 
ON - - - - 50 - 7.1 - 7.1 7.1 - 7.1 78.7 - 21.4 - 
PIT - - - - - 64.3 21.4 - - - 7.1 - 7.1 78.7 - - 
ST - - - 7.1 7.1 - 42.9 7.1 7.1 - - 7.1 - - 50 - 
Reject (REJ) - - - - - - - 35.8 - 7.1 14.3 - 7.1 - 14.4 78.6 

                 
%accuracy 100 57 50 64.3 50 64.3 42.9 35.8 64.4 64.4 78.6 71.6 78.7 78.7 50 78.6 

 
Overall accuracy of the models in skill level detection is 73.4% and 81.1% for ex-

pert and novice surgeons, respectively (Table 8). The columns of Table 5 show that 
tasks are always recognizable for novice datasets. The overall identification rate for 
task type recognition is 58.1% and 70.6% for expert and novice groups, respectively.    
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• System2: skill evaluation using combined dataset 
Tables 6 and 7 show the results of executing SLA and TPA over the merged dataset. 
Table 8 shows that expertise level is identifiable in 82.9% of cases for expert surgeons 
and 82% for novice surgeons. The columns of Table 7 show that all of the tasks in the 
same level of expertise are recognized correctly.  

Table 6. Skill Level Assessment of a given task, using merged dataset 

Task 
Skill 

AG ET FR OCR ON PIT ST 

TPR 50% 89% 89% 85% 89% 85% 93% 
FNR 50% 11% 11% 15% 11% 15% 7% 
FPR 46% 13% 13% 13% 10% 13% 18% 
TNR 54% 87% 87% 87% 90% 87% 82% 

Table 7. Performed Task Assessment for a given skill-level, using merged dataset 

Skill level Expert Novice 

 Trained  
Test 

AG ET FR OCR ON PIT ST REJ AG ET FR OCR ON PIT ST REJ 

AG 100 27.3 27.3 27.3 18.2 27.3 36.4 36.3 71.4 - - - - - - - 
ET - 72.7 - - -- - - - - 78.6 - - - - - - 
FR - - 72.7 - - - - - - - 78.6 - - - - - 
OCR - - - 72.7 - - - - - - - 71.4 - - - - 
ON - - - - 81.8 - - - - -- - - 78.6 - - - 
PIT - - - - - 72.7 - - - - - - - 71.4 - - 
ST - - - - - - 63.6 - - - - - - - 85.7 - 
Reject (REJ) - - -- - - - - 63.6 - - - - - - - 78.6 

                 
%accuracy 100 72.7 72.7 72.7 81.8 72.7 63.6 63.6 100 78.6 78.6 71.4 78.6 71.4 85.7 78.6 

Table 8. Performance improvement in skill assessment adding eye-gaze dataset 

Test Skill Surgical tools dataset Merged with eye-gaze dataset  Performance Improvement  
Expert 58.1% 74.98% 16.9% Avg TPA 
Novice 70.7% 80.36% 9.7% 
Expert 73.4% 82.9% 9.5% Avg SLA 
Novice 81.1% 82% 0.9% 

 
Each row in Table 8 is the average result of the corresponding method over the re-

lated models (an average of first and last row of SLA, and last row of TPA). Compar-
ing the performance of the two systems reveals that adding eye-gaze information im-
proves SLA performance by 9.5% for expert and 0.9% for novice surgeons. The aver-
age performance of TPA is 75% and 80.4% for expert and novice surgeons, respec-
tively. This indicates that the new system improves the TPA performance by 16.9% 
for experts and by 9.7% for novice surgeons. 

5   Conclusion 

Precision of sinus surgery is critical due to its close proximity to the brain, major arter-
ies and critical tissues. The work presented here is a promising statistical method to as-
sess skill of a surgeon while performing a Functional Endoscopic Sinus Surgery. We 
make HMM models for seven different surgeries in two level of expertise using the eye-
gaze locations and the surgical tools motions. Two metrics of SLA and TPA access skill 
level and task type of a given surgery. Results reveal that eye-gaze data contains skill 
related structures; and combining it with the surgical tool motion data improves the 
classifier performance. The proposed system improves SLA performance 9.5% for ex-
perts and 0.9% for novices, on average. Besides, TPA performance is improved 16.9% 
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for experts and 9.7% for novice surgeons. The proposed system quantifies surgeon's 
skill level with an accuracy of 82.5% and surgical task type of 77.8%. 

Currently, we are exploring the methods to improve performance of the proposed 
skill assessment techniques. One is to unify coordination systems of the tools and eye-
gaze motions by registering them to the CT image volume of the target anatomy.  
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Abstract. Vitreoretinal surgeons use 0.5mm diameter instruments to manipu-
late delicate tissue inside the eye while applying imperceptible forces that can 
cause damage to the retina. We present a system which robotically regulates us-
er-applied forces to the tissue, to minimize the risk of retinal hemorrhage or tear 
during membrane peeling, a common task in vitreoretinal surgery. Our research 
platform is based on a cooperatively controlled microsurgery robot. It integrates 
a custom micro-force sensing surgical pick, which provides conventional surgi-
cal function and real time force information. We report the development of a 
new phantom, which is used to assess robot control, force feedback methods, 
and our newly implemented auditory sensory substitution to specifically assist 
membrane peeling. Our findings show that auditory sensory substitution de-
creased peeling forces in all tests, and that robotic force scaling with audio 
feedback is the most promising aid in reducing peeling forces and task comple-
tion time. 

Keywords: Robotic Microsurgery, Vitreoretinal Surgery, Cooperative Robot 
Control, Force Sensing, Force Scaling, Auditory Sensory Substitution. 

1   Introduction 

Microsurgical manipulation requires precise manual dexterity, fine visual-motor co-
ordination, and application of forces that are well below human tactile sensation [1]. 
Imprecise movements during these operations are further attributed to physiological 
hand tremor, fatigue, poor visual and kinesthetic feedback, as well as patient move-
ment. In vitreoretinal surgery, the common microsurgery risks and limitations are 
further extended by surgical inaccessibility, poor visibility, tissue fragility and the 
flexibility of delicate (20–25 Ga) surgical instruments. 

Epiretinal membrane (ERM) peeling is a typical task where a thin membrane is 
carefully delaminated off the surface of the retina by grasping the membrane's edge 
with micro-forceps and pulling it free from the retina. Due to unstable manipulation 
and unknown forces applied to the tissue, the maneuver is associated with the risks of 
retinal hemorrhage and tearing, leading to potentially irreversible damage that results 
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in vision loss. Surgeons manipulate the peeling tissue at very slow instrument veloci-
ties, observed to be within 0.1–0.5 mm/s range, and simultaneously visually monitor 
local surface deformation that may indicate undesirable forces between the surgical 
instrument, the membrane and the retina. A capable surgeon reacts to such cues by 
retracting the instrument and regrasping the tissue for an alternate approach. This task 
is extremely difficult to master due to nearly imperceptible visual cues, and a re-
quirement for very precise visuomotor reflexes. Factors such as involuntary patient 
motion, inconsistent tissue properties, high or variable tool velocities, and changing 
manipulation directions can dramatically increase undesirable forces applied to the 
delicate retinal tissue. Actively sensing and limiting these forces has the potential to 
significantly improve surgical precision and diminish surgical complications. 

One approach is to reduce physiological hand tremor and actively improve the sur-
geon’s fine motion control. An example is MICRON, a hand held device that uses piezo 
actuators to counteract undesirable hand tremor and scale input motions [2]. Another 
approach is a use of a tele-operated robot, such as [3], to reduce hand tremor through 
remote control and motion scaling. The cooperatively controlled JHU Steady-hand 
Eye Robot [4] relies on its stiff structure and non back-drivable actuators with high 
resolution encoders to provide stability and precision. To our knowledge, these sys-
tems do not provide any tool-tissue interaction force feedback to the surgeon. Logi-
cally, combining hand tremor reduction with precise motion control and end-point 
force sensing feedback is a more complete approach. 

There have been some attempts to measure tool to tissue interaction forces with in-
struments that had sensing elements built into the handle [5] and to incorporate sensed 
tool-tissue forces into cooperative control (e.g. [7,8]). Handle mounted tool force 
sensors are not practical for vitreoretinal surgery, because the shaft of the instrument 
is inserted through the sclera. The friction between the tool and the trocar, and lateral 
forces from the transacting sclera with the tool can significantly attenuate or distort 
the propagation of the forces to the tissues inside of the eye. This limitation may be 
addressed by incorporating force sensing elements into the shaft section of the in-
strument that is typically located inside the eye [6]. 

In this paper we investigate and compare micro-force sensing feedback to specifically 
assist in membrane peeling, for which we developed a novel phantom that approximates 
peeling forces encountered in retinal surgery. We summarize our microsurgical research  
 

 

 

Fig. 1. A) Robot with RCM mechanism [11]; B) Force Sensor Instrument Concept [6]; C) 
Peeling sample and hooked force sensor instrument; D) Experimental setup 
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platform integrating a 2-DOF force-sensing vitreoretinal surgery instrument and the new 
cooperative control robot with a remote center-of-motion mechanism (RCM). In addition 
to the linear “force scaling” cooperative control in [7,8], we introduce a velocity limiting 
force-cooperative control mode. We also present our new task-specific auditory sensory 
substitution and assess its effects on task performance, both with freehand instruments 
and with our various robot cooperative control modes. 

2   Experimental Platform 

2.1   Robotic Assistant 

Our cooperatively controlled “steady hand” robotic assistant is a 5-DOF system 
(Fig. 1A) similar to [4] and designed as a development platform for microsurgery 
research. It is an admittance-type system, collaboratively providing steady-hand mo-
tion by inherently filtering physiological hand tremor and low-frequency drift found 
in surgeons’ hand movements during microsurgery [9]. A 6-DOF force/torque sensor 
mounted at the tool holder senses forces exerted by the surgeon on the tool, for use as 
command inputs to the robot. This design improves on similar work described in [4] 
by increasing the range of motion, including a custom mechanical RCM and improv-
ing the stiffness and precision of the stages. The RCM mechanism improves the gen-
eral stability of the system by reducing range of motion and velocities in the Cartesian 
stages when operating in virtual RCM mode [10], which constrains the tool axis to 
always intersect the sclerotomy opening on the eye. This is a necessary safety feature 
to minimize undesirable translations of the eye and also simplifies software control. 
The actuator motion controller servo loop frequency is 4 kHz, while the robot control 
loop operates at 400 Hz. A more detailed description is in [11]. 

2.2   Micro-force Sensing Instrument 

Vitreoretinal microsurgical applications introduce certain limitations on the exact 
choice of force sensor by demanding sub-mN accuracy required to sense forces that 
are routinely less than 7.5 mN [1]. A miniature instrument size is necessary to be 
inserted through a 25 Ga sclerotomy opening and the force sensor must be able to 
obtain measurements at the instrument’s tip, below the sclera. 

A tool with integrated fiber Bragg grating (FBG) sensors was manufactured for this 
purpose, following the design [6] of Iordachita et al. FBGs are robust optical sensors 
capable of detecting changes in strain, without interference from electrostatic, elec-
tromagnetic or radio frequency sources. Three optical fibers are placed along the tool 
shaft (Fig. 1B) and by measuring the bending of the tool they allow for calculation of 
the force in the transverse plane with a sensitivity of 0.25 mN. The tip of the tool is a 
simple hook, and the tool is mounted in the robot tool holder in a calibrated orienta-
tion relative to the robot. The sensor data was collected and processed at 2 kHz and 
transmitted over TCP/IP. 

2.3   Membrane Peeling Phantom 

To develop and assess the performance of control and auditory feedback methods,  
we required a consistent and easily fabricated phantom model, behaving within the 
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parameters of vitreoretinal surgery. The 
actual peeling procedure involves grasp-
ing or hooking a tissue layer and slowly 
delaminating it, often in a circular pat-
tern. To reduce the factors needed to be 
controlled, we simplified the target ma-
neuver to a straight line peel using a 
hooked instrument. 

Video recordings of actual epiretinal 
membrane peeling procedures were ana-
lyzed and tool velocities during mem-
brane peeling were found to be 0.1–
0.5 mm/s. Gupta et al. found that retinal 
tissue manipulation forces are likely to be 
below 7.5 mN [1], while Jagtap et al. found them to be comparable but slightly higher 
[12]. With these values in mind, after extensive search and trial-and-error testing of 
many materials, we identified that sticky tabs from 19 mm Clear Bandages (RiteAid 
brand) to be a suitable and repeatable phantom for delaminating. The tab was sliced to 
produce 2 mm wide strips (Fig. 1C) that can be peeled multiple times from its back-
ing, with predictable behavior showing increase of peeling force with increased peel-
ing velocity. The plastic peeling layer is very flexible but strong enough to withstand 
breaking pressures at the hook attachment site. A 10 mm section of the strip is con-
sidered, requiring 20 mm of tool travel to complete a peel. Fig. 2 shows the forces 
observed at various velocities. 

3   Methods 

We have employed three cooperative control methods which modulate the behavior of 
the robot based on operator input and/or tool tip forces. The control method parame-
ters considered handle input force range (0–5 N), and peeling task forces and veloci-
ties. Audio sensory substitution serves as a surrogate or complementary form of feed-
back and provides high resolution real-time tool tip force information. 

 

Proportional Velocity Control (PV) paradigm is described in [7], where the velocity 
at the tool (V) is proportional to the user’s input force at the handle (Fh). A gain of α = 
1 was used, which translates handle input force of 1 N to 1 mm/s tool velocity. 

hFx α=  (1) 

Linear Force Scaling Control (FS) maps, or amplifies, the human-imperceptible 
forces sensed at the tool tip (Ft) to handle interaction forces by modulating robot ve-
locity. Prior applications used γ = 25 and γ = 62.5 scale factors [7, 8] which are low 
for the range of operating parameters in vitreoretinal peeling. Scaling factor of γ = 
500 was chosen to map the 0–10 mN manipulation forces at the tool tip to input 
forces of 0–5 N at the handle. 

( ) 1, =+= αγα th FFx  (2) 

Proportional Velocity Control with Limits (VL) increases maneuverability when low 
tip forces are present. The method uses PV control but with an additional velocity 

Fig. 2. Peeling sample repeatability tests 
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constraint that is inversely proportional to the tip force. With such scaling, the robot 
response becomes very sluggish with higher tool tip forces, effectively dampening 
manipulation velocities. The constraint parameters were chosen empirically to be m = 
-180 and b = 0.9. To avoid zero crossing instability, forces lower than f1 = 1 mN in 
magnitude do not limit the velocity. Likewise, to provide some control to the operator 
when tip forces are above a high threshold (f2 = 7.5 mN), a velocity limit (v2 = 0.1) is 
enforced. 
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Where ),(lim tFV  is the function in Fig. 3A. 

 

 

Fig. 3. A) Velocity limiting function (symmetric about V = -F); B) Audio feedback zones 

 
Force-to-Auditory Sensory Substitution. In current practice, surgeons indirectly 
assess the relative stress applied to tissue via visual interpretation of changing light 
reflections from deforming tissue. This type of “visual sensory substitution” requires 
significant experience and concentration, common only to the expert surgeons. To 
provide more clear and objective feedback, we measure these forces directly and 
convey them to the surgeon in real time with auditory representation. Kitagawa et al. 
showed that auditory feedback representing force in a complex surgical task improves 
robot assisted performance and suggests that continuous and real-time feedback is 
more effective than discrete, single event information [13]. We designed auditory 
feedback that modulates the playback tempo of audio “beeps” in three force level 
zones which represent force operating ranges chosen to be relevant in typical vitreo-
retinal operations. The audio is silent until 1 mN or greater force is measured. A con-
stant slow beeping is emitted until 3.5 mN, which is designated to be a “safe” force 
operating zone. A “cautious zone” was designated as 3.5–7 mN, and has a proportion-
ally increasing tempo followed by a “danger zone” that generates a constant high 
tempo beeping. 

Experiments. Our objective is to compare the effectiveness of the above methods in 
decreasing mean and maximum peeling forces while minimizing time taken to com-
plete the task. A single subject was tested in this preliminary experiment, which was 
configured in the following ways. The phantom was adhered to a stable platform with 
double-stick tape and the robot was positioned so the hook is ~1.5 mm above the 
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peeling surface. The orientation of the handle was perpendicular to the peeling direc-
tion and comfortable to the operator. To eliminate force cues from tool bending, the 
visibility of the tool shaft was obstructed with the exception of the tool tip (Fig. 2D). 
The test subject was trained extensively (~3 hours) prior to the trials. Five minute 
breaks were allowed between trials. The operator was directed to peel the membrane 
steadily and as slow as possible without stopping. To simplifying the experiments we 
limited the robot motion to Cartesian translations only; experiments showed no no-
ticeable difference between trials with and without rotational DOFs. No visual magni-
fication was provided to the operator. For all trials we used the same sample and, for 
consistency, we have tested the behavior of the sample before and after the experi-
ment. For comparison, we have included freehand peeling tests where the operator 
peeled the sample without robot assistance. Five trials of each method were per-
formed with audio feedback, and five without for the following: Freehand (FH/FHA), 
Proportional Velocity Control (PV/PVA), Linear Force Scaling Control (FS/FSA), 
Velocity Limiting Control (VL/VLA). 

4   Results 

In every method tested, audio 
feedback decreased the maxi-
mum tip forces, as well as tip 
force variability (Fig. 4). It 
significantly increased the task 
completion time for freehand 
and proportional velocity con-
trol trials while the time de-
creased slightly for the others. The operator was naturally inclined to “hover” around 
the discrete audio transition point corresponding to 3.5 mN, which was observed in all 
cases except freehand. This was particularly prominent in force scaling, where the 
operator appears to rely on audio cues over haptic feedback (see Fig. 5C, time 60–
80 s). In velocity limiting trials, audio reduced mean input handle forces by 50% 
without compromising performance. This indicates that the user consciously at-
tempted to use audio feedback to reduce the forces applied to the sample. 
 

Freehand (Fig. 5A) trials showed considerable high force variation due to physio-
logical hand tremor. The mean force applied was around 5 mN, with maximum near 
8 mN. Audio feedback helped to reduce large forces but significantly increased task 
completion time. 

Proportional Velocity (Fig. 5B) control performance benefited from the stability of 
robot assistance and resulted in a smoother force application, while the range of 
forces was comparable to freehand tests. Likewise, audio feedback caused a decrease 
in large forces but increased time to complete the task. 

Force Scaling (Fig. 5C) control yielded the best overall performance in terms of 
mean forces with and without audio. Although, the average time to completion was 
the longest, except for freehand with audio. 

Velocity Limiting (Fig. 5D) control resulted in a very smooth response except for 
the section that required higher absolute peeling forces at the limited velocity. This  
 

 

Fig. 4. Table of tip force results from all trials 
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Fig. 5. Plots of representative trials of each mode showing tip forces, with/out audio feedback 

 
had an effect of contouring “along” a virtual constraint. Due to matching thresholds, 
audio had very little effect on the performance. 

5   Discussion and Conclusions 

Robotic assistance combining a cooperatively controlled manipulation with real time 
tool-to-tissue force sensing has significant potential to improve surgical practice, 
especially when combined with audio sensory substitution. We have shown that our 
experimental system is capable of measuring and reacting to forces under 7.5 mN, a 
common range in microsurgery. We have found that force scaling with audio feed-
back provides the most intuitive response and force-reducing performance in a simu-
lated membrane peeling task, where the goal is to apply low and steady forces to 
generate a controlled delamination. 

We designed robot control and audio feedback parameters specifically for our 
membrane peeling phantom which, according to our expert surgeon co-authors, is a 
satisfactory surrogate for the target task. The feedback parameters can also be tuned 
in real-time to accommodate for operator preference and optimize the system for 
other microsurgical tasks. In our experiment, the force scaling yielded the best results, 
however the handle input forces were high (~2.5 N) enough to cause fatigue and de-
creased precision due to prolonged stress. Lowering the force scaling gain will lower 
the handle input forces, but this may compromise sensitivity since the human finger 
has a force sensing resolution of 0.5 N [14]. 

Preliminary user feedback has indicated that auditory sensory substitution can be 
very useful, especially when combined with cooperative robot control. Our surgeon 
coauthors believe that continuous audio feedback may be disruptive or overwhelming 
in already noisy operating room, but occasional and unique sounding feedback during 
critical moments can be very valuable. During operator training, we have observed 
significant improvement in task completion rates and decrease in force variation 
stemming from audio feedback alone. This concept has potential to be a very useful 
training tool in providing immediate and objective tissue manipulation force informa-
tion which can be correlated with other cues. 
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The results from this single-user pilot study are encouraging and provide the basis 
for a planned multi-user study. Other next steps involve characterizing in-vivo mem-
brane peeling forces and tool trajectories to verify and improve our artificial phantom, 
and to optimize our robot control parameters for in-vivo system assessment. We are 
also planning a human factors study to identify intuitive, effective and operating room 
compatible auditory sensory substitution methods. Finally, to cover a variety of peeling 
approaches and force application directions, we plan to build a microsurgical forceps 
that measures axial force in addition to the two axis transverse forces used in this work. 
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Abstract. In prostate brachytherapy, transrectal ultrasound (TRUS) is used to 
visualize the anatomy, while implanted seeds can be seen in C-arm fluoroscopy. 
Intra-operative dosimetry optimization requires reconstruction of the implanted 
seeds from multiple C-arm fluoroscopy images, which in turn requires estimation 
of the C-arm poses. We estimate the pose of the C-arm by two-stage registration 
between the 2D fluoroscopy images to a 3D TRUS volume. As single-view 
2D/3D registration tends to yield depth error, we first estimate the depth from 
multiple 2D fluoro images and input this to a single-view 2D/3D registration. A 
commercial phantom was implanted with seeds and imaged with TRUS and CT. 
Ground-truth registration was established between the two by radiographic fidu-
cials. Synthetic ground-truth fluoro images were created from the CT volume 
and registered to the 3D TRUS. The average rotation and translation errors were 
1.0° (STD=2.3°) and 0.7mm (STD=1.9 mm), respectively. In data from a human 
patient, the average rotation and lateral translation errors were 0.6° (STD=3.0°) 
and 1.5 mm (STD=2.8 mm), respectively, relative to the ground-truth established 
by a radiographic fiducial. Fully automated image-based C-arm pose estimation 
was demonstrated in prostate brachytherapy. Accuracy and robustness was  
excellent on phantom. Early result in human patient data appears clinically  
adequate.  

1   Introduction 

Prostate cancer is the second most common cancer in men, diagnosed in 192,280 new 
patients each year in North America [1]. Brachytherapy is a definitive treatment of 
early stage prostate cancer, chosen by over 50,000 men each year. The procedure 
entails permanent implantation of small radioactive isotope capsules (a.k.a. seeds) 
into the prostate to kill the cancer with radiation. Success hinges on precise placement 
of the implants to provide the needed dose distribution. Unfortunately, primarily due 
to tissue motion, organ deformation, and needle deflection, actual seed positions 
never turn out to be as planned. Intraoperative dose optimization during the procedure 
would allow for correcting deviations from the plan and thus tailor the dose to cancer 
without harming surrounding normal tissues. This requires localization of the prostate 
and implanted seeds; a much coveted function that is not available today [2]. Prostate 
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Fig. 1. Typical brachytherapy setup with 
TRUS probe and C-arm with a narrow 
angular range. (Illustration by Xiao Xiao 
Ma). 

brachytherapy is performed with transrectal 
ultrasound (TRUS) guidance that provides 
adequate real-time visualization of the 
prostate but not of the implanted seeds. C-
arm fluoroscopy is widely used for gross 
visual assessment of the implanted seeds 
(Figure 1) but it cannot show the prostate 
and other relevant structures. Fusion of 
these complementary modalities would 
enable dynamic dosimetry. A variety of 
implant reconstruction techniques have 
been investigated [3,4,5] which share one 
common requirement: the relative poses of 
the fluoroscopy images must be known 
prior to reconstruction. The fluoroscopy 
pose is usually determined in one of three 
ways. (a) Electronic joint encoder [3], 
rarely available as most facilities do not 
upgrade their vintage C-arms. (b) Optical 
tracker could localize the C-arm [4], which 
introduces prohibitive devices and logistical complexity in the otherwise streamlined 
clinical procedure. (c) Radiographic fiducials placed in the field of imaging, from 
which the pose of the fluoroscope can be discerned in relation to the fiducial structure 
[5]. Radiographic fiducials are independent of any C-arm brand or type. Unfortu-
nately, fiducials must be segmented in fluoroscopy, a perennial issue for clinical prac-
tice. Also, the fiducials occupy priceless real estate in the image, forcing the prostate 
toward the edges where image distortion tends to be more severe, which in turn de-
mands online distortion correction. Finally, mounting the fiducial to be visible in all 
C-arm poses is a major procedural challenge and requires a large and thus very ex-
pensive image detector. 

We propose a method that is radically different from the prior art. We estimate the 
relative pose of C-arm images by the registration of the 2D fluoroscopy images to the 
3D TRUS volume, and by doing so we estimate the poses of C-arm images in a coor-
dinate system fixed to the prostate.  As a byproduct, we receive an estimate of the 
registration between the C-arm and ultrasound spaces, which is required for dynamic 
dosimetry. The objective is to recover the C-arm poses with an accuracy that is suffi-
cient for subsequent reconstruction of the implanted seeds like in [4] or [5].  

Our contribution is the first report of C-arm pose estimation by registration of 2D 
C-arm images to 3D ultrasound. The apparent straightforwardness of our approach 
should not misrepresent the investment of creative effort needed to make it a worka-
ble clinical tool, despite the availability of underlying technical components. We 
devised an elegant and entirely novel solution for a longstanding clinical problem by 
adapting available techniques. Besides registering the C-arm space directly to the 
prostate without surrogate markers, the most salient feature is that we avoid adding 
any instrumentation to the standard clinical setup. Our solution blends seamlessly 
with the current clinical install base and so it could be rapidly introduced to commu-
nity care with minimal cost and make a positive impact in the very near future. 
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Prior work in 2D/3D registration can be divided into two categories: feature-based 
and intensity-based methods. Feature-based methods [6] use distance between corre-
sponding point pairs or surfaces as a measure to be optimized. Establishing point 
correspondences and minimizing the distance between them is alternated and repeated 
iteratively until convergence. Consequently, a segmentation of the data is required. 
Intensity-based methods compare the 2D image with a digitally reconstructed radio-
graph (DRR) created from the 3D volume. One can compare the imprints of anatomi-
cal structures obtained from either gradient information or voxel intensity [7-9].  
Literature on registering a 3D ultrasound volume and 2D images has been scarce. 
Hummel et al. [10] used 2D ultrasound to 3D CT registration, where fiducial spheres 
served as markers for alignment. Leung et al. [11] reported rigid registration of 2D 
cardiac X-ray images with 3D echocardiography based on intensities, with cross-
correlation and sum of squared distances metrics. They also used a priori knowledge 
of the full pose to initialize the registration. They report rather large lateral translation 
and rotation errors of about 8 mm and 8°, respectively. 

2   Methodology 

2.1   Central Intuition 

While seeds in an implanted prostate show up well in fluoroscopy, TRUS images of 
the prostate are saturated with artifacts emanating from seeds. In both modalities but 
especially in TRUS, artifacts often masquerade as seeds, an effect called false positive 
appearances. Seeds may also obscure one another in both modalities, an effect called 
hidden seeds. Although there is no exact matching between true positive appearances 
of seeds in TRUS and fluoroscopy, seeds carry enough common information for an 
intensity-based 2D/3D registration to “hone in” on the correct pose between the two. 
Due to false positives, exact segmentation of the seeds in TRUS is unattainable and it 
cannot be used for registration. Figure 2-left shows that even phantom images contain 
many false positives and there are more of them in human images. 

2.2   Single-View 2D/3D Registration 

We apply 2D/3D registration considering the 3D TRUS as the moving volume and the 
2D fluoro as the fixed image. As we only use one fluoro image at a time, we termed 
this single-view registration or shortly SVR.  
 
Metric: We implemented the normalized cross correlation (NCC) metric that consid-
ers all pixel values in the images during registration. Fixed image pixels and their 
positions are mapped to the moving image. The correlation is normalized by the auto-
correlations of both the fixed and moving images. Transform: After TRUS imaging, 
the probe is retracted from the rectum, so as not to block seeds during fluoroscopy. 
This causes the prostate to relax posteriorly, but usually without any apparent defor-
mation. Good clinical practice requires minimal rectal pressure, to prevent deforma-
tion during TRUS imaging involving probe translation [2]. Prostate deformation is 
curtailed by minimizing rectal pressure. Since there is no delay between 3D TRUS 
and 2D fluoro acquisition, our assumption of 2D/3D rigid registration should suffice.  
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Fig. 2. (Left) Ground-truth phantom including coordi-
nate systems and seeds in CT (x marks) overlaid on 
TRUS. The white blotches without corresponding 
seed are false positives. (Right) The synthetic fluoro 
DRR image obtained from the CT volume, as well as, 
an example image of the ray casted TRUS phantom. 

We implemented a transformation 
of six parameters, three for Euler 
angles and three for translation. 
Initial Guess: In the operating 
room, we have an accurate and 
consistent initial guess for the 
registration. Standard patient 
positioning allows for aligning 
the main axes of the TRUS and 
the C-arm. We also place the 
prostate around the center of the 
C-arm that yields an estimate for 
the translation component of the 
transformation [5]. DRR 
Interpolator: A ray casting 
interpolator is used to project the 
moving TRUS volume onto the 
fixed 2D fluoro image. We cast 
rays from the X-ray source of the 
C-arm through the moving TRUS volume to each pixel of the fixed fluoro image. As 
seeds in C-arm show up as point-like structures we introduced a threshold during ray 
casting to ensure that only seed-like appearances from TRUS contribute to the DRR. 
Optimizer: The optimizer chosen to optimize the NCC similarity metric is the (1+1) 
Evolutionary Strategy [13]. In this strategy, both the number of parents and the popu-
lation size are set to one: μ = λ = 1. Mutation is accomplished by adding a vector of 
usually uncorrelated Gaussian random numbers, i.e.Σ = diag(σ2) is a diagonal matrix. 
Step size adaptation can be performed according to Rechenberg's 1/5-rule: if less than 
20% of the generations are successful then decrease the step size for the next genera-
tion; if more than 20% are successful, then increase the step size in order to accelerate 
convergence. As TRUS and fluoro are both spotted with positive appearances in low-
signal areas, the registration could be trapped in local minima. To counteract this 
problem, we restart the registration several times with slightly changing the initial 
pose and then take the median. 

2.3   Multi-view 2D/3D Registration 

As single-view 2D/3D registration is prone to depth error along the X-ray beam, we 
decided to bootstrap the registration in its weakest dimension, depth. In clinical prac-
tice, we can position the C-arm so that the center of the prostate (judged by the extent 
of seeds cloud in the images) is near the C-arm’s isocenter. With non-isocentric  
C-arms, we can use coplanar rotation and set the axis of rotation in the prostate. With 
this setup, the prostate appears at a constant depth, especially at small (maximum ±15°) 
rotations. We estimate this average depth from multiple fluoroscopy views. We pick 
pairs of fluoro images with wide angular separation and one-axis rotation between the 
two. We register them simultaneously to 3D TRUS in a much simplified manner,  
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Fig. 3. Final overlay of TRUS DRR and CT data. 
(Top row) Initial perturbations before registration is 
initiated for angulations of 0º, 15º, and -15º respec-
tively. (Bottom row) Using the recovered depth from 
multi-view registration, a quasi perfect overlap is seen 
after the single-view registration. 

where we optimize only the depth and one rotation. The cost function implemented 
computes the sum of NCC between the fixed image and the DRR. Then we feed the 
approximate depth to the single-view 2D/3D registration (Sec. 2.2.) 

2.4   Ground-Truth Phantom 

A commercial brachytherapy phantom (CIRS Inc., Virginia) was implanted with 48 
non-radioactive Pd103 seeds according to a clinically realistic implant plan. Six CT 
fiducials were mounted on the opposite walls of the phantom, three on each side. This 
configuration of fiducials guarantees maximum target registration accuracy in the 
center where the prostate is located, Figure 2 (left). A dynamic reference body (DRB) 
optical marker (Traxtal, Versa Trax, model TT002-B) was affixed to the phantom, to 
define a coordinate frame that was used for constructing the 3D TRUS volume. The 
fiducials were localized with a calibrated pointer, relative to the DRB. The TRUS 
probe was tracked optically with Polaris (Northern Digital, Waterloo, Canada.), rela-
tive to the DRB. The CT fiducials were localized by segmentation and registered to 
their respective locations determined earlier by the tracked pointer. This yields 
ground-truth registration between the TRUS and CT.  

2.5   Ground-Truth 2D X-ray and TRUS Images  

In order to have perfectly accu-
rate reliable ground-truth image 
poses, we decided to derive 
fluoroscopy images from high 
resolution CT volume image of 
the phantom. Further, the DRR-
s of the phantom computed are 
similar to C-arm images, but 
with the immediate advantage 
that CT has higher geometrical 
accuracy with less experimental 
complexity. We acquired CT 
images of the phantom, with 
0.3×0.3 mm in-plane resolution 
and 0.6 mm slice thickness. As 
seeds are very prominent in CT, 
we only clip a region of interest 
and use window-level scaling to 
create the 8-bit CT. Window/level scaling is a method for mapping a range of inten-
sity to a different scale. Generally, CT data has intensity values between -2000 to 
4095. In our case, true seeds (intensities above 1700) were mapped to 8-bit grayscale. 
Then a suitable threshold of 100 was applied to suppress all remaining artifacts, thus 
yielding ground-truth seed locations in CT that was registered to TRUS earlier. We 
created DRR-s from the 8-bit CT, such as in Figure 2-right. The angular range of the  
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C-arm is constrained by the patient, table, or brachytherapy mount. In clinical prac-
tice, the maximum in-plane and out-of-plane rotation is about ±15°. We created  
DRR-s at 15° increments, using the geometry of a clinical C-arm from [5]. Again, the 
DRR-s played the role of the 2D fluoro images in subsequent phantom experiments. 
Using tracked freehand TRUS acquisition, we scanned the entire phantom volume 
systematically with translational motion, with continuous image capture. 2D pixel 
spacing was 0.14×0.13 mm. Interframe spacing was 0.5 mm. An 8-bit 3D TRUS 
volume was compounded from the 2D images. A distinctive feature of our approach 
is that false positive seed appearances are allowed to remain in the TRUS data. As 
seeds create strong sonic impression in TRUS, as seen in Figure 2-right, it is not nec-
essary to filter soft tissue signal from the images. 

3   Results and Discussion 

The clinical degree of accuracy for pose estimation and implant 3D reconstruction is 
presented in the paper by Jain et al. [12]; thus we require curtailing the rotation error 
to ±4° and lateral translations to about ±2 mm. In 2D/3D registration, the cost metric 
usually has difficulties with properly “driving” the depth component of the pose. In 
C-arm reconstruction, however, the exact same effect is working for our advantage, 
because the reconstruction metric is similarly insensitive to the depth component of 
the C-arm pose. Jain et al. [14] found that “reconstruction error is insensitive to mis-
calibration in origin and focal length errors of up to 50 mm”, inferring that huge depth 
errors are permissible if image poses shift together. What follows is that if the prostate 
is kept near the isocenter, projection and reconstruction are both insensitive to depth; 
a fact that we exploited in designing the multi-view registration scheme. 

3.1   Phantom Studies 

We used 20 random perturbations of maximum ±5 mm translation and ±5° rotation 
about the ground-truth poses, and then we repeated the same with ±10 mm and ±10°. 
These perturbation values are justified since standard patient positioning constrains 
the rotation of the C-arm and allows for quasi iso-centric positioning of the prostate. 
For each case we run a single-view (SVR) and multi-view (MVR) registration. The 
threshold in the DRR interpolator was set at 150, after trying several values. The 
results are summarized in Figure 3 and Table 1. All results are reported as absolute 
distances. With ±5 mm and ±5° perturbations, SVR performed within clinical limits. 
All runs converged and are reported. Average rotation and lateral translation (Tx/Ty) 
errors were 0.8° (STD=2.3°) and 0.5 mm (STD=1.6 mm), respectively. The depth 
error (Tz) was 3.5mm (STD=3.5 mm). Then MVR reduced the depth error to 1.2 mm 
(STD=2.8 mm). Note that lateral translation and rotation errors remained about the 
same, as MVR affects only the depth (Section 2.3.) With ±10 mm and ±10° perturba-
tion, pose recovery was less accurate. Still, all runs converged and are reported. SVR 
achieved average rotation and lateral translation errors of 3.8° (STD=3.4°) and 2.3 
mm (STD=2.1 mm), respectively. Then MVR reduced the depth error to 2.9 mm 
(STD=2.1 mm). 
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Table 1. Ground-truth phantom results. Average translation and rotation error with STD, for 
single-view and multi-view registration. 

 ±5 mm and  ±5° perturbation ±10 mm and ±10° perturbation 
 Tx/Ty Tz Rotation Tx/Ty Tz Rotation 

SVR 0.5 ±1.6 3.5 ±3.5 0.8 ±2.3 2.3 ±2.1 5.7 ±4.7 3.8 ±3.4 
MVR 0.4 ±1.5 1.2 ±2.8 1.0 ±2.3 2.2 ±2.4 2.9 ±2.1 3.9 ±3.4 

 
We implemented the single-view and multi-view registration technique using the 

Insight toolkit (ITK). We used an Intel Core2, 2.4 GHz dual-core computer. The aver-
age speed of the SVR registration was 60 seconds which is feasible in clinic.  

3.2   Clinical Results 

Clinical patient data was collected under ethics board approval. Here we report results 
on the first patient dataset in the trial. Nine C-arm fluoroscopy images were acquired 
and their relative poses recovered with a precision-machined radiographic fiducial [5], 
serving as ground-truth. For the 2D/3D registration, the fluoro images were dewarped 
and a 256×256 pixel ROI was cut around the prostate’s center. The registration pa-
rameters were retuned: since the rotation has a stronger initial guess in the actual 
clinical setup we assigned higher optimization weights to rotation than to translation. 
We used 20 random perturbations of maximum ±5 mm translation and ±5° rotation 
about the true poses, and then we repeated the same with ±10 mm and ±10°. We only 
ran the single-view registration (SVR). MVR could not be tested, because the fiducial 
prevented us from setting the prostate in the isocenter. At ±5 mm and ±5° perturba-
tions, human patient data, the average rotation and lateral translation errors were 0.6° 
(STD=3.0°) and 1.5 mm (STD=2.8 mm), respectively, relative to the ground-truth 
established by a precise radiographic fiducial. The average depth recovered was 3.8 
mm (STD=4.2 mm). After doubling the maximum perturbation, the average rotation 
and lateral translation errors were 1.7° (STD=5.7°) and 1.4 mm (STD=4.0 mm), and 
average depth of 5.1 mm (STD=6.7 mm). Although average errors grew, they still 
remained below the clinically acceptable limits.  

Visual observation is not sufficient for more precise evaluation, due to the concurrent 
effects of true seeds, false positives and hidden seeds. When these are all compounded 
in ray casting, the best matching is not perceivable to the human eye. Nonetheless, true 
seeds carry sufficient information for the intensity-based metric to lock on the pose. 
This phenomenon underscores why explicit segmentation of the seeds in transrectal 
ultrasound cannot be used for registration or for the evaluation thereof. Our experience 
with early clinical data clearly and forcefully underlines the inherent difficulty of reli-
able validation based on explicit segmentation of seeds in TRUS. For many seeds, the 
expert clinician could not tell apart true seeds from noise in TRUS. After two weeks, the 
clinician repeated the task of seed identification in the same patient data and nearly half 
of all seed locations were picked differently, suggesting unreliable consistency in visual 
seed localization. A possible workaround might be applying multiple segmenters, but 
that is likely to fail as well.  Earlier, Orio et al. reported the same difficulty [15], as they 
were able to visually identify 20–25% of all the implanted seeds in TRUS. We estab-
lished registration ground-truth as suggested by Jain et al. in [5], by pre-registration of a 
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radiographic fiducial and the TRUS coordinate space. This approach, however, is not 
generally robust and, as Jain et al. mentioned, it may require compensation for biases 
emanating from multiple sources.  

In summary, we presented the first application of 2D/3D registration in prostate 
brachytherapy for estimating the C-arm pose. Overall accuracy and robustness were 
excellent on phantom data and adequate on human data. The ultimate test, still, is 
whether this pose estimation will prove to be sufficient in brachytherapy implant 
reconstruction such as [4] or [5] – an issue of great clinical interest. 
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Abstract. Novel robotic technologies utilised in surgery need assessment for 
their effects on the user as well as on technical performance. In this paper, the 
evolution in ‘cognitive burden’ across visuomotor learning is quantified using a 
combination of functional near infrared spectroscopy (fNIRS) and graph theory. 
The results demonstrate escalating costs within the activated cortical network 
during the intermediate phase of learning which is manifest as an increase in 
cognitive burden. This innovative application of graph theory and fNIRS en-
ables the economic evaluation of brain behaviour underpinning task execution 
and how this may be impacted by novel technology and learning. Consequently, 
this may shed light on how robotic technologies improve human-machine inter-
action and augment minimally invasive surgical skills acquisition. This work 
has significant implications for the development and assessment of emergent 
robotic technologies at cortical level and in elucidating learning-related plastic-
ity in terms of inter-regional cortical connectivity. 

Keywords: Robotic surgery, cognitive burden, graph theory, near infrared 
spectroscopy, neuroergonomics. 

1   Introduction 

The use of robots for enhancing surgical performance, particularly for minimally 
invasive surgery (MIS) has opened a number of new opportunities. In addition to 
tremor filtration, motion scaling, and virtual fixtures (active constraints), it also pro-
vides a natural framework for integrating pre- and intra-operative imaging combined 
with augmented reality. Recently, the concept of gaze-contingent motor channelling 
(GCMC) has been proposed as a way of potentially improving hand-eye coordination 
for certain aspects of surgery where movement impacts on the surgical site, e.g. beat-
ing heart surgery or targeted therapy and focused energy delivery of robotically as-
sisted MIS [1]. The method relies on eye gaze and its dynamic pursuit movement to 
form constraints that can effectively direct hand movements for accurate targeting in 
the presence of large tissue deformation. It is intuitive that in robotic tasks where 
surgeons are effectively ‘perceptually docked’ with their environment [2], subject-
specific neurocognitive behaviour plays a critical role that influences the final quality 
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of the procedure. The paradigm of neuroergonomics utilizes neuroimaging to assess 
the impact of undertaking tasks at brain level and uses this information to aid the 
development of performance enhancing tools [3]. Methods of assessing task-induced 
mental workload are directed towards the amount of mental resources required versus 
those available i.e. ‘functional segregation’ [4]. However, this approach is unable to 
capture interactions between recruited cortical areas, i.e. ‘functional integration.’ The 
concept of ‘cognitive burden’ relates to the most efficient use of cortical interactions 
and deviations thereof. Neuroplasticity underpins the learning process [5], therefore it 
is necessary to study the evolution of learning related cortical interactions over time.   

The purpose of this paper is to evaluate economic changes in a cortical network as-
sociated with the acquisition of a complex simulated beating heart procedure with and 
without the use of GCMC. At each phase of learning, the activated network is evalu-
ated to assess the degree of task-induced cognitive burden.  

Functional Near Infrared Spectroscopy (fNIRS) [6, 7] allows for the assessment of 
brain function in a more realistic human-robotic environment. The prefrontal cortex 
(PFC) and parietal cortex (PC) are interrogated since a frontoparietal (F-P) network 
underlies visuomotor tracking [8]. Task evoked brain activation is identified using a 
classical statistical approach, leading to the construction of an activity guided map. A 
cortical network defined by phase locked cooperation between channels is analysed in 
terms of its economy within the graph theory framework to unveil longitudinal fluc-
tuations in task related cognitive burden. In this paper, a novel use of graph theory in 
the analysis of fNIRS data enables appreciation of the interaction between cortical 
regions subserving task execution. Ensuing information may be valuable in ensuring 
that novel technology is beneficial to the user and that performance improvements are 
not detrimental to other facets of task execution. This study may have potential impli-
cations for guiding the design and use of performance enhancing technology not only 
in surgery but in other safety critical tasks such as aviation. It is hypothesized that 
performance improvements evoked by GCMC will be secondary to enhanced interac-
tion within a F-P network. 

2   Methods 

2.1   Subjects, Task Paradigm and fNIRS 

A total of 21 healthy right-handed subjects were recruited to track a moving target on 
a simulated beating heart using a virtual tool controlled by a haptic manipulator 
(SensAble Tech. MA). Participants performed this without (control group, n=11) or 
with GCMC (experiment group, n=10). An eyetracking device (Tobii, Sweden) dis-
tinguishes the subject’s fixation point. This information is used to define the force 
required to constrain the subject’s hand allowing accurate target localization as illus-
trated in Fig. 1 [1]. A block design experiment was conducted comprising baseline 
rest (30s), followed by five blocks of the task (20s) and inter trial rest (30s). Perform-
ance was determined as the distance from the tool tip to the target (pixels). Subjects 
undertook task sessions on six separate days. Cortical haemodynamic data was ac-
quired with a fNIRS system (ETG-4000, Hitachi Medical Corp, Japan). Twenty four 
channels in two 3 x 3 arrays were positioned over the left PC and PFC using the UI  
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Fig. 1. Experimental set up (central panel) illustrating the moving target (black dot) and the 
virtual tool (yellow line) controlled by the haptic manipulator. A force (F) proportional to the 
distance (d) from the tool tip to the fixation point is fed back to the subject (via the haptic ma-
nipulator) to diminish this separation [1].  The movement space of the haptic phantom was 
restricted to 2D as the monitor screen is inherently a 2D space. Optode arrays can be appreci-
ated on the subject’s head and the approximate channel location overlain onto a reference atlas 
for PFC and PC (subplots 1 and 2 respectively). Channels (yellow circles) and optode emitters 
and detectors (red and blue circles respectively) are displayed in relation to the UI 10/10 coor-
dinate systems [9]. 

10-10 system [9] as illustrated in Fig. 1.  Raw optical data was converted into relative 
changes in oxygenated haemoglobin (

2
HbOΔ ) and deoxygenated haemoglobin 

( HHbΔ ) using the modified Beer-Lambert Law, then decimated, linearly detrended, 
and subjected to data integrity checks. Representative haemodynamic data are demon-
strated in Fig. 2. Task induced 

2
HbOΔ  and HHbΔ   (t-test rank sign, 5%α < ) were 

determined for each session and channel for each group. 

2.2   Cross Correlation and Activity Guided Network Formation 

Let 
i

HbΔ  and HbjΔ  be the bidimensional 
2
,HbO HHb<Δ Δ >  haemodynamic 

response at channels i  and j  respectively and 
i

T  and 
j

T  their corresponding signal 
length in samples. Let 

,
( , )

i j t Hb
R τ τ  be the normalised 2D cross-correlation between 

the responses at channels i  and j , where 
t
τ  is the temporal lag and 

0 1
t i j

T Tτ≤ < + −  and 
Hb

τ  is the haemodynamic dimensional lag and 
0 3

Hb
τ≤ < . An m m×  phase locked zero lagged correlation matrix 

,
{ ( ( 1) 2, 1)}

ij i j t i j Hb
C c R T Tτ τ= = = + − =  can be formed between each pair of 
channels. A pseudo-metric of signal similarity can be constructed as 

,
1

ij i j
d R= − , 

and the accompanying distance matrix 
,

{ }
i j

d d= . The fNIRS channels can be re-
garded as nodes in a graph. A fully connected weighted undirected graph ( )G C  can 
be constructed using 

ij
c  as the weight of the connecting edge between channels i  and 

j , and 
ij

d  representing the ease of information flow between the channels. The lower 
the 

ij
d , the easier to transmit information between nodes i  and j . ( )G C  is then 

pruned retaining only activated channels as defined below. The haemodynamic activ-
ity signature as recorded by fNIRS is described as a task-evoked increase in 

2
HbO  
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and a concomitant decrease in HHb . Each haemoglobin species can vary in either 
direction with respect to the pre-stimulus baseline, and any change may or may not 
reach the statistical threshold. The following four patterns describe cortical activity by 
means of a t-test ( 5%α < ):  (A) 

2
HbOΔ

 
increment and HHbΔ  decrement both 

reaching statistical significance, (B and C) 
2

HbOΔ  increment and HHbΔ  decrement 
with only one reaching significance (D) 

2
HbOΔ  increment and HHbΔ  decrement 

with neither species reaching significance. A threshold was then applied to the con-
nected graph, ( )G C  permitting only those links between any two channels represent-
ing the activity patterns (A-D), thereby capturing the evolving relationships within an 
activated F-P network. It is customary to modulate the strength of the activity guided 
edges according to the statistical significance of the pattern at each of the edge end-
ings. Here we use scales 1, 0.75, 0.75 and 0.5 for patterns A to D respectively, thus:  

     
{ }

ij i j
C c scaleFactor scaleFactor= ⋅ ⋅  (1) 

{ }
ij i j

D d scaleFactor scaleFactor= ⋅ ⋅  (2) 

The activity guided brain network is then ( )G C . This serves as the substrate for cal-
culating the measures of network cost and efficiency.  

 

Fig. 2. Session averaged haemodynamic data from representative control (A) and GCMC (B) 
subjects for sessions 1, 3 and 6.  Mean (bold line) and standard deviation (shaded region) are 
indicated for both 

2
HbO  (red) and HHb  (blue). The 20s task period (green shaded region) is 

bounded by rest and recovery periods (white).  

2.3   Network Efficiency and Cognitive Burden 

Excluding self connections (intra-channel) for which the flow of information between 
neurons is assumed infinite, the cost of a weighted graph or network is defined as per 
Eq. 3, and the network global efficiency has been defined as in Eq. 4 [10]: 

 
|

( )
ij i j

i G j G

K G d ≠
∈ ∈

= ∑∑  (3) 
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|
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( )

( 1)glob
i G j G ij i j

E G
N N d∈ ∈ ≠

=
− ∑∑  (4) 

Both quantities, cost and global efficiency are normalised in proportion to the maxi-
mum efficiency and cost of a comparable network comprising all possible connec-
tions [11]. The economy of a cortical network has been defined as:  
 

 ( ) ( ) ( )norm norm
glob

Economy G E G K G= −  (5) 

From its definition, it is intuitive that the cognitive burden is inversely related to the 
network economy. Furthermore, if the cost dominates the equation, the cognitive 
burden will be positive and high. Conversely, if the efficiency dominates the equation, 
the cognitive burden will be negative and low.  

3   Results 

One subject withdrew from the study after the second session and the remaining 20 sub-
jects completed all six sessions conducted over a median of eight days. Fig. 3 illustrates 
the evolution in F-P excitation across the experiment for gaze-assisted and unassisted 
learners.   

 

 

Fig. 3. Groupwise statistical analysis of cortical haemodynamic responses in unassisted (top) 
and GCMC-assisted (bottom) learners across practice (Sessions 1, 3 and 6). Channels are repre-
sented by coloured neurons according to the represented haemodynamic pattern (figure key). 
The spatial attenuation in PFC and PC responses and magnification of activity in the PPC can 
be appreciated. 
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Fig. 4. F-P activated network graphs overlaid onto an MRI image of the cortical surface.  Graph 
nodes (black circles) indicate approximate channel location and connections are weighted 
according to the strength of the association between nodes. A representative control (top) and 
GCMC (bottom) subject is illustrated at practice session time points (labelled black).  The 
majority of connections are formulated around the intermediate phase of practice. 

Longitudinal changes in brain behaviour may be appreciated as a spatial attenua-
tion in the F-P response and a magnification of excitation within the posterior parietal 
cortex (PPC). These longitudinal changes appear to occur more rapidly in GCMC 
enabled learners. Fig. 4 displays the evolution in regional connectivity within the 
activated F-P network for GCMC-assisted and unassisted learners. During the inter-
mediate phase of learning, a greater number of intra- and inter-regional functional 
connections are evident, which may reflect formation of new cortical networks. In 
general, at each phase, a greater number of cortical connections were observed in 
assisted learners, reflecting the impact of GCMC assistance on F-P connectivity. Fig. 
5 depicts the progression of the cost, efficiency and therefore cognitive burden evoked 
by the task at each time point across learning. Both groups progressed from a region 
of low cost and low efficiency (session 1) to a region of low cost but increased effi-
ciency (session 6). This is achieved with different network development strategies. 
Evidently, an escalation in activated network cost accompanies the functional increase 
in cortical connections during intermediate learning. Furthermore, the magnitude of 
this cost increase is greater in GCMC- assisted learners, and occurs just after the ses-
sions associated with maximal improvement in technical skill in this group  (1st ses-
sion accuracy (pixels) median (SD) = 46.3 (22.4); 2nd session = 30.2 (15.8) 
( 0.000p < ), and significantly better  accuracy compared to the control group until 
practice termination (session 3-6, 0.019, 0.023, 0.001, 0.000p = ). In contrast to the 
changes observed in early practice, a reduction in the cognitive burden and an in-
crease in F-P network efficiency seem to define ongoing performance enhancement in 
late practice (sessions 3-6).  
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Fig. 5. Evolution in the cognitive burden across practice for control (red) and GCMC (blue).  
The cost efficiency plane (left panel) demonstrates the progression of these parameters across 
practice sessions (1-6) and that the foundation for the increase in cognitive burden demon-
strated in session 3 (right panel) is due to an increase in cost.  By session 6 both groups have 
migrated to a region indicative of a high efficiency and low cost.  GCMC users significantly 
outperformed the control group in session 3-6 (highlighted yellow).     

4   Discussion and Conclusion 

In this paper, we have proposed a novel framework for analysing longitudinal fNIRS 
data in order to estimate the cognitive burden associated with learning visuomotor 
tracking. Using this strategy, it has been possible to unveil transformations within an 
activated F-P network as a result of deliberate practice. Enhanced tracking accuracy is 
indexed by a functional increase in cognitive burden and attenuation in cortical 
haemodynamics across a F-P network. More importantly, fundamental differences in 
the pattern of cortical excitation change and variation in cognitive burden have been 
exposed depending upon the mode of skills learning. Specifically, GCMC learners 
demonstrate the greatest increase in network connections and cognitive burden, and 
more rapid F-P attenuation. Therefore, the technical improvements induced by 
GCMC over and above unaided learning may be secondary to improved F-P commu-
nication. This may have relevance to training on tasks that require precise visuomotor 
skill and also in the assessment of emergent surgical technologies.   
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Abstract. Breathing motion complicates many image-guided interven-

tions working on the thorax or upper abdomen. However, prior knowledge

provided by a statistical breathing model, can reduce the uncertainties of

organ location. In this paper, a prediction framework for statistical mo-

tion modeling is presented and different representations of the dynamic

data for motion model building of the lungs are investigated. Evaluation

carried out on 4D-CT data sets of 10 patients showed that a displacement

vector-based representation can reduce most of the respiratory motion

with a prediction error of about 2 mm, when assuming the diaphragm

motion to be known.

1 Introduction

Respiratory motion is a significant source of error for image guided interven-
tions working on the thorax and upper abdomen. To reduce the uncertain-
ties caused by breathing, different approaches for motion compensation have
been presented, e.g., breathing coaching, patient-specific motion field extraction
on the basis of pre-operatively acquired four-dimensional images, image-guided
tracking throughout treatment or a combination of methods [1]. However, current
approaches typically result in additional workload increasing treatment time.

One possibility to reduce breathing-induced problems without a significant
increase in effort is by means of a statistical motion model, which is learned in
advance. The prior knowledge about likely deformation can provide valuable in-
formation for image-guided interventions, image acquisition, but also to support
image processing algorithms. Furthermore, the statistics covered in the model
and thus the variability in breathing is interesting in itself.

Different motion models have been proposed in the past for cardiac motion
[2,3] as well as for respiratory motion [4,5,6]. Besides the target organ, the motion
models differ in the representation of the extracted data. However, different
representations lead to different results and it is mostly not known in advance,
which is best suited for the problem.

In this paper, a prediction framework for statistical lung motion modeling
is proposed. Based on this general framework, different representations are pre-
sented and their characteristics and applicability for respiratory motion modeling
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is investigated. The different models are compared by evaluating the model-based
prediction of an unknown motion field.

Focus in this paper is set on lung motion modeling on the basis of 4D-CT. The
created models are thereby patient-specific, i.e., the images for model building all
belong to the same patient. As the purpose of this study was to analyse different
model representations, patient-specific models are prefered over general motion
models [4], due to the fact that the establishing of correspondence is much better
defined. With a comparably high spatial resolution focus is set on 4D-CT.

2 Methods

2.1 Image Data

Free-breathing 4D-CT thorax data sets of 10 patients were acquired for radio-
therapy treatment. In each treatment week, a ten-phase 4D-CT was acquired
representing a complete breathing cycle. During acquisition of the 4D-CT data,
patient respiratory traces were stored while the patient is breathing freely. The
projection images were then retrospectively sorted into ten respiratory phase-
based bins of 3D-CT image data based on the respiratory signal (i.e., from 0 %
to 90 % phase at 10 % intervals with 0% being typically maximum inhale and
50 % maximum exhale). Depending on the course of treatment, 4D-CT data of
up to eight weeks plus two weeks of preliminary examination was available per
patient. For each patient at least nine 4D-CT scans were acquired. All images
had an in-plane resolution of 0.85-0.97 mm and a slice thickness of 2.5 mm.

2.2 Motion Field Estimation

Lung motion fields are derived from the four-dimensional images using a surface-
based tracking technique [7]. By propagating a topologically identical patient-
specific lung surface mesh through all phases, anatomical point correspondences
are assumed to be preserved. The trajectories of corresponding points of the
adapted meshes thus provide a sparse motion field, which is finally interpolated
using thin-plate-splines. The estimated continuous motion fields are denoted
as Tij defined between image i and j. We extensively evaluated the proposed
method on lung 4D-CT images on the basis of publicly available data sets [8]
achieving an accuracy of 1.0-1.7 mm in average.

For motion estimation, the lungs are at first segmented in one selected exhale
image per patient. Afterwards patient-specific lung surface meshes are obtained
by triangulating the thresholded image (cf. Fig. 1 (a)). The meshes cover the
outer border of the lungs and also the surfaces of the pulmonary vessel tree as well
as potential tumor surfaces [7]. By adapting the patient-specific reference lung
mesh to the exhale images of all weeks of treatment, vertex correspondences are
preserved for all images of the same patient. From the exhale phase, all meshes
are tracked through the 4D-CT data set (cf. Fig. 1 (b) and (c)).
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(a) (b) (c)

Fig. 1. Surface-based motion field estimation. Patient-specific lung mesh (a) tracked

through all phases, exemplarily shown for end-exhale (b) and end-inhale (c). Note that

inside structures are covered in the mesh.

2.3 Intra-week Alignment

The 4D-CT data are acquired at different treatment days. For statistical mod-
eling, the data has to be aligned. To remove differences in patient position and
image orientation but to remain differences in breathing level, all 4D-CT data
sets are at first aligned by means of rigid transformations based on the segmented
spinal column.

2.4 Statistical Motion Model

Statistical modeling is based on expressing the extracted data as a random vector
z with different possible representations proposed in the next section. A set of
N corresponding vectors zn from a learning set, e.g., obtained from N different
4D-CT data sets, is combined in a matrix Z = [z1|z2| . . . |zN ] and statistics
can be applied on Z. Note that the rows of the individual vectors zn contain
corresponding information.

From the learning set, the mean is given as z̄ = 1
N

∑N−1
n=0 zn and higher order

statistics are calculated using the covariance matrix of the data

ΣZZ = Z̃Z̃T , (1)

which gives the first order statistical motion model. The matrix Z̃ contains the
learning set after subtracting the mean.

2.5 Data Representation

The extracted information extracted from the four-dimensional images covers:
i) adapted surface meshes in each phase, where each mesh is given as a set
of K vertices building a vector s = (x1, y1, z1, x2, y2, z2, . . . , xK , yK , zK)T , ii)
deformations Tij between the images of phase i and j, iii) volume of the lungs
V obtained from a lung segmentation.

From this extracted information different representations can be defined that
are based on the absolut vertex locations of the segmentations or on the dis-
placement vectors. Furthermore, time can be modeled implicitly based on the



330 T. Klinder, C. Lorenz, and J. Ostermann

temporal binning of the data (e.g., for 4D-CT the binning into ten phases), or
explicitly. Four representations are given in the following.

Shape-Based. The shape-based representation takes the absolute vertex posi-
tions provided in all images of a dynamic sequence. Given a ten-phase 4D-CT,
the vector zSM can be defined as

zSM = [s0, s1, . . . , s8, s9]T . (2)

where si is the segmentation i-th phase.

Volume-Binned Shape-Based. In the case of the zSM , temporal correspond-
ing phases are correlated in the statistical model that nevertheless can show high
differences in shape due to differences in breathing. The idea of the volume-based
representation is to correlate shapes that are more similar by replacing the tem-
poral binning of the data by a volume binning (cf. Fig. 2 (a)). At first, the
patient-specific volume range defined by a maximal and minimal volume is sep-
arated into a predefined number of bins. Then, the adapted meshes are sorted
by there corresponding breathing volume as

zV OLi = [s] , Vli ≤ V < Vui , (3)

where Vli and Vui define the lower and upper volume range of the i-th volume
bin. The statistical model is then built for each bin from all samples over the
weeks of treatment that belong to the corresponding volume range. As this rep-
resentation cannot express the effect of hysteresis, separate statistical ensembles
have to be built for inhalation and exhalation. Assuming K bins, this results in
K models for inhalation and exhalation, respectively.

Displacement Vector-Based. Both proposed representations are so far based
on absolute landmark locations. Alternatively, the representation can also be
based on the displacement field. Motion field extraction results in a set of con-
tinuous transformation Tij that explain the deformation between the images. In
the case of a ten-phase 4D-CT, Tij is given with respect to a reference phase
(commonly the end-exhale phase which is the denoted as phase 5). Thus, the
Tij , become T5j with j = 0, 1, . . . , 4, 6, . . . , 9. The displacement vector-based
representation zMF contains the deformations defined at a set of K vertices. In
contrast to the continuous transformation T , a motion field defined at a given
set of locations is denoted as m = [δx1, δy1, δz1, . . . δxK , δyK , δzK ]T where δxk,
δyk, δzk give the displacement in x-, y-, and z-direction of the k-th vertex lo-
cation. The vector zMF is then the concatenation, e.g., if ten phases should be
taken into account

zMF = [m50,m51, . . . ,m54,m56, . . . ,m59]T . (4)

The proposed vector is based on differences and can be considered as a defor-
mation model (cf. Fig. 2 (b)). It represents the deformation of a discrete set of
landmarks. Thus, for motion prediction, reference locations have to be provided.
Compared to zSM , the vector zMF contains 3xK less entries.
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Parametric Displacement Vector-Based. The vector zMF models the time
implicitly. The temporal binning of the model is defined by the temporal bin-
ning of the data. Another way to reperesent the trajectory is by means of a
parametrisation of the trajectory. By describing the displacement over time
along one coordinate as a discrete signal rk, the discrete fourier transform
Ru = 1

M

∑M−1
k=0 rke

−j2πuk
M can be calculated, where Ru are called fourier co-

efficients. The trajectory can be described with less parameters when using only
the first L ≤ M complex coefficients. As the input signal is real, the first fourier
coefficient is real. Thus, taking exemplarily only the first two fourier coefficients,
the vector zDFT is defined as

zDFT = [Re{R0,x1}, Re{R1,x1}, Im{R1,x1} . . . ,
Re{R0,zK}, Re{R1,zK}, Im{R1,zK}]T ,

(5)

where Re{R1,xk} and Im{R1,xk} are the real and imaginary part of the second
complex fourier coefficient in x-direction at the k-th vertex position. Although
loosing some accuracy compared to the true trajectory, this representation de-
scribes the trajectory continuously and reduces the number of parameters per
location (cf. Fig. 2 (c)). Due to the fact that the trajectory over the breathing
cycle is rather elliptical shaped, it is mostly sufficient to choose L = 2 or L = 3.
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Fig. 2. Different model representations. The data is sorted in (a) into bins based on the

breathing volume which is done separately for inhalation and exhalation. In (b), motion

fields from a reference phase are calculated to the individual phases. The trajectory

over the breathing cylce is described in (c) by fourier coefficients R0, . . . , R(M) as a

continuous curve.

2.6 Prediction

Independant of the exact representation, the basic idea of the prediction frame-
work is to use the statistics covered in Z to predict a patient-specific motion,
e.g., at a new treatment day. For that purpose, the vector z will be partioned
into two parts z = [yx ], where y gives the part to be predicted and the x give the



332 T. Klinder, C. Lorenz, and J. Ostermann

information available during application to drive the model. Motion prediction
is formulated as a linear multivariate regression problem

ypred = B · x , (6)

where B can be found from the learning set using ordinary least squares

argmin(Y − BX)2 ⇒ B = YXT (XXT )−1 = ΣY XΣ−1
XX (7)

where ΣXX is the covariance matrix of X and ΣY X the cross-covariance matrix
of Y and X. However, while the solution is optimal in a least squares sense,
it is highly sensitive to overfitting. When the dimension of X is higher than
the number of observations, XXT is likely to be singular and the regression
approach is no longer feasible, i.e., because of multicollinearity. We therefore
perform Principal Component Regression (PCR) to reduce the noise contained
in the matrix ΣXX = XXT by expressing ΣXX as

ΣXX =
∑

φpλpφ
T
p , (8)

where φp is the p-th eigenvector with eigenvalue λp. By taking only the first P
principal components that belong to the P largest eigenvalues, only the directions
of largest variance are considered preventing the singularity of Σ−1

XX [9].

3 Results

Fig. 3. Labelled lung meshes.

Motion information at small

parts of the diaphragm (blue)

assumed to be known.

The different representations are evaluated by
using the respective models for motion predic-
tion. As a motion stimulator that drives the
model, motion information at a small part close
to the diaphragm was assumed to be known, as
shown in Fig. 3. From our point of view, using a
statistical motion model for motion prediction to
support image guided interventions is one of the
most relevant scenarios. The diaphragm is cho-
sen as it is the main breathing motor and it can
be easily tracked in many imaging modalities.

Evaluation is carried out in a leave-one out
manner, i.e., the model is built from all weeks
but the one under consideration. For the shape-
based representations, the prediction result is
given in the form of absolute landmark locations and the L2-norm between
predicted and propagated vertices is calculated. The displacement vector-based
prediction is evaluated by calculating the L2-norm between predicted and esti-
mated motion vectors. For PCR regression, the first N/2 of N possible principal
components were chosen which resulted in best results.

The results for the different representations are shown in Fig. 4 (a) and (b).
As for the displacement vector-based prediction, the end-exhale was chosen as
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(a) (b)

Fig. 4. Results of motion prediction in end-inhale phase over weeks of treatment for

(a) shape-based representation and (b) displacement-vector based representation. In

addition, mean lung amplitude (LM) is given.

the reference phase. Evaluation was focused on the error in the end-inhale phase
being the phase with largest distance. In both Fig. 4 (a) and (b), the mean
motion amplitude from end-exhale to end-inhale is given for comparison.

The results of the two shape-based representations, zSM and zV OLi with
K = 5 are given in Fig. 4 (a). Both representations can compensate most of
the motion amplitude. However, setting the number K of volume bins, turned
out to be complicated. If the bin size is too small, only few samples might be
available for a certain volume and if it is too large, shapes with very different
volumes will be correlated. As zV OLi is based on the volume, it can neverthe-
less be easily adapted to data with a different temporal binning. The results of
the two displacement vector-based representations, zMF and zDFT using three
complex fourier coefficients, is shown in Fig. 4 (b). As both representations are
based on the displacement from exhalation to inhalation, reference locations of
the corresponding exhalation state have to be provided. Due to this additional
information, the error is much lower compared to a shape-based representation.
Although zDFT provides a more compact representation of the trajectory, the
results are slightly worse compared to zMF . This was caused by the fact that
the approximation using three fourier coefficients introduced an additional error
of 0.40 mm in average. However, the advantage of zDFT lies in the continuous
representation. Both zMF and zDFT achieved an error of about 2 mm.

4 Conclusion

Prior knowledge provided by a statistical motion model can help to overcome
the problems caused by breathing. The main contributions of this paper are i)
the design of a general framework for motion prediction and ii) the proposition
and comparison of different representations. In addition to representations that
are based on the temporal binning of the data, more flexible representations are
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proposed that describe the trajectory continuously or that are oriented on the
breathing volume. In principle, adaptation to data, that does not show a fixed
temporal binning is thus possible. For motion prediction, the diaphragm motion
was assumed to be known. The respective models were evaluated by comparing
predicted and estimated motion fields. Although breathing motion is known to
be highly variable, it was in each case possible to compensate for most of the
breathing amplitude. Different representations showed different characteristics
and it thus depends on the clinical application and the available data which
representation fits best. In general, deformation models that are based on the
displacement vectors perform better than those that are based on the absolute
landmark locations. On the basis of 4D-CT data sets of 10 patients, a prediction
error of about 2 mm could be obtained when using a displacement vector-based
representation. Although the framework was evaluated on the basis of 4D-CT,
it can be easily adapted to other modalities as, e.g., 4D-MR.

References

1. Keall, P., Mageras, G., Balter, J., et al.: The management of resp. motion in radia-

tion oncology report of AAPM Task group. Med. Phys. 33(10), 3874–3900 (2006)

2. Bosch, J., Mitchell, S., Lelieveldt, B., et al.: Automatic segmentation of echocar-

diographic sequences by active appearance motion models. IEEE Transactions on

Medical Imaging 21 (11), 1374–1383 (2002)

3. Casero, R., Noble, J.: A novel explicit 2D+t cyclic shape model applied to echocar-

diography. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI
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Abstract. Tracking implanted markers in the prostate during each radi-
ation treatment delivery provides an accurate approximation of prostate
location, which enables the use of higher daily doses with tighter mar-
gins of the treatment beams and thus improves the efficiency of the
radiotherapy. However, the lack of 3D image data with such a technique
prevents calculation of delivered dose as required for adaptive planning.
We propose to use a reference statistical shape model generated from the
planning image and a deformed version of the reference model fitted to
the implanted marker locations during treatment to estimate a regionally
dense deformation from the planning space to the treatment space. Our
method provides a means of estimating the treatment image by map-
ping planning image data to treatment space via the deformation field
and therefore enables the calculation of dose distributions with marker
tracking techniques during each treatment delivery.

1 Introduction

In order to deliver a high dose of radiation to cancerous tissue while sparing
nearby normal tissues, modern radiotherapy protocols create steep dose gradi-
ents near the boundary of the target volume (we consider the prostate in this
paper). These techniques, however, are very sensitive to treatment uncertainties
such as day-to-day changes in the geometry of the internal organs, because they
have only a narrow margin of high dose around the target volume. To cope with
this difficulty, image-guided radiotherapy (IGRT) [1] uses a CT image taken at
planning time (the planning image) and a CT image taken immediately before
a dose fraction (a treatment image) to detect potential positioning errors and
changes in anatomic geometry relative to the planning image. Patients are re-
aligned and beam apertures are reshaped to correct for these errors prior to
treatment. Treatment images can also be used to calculate and assess the deliv-
ered dose in the context of adaptive radiation therapy, a form of treatment that
compensates for differences between planned and delivered doses. The delivered
dose is calculated in the treatment space given the known treatment parameters.
A non-rigid transformation from the treatment space to the planning space is
established by mapping the treatment image to the planning image using an
image registration method [2,3]. The transformation for each treatment day is
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then used to deform the radiation dose calculated for each treatment day to
the planning space, where it can be added to dose delivered on other days. The
result can then be used if necessary to modify the treatment plan to compensate
for any discrepancy between the planned and actual cumulative delivered doses
[4]. A problem with this approach is that the patient geometry is not sampled
during actual treatment delivery [5,6].

An alternative method to monitor the prostate motion is by tracking several
(usually three) markers that are implanted in the prostate. For example, in
the Calypso system, the markers take the form of electromagnetic transponders
that can be tracked to sub-millimeter accuracy at a sample rate of 10 Hz, using
a GPS-like system [7,8]. The locations of the markers are used to position the
patient accurately in the treatment machine, thus eliminating the need for image
guidance or external marks on the patient’s skin or fixation device. Although the
tracking information is accurate and takes intra-treatment motion into account,
the image data needed for dose calculation is missing, eliminating the promise of
calculating and accumulating delivered dose. In this paper, we demonstrate that
the non-rigid mapping from the planning space to the treatment space can be
inferred in a neighborhood of the prostate from the three marker locations and
used to estimate the missing treatment image data from the planning image.

Our problem is different from the image registration problem in that the image
data on the treatment day is missing, therefore the methods based on voxel-
scale intensity matching [3] or based on surface matching [9] cannot be applied.
Landmark-based registration methods [10] require much more than three marker
locations to interpolate the deformation field and are not directly applicable to
our problem. Our approach is to use a statistical shape model for the prostate so
that the most likely prostate shape can be estimated given the measured marker
locations. As our shape model we choose to use the m-rep (medial representation)
[11] because it provides a coordinate system that can represent the interior and
the nearby exterior of the object, so that the markers in the prostate can be also
represented relative to an m-rep model of the prostate.

We create a reference m-rep from the planning image and one for each treat-
ment day, based on the marker locations. The deformation between the refer-
ence m-rep and estimated treatment m-rep provides a transformation between
the planning space and the treatment space that can be used to estimate the
treatment image to calculate delivered dose. We compare the estimated images
with the real treatment images to demonstrate the ability to reconstruct treat-
ment images, and we compare the dose histograms computed using the estimated
treatment images to the histograms generated by an IGRT procedure (using ac-
tual CT images) to establish the feasibility of dose calculation using estimated
treatment images.

2 Method

Given the planning image, a reference m-rep of the prostate is created based
on the gray-scale image and several user-specified landmarks on the organ
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boundary [12]. Calypso markers are ∼8.5 mm in length and ∼1.5 mm in diame-
ter that appear as bright spots in the image data. The location of each marker is
computed as the center of mass of the bright spot, which closely corresponds to
the origin of signals emitted by the miniature electromagnetic coil housed in the
marker. For each treatment fraction, the three marker locations are given by the
Calypso system, and the reference m-rep is then fitted to those locations by an
optimization procedure. This procedure is similar to organ segmentation except
that the seed locations, rather than image intensities, are what drive deforma-
tion within the trained shape space describing day-to-day shape variations of the
prostate [12]. The diffeomorphism implied by the two m-reps is then computed
with a shape interpolation method called rotational flows [13]. The deformation
is used to transform the planning image to generate an estimated treatment
image for dose calculation.

2.1 M-reps

The discrete m-rep [11] can be thought of as a discrete generalization of the
medial axis [14]. A simple m-rep model consists of a discretely sampled medial
surface. Sample points are referred to as hubs, and associated to each hub are
two vectors (known as spokes) extending, on opposite sides of the medial sheet,
from the hub to the boundary of the modeled object. The model is trained from
a population of shapes by adjusting the parameters (the locations of the hubs
and the directions and lengths of the spokes) to make the model fit each shape.
From this data, a mean shape and its modes of variation can be determined [15].
This statistical representation can be used to reduce the effective dimension of
the shape space, so that the limited information available from the three marker
locations can be applied most effectively. For instance, changes orthogonal to
the plane of the three points may be implied by their relative motions, given the
statistical behavior of the shape space, even though that orthogonal direction is
not explicitly sampled. At planning time, a patient-specific m-rep is created from
the planning image for each patient. For each treatment fraction, the patient-
specific m-rep is deformed using the modes of variation to fit the treatment image
(in an IGRT) or the marker locations measured for each treatment fraction (in
the case of using markers instead of treatment images).

Hub 

Spoke 

Fig. 1. A simple 3×4 m-rep. A single shape is represented by the locations of the hubs
and the lengths and directions of the spokes. The boundary of the object (not shown)
passes through the ends of the spokes.
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An object-relative coordinate representation (figural coordinates) of the inte-
rior and nearby exterior of the organ is used to interpolate the locations of un-
sampled spokes. Two coordinates, u and v, reflect the arrangement of the hubs
on the medial surface. Each hub, along with its associated spokes determines
integer values for u and v, and points between them have non-integer values. An
additional coordinate, φ, is equal to 1 along the entire top surface (bounded by
the upper spokes extending from the outermost hubs) and -1 along the bottom
surface, varying smoothly between those values over the intermediate portion of
the boundary. A fourth coordinate, τ , gives the fraction of the distance from the
medial sheet to the boundary of the organ. This fraction may be greater than 1
for points outside the organ.

2.2 Rotational Flows and Deformation Field Generation

Given the reference m-rep m0 and the target m-rep m1 created by fitting m0 to
the marker locations, the deformation from m0 into m1 is computed by interpo-
lating between the sets of boundary points b0 and b1, which are sampled using
the same set of figural coordinates {(ui, vi, φi)|i = 1, . . . , n}, on the boundary
of m0 and m1, respectively. Thus for each point x0 in the sets b0, there is a
point x1 in b1 that has the correspondence with x0 given by the m-reps and
the figural coordinates. The goal of the rotational flows method is to interpo-
late between each pair of corresponding oriented vertices in R3, (x0,E0) and
(x1,E1), where Ei = {e1, e2, e3} is the set of orthonormal bases representing
the orientation for the point xi. In 3D cases, each oriented vertex moves along
a helical path along the axis of rotation. It can be shown that the interpolation
is shape-maintaining if the two objects are similar and is size-maintaining if the
two models are congruent [13].

Once the curved path for each pair of corresponding points is computed, the
deformation for each voxel is computed by numerically integrating the subdi-
vided displacement along each curved path. At each integration step, a radial
basis function (RBF) interpolation is used to compute the deformation field in
a rectangular box containing the prostate with a small margin, using the col-
lection of landmarks. Some static landmarks are added on the boundary of the
box to make the transition across the box boundary smoother. The deformation
outside of the rectangular box is assumed to be zero. Due to the physics of dose
deposition at high energies, this assumption has negligible effect on the accuracy
of dose calculation.

2.3 Dose Calculation

Calculation of delivered dose is a well-established part of radiation therapy plan-
ning. CT intensities are based on the absorptivity of tissue to radiation, so it
is possible to calculate the amount of energy a given beam deposits in each
portion of tissue it passes through or near, taking into account the attenua-
tion of the beam and the scattering of radiation into neighboring tissue. We
use the treatment planning system known as PlanUNC [16] to calculate dose.
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Dose calculations for treatment planning are expected to be ±3% compared to
measurements.

These calculations are most commonly used in treatment planning. But when
images are available for treatment fractions, dose can be calculated for those
days too. Then, if a mapping can be constructed between the image of each
treatment fraction and a common reference frame, the dose can be accumulated
to determine the total amount of radiation received by each portion of the tissue.
Our approach is a reversal of the most common methods of dose accumulation.
Taking the planning image as given, we derive a deformation first and derive the
treatment image from it, rather than acquiring a treatment image first and then
deriving the deformation.

3 Experiments

We evaluated our method on four patient data sets, which contain one, eight,
six, and five treatment fractions, respectively. The data for each patient consist
of a planning image, treatment images, and Calypso marker locations during
treatment. Note that for each treatment fraction, the patient is positioned in
the treatment machine according to the Calypso origin, which also serves as the
isocenter of the treatment plan (i.e., the point in the space where the central
beam of radiation passes), and treatment images are taken only for comparison
with estimated images. Since the treatment images are taken before the patient
is positioned for treatment, they are visually aligned to the Calypso marker
locations before the comparison with estimated images and the non-rigid image
registration for dose calculation.

In order to assess the similarity between the estimated image and real treat-
ment image, we create an m-rep of the prostate for each treatment image based
on the gray-scale image and user-specified landmarks. The estimated m-rep
(mmarker, reference m-rep fitted to the marker locations) is then compared to
the treatment m-rep (mtreat, m-rep created with the treatment image) by com-
puting the distance between sample points on the surfaces. For each sample point
p on the surface of mtreat, its distance to the m-rep mmarker is approximated as
D(p,Bmarker) = min {d(p, q)|q ∈ Bmarker}, where Bmarker is the set of sample
points on the surface of mmarker, and d(p, q) is the Euclidean distance between
the two points p and q. The average distances from the estimated m-rep to the
treatment m-rep are 0.15 cm, 0.12 cm, 0.13 cm, and 0.10 cm for the four patient
data sets, respectively. Note that these average distances are within the image
resolution of the four data sets; two of them are 0.12 × 0.12 × 0.3 cm, and the
other two are 0.12 × 0.12 × 0.3 cm. Fig. 2 shows an example visual comparison
of the estimated image and corresponding treatment image.

The dose calculation using the estimated image is compared against the dose
calculated with real treatment images to evaluate the accuracy of our method.
The non-rigid transformation with the treatment images is computed in the
same manner as with the estimated image, as described in Section 2.2. For the
first patient data set, we consider the dose in the prostate. For the other data



340 H.-P. Lee et al.

Fig. 2. Axial (left), coronal (center), and sagittal (right) views of an example m-
rep comparison; blue contour: m-rep fitted to Calypso marker locations during the
treatment fraction; red contour: m-rep created with real treatment image; the green
crosshairs show the Calypso origin, which also serves as the isocenter of the treatment
plan; the CT image shown are the estimated image (top row) and the 4×4 checkerboard
image comparing the estimated image to the real treatment image (bottom row).

sets, we consider the dose in the prostate and in the anterior rectal wall (the
part of the rectum right next to the prostate). Fig. 3 shows the differential
and cumulative dose-volume histograms (DVH) of one of the data sets using
the estimated images and real treatment images. Besides visual similarity, we
also numerically compare the DVHs by considering the equivalent uniform dose
(EUD) [17] of the differential DVHs, as shown in Table 1, along with the errors of
the values given by our method relative to those given by the real images. There
are no generally accepted standards for errors in calculating delivered dose, but
±5% is a reasonable goal. We observed relative errors of less than 3% in EUD
for the four patient data sets we experimented on.

Table 1. Comparison of equivalent uniform dose (normalized to percentage of reference
dose) of the dose-volume histograms for the four patient data sets, and the errors
relative to the values given by the IGRT

Prostate EUD Anterior Rectal Wall EUD
Patient Tx Image Est. Image Error Tx Image Est. Image Error

1 96.93 98.17 1.28% N/A N/A N/A
2 102.54 102.51 -0.02% 102.04 101.55 -0.49%
3 98.68 100.71 2.06% 92.42 92.20 -0.24%
4 102.62 102.59 -0.03% 101.72 101.21 -0.50%
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Fig. 3. Differential (top row) and cumulative (bottom row) dose-volume histograms
for the prostate (left) and anterior rectal wall (right); blue lines represent results with
real treatment images, and green lines represents results with estimated images

4 Conclusion

We presented a method to estimate the treatment image using the planning im-
age and locations of implanted markers during the treatment. We demonstrated
the feasibility of image estimation by comparing the estimated images to real
treatment images, and we also showed that the calculated dose histograms using
the estimated images are close to those using real treatment images. Our method
complements the Calypso system, where the prostate motion can be tracked ac-
curately at a high frequency during the treatment but the image data is missing,
so that the delivered dose distribution can be calculated and a safe delivery can
be insured.

In the future, we will experiment on more patient data and assess differ-
ent deformation methods such as FEM-based methods. We will also investigate
the feasibility of adjusting the treatment machine to compensate for the intra-
treatment motion observed.
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Abstract. Deformable guide-wire tracking in fluoroscopic sequences is a chal-
lenging task due to the low signal to noise ratio of the images and the apparent
complex motion of the object of interest. Common tracking methods are based
on data terms that do not differentiate well between medical tools and anatomic
background such as ribs and vertebrae. A data term learned directly from fluoro-
scopic sequences would be more adapted to the image characteristics and could
help to improve tracking. In this work, our contribution is to learn the relation-
ship between features extracted from the original image and the tracking error. By
randomly deforming a guide-wire model around its ground truth position in one
single reference frame, we explore the space spanned by these features. There-
fore, a guide-wire motion distribution model is learned to reduce the intrisic di-
mensionality of this feature space. Random deformations and the corresponding
features can be then automatically generated. In a regression approach, the func-
tion mapping this space to the tracking error is learned. The resulting data term is
integrated into a tracking framework based on a second-order MAP-MRF formu-
lation which is optimized by QPBO moves yielding high-quality tracking results.
Experiments conducted on two fluoroscopic sequences show that our approach is
a promising alternative for deformable tracking of guide-wires.

1 Introduction
During the last decade, the success of angiographic interventions relied on the ability
of physicians to navigate in the patient’s anatomy based only on their mental three-
dimensional representation of the human body as well as on the haptic feedback from
the instruments. Recent advances in computer aided planning and navigation techniques
offer great potential of minimizing the risk of complications and improving the preci-
sion. In the case of angiographic applications, the most common imaging modality is
X-ray fluoroscopy. Currently, in order to monitor guidance procedures, a roadmap, e.g.
a digital subtracted angiography (DSA) showing vessel anatomy, is computed during
the intervention. Unfortunately, such roadmaps cannot directly be fused with the intra-
operative fluoroscopic sequence due to misalignment caused by respiratory motion. A
fundamental step toward a successful integration of any navigation application into clin-
ical routine is the estimation and compensation of such respiratory motion.

Determining this spatio-temporal information is a challenging task due to the fact
that fluoroscopic X-ray images have a low signal to noise ratio, are subject to big
changes in contrast and suffer from background clutter in the abdominal area. More-
over, the apparent motion of the guide-wire is a combination of multiple components.
The major motion in the chest is caused by patient breathing. A second, deformable
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component results from forces applied to the guide-wire by the physician and by sur-
rounding organs which are subject to non-uniform motions during the breathing cycle.
Furthermore, the guide-wire may sometimes partially vanish.

A recent approach dealing with the problem of guide-wire tracking in fluoroscopy is
[5]. In this work, Heibel et al. proposed a scheme for deformable tracking based on a
MAP-MRF formulation. However, their data term does not differentiate well between
medical tools and anatomic background such as ribs and vertebrae. A learned data term
being more robust and adapted to the image characteristics of fluoroscopic sequences
could help to further improve the tracking. Since MRF formulations are derivative free
optimization procedures, they ease the integration of such learning based energies for
which analytical derivatives are hard to derive if possible at all. Learning permits to
model complex relationships between the information contained in the images and the
quality of alignment.

In the context of guide-wire tracking, we can distinguish two kinds of learning ap-
proaches: First, methods for the detection of the guide-wire in each frame and second,
methods used for learning a data driven energy. A learning-based tracking approach
by detection based on marginal space learning was presented by Barbu et al. in [1].
Later, Wang et al. proposed in [11] the combination of learning-based detectors and
online appearance models. In the case of energy learning, Nguyen et al. [7] addressed
the problem of modeling the error surface of parametric appearance models in order
to minimize the number of local minima for image alignment and recently Pauly et
al. suggested in [8] to learn the statistical relationship between two different imaging
modalities to model a data term for multi-modal rigid registration.

In this work, our contribution is a learning approach for deformable tracking: we
propose to learn a data term based on the relationship between features extracted from
the original image and the tracking error. As features, we introduce local mean or-
thogonal intensity profiles representing information contained in the original image.
Since deformable transformations have a high number of degrees of freedom, the in-
trisic dimensionality of the space spanned by these features is high. However, typical
guide-wire deformations are lying on a subspace we propose to learn to reduce the com-
plexity of our problem. A set of random deformations is then generated automatically
and applied to the ground truth position of the guide-wire on a single reference image.
A training set of data points from the corresponding local mean orthogonal profiles and
their associated tracking error values is thereby created. Learning is then performed on
this dataset with a support vector regression. The resulting data term is integrated into
a tracking framework based on a MAP-MRF formulation which is solved with higher-
order clique reduction techniques. Due to the higher-order nature of our problem and
since we are dealing with non-submodular energy functions we chose a combination of
the recently proposed reduction scheme of Ishikawa [6] and the QPBO [4] optimizer
supporting improvements in order to deal with unlabeled nodes [9].

The remainder of the paper is organized as follows: Section 2 presents our regres-
sion approach to define an optimal data term for guide-wire tracking. Section 3 reports
experiments performed on two fluoroscopic sequences. Results show that our approach
presents a promising alternative for guide-wire tracking in fluoroscopic sequences. Sec-
tion 4 concludes the paper and gives an outlook on future work.
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2 Methods

2.1 Problem Statement

The goal of tracking is to identify the relative motion of an object in a series of con-
secutive frames. In most tracking algorithms, we can distinguish two phases: first, the
detection of the object of interest in the initial frame followed by the actual tracking
in each new frame given previous positions. In this paper, we focus on the problem
of tracking a guide-wire through a fluoroscopic sequence knowing its initial position.
Let us denote C our guide-wire model and {It}t∈{0,...,T} the set of consecutive images
in which we want to track the guide-wire. In fluoroscopic images, guide-wires appear
as curvilinear structures which can be represented as B-spline curves. The advantage
of such a representation is its low-dimensionality, its implicit smoothness and its local
support of control points. Our guide-wire model C is defined as the following linear
combination of control points:

C(s) =
M∑
i=1

Ni(s)Pi where s ∈ [0, 1] (1)

where Ni denote the basis functions and Pi the positions of M control points. By using
this model, we want to estimate the optimal curve parameters, i.e. the best configuration
of the control points, to match the visible structures in an image, and this, knowing
its previous position. The tracking problem can be then formulated as a maximum a
posteriori estimation:

C∗
t = argmax

Ct

P (It|Ct)P (Ct) (2)

where C∗
t is the best curve estimate at instant t. P (It|Ct) is the likelihood of observing

the data knowing the model and P (Ct) the prior or probability of the current curve
configuration. Let us assume the likelihood to follow a Gaussian distribution and the
prior a Gibbs’ distribution, we can then reformulate Eq.2 as an energy minimization:

C∗
t = argmin

Ct

(Edata(It|Ct) + Ereg(Ct)) (3)

Ereg(Ct) is a regularization term which constraints the space of possible model config-
urations. Assuming constant length of guide-wire segments in fluoroscopic sequences,
we define the regularization term in order to penalize changes in length:

Ereg(Ct) =
∫ 1

0

(
1 − ‖C′

t(s)‖
‖C′

0(s)‖

)2

ds (4)

where C′
t and C′

0 are the first derivatives at instant t and 0 respectively. Thank to the
inherent smoothness of a B-spline representation, higher-order terms can be discarded.
Edata(It|Ct) can be seen as a data term which drives the model according to the current
image:

Edata(It|Ct) =
∫ 1

0

Φ(It(Ct(s))) ds (5)

A common choice for Φ is a function which enhances tubular structures similar to the
ridgeness measure proposed by Frangi et al. [3]. Such measures can be tuned to empha-
size only structures of the scale of the guide-wire and to remove outliers such as ribs
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or vertebrae. However, since the data term is only evaluated along the current position
of the curve, the main drawback is a very low capture range and a lack of robustness in
terms of outliers or partial occlusions.

Instead of relying on the feature image intensities along the curve profile, we propose
to extract features from the unprocessed image orthogonally to the curve, namely local
mean orthogonal intensity profiles. We can then model a data term by learning a func-
tion Ψ relating the space M spanned by these features and the tracking error. By using a
single fluoroscopic image and a set of local displacements around the ground truth posi-
tion of our guide-wire, we can sample the space M by extracting the local mean orthog-
onal intensity profiles associated to each displaced curve. Each of these “points” of M
is then associated to a tracking error derived from the corresponding curve parameters,
hereby generating a set of data points. Finally Ψ is modeled by performing a regression
on these points. The following section presents how to extract the mentioned features.

2.2 Local Mean Orthogonal Profiles

In a fluoroscopic image, a human being may recognize the guide-wire because of its
curvilinear aspect and its darker intensities compared to its environment. For this rea-
son, a common method would be to enhance this structure and to keep track of it along
the sequence by using a data term based on the intensity profile along the curve. Un-
fortunately, in the case of larger displacements between two consecutive frames, it is
hard to relocate the guide-wire in a heterogeneous region containing outliers without
any information about the search direction. Indeed, such data terms suffer from an ex-
tremely narrow valley around the global extremum. To overcome this problem and ben-
efit from an increased capture range, we propose features which describe the intensity
profiles orthogonally to the curve. First, we subdivide our curve Ct into n segments{
Sk

t

}
k∈{1,...,n}. Each segment Sk

t is a spline we characterize by the following descrip-

tor J k
t :

J k
t =

1
q

q∑
j=1

Λk,j
t , (6)

with q being the number of sample points along this segment. Λk,j
t is an orthogonal

intensity profile whose rth element is defined as:

Λk,j
t (r) = It

(
Sk

t (u) + r · n(u)
)

(7)

where n(u) is the normal vector at point u = (j − 1)/(q − 1) and r ∈ {−R, ..., R}.
The dimensionality of this vector is 2R + 1 which corresponds to the length of the
profile centered on the segment. Note that since only the profile’s shape is of interest,
each profile Λk,j

t is normalized between 0 and 1. Taking the mean over the segment
provides a feature vector which is more robust to noise and outliers. Each curve Ct is
then described by the following set

{
J k

t

}
k∈{1,...,n}.

2.3 Data Points Generation by Motion Learning

The goal of our approach is to learn a function Ψ relating the local mean orthogonal
profiles and the tracking error:

Ψ : M → R, (8)
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with good characteristics for tracking purposes, namely convexity and smoothness.
Therefore, the space M spanned by these features needs to be sampled thoroughly
as a function of the relative displacement. Since the guide-wire is a deformable struc-
ture, the intrisic dimensionality of our features according to free deformations would be
high and thus, hard to sample. However, in a real fluoroscopic sequence, a guide-wire
is not subject to free deformations. Indeed, main displacements are due to breathing
motions and additional small deformations. This means that in reality, our features do
not describe the full space M but lie on a lower dimensional subspace. To reduce the
complexity of our problem, we propose to learn the deformation probability distribution
from a real sequence. Thus, random displacements can be automatically generated to
build our training dataset.

Learning guide-wire Motions: During a sequence, each segment Sk
t of our curve Ct is

subject to a series of consecutive displacements we denote
{
Dk

t

}
t∈{0,...,T−1}. Each Dk

t

is modeled by a vector containing the displacements of sample points of the segment
between 2 consecutive frames. Its jth element is defined as:

Dk
t (j) = Sk

t+1(u) − Sk
t (u) (9)

These vectors are collected for all segments along the whole sequence and grouped in

a training set D =
{
Dk

t

}k∈{1,...,n}
t∈{0,...,T−1}. To learn the underlying probability distribution

of these displacements, we propose to model it with a gaussian mixture model G. The
parameters of G can be estimated by using Expectation-Maximization. Once we have
learned our gaussian mixture model, we can generate random segment displacements
{Di}i∈{1,...,Q} from this probability distribution.

Data points generation: As shown on Fig.1, by using a reference fluoroscopic im-
age, e.g. the first frame of the sequence, we can generate local mean orthogonal pro-
files {Ji}i∈{1,...,Q} by perturbating the segments of the ground truth curve with the
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Fig. 1. Data term learning: by perturbating the ground-truth curve from a single frame with ran-
dom displacements, we can build a training set of local mean orthogonal profiles with their asso-
ciated tracking errors
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randomly generated displacements {Di}i∈{1,...,Q}. The corresponding tracking error
Ei associated to each Ji is computed as follows:

Ei = ‖Di‖2 (10)

This procedure permits us to generate the set of pairs {(Ji, Ei)}1,...,Q, on which the
regression will be performed to learn our function Ψ .

2.4 Learning Data Term through Support Vector Regression

From previously generated data points, the function Ψ can be learned through non-
parametric support vector regression. Let us consider the problem of fitting a function
on the set of Q data points {(Ji, Ei)}i∈{1,...,Q}. Ψ is modeled as the following function:

Ψ(J ) = 〈w , J 〉 + b, (11)

where w is a weighting vector of dimensionality dim(M) and b a bias. This can be
written as a convex optimization problem [10]:

minimize
1
2

‖w‖2

subject to:

{
Ei − 〈w , Ji〉 − b ≤ ε
〈w , Ji〉 + b− Ei ≤ ε

(12)

This aims at minimizing the norm of w to penalize the model complexity and the re-
gression errors on the data points with a regression tolerance denoted by ε. Equation
(12) corresponds to minimizing the following functional:

minimize
1
2

‖w‖2 + C
Q∑

i=1

(
ξ+
i + ξ−i

)
subject to:

⎧⎨⎩
Ei − 〈w , Ji〉 − b ≤ ε + ξ+

i

〈w , Ji〉 + b− Ei ≤ ε + ξ−i
ξ+
i , ξ−i ≥ 0

(13)

where C weights the impact of the errors and thus the flexibility of the model. According
to the Representer theorem, a solution wopt of this minimization is always a linear
combination of the training vectors in M with weights {αi}i∈{1,...,Q}:

wopt =
Q∑

i=1

αi Ji (14)

which leads to the following model:

Ψ(J ) =
Q∑

i=1

αi 〈Ji , J 〉 + b (15)

Finally, the global data term computed on all segments can be written as:

Elearn
data (Ct) =

1
n

n∑
k=1

Ψ(J k
t ) (16)



A Machine Learning Approach for Deformable Guide-Wire Tracking 349

3 Experiments and Results

In the following experiments, we show the successful application of our machine learn-
ing approach for the tracking of guide-wires in fluoroscopic images. The two sequences
we used for our experiments were accquired during liver chemoembolizations. In this
procedure, a guide-wire is inserted into the femoral artery and threaded into the aorta.
The catheter is then advanced into the hepatic artery. Once the branches that feed the
liver cancer are reached, the chemotherapy is infused. In both sequences, the catheter is
already inserted in the artery and we aim at recovering from breathing motions.

Motion learning: A set of inter-frame segment displacements is computed from a ref-
erence sequence where the guide-wire positions were manually annotated. A gaussian
mixture model is then fitted to this dataset by using EM algorithm. The analysis of
Bayes’ Information Criterion leads to the choice of two gaussian components.

Data term learning: A quadratic B-spline is fit to each hand-labeled point set by
minimizing discontinuities in the second derivative [2]. Given the previously learned
gaussian mixture model, a set of Q = 3000 random segment displacements is auto-
matically generated. By perturbating the ground-truth curve from a single frame with
these random displacements, we can build a training set of 3000 local mean orthogonal
profiles with their associated tracking errors. Note that the choice of Q is a compromise
between complexity and accurate modeling of the data term. During the experiments
profiles with different radii are evaluated. Finally, the data term is learned by perform-
ing a support vector regression.

Tracking experiments: Experiments are conducted on two clinical sequences of 142
and 228 frames with a resolution of 512 × 512 pixels and respective pixel spacings of
0.432 × 0.432 mm and 0.308 × 0.308 mm. In order to evaluate the tracking results,
guide-wires are manually annotated in each frame. The following distance measure has
been used throughout all experiments to assess the quantitative tracking quality:

χ =
1
2

⎛⎝ 1
|Ct|

∑
xi∈Ct

min
y∈CGT

d(xi, y)2 +
1

|CGT|
∑

yj∈CGT

min
x∈Ct

d(x, yj)2

⎞⎠ . (17)

Here CGT is the manually annotated curve and Ct the tracking result of an individual
frame.

Results: Tab.1 shows mean errors on whole sequences where the data term is trained on
the first frame of one sequence, and tested in tracking in both sequences. Submillimeter
yet subpixel tracking accuracy can be achieved with our learned data-term and this, for
a frame rate of 1.5 frame/s on a 3 Ghz duo core. Moreover, cross-validation illustrates
the robustness of our approach even if it has been trained on another sequence showing
different contrasts, motions and background. Note that since the Seq.1 presents motions
of higher amplitude, its mean error is slightly bigger than for the other sequence. The
great advantage is the ability to model the convexity and smoothness of this term. In-
deed, its convexity properties can be designed by replacing the tracking error function
10. The choice of hyper-parameter C from equation (13) influences the flexibility of the
regression and thus the smoothness of the resulting function.
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Table 1. Tracking errors in real fluoroscopic sequences

Tracking Results
Trained on Seq.1 Seq. 2
Tested on Seq.1 Seq.2 Seq.1 Seq.2

Profile Radius 5 pixels 10 pixels 5 pixels 10 pixels 5 pixels 10 pixels 5 pixels 10 pixels
χ mean (mm2) 0.7115 0.5249 0.1636 0.1622 0.6632 0.5815 0.1796 0.1700

χ std dev (mm2) 0.4289 0.2715 0.1633 0.1185 0.6184 0.3366 0.1771 0.1645

4 Discussion and Conclusion

In this work, our contribution was to learn the relationship between features extracted
from an unprocessed image and the tracking error in order to model a data term. Exper-
iments conducted on two fluoroscopic sequences show that our approach is a promising
alternative for deformable guide-wire tracking. Indeed, our method is robust to changes
in contrast, background clutter and partial occlusions of the guide-wire during the se-
quence, and this, even if training was performed on another dataset. Since the feature
space under free deformations is high-dimensional, we proposed to model the distri-
bution of the reduced space of typical guide-wire motions with a gaussian mixture
model. In turn, this permitted us to automatically generate random guide-wire defor-
mations from this distribution for the sake of regression. Going further, the space of
relative motions between consecutive frames could be constrained during tracking to
expected guide-wire motions. In future work, we will explore the possibility of deriv-
ing an adapted regularization term from this motion distribution model.
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Abstract. Magnetic Resonance Imaging (MRI)-guided robotic inter-

ventions for aortic valve repair promise to dramatically reduce time and

cost of operations when compared to endoscopically guided (EG) proce-

dures. A challenging issue is real-time and robust tracking of anatomical

landmark points. The interventional tool should be constantly adjusted

via a closed feedback control loop to avoid harming these points while

valve repair is taking place in the beating heart. A Bayesian network of

particle filter trackers proves capable to produce real-time, yet robust

behavior. The algorithm is extremely flexible and general - more sophis-

ticated behaviors can be produced by simply increasing the cardinality

of the tracking network. Experimental results on 16 MRI cine sequences

highlight the promise of the method.

1 Introduction

Image guided and robot-assisted (IGRA) surgeries are evolving and may selec-
tively replace endoscopically guided (EG) surgeries in the future. Research is
motivated by several IGRA advantages, such as wide field-of-view with planar
or volumetric appreciation of the area of operation, minimally invasive processes,
and reduction of operating time [1]. A grand challenge in IGRA surgeries is the
compensation of tissue motion. This is particularly true in heart operations.

Among the most promising types of IGRA surgeries are the interventional
magnetic resonance imaging (MRI) surgeries; distinct advantages include lack
of ionizing radiation, a wide range of soft tissue contrast mechanisms, 3D data
acquisition, and operator-independent image quality [2]. MRI-guided robotic in-
terventions have a wide range of potential applications [3], including cardiac
procedures, such as aortic valve repair [4]. Tracking cardiac motion is a very ac-
tive field within the cardiovascular MRI community [5]. Nevertheless, a method
to estimate the motion of specific anatomical landmarks needed in surgical pro-
cedures has not yet been proposed.

The research described in this paper is motivated by the need to develop al-
ternatives to the highly invasive and long (several hours) surgical procedures
related to heart valve repairs. An MRI-guided robotic intervention will obviate
the need to open the thorax and stop the beating heart, thus potentially com-
pleting the surgery within minutes. For this, the motion of specific anatomical

T. Jiang et al. (Eds.): MICCAI 2010, Part III, LNCS 6363, pp. 351–358, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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landmarks should be tracked in real-time to close the feedback control loop. As a
result, the robotic interventional tool will be held in place during the procedure
without harming healthy tissue and vital structures.

To locate a specific anatomical landmark, one approach is to segment the un-
derlying structures, i.e., accurately determine the boundary of the endocardium
and the left ventricle on short and long axis views of the heart. Such approach
may entail defining an appropriate optimization scheme to iteratively minimize
a cost function, and the computational cost can be significant. For example, in
[6], while the proposed boundary segmentation method achieved very high ac-
curacy, the computational time was 10 seconds per slice. In contrast, Yuen et
al. [7] achieved real-time performance in Ultrasound images with an extended
Kalman filter tracker.

We adopted a particle filtering approach to estimate landmark motion. Par-
ticle filtering is a general tracking mechanism [8], free of strong modeling, which
can accommodate very efficiently the predict-update loop. A loner particle filter
tracker, however, may become unstable in sudden motion or large appearance
changes. This is risky in cardiac surgeries. To maintain robustness we propose
a collaborative tracking framework, which coordinates multiple particle filter
trackers. Some of these trackers may fail when confronting challenging condi-
tions, such as sudden motion or significant appearance changes, but others that
are less affected will survive and yield good state estimates. The latter can be
used to produce a reliable overall estimate and eventually recover the failed
trackers. For the first time, we use a Bayesian network method to decide which
trackers fail and which ones survive at each time step.

The methodology is quite elegant, as it provides a unified framework to tackle
a wide variety of tracking problems, from the most mundane to the most diffi-
cult, by simply adjusting the number of trackers n in the probabilistic network.
For easy problems, we typically choose n = 1, while for more challenging prob-
lems n > 1. The algorithm achieves robust and real-time performance, as the
experimental results indicate. Specifically, the algorithm’s ability to monitor the
motion of the apex, the center of the left ventricle, and the aortic annulus has
been tested with success on cine long and short axis MRI imagery.

2 Methodology

2.1 Single Particle Filter Tracker (n = 1)

The particle filter tracker that we use features 100 particles and performs a single
iteration per frame. We denote the motion state of an individual tracker Ti at
time t by θi,t and its observations by zi,t. The state transition model is:

θi,t = θi,t−1 + N, (1)

where N is the noise subscribing to a Normal distribution. Please note that the
motion state itself is characterized by three variables: x, y for translation and φ
for rotation.
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The algorithm approximates the posterior distribution p(θi,t|zi,1:t) via a set
of weighted particles Si,t = {θr

i,t, ω
r
i,t}J

r=1, where
∑J

r=1 ω
r
i,t = 1; Si,t is properly

weighted with respect to p(θi,t|zi,1:t). Then, we use the maximum a posteriori
(MAP) estimate to determine the state of the tracker:

θ̂i,t = arg max
θi,t

p(θi,t|z1:t) ≈ arg max
θi,t

ωr
i,t. (2)

The weight values of the particles are proportional to the posterior probability:

ωi,t ∝ p(θi,t|zi,t). (3)

In our implementation, the particle weight is computed as the correlation co-
efficient of the sampled region of interest (ROI) with an appearance template.
The appearance template is composed of intensity values inside the ROI. The
choice of pixel-based template ensures generality, rendering the method appli-
cable beyond the MRI modality. Also, intensity blocks are computationally ef-
ficient. We adopt the spatio-temporal matte (STM) template described in [9].
The strong point of STM is that updating is based both on pixel dependence
(spatial smoothness) and temporal dependence (temporal smoothness).

2.2 Collaborative Tracker Network (n > 1)

Particle filter trackers trade sophistication for generality and efficiency. This
approach works well in simple motion scenarios, but may reduce robustness in
challenging ones. By forming a collaborative network of particle filter trackers we
aim to increase sophistication without sacrificing generality and efficiency. Figure
1(a) shows as an example a 3 × 3 tracker network (n = 9), where each tracker is
assumed to interact with its neighbors. After having all tracker states computed
via the corresponding particle filters, a survivor group is formed consisting of
all the well performing trackers. For each individual tracker Ti, a decision is
made whether to include it or not into the survivor group. The adjacent trackers
{Tj, ..., Tm} provide evidence to make this decision.

The effects of the adjacent trackers on tracker Ti are modeled via a Bayesian
network (Figure 1(b)). Θ̂i,t = {θ̂i,t, θ̂j,t, ..., θ̂m,t} and Zi,t = {zi,t, zj,t, ..., zm,t}
are the estimated states and observations of Ti and its adjacent trackers. Wi,t

represents the event that tracker Ti is in the survivor group at time t. Gi,t−1 is
the Bayesian network at time t−1, whose probability p(Gi,t−1) is known at time
t. The arrows in Figure 1(b) indicate dependency relationships. Two underlying
assumptions for this Bayesian network are:

– An individual tracker is likely to have motion similar to its adjacent trackers.
– A tracker included in the survivor group at the previous time step is likely

to be in the current survivor group.

The joint probability of the Bayesian network Gi,t is:

p(Wi,t, Θ̂i,t|Gi,t−1, Zi,t) ∝ p(Wi,t|Gi,t−1, Θ̂i,t)
∏
k

p(θ̂k,t|zk,t), (4)
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where k identifies each of the trackers in the Bayesian Network and
p(Wi,t|Gi,t−1, Θ̂i,t) is a probability function of Wi,t.

Given Gi,t−1 and Θ̂i,t as parameters, the function p is defined as:

p(Wi,t|Gi,t−1, Θ̂i,t) ∝ p(Gi,t−1)
∏
k

N(θ̂i,t|θ̂k,t, σ
2), (5)

where p(Gi,t−1) is computed at time t−1 and is known at time t. N(θ̂i,t|θ̂k,t, σ
2)

is the probability density of θ̂i,t on the Normal distribution centered at θ̂k,t with
variance σ2. According to Equation (3) each tracker p(θ̂k,t|zk,t) in Equation (4)
is proportional to the particle weight of the estimated tracker state. This equals
to the normalized highest matching score among all the particles. Thus, the
conditional probability p(Wi,t, Θ̂i,t|Gi,t−1, Zi,t) on the left hand side of Equation
(4) can be easily computed.

p(Wi,t, Θ̂i,t|Gi,t−1, Zi,t) serves as evidence in deciding whether to include or
not tracker Ti in the survivor group. If the evidence exceeds a minimum thresh-
old, then it is included in the survivor group, otherwise it is excluded.

(a) (b)

Fig. 1. (a) Layout of tracker network (n = 9). (b) Bayesian network for tracker Ti.

The overall motion state is determined by the trackers in the survivor group
and computed as follows:

θ̂overall =
1∑|W |

i=1 βi

|W |∑
i=1

θ̂iβi, (6)

where |W | is the cardinality of the survivor group and βi is the impact factor of
each linked tracker. The latter is determined from:

βi =
p(Wi,t, Θ̂i,t|Gi,t−1, Zi,t)

Di,t
, (7)
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where the enumerator is the conditional probability computed in Equation (4)
and Di,t is the Euclidean distance from the point of interest (landmark) to
the center of the tracker. Trackers closer to the landmark point weigh more on
motion estimation with respect to those that are further away. The overall state
is used to determine the new position of the landmark point as well as relocate
the failed trackers.

3 Experimentation

3.1 Experimental Design

Data were acquired with a 1.5T Espree Siemens MRI scanner. The collected
cine sets include short and long axis views on normal volunteers (N = 2) with a
true fast imaging with steady-state precession (TrueFISP) sequence (TR/TE/a
= 60.3ms/1.4ms/80o; slice thickness = 6mm; acquisition matrix = 256 × 256).
We are interested in tracking anatomical landmarks on the heart, as a way to
close the feedback control loop in MRI-guided robotic surgery on the valve. The
interventional tool should be constantly adjusted with respect to the anatomical
points to avoid harming critical structures of the beating heart. Specifically,
there are four landmarks of interest (see Figure 2):

– Apex (A): The apical point of the left ventricle selected in long axis view.
– Medium (M): The center of the left ventricle at a basal level, i.e., just below

the valves, in long axis view.
– Valve (V): The center of the entrance of the aortic valve annulus in long axis

view.
– Centroid (C): The center of the left ventricle in short axis view.

Tracking experiments were performed on a set of 16 MRI cine sequences. Each
sequence had 25 heart phases (frames) and total duration of 1 sec (approximately
one heart-beat). Each of the 16 sequences had one landmark that belonged to
one of the above categories. The goal for the experiments was to compare the
speed, accuracy, and robustness of different tracking network configurations.

Fig. 2. (a)-(b)Anatomical landmarks of interest. (c) Tracker orientations: Horizontal

(along the elongation axis of the moving part) and Vertical (across the elongation axis

of the moving part).
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These configurations featured different number, size, and orientation of trackers.
Specifically, the following cardinalities and sizes were considered:

– Small single tracker (S1): One small tracker that tracks only the moving
region around/near the landmark.

– Big single tracker (B1): One big tracker that in addition to the moving region
includes some static surrounding structures.

– Collaborative trackers (B4): A 2 × 2 collaborative tracker network (n = 4)
that has the same initialization as B1.

Each of these trackers can be applied in either horizontal (H) or vertical (V)
orientation (Figure 2 (c)), leading to the following 6 configurations: HS1, HB1,
HB4, VS1, VB1, and VB4. For the Centroid point, we make use of a square (in-
stead of rectangular) tracker because the shape of the left ventricle that encloses,
is approximately circular (instead of elliptical) in the short axis view. Thus, for
this landmark type only, we have 3 instead of 6 configurations: S1, B1, and B4.

Ground-truth was manually labeled by an expert. The labeled points were
recorded as time series of the coordinates of the relevant anatomical landmarks
{xg, yg}t, where t is the index of the heart phase (1 ≤ t ≤ 25). Then, all tracking
configurations (6 for Apex, Medium, Valve and 3 for Centroid) were applied on
the cine sequences to obtain time series of tracked estimates {x, y}t for the rele-
vant landmarks. The closer the tracked time series {x, y}t to the corresponding
ground-truth time series {xg, yg}t, the better.

3.2 Experimental Results

In terms of speed, all proposed tracker configurations are computationally light
and achieve real-time performance (25-40 fps) on a standard PC. In terms of
accuracy, we use the Euclidean (L2) distance metric to measure the distance be-
tween the tracking results and the ground-truth values for all 16 cine sequences.
We examine the following two questions: (a) For each landmark (Apex, Medium,
Valve, or Centroid ), which tracking configuration performs the best? (b) Of the
three tracking configurations (S1, B1, or B4), which is the best overall?

In the table of Figure 3, we provide the L2 distances that each tacking con-
figuration (columns) achieves on every cine sequence (rows). Cine sequences are
named as c#:[Landmark Designator], where c# stands for the cine sequence code
number (c1-c10), while the Landmark Designator is A for Apex, M for Medium,
V for Valve, and C for Centroid. For left and right views in Apex/Valve the
designator becomes L-A or L-V and R-A or R-V correspondingly.

The cells with red numbers in the table indicate the configurations that
achieve the minimum L2 distance for each cine sequence. We observe that the
network of collaborative trackers (n = 4) clearly outperforms the single trackers
(n = 1). This is true for all types of landmarks. Only in the case of Apex, the
easiest of the landmarks, the single trackers appear to be somewhat competitive.
Indeed, the Apex landmark point features the least amount of motion and typ-
ically sits on a well contrasted tissue area. The big single trackers, have better
contrasting support but some complex tissue movements from outlying areas
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introduce ambiguity at times. The collaborative trackers distribute the risks and
advantages. Therefore, failures are locally isolated and overall success is achieved
through optimal probabilistic reasoning (Bayesian network). Another interest-
ing observation is that the horizontal configurations fare a lot better than the
vertical ones. This is probably to be expected, as the horizontal configuration is
along the major motion axis, which is what the tracker strives to capture in the
first place. The poor performance of the vertical configurations (which are limit
cases), indicates that is not a good idea to orient rectangular trackers away from
the major motion axis of the tissue.

L2 Distance
HS1 HB1 HB4 VS1 VB1 VB4

A
p
e
x

c1:A 4.98 6.18 4.16 4.53 4.31 4.99
c2:A 1.68 7.01 2.41 2.33 2.20 2.66
c3:A 5.84 8.47 8.76 7.20 8.18 7.48
c4:L-A 7.18 9.37 7.03 — — —
c5:R-A 7.00 5.62 5.23 — — —

M
e
d
iu

m

c2:M 30.74 5.25 3.91 6.14 4.20 4.08

V
a
lv

e c1:V 3.18 5.53 2.60 5.40 3.78 3.99
c2:V 22.39 3.92 3.83 4.58 4.35 3.42
c4:L-V 2.86 2.59 2.46 4.39 1.93 1.82
c4:R-V 3.53 4.58 3.57 3.95 4.26 3.73

S1 B1 B4

C
e
n
tr

o
id

c5:C 16.11 2.39 1.65
c6:C 13.54 2.56 2.60
c7:C 31.87 3.07 3.05
c8:C 5.23 2.15 2.08
c9:C 3.59 3.09 1.58
c10:C 2.96 1.94 1.38

Fig. 3. Left: L2-based tracking performance. Right: Centroid tracking. (a) Initializa-

tion; (b) Ventricular contraction; (c) Ground-truth(blue) versus tracking results(red).

The right panel of Figure 3 shows annotated results from the tracking of the
Centroid point for all three tracking configurations. As it is evident in the third
column of images, the collaborative tracker configuration outperforms the single
trackers; the reported landmark completely coincides with ground-truth. All
the annotated experimental results can be found at http://ourpapers.info/
miccai10-mri.

4 Conclusion

We have presented a collaborative tracking algorithm that can handle robustly
heart motion as appearance changes (due to blood) in MRI cine sequences. The
algorithm provides real-time information about landmark points through which
robotic interventional tools can be compliantly guided in future valve repair
operations. The individual trackers in the algorithm are unimpressive particle

http://ourpapers.info/miccai10-mri
http://ourpapers.info/miccai10-mri
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filter trackers. When combined, however, under a Bayesian network framework,
they produce sophisticated behaviors without loosing efficiency. The framework
is flexible enough and general enough to be applied beyond MRI intervention
studies.
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Abstract. The standard workflow in many image-guided procedures,

preoperative imaging followed by intraoperative registration, can be a

challenging process and is not readily adaptable to certain anatomical re-

gions such as the wrist. In this study we present an alternative, consisting

of a preoperative registration calibration and intraoperative navigation

using 3D cone-beam CT. A custom calibration tool was developed to

preoperatively register an optical tracking system to the imaging space

of a digital angiographic C-arm. This preoperative registration was then

applied to perform direct navigation using intraoperatively acquired im-

ages for the purposes of an in-vitro wrist fixation procedure. A validation

study was performed to assess the stability of the registration and found

that the mean registration error was approximately 0.3 mm. When com-

pared to two conventional techniques, our navigated wrist repair achieved

equal or better screw placement, with fewer drilling attempts and no

additional radiation exposure to the patient. These studies suggest that

preoperative registration coupled with direct navigation using procedure-

specific graphical rendering, is potentially a highly accurate and effective

means of performing image-guided interventions.

1 Introduction

Minimally invasive computer-assisted interventions in orthopedics have, to date,
largely relied on preoperative computed tomography (CT) scans. In the usual
paradigm, the images are segmented, a plan is made, intraoperative registration
of the image to the patient is performed, and only then can the surgeon navigate
the procedure. There are many drawbacks to this paradigm, including: logistical
challenges associated with preoperative CT; time-consuming segmentation, with
skilled technicians often requiring an hour or more; attachment of a tracking de-
vice to the anatomy can be difficult or impossible; and achieving the registration
is invasive, time-consuming, and fraught with errors.

Recent developments in flat-panel fluoroscopy have made 3D cone-beam
CT (CBCT) feasible for intraoperative use in an operating room. Such 3D
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volumetric data can be used, with direct navigation, in a system that requires
neither image segmentation nor registration during the surgical procedure. In-
stead, a direct-navigation system can use a preoperative calibration stage to
register the coordinate frame of the image space to the coordinate frame of a
fixed tracking system. The resulting workflow needs only a minimally invasive
tracking device attached to a patient, with no segmentation or surface-based
registration – nearly ideal for computer-assisted minimally invasive procedures.

Direct navigation is especially attractive for wrist fractures, particularly for
the scaphoid, one of the eight carpal bones that is frequently fractured following
a fall on an outstretched palm [1]. Proximal scaphoid fractures often fail to unite,
due to the unique blood supply to this region. As such, primary internal fixation
is often a preferred method of treatment, and typically involves the placement
of a Kirschner wire (K-wire) or surgical screw along the central axis of the bone
to unite the bony fragments.

Clinical studies have indicated the importance of an accurate placement along
the central axis for a successful outcome [2], with minimally invasive percu-
taneous technique preferred to reduce the risk of infection and compromising
nearby tissue structures [3]. However, percutaneous pinning is challenging be-
cause of the small size of the scaphoid, and requires many intra-operative X-ray
images to ensure an accurate placement of the fixation device. As fluoroscopic
images are 2D, it is also difficult to correctly interpret the three-dimensional
anatomy in order to locate the central axis of the scaphoid.

It is difficult to adapt the traditional computer-assisted surgical workflow to
navigate scaphoid pinning because a surface-based or fiducial-based registration
cannot be used successfully in the region of the wrist [4]. Attempts at image-
based registration using fluoroscopic images to match extracted contours [5] or
using the data directly with mutual information [6] have so far been insuffi-
ciently accurate for clinical use. Ultrasound techniques [4] have not been shown
to improve the application accuracy over conventional fluoroscopy.

Here, we present a novel technique for preoperative calibration and results of
a preliminary validation assessment. We then apply our preoperative calibration
to perform intraoperative image guidance for volar percutaneous scaphoid pin-
ning, and compare this technique to conventional fluoroscopic guidance using a
standard C-arm and guidance using a digital angiographic C-arm.

2 Preoperative Calibration: Materials and Methods

Our direct navigation solved the image-to-patient registration problem by split-
ting the chain of coordinate transformations into two pieces, preoperative and
intraoperative. Preoperatively, the pose of the 3D CBCT was found in tracking
coordinates by using a custom calibration device; later, the pose of the patient
was captured simultaneously with the CBCT image acquisition. The key tech-
nical question was the accuracy and reliability of the preoperative calibration.

All experiments were performed in a recently-constructed operating room at
Kingston General Hospital. This room was integrated with an Optotrak Certus
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(Northern Digital Inc., Waterloo, Canada) tracking system and a flat-panel 3D
fluoroscope (Innova 4100, GE Healthcare, Buc, France) that acquired CBCT im-
ages. A custom surgical navigation system was used to provide image guidance.

For full details of the preoperative calibration process, the reader is referred
to a recent Master’s thesis [7]. A custom Multi-Modal Calibrator (MMC) was
developed to conduct a preoperative calibration in order to relate the coordinate
frames of the Optotrak {C} and that of the Innova 3D spin image {S}. The
device was shaped like a hollow cube (shown in Fig. 1). To be sensed by both
the imaging device and the position sensor of the Optotrak, the MMC contained
respectively metallic radio-opaque markers and infrared light-emitting diodes.

Fig. 1. A photograph of the multi-modal calibration device that was used for this study

Prior to a navigated surgical session, the registration was performed by posi-
tioning the MMC on the operating table. The CBCT image was acquired and,
simultaneously, the pose C

MT was acquired to find the MMC in Optotrak Cer-
tus coordinates {C}. The MMC beads were found in the CBCT image using a
validated interpolation algorithm [8]; because the algorithm also detected wires
and IREDs, a variant of the robust RANSAC algorithm [9] was used to regis-
ter the detected beads, yielding the transformation S

MT . This gives the critical
calibration equation

C
ST =C

M T ∗M
S T (1)

that coupled any subsequent CBCT image to Optotrak coordinates.
The precalibrated registration was studied in an extensive experiment over 3

weeks. During this time, the MMC was left undisturbed on the operating table
and 14 CBCT scans were acquired periodically. The analysis of the transforma-
tions used the differential transform Δ T between transforms TA and TB

ΔT = TB ∗ TA
−1 (2)

Two sets of comparisons were made: pairwise C
MT using ΔCTi, and pairwise

M
S Ti using ΔSTi. The rotational component of each ΔT was converted to an an-
gle/axis notation, and for the translational component the norm was calculated.
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3 Preoperative Calibration: Results

The 14 analyses of the transforms C
MTi and M

S Ti were examined statistically. The
mean rotational and translational deviations in the dimensions of the operating
room are presented in Table 1. The mean rotational and translational deviations
in the movement of the Innova system are presented in Table 2.

Table 1. Average rotational and translational errors calculated from ΔCT for the

Innova registration experiment. μ is the mean and σ is the standard deviation.

Type of Error μ σ Range

Rotational Error(degrees) - - -

Translational Error for X (mm) 0.19 0.059 0.0035–0.44

Translational Error for Y (mm) 0.059 0.0062 0.00010–0.18

Translational Error for Z (mm) 0.19 0.029 0.00070–0.67

Norm of Translational Error (mm) 0.30 0.176 0.028–0.74

Table 2. Average rotational and translational errors calculated from ΔST for the

Innova registration experiment; μ is the mean and σ is the standard deviation

Component μ σ Range

Rotational Error(degrees) 0.27 0.027 0.0065–0.61

Translational Error for X (mm) 0.036 0.0040 0.00030–0.12

Translational Error for Y (mm) 0.053 0.0080 0.0016–0.14

Translational Error for Z (mm) 0.058 0.0083 0.00050–0.15

Norm of Translational Error (mm) 0.097 0.0076 0.020–0.17

The mean registration error was approximately 0.3mm, or 300 microns. This
compares favorably with the stated accuracy of the Optotrak (150 microns) and
is unlikely to be improved upon using our equipment. We concluded that preop-
erative calibration is a fast and highly accurate method for direct navigation.

4 In-Vitro Application: Materials and Methods

Direct navigation was applied to a volar percutaneous pinning procedure. This
technique was compared to two conventional imaging techniques: (i) “C-arm”,
in which a standard fluoroscopic C-arm was used, and (ii) “Innova”, in which
the Innova imager was programmed with orthogonal 2D views.

A 3D model of the human wrist was constructed to provide greater consistency
between the trials than permissible using cadaveric anatomy (Fig. 2). The model
wrist featured an interchangeable scaphoid which allowed the wrist to be reused
for each trial by replacing only the scaphoid. A molded recess was integrated into
the model which served to firmly seat the scaphoid, and to which the scaphoid
was secured using a plastic fastener.
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Fig. 2. 3D Wrist Model. (a) A removable scaphoid was seated in a molded recess and

secured via a fastener hole. (b) The navigated trial setup with a patient coordinate

frame P established by an optical tracking array(DRB).

Both the model wrist and removable scaphoids were fabricated using a 3D rapid
prototyping printer (SST 1200es, Dimension/Stratasys, Eden Prairie, USA). To
facilitate drilling, the scaphoid models were printed with a medium density poly-
mer then coated with barium-infused paint. The wrist was printed with lower den-
sity polymer. During each trial, the entire apparatus was covered to prevent direct
visualization of the bony anatomy but to permit realistic palpation.

Randomized trials were conducted in which three surgeons each performed
24 trials – 8 using each imaging technique. The surgical goal was to insert a
1.6mm K-wire along the central axis of the model scaphoid. In each technique
a volar approach was employed in which the wire was drilled from the distal
end until it breached the proximal end. This exit hole was created to allow for
post-trial data analysis. For each trial, the number of drill passes was recorded.
To assess radiation exposure, an exposure meter was positioned adjacent to the
wrist model to estimate a patient’s radiation dose.

An optical tracking array was attached at the base of the plastic model to
establish a patient coordinate frame {P}. An intraoperative image of the wrist
was captured using the Innova to perform a 3D acquisition and, simultaneously,
the navigation system captured the pose of {P} in the Optotrak coordinate
frame {C} as the transformation P

CT . The combined registration transformation
was the composition of the preoperative calibration transform C

S T (Eq. 1) with
the transformation P

CT to find the overall image-to-patient registration as:

P
ST =P

C T ∗C
S T (3)

The navigation system provided digitally reconstructed radiographs to the sur-
geon (Fig. 3). In the planning phase, the surgeon positioned a desired drill path
on the rendered views. During the drilling phase, the real-time orientation of a
tracked drill guide relative to this planned path was shown on the overhead OR
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Fig. 3. Screen shot of the software during a navigated procedure showing orthogonal

views. The dark green cylinder depicts the target plan; the purple and green stylus

represents the real-time tracked drill guide.

monitors. In conventional techniques, surgeons were given the option of using an
identical untracked drill guide.

Following the trials, CT scans of the drilled scaphoids were obtained and
segmented (Mimics v13, Materialise, Leuven, Belgium) in order to generate 3D
surface models for data analysis. Algorithms were developed to determine the
line of best fit through the drill hole and compute the shortest distance from this
line to the exterior surface of the scaphoid. This measure was extrapolated to
determine the location of the shortest distance and to assess whether a placed
screw would have breached the scaphoid. Two-sample F-tests were used to assess
equal variances and select appropriate t-tests for wire placement centricity, drill
passes, and radiation exposure.

5 In-Vitro Application: Results

The 24 scaphoid drilling trials were analyzed to assess screw placement, number
of drill passes required, and x-ray exposure to the patient(Table 3). The min-
imum distance from the drill path to the scaphoid surface was deemed to be
credible a measure of centricity as well as a safety factor for screw breach. Al-
though no potential screw breaches were noted in any of the trials, the minimum
distance from the drill path to the scaphoid surface was significantly higher using
navigation when compared to the Innova (p=0.02, α = 0.05).

There was no significant difference in the number of drill passes between
the navigated and Innova techniques, however the C-arm technique required
more attempts (p=0.01, α = 0.05). Imager output was significantly higher in
the navigated cases (mean = 11.05 cGy/m2, SD = 1.67 cGy/m2 ) than with
the Innova (mean = 2.78 cGy/m2, SD = 2.13 cGy/m2) or C-arm (mean =
0.03 cGy/m2, SD = 0.03 cGy/m2). Conversely, there was no significant difference
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Table 3. Summary of post-trial analysis of the three drilling methods: Navigated (N),

Innova (I) and C-arm (C)

N I C

Safety [mm] 2.8 ± 0.5 2.6 ± 0.5 2.8 ± 0.5

X-ray Exposure[mrad] 1.1 ± 1.4 0.5 ± 0.9 2.3 ± 3.3

Drill Passes 1.5 ± 0.7 1.7 ± 1.0 2.2 ± 0.8

in the mean imaging time. More importantly, no difference in patient x-ray
exposure (as recorded by the exposure meter) was observed.

6 Discussion

An important consideration in our workflow was the overall speed of the pre-
operative registration step. The entire registration process, including scanning,
transfer, and computations, took less than 15 minutes to perform. In an ideal
scenario, where the relative position and orientation of the imaging modalities
and the position sensor remain perfectly fixed, the registration process would
need to be performed only once. This is unlikely in a realistic clinical setting,
so the registration process is expected to be performed more often – perhaps
daily – and thus needs to be reasonable efficient.

The results from our preliminary trial demonstrate that we can achieve equal
or better safety of screw placement, with fewer drill passes and, no additional ra-
diation exposure to the patient. Of a potentially greater concern is the radiation
exposure to the surgeon, which we are currently in the process of evaluating in a
secondary round of trials, through the use of radiation badges. It is worth noting
that we expect the radiation exposure to the surgeon to be minimal, as the ini-
tial 3D acquisition spin is acquired while the surgeon is outside of the radiation
field, and the only notable exposure would be the potential use of supplementary
fluoroscopic images to verify screw placement.

One of the main limitations of our current navigation system is that it only
provides the orientation of the drill guide and does not provide any depth cues.
Feedback from the surgeons indicated that this was indeed an impediment, and
forced them to rely on using more intraoperative 2D fluoroscopic images to ver-
ify wire position. Amending the navigation to include depth cues is now a focus
for upcoming trials. Another area of improvement for the next version of the
navigation system concerns the techniques used to render the 3D image. Again,
surgeons have expressed difficulty with viewing the margins of the scaphoid on
the rendered views, and thus planning the procedure. We are currently experi-
menting with new rendering and visualization techniques for upcoming trials.

7 Conclusion

A novel workflow for image-guided surgery was presented that does not require
conventional intraoperative image registration. The system has a much simpler
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and efficient workflow than conventional CT image acquisition and segmentation
without compromising accuracy. We have also demonstrated that this technique
can be adapted to anatomical regions, such as the wrist, that cannot be readily
registered and spatially tracked intraoperatively. Our future challenges will be
to make this system practical for routine clinical use.
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Abstract. The traditional Hessian-related vessel filters often suffer from

the problem of handling non-cylindrical objects. To remedy the short-

coming, we present a shape-tuned strain energy density function to mea-

sure vessel likelihood in 3D images. Based on the tensor invariants and

stress-strain principle in mechanics, a new shape discriminating and ves-

sel strength measure function is formulated. The synthetical and clinical

data experiments verify the performance of our method in enhancing

complex vascular structures including branches, bifurcations, and fea-

ture details.

1 Introduction

Pulmonary vessel detection plays an important role in computer analysis of lung
CT images. Evaluating vessels is of considerable value to diagnosing for exam-
ple pulmonary emboli and hypertension. Additionally, there is an interest in
identifying the vascular trees as landmarks for matching lungs across variety
[1]. However, accurate and robust detection of pulmonary vessels still remains
a problem because of the geometrical complexity and fine characteristics of de-
tails. Especially, with non-contrast-enhanced images being widely used in CT
densitometry, the vascular detection becomes even more challenging.

In this paper, we present a 3D vessel enhancing filter with the main pur-
pose to break the cylinder limits of traditional Hessian filters [2,3,4,5], improve
their ability in preserving more general vascular structures like bifurcations. The
method is initially motivated by a recent achievement of stress and strain theory
in solid mechanics [6], which was introduced previously to fMRI imaging by En-
nis et al. [7]. We establish the idea basically on a link between image structures
and locally compressed states of material, due to the mathematical equivalence
between the image Hessian matrix and the mechanical stress or strain tensor.

2 Theoretical Background

The Hessian matrix H is equivalent to the stress tensor in solid mechanics in that
it is also a second-order symmetrical tensor. Then, H can be decomposed into
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an eigensystem of three real eigenvalues λi and three orthogonal eigenvectors ei

(i = 1, 2, 3).
A common decomposition of stress tensor is H = H̄+H̃ , where H̄ corresponds

to the so-called “isotropic” or spherical component. H̃ indicates the “deviatoric”
or anisotropic component, and contains the directional inequality information.
They are calculated as

H̄ = 1
3 tr(H)1 = 1

3 (H : 1)1, H̃ = H − 1
3 tr(H)1 = H − 1

3 (H : 1)1, (1)

where 1 is the identity matrix and the colon (:) denotes the tensor contraction
operator. According to the stress principle, only the isotropic component causes
volume changes, while the deviatoric one exclusively accounts for the distortion
or shear without volume changes. Since H̄ : H̃ = 0, the two components are
mutually orthogonal. From this, Criscione et al. [6] introduced a set of tensor
invariants Ki :

K1 = tr(H), K2 = ‖H̃‖F , and K3 = 3
√

6 det(H̃/‖H̃‖F ), (2)

where det() is the determinant operator. Due to orthogonal decomposition, the
three invariants reflect mutually independent properties of local deformation.
The intuitive physical meaning behind them is that K1 represents the amount
of dilatation (with a negative value corresponding to compression), K2 the mag-
nitude of distortion, and K3 the mode or type of distortion.

3 Method

The development of our vessel filter mainly originates from the above stress
tensor invariants, and is divided into five parts:

3.1 Measure of Brightness Contrast

We first develop a contrast term from the invariance K1. Since K1 is a measure
of local volume change, it indirectly reflects the density variation inside an in-
finitesimal element of material by the mass conservation law. If the density is
assumed to be the image intensity, K1 will be an indicator of relative intensity
change, i.e. brightness contrast.

Generally, we only need to confine the sign of K1, with negative (positive)
values corresponding to bright (dark) objects. For pulmonary CT images, we
add a relative threshold in proportion to the maximum magnitude of eigenvalues
(λm) to ensure noise immunity, i.e.

|K1| = |λ1 + λ2 + λ3| > 3αλm. (3)

Here, the parameter α > 0 is used to adjust sensitivity.
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3.2 Measure of Structure Strength

In mechanics, the strain energy density is a term to quantify the local energy
stored in solids due to stress effects after mechanical loading. Since the proce-
dure simultaneously results in an uneven mass distribution, the strain energy
also indirectly reflects the material density inhomogeneity. Based on the similar-
ity of density variation to intensity concentration around image structures, we
introduce an strain energy density term to measure structure strength.

Consider an isotropic and linear elastic material, the strain energy density is
defined as U = 1

2

∑3
i=1

∑3
j=1 σijηij , with σij and ηij the elements of stress and

strain tensors. We rewrite it in the form of orthogonal components of the stress
tensor: U(H) = 1−2ν

2ε (H̄ : H̄) + 1+ν
2ε (H̃ : H̃). Here, ε and ν are Young’s modulus

and Poisson’s ratio, respectively. Thus, the energy density function is divided
into two independent parts: volume changing (isotropic) energy and distortion
deforming (anisotropic) energy. We further omit the fixed ε, and adopt the square
root to keep the same power order of the original intensity, i.e.

ρ(H) =
√

(1 − 2ν)(H̄ : H̄) + (1 + ν)(H̃ : H̃). (4)

(a) ν= -1.0 (b) ν= 0.0 (c) ν= 0.5

Fig. 1. Vascular structure strength measure, see eq.(7), with varying parameter ν

Notice the Poisson’s ratio ν ∈ [−1, 0.5] essentially describes the mutual influ-
ence between deformations in different directions. For image processing, if ν < 0,
the intensity concentrating in one direction will cause the relative intensity to
increase in the perpendicular directions, which is known to generate isotropic
“blob” structures. Inversely, ν > 0 will adversely affect the intensity concentra-
tion in orthogonal directions, and then encourages anisotropy. If ν = 0, we have
ρ(H) =

√
λ2

1 + λ2
2 + λ2

3, which corresponds to the “second order structureness”
used by Frangi et al. [4]. We verified the effect of ν through a real image experi-
ment in Fig.1. It can be found that a low ν tends to develop smooth surfaces, the
anisotropic structures (labeled with “green” circles) and feature details (“blue”
circle) are gradually enhanced with increasing ν. However, a very large ν is at
the risk of exaggerating blob-like deformations (“red” circle).
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3.3 Intensity Continuity Constraint

To understand the Hessian eigenvalue distribution of general vascular shape, we
introduce an intensity continuity constraint. As observed, most vessel structures
including the branch and junction, share one common characteristic of intensity
continuity, i.e. there exists at least one direction in which the intensity variation
is very small. The intensity continuity at pixel x0 in direction r is equivalent
to Iσ(x0 + hr) − Iσ(x0) ≈ 0, with σ the observing scale, r a unit vector and
h the magnitude. Then, the corresponding Taylor expansion is ∇Iσ(x0) · r +
h
2 rtHσ(x0)r ≈ 0. If the first-order derivative is negligible, the Hessian term will
mainly account for the intensity variation, i.e. rtHσ(x0)r ≈ 0.

To ensure the dominance of the Hessian term, we additionally define a relative
Hessian strength function

Grel(x) = exp
(
−β ‖∇I‖

λm

)
. (5)

Here, β > 0 is used to adjust the sensitivity of response. Grel(x) will tend to 1
(or 0), while the gradient (or Hessian) term is negligible. This relative strength
function is useful in suppressing step edges, which also responds strongly to
eigenvalue detection like the second-order structures, but takes a strong gradient.

Based on the continuity constraint, the Hessian eigenvalue relation can be
formulated as c21λ1 + c22λ2 + c23λ3 = 0, where ci indicate the coefficients of r
under the eigen-system. The potential meaning is not only to explain the eigen-
value distribution of traditional line and sheet shapes, but also understand more
general vascular structures like bifurcations and stenoses. The latter are then
verified to have non-zero and differently signed eigenvalues.

3.4 Vessel Shape Discrimination

A vascular shape discriminating function can be formulated by combining the
above tensor invariants. The mode of distortion (invariant K3) provides a nat-
ural measure of shape anisotropy. But its discriminating ability will gradually
decrease when the anisotropic extent becomes weaker. To remedy this draw-

back, we introduce the fractional anisotropy FA =
√

3(H̃ : H̃)/(H : H), which
is actually a ratio of invariant K1 and K2, as an additional indicator. Here, a
constant 3 is added to ensure that FA = 1 for an ideal vessel branch (|λ1| ≈ 0
and λ2 ≈ λ3 " 0 or # 0).

Generally, FA and mode both measure the shape variety, but have different
sensitivity as a function of anisotropy. Based on their response curves, we merge
them in the final vessel shape discriminating function:

V (x) =

{√
FA, FA < 1

1
2 [mode(x) + 1] , otherwise

. (6)

It can be verified that V (x) approaches 0 for blob (λ1 ≈ λ2 ≈ λ3 " 0 or # 0) and
sheet shapes (λ1 ≈ λ2 ≈ 0 and λ3 " 0 or # 0), whereas it takes 1 for line shapes
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corresponding to vascular branches. The most attractive property is that V (x)
also responds with high values to locally deformed structures like junctions and
stenoses, which for example may have one positive and two negative eigenvalues.

3.5 Multi-scale Vesselness Measure

To generate a shape-tuned strain energy function, we combine the previous vas-
cular structure related terms as

ϕ(σ, x) =

{
0, if 1

3 (λ1 + λ2 + λ3) > −αλm

exp
(
−β ‖∇I‖

λm

)
V κ(x)ρ(H, ν), else.

(7)

The power coefficient κ ∈ [0, 1] of V (x) is added to adjust the sharpness of shape
selectivity. The details of multi-scale integration can be referred to [3,4]. We
also adopt the γ-normalization and rescaling operation to compensate intensity
changing across scales.

4 Experimental Results

The proposed method is validated by using synthetical and clinical datasets. The
filtering results were compared with three traditional Hessian-based filters [3,4,8].
The quantitative evaluation is conducted by calculating the precision − recall
(PR) curves after binarizing the filtered images with different global thresholds.
Two versions of recall (sensitivity) are defined, namely in terms of volume and
skeleton of true vessels. The latter is specifically designed to emphasize the pres-
ence of vessels and neglecting its radial size, which is uncertain for a vessel with
a Gaussian profile. The free parameters of all methods are optimized, based on
the area under curve (AUC) of the PR curves.

4.1 Synthetic Data

As shown in Fig. 2(a), a digital phantom was generated with six objects to
simulate different kinds of vessel structures, which resemble stenoses, varying
diameters, bifurcations, and curved or touching branches.

We compared the four methods on the synthetic image with 16% variance
noise in Fig. 2(b). The scale range used in this experiment is 1 − 6 pixels, and
is further divided logarithmically into 10 steps. The parameters of our proposed
method were optimized to α = 0.2, β = 0.02, κ = 0.4, ν was set to 0 without
priority to specific structures. The filtering results are given in Fig. 2(c)−(f).
As expected, the traditional Hessian filters were not good in preserving the
junctions and local deformations, where disconnections in varying degrees can be
observed. The proposed method enjoyed more merits in enhancing both vascular
branches and bifurcations. Additionally, detailed features like thin vessels and
local diameter variety are well preserved. For quantitative evaluation, we refer
to Fig. 3. The performance of our method belongs to the best two with Frangi’s
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Synthetic dataset experiment. (a) Original image, (b) synthetic image, enhanced

images from (c) the proposed method, (d) Frangi [4] ,(e) Li [9], and (f) Sato [3] filters
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Fig. 3. PR curves of filtered synthetic images. (a) and (b) respectively correspond to

the volume- and skeleton-based recall, where the numbers in legends are AUCs.

filter on the volume-based PR measure, while our advantage is dominant on the
skeleton-based one. It can be understood from the distribution and AUCs of PR
curves that our result takes higher completeness (recall) under the majority of
volume fidelity (precision) levels compared with the other three methods. This
just reflected the merit of our method in preserving thin vessels and connectivity
of vascular networks.
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Non-contrast enhanced pulmonary CT dataset experiment. (a) original image;

(b) manually segmented “ground truth”; (c)-(f) give in order the filtered images from

the proposed, Frangi[4], Li[8] and Sato[3] methods

4.2 Clinical Data

Our method was further validated by using a cropped clinical pulmonary CT
dataset. The images were acquired without contrast media injection, and the
resolution was 0.7 × 0.7 × 0.5 mm. The parameters of our filter were optimized
to α = 0.1, β = 0.06 and κ = 0.5, and a positive ν = 0.10 was used to enhance
junctions. The selected vascular scales were 0.5-3.0 mm, and 10 steps were used.

For better observation of details, a region of interest was extracted and shown
in Fig. 4(a), together with a manually segmented “ground truth” by experts in
Fig. 4(b) for reference. The extraction was drawn first by a radiologist, then a
pulmonologist and a surgeon were asked to verify it. Fig. 4(c)-(f) are the corre-
sponding results of the four filters. It is clear that the traditional filters improve
the visualization of main vascular branches at the cost of weakening junctions
and details. Our method keeps most vascular structures while suppressing the
unwanted noise. Both branches and bifurcations are enhanced without distortion.
In particular, thin vessels and details are clearly preserved with the continuity to
main vessels. The merits can be further verified by the quantitative evaluation
in Fig. 5.
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Fig. 5. PR curves of filtered clinical images. (a) and (b) respectively correspond to the

volume- and skeleton-based recall with AUCs shown in the legends

5 Conclusions

In this paper, we have presented a 3D vessel enhancing filter based on the tensor
invariants and strain energy density theory. The main feature is that we di-
rectly generalized the Hessian-based vesselness filters to non-tubular shapes and
realized the enhancement of anisotropic vascular structures like junctions. The
preliminary results verified the performance of our model in preserving locally
deformed vessels and detailed features.
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Abstract. Image-based computational fluid dynamics provides great promise for 
evaluation of vascular devices and assessment of surgical procedures. However, 
many previous studies employ idealized arterial and device models or patient-
specific models with a limited number of cases, since the model construction 
process is tedious and time-consuming. Moreover, in contrast to retrospective 
studies from existing image data, there is a pressing need of prospective analysis 
with the goal of surgical planning. Therefore, it is necessary to construct models 
with implanted devices in a fast, virtual and interactive fashion. The goal of this 
paper is to develop new geometric methods to deploy stent grafts virtually to pa-
tient-specific models constructed from direct 3D segmentation of medical im-
ages. A triangular surface representing vessel lumen boundary is extracted from 
the segmentation. The diseased portion is then clipped and replaced by the sur-
face of a virtual stent graft following the centerline obtained from the clipped 
portion. A Y-shape stent graft is employed in case of bifurcated arteries. A 
method to map a 2D strut pattern on the stent graft is also presented. We demon-
strate the application of our methods to quantify wall shear stresses and forces 
acting on stent grafts in personalized surgical planning for endovascular treat-
ment of thoracic and abdominal aortic aneurysms. Our approach enables pro-
spective model construction and may help to increase its throughput required by 
routine clinical uses in the future.  

Keywords: model construction, geometric processing, surgical planning, stent 
graft, aortic aneurysm, computational fluid dynamics. 

1   Introduction 

Image-based computational fluid dynamics, once emerged, is widely used as a valu-
able tool for investigating the role of local hemodynamics and the development of 
vascular diseases, such as atherosclerosis and aneurysms [1, 2]. Nowadays, increasing 
attention has been focused on applications of this tool to evaluate the safety and effi-
cacy of vascular devices [3] and assess the outcomes of surgical procedures [4]. Con-
siderable insights were gained by studying flow through stents in occlusive [5] and 
aneurysmal diseases [6] and computing fluid forces on stent grafts [7]. However, 
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many early studies employ idealized arterial and device models, which may be inade-
quate for replicating realistic hemodynamic conditions. Some recent studies have 
shifted to construct and analyze patient-specific models [8, 9], which provide great 
promises for inferring realistic conditions on an individual basis. Nevertheless, a ma-
jority of previous studies employ a limited number of cases stemming from the fact 
that the model construction process from 3D medical images is still tedious. Further-
more, in contrast to retrospective studies of post-operative states from existing image 
data, there is an obvious requirement of prospective analysis to predict the benefits or 
harms of a particular procedure in surgical planning. 

To date, there are two major approaches to construct vascular models from medical 
images. One is the NURBS (Non-uniform Rational Basis Spline)-based modeling 
[10]. Usually, one parametric surface is reconstructed from sweeping a series of con-
tours by segmenting in 2D over cross sectional images along the length of a vessel 
branch. Surfaces for multiple branches are then lofted together to represent the entire 
vascular tree of interest. The other is the triangle-based (sometimes polygon-based) 
modeling, where 3D segmentation is directly applied and triangulated into a single 
surface [11]. The former approach preceded the latter and remains quite useful for 
small vessels in images of poor contrast. However, it has been considered to be less 
favorable to the latter, which is more efficient, less subjective, and of more fidelity, 
especially for large arteries in decent-quality images. On the other hand, The 
NURBS-based approach yet shows great advantages in the case of surgical planning 
that not only arteries but also implanted devices are simultaneously modeled and 
ultimately combined [12]. This benefit is due to the fact that NURBS, a common 
representation for medical devices, offers a wealth of inherent features, such as inter-
active editing and Boolean operations, of which the triangle-based approach lacks. In 
order to fill the gap between triangle-based modeling and surgical planning, there is a 
pressing need for developments of new geometry processing techniques that are ro-
bust, efficient, and ideally usable in clinical settings. 

In this paper, we present novel geometric methods to deploy stent grafts virtually 
to triangle-based patient-specific models constructed from direct 3D segmentation of 
medical images. Both unbranched and bifurcated stent grafts are produced for repair-
ing thoracic and abdominal aortic aneurysms, respectively. Our approach allows the 
user to modify the preoperative model interactively to incorporate the effects of a 
virtual stent graft. We also describe a method to map a strut pattern defined on a 2D 
image onto the stent graft. Note we are here interested in the geometric effects of a 
deployed state rather than the deployment process itself, which takes account of me-
chanical interaction between stent graft and vessel wall. To demonstrate, we explore, 
using computational fluid dynamics, the wall shear stresses of pre-operative and vir-
tual post-operative models as well as forces acting on stent grafts. They are informa-
tive to assess outcomes for endovascular treatment of aortic aneurysms.  

2   Methods 

The images used in this paper are from de-identified pre-existing imaging studies at 
Stanford University Medical Center. The image of a thoracic aorta was acquired using 
CT (resolution: 0.58×0.58×0.7 mm, size: 512×512×375). The image of an abdominal 
aorta was acquired using MRI (resolution: 0.78×0.78×1.5 mm, size: 512×512×124). 
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2.1   Geometric Model Construction and Centerline Extraction  

After the image was preprocessed, the vessel lumen was segmented using region-
based and edge-based level set methods [13]. A triangular surface mesh was extracted 
from the segmentation using the method proposed in [14], which produces provably 
good sampling and meshing. Geometric processing techniques, such as smoothing, 
trimming, pruning, circularization, and elongation, were performed to yield a suitable 
model. A method to extract the multi-branch centerline is then used. Two distance 
transforms of the model: distance to inlet/outlet and distance to vessel wall, were 
computed using the fast marching method [15]. Using the former distance, the model 
was divided. Centerline nodes with the maximum of the latter distance in every region 
were selected and connected to yield a raw centerline using adjacency relations 
among regions. The centerline was then refined and resampled to reach a higher 
quality. The detailed algorithms were reported elsewhere in [16]. Figure 1 shows the 
image of the abdominal aorta with an aneurysm, its geometric model and centerline. 

   

      

2.2   Virtual Stent Grafting for Thoracic Aortic Aneurysm 

An illustration of the virtual stent graft for a model of thoracic aortic aneurysm is 
shown in Fig. 2(a). The aneurysm (the bulged region) is replaced by a tubular struc-
ture (in gray) connecting the proximal and distal portions of the aorta. The lighter 
gray regions depict fixation zones, where the graft is attached to the vessel wall. The 
requirements of the modified model are: (a) is a “water-tight” triangular mesh; (b) has 
the graft inside the original model and following a centerline; (c) keeps the portions 
other than the aneurysm intact; (d) has smooth transitions in fixation zones. We pro-
pose a novel algorithm to solve this problem:  
 

(1) Trim the model at proximal and distal ends of the aneurysm (boundaries of 
light and dark gray regions at locations 1 and 2). It leads to two open contours, which 
are then circularized. 

(2) Morph the surface at light gray regions by weighting the original surface with a 
perfectly tubular shape. The surface is weighted more to the original as further from 
the dark gray region. 

 
Fig. 2. Illustration of stent grafts for 
thoracic aortic aneurysm (a) and ab-
dominal aortic aneurysm (b). 

Fig. 1. An image of abdominal aorta 
(a), the geometric model (b), and its 
centerline (c).  
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(3) Extract the centerline of the portion between locations 1 and 2. Our algorithm in 
Section 2.1 ensures the starting and ending nodes are centers of contours in step (1). 

(4) Construct a tubular structure as the stent graft by creating a series of circular  
triangle strips between neighboring pairs of contours, guided by the centerline from  
step (3). We here make the radius and number of vertices linearly varied from location 1 
to 2. To establish the correspondences between vertices, a starting vertex needs to be 
identified on either neighboring contour. In Fig. 3,  and  denote a starting vertex and a 
centerline node at the current contour, respectively.  
is the normal of the previous contour.  ,  are local axes with  and 

. The starting vertex of the next contour  can be determined by 
, where  is the radius. The starting vertex of the 

initial contour at location 1 is arbitrarily selected. The starting vertex of the final contour 
at location 2 is the vertex closest to that of the previous contour. 

 

The results of our algorithm on the model of thoracic aorta are illustrated in Fig. 4. 
 

       

2.3   Virtual Stent Grafting for Abdominal Aortic Aneurysm 

In case of abdominal aortic aneurysm, the stent graft may be in Y shape as shown in 
Fig. 2(b). A special treatment of mesh shape close to the bifurcation is needed. We 
extend our algorithm as follows:  

 

(1) Trim the model at the proximal end of the aneurysm (location 1) and at distal 
iliac arteries (locations 2 and 3). Morph the surfaces as before. 

(2) Extract the centerline of the portion between locations 1, 2, and 3. Split the cen-
terline inside the aneurysm corresponding to two iliac branches. It leads to three cen-
terline segments 

(3) Extend the surfaces along the centerline segments using tubular structures to-
wards the bifurcation similar to before. 

(4) Construct a transition surface at the bifurcation among three ending contours from 
last step. The transition essentially consists of a series of contours that varies from one 
circle in the parent vessel to two circles in the child vessels. Figure 5(a)-(d) lists four 
typical contours in the order from parent vessel to the child vessels. Finally, triangle 
strips between neighboring pairs of contours are generated to complete the transition. 

The results on the model of abdominal aorta are illustrated in Fig. 6(a)-(d). Figure 
6(e), (f) demonstrate the mesh at the bifurcation before and after surface transition. 

 
Fig. 4. Virtual stent grafting for thoracic aortic aneurysm. 
(a) The pre-operative model; (b) Aneurysm removal and the 
centerline; (c) The post-operative model. 

 

Fig. 3. Geometry of two 
neighboring contours to 
create a triangle strip.  
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2.4   Strut Pattern Mapping 

To make the stent graft more realistic, a particular strut pattern can be placed on the 
modified model to replicate the effects of a deployed stent graft. The designed stent 
pattern is usually described as a 2D image. Therefore, there is a need to map the pat-
tern in 2D rectangular coordinate to 3D cylindrical coordinate. We assume that the 
struts can follow any bends in the graft, which is a first-order approximation. In addi-
tion, a typical strut width (e.g. 0.5mm) is generally smaller than the triangle size (e.g. 
1.0mm) of the surface mesh, mesh refinement is necessary to represent the shape of 
the strut. Instead of refining the stent graft portion globally, a method to refine the 
mesh locally along the strut path is favorable to avoid excessively increasing the 
number of mesh elements and thus the computational cost. Furthermore, vertices 
along the strut path are displaced according to the intensity in the 2D image which 
characterizes specified strut thickness. Notice that strut is modeled as concavity on the 
surface since the stent is normally located inside the graft and the geometric model 
represents the channel of blood flow. 

We propose a two-way algorithm that refines mesh first and then displaces vertices:  
 

(1) Locally refine the triangles on the virtual stent graft along the strut path using 
a -subdivision scheme [17]. To ensure a full coverage of the stent graft, we define 
the mapping inversely as a 3D cylindrical coordinate  to a 2D rectangular 
coordinate  in image domain: , , where  are the im-
age width, height, and the total centerline length, respectively. A triangle is chosen to 
be refined if and only if its map in the image domain overlaps with the strut pattern. 
Since the strut pattern is sparse in the image, we first check whether there is any strut 
pixel in the bounding box of the triangle. If so, we further check whether the pixel 
region intersects the triangle.  

(2) Displace vertices on the strut path radially towards the centerline by a distance 
depending on the intensity of its map in the 2D image. The linear interpolation of 
pixel intensity is used since maps are usually at subpixel locations.  

(3) Smooth the mesh along the strut path using a diffusion-based method [18]. 
 

 

Fig. 6. Virtual stent grafting for abdominal aortic aneurysm. (a) 
The pre-operative model; (b) Aneurysm removal and the center-
lines; (c) Surface extension; (d) The post-operative model; Mesh 
at the bifurcation before (e) and after (f) surface transition. 

 
Fig. 5. Four typical con-
tours for the surface transi-
tion at the bifurcation.  
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Fig. 7. Strut pattern mapping for the models of thoracic aorta (a) and abdominal aorta (b) 

The results on strut pattern mapping are illustrated in Fig. 7 with given patterns and 
mesh details along the strut paths. 

3   Simulation Results 

Three models (pre-operative, post-operative without and with strut) were discretized 
into tetrahedral meshes for thoracic aorta (0.92M, 0.66M, 2.05M) and abdominal 
aorta (1.83M, 1.57M, 2.80M). Blood flow was solved using a custom stabilized finite 
element solver developed in our group [19]. Five cardiac cycles were simulated with 
assumptions of rigid wall and Newtonian fluid behavior. All results presented were 
from the last and converged cycle. 

In Fig. 8, we show the mean wall shear stress (MWSS) of the three models, which 
is computed as the time-averaged amplitude of shear stress on the wall. For both 
cases, low MWSS are observed in the aneurysm regions. After virtual stent grafts are 
deployed, MWSS is higher in the same regions due to reduced calibers and increased 
blood velocity. This suggests stent grafts may help to reduce recirculation and their 
design should include the consideration of the raised levels of shear stress. In addi-
tion, strut patterns apparently influence local shear stress in vicinity. Therefore, it is 
necessary to include the modeling of strut to accurately quantify shear stress. 

 

 
Fig. 8. Mean wall shear stress for the models of thoracic aorta (a) and abdominal aorta (b) 
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Fig. 9. Forces on aneurysm and stent graft for the models of thoracic aorta (a) and abdominal aorta (b). 

The forces acting on the aneurysmal walls and stent grafts are believed to have 
causal effects of aneurysm rupture and stent graft migration. In Fig. 9, we show these 
forces on the aneurysm and stent graft (gray regions), which are calculated as the 
surface integral of tensile and shear forces. The arrows depict the forces at peak sys-
tole. In both cases, the forces are directed radially outwards with respect to curved 
paths due to the area difference between interior and exterior led by the curvature. 
The magnitude of the force is smaller in the stent graft than that in the aneurysm due 
to reduced areas. This holds true for the whole cardiac cycle as shown in the plots. 
The strut patterns do not have a significant impact on the magnitudes of the forces as 
their contributions to the surface integration are minimal. 

4   Discussion and Conclusion 

In this paper, we described new geometric methods to construct virtual post-operative 
models for simulation-based personalized planning of stent grafting of aortic aneu-
rysms. The methods fill the gap between triangle-based modeling and prospective 
analysis. Our experiences show it normally takes less than ten minutes to construct 
the post-operative model from a pre-operative model. Our approach thus shows prom-
ises for its future use in clinical settings. We demonstrated simulations results of wall 
shear stress and force acting on stent grafts. 

Our approach is generalizable to handle other models of vascular diseases, such as 
aortic coarctation, coronary stenosis, and cerebral aneurysms. Future works will focus 
on testing robustness and efficiency of our methods on a large number of cases and 
performing validations using experimental studies and some evaluations on dealing 
with more challenging cases. We aim at providing a user-friendly simulation tool for 
vascular surgeons to plan interventions. 
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Abstract. Prostate cancer is a major health threat for men. For over

five years, the U.S. National Cancer Institute has performed prostate

biopsies with a magnetic resonance imaging (MRI)-guided robotic sys-

tem. Purpose: A retrospective evaluation methodology and analysis of

the clinical accuracy of this system is reported. Methods: Using the pre

and post-needle insertion image volumes, a registration algorithm that

contains a two-step rigid registration followed by a deformable refinement

was developed to capture prostate dislocation during the procedure. The

method was validated by using three-dimensional contour overlays of the

segmented prostates and the registrations were accurate up to 2 mm. Re-
sults: It was found that tissue deformation was less of a factor than organ

displacement. Out of the 82 biopsies from 21 patients, the mean target

displacement, needle placement error, and clinical biopsy error was 5.9

mm, 2.3 mm, and 4 mm, respectively. Conclusion: The results suggest

that motion compensation for organ displacement should be used to im-

prove targeting accuracy.

1 Introduction

In the United States, prostate cancer accounts for 25% of cancer incidents in
men, making it the second most common cancer among American men. There
was an estimated 192,280 new cases and 27,360 deaths in 2009 [1]. The two most
common screening methods for prostate cancer are the prostate-specific antigen
(PSA) test and the digital rectal exam (DRE). When either test shows abnormal
results, needle biopsy is often recommended to determine if a tumor exists and
whether it is malignant based on histological analysis.

Each year approximately 1.5 million prostate biopsies are performed and a
positive case is found in every 6-8 biopsies. Transrectal ultrasound (TRUS) is
currently the standard imaging modality for guiding biopsy due to its low cost
and ease-of-use [2]. However, due to the poor image quality of ultrasound, TRUS
only has a detection rate of 20-30% [3]. Studies have shown that this method
misses the cancer in at least 20% of the cases [4].

Magnetic resonance imaging (MRI) provides an alternative approach to the de-
tection and diagnosis of prostate cancer. It has high spatial resolution, excellent
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soft tissue contrast, and volumetric imaging capabilities [5]. MRI provides clear
visualization of the prostate and its substructures including the peripheral zone
(PZ), which is the most common location of cancer [6]. It allows suspicious le-
sions to be identified and guides biopsies at these targeted sites. MRI has not been
widely adopted for prostate interventions due to its strong magnetic fields, con-
fined physical space, and high cost.

Krieger et al. developed an MRI-guided transrectal robotic prostate biopsy
system [7] that has been used in over 200 biopsies to date at the U.S. National
Cancer Institute. This paper reports a quantitative longitudinal evaluation of the
clinical accuracy of this robotic biopsy system under MRI-guidance. In addition
to reporting the difference between the planned and actual biopsy location, this
study takes into account organ motion during the procedure, thus quantifying
targeting accuracy with respect to the tissue target itself.

A much limited preliminary study was reported previously [8]. In this paper,
we present major improvements to the validation framework, which include a
three-stage deformable registration of an ensemble of organs and a longitudinal
accuracy validation study of a much larger National Cancer Institute data set.

2 Method

2.1 Data Acquisition

During the prostate biopsy procedure, the patient was placed inside the MRI
scanner in prone position to acquire a series of 2D high resolution T2 weighted
axial volumetric slices of the prostate. From the pre-needle insertion volume,
the clinicians selected the biopsy location(s) in RAS (Right, Anterior, Superior)
coordinates, where the origin was approximately the center of the prostate. The
robot was then used to guide a biopsy needle through the rectum into the target
sites within the prostate to collect tissue samples. After the needle was in place,
another set of 2D axial volumetric slices was taken to confirm needle placement.
We used these pre and post-needle insertion image sets to validate the clinical
accuracy of the robotic biopsy system.

2.2 Three-Stage Deformable Target Registration

Developing a target registration algorithm that works well for all patient data
sets was a challenging task. The prostate motion upon needle insertion can be
extremely complex since it is able to dislocate differently from the surrounding
structures. The extent of the movement also varies from patient to patient. In
addition, the data was gathered over a period of five years in different clinical
trials, under different imaging protocols, by different clinicians. Variations in
image resolution, field strength, etc. further increased the difficultly of the task.
Our main goal was to find a method that would capture most of the prostate
movement for the majority of patients during the biopsy procedure.

The pre and post-needle insertions images were examined and it was found
that the main transformation between the two volumes was rigid. Although tissue
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deformation may be present, it is expected to provide only minor adjustment
to the rigid transformation. Karnik et al. have also concluded that the results
from rigid and non-rigid registrations were not statistically significantly different
(p > 0.05) in their transrectal prostate biopsies [9]. This observation is consistent
with the conclusions of Misra et al. that boundary conditions surrounding the
organ dominate the deformation more than the constitutive behavior of the tissue
itself [10]. The major body structures around the prostate that are relevant to
this study are the rectum and pubic bone.

A two-step 3D to 3D rigid registration was developed to capture prostate mo-
tion (Figure 1). Using the Insight Toolkit (ITK), the registration is performed
between the pre and post-needle insertion image volumes using mutual informa-
tion. In the first step of our implementation, the pre and post-insertion volumes
are used as the fixed and moving images, respectively. The region of interest con-
sists of the rectum, prostate and pubic bone. This step compensates for prostate
motion in coherence with the device and patient. To correct for residual decou-
pled prostate motion, the resulting image is registered again with the original
fixed image using only the prostate as the region of interest. Movement in the
superior and inferior direction is penalized because the first step should already
have corrected for it. Finally, a B-spline deformable registration using grid size
5× 5× 5 on the prostate is performed to serve as fine tuning. This compensates
for any possible tissue deformation during needle placement.

Fig. 1. Three-stage target registration between pre and post-needle insertion images

2.3 Validation of the Three-Stage Registration Scheme

The prostate usually does not show any apparent anatomical feature in the MRI
images and it can move practically independently of bony structures. Therefore
typical validation methods, such as using landmarks to evaluate the accuracy of
the registration are not applicable.

To validate the three-stage registration, we chose to manually segment the
prostate, rectum and pubic bone from both the fixed and moving image vol-
umes using ITK-SNAP. Each segmented model was then registered manually
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Fig. 2. Contour overlays of the segmented rectum, prostate and pubic bone from mov-

ing and fixed images before (left) and after (right) automatic three-stage registration

in 3D-Slicer by aligning the surfaces of the segmented objects in 3D. The re-
sults of contour-based prostate registration were compared with the three-stage
automatic registration. The bone and rectum indicate the amount of patient
movement during the procedure. Figure 2 shows the overlay of a segmented
model before and after the automatic three-stage registration.

2.4 Biopsy Accuracy Calculations

Target displacement: The distance between the original and transformed tar-
get is calculated as the target displacement (Figure 3). To obtain the transformed
target, transformations from the registrations are applied to the original target.
To determine whether this movement is related to the needle insertion direction,
the displacement is decomposed into two components: one parallel and one or-
thogonal to the needle vector. A Wilcoxon Signed Rank Test is conducted to see
whether prostate movement in the needle direction was significantly larger than
the orthogonal one.

Needle placement error: The distance from the original target to the biopsy
needle trajectory line is used to represent the needle placement error (Figure
3). This is how much the robot had missed the intended target assuming no
prostate motion. The needle trajectory line is obtained by using two needle tip
coordinates from the post-insertion volume.

Biopsy error: The distance from the transformed target to the needle trajectory
line is defined as the biopsy error (Figure 3). It represents the difference between
planned and actual biopsy locations. This measurement is relevant for assessing
biopsy accuracy. Since the tissue biopsy core is about 15 mm long, insertion
depth is a less important factor.

3 Results

3.1 Registration Accuracy

We selected patients done at 3T that had usable biopsy needle confirmation
images and original biopsy target coordinates. A total of 82 biopsies from 21
patients were evaluated. At least one biopsy for each patient was validated using
manual contour-based registration method. In addition, all registrations that
contained a translation of more than 10 mm were also validated. The prostate
contour segmentation error was about 2 mm. When the automatic three-stage
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Fig. 3. Diagram illustrating prostate dislocation during needle insertion and biopsy

error calculations

registration was off by 3 mm or more, results from the manual registration
were used. The registration inaccuracy was mainly due to poor image quality
and patient motion. A total of 11 biopsies contained patient movement that
was greater than 5 mm. Following contour-based adjustments, all registrations
were accurate up to 2 mm. To check the impact of deformable registration on
the outcome, it was performed on 20 biopsies from various patients. A Wilcoxon
Signed Rank Test was conducted, which showed that the results from deformable
registration is not significantly different from the rigid one (p = 0.54). This is
fully consistent with recent findings of Karnik et al. [9].

3.2 Biopsy Accuracy

Table 1 summarizes the mean, range and standard deviation for target displace-
ment, needle placement error, and biopsy error (Figure 3) in all biopsies. To
study the impact of patient movement on biopsy accuracy, the results from 11
biopsies which had more than 5 mm patient motion were grouped separately.
Figure 4a-c shows the histograms of these three measurements. Lilliefors tests
were conducted and it was found that only needle placement errors follow a nor-
mal distribution (p = 0.06). What follows is that any future needle placement
error will have a 95% probability of falling between two standard deviations
above or below the mean.

Table 1. The data statistics for biopsy accuracy

Target

Displacement

(mm)

Needle

Placement

Error(mm)

Biopsy Error

(mm)

Mean 5.9 7.2* 2.3 4 4.8*

Range 1-13.4 3.7-11.2* 0.1-6.5 0.5-14.1 1.4-8.8*

Standard Deviation 3.5 2.9* 1.3 2.1 2.3

* Biopsies for patient motion > 5mm only
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Fig. 4. Left: Histograms of target displacements (top), needle placement errors (mid-

dle), and biopsy errors (bottom) of the 82 biopsies. Right: Axial (top), sagittal (middle),

and coronal (bottom) view of prostate movement orthogonal to the needle direction.

‘*’ and ‘.’ indicate biopsies taken on the left and right side of the prostate, respectively.

3.3 Target Displacement

Target displacement parallel and orthogonal to the needle direction was also
computed. For the parallel component, 46% of the biopsies moved towards the
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needle insertion direction (mean: 5.7 mm) and 54% went in the opposite direc-
tion (mean: 2.9 mm). The overall average was 4.2 mm in the parallel and 3.4
mm in the orthogonal direction. Results from the signed rank test showed that
movement in the parallel direction was not significantly greater than the orthog-
onal one (p = 0.36). For the patient movement larger than 5 mm group, average
parallel and orthogonal movement was 3.9 mm and 5.3 mm, respectively.

To analyze the orthogonal displacement component, it was further resolved
into movement in RAS coordinates. 73% of the biopsies showed a target move-
ment either towards the superior-posterior (SP) or inferior-anterior (IA) direc-
tion (Figure 4e). However, the correlation coefficient between SI and AP was
only 0.56. The biopsies were also divided into two categories: left and right side
biopsy, with 41 biopsies in each category. 59% of the left biopsies had a positive
movement towards right, and 39% of the right biopsies had a positive movement
towards left (Figure 4d).

As part of the registration validation process, the segmented rectum and pubic
bone were also registered separately. We found that their movements were dif-
ferent from those of the prostate. However, prostate movement was more similar
to the bone movement than the rectum movement.

4 Discussion

The mean needle placement error is considered as clinically acceptable since it
is less than a clinically significant tumor (2.3 vs. 5 mm). The low error con-
firmed that the robot is accurate enough in positioning the biopsy needle to hit
the intended target. However, this measurement assumes no prostate or patient
motion during the procedure. In reality, these two factors usually result in some
dislocation of the prostate, causing the target to move. This is evident by the 5.9
mm mean target displacement from the 82 biopsies we studied. The dislocation
caused a mean biopsy error of 4 mm, which is on the verge of clinical acceptance.

The 11 biopsies which contained patient movement larger than 5 mm were
studied again separately to observe the impact of patient movement on biopsy
error. The slight increase in both target displacement and biopsy error suggests
that fixating the patient during the procedure may help to decrease biopsy error
by only about 1 mm.

The biopsy needle was inserted through the rectum towards the prostate in
a mainly superior-anterior direction. It is intuitive to assume that the target
should move in a direction along the needle path. Since the statistical test showed
that there was no significant difference between target displacement parallel and
orthogonal to the needle direction, it means that half of the displacements were
in the needle direction. The other half could be due to patient movement during
the procedure in addition to the impact of needle insertion.

The separate registrations of the rectum and bone showed that the prostate
can move quite independently of these two structures. Since the robotic device
was placed inside the patient’s rectum, it can limit the rectum’s ability to move,
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which also explains the observation that prostate movement is more similar to
movement of the bone than that of the rectum.

In conclusion, based on validation with segmented prostate contours, our reg-
istration algorithm captures the prostate motion during a biopsy with an ac-
curacy of 2 mm. The non-significant impact of deformable registration on the
final refinement stage indicates that prostate deformation is less of a factor than
organ displacement during the needle placement process. We also found that the
pre-planned biopsy target dislocated during the procedure and the prostate mo-
tion does differ from both the patient and robot motions. The exact amounts of
these motions cannot be known without prostate fiducials or finer volume images.
However, even taking into account the imperfection of the segmentation-based
validation approach, the results still suggest that further research in organ mo-
tion and prostate tracking will be useful to reduce MRI-guided biopsy targeting
error. From a sufficient number of biopsy error observations, a statistical model
might be built to predict prostate movement during needle placement. Such a
model could be used as a reference for clinicians to compensate the insertion
plan for predicted movement prior to needle insertion on a prospective patient.
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Abstract. In image-guided lung intervention, the electromagnetic (EM) tracked 
needle can be visualized in a pre-procedural CT by registering the EM tracking 
and the CT coordinate systems. However, there exist discrepancies between the 
static pre-procedural CT and the patient due to respiratory motion. This paper 
proposes an online 4-D CT estimation approach to patient-specific respiratory 
motion compensation. First, the motion patterns between 4-D CT data and res-
piratory signals such as fiducials from a number of patients are trained in a 
template space after image registration. These motion patterns can be used to 
estimate the patient-specific serial CTs from a static 3-D CT and the real-time 
respiratory signals of that patient, who do not generally take 4-D CTs. Specifi-
cally, the respiratory lung field motion vectors are projected onto the Kernel 
Principal Component Analysis (K-PCA) space, and a motion estimation model 
is constructed to estimate the lung field motion from the fiducial motion using 
the ridge regression method based on the least squares support vector machine 
(LS-SVM). The algorithm can be performed onsite prior to the intervention to 
generate the serial CT images according to the respiratory signals in advance, 
and the estimated CTs can be visualized in real-time during the intervention. In 
experiments, we evaluated the algorithm using leave-one-out strategy on 30 4-D 
CT data, and the results showed that the average errors of the lung field surfaces 
are 1.63mm.  

Keywords: Image-guided intervention, respiratory motion, 4-D CT, K-PCA, 
least squares support vector machine. 

1   Introduction 

Image-guided intervention has been widely used in different procedures such as lung, 
liver, and kidney intervention, bronchoscopy, and endovascular interventions. In per-
cutaneous lung intervention, traditional systems use a static pre-procedural CT for 
guidance and might generate larger errors due to the poor reproducibility of breath-
holding and the dynamic deformation of lung parenchyma during respiratory cycles. 
The problem is further multiplexed by the simultaneous deformation of airways, 
bronchi and vascular structures. Therefore, a precise prediction of the movement of 
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the lung or acquiring 4-D CT would be highly desirable for more accurate localiza-
tion. For percutaneous lung intervention, 4-D CT acquisition is normally not per-
formed in major hospitals. Therefore, it is necessary to simulate the serial CT images 
from a 3-D CT of that patient based on the real-time tracked signals such as the respi-
ratory belt or the fiducial signals on the chest.  

Although complex biomechanical models [1] can be constructed to model the 
lung motion, image processing is still necessary to adapt these models to a patient. In 
addition, most biomechanical models need patient-specific 4-D data [2], which 
means that in a clinical scenario, motion information can only be incorporated if the 
4-D images of the patient are additionally acquired. Little work has been presented 
for building motion models based on the extracted motion fields from 4-D data with-
out considering biomechanical tissue properties. Sundaram et al. [3] first classified 
the serial images from free-breathing lung MR scans according to the normalized 
lung capacity and then registered the images with similar capacities to create a dy-
namic model of average lung deformation. However, this method only constructs the 
respiratory template dynamics and does not discuss motion modeling and serial im-
age estimation. Motion model adaptation of an inter-subject model using sparse 
motion information had been recently presented for liver deformation to predict the 
drift of the exhalation position of corresponding points inside the liver [4]. Daniel A. 
Low et al. [5, 6] did the work for using 4D-CT lung registration to estimate the 4-D 
CT lung field motion.  

In this paper, we propose a framework for simulating patient-specific serial im-
ages based on the 3-D data and the real-time breathing signals of the patient. First, 
the 4-D CT data from a number of subjects are captured and aligned onto a tem-
plate space according to their baselines (the first timepoint image), and K-PCA [7] 
is then applied on the lung field motion vectors derived from the extracted lung 
field surfaces to construct the nonlinear statistics of lung motion. To establish the 
relationship between the fiducials’ movement and lung surfaces’ motion in the 
template space, the ridge regression method using the least squares support vector 
machine (LS-SVM) [8] is employed. Then, during the intervention, a 3-D CT and 
the real-time tracking signal of fiducials and respiratory belts of the patient will be 
available. Thus, we can use the trained motion estimation model to estimate the 
lung field motion from the real-time fiducial signals. This motion estimation can 
be performed in the template space. Finally, the estimated lung field motion can be 
used to generate serial deformations and serial images for that patient. The esti-
mated serial images can be pre-calculated right after obtaining the intra-procedure 
CT and before the intervention in order to visualize them in real-time during the 
intervention.  

In experiments, we used thirty 4-D CT data to construct the motion estimation 
model and applied the leave-one-out method to validate the algorithm. The results 
showed that the average differences between the simulated data and the real data 
(lung field surfaces) are 1.63mm. Our future work is to simulate the 4-D CT under 
breath holding and to embed the 4-D CT estimation package in our image-guided 
intervention system under development [9]. 
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2   Method 

2.1   The Framework for 4-D CT Estimation  

Fig. 1 illustrates the framework of the proposed 4-D CT estimation algorithm. The 
pre-processing consists of lung field segmentation, serial image registration for lung 
motion estimation, and registration of the first timepoint images of different subjects 
onto a template image. In the training stage, the normalized lung field surface motion 
vectors and the corresponding fiducial motion vectors of each subject are extracted. 
Kernel-PCA is then performed on the surface motion vectors to construct the lung 
motion statistical model and reduce the dimensionality of surface points. Then, a lung 
motion estimation model is trained using the LS-SVM algorithm to model the rela-
tionship between the fiducial signals and the lung motion feature vectors projected on 
the K-PCA space. In the estimation stage, an intra-procedural 3-D CT and the real-
time tracked fiducial signals of a patient are available. The respiratory signals of that 
patient can be transferred onto the template space in order to use the motion estima-
tion model to estimate the lung motion feature vectors and to reconstruct the lung 
motion vectors (surface motion vectors) of the patient. Serial deformations can be 
generated by using the surface motion vectors as constraints in the serial deformation 
simulator [10]. These serial deformations are finally transformed onto the subject 
space to generate the serial CTs for online visualization during intervention.  

 

Fig. 1. The framework of the proposed 4-D CT estimation algorithm  

2.2   Motion Field Extraction 

Lung field segmentation is a critical pre-processing step in motion field extraction to 
limit the motion modeling step within the thorax field and for better visualization. For 
each subject, we applied a joint segmentation and registration algorithm [11] and 
extracted the lung field by first removing the background and the cavity areas using  
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                                                        (a)                                                  (b) 

Fig. 2. An example of the lung field surface and the lung field shape changes 

region growing and then performing 3-D morphological operations to clean up the 
segmented lung field. By registering the baseline image of each subject onto the tem-
plate space, the surfaces of the lung field from different subjects and their motion 
vectors can be deformed onto the template space. In our study, serial CT images from 
thirty patients, each with twelve timepoints were used. For each subject the baseline 
image is the exhale image and the 7th image is the inhale image, and the 12th image is 
the exhale image again. Fig. 2(a) shows an example of a lung field extracted, and Fig. 
2(b) shows the surfaces extracted from the 7th image before (blue) and after (red) 
registered to the 1st image (the 1st image is shown as the background). It can be seen 
that the deformable registration tracked respiratory motion well. 

2.3   Motion Modeling Using Kernel-PCA 

K-PCA is a nonlinear statistical modeling method and can capture the variations of 
shapes more accurately than PCA. The basic idea of K-PCA is that PCA computed in 
a high-dimensional implicit mapping function ( )φ v , or the feature space, of the sur-
face motion vector v can be replaced by a PCA of the kernel matrix. Let K denotes the 
kernel matrix of N  sample surface motion vectors, i.e., , ( , )i j i jk k= v v , K-PCA can be 

computed in a closed form by finding the first M  eigenvalues iυ and eigenvec-

tors ia of K , i.e., KA AV= . The corresponding eigenvectors in the feature space can be 
computed by multiplying the mapping function values of the samples with A , and 
they preserve the variance of data in the feature space. Therefore, given a surface 
motion vector v , it can be projected onto the K-PCA space as, 

( ),TA= −λ k k  (1) 

where k is the mean of the kernel vectors, and k is the kernel vector of v , 
i.e., ( , ), 1,...i ik k i N= =v v . Because in K-PCA the feature space is induced implicitly, 

reconstruction of a new vector v  given a feature λ  is not trivial. Many methods were 
proposed for the K-PCA reconstruction, and different cost functions could lead to 
different optimization problems. In this work, we used Kwok & Tsang’s algorithm for 
reconstruction [12]. 

2.4   Motion Prediction Modeling Using LS-SVM 

The goal of motion estimation is to establish the relationship between the lung field 
surface motion v (represented by λ in the K-PCA space) with the fiducials’ motion 
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( )dv . Given N  training sample-pairs ( ){( , )}, 1,..., ,d
i i i N=v λ the relationship between 

fiducial ( )d
iv and lung field motion feature vector iλ needs to be established. In this 

work, we employ the ridge regression method with the LS-SVM model. Given the 
time series of the motion vectors , , 1,..., ; 1,...,i t i N t T= =λ

 
and those of the fiducial mo-

tion vectors ( )
,
d

i tv , the goal is to estimate the motion estimation function, 

i.e., ( ) ( ( )) ( )t t t= +λ θ v e , where e is a random process with zero mean and std 2
eσ . Be-

cause the elements of ( )tλ  are independent each other in the K-PCA space, we can 
use the LS-SVM model to estimate each element of ( )tλ . Denoting λ as one element 
of λ at time t , we can estimate it using: 

( )( ) ,T d bλ φ= +w v  (2) 

where ()φ  denotes a potential mapping function. w  is the weighting vector, and b  is 
the shifting vector. The regularized cost function of the LS-SVM is given by [8], 
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γ  is referred to as the regularization constant. This optimization actually corresponds 
to a ridge regression in feature space. The Lagrangian method is utilized to solve the 
constrained optimization problem, and hence the new cost function becomes: 

( )

1

( , , ; ) ( , ) ( ( ) ),
N

T d
i i i i

i

b b eζ ξ α φ λ
=

= − + + −∑w e α w e w v  (4) 

with iα  as the Lagrange multipliers. According to [8], the conditions for optimality are 

equivalent to the following linear equation: 
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where 1[ ,..., ]T
Nλ λΛ = is the vector formed by the N  samples of an element of vector 

tλ , [1,...,1]T N
N = ∈1 R , ( ) ( ) ( ) ( )

, , , , ,( , ) ( ) ( )d d d T d
i j i t j t i t j tφ φΩ = Π =v v v v , 1,...,i j N∀ = with Π  as the 

positive definite kernel function. Notice that because of the kernel trick, the feature 
mapping ()φ  is never defined explicitly, and we only need to define a kernel func-
tion ( , )Π ⋅ ⋅ of the fiducial vectors. The typical radial basis function (RBF) ker-

nel 
2 2( , ) exp( / )i j i j

d d d d σΠ = − −v v v v is used in our study, where σ  denotes the band-

width of the kernel. After solving Eq.(5), we get α  and b , and the element of lung 
motion feature vector λ  can be calculated for given fiducial motion vector ( )dv : 

( ) ( )

1

( , )
N

d d
t i

t

bλ α
=

= Π +∑ v v . (6) 

Notice that because different elements of the lung motion feature vector λ  are inde-
pendent, all of the elements of λ at different timepoints are calculated by this model 
separately, similar to model the motion according to different lung capacity. 
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3   Results 
We used thirty 4-D CT datasets from 30 different patients in the experiments. Twelve 
3-D images were acquired for each patient, and the images were aligned so that the 
first and the last images were exhale data and the 7th data was the inhale data. All the 
images have an in-plane resolution of 0.98x0.98mm and a slice thickness of 1.5mm. 
To ensure that we can get a consistent lung field surface representation, one image was 
randomly selected as the template, and its lung field surface was constructed first. 
Then, we applied the image segmentation and registration program to deform this lung 
field surface onto all the other images. In this way, we can obtain the lung field surface 
correspondences across different subjects and different timepoints to ensure the sur-
faces have the same trajectory. Using the same strategy, nine artificial fiducials were 
automatically put on the surface of the chest/belly of each CT image. In our system the 
EM-guidance is used to track the interventional needle, thus it is valuable to show the 
feasibility of the motion estimation using EM-tracked fiducials. We used the leave-
one-out method to validate the proposed algorithm. Each time the baseline images 
from twenty eight subjects were registered onto the template image for training the 
lung motion estimation model. Then, the baseline image of the left-out subject and the 
fiducal movement signals of this subject were used to estimate the serial CT images.  

Without loss of generality, suppose the baseline image of the patient to be tested is 
( )
1

pI , we can first register it onto the template image T  using deformable registration 
( )
1: p

T P T I−Φ → , and { , }T P G−Φ = f consists of both global G  and deformable f  compo-

nents of the registration. The corresponding lung field surface of the patient ( )
1

pv can 

also be aligned onto the template as 1v . Similarly, the fiducial movement ( , )d p
tv can be 

aligned onto the template space, denoted as ( )d
tv . Notice global transformation G  

needs to be applied to the fiducial motion because we are dealing with different 
spaces. We can then use Eq. (6) to estimate the serial lung motion feature vectors and 
reconstruct the lung field motion from K-PCA space to the template image space, 
denoted as , 2,...,tv t T= . A lung field motion vector-constrained deformation simula-

tion method is applied to generate the serial deformation fields [13]. Finally, the de-
formations are transformed onto the subject space using T P−Φ . The values of these 

deformation vectors are subject to the global transformation G  also.  
The errors between the estimated lung field surface and the actual surface at each 

time point as well as the volumes of the lung fields were used to evaluate the accuracy 
of the estimation. The procedure was iterated 28 times with one subject left out each 
time after selecting one image as the template. The following equation was used to 
calculate the prediction errors for lung field surfaces:  

1
28

28 tests

ˆ( , ), subject  is left out.i dist iΔ = ∑ v v  (7) 

The distance between two surfaces is defined as the average of distances from all the 
points in one surface to the other surface [14]. Another quantitative measure is the 
volume of the lung field. Because the lung fields from both estimated CT and the 
original CT images are available, we simply calculated the lung volumes and compare 
whether they are close. The algorithm was implemented on an HP workstation with 4 
Inter 2.5 GHz dual core Quad Q9300 processors and 4 GB RAM. The runtime for 
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training the 4D model using 30 samples was around 1 hour, and the runtime for test-
ing each case was less than 1 minute. 

Fig. 3 illustrates some examples of the results. From the second row we can see 
that the estimated lung field and the actual lung field match very well, and this can 
also be seen from the plots of the lung field volumes in the third row. In Table 1, we 
list the average lung field estimation errors for 8 experiments, and each result is 
evaluated on the left-out subject image. For the 8 tests, the maximum amount of lung 
motion (on the lung field surface) is 10.20cm, the minimum one is 0.048cm, and the 
average lung motion is 4.78cm. It can be seen that the average errors over the serial 
images are between 1.22mm and 2.18mm with an average of 1.63mm. If we look at 
the errors at different timepoints in detail, the largest errors happened at timepoint 7, 
which is the inhale stage due to relatively larger movement. Overall, an acceptable 
range of errors were obtained for predicting the lung motion. Our future work will 
focus on determining and tracking the location of the lung tumor. 
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Fig. 3. Examples of the motion estimation results. Row 1: the exhale images; Row 2: the corre-
sponding inhale images, blue contours denote the predicted lung field, and red contours are the 
actual lung field position; Row 3: predicted and actual changes of lung volumes.  

Table 1. Average errors for lung motion estimation using leave-one-out validation (unit in mm) 
 

Time T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 Mean 
Pat. 1 1.20 1.39 1.61 1.64 2.69 3.49 2.75 2.75 2.88 1.94 1.63 2.18 
Pat. 2 0.98 1.14 1.31 1.34 2.20 2.85 2.25 2.25 2.36 1.59 1.33 1.78 
Pat. 3 1.08 1.25 1.44 1.47 2.42 3.14 2.47 2.48 2.59 1.75 1.46 1.96 
Pat. 4 0.83 0.96 1.11 1.13 1.86 2.42 1.90 1.91 1.99 1.34 1.13 1.51 
Pat. 5 0.90 1.04 1.20 1.23 2.01 2.62 2.06 2.06 2.16 1.46 1.22 1.63 
Pat. 6 0.77 0.89 1.03 1.05 1.73 2.24 1.77 1.77 1.85 1.25 1.05 1.40 
Pat. 7 0.67 0.78 0.90 0.92 1.51 1.96 1.54 1.55 1.62 1.09 0.92 1.22 
Pat. 8 0.72 0.83 0.96 0.98 1.61 2.09 1.65 1.65 1.73 1.16 0.98 1.31 

4   Conclusion 
We proposed an online 4-D CT image estimation approach to patient-specific respira-
tory motion compensation. The idea is that a motion estimation model is first trained 
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using a number of 4-D CTs from different subjects. Then, this model can be used to 
simulate serial CTs if a 3-D image and the real-time tracked fiducial signals of a pa-
tient are given. Leave-one-out validation results from 30 4-D CT data showed the 
accuracy of the proposed algorithm. Our future work includes simulating 4-D CT 
under breath holding and implementing the algorithm in image-guided intervention. 
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Abstract. Modeling and analyzing surgeries based on signals that are

obtained automatically from the operating room (OR) is a field of re-

cent interest. It can be valuable for analyzing and understanding surgi-

cal workflow, for skills evaluation and developing context-aware ORs. In

minimally invasive surgery, laparoscopic video is easy to record but it

is challenging to extract meaningful information from it. We propose a

method that uses additional information about tool usage to perform a

dimensionality reduction on image features. Using Canonical Correlation

Analysis (CCA) a projection of a high-dimensional image feature space

to a low dimensional space is obtained such that semantic information

is extracted from the video. To model a surgery based on the signals in

the reduced feature space two different statistical models are compared.

The capability of segmenting a new surgery into phases only based on

the video is evaluated. Dynamic Time Warping which strongly depends

on the temporal order in combination with CCA shows the best results.

1 Introduction

Automatic analysis of surgical workflow is an important topic for assessment of
surgical skills, analysis of surgical workflow and intelligent systems that need to
be aware of the current state of an ongoing surgery. Work in this area usually
involves signals that can be obtained in an automatic way. This can be video
images, information about tools that are currently used, signals from robotic sys-
tems or additional sensors like force sensors, that are installed on surgical tools.
These signals are used as input data for machine learning techniques or statisti-
cal modeling. For surgical skills assessment often simulators are used, where it
is possible to attach sensors to tools or phantoms [1] or use tracking systems to
record motion [2]. Other work uses signals from surgical robots [3] where sen-
sors are often built-in and the data is easily accessible. However, in non-robotic
surgery, the acquisition of signals is a more challenging problem. In laparoscopic
surgery, video images are one important source of information. In [4] instrument
segmentation and tracking, tissue deformation and changes in specular high-
lights are detected from laparoscopic video. This data has been used to classify
four different states. In [5] five different laparoscopic tools have been recognized
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based on color and shape using a stereo endoscope in a simulated setup. Both
methods have not been used on whole surgeries, where a lot of different instru-
ments are used that often only have subtle differences. Recognition of surgical
phases for a whole surgery has been shown in [6], where video was used to de-
tect the presence of surgical clips and whether the endoscopic camera is inserted
or not. However, additional information about the use of instruments has been
used, which has been obtained manually. In [7] four operating room states have
been detected from a video camera mounted on the ceiling of an OR. In a simu-
late setup a more fine grained detection of surgical workflow has been shown by
[8] using nine external cameras. In this work we present an approach to detect
phases of a full real minimally invasive surgery (MIS) only from laparoscopic
video. Instead of training classifiers for specific instruments, we use a supervised
dimensionality reduction on simple image features. By using additional data for
the dimensionality reduction, we extract features from the video that contain
semantic information. First we will describe the signals that are used, then we
will discuss statistical modeling based on these signals.

2 Method

2.1 Signals

The method we describe is applicable to every kind of laparoscopic surgery.
For the experiments we used data from a laparoscopic cholecystectomy. This
is a very common surgery that is performed minimally invasive in most of the
cases. The surgery has a fixed workflow that we have split up into 14 phases
that occurred in every instance of the surgery. Especially in MIS the workflow
is strongly correlated with the instruments that are used. For every phase the
ending point has been defined based on the use of a certain instrument or a
combination of instruments. The starting point of a phase corresponds to the
ending point of the previous phase. We have recorded the laparoscopic video and
additional video from external cameras for ten surgeries. We present a method
that tries to detect the 14 phases only based on the laparoscopic video. The
external videos and the laparoscopic video have been used to manually annotate
which instrument is used at which time. The information about the instrument
use is taken for the dimensionality reduction that is described below but not for
the detection itself. There are 17 different signals that have been obtained for
every surgery. Most of them represent the use of surgical instruments. But also
high-frequency coagulation and cutting, which is performed by applying current
to an instrument, and the information which trocar is placed, are used. Every
surgery i is represented by a multidimensional time series Oi ∈ R17×li , where
li is the length of operation i in seconds. While the values of Oi will only be 0
and 1 in our case, we use R in the formula, as the described methods are also
applicable to real valued data without modifications. Such a representation of
the surgical workflow by instrument vectors has been used before for segmenting
a surgery into phases by [9]. An example of these signals can be seen in figure 1.
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Fig. 1. The instrument use over time during one exemplary surgery. The time is given

in seconds and the dotted lines indicate the phases.

From the video images a range of simple image features are computed for every
image. The features are horizontal and vertical gradient magnitudes, histograms
and the pixel values of a 16x16 version of the image. All of these features have
been computed for all three RGB and all three HSV channels, resulting in a
1932-dimensional feature vector for each image. Sampling the features at 1 Hz
we obtain the time series Vi ∈ R1932×li for every surgery i.

Most machine learning methods do not perform well with high dimensional
feature spaces. There are several ways to deal with this problem. One way is
to design classifiers that detect certain instruments or aspects of a surgery as
for example done by [4,5]. When developing such a classifier, the feature space
is usually reduced by manually choosing features that work well for a certain
instrument. While these methods work, it is tedious to design them and often
they are only applicable to one certain kind of procedure. Other approaches that
have been used in the domain of workflow analysis are unsupervised dimension-
ality reduction methods like PCA [3] which performs dimensionality reduction
in a way to maintain the maximum variability in the data or feature weighting
methods like Boosting [10] which select features based on their capability to
discriminate between two classes. We use another approach that makes use of
the additional information about the use of instruments. In contrast to the fea-
tures that are extracted from the video, the instruments have an obvious strong
semantic meaning. By using Canonical Correlation Analysis (CCA) the visual
features are weighted based on their correlation with the manually annotated
signals. By using CCA we perform a dimensionality reduction such that the
resulting signals are correlated with semantic meaningful signals and thus also
have an expressive power.

CCA takes two time series O ∈ Ro×l and V ∈ Rr×l and computes two pro-
jection matrices A and B where Ai, respectively Bi denote the ith row of the
matrix. The two matrices project both time series to a new space with dimen-
sionality d = min(o, r). This is done such that the correlation between every
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Fig. 2. Left: Example of a laparoscopic image. Right: Instruments (bold) and image

features (fine) projected to a common space using CCA. The first dimension which has

the highest correlation is shown here.

pair, corr(AiO, BiV), is maximized while every linear combination Ai is orthog-
onal to all linear combinations Aj , j < i. The same condition holds for B. CCA
can be seen as a method that takes two views of the same semantic object in
order to extract a representation of the semantics [11]. It has been used e.g. for
alignment of human behavior [12] and text based image retrieval [11].

By applying CCA to our data, we reduce the dimensionality of the image
features to 17 and obtain a new 17-dimensional representation of the instru-
ment use. The first dimension of the image features and the instrument signals
projected to a common space is shown in figure 2. For the statistical modeling
and the detection of phases that is described below, we completely discard AO

and only use BV. The correlation in the new space is decreasing with every di-
mension. Therefore we have chosen only to use dimensions, where the correlation
corr(AiO, BiV) is > 0.50. We compare this method to a standard dimensionality
reduction using PCA.

2.2 Modeling

For the segmentation we are using a 14-state left-to-right Hidden Markov Model
(HMM), where each state represents one phase. To segment a surgery Oi into
phases, we compute the Viterbi-path, that assigns one of the 14 states to each
time step of Oi. As each HMM state corresponds to one phase, we can directly
use this to segment the surgery. The HMM transition probabilities are simply
estimated from the length of each phase in the training data. Defining the obser-
vation symbol probabilities i.e. the probability that one feature vector has been
generated in one phase, is an important choice for an HMM. As we have real
valued data, standard methods like counting the observation symbol frequency
are not applicable. To be able to compare different advanced methods, we have
chosen to use WEKA [13], a library that implements a wide range of standard
machine learning approaches many of which can output probabilities that can be
used as observation symbol probabilities. A first test was done using nine surg-
eries for training and one for testing. The segmentation results for a 14-state
HMM using different classifiers have been computed. The best results have been
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achieved using Support Vector Machines and the meta-classifiers RotationFor-
est, Bagging and LogitBoost. These have been included in a full cross-validation
that is described later.

While a 14-state left-to-right HMM takes into account the temporal order of
the phases, it does not capture the whole underlying semantics of the workflow.
Especially for the signals that are obtained using CCA the model should be
able to represent as much semantic information as possible. One option would
be constructing a HMM that has many states, modeling each surgical step.
However constructing such a HMM is difficult. Instead we have chosen to use
Dynamic Time Warping (DTW) to build a model of an average surgery that
captures the underlying semantics. DTW is a method that warps one time series
onto another one. This is done by generating a warping path that maps every
time step i of one surgery to a time step j in the other surgery while minimizing
the sum of distances between corresponding points. Similar as done by [10] we
construct a model of an average surgery by warping all surgeries to a common
timeline and averaging the signals for each time step. As we know the phase for
every time step in the training surgeries, we can label the phase for every time
step of the average surgery. To segment a new surgery we warp it to the average
model using DTW and carry over the phase labels. Building the DTW average
and warping a surgery to this average is done using the features obtained after
applying CCA, respectively using PCA.

3 Results

For comparing the methods we have used data from ten surgeries. For three
of the surgeries, parts of the surgery have not been recorded due to technical
problems. These surgeries have been used only for training. We have performed
a leave-one-out cross-validation always using one of the seven complete surgeries
for testing and all other nine for training. Four different methods have been
compared. DTW using the features obtained using CCA, DTW on the features
after PCA, and HMM on the data from CCA and PCA. For the HMM observa-
tion probability distribution we have used RotationForest, Bagging, LogitBoost
and SVM. For the three meta-classifiers which build a classifier based on sim-
pler classifiers we have performed a full cross-validation using several choices of
simple classifiers. We only provide the results obtained with the best classifier,
which was in both cases Bagging using C4.5 decision trees. For the methods that
use PCA, we tried different numbers of principal components. The results are
presented in table 1. It can be seen that the standard deviation is very high.
We think that this is a result of the small training set and is an indicator that
results can be improved when working with more data. The confusion matrix of
DTW + CCA can be seen in figure 3. Most errors are along the diagonal. This
is because a strong temporal model is used.

Recording laparoscopic and additional external video images during a surgery
and labeling the instrument use is difficult and tedious. Therefor we could only
acquire a data set of limited size. One must be careful to draw conclusions from
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Table 1. Means and standard deviations of the number of time-steps where the phase

was classified correctly

PCA CCA

HMM + Bagging 47.12%(±12.67) 53.46%(±14.51)

DTW 62.90%(±18.30) 76.81% ± (12.42)

1  2  3  4  5  6  7  8  9 10 11 12 13 14
phase ground truth

14
13
12
11
10
9
8
7
6
5
4
3
2
1

Fig. 3. This images shows the confusion matrix from the whole cross-validation visu-

alized by the image brightness. It can be seen that in most cases of misclassification a

phase is classified as neighboring phase.

such a data set. To be able to interpret the outcome, we compared the results
from the different methods using the Wilcoxon signed-rank test, a statistical
hypothesis test that can handle small data sets. The differences between the
compared methods and the corresponding p-values are provided in table 2. The
PCA data does not contain a large amount of semantic information. Therefore
we did not expect improvement from using DTW compared to a 14-state HMM
(1). While there is a difference of 15.8%, this results can not be considered as
significant (p > 0.03) as the difference mainly results from only two surgeries.
Also from using HMMs with PCA or CCA (2) we did not expect a big difference,
as the HMM does not fully take advantage of the characteristic of the CCA data.
While the significance here is high, the difference is only low. For using CCA
+ DTW we expected a significantly better result as PCA + DTW (3) or CCA
+ DTW (4), as only the combination CCA and DTW makes full use of the
semantic information that is added by the dimensionality reduction using CCA.
This assumption is supported by the results of our comparison.

Table 2. Comparison of the methods that have been used. Difference in percentage

points (pp) and p-value is given

compared methods difference in pp p-value

(1) PCA + HMM \ PCA + DTW 15.8% 0.188

(2) PCA + HMM \ CCA + HMM 6.3% 0.016

(3) CCA + DTW \ PCA + DTW 29.7% 0.023

(4) CCA + DTW \ CCA + HMM 23.4% 0.008
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One way to improve the performance would be to add additional information.
As discussed before, other work on laparoscopic video used classifiers for special
instruments or aspects of the surgery. In [6] we have presented classifiers to
detect surgical clips or whether the camera is inserted into a trocar or not. We
have added these two signals to the ones obtained using CCA. Using DTW
we obtained a classification result of 79.12%. Other information that could be
added with limited technical efforts are signals that are obtained from devices or
machines used in the OR. As example we added two signals representing the use
of high frequency coagulation and cutting. Using these signals we could further
improve the classification to 81.36%.

4 Discussion

In this work we have presented a method that allows segmenting a laparoscopic
surgery into phases, using only information from laparoscopic video. We have
used a supervised dimensionality reduction method that makes use of additional
semantic meaningful information to extract a new representation of the image
features that also includes semantic information. In combination with a statis-
tical model that can represent the semantics of time series, we have shown that
this method performs better than standard machine-learning and dimensional-
ity reduction methods. It has been shown that especially the combination of the
supervised dimensionality reduction and an appropriate statistical model leads
to better results. One shortcoming of this work is that the segmentation can
only be performed after the whole video has been recorded as DTW requires the
whole time-series. HMMs are capable of estimating the current state while the
time series is not complete yet. However the results of this work have shown that
a simple HMM topology can not achieve good results. One way to handle this
would be to use more complex HMM topologies that take into account more of
the semantics of the data. This could be achieved using HMMs that derive their
topology from data as done by [14]. One advantage of DTW is that a warping
path is obtained that assigns every time step of a surgery to a time step of the
average model. By taking the warping paths of two surgeries their video can be
synchronized e.g. to compare different surgeries or to show a set of synchronized
surgeries for training. It can also be used to automatically search for a certain
phase in the video.

We believe that methods like CCA will play in important role for workflow anal-
ysis. The amount of data that can be obtained from the OR is increasing. There is
a growing number of cameras, data can be gathered from anesthesia devices and
signals from robots, instrument tracking or people localization systems become
available. To be able to combine data from several sources and to do sophisticated
modeling and analysis, methods like CCA are well suited. An important advan-
tage of the method that was presented here is that we only need the video to detect
the current phase. By taking the approach of performing a supervised dimension-
ality reduction we add the additional information about instrument use while be-
ing able to segment a new surgery without needing this additional information. A
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future goal is to extend the method to online use. This would allow monitoring,
prediction the remaining duration of a surgery or offering context-sensitive user
interfaces only by using the data from the laparoscopic video.
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Abstract. The shift to minimally invasive abdominal surgery has in-

creased reliance on image guidance during surgical procedures. However,

these images are most often presented independently, increasing the cog-

nitive workload for the surgeon and potentially increasing procedure

time. When warm ischemia of an organ is involved, time is an impor-

tant factor to consider. To address these limitations, we present a more

intuitive visualization that combines images in a common augmented re-

ality environment. In this paper, we assess surgeon performance under

the guidance of the conventional visualization system and our fusion sys-

tem using a phantom study that mimics the tumour resection of partial

nephrectomy. The RMS error between the fused images was 2.43mm,

which is sufficient for our purposes. A faster planning time for the re-

section was achieved using our fusion visualization system. This result is

a positive step towards decreasing risks associated with long procedure

times in minimally invasive abdominal interventions.

1 Introduction

Many abdominal surgery procedures are now performed minimally invasively. In
this paper we discuss laparoscopic partial nephrectomy, which is the resection of
a renal tumour along with a margin of healthy tissue to ensure cancer control.
During this procedure, the surgeon uses a laparoscopic camera to view the organ
surface and a laparoscopic ultrasound (US) probe to visualize the tumour and
other underlying structures to plan and perform the resection. In the conven-
tional operating room (OR), the video and US images are presented separately
and are typically in 2D (Fig. 1a-b). Therefore, the surgeon has to look back and
forth between the images and mentally map the US image onto the video image
to determine where the tumour is relative to the organ surface. Furthermore,
the 2D nature of the images results in decreased depth perception.

A more intuitive visualization system would be advantageous for guidance
during partial nephrectomy, especially in decreasing procedure time and in
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achieving a more accurate margin. During partial nephrectomy, the kidney is
often subject to warm ischemia [1]. Periods of warm ischemia greater than 30
minutes put the organ at risk of irreparable damage, therefore a short warm
ischemic time is crucial. A 1cm margin of normal renal parenchyma is accepted
as the standard to prevent the recurrence of cancer. More recently, it has been
suggested that a smaller margin of 5mm or even less is acceptable for cancer con-
trol [2]. A smaller margin allows for more healthy tissue to be retained, increasing
the nephron sparing and the likelihood of a positive postoperative prognosis. To
attain a smaller margin without violating the tumour boundaries, it is crucial to
know exactly where the tumour is located and how far it extends into the organ.

We developed and validated a visualization platform (Fig. 1c) that fuses video
and US in a common 3D environment. This work is presented as a system that
is unique from other work [3,4] through the use of magnetic tracking and a
flexible-tip US probe, combined with stereoscopic video. The goal of this paper
is to evaluate the efficacy of fused video and US by studying surgeon performance
under the guidance of the conventional setup (video and US separate) and the
fusion setup, presented both monoscopically and stereoscopically. This goal is
achieved with a novel phantom study. Targeting has been shown to be faster
with a stereoscopic visualization [5], and more accurate using multimodality
fusion [6]. These studies provide the basis for exploring the use of a stereoscopic
fusion environment for more complex tasks such as tumour resection.

Fig. 1. (a)-(b) Separate video and US images, with the US probe visible in the video

image. (c) Fused video and US images showing a tumour within a phantom.

2 Materials and Methods

2.1 Fusion System

Our image fusion platform used the Aurora magnetic tracking system (MTS)
(Northern Digital Inc., Waterloo, ON) to determine, in real time, the location
of images from a stereoscopic camera and an US probe. A 6 degree-of-freedom
MTS sensor was affixed to each tool. The camera was calibrated using Zhang’s
method [7] to determine its intrinsic and extrinsic properties. We adapted this
method to integrate the camera with the MTS by determining the transform
between the camera’s optical origin and its sensor. The US was calibrated [8] to
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determine the transform between the center of the probe element array and its
sensor. The tracking of the tools combined with calibration was the key to the
fusion of the images [9]. Using the real-time positions and orientations of the
images, they were rendered in a common coordinate system to create the fusion.

The visualization was run on an x86-based desktop personal computer with
dual quad core Xeon processors at 2.66GHz and 4GB RAM, running Windows
XP with an NVIDIA Quadro FX 4600 graphics card. We used an Intuitive
Surgical stereoscopic laparoscope from Olympus plugged into a Snell & Wilcox
vision cart with a Kudos Plus TBS100 synchronizer. An Aloka SD-1700 US
system was used with a 7.5MHz laparoscopic probe.

Validation. The accuracy of tool calibration and image fusion was demon-
strated with a target localization experiment using a tracked point source tar-
get. The target was placed at 20 different locations arranged in a grid pattern
throughout tracking space. Each imaging modality was used separately to locate
the target. The camera was used between 40 and 60mm from the target, a range
within which it would be used clinically. We compared the target location as de-
termined by each modality to the true location given by tracking the target, and
to the location determined by the other modality. To calculate the 3D location
of the target according to US, its 2D US image coordinates were multiplied by
the calibrated US tool transform [10]. Triangulation [11] was used to compute
the location of the target according to the stereoscopic camera images. This task
demonstrated how well the camera and the US were calibrated relative to the
tracking space coordinate system, as well as to each other.

2.2 Phantom Study

A study using kidney mimicking phantoms was performed to compare the fu-
sion system mentioned in the previous section to the conventional visualization
system that is currently implemented in the OR.

Phantom Development. Polyvinyl alcohol (PVA) was used in this study to
create tissue mimicking phantoms. PVA, a synthetic polymer with high tensile
strength and flexibility, is suitable for creating phantoms due to its nontoxic
properties, ease of preparation and excellent echogenicity. The concentration of
PVA relative to water and the number of freeze/thaw cycles (FTC) determines
the rigidity and density of the final product. We used a 10% by mass solution of
PVA and water. The PVA undergoes FTCs (12 hours freeze and 12 hours thaw
per cycle) to create a cryogel (PVA-C). The process of creating PVA-C and the
effect of the number of FTCs on its properties have been reported previously [12].

Our phantoms consisted of two components: tumour and normal parenchyma.
Each was subject to a different number of FTCs so that they differed in density,
enabling them to be distinguished under US. A custom designed mold was used
to create 19.05mm diameter spheres. Gadolinium contrast agent was added to
the PVA of the tumours for enhanced magnetic resonance imaging (MRI) vi-
sualization. The tumour-replicating spheres were frozen and thawed twice, then
removed and placed into a larger kidney-sized mold. After the tumour phantoms



Fused Video and Ultrasound Images 411

were inserted, the larger mold was filled with PVA, and the entire system was
subject to one FTC. In total, the tumour-mimicking PVA underwent three FTCs
while the normal renal parenchyma-mimicking PVA underwent one cycle. The
difference in density between tumour and normal tissue resulted in realistic con-
trast under US (Fig. 1b). In addition to realistic imaging qualities, the phantoms
were realistic in texture, as determined by our clinical collaborators.

Fig. 2. (a) Tumour excision from phantom. (b) Excised segment. (c) MRI scan of

excised section with segmented tumour (in red); white arrow denotes minimum margin.

User Study Procedure. We designed a task using the PVA-C phantoms to
determine how well a surgeon is able to resect tumours under the guidance of
fused video and US. The task replicated renal tumour resection using minimally
invasive surgery (MIS) tools. This task was performed under the guidance of the
conventional OR system with video and US displayed separately (conventional),
the fused images presented in 2D (2D fusion), and the fused images presented
in 3D (3D fusion). All of the visualizations were viewed on a novel autostereo-
scopic monitor (Dimension Technologies Inc., Rochester, NY) that can switch
between 2D and 3D mode, eliminating any effect that may arise from variations
in resolution and brightness caused by using a different monitor for each mode.

The resections were performed by a single experienced surgeon, who was in-
structed to resect the tumours as he would in the OR (Fig. 2a-b) and to aim for
a 5mm margin. For this experiment, we focused on endophytic tumours (com-
pletely beneath the organ surface) because they are the most difficult to operate
on. Multiple resections were performed, each time under the guidance of one of
the three visualization systems. The order in which the visualization systems
were presented was randomized to minimize learning effects. A laparoscopy box
trainer (Fig. 3a-b) was used to replicate the minimally invasive nature of the
procedure. The phantom was placed inside the box trainer and laparoscopic
tools were inserted through ports on the surface. The tools provided to the sur-
geon included laparoscopic scissors, graspers, marker (used in place of cautery
for marking the phantom surface during planning), US probe, and camera, ar-
ranged in a similar manner to the setup in the OR (Fig. 3c). The US monitor
was occluded when the fusion environment was being used.

Performance Measures. Performance was assessed by measuring the proce-
dure time and the accuracy of margin achievement. A single factor analysis of
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Fig. 3. (a) Laparoscopy box trainer used to replicate MIS environment. (b) Experiment

port placement, numbers indicate distance in centimetres. (c) Experiment setup.

variance (ANOVA) was performed (GraphPad Prism 5.0) to determine signifi-
cant differences in procedure duration between guidance modalities.

Time: The total procedure time was broken down into the planning stage and
the excision stage. The planning stage included using the US to localize the tu-
mour and using a marker to mark the surface of the phantom where the incision
was to be made. The excision stage constituted the remainder of the procedure.

Accuracy: To evaluate margins, the excised sections were scanned with MRI.
A T1 weighted sequence (T1 FLAIR) on a 3T GE MR750 Discovery scanner
was used with the following parameters: TR=2300ms; TE=6.528ms; TI=850ms;
frequency FOV=12.8; NEX=1; echo train length=2; BW=31.25; slice thick-
ness=1.0mm; and spacing=0.2mm. The gadolinium contrast agent in the tu-
mour PVA made it distinguishable from the normal parenchyma. This improved
contrast allowed us to segment the tumours for post-operative evaluation. The
volume of each segmented tumour was determined to validate the segmentation.

Clinically, margins are reported as positive (tumour extending to the edge)
or negative (no cancer cells between the tumour and the edge). Some patholo-
gists report the minimum margin from cut edges, although this is not consistent
between all cases. We examined the MRI volumes of the excised sections and
measured the shortest distance between the tumour and a cut edge to replicate
the clinical scenario (Fig. 2c). We also reported whether the tumour boundary
was exposed, indicating the potential for a positive margin.

3 Results

3.1 Fusion System Validation

The target localization error (Mean±Standard Error of the Mean(SEM)) was
1.20±0.08mm for the camera, 1.85±0.14mm for the US, and 2.38±0.11mm be-
tween the camera and the US. Furthermore, a positive correlation (r=0.86) was
found between the error and the distance from the camera to the target, with
the error being minimized in the camera focal range.
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Table 1. Resection times (Mean±SEM), in seconds

Planning Excision Total

Conventional 113.5±21.2 331.6±49.8 445.1±68.0

2D Fusion 80.62±6.1 393.8±62.9 474.4±64.5

3D Fusion 104.9±11.7 541.9±86.5 646.0±88.1

Table 2. Minimum margin thickness, in millimetres

Mean SEM Max

Conventional 2.10 0.89 6.05

2D Fusion 1.11 0.39 2.22

3D Fusion 1.76 0.79 5.10

3.2 Phantom Study

The surgeon performed the task 6 times under each guidance modality, for a
total of 18 trials. We report procedure times in Table 1 and margin accuracy in
Table 2. These results show an improvement in the planning stage using 2D and
3D fusion. The tumour boundary was exposed in one case with the conventional
system, in two cases with 2D fusion and in two cases with 3D fusion.

4 Discussion

The accuracy of the fusion is clinically sufficient as it allows surgeons to achieve
acceptable margins without violating the tumour boundary. Furthermore, the
accuracy of the MTS is on the order of 1-2mm within our working volume,
therefore our accuracy is also acceptable from an engineering angle.

The user experienced a 29% decrease in planning time with 2D fusion and
an 8% decrease with 3D fusion over the conventional system (p=0.28). Excision
times using the fusion systems were greater than with the conventional system,
with the user being 16% slower with 2D fusion and 39% slower with 3D fusion
(p=0.11). Overall, this led to a total time that was 6% slower with 2D fusion
and 31% slower with 3D fusion compared to the conventional system (p=0.15).
Across all visualizations and procedure stages, time decreased with an increasing
number of trials. This suggested a learning effect, which we expect will translate
to improved procedure times with additional training.

The longer excision times with the fusion systems were due to latency in the
visualization, especially with the second video image added for 3D fusion. The
video was synchronized with the MTS, therefore its refresh rate was limited
by tracking frequency. Our implementation would benefit from upgrades in the
tracking system to provide a sufficiently high sampling rate when a greater num-
ber of tools is plugged in. With adequate hardware and software optimization,
the excision times should be consistent over all visualizations, and the decreased
planning time using the fusion systems should result in a decrease in overall pro-
cedure time. With such optimization, we suspect an even greater improvement
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in the planning time when using fusion. Clinically, the tumour resection is under
10 minutes. In all cases except for one conventional, one 2D fusion and two 3D
fusion examples, our total time was less than 10 minutes.

Psychophysical considerations must still be addressed when overlaying images
from multiple modalities, particularly when using stereoscopic images, a factor
that contributed to the longer times with 3D fusion. Further work is required
in optimizing the display of the images to make their combination convincing.
Image processing [13] needs to be performed to remove ambiguity as to where the
US beam lies with respect to the organ surface shown in the video, and to provide
a more realistic environment. In addition, the surgeon reported occasionally
losing the 3D view when he moved, forcing him to become reacquainted with
the stereoscopic monitor, therefore an improved display method is desired.

Margin thickness varies, both in real procedures and in our study, which makes
systematic comparison between cases difficult. Results show that the surgeon
maintained a relatively fixed accuracy and decreased procedure planning time.
We found that tumour boundary exposure occurred with all visualization sys-
tems. However, positive margins are not necessarily an indication for disease
recurrence, as many of the tumours removed with partial nephrectomy are well
encapsulated (reflected in our phantom model) and it is safe to cut along the
tumour edge to retain more tissue, as long as the tumour is not violated.

In addition to the reduction in procedure planning time that we achieved,
we aim to reduce overall procedure time and provide a means for the surgeon
to gain consistent margins of a specified thickness. These goals will be achieved
via improvements in the visualization through system optimization and image
enhancements. The necessary improvements were determined through identifica-
tion of constraints, from both observation and surgeon feedback, encountered in
clinical practice that can affect the procedure. Future studies will include evalu-
ating the performance of surgeons with varying levels of training, and additional
trials for stronger statistical power.

5 Conclusions

We evaluated the use of fused US and video images for tumour resection during
minimally invasive partial nephrectomy. This preliminary study demonstrated
system usability and found an improvement in resection planning times using
fusion. Optimization of the system components motivated by limitations en-
countered during our experimental procedures, and enhancement of the images
to address psychophysical considerations, is expected to inspire faster overall
procedure times and a more effective method of establishing margins.
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Abstract. Blood flow and tissue velocity can be measured using phase-

contrast MRI. In this work, the statistical properties of 4D phase-contrast

images are derived, and a novel probabilistic blood flow mapping method

based on sequential Monte Carlo sampling is presented. The resulting

flow maps visualize and quantify the uncertainty in conventional flow

visualization techniques such as streamlines and particle traces.

1 Introduction
Phase-contrast (PC) MRI utilizes residual phase shifts of spins to quantify tissue
motion and blood flow [1,2]. In cardiovascular PC MRI applications, visualiza-
tion techniques, such as vector glyphs, streamlines, pathlines and particle traces,
are employed for visualizing blood flow [3,4]. A 3D streamline illustrates the tra-
jectory a zero-mass particle takes through a static vector field �(x) : R3 → R3,
e.g., an instantaneous flow field, see Fig. 4a. Pathlines and particle traces show
the particle trajectory in a vector field �(x, t) that changes over time, e.g., in a
4D pulsative blood flow. Clinical applications that benefit from such flow pattern
information include the assessment of stenoses, aneurysms, and heart valve func-
tion, the development of vessel plaque, and surgical planning and follow-up in
congenital heart disease. While a visualization of the flow pattern using stream-
lines or particle traces indeed provide useful information, noise and uncertainty
in the PC MRI measurements is not accounted for and the visualized traces may
even give a false sense of precision. In this work, the uncertainty associated with
a flow streamline or particle trace is addressed and visualized using the distri-
bution of possible flow trajectories. To this end, the statistical properties of PC
MRI images are first derived. The distribution of a streamline or a particle trace
is then sampled and characterized using a sequential Monte Carlo approach.

2 Statistical Properties of Flow MRI Images
The statistical properties of PC MRI images in the presence of Gaussian mea-
surement noise, particularly the statistical distribution of the estimated flow
vectors in the estimated 4D flow vector field �(x, t), are derived in this sec-
tion. The derivation includes the use phased array MRI coils, which consist of
a number of coils K (typically 4-16) arranged in an array. Such arrays permit
fast parallel imaging and/or a better Signal-to-Noise ratio (SNR) over large spa-
tial extents [5]. The derivation below focusses on non-parallel imaging, which
provides the highest image SNR.
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Fig. 1. Magnitude image I(x) (left) and estimated velocity components ṽx, ṽy , and ṽz

in the zoomed area around the aorta

2.1 MRI Image Magnitude and Phase Modeling

In general, a complex MRI image in the spatial domain acquired with coil k in
the phased array may be modeled as

Sk(x) = Ak(x) eiθk(x) + nr
k(x) + i ni

k(x), (1)

where x ∈ R3 is a spatial voxel location, Ak(x) represents the image mag-
nitude weighted with the sensitivity profile of coil k, θk(x) is a coil-specific
spatially varying phase, and nr

k(x) and ni
k(x) represent independent Gaussian

noise N
(
0, σ2

)
in two quadrature channels [6]. From a statistical perspective,

the magnitude image |Sk(x)| follows a Rician probability distribution, which
at high SNR (Ak/σ > 5) can be approximated by a Gaussian distribution [7]
|Sk(x)| ∈ N

(
Ak(x), σ2

)
for all practical purposes. This high-SNR assumption is

generally true for voxels containing tissue or blood, which is shown in the Result
section. A near-optimal-SNR magnitude image I(x) can be reconstructed from
all coils using the sum-of-squares method [5] (Fig. 1):

I(x) =

√√√√ K∑
k=1

|Sk(x)|2. (2)

The statistical properties of expressions such as the one in Eq. 2 have been
studied in [8], and again, for high SNR voxels, a Gaussian approximation applies:

I(x) ∈ N
(
A(x), σ2

)
, where A(x) =

√√√√ K∑
k=1

Ak(x)2. (3)

Note that A(x) and σ2 are unknown, but with the knowledge of the statistical
distribution in Eq. 3, they can be estimated from the known I(x). This estima-
tion is described in Section 2.3.
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The phase θk(x) in Eq. 1 is estimated with the argument operator arg (Sk(x)),
and the exact probability distribution of this estimator is given in [7]. For high
SNR, however, one may again use a simpler Gaussian approximation

arg (Sk(x)) ∈ Nw

(
θk(x),

σ2

Ak(x)2

)
, (4)

where Nw denotes the wrapped Normal distribution, i.e., θk is calculated modulo
2π so that θk ∈ (−π, π].

2.2 Flow Vector Modeling

Four separate 3D PC MRI images must be acquired to reconstruct a 3D flow
vector field �(x). A 4D flow field �(x, t) is obtained by repeated acquisitions
during the cardiac cycle synchronized with the RR-interval of the patient. The
goal in this section is to derive the statistical properties of an estimated flow
vector ṽ ∈ �(x, t). All expressions in this section are applied voxelwise, and the
spatial coordinate x is omitted for clarity. Typically, an encoding scheme is used
which is based on a baseline image S0

k and three images Sx
k , Sy

k , and Sz
k that

encode the flow velocity along the x, y, and z directions in the image phase,
cf. Eq. 1:

S0
k = Ak e

iθk + noise, Sy
k = Ak e

i(θk− π
venc

vy) + noise,

Sx
k = Ak e

i(θk− π
venc

vx) + noise, Sz
k = Ak e

i(θk− π
venc

vz) + noise. (5)

In Eq. 5, vx, vy, and vz are the true velocities along the orthogonal coordinate
axes, and the velocity encoding parameter venc is a sequence parameter that
controls the upper limit of the velocity that can be measured without artifacts.
A typical value is venc = 1.5 m/s. θk denotes an unknown and spatially varying
phase for coil k = 1 . . .K, which is assumed constant over time and acquisitions.
The flow velocity in the x-direction is found as the phase difference between
the Sx

k image and the baseline image S0
k, i.e., following the sum-of-squares re-

construction in Eq. 2, a velocity estimate based on all K coils is calculated as

ṽx =
venc

π
arg

(
K∑

k=1

S0
kS

x∗
k

)
, (6)

where Sx∗
k denotes the complex conjugate of Sx

k . The estimates of ṽy and ṽz

are calculated analogously. Example velocity images for one slice are shown in
Fig. 1. Using Eq. 4, one can show that ṽx is distributed according to the following
Gaussian distribution:

ṽx ∈ N

(
vx,

v2
enc

π2

2σ2

A2

)
, (7)

where A is given in Eq. 3. It is assumed that the velocity is smaller than venc

so that no phase wrap occurs. In practise, a standard image preprocessing step
corrects such wraps.
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As each velocity component of the 3D flow vector ṽ = [ṽx, ṽy, ṽz]
T is Gaussian

distributed according to Eq. 7, the joint distribution is multivariate Gaussian
ṽ ∈ N(v,C). Furthermore, as the baseline images S0

k, k = 1 . . .K are involved
in the computation of all three velocity components ṽx, ṽy, and ṽz , the covariance
matrix C will not be diagonal. For example, with a derivation similar to the one
above, the covariance between ṽx and ṽy is

Cov (ṽx, ṽy) =
v2

enc

π2

σ2

A2
, giving the full covariance C =

v2
enc

π2

σ2

A2

⎛⎝2 1 1
1 2 1
1 1 2

⎞⎠ . (8)

To summarize, the measured flow velocity vector in each voxel may be see as
drawn from a multivariate Gaussian distribution with mean v, i.e., the true
velocity, and covariance matrix as given by Eq. 8. To fully specify the covariance
matrix, estimates of the unknown parameters A and σ2 are required. This is
discussed in the next section.

2.3 Parameter Estimation

Methods for estimating the noise variance σ2 and signal strength Ak from mag-
nitude MRI images |Sk| have previously been proposed in the literature [9,7].
Most of the proposed methods require a homogenous image region. Typically an
air region is selected in which the SNR is low and the Gaussian approximation of
the Rician distribution is no longer valid. In contrast, here we propose using all 4
image volumes in the PC MRI acquisition (cf. Eq. 5) to perform a voxelwise pa-
rameter estimation: Let Ω denote a mask of high-SNR voxels in the four images
I0(x), Ix(x), Iy(x), and Iz(x), reconstructed from Eq. 5 with the sum-of-squares
method in Eq. 2. The high-SNR voxels are found using a straightforward image
thresholding, as these voxels correspond to voxels with high intensity, i.e., all
non-air voxels. For the voxels in Ω, the Gaussian approximation in Eq. 3 can be
applied, leading to an estimation procedure based on the well-known formulae
for the mean and variance of Gaussian variables. First, an estimator of the signal
strength A(x) is obtained as

Ã(x) =
1
4
[
I0(x) + Ix(x) + Iy(x) + Iz(x)

]
. (9)

According to Eq. 3, the noise variance σ2 is equal for all voxels in Ω, so that
a variance estimate can first be calculated for each voxel separately, and a final
estimate can then be found by pooling over all voxels:

σ̃2 =
1

|Ω| − 1

∑
xi∈Ω

⎡⎣ 1
4 − 1

∑
k={0,x,y,z}

(
Ik(xi) − Ã(xi)

)2

⎤⎦ . (10)

In this expression, |Ω| denotes the number of voxels with high SNR. With Ã(x)
and σ̃2, the covariance matrix for the flow vector in Eq. 8 is fully specified.
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3 Probabilistic Flow Mapping

In this section, the distribution of possible flow trajectories is addressed. Al-
though there is no closed form expression of this distribution, it is possible to
draw random samples using Monte Carlo methods and then reconstruct and
visualize the distribution using a histogram technique.

3.1 Probabilistic Streamlines and Particle Traces

A 3D streamline is a trajectory described by train of vectors {s0, s1, . . . , sk−1}
starting in a seed point x0 ∈ R3, see Fig. 2. A 4D particle trace can be described
similarly, although with the additional temporal dimension. Each vector sk is

Fig. 2. A streamline

a function of the current trajectory position xk, the
flow vector field �, and a step length parameter T :

sk = f (xk,�;T ) . (11)

For example, an Euler sampling scheme uses
f (xk,�;T ) = Tv(xk), but more accurate multistage functions such as Heun’s or
4th-order Runge-Kutta schemes are generally used in practise [10]. The spatial
position of the streamline trajectory after k steps is

xk = x0 +
k−1∑
j=0

sj . (12)

In a conventional streamline algorithm, the vectors sk are treated as determin-
istic variables. However, in PC MRI, these vectors are based on the estimated
vector field �, which is contaminated with random noise. Consequently, the
vectors sk as well as the positions xk may be seen as random variables. The
key question addressed in this work is the form of the statistical distribution
p(xk) = p(s0, . . . , sk−1) of the streamline under the influence of noise in �. A
sample from p(s0, . . . , sn−1) is referred to here as a probabilistic streamline or a
probabilistic particle trace. A theoretical derivation of this distribution is com-
plicated by both the high dimensionality as well as the recursive nature of the
streamline, i.e., the vector sk depends on all previous vectors sk−1,. . . , s0, which
is clearly seen by combining Eq. 11 and Eq. 12. An alternative approach to
investigate the form of a mathematically intractable probability distribution is
to draw a large number of samples using computational Monte Carlo methods.
An important observation is that the distribution above can be factorized into
conditionally independent parts:

p (s0, . . . , sk−1) =
k−1∏
j=0

pj (sj|xj) . (13)

Samples from such a distribution can be generated using so-called sequential
Monte Carlo sampling [11]. In this sampling approach, a probabilistic stream-
line is generated iteratively by first drawing a sample s̃0 from p0 (s0|x0), which
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gives x̃1 = x0 + s̃0. Next, given x̃1, a sample s̃1 can be drawn from p1 (s1|x̃1),
which gives x̃2, and so on. pj (sj |xj) remains to be determined in Eq. 13. Sec-
tion 2.2 showed that the estimated flow vectors in � are Gaussian distributed
with covariance matrix C in Eq. 8. Therefore, pj (sj |xj) also has a Gaussian
form:

pj (sj |xj) = N
[
f (xj ,�;T ) , T 2C

]
. (14)

Expressed in words, the random vector sj has as mean the deterministic vector
described by Eq. 11 obtained using a regular streamline algorithm, e.g., an Euler,
Heun or Runge-Kutta scheme. This vector is perturbed with the covariance
matrix C in Eq. 8 scaled by the step length T .

3.2 Probabilistic Flow Map

Each probabilistic streamline or particle trace is a sample from the distribution
p(s0, . . . , sk−1) that describes the probability of all possible paths a virtual zero-
mass particle may take from the seed point x0. To facilitate the visualization of
this distribution, the probabilistic streamlines can be converted into a 3D spatial
map Ψ(x) or a 4D spatiotemporal map Ψ(x, t) for particle traces. To this end,
a large number N > 1000 of probabilistic streamlines must be generated. Let
μ(x, N) be the number of occasions that each voxel xk is passed by a streamline.
The flow map is then calculated as a histogram where each voxel is a bin:

Ψ(x) =
μ(x, N)

N
. (15)

A similar mapping technique has been used in Diffusion-Tensor MRI [12].

4 Image Data

Due to space limitations, a single 4D PC MRI data set of the blood flow in
the aorta is used to demonstrate the proposed probabilistic blood flow mapping
technique. The following acquisition parameters were used: TE = 3.67 ms, TR =
6.1 ms, flip angle 15, venc = 1.5 m/s, spatial resolution 1.7 × 1.7 × 3.5 mm3 and
temporal resolution 48.8 ms. A phased array coil with K = 12 coil elements was
used to obtain the necessary spatial coverage. The acquired 4D image volumes
were of size 120× 192× 24 voxels and 14 temporal frames covering a heart beat.

5 Results

To determine the covariance matrix of the flow vectors in Eq. 8, estimates of
A(x) and σ2 were first calculated using the procedure described in Section 2.3.
A voxelwise signal-to-noise image, where SNR = A(x)/σ, is shown in Fig. 3.
The average SNR in the aorta is about 10, resulting in a standard deviation of
68 mm/s in each velocity component when inserted into Eq. 7. As a reference,
the peak flow velocity in the aorta is approximately 1500 mm/s and significantly
lower in smaller vessels. Moreover, the SNR is high enough to approximate the
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Fig. 3. SNR for each voxel in a

slice estimated with the method

presented in Section 2.3. The

aorta is designated by the ar-

rows.

Fig. 4. a) A conventional 3D streamline visualiz-

ing the flow pattern from one point in the aorta. b)
Probabilistic streamlines. c) Flow map Ψ(x) calcu-

lated from 10,000 probabilistic streamlines.

Rician distribution with a Gaussian, as is done in Section 2. In Fig. 4a, a con-
ventional streamline is shown, visualizing the flow pattern from the aorta into
the left subclavian artery. In Fig. 4b, 50 probabilistic streamlines are shown,
which were generated according to Section 3.1 and initiated in the same point.
These probabilistic streamlines illustrate the uncertainty due to measurement
noise that is not evident from the conventional streamline, i.e., when the noise is
considered, the flow pattern may exit in any of the left carotid, right carotid, or
left subclavian arteries. The distribution of possible flow trajectories, calculated
as described in Section 3.2 using 10,000 probabilistic streamlines, is shown in
Fig. 4c. Figure 5 shows a 4D flow map generated from 10,000 probabilistic par-
ticle traces emitted from a region instead of from a single point. The color scale

Fig. 5. 4D spatiotemporal probabilistic flow map Ψ(x, t) illustrating the statistical dis-

tribution of particle traces during a heart beat. The map is based on 10,000 probabilistic

particle traces.
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represents the probability of finding a conventional particle trace in a specific
spatiotemporal box when the measurement noise is considered.

6 Discussion
In this work, the statistical properties of PC MRI velocity measurements have
been derived and used for mapping the uncertainty associated with blood flow
streamlines and particle traces. This is done by drawing samples from the distri-
bution of possible flow trajectories using a sequential Monte Carlo method. The
primary application demonstrated here is a visualization of the uncertainty, i.e.,
the flow distribution. The next step is to employ the method for flow pattern
quantification. For example, stroke embolization pathway probabilities can be
calculated with a probabilistic flow connection map from a plaque position to
critical vessels supplying the brain. Another concrete clinical application is con-
genital heart disease, where blood mixing ratios at positions where two vessels
merge are of interest.
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Abstract. Purpose: Accurate, practical, and affordable joint encoding on legacy 
C-arm fluoroscopes is a major technical challenge.  Conventional pose tracking 
methods, like optical cameras and radiographic fiducials, are hampered by sig-
nificant shortcomings. Methods: We propose to retrofit legacy C-arms with a 
tilt sensing accelerometer for rotation encoding.  Our experimental setup con-
sists of affixing an accelerometer to a full scale C-arm with a webcam as an al-
ternative to X-ray imaging for this feasibility research. Ground-truth C-arm 
poses were obtained from the webcam that tracked a checkerboard plate. From 
these we constructed a series of angle and structural correction equations that 
can properly relate the accelerometer angle readings to C-arm pose during sur-
gery and compensate for systematic structural C-arm deformations, such as 
sagging and bending.  Results: Real-time tracking of the primary and secondary 
angle rotations of the C-arm showed an accuracy and precision of less than 0.5 
degrees in the entire range of interest.  

Keywords: fluoroscopy, C-arm, tracking, encoding, accelerometer. 

1   Introduction 

C-arm fluoroscopes are ubiquitous in computer-assisted interventions. They are versa-
tile, compact, and mobile real-time X-ray imaging devices. The basic use of a C-arm 
is to acquire 2D X-ray images that can be reconstructed into three-dimensional repre-
sentation.  The reconstruction process requires that the relative poses of the 2D pro-
jection images must be known.  Accurate, practical, and affordable C-arm pose track-
ing is a major technical challenge in using manually operated and un-encoded con-
ventional C-arm fluoroscopes. 

The motivation for this project is intra-operative implant reconstruction in prostate 
cancer brachytherapy [3]. C-arm images are acquired of the implanted prostate, fol-
lowed by a 3D reconstruction of implants relative to the prostate gland and other 
surrounding structures observed in ultrasound.  Then dosimetry is computed and the 
remainder of the implant procedure is re-optimized.  For a successful implant recon-
struction, the C-arm pose needs to be recovered with ideally less than 1° error [3,4,6]. 
Various constraints imposed by potential collisions with patient, operating table, and 
standard brachytherapy instrumentation limit the usable range of the C-arm to about a 
30° cone in the canonical vertical position (Figure 1, left). 
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Conventionally, C-arm pose tracking takes one of two forms.  External tracking 
uses a dynamic reference body that is attached to the C-arm and sensed by optical 
cameras to recover the pose [5]. Optical cameras can recover the C-arm pose accu-
rately and are resistant to common problems that plague C-arms such as wheel motion 
and structural deformation.  However, shortcomings lie in the need for direct line of 
sight between the reference body and the camera, leading to a complex, labor-
intensive, and ultimately costly setup for most care facilities.  Image-based tracking 
uses a radio-opaque fiducial placed in the field of imaging [3,4,7].  The precision-
machined fiducial has known geometry allowing for the C-arm pose to be computed 
relative to the fiducial in each individual fluoroscopic image.  While fiducial tracking 
is inexpensive, potentially accurate, and universally usable for any C-arm, it also has 
disadvantages.  The fiducial occupies valuable real estate in the image, forcing the 
prostate to be positioned toward the edge of the detector, where image distortion is 
larger and may demand online distortion correction.  Equally as important, the image 
needs careful processing and the fiducial must be segmented, which has been a singu-
lar point of failure in the clinical procedure [3,4].  Accelerometers have been consid-
ered for full position tracking, but those studies revealed accumulating drift error in 
measuring the pose [8], which thus far has prohibited the application of accelerome-
ters in surgical guidance.  

In the operating room, the brachytherapy crew is under incessant pressure to com-
plete the image acquisition in minimum time.  In such haste, more often than not the 
C-arm is still in motion when the X-ray image is acquired.  Even if the joints look 
stationary, the C-arm keeps rocking on the rubber wheels and the gantry is swinging. 
Accelerometers detect these motions and thus enable us to gait the image acquisition 
accordingly.  If one can guarantee stationary wheel and gantry positions, then the full 
pose the C-arm image can be recovered from joint encoders alone, assuming that the 
C-arm’s kinematics had been obtained a priori in a one-time calibration.  

We revisited the use of accelerometers that are well-suited to accurately indicate 
transient motion while they can be configured as tilt sensors.  Preliminary bench work 
explored the feasibility of this approach on a crudely built and downscaled C-arm 
analogue [1].  A plethora of technical obstacles arises in translating this approach to a 
full scale clinical C-arm.  This paper explains these barriers and having overcome 
them to achieve affordable and clinically accurate rotational encoding on a full scale 
C-arm fluoroscope, with the use of an accelerometer configured as tilt sensor. 

2   Methodology 

2.1   Calibration 

The accelerometer angle encoding technique requires a one-time calibration step to 
relate the raw accelerometer angle to the C-arm pose.  The linear workflow consists of 
several steps: (1) Mount the accelerometer on the C-arm; (2) Place C-arm tracking 
fiducial in the field of view; (3) Acquire test images while logging the initial rotation 
pose from the accelerometer; (4) Compute reference poses using the fiducial; (5) 
Compute the offset for both primary and secondary C-arm angles; (6) Confirm the 
accuracy of calibration on subset of independent measurements left out from the cali-
bration computations.  Preliminary investigation of this technique on a down-scaled 
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C-arm analogue was promising [1], but it revealed major uncertainties in translating 
this approach to a full scale C-arm.  One such uncertainty is the effect of wheel mo-
tion.  Mobile C-arms use wheel locks to secure the device in place, but these locks are 
not perfect.  During rotational movement the C-arm tends to experience rocking and 
swinging motions that affect the pose of the image.  In our case, since an accelerome-
ter is used, real-time analysis of acceleration readings can detect acceleration spikes.  
These spikes indicate rapid motion changes (rocking, swaying) of the C-arm. By 
continuously monitoring for the spike to subside (steady state) a go-ahead signal can 
be flagged to indicate when images can be captured avoiding added error to the image 
pose.     

The main area of concern is the deformation of the C-arm structure due to the force 
of gravity acting on the heavy X-ray source and detector.  This deformation could 
cause an unaccounted for offset that would lead to inaccurate tracking of the C-arm 
pose.  We mounted a webcam on a full scale C-arm unit, shown in Figure 1, right. 
Using webcam allows for conducting tests without exposure to ionizing radiation.  

For the technique to be applied properly requires two key parameters that are deter-
mined from the C-arm and accelerometer combination.  The first are Angle Correction 
Equations (ACEs) that account for the initial offset between the raw accelerometer 
angle readings to the C-arm pose. The second is a series of Structural Compensation 
Equations (SCEs) that account for the deformation of the C-arm during different rota-
tional poses.  This technique requires a one-time calibration of the C-arm to determine 
the ACEs and SCEs.  These equations remain valid for continued use of the C-arm 
given that the accelerometer remains fixed on the gantry. 

Our methodology of acquiring a series of test images and modeling the structural 
deformation of the C-arm is similar to Gorges et al [2]. Their work involved modeling 
the deformation as changes to the intrinsic/extrinsic parameters of the C-arm.  Then 
they used cost functions to optimize the parameters to account for the deformations.    

 

   

Fig. 1. (Left) Typical ultrasound guided brachytherapy setup with a C-arm operating in a nar-
row range. (Right) Full scale experimental setup with the accelerometer mounted on top and the 
webcam underneath the X-ray source. More details of devices can be found in [1]. 
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2.2   Angle Correction Equations 

The Angle Correction Equations (ACEs) quantify the offset between the webcam C-
arm pose and the accelerometer angle readings. Generating the ACEs involves ana-
lyzing the differences between the initial accelerometer angle reading and ground-
truth pose angle. In an actual clinical application, the ground truth pose will be com-
puted using a radio-opaque fluoroscope tracking fiducial such as the one developed 
by Jain et al [3]. In our experimental setup, we applied optical imaging with a web-
cam mounted externally on the gantry over the exit point of the X-ray source.  The 
webcam tracked a checkerboard pattern that provided the ground-truth C-arm poses of 
the 2D images through standard camera calibration techniques. 

To determine the initial offset a set of test images were taken, in step-and-shoot 
mode, at the angles [0° ±5° ±10° ±15° ±20° ±25° ±30°] using the initial accelerometer 
angle reading for the primary angle (PA) and secondary angle (SA) independently.  
These were chosen to give enough separation between angles with a wide range to 
account for changes in the C-arm motion, as well as encapsulating the clinical angle 
limitation motivating this work.  It should be noted that acquiring more angles could 
help to improve modeling, but when this will be used in X-ray imaging that would 
increase radiation exposure. Further testing will try to reduce the angle set and exam-
ine if proper tracking can be still achieved. Next, the actual pose angles of the images 
were computed and the differences calculated.  By graphically visualizing the differ-
ences (Figure 2), best fit methods were applied creating the ACEs. 

 

Fig. 2. A plot of the differences and fitted lines creating the Angle Correction Equations 

The Eq.1 and Eq. 2 are the resulting ACEs.  Interestingly, the structure of the C-
arm creates non-linear trends that required piecewise functions for modeling.  The 
intercept values in the functions were set the same to avoid sudden shifts in the output 
during sign changes of the angles when the accelerometer is operating. 
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Let z represent the initial SA then the new output angle 
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2.3   Structural Compensation Equations 

The full scale C-arm presented a major challenge due to the significant structural 
deformation.  An initial test of the ACEs (Eq. 1 and Eq. 2) showed that proper pose 
tracking was achieved, but only for independent angle rotations.  Figure 3, displays a 
chart that illustrates the problem. 

 

 

Fig. 3. [inside cells – actual C-arm pose angles: PA (shaded) | SA below || outside border – C-
arm pose positions using ACEs accelerometer readings]  The chart portrays that PA and SA are 
accurately tracked independently, but not very well simultaneously 

To correct this problem required a different approach than a simple offset correc-
tion, like the ACEs.  The fact is the ACEs did accurately track the PA and SA inde-
pendently.  What is posited here is that the structural deformation of the C-arm has 
dependency on PA and SA.  As the rotation angle of the source or detector moves 
further from vertical the effects of gravity become greater.  This dependence on the 
pose angle of the C-arm required us to compensate for the structural deformation, thus 
creating the Structural Compensation Equations. 

The Structural Compensation Equations (SCEs) were formulated by reprocessing 
the test images that created the ACEs, with additional diagonal combinations of PA 
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and SA, shown in Figure 3.  The errors were computed and zeroed to visualize the 
deformation for both the PA and SA separately. Line fitting was applied to the differ-
ences to create a series of equations, shown in Figure 4.  

 

Fig. 4. The visualization of the C-arm deformations with accompanying best fit lines for PA 
(left) and SA (right). The horizontal axis represents the rotational angle, while the vertical 
indicates the amount of deformation. 

The plots show that a significant amount of deformation exists and by zeroing the 
error creates a single starting position to make compensation easier to handle.  A 
threshold value of τ helped to control when to activate compensating depending on 
the current angle values for PA and SA.  The equations are piecewise functions sepa-
rated into ±PA and ±SA quadrants shown here: 
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3   Results and Discussion 

In order to characterize how accurately the ACEs and SCEs tracked the webcam C-
arm pose we performed a series of tests.  For the first test, the test image angles were 
changed for PA and SA to [0° ±2° ±6° ±10° ±14° ±18° ±22° ±26°] for both independ-
ent and combinational rotation of PA and SA.  This change was made to contain dif-
ferent angles than the ones used to create the equations, so that they can be independ-
ently evaluated.  The results, in chart form, are shown Figure 5.   
 

 

Fig. 5. Results from using the ACEs and SCEs 

  

 

 

Fig. 6. The path of C-arm where the dots are the locations that the images acquired 

The chart in Figure 5 suggests that, using the ACEs and SCEs the C-arm pose was 
tracked with an average error of µ = 0.11° and standard deviation of σ = 0.21° for PA.  
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While for SA an average error of µ = 0.08° and standard deviation of σ = 0.36°.  A 
second test was performed to show if the C-arm pose can be tracked when subjected 
to sequential rotation path with results shown in Figure 6.  

We achieved C-arm rotation encoding by using accelerometer as tilt sensor, with 
an accuracy and precision of less than 0.5°.  This was made possible by introducing 
the Structural Compensation Equations (SCEs).  These equations worked in tandem 
with the Angle Correction Equations (ACEs) to compensate for the inherent structural 
deformation of the C-arm experienced at different rotational poses. We received ex-
cellent rotation encoding for the entire clinically relevant C-arm working range in 
prostate brachytherapy, our driving clinical application.  

For other clinical application areas where the working range is larger, it is evident 
from Figure 5 that accelerometer tracking is not perfect where accuracy starts to 
waiver at the larger combined rotational poses.  This effect could be attributed to the 
threshold values for when the SCEs need to start compensating for the structural de-
formation.  The values control the activation of these equations, but it is not clear on 
when they should start.  In brachytherapy, the SCEs were created by zeroing the off-
set, but it may be possible to start monitoring for changes farther away from the ori-
gin.  The reasoning behind this is that the lower angles about the vertical axis would 
have less deformation caused by gravity and could still be within the ACEs capability 
of tracking.  The next step in continuing research will be to determine a threshold 
location rather than a singular conditional value. 

In conclusion, C-arm rotation tracking was successful with using the tilt-sensing 
capabilities of accelerometers.  Work continues to implement this concept on fully 
functional X-ray imaging C-arms, with the ultimate goal of clinical deployment of an 
accurate, inexpensive and easy-to-use rotation technique in prostate brachytherapy. 
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Abstract. We are working towards the development of a robotic hand-

held surgical device for laparoscopic interventions that enhances the sur-

geons’ dexterity. In this paper, the kinematics of the end effector is stud-

ied. Different choices of kinematics are compared during an evaluation

campaign using a virtual reality simulator to find the optimal one: the

Yaw-Roll (YR) kinematics. A proof of concept prototype is made based

on the results.

1 Introduction

Minimally invasive surgery (MIS) causes less operative trauma and leaves pa-
tients with less pain and scarring, speeds recovery, and reduces the incidence
of post-surgical complications. Conventional instruments used in MIS are hand-
held instruments with long shafts, an end effector (needle holder, dissector etc.)
at one end and a handle at the other. The instrument motion is constrained at
the pivot point to 4 degrees of freedom (DOF): (1) translation along the shaft
of the instrument, (2) rotation around the translational axis and (3) and (4)
limited inclination of the shaft pivoted trough the incision [1]. Some gestures
are very difficult or impossible to make using the non-dexterous conventional in-
struments. One could imagine a more dextrous device with a jointed end effector
adding one or more DOF. The end effector must have at least 6 DOF to allow
the surgeon choose the orientation and position of the end effector arbitrarily.
The DOF added to the end-effector could be actuated manually, pneumatically
or electrically. The latter gives a mechatronic (robotic) hand-held instrument.
But making such a miniature-scale instrument with a mechanical force transmis-
sion system that can provide for the requirements in MIS, is difficult and costly.
So, choosing the simplest kinematics for the added DOF that allows performing
all needed movements is critical. In [2] for example, the end-effector can yaw or
pitch while the surgeon can roll the instrument’s shaft using his thumb. [3] has
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an end-effector that can yaw, pitch and roll, but its shaft’s rotation is manual
and thus limited. In [4], the end-effectir can yaw and roll. The da Vinci surgical
system [5] has end-effectors that can yaw, pitch and roll. All these instruments
however, have 10 mm thick shafts. Surgeons on the other hand, demand 5 mm
instruments for better integration in Single-access or NOTES operations. In this
paper we explain our efforts towards the development of a robotic dexterous
hand-held instrument for laparoscopy with a 6 mm shaft.

2 Simulation

To evaluate and compare different handles, control modes and kinematics, we
made a virtual reality (VR) simulator. Fig. 1(a) show the simulator.

Fig. 1. (a) Simulator in use, (b) Local coordinate systems of the simulator

Polaris, a motion tracking system, keeps track of the position and the orien-
tation of each rigid body in the scene: the training box and the instrument (a
Polaris target with a local coordinate system is attached to each of them). Fig.
1(b) shows different coordinate systems present in the scene. The surgical instru-
ment consists of a shaft and a finger-operated handle, (we used a NunchuckTM

from a Wii video game console). The handle has a 2 DOF joystick under the
thumb and 2 buttons under the index finger. The kinematics of the instrument’s
virtual end-effector can be programmed in the simulator. A 19” LCD monitor is
used to show the simulated endoscopic image of the inside of the training box. It
is positioned 1m away from the operator and deviated 45◦ from his line of sight
to resemble the situation in an operation room. The control program runs on a
PC. The pose of each body is calculated in the virtual endoscope’s coordinate
system. This virtual endoscope’s position on the training box, its line of sight
and its scope can be chosen arbitrarily. We chose a triangle with 10 cm sides
to place the instrument and endoscope, a line of sight inclined 60◦ from vertical
and a 75◦ scope. The virtual image of the inside of the box is finally rendered
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using the OpenGL 2.0 library. There is no force feedback, but a visual feedback
that indicates collisions between the needle and the working surface. The image
shows the instrument with its end effector holding a needle, and a working sur-
face with a grid and suturing points identified by different colors. Fig. 2 shows
suturing in the simulated scene. Evaluations are based on subject performance
in making sutures. One of the main advantages of a dexterous surgical device is
considered to be its ability to make sutures in difficult angles e.g. sagittal sutures.
Our simulated suturing task includes putting the needle in the right orientation
so as to insert it in the working surface with the right angle, reaching the suture
point and turning the needle to bring it out of the exit point. This is considered
the end of the gesture. This series of motions (orient, reach, orient) was chosen
based on previous studies done on decomposition of laparoscopic tasks [6], [7].

Fig. 2. From left to right: snapshots from the simulated scene showing a suture

2.1 Evaluation of Different Kinematics for the End-Effector

Reduced Set of Kinematics. Our objective was to compare different kine-
matics for the end effector and choose the optimal one. Surgeons need to be able
to suture in different angles (frontal/sagittal). As a result they need 6 DOF nee-
dle holders. Using more than 6 DOF makes the task of visumotor control more
difficult for the operator. It would not be possible to control the end-effector in
its working space either, as 4 of the DOF are exclusively controlled manually.
The question we are studying here is which 6 DOF kinematics is the best one for
a hand-held laparoscopic instrument, knowing that 4 DOF are already defined
as a result of the instrument being constrained by the pivot point. Keeping the
already existing 4 DOF, we should add 2 more DOF to the end effector. The
2 DOF we want to add, are those of a 2 DOF wrist added to the end-effector.
Without loss of generality, we suppose that the 2 revolute joints of the wrist have
concurrent axes. For 2 revolute joints with concurrent axes, 6 combinations of
rotational axes are possible. These combinations are: pitch-yaw, pitch-roll, yaw-
pitch, yaw-roll, roll-pitch and roll-yaw. But pitch-yaw is the same as yaw-pitch if
we only turn the shaft 90◦. Pitch-roll and yaw-roll are also the same. Roll-pitch
and roll-yaw are singular combinations. This leaves us with 2 possible combina-
tions: yaw-roll (YR) and yaw-pitch (YP). The rotation of the instrument around
its longitudinal axis is normally manual. Surgeons have to rotate their whole arm
to rotate the instrument and still, the rotation is limited. So we decided to make
this rotation automatic as well, giving subjects the ability to rotate the shaft
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clockwise and counter clockwise using 2 buttons. Another possibility we thought
about was to add another DOF to the wrist to make it a 3 DOF wrist (like
[3] and [5]). Again, there are 6 possible combinations of 3 concurrent rotational
axes. 2 of them are singular (RYP and RPY). The other 4 are become the same
from the operator’s point of view just by rotating the device and are equivalent
to a YPR kinematics. A 3 DOF wrist makes the total number of DOF 7, with
3 of them controlled by fingers. The rotation of shaft stays manual. So the total
possible kinematics for 2 and 3 DOF wrists with concurrent axes are reduced to
3 kinematics: YP, YR and YPR, shown in Fig. 3.

Fig. 3. 3 kinematics for end effector wrist

Evaluation Methodology and Metrics. For each evaluation, we asked test
subjects to do frontal and sagittal sutures on a horizontal virtual working surface
inside the training box. The suture points were identified by different colors. The
subjects were engineering students with no experience in laparoscopy. Literature
suggests that expert laparoscopic surgeons are significantly different from surgi-
cal novices in terms of applied forces and torques [8], [9], patterns of movement
[10], task completion times [8], [9], [11],[10], trajectory length [10] and number
of errors [12]. However, these studies that are mostly done for the purpose of
modeling surgical gestures in laparoscopy and providing metrics for objective
assessment of skills in virtual reality simulators, are done using either conven-
tional laparoscopic instruments with 4 DOF or the da Vinci surgical system.
When it comes to instruments with novel human-robot interfaces and different
kinematics, expert surgeons are probably not greatly different from novices. In
fact, the additional DOF and the method of controlling them may be as new
to them as it is to the novices. As a result, surgeons and novices will both use
their basic visumotor skills to execute the new tasks. This strongly suggests that
the results of our studies would be the same, had we used expert surgeons as
subjects. This has of course to be proven with experimental data in a separate
study using expert surgeons as subjects. Besides, it is not even sure that expert
surgeons do better than novices with these novel instruments as they do with
conventional instruments or the da Vinci. For example, there is evidence that
playing video games could improve surgical skills in minimally invasive surgery
[13], [14]. Younger subjects though surgically novice, have generally more expe-
rience with video games and the joysticks used to play them than middle age
expert surgeons.

The metric used in the evaluations is the time to completion of task (TCT).
[15] states that the TCT is a practical, easy and valid objective tool for as-
sessing acquired technical skills of urology trainees in a laparoscopic simulated
environment. It is also used for comparing different surgical instruments for
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laparoscopy [16]. Each user made 5 frontal and 5 sagittal sutures using each of
the kinematics and his average TCT for 1 suture was calculated.

Results and Discussion. Fig. 4 shows the average TCT for each of the 15
subjects. Table 1 shows the mean TCT of all subjects for each of the 3 kinematics
tested. The results show that the YR kinematics is slightly better than the YPR
kinematics, and both of them are largely better than the YP kinematics, in
terms of TCT. Only 3 out of 15 subjects were able to make sutures with the YP
kinematics in the 3 minute per suture time limit. From the evaluation results of
different kinematics for the end effector, we could see that an end effector able
to yaw and roll results in the least TCT for suturing. Technologically, it is much
more affordable to make a 2 DOF mesoscale wrist than a 3 DOF one. At the
same time, it is dexterous enough to allow suturing in different angles. The YR
kinematics of the end-effector plus rotation of the shaft, give surgeons 6 DOF
instruments.

Fig. 4. Average TCT in seconds for 15 subjects using 3 different end effector wrist

kinematics

Table 1. Mean time to completion for YR, YP and YPR kinematics in seconds

Frontal Sagittal

YR 57.73 58.67

YPR 52.4 58.33

YP >> Y R, Y PR >> Y R, Y PR

3 Mechanical Design

3.1 Mechanical Characteristics of the Developed System

Our second objective was to design the force transmission system and make a
proof-of-concept prototype pincer for the chosen type of kinematics. The essential
DOF required for the instrument pincer tip during a suturing procedure is in
two independent rotational axis movements: roll and yaw. While it is crucial
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to execute the full range rotations in required orientation, it is also important
to maintain the position in the proposed configuration with a high stiffness and
rigidity. The mechanical design challenge lies in developing an instrument in thin
(5mm) cylindrical shape. Here we introduce two prototypes that can produce
two independent and simultaneous orthogonal rotations amid the constraints
imposed by practical usage in operating rooms.

Metallic Bellow Model. In order to transmit the rotational movement of the
pincer tip (roll), while the body is in motion (yaw), a metallic bellow is used.
This inner bellow tubing is actively bended by wedged sleeves and is completely
independent from the outer rings which have chiseled slopes for making the cur-
vature which are 90 deg = fold and 180 deg = tension. Such actuation is carried
out by two cables (0.3mm dia. 5kg load multi-stranded steel cable) attached on
the sides. A single cable (multi stranded stainless cable 0.75mm dia.) actuated
pincer is affixed to the bellow joint. The cable is flexible yet robust to take the
shape of the outer structure that controls the yaw direction of the end pincer.
This pincer assembly rotates freely from the outer shell while maintaining its
longitudinal position by a polymer bearing. The wedged sleeve links are formed
that the instrument tip operates in either 0 or 90 degrees positions: The rigidity
of the instrument is guarded and controlled by the cable tension on the side.
Also, here it can be noted that the assembly configuration can be reversed to
have the bellow either on the inside or outside.

Fig. 5. (a) Metallic bellow model’s wedged shell assembly with cable transmission for

bending, (b) Universal joint and pincer assembly: (1) double universal joint and pincer

assembly (2) shell unit, (c) Instrument in 90 degrees yaw position

Universal Joint Model. In this model, the bending in yaw direction is ac-
tuated by the linear translation of the outer shell (Fig. 5(b2)) with respect to
the two universal joints and the pincer assembly (Fig. 5(b1)). Depending on the
advancement of the shell unit that can bend maximum 90 degrees from its 0
degree straight position, the universal joint unit can transmit the rotation at the
pincer tip. Due to the nature of the universal joint (gimbal adjoining unit fixes
two rotating shafts), the rotary transmission experiences jerks and sinusoidal
rotational velocity at the driven shaft: at 45 degrees off set of rotating axles,
sinusoidal rotational velocity variance is about 40% at the driven shaft. The use
of double universal joints minimizes this effect.
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Fig. 6 shows shows the designed and manufactured prototypes. They are both
6mm -our primary objective was 5mm- in the diameter and use the same needle
holder pincer tips and are fabricated in stainless steel.Current prototypes do not
have the force/torque requirements for suturing and need to be improved for an
animal experiment.

Fig. 6. (a) The two developed end-effectors, (b) Photograph of one of the developed

prototypes

4 Conclusion and Future Work

The results of our evaluations suggest that the YR kinematics is the optimal
kinematics for the end-effector. 2 proof of concept prototypes of such an end-
effector were made introducing novel designs. The device needs a handle with
an ergonomic design and a more robust force transmission system enabling the
surgeon to suture different types of tissue. A new version of the device is under
development.

References

1. Lai, F., Howe, R.: Evaluating control modes for constrained robotic surgery. In:

Proceedings of ICRA 2000, vol. 1, pp. 603–609 (2000)

2. Danitz, D.J.: Articulating mechanisms with joint assembly and manual handle for

remote manipulation of instruments and tools. United States Patent Application

Publication, no. US 2006/0201130 A1 (2006)

3. Lee, W., Chamorro, A.: Surgical instrument. United States Patent, no. US

7,338,513 B2. Cambridge Endoscopic Devices, Inc., Framingham (2008)

4. Jinno, M., Sunaoshi, T., Omori, S.: Development of a Master Slave Combined

Manipulator for Laparoscopic Surgery Functional Model and Its Evaluation. In:

Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2488, pp. 52–59. Springer,

Heidelberg (2002)

5. Guthart, G.S., Salisbury, J.K.: The Intuitive telesurgery system: overview and ap-

plication. In: Proceedings of ICRA 2000, vol. 1, pp. 618–621 (2000)

6. Payandeh, S., Lomax, A.J., Dill, J., MacKenzie, C.L., Cao, C.: On defining met-

rics for assessing laparoscopic surgical skills in a virtual training environment. In:

MMVR (2002)



Robotic Hand-Held Surgical Device 439

7. MacKenzie, C.L., Ibbotson, J.A., Cao, C., Lomax, A.J.: Hierarchical decomposition

of laparoscopic surgery: a human factors approach to investigating the operating

room environment. Min. Invas. Ther. & Allied Technol. 10(3), 121–127 (2001)

8. Rosen, J., Brown, J.D., Barreca, M., Chang, L., Hannaford, B., Sinanan, B.: The

blue dragon - a system for monitoring the kinematics and the dynamics of en-

doscopic tools in minimally invasive surgery for objective laparoscopic skill as-

sessment. Studies in Health Technology and Informatics - Medicine Meets Virtual

Reality, vol. 85, pp. 412–418. IOS Press, Amsterdam (2002)

9. Rosen, J., Brown, J., Chang, L., Hannaford, B.: Generalized approach for modeling

minimally invasive surgery as a stochastic process using a discrete markov model.

IEEE Transactions in Biomedical Engineering 53(3), 399–413 (2006)

10. Gallagher, A.G., Richie, K., McClure, N., McGuigan, J.: Objective psychomotor

skills assessment of experienced, junior, and novice laparoscopists with virtual re-

ality. World Journal of Surgery 25, 1478–1483 (2001)

11. Oleynikov, D., Solomon, B., Hallbeck, M.S.: Effect of visual feedback on surgical

performance using the da vinci surgical system. Journal of Laparoendoscopic &

Advanced Surgical Techniques 16(5) (2006)

12. Law, B., Atkins, M.S., Kirkpatrick, A.E., Lomax, A.J.: Eye gaze patterns differ-

entiate novice and experts in a virtual laparoscopic surgery training environment.

In: ETRA 2004: Proceedings of the 2004 symposium on Eye tracking research &

applications, pp. 41–48. ACM, New York (2004)

13. Rosser, J.C., Lynch, P.J., Cuddihy, L., Gentile, J., Klonsky, D.A., Merrell, R.:

The impact of video games on training surgeons in the 21st century. Archives of

Surgery 142(2), 181–186 (2007)

14. Reilly, M.: A wii warm-up hones surgical skills. The New Scientist 197, 24 (2008)

15. Mishra, S.K., Ganpule, A., Kurien, A., Muthu, V., Desai, M.R.: Task completion

time: Objective tool for assessment of technical skills in laparoscopic simulator for

urology trainees. Indian J. Urol. 24, 35–38 (2008)

16. Dakin, G., Gagner, M.: Comparison of laparoscopic skills performance between

standard instruments and two surgical robotic systems. Surgical Endoscopy 17(4),

574–579 (2003)

17. Kode, V., Cavusoglu, M.: Design and characterization of a novel hybrid actua-

tor using shape memory alloy and dc micromotor for minimally invasive surgery

applications. IEEE/ASME Transactions on Mechatronics 12, 455–464 (2007)



Guide-Wire Extraction through Perceptual
Organization of Local Segments in Fluoroscopic

Images�

Nicolas Honnorat1,2,3, Régis Vaillant3, and Nikos Paragios1,2

1 Laboratoire MAS, Ecole Centrale Paris, Châtenay-Malabry, France
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Abstract. Segmentation of surgical devices in fluoroscopic images and

in particular of guide-wires is a valuable element during surgery. In car-

diac angioplasty, the problem is particularly challenging due to the fol-

lowing reasons: (i) low signal to noise ratio, (ii) the use of 2D images that

accumulate information from the whole volume, and (iii) the similarity

between the structure of interest and adjacent anatomical structures.

In this paper we propose a novel approach to address these challenges,

that combines efficiently low-level detection using machine learning tech-

niques, local unsupervised clustering detections and finally high-level

perceptual organization of these segments towards its complete recon-

struction. The latter handles miss-detections and is based on a local

search algorithm. Very promising results were obtained.

1 Introduction

The detection and the segmentation of the guidewires (GW) used in cardiac
angioplasty is a challenging problem in biomedical image analysis. It is often
addressed into two steps: first, interest points are detected and then linked (or
grouped) together into a curvilinear structure corresponding to the GW. Both
steps inherit severe technical challenges.

Detection is required due to the low signal to noise ratio. The aim is either
to improve contrast between the guidewire and the background/other related
anatomical structures or detect feature points corresponding to it. The first sce-
nario is often addressed using low level operators, like dedicated filtering [1] and
coherence enhancing diffusion [2]. State of the art for detection includes dedi-
cated edge-detection methods [1], method based on the Hessian eigenvalues such
in [2] and such as the Vesselness measure [3,4], steerable filters [5], and phase con-
gruency [6]. The second class of methods aims to address detection directly using
either a voting schema [7], or machine learning methods [8]. The central idea is
to use patterns of appearance corresponding to vessels and learn a classifier that
is able to separate them from the background. Pose and scale parameters are
� This work was supported by ANRT (grant 1062/2008) and GE Healthcare. The

authors thank N. Komodakis for providing the clustering method.
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the most critical aspects to be handled in this process. Augmenting the training
set towards encoding all possible variations of appearance is not feasible since
it deteriorates the performance. However, compared to filtering methods this
concept is quite promissing.

Chaining of detections towards complete recovery of the guidewire is often
considered afterwards [1,7,4]. The use of snake-splines on the feature images has
also been investigated [2,6]. These methods are very sensitive to the presence of
outliers as well as miss-detections. Such shortcomings can be addressed through
the use of hierarchical grouping guided by a classification [8]. In all cases, sensi-
tivity to the presence of outliers as well as miss-detections are challenging issues
to be addressed.

In this paper we introduce a novel approach combining detection using boost-
ing [9], with a mid-level grouping scheme based on clustering and a complete re-
construction through the minimization of a global criterion that encodes geomet-
ric and detection consistencies - through local search based on an inlier/outlier
permutation model. Contrary to the other methods which can fail due to noise or
low contrast [2,6], or do not recover undetected parts [1] our approach has been
designed to be as robust as possible and to recover the GW as global optimum.

The most closely related work with our approach can be found in [8,10]. The
first approach is purely learning based, is not invariant to the guide-wire pose
parameters and cannot handle well miss-detections. The second approach shares
the feature detection concept (the considered features are less efficient than
the ones considered in this paper). However, [10] does not perform ordering,
and is only able to provide a local grouping of segments into parts using linear
programing. The method is unable to deal well enough with miss-detections as
well as outliers because the final result is not necessarily perceptually meaningful.

The remainder of this paper is organized as follows: in section 2 we discuss the
robust extraction of line segments that we perform and we present our approach
for organizing them in section 3. The next section presents the experimental
validation. Discussion concludes the paper.

2 Robust Local Segments Extraction

Our algorithm consists of two steps: (i) a low-level detection of GW pixels, that
are then grouped towards extracting line segments (ii) an ordering and removal of
erroneous segments. The first task is addressed using boosting and unsupervised
clustering, and the second through local permutation search.

2.1 Low-Level Detection

Boosting [9] refers to a powerful classification method that combines weak clas-
sifiers towards the creation of a strong one. This classification process is guided
from the miss-detection/miss-classification error. Samples are weighted accord-
ing to the classification error and these weights are continuously updated. Since
in our data set, one expects important discrepancy between positive and negative
samples (GW pixels represent less than 0.15% of whole image) as well as impor-
tant presence of outliers, we adopt the variant called Gentle AdaBoost [11] and
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we replaced its re-weighting formula driving the choice of the next weak classifier
with the following (where wj is the weight of a data xj of label yj ∈ {−1,+1}
and hm is the weak classifier chosen during the current AdaBoost step) in order
to make it asymmetric like [12]:

wj ← wje
−yjhm(xj)eyj(asymmetry)

When training classifiers, we have considered around 500 000 samples, almost
87% of them being negative ones, and chosen an asymmetry of 0.1. The input to
the classification process was features derived from the image after appropriate
filtering and in particular with separable steerable filters [5] that are optimal in
the sense of Canny criteria.

In addition to the steerable ridge detectors of fourth order of [5] for μ = 0.25
and scales σ = {0.8, 1.2, 1.6, 2.0, 3.0} and to the edge detector of third order of
scale 5.0, we introduced three features specific to our problem: (i) Difference
of Gaussian (DoG) computed with the raw, the log and the next images, (ii)
variances of these features around the pixel considered (in a square of size 7),
both for the couples of scales: {(0.8, 1.2)(1.4, 1.8)(2.0, 3.0)(3.0, 4.0)(4.0, 5.0)} ;
and (iii) variances computed on the ’subtraction image’ (the current image minus
the next one) in squares of size 5 and 9.

Log images have indeed a physical meaning and allow to better discriminate
the structures from their background, but their level of noise has been locally
modified, which produces numerous false detections. Considering both images al-
lows to combine both advantages to avoid more false detections , and considering
the next frame allows to better reject the confusing structures, because they are
most of the time static (and variances provides a second order description).

Clustering these points towards extracting line segments both allows to reject
remaining false detections due to noise (because most of them are isolated)
and provides primitives we just need to link together (with a proper handling of
outliers) to delineate the GW. The fact that clustering provides a global optimum
guarantees far more robustness with respect to noise. The main challenge is that
neither the number of segments/clusters nor the membership function for every
detected point are known in advance.

2.2 Grouping

Let us consider the N candidate pixels pi = (xi, yi).
Clustering of these pixels can be formulated as follows: find a set of cluster

centers cj = (cxj , cyj) (the unknown cardinality of this set is denoted as |C|)
and an individual membership function L (labels in {1, . . . |C|}) such that all
detected points pi with the same label form a local line segment with minimal
dispersion. We can express this problem within an optimization framework as
follows:

min{cj ,|C|,L}

|C|∑
j=1

f(cj) + β
N∑

i=1

δ(L(i) − j)g(cj , pi)

where f is the penalty for a cluster center, L(i) is the label indicating the cluster
for the point i and g(cj , pi) is the cost of attributing pi to the cluster cj . δ(L(i)−j)
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Fig. 1. 1) input 2) classification scores 3) detected points and clusters 4) detected

segments (colors help to differenciate clusters in 3)

measures only the cluster cost with respect to the optimal attribution label. The
definition of the functions f and g, as well as the optimization of the objective
function are the main challenges to be addressed.

We consider f to be a constant (in our experiments, around 90000.0) and no-
particular preference is given among the set of detected points. The definition of
g is more challenging and for simplicity and clarity, let us introduce the following
geometric elements: (i) (cj , pi) form a line segment lcp, (ii) cj and the axis of
orientation given by the optimal steerable filter computed in cj form a line lc,
and (iii) pi and the optimal steerable filter axis computed in pi also form a line
lp. In the ideal case, if point pi is a member of cj , then the three line segments
will coincide.

In order to quantify this hypothesis, we consider two criteria: (i) The
actual geometric distance between the two points, d(ci, pj) since we would
expect capturing local straight line segments of curvilinear structures. (ii)
The distances d1(ci, pj) = d(ci, pj)min(tan(θ1), tmax) and d2(ci, pj) =
d(ci, pj)min(tan(θ2), tmax) where θ1 and θ2 are the angles between the lines
being formed from the two points and the ones given by steerable filters orienta-
tions, and tmax allows to avoid infinite distances when directions are orthogonal.
These distances are combined to a single metric as follows (in our experiments,
we took α = 0.3):

g(ci, pj) = αd2
(ci, pj) + (1 − α)(d2

1(ci, pj) + d2
2(ci, pj))

The optimization of this objective function is done using [13], that finds the
number of clusters and the pixels memberships simultaneously. Some clustering
results are shown in: [Fig. (1)]. In order to extract the local line segments, we used
a variant of RANSAC called MSAC [14] that is less sensitive to the geometric
error introduced from the presence of outliers. There remains only to link these
segments properly to delineate the GW - with handling outliers. Once again,
we performed this task through a global optimization process, which guarantees
robustness with respect to local minima created by noise.
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Fig. 2. Minimal geodesic costs determined using the fast marching algorithm. Colors

help to differentiate and visualize costs (the brighter the color the higher the cost).

3 Perceptual Organization of Segments

Once we have obtained the line segments, we need to find which ones have to be
linked and in which order for delineating the GW.

Let |S| be the number of line segments and let us consider for every segment si

a label {θi, ωi, φi} ∈ {1 · · · |S|}×{0, 1}×{0, 1}. θi denotes the rank of the segment
si, ωi accounts for the orientation of this segment (the conventional one assumes
that the first extremity corresponds to the small horizontal coordinate) with the
0 label corresponding to the conventional one and the 1 to the extremities being
reversed. Introducing such a variable is a necessity since it modifies the cost of
linking two successive segments. Last, let φi be the state, that is either part of
the guide-wire (1) or an outlier (0). Given such notation, one can now proceed
to the definition of the local cost C(a, b) corresponding to the price to be paid
towards linking two segments tips a, b.

3.1 Local Ordering Cost

In order to define the cost C(a, b) we consider a linear combination of the scale
invariant Elastica criterion defined in [15] and a linking cost equal to the minus
log-likelihood of the most likely path linking a and b. The idea is that a and b
should both be linked by a path of low curvature (i.e. low Elastica) and linked by
a likely path. If we assume that pixels along the path are independent, then the
last criterion can be computed as a sum over the pixels of the better path, and
can therefore be computed by fast marching. Denoting with h(x) the detection
score at location x and using a sigmoid function to compute pixel likelihood, we
finally used the following cost map c(x) as fast marching input:

c(x) = −h(x) + log
(
eh(x)

+ e−h(x)
)

Linking costs above an arbitrary threshold were not computed and approximated
with the product between the Euclidean distance between the tips and the max-
imal linking cost normalized according to the euclidian distance between tips
found by fast marching. [Fig. (2)] shows several cost maps computed with the
algorithm presented in [16].
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3.2 Global Ordering

Finding the optimal sequence of segments can be considered as an optimization
problem. In simple words one would like to minimize:

min
θi,ωi,φi

|S|∑
m=1

|S|∑
n=1

φmφnδ(θn − θm − 1)Cωm,ωn (m, n) + β

|S|∑
m=1

(1 − φm)

where product φmφn guarantees that both sm, sn segments are retained and the
term δ(θn − θm − 1) guarantees that the segment sn succeeds sm. The second
term penalizes the attribution of the outlier label to a segment. Last, the cost
for connecting two (conventionally oriented) segments sm = (am, bm) and sn =
(an, bn), denoted with Cωm,ωn (m,n), is derived from the one earlier presented:

Cωm,ωn (m,n) =

⎧⎪⎪⎨⎪⎪⎩
C(bm, an) if ωm = 0 and ωn = 0

C(bm, bn) if ωm = 0 and ωn = 1

C(am, an) if ωm = 1 and ωn = 0

C(am, bn) if ωm = 1 and ωn = 1

Starting from a configuration where all the segments are considered to be
inliers and have been linked greedily (one segment has been arbitrary chosen
to be the first one, and for all n, the segment chosen to be at place n + 1 is
the nearest from the segment at place n that had not been chosen previously)
our algorithm reduces the objective function iteratively until convergence. At
each step, inliers and outliers are ordered, and all the possible permutations of
a subsequence of inliers with a subsequence of outliers that reduce the objective
function are applied.

The ordering algorithm we use for the first task tries to find by local search
the order minimizing the sum of the links made between successive segments. In
other words, it tries to find the ’Shortest Spanning Path’ among the segments.
The ordering of the outliers provides in this manner interesting subsequences
for the permutation step without affecting the objective function, whereas the
ordering of the inliers reduces the objective function. Given that all tasks reduce
the objective function, convergence is guaranteed.

We remind that local search is a heuristic that minimizes an energy depending
on a configuration by passing from the current configuration to a neighbouring
one while it allows reducing the energy. Particular attention is to be paid when
chosing the neighborhood definition. We chose the neighborhood defined by all
the configurations reached (from the current one) when applying one of the
following operations: (i) reversion of a subsequence of segments (ii) shift of a
subsequence (iii) reversion followed by a shift of a subsequence.

Because local search is a meta heuristic, we cannot claim getting the global
optimum, but the great size of neighborhood for both the orderings (O

(
n3
)

if n
is the number of inliers) and the subsequence exchanges (O

(
n2m2

)
if m is the

number of outliers) substantially increases the probability of finding the global
optimum. In practice this was very frequently observed.

The last step of the method consists of fitting a B-spline approximation to
the retained ordered segmentations towards completing the missing content.
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Fig. 3. Detection performances (for 5 mil-

lion points from the 45 test images; dashed

lines: for 1 million)

stages MD FD

detection 15.4% 53.2%

segments extraction 19.3% 53.0%

segments linking 23.8% 14.3%

splines fitting 25.8% 13.2%

Fig. 4. missed detections(MD) and false

detections(FD) after each step. The state

of the art [8] reports 22 ± 3% MD and

10 ± 3% FD.

4 Experimental Validation

Experiments were carried out on a database of 15 sequences of 10 images
1000x1000 acquired during interventions on 13 patients with a frame rate of
15 images per second, where clinical experts have manually marked GW. We
performed a cross-validation: we built 15 classifiers using 75 images from 14
sequences only and tested each classifier using 3 images from the remaining se-
quence, using the same features and parameters for training and testing (a scale
of 3 for MSAC and β = 20.0 for the ordering, in addition to constants given in
preceding sections).

[Fig. (3)] compares the ROC curves of one of the classifiers with the ROC
curves for three of the features that it uses: DoG of scales (1.4, 1.8) computed
on raw or on log images and the ridge detector for μ = 0.25, σ = 1.6 of [5].

Given that even features designed for curvilinear structure detection perform
poorly, machine learning methods like ours are necessary. Our method produces
for example 4 times less false detections than the better single feature when
detector is thresholded to recover 60% of GW.

We validated our algorithm with the same metrics as in [8]: we measured
the proportion of pixels of GW at more than 5 pixels (1.0 mm) of the detected
structures (missed detections,MD) and the proportion of pixels of the detected
structures at more than 5 pixels of the GW (false detections,FD). Because GW
parts lying in catheters are difficult to detect and not always of interest, but
often help delineating the other parts, we decided not to take these parts into
account for the computation of missed detection ratio.

[Fig. (4)] presents our results. Most of the MD are due to long parts of GW
hardly visible producing prohibitive linking costs. There finally remains few FD,
either due to rib borders or due to linking of line segments after the GW tip.
A GW tip detector like the one used in [8] could therefore helps removing even
more FD. This point is however out of the scope of this article.
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Fig. 5. Several final results (from 10 different sequences)

5 Discussion

In this paper, we have presented a global approach for GW segmentation de-
signed to achieve high robustness. We used classifiers built by a variant of Boost-
ing [9] and combining rotation invariant features such as improved steerable fil-
ters [5] to detect GW pixels and clustering to group them towards extracting
line segments. We finally performed the delineation of the GW from the set of
segments by solving an ordering problem with outlier rejection. Future work
will focus on tracking the GW. Knowing the GW movement is indeed of great
interest for many applications, such as cardiac motion monitoring.
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Abstract. We have developed an algorithm for real-time volumetric image re-
construction and 3D tumor localization based on a single x-ray projection im-
age. We first parameterize the deformation vector fields (DVF) of lung motion 
by principal component analysis (PCA). Then we optimize the DVF applied to 
a reference image by adapting the PCA coefficients such that the simulated pro-
jection of the reconstructed image matches the measured projection. The algo-
rithm was tested on a digital phantom as well as patient data. The average rela-
tive image reconstruction error and 3D tumor localization error for the phantom 
is 7.5% and 0.9 mm, respectively. The tumor localization error for patient is ~2 
mm. The computation time of reconstructing one volumetric image from each 
projection is around 0.2 and 0.3 seconds for phantom and patient, respectively, 
on an NVIDIA C1060 GPU. Clinical application can potentially lead to accu-
rate 3D tumor tracking from a single imager. 

Keywords: image reconstruction, tumor localization, lung motion, GPU, lung 
cancer radiotherapy. 

1   Introduction 

Management of tumor motion is a challenging and important problem for modern 
highly conformal lung cancer radiotherapy. Poorly managed tumor motion can lead to 
poor target coverage and an unnecessarily high dose to normal tissues [1]. Therefore, 
precise knowledge of real-time lung tumor motion during the treatment delivery is 
essential for the effectiveness of lung cancer radiotherapy [2-8]. In [9-11] 3D respira-
tory motion was estimated from cone beam projections based on a generic B-spline 
motion model. However, because of the large number of parameters in the model, 
many projections over a large range of angles have to be used. Therefore, the estima-
tion process is retrospective and cannot be done in real time. 

The goal of this work is to demonstrate the feasibility of extracting lung motion in-
formation from a single x-ray projection in real time. This is achieved with effective 
use of the prior information provided by 4DCT or 4DCBCT, where the deformation 
of the entire lung at different phases is efficiently represented by principal component 
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analysis (PCA). The inherent regularization imposed by the PCA lung motion model 
allows us to obtain the volumetric image of the patient from a single projection. Real-
time efficiency is achieved by implementing the algorithm on a graphics processing 
unit (GPU). 

We organize the paper as follows. In section 2, we briefly introduce the PCA lung 
motion model and furnish the reason behind its suitability for our goal. Then we use 
the PCA model to reconstruct volumetric images and localize tumors with an appro-
priate cost function. In section 3, we provide some details on the phantom and patient 
data which the algorithm was tested on. In section 4, we demonstrate the results. We 
conclude the paper in section 5. 

2   Methods 

The basic idea of our work is to first obtain a lung motion model parameterized by a 
few PCA coefficients, and then adapt the deformation vector field (DVF) applied to a 
reference CT such that its projection matches the x-ray projection images acquired 
during the treatment.  In the following, whenever we mention CT or 4DCT, the same 
principle can be applied to CBCT or 4DCBCT too. 

2.1   PCA Lung Motion Model  

Our method starts by parameterizing lung motion with PCA. The PCA lung motion 
model was first proposed by [12] and was recently shown in [13] to bear a close rela-
tionship with the physiological 5D lung motion model [14] on a theoretical basis. In 
the PCA model, lung motion (i.e., motion of each voxel in the lung along each of the 
3 spatial coordinates) denoted as a vector function ( )tx , can be approximated by a 

linear combination of the eigenvectors corresponding to the largest eigenvalues: 
 

    
1

( ) ( )
K

k kk
t w t

=
≈ +∑x x u                (1) 

 

where 
ku  are the eigenvectors obtained from PCA and are functions of space only. 

The scalars ( )kw t  are PCA coefficients and are functions of time only. It is worth 

mentioning that the eigenvectors are fixed after PCA and it is the evolution of the 
PCA coefficients that drives the dynamic lung motion.  

There are primarily two reasons why the PCA lung motion model is suitable for 
this work. First, PCA provides the best linear representation of the data in the least 
mean-square-error sense. Second, the PCA motion model imposes inherent regulari-

zation on its representation. One can show that ( )2 221 ii
σΔ ≤ ⋅ Δ∑u x , where iσ  

are the eigenvalues from PCA. This means that if two voxels move similarly, their 
motion represented by PCA will also be similar [13]. The combined effect is that a 
few scalar variables (PCA coefficients) are sufficient to dynamically deform the lung 
in a reasonably accurate way. 
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In order to build a PCA lung motion model, a representative lung motion state for 
one breathing cycle needs to be available for training purposes. In practice, this can be 
obtained from deformable image registration (DIR) between a reference CT phase and 
all other phases in a 4DCT (or 4DCBCT) data set, which is available from the treat-
ment simulation (or setup). 

2.2   Image Reconstruction Using the PCA Model 

After we have obtained a parameterized PCA lung motion model, we seek a set of 
optimal PCA coefficients such that the simulated projection of the reconstructed CT 
matches well with the measured x-ray projection. But the simulated and measured 
projection may have very different intensity levels. Here we assume there exists a 
linear relationship between them. The cost function is: 

 

 ( ) ( ) 2

0 2
min . , , ,

. .   

J a b a b

s t

= ⋅ − ⋅ − ⋅

= + ⋅

w P f x f y 1

x x U w
        (2) 

 

where, U  and w  are comprised of a set of eigenvectors and PCA coefficients, x  is 

the parameterized DVF, 0f  is the reference CT, f  is the reconstructed CT, y  is the 

projection image, and P  is a projection matrix which calculates the simulated projec-
tion. For simplicity, we have suppressed the time index under w , x , and y . 

To find the optimal values for , ,a bw , the algorithm alternates between the fol-

lowing 2 steps: 
 

step 1: 
1n n n

n

Jμ+
∂= − ⋅
∂

w w
w

                      (3) 

step 2: ( ) ( ) 1

1 1 1,
T T T

n n na b
−

+ + += Y Y Y Pf                   (4) 

where, [ ],=Y y 1 , and ( )T TJ J
a b

∂ ∂ ∂ ∂ ∂= ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ − ⋅ − ⋅
∂ ∂ ∂ ∂ ∂

x f f
U P P f y 1

w w x f x
. 

 
Given the new DVF at each iteration, the reconstructed CT f  is found through tri-

linear interpolation. Accordingly, ∂ ∂f x  has to be consistent with the interpolation 

process in order to get the correct gradient. It turns out that ∂ ∂f x  is a linear combi-

nation of the spatial gradients of the image evaluated at the neighboring 8 grid points, 

weighted by the appropriate fractional part of the DVF. The step size nμ  in step 1 is 

found by Armijo's rule for line search. In step 2, the update for ,a b  is the unique 

minimizer of the cost function with fixed w . Therefore, the cost function always 
decreases at each step. Note that the cost function is lower bounded by zero. The 
above alternating algorithm is guaranteed to converge for all practical purposes. The 
algorithm stops whenever the norm of the gradient is sufficiently small or the maxi-
mum number of iterations (10 in this paper) is reached. 
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2.3   Tumor Localization by Deformation Inversion 

In order to get the correct tumor position, we distinguish between 2 different kinds of 
DVFs: push forward DVF and pull back DVF. The DVF found by (2) is a pull back 
DVF. It cannot be used directly to calculate the new tumor position. To do that, we 
need its inverse, i.e., the push forward DVF. Here, we adopt a fixed-point approach 
for deformation inversion [15] and calculate tumor position. 

3   Materials 

3.1   Digital Phantom 

The algorithm was tested using a non-uniform rational B-spline (NURBS) based car-
diac-torso (NCAT) phantom [16]. This mathematical phantom has a high level of 
anatomical realism (e.g., a beating heart, detailed bronchial trees). The respiratory 
motion was developed based on basic knowledge of respiratory mechanics. We gen-
erated a dynamic NCAT phantom composed of 10 phases as our simulated 4DCT. 
The NCAT phantom also outputs the 3D tumor position, which is used as ground 
truth. The CT data dimension is: 256 × 256 × 120 (voxel size: 2 × 2 × 2.5 mm3).  

We used the end of exhale (EOE) phase as the reference image and did DIR be-
tween EOE phase and all other phases. The DIR algorithm is a fast demons algorithm 
implemented on GPU [17]. Then PCA was performed on the 9 DVFs from DIR and 3 
PCA coefficients and eigenvectors were kept in the PCA model. We simulated x-ray 
images at different phases from those for training with different breathing amplitudes 
as well as at different gantry angles using Siddon's algorithm [18]. The imager dimen-
sion is down-sampled to 200 × 150 (pixel size: 2 × 2 mm2). 

3.2   Patient Data 

The algorithm was also evaluated with a patient data set. 4DCT of the patient was 
acquired using a GE four-slice LightSpeed CT scanner (GE Medical Systems, Mil-
waukee, WI, USA) and the RPM system. The cone beam projections were taken with 
the Varian on-board imaging system (Varian Medical Systems, Palo Alto, CA, USA) 
in half-fan mode with 110 kVp, 20 mA and 20 ms exposure time. For the patient in 
this study, there were no implanted fiducial makers and real-time 3D location of the 
tumor was not available to evaluate our algorithm. Instead, we projected the estimated 
3D tumor location onto the 2D imager and compared with that manually defined by a 
clinician. From the clinician-defined contour, the tumor centroid position was calcu-
lated for each projection and used as the ground truth to evaluate the algorithm. We 
calculated the tumor localization error along the axial and tangential directions, both 
scaled back to the mean tumor position. 

4   Results 

4.1   Phantom Results 

We tested the extrapolation performance of our algorithm by generating a new CT 
volume where there is an increase of 50% in breathing amplitude (tumor motion  
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Fig. 1. a): "measured" projection of the test image at a right posterior oblique (RPO) angle; b): 
objective value (top) and the relative image reconstruction error (bottom) at each iteration 

a)  

b)  

c)  

Fig. 2. Left column: sagittal view of the absolute difference image between a), test and refer-
ence CT; b), test CT and CT reconstructed using proposed algorithm; c), test CT and deformed 
CT using demons. Tumor is a round object near the center of the slice. Right column: same as 
left column, except for coronal view. Tumor is a round object in the right lung. 

magnitude: 16 mm in training versus 24 mm in testing). The simulated projection 
image (see Fig. 1) was generated from the end of inhale phase so that it is maximally 
different from the reference CT. The algorithm converges within 10 iterations.  
Figure 2 shows the sagittal and coronal views of the reference CT and the difference 
images. The relative 3D RMS image reconstruction error is initially 35% and ap-
proaches to that obtained by 3D DIR with demons (11% compared with 8%). Note 
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that demons uses the 3D test CT instead of 2D projection image used by our algo-
rithm. The 3D RMS tumor localization error is 0.9 mm.  

We then did a more systematic evaluation by generating a dynamic phantom con-
sisting of 60 phases with a 50% increase in breathing amplitude and 4-sec period. We 
simulated cone beam x-ray projections at all angles with spacing of 1° resulting in 
360 projections in 1 minute (15 breathing cycles). The average relative 3D image 
reconstruction error is 7.5% ± 2.4%. The average 3D tumor localization error is 0.9 
mm ± 0.5 mm and is not affected by projection angles (see Fig. 3).  

In order to speed up the computation, we have implemented our algorithm on an 
NVIDIA C1060 GPU. We initialized the PCA coefficients as those from previous 
frame in order to get further reduction in computation time. The image reconstruction 
and tumor localization for each projection was achieved between 0.2 and 0.3 seconds. 
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Fig. 3. Top row: relative image error between the ground truth test image under regular breath-
ing and: reference image (dashed line); image reconstructed using the proposed algorithm 
(solid line) as a function of cone beam projection angle. Bottom row: same as top row, except 
for 3D localization error.  

4.2   Patient Results 

For the patient, approximately 650 projections were acquired over a full gantry rotation 
with a frequency of about 10.7 Hz. However, since the cone beam scans were per-
formed in the half-fan mode (with the imager shifted about 14.8 cm laterally), and iso-
center of the scan was not placed at the tumor, the tumor is only visible in a subset of 
these projections. The tumor was marked by the clinician in the largest continuous set of 
projections in which the tumor was visible. For this patient, 281 projections were used. 
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Fig. 4. Tumor localization results for the patient. Dots represent the algorithm output, and the 
solid lines represent the clinician marked tumor position.  



Single-Projection Based Volumetric Image Reconstruction and 3D Tumor Localization 455 

The patient had quite irregular breathing during the CBCT scan, with both baseline 
drift and amplitude changes. Figure 4 shows the tumor localization results. For the 
axial direction the average localization error is 1.9 ± 0.9 mm. In the tangential direc-
tion the average error is 1.8 ± 1.0 mm. The average computation time for image re-
construction and tumor localization from each projection was around 0.3 seconds on 
an NVIDIA Tesla C1060 GPU card. 

5   Conclusions 

We have shown it is feasible to extract lung motion information from a single x-ray 
projection within half a second. To further speed up the computation, we can predict 
the current PCA coefficients using previous histories and use that as the starting point. 
We plan to comprehensively evaluate the accuracy of the algorithm on more clinical 
data. It is worth mentioning that careful quality assurance (e.g., patient breathing 
coaching during 4DCT acquisition), better DIR algorithms will help improve the 
algorithm's accuracy on patient data. Also, it is not clear if the PCA motion model 
would be able to capture dramatic changes in breathing patterns between treatment 
simulation and different treatment fractions. Should that occur, 4D CBCT acquired on 
the day of treatment may be more appropriate to build the PCA motion model.  
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Abstract. We present a new preoperative planning method for reducing the risk 
associated with insertion of straight tools in image-guided keyhole neurosur-
gery. The method quantifies the risks of multiple candidate trajectories and pre-
sents them on the outer head surface to assist the neurosurgeon in selecting the 
safest path. The surgeon can then define and/or revise the trajectory, add a new 
one using interactive 3D visualization, and obtain a quantitative risk measures. 
The trajectory risk is evaluated based on the tool placement uncertainty, on the 
proximity of critical brain structures, and on a predefined table of quantitative 
geometric risk measures. Our results on five targets show a significant reduc-
tion in trajectory risk and a shortening of the preoperative planning time as 
compared to the current routine method.  

1   Introduction 

Many image-guided keyhole neurosurgery procedures require the precise targeting of 
tumors and anatomical structures with a surgical tool inside the brain based on pre-
operative CT/MRI images. A misplacement of the surgical tool from the planned 
trajectory may result in non-diagnostic tissue samples and/or severe neurological 
complications [1-2]. Consequently, it is desired to select a trajectory that is at a safe 
distance from critical structures such as blood vessels and motor and functional areas.  

In current practice, trajectory planning is performed manually and may be sub-
optimal, as it requires the surgeon to mentally reconstruct complex 3D brain struc-
tures and their relations based on 2D cross-sections of the patient pre-operative 
CT/MRI head images. The treatment risk and implications evaluation is thus a com-
plex and time-consuming task. While volume visualization and spatial segmentation 
of critical brain structures are sometimes used to help the neurosurgeon with spatial 
perception and planning, the insertion trajectory is currently determined manually. 
Furthermore, it does not include any quantitative measures or trajectory-specific visu-
alization of nearby critical structures. The resulting trajectory is thus surgeon-
dependent and may not be optimal. 

Several studies have proposed methods to better assess and reduce risk in image 
guided neurosurgery [3-10]. Some of them are aimed at tasks that are significantly 
different from insertion of a straight surgical tool. They include methods for identify-
ing targets and trajectories in Deep Brain Stimulation (DBS) based on a statistical atlas 
[5], for optimizing a path within intracranial blood vessels [7], for path optimization 
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for optimal tumor evacuation [8], and for planning of non-straight trajectories with 
non-interactive, time-consuming optimization methods [4].  

In recent work, Lee et al. [9] propose a method to fuses patient MRI head images 
with a registered atlas to support the manual selection of a trajectory with a visualiza-
tion of the 3D atlas structures. Its main disadvantage is that the trajectory is selected 
manually without any quantitative information regarding nearby critical structures. 
Vaillant et al. [10] computes the risk of a candidate trajectory with a weighted sum 
and based on the trajectory intersected intracranial structures and their associated 
importance. The weakness of this method is that it does not consider the distance of a 
structure from the trajectory; thus, the damage that can be caused by surgical tool 
misplacement is not incorporated in the function. Tirelli et al. [3] assign each candi-
date trajectory with a risk value that is based on a weighted sum; the drawbacks are 
that no risk visualization or quantitative feedback is provided. Brunenberg et al. [6] 
show that computing the risk with a weighted sum can be misleading and suggest 
computing the maximum risk value instead. The Euclidean distance of the trajectory 
from critical brain structures is used to compute the risk of each voxel. Their method 
outputs tens to hundreds of trajectories associated with distances above a predefined 
threshold. Although the method significantly reduces the number of possible trajecto-
ries, it still leaves a considerable amount of manual work without quantitative feed-
back. Moreover, none of the studies evaluated their contribution to the actual reduc-
tion of the risk. 

We present a novel preoperative straight trajectory planning method for image-
guided keyhole neurosurgery. Our method quantifies the risks of multiple candidate 
trajectories and presents them on the outer head surface to assist the neurosurgeon in 
selecting the safest path. For visualization, we color-code all the trajectories according 
to their associated risk level and present them all at once on the relevant parts of the 
outer head surface. The surgeon can then select and revise the trajectory, and add or 
edit trajectories with visual 3D feedback and updated risk information. Our method 
incorporates interactive 3D visualization of critical structures and of surgical tool 
placement uncertainty. The computed trajectory is presented to the physician along 
with a ‘risk card’ that includes quantitative risk measures such as the length of the 
trajectory and distance between the trajectory and closest blood vessels. We observe 
that reporting only the maximum risk value may be partial and incomplete and com-
pute both: the maximum and the summation of risks along trajectory. Moreover, we 
conduct a clinical comparative study on MRI head images to rate our method vs. 
routine planning on five targets.  

2   Method Overview 

We propose the following eight-step preoperative planning workflow for image 
guided keyhole neurosurgery (Fig. 1). Initially, (1) the neurosurgeon selects the target 
location on the CT/MRI preoperative image. Then, (2) the head outer surface is com-
puted automatically and the neurosurgeon defines (3) the surface region on which the 
entry point should be located.  Afterwards, (4, 5) the anatomical structures of interest 
for the surgery, e.g. blood vessels and ventricles, are segmented and assigned a risk 
value based on the potential damage of penetrating them with a surgical tool (this is 
done once for all patients). The input segmentations and the assigned risk values are 
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automatically combined into a single volume (6), called the risk volume, in which 
voxel intensity is associated with a value representing the level of damage that may be 
caused by a surgical tool passing through it. A trajectory risk value is then computed 
(7) for each trajectory automatically and the candidate trajectories risks are color-
coded and superimposed on the defined entry points surface to form risk maps (Fig. 
2). Finally, (8) the neurosurgeon interactively selects and refines a trajectory with 
visual and quantitative feedback (Figs. 2 and 3). 
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Fig. 1. Preoperative planning workflow for image guided keyhole neurosurgery 

 
We define a risk card as a summary of geometrical parameters regarding critical 

structures and planned trajectories. The risk card provides the neurosurgeon with 
valuable information regarding the assessment of an intervention’s risk and enables 
the direct quantitative comparison between candidate trajectories. The relevant risk 
parameters were identified by a senior neurosurgeon. They include measures for as-
sessing trajectory’s risk such as trajectory length, and distances of trajectory, target 
and entry to closest blood vessels and ventricles.  

We use graphical illustrations to assist the surgeon in understanding the geometri-
cal meaning of the measures. For example, when the neurosurgeon points with the 
cursor on the risk card trajectory length column, it is illustrated graphically (Fig. 3). 
Trajectories can be added and modified based on the 3D visualization of their local-
ization uncertainty and predefined critical structures.  The visualization of tool local-
ization uncertainty eases the identification of cases where a planned line trajectory 
does not cross a critical structure, including the placement uncertainty, and indicates 
the possible damage to critical structures.  

We describe next our method for the computation of the risk volume, the trajectory 
risk, and the visualization of multiple trajectories risks. 
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                          (a) Maximum                                                (b) Summation 
 

Fig. 2. Risk maps of candidate trajectories with two computation methods: (a) maximum, and; 
(b) summation of voxels in the risk volume that are intersected by the trajectory. Red zones are 
associated with high-risk trajectories. Green and yellow zones indicate safer entry points.  

2.1   Computation of Risk Volume 

Each voxel in the risk volume is assigned with the estimated cost incurred by pene-
trating the corresponding region with a surgical tool. The risk volume is generated 
based on two key guidelines: 1) the risk value is directly related to the estimated con-
sequences and severity of the damage to the corresponding brain tissue or organ, 
severe complications and high morbidity regions are assigned with a higher risk val-
ues than tissues with minor and reversible complications, and; 2) voxels near critical 
structures are assigned with high risk values to reflect the intrinsic localization error 
of the procedure, be it freehand, frame-based stereotaxy, or with an image-guided 
surgery system. Therefore, voxels that are closer to a critical structure are associated 
with a higher risk value than those that reside further from them.  
   The input is a set of critical structures for which insertion of a surgical tool is for-

bidden or undesired, 1 2{ , , , }pS S S S= … , and their associated risk values 

1 2{ , , , }pR r r r= … . The structure Si is a segmented image. The risk value ri is a non-

negative scalar. We define each voxel in the risk volume as: 

( ) ( )k

k

k

riskVolume
r

max
dist x,S

x
α

=
⎧ ⎫
⎨ ⎬+⎩ ⎭

 (1) 

where x is the voxel center location and α is a non-negative scaling constant. Eq. 1 
assigns to each voxel the maximal expected risk computed with the above cost func-
tion and with respect to the input structures and risk values. For 1α =  and distance 

( ) 0kdist x,S =  (e.g. voxel is located on the structure) the voxel value is the same as 

the input risk value rk. It decreases as the voxel is further from the structure. 
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Fig. 3. Trajectory risk card showing seven parameters (all values in mm) and 3D illustration 
image of the “path length” risk parameter 

In practice, we expect the neurosurgeon to define only a handful of risk levels, i.e., 

risk values 1 2{ , , , }pR r r r= … are selected from a small group of numbers 

{ }0,1,2,...,ir c∈ .  In cases where two or more structures are associated with the same 

risk level, the voxel risk value is associated with the closest structure distance (Eq. 1). 
This allows computing one distance map for multiple structures that are associated 
with same risk level. With this approach, few distance maps can cover a large set of 
segmented structures.  

2.2   Trajectory Risk Computation and Visualization 

We assign to a given trajectory two risk values: 1) the maximal value, and 2) the sum 
of voxels in the risk volume that are intersected by the trajectory. The input is a target 

location, t, a set of candidate entry points 
1 2

{ , , , }
n

e e e… , and the risk volume risk-

Volume. Each target and candidate entry point pair defines a trajectory [ ];i itr e t= . 

The maximal trajectory risk is: 

( ) ( ){ },i
i

max x tr
risk tr riskVolume riskVolumemax x ∩ ≠∅=  (2) 

Note that this definition of trajectory risk does not incorporate some important risk 
factors such as path length and thus provides only partial information regarding the 
trajectory risks. For example, this definition cannot differentiate between cases where 
many blood vessels surround the trajectory and those where only one blood vessel is  
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within its proximity. Therefore, it is also desired to compute the sum of the voxels 
risk values along the trajectory. This measure better reflects path length, and incorpo-
rates all risks occur along the path. Note that this measure is also incomplete and 
should be considered with the maximal risk [6]. 

( ) ( ),i

x tri

sumrisk tr riskVolume riskVolume x
∩ ≠∅

= ∑  
(3) 

To assist the neurosurgeon in selecting the safest paths, we propose a visualization of 
the relevant candidate entry-points zones on the outer head surface. Each candidate 
entry point on the relevant outer head surface zone is colored with respect to the risk 
value that was computed on its trajectory (Fig. 2). The user can change the risk com-
putation method (Eqs. 2 or 3), the color-map, and can change the position and orienta-
tion of the 3D surface. 

3   Experimental Results 

We compared our method to the current routine manual approach for trajectory plan-
ning on five targets selected at various locations on four clinical MRI head images. 
The images are 512×512×122 voxels3 with voxel size of 0.47×0.47×1.0 mm3. For 
each target, a specialist neurosurgeon selected two trajectories: one with the conven-
tional method based on the axial, sagittal, and coronal 2D views of the original MRI 
images, and the second trajectory was selected with our method.  The planning proto-
col was as in Fig 1. A target was initially defined on the MRI image. Then, the outer 
surface of the head was automatically segmented and extracted [12], and sampled 
with ~40K points. For each target, the user defined surface areas on the outer head 
surface from which the entry point can be chosen. Each candidate entry point defines 
a candidate trajectory with the predefined target. The blood vessels and ventricles 
were semi-automatically segmented and their surfaces were reconstructed. Distance 
maps are computed with the method of Danielsson et al. [11]. The blood vessels were 

associated with a risk level of 1 255r =  and the ventricles were associated with a risk 

level of 2 100r = . The risk volume was computed using Eq. 1 with 1r  and 2r  as 

above and 1α = .  
For each possible trajectory, the risk volume voxels that were intersected by the 

trajectory were identified, and the trajectory risk was computed using Eq. 2 and 3. 
Next, the trajectories risks were color-coded and superimposed on the relevant part of 
the head surface. The neurosurgeon then interactively selected an entry point. The 
corresponding risk card was automatically computed and a 3D visualization of the 
localization uncertainty and blood vessels was generated and displayed for further 
refinement. The method was implemented with the Visualization ToolKit (VTK) [13] 
and the Insight segmentation and registration ToolKit (ITK) [14] and was integrated 
as a set of modules in Slicer [15] on a standard PC running Windows XP OS. 
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Table 1. Comparison of the proposed and routine methods. Target codes are: LF – Left 
and(delet) Frontal, LFTI – Left Fronto-Tempo-Insular,  RPO – Right Parieto-Occipital, LFP – 
Left Frontal-Periventricular, and MP - Medial  Perichiasmatic and anterior to the Midbrain. 

Target 
number 

Target 
location 

Method Trajectory 
length(mm) 

Distance: 
Trajectory to 
Blood Ves-
sels(mm) 

Distance: 
Trajectory to 

Ventricles 
(mm) 

Time 
(min) 

Routine 35.2 5.15 9.99 - 1 LF 
Proposed 31.6 9.39 9.52 - 
Routine 27.0 1.88 37.8 19 2 LFTI 

Proposed 40.5 3.58 37.1 6 
Routine 25.6 12.0 26.3 9 3 RPO 

Proposed 29.1 12.0 26.3 9 
Routine 56.2 7.16 12.0 9 4 LFP 

Proposed 57.8 7.99 13.1 6 
Routine 94.4 0.0 2.74 6 5 MP 

Proposed 96.3 1.0 4.9 10 
Routine 47.7 5.2 17.8 10.8 Average 

Proposed 51.0 6.8 18.1 7.7 

 
Table 1 summarizes the results. The mean trajectory planning time using the routine 

method was 10.8 min (range 6-19 min) compared to a mean of 7.7 min (range 6-10 min) 
using our method. Using the routine method, the mean distance of a planned trajectory 
to closest Blood Vessel (BV) and closest ventricle are 5.2mm (range 0.0-12.0 mm) and 
17.8 mm (range 2.7-37.8 mm), respectively. Our method yielded mean distances of  
6.8 mm (range 1.0-12.0 mm) from a blood vessel and 18.1mm (range 4.9-37.1 mm) 
from closest ventricle. The mean trajectory length with the routine method was 47.7mm 
(range 25.6-94.4 mm) compared to 51.0mm (range 29.1-96.3 mm) using our method. 

4   Discussion 

In cases 1, 2, and 5 our method resulted in significantly larger distances of up-to 4mm 
between trajectories and their closest blood vessel or ventricle. In cases 3 and 4, no 
significant difference was observed. The reason for the lack of improvement in case 3 
is that the target point is located near the cranial surface where it was easier for the 
neurosurgeon to evaluate the risks and define a trajectory with the routine method. In 
case 4, the target location was the closest point along the trajectory to nearest blood 
vessel and the ventricle, and therefore no improvement was recorded.  

The neurosurgeon that evaluated our method reports that it increased the control 
and confidence levels, and improved the risk assessment. The colorization of outer 
head surface facilitated the entry point selection. The 3D visualization of blood  
vessels greatly helped in understanding their complex structure and their spatial rela-
tions with respect to the planned trajectory. The risk card assisted in the trajectory  
selection. 
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5   Conclusions 

We have presented a novel method to enhance the conventional trajectory planning 
method by a visualization of trajectories risks and by providing quantitative risk in-
formation and interactive 3D visualization of localization uncertainty and structures 
associated with a high risk for better assessment of the possible risks in image guided 
keyhole neurosurgery. Our experimental results suggest that our method produces 
safer trajectories in which a misplacement of a surgical tool is less likely to damage a 
critical structure. 
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Abstract. It has been shown that excessive white light exposure during

retinal microsurgery can induce retinal damage. To address this prob-

lem, one can illuminate the retina with a device that alternates between

white, and less damaging limited-spectrum light. The surgeon is then

presented with a fully colored video by recoloring the limited-spectrum

light frames, using information from the white-light frames. To obtain

accurately colored images, while reducing phototoxicity, we have devel-

oped a novel algorithm that monitors the quality of the recolored images

and determines when white light may be substituted by limited-spectrum

light. We show qualitatively and quantitatively that our system can pro-

vide reliable images using a significantly smaller light dose as compared

to other state-of-the-art coloring schemes.

1 Introduction

Retinal microsurgery is one of the most demanding types of surgery. The diffi-
culty stems from the micron scale dimensions of tissue planes and blood vessels
in the eye; the delicate nature of the neurosensory retina and the poor recovery of
retinal function following significant injury. For many retinal surgeons the opera-
tive time is lengthy, increasing the risk of light-induced toxicity to the retina that
can limit visual success despite achievement of all surgical objectives. Therefore,
a central issue for the surgeon is balancing the need for adequate illumination
of retinal structures with the risk of iatrogenic phototoxicity.

One of the principal sources for retinal light toxicity stems from the use of
fiberoptic endoilluminators. Endoillumination is the primary means of directly
illuminating surgical targets during posterior segment intraocular procedures
and the primary source of retinal light toxicity during retinal surgery. Retinal
phototoxicity from an operating microscope was first reported in 1983 in patients
who had undergone cataract surgery with intraocular lens implantation [1] and
has then been recognized as a potential complication of any intraocular surgical
procedure. The frequency of these complications is reported to occur from 7%
to 28% of patients undergoing cataract surgery [2,3]. Blue wavelength and ul-
traviolet light induce the greatest degree of retinal injury. In fact, in [4,5] it was
found that commercially available light sources for endoillumination exceeded
the International Commission on Non-Ionizing Radiation Protection guidelines
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for retinal damage by visible light. In vitrectomy for macular hole repair, up to
7% of the patients have been reported to have experienced visually significant
phototoxicity [6,7,8].

In [9], this issue was addressed by presenting a visualization system that
can be used to significantly reduce the emission of highly toxic wavelengths
compared to current practices. This was done by periodically illuminating the
retina with white light and less damaging non-white light using a computer
controlled rapidly switching multiple LED light source. A consequence of this is
that images acquired are either fully colored (which we will refer to as white-light
images) or monochromatic (or red-light images). To avoid visually straining the
surgeon, monochromatic images were then recolored by using colors from white-
light images.

In general, computer colorization schemes have existed since the 70’s [10], for
applications such as recoloring movies, and have since been further developed
[11,12]. In general, however, such systems rely on a user to pre-select regions
of the image that correspond to specific colors, making them ill-suited for this
application. More recently, a time series analysis was proposed to model the
retinal image scene [13]. This method however relies on having all visual cues
(e.g. color and texture) available at all times to maintain an accurate retina
model. In [9], a coloring scheme (ASR) was specifically developed for this setting.
This algorithm estimates the different forms of motion which appear in the
scene, taking this information into account to recolor the monochromatic images.
An important limitation of ASR is that white illumination is used at regular
intervals, regardless of the degree of change in the scene. This results in the use
of excessive white light when no significant changes have happened in the scene,
or conversely, poor recolorization (and image artifacts) when much has changed
in the scene.

In order to further reduce phototoxicity and yet provide accurately colored im-
ages to the surgeon, we present a novel image acquisition and recoloring scheme
for this setting. At each time frame, our algorithm determines what type of
illumination should be used based on the estimated phototoxicity levels and
the recolored image quality. Our method is simple and requires little parameter
tuning, making it easy to use and flexible for surgical applications. We have
experimentally shown that our method provides a quantitative improvement in
coloring accuracy over state-of-the-art methods.

The remainder of this article is organized as follows: in section 2 our framework
and colorization algorithm is presented; section 3 compares our novel approach
with other methods; and finally, in section 4, we discuss some of the pitfalls of
our system and future works.

2 Multispectral Illumination and Adaptive Color Fusion

In order to provide the surgeon with accurately colored images when using the
light source from [9], we present an algorithm that dynamically chooses which
illumination type to use at each time step, depending on estimates of the ren-
dered image quality and phototoxicity levels induced. That is, the quality of the
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recolorization and phototoxicity levels are continuously monitored, allowing us
to estimate when it is appropriate to use white light illumination. In general,
this occurs when the scene changes cannot be adequately “predicted” with the
current available information.

The system we use consists of a device (as in [9]) capable of illuminating
the retina using either white light, or less phototoxic red light. We define the
sequence of images provided by the system as I = {I1, ..., IN} for N discrete
time steps. Each image It is associated with a particular illumination Lt, where
Lt = 1 means that white light was used at time t, and Lt = 0 means that red
light was used. Consequently, when Lt = 1 all three color channels are available,
It = {IR

t , IG
t , IB

t } , whereas when Lt = 0 only the red channel IR
t is available.

We define the illumination history as Lt = {L1, ..., Lt}. As in [9], the overall rate
at which white light is flashed can be defined as ϕ(Lt) =

∑ t
i=1 Li

t . We denote
by Ft the final fully colored image rendered by our algorithm. To recolor the
monochromatic images we maintain a color model of the scene for each time t,
Mt = {MR

t ,MG
t ,MB

t }.
Our goal then is to choose which illumination type, Lt+1, to use for the next

time step. To do this, our criterion is to maximize a quantitative estimate of the
patient’s wellbeing. This criterion combines the two costs incurred by the patient
at time t: the surgeon impairment cost and the phototoxicity cost. The surgeon
impairment cost, S(εt), is the cost of being accidentally harmed by the surgeon
because of the error levels present in the recolored images, εt. The phototoxicity
cost, T (Lt), is given by the damage to the patient produced by the illumination.
In the next section we describe these costs in more detail. In section 2.2 we show
how these costs are combined to select which illumination type to use at each
time step.

2.1 Modeling the Cost Functions

As described in the previous section, there are two different costs incurred by the
patient at time t during the procedure. The first cost is the surgeon impairment
cost, S(εt). This is the cost (for the patient) of being accidentally harmed by
the surgeon at time t. Clearly this risk (and hence the cost) increases as the
recolorization error, εt (defined below) increases, since the surgeon is relying
on poorer images to perform his job. The exact relationship between this cost
and the error is unknown and depends, among many things, on the particular
surgeon using the system. However we expect S(ε) to be an increasing function
that levels off at a certain error, ε∗, at which stage the quality of the image is
so poor that further deterioration does not result in additional risk. In practice,
we will make sure that the system remains in the linear part of S, far from the
critical value ε∗, where the surgeon is critically impaired. Based results from [9],
we will model this relationship with the following function,

S(ε) =
{

1 if ε > ε∗
ε
ε∗ otherwise (1)
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The recolorization error, ε, is due to the fact that the color model at any given
time is not perfect, since the background scene changes due to the manipulations
performed by the surgeon. In order to compute this error, we note that errors are
only committed in the green and blue channels, since the red channel is observed
at all times. We assume that the error committed in the green and blue channels
at time t, εG,B

t , is approximately equal to the error that would be obtained in the
red channel, εRt , if it were treated as the green and blue channels (εG,B

t ≈ εRt ).
Since the red channel is available at all times irrespective of the illumination
type, εRt can be directly computed as,

εRt = ||MR
t −MR

tw
||2 (2)

where tw is the last time step in which Ltw = 1. Assuming further that the error
does not change significantly in one time step, we approximate the error at time
t + 1 by the error at time t, hence ε̂G,B

t+1 ≈ ε̂G,B
t ≈ εRt .

The second cost, the phototoxicity cost, T (Lt), is the estimated damage at time
t suffered by the patient because of the illumination used up to this point in time
Lt. It seems reasonable from the current literature [14] to relate the amount of
phototoxic damage, T , to a function of the recent light exposure ϕ(Lt), where
ϕ(Lt) is a function that models how the illumination history Lt affects a cell
at time t. We chose to define ϕ(Lt) as an exponential loss (approximated from
[14]). That is, as time goes on, the influence of the past decreases exponentially
fast. Hence, we approximate the phototoxicity cost by,

T (Lt) =

{
1 if ϕ(Lt) > L∗

e
−(ϕ(Lt)−L∗)2

2 otherwise
(3)

where L∗ is some level of illumination at which irreversible damage to the patient
(cell death) is produced.

It must be noted that while the choice of these functions is based on reasonable
assumptions, these functions ultimately need to be empirically determined.

2.2 Choosing the Next Illumination Type

We can then formally define the estimated total cost for the patient at time t+1
as the sum of the two costs described in the previous section,

E(Lt+1, ε̂t+1) = (1 − λ)S(ε̂t+1) + λT (Lt+1). (4)

where, ε̂t+1, is the measure of the recolorization error defined in Eq. 2, Lt+1 is
the history of illuminations at time (t+1) and λ is a tuning parameter which can
be adjusted by the user (i.e. surgeon) to specify a bias for either image quality
or phototoxicity. We select the next illumination type, by minimizing the patient
wellbeing cost,

Lt+1 = arg min
L

E(Lt+1, ε̂t+1) = argmin
L

{(1 − λ)S(ε̂t+1) + λT (Lt+1)}. (5)
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Notice that L can take only two values (0 or 1). Hence, this optimization
reduces to

(1 − λ)S(ε̂t+1) + λ(T ([Lt; 1]) − T ([Lt; 0])) ≥ 0 (6)

Since ε̂t+1 = 0 when Lt+1 = 1, and ε̂t+1 ≈ ε̂t when Lt+1 = 0, all the quantities
in Eq. 6 are known and choosing the next illumination type simply reduces to
determining whether or not equation Eq. 6 is true.

2.3 Adaptive Active Scene Rendering

We now present the outline of our algorithm: Adaptive Active Scene Render-
ing (AASR). Fig. 1 provides a visual outline of AASR and associated images,
respectively.

First for each image It, (Fig. 1 (Left)(a) and (Right)(a)) we detect and segment
the tool in the image by using a 3D tool model (see [9] for more details). This
provides us with a mask region for the tool, Tt (Fig. 1(Left)(b)). Then, in order
to compute the new color model: if Lt = 1, Mt is computed by keeping pixel
regions of Mt−1 which appear where the tool is located and using It for regions
where the tool is not present (Fig. 1(Right)(c)). This is done by using Tt to mask
regions of the tool and allows for regions displaying the retina to be updated,
keeping tool regions unchanged (similar to the work in [13]). If Lt = 0, then
Mt = Mt−1 (Fig. 1(Left)(c)). Rendering the recolored image, Ft, is then done
by combining MG,B

t and IR
t on regions outside the tool, and using a tool color

model to fill in the tool ((Fig. 1(Right)(b)) and (Left)(d)). Having computed
these, we can then estimate the error, εt, using MR

t and MR
tw

, as described by
Eq. 2 (Fig. 1(Right)(d)), and choosing the following illumination type can be
computed as in Eq. 6 (Fig. 1(Right)(e)).

Fig. 1. (Left) Intermediate steps of the AASR algorithm: (a) non-white image provided

by the device when Lt = 0, (b) tool segmentation, (c) representation of Mt and (d)

recolored image by AASR. (Right) Block diagram of the proposed system. See section

2.3 for details.
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3 Experiments

We now show how our system performs on image sequences from phantoms
and from chorioallatonic chicken embryos. First, a quantitative comparison of
AASR and a state-of-the-art method is presented, where it is shown that AASR
surpasses ASR in a setting where ground truth is known. This is shown by
measuring both image recoloring quality and quantity of white light used. We
then show qualitative results of our algorithm on image sequences.

To validate the approach described in section 2, we recorded 5 image sequences
of membrane peelings on phantom eyes using only white light. Each sequence
consists of approximately 300 frames in similar visual settings. Doing so allows us
to synthetically generate limited-spectrum images at any given time, by using
only the red channel of white light images. This provides us with a way to
quantitatively compare AASR and ASR, as ground truth is available.

For each image sequence we then ran AASR with three different settings: λ =
{0.25, 0.5, 0.75}. This allows us to see results for cases where the surgeon applies
a bias towards image quality, phototoxic levels, or no bias at all. For each image
sequence, we also generated 4 recolored sequences using ASR, with different
values of φ = {1/2, 1/4, 1/8, 1/16}. As in [9], the L2 (or mean squared error)
norm is chosen to measure the error between the ground truth and the rendered
images. In order to estimate phototoxicity levels, we observe the proportion of
white-light images used.

In Fig. 2(Left) we show the results of this experiment by plotting the average
recolorization error against the average estimated phototoxicity level. The dotted
line (4 vertices; 1 for each value of φ) shows how ASR performs while the full line
describes the performance of AASR (3 vertices; 1 for each value of λ) . In general,
we can notice that both methods displays a trade-off in accuracy: reducing one
type of error induces the other and vice versa. We can also see that the AASR

Fig. 2. (Left) Plot of estimated phototoxicity levels and recoloring error for both ASR

and AASR. Notice that AASR is less phototoxic than ASR for every recoloring error

level. (Right) Example image sequence of membrane peel. (top) Ground Truth, (middle)

white and non-white illumination images triggered by AASR and (bottom) AASR

image recolorization.
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curve lies below that of ASR for every recolorization error level, hence achieving
smaller total costs for the patient. In general, from our current experimental
setup, AASR significantly outperform ASR, for the values of λ specified. Also,
note that if all incoming images were registered to a reference frame (as in [9])
an additional reduction in colorization error would be expected.

Having observed that AASR provides a better way to model retinal-type
scenes, we now present results on a typical image sequence of a chorioallatonic
membrane peel from an 12 day old chicken embryo. In Fig.Fig. 2(Right) we show
a small set of images from this sequence and the resulting recolorization using
AASR (λ = 0.5). The original and recolored video sequence can be seen in a video
included in the supplementary materials. In the video, the same peeling sequence
is visible and each row corresponds to a different value for λ = {0.25, 0.5, 0.75}.
The first column shows the original images. The second column displays the im-
ages provided by the device, while the third column shows the images recolored
by AASR. The last column displays the retina color model over time. Other
similar video sequences are provided in the supplementary materials.

Notice that in general, in image sequences which contain little membrane ma-
nipulations, few white light images are used. Since in this scenario our prediction
model is capable of correctly estimating the colors of the retina, few white light
images are necessary. Conversely, frames which show membrane peeling require
more frequent white light illumination, in order to correctly render the colors.
This indicates that the framework is able to choose which illumination type to
use depending on the surgeon’s actions.

4 Discussion and Conclusion

In this paper we have presented a novel algorithm that can be used to reduce
toxic light exposure during retinal microsurgery. When used with the LED light
source from [9], our recoloring scheme can dynamically choose the illumination
based on the circumstances, reducing potential light induced retinal toxicity. Our
algorithm balances the risks of phototoxic retinal damage with the illumination
requirements of the operating surgeon to perform the surgical tasks. In this
report we provide qualitative and quantitative evidence that this novel method
reduces the dose of light, and hence retinal damage, while maintaining sufficient
illumination to execute required surgical maneuvers safely.

While the results we have presented are in part dependent on the modeling
choices of the cost functions, our framework is generic enough to accommodate
a large number of functions. This being said, a natural future direction to im-
prove the present work is to empirically determine the specific forms of the cost
functions to use. Determination of these relationships would permit a truthful
quantitative evaluation of the harm reduction. In ongoing and future work, we
will be exploring these issues.
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Abstract. Multi-photon fluorescence microscopy (MFM) captures high-
resolution anatomical and functional fluorescence image sequences and can be 
used for the intact brain imaging of small animals. Recently, it has been ex-
tended from imaging anesthetized and head-stabilized animals to awake and 
head-restrained ones for in vivo neurological study. In these applications, mo-
tion correction is an important pre-processing step since brain pulsation and tiny 
body movement can cause motion artifacts and prevent stable serial image ac-
quisition at such a high spatial resolution. This paper proposes a speed embed-
ded hidden Markov model (SEHMM) for motion correction in MFM imaging 
of awake head-restrained mice. The algorithm extends the traditional HMM 
method by embedding a motion prediction model to better estimate the state 
transition probability. SEHMM is a line-by-line motion correction algorithm, 
which is implemented within the in-focal-plane 2-D videos and can operate di-
rectly on the motion-distorted imaging data without external signal measure-
ments such as the movement, heartbeat, respiration, or muscular tension. In ex-
periments, we demonstrat that SEHMM is more accurate than traditional HMM 
using both simulated and real MFM image sequences.  

1   Introduction 

Mammalian brain microscopy plays an important role in studying the electrical and 
biochemical processes in neurons. Previously, CCD imaging had been used to study 
mouse brain [1], in which a single fiber-optic bundle is placed in direct contact in the 
barrel cortex of an awake mouse to image cortical activities in conjunction with volt-
age sensitive dye. Since fiber-optic bundle have intrinsic low spatial resolution lim-
ited by the size of the fiber core, such kind of imaging system does not reach cellular-
resolution but allows researchers to obtain cortical activation map with high temporal 
resolution. Recently, multi-photon fluorescence microscopy (MFM) imaging has been 
used to capture neural images from anesthetized mice at higher spatial and temporal 
resolution [2-5]. In [2] and [5], 2+Ca  transients were quantified using MFM in the 
mice models of Alzheimer’s disease (AD). Unfortunately, animals under anesthesia 
cannot demonstrate the neural dynamics sufficiently, and overall brain activities are 
suppressed. Recently, more MFM imaging studies of awake mice were carried out  
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[6-9], and two-photon microscope (TPM), a special variant of MFM, was demonstrated 
as a superior alternative due to its deeper tissue penetration, efficient light detection, 
and reduced phototoxicity [3]. 

Head-restrained TPM [8, 9] uses a standard microscope system to visualize simulta-
neous 2+Ca  dynamics of a large number of individual cells, while the head-restrained 
mouse is free to walk or run on a stationary exercise ball [10]. Because of the mice’s 
random motion, the relative motion between the microscope and the brain leads to line 
shifting artifacts, which affects image reconstruction and quantification of the func-
tional dynamics. Thus a motion correction algorithm is needed for quantifying brain 
motion and aiding in stabilizing cell displacements within a region of interest (ROI) in 
order to reduce the number of brain-motion-related fluorescence transients. 

In the literature, two methods were proposed for the motion correction of TPM in 
awake mice [8, 9]. Greenberg and Kerr [9] proposed a method based on the Lucas-
Kanade algorithm [11, 12] to estimate the offset sequences by minimizing the squared 
differences between a reference frame and the subsequent frames using gradient de-
scent method. In [8], an HMM-based method was proposed to calculate the optimal 
offset using a probabilistic framework. Compared to [11, 12], HMM algorithm gener-
ates more temporally stable results due to the implicit modeling of longitudinal state 
transition. Basically, the HMM algorithm assumes that the motion of the current line 
to the next line remains the same or is most likely not changing. A standard exponen-
tial model (or distribution) is used to describe this assumption. Essentially, this as-
sumption is only realistic when the mice are still or relatively still (the relative posi-
tion for scanning beam and mice’s local neural region of interest stays constant), but 
this situation seems not very common because mice’s motion is disordered and ran-
dom and includes sudden changes of speed all the time during the procedure. Thus, in 
HMM, although the state transition model works effectively for the resting stage, it 
might fail and give a wrong estimation during the running stage. 

In this paper, we extend the HMM by incorporating an estimated speed into the state 
transition model for more accurate estimation, called speed embedded HMM (SEHMM) 
algorithm. The major contributions for SEHMM are as follows. (1) Initial motion esti-
mation is achieved by using a simple line-by-line searching method; (2) a grouping 
algorithm is used to divide the whole imaging period into resting and running stages for 
speed estimation; (3) SEHMM is then adopted for motion correction. In experiments, a 
quantitative validation was performed to compare HMM with SEHMM based on both 
simulated data and real data. First, simulated image sequences were generated to mimic 
various real motion situations, and we applied different dynamic amplitudes to make the 
validation more realistic and reasonable. For real data, we showed the comparative 
results to demonstrate the performance of SEHMM. The results illustrated that SEHMM 
can achieve higher estimation accuracy of image alignment as compared with HMM, 
especially in the running stages of the image sequences.  

2   Method 

2.1   Problem Formulation 

A two-photon microscope captures a series of images by passing a focus of laser 
excitation repeatedly over a rectangular or square region of fluorescently labeled 
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tissue and collecting the resulting photons via a photon multiplier tube (PMT) [13]. 
Although the mice’s motion is in 3-D, Z-axis motion shift is less than 1 mμ for a scan-
ning speed of 2 ms/line, much lower than the motion along the X (medial-lateral di-
rection along the raster scan line) and Y (rostral-caudal direction across the raster scan 
line) directions. Therefore, our task is to estimate the motion in X- and Y-directions. 
Due to the mice’s motion during the raster scan progression, the relative motion can 
be written as, 

'

'
,

k k k
i i x

k k k
i i y

X X

Y Y

δ
δ

⎧ = +⎪
⎨

= +⎪⎩
 (1)

where { }( ) / ( / )k

iX t t N Nτ= ⋅ and [ ]( ) / ( / )k

iX t t Nτ= give the actual location of an object 

point, and ( , )k k
x yδ δ  is its offset due to motion. N N×  is the size of each frame. [ ]⋅  

represents the integer operation, and {}⋅  denotes the fractional operation. τ
 
is the 

scanning time for a frame. It can be seen that the laser moves in a zigzag pattern in X-
direction and a step function pattern in Y-direction. Our goal is to estimate the offsets 
( , )k k

x yδ δ
 
from the serial images. Eq. (1) assumes each line has the same relative dis-

placement, so we can choose a line-by-line motion correction algorithm to solve this 
problem. The reason is that the shifts for all the pixels within a line do not get beyond 
one-pixel in Y-direction and are very tiny in X direction. Although pixel-by-pixel 
correction can yield more accurate results, one has to trade off between computational 
speed and the gain in accuracy.  

2.2   The Speed Embedded HMM (SEHMM) Algorithm 

The speed embedded HMM (SEHMM) algorithm is an extension of the traditional 
HMM method by using a motion prediction model with HMM to better estimate the 
state transition probability. Denoting the displacement state for line k as ( , )x yδ δ , the 

state observation probability is represented as ,x y

k

δ δπ , and the state transition probabil-

ity is denoted as 1 1( , ) ( , )k k k k
x y x yT δ δ δ δ− −⎡ ⎤→⎣ ⎦ . The idea of SEHMM is that the transition 

probability of the displacement state is estimated based on the estimated moving 
speed. Thus, SEHMM can match motion more accurately not only during the resting 
stage but also during the moving stage.  

In SEHMM, first, the transition probability is defined as, 

( ) ( )1 1 /1
, , ,

2
k k k k r
x y x yT e λδ δ δ δ

πλ
− − −→ =  (2)

where r is defined as: 

1 1, 2 1 1, 2( ( )) ( ( )) ,k k k k k k k k
x x x line y y y liner v vδ δ τ δ δ τ− − − −= − + + − +  (3)

where 1,k k
xv −  and 1,k k

yv −

 
are the estimated speed of the motion from line 1k −  to k  for 

X- and Y-directions, respectively. 
lineτ is the scanning time for a line. It can be seen 

that using Eq. (3), if the moving speed is estimated at line k-1, the offset at line k can 
be estimated. Therefore, in SEHMM, we no longer assume that the state transition 
probability is the highest when the mouse does not move. On the contrary, this  
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probability gets its peak at a linearly estimated offset value. Since the goal for motion 
correction is to estimate ,k k

x yδ δ  for each line k from a given reference frame R and the 

current image I, we implement it by maximizing a posteriori,  

( ) ( ),' ' 1 1 1 1=( , | , )= ( | ( , )) ( , | , )= , , .x yk k k k k k k k k k k k k k
x y i i i i x y x y k x y x yP I R P I R X Y P Tδ δδ δ δ δ δ δ π δ δ δ δ− − − −⋅ ⋅ →  (4)

Expressing P as a logarithm probability, one gets,  
,ln( ) ln( ) ln( ).x y

kP Tδ δπ= +  (5)

The first term is the state observation probability ,x y

k

δ δπ and reflects the goodness of 

matching between a line in the current frame I and the corresponding line in the refer-
ence frame R. Denoting the intensity of the ith pixel in the kth line of the current 
frame as k

iI , and that of the corresponding pixel in the reference frame as ' '( , )k k
i ix y , the 

observation probability can be modeled as a discrete Poisson distribution explicitly,
 , -

, ( ) e / ( )!,x y I R
k i R Iδ δ γ γπ γ γ= ⋅ where γ is the calibration factor of the photon number, which 

is an inherent factor in an imaging system. Taking the logarithm transformation of 
,

,
x y

k i

δ δπ we get, 
,

,ln( ) ln( ) ln( ) ln(( )!) ,x y

k i I I R I Rδ δπ γ γ γ γ γ= + − −  (6)

where γ  and k
iI  are independent of the changing offsets, and R  is indeed a function 

of the offsets. Thus the equation can be simplified as, 
,

,ln( ) ( ln( ) ).x y

k i I R Rδ δπ γ∝ −  (7)

Then, the observation probabilities for all the pixels within line k can be calculated by, 
, ,

,
1

ln( ) ln( ).x y x y

N

k k i
i

δ δ δ δπ π
=

=∑  (8) 

To illustrate how this new formulation works, Fig. 1 shows the state transition 
probabilities for HMM (Fig. 1(a)) and SEHMM (Fig. 1(b)) models, respectively. The 
center of each distribution plot is set to 1 1( , )k k

x yδ δ− − , and it can be seen that the peak of 

the state transition probability is right in the middle for Fig. 1 (a), and this peak can be 
shifted in Fig. 1 (b) according to the motion estimation. A shifting of the peak of the 
probability function indicates that a motion is assumed from one line to another. This 
compensation for adding the estimated speed value from the current offset to the fol-
lowing offset can remarkably improve the estimation accuracy because it satisfies the 
prediction requirement in all the time points but not only in the still time points.  
 

   
                                             (a)                                               (b) 

Fig. 1. The state transition probability functions without (a) and with (b) motion estimation 
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Once the state observation probability ,x y

k

δ δπ and the state transition probability 
1 1( , ) ( , )k k k k

x y x yT δ δ δ δ− −⎡ ⎤→⎣ ⎦  are defined, the best displacement signal can be calculated 

through maximizing Eq. (5), by following two iterative steps: first, the Expectation 
Maximization (EM) algorithm [14] can be used to calculate the best λ  that leads to the 
highest probability for Eq. (5). Our algorithm for doing this involves systematically 
scanning values of λ  in a prescribed range. We scan uniformly in the logarithm space 
to get constant percentage sampling. For each value of λ , we run the SEHMM proce-
dure to find the most optimal offset sequence and calculate its total probability. The 
value of λ  we will choose is the one with the most probable offset sequence. Then, we 
can adopt the Viterbi algorithm to find the most likely sequence of the hidden states 
(offsets). This can be accomplished in two steps. First, we determine the most probable 
offset sequence for every state at time (line) k  from any of the states at time (line) 

1k −  by marching forward through the time domain. Then, we can backtrack along the 
path of the most probable offset sequence to record the results of optimal offset se-
quence. In the implementation, a line-by-line search is first used to estimate the initial 
offset, and the speed of the motion can be estimated by applying the smoothness filter 
temporally on the estimated offsets before running SEHMM.  

3   Results 

3.1   Results on Simulated Datasets 

Simulated serial images are used to quantitatively validate the SEHMM algorithm by 
comparing with the HMM method [8]. Temporal displacements are first generated to 
transfer a real 2D image (see Fig. 2(left)) to produce the longitudinal image se-
quences. The displacement signal can be generated through a pixel-by-pixel basis 
using a first-order differential equation with a characteristic time constant driven by a 
combination of the random and deterministic processes to simulate the effect of ac-
quiring laser-scanning data from a moving sample:  
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( )

1

1

1 1
(1 )
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1 1
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t t t
x x x
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D

D

σ

σ

φ φ ζ
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 (9)

where t
xφ  and t

yφ  denote the simulated offsets for X- and Y-directions, respectively, and 

t  expresses the time-point, ( 1)t k N i= − ⋅ + . τ  is set to 500. xσ  and yσ  

( 4, 40x yσ σ= = ) are the standard deviations of the Gaussian random variables 
xσ

ζ
 
and 

yσ
ζ . t

xD  and t
yD  are the step functions at the time t . Then, the Poisson noise is added 

on a pixel-by-pixel basis to simulate the photon counting statistics because the values 
during scanning are Poisson distributed in terms of photon numbers but not in units of 
pixel intensity. xσ , yσ  and τ  control the amplitudes of temporal dynamic displace-

ments. One simulated dataset (T1) was generated with these default parameters. In 
addition, we also changed the values of xσ , yσ and τ  and kept the other parameters 

the same, and the second dataset (T2) was simulated by setting 10xσ = , 30yσ = and  
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Fig. 2. The reference image (left) and some examples of the simulated images 

  
                                                  (a)                                                            (b) 

Fig. 3. Quantitative comparisons for four simulated datasets. (a-b) results of datasets T1 and T2. 

 
200τ = . The number of frames for T1 and T2 are 65 and 51, respectively. The image 

size is 129x129, and resolution is 0.39 mμ /pixel.  
Denoting the results by HMM as ( , )k k

x yδ δ , and those of SEHMM as ' '( , )k k
x yδ δ , the simu-

lated offsets as ( , )t t
x yφ φ , and the exhaustive search results as ˆ ˆ( , )k k

x yδ δ , we compared their 

motion correction accuracy. As all the three methods tested are line-by-line motion correc-
tion and the ground truth is stored in pixel resolution, we take the mean value of all ground 
truth offsets within each line and then round the mean value to the nearest integral, i.e., 

, ,t t k k
x y x yφ φ φ φ→ . The difference between these two data was also compared, which indicates 

how accurate we can achieve using line-by-line based methods. We used the following five 
performance measures: average distance (AD), average distance for Y-direction (ADY), 
average distance for X-direction (ADX), standard deviation for Y-direction (SDY) and 
standard deviation for X-direction (SDX), to evaluate the performance of the algorithms. 
Fig. 3 shows the comparison results between the four line-by-line results and the ground 
truth for data T1 and T2, respectively. The blue bars show differences between the rounded 
line-by-line ground truth and the simulated pixel-by-pixel ground truth, and other bars show 
the results of the three methods. It can be seen that for the performance measures, SEHMM 
yields the smallest errors (some with slightly larger SDX). 

We also focused on the Y-direction because the offsets in this direction have rela-
tively large movement than in X-direction. Fig. 4 illustrates the results for simulated 
dataset T2. In the figure, we show the line-by-line rounded ground truth of and the 
results of SEHMM. Since these two curves almost overlap each other and it is difficult 
to visually see the differences, we thus plot the inconsistency between them. The in-
consistency is calculated as the number of lines within a frame that the results of 
SEHMM and HMM are different with the ground truth. It can be seen that during the 
resting stage, such inconsistency is small, and both SEHMM and HMM yielded good 
results (about 10 lines are different), and during the running stage, SHEMM can reduce 
the inconsistency as compared with the results of HMM. 



 Motion Artifact Correction of Multi-Photon Imaging of Awake Mice Models 479 

 

Fig. 4. Comparison results for simulated data T2. Green lines indicate frame separation. 

3.2   Experiments on Real Data 

For real data, we used the mean absolute intensity difference as the measure to show 
the performance of the methods. The mean absolute intensity difference across longi-
tudinally corresponding pixels reflects the goodness of matching for the image se-
quences. Table 1 shows the comparison results for data T3 and T4 (provided by Dr. 
David Tank), respectively, using different methods. The number of frames are 1200 
and 200, image size is 128x128 and 256x256, respectively, and the resolution is 0.39 

mμ /pixel for both. The improvement can be seen from the comparison results when 
we adopt the proposed method. 

Table 1. Average of absolute intensity differences for real datasets T3 and T4 

Method Original Data Exhaustive Method HMM SEHMM 
T3 7.05 5.89 5.48 5.03 
T4 9.54 7.74 7.15 6.56 

 
Regarding computational speed, the exhaustive method is the fastest because lim-

ited number of possible motion is considered, and the SEHMM method is slightly 
more complex than the HMM method because of the embedded exhaustive method in 
the preprocessing step. However, during the actual motion estimation, HMM and 
SEHMM have essentially the same speed. Regarding motion correction accuracy, the 
exhaustive method is not the optimal solution for motion correction because there 
exist strong line-to-line correlations for offsets of successive lines, and exhaustive 
method does not consider this point. SEHMM outperforms HMM because the esti-
mated speed of motion is embedded in the model itself. 

4   Conclusion 

We proposed a speed embedded hidden Markov model (SEHMM) for motion correc-
tion in MFM imaging. The key idea of SEHMM is that a motion prediction model is 
utilized to better estimate the state transition probability. Compared to the traditional 
HMM that assumes no motion always has the highest probability, the proposed 
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SEHMM can model the motion more accurately. SEHMM operates directly on the 
motion-distorted imaging data, without any external signal measurement such as the 
mice’s movements, heartbeat, respiration, or muscular tension. Using simulated and 
real images, we demonstrated that SEHMM is more accurate than HMM using both 
simulated and real MFM image sequences.  
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Abstract. Pre-operative planning in orthopedic surgery is essential to identify 
the optimal surgical considerations for each patient-specific case. The planning 
for osteotomy is presently conducted through two-dimensional (2D) radio-
graphs, where the surgeon has to mentally visualize the bone deformity. This is 
due to direct three-dimensional (3D) imaging modalities such as Computed 
Tomography (CT) still being restricted to a minority of complex orthopedic 
procedures. This paper presents a novel 3D bone reconstruct technique, through 
bi-planar 2D radiographic images. The reconstruction will be pertinent to os-
teotomy surgical diagnostics and planning. The framework utilizes a generic 3D 
model of the bone of interest to obtain the anatomical topology information. A 
2D non-rigid registration is performed between the projected contours of this 
generic 3D model and extracted edges of the X-ray image to identify the planar 
customization required. Subsequently a free-form deformation based manipula-
tion is conducted to customize the overall 3D bone shape. 

Keywords: Osteotomy Surgical Planning, Patient-Specific Bone Customization. 

1   Introduction 

Pre-operative planning has been identified as an essential requirement for successful 
surgical outcomes [1]. The AO (Arbeitsgemeinschaft für Osteosynthesefragen) foun-
dation for orthopedic research instructs on the importance of pre-operative planning 
through its medical training [1]. The surgeon should emerge from the planning phase 
with a clear idea of the patient's bone dimensions, the overall surgical approach, and if 
applicable, a detailed plan of the fixation. In current orthopedic cases most pre-
operative diagnostics and planning is conducted through 2D X-ray imaging. Two-
dimensional images lack significant spatial information that is present in 3D modali-
ties. Imaging modalities such as CT have the ability to provide direct 3D volumetric 
images. However the use of such imaging is restricted to a minority of complex pro-
cedures due to constraints placed by cost, availability and risks posed by unwarranted 
detailed imaging. Thus an alternative to direct 3D imaging must be developed to 
augment procedures that currently rely on pure 2D radiographs. The work presented 
in this paper is motivated by this requirement, and proposes a 3D bone reconstruction 
framework from 2D radiographic images. In this paper femoral osteotomy has been 
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used as the application of interest, however this work can also be applied to several 
other fracture reduction techniques [2]. 

Femoral osteotomy is a procedure used for the treatment of congenital and ac-
quired (e.g. fracture malunion) bone deformities. Long bone deformity may consist of 
a combination of coronal, sagittal and oblique plane distortion. The most common of 
which are coronal and sagittal plane angular deformities [3]. For these cases, the pla-
nar angular and torsional misalignment of the bone axis can be identified through the 
anterior and lateral radiographs. However several key angles including acetabular 
anteversion, are not measurable through 2D imaging. Moreover, the plane on which 
the surgical cut has to be performed and the magnitude of the angular correction can 
only be accurately defined by measurements viable through 3D spatial visualization 
[3, 4]. 

The rest of the paper is structured as follows. Section two describes in detail the 
framework proposed by the authors and documents the current state-of-the-art re-
search in pre-operative 3D anatomical reconstruction methodologies. Section three 
details the verifications performed on the developed algorithms and the overall results 
obtained. 

2   Methods 

The proposed framework to achieve 3D reconstruction is specified below. The 2D X-
ray images are initially processed to extract the edge points that potentially form the 
femur boundary. A non-rigid registration is then performed between the edges identi-
fied in the X-ray image and the projected contour points of the generic model. The 
identified point correspondences will next be interpolated to create a 2D planar transla-
tional field in both the anterior and lateral viewpoints. This translational field will 
identify the deformations required by the 3D anatomical model in the equivalent view-
point. Finally a full 3D translational field will be created through a free-form deforma-
tion based interpolation and the 3D generic anatomical data deformed accordingly. 

2.1   Anatomical Generic Model Initialization 

The anatomical generic surface model utilized for our testing was segmented and 
extracted from CT scan data. Typically femur X-ray images are acquired in only the 
anterior and lateral viewpoints. Thus the pose (position/orientation) of the bone when 
imaged is standard on many femur X-ray images. The manual pose initialization will 
only be required if a different angle of acquisition is employed during the X-ray imag-
ing. This initialization involves a six degree of freedom movement of the 3D model, 
with three translational and three rotational parameters.  

Moreover, the generic model required certain automated pre-processing to identify 
the surface edge points that would be clearly identifiable on radiographic images. The 
outer contours in the anterior and lateral directions were identified through projection 
ray-tracing. As an example, the femoral generic model is shown in Figure 1(a) along 
with the outer contours. Accurate identification of as many of these edges as possible 
on radiographic images is vital as the customization process is driven by them, as 
discussed in the proceeding edge extraction section (Figure 1(b)). 
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                            (a)                                                                                 (b) 

Fig. 1. Example of the clearly identifiable edges on femur radiographic images. From left to 
right: (a) The femoral generic model with the associated anterior and lateral projected contours; 
(b) Edge extraction based on an interactive LiveWire segmentation technique (detailed in  
section 2.2). 

2.2   Edge Extraction  

The main objective of the proposed edge extraction technique is to identify objects 
boundaries with sufficient continuity to be successfully employed in the proceeding 
shape based point correspondence estimation. Radiographic image edge extraction is 
hindered by poor contrast, ill defined boundaries, noise, and acquisition artifacts. 
Thus an interactive segmentation technique was utilized to achieve robust and accu-
rate segmentation. The LiveWire technique proposed in this paper is based on [5] 
with modifications to suit grayscale X-ray image. The interactive segmentation re-
quires the user to initially specify a seed point on the object boundary utilizing an 
input device (mouse). The input device must subsequently be moved to advance the 
cursor to a point further along the object boundary. A globally optimum path from the 
initial seed point to the current point is computed and displayed in real time. The 
optimal path is determined by assigning cost functions to boundary elements (edge 
strength/edge orientation), and then finding the minimum cost path. As the user 
moves the cursor slightly, different paths are computed and displayed. If the cursor 
moves close to the boundary, the LiveWire snaps to the edge. If the user is satisfied 
with the computed boundary segment, the cursor point can be set. This point becomes 
the new seed point and the recursive process continues. 

The minimum cost path should correspond to an image object boundary that ex-
hibit strong edge features. Thus, the local cost matrix is created from two edge fea-
tures: gradient magnitude and gradient direction. The overall local cost matrix is 
computed as a weighted sum of these components. C(m,n) represents the local cost of 
the link from pixel m to a neighboring pixel n, where fG and fD are the gradient magni-
tude and gradient direction cost functions respectively and wG and wD are the corre-
sponding scalar weights. 
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DDGG fwfwnmC +=),(  (1) 

Gradient magnitude provides a direct correlation between edge strength and local 
cost. If F is the grayscale X-ray image, then the gradient magnitude G is approxi-
mated with, 
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The gradient is next scaled and inverted to ensure high gradients produce low costs 
to facilitate minimal cost path optimization. 
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1

G

G
fG −=  (3) 

Gradient direction adds a smoothness constraint to the boundary by associating a 
high cost for sharp changes in boundary direction. The gradient direction is the unit 
vector defined by the partials of an image I in x and y (Ix and Iy). The gradient direc-
tion feature cost can be defines as fd, where D(m) is the unit vector perpendicular 
(rotated 90 degrees clockwise) to the gradient direction at point m, and n-m is the 
bidirectional link or edge vector between neighboring pixels m and n pointing towards 
n. Links are either horizontal, vertical, or diagonal (8-connectivity). 
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π

 (4) 

Where, 

( ) ( )( )m,-ImI D(m) xy= , ( ) ( )( )n,-InI D(n) xy=  and 

( ) ( )( )mnmDsignc −⋅=  
(5) 

The link direction forces high cost to an edge between two pixels that have similar 
gradient directions but are near perpendicular to the link between them. Thus the 
direction feature cost is low when the gradient directions of the two pixels are similar 
to each other and the link between them. 

Finally, 2D graph searching is employed for an optimal minimal cost path selec-
tion. This paper utilizes the optimal graph search presented by [6]. Dijkstra's algo-
rithm is a graph search algorithm that solves the shortest path (path with the lowest 
cost) problem for a graph with nonnegative edge path costs. The sequence of images 
in Figure 1(b) shows the interactive LiveWire segmentation technique applied to an 
anterior femur X-ray image. 

2.3   Shape Customization – Deformation 

A non-rigid registration between the 2D projective contours of the 3D generic model 
and the extracted edges of the patient-specific X-ray images is performed to custom-
ize the shape of the generic bone to that of the patient. The registration is performed 
through a point correspondence estimation between the two point sets.  
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The similarity measure proposed in this paper to provide a measure of “corre-
spondence” between two pairs of points or features in different images is based on 
shape histograms. The shape descriptor (Shape Context) describes the distribution of 
a series of points with respect to a given point on a shape [7]. The shape context 
based cost function (Cshape) to match a point Pm on the model contour to a point Pt on 
the target contour can be expressed as (6), where hm(n) and ht(n) denote the N-bin 
histogram (normalized) at Pm and Pt. Due to the chi-squared test used as the match-
ing cost between the two shapes the Cshape similarity measure is intrinsically bounded 
in [0,1]. The primary benefit of utilizing this measure is that it is invariant to transla-
tion, rotation, scale, and shape deformation of the two shapes under consideration. 
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The total cost of matching the point sets can be minimized through a Bi-partite 
graph searching methodology. The minimization of the total cost matrix Ctotal between 
point sets, Pm and Pt, is subject to the constraint that the matching is one-to-one. This 
square assignment problem is solved through the Hungarian algorithm with a time 
complexity of O(N3) (Figure 2(a)) [8]. 

The correspondences identified through the Hungarian algorithm are subsequently 
processed and filtered to remove any outliers (misidentified correspondences). The 
filtering is performed on a moving window of the identified translational values (of 
the correspondences) and by ensuring that they are within ±3 standard deviations 
from the local mean. 

 Subsequent to the planar interpolation, a 3D translational field to deform the ge-
neric model is created. The full 3D deformation is based on a cubic B-spline free-
form deformation (FFD) model. FFD, introduced by [9], deforms an object by ma-
nipulating a regularly subdivided 3D parallelepiped lattice containing the object. By 
manipulating a mesh of control points a deformation function that specifies a new 
position for each point on the object is calculated. In this way the deformations of the 
FFD lattice are passed onto the object. 

The result of FFD can be obtained from the 3D tensor product cubic B-splines, 
along each of the three directions, U, V and W, as below, 
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(7) 

Where, 0 ≤ u,v,w ≤ 1 and Bi(u), Bj(v) and Bk(w) are defined as the uniform cubic B-
spline basis functions evaluated at u, v and w, respectively. The main objective of the 
FFD based deformation technique is to utilize the scattered object point translations 
and to configure the control grid points such that the deformed location of the selected 
point matches the target point location (Figure 2(b)). This is achieved in a least 
squares sense, based on the manipulation algorithm proposed by [10], with additions 
to enable multiple point movements.  
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                                      (a)                                                                                             (b)                         

Fig. 2. Non-rigid registration performed on the edge contours and the 3D translational field. 
From left to right: (a) Non-rigid registration on the sub-sampled edge contour data points for 
the anterior/lateral views (top) and the associated translational field displayed on the generic 
model (bottom); (b) FFD based interpolation of the transformation field (bottom) to deform the 
generic model (top). 

3   Results 

To validate the reconstruction framework, three cases of bone deformity were tested, 
femoral shaft deformity (Bowing), femoral head deformity (Shepherd’s Crook), femo-
ral condyles deformity (Erlenmeyer Flask). Two CT scans of each type of deformity 
and the associated X-ray images in the anterior and lateral view points were utilized 
in the tests. The X-ray images were used for the reconstruction and the corresponding 
CT scan data for accuracy assessment. Table 1 shows the quantitative results obtained 
from the six tests performed. Figure 3 shows several examples of the testing per-
formed. The key accuracy measurement used during the testing is the Euclidean dis-
tance between the closest points of the reconstructed data and the ground truth CT 
scan data set. A discussion of the results is presented below. 

Table 1. Osteotomy surgical planning 3D model reconstruction results 

Deformity 
Type 

Maximum Absolute 
Error (mm) 

Average Absolute 
Error (mm) 

Standard Devia-
tion (mm) 

Femoral Shaft 1.31 0.92 0.093 
Femoral Shaft 1.69 1.12 0.089 
Femoral Head 1.86 0.99 0.093 
Femoral Head 2.36 1.14 0.094 

Femoral Condyles 2.05 1.05 0.089 
Femoral Condyles 2.56 1.21 0.091 
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                              (a)                                                         (b)                                                          (c)                         

Fig. 3. Several examples of the reconstruction framework being applied. From left to right:  
(a) Femoral head deformity; (b) Femoral condyles deformity; (c) Femoral shaft deformity. 

The results in Table 1 are within the accuracy requirements set by the authors and 
several other customization studies [11, 12]. During the testing the maximum errors 
were clustered around the femoral condyles and head (greater and lesser trochanters). 
This was due to the anatomical variability in these areas. 

Apart from the aforementioned areas, errors seen elsewhere are attributed to sev-
eral sources. 

 

1) The utilization of orthogonal 2D radiographic images for 3D model reconstruc-
tion is ill-posed mathematically. Making use of a-priori generic models provide cross-
sectional shape constraints. However there are still certain patient-specific cross-
sectional variations that cannot be integrated with the use of generic models. These 
variations cause a majority of the reconstruction errors.  

2) Bone segmentation and the defining of bone contours is also a difficult task 
leading to reconstruction errors. Bone diameters are typically underestimated as femur 
X-ray edges are blunt due to bone roundness. Femoral diameter (cortical boundary) 
estimation errors are typically between 0.4 to 1.0 mm [13]. These erroneous contours 
that are extracted cause inaccuracies when used for shape customization.  

4   Conclusions 

This paper introduces a bi-planar reconstruction framework which can be used for 3D 
osteotomy surgical planning. The authors have validated the proposed reconstruction 
framework, through a series of tests conducted with the aid of CT scan data. The 
aforementioned results exhibit the proposed method’s performance in reconstruction 
accuracy and adaptability to several deformation types. 
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Abstract. A novel approach based on the shape space concept is pro-

posed to classify quasi-conformal deformations of 3D models. A new met-

ric on the quotient space of meshes is introduced to capture changes of

the curvature at each vertex of a simplicial complex during deformation.

Then, the deformation curve is obtained by calculating the geodesic curve

connecting two shapes in the shape space manifold. In order to compare

the deformations, the deformation curves are first transferred to the same

part of shape space. And then, the Multi-Dimensional Scaling method is

employed to eliminate the redundant dimensions facilitating easy com-

parison of the deformations. To evaluate our method, some synthetic

datasets and 23 datasets of gated images of the left heart ventricle dur-

ing one heartbeat have been examined. Our experiments show that the

algorithm can effectively classify normal and abnormal left heart ventri-

cle deformations in shape space.

Keywords: Deformation classification, Shape space, Riemannian met-

ric, Quasi-conformal deformation.

1 Introduction

Appropriate deformable shape analysis techniques are of utmost importance for
time-varying shape comparison and classification. From a geometric point of
view, in order to support efficient shape characterization, a higher level of shape
abstraction and information reduction is necessary. The traditional geometry-
based approaches towards the shape classification are mainly based on the tech-
niques in which global or local geometrical features are extracted from shapes,
and then, a metric is constructed based on bending energy or difference in cur-
vature. Finally, shapes are classified by minimizing the energy functional.

The modern geometry introduces shape space, where coordinates of points in
this space represent some generalized properties related to various geometrical
properties. In the other words, a shape space is established such that each surface
group relates to the same point in shape space, where each deformation sequence
is shown by a curve. The length of the curve joining two points determines the
similarity between two shapes according to the property which the shape space
preserves. The desired characteristics to which shape space is invariant can be
induced by choosing an appropriate geometric structure.
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Invariant to the conformal transformations, a conformal structure can be com-
puted based on the period matrix for manifolds with arbitrary topologies [1]. To
induce conformal mappings in 2D and quasi-conformal mappings in 3D, the
Green Coordinates [2] are used in the cage-based space deformation estimation.
Continuous Ricci flow [3] conformally deforms a Riemannian metric on a smooth
surface such that the Gaussian curvature evolves like a heat diffusion process.
Eventually, the Gaussian curvature becomes constant and the limiting Rieman-
nian metric is conformal to the original one. In discrete case, the discrete Ricci
flow [5] conformably deforms the circle packing metrics [4] with respect to the
Gaussian curvatures. In [6], the geodesic lengths of homotopy classes, measured
by Hyperbolic Uniformization metric, are used to determine coordinates of each
conformal class in the Teichmüller shape space to classify shapes with negative
Euler number. The curvature at each point of a manifold changes according to
the deformation characteristics during the deformation.

In contrast, our work is based on the geometric structure presented in [7],
which computes all smooth groups of diffeomorphisms mapping two objects to-
gether. A quasi-conformal metric based on changes of the curvature at each
vertex and an algorithm to classify deformations based on the quasi-conformal
metric are proposed.

2 Deformation Analysis in Shape Space

Shape Space: Let G be the space of all immersions with the same connectivity.
The deformation of the immersion M constitutes a curve in this space. Therefore,
the tangent vector of X , which belongs to the tangent plane of G at point M,
assigns a vector Xp to each point p on M. Given a smooth deformation of all
points on M, the vector field X(t) is ∂p(t)/∂t for all points p. Depending on
the deformation characteristics in which we are interested, various shape spaces
having different intrinsic geometries may be defined. Our algorithm to classify
deformations is as follows,

1. Mesh registration to find corresponding points on different meshes.
2. Determination of deformation paths in shape space.
3. Transfer of deformation paths in shape space, and dimension reduction.
4. Construction of the 3D spatiotemporal space.

2.1 Quasi-Conformal Deformation Estimation

In the Riemannian geometry, a metric is defined as the inner product of two vector
fields. Suppose two different deformation fields as X and Y , the distance between
them are measured by 〈〈X,Y 〉〉 in shape space. Some geometric structures have
been established to provide the Isometric and Rigid metrics based on the Rieman-
nian metric definition [7]. Here, we propose a quasi-conformal metric within this
structure. Let Σ be a simplicial complex, and a mapping f : Σ → 3 embed Σ to
the Euclidean space, then M = (Σ, f) is a triangular mesh. Also, let {Xp, Xq, Xr}
be corresponding deformations of three vertices of the face Δpqr on M.
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2.2 Quasi-Conformal Metric

Let Δpqr and Δṕq́ŕ be two triangles such that ṕ(t) = p(t + Δt) = p(t) + Xp(t),
q́(t) = q(t + Δt) = q(t) + Xq(t) and ŕ(t) = r(t + Δt) = r(t) + Xr(t). In the
Euclidean geometry, if the edge lengths of a triangle are multiplied by the same
coefficient, the resulting triangle has the same angles as the original one; therefore,

‖ṕ− q́‖2

‖p− q‖2 =
‖ṕ− ŕ‖2

‖p− r‖2 . (1)

Eq.1 yields the following relation,

‖ṕ(t) − q́(t)‖2 − ‖p(t) − q(t)‖2

‖p(t) − q(t)‖2 =
‖ṕ(t) − ŕ(t)‖2 − ‖p(t) − r(t)‖2

‖p(t) − r(t)‖2 . (2)

The numerator shows the changes of the squared edge length within Δt. If both
sides of the equal sign are divided by Δt, and also Δt → 0; then, the numerator
would be equal to the derivative of the squared edge length. By differentiating
‖p(t) − r(t)‖2, Eq.3 will be derived,

〈p(t) − q(t), Xp(t) −Xq(t)〉
‖p(t) − q(t)‖2 =

〈p(t) − r(t), Xp(t) −Xr(t)〉
‖p(t) − r(t)‖2 , (3)

from which Tp(X) is achieved as follows,

Tp(X) = 〈p − q,Xp −Xq〉 · ‖p − r‖2 − 〈p− r,Xp −Xr〉 · ‖p− q‖2
. (4)

Likewise, Tq(X) and Tr(X) are calculated. To preserve angles of each triangle
Δpqr, a similarity transformation requires that all Tp(X), Tq(X) and Tr(X)
vanish during deformation. Thus a conformal metric is obtained as follows,

TΔpqr(X) = |Tp(X)| + |Tq(X)| + |Tr(X)| , (5)

〈〈X,Y 〉〉CM =
∑

TΔpqr(X) · TΔpqr(Y ) . (6)

Although this metric preserves characteristics of conformal deformations, the
shape space geometry of these conformal deformations cannot be reconciled to
the characteristics of some non-conformal deformations. For instance, while the
heart beats; one part of the heart expands while other portions contract, mean-
ing the heart deformation is not conformal in the strict sense. This necessitates
a quasi-conformal shape space which better preserves these non-conformal de-
formation characteristics. Let ΔKp be the changes of curvature at the vertex p
during deformation, thus Tp(X) is redefined as follows,

Tp(X) = ΔKp·
[
〈p − q,Xp −Xq〉 · ‖p − r‖2 − 〈p− r,Xp −Xr〉 · ‖p− q‖2

]
, (7)

and by substituting the new Tp(X) from Eq.7 in Eq.5 and Eq.6 the final quasi-
conformal metric is achieved. In this quasi-conformal metric, changes in the
curvature at each vertex are considered such that each vertex with lower cur-
vature changes has less effect in the metric. In order to find the geodesic on
the shape space manifold, the energy functional E(M) =

∫
〈〈X,X〉〉M dt of the

curve connecting each pair of meshes is minimized.
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2.3 Deformation Transfer and Dimension Reduction

Two deformations are comparable, if their deformation curves are transferred
to the same part of shape space. A method based on the parallel transport
approach is used for the deformation transfer. Let M and N be two immersions,
and X and Y be their corresponding deformations, respectively. We sample
each deformation path at equidistant points Mi and Ni, thus the line segments
connecting each pair of sequential samples will be Xi = ΔMi and Yi = ΔNi,
respectively. Assume the geodesic line γi connects each pair of meshes Mi and
Ni in the shape space manifold. The idea is to transfer the deformation Xi to
Yi along the geodesic curve γi connecting two corresponding immersions.

First, the vector X0 is transferred along the geodesic line γ0 using the parallel
transport method to get Ý0 and Ń1 = N0 + Ý0; then, the geodesic line γ1,
connecting Ń1 and M1 is achieved and X1 is transferred along it to get Ý1

and Ń2 = Ń1 + Ý1. Likewise, all the segments are transferred so that the final
transferred deformation Ý is achieved [7].

At this point, all deformation paths have been transferred to the same part
in shape space. However, high dimensional shape space prohibits an intuitive
perception of deformation comparison. As a result, redundant dimensions of
shape space should be eliminated such that the projected deformation paths are
as similar as possible to the original deformation paths. To accomplish this, a
distance matrix demonstrating distance of each pair of meshes is built based on
the defined metric. Then, the Multi-Dimensional Scaling (MDS) method is used
to reduce dimensions of shape space and project deformation paths onto a 2D
space, called the 2D spatial space.

2.4 Deformation Classification

Although deformations take place in time, we do not have any consideration
about time in this deformation structure. To address this issue, time axis is added
to the 2D spatial space, as the third dimension. We call this new 3D shape space,
spatiotemporal space. Finally, the Locally Linear Embedding (LLE) method is
used to mapped 3D deformation curves onto a 2D plane such that each point
in this 2D plane corresponds to one deformation curve in the spatiotemporal
space. The more similar two deformations, the closer their corresponding points
are in the 2D plane. By adding time axis as the third dimension to the 2D
spatial space rather than to the original shape space, the time dimension will
have more influence on the final deformation projection process as a naturally
different dimension.

3 Experiments on Synthetic Datasets

In order to evaluate performance of our metric, some objects are deformed in ac-
cordance with different deformation patterns; then, the deformations are trans-
ferred to other objects. The more accurately the non-conformal deformations
are followed by the second object without distortion, the better the metric can



Comparative Analysis of Quasi-Conformal Deformations in Shape Space 493

(a) (b)

Fig. 1. a) The non-conformal deformation of a sphere within three time points from

left to right. b) The ellipsoid follows the deformation of the sphere.

estimate the intrinsic geometry of shape space and preserve the invariant charac-
teristics of the objects during deformation. Fig.1.a demonstrates a non-conformal
deformation on a sphere, which is followed by an ellipsoid (Fig.1.b).

Although the shape deforms non-conformally, the ellipsoid can accurately fol-
low the deformation, and the quasi-conformal metric can circumvent the local
minima during optimization of the energy functional by learning the geometry
of shape space. We applied the deformation transfer method based on our metric
on 60 deformations, all of which were successfully followed by different objects.

In the next step, some different deformations are applied on a torus and clas-
sified by the classification algorithm. Since we classify the synthetic datasets,
the corresponding points on different meshes are known. Therefore, the mesh
registration step can be ignored. Fig.2 illustrates classification of different de-
formations of a torus, in which only the representative deformations are shown
next to solid dots, and the deformations corresponding to the soft dots are not
depicted due to the lack of space. The similar deformations will be close together
in the 2D plane.

Fig. 2. The classification of different deformations applied on a torus such that each

dot corresponds to one deforamtion (Two axes are first and second coordinates of LLE)



494 V. Taimouri, H. He, and J. Hua

Due to the acquisition procedures, datasets might contain some noise, thus
one aspect of classification is about how accurately a classifier can classify noisy
datasets. To evaluate this aspect, the points corresponding to different deforma-
tions in the 2D plane are classified into some classes by the k -means clustering
algorithm. Let K be the set of all points corresponding to all deformations and
ki be the set of points classified in the group ith by the k -means method. In
addition, let ki belong to the set ki, and li be its assigned label. Eq.8 calculates
the statistic τ quantifying the performance of the algorithm as follows,

τ =
∑

i |{ki ∈ ki | li = i}|
|K| . (8)

Table.1 shows the algorithm performance against additive noises with different
distributions, which were added to the synthetic genus zero or one meshes with
zero, one or two boundaries. As can be seen, the percentage of misclassified
deformations is acceptable up to 10% of additive noise, meaning the pattern of
deformations of topologically different meshes can be detected well. Note that,
the algorithm shows better performance against the uniform noise compared
with the noise with either Gaussian or Poisson distribution.

Table 1. Performance of the algorithm against noisy datasets with different percent-

ages of additive noise variance

Noise Variance Uniform Noise Gaussian Noise Poisson Noise

1% 99.6% 99.4% 99.2%

2.5% 99.3% 97.3% 97.2%

5% 96.0% 94.4% 95.1%

10% 90.1% 88.8% 89.0%

4 Application on Heart Motion Analysis

The proposed algorithm was applied on gated images of the left heart ventricle
during one heartbeat. A total of 23 datasets with resolution of 128×128×47mm3

were acquired from some normal and abnormal subjects. In a preprocessing step,
all the datasets are normalized within a bounding box. Subsequently, the inter-
subject and intra-subject registrations are preformed to find the corresponding
points among different meshes. To accomplish this, a total of 16 landmarks are
chosen on meshes manually (Fig.3), and then the constrained thin plate spline
method is used to perform the registration [8,9].

Although the noise distribution of the gated images is approximately Poisson,
it might be estimated as Gaussian as well, depending on the number of channels
used during the image acquisition. Either of the cases, the proposed method
resists against the additive noises well. As can be seen in Fig.3.a, the area con-
necting the left ventricle to the right one is cut to make a boundary, which is used
to set the landmarks. Then, 23 normal and abnormal registered datasets, 9 out
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Fig. 3. The landmarks are chosen, a) on the boundary, b) inside the ventricle

Fig. 4. The classification of normal (circles) and abnormal (crosses) subjects, in which

the two axes are the first two coordinates of LLE

Fig. 5. Two normal subjects (squares and dimonds) and one abnormal subject (circles)
in the 3D spatiotemporal space

of which are normal, are classified by the algorithm. Shown by circles in Fig.4,
the normal datasets are almost located in the same part of the 2D plane. Fig.5
demonstrates the normal and abnormal deformations in the 3D spatiotemporal
space, in which the normal deformations follow the similar pattern, which makes
their corresponding points in the 2D plane close to each other. In fact, adding
the extra temporal dimension is essential, as it takes into account the speed of
the deformation which is of utmost importance in heart diagnosis.
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5 Conclusion

In this paper, we have presented an algorithm to effectively classify and compare
deformations based on a novel quasi-conformal metric in shape space. To make
deformation paths intuitively comparable in shape space, the deformations are
transferred and projected into a 2D plane, where each point corresponds to one
deformation. The method has been successfully applied to heart data analysis
on differentiating normal and abnormal heart motion.
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Abstract. Colonography is an important screening tool for colorectal

lesions. This paper presents a method for establishing spatial correspon-

dence between prone and supine inner colon surfaces reconstructed from

CT colonography. The method is able to account for the large deforma-

tions and torsions of the colon occurring through movement between the

two positions. Therefore, we parameterised the two surfaces in order to

provide a 2D indexing system over the full length of the colon using the

Ricci flow method. This provides the input to a non-rigid B-spline regis-

tration in 2D space which establishes a correspondence for each surface

point of the colon in prone and supine position. The method was vali-

dated on twelve clinical cases and demonstrated promising registration

results over the majority of the colon surface.

1 Introduction

Colorectal cancer is one of the main types of cancer, leading to more than 630,000
deaths worldwide each year [1]. Traditional colonoscopy using a video endoscope
can produce miss rates of up to 27 % for adenomas smaller or equal to 5 mm [2].
Furthermore, it can cause significant discomfort and is not without risk of per-
forating the colon. These drawbacks have led to the development of alternative
screening methods such as computed tomography colonography, which is becom-
ing established as a standard screening tool for the detection and diagnosis of
colorectal lesions in the USA, Europe and Japan. The bowel is cleansed before
the procedure by administering a powerful laxative and inflated. CT images are
taken in both prone and supine positions, resulting in a large deformation of the
colon. Remaining faecal material and fluids can be tagged with contrast agent
and removed digitally. However, faecal remnants or folds of the colonic wall can
still mimic the appearances of polyps, leading to false positives in the diagnosis.
Routinely, the radiologist establishes the spatial correspondence between the two
views by eye which is a difficult task for even the most experienced radiologist
and can thus introduce delays and errors. An automatic method of establish-
ing correspondence between the colon surfaces visualised in prone and supine
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CT images would have the potential to save time and improve accuracy during
the diagnostic process. Furthermore, it could improve computer aided detection
(CAD) algorithms.

Registration of prone and supine CT images of the colon has been attempted
by aligning extracted centrelines of both views [3] as an index of location. How-
ever, this method essentially provides only one degree of freedom of location
within the colonic surface and does not account for torsion. Another approach
is to define several anatomical landmarks [4], like anus, cecum and flexures, in
order to align both colons. However, flexures are difficult to locate accurately
and the identification of only a small number of points is insufficient to describe
the complex folding and deformation of the colon between prone and supine po-
sitions. A voxel-based method was proposed by Suh et al. [5], which also uses
the centrelines to generate an initial deformation field and then treats the regis-
tration task as an optical flow process. However, it is clear from our own studies
that the changes in shape and location of anatomy between prone and supine
CT colonography mean that conventional image intensity-based non-rigid reg-
istration algorithms are not sufficiently robust or accurate. Lamy et al. [6] use
the teniae coli as an additional feature producing a deformation field with a
rotational component. However, teniae coli are difficult to extract over the full
length of the colon and cannot describe the deformation of the whole colonic
surface.

We propose a new method based on a 2D manifold representing the internal
colon lumen surface which is able to account for the large deformations and
torsion of the colon in both positions. The colon is a tube and the internal surface
can be mapped onto a cylinder with two indices describing any surface location.
Each location corresponds to a 3D point in the CT scan and can act as an index
to a rich set of both surface and volume features. Our method uses these features
from the 3D data to drive the registration, but finds a transformation between
the 2D manifolds representing the colon surface in the prone and supine scans.
Hence, this greatly eases the registration in comparison to full 3D registrations.

To the best of our knowledge nobody else has proposed performing non-rigid
registration on the 2D manifold in order to establish a full correspondence be-
tween all points on the 3D colonic surface.

2 Methods

A number of groups have proposed methods for unfolding the colon in order to
produce 2D images of the inside of the colon. These images are usually produced
in order to enable better examination of the colon surface and to aid detection of
polyps [7]. Conformal mappings can provide a one-to-one mapping between the
3D surface and the 2D image while minimising the necessary deformation [8,9]. A
Surface S1 in R3 can be represented using a one-to-one mapping φ1 to D1 in R2.
S2 is mapped to D2 through φ2 respectively. Hence, the transformation function
f between the three-dimensional surfaces S1 and S2 can be derived as shown
in Fig. 1, where the principle is illustrated. f̃ is the registration f̃ :D1 → D2

between the two flat surfaces.
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Fig. 1. The principle of surface registration using a 2D manifold, where the colour scale

indicates the shape index (see section 2.3) at each coordinate of the surface computed

from the 3D inner colonic surfaces Si

2.1 Colon Unfolding with Discrete Ricci Flow

One recently developed technique for discrete surface parameterisation is based
on Ricci. This method deforms a surface proportionally to its local curvature,
where the curvature values evolve similarly to a heat diffusion process. It was
first introduced by Hamilton [10] for Riemannian geometry. Qiu et al. [9] were
the first to use this method to unfold the colon. The Ricci flow is defined as
dui(t)

dt = K̄i − Ki, where Ki is the Gaussian curvature at vertex vi, K̄i is the
desired Gaussian curvature and ui is computed from a circle packing metric [8].
It can be shown that the Ricci flow is essentially the gradient flow of an energy
function [11] which can be minimized using the gradient descent method. For
the purpose of parameterisation of the colon surface, the target curvature should
be zero for all vertices.

2.2 Extraction of the Inner Colonic Surface

We extracted triangulated meshes of the inner colonic surfaces Si using the seg-
mentations of the air inside the prone and supine colons computed by the method
described in [12]. We ensured that the segmentations of the large intestine were
topologically correct. In order to achieve that, some of the segmentations were
manually edited. The segmentation is the input for a marching cubes algorithm
with subsequent smoothing and decimation. This results in a closed and simply
connected mesh along the air-to-tissue border in the CT-image.

To apply the Ricci flow method to the colon, each original genus-zero surface
Si has to be converted to a genus-one surface SDi [8]. Therefore, the inner
colonic surface Si (which is topologically equal to a sphere) has to be converted
to a torus-like surface. Hence, we remove faces of the surface mesh from cecum
and rectum at user-identified positions. The remaining faces are duplicated with
inverse orientation and joined at the boundaries of the previously produced holes.
The resulting mesh SDi provides the input for the Ricci flow computation which
provides the two-dimensional coordinates of each location within the surface.
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Fig. 2. Sampling the unfolded mesh (where the green and purple bands represent the

repeat of the 2D coordinates of the surface) for a further 360 degrees clockwise and

anticlockwise. The horizontal lines represent the re-sampled complete colon surface in

a form suitable for registration

2.3 Generating the 2D Coordinates of the Surface

The Ricci flow algorithm converges to a planar surface with free border and
local Gaussian curvature tending to zero everywhere by iteratively updating the
edge lengths of the triangles. The optimisation carries on until the maximum
difference between all Ki and K̄i is close enough to zero in order to produce a
suitable parameterisation Di which can be embedded into planar R2 space. This
is computed in a similar manner to [8] where each planar triangle is computed
based on its final edge length. As Di is not rectangular, we repeat the planar
mesh so that a rectangular raster-image Ii fully samples all points around the
colon (as illustrated in Fig. 2). The top (0◦) and bottom (360◦) edges of the
image correspond to the same point on the colon surface, thus representing the
inner colonic surface as a cylinder. The horizontal axis (x) corresponds to posi-
tion along the colon from cecum to rectum and the vertical axis (y) corresponds
to rotation around the circumference of the colon. Each pixel of Ii has an inter-
polated value of the corresponding shape index SI from the three-dimensional
surface Si. SI is defined as

SI ≡ 1
2

− 1
π

arctan
(
κ1 + κ2

κ1 − κ2

)
, (1)

where κ1 and κ2 are the principal curvatures extracted from Si. Furthermore,
any other measure of local curvature or other voxel grey value statistics derived
from the original CT scan could be associated with a pixel in Ii. The interpolated
value is always computed based on the three corner values of each triangle in
Di which correspond to the 3D vertices of Si. The resulting supine and prone
raster-images with a resolution of nx = 3000 and ny = 150 are shown in Fig. 3
(top) and Fig. 3 (middle).

2.4 Establishing Spatial Correspondence between Prone and Supine

The 2D manifolds are used to generate shape index images which are first aligned
in the y-direction to account for differences in the 0◦ position arbitrarily assigned
by the planar embedding. This is performed automatically by applying a circular
shift in y-direction to I1 that minimises the Sum of Squared Differences (SSD)
between I1 and I2. The B-spline registration is currently performed on the flat
Euclidean plane and not in a cylindrical framework. Therefore I1 and I2 are
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Fig. 3. Supine (top), prone (middle) and deformed supine (bottom) repeated raster-

images where each pixel has the value of the corresponding shape index from the inner

colonic surface

repeated in the y-direction, resulting in images with a resolution of Nx ×Ny =
nx × 2 · ny, in order to simulate the cylindrical images during the registration.

A 2D B-spline registration is then performed with the shifted I1 as target and
I2 as source. We use the fast implementation provided by [13]. The registration
is performed in two stages, the first to recover the larger deformations, and the
second to recover the finer deformations. The first stage consists of five resolution
levels. The second stage consists of three resolution levels and uses the result from
the first stage as the starting transformation for the coarsest level. Both the
image and B-spline control point grid resolutions are doubled at each level. The
final resolution level uses images with 3000 x 300 (nx × 2 ·ny) pixels and control
points spaced every 12.5 pixels in both directions. SSD is used as the similarity
measure. The gradient of the cost function is smoothed at each iteration using
a Gaussian kernel with a standard deviation of three control points for the first
stage and one control point for the second. No additional penalty term is used for
the first stage but bending energy is used for the second. Gaussian smoothing
of the 2D images is applied at each resolution level during the first stage of
registration but is not used for the second.

The central half of the B-spline registration result, from 25% to 75% of the
y-axis, covers the whole inner colon surface (0◦ to 360◦) and should have a sim-
ilar displacement at y = 0.25·Ny and y = 0.75·Ny thanks to the duplication
of image data in the y-direction prior to registration. To force the result to be
fully cylindrical, such that the transformation is continuous from y = 0.25·Ny to
y = 0.75·Ny, the control points displacements at y = 0.25·Ny and y = 0.75·Ny

are averaged together, and the control point displacements before y = 0.25·Ny

and after y = 0.75·Ny are replaced with the corresponding control point dis-
placements from the central section. This results in a continuous transformation
around the entire inner colon surface and allows the mapping between S1 and
S2. From this mapping it is straightforward to determine the full 3D mapping
f , as shown in Fig. 1.

3 Clinical Evaluation

Ethical permission and informed consent to utilise anonymised CT colonography
datasets was obtained. Colonic cleansing and insufflations were undertaken for all
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twelve subjects used in this study in accordance with current recommendations
[14]. We selected patients where the colon was fully distended in the prone and
supine scan with either fluid tagging or little remaining fluid in order to provide
complete segmentations. The radiologist (with experience in over 500 validated
colonography studies)matchedpairsof referencepoints fromtheoriginalprone and
supine CT slices. Using separate multiplanar reformats, a combination of polyps,
normal anatomical structures and diverticula were identified from multiple colonic
segments, resulting in approximately ten pairs of coordinates per patient.

3.1 Human Observer Error Estimation

The error of establishing the correspondence points in both images was deter-
mined by repeating the validation following an interval of seven days for patients
1 to 6 (in order to reduce recall bias). The repeated validation was performed
using the original coordinates from the supine datasets, and the radiologist was
asked to re-identify the corresponding points in the prone dataset. The results
suggest a significant difficulty in finding correct correspondences in the prone and
supine CT-images, which provides further justification for a method of establish-
ing prone-supine correspondence. We removed outliers based on the maximum
likelihood estimate [15, p. 202] using the median σ = 1.4828(1+5/(n−3))med|E|,
where the inliers are defined by Ei ≤ γ and γ = 1.96σ. This gives a threshold
γ of 14.6 mm in order to get reliable landmarks to validate the registration and
reduces the human observer error from (8.2±12.5) mm to (3.8±2.9) mm. The
remaining prone landmarks are averaged and used to validate the registration
for the first six patients.

3.2 Registration Error

In order to determine the registration error we find the closest surface points on
S1 to the landmarks in the prone image. We then find the closest points on S2

to the corresponding landmarks in the supine image, transform them using the
3D mapping f , and calculate the distance to the points on S1.

In order to access the accuracy of the method, we had to remove 11 refer-
ence points which were outliers (determined for the first six patients) and 3
points which clearly failed to align correctly. Just using the direct mapping be-
tween D1 and D2 after initial alignment in the y-direction resulted in an error
for the remaining 120 data points of (23±15) mm. After establishing the spa-
tial correspondence using the B-spline registration, the error was reduced to
(9.0±11) mm. The histogram of the registration error shows that the majority
(91 %) lie below 20 mm. Successful registration could be achieved for 8 out of 12
polyps (distributed over 8 patients) with an accuracy of (4.7±4.1) mm. These
are promising results and have potential clinical impact to the screening process.

Four patients have clearly higher errors which correspond to the data points
larger than 20 mm in Fig. 4. It appears that some of these errors may be due
to some of the corresponding landmarks being assigned wrongly, e.g.to a neigh-
boring fold. The excluded reference points were one haustral fold and the two
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Fig. 4. Histogram of the registration error in mm

unsuccessfully registered polyps which lay in the rectum or cecum and had a
large error due to the deformations in the parameterisation in that region.

4 Summary and Future Work

We propose a novel registration method for establishing spatial correspondence
for the inner colon surface extracted from prone and supine CT colon images.
Our registration process works by using an appropriate indexing system which
reduces the registration task from a 3D- to a 2D-problem. This is done with
a one-to-one conformal mapping of the entire inner colon surfaces to a param-
eterisation where one dimension corresponds to distance along the colon and
the other to its angular orientation. From that parameterisation we compute
images which correspond to 3D positions and their shape indices computed on
3D surfaces. This allows a non-rigid registration of the prone and supine colon
surfaces which can handle the large deformations occurring between both posi-
tions. Furthermore, the provided framework could easily be extended to include
any statistic or set of statistics derived from the original CT-images.

Future work will include phantom studies and other synthetic data for a more
reliable gold standard to be used in the validation of the method. The 2D B-spline
registration will be implemented in a truly cylindrical way such that repeating
the images will not be necessary. We will experiment with additional statistics
derived from the original CT volumes with the aim of increasing the accuracy of
the method. Furthermore, we will investigate automated topological correction
of the colon segmentation. This is in order to increase robustness and deal with
insufficiently distended colons where the colon surface could be collapsed.

It is clear that a major limitation of this study is the lack of a sufficiently
accurate gold standard. The reported accuracy of our results is almost certainly
limited by observer error in picking corresponding landmarks in prone and supine
CT. To address this we are building a physical phantom from porcine bowel with
embedded CT visible markers to provide an accurate gold standard.
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Abstract. We present a novel surface smoothing framework using the

Laplace-Beltrami eigenfunctions. The Green’s function of an isotropic

diffusion equation on a manifold is constructed as a linear combination

of the Laplace-Beltraimi operator. The Green’s function is then used in

constructing heat kernel smoothing. Unlike many previous approaches,

diffusion is analytically represented as a series expansion avoiding numer-

ical instability and inaccuracy issues. This proposed framework is illus-

trated with mandible surfaces, and is compared to a widely used iterative

kernel smoothing technique in computational anatomy. The MATLAB

source code is freely available at http://brainimaging.waisman.wisc.

edu/~chung/lb.

1 Introduction

In medical image processing and analysis, anatomical manifolds are commonly
represented as triangular meshes. Procedures such as image segmentation, mesh
construction and geometric computations on the meshes introduce geometric
noise to the mesh coordinates. Therefore, it is imperative to reduce the mesh
noise while preserving the geometric details of the object for various applications.

Many approaches have been proposed for smoothing surface data and coordi-
nates. Probably the most widely used method is to numerically solve diffusion
equations on anatomical surfaces [1,8]. However, these approaches use discretiza-
tion schemes which tend to suffer numerical instability and inaccuracy. Iterated
kernel smoothing is also a widely used method in computational anatomy [3,6]
and computer vision [13]. Kernel weights are spatially adapted to follow the
shape of the heat kernel in a discrete fashion along a manifold. In the tangent
space, the heat kernel is approximated linearly using the Gaussian kernel. How-
ever, this process compounds the linearization error at each iteration.

In this paper, we propose to construct the heat kernel analytically using the
eigenfunctions of the Laplace-Beltrami operator, avoiding the need for the linear
approximation used in [3,6]. Although solving for the eigenfunctions requires
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the finite element method, the proposed method is analytic in a sense that
heat kernel smoothing is formulated as a series expansion explicitly. Thus, the
proposed method avoids the numerical instability associated with solving the
diffusion equations numerically [1,8]. Although there are many papers on solving
diffusion equations on arbitrary triangular meshes [1,8,14], this is the first paper
that explicitly and correctly constructed heat kernel for an arbitrary surface and
solved heat diffusion using the eigenfunctions of the Laplace-Beltrami operator.

2 Heat Kernel Smoothing

Consider a real-valued C2 measure Y defined on a manifold M ⊂ R3. We assume
the following additive model on Y :

Y (p) = θ(p) + ε(p), (1)

where θ(p) is the unknown mean signal and ε(p) is a zero-mean Gaussian ran-
dom field. We may assume further Y ∈ L2(M), the space of square integrable
functions on M with the inner product 〈f, g〉 =

∫
M f(p)g(p)dμ(p), where μ is

the Lebesgue measure such that μ(M) is the volume of M. Solving

Δψj = −λψj , (2)

for the Laplace-Beltrami operator Δ on M, we order eigenvalues 0 = λ0 < λ1 ≤
λ2 ≤ · · · and corresponding eigenfunctions ψ0, ψ1, ψ2, · · · . Then, the eigenfunc-
tions ψj form an orthonormal basis in L2(M) [10].

Using the eigenfunctions, heat kernel Kσ(p, q) is analytically written as

Kσ(p, q) =
∞∑

j=0

e−λjσψj(p)ψj(q), (3)

where σ is the bandwidth of the kernel [3,12]. Then heat kernel smoothing of Y
is given analytically as

Kσ ∗ Y (p) =
∞∑

j=0

e−λjσβjψj(p), (4)

where βj = 〈Y, ψj〉 are Fourier coefficients. This is taken as the estimate for θ.
Since the expansion (4) is a unique solution to isotropic heat diffusion [3,12], we
can avoid the need to solve the diffusion equation using less stable numerical
schemes such as the finite difference method [1,8,14].

In this new analytic framework, we need to compute the terms in (4). We first
solve for the eigensystem (2) and obtain λj and ψj . To estimate βj , we let σ = 0
in (4). Then Kσ becomes the Dirac-delta function and we obtain

Y (p) =
∞∑

j=0

βjψj(p) . (5)

This is the usual Fourier expansion of Y . The finite series expansion of (5) will
be then used in estimating the Fourier coefficients in the least squares fashion.
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3 Numerical Implementation

Generalized Eigenvalue Problem. Since the closed form expression for the
eigenfunctions of the Laplace-Beltrami operator on an arbitrary curved surface
is unknown, the eigenfunctions are numerically calculated by discretizing the
Laplace-Beltrami operator. To solve the eigensystem (2), we need to discretize
it on a triangular mesh using the Cotan formulation [4,11]. In particular, Qiu
et al. [11] presented a similar Cotan discretization and constructed splines on
a manifold using the eigenfunctions; however, there is no direct mathematical
relation between splines and heat kernel smoothing.

Using the Cotan formulation, (2) is simplified as the generalized eigenvalue
problem:

Cψ = λAψ, (6)

where C is the stiffness matrix, A is the mass matrix, and ψ is the unknown
eigenfunction evaluated at mesh vertices. Because C and A are large sparse
matrices, we have solved the problem using the Implicitly Restarted Arnoldi
Method [7,9] without consuming large amount of memory and time for zero
entries. The MATLAB code is given at http://brainimaging.waisman.wisc.
edu/~chung/lb. Fig. 1 shows the first few eigenfunctions for a mandible surface.

Finite Eigenfunction Expansion. Let Hk be the subspace spanned by up to
k-th degree basis. Then an arbitrary measurement Y is estimated in the subspace
Hk by minimizing the sum of squared residual:

arg min
g∈Hk

‖g − Y (p)‖2 =
k∑

j=0

βjψj(p) . (7)

Fig. 1. The eigenfunctions are projected on the surface smoothed by the proposed

heat kernel smoothing with σ = 1 and k = 139. The first eigenfunction is simply

ψ0 = 1/
√

μ(M). The color scale is thresholded at ±0.015 for better visualization.

http://brainimaging.waisman.wisc.edu/~chung/lb
http://brainimaging.waisman.wisc.edu/~chung/lb


508 S. Seo, M.K. Chung, and H.K. Vorperian

Consider the triangular mesh for M with Nv nodes, and let β = (β0, · · · , βk)′

and Y = (Y (p1), · · · , Y (pNv ))′, for k ≤ Nv. Then, we can represent (7) as the
normal equation,

Y = βΨ, (8)

where Ψ = (Ψ0, · · · ,Ψk) and Ψj = (ψj(p1), · · · , ψj(pNv))′, and β are estimated
in the least squares fashion, β̂ = (Ψ′Ψ)−1Ψ′Y. Since the size of matrix Ψ′Ψ
can become fairly large when there is a need to obtain large number of basis, it
may be difficult to directly invert the matrix. So we have adopted a more general
iterative strategy to overcome possible computational bottleneck for large k.

Iterative Residual Fitting Algorithm. The Fourier coefficients are esti-
mated based on an iterative procedure that utilizes the orthonormality of the
eigenfunctions [2]. Decompose the subspace Hk into smaller subspaces as the
direct sum Hk = I0 ⊕ I1 · · · ⊕ Ik, where each subspace Ij is the projection of
Hk along the j-th eigenfunction. Instead of directly solving the normal equation
(8), we project the normal equations into a smaller subspace Ij and find the
corresponding βj in an iterative fashion from increasing the degree from 0 to k.

At degree k = 0, we write Y = Ψ0β0+r0, where r0 is the residual of estimating
Y in subspace I0. Then, we estimate β0 by minimizing the residual in the least
squares fashion:

β̂0 = (Ψ′
0Ψ0)−1Ψ′

0Y (9)

At degree j, we have
rj−1 = Ψjβj + rj , (10)

where the previous residual rj−1 = Y−Ψ0β̂0 · · ·−Ψj−1β̂j−1. The next residual rj

is then estiamted as β̂j = (Ψ′
jΨj)−1Ψ′

jrj−1. The optimal stopping rule is deter-

mined if the decrease of the root mean squared errors (RMSE),
√∑Nv

i=1 r2
k(pi)/Nv,

is statistically significant using the F -test (Fig. 2). We compute the F statistic at
each degree, and find the degree of expansion where corresponding p-value first
becomes bigger than the pre-specified significance 0.01.

4 Experimental Results

We applied the proposed smoothing method to mandible surfaces obtained from
CT and further compared it against iterative kernel smoothing method [3,6].

Image Acquisition and Preprocessing. The CT images were obtained using
several different models of GE multi-slice helical CT scanners. The CT scans were
acquired directly in the axial plane with a 1.25 mm slice thickness, matrix size
of 512 × 512 and 15–30 cm FOV. Image resolution varied and was in the range
of 0.29 to 0.59 mm as determined by the ratio of field of view (FOV) divided
by the matrix. CT scans were converted to DICOM format and subsequently
Analyze 8.1 software package (AnalyzeDirect, Inc., Overland Park, KS) was used
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Fig. 2. The plot of the root mean squared errors (RMSE) for coordinates x (blue), y
(red) and z (green) for a sample mandible surface, varying degree k from 5 to 200. The

optimal degree for the surface is determined as 139.

in segmenting binary mandibular structure based on histogram thresholding. By
checking the Euler characteristic, holes in mandible images were automatically
filled up using morphological operations. This process was necessary to make
the mandible binary volume to be topologically equivalent to a solid sphere and
and produces the surface mesh that is topologically equivalent to a sphere.

Results. We applied the proposed method in smoothing a mandibular surface.
The optimal eigenfunction expansion was determined using the F -test at α =
0.01. Fig. 2 shows the plot of the RMSE for varying degrees between 5 to 200.
As the degree k increases, the RMSE for each coordinate rapidly decreases and
starts to flatten out at a certain degree.

The numerical implementation was done with MATLAB 7.9 in 2 × 2.66 GHz
Quad-Core Intel Xeon processor MAC PRO with 32 GB memory. For a mesh
with 22050 vertices, the entire process took approximately 105 seconds: 85 sec-
onds for setting up the generalized eigenvalue problem (6), 10 seconds for actually
solving (6), 0.1 seconds for the IRF, and 9 seconds for finding the optimal degree.

Comparison. The proposed heat kernel smoothing was compared against
widely used iterated kernel smoothing [3,6] of which the MATLAB code is
given in http://www.stat.wisc.edu/mchung/softwares/hk/hk.html. In iter-
ated kernel smoothing, the weights of the kernel are spatially adapted to follow
the shape of heat kernel in discrete fashion along a surface mesh. Smoothing with
large bandwidth is broken into iterated smoothing with smaller bandwidths:

Kmσ ∗ Y = Kσ ∗ · · · ∗Kσ︸ ︷︷ ︸
m times

∗Y . (11)

For small σ, using the parametrix expansion [12] , we can approximate heat
kernel locally using the Gaussian kernel for small bandwidth:

Kσ(p, q) =
1√
4πσ

exp[−d2(p, q)
4σ

][1 + O(σ2)], (12)

http://www.stat.wisc. edu/∼mchung/softwares/hk/hk.html
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Fig. 3. Top left: original mandible surface. Top right: heat kernel smoothing with

σ = 1 and k = 139. This is taken as the ground truth and iterative kernel smoothing

is compared. Bottom left: iterative kernel smoothing with σ = 1/6 and m = 6 when

the reconstruction error is minimum. Bottom right: iterative kernel smoothing with

σ = 1/6 and m = 30. Right: RMSE for x-coordinate over the number of iterations m.

where d(p, q) is the geodesic distance between p and q. For sufficiently small
bandwidth, all the kernel weights are concentrated near the center, so the first
neighbors of a given vertex in a mesh is used in the approximation.

By taking the proposed heat kernel smoothing as the ground truth, we were
able to determine the performance of iterated kernel smoothing. Due to the lack
of the ground truth, there are no studies in the literature validating the perfor-
mance of iterated kernel smoothing except [5]. For heat kernel smoothing, we
used the bandwidth σ = 1 and eigenfunctions up to k = 139 degree. For iterated
kernel smoothing, we varied the number of iterations 1 ≤ m ≤ 200 with the
correspondingly smaller bandwidth 1/m to have the effective bandwidth of 1.
The performance of the iterated kernel smoothing depended on the number of
iterations, as shown in the plot of RMSE of x-coordinate over the number of it-
erations (Fig. 3 right). The RMSE was up to 0.5430 and it did not decrease even
when we increase the number of iterations. This comparison directly demon-
strates for the first time, the limitation of iterated heat kernel smoothing which
does not converge to heat diffusion.

In another comparison (Fig. 4), we numerically constructed a heat kernel
with a small bandwidth 0.2 as a sample data. Then we performed the additional
iterated kernel smoothing with σ = 0.2 and m = 49 on the sample data to
obtain the effective smoothing bandwidth of 10. The result was compared with
the proposed heat kernel smoothing with the bandwidth 9.8 on the sample data
making the effective bandwidth of 10. From Fig. 4, we immediately see that the
shapes of two kernels are different. This visually demonstrates iterated kernel
smoothing substantially diverges from heat kernel smoothing.
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Fig. 4. Comparison of the shape of kernels. Left: heat kernel with 0.2 used as a sam-

ple data. Middle: The sample data is smoothed with heat kernel smoothing method

with bandwidth σ = 9.8 making the effective bandwidth of 10. Right: iterated kernel

smoothing with bandwidth σ = 0.2 and m = 49 iterations applied to the sample data.

5 Conclusions

We present a novel surface data smoothing framework where a smoothed sur-
face measure is represented as a weighted linear combination of Laplace-Beltrami
eigenfunctions. The expansion analytically solves isotropic heat diffusion. Taking
the expansion as the ground truth, the proposed method is compared against
widely used iterated kernel smoothing. The proposed method outperforms iter-
ated kernel smoothing in accuracy. The divergence of iterated kernel smoothing
is visually represented as kernel shapes on the mandible confirming the superi-
ority of this proposed framework.
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(2006), http://www.grycap.upv.es/slepc

8. Joshi, A.A., Shattuck, D.W., Thompson, P.M., Leahy, R.M.: A parameterization-

based numerical method for isotropic and anisotropic diffusion smoothing on non-

flat surfaces. IEEE Transactions on Image Processing 18(6), 1358–1365 (2009)

9. Lehoucq, R.B., Sorensen, D.C., Yang, C.: ARPACK Users’ Guide: Solution of

Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods.

SIAM Publications, Philadelphia (1998)
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Abstract. This work explores the problem of solving the MR reconstruction 
problem when the number of K-space samples acquired in a non-Cartesian grid 
is considerably less than the resolution (number of pixels) of the image. 
Mathematically this leads to the solution of an under-determined and ill-posed 
inverse problem. The inverse problem can only be solved when certain addi-
tional/prior assumption is made about the solution. In this case, the prior is the 
sparsity of the MR image in the wavelet domain. The non-convex lp-norm ( ) of 
the wavelet coefficient is a suitable metric for sparsity. Such a prior can appear 
in two forms – in the synthesis prior formulation, the wavelet coefficients of the 
image is solved for while in the analysis prior formulation the actual image is 
solved for. Traditionally the synthesis prior formulation is more popular. How-
ever, in this work we will show that the analysis prior formulation on redundant 
wavelet transform provides better MR reconstruction results compared to the 
synthesis prior formulation.  

Keywords: MRI, image reconstruction, non-convex optimization. 

1   Introduction 

In Magnetic Resonance Imaging (MRI) the K-space (Fourier frequency) samples are 
collected. The problem is to reconstruct the image from the K-space samples. The 
reconstruction is trivial (inverse Discrete Fourier Transform) when the K-space is 
densely sampled. But such dense sampling is time consuming. In this work, we inves-
tigate the possibility to reduce MR acquisition times by reducing the number of K-
space samples.  

We are particularly interested in non-Cartesian K-space sampling like the radial, 
spiral or rosetta. For such sampling, the relationship between the image space and the 
K-space is given by [1], 

1 1 1,m m n n ny F x m nη× × × ×= + <  (1) 

where, y is the collected K-space samples, F is the Non Uniform Fast Fourier Transform 
(NUFFT), x is the image and η is the noise, assumed to be Gaussian with mean zero. 

The inverse problem (1) is under-determined, and does not have a unique solution. 
However, if additional information is available regarding the character solution, one 
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may be able to pick up a unique solution satisfying that character. In [2] it is argued 
that the MR image is sparse in Wavelet domain. Therefore, a solution to (1) was seek 
which had a sparse representation in the wavelet domain. It was shown experimen-
tally in [2] that the said assumption is valid and leads to impressive image reconstruc-
tion results from under-sampled K-space. 

Incorporating the wavelet transform into the inverse problem (1) leads to the fol-
lowing equation, 

Ty FW α η= +  (2) 

Where W is the forward wavelet transform (WT is the inverse) and α is the transform 
coefficients (assumed to be sparse for MR images). 

 Assume that the vector α is k-sparse (i.e. k non-zeroes and n-k zeroes). Ideally one 
would solve the following optimization problem in order to search for the sparsest 
solution. 

0 2
min  subject to Ty FWα α σ− ≤  (3) 

where ||.||0 is the number of non-zeroes in the vector and σ is the standard deviation of 
noise. 

Since the wavelet coefficient of the MR image is assumed to be k-sparse (i.e. k 
non-zeroes and n-k zeroes), only 2m k≈ samples are needed for obtaining the solu-
tion of (7) via (8). Unfortunately (8) is an NP hard problem. But theoretical study [3] 
proves that – (i) if a linear system has a sparse solution, the solution is typically 
unique; and (ii) the solution can be obtained by the following convex optimization (4) 
instead of an NP hard problem. 

1 2
min  subject to Ty FWα α σ− ≤  (4) 

This is a very strong result which guarantees recovery of the image by a tractable 
algorithm, but on the other hand, the number of samples required is lar-
ger log( / )m Ck n k≈ . In [2], the MR reconstruction was based on (4). 

Our aim is to reduce the MR acquisition time as much as possible, which in turn is 
proportional to the number of K-space samples. Therefore to reduce MR acquisition 
time, we should be able to reconstruct the images with as few samples as possible. 
Between the two extremes (3) (very few samples but NP hard reconstruction algo-
rithm) and (4) (considerably larger number of samples but easy reconstruction algo-
rithm) there exists reconstruction algorithms based on non-convex optimization. 

2
min  subject to , 0 1T

p
y FW pα α σ− ≤ < <  (5) 

Such non-convex methods require samples that are intermediate between the re-
quirements of (3) and (4), 1 2 log( / )m C k pC k n k≈ + [4]. As the value of ‘p’ is re-

duced, the number of samples required for reconstruction reduces smoothly. 
Algorithms for solving non-convex optimization problems (5) are not more com-

plex than solving convex optimization problems, but are not guaranteed to reach a 
global mimima. However, (5) is not any non-convex problem, rather it is quasi-
convex. Convergence proofs for quasi-convex formulations can be found in [5]. 
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The formulation discussed so far (3-5) is called the synthesis prior formulation. In 
this formulation, the sparse wavelet coefficients of the MR image are solved for. Once 
the wavelet domain representation is obtained, the image is reconstructed via the 
wavelet synthesis equation (x=Wα). The synthesis prior formulation (for the convex 
case, i.e. p = 1) has been previously used [2] for MR image reconstruction. However, 
a recent work [6] has pointed out that an alternate analysis prior (for the convex case, 
p=1) formulation (6) yields better reconstruction results when redundant wavelets are 
used instead of orthogonal wavelets (for the orthogonal case, the two formulations are 
the same). The experiments in [6] were carried out on synthetically generated data. 

2
min  subject to ,0 1

p
Wx y Fx pσ− ≤ < <  (6) 

The analysis prior formulation solves for the image directly rather than the wavelet 
coefficients. In this work, we show that the non-convex analysis prior when employed 
on redundant wavelets yield better MR reconstruction results compared to synthesis 
prior on orthogonal wavelets.  

There are mane algorithms to solve the convex optimization problem with synthe-
sis prior (4). There only a single general purpose algorithm [7, 8] to solve the non-
convex synthesis prior problem (5). This algorithm is called the Iterative Reweighted 
Least Squares (IRLS) algorithm. However, IRLS is a second order method and is 
consequently very slow. To overcome the limitations of speed we propose a new 
algorithm for solving the non-convex synthesis prior problem. 

There are a few algorithms for solving the convex optimization problem for analy-
sis priors, but none for the non-convex version. Therefore, we had to develop a new 
algorithm to solve it. Our proposed algorithms for non-convex optimization on analy-
sis/synthesis priors are based on the Majorization-Minimization approach. 

The rest of the paper is organized into several sections. The next section contains 
informal derivations of the non-convex algorithms proposed in this paper. The ex-
perimental results are presented in Section 3. Finally in Section 4, the conclusions of 
this work are discussed. 

2   Optimization Algorithms 

The constrained problems (5) and (6) are hard to solve. Rather, we proceed to solve 
their unconstrained versions, 

2

2
min

pT

p
y FW α λ α− +  (7) 

2

2
min

p

p
y Fx Wxλ− +  (8) 

The parameter λ in the equations (7) and (8) are related to σ in (5) and (6), but the 
relationship is not analytical. For the time being we concentrate on the solution of 
equations (7) and (8). How to make the solutions of (7) and (8) reach those of (5) and 
(6) iteratively, will be discussed later. 
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2.1   Majorization-Minimization 

The Majorization-Minimization framework is outlined in [9]. The problems (7)  and 
(8) do not have a closed form solution and has to be solved iteratively. In the Majori-
zation-Minimization (MM) approach, at each iteration the function to be minimized is 
replaced by a surrogate function which has a higher functional value at all points 
except at its minima; the value of the surrogate function and the original function are 
the same at the minima. The surrogate function is easier to solve than the original 
function. The idea behind this approach is to construct such a surrogate function so 
that its solution after each iteration, is closer to the desired solution. 
 
MM Framework 
 
Let J(x) be the original function that is to be minimized. 
 
Initialize: iteration counter k = 0; initial estimate x0. 
Repeat the following steps until a suitable exit criterion is met. 
1. Chose ( )kG x  such that: 

1.1. ( ) ( ),kG x J x x≥ ∀  

1.2. ( ) ( )k k kG x J x=  

2. Set: 1 min ( )k kx G x+ =  

Set: k=k+1 and return to step 1.  

2.2   Landweber Iterations  

Let us consider the minimization of the following optimization problem, 

2
2( )  ||y ||J x Mx= −  (9) 

Here M is a generic matrix, for (7) it needs to be replaced by FWT and for (8) it needs 
to be replaced by F. 

For this minimization, the surrogate function Gk(x) is chosen to be, 

2
2( )  ||y || ( ) ( )( )T T

k k kG x Mx x x aI M M x x= − + − − −  (10) 

To maintain strict convexity max ( )Ta eig M M> . 

Gk(x) is minimized by Landweber iterations, 

1
1

( )T
k k kx x M y Mx

a+ = + −  (11) 

Using this update formula, Gk(x) can be expressed as, 

2
1 2 1 1( ) || || ( )T T T T

k k k k k kG x a x x ax x y y x aI M M x+ + += − − + + −  (12) 
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Note that all the terms apart from the first term are independent of x and does not play 
any part in the minimization.  

2.3   Synthesis Prior Algorithm  

The problem to be solved is, 

2
2( ) ||y || || ||T p

pJ x FW α λ α= − +  (13) 

After the discussion in the previous sub-section the choice of Gk(x) is quite obvious, 

2
1 2( ) || || || ||pk k pG x

a

λα α α+= − +  (14) 

where 1
1

( )T T
k k kWF y FW

a
α α α+ = + −  

The minimizer of (16) is the following (we omit the derivation owing to limitations in 
space), 

2
1 1 1( ) max(0,| | . (| | ))

2
p

k k ksignum p Diag
a

λα α α α −
+ + += −  (15) 

2.4   Analysis Prior Algorithm 

We are interested in solving the following problem, 

2
2( ) ||y || || ||p

pJ x Fx Wxλ= − +  (16) 

Following the discussion in sub-section 3.2 the choice of Gk(x) is, 

2
1 2

1

( ) || || || ||

1
where ( )

p
k k p

T
k k k

G x x x Wx
a

x x F y Fx
a

λ
+

+

= − +

= + −
 (17) 

Owing to limitations in space, we skip the derivations. (17 is minimized by the fol-
lowing updates, 

1 1
1

1 1

1 1

2
( ) ( ( )),  where max ( )

1
( )

T T
k k k k

T
k k k

T
k k k

a
z D cI cz H x H z c eig W W

x x H z

x x A y Ax
a

λ
− −

+

+ +

− −

= + + − >

= −

= + −

 

2.5   Constrained Optimization via Cooling 

Theoretically the constrained forms (5) and (6) and the unconstrained forms (7) and 
(8) are equivalent for correct choice of λ and σ. However, for all practical case, it is 
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not possible to find the relation between the two explicitly. Owing to the smoothness 
of the Pareto curve, solving the unconstrained problems for a decreasing sequence of 
λ is guaranteed to reach the solution desired by the constrained form [10]. Based on 
this idea, we use a cooling algorithm to solve (5) and (6) via iteratively solving  
(7) and (8). 
 

1. Choose a high value of λ initially. 
2. Solve the unconstrained optimization (7)/(8) for the given value of λ. 
3. Decrease the value of λ and go back to step 1. 

4. Continue steps 2 and 3, until the mismatch ( 2|| ||Ty FW α− / 2|| ||y Fx− ) be-

tween the data and the solution is less than σ. 

3   Experimental Evaluation 

The experimental evaluation was carried out on two real brain slices – Brainweb and 
NIH. The data is assumed to be noiseless. The experiments were simulated for radial 
scan lines in the k-space. The number of samples in k-space was always less than the 
number of pixels in the reconstructed image. As mentioned earlier the mapping from 
the Cartesian image space to the non-Cartesian k-space is the NUFFT [1]. Haar wave-
lets are used as the sparsifying basis. The normalized mean squared error between the 
ground-truth and the reconstructed image is used as an evaluation metric. 

For all experiments it was found that the best reconstruction results were obtained 
at p=0.8 for both the analysis and the synthesis prior problems. In the following tables 
the reconstruction results for one slice each from Brainweb (Table 1) and NIH (Table 
2) are reported for different sampling ratios (ratio of number of samples in K-space to 
the number of pixels in image). 

Table 1. Reconstruction Results for Brainweb Slice 

Sampling Ratio (in percent) Algorithm 
19.94 23.83 27.73 31.62 35.52 39.41 

Orthogonal 
Synthesis 

0.155 0.132 0.114 0.099 0.092 0.088 

Redundant 
Synthesis 

0.331 0.227 0.197 0.278 0.247 0.207 

Redundant 
Analysis 

0.105 0.091 0.079 0.071 0.068 0.060 

Table 2. Reconstruction Results for NIH Slice 

Sampling Ratio (in percent) Algorithm 
19.94 23.83 27.73 31.62 35.52 39.41 

Orthogonal 
Synthesis 

0.258 0.233 0.212 0.196 0.183 0.170 

Redundant 
Synthesis 

0.484 0.385 0.376 0.376 0.343 0.303 

Redundant 
Analysis 

0.203 0.184 0.167 0.156 0.144 0.134 
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Tables 1-2 confirm that minimizing the lp-norm on a redundant analysis prior gives 
the best MR reconstruction results. We also provide a qualitative comparison of the 
reconstruction results; owing to the limitations in space we provide results only for 
the NIH slice (since it is more challenging). 

 

 
(a)                                     (b) 

 
(c)                                     (d) 

Fig. 1. NIH slice – (a) Ground truth; (b) Orthogonal Haar Synthesis; (c) Redundant Haar Syn-
thesis and (d) Redundant Haar Analysis. 

On close inspection the reconstructed images show blocky artifacts. This is be-
cause, we are using Haar wavelets for reconstruction. More sophisticated wavelets 
like Dualtree or Fractional Spline will reduce such artifacts. 

4   Conclusion 

In this work we look at the problem of reducing the MR acquisition times from a 
signal processing perspective. The acquisition time for the scanners are directly pro-
portional to the number of number of samples collected in the K-space. Therefore in 
order to reduce the acquisition time the number of samples needs to be reduced. How-
ever, this leads to under-determinacy of the reconstruction problem. Inspite of having 
an under-determined system of linear equations it is possible to exploit the sparsity of 
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the MR images in the wavelet domain to obtain a unique solution via a non-convex 
optimization problem. 

The optimization problem can be formulated in two flavours – sparsity promoting 
analysis prior and sparsity promoting synthesis prior. In this work, we show that bet-
ter reconstruction results can be obtained with analysis prior algorithm using redun-
dant (Haar) wavelets. 

Non-convex algorithms for sparsity promoting priors is not a well developed sub-
ject. There is only a single algorithm [7, 8] to solve the synthesis prior problem, 
which is computationally slow; hence we did not employ it. In this paper we propose 
a new fast algorithm for solving the non-convex synthesis prior problem. The analysis 
prior problem in the non-convex setting was never encountered earlier, therefore we 
developed an efficient first order algorithm to solve this problem. 
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Abstract. The task of IMRT planning, particularly in head-and-neck

cancer, is a difficult one, often requiring days of work from a trained

dosimetrist. One of the main challenges is the prescription of achievable

target doses that will be used to optimize a treatment plan. This work ex-

plores a data-driven approach in which effort spent on past plans is used to

assist in the planning of new patients. Using a database of treated patients,

we identify the features of patient geometry that are correlated with re-

ceived dose and use these to prescribe target dose levels for new patients.

We incorporate our approach in a quality-control system, identifying pa-

tients with organs that received a dose significantly higher than the one

recommended by our method. For all these patients, we have found that a

replan using our predicted dose results in noticeable sparing of the organ

without compromising dose to other treatment volumes.

Keywords: Data-driven IMRT planning, achievable dose querying,

Overlap Volume Histogram.

1 Introduction

We explore a data-driven approach for achievable dose querying in intensity-
modulated radiation therapy (IMRT) planning. Our work is motivated by the
time-intensive nature of the planning process, in which a dosimetrist specifies
target dosage for the different organs and an optimization process is used to find
the treatment plan that best meets these objectives. In general, a dosimetrist
will seek doses that minimize the radiation received by organs at risk (OARs)
while providing sufficient coverage of the primary treatment volume (PTV).

The pitfalls of specifying dosage objectives are two-fold: If the dosimetrist
specifies too low a target dose to the OAR, the treatment plan may not be real-
izable and the treatment objectives will not be met. Conversely, if the dosimetrist
specifies too high a dose to the OAR, the treatment plan will be realized at the
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cost of excessive irradiation of essential organs. As a result, IMRT planning
often requires numerous trial-and-error iterations of computationally intensive
dose simulation in order to finalize on a treatment plan.

Our goal is to facilitate the planning process by using information from previ-
ously treated patients in designing treatment plans for new patients. To this end,
we use a database of previously treated patients to query for the lowest achievable
dose to a new patient’s OARs. We do this in two steps. First, for each OAR, we
identify a subset of relevant database patients – patients that have OARs which
we expect to be at least as difficult to spare as the new patient’s. Then, using
the assumption that a dose achieved by these more challenging patients should be
achievable by the new patient, we set the target dose for the new patient’s OAR
to the minimum dose achieved, over the subset of relevant patients.

Contribution. To prescribe an achievable dose for a query patient’s OAR, we
need to identify the database patients that are harder to treat than the query. As
with previous approaches (e.g. [4,1,7,3,6]), we use a shape descriptor that char-
acterizes the geometry of the treatment volumes to retrieve patients from the
database. However, while previous approaches have used shape descriptors pri-
marily for measuring similarity, our research must address the more challenging
task of using the geometric information to rank achievable dose.

We address this challenge by using the patient database to learn the correla-
tion between features of the shape descriptors and achievable doses. Specifically,
we use the recently developed Overlap Volume Histogram (OVH) [6], which
characterizes the distribution of distances of points within the OAR from the
surface of the PTV. For each OVH, we extract a set of features (e.g. the mean of
the distribution, the standard deviation, etc.) and compute the rank correlation
between the features of the OVH and the dose the associated OAR received.

Then, we predict that a database patient is more difficult to treat if a com-
parison of the database and query patients’ features indicate that the database
patient is more difficult to plan, for every significantly correlated feature. That is,
a database patient’s organs are said to be more difficult to spare than the query’s if
they have larger feature values for every feature that is positively correlated with
dose and smaller feature values for every feature that is negatively correlated.

We deployed our dose querying as a means for quality-control in a database of
91 head-and-neck patients. Using our approach we identified database patients
whose OARs received a dose exceeding the dose recommended by the RTOG
treatment protocol [2] but for which our method returned a dose that would
meet the requirement. These patients were flagged for re-planning, with the
retrieved dose used to set the target dose for optimization. For each of these
patients, the re-plan lowered the dose to the OAR without compromising dose
to other treatment volumes and resulted in treatments whose achieved dose were
never larger than one Gy of the dose prescribed by our method.

Related Work. In the works most similar to ours, Hunt et al. [5] and Wu et
al. [9] seek to address a similar problem by explicitly using the properties of the
OVH to predict dose. For example, Hunt et al. use the overlap of the PTV with
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the OAR (equivalent to the zero-crossing of the OVH) to predict dose, while
Wu et al. use the OVH values to predict Dose Volume Histogram (DVH) values.

The use of rank correlation in our method distinguishes our approach in two
ways. First, by using rank correlation to define relevant OAR instances, we
are able to query for achievable dose without explicitly fitting a model that
relates OVH values to dose. Second, our use of rank correlation allows us to
identify predictive features on a per-OAR basis. Thus while we may identify
the zero-crossing as an important feature for organs close to the PTV (where it
is an indication of the proximity of the organ to the tumor, and hence a good
predictor of the radiation the organ will receive), we may disregard it for organs
distant from the PTV (where we expect it to always be zero, and hence have no
predictive value).

Outline. The individual steps of our implementation are described in detail in
the following sections.

– Feature Definition: We define a set of candidate OVH features and com-
pute their correlations with OAR dose in Sec. 2.

– Patient Relevance and Dose querying: We formalize our notion of pa-
tient relevance based on feature sets and their correlations to dose in Sec. 3.

– Feature Selection: We select a maximally predictive subset of features
based on our notion of relevance in Sec 4.

– Dose Prediction: We apply our achievable dose querying framework for
plan quality control and present results in Sec. 5.

2 Overlap Volume Histogram Features

Recently, Kazhdan et al [6] introduced the Overlap Volume Histogram (OVH)
as a means to characterize the spatial relationship between an OAR and a PTV.
For a PTV T and OAR O, the value of the OVH of O with respect to T at
distance t is defined as the fraction of volume of O that is at most a distance of
t from T :

OVHO,T (t) =

∣∣∣ {p ∈ O|d(p, T ) ≤ t}
∣∣∣

|O| ,

where d(p, T ) is the signed distance of p from T ’s boundary and | · | represents
the volume of a set.

In this paper we will consider the OVH distributions in their normalized
differential form (dOVH). Seen in this way, they can be interpreted as proba-
bility density functions. Given an OAR O, a target volume T , and a distance
t, dOVHO,T (t) represents the relative likelihood that a uniformly randomly se-
lected point in O will be at a distance of t from T .

Fig. 1 illustrates examples of these distributions for this paper’s particular
organs of interest with respect to PTV70 for three patients in our database.
We note that the different organs’ dOVH curves have characteristically different
shapes. Also of interest is the fact that in all cases except the mandible, the zero
crossing value is zero and thus provides no information.
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Fig. 1. dOVHs for the brain, brainstem, cord+4mm and and mandible with respect to

PTV 70 for three patients in our database. While exhibiting variability within a same

organ, each organ’s dOVH has a characteristically different shape.

The characteristic shapes of the dOVH curves for the different organs mo-
tivate us to develop a dose prediction model in which the different features
are correlated with dose in different ways and the correlation is determined in
an organ-dependent manner. In particular, we consider the following statistical
features (and denote them with the parenthesized abbreviation): mean (mu),
standard deviation (sig), skewness (skw), median (med), mode (mod), minimum
(min), maximum (max), and the zero-crossing (zc) of the cumulative OVH. Ad-
ditionally, we compute each of these for PTVs at 58.1, 63 and 70 Gy prescription
values, and denote each feature with the corresponding number. For example,
for a given patient and OAR, mu70 denotes the mean of the dOVH distribution
of this organ with respect to PTV70. This results in a total of 24 features (the 8
statistical features mentioned above times the 3 PTVs).

We begin by analyzing the rank correlation of the above-mentioned features
in relation to the maximum dose delivered to each of our database cases. This
provides a better alternative to standard linear correlation since we wish to make
minimal assumptions as to the nature of the functional relationship between the
feature and the dose value. Furthermore, while some features are expressed in
linear distance units, (e.g. mu), others are cubic (e.g. zc), while yet others are
unitless (e.g. skw). As a measure of rank correlation, we use the Kendall tau
coefficient, which is defined as τ = (nc−nd)/(1

2n(n−1)), where nc is the number
of concordant pairs (i.e. pairs in which the ordering of the feature values agrees
with that of dose), nd is the number of discordant pairs (pairs in which the
ordering is reversed), and the denominator expresses the total number of pairs
in the data set of n entries. The value of τ ranges from −1 to 1 and its sign
indicates if the correlation is positive or negative.

3 Achievable Dose Querying

To query for achievable dose to an organ, we define the notion of a relevant
organ. The intuition is that a database OAR will be relevant to a query OAR
if it is at least as difficult to spare when irradiating the PTV. In doing so, we
query for the dose to each organ independently, implicitly assuming that organ
dose is primarily dictated by its proximity to the PTV, as in [6,9], and not by
the dose received by other organs.



A Statistical Approach for Achievable Dose Querying in IMRT Planning 525

Let us assume for the moment that we have selected a subset of the features
discussed above F = {f1, f2, ..., fn}. We formalize the notion of relevance as fol-
lows. Given treatment plans for two OARs of the same type with corresponding
dOVHs o1 and o2, we say that o2 is relevant to o1, and denote it o1 ≺F o2, if for
all i it holds that fi(o1) < fi(o2) if τ(fi) ≥ 0 and fi(o1) > fi(o2) if τ(fi) < 0.

Using our database, we query for the achievable dose to a query OAR as the
minimum of the doses delivered to all relevant database cases; that is:

achievable(o) = min{maxdose(oi) : o ≺F oi}

where maxdose(oi) denotes the maximum dose delivered to the organ associated
to oi. Notice that this formulation generalizes the approach of Wu et al. [9]
reducing to it under the feature set F = {min58 ,min63 ,min70}.

4 Feature Selection

The above framework for achievable dose querying requires that we determine
a set of features to use. In principal, we could use all features. However, the ≺
operator induces a partial order and, as such, not all pairs of feature vectors
are comparable. Specifically, given dOVHs o1 and o2 it can easily be the case
that neither o1 ≺ o2 nor o2 ≺ o1 is true. As we increase the number of features,
the tendency will be for fewer pairs to be comparable, exponentially fewer in
the general case, thus dramatically reducing the size of instances relevant to
a query. This observation provides a strong incentive to choose a small set of
features under which the ≺ operator is most predictive of dose relationship while
still allowing for many instances to be comparable.

We can measure the predictiveness of a candidate set of features F by using a
generalization of rank correlation to this multi-feature case. For all dOVH pairs
oi and oj of a given organ type with corresponding maximum dose values di

and dj , we count the number of times in which the ≺ relation agrees with the
dose relation, that is oi ≺F oj and di < dj , denoted nc. We also count the total
number of comparable pairs n≺, that is, pairs such that oi ≺F oj is true. We
define our measure of predictiveness as nc/n≺ and our measure of comparability
as nc/(1

2n(n − 1)).
To increase robustness to small perturbations of dose, we only examine pairs of

organs for which |di−dj| > 1
2σ, where σ is the standard deviation of all observed

dose values to the organ in question. Note that we do not count discordant pairs
as in τ since the directionality of the correlation has been taken into account in
the definition of ≺.

Our goal is to select the subset of features that maximizes predictiveness
while retaining a minimum measure of comparability. Given that the space of
all subsets is too large to explore exhaustively, we formulate a greedy approach.
Beginning with an empty set F0 = ∅, at each iteration k we select the feature
fi that maximizes the the predictiveness of Fk ∪ {fi} and thus define Fk+1. We
terminate the iteration when the comparability of Fk drops below 50%. This is
formalized in Algorithm 1.
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Algorithm 1. Select Features ( dOVH list O , max dose list D )
Require: the i-th member of D is the max dose received by the organ instance whose

dOVH is the i-th instance of O.

Feature set F ←− ∅
repeat

f ← argmaxfpredictiveness(F ∪ {f}, O, D)

c ← comparability(F ∪ {f}, O)

if c ≥ .5 then
F ← F ∪ {f}

end if
until c < .5
return F

5 Experimental Results

We ran our feature selection algorithm on a clinical database consisting of 91 pa-
tients, their OAR contours, and associated DVHs for their clinical plans. We ap-
plied our method to four high priority organs: brain, brainstem, cord+4mm ex-
pansion and mandible and and extracted the following features as maximally pre-
dictive of achievable maximum dose while maintaining at least 50% comparability.

Organ F Pred (%) Comp (%)
Brain zc58, max58, mu58 98.38 50.03

Brainstem min58, skw58 75.12 64.64
Cord+4mm mod70, mod58, min58, min70 68.88 53.17
Mandible zc70, max63, min58, min63, max70 99.11 51.01

The way these numbers are interpreted is, for instance in the case of the
mandible, of all pairs of organ instances in our database, 51.01% are comparable
according to the relevance relationship. Of those instances, in 99.11% of the
cases the relevance relationship was in agreement with the dose relationship. We
note that in the case of the brain and brainstem, the most predictive features
come from the relationship to the PTV58.1. Clinicians take great care to avoid
contamination from the higher dose PTV63 and PTV70 onto these organs. In
the case of the other two, the higher dose PTVs come into play, especially in
the mandible where overlap is frequent and the overlap volume with the PTV70

(given by zc70) is selected first.
To evaluate our method, we applied it to the database. For each of the four

organs we found an instance where the RTOG protocol max dose threshold [2]
had been exceeded. In our database of 91 patients, there were 31 instances where
the dose exceeded the recommended value for the brain, 35 for the brainstem,
66 for the cord+4mm and 12 for the mandible. We chose those instances where
the dose was highest and our method predicted the threshold could be met.
We re-planned each of these instances using the clinical plan as a starting point,
lowering the objective of the organ in question as indicated by our query. In each
instance, our query results were very nearly met or exceeded without sacrificing
coverage or dose to other OARs. These results are summarized in Fig. 2.
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Patient # Organ Dose Point Clinical Plan (Gy) Est. Achievable (Gy) Re-plan (Gy)

a brain D0 60.24 52.02 52.91

b brainstem D0 60.04 52.75 53.70

c cord+4mm D0 50.26 46.86 42.91

d mandible D0 77.80 71.33 71.10
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Patient a: Reduced max dose to brain
from 60.24 Gy to 52.91 Gy
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Patient d: Reduced max dose to mandible
from 77.80 Gy to 71.10 Gy

Fig. 2. DVHs resulting from re-planning patients based on our achievable dose query

results. In each case, the recommended max dose threshold for the organ had been vio-

lated in the clinical plan (solid line) and was met in a re-plan (dashed line), which closely

approximated our query results without sacrificing coverage or dose to other OARs.

6 Discussion and Future Work

We have presented a statistical approach for the querying of achievable dose to
OARs in IMRT planning of head-and-neck cancer patients. In this presentation,
our description has focused on the use of the OVH in prescribing treatment
for head-and-neck patients. In future work, we will consider generalizing our
approach in two ways. First, we will consider the use of other shape descriptors
for defining feature sets for dose prediction. Second, we will explore the use
of other OARs and other treatment sites. In concurrent work, we have used
a simpler, heuristic OVH feature set to automatically generate all necessary
planning constraints [8]. In future work, we will attempt to use the feature
selection presented here in the same manner.
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With regards to limitations, it should be noted that the quality of our query
results will naturally be determined by the quality and case coverage of the
database being queried. Furthermore, our approach relies on an assumption that
the relative configuration of anatomic structures is static and cannot be purpose-
fully altered by the clinician to facilitate treatment. This may not hold for other
sites such as thorax and prostate respectively.
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Abstract. The purpose of this study is to characterize the neuroanatom-

ical variations observed in neurological disorders such as dementia. We

do a global statistical analysis of brain anatomy and identify the relevant

shape deformation patterns that explain corresponding variations in clini-

cal neuropsychological measures. The motivation is to model the inherent

relation between anatomical shape and clinical measures and evaluate its

statistical significance. We use Partial Least Squares for the multivariate

statistical analysis of the deformation momenta under the Large Defor-

mation Diffeomorphic framework. The statistical methodology extracts

pertinent directions in the momenta space and the clinical response space

in terms of latent variables. We report the results of this analysis on 313

subjects from the Mild Cognitive Impairment group in the Alzheimer’s

Disease Neuroimaging Initiative (ADNI).

1 Introduction

In previous work, Large Deformation Diffeomorphic Metric Mapping (LDDMM)
has been extensively used for the characterization of anatomical changes asso-
ciated with various diseases [1], including the analysis of changes in anatomy
with normative aging [2]. Most of the earlier studies on characterization of neu-
roanatomical changes have focused on the statistical analysis of deformation
maps either using the associated Jacobian of the transformations, as in the now
ubiquitous deformation-based morphometry [3], or directly by the analysis of
the displacement maps. In this article we present a multivariate analysis of dif-
feomorphic transformations of the whole brain for relating complex anatomical
changes observed in the population with neuropsychological responses, such as
clinical measures of cognitive abilities, audio-verbal learning and logical mem-
ory. Contemporary studies using large deformation diffeomorphic transforma-
tions have focused on the characterization of group differences in the shape of
specific substructures such as the hippocampus [4].

In this paper we consider the Mild Cognitive Impairment (MCI) subjects as a
continuous class rather than a discrete class. Using Partial Least Squares (PLS),
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we study the covariance of the anatomical structures in the entire brain volume
without any segmentation or a priori regions of interest indentification. The
purpose of this study is to extract and identify shape deformation patterns in
brain anatomy that relate to observed clinical scores depicting cognitive abilities.
We show in our results that anatomical measures, such as cortical thickness and
hipocampal volume, used in previous studies of Alzheimer’s and related dementia
emerge naturally as the result of our analysis.

2 Technical Background

Fundamental to the study of the anatomical variation in a population is the con-
struction of transformations, mapping one anatomical image to another, com-
monly referred to as registration maps. Conventionally, anatomical variation has
been studied by generating transformation maps between each subject in the pop-
ulation using a pre-selected anatomical template. In contrast to this approach,
we study anatomical variation by simultaneously generating transformations be-
tween the entire population and a common reference coordinate system. Several
authors suggested this idea of nonlinear averaging of shapes for the construction of
mean anatomical image or the ”atlas” representing the entire population. Avants
et. al [5] proposed an energy minimization algorithm employing the diffeomorphic
constraints on the average transformation. Cootes et. al [6] emphasized the notion
of dense correspondences across group of images using diffeomorphic functions to
optimize a groupwise objective function. In this paper, we follow the unbiased at-
las construction approach introduced by Joshi et. al [7] under the large deforma-
tion diffeomorphic setting. As the properties of large deformation diffeomorphic
transformations and atlas construction are fundamental to our analysis we briefly
review it here, for a detailed analysis we refer the reader to a comprehensive review
by Younes et. al [8] and references therein.

2.1 Riemannian Metric, Atlas Construction, and Momenta Maps

Riemannian Metric. Diffeomorphic transformations of the underlying coordi-
nate space Ω are invertible transformations which are continuously differentiable
with a differentiable inverse. This definition implies that the set of all diffeomor-
phisms of Ω has a group structure. A convenient and natural machinery for
generating diffeomorphic transformations is by the integration of ordinary dif-
ferential equations (ODE) on Ω defined via the smooth time indexed velocity
vector fields v(t, y) : (t ∈ [0, 1], y ∈ Ω) → R3. The function φv(t, x) given by
the solution of the ODE dy

dt = v(t, y) with the initial condition y(0) = x de-
fines a diffeomorphism of Ω. One defines a Riemannian metric on the space of
diffeomorphisms by inducing an energy via a Sobolev norm with the partial dif-
ferential operator L on these velocity fields. The distance between the identity
transformation and a diffeomorphism ψ is defined as the minimization

d(id, ψ)2 = min

{∫ 1

0

〈Lv(t, ·), v(t, ·)〉dt : φv(1, ·) = ψ(·)
}
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The distance between any two diffeomorphism is defined as d(φ, ψ) = d(id, ψ ◦
φ−1).

Atlas Construction. This Riemannian metric defined on the space of diffeo-
morphisms can now be used to compute a deformation that matches two images.
The deformation φ is defined as the ‘optimal’ time-varying velocity field v̂, based
on the minimum energy criteria:

v̂ = argmin
v:φ̇t=vt(φt)

∫ 1

0

〈Lv(t, ·), v(t, ·)〉2dt +
1
σ2

∫
Ω

‖I0 ◦ φ−1 − I1‖2dx (1)

where the second term allows inexact matching, and σ is a free parameter con-
trolling the tradeoff between exactness of the match and smoothness of the
velocity fields. Now, given a collection of anatomical images {Ii, i = 1, · · · , N},
the minimum mean squared energy atlas construction problem is that of jointly
estimating an image Î and N individual deformations:

{Î, φ̂i} = argmin
I,φi

1
N

N∑
i=1

∫
Ω

||I ◦ φ−1
i − Ii||2dx + d(id, φi)2 (2)

The implementation details are described in greater detail in Section 3.

Momenta Maps. The joint minimizer of the atlas construction problem (2)
estimates an atlas image Î while simultaneously solving the N LDDMM im-
age matching problems. An important consequence of this is that the Euler-
Lagrange equations associated with the LDDMM problem coincides with the
Euler-Lagrange equations of geodesics on the group of diffeomorphisms. As
shown in Younes et. al [8] the geodesic equations are completely determined
via the initial momenta Lv0 and furthermore it is in direction of the gradient
of deforming image. This implies that for the atlas matching problem above, at
the minimizer, for each of the N image matching problems the initial velocity
is given by the equation Lvi(0, x) = ai

0(x)∇Î(x). The quantity ai
0(x)∇Î(x) is

referred to as the initial momenta. Each of the i = 1, · · · , N geodesic equations
evolve according to

Lvi(t) = ai(t)∇Î(t) (3)
dai(t, ·)

dt
+ ∇ · (ai(t)vi(t)) = 0 (4)

dÎ(t)
dt

= ∇Î(t)T vi(t) (5)

Equation (5) is the infinitesimal action of the velocity field vi on the image, while
(4) is the conservation of momenta.

2.2 Multivariate Analysis with Partial Least Squares

Traditionally, Partial Least Squares (PLS) has been used to characterize perti-
nent directions between independent variable and dependent variable in a high
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dimensional multivariate regression setting. This approach to multivariate anal-
ysis using PLS was introduced in the neuroimaging community by Bookstein [9]
with a detailed review by McIntosh et. al [10] and refrences therein. We now
adapt the PLS methodology for the purpose of extracting and identifying de-
formation patterns in brain anatomy that relate to k observed clinical measures
yi ∈ Rk depicting cognitive and neuropsychological responses of each of the
i = 1, · · · , N subjects. As described above, the anatomical variation in the col-
lection of Ii is captured by the initial scalar momenta maps (ai(x)) at the atlas
Î. These momenta maps govern the deformation of the atlas along the geodesic
in the group diffeomorphism towards the respective individual images Ii. Anal-
ogous to the classical PLS, we find directions â in the momenta space, defined
at the atlas in terms of deformation momenta ai’s, and directions ŷ in the clini-
cal response space, defined by yi’s that explain their association in the sense of
their common variance. We propose to extract these directions such that initial
momenta when projected on to â and the corresponding clinical responses when
projected on to ŷ have maximum covariance. We call these projections latent
variables, la and ly respectively.

To find the anatomical variation that covaries maximally with clinical re-
sponses, we perform PLS analysis between the scalar momenta fields ai and the
response space yi. The PLS problem is given by:

max cov(〈â, ai〉, 〈ŷ, yi〉) subject to ‖â‖ = 1 , ‖ŷ‖ = 1 (6)

The subsequent directions are found by removing the component extracted (de-
flating the data) both in momenta space and the clinical response space as:

ai ← ai − 〈â, ai〉 and yi ← yi − 〈ŷ, yi〉

The solution to the above maximization problem (6) is the Singular Value De-
composition (SVD) of the covariance matrix of the dependent and independent
variables. The corresponding direction vectors â’s and ŷ’s are the respective
left and right singular vectors. The successive latent variables la’s and ly’s are
computed once by a single SVD.

Statistical Significance. The statistical significance of the directions extracted
by PLS analysis can be assessed using the projected data (the latent variables)
la’s and ly’s. We use non-parametric permutation tests for calculating the signif-
icance of the regression of ly’s on la’s and use the R2 (the proportion of variance
explained in ly’s by la’s) as the test statistics. The distribution of the R2 statistic
under the null hypothesis is calculated by randomly reordering the momenta and
clinical response association and then recalculating the new SVD and its asso-
ciated R2 each time. The significance of a particular latent variable is measured
by the p-value from the empirical distribution.

3 Computational Framework

Two main challenges exist in implementing the LDDMM atlas building frame-
work: the intensive computational cost and large memory requirements. Even
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with a very low-resolution time discretization, and efficient multithreaded im-
plementation atlas generation for a set of 84 MRI brain images with a resolution
of 144×192×160 takes approximately 10 hours on a high-end 32-core shared
memory machine and uses approximately 50GB of memory. This makes param-
eter tuning and cross-validation schemes impractical, and limits the size of the
population for which an atlas can reasonably be generated. The target of this
study is the analysis of 313 MCI subjects from the ADNI data sets and on a
single machine would require 200GB of memory and 40 hours of computation
time for a single run.

Equation (2) can be efficiently solved using a parallel alternating algorithm
by interleaving the updates of the optimal deformations and the the estimate
of the atlas image Î. For a fixed atlas image Î the N individual deformations
are updated by performing a gradient step of (1) using the algorithm of Beg et.
al [11]. These deformations are completely independent of each other, naturally
yeilding to a distributed memory implementation. Further, the parallel nature of
many of the image processing algorithms used in the deformation update process
lends themselves to an efficient and massively parallel GPU-based implementa-
tion. An implementation of LDDMM atlas building for use on a GPU computing
cluster was therefore developed based on MPI and the GPU image processing
framework by Ha et. al [12]. Individual deformation calculations are distributed
across computing nodes, and nodes further distribute deformation calculations
among GPUs. In this manner the only inter-GPU and inter-node communication
required is in the atlas update step. Inter-GPU atlas computation is done in host
(node) shared memory, and inter-node atlas computation is efficiently done by
a parallel-reduce summation MPI call.

The GPU cluster used consists of 64 8-core computing nodes and 32 NVIDIA
Tesla s1070 computing servers, each containing four GPUs. Each node controls
two of the four GPUs contained in a s1070. Communication from the host to the
GPU is via external x16 PCIe bus, and inter-node communication is through a
20Gbit/s 4x DDR infiniband interconnect. Using 42 nodes of the GPU cluster,
the resulting implementation generated the atlas of the population of 313 brain
images in under 40 minutes. This represents a speed up of an order of magnitude.

4 Results

313 patients with mild cognitive impairment (MCI) were selected from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. The T1 weighted,
bias field corrected and N3 scaled structural Magnetic Resonance Images (MRI)
and the selected neuropsychological data were downloaded from ADNI. Two
global cognitive and functional assessment test were used. The first was the
Clinical Dementia Rating scale, Sum of Boxes (cdr.sb). The second test was
the modified Alzheimer’s Disease Assessment Scale modified cognitive battery
(adas-cog), which includes delayed word recall and number cancellation. Episodic
memory was assessed using the Rey Auditory Verbal Learning Test (AVLT) and
the Logical Memory test of the Wechsler Memory Scale-Revised. Both memory
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tests had immediate recall (avlt.imm, logic.imm) and 30 minute delayed recall
(avlt.del, logic.del). Note the AVLT used the immediate recall after the 5th
learning trial. Preprocessing the MRI involved skull stripping and registration
to talairach coordinates using freesurfer [13]. Tissue-wise intensity normalization
for white matter, gray matter and cerebrospinal fluid was performed using the
expectation maximization (EM) based segmentation followed by the piecewise
polynomial histogram matching algorithm.

Data Processing Details. The atlas was constructed with the 313 MCI sub-
jects on the GPU cluster and the associated initial momenta fields ai were com-
puted. Each p dimensional ai (i = 1, · · · , 313 , p = 144×192×160) represents a
row of a large 313× p matrix X of momenta maps. The corresponding k dimen-
sional clinical outcome yi (i = 1, · · · , 313 and k = 6) populates the rows of the
313 × 6 matrix Y of clinical outcomes. The PLS was then performed on X and
Y data matrices. The significance tests for the extracted momenta direction and
the clinical response directions was performed using 100,000 permutations.

Table 1. Significance test - 100000 permutations

latent variable 1 2 3 4 5 6

R2 0.5010 0.5059 0.4515 0.4618 0.4356 0.5271

p-value 0.0669 0.1033 0.2289 0.3435 0.2775 0.0050

adas-cog 0.4373 0.0220 0.0973 -0.7900 0.4102 0.0800

cdr.sb 0.2069 0.9639 -0.1050 0.1077 -0.0266 -0.0688

avlt.imm -0.4738 0.2175 0.4403 -0.2855 -0.2802 0.6118

avlt.del -0.4484 0.1256 0.5166 0.0003 0.4574 -0.5542

logic.imm -0.4325 0.0582 -0.5045 -0.5228 -0.3517 -0.3976

logic.del -0.3916 0.0626 -0.5141 0.0972 0.6478 0.3865

Visualization of geodesic shooting. In our initial study we found that latent
variables 1 and 6 (LV1 and LV6) had the lowest p-values with latent variable 6
being highly significant (p-value=0.005). We analyzed the extracted deformation
directions for LV1 and LV6, owing to their low p-value, by evolving the atlas
image Î along the geodesic in the corresponding projected momenta directions
(â) and interpreting the association with the directions extracted in their clinical
response counterparts (ŷ).

The initial momenta direction was scaled to the maximum of the projections
of all the momenta over the population of 313 images (along LV1 and LV6).
The log Jacobians of the deformation, overlayed on atlas image Î, resulting from
shooting Î along the geodesic with this momenta are shown in Fig. 1 and Fig. 2
respectively. The selected slices from this 3D overlay shown here capture relevant
regions of the neuro-anatomical structures, such as hippocampus and ventricles,
pertinent to cognitive impairment in Alzheimer’s and related dementia. Fig. 3
displays the axial and sagittal slices of the 3D MRI deforming brain from the
atlas along the geodesic for the equal intervals, t, both in the positive and the
negative LV1 direction (t = 0 correspond to the atlas image, Î).
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Fig. 1. LV1 log Jacobians overlayed on atlas. Red denotes regions of local expansion

and blue denotes regions of local contraction (see electronic version for colored images)

Fig. 2. LV6 log Jacobians overlayed on atlas

t = −1.0 t = −0.5 t = 0 t = +0.5 t = +1

t = −1 t = −0.5 t = 0 t = +0.5 t = +1

Fig. 3. Deformation of mean brain along LV1: t is the scaling parameter along LV1.

The value t = 0 corresponds to the mean brain
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5 Discussion

The major contribution of this article is that the shape deformation patterns in
anatomical structures show up evidently as a result of the PLS analysis of the
momenta.

LV1: We notice the expansion of lateral ventricles and CSF, together with the
shrinkage of cortical surface along LV1 (Fig. 1 and Fig. 3). The corresponding
neuropsychological clinical response direction is that of increasing adas-cog and
cdr.sb (measures of increasing cognitive degeneration) and decreasing AVLT and
logical scores (measures of audio verbal learning and logical memory). Another
critical observation is the clearly evident shrinkage of the hippocampus and
cortical and sub-cortical gray matter along these directions. Such patterns of
atrophy are well known to characterize the disease progression in AD and related
dementia.

LV6: The highly statistically significant LV6 explains an altogether independent
set of anatomical deformation patterns that relate to corresponding patterns in
audio-verbal learning scores and memory scores (immediate and delayed recall).
The LV6 mainly explains deformations for learning and memory, owing to high
absolute weights for AVLT and logic scores but very low weights to adas.cog
and cdr.sb. The deformation patterns in anatomy Fig. (2) show almost invary-
ing hippocampal region well know to be important to memory formation. This
observation has to our knowledge, never been reported before and we are study-
ing further the medical importance of this finding.
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Abstract. Adolescent Idiopathic Scoliosis (AIS) characterized by the

3D spine deformity affects about 4% schoolchildren worldwide. One of

the prominent theories of the etiopathogenesis of AIS was proposed to

be the poor postural balance control due to the impaired vestibular func-

tion. Thus, the morphometry of the vestibular system (VS) is of great

importance for studying AIS. The VS is a genus-3 structure situated in

the inner ear and consists of three semicircular canals lying perpendicular

to each other. The high-genus topology of the surface poses great chal-

lenge for shape analysis. In this work, we propose an effective method to

analyze shapes of high-genus surfaces by considering their geodesic spec-

tra. The key is to compute the canonical hyperbolic geodesic loops of

the surface, using the Ricci flow method. The Fuchsian group generators

are then computed which can be used to determine the geodesic spectra.

The geodesic spectra effectively measure shape differences between high-

genus surfaces up to the hyperbolic isometry. We applied the proposed

algorithm to the VS of 12 normal and 15 AIS subjects. Experimental re-

sults show the effectiveness of our algorithm and reveal statistical shape

difference in the VS between right-thoracic AIS and normal subjects.

1 Introduction

Adolescent Idiopathic Scoliosis (AIS) is a 3D spinal deformity which affects about
4% schoolchildren worldwide. It is believed to be a multi-factorial disease. The
right-thoracic curve is the most typical type of AIS. The current treatment of
AIS is still unsatisfactory because the etiopathogenesis remains unclear. AIS pa-
tients had a significantly higher mean body sway compared with healthy controls
when their visual and somatosensory systems were simultaneously challenged [3].
It has been proposed that the altered processing of vestibular information might
contribute to the etiology of AIS [11]. Based on the findings of abnormal pos-
tural balance control in AIS [3,9,11,21], one of the prominent theories of the
etiopathogenesis of AIS was proposed to be the poor postural balance control

T. Jiang et al. (Eds.): MICCAI 2010, Part III, LNCS 6363, pp. 538–546, 2010.
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due to the impaired vestibular function [22]. The vestibular system (VS) is re-
sponsible for perception of head movements and sending postural signals to the
brain. The important role of the vestibular system in the development of idio-
pathic scoliosis was manifested by an animal study using the frog model [14].
Recently, some preliminary results have also revealed the statistical difference
in global morphology of the VS between right-thoracic AIS and normal controls
[20]. The shape of the central contour of each canal for the VS surfaces has also
been studied [2]. However, the complete geometry of the surface has not been
fully analyzed. Thus, the morphometry of the VS is of great importance for un-
derstanding AIS. The VS is a genus-3 structure situated in the inner ear and
consists of three semicircular canals lying perpendicular to each other, see Figure
1 (a). Because of the high-genus topology of the VS, it poses great challenge for
shape analysis. This motivates us to propose a stable algorithm to study the VS
systematically by making full use of rigorous structural features.

A lot of works have been done on shape analysis for anatomical structures.
For example, Dale et al. [6] proposed a surface-based methods for studying the
structural features of brain; Ashburner et al. [1] proposed a deformation-based
morphometry for studying the 2D or 3D local displacement vector fields in brain
volume or shape; Pizer et al. [15] proposed to measure shape differences by me-
dial representations (M-reps); Davies et al. [7] developed an algorithm for shape
discrimination in the hippocampus using the minimum description length (MDL)
models; Chung et al. [5] proposed a tensor-based morphometry for examining
spatial derivatives of deformation maps using spherical harmonic representation;
Reuter et al. [17,16] presented Laplace-Beltrami spectra as shape DNA for statis-
tical shape analysis. These methods provide a good way for analyzing anatomical
shapes, but they generally cannot deal with high-genus structures.
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Fig. 1. Computing the hyperbolic metric for a vestibular system (VS) surface. (a)

The VS is of genus-3 and consists of 3 semicircular canals lying perpendicular to each

other: the lateral canal with (a1, b1), the superior canal with (a2, b2) and the posterior

canal with (a3, b3), where {a1, b1, a2, b2, a3, b3} are the homotopy group generators. (b)

The fundamental domain embedded in the hyperbolic space, the Poincaré disk. (c) The

finite portion of the universal covering space (UCS). Different fundamental domains

are encoded in different colors.
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In this work, we propose an effective algorithm for shape analysis of high-genus
surfaces by considering their geodesic spectra. Under the hyperbolic metric, one
can find the shortest geodesic loop in each homotopy class of the surface, and the
lengths of such geodesic loops form the geodesic spectrum. The geodesic spec-
trum determines the structure of a high-genus surface up to hyperbolic isometry.
To compute the geodesic spectrum, the basic idea is to compute the hyperbolic
metric using the Ricci flow method. Ricci flow was first introduced by Hamil-
ton [10] and later it was generalized to the discrete case [4]. Zeng et al. [23]
applied the surface Ricci flow method to study general 3D shape matching and
registration. Recently, Jin et al. [13] introduced the Teichmüller shape space to
index and compare general surfaces with various topologies, geometries and res-
olutions. After the hyperbolic metric is computed, we can compute the Fuchsian
group generators which can be used to determine the geodesic spectrum. The
method is rigorous and practical. Experimental results on 12 normal and 15
AIS subjects show the effectiveness of our algorithm and reveal statistical shape
difference in the VS between the normal and unhealthy groups.

2 Theoretic Background

This section briefly introduces the background knowledge of conformal geometry,
and the basic concepts of algebraic topology and hyperbolic geometry. For more
details, we refer readers to the classical textbooks [18] and [19].

2.1 Fundamental Group and Universal Covering Space

Let S be a topological surface with a base point q. All loops through q are classi-
fied by homotopic relations. All homotopy equivalence classes form the homotopy
group or fundamental group π1(S, q), where the product is defined as the concate-
nation of two loops through their common base point. For a genus g closed sur-
face, one can find canonical homotopy group generators {a1, b1, a2, b2, · · · , ag, bg},
such that ak only intersects bk once. Then the fundamental group is represented
as < a1, b1, a2, b2, · · · , ag, bg|a1b1a

−1
1 b−1

1 a2b2a
−1
2 b−1

2 · · ·agbga
−1
g b−1

g = e >.
A covering space of S is a space S̃ together with a continuous surjective map

h : S̃ → S, such that for every p ∈ S there exists an open neighborhood U
of p, h−1(U) is a disjoint union of open sets in S̃, each of which is mapped
homeomorphically onto U by h. The map h is called the covering map. The
universal covering space (UCS) is simply connected. A deck transformation of a
cover h : S̃ → S is a homeomorphism f : S̃ → S̃ such that h ◦ f = h. All deck
transformations form the so-called deck transformation group. A fundamental
domain of S is a simply connected domain, which intersects each orbit of the
deck transformation group only once. Figure 1 shows a fundamental domain
and a finite portion of the universal covering space of a genus-3 surface. The
canonical homotopy group basis are computed using the algorithm in [8].
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2.2 Hyperbolic Uniformization and Ricci Flow

Two Riemannian metrics are conformal, if they differ by a scalar function. If any
surface admits a conformal Riemannian metric of constant Gaussian curvature,
such metric is called the uniformization metric. The uniformization metric for
a genus g > 1 surface induces −1 Gaussian curvature [10], which is called the
hyperbolic metric of the surface. The hyperbolic metric can be computed by the
Ricci flow method. Intuitively, a surface Ricci flow is a process to deform the
Riemannian metric of the surface, in proportion to Gaussian curvatures, such
that the curvature evolves in the same manner as heat diffusion:

dgij

dt
= −2Kgij +

χ(S)
A

,

where K is the Gaussian curvature induced by the metric g(t), A is the area
of the surface. For closed surfaces with non-positive Euler numbers χ, Hamilton
proved the convergence of Ricci flow in [10].

The universal covering space of S with the hyperbolic metric can be isomet-
rically embedded in the hyperbolic space H2, here we use Poincaré disk model.
All the deck transformations are Möbius transformation, called Fuchsian trans-
formation. The deck transformation group is called the Fuchsian group of S.

2.3 Geodesic Spectrum

Each homotopy class has a unique closed geodesic under the hyperbolic metric.
The lengths of all such geodesics form the geodesic spectrum of the surface.
Geodesic spectrum determines the hyperbolic metric completely.

Theorem 1 (Geodesic Spectrum). Suppose (S1,g1) and (S2,g2) are sur-
faces with hyperbolic metrics. Let f : S1 → S2 be a diffeomorphism, such
that for each homotopy class [γ] ∈ π1(S1, p), it is mapped to a homotopy class
[f(γ)] ∈ π1(S2, f(p)). If the length of the geodesic in [γ] equals to the length of
the geodesic in [f(γ)], for all homotopy classes, then f is an isometry.

Eachhomotopy class corresponds to a unique Fuchsian transformation.The length
of the unique geodesic in the class can be explicitly computed by the corresponding
Fuchsian transformation. If two surfaces are conformal equivalent, f : (S1,g1) →
(S2,g2) is the conformal mapping. Then under their uniformization hyperbolic
metrics, f : (S1, g̃1) → (S2, g̃2) is an isometry. Therefore, the two surfaces have
the same hyperbolic geodesic spectrum. Geodesic spectrum is the key to measure
the similarity of the conformal structures of the high-genus surfaces.

In the above, the notations g, g, and gij are used to denote the concepts of
surface genus, Riemannian metric and component of metric tensor, respectively.

3 Algorithms

The main goal of our algorithm is to compute the hyperbolic geodesic spectrum
of a high-genus closed surface for shape analysis. The pipeline is as follows: 1)
canonical homotopy group generators [8], 2) hyperbolic metric with Ricci flow,
3) Fuchsian group generators, and 4) geodesic spectrum.
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Discrete Hyperbolic Ricci Flow. The computation of the hyperbolic metric
on a triangular mesh M is based on the discrete hyperbolic Ricci flow. We will
briefly describe the algorithm on triangular mesh. Details can be found in [4]
and [12].

1. Assign a circle at vertex vi with radius ri; For each edge [vi, vj ], two circles
intersect at an angle φij , called edge weight.

2. The edge length lij of [vi, vj ] is determined by the hyperbolic cosine law,

cosh lij = cosh ri cosh rj + sinh ri sinh rj cosφij .

3. The angle θjk
i , related to each corner i∠k

j , is determined by the current edge
lengths with the inverse hyperbolic cosine law.

4. Compute the discrete Gaussian curvature Ki of each vertex vi :

Ki =

{
2π −

∑
fijk∈F θjk

i , interior vertex
π −

∑
fijk∈F θjk

i , boundary vertex

where θjk
i represents the corner angle attached to vertex vi in the face fijk.

5. Update the radius ri of each vertex vi: ri = ri − εKi sinh ri.
6. Repeat the step 2 through 5, until ‖Ki‖ of all vertices are less than the

user-specified error tolerance.

Computing Fuchsian Group Generators. The Fuchsian group generators
are obtained in the following way:

1. Slice M open along a set of canonical homology basis a1, b1, a−1
1 , b−1

1 , a2,
b2, a−1

2 , b−1
2 to form the fundamental domain M̄ . See Figure 1(a).

2. Embed the fundamental domain of M into Poincaré disk with boundary
segments ∂M̄ = a1b1a

−1
1 b−1

1 a3b3a
−1
3 b−1

3 . See Figure 1(b).
3. Compute the unique Möbius transformation (hyperbolic rigid motion) that

maps ai to a−1
i on M̄ , which is βi; compute αj which maps b−1

j to bj.

Then we get the canonical Fuchsian group generators {α1, β1, α2, β2, α3, β3}.
Figure 1(c) shows a finite portion of the universal covering space of a genus-3
VS surface embedded in the Poincaré disk. Different fundamental domains are
encoded by different colors.

Computing Geodesic Spectrum. The fundamental group generators are {a1,
b1, a2, b2, a3, b3}. Any homotopy class is represented as a word in π1(S, q),
w = ω1ω2 · · ·ωn, the corresponding Fuchsian transformation is given by τ =
τ1τ2 · · · τn, where ωj is replaced by τj . If ωj equals a±1

k (or b±1
k ), then τj is α±1

k

(or β±1
k ). Then we use the upper half plane model of H

2. τ is the product of the
matrices of τj . The length of the unique geodesic loop in the class of w is given
by the trace of the matrix representation of τ ,

2 cosh(
l

2
) = trace(τ).

Therefore, the geodesic spectrum can be efficiently computed in an explicit form.
Figure 2 visualizes the computing process of the geodesic loops for canonical
homotopy group generators.
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Fig. 2. Computing the geodesic loops for each homotopy class of a VS surface. (a) The

unique geodesic loop in the homotopy class [a1] is the axis of the Möbius transformation

α1 on UCS, which is a circular arc orthogonal to the unit circle on the Poincaré disk.

(b) All the geodesics loops form the homotopy group basis on the Poincaré disk. (c)

The geodesic loops on the original surface. (d) The geodesic loops in R
3.

4 Experiments

Subjects and image acquisition. 15 girls with right-thoracic AIS (mean age 15
years old; mean Cobb’s angle 27.27 degrees) and 12 age-matched healthy girls
participated in this study. All participants in this study underwent a T2-weighted
MRI scanning of the inner ear using 1.5T MR Scanner (Sonata, Siemens, Er-
langen, Germany) with a quadrature head coil. High-spatial resolution anatomic
imaging was performed with a 3D constructive interference steady state (CISS)
sequence with TR = 11.94msec, TE = 5.97msec, flip angle=70 degrees, FOV =
130mm, slice thickness = 1mm, no gap, matrix = 320×288, number of excita-
tion = 1. The sequence yielded high quality T2-weighted images with the voxel
size of 0.5 × 0.4 × 1.0mm3. After on-site image interpolation, the voxel size was
adjusted to 0.2 × 0.2 × 1.0mm3.

Segmentation of the vestibular system. 3D segmentation of vestibular system
from T2-MRI in this study was achieved by a tailor-made pipeline proposed in
[20]. Triangle mesh of the vestibular system was constructed using the marching
cube algorithm. As it was found that the left-side vestibular system is abnormal
in AIS compared to normal controls, in this study, our analysis is focused on the
left-side vestibular system.

Computation of geodesic spectrum. The geodesic spectrums is intrinsic to the
surface geometry and invariant to the triangulation resolution of the mesh. The
algorithms are tested on a laptop with 2.0GHz CPU and 3.0GB RAM. The genus-
3 VS surfaces are with 50k triangles. The computation of hyperbolic metric based
on Ricci flow took 20 seconds; the computation for Fuchsian group generators
and geodesic spectrum took 5 seconds. The whole pipeline is fully automatic
without any human intervention.

Geodesic spectrum for shape analysis. We have done statistical analysis to study
the structural difference of VS surfaces between the normal and AIS groups.
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(a) box plot of 𝑎1 (b) box plot of 𝑎2 (c) box plot of 𝑎3

(d) box plot of 𝑏1 (e) box plot of 𝑏2 (f) box plot of 𝑏3

Fig. 3. Distribution of geodesic spectra for the normal and AIS groups

The geodesic spectrum (ai, bi)3i=1 on each VS surface from the normal and AIS
groups is computed. The statistical difference in the geodesic spectra between
groups are evaluated using t tests. The box plots of ai’s and bi’s are plotted in
Figure 3, which shows the distribution of the geodesic spectra of each group.
The AIS group tends to have higher ai’s and smaller bi’s. Intuitively, a higher
ai means a longer canal whereas a smaller bi means a thinner canal. The shape
difference in lateral canal (a1, b1) between two groups tends to be more statis-
tically significant with P-value < 0.05. In particular, the AIS group tends to
have smaller b1 and b2 with high statistical significance. It means the lateral and
superior canals are generally thinner for AIS subjects. We also studied the dif-
ference in shape index using different combination of ai and bi between groups,
and their statistics are shown in Table 1. The ratio a1/b1 tends to be larger
in the AIS group with high statistical significance (P = 0.0338). It means the
conformal modules of the lateral canal are significantly different. This implies
once again that the shape in the lateral canal tends to be significantly different
between the two groups.

Table 1. Statistics on geodesic spectra between the normal and AIS groups

Combination Mean(Normal) Mean(AIS) P-value

b1 + b2 + b3 6.7164 ± 0.1103 6.6091 ± 0.0641 0.0040

a1 + a2 + a3 41.8930 ± 4.1591 45.7500 ± 5.5327 0.0563

a1 + b1 + a2 + b2 + a3 + b3 48.6094 ± 4.0848 52.3591 ± 5.4889 0.0603

a1/b1 3.5514 ± 0.6145 4.0070 ± 0.4397 0.0338

a2/b2 6.5982 ± 0.8969 7.4461 ± 1.2299 0.0568

a3/b3 8.8719 ± 1.0674 9.5539 ± 1.5345 0.2036
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5 Conclusion

We present a rigorous algorithm which computes the global feature, called the
geodesic spectrum, for analyzing high-genus shapes. The key is to compute the
canonical hyperbolic geodesic loops of the surface, using the Ricci flow method.
The experiments on the morphometry study of the vestibular system (VS) of 12
normal and 15 AIS subjects show the effectiveness of our algorithm and reveal
statistical shape difference in the VS between right-thoracic AIS and normal
subjects. The performance demonstrates the great potential for AIS disease de-
tection. In general, our proposed model is stable and can be applied to shape
analysis for general anatomical structures of any genus.
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Abstract. We introduce a value-based noise reduction method for Dual-

Energy CT applications. It is based on joint intensity statistics estimated

from high- and low-energy CT scans of the identical anatomy in order

to reduce the noise level in both scans. For a given pair of measurement

values, a local gradient ascension algorithm in the probability space is

used to provide a noise reduced estimate. As a consequence, two noise re-

duced images are obtained. It was evaluated with synthetic data in terms

of quantitative accuracy and contrast to noise ratio (CNR)-gain. The in-

troduced method allows for reducing patient dose by at least 30% while

maintaining the original CNR level. Additionally, the dose reduction po-

tential was shown with a radiological evaluation on real patient data.

The method can be combined with state-of-the-art filter-based noise re-

duction techniques, and makes low-dose Dual-Energy CT possible for the

full spectrum of quantitative CT applications.

1 Introduction

Dual-Energy CT (DECT) measures two image-sets at different energy weight-
ings, e.g. by performing two scans with tube voltages set to 80kV and 140kV
respectively. Alvarez [1] and Macovski [2] introduced a reconstruction technique
for multi-energy scans based on a decomposition of the spectral attenuation
coefficient into basis functions. Dual-Energy applications can yield valuable in-
formation for intervention planning and diagnosis. The most popular current
Dual-Energy CT diagnostic applications are bone removal [3], PET/SPECT at-
tenuation correction [4], lung perfusion diagnostic or quantification of contrast
agent concentrations, for instance in the myocardium.

It is commonly agreed that the two dual-energy scans should require about
the same total X-ray dose as the corresponding single-energy scan. This calls
for effective noise reduction techniques in Dual-Energy CT. The most common
filtering strategy applied in medical CT scanners is modifying the high-pass
reconstruction kernel used for filtered back-projection (FBP) in a way that high
frequencies are less amplified or blocked. Additionally, adaptive filters are applied
occasionally. This type of filters steers the filter strength according to a noise
estimate. It causes less smoothing in regions where noise is low, i.e. the X-rays
are weakly attenuated. More sophisticated edge preserving filters have also been
investigated. Weickert [5] introduced an edge-preserving anisotropic diffusion
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filter which can be adapted to CT data as shown in [6]. Bilateral filtering [7] tries
to achieve a similar goal by combining frequency- and intensity-based smoothing.
These filters steer the smoothing locally according to distance and similarity of
neighboring intensity values. In CT, frequency based noise reduction filters are
usually applied in the projection domain as the spectral noise properties in the
CT-image or -volume domain can hardly be derived analytically. The image noise
is inhomogeneous and non-stationary and estimating local noise properties is
complex, [8] shows how to estimate local variance and analyze noise correlations
for filtering CT-data in the image domain.

We introduce a noise reduction technique that is solely based on joint intensity
statistics of the two Dual-Energy datasets. Most multi-energy modalities have
an unequal noise distribution between images due to tube limitations and/or
strong absorption in low-kVp images. The individual images from a multi-energy
scan are much noisier than an image of a single energy scan, as the overall
scan dose should be in an identical range. Quantitative CT (QCT) applications
based on dual energy data are very sensitive to image noise. Image-based basis
material decomposition (BMD) [9], for instance, causes noise amplification in
the resulting basis material coefficient images. For other QCT applications, like
Rho-Z projection [10], similar problems arise.

The proposed Dual-Energy noise reduction improves images from one energy
weighting by using knowledge on the joint intensities from both datasets. As it
is purely value-based and does not utilize any frequency information, it is com-
patible with the frequency-based filters explained above. This method operates
on the reconstructed images, so it can be applied to any reconstructed DECT
data-set. Since it is a post-reconstruction method, it may not enhance the quan-
titative correctness of the reconstructed images and relies on the correctness of
the DECT reconstruction and beam hardening correction method.

2 Method

As input data, the noise-reduction method uses a low-kVp CT-volume μ̄1(x)
and a high-kVp volume μ̄2(x). The voxel coordinate is indicated by x. This
method is neither restricted in terms of the number of multi-energy input data-
sets nor their dimension. However, for practical reasons, the description focuses
on Dual-Energy data of two or three spatial dimensions. Our method estimates
the most likely true object attenuation values μ̃1(x) and μ̃2(x) for each measured
(μ̄1(x), μ̄2(x))-pair by a gradient ascent in the joint histogram.

Joint histogram computation: The first step is estimating the joint probabil-
ity density P (μ̄1, μ̄2) for all (μ̄1(x), μ̄2(x))-pairs. Several methods are available
for this purpose, e.g. computing histograms, data clustering or Parzen window-
ing [11]. We use kernel density estimation using a bivariate, uncorrelated Nor-
mal Distribution as kernel function. This method offers the possibility to apply
smoothing to the P (μ̄1, μ̄2)-estimate by adjusting the bandwidth of the kernel:

N(σ1,σ2)(μ̄1, μ̄2) =
1

2πσ1σ2
exp

{
−1

2

(
μ̄2

1

σ2
1

+
μ̄2

2

σ2
2

)}
. (1)
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The standard deviation (σ1, σ2) is the bandwidth parameter. Slightly
oversmoothed density estimates yield better noise suppression at the cost of in-
creased bias. In the following, the selected bandwidth parameter set is denoted
(b1, b2). Once a set of bandwidth parameters is selected, the density estimate
Pb1,b2(μ̄1, μ̄2) can be computed by a convolution.

Noise estimation: The next step is to estimate true attenuation values for each
pair of measured values by analyzing Pb1,b2(μ̄1, μ̄2). In order to find the most
probable true μ̄1-value for (μ̄1(x), μ̄2(x)), the μ̄2(x)-value is kept fixed and a
gradient ascent along the μ̄1-direction within the density estimate is performed.

The gradient direction is given by

G1(μ̄1, μ̄2) =
(

sgn
{

d
dμ̄1

(
P(b1,b2)(μ̄1, μ̄2)

)}
, 0
)
. (2)

Figure 1 shows an example for this procedure. The resulting local maximum for
μ̄1(x) is called μ̃1(x). It represents the most probable μ̄1-value for the measured
intensity pair with fixed μ̄1(x). The distance d1(x) = |μ̃1(x) − μ̄1(x)| is an
estimate for the noisiness of μ̄1(x). If the actually measured value μ̄1(x) is very
close to the most probable value, it is likely to be less noisy. The process of
finding the μ̃2-value works analogously: The gradient ascent is performed in
μ̄2-direction. This leads to the estimates μ̃2(x) and d2(x).

Parameter reduction: The method has two bandwidth parameters of the bi-
variate Gaussians. These can be reduced to b1 as the only free parameter and
automatically compute an appropriate b2 value for the μ̄2-image by taking the
relative contrast and noise of the μ̄2-image into account:

We generate a set X of all soft tissue voxel positions in image 1 by threshold-
ing. The standard deviations σ1,X and σ2,X are computed for X in both images.
The standard deviation for the second image σ2,X can differ from σ1,X for two
reasons: A different noise level and/or a different tissue contrast in the second
image. A lower noise level or less contrast require a smaller bandwidth. A higher
bandwidth can be chosen if the noise level lower or the tissue contrast is higher.
Consequently we set b2 = b1 · σ2,X

σ1,X
. For the example of a second image with a

higher tube acceleration voltage at the same tube current, a lower noise level and
reduced tissue contrast is observed. This case leads to a reduced bandwidth b2.
If the noise level is similar in both images, the reduced tissue contrast prohibits
strong noise reduction on the high-kVp image.

Noise reduction: The quality of the estimates μ̃1(x) and μ̃2(x) is affected by
noise in the original intensity pairs (μ̄1(x), μ̄2(x)): High noise in μ̄1(x) and μ̄2(x)
generally worsens both estimates, low noise in the μ̄1(x)-value increases the
quality of the estimate μ̃2(x) and vice versa. The noise-reduction process should
use a measure that takes these properties into account and adjusts the strength of
the correction process accordingly. The following measure offers these properties
and allows governing the strength of the filter by a single parameter:

μ̂1(x) = α(x) · μ̄1(x) + (1 − α(x)) · μ̃1(x) (3)
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The correction strength is defined by a parameter α, the final noise-reduced
image value is called μ̂1(x); α is computed as follows:

α(x) =
(
d1(x)
dt(x)

)r

with dt(x) =
√
d1(x)2 + d2(x)2 (4)

The parameter r determines the correction strength, values of r = [0, 1] generally
favor the μ̃1(x)- resp. μ̃2(x)-estimates whereas r =]1,+∞[ directs the filter to
use the estimates only when the image noise estimate is close to the overall noise
estimate dt(x). In our experiments, we used r = 5.
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Fig. 1. Examples for the gradient ascent procedure with μ1(x) = 0.0187 mm−1 and

μ2(x) = 0.0232 mm−1. Arrows indicate the gradient direction, the start point is located

at the base of the arrows.

3 Evaluation

In order to evaluate the theoretical limits of the proposed denoising method
against ground truth data, we conducted several simulations and a radiological
evaluation.

1. Contrast-to-noise ratio: Evaluation of the achievable CNR-gain for various
contrasts and dose-levels.

2. Quantitative accuracy and precision: Noise reduction and quantitative accu-
racy for energy calibration application using basis material decomposition.

3. Radiological evaluation: Perceived and measured noise reduction while main-
taining visibility of important image details.

The simulations involve an analytic forward projection of a geometrically defined
thorax phantom and a standard filtered back-projection (see Fig. 2). The tissue
compositions were taken from the ICRU Report 461 and the elemental mass
attenuation coefficients from [12]. In order to avoid beam hardening artifacts,
we created dual-energy data-sets with mono-chromatic radiation at 54keV and
73 keV which corresponds to the effective energy of 80 kVp and 140 kVp scans.
1 International Commission on Radiation Units and Measurements: Report 46. Pho-

ton, Electron, Proton and Neutron Interaction Data for Body Tissues, 1998.
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(a) (b) (c)

Fig. 2. (a) Thorax phantom (with a small water cylinder at the top-left corner used

for water scaling); (b) Low contrast lesions for CNR evaluation. (c) Lesion example

at 80 kVp with 14 HU contrast and 70000 primary photons (intensity window center:

45HU, width: 35 HU).

Contrast-to-noise ratio: The possible improvement in contrast-to-noise ratio
(CNR) of the data was evaluated by placing various small lesions inside the liver
(see Fig. 2b). Four different contrasts of where evaluated at five noise levels. The
liver and cirrhotic liver tissue composition was chosen according to the ICRU re-
port 46 with a density of 1.060 g

cm3 for the healthy liver tissue. The liver lesion
densities were set to 1.040, 1.045, 1.050 and 1.055 g

cm3 . The resulting contrasts are
29, 24, 19 and 14 HU for the effective 80 kV spectrum and 23, 18, 13 and 8 HU for
the 140 kV spectrum. The ratio of quanta in the low and high energy spectra was
kept fix at 3 to 1. Six different bandwidths were selected for the parameter b1:
0.5, 1.0, 2.0, 4.0, 7.0 and 11.0HU. The according b2-values were determined auto-
matically. Figure 3 shows an excerpt of the resulting CNR-values. The results show
an improvement in all cases as long as an appropriate bandwidth parameter is cho-
sen. The choice of a too large bandwidth can, however, decrease the resulting CNR
for very low contrasts. The possible dose reduction can be deduced by comparing
the number of primary photons needed to get a CNR value similar to the original
one. In the evaluated cases, 70% to 40% of the original photon numbers yield sim-
ilar CNR values. In general, the CNR gain is larger in the 140 kV cases, since the
tissue contrast in the 140kV images is smaller, so even small improvements with
respect to noise have a large impact in terms of CNR.

Quantitative accuracy and precision: For this evaluation we performed a two-
material BMD with the basis materials water and femur bone on the thorax
phantom introduced above. The liver lesions were removed and the medium
noise case was selected with 1.4 · 105 primary photons for the effective 80 kVp
spectrum. Here we use the BMD to estimate the spectral attenuation coefficients
μ(E,x) at every voxel position x. These coefficients are then weighted with an
effective 120 kVp spectrum (w120 kVp(E)) to create a virtual 120kVp image from
the input images by computing μ̄120kVp(x) =

∫∞
0

w120 kVp(E)μ(E,x)dE. The
resulting image is compared with the analytically computed ground truth data in
terms of mean-shift and standard deviation. The value-based noise reduction may
cause a minor shift of the mean attenuation values along with noise reduction.
This evaluation is meant to quantify the trade-off between noise reduction and
decrease in quantitative accuracy caused by the mean shift.
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Fig. 3. CNR test results for different contrasts at 80 kVp and 140 kVp tube voltage

and selected noise reduction parameters.

Table 1. Ground truth and calculated mean and standard deviation of attenuation

values for virtual 120 kVp image from original and processed images. All quantities

given in mm−1. The values show a very small bandwidth dependence of the quantita-

tive accuracy (mean values). The noise (standard deviation) decreases with increasing

bandwidth.

Bandwidth Average soft tissue Healthy liver Red Marrow

Ground Truth 2.072e-2 2.156e-2 2.050e-2

Original 2.060e-2 (1.605e-4) 2.140e-2 (1.655e-4) 2.039e-2 (3.711e-4)

1.08e-5 2.060e-2 (1.583e-4) 2.140e-2 (1.647e-4) 2.040e-2 (3.714e-4)

4.33e-5 2.059e-2 (1.286e-4) 2.140e-2 (1.526e-4) 2.044e-2 (3.643e-4)

8.66e-5 2.058e-2 (0.859e-4) 2.139e-2 (1.001e-4) 2.051e-2 (3.204e-4)

1.52e-4 2.059e-2 (1.002e-4) 2.138e-2 (1.094e-4) 2.054e-2 (2.665e-4)

Table 1 shows the results at different bandwidths for the tissues average soft
tissue (large area), liver (medium area) and red marrow (small area). Noise sup-
pression is achieved for all tissues at a tolerable mean shift. At lower bandwidths
the mean shift is almost negligible. At very high bandwidths the noise standard
deviation can get worse in some cases since the gradient ascent tends to the
wrong direction for some voxels.

Radiological evaluation: Images from seven different Dual-Energy scans were
presented to three radiologists in a typical clinical environment. We selected
data from typical examinations of different body regions with and without con-
trast agents and varying scan parameters. The input images were all Dual-Source
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images acquired with a Siemens Definition or a Siemens Definition Flash CT-
scanner (Siemens AG, Forchheim, Germany). The Siemens Definition device uses
80 kVp and 140 kVp tube voltages, whereas the Definition Flash uses 100 kVp
and 140kV with an additional tin-filter for the high-energy spectrum that im-
proves spectral separation. The images were presented in randomly ordered pairs
of original and denoised images with different bandwidth settings. The radiolo-
gists were asked to compare the image-pairs in terms of perceived noise level and
visibility of important details. We evaluate to which extent the perceived and
measured noise level can be reduced without important structures being visibly
weakened compared to the original images. The corresponding bandwidth pa-
rameter for each dataset is called optimal bandwidth in the following. Table 2 lists
the average measured noise reduction for the optimal bandwidth on all datasets.
All radiologists agreed that using the optimal bandwidth, a noise reduction could
be perceived in all Dual-Energy datasets.

Table 2. Average noise reduction for several different test scenarios with optimal

bandwidth setting. First number corresponds to low-kVp image, second to high-kVp.

Image noise was determined by evaluating the standard deviation in homogeneous

image regions. (∗) only 80kV image was evaluated for the ”Foot” dataset.

Dataset Head Foot∗ Liver Lung

Noise reduction −27%/ − 25% −33%∗ −29%/ − 25% −29%/ − 25%

Abdomen Lower Abdomen Pelvis

−20%/ − 32% −24%/ − 18% −22%/ − 22%

4 Conclusion

The introduced noise-reduction technique for Dual-Energy CT data showed the
potential of reducing image noise by about 20 to 30% in subjective tests on real
CT-images of various body regions. The quantitative accuracy was evaluated
in an energy calibration application on phantom data. It revealed a tolerable
accuracy loss of approx. 1 to 2% which is in the range of the overall accuracy of
a CT system. The noise standard deviation could be reduced by approx. 30% for
this application. A CNR test for small, low-contrast lesions yielded a CNR-gain
ranging from 10% to over 100% depending on noise level, tube voltage setting
and tissue contrast. The CNR values of the original image could be reproduced
with 30% up to 70% less primary photons needed. This is directly related to an
accordingly reduced radiation dose.
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Abstract. We propose a shape descriptor for 3D ear impressions, de-

rived from a comprehensive set of anatomical features. Motivated by

hearing aid (HA) manufacturing, the selection of the anatomical fea-

tures is carried out according to their uniqueness and importance in HA

design. This leads to a canonical ear signature that is highly distinctive

and potentially well suited for classification. First, the anatomical fea-

tures are characterized into generic topological and geometric features,

namely concavities, elbows, ridges, peaks, and bumps on the surface of the

ear. Fast and robust algorithms are then developed for their detection.

This indirect approach ensures the generality of the algorithms with po-

tential applications in biomedicine, biometrics, and reverse engineering.

1 Introduction

Shape analysis typically involves the abstraction of complex structures by re-
moving redundant details. It captures the essence of geometry via morphologi-
cal descriptors that emphasize more on informative and distinctive features of
the underlying surface. Such descriptors may be employed for classification in
addition to guiding registration [1] and segmentation. The problem is very chal-
lenging due to the variability of organic surfaces. Moreover, it is typically not
possible to consistently identify key features solely from geometric and topolog-
ical information, and the need of anatomical features becomes imminent.

We focus on the surfaces representing the external and outer human ear and
construct a canonical ear signature (CES). The idea is to derive a descriptor for
subsequent modeling of the anatomy of the human ear. This will eventually lead
to a 3D digital human ear atlas, and a framework for the design of implants and
prosthetic devices for the ear. This is in line with the recent trends in medical
image analysis, where the imaging technology is exploited for data modeling,
intervention planning, and corrective treatment. Our approach herein is to derive
the CES from the anatomy itself, which is quite well known in the medical
community. The first comprehensive atlas dates back to Gray in 1858 (Fig. 1(a),
with a 3D reconstruction in Fig. 1(b)). As shown, an ear impression consists of
a spindle shaped canal that sits deep in the outer ear and a base that resides
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(a) (b)

Fig. 1. The human ear anatomy (courtesy

[2]) and its 3D reconstruction

Fig. 2. Shell detailing and modeling. Last

item is the finished shell

in the external ear. The two are separated by a narrow opening called aperture.
Around the bottom of the external ear, there are two clamp like structures known
as tragus and anti-tragus. The deepest point in the external ear is the concha
peak that sits on the big bowl shaped concha. On the top, there is a narrow helix
structure sandwiched between the anti-helix and the crus. These anatomical
parts along with others are considered for the construction of the CES. Once a
3D impression of an ear is acquired, the problem then reduces to extracting its
signature representation. To this end, we adopt a generalized approach, and first
characterize the anatomical features into more generic topological and geometric
features, such as peaks, pits, concavities, elbows, ridges, and bumps. Fast and
robust algorithms are then constructed for the detection of generic features.
As a result, the application of proposed algorithms is not limited to ears. For
instance, the ridge detection algorithm may readily be used for tracing the nose
in face recognition, or the crest lines on human brains.

There is substantial literature on surface feature detection [3,4,7]. However,
not much work has been reported on ear shape analysis. We introduce three
major contributions: (a) It is the first work that comprehensively analyzes the
outer and external ear shape to automatically determine the CES. (b) Due
to the varied nature of the features, a collection of algorithms are proposed to
produce an overall system capable of their reliable detection. These methods
enable automation in the HA manufacturing (HAM) [6] and have the potential
of faster and more consistent design. (c) The resulting signature will serve as
a foundation to a 3D digital atlas of the human ear. In comparison to [3,7],
our algorithms are fast, and guarantee protection against broken ridges. We also
consider the detection of planes, which has not been attempted previously.

2 Canonical Ear Signature

First, we identify the anatomical constructs that uniquely identify the shape of
an ear impression. To this end, we are inspired by the HAM application. HAs are
generally custom made. Once a mesh is constructed from the 3D scan of an ear
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(a) (b) (c)

Fig. 3. Anatomical Features: (a) Points; (b) Curves and areas; (c) Planes and areas

impression, an operator carries out a sequence of surface modification operations
(Fig. 2), to design an HA shell [6]. Typically, he relies on manual measurements
(on sub-mm scale) implicitly using certain key anatomical features. Our hypoth-
esis is that since an HA is designed to comfortably fit the ear(s) of a patient, the
underlying features form a canonical representation of the anatomy. We have,
therefore, identified a comprehensive set of features that are well known in the
medical anatomy, and are implicitly used by HA designers (Fig. 3). Collectively,
they capture the structure of an ear in a Canonical Ear Signature.

3 Generic Feature Detection

Our approach to canonical feature detection is based on generalization. We char-
acterize various anatomical features via a set of generic features, peaks {Fp},
concavities {Fc}, elbows {Fe}, ridges {Fr}, and bumps {Fb}. Although some
anatomical features may not be represented by these geometric primitives, they
may still be derived from the latter or other derived features. Algorithms are
constructed for the generic features, thereby later providing a foundation for the
derived features. An advantage of such a hierarchical approach is that the generic
algorithms may readily be applied to other applications such as biometrics, and
reverse engineering, without compromising on the complexity. The relationship
between generic and anatomical features is tabulated in Table 1.

3.1 Problem Formulation

Let M be a 2D manifold representing a 3D ear impression embedded in R3 locally
parameterized as φ : Ω → M, where Ω ⊂ R2 represents the parameter space.
The problem is to detect a set of generic features F = {Fp ∪Fc ∪Fe ∪Fr ∪Fb}.

3.2 Peak Detection

A peak point is a prominent topological landmark on a surface. The basic idea
for its detection emanates from Morse theory, and involves defining a smooth
real valued function f : M → R on M to abstract its shape via critical points. A
point p = φ(u) ∈ M, u ∈ Ω is a critical point of f if the gradient of f ◦φ vanishes
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Table 1. Generic Characterization of Anatomical Features

Characterization Anatomical Features

Peak Canal Tip, Concha Peak, Helix Peak

Concavity Tragus, Anti-Tragus, Anti-Helix, Center of Crus

Elbow First Bend, Second Bend

Ridge Inter-Tragal Notch, Crus-Side Ridge, Crus-Helix Ridge

Bump Canal Bulbous

at u. A critical point p ∈ M is regarded as non-degenerate if the Hessian �2f ◦
φ(u) is non-singular at φ(u). f is called Morse, if all of its critical points are non-
degenerate. The problem, therefore, reduces to finding a suitable Morse function.
For peak detection, we employ a height function, h : M → R, that assigns to
each point p(x, y, z) ∈ M a value equal to its height, h(p) := h(x, y, z) = z. For
a non-degenerate surface, h is a Morse function and its critical points are the
peaks, passes and pits of the surface. We use it for peak detection as in [4].

The algorithm for detecting the critical points of h follows from Morse defor-
mation lemma, and analyzes the level sets of h (horizontal planes) for topological
changes. By gradually increasing h ∈ [0, H ] in K steps, we find the intersections
of the surface with corresponding planes. Intersections are subsequently analyzed
for changes in topology between two successive planes. If a change in topology
is detected, we notice the existence of a critical level between them, and zoom
in to analyze the surface with larger K (effective K ← K2, since the interval is
smaller). The process is repeated until convergence to a critical point.

3.3 Concavities

Concavities are marked by depressions on a surface. For their detection, we uti-
lize orthogonal scans on a surface to generate a surface profile that is composed
of the intersection contours. Spline representations of individual contours are
analyzed for variations in signed curvature, where the negative sign identifies a
concavity. First, a profile in one direction is considered, and subsections of con-
tours with negative curvature are identified. For these subsections, the points of
least curvature are found, with their average computed as a seed point. This seed
point is corrected by a scan, orthogonal to the previous scan, shifting it towards
the lowest curvature point. Consequently, the seed point is pushed deeper in the
valley. The process is repeated iteratively to achieve the absolute local minimum
similar to minimization by alternating variables. Once the center of concavity is
identified, region growing based on negative curvature is used to determine the
concave region.

3.4 Elbows

The detection of elbows in the presence of noise and bumps is quite challenging,
which limits the use of only the curvature. Our approach, first identifies points
of high curvature on a surface followed by a selection/rejection strategy to fit
a plane along the elbow. This leads to a robust algorithm when compared with
computations based solely on the skeleton.
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Fig. 4. Elbow Detection: (a) Scanning;

(b) Two planes (shown red) define the

ROI Mr in the computation of tc-

sensitive elbow (yellow). Black radial lines

represent the spline representations ri.

cr(t)

cp(t)

ĉr ĉp

Fig. 5. Dotted lines indicate correspon-

dence between cp and cr. Corresponding

points (qp, qr) are compared via their dis-

tances from individual centroids (ĉp, ĉr).

qp ∈ cp is bumpy if ||qp − ĉp||2 > ||qr −
ĉr||2. Red points are bumpy but not the

blue.

The proposed algorithm relies on a predefined region of interest (ROI) Mr ⊂
M. First, Mr is scanned with planes Pt oriented along the centerline c(t) : t ∈
[0, 1], to generate its x-sectional profile {cp} = {M ∩ Pt, ∀t ∈ [0, 1]} (Fig 4(a)).
The profile contours, thus, capture information about bends on the surface.
Correspondences are then established among these contours along the radial di-
rection (Fig 4(b)), and each radial contour is eventually represented by its spline
parametrization ri(t) for robustness to noise. Once radial contours are parame-
terized, we proceed to identify points Q = {qi} of maximal curvature along these
contours. However, not all points reliably represent an elbow, due to potential
presence of bumps. The set Q is, hence, pruned via a point rejection strategy for
plane fitting similar to the deterministic RANSAC to increase robustness.

3.5 Ridge Detection

We define a ridge r : [0, 1] → M as a geodesic on M characterized by points of
high curvature, κ : M → R. Note that local extrema of κ alone are not sufficient
for its detection, as isolated points may exhibit high curvature due to noise.
This is a major limitation of existing methods [3] in addition to their inherent
inability to maintain the integrity of a ridge if not prominent, or if broken.

At times, it is also required to identify a ridge in addition to its detection. We,
therefore, develop a method that first detects its starting and ending points ps

and pe respectively, using either the geometric information and/or some a priori
knowledge. A geodesic is then run between the two points. We are specifically
interested in a geodesic g that minimizes the cost of going from ps to pe, where
the cost is defined as a weighted combination of the geodesic distance and surface
curvature: C(g) =

∫ 1

0 w(κ(t))g(t)dt, where g(0) = ps and g(1) = pe and w(κ(t)) is
selected as a decreasing functional of curvature. Hence, the ridge is a minimizer
of C, and may easily be computed for a triangulated mesh, through Dijkstra’s
algorithm with curvature weighted edge lengths. Consequently, the resulting



560 S. Baloch et al.

ridge does not suffer from the limitations outlined earlier, and, its accuracy
depends solely on robust detection of the end points. Curvature weighting ensures
that the geodesic passes through the high curvature ridge.

3.6 Bumps

We are interested in bumps on somewhat tubular subsurfaces. A bump is charac-
terized with gentle slope, instead of pointy high curvature area. The problem is
significant in CAD, for removing unwanted bumps, or in medical image analysis,
for instance, for detecting soft-plaques in CT angiography.

Our approach is to analyze a tubular subsurface via x-sectional scans in an
ROI, Mr, to generate a set of profile contours {cp}. The problem is, hence,
reduced to (1) identifying the contours that correspond to a bump, followed by
(2) determining “bumpy points” of a “bump contour”. A reference contour cr is
defined, with which all cp are compared, starting at one end of Mr and gradually
moving towards the other. Mr is selected to be sufficiently large to avoid the
boundary of Mr falling on a bump. Hence, the x-section at a boundary of Mr

may be selected as the initial cr, which is later continuously updated with the
last contour found without a bump.

For the identification of bump contours, the area of each contour cp is com-
pared to that of cr. If it exceeds the reference area by a certain threshold tP , cp

is considered to be on a bump. Once a bump contour is identified, the challenge
lies in determining its bumpy part. A bump contour is projected to the plane of
cr. In this 2D subspace of the reference plane, a correspondence is found between
the projected points and cr. Corresponding points are then compared by way of
their distances from individual centroids. If the distance of a projected point to
the centroid of cp, ĉp, exceeds the distance of the corresponding reference point
to the reference centroid, ĉr, the point is marked bumpy. Such a criterion takes
into account possible shifts of centroids and gives accurate estimates for bump
points. After all x-sections are examined, bump points are binned into areas of
connected points through recursion within 1-ring neighborhood.

4 Anatomical Feature Detection

We now detect the CES. The inter-tragal notch and the crus-side ridge require
the detection of their end points. We use PCA of the x-section to identify two
points on the canal as candidates for the inter-tragal notch top and the crus-side
ridge top. The bottom of the inter-tragal notch is detected by considering the
convexity of the bottom contour between tragus and anti-tragus. Geodesics are
run from the ridge tops to the bottom point according to Section 3.5. The shorter
geodesic is classified as the inter-tragal notch. The other ridge top is regarded
the crus-side ridge top, and the shortest geodesic from this point to the bottom
contour is the crus-side ridge. For detecting bulbous areas, and first and second
bends, the canal was selected as the ROI. The canal-concha (or canal-crus)
intersection is detected as an intersection of two geodesics, one running along a
canal ridge, while the other traced from the concha peak (or crus).



Automatic Detection of Anatomical Features on 3D Ear Impressions 561

Fig. 6. Automatic detec-

tion of Point features: G =

GT, D = detected features

Fig. 7. Automatic detection of: (Top) Canal Bulbous;

(Bottom) Inter-tragal notch, crus-side ridge, and inter-

tragal notch flare

Helix ridge is detected as the shortest curvature weighted geodesic between
the helix and the shell boundary. Crus area is computed as the area enclosed
by appropriately weighted geodesics run between the following feature pairs:
(1) center crus-helix ridge bottom; (2) center crus-crus ridge bottom; and (3)
the boundary contour. Crus-concha intersection is detected by analyzing the
tangential profile of the intersection of the shell with the crus valley plane.

5 Experiments

Statistical validation of the detected features was carried out over a dataset of
198 shells, for which an expert annotated the Ground Truth (GT). Features were
then detected automatically, and compared with GT (e.g., Fig. 6).

For quantitative validation, point features were compared by way of their dis-
tance from the GT. The similarity measure for plane features considered their
orientation and location. Orientations were compared via inner product between
plane normals. Deviation of plane locations was the average distance between
the two planes. Sensitivity and specificity were used for validating area features.
The mean and standard deviations of these measures are given in Fig. 8. The
results indicate good agreement with the GT. For the crus area, the mean sen-
sitivity was found to be 0.83 with a mean specificity of 0.93. Since bulbous is
not always present on an impression, only its qualitative evaluation was con-
sidered (Fig. 7(Top)). The ridges were analyzed qualitatively and in more than
90% of the cases the experts were satisfied with the performance. Examples in
Fig. 7(Bottom) precisely follow the actual ridges on the canal. Inter-tragal notch
flare is also at the correct location, precisely where the saddle is formed.

In the second set of experiments, an expert provided acceptable error toler-
ances for various features (3mm for points and plane locations, 150 for plane
orientations). The success rate was then computed as the percentage of cases
that resulted in features within the acceptable range. Mean success rate was
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87% for points (excluding Canal-Concha Intersection) and 82% for the planes.
On average, all individual features exhibited acceptable performance (overall av-
erage deviation of ∼ 2mm and ∼ 100) with the exception of the Canal-Concha
Intersection and the Second Bend. Computationally, on average it takes 1.7s to
compute all features for a dense mesh (79ms per feature) of ∼23k vertices.

6 Conclusions

We have proposed a comprehensive set of features for canonical representation
of human ears, in addition to fast and robust algorithms for their detection.
The representation may be used for automatic design of HA shells [5], feature
guided registration, and classification. Due to their robustness, they have already
been introduced for the automatic design of HAs by a major HA manufacturer.
We emphasized that the utility of the proposed algorithms is not limited to the
HAs. They have been designed with generality in mind, thereby providing a very
powerful tool for medical image analysis and CAD.
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Abstract. Several sources of uncertainties in shape boundaries in med-

ical images have motivated the use of probabilistic labeling approaches.

Although it is well-known that the sample space for the probabilistic rep-

resentation of a pixel is the unit simplex, standard techniques of statisti-

cal shape analysis (e.g. principal component analysis) have been applied

to probabilistic data as if they lie in the unconstrained real Euclidean

space. Since these techniques are not constrained to the geometry of

the simplex, the statistically feasible data produced end up represent-

ing invalid (out of the simplex) shapes. By making use of methods for

dealing with what is known as compositional or closed data, we propose

a new framework intrinsic to the unit simplex for statistical analysis of

probabilistic multi-shape anatomy. In this framework, the isometric log-

ratio (ILR) transformation is used to isometrically and bijectively map

the simplex to the Euclidean real space, where data are analyzed in the

same way as unconstrained data and then back-transformed to the sim-

plex. We demonstrate favorable properties of ILR over existing mappings

(e.g. LogOdds). Our results on synthetic and brain data exhibit a more

accurate statistical analysis of probabilistic shapes.

1 Introduction

Numerous sources of uncertainties exist in shape boundaries including tissue het-
erogeneity [1], image acquisition artifacts, segmentation by multiple-raters, and
image segmentation algorithms intentionally designed to output fuzzy results
[2,3]. It is important not to ignore these uncertainties in subsequent analyses
and decision-making [1,4]. In order to capture information concerning uncer-
tainty in addition to the shape of multiple structures, probabilistic multi-shape
representations have been proposed. Being able to perform statistical analysis
on these probabilistic multi-shape representations is important in understanding
normal and pathological geometrical variability of anatomical structures.

Multi-shape non-probabilistic (crisp) representations have been proposed by
Tsai et al. [5], and Babalola and Cootes [6]. Leventon et al. adopted the signed
distance map (SDM) representation and performed linear principal component
analysis (PCA) to extract shape statistics [7]. Besides the fact that SDMs are
not designed to encode uncertainty, the main disadvantage of this method is
that it is not obvious how to impose a vector space structure on SDMs. This

T. Jiang et al. (Eds.): MICCAI 2010, Part III, LNCS 6363, pp. 563–570, 2010.
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is usually dealt with by projecting samples from the distribution given by the
PCA coefficients back onto the manifold of valid SDMs [8]. Pohl et al. used the
logarithm of the odds ratio (LogOdds) method to place probability atlases in
a linear vector space [9]. In [9], linear PCA was done on layered SDMs (inter-
preted as LogOdds maps) to build a statistical shape atlas of brain structures.
This means that, while the layered SDMs are exactly the logarithm-of-odds rep-
resentations, results after algebraic manipulation in the logarithm-of-odds space
often yield invalid SDMs (but still valid logarithm-of-odds representations). Us-
ing such results, computing probabilities as described in [9] may yield erroneous
likelihoods, since vector operations are not closed under the set of SDMs. Mal-
colm et al. proposed a mapping of labels to vertices of a regular simplex which
form the basis of a convex linear structure [10]. Hamarneh and Changizi proposed
a proper inverse function for label space representation based on barycentric co-
ordinates [11]. Performing linear PCA on the label space representation then
exploring the variational modes may result in new invalid points out of the sim-
plex (e.g. negative probabilities or sums exceeding unity). A possible remedy is
to project such points onto the simplex [12]. However, this causes points along
modes of variation (from some point onward) to collapse onto a single point,
which gives improper results and violates the indefinite Gaussian distribution
assumption of PCA. Another way to circumvent the problem is to impose some
limits when exploring the modes of variation to force the points to stay within
the simplex. This is undesired, however, as it renders traditional statistical ex-
ploration invalid, e.g. one may no longer be able to explore the variability within
±3 standard deviations from the mean.

Compositional or closed data are multivariate data with positive values that
sum up to a constant, usually chosen as 1. Compositional data has arisen in many
different disciplines such as geology (mineral compositions of rocks), environo-
metrics (pollutant compositions), economics (household budget compositions),
etc. [13]. We extend this list of application areas to anatomical compositions
within image pixels, resulting from the aforementioned uncertainties (e.g. par-
tial volume effect) [1,2,3,4].

Standard statistical techniques may lead to misleading results if they are di-
rectly applied to closed data. Statistical analysis of compositional data has been
a developing area since 1986, when Aitchison introduced two transformations
of compositional data to real space: the additive log-ratio (ALR) and the cen-
tered log-ratio (CLR) transformations, as well as a proper distance metric in the
simplex [13]. Aitchison applied classical statistical analysis to the transformed
observations, using ALR for modeling and CLR for those techniques based on
a metric. The underlying reason was that ALR does not preserve distances,
whereas CLR preserves distances but leads to a singular covariance matrix [14].
Egozcue et al. defined a new isometric log-ratio (ILR) transformation [15], which
is an isometry between the simplex and the real space of the same dimension,
avoiding the drawbacks of both ALR and CLR.

In this paper, we propose to consider the algebraic-geometrical structure
(Hilbert space) of the simplex, based on operations of perturbation, power
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transformation and the Aitchison inner product [13]. Through the ILR transfor-
mation, we develop techniques for statistical analysis of probabilistic multi-shape
representations, which are not only intrinsic to the simplex but are bijective, iso-
metric, and yielding non-singular covariance.

2 Methods

A sample space of compositional data, such as the probabilistic representation
x = [x1, x2, ..., xn] of a pixel with n labels, is an (n−1)-dimensional unit simplex
Sn−1 ⊂ Rn given as

Sn−1 =

{
x = [x1, x2, ..., xn] ∈ R

n | xi > 0, i = 1, 2, . . . , n ;
n∑

i=1

xi = 1

}
. (1)

Two basic operations were defined on the simplex by Aitchison [13]. (i) Pertur-
bation, which is analogous to displacement or translation in real space and is
defined for any x,y ∈ Sn−1 as

x ⊕ y = C[x1y1, x2y2, . . . , xnyn]. (2)

(ii) Power transformation, which is analogous to scalar multiplication in real
space and is defined for a vector x ∈ Sn−1 and a scalar α ∈ R as

α� x = C[xα
1 , x

α
2 , . . . , x

α
n]. (3)

In equations (2) and (3), C is the closure operation defined for a vector z =
[z1, z2, . . . , zn] ∈ Rn

+ as

C(z) =
[

z1∑n
i=1 zi

,
z2∑n
i=1 zi

, . . . ,
zn∑n
i=1 zi

]
. (4)

The internal simplicial operation of perturbation, and the external operation of
powering define an (n− 1)-dimensional vector space (indeed a Hilbert space) on
Sn−1 [16,17,18,19]. The structure can be extended to produce a metric vector
space by the introduction of the simplicial metric dS defined by Aitchison as [13]

dS(x,y) =

⎡⎣ 1
n

∑
i<j

(
ln

xi

xj
− ln

yi

yj

)2
⎤⎦

1
2

=

[
n∑

i=1

(
ln

xi

g(x)
− ln

yi

g(y)

)2
] 1

2

, (5)

where g(x) = (
∏n

i=1 xi)
1
n is the component-wise geometric mean of the compo-

sition. An inner product 〈x,y〉S and a norm ‖x‖2
S = 〈x,x〉S , consistent with this

metric, complete the Euclidean structure of the simplex:

〈x,y〉S =
1
D

∑
i<j

ln
xi

xj
ln

yi

yj
=

D∑
i=1

ln
xi

g(x)
ln

yi

g(y)
. (6)



566 N. Changizi and G. Hamarneh

Fig. 1. Left: Orthogonal grids of lines in R
2. Right: Orthogonal compositional lines

(colors correspond) in S2, equally spaced by 1 unit in Aitchison distance [13].

In any finite dimensional Hilbert space, a geodesic curve connecting two points
is understood to be the only continuous curve whose length is minimum with
respect to the distance metric of the space. Such a geodesic is a segment of a
‘straight’ line within the geometry of the space considered. To avoid confusion,
straight lines with respect to the Aitchison geometry are called compositional
lines (Figure 1). A compositional line going from x0 to x(t), with the leading
vector p, in Sn−1 is given by

x(t) = x0 ⊕ (t� p) t ∈ R, x0,p ∈ Sn−1. (7)

Three log-ratio transformations have been proposed so far to map the simplex
to the Euclidean real space. (i) The ALR transformation [13] (the same as
the LogOdds method [9]):

alr : Sn−1 → R
n−1, alr(x) = [ln

x1

xn
, ln

x2

xn
, . . . , ln

xn−1

xn
]. (8)

This transformation is asymmetric in the parts of the composition. By changing
the part in the denominator, we obtain different alr transformations. Although
all the statistical procedures are invariant under a permutation of the compo-
sitional parts [13]. But the main drawback of ALR is the fact that it is not an
isometric (but an isomorphic or bijective) transformation from the simplex, with
the Aitchison metric, onto the real space, with the ordinary Euclidean metric. In
fact, alr coefficients are coordinates in an oblique basis, something that affects
distances if the usual Euclidean distance is computed from the alr coordinates.
(ii) The CLR transformation [13]:

clr : Sn−1 → R
n, clr(x) = [ln

x1

g(x)
, ln

x2

g(x)
, . . . , ln

xn

g(x)
]. (9)

CLR is symmetrical in the components, but since the sum of the components
has to be zero, this transformation leads to a singular covariance matrix. CLR is
an isometry but between the (n− 1)-dimensional simplex Sn−1 and a subspace
of real space R

n. In this paper, we propose to adopt the third transformation:
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(iii) The ILR transformation [15]:

ilr : Sn−1 → R
n−1, y = ilr(x) = [〈x, e1〉S , 〈x, e2〉S , . . . 〈x, en−1〉S ]. (10)

ILR is based on the choice of orthonormal bases ei, i = {1, 2, . . . , n− 1} of the
simplex Sn−1 that can be calculated using the Gram-Schmidt procedure. The
ILR transformation of any x ∈ Sn−1 gives the coordinates of x with respect to
the basis e1, e2, . . . , en−1. The inverse ILR transformation corresponds to the
expression of x in the reference basis of Sn−1:

x = ilr−1(y) =
n−1⊕
i=1

(yi � ei), where yi = 〈x, ei〉S . (11)

3 Results

We first show the shortcomings of ALR and CLR in comparison to ILR. We
created 10,000 random pairs (x,y) of probability vectors for different number
of labels n = 2, 3, 4, sampled from a Dirichlet distribution with parameters
α1 = · · · = αn = 1, giving a uniform distribution within the (n− 1)-dimensional
open simplex and zero elsewhere [20]. We calculated the distance between the two
vectors in each pair in different spaces: (a) In Sn−1, using the simplicial metric
dS(x,y) from equation (5), (b) Euclidean distance between the ILR-transformed
vectors, i.e. |ilr(x)− ilr(y)|2, (c) |alr(x)−alr(y)|2, and (d) |x−y|2. The scatter
plots in Figure 2 show the relation between the different distances. Note how
only the distances of the proposed ILR-transformed vectors remain faithful to the
proper simplicial distance (diagonal line in the leftmost plot). We also show this
difference in distance calculations by starting with a set of probability vectors
forming a unit circle, according to the simplex geometry, in S2 and noting the
isometry (between S2 and R2) only when transforming these vectors to ILR
space, but not ALR or CLR (Figure 3).

Fig. 2. Comparing distances between 10,000 random pair of probability vectors calcu-

lated in the ILR space (Left), ALR space (Center), and Euclidean distances between

probability vectors (Right) vs. using the proper simplicial metric. Red, green, and blue

points correspond to distances between vectors with 2, 3, and 4 labels, respectively.

For ILR, all colored points collapse onto the diagonal.
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Fig. 3. Left to right: Unit circle according to the simplex (S2) geometry, transformed

isometrically to a unit circle in ILR space, distances are unpreserved in ALR space

whereas an extra dimension is added in CLR space

Next, we show that performing statistical analysis (e.g. PCA) in ILR and ALR
spaces lead to different results. In the first experiment, we sampled a simple
curve in S2 and transformed the samples to ILR and ALR. After performing
PCA in the Euclidean spaces of ILR and ALR, we back-transformed the results
to the simplex. We also performed PCA on the label space representation of the
samples. It is shown that moving along the modes of variation obtained from
ALR and ILR transformations result in different probabilities. It is also obvious
that, in label space, it is not allowable to move freely along the modes since, at
some point, the mode will leave the simplex (e.g. negative probabilities). This
experiment is repeated for a random set of points in S2 (Figure 4).

Fig. 4. For a given set of points (black) in S2, new points along the modes of variation

(−10 to 10
√

λ) are obtained using ILR (red) and ALR (blue), where λ is the variance

explained by that mode. Note that when the label space method is used (green), limits

are imposed (factors of
√

λ for each mode, shown where green reaches the simplex

boundary) to stay in the simplex

In the next experiment, we performed PCA on ILR and ALR-transformed
probabilistic segmentation maps of 20 subjects from BrainWeb [21]. For each
subject and at each pixel, 12 probability values capture the pixel’s fuzzy mem-
bership in 12 classes such as cerebrospinal fluid (CSF), gray matter (GM), and
white matter (WM). The mid-sagittal plane of all subjects are transformed to
ILR and ALR space. After performing PCA in those spaces, new probability
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Fig. 5. Columns 1–3 show the variability in the resulting probability maps for CSF,

GM, and WM. The 4th column uses the first three columns as RGB channels. λ is the

variance explained by the first mode. The 5th columns shows the simplicial distances

(errors when using ALR (logOdds)) between the two probability maps resulting from

ILR and ALR at each pixel.

maps along the first mode of variation are obtained and shown in Figure 5.
Different images obtained using ILR and ALR transformations show that the
error from ALR can be avoided using the proposed method. The simplicial dis-
tances between pixels of the the new probability maps using ILR and ALR
transformations are calculated and also shown in Figure 5.

4 Conclusions

We proposed an alternative probabilistic multi-shape representation: Isometric
Log-Ratio. It has several desired properties: forms a vector space, isometric and
thus isomprphic to the probability simplex, and results in a non-singular covari-
ance. These properties do not exist together in any previously offered probabilis-
tic computational anatomy work. We demonstrated how the lack of some of these
properties degrades the results, e.g. statistical analysis using linear PCA. In the
future, we intend to apply the method within the context of clinical applications.
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Abstract. Dynamic PET imaging performs sequence of data acquisi-

tion in order to provide visualization and quantification of physiological

changes in specific tissues and organs. The reconstruction of activity

maps is generally the first step in dynamic PET. State space H∞ ap-

proaches have been proved to be a robust method for PET image re-

construction where, however, temporal constraints are not considered

during the reconstruction process. In addition, the state space strategies

for PET image reconstruction have been computationally prohibitive for

practical usage because of the need for matrix inversion. In this paper,

we present a minimax formulation of the dynamic PET imaging problem

where a radioisotope decay model is employed as physics-based tempo-

ral constraints on the photon counts. Furthermore, a robust steady state

H∞ filter is developed to significantly improve the computational ef-

ficiency with minimal loss of accuracy. Experiments are conducted on

Monte Carlo simulated image sequences for quantitative analysis and

validation.

1 Introduction

Dynamic positron emission tomography (PET) is a molecular imaging tech-
nique that is used to monitor the spatiotemporal distribution of a radiotracer in
vivo [1]. Dynamic PET performs sequence of contiguous short-interval scans, and
the reconstructed activity maps reflect the real-time concentration of radiotrac-
ers in tissues. The activity maps are conventionally reconstructed frame-by-frame
from the dynamic data sequence with analytical or statistical methods, without
taking into consideration potential temporal relations between frames. Further,
through application of a priori models, parameter maps can be recovered to il-
lustrate the dynamic changes of radiotracer kinetics. Together, the activity maps
and the parameter maps provide visualization and quantification of physiolog-
ical changes that indicate the functional states of specific tissues that are of
significant research and clinical values [2,3].

Many research efforts have concentrated on the design of iterative statistical re-
construction algorithms for PET activity reconstruction [4], such as those based
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on expectation maximization(EM) and maximum a priori (MAP) criteria. These
strategies assume the statistical distribution of acquired data to be known, which
is not necessarily valid for corrected data from most clinical scanners. Liu et al.
have first introduced a robust state space approach for PET image reconstruc-
tion [5], where they have utilized the robust H∞ filtering without any assump-
tions on the system and data noise statistics. However, as all other frame-by-frame
methods, it ignores temporal constraints in the dynamic reconstruction of the
image sequence. Recently, Gao et al. have extended the work to dynamic dual-
tracer PET reconstruction [6] where they introduced the temporal radioisotope
decay model. However, the radio decay model is not incorporated as temporal con-
straints but rather used to separate two radioisotopes with drastically different
half lives. Furthermore, a big shortcoming of these state space H∞ reconstruction
algorithms is their computational complexity because of the need for large-scale
matrix inversion, which has hindered their practical value.

In this paper, we concentrate on the development of an efficient and robust
minimax activity reconstruction framework with radioisotope physics-based tem-
poral constraints. The radio decay model, considering the natural decay prop-
erty of the radioisotope, is introduced into the objective function as the temporal
guidance for multi-frame image sequence reconstruction. The optimization prob-
lem is solved by continuous steady state H∞ filter for all image frames[7], which
yields robust and accurate results with significant computation reduction com-
pared to conventional H∞ filter reconstruction. Experiments are conducted on
Monte Carlo simulated image sequences for quantitative analysis and validation.

2 Theory

2.1 Radioisotope Decay Constrained Dynamic PET Imaging

The projection equation of dynamic PET imaging can be formulated through
an affine transform between the projection data and emission object as:

y(t) = Dx(t) + r(t) + s(t) (1)

where the emission sinogram data is represented by a vector y, and the activity of
emission object is represented by x. D is system probability matrix, which gives
the probability of a photon emitted from ith voxel being detected in projection
jth bin. t is the time frame. r and s are the contributions of random coincidence
events and scatter coincidence events. After the conventional online delayed-
window random correction, the equation(1) can be rewritten as:

y(t) = Dx(t) + e(t) (2)

here e is an error vector, which represents unknown measurement uncertainties
including scatter coincidence events.

In the conventional state space reconstruction of PET imaging, the distribu-
tion of the radioisotopes in the body is assumed to be temporally stationary
corresponding to the autoradiographic model, however, in the real situation, the
radioisotope will decay with time, and its activity at time t should be
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x = X0e
ln(0.5)

T t (3)

here X0 is the initial activity distribution, and T is the half life of the radioiso-
tope. So the real-time change of radioisotope can be represented as

dx

dt
= X0

ln(0.5)
T

e
ln(0.5)

T t (4)

then the dynamic change of radioisotope from one frame to the next can be ob-
tained from the integral of equation(4). A general representation of state tran-
sition will be

x(t + 1) = H(t)x(t) + v(t) (5)

where x(t) is the radioactivity concentration at time frame t, and H(t) is a coeffi-
cient matrix for state transition at time frame t. v(t) represents the uncertainties
during state transition. With the introduction of decay model shown as equa-
tion(5), we are able to make use of the radioisotope’s own temporal properties
as constraints to guide our reconstruction.

2.2 Robust Reconstruction Criterion

Seeking solutions under uncertainties is a difficult problem. Robust discrete op-
timization seeks to identify solutions that will perform well under any circum-
stances. Although many criteria are available, one reasonable choice is the mini-
max criterion, which allows one to identify a robust solution as one that has the
best worstcase performance. In general, a robust discrete optimization problem
can be formulated as follows. Let X be the set of all solutions, E be the set of
uncertainties of measurement in single time frame, M be the set of uncertainties
for state transition among time frames, and performance of a solution x ∈ X
under uncertainties e ∈ E and v ∈ M be F (x, e, v), now the problem is to find
the solution that has the best worst-case performance, which is the same as min-
imizing (over all solutions) the maximum (over all uncertainties) performance:

min
x∈X

max
e∈E,v∈M

F (x, e, v) (6)

from the description of equation(2) and (5), the estimation of activity distribu-
tion x(t) at time t is not only computed based on measurement y(t), but also
affected by previous estimations, so we define a linear combination of x(t) as

z(t) = Fx(t) = g(x(k), H(k), v(k)) k = 1, 2...t (7)

so the measurement of performance F (x, e, v) is given by

J =

∑
‖z(t) − ẑ(t)‖2

Q(t)

‖x(0) − x̂(0)‖2
p−1

o
+
∑

(‖v(t)‖2
V (t)−1 + ‖e(t)‖2

N(t)−1)
(8)

where the notation ‖x‖2
G is defined as the square of the weighted (by G) L2 norm

of x (i.e. ‖x‖2
G = xTGx). N(t), V (t) and Q(t) are the weighting matrices for the
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measurement uncertainties, state transition uncertainties, and the estimation
error at time t respectively. x̂(0) is the initial estimate of the state. po is the
weighting matrix for the initial conditions. With the state estimate x̂(n) at time
n, the measurement uncertainty e(n) and state transition uncertainty v(n) can
be expressed as e(n) = Y (n) −Dx̂(n) and v(n) = x̂(n + 1) −H(n)x̂(n). Then
both the measurement-system matrix constraint and decay model constraint are
implied in J . The optimal estimate z(t) among all possible ẑ(t) should satisfy:

‖J‖∞ = supJ < γ2 (9)

where γ2 > 0 is a prescribed level of disturbances. It is assumed that the L2

norms of e(t) and v(t) exist. Then the minimax performance criterion of equa-
tion(8) where the estimator strategy z(t) playing against the exogenous inputs
e(t), v(t) and the initial state x(0) becomes

min
z(t)−ẑ(t)

max
v,e,x(0)

J =
∑

‖z(t) − ẑ(t)‖2
Q(t) − γ2‖x(0) − x̂(0)‖2

p−1
o

−γ2
∑

(‖v(t)‖2
V (t)−1 + ‖e(t)‖2

N(t)−1) (10)

Now the problem becomes to solve the above objective function, and the decay
model is successfully incorporated. Robust H∞ filter solution has already been
presented in[5], so here we concentrate on a more efficient steady state H∞ filter.

2.3 Efficient Implementation

A matrix inverse is required at every time step in conventional H∞ filter in
order to calculate the H∞ gain. Generally, inversion of small matrices is fairly
easy, but the inversion of a large matrix will require more computational costs
in a practical implementation. The steady state H∞ filter is much easier to be
implemented in a system in which real-time computational effort or code size is
a serious consideration [7].

The minimax objective function is given as equation(10), where the parame-
ters (N,V and Q) are symmetric positive definite matrices based on the specific
problem. Since the designed parameters of the underlying system can be treated
as fixed values for input, then the steady state solution to the minimax problem
can be obtained. Referring to H∞ filter, the steady state solution will be

K = PSDTN−1 (11)
P = HPSHT + V (12)

x̂(m + 1) = Hx̂(m) + HK(m)(y(m) −Dx̂(m)) (13)
S = (I − γ−2Q̄P + DTN−1DP )−1

Q̄ = FTQF

In order to have a solution to the problem, the following condition must be hold:

P−1 − γ−2Q̄ + DTN−1D > 0 (14)
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If γ−2,F , N or Q is too large, or D is too small, the H∞ estimator will have no
solution. After the conditions above satisfied, equation(12) can be written as

P = H [P−1 − γ−2Q̄ + DTN−1D]−1HT + V (15)

Applying the matrix inversion lemma to the inverse of the above expression, we
can get

P = HP − P [P + (−γ−2Q̄ + DTN−1D)−1]−1PHT + V

= HPHT −HP [P + (−γ−2Q̄ + DTN−1D)−1]−1PHT + V (16)

Equation(16) is a discrete-time algebraic Riccati equation that can be solved by
control system software or numerically iterating equation(12) until it converges
to a steady state value.

The disadvantage of the steady state H∞ filter is that theoretically it does not
perform as well as the time-varying filter. However, the reduced performance that
is seen in the steady state H∞ solution is often a small fraction of the optimal
performance, whereas the computational saving can be significant [7].

3 Experiments and Results

The data set used for validation in this study was acquired by Monte Carlo
simulations. Monte Carlo simulations can provide a relatively accurate reference
for the development and assessment of new image reconstruction algorithms.
Simulations in our study are performed using toolbox GATE. The simulated
PET scanner is the newly designed full 3D whole body PET scanner Hama-
matsu SHR74000 from Hamamatsu Photonics K.K.. The phantom chosen here
for simulations is Zubal thorax phantom.

2 experiments were performed here. In the 1st experiment, the number of
coincidence events acquired in every time frame was controlled to be similar, and
this is in accordance with the conditions of conventional state space H∞ filter
reconstruction. However, in real situation, it is not easy to control the number
of coincidence events in every time frame, so we designed the 2nd experiment
that sampled the data with the same time interval more intuitively. These 2
experiments are named as Experiment 1 and Experiment 2 in the following
parts respectively. The initial activity per voxel was set to be low to avoid the
contamination of random coincidence events. In Experiment 1, 20 time frames
were acquired in all, and the total number of coincidence events was around
68k for every time frame; in Experiment 2, same 20 time frames were acquired
in all, but the acquisition time was set to be 360s for every time frame. The 2
experiments correspond to 2 different protocols for dynamic PET acquisition.

The simulation outputs were stored in sinograms. Before reconstruction, ran-
dom correction, normalization correction, attenuation correction and scatter cor-
rection were performed properly. The sinograms were reconstructed as images of
size 128 × 128 by H∞ filter without decay model, H∞ filter with decay model
and steady state H∞ filter respectively.
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Experiment 1 Experiment 2
Frame 1 Frame 10 Frame 20 Frame 1 Frame 10 Frame 20

(a)

(b)

(c)

(d)

Fig. 1. True activity distributions and reconstructed images at time frame #1, #10

and #20 in 2 experiments. (a): true activity. (b): H∞ filter reconstruction without

decay model. (c): H∞ filter reconstruction with decay model. (d): steady state H∞
filter reconstruction.

Fig. 1 gives the true activity distributions and reconstructed images of the
central slice by 3 algorithms of both experiments at time frame #1,#10 and #20.
The reconstruction results from H∞ filter with decay model show better recovery
of activity distributions than H∞ filter without decay model. Steady state H∞
filter can also reconstruct the activity distributions properly: the regions with
high activity concentration are recovered well, but the non-activity regions are
little overestimated.

Since these experiments are based on Monte Carlo simulations, we can get
the true activity distributions at anytime exactly. In order to analyze the recon-
struction results quantitatively, we define the Variance (Var) as follow: V ar =

1
n−1

∑n
i=1

(xi−x̂i)
2

x̂2
i

, where xi is the estimated activity value of pixel i, x̂i is the
true activity value of pixel i, and n is the number of pixels.

The calculated variances between reconstruction results and true activity dis-
tributions through all time frames are plotted in Fig.2, and some results are
extracted and listed in Table.1 for better understanding. From the quantita-
tive analysis, in Experiment 1, due to the similar number of coincidence events
acquired through all time frames, which corresponds to the assumptions of con-
ventional H∞ filter reconstruction without decay model, reasonable results can
be obtained through all the time frames by it; but in Experiment 2, the experi-
ment conditions do not agree with the assumptions, so the calculated variances
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Fig. 2. Variances of reconstructed images by 3 algorithms through all time frames

Table 1. Variances of reconstructed images by 3 algorithms in Experiment 1 and

Experiment 2 at time frame #1, #5, #10, #15 and #20

Variances of Experiment 1 Frame 1 Frame 5 Frame 10 Frame 15 Frame 20

H∞ without decay model 0.2657 0.2664 0.2662 0.2662 0.2662

H∞ with decay model 0.2316 0.2314 0.2314 0.2314 0.2314

Steady State H∞ 0.2320 0.2318 0.2355 0.2408 0.2624

Variances of Experiment 2 Frame 1 Frame 5 Frame 10 Frame 15 Frame 20

H∞ without decay model 0.2342 0.2595 0.4066 0.7393 1.1914

H∞ with decay model 0.2567 0.2331 0.2239 0.2206 0.2136

Steady State H∞ 0.2922 0.2784 0.2470 0.2345 0.2090

become larger as time increases, which means the quantitative accuracy of re-
construction results becomes worse. However, for the reconstruction results by
H∞ filter with decay model, due to the introduction of the decay model, they
are already more accurate than that reconstructed by H∞ filter without decay
model in Experiment 1, furthermore, in Experiment 2, as a result of the temporal
constraints of the decay model in reconstruction, the reconstruction results are
much more stable through all the time frames, and the quantitative accuracy
of reconstruction results are similar for all time frames and much better than
that reconstructed by H∞ filter without decay model. The variances are reduced
by 11% and 57% in average for Experiment 1 and Experiment 2 respectively.
For steady state H∞ filter reconstruction, the results are not so stable as H∞
filter with decay model and the quantitative accuracies are little worse, but the
reconstruction results are still much better than that reconstructed by H∞ fil-
ter without decay model, most importantly, significant computation saving is
achieved by steady state H∞ filter shown as follow.



578 F. Gao, H. Liu, and P. Shi

Table 2. Time consumptions of 3 algorithms in Experiment 1 and Experiment 2

Algorithm H∞ without decay model H∞ with decay model Steady State H∞
Experiment 1 5536s 6228s 127s

Experiment 2 30531s 39924s 540s

In this paper, all reconstructions are finished using MATLAB on a single
2.26GHz CPU, 12G RAM PC. The time consumptions are summarized in
Table.2. Compared with H∞ filter, the computation costs were reduced by 99.7%
in Experiment 1 and 98.6% in Experiment 2 by using steady state H∞ filter.
This makes steady state H∞ filter more efficient for practical usage, furthermore,
there are cases that steady state H∞ filter is used in embedded system, so further
acceleration may be achieved by hardware. Related researches are underway.

4 Conclusion

An efficient and robust minimax activity reconstruction for dynamic PET imag-
ing with radioisotope decay constraints is proposed in this paper. A physical
decay model is introduced as temporal guidance in reconstruction. A robust
steady state H∞ filter is adopted to solve the problem which leads to significant
computation reduction and makes the algorithm more efficient and practical.
Reconstruction results from simulation experiments show the robustness and
improvement in quantitative accuracy of the minimax reconstruction with decay
model. The time consumption analysis shows the efficiency of the steady state
H∞ filter.
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Abstract. In this paper we introduce a novel approach for inferring

articulated spine models from images. A low-dimensional manifold em-

bedding is created from a training set of prior mesh models to establish

the patterns of global shape variations. Local appearance is captured

from neighborhoods in the manifold once the overall representation con-

verges. Inference with respect to the manifold and shape parameters is

performed using a Markov Random Field (MRF). Singleton and pairwise

potentials measure the support from the data and shape coherence from

neighboring models respectively, while higher-order cliques encode geo-

metrical modes of variation for local vertebra shape warping. Optimiza-

tion of model parameters is achieved using efficient linear programming

and duality. The resulting model is geometrically intuitive, captures the

statistical distribution of the underlying manifold and respects image

support in the spatial domain. Experimental results on spinal column

geometry estimation from CT demonstrate the approach’s potential.

1 Introduction

Statistical models of shape variability have been successful in addressing funda-
mental vision tasks such as segmentation and registration in medical imaging.
For example, Active Shape and Appearance Models have been used in recovering
single object geometries obtained from dense collection of data points. Implicit
representations is an alternative formulation to address model-based segmenta-
tion while more recently numerous methods based on point distribution models
(PDM) and embedding on various geometric spaces (spherical [1]) have been
proposed. However, in the case of articulated objects such as the spinal column,
model-based segmentation of single objects typically leads to fitting errors when
pathologies are present. The result is thereby sensitive to model initialization
and therefore limited to the capture range. Simultaneous multi-object inference
is often beneficial compared to the separate segmentation of individual objects.
In [2], an extension of PDMs was considered for modeling relations between
shape constellations using conditional probabilities between 2D-contours. Rigid
� Funding provided by Stereos+ (Medicen), INRIA and FQRNT grants.
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transformations were considered as statistics between part sets to create recon-
structed models [3], achieve CT segmentation [4] and multi-modal inference [5].

On the other hand, the high dimensionality and complex non-linear underlying
structure unfortunately makes the commonly used linear statistics inapplicable
for articulated structures. A manifold learning algorithm of particular interest to
this work is locally linear embedding [6]. It maps high-dimensional observation
data that are presumed to lie on a nonlinear manifold, onto a single global
coordinate system of lower dimensionality. Such a concept reveals the underlying
structure of the data which can be used for statistical modeling. Inferring a model
from the underlying manifold is a novel concept but far from being trivial. In this
work, we tackle the problem of spinal deformity pathologies to model both global
statistics of the articulated model and local shape variations of vertebrae based
on local measures. We propose a spine inference/segmentation method from CT,
where the model representation is optimized through a Markov Random Field
(MRF) graph, balancing prior distribution with image data.

We introduce a deformable articulated spine instantiation through a statisti-
cal modeling of inter-object transformations. Our method is structured in two
parts. The first relates to the creation of a nonlinear manifold embedding of
spine articulations which can handle both small and large deformations in a
given population. To this end, a novel articulated metric is introduced to create
local linear patches. Second, we propose an inference framework using high-order
MRF. This graph involves costs related to the imaged data, prior geometrical
dependencies and global higher-order cliques. This paper is organized as follows.
Section 2 presents the theoretical methodology for the manifold representation
of articulated mesh models, while in Section 3 we propose the MRF-based infer-
ence framework. In Section 4 we present our evaluation results applied to images
of the spinal column and the last section concludes the paper.

2 Manifold Embedding of Articulated Spine Models

The method performs an embedding of a training set of annotated vertebra shape
constellations into a sub-space which dimensionality corresponds to the domain
of admissible variations. Local shape is determined via analysis of variations in
patch of the manifold. Fig. 1 illustrates a flowchart of the method.

Fig. 1. Flowchart diagram of the proposed spine inference approach.
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2.1 Representation of Articulated Spine Models

Our spine model S = {s1, . . . , sL} consists of an interconnection of L verte-
brae. For each vertebra si, we recover a triangular mesh with vertices {vi

j |j =
1, . . . , V }, where the jth vertex corresponds to approximately the same location
from one shape to another and V the number of vertices. Additionally, every si

is annotated with landmarks on each model to rigidly register each object to its
upper neighbor. Hence, an articulated deformable model (ADM) is represented
by a vector of local inter-vertebral rigid transformations A = [T1, T2, . . . , TL].
To perform global shape modeling of S, we convert A to an absolute represen-
tation Aabs = [T1, T1 ◦ T2, . . . , T1 ◦ T2 ◦ . . . ◦ TL] using recursive compositions.
The transformations are expressed in the local coordinate system (LCS) of the
lower vertebra. Center of transformation is the intersection of all 3 vertebral
axes, following antero-posterior, cranial-caudal and left-right directions. Rigid
transformations described here are the combination of a rotation matrix R, a
translation t and scaling s. We formulate the rigid transformation T = {s,R, t}
of a triangular mesh model as y = sRx + t where x, y, t ∈ �3.

2.2 Nonlinear Manifold Embedding of Articulated Spine

Given a training set of N articulated spine shape models S expressed by the
absolute vector representation Ai

abs of dimensionality D, we seek their low-
dimensional manifold M with points Yi, Yi ∈ �d where d � D. The set consisted
of pre-reconstructed patient X-rays exhibiting a wide range of deformities (nor-
mal to severe). A free-form deformation was applied to obtain vertebral meshes
with vertex correspondences. In all, 6 classes of spine deformations were included
to represent the underlying population structure. In the sub-cluster correspond-
ing to a pathological population, each individual point of the training set and
its neighbours would lie within a locally linear patch on the manifold.

Nearest neighbor selection. In our approach, we adopt the intrinsic nature
of the Riemannian manifold geometry allowing us to discern between articulated
shape deformations in a topologically suited framework. The K closest neigh-
bours are selected for each point using a distortion metric adapted for geodesic
metrics, defined as dM(Ai

abs,A
j
abs) which estimates the distance of models i, j.

Distance measure can be expressed as a sum of the L articulation deviations:

dM(Ai
abs,A

j
abs) =

L∑
k=1

dM(T i
k, T

j
k ) =

L∑
k=1

‖ci
k − cj

k‖ + dG(Ri
k, R

j
k) (1)

where the canonical representation encodes the intrinsic (c) and orientation (R)
parameters. The first term evaluates intrinsic distances in the L2 norm evalu-
ating the inter-vertebral translations. The second defines a diffeomorphism dG

between rotation neighborhoods. We use the concept of geodesics to evaluate the
unfolding in the manifold space M of orientation vectors in order to estimate
how both diverge from the tangent plane.
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Forward and inverse manifold mapping. The manifold is built by locally
linear embedding [6], where the low-dimensional representation of an absolute
articulated vector Ai

abs is obtained from it’s neighbors Aj
abs for all data points.

Hence, a new ADM can be inferred in the embedded d-space as a low-dimensional
data point by finding its optimal manifold coordinates Yi. To obtain the articula-
tion vector for a new embedded point in the ambient space, one has to determine
the representation in high-dimensional space based on its intrinsic coordinates.
The inverse mapping of Yi is performed by estimating the relationship between
the D-space and manifold M as a joint distribution. The manifold should fol-
low a conditional expectation which captures the overall trend of the data in a
local neighborhood of the manifold. Using Nadaraya-Watson regression, Gaus-
sian kernels are used to estimate these densities in the conditional expectation
setting [7]. By assuming the kernels G generalizes the expectation such that the
observations are defined in terms of a metric dM in manifold space:

fNW(Yi) = argmin
Ai

abs

∑
j∈N (i) G(Yi, Yj)dM(Ai

abs,A
j
abs)∑

j∈N (i) G(Yi, Yj)
(2)

which integrates the distance metric dM(Ai
abs,A

j
abs) defined in (1) and updates

fNW(Yi) using the closest neighbors of point Yi in the manifold space. This
constrains the regression to be valid for similar data points in its vicinity since
locality around Yi preserves locality in Ai

abs.

2.3 Local Vertebra Appearances in the Manifold

The key idea of capturing vertebral shape appearance lies on the assumption
that global models, represented in a local neighborhood of M, will also manifest
similar local geometries. The motivation stems from the fact that global shape
deformation belonging to the same class will induce similar local biomechan-
ical patterns, creating morphologically comparable vertebrae. We assume here
that vertebra appearances follow a linear distribution within the low-dimensional
manifold. Hence, given a data point Yj and its K neighbors, the local shape
model si, representing the ith element of the ADM, is obtained by building a
particular class of shapes given the set of examples {s1

i , ..., s
K
i }. We approxi-

mate the distribution of the shape using a parameterized linear model by com-
puting the deformation vectors formed for the K − 1 shape samples. We com-
pute the n eigenvalues and corresponding eigenvectors v so that a new vertebra
snew
i = s̄i + [v1 . . . vn][ω1 . . . ωn] can be instantiated where s̄i is the mean shape

of the K neighboring local objects and w = [ω1 . . . ωn] the weight vector. This
step warps individual instances to infer new local vertebra models.

3 Inference through MRF Optimization

Once an appropriate modeling of spine shape variations is determined, a success-
ful inference between the image and manifold must be accomplished. We describe
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here how a new model is deformed. We search the optimal embedded manifold
point Y = (y1, . . . ,yd) of the global spine model. Such a strategy offers an ideal
compromise between the prior constraints, as well as the individual shape varia-
tion described by the weight vector W = (w1, . . . ,wn) in a localized sub-patch.
The energy E of inferring the model S in the image I is a function of the set of
displacement vectors Δ in the manifold space for global shape representation.
This involves: (a) a data-related term expressing the image cost and (b) a global
prior term measuring deformation between low-dimensional vectors with shape
models. The third term represents (c) a higher-order term which is expressed by
the reconstruction weights Ω for local vertebra modeling. The energy E can be
expressed as the following combination of a global and local optimization:

E
(
S0, I, Δ,Ω

)
= V

(
Y0 + Δ, I

)
+ α V

(
N, Δ

)
+ β V

(
H, Δ,Ω

)
. (3)

3.1 Rigid Alignment of the Spine

The global alignment of the model with the target image primarily drives the
deformation of the ADM. The purpose is to estimate the set of articulations
describing the global spine model by determining its optimal representation Y0

in the embedded space. This is performed by obtaining the global representation
using the mapping in (2) so that: fNW(Yi + Δ) = fNW({y1 + δ1, . . . , yd + δd}).
This allows to optimize the model in manifold space coordinates while retrieving
the articulations in I. The global cost can be expressed as:

V
(
Y0 + Δ, I

)
= V

(
fNW({y1 + δ1, . . . , yd + δd}), I)

)
. (4)

The inverse transform allows to obtain Ai
abs +D, with D as deformations in the

image space. Since the transformations Ti are implicitly modeled in the absolute
representation A0

abs, we can formally consider the singleton image-related term
as a summation of costs associated with each L vertebra of the ADM:

V
(
A0

abs + D, I
)

=
L∑

i=1

Vi

(
si ∗ (T 0

i + di), I
)

(5)

where Vi(s, I) =
∑

vi∈s nT
i (vi)∇I(vi) minimizes the distance between mesh

vertices of the inferred ADM and gradient image I by a rigid transformation.
Here, ni is the normal pointing outwards and ∇I(vi) the image gradient at vi.

The prior constraint for the rigid alignment are pairwise potentials between
neighboring models yi such that the difference in manifold coordinates is minimal
with regards to a prior distribution of neighboring distances P :

αV
(
N, Δ

)
= α

∑
i∈G

∑
j∈N (i)

Vij(y0
i + δi, y

0
j + δj , P ). (6)

This term represents the smoothness term of the global cost function to ensure
that the deformation δi applied to point coordinates are regular, with Vij = (0, 1)
a distance assigning function based on the distances to P .
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3.2 Non-rigid Adaptation of Vertebral Shapes

Finally, local shape geometry for each of the ADM’s vertebrae is obtained by
varying the weight parameters of the principal variations. We parameterize these
potentials with a set C of clique variables c, controlled by high-order potential Vc

[8] which assigns a cost to a configuration of c. Each clique are assigned to weight
vectors ωc. Hence the third term of (3) is described as a high-order functional:

β V
(
H, Δ,Ω

)
= β

∑
c∈C

Vc(w0
c + ωc) (7)

where independent clique variables c are treated as a graph minimization prob-
lem. The prior term is represented by higher-order potentials of degree n, based
on the eigenvalues of the L local vertebrae from our model S. Our work is in-
spired from a mesh reconfiguration [9] where costs are associated to cliques c
based on the positions of the morphed mesh vertices vi. A search is performed
along the normal ni from vi to find the optimal compromise between boundary
detection and the distance to the mean eigenvalue shape. We therefore penalize
deformations which deviates from the local distribution.

One can integrate the global data and prior terms along with local shape
terms parameterized as the higher-order cliques, by combining (4), (6) and (7):

E
(
S0, I, Δ,Ω

)
= V

(
fNW({y1 + δ1, . . . , yd + δd}), I)

)
+ α

∑
i∈G

∑
j∈N (i)

Vij(y0
i + δi, y

0
j + δj) + β

∑
c∈C

Vc(w0
c + ωc). (8)

3.3 Energy Minimization

The optimization strategy of the resulting MRF (8) in the continuous domain
is not a straightforward problem. The convexity of the solution domain is not
guaranteed, while gradient-descent optimization approaches are prone to non-
linearity and local minimums. We seek to assign the optimal labels LΔ =
{l1, . . . , ld} and LΩ = {l1, . . . , ln} which are associated to the quantized space Δ
of displacements and local weight parameters Ω respectively. We consider that
displacing the coordinates of point y0

i by δli is equivalent to assigning label li
to y0

i . An incremental approach is adopted where in each iteration t we look for
the set of labels that improves the current solution s.t. yt

i = y0
i +

∑
t δlit, which

is a temporal minimization problem. Then (8) can be re-written as:

Et(LΔ,LΩ) = V
(
fNW({yt−1

1 , lΔ1 , . . . , yt−1
d , lΔd }), I)

)
+ α

∑
i∈G

∑
j∈N (i)

Vij(yt−1
i , yt−1

j , lΔi , lΔj ) + β
∑
c∈C

Vc(wt−1
c , lΩc ). (9)

We solve the minimization of the higher-order cliques in (9) by transforming
them into quadratic functions [8]. We apply the FastPD method [10] which
solves the problem by formulating the duality theory in linear programming.
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4 Experiments and Results

In order to evaluate the performance, we considered modeling pathological spinal
columns for CT inference. We used a database of N = 711 spine models recon-
structed in 3D and exhibiting different types of deformations relative to global
and local shapes. For each spine, 6 landmarks on each of the 17 vertebrae compos-
ing the spinal column where used to extrapolate the inter-object transformation
(Fig. 2(a)). Optimal neighborhood size was found at K = 10, while intrinsic
dimensions was d = 7 and n = 5, dictating the number of nodes in our global
graph model. α and β balance the contribution of the energy terms and set at 0.3
and 0.5 respectively. We tested the algorithm on a subset of 20 unseen 3D recon-
structed cases from the database (modifying the modular data term to vertex
correspondences) and 12 CT volumes. We quantitatively compared our method
to an AAM modeling based on global PCA. Dice scores and root-mean-square
(RMS) landmark distances show improvement of the proposed MRF approach
via a non-linear shape analysis in Fig. 2(b). Successful examples from CT inferred
data are shown in Fig. 2(c). We evaluated the performance based on the density
of the input sample points, affecting the global shape inference starting when
only 20% of points are available. Furthermore, added Gaussian distributed noise

(a) (b)

(c)

Fig. 2. (a) Representation of inter-vertebral transformations. (b) Plots of Dice coef-

ficients and landmark errors comparing our method to AAM. (c) Spine inferences of

triangulated from CT with orthogonal views. Local shape distortions with significant

noise level increase σ added to target points (error-coded for ground-truth distances).
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to the target data introduces distortions when σ = 3 (Fig. 2). These validations
prove how our method elegantly encodes prior knowledge with image constraints
in an MRF framework, and efficiently minimizes the energy term to converge to-
wards an optimal solution. One drawback remains the computational time due to
the inverse regression mapping and higher-order clique potential minimization.

5 Discussion and Future Work

Our main contribution consists in modeling complex, non-linear patterns of spine
deformations in a Riemannian manifold. Point-based models are created from
statistical knowledge in terms of global and local variations. To this end, an ar-
ticulated distance metric based on intrinsic and orientation properties was pro-
posed. The non-linear embedding is constructed in such a way to avoid creating
shape distortions, as well as collisions between shapes. This is accomplished by
constraints within the manifold parameters to restrict outlying values corrupting
global shape appearance. The proposed framework can be extended in medical
imaging applications to allow global/local shape modeling. While the method
remains computationally expensive for the inverse map, inference of articulated
models based on optimal clique decomposition can be beneficial to this end.
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Abstract. Image-guided surgery systems have a wide range of appli-

cations where the level of accuracy required for each application varies

from millimeters to low sub-millimeter range. In systems that use op-

tical tracking, it is typical to use point-based registration without any

weighting schemes to determine the pose of the tracked tool with very

good accuracy. However, recent advancements in methods to estimate

the measurement uncertainty for each tracked marker and the develop-

ment of an anisotropically weighted point-based registration algorithm

have allowed for the optical tracking accuracy to be improved. In this ar-

ticle, we demonstrate a new tracking method that improves the tracking

accuracy by 20 – 45% over the traditional tracking methodology.

1 Introduction

Image-guided surgery (IGS) systems have improved the standard of care in brain,
spine and orthopaedic interventions by combining pre-operative medical images
and virtual reality using spatial tracking technologies [1]. Recently, real-time
imaging techniques, such as ultrasound and endoscopy, and robotics technology
have been integrated with traditional IGS systems by tracking the imaging and
robotic devices similarly to tracked surgical tools. The real-time images and
robotic devices are displayed in the virtual reality environment resulting in an
augmented view of the surgical target. One such application is the robotic drilling
system for a mastoidectomy [2] where a section of bone is resected from behind
the ear of a patient for various otolaryngology procedures. In this application, an
optical tracking system (NDI Polaris Spectra R©, Waterloo, ON, Canada) is used
to track the poses of both the patient and the robot. If the patient moves during
the drilling procedure, the drilling plan is automatically updated to reflect the
change in patient positioning using the real-time information provided by the
optical tracking system. This procedure serves as an example of applications in
which a high degree of tracking accuracy is crucial to success. Such applications
motivate the focus of this paper, which is the development and validation of an
improved method for highly accurate optical tracking.

T. Jiang et al. (Eds.): MICCAI 2010, Part III, LNCS 6363, pp. 587–594, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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The method presented in this paper is the combination of two recently devel-
oped algorithms: (i) a method to estimate the anisotropic fiducial localizer error
(FLE) at each of the optically tracked markers [3] and (ii) a registration proce-
dure that accounts for the anisotropic weighting at each of the markers [4]. We
show that the FLE covariance statistics can be used as an anisotropic weight-
ing function in the registration procedure. Accuracy improvements of 20 – 45%
are demonstrated and this improvement is deemed important for applications
that rely on highly accurate real-time tracking such as fully automatic robotic
mastoidectomy.

2 Method

The goal of this paper is to demonstrate that the anisotropic weighted point-based
registrationalgorithm [4] provides better results than the standard isotropic point-
based registration method [5,6]. The comparison is done using the target registra-
tion error (TRE) statistics for both registration methods.

2.1 Computing the Real-Time Weightings

The weighting for the anisotropic registration algorithm at each marker is de-
termined using the FLE estimates from the algorithm presented in [3]. The FLE
covariance matrix at a given marker a is found by solving a complex set of linear
equations that relates the FLE statistics at each marker to the estimated FRE
statistics: Aaxa = ba where Aa is based on the geometry of the tracked rigid
body, xa is the six independent FLE covariance components and ba is the six
independent fiducial registration error (FRE) components estimated from the
previous M frames. For an optical tool with N tracked markers, there are N
sets of linear equations that can be solved in order to obtain an estimate of the
FLE at each marker. However, to improve numerical stability we can solve an
overdetermined set of equations for a single FLE covariance matrix by stacking
the matrices and vectors such that

xavg =
(
AT

stackAstack

)
AT

stackbstack (1)

where

Astack =

⎡⎢⎢⎢⎣
A1

A2

...
AN

⎤⎥⎥⎥⎦ and bstack =

⎡⎢⎢⎢⎣
b1

b2

...
bN

⎤⎥⎥⎥⎦ . (2)

Taking the six independent FLE covariance components from xavg (with or with-
out stacking) and rewriting them as a FLE covariance matrix Σ, the weightings
are computed as

W = Σ−1/2. (3)
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2.2 Obtaining a Good Estimate of the True Target Location

In the work previously presented in the literature, the algorithms were tested
using Monte Carlo simulations whereby the true location of the target was known
exactly. However, experimentally the true target location is never known exactly
and therefore a method of estimating the true target location is needed so that
the TRE can be computed. Here we use two rigidly connected optically tracked
tools shown in Fig. 1 to solve this problem.

Fig. 1. Photograph and schematic of the tracked rigid bodies used in the experiment.

The tracked tool under test is on the left and the tracked tool used to estimate the

true location of the target is on the right. The target is the centroid of the right-hand

tool, which is marked by an × in the schematic. Measurements are in millimeters and

coordinate frame is the local tool coordinate frame.

In Fig. 1, the four markers on the left represent tracking markers rigidly at-
tached to a tool (e.g., drill or hand-held pointer tool). The four markers on the
right are arranged so that, for the robotic application, the centroid (denoted by
× in the schematic) is at the tip of the drill and for the hand-held-tool appli-
cation the centroid is at the tip of the probe pointer. Previous to the tracking
experiments a standard ‘tool definition’ calibration was carried out. The robotic
arm was held stationary in several poses while the positions of the tool markers
on the left and the target markers on the right were measured repeatedly (1000s
of times). The average of these measurements over the various poses for each
marker provides a highly accurate standard configuration. The centroid of the
four markers on the right is defined to be the ‘target’ position (e.g., drill tip, or
probe pointer tip). Then, during the tracking experiments (see Step iv below),
each detected configuration of the tool is registered to the standard tool. There-
fore, using the right-hand rigid body to estimate the true location of the target,
the target is estimated with target localization error (TLE) statistics of

Σtle =
Σfle,1 + Σfle,2 + . . . + Σfle,N

N2
, RMStle =

√
trace (Σtle) (4)

where N is the number of markers on a tool (N = 4 for our example) and
RMS is the root-mean-square statistic. If the FLE is homogeneous across the
markers, then the covariance matrix and RMS reduce to Σtle = Σfle/N and
RMStle = RMSfle/

√
N , respectively.
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2.3 Comparing Isotropic and Anisotropic Registrations

The TRE statistics of the isotropic and anisotropic registrations algorithms are
compared using the centroid of the right-hand tracked tool as the target ground
truth. The two rigid bodies are rigidly attached to one another and moved to-
gether. The experimental protocol is to carry out these steps for every frame of
data returned from the tracking system:

(i) The 3D positions of each of the markers on both rigid bodies are measured
with the optical tracking system at an instance in time which we will refer
to as a frame of data.

(ii) The target location, rref , is obtained by taking the mean of the four
markers on the right-hand tracked tool.

(iii) The right-hand tracked tool is registered using isotropic registration and
the FLE estimates are updated for these markers. The TLE statistics of
the target are obtained using (4).

(iv) The left-hand tracked tool is registered using isotropic registration and the
FLE estimates are updated for these markers. The target location, riso,
is computed using the transform computed from isotropic registration.

(v) The left-hand tracked tool is registered using anisotropic registration us-
ing the FLE estimates of the markers for the weighting as per (3). The
target location, raniso, is computed using the transform computed from
anisotropic registration.

(vi) The TRE vectors for both registration methods are computed such that
treiso = riso − rref and treaniso = raniso − rref .

After 1000 frames of data are collected, the results are plotted and a set of
observational statistics is computed. The results section provides a comparison
of the algorithms for different dynamic paths over which the tool traveled and
also provide examples of the FLE estimates for the markers obtained with the
algorithm in [3].

3 Results

Using the method described in Section 2, we compared our new tracking method,
performed using anisotropic registration [4], with traditional tracking method,
performed using isotropic registration [5, 6]. The tracked tools were placed at a
distance of approximately 160 cm from the tracking system. We noticed that
the results of the comparisons are distinct for different types of motion, thus we
collected data under the following conditions:

Test A: translate approximately 10 cm parallel to Polaris’ x-axis (up–down)
Test B: translate approximately 10 cm parallel to Polaris’ y-axis (left–right)
Test C: translate approximately 10 cm parallel to Polaris’ z-axis (front–back)
Test D: translate in all directions
Test E: rotate in all directions
Test F: random path including translations and rotations



Improved Method for Point-Based Tracking 591

Table 1. Results of tests A-F. All statistics are computed over the usable 800 frames.

The estimate of the TLE RMS is provided using (4). The TRE RMS statistics are

computed for all the distance errors in a given test. The percent difference between

the two methods is shown using the the isotropic RMS as the reference. Finally, noting

that the TLE contributes to the measured TRE RMS statistic, see (5), we correct the

TRE RMS statistics and recompute the TRE RMS percent difference.

Test TLE RMS TRE RMS TRE RMS TRE RMS TRE RMS

Isotropic Anisotropic % Diff. % Diff Corr.

A 0.08 mm 0.22 mm 0.18 mm -19.3% -22.6%

B 0.07 mm 0.33 mm 0.19 mm -42.4% -45.2%

C 0.08 mm 0.32 mm 0.18 mm -42.8% -46.8%

D 0.06 mm 0.34 mm 0.24 mm -28.7% -29.9%

E 0.08 mm 0.60 mm 0.46 mm -23.2% -23.7%

F 0.06 mm 0.34 mm 0.22 mm -34.5% -36.0%

A total of 1000 frames of data was collected for each test. Since a sliding window
of 200 frames was used to estimate the FLE, only the last 800 frames are used for
statistical analysis because it takes 200 frames until the FLE estimate stabilizes.

Three key sets of results are presented in Table 1. First, an estimate of the
TLE RMS is given using (4) with estimates of the FLE covariance matrices found
from the same FLE estimation algorithm used to determine the weightings for
the anisotropic registration algorithm.

Next, the TRE RMS computed for both the isotropic and anisotropic regis-
trations are provided. We notice that the anistropic TRE RMS is lower for each
test and the percent difference between the two statistics is provided1.

Finally, we note that the TRE RMS for each registration has a contribution
from the TLE where the measured TRE RMS can be related to the actual TRE
RMS by

RMS2
tre,meas = RMS2

tre,actual + RMS2
tle. (5)

Taking into consideration this relationship, we correct the percent differences
between isotropic and anisotropic TRE RMS statistics by using the RMStre,actual

and show this new percent difference in the last column of Table 1. A small
increase in the accuracy is observed with this correction.

Moving beyond the observational statistics, we provide details of the data
measured during Test F. In Fig. 2, the FLE RMS estimates are provided for
(i) each marker estimated individually and (ii) the average FLE estimated by
solving the over-determined system of equations in (1).

In Fig. 3, the magnitudes in the three principal directions of the average FLE
covariance matrix are given. Here we observe the common behavior of optical
tracking systems where one of the components is much larger than the other
two directions. The direction of the higher magnitude error is along the viewing
direction of the optical tracking system (z–axis of the Polaris Spectra).
1 The percent difference is computed using the isotropic registration as the reference

value so that %Diff = 100 × (RMStre,aniso − RMStre,iso) /RMStre,iso.
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Fig. 2. Sample of the FLE RMS for Test F. The RMS is computed for (i) each marker

individually and (ii) using the stacked, over-determined system of equations described

in (1).
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Fig. 3. Sample of the FLE directional components for Test F. The directional compo-

nents are singular values of the covariance matrix where the principal axes of the covari-

ance matrix are approximately aligned with the axes of the optical tracking system.
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The last plot in Fig. 4 shows the TRE distance errors at each frame in Test F.
We clearly demonstrate here that the anisotropic registration provides a better
estimate of the target location. The TRE RMS computed over the entire data
collection is shown with the horizontal lines. We also performed a paired t-test
for this case and found p � 0.05, suggesting that the difference between isotropic
and anisotropic TREs is statistically significant.

4 Discussion

We have developed an improved method for point-based tracking of rigid bod-
ies. The improvement is accomplished by replacing the isotropic point-based
registration method typically employed with one that takes into consideration
the anisotropy of tracking system’s FLE. Our method combines a recently pub-
lished algorithm [3] for estimating the covariance matrix of anisotropic FLE with
a novel rigid registration algorithm [4] that accommodates anisotropic weight-
ing. Incorporating automatically generated weighting matrices optimized from
the estimated FLE covariance matrices into the anisotropic registration algo-
rithm exhibits a surprising level of accuracy, surpassing the current state of the
art. Further improvements might be made by controlling for outliers or applying
additional weightings during the solution of the equations, such as maximum-
likelihood methods, M-estimators, regularization, etc. [7, 8].

The method was tested on data obtained with NDI Polaris Spectra R© with
various motions of the tracked tool in the region approximately 160 cm from the
tracking system. For a variety of motions, including pure translation, pure rota-
tion, and combinations of both, we measured an increase in tracking accuracy
in the range of 20 – 45%, and in every case accuracy was improved. A statis-
tical analysis confirmed that the tracking of optical rigid bodies using our new
approach is more accurate than tracking using the standard method (p � 0.05).

The input to each FLE calculation is a set of previous FRE vectors collected
from the most recent M frames, using the isotropic registration algorithm. We
found that the size of the window, M , used for estimating the FLE statistics is
an important factor in the tracking accuracy for our algorithm. The size of the
window was investigated experimentally and we found that a contiguous collec-
tion of M = 200 frames of FRE measurements produced the best results. Larger
windows gave only a very small improvement in accuracy but also increased the
lag in obtaining a good estimate of the FLE statistics. With a window size of
M = 200, one must allow the system to perform 200 data collections, before the
improved tracking can commence. For the experiments described in this article,
our method was implemented to run off-line in Matlab (Version 2009b, Math-
works, Inc., Natick, MA) on an Intel Core 2 Duo 2.2 GHz with 2GB of RAM
while utilizing only one CPU. Each complete update, comprising FLE estima-
tion and registration, required less than 6.4 milliseconds. For the NDI Polaris
Spectra R©, whose update rate is 60 Hz (period of 17 ms), our improved tracking
algorithm can run in real-time. Furthermore, at 60 Hz with the NDI Polaris
Spectra R©, a delay of only four seconds is required to obtain the first set of 200
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frames of FRE data to begin providing accurate estimates of the FLE statis-
tics. In summary, the algorithm has promise to be included in imaged-guided
surgery applications that use point-based registration for highly accurate optical
tracking.
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Abstract. In this paper, a texton-based classification system based on raw pixel 
representation along with a support vector machine with radial basis function 
kernel is proposed for the classification of emphysema in computed tomogra-
phy images of the lung. The proposed approach is tested on 168 annotated re-
gions of interest consisting of normal tissue, centrilobular emphysema, and 
paraseptal emphysema. The results show the superiority of the proposed ap-
proach to common techniques in the literature including moments of the histo-
gram of filter responses based on Gaussian derivatives. The performance of the 
proposed system, with an accuracy of 96.43%, also slightly improves over a re-
cently proposed approach based on local binary patterns. 

1   Introduction 

Computerized quantitative analysis in pulmonary computed tomography (CT) images 
is a vital tool in the analysis of chronic obstructive pulmonary disease (COPD). The 
disease is projected to become the fifth most burdening disease worldwide by 2020 
[1]. COPD is a chronic lung disease characterized by limitation of airflow, and it 
comprises two components: small airway disease and emphysema, which is character-
ized by gradual loss of lung tissue. 

Current methods for the diagnosis and quantification of COPD suffer from several 
limitations. Common computerized methods on CT images do not use all the informa-
tion available in a CT image. For example, the relative area of emphysema below a 
threshold (RA) [2] considers only independent pixel intensity values and relies on a 
hand-picked parameter, the threshold. The primary diagnostic tool for COPD is spi-
rometry by which various pulmonary function tests (PFTs) are performed [1]. These 
are cheap and fast to acquire, but they have a low sensitivity to early stages of COPD. 

This work focuses on improving the assessment of emphysema in CT images. Em-
physema lesions, or bullae, are visible in CT images as areas of abnormally low at-
tenuation values close to that of air, and it is often classified into three subtypes [3]. 



596 M.J. Gangeh et al. 

These subtypes are the following: centrilobular emphysema (CLE), defined as multi-
ple small low-attenuation areas; paraseptal emphysema (PSE), defined as multiple 
low-attenuation areas in a single layer along the pleura often surrounded by interlobu-
lar septa that is visible as thin white walls; and panlobular emphysema (PLE), defined 
as a low-attenuation lung with fewer and smaller pulmonary vessels. 

As the texture of lung tissue is affected by the type of disease, texture analysis can 
be used for quantitative assessment of different subtypes of emphysema. Classifying 
emphysema in CT images of the lung using texture features was first introduced in 
[4]. Since then, various features have been used for the classification of emphysema 
and other disorders in lung CT images including moments of histograms computed on 
the outputs of filter banks consisting of Gaussian derivatives [5], measures on gray-
level co-occurrence matrices (GLCM), measures on gray-level run-length matrices 
(GLRLM), and moments of the attenuation histogram [4, 6, 7]. 

Recently, it was shown that small-sized local operators like local binary patterns 
(LBP) [8] and the patch representation of small local neighborhood in texton-based 
approaches [9] yield excellent texture classification performance on standard texture 
databases. It should be noted here that small-sized local operators are desirable in 
situations where the region of interest (ROI) is rather small, which is often the case in 
texture analysis in medical imaging, where pathology can be localized in small areas. 
This is because of two reasons: first, convolution with large support filter banks suf-
fers from boundary effects; second, more patches can be extracted using small-sized 
local operators that makes the estimation of image statistics more reliable [9]. 

In this paper, we propose to use small patch representation in texton-based ap-
proaches along with support vector machines (SVMs) for the classification of emphy-
sema in CT images of the lung. To our knowledge, this technique has never been used 
for the classification of CT lung images. 

The effectiveness of small-sized local operators in medical imaging is shown in 
[10] using LBP texture features and k-NN classifier with similar results to filter bank 
approaches based on Gaussian derivatives. In this work, we also show that texton-
based approaches using a SVM with radial basis function (RBF) kernel produces 
better results than common filter bank approaches and slightly better results than 
LBP, which can be considered as the state of the art in emphysema classification [10]. 

2   Texton-Based Texture Classification 

In this section, the principle of texton-based texture classification is reviewed [9, 11, 12]. 
This approach is independent of the representation used to describe local image informa-
tion, i.e., it could be raw pixel representation, outputs of filter banks convolved with the 
patches, or even more complex representations. The texton-based approach can be di-
vided into three stages: 1) construction of a codebook of textons using a clustering algo-
rithm such as k-means, 2) learning texton histograms from the training set, and 3) classi-
fication of the test set by finding the histogram of textons in the test set and comparing to 
those found during stage two to find the nearest pattern. These three steps are explained 
in the remaining of this section. 
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2.1   Construction of Texton Codebook  

To construct the texton codebook, small-sized local patches are randomly extracted 
from each image in the training set. These small patches are then aggregated over all 
images in a class and clustered using an unsupervised algorithm such as k-means. 
Obtained cluster centers form a dictionary that represents the class of textures used. It 
is saved as the codebook to be used in the next stage.  Fig. 1 displays sample images 
of lung CT ROIs used in this paper and the codebook dictionary computed over all 
ROIs using the texton size of 7 × 7 pixels and k = 40 in k-means.  

2.2   Learning the Model 

The next stage is to find the features (learn the model) using the images in the training 
set. To this end, these steps are followed: first, extract small patches of the same size 
as the previous stage by sliding a window over each training image in a class. Second, 
find the distance between each patch to all textons in the dictionary to find the closest 
match. Third, update a histogram of textons accordingly for each image based on the 
closest match found. This yield a histogram for each image in the training set, which 
is used as the features representing that image after normalization. These features are 
used for training a classifier such as SVM. Fig. 2 illustrates the construction of the 
codebook and learning the model in a texton-based classification system. 

2.3   Classification 

To classify a test image, the same steps as in the learning stage are followed to find 
the features for the test image. This includes extraction of small patches from each 
test image in a class, finding the closest match to these patches from the dictionary, 
and computing the normalized histogram of obtained closest textons to define a fea-
ture vector for the image. The trained classifier in the learning stage is used to find the 
class of the test image. 

Both k-NN and SVM are tested in this paper for the classification of texton-based 
features. In SVM, a RBF kernel as given in (1) is used as it is recommended as the 
first kernel choice in [13]. In (1), γ is the kernel width and xi and xj are two sample 
patterns. 

 .  (1) 

3   Experimental Setup 

Data Preparation. The data used for the experiments is the same as in [10], which is 
collected from a set of thin-slice CT images of the thorax from an exploratory study 
carried out at the Department of Respiratory Medicine, Gentofte University Hospital, 
Denmark [14]. The slices were reconstructed using a high spatial resolution (bone) 
algorithm. Each subject was scanned in the upper, middle, and lower lung, resulting in 
three 1.25 mm thick slices with a resolution of 0.78 × 0.78 mm per subject. 

The leading pattern in 75 CT slices from 25 subjects, 8 healthy non-smokers, 4 
smokers without COPD, and 13 smokers diagnosed with moderate or severe COPD  
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Fig. 1. Sample ROIs of size 50 × 50 pixels (left) in three classes, i.e., normal lung (top left 
row), CLE (middle left row), and PSE (bottom left row). The constructed codebook using texton 
sizes of 7 × 7 pixels and k = 40 in k-means (right). 

 

Fig. 2. The illustration of different stages of a texton-based texture classification system: the 
generation of texton codebooks using k-means clustering (left) and the generation of features by 
computing the texton histograms of training set (right).    

 

according to PFTs [1], was visually assessed by an experienced chest radiologist and 
a CT experienced pulmonologist independently. The leading pattern could either be 
normal tissue (NT), CLE, PSE, or PLE, in each of the slices, and consensus readings 
were obtained in all cases of disagreement. 168 non-overlapping ROIs of size 50 × 50 
pixels were subsequently annotated in the slices representing the three classes: NT (59 
ROIs), CLE (50 ROIs), and PSE (59 ROIs). The NT ROIs were annotated in the non-
smokers and the CLE and PSE ROIs were annotated in the two smokers' subject 
classes, within the area(s) of the leading pattern. PLE was excluded due to very few 
cases in the data set (only 2 out of 20 subjects diagnosed with COPD). 

Computation of Texton-Based Features. For the construction of the codebook, 500 
random patches are extracted from each ROI in each class. Patch sizes of 3 × 3 to 8 × 
8 pixels are used in the experiments. No filter banks are applied and raw pixel repre-
sentation is used instead. Since in CT images, the mean of the intensity in the images 
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indicate a physical property of the tissue displayed, it should not be removed. The 
patches extracted from different ROIs of each class are clustered using k-means to 
find the codebook that represents a class. Two different values of k, i.e., k = 10 and k 
= 40 are tested in the experiments leading to 3 × 10 = 30 or 3 × 40 = 120 (3 is the 
number of classes) textons in the codebook, respectively (refer to Fig. 1). After con-
struction of texton codebook, the texton frequency histograms of the ROIs are com-
puted to find the model. In this stage, small overlapping patches with the same size as 
what was used in the clustering stage are systematically extracted from each ROI. As 
in the clustering stage, no filter bank is used and raw pixel representation is consid-
ered. Euclidean distance between the resulting textons (collection of small patches) 
and the textons in the codebook is computed in order to identify the most similar 
texton in the codebook and the corresponding histogram of textons is updated accord-
ingly. The histograms are normalized and used as the features. 

Classifier and Evaluation. Both k-NN and SVM are used in the experiments. The 
crucial issue in using SVMs is finding a suitable kernel and the optimum trade-off 
parameter C. RBF kernel is used and the optimum kernel width, i.e., γ in (1) and C are 
found by a grid search on the training set at each specific texton size and k value (in k-
means) used in the experiments. This grid search is performed by leave-one-subject-
out on the training set. The computation of the texton codebook is performed each 
time on the training set, excluding the validation set. The proposed texton-based clas-
sification system using SVM as classifier with RBF kernel and optimal C and γ is 
evaluated using leave-one-subject-out. This means that, at each trial, all ROIs from 
one patient are held out as the test set and the remaining ROIs as the training set.  

4   Results and Discussions  

In this section, we first present the results for the proposed texton-based texture clas-
sification system using SVM as classifier with the parameters chosen as explained in 
previous section. Then comparison with other techniques is provided. 

After finding the optimal C and γ at each texton size and k value (of k-means), the 
accuracy of the classification system is evaluated using leave-one-subject-out for the 
particular texton size and k. The results are shown in Table 1 for various texton sizes 
and two different values of k in k-means. It can be seen from these results that using k 
= 40 in k-means improves the performance of the classification system over k = 10. 
The best result is obtained at the texton size of 4 × 4 pixels with k = 40. It can be 
observed from the results that the accuracy of classification system decreases with 
increasing texton size. This can be because increasing the texton size leads to a higher 
dimensional space in k-means, requiring more data for reliable clustering. Also, fewer 
patches can be extracted from the ROIs at higher texton sizes that may degrade the 
estimation of model as explained in Section 2.2. 

Comparison with Other Techniques. The first comparison is made between texton-
based classification system using SVM and k-NN classifiers. The optimal parameter k 
of the k-NN classifier is found using a validation set in the training set in a similar 
way as the grid search performed for the parameters in the SVM classifier. The results 
are shown in Table 1, and as can be seen, the SVM classifier performs much better  
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Table 1. The results of texton-based classification system on CT images of lung used in this 
paper for k = 10 and 40 and various texton sizes using SVM and k-NN classifiers.    

Texton Size 
 

SVM Accuracy  
 (k(a) = 10) 

SVM Accuracy 
(k(a) = 40) 

k-NN Accuracy  
 (k(a) = 10) 

k-NN Accuracy   
(k(a) = 40) 

3 × 3 94.05 95.24 90.48 88.1 
4 × 4 93.45 96.43 86.31 86.9 
5 × 5 92.86 95.83 85.12 88.1 
6 × 6 92.26 94.05 82.74 90.48 
7 × 7 91.67 90.48 83.33 89.29 
8 × 8 88.10 92.86 82.74 89.88 

(a) k here refers to the k in k-means clustering not the k in k-NN classifier. 

than the k-NN classifier. The superiority of SVM over k-NN was also reported on 
standard texture databases such as Columbia-Utrecht (CUReT) database [15].  

The second comparison is made between the proposed texton-based classification 
system using SVM as classifier and the results published in [10]. Since the same data 
as in [10] is used in our experiments, the results are directly comparable. In [10], the 
results are provided for the following approaches: 

 

1) GFB1 (Gaussian filter bank 1): using the moments of histogram computed on 
the outputs of convolved Gaussian filter banks with four rotation invariant fil-
ters obtained from linear combination of Gaussian derivatives at five scales. 

2) ICR (intensity, co-occurrence, and run-length): the feature vector consists of 
the first four moments of the intensity histogram; the contrast, correlation, en-
ergy, entropy, and homogeneity computed on GLCM; and short-run emphasis, 
long-run emphasis, gray-level; nonuniformity, run-length nonuniformity and 
run percentage computed on GLRLM. 

3) INT: intensity histograms. 
4) GFB2: similar to GFB1 but instead of using moments of histograms, the histo-

grams themselves are used. Hence they are richer in information. 
5) LBP1 (local binary pattern 1): basic rotation invariant LBP histograms. 
6) LBP2: joint 2D LBP and intensity histograms. 

 

For more information on each method the reader is urged to refer to [10] and the ref-
erences therein. The results based on the above techniques are provided in Table 2 
along with the best result obtained from the proposed approach based on texton signa-
tures with SVM classifier. 

Table 2. The comparison between the best results obtained from the proposed approach and the 
results of other techniques on the same data (left); the confusion matrix of LBP2 (middle) and 
texton-based approach with k = 40, texton size of 4 × 4 pixels, and SVM classifier (right).    

 
 
 
 
 
 
 

Technique Accuracy 
GFB1 61.3 
ICR 89.3 
INT 87.5 
GFB2 94.0 
LBP1 79.2 
LBP2 95.2 
Texton-based 96.4 

 Estimated Labels 

True Labels NT CLE PSE 

NT 55 0 4 

CLE 1 49 0 

PSE 2 1 56 

 

 Estimated Labels 

True Labels NT CLE PSE 

NT 58 0 1 

CLE 3 47 0 

PSE 2 0 57 

 



 A Texton-Based Approach for the Classification of Lung Parenchyma in CT Images 601 

The confusion matrix for the best results in [10], i.e., the results of LBP2, and our 
best results are provided in Table 2. The proposed approach attains performance bet-
ter than LBP2 though McNemar's test does not indicate the difference to be signifi-
cant (p = 0.75). The specificity of texton-based and LBP2 approaches are 98.31% and 
93.33%, while their sensitivity are 95.41% and 97.25%, respectively (when compar-
ing NT versus CLE and PSE).  

5   Conclusion 

In this paper, a texton-based texture classification system using a SVM with RBF 
kernel is proposed for the classification of emphysema in CT images of the lung. It 
is shown that the proposed approach performs significantly better than common 
approaches based on moments of histograms of filter bank responses using Gaus-
sian derivatives and slightly improve the performance over a recently proposed 
approach based on LBPs. LBP operators are, by design, invariant to monotonic 
intensity transformations. While this is desirable in some applications, in the classi-
fication of Lung CT images, the mean of intensity is important and this explains the 
poor performance of LBP1 in Table 2 as it discards the mean of intensity in the 
ROIs. Due to this drawback of LBPs, in [10], the joint intensity and LBP histo-
grams are considered (LBP2). This improves the performance of the LBPs in this 
application at the cost of adding to the complexity of the approach. The texton-
based approach does not suffer from this problem as it is not invariant to intensity 
transformations. It is also shown that using SVM in the proposed approach yields 
higher accuracy than a k-NN classifier. 

As the state of the art in examination of lung is volumetric chest CT scans, one 
may wonder whether texton-based approach can be extended to 3D data. As the com-
putation of texton signatures is fast especially when raw pixel representation is used, 
we expect that the approach can easily be extended to 3D data. The main obstacle 
might be the computational cost for optimizing the SVM parameters in a grid search 
that can be reduced by using an m-fold cross-validation at patient level instead of 
leave-one-subject-out used in our experiments. 

In future work, combining the classification outputs at different texton sizes using 
multiple classifier systems (MCS) will be investigated for possible improvement of 
the results. This improvement is expected if the misclassification is done on different 
ROIs in different texton sizes such that the MCS yield better results due to the diver-
sity of the classifiers [16].  
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Abstract. The performance of computer-aided diagnosis (CAD) sys-

tems can be highly influenced by the training strategy. CAD systems

are traditionally trained using available labeled data, extracted from

a specific data distribution or from public databases. Due to the wide

variability of medical data, these databases might not be representative

enough when the CAD system is applied to data extracted from a dif-

ferent clinical setting, diminishing the performance or requiring more

labeled samples in order to get better data generalization. In this work,

we propose the incorporation of an active learning approach in the train-

ing phase of CAD systems for reducing the number of required training

samples while maximizing the system performance. The benefit of this

approach has been evaluated using a specific CAD system for Diabetic

Retinopathy screening. The results show that 1) using a training set ob-

tained from a different data source results in a considerable reduction of

the CAD performance; and 2) using active learning the selected training

set can be reduced from 1000 to 200 samples while maintaining an area

under the Receiver Operating Characteristic curve of 0.856.

1 Introduction

In the last decade a variety of computer-aided diagnosis (CAD) systems has
been developed for the automatic screening of diverse diseases, such as breast
or lung cancer or diabetic retinopathy [1]. In general, these systems receive as
input an exam consisting of one or more images from a patient and they generate
as output a degree of suspicion for the disease. A typical CAD system relies on
multiple stages: segmentation of normal anatomy, localization of abnormalities
and fusion of different findings to obtain the final decision.

Supervised classification has been widely adopted for CAD systems as the
optimal solution for the fusion and generation of the final outcome. In this type
of approach, the training phase is of paramount importance for the development
of these systems. During this phase, the classifier ’learns’ from a group of a
priori manually-annotated sample exams, namely training set. This training
set should be representative enough to cope with the image variability and the
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range of pathologies usually encountered in medical environments in order to
obtain good prediction ability. Therefore, the choice of this training set has a
great impact on the final performance. A non-representative training set may
dramatically reduce the system accuracy, as we will show in this paper.

The common approach for the selection of training sets in CAD systems is to
use public labeled databases or to extract a group of samples from the available
data in a random way. This procedure does not always guarantee a represen-
tative training set, especially when retrieving data from the large imbalanced
databases usually found in CAD applications. This results in the selection of
large training sets in order to assure data generalization and high quality re-
sults. The annotation of a large amount of data is a tedious and time consuming
task for medical experts. Additionally, the computational costs for the training
phase increases drastically when the number of training samples increase.

Active learning is a machine learning approach that attempts to retrieve train-
ing data maximizing the system performance and minimizing the labeling effort
[2]. In active learning approaches, only the most informative samples are dynami-
cally selected from the unlabeled data and their correct labels are requested from
an expert. Therefore, the size of the training set required to obtain an optimum
classification accuracy is reduced, as well as the user’s involvement in the labeling
process. Compared to standard classification, where the goal is to minimize clas-
sification error, active learning has an additional goal: minimizing the amount
of samples to be labeled.

In this paper, we evaluate the benefit of including active learning in the train-
ing phase of CAD systems in order to retrieve automatically representative train-
ing sets from large medical datasets. Particularly, we assess how the performance
of a specific CAD application, namely the screening of diabetic retinopathy, is
influenced by the active selection of training samples.

2 CAD System for Diabetic Retinopathy Screening

Diabetic Retinopathy (DR) is the most important cause of blindness in the work-
ing population of developed countries [3]. Early detection and diagnosis through
screening programs is crucial for the prevention of visual loss and blindness in
patients with diabetes [3]. A CAD system for the automatic large-scale screen-
ing of DR provides an effective way to obtain an early diagnosis and to prevent
future complications. Figure 1(a) shows an example of a retinal image from a
diabetic patient with DR.

The proposed CAD system for DR screening relies on four components: quality
verification, normal anatomy detection, bright lesion detection and red lesion
detection. These components are all based on previous work [4] and are therefore
only briefly described here.

Quality verification: This component uses a statistical classifier to obtain
the probability that the image quality is sufficient for diagnosis.

Normal anatomy detection: This component identifies blood vessels and
the optic disk in retinal images using Gaussian derivative filters and k Nearest
Neighbors (kNN) regressor.
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Table 1. Set of features for retinal exam classification. PP: Posterior probability

Feature Description

1 Quality of the exam Q. For exams with more than one image, the quality is

given by
max(Qi)−min(Qj )

2
, where Qk is the quality of image k in the exam.

2,3 The sum of all red/bright PPs as a measure for the total lesion load in the

exam.

4,5 Highest red/bright PP in the exam.

6,7 Total red/bright lesion load weighted by the size of the detected lesions.

8,9 Average red/bright PP for those lesions with probability higher than 0.

10,11 Standard deviation of the red/bright PPs for those lesions with probability

higher than 0.

12-19 A four bin histogram of the PPs of the red/bright lesion candidates.

20-27 A four bin histogram of the lesion area in pixels subdivided by PP.

Red lesion detection: Red lesions are pathological regions that usually
appears in the earliest stages of DR. For their detection, a hybrid candidate
extractor and a kNN classifier are applied to obtain a likelihood per candidate
to be a red lesion.

Bright lesion detection: As well as red lesions, bright lesions are also im-
portant signs of DR. The algorithm relies on a candidate extraction step based
on pixel classification and a kNN classifier.

The different findings from the aforementioned components are then fused to
obtain a final outcome per patient: the likelihood of the patient to be referred
to an ophthalmologist due to the presence of DR signs or because of insufficient
quality. For the fusion procedure, we calculate a set of features for each exam
based on the output from the different components (see Table 1). With these
features, a kNN classifier is trained to obtain a probability per exam.

3 Methods

In order to train efficiently the proposed CAD system, an active learning ap-
proach is incorporated in the training phase of the fusion strategy. This approach
is an iterative procedure where at each iteration the active learner is called to
select an unlabeled sample from a pool of unlabeled data and an expert is asked
for its label. The idea is to select efficiently a set of training samples from the
unlabeled data in an active way to boost the performance of the classifier and
reduce the number of samples that need to be labeled.

Assume that a small initial training set Xt, a classifier c, an active or query
function F and unlabeled data Xu are given. The query function F assigns a
value to each unlabeled sample in Xu depending on how informative the sample
is. These values permit ranking the unlabeled objects and selecting the most in-
formative sample x∗, which is expected to improve the classification performance
the most [2].

The general framework of the active learning system can be described as
follows [2]:
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1. Train classifier c on the current training set Xt.
2. Select an object x∗ from the unlabeled data Xu according to the active query

function F .
3. Ask an expert for the label of x∗. Enlarge the training set Xt and reduce

Xu: Xt = Xt ∪ {x∗}, Xu = Xu\{x∗}.
4. Repeat steps (1)-(3) until a stopping criterion has been reached.

The active functionF determines the sampling selection, i.e., decideswhich sample
in the unlabeled data Xu to query next. We investigate two different query func-
tions in this study: uncertainty sampling and query-by-bagging (QBB) sampling.

Uncertainty sampling: This method queries unlabeled samples about which
the current classifier is most uncertain and asks for their correct labels [2]. To
measure uncertainty, the query function FUS can be defined as follows:

FUS ≡ x∗ = argmaxxi∈Xu [−
∑

j

(P (wj |xi) log(P (wj |xi)]. (1)

with j = 1, ..., c and c the number of classes in the classification problem.
QBB sampling: In this sampling technique, a committee of classifiers are

trained and the most informative sample is considered to be the sample over
which the committee is in most disagreement about how to label [2]. In each
round of active learning, Xt is sampling by replacement R times to create R
modified training sets X1

t , ..., X
r
t , ..., X

R
t . The classifier c is then trained with

each modified set Xr
t to obtain a committee of R classifiers C = c1, ..., cr, ..., cR.

To measure the disagreement among committee members, the query function
FQBB is defined as follows:

FQBB ≡ x∗ = argmaxxi∈Xu

1
R

R∑
r=1

∑
j

P (wj |xi; cr) log
P (wj |xi; cr)
P (wj |xi; C)

(2)

with P (wj |xi; C) = 1
R

∑R
r=1 P (wj |xi; cr).

4 Materials and Experiments

Training set: For the creation of the training set, a group of 7500 unlabeled
retinal exams (dataset A) were taken from an online retinal screening program
[5]. Each exam consists of four images with resolution varying from 768x576
to 2048x1536 pixels. The exams were obtained using multiple types of fundus
cameras while the field of view coverage varied between 35 and 45 degrees. A
second publicly available dataset (dataset B) of 1200 exams was also used to
train the CAD system and compare the performance with the results obtained
using active learning [6]. In dataset B, only one image per exam is provided and
they are acquired by 3 ophthalmologic departments using a color video 3CCD
camera on a Topcon TRC NW6 non-mydriatic retinography with a 45 degree
field of view. The images were captured using 8 bits per color plane at 1440*960,
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2240*1488 or 2304*1536 pixels. A human expert manually annotated each exam
as normal (546 exams) or suspect (654 exams).

Test set: A totally different group of 7500 labeled retinal exams (dataset C)
were also taken from the aforementioned screening program [5]. The exams were
manually annotated by a human observer as normal (7080 exams) or suspect
(420 exams). An exam is considered suspect if any DR signs are present or if the
exam is ungradable.

To evaluate the influence of the training set in the CAD performance with
and without the active learning approach, several experiments were performed:

Experiment 1: The CAD system was trained using dataset A and evaluated
on dataset C. This was an ideal situation where a large labeled dataset from the
same distribution was used for training. The area under the Receiver Operating
Characteristic (ROC) curve (Az) was used as performance metric.

Experiment 2: The CAD system was trained using dataset B and evaluated
on dataset B. This experiment was done to evaluate the robustness of the system
on a totally different data distribution. As the training and the test set was the
same, a repeated ten-fold cross-validation was performed and the average Az
value was used as performance metric.

Experiment 3: The CAD system was trained using dataset B and evaluated
on datasetC. This experiment assessed the CAD performance when a different dis-
tribution data was used for training. The Az was also used as performance metric.

Experiment 4: The CAD system was trained using a subset retrieved from
dataset A using active learning with uncertainty sampling and evaluated on
dataset C. For iteration i of the active learner, the query strategy retrieved an
exam from dataset A, a human observer annotated the selected exam and the
updated training set X

(i)
t was used to train the classifier c(i). The classification

performance P was evaluated on dataset C based on Az value when the training
set reached sizes of N = 10, 20, ...100, 200, ..., 1000, 2000, ..., 6000. With these per-
formance values, a learning curve was calculated. The optimal performance was
obtained at the point in the learning curve (and at the corresponding training
size) for which the performance obtained with the retrieved training set was non-
significantly different from the one obtained with the complete dataset A. Due to
the number of comparisons (one per each point in the learning curve), the signif-
icance level was adjusted by the Bonferroni correction to p < 0.0021 (0.05/24).
The training strategy was initialized with 10 samples chosen at random from
dataset A. To reduce the influence of the random selection, the experiment was
run 10 independent times and the results were averaged to obtain a mean Az
value as well as the standard deviation per each point in the learning curve.

Experiment 5: The same as experiment 4 but with QBB sampling as the
query function.

Experiment 6: The same as experiment 4 but with random sampling as
the query function, the approach typically adopted in CAD development. This
method randomly selects the next sample from the pool of unlabeled data
(dataset A). In this case the experiment was run 100 independent times.
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In all the experiments, k was set at the square-root of the number of samples
in the training set and, when QBB was used, the number of resampling was set
to 3. Previous experiments in a different dataset showed that varying committee
size (number of resampling) has little effect on the final performance.

5 Results

Table 2 summarizes the performance of the different experiments. For exper-
iments 4-6, the optimal performance obtained using the learning curves was
shown. Figure 1(b) shows the ROC curves for the experiment 1, 2 and 3.

Table 2. Characteristics and performance of the different experiments.∗ indicates value

calculated performing cross-validation.

Training
source

Training
sampling

Training
size

Test set Az

Experiment 1 Dataset A - 7500 Dataset C 0.884

Experiment 2 Dataset B - 1200 Dataset B 0.875∗

Experiment 3 Dataset B - 1200 Dataset C 0.689

Experiment 4 Dataset A Uncertainty 200 Dataset C 0.856

Experiment 5 Dataset A QBB 500 Dataset C 0.831

Experiment 6 Dataset A Random 1000 Dataset C 0.837

(a) (b)

Fig. 1. (a) Example of an image from a diabetic patient with DR. Red and bright lesions

appears as red and yellowish patches on the image, respectively. (b) ROC curves for the

experiments 1, 2 and 3. In the case of experiment 2, a repeated ten-fold cross-validation

was performed.
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Fig. 2. Learning curves for the proposed active learning strategy using two different

sampling functions, namely uncertainty sampling and QBB sampling. The learning

curve for a training strategy using random sampling is also depicted. The experiments

for each active query function were run 10 times whereas the experiment for the random

sampling function was run 100 times. The learning curves show the average area under

the ROC curves and the standard deviation of the values obtained for a fixed number

of samples in the training set.

Figure 2 shows the learning curves for the experiments 4, 5 and 6. As we can
see, at the beginning of the curves the CAD performance was similar to random
guess but, after some iteration, CAD performance improved much faster with
active learning than using random sampling. The three experiments converged
finally to the same point where the training sets were similar to Dataset A.

6 Discussion

In this paper, an effective training strategy for CAD systems using active learn-
ing is proposed. Experiment 2 and 3 showed that defining an appropriate training
set is a crucial step towards obtaining high quality results in clinical applications.
A non-representative training set of the medical data distribution under study
had a negative effect on the final CAD performance. In Figure 1, we can see
that, although the CAD system worked well for different type of data when the
system was trained using samples extracted from the specific distribution, the
performance diminished significantly when the training set was from a different
distribution. This can probably be attributed to the difference in the number of
images, the disease prevalence or the quality between these datasets, which repre-
sent normal variations of data characteristics in medical applications. Therefore,
this suggested the necessity of creating specific training sets per data type.
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Retrieving representative training sets from large unlabeled medical sets is a
difficult task, especially when the prevalence of the disease is low. This results
in selecting large training set to achieve a good generalization of the distribu-
tion, increasing the time and effort spent on performing manual annotations
and incurring in higher computational costs for the training phase. We have
shown in experiment 4 and 5 that with active learning the training selection
rapidly converged to an optimal small training set (see Figure 2 and Table 2).
Compared to random sampling, the proposed approach reduced the number of
training samples needed to obtain a similar performance when a larger dataset
was used, reducing the labeling effort. Although a larger labeled dataset was
available for training (dataset B), it was more beneficial to retrieve a small set
from the unlabeled set in order to maximize the performance of the CAD system.

However, the selection of the query function can also influence on the final
performance. As it is shown in Figure 2, a larger set was needed to obtain the
same performance when the query strategy was changed from uncertainty to
QBB sampling. Additionally, a stopping criterion needs to be defined for the
active learner. Although this criterion can be set depending on a maximum
number of manual annotations, this might not guarantee optimal accuracies. In
future work, the influence of the stopping criterion will be evaluated.

In conclusion, an active learning approach incorporating in the CAD training
phase was studied in order to reduce the number of training samples needed to
obtain an optimum accuracy. The results show that the system accuracy can
be maximized using small representative training sets, retrieved using an active
learner. This approach allows an automatic efficient training stage of the CAD
systems using the vast incompletely labeled databases that are now available in
medical applications.
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Abstract. We apply sparse Bayesian learning methods, automatic rele-

vance determination (ARD) and predictive ARD (PARD), to Alzheimer’s

disease (AD) classification to make accurate prediction and identify crit-

ical imaging markers relevant to AD at the same time. ARD is one of the

most successful Bayesian feature selection methods. PARD is a power-

ful Bayesian feature selection method, and provides sparse models that

is easy to interpret. PARD selects the model with the best estimate of

the predictive performance instead of choosing the one with the largest

marginal model likelihood. Comparative study with support vector ma-

chine (SVM) shows that ARD/PARD in general outperform SVM in

terms of prediction accuracy. Additional comparison with surface-based

general linear model (GLM) analysis shows that regions with strongest

signals are identified by both GLM and ARD/PARD. While GLM P-

map returns significant regions all over the cortex, ARD/PARD provide

a small number of relevant and meaningful imaging markers with pre-

dictive power, including both cortical and subcortical measures.

1 Introduction

Neuroimaging is a powerful tool for characterizing neurodegenerative process in
the progression of Alzheimer’s disease (AD) and can provide potential surrogate
biomarkers for therapeutic trials. This paper is focused on identifying relevant
imaging biomarkers from structural magnetic resonance imaging (MRI) data for
AD classification. Machine learning methods have been applied to many prob-
lems in computational neuroscience, including computer-aided diagnosis for AD
[1,3,4,6,7,9]. While popular methods like support vector machines (SVMs) [15]
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can achieve decent prediction accuracy, most of them are not optimized for se-
lecting sensitive features.

This paper presented the results of applying novel sparse Bayesian learn-
ing methods, automatic relevance determination (ARD) and predictive ARD
(PARD) [13], to MRI-based AD classification for achieving two goals at the same
time: (1) accurate prediction rate and (2) selection of relevant imaging biomark-
ers. Linear SVM and general linear model (GLM) based cortical thickness anal-
yses were also performed on the same data for comparison to ARD/PARD. Our
overarching goal is to learn from these data sparse Bayesian models so that they
are easy to interpret while maintaining high predictive power.

2 Materials and Methods

MRI Data used in this study were obtained from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database (www.loni.ucla.edu/ADNI). ADNI is a
landmark investigation sponsored by the NIH and industrial partners designed
to collect longitudinal neuroimaging, biological and clinical information from
800 participants that will track the neural correlates of memory loss from an
early stage. Further information can be found in [11] and at www.adni-info.org.
Following a previous imaging genetics study [14], 378 non-Hispanic Caucasian
participants (203 healthy control (HC) and 175 AD participants) were selected
for this work. For one baseline scan of each participant, FreeSurfer V4 was em-
ployed to automatically label cortical and subcortical tissue classes [2,5] and to
extract target region volume and cortical thickness, as well as to extract total
intracranial volume (ICV), as previously described [14]. For each hemisphere,
thickness measures of 34 cortical regions of interest (ROIs) (Fig. 1(a-f)) and vol-
ume measures of 15 cortical and subcortical ROIs (Fig. 1(c-f)) were included in
this study. All these measures were adjusted for the baseline age, gender, edu-
cation, handedness, and baseline ICV using the regression weights derived from
the HC participants. Participant characteristics are summarized in Table 1.

ARD and Predictive ARD
We apply ARD and predictive ARD (PARD) [13] to classify the imaging features.
ARD is one of the most successful Bayesian feature selection methods [8,12].
It is a hierarchical Bayesian approach where there are hyperparameters which
explicitly represent the relevance of different input features. These relevance

Table 1. Participant characteristics

Category HC AD p-value

Number of Subjects 203 175 -

Gender (M/F) 111/92 97/78 0.8840

Baseline Age (years; Mean±STD) 76.09±5.00 75.53±7.58 0.3884

Education (years; Mean±STD) 16.13±2.73 14.93±3.00 < 0.0001
Handedness (R/L) 188/15 163/12 0.8413
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hyperparameters determine the range of variation for the parameters relating
to a particular input, usually by modeling the width of a zero-mean Gaussian
prior on those parameters. If the width of that Gaussian is zero, then those
parameters are constrained to be zero, and the corresponding input cannot have
any effect on the predictions, therefore making it irrelevant. ARD optimizes these
hyperparameters to discover which inputs are relevant.

Predictive ARD impoves upon ARD in the following aspects. First, the
Laplace approximation used in ARD [8] is replaced by the more accurate ex-
pectation propagation (EP) [10]. Second, EP computes an estimate of leave-one-
out predictive performance without requiring expensive cross-validation exper-
iments. This estimate of predictive performance can be used as an important
criterion for ARD to avoid the overfitting problem associated with evidence
maximization. Last, predictive ARD uses a fast sequential optimization method
such that we can efficiently prune and add new features without updating a full
covariance matrix for the classifier.

Now we describe ARD for linear classification. A linear classifier classifies a
point x according to t = sign(wTx) for some parameter vector w (the two classes
are t = ±1). Given a training set D = {(x1, t1), ..., (xN , tN )}, the likelihood for
w can be written as

p(t|w, X) =
∏

i

p(ti|xi,w) =
∏

i

Ψ(tiw
Tφφφ(xi)) (1)

where t = {ti}N
i=1, X = {xi}N

i=1, Ψ(·) is the cumulative distribution function
for a Gaussian. One can also use the step function or logistic function as Ψ(·).
The basis function φφφT (xi) allows the classification boundary to be nonlinear in
the original features. This is the same likelihood used in logistic regression and
in Gaussian process classifiers. Given a new input xN+1, we approximate the
predictive distribution:

p(tN+1|xN+1, t) =

∫
p(tN+1|xN+1,w)p(w|t)dw (2)

≈ P (tN+1|xN+1, 〈w〉) (3)

where 〈w〉 denotes the posterior mean of the weights, called the Bayes Point.
The basic idea in ARD is to give the feature weights independent Gaussian

priors:
p(w|α) =

∏
i

N (wi|0, α−1
i ),

where ααα = {αi} is a hyperparameter vector that controls how far away from zero
each weight is allowed to go. The hyperparameters ααα are trained from the data
by maximizing the Bayesian ‘evidence’ p(t|α), which can be done using a fixed
point algorithm or an expectation maximization (EM) algorithm treating w as
a hidden variable [8]. The outcome of this optimization is that many elements of
ααα go to infinity such that the classifier w would have only a few nonzero weights
wj . This naturally prunes irrelevant features in the data.

Unlike previous approaches that use the EM algorithm and find a solution
that maximize the evidence, the predictive-ARD (PARD) algorithm trains
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the sparse classifier as follows: (1) Initialize the model so that it only contains
a small fraction of features. (2) Sequentially update the classifiers via a fast
sequential optimization method and calculate the required statistics by EP until
the algorithm converges. The sparsity level of the classifiers increases along the
optimization iterations. (3) From all the classifiers, choose the classifier with
minimum predictive error probability estimate.

SVM and GLM
A linear support vector machine (SVM) was applied in our study to provide
a comparison to ARD/PARD in terms of prediction accuracy. SVMs represent
a new generation of learning systems based on recent advances in statistical
learning theory [15]. The aim in training a linear SVM is to find the separating
hyperplane with the largest margin; the expectation is that the larger the margin,
the better the generalization of the classifier. We employed the OSU SVM Matlab
Toolbox (sourceforge.net/projects/svm/) in this work.

We also performed surface based analysis for identifying thickness changes
on the brain cortex and comparing these regions with the imaging markers de-
tected by ARD/PARD. We consider the following general linear model (GLM):
y = XΨ + ZΦ + ε, where the dependent variable y is cortical thickness; X =
(x1, · · · , xp) are the variables of interest (diagnosis in our case); Z = (z1, · · · , zk)
are the variables whose effects we want to exclude (age, gender, education, hand-
edness and ICV in our case); Ψ = (ψ1, · · · , ψp)T and Φ = (φ1, · · · , φk)T are
the coefficients; and ε is the error term. The goal is to test if X is significant
(i.e., Ψ �= 0) for some y ∈ ∂Ω, where ∂Ω is the cortical surface manifold. To
test GLMs, we used SurfStat [16], a Matlab toolbox for the statistical analysis
of univariate and multivariate surface and volumetric data using linear mixed
effects models and random field theory (RFT) [17].

3 Results

Classification was performed on each hemisphere separately, using two sets of
imaging features: (1) 34 thickness measures (Fig. 1(a-b)), and (2) 34 thickness
measures and 15 volume measures (Fig. 1(c-f)). 10-fold cross-validation was per-
formed for accuracy estimation. Shown in Table 2 is the performance comparison
among ARD, PARD and SVM. ARD and PARD outperformed SVM except for
the case of using both thickness and volume measures from right hemisphere.

Table 2. Performance comparison. Training and testing error rates (mean±std) of

10-fold cross validation are shown for SVM, PARD (Predictive ARD) and ARD.

SVM PARD ARD
training testing training testing training testing

Left† 0.129 ± 0.011 0.156 ± 0.062 0.106 ± 0.009 0.147 ± 0.082 0.108 ± 0.010 0.154 ± 0.065

Right† 0.149 ± 0.009 0.185 ± 0.076 0.137 ± 0.009 0.168 ± 0.086 0.139 ± 0.006 0.175 ± 0.077

Left‡ 0.112 ± 0.006 0.139 ± 0.051 0.078 ± 0.008 0.132 ± 0.056 0.078 ± 0.008 0.124 ± 0.056

Right‡ 0.130 ± 0.006 0.142 ± 0.053 0.117 ± 0.005 0.160 ± 0.040 0.118 ± 0.006 0.162 ± 0.039
† Use cortical thickness measures only. ‡ Use both thickness and volume measures.
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Fig. 1. (a-b) Heat maps of PARD weights −w in cortical analyses using 34 thickness

measures. (c-f) Heat maps of PARD (c,d) and ARD (e,f) weights −w in analyses

using 15 volume (top) and 34 thickness (bottom) measures. 10-fold cross-validation

was performed for left (a,c,e) and right (b,d,f) hemisphere data. In each heat map,

feature weights were plotted against 10 different trials in cross validation tests.

PARD outperformed ARD except for the case of using both thickness and vol-
ume measures from left hemisphere. PARD was designed for improving ARD
predictive performance based on theoretical considerations, which empirically
worked better for most cases but not all. Using thickness measures only, the
best prediction rate was obtained at 85.3% by PARD for left hemisphere. Using
both thickness and volume measures, the best prediction rate was improved to
87.6% by applying ARD to the left hemisphere data. In all cases, the predic-
tion rates were improved after including 15 additional volume measures in the
analyses, indicating both cortical and subcortical changes were related to AD.

A linear classifier is usually characterized by a weight vector w, which projects
each individual data point (i.e., a feature vector) into a 1-D space for getting
a discriminative value. Each weight measures the amount of the contribution
of the corresponding feature to the final discriminative value. ARD and PARD
aim to reduce the number of nonzero weights so that only relevant features
are selected by examining these weights. For consistency, we always visualize
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Fig. 2. (a-b) GLM results of diagnosis effect (HC-AD) on cortical thickness include (a)

the map of the t statistics and (b) the map of corrected P values for peaks and clusters

(only regions with corrected p ≤ 0.01 are shown), where positive t values (red, yellow)

indicate more grey matter in HC. (c-d) Back-projection of negative weights (−w) of

the linear classifier for (c) PARD and (d) ARD, where positive values (gray,red,yellow)

indicate more grey matter in HC.

negative weights −w so that larger values (red) correspond to more grey matter
in HC. Fig. 1(a-b) shows the heat maps of PARD weights −w in cortical thickness
analysis for one run of 10-fold cross validation for both hemispheres. The weight
vectors (i.e., columns in the map) derived by different trials in cross validation
are very similar. Most weights are close to zero, indicating a small number of
relevant imaging markers. While entorhinal cortex (EntCtx) appears to be a
strong predictor in both sides, rostral middle frontal gyri (RostMidFrontal) are
strong only on the left and inferior temporal gyri (InfParietal) on the right.

These weights can be back-projected to the original image space for an intu-
itive visualization. Fig. 2(c-d) shows such a visualization for PARD and ARD
results using thickness data. Since we only examine the mean thickness of each
cortical subregion in our analysis, the entire region is painted with the same color
defined by the corresponding weight. The patterns of imaging marker selection
between PARD and ARD are very similar to each other. For comparison, surface-
based GLM analysis using SurfStat is also performed to examine diagnosis effect
(HC-AD) on cortical thickness and Fig. 2(a-b) shows the resulting T-map and
P-map. Regions with strongest signals, such as entorinal cortex on both sides
and left middle temporal gyri are picked up by GLM and ARD/PARD. While



Sparse Bayesian Learning for Identifying Imaging Biomarkers 617

Table 3. Top imaging markers: “mean weight, rank” shown in each cell

ID Description
Thick. & Vol., ARD Thickness, PARD

Left Right Left Right

HippVol hippocampus -0.804, 1 -0.641, 2 N/A N/A

BanksSTS banks of the superior -0.790, 2 -0.077, 10 -0.503, 3 -0.043, 9

temporal sulcus

EntCtx entorhinal cortex -0.745, 3 -0.523, 3 -1.199, 1 -0.954, 1

RostMidFrontal rostral middle frontal gyri -0.621, 4 -0.001, 17 -0.607, 2 -0.063, 7

InfParietal inferior parietal gyri -0.569, 5 -0.656, 1 -0.332, 6 -0.901, 2

AmygVol amygdala -0.514, 6 -0.271, 5 N/A N/A

Parahipp parahippocampal gyri -0.316, 7 0.000, 19 -0.405, 5 -0.086, 6

InfTemporal inferior temporal gyri -0.189, 8 0.009, 38 -0.097, 9 -0.001, 15

MidTemporal middle temporal gyri -0.179, 9 -0.011, 13 -0.446, 4 -0.167, 4

CorpColl corpus collosum -0.168, 10 0.000, 20 -0.195, 8 0.000, 17

GLM P-map returns significant regions across the entire cortex, PARD/ARD
maps provide a small number of selective regions with predictive power.

Heat maps of ARD/PARD weights −w in combined thickness and volume
analyses are shown in Fig. 1(c-f). Again, the patterns are very similar between
ARD and PARD. Shown in Table 3 are top imaging markers selected by ARD
using thickness and volume measures (PARD data not shown but extremely
similar to ARD) and by PARD using thickness measures (ARD data not shown
but extremely similar to PARD). While most top markers are thickness mea-
sures from cortical regions, two markers are volume measures from subcortical
structures including hippocampus and amygdala.

4 Discussion

We presented a novel application of sparse Bayesian learning methods, ARD
and PARD, to AD classification. Our strategy was to minimize the complex-
ity of both data and methods for deriving a simple model easy to interpret.
For methods, we focused on linear classifiers and showed that ARD/PARD in
general outperformed SVM. For data, we focused on summary statistics (i.e.,
thickness and volume) of anatomically meaningful grey matter regions across
the whole brain, and showed that promising prediction accuracy (87.6%) could
be achieved with a small number of relevant imaging measures. Most prior stud-
ies (e.g., [1,3,4]) performed feature selection/extraction before classification. Our
method integrated feature selection into the learning process to form a simple
and principled procedure. Prior research [6] also integrated feature selection into
classification and reported lower prediction rates (77-82%) for analyzing a sub-
set of the same ADNI MRI data. Comparison to other feature selection schemes
merits further investigation. While some prior studies [3,4,7,9] reported better
prediction rates, they analyzed many more imaging variables in much smaller
data sets. One interesting future topic is to apply our method to more detailed
imaging features to determine if better prediction rates and refined imaging
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marker maps can be achieved. It is unclear if disease duration of AD is compa-
rable between ADNI cohort examined by us and [1,4,6] and others cohorts by
[3,7,9], and this could have an effect on prediction rates. Incorporating disease
duration in predictive models warrants further investigation. To sum up, con-
tributions of this work include: (1) a simple and unified learning method that
inherently does feature selection and enables biomarker discovery while main-
taining high predictive power; (2) a much larger AD sample tested with much
fewer variables, resulting in a better power; and (3) promising rates for predicting
mild AD with identified biomarkers that are known to be related to AD.

References

1. Batmanghelich, N., Taskar, B., Davatzikos, C.: A general and unifying framework

for feature construction, in image-based pattern classification. Inf. Process Med.

Imaging 21, 423–434 (2009)

2. Dale, A., Fischl, B., Sereno, M.: Cortical surface-based analysis. I. Segmentation

and surface reconstruction. Neuroimage 9(2), 179–194 (1999)

3. Duchesne, S., Caroli, A., Geroldi, C., Barillot, C., Frisoni, G.B., Collins, D.L.: MRI-

based automated computer classification of probable ad versus normal controls.

IEEE Trans. Med. Imaging 27(4), 509–520 (2008)

4. Fan, Y., Batmanghelich, N., Clark, C.M., Davatzikos, C.: Spatial patterns of brain

atrophy in MCI patients, identified via high-dimensional pattern classification, pre-

dict subsequent cognitive decline. Neuroimage 39(4), 1731–1743 (2008)

5. Fischl, B., Sereno, M., Dale, A.: Cortical surface-based analysis. II: Inflation, flat-

tening, and a surface-based coordinate system. Neuroimage 9(2), 195–207 (1999)

6. Hinrichs, C., Singh, V., et al.: Spatially augmented LPboosting for AD classification

with evaluations on the ADNI dataset. Neuroimage 48(1), 138–149 (2009)

7. Kloppel, S., Stonnington, C.M., et al.: Automatic classification of MR scans in

Alzheimer’s disease. Brain 131(Pt. 3), 681–689 (2008)

8. MacKay, D.J.: Bayesian interpolation. Neural Computation 4(3), 415–447 (1992)

9. Magnin, B., Mesrob, L., Kinkingnehun, S., et al.: Support vector machine-based

classification of Alzheimer’s disease from whole-brain anatomical MRI. Neuroradi-

ology 51(2), 73–83 (2009)

10. Minka, T.P.: Expectation propagation for approximate Bayesian inference. In: 17th

Conf. in Uncertainty in Artificial Intelligence, pp. 362–369 (2001)

11. Mueller, S.G., Weiner, M.W., et al.: The Alzheimer’s disease neuroimaging initia-

tive. Neuroimaging Clin. N. Am. 15(4), 869–877 (2005)

12. Neal, R.M.: Bayesian Learning for Neural Networks. Lecture Notes in Statistics,

vol. 118. Springer, New York (1996)

13. Qi, Y., Minka, T., et al.: Predictive automatic relevance determination by expec-

tation propagation. In: 21st Int. Conf. on Machine learning, pp. 671–678 (2004)

14. Shen, L., Kim, S., et al.: Whole genome association study of brain-wide imaging

phenotypes for identifying quantitative trait loci in MCI and AD: A study of the

ADNI cohort. Neuroimage (2010), doi:10.1016/j.neuroimage.2010.01.042

15. Vapnik, V.: Statistical Learning Theory. John Wiley and Sons, Chichester (1998)

16. Worsley, K.J.: SurfStat, http://www.math.mcgill.ca/keith/surfstat

17. Worsley, K.J., Andermann, M., Koulis, M., et al.: Detecting changes in non-

isotropic images. Human Brain Mapping 8, 98–101 (1999)

http://www.math.mcgill.ca/keith/surfstat


T. Jiang et al. (Eds.): MICCAI 2010, Part III, LNCS 6363, pp. 619–625, 2010. 
© Springer-Verlag Berlin Heidelberg 2010 

Computer-Aided Detection of Pulmonary Pathology in 
Pediatric Chest Radiographs 

André Mouton1, Richard D. Pitcher2, and Tania S. Douglas1 

1 MRC/UCT Medical Imaging Research Unit, Department of Human Biology,  
University of Cape Town, South Africa 

2 Department of Radiology, Tygerberg Hospital, Cape Town, South Africa 
tania@ieee.org 

Abstract. A scheme for triaging pulmonary abnormalities in pediatric chest ra-
diographs for specialist interpretation would be useful in resource-poor settings, 
especially those with a high tuberculosis burden. We assess computer-aided de-
tection of pulmonary pathology in pediatric digital chest X-ray images. The 
method comprises four phases suggested in the literature: lung field segmenta-
tion, lung field subdivision, feature extraction and classification.  The output of 
the system is a probability map for each image, giving an indication of the de-
gree of abnormality of every region in the lung fields; the maps may be used as 
a visual tool for identifying those cases that need further attention. The system 
is evaluated on a set of anterior-posterior chest images obtained using a linear 
slot-scanning digital X-ray machine.  The classification results produced an area 
under the ROC of 0.782, averaged over all regions. 

Keywords: classification, computer-aided diagnosis, tuberculosis, pulmonary 
abnormality, chest radiograph. 

1   Introduction 

Chest radiography remains the most common radiological examination, in both adults 
and children, and in both well-resourced and poorly resourced settings; poorly re-
sourced settings, however have limited recourse to specialist radiological services. 
The chest X-ray is often the main diagnostic tool for tuberculosis (TB) in children in 
endemic settings [1]. The manner in which PTB manifests itself radiographically 
varies with the age of the patient as well as the stage of the TB infection (primary or 
post-primary). Children generally develop primary TB and display associated radio-
logical features. 

Chest X-rays are extremely difficult to interpret. Poor contrast and complex back-
grounds comprised of superimposed anatomical structures overlapping with regions 
of interest make the detection of abnormalities difficult, even for experienced radiolo-
gists [2]. Thus a diagnostic tool which assists in triaging pediatric chest radiographs 
for specialist interpretation would be useful. 

Although much research has been conducted into the use of computer-aided textural 
analysis for the detection of interstitial lung diseases in chest radiographs, research into 
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computer-aided methods for the detection and diagnosis of general pulmonary pathol-
ogy in chest radiographs, especially in children, is limited. Explicit application to a 
pediatric population, has, to the authors’ knowledge, not been reported. Pulmonary 
abnormality would include interstitial disease (of the supporting structures of the lung 
including the alveolar wall) and alveolar disease, which involves the alveolar airspace 
itself and manifests by diffuse, homogeneous opacification. We apply methods devel-
oped for the detection of adult TB and interstitial disease, to the detection of pulmo-
nary abnormality in pediatric chest radiographs; we assess the utility of this framework 
with reference to the results obtained by others in adults.  

2   Methods 

Schemes for the detection of interstitial lung disease (ILD) have a common structure. 
Multiple regions of interest (ROIs) are manually or automatically selected within the 
lung fields.  Features, in the form of textural measurements, are then extracted from 
each of these ROIs.  The ROIs are classified using rule-based and/or pattern recogni-
tion techniques resulting in soft labels (posterior probabilities) for each of the regions 
in the lung fields.  The results are combined to obtain an overall diagnosis for the 
image, indicating whether or not it contains any interstitial abnormalities. The ap-
proach of this study is guided by that presented in [3].   

2.1   Study Data 

The data set consisted of 119 anterior-posterior (AP) pediatric chest scans of children, 
obtained using a linear-slot-scanning digital X-ray machine [4].  The images were 
obtained as part of a study to evaluate their suitability for visualizing airway abnor-
malities in children having symptoms of TB. The children were aged between 0 and 5 
years at the time the scans were taken. Although the pulmonary changes associated 
with TB are completely non-specific when viewed in isolation, chest x-rays are an 
important component of the diagnostic process for TB, especially in children.   

To allow for the training of classifiers to distinguish between normal and abnormal 
regions, the abnormal regions in the images were outlined by the examining radiolo-
gist on a computer monitor using a mouse pointer.  Of the 119 images, 6 contained no 
pathology while the remaining 113 images contained, in total, 263 abnormal regions, 
of which 168 occurred in the right lung field and 95 in the left lung field.   

2.2   Lung Field Segmentation 

Automatic segmentation of lung fields is considered a required procedure before 
computerized analysis of a chest radiograph can occur [5].  

In this study the lung fields are segmented using the active shape model (ASM) 
technique [6], which consists of three elements: a global shape component, a multi-
resolution grey-level appearance component and a multi-resolution search algorithm.  
The technique requires a set of annotated training images, in which a set of corre-
sponding points (representing the lung borders) has been marked, from which the 
model can be built. Statistics about the model's global shape and appearance, in  
the vicinity of each model point, are captured.  This statistical model is used in an 
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iterative search to locate the lung fields in unseen test images. A semi-automatic ASM 
initialization is used here, where the user is required to provide a rough starting point 
for the model search.  This is done by clicking a mouse on three landmark points in 
the lung field to be segmented.  The landmarks required are: the bottom lateral corner 
of the lung; the lung apex; and the bottom medial corner of the lung. 

2.3   Lung Field Subdivision 

Arguably the greatest challenge in textural analysis of the lungs is the presence of 
superimposed anatomical structures [5]. Dividing the lung fields into small ROIs 
allows for each ROI to be classified individually with a classifier trained with features 
extracted from the specific region only, thereby capturing common anatomical char-
acteristics of particular lung regions in the feature vectors, reducing the effect of 
background structures [3].  The mean lung shapes are computed from ASM derived 
from the training data.  The boundaries defining the regions are found using a simple 
search algorithm, with equal area as the objective.  The region maps are illustrated in 
Figure 1; 42 regions of different sizes overlap. These regions are used to automati-
cally position the ROIs in subsequent test images, with segmented lung fields, which 
are warped to these region maps to define the ROIs. This warping is done using radial 
basis functions with multiquadrics and interpolation [7]. 

 

Fig.1. Subdivision of the lung fields into 42 overlapping regions of interest 

2.4   Feature Extraction and Classification 

Prior to the extraction of image features, several pre-processing steps are completed 
[8]:  the left lung field is flipped about the centre line of the image so that the left lung 
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will resemble the right lung in orientation; pixel values outside the lungs are mirrored 
symmetrically with respect to the lung borders to prevent distortions in filter outputs 
at the lung borders. 

A multiscale bank of Gaussian filters is used to extract the texture features [3,9].  
The filter bank consists of Gaussian derivatives of orders, 0, 1 and 2 at five scales, σ = 
1, 2, 4, 8, 16. By varying the degree of the filter (i.e. using multiple orders) more of 
the local image structure can be captured. 

For each input image, 30 filtered versions of the image are computed, where the de-
rivative of the image, L(x), computed at an inner scale of σ is denoted by: Lnxny, with 
nx and ny denoting the order of the derivatives in the x and y directions.  For each of 
the 5 scales the following 6 filtered images are computed: L00, L10, L01, L20, L02, L11. 

The first four central moments (mean, standard deviation, skew and kurtosis) of the 
pixel intensity distribution from each ROI in the filtered and original images are com-
puted as textural features [3,8].  

Training separate classifiers for each of the 42 ROIs, thereby allowing them to be 
examined independently of one another, incorporates anatomical variation into the 
description of every region [3].  This is a particularly attractive approach in the pre-
sent study, where the number of images containing no lung pathology is small; the 
number of normal regions is, however, much larger.   

A kNN classifier is used. A leave-one-out method is used to construct the training 
and testing sets. The output of the classification process is a soft label for each feature 
vector in the range [0, 1] where 0 = normal and 1 = abnormal.  This allows receiver 
operating characteristic (ROC) curve analysis. 

The per region classification results are used to create probability maps for the 
chest images where every pixel in the lung fields is replaced by the average of the soft 
labels of all the regions in which it falls - giving a posterior probability of that pixel 
being normal or abnormal.  These maps are to be used as a visual tool by attracting 
the attention of a clinician reading the image to a region of abnormality and then al-
lowing the clinician to make a decision regarding further interpretation of the image. 

2.5   Performance Evaluation 

The student’s t-test is used to compare the classification results for the true (manual) 
and ASM segmentations; such a comparison gives an indication of the performance of 
the segmentation algorithm. 

ROC analysis is performed independently on the 42 regions, resulting in a separate 
value for the area under the ROC curve (Az) for each of the regions. 

3   Results 

The left and right lung fields were segmented independently of one another. The ac-
tive shape models were trained using 25 images for the right lung field and 20 images 
for the left lung field.   

Using an 11-NN classifier, the final classification results (in terms of area, Az, un-
der the ROC curve) of the system gave a per region score of Az = 0.782 averaged 
over the 42 regions. No statistically significant difference was found between classifi-
cations on regions obtained by manual and ASM segmentation. 
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Table 1 shows a comparison between the results (in terms of per region Az scores) 
presented in this study and those presented in [3], where a similar scheme was used for 
the detection of TB in a screening database and interstitial disease in images obtained 
from daily clinical practice. Our database is similar to the TB database in [3], in that it 
contains a range of abnormalities encountered in chest screening, and we expect their 
results on the TB database to be a suitable basis for comparison with ours. The abnor-
malities identified in our images were primarily alveolar in origin, apart from a small 
group with nodular opacities, which could be either interstitial or alveolar.  

Table 1. Comparison of Az values (across regions) with those of a similar study on adults [3]   

 Mean Min Max 

TB [3] 0.676 0.540 0.830 

ILD [3] 0.835 0.660 0.930 

Current study 0.782 0.655 0.937 
 

The objective of a probability map is to indicate the degree of abnormality of every 
region in the lung field.  The overlays on the lungs in Figures 2 and 3 define this de-
gree of abnormality - a very white region indicates extreme abnormality, while a 
greyish-white region indicates that some subtle abnormalities could be present.   

Figure 2 illustrates successful performance of the system, while Figure 3 illustrates 
common failures. The most frequent errors occurred in the basal and perihilar regions 
of the lungs, especially those of the left lung.   

 

 

Fig 2. Successful probability maps: original image (left) and probability map (right).  The 
healthy lung tissue is accurately depicted by darker grey values. Outlines of abnormal regions, 
made by a radiologist, are shown; the segmented lung borders are shown. 
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Fig 3. Common failures of the system.  Top row: the probability map for a normal image indicates 
a greater degree of abnormality in the right perihilar region.  Bottom:  the image shows a diffuse 
nodular pattern in both lungs, which is only depicted in the right lung in the probability map. 

4   Discussion 

Frequent errors occurred in the basal and perihilar regions of the lungs, especially 
those of the left lung, and may be attributed largely to the sparseness of the data (in 
terms of number of abnormals) in those regions of the lungs and the prominence of 
the vasculature in the lung fields. 

Broncho-vascular markings (both normal and increased markings), proved prob-
lematic for the system.  In many images, where the radiologist indicated increased 
broncho-vascular markings, the resulting probability maps displayed limited abnor-
mality; while in many images where the radiologist indicated healthy vasculature the 
resulting probability maps showed abnormality in the regions containing vasculature.  
This is perhaps an unavoidable shortcoming of the classification system, which, in its 
current form, defines abnormality based solely on the textural characteristics of the 
lung tissue, while unhealthy broncho-vascular markings cannot always be distin-
guished from healthy counterparts using textural appearance alone.   Experienced 
radiologists are able to take into consideration a large variety of factors when making 
a diagnosis, many of which are not quantifiable and therefore difficult to program.  
The probability map in Figure 3 (bottom) indicates diffuse abnormality in the right 
lung field but not in the left lung field for an input image containing a very obvious 
diffuse nodular pattern in both lung fields.  This failure can be attributed to the fact 
that only three images containing this pattern in both lungs exist in the data set, while 
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several more exist displaying the pattern in the right lung only.  The system is thus 
very poorly trained on such abnormalities for the left lung and since individual classi-
fiers are trained for every region the results are poor.   

The results presented in this study for pulmonary abnormality in children show an 
improvement over those presented in [3] for adult TB. Since similar methods are used 
in the two studies, the performance differences must be attributed to the data set.  A 
few scenarios are possible.  The abnormalities in this data set could be more obvious 
and therefore more easily detectable than those in the data set used in [3] – this is 
supported by the fact that the performance of the system presented in [3] on the inter-
stitial lung disease data set is considerably higher. We used direct digital images, 
while the images in [3] were digitized from film. The digital X-ray machine we used 
may produce images which present textural pathologies in the lung fields more 
clearly. Testing on a larger and more diverse database and on image sets from differ-
ent imaging systems may provide more clarity on system performance. 
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Abstract. A framework for nodule feature-based extraction is presented to clas-
sify lung nodules in low-dose CT slices (LDCT) into four categories: juxta, 
well-circumscribed, vascularized and pleural-tail, based on the extracted infor-
mation. The Scale Invariant Feature Transform (SIFT) and an adaptation to 
Daugman’s Iris Recognition algorithm are used for analysis. The SIFT descrip-
tor results are projected to lower-dimensional subspaces using PCA and LDA. 
Complex Gabor wavelet nodule response obtained from an adopted Daugman 
Iris Recognition algorithm revealed improvements from the original Daugman 
binary iris code. This showed that binarized nodule responses (codes) are in-
adequate for classification since nodules lack texture concentration as seen in 
the iris, while the SIFT algorithm projected using PCA showed robustness and 
precision in classification. 

Keywords: texture descriptors, SIFT, Gabor wavelet, nodule type classification. 

1   Introduction 

Texture has been a subject of major investigation by researchers, especially dealing 
with imaging applications such as aerial, satellite, medical images, etc., since the 
texture can be defined as a function of the spatial variation in pixel gray levels [1].  In 
medical applications image analysis techniques have played a major role for such 
tasks like feature extraction, classification of normal and abnormal lung tissue, regis-
tration and segmentation.  There are numerous methods within the scope of texture 
recognition such as parametric statistical model-based techniques, structural tech-
niques and transform-based techniques [2]. In texture classification the main goal is to 
produce a map which enables classification of the input image(s) to the desired 
classes, object type classification in correlation to other images, etc.   

There are various approaches for classification using texture, but all of the ap-
proaches fall-under linearly based or non-linearly-based approaches [2].  In this paper 
we investigate two approaches to extract texture information from lung nodules to 
automatically classify each nodule into one of four predefined categories identified in 
[3]. The first is an adoption of the linear-based algorithm known as the Daugman Iris 
Recognition Algorithm [4] and the second is the non-linear approach known as the 
Scale Invariant Feature Transform. These approaches and how they are used for lung 
nodule texture-based feature extraction will be described in details in the coming 
section. 
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The literature is rich with information on feature extraction whether it is domain 
specific; human face and fingerprinting, or general; color, texture and shape. The 
usage of texture approaches on lung nodules of low-dose CT (LDCT) slices, to the 
best of authors’ knowledge, is not as common.  The closest related works we found to 
our application are the following: Hara et al. [6] used 2nd order autocorrelation fea-
tures to detect lung nodules in 3D chest images, there were no results pertaining to 
once the nodules were detected how to classify the nodules or if the 2nd order autocor-
relation could provide information  for further analysis. In [7] local texture analysis 
was used for identifying and classifying lung abnormalities such as tuberculosis. The 
k-nearest neighbor approach was implemented to extract the feature vector from the 
training set and leave out the feature vector that will be classified.  

A nodule is defined as a small mass or lump of irregular or rounded shape, yet this 
definition is ambiguous when it comes to applying it in the fields of computer vision 
and machine learning, for example.  Samala et al. [8] defined nine feature descriptors 
that describe the nodule characteristics that were used in assessments by radiologists. 
These descriptors are: 1. subtlety; 2. internal structure; 3. calcification; 4. sphericity; 
5. margin; 6. lobulation; 7. speculation; 8. texture and 9. malignancy.  

The assignment of the various nodule types can be formulated by allowing I x  to 
represent a CT slice, where x x, y : 1 x N , 1 y N  is a finite spatial 
grid supporting the slice and x x , y  be the centroid of a detected nodule region. 
The main objective of our framework is to assign a nodule type c to a given nodule 
region using texture-based descriptor x , where c , , ,  which corres-
ponds to juxta, well-circumscribed, vascular and pleural-trail  respectively.  This 
involves two main stages: first, detecting potential nodules for the given CT slice(s); 
second, building the nodule descriptor for each nodule type assignment/classification. 
In this paper we are concerned with the second stage. It is crucial that the local fea-
tures extracted from the detected nodules are robust to various deformations due to 
scale, noise, acquisition artifacts, contrast and local geometric distortion[1].  

This paper is organized as follows: section 2 describes the feature descriptor algo-
rithms used in the classification analysis, section 3 discusses performance evaluation; 
and section 4 concludes the paper. 

2   Feature Descriptors 

Distinct object matching and description is an important goal for many medical imag-
ing and computer vision applications. The success of the object description necessitate 
on two main conditions: invariance and distinction. The object description methodolo-
gy must be robust to accommodate for various variations in imaging conditions and in 
the mean time producing a distinctive characterization of the desired object. 

In this paper we use two algorithm designs for feature based description, Daugman 
Iris Recognition algorithm and the Scale Invariant Feature Transform (SIFT),  on the 
nodule classification of Kostis et al. [3], which groups nodules into four main catego-
ries: (1) Well-circumscribed where the nodule is located centrally in the lung without 
being connected to vasculature; (2) Vascularized where the nodule has significant 
connection(s) to the neighboring vessels while located centrally in the lung; (3) Juxta-
pleural where a significant portion of the nodule is connected to the pleural surface; 
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in which the real complex values from the Gabor response are obtained, thus bypass-
ing binarization in nodule feature encoding step. 
 ,

, , / /       1  

 

Where h ,  can be regarded as a complex-valued bit as either 1 or 0 depending on 
the sign of the 2D integral representing the real and imaginary parts; I ρ,  is the raw 
nodule image in a dimensionless polar coordinate system that is translation and size 
invariant, α and β are the multi-scale 2D wavelet size parameters; ω is the wavelet 
frequency, spanning 3 octaves in inverse proportion to β; r ρ   represents the 
polar coordinated of each region of the nodule for which the phasor coordinates h ,  are computed.    In the first technique the fractional Hamming Distance (HD) 
is computed, as conducted by Daugman. This distance is used as the dissimilarity 
measure between any 2 nodules, where 0 would represent a perfect match.  

                                2  
 

Where the XOR, , operator detects disagreement between any corresponding pair of 
bits while the AND, , operator ensures that the compared bits are both deemed to 
have been uncorrupted by the lung nodule surroundings.  Since the second technique 
is unbinarized, the Hamming Distance cannot be used thus the Euclidean Distance 
(ED) was computed, which examines the root of square difference between any 2 

nodules. Given two descriptors , , … ,  and , , … , , 
ED can be defined as follows; 
 

                                             3  

2.2   Scale Invariant Feature Transform (SIFT) 

As detailed in [6], SIFT consists of four main steps: (1) Scale-space peak selection; 
(2) Key-point localization; (3) Orientation assignment and (4) Key-point descriptor. 
In the first step, potential interest points are detected using a scale-space continuous 
function , , it can be constructed by convolving the image  with a cylin-
drical Gaussian kernel ,  which can be viewed as a stack of 2D Gaussians one 
for each band. According to Lowe [5], the scale is discretized as  where 2 ⁄  and 1,0,1,2, … , ⁄ . Scale-space extrema detection searches over 

all scales  and image locations ,  to identify potential interest points 
which are invariant to scale and orientation; this can be efficiently implemented using 
Difference-of-Gaussians ,  which takes the difference between consecutive 
scales, i.e. ,  , , , a point  is selected to be a candidate 
interest point if it is larger or smaller than its 3 3 neighborhood system defined on 



630 A. Farag et al. 

, , , , , , where  is marked to be the scale of the point . 
This process leads to too many points some of which are unstable (sensitive to noise); 
hence removal of points with low contrast and points that are localized along edges is 
accomplished. In our framework, we assume that nodules have been already detected 
which correspond to interest/key points in Lowe’s algorithm, hence this step can be 
bypassed. In order to obtain a nodule SIFT descriptor which is invariant to orienta-
tion, a consistent orientation should be assigned to the detected nodule which is 
represented by its centroid . This orientation is based on the gradient of the no-
dule’s local image patch. Considering a small window surrounding , the gradient 
magnitude and orientation can be computed using finite differences. Local image 
patch orientation is then weighted by the corresponding magnitude and Gaussian 
window. Eventually the orientation is selected to be the peak of the weighted orienta-
tion histogram. Building a nodule SIFT descriptor is similar to orientation assignment, 
for example a 16x16 image window surrounding the nodule centroid point  is di-
vided into sixteen 4x4 sub-windows, then an 8-bin weighted orientation histogram is 
computed for each sub-window, hence, we obtain 16x8 = 128 descriptors for each 
nodule. Thus, each detected nodule can now be defined at location ( , ), specific 
scale , explicit orientation  and descriptor vector , , , , . Thus the 
SIFT operator : I x  X  can be viewed as mapping a CT slice I x  to the nodule 
space with n-nodules, X  detected from I x , where x , y , σ , θ , d . 
Principle component analysis (PCA) [9] and linear discriminant analysis (LDA) [10] 
are used to project the extracted SIFT descriptors to a low-dimensional subspace 
where noise is filtered out.   

3   Experimental Results 

This work is based on the Early Lung Cancer Action Program (ELCAP) public database 
[11], which contains 50 sets of low-dose CT lung scans taken at a single breath-hold 
with slice thickness 1.25 mm. The locations of the 397 nodules are provided by the 
radiologists, where 39.12% are juxta-pleural nodules, 13.95% are vascularized nodules, 
31.29% are well-circumscribed nodules and 15.65% are pleural-tail nodules. In this 
paper we created a subset database containing 294 nodules of the original 397. The 
ELCAP database is of resolution 0.5x0.5mm [11]. Since we assume that the nodule 
region has been already detected, we use the groundtruth marked nodules by the radiol-
ogists to avoid sources of errors due to automated detection.  Given a nodule’s centroid, 
we extract texture descriptor information using two main techniques: Daugman coding 
and the SIFT descriptor. Tables 1 and 2 visualize the intermediate steps performed to 
generate a nodule code for the four nodule types while table 3 represents the SIFT de-
scriptors of the nodule ensembles given in Tables 1 and 2.  

Training was performed using two randomly drawn approaches; the bootstrapping 
resampling technique [12] and a one-time random sampling approach. The results using 
both methods were comparable, thus only the one time random sampling results are 
shown in this paper. 

Classification was performed using the nearest-neighbor classifier with Euclidean 
distance as the similarity measure. To quantify nodule type classification performance, 
we measure true positives rates. A classification result is considered a true positive if a 
sample from class  is classified as belonging to the same class. 
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Table 1. Visualization of Daugman Recognition process for the same Juxta and Well-Circumscribed 
Nodules in Fig. 1 

 

Table 2. Visualization of Daugman Recognition process for the same Pleural-Tail and Vascularized 
Nodules in Fig. 1 

 
 
Table 4 shows the classification results for nodule codes for different percentages 

of training data (x% is the amount of ground-truth nodules taken into consideration in 
the training phase). It can be inferred that binarizing Gabor wavelet complex res-
ponses makes the nodule region lose discriminatory texture which assists in nodule 
type classification; this is not the case for iris recognition where it is known that the 
iris region is rich in texture. Gabor-based descriptor provides higher discrimination 
for juxta and well-circumscribed nodule types when compared to vascular and pleural 
tail. In general 50% training data can be used to provide overall excellent classifica-
tion results. 

Table 5 shows the classification results for nodule SIFT descriptor for different 
percentages of training data. We also use the projection of SIFT descriptor on a PCA-
based and LDA-based subspaces trained by the descriptors of each nodule type. It can 
be observed that using the raw SIFT descriptor without statistical modeling provides 
the worst classification performance when compared to their PCA and LDA projec-
tion, yet, it provides similar performance to complex-valued nodule codes. LDA pro-
jection provides the greatest classification results when 100% nodule training is con-
ducted, yet, in reality the model will not be re-trained each time new nodules are ex-
tracted to then classify them again (i.e. Input everything desired, output the same as 
input). As training percentage decreases, PCA projection results surpass those from 
the raw SIFT, LDA SIFT and Daugman nodule codes, this emphasizes the ability of 
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Iris Recognition algorithm and the SIFT descriptor with lower-dimensional subspaces 
projections using PCA and LDA. The results from the descriptors were used to classi-
fy the nodules into their corresponding classes as defined by [3]. The results revealed 
the PCA SIFT method was more robust for lesser nodule training data. The Gabor 
wavelet unbinarized nodule responses provided better results than the binarized origi-
nal framework of Daugman due to the lack of concentrated texture information in the 
lung nodules, yet these results were inferior to the overall SIFT performance. Future 
directions are geared toward generating a larger nodule database from other clinical 
data to expand our work. Further experimentations with this approach in terms of 
training and testing data will be conducted. We are also aiming to examine other fea-
ture descriptor approaches to compare with the results obtained in this paper. 
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Abstract. We present a novel approach for extracting cluttered objects based on
their morphological properties. Specifically, we address the problem of untan-
gling Caenorhabditis elegans clusters in high-throughput screening experiments.
We represent the skeleton of each worm cluster by a sparse directed graph whose
vertices and edges correspond to worm segments and their adjacencies, respec-
tively. We then search for paths in the graph that are most likely to represent
worms while minimizing overlap. The worm likelihood measure is defined on a
low-dimensional feature space that captures different worm poses, obtained from
a training set of isolated worms. We test the algorithm on 236 microscopy im-
ages, each containing 15 C. elegans worms, and demonstrate successful cluster
untangling and high worm detection accuracy.

1 Introduction

Recent progress in robotic sample preparation, combined with automated microscopy
and image analysis, enables high-throughput screening experiments for testing bio-
logical processes such as immunity, behavior, and metabolism. For example, high-
throughput screening of the roundworm Caenorhabditis elegans is used to test tens
of thousands of chemical or genetic perturbations to identify promising drugs and reg-
ulators [1,2,3]. Automatic processing of the vast amount of data obtained from a screen
is therefore necessary.

Existing methods compute image-based statistics, e.g., the ratio of fluorescing-stained
area in the image to the area covered by worms [4]. However, many scientific ques-
tions require measurements on individual worms, such as shape and location of reporter
signals. Worms in these images often overlap and cluster into clumps, making analysis
based on individual worms challenging. A few solutions have been proposed for the anal-
ysis of individual worms in low-throughputvideo sequences where the worms are disam-
biguated by tracking them over time [5,6,7]. Methods for resolving high resolution 3-D
images of worms have also been demonstrated [8,9]. These methods, however, are not
suitable for the comparatively low-resolution, 2-D images produced in high-throughput
experiments. Extracting overlapping worms in images has been recently demonstrated
by thresholding the curvature of skeleton segments of a worm cluster [10]. Yet, this
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method has a limited capability to detect curvy worms or clustered worms in complex
configurations.

While isolated worms can be extracted easily based on the differences of image in-
tensities, the image data alone is not sufficient to delineate clustered worms. Moreover,
edges and intensity variations within the worms often mislead conventional segmen-
tation algorithms. Nevertheless, while the different poses of the worms introduce sig-
nificant extrinsic geometrical differences, all worms share similar intrinsic geometrical
properties such as length and thickness profile. The shape characteristics should there-
fore play a key role in a segmentation algorithm.

There exist a few algorithms that incorporate shape priors into the segmentation pro-
cess for extracting multiple, possibly overlapping, objects [11], but these shape-based
algorithms assume that the expected number of objects to segment is known. In prac-
tice, due to computational constraints, only a few partially occluded objects can be
segmented simultaneously.

We present a conceptually novel algorithm for untangling clusters of worms based
exclusively on their poses. Our formulation leads to a computationally efficient,
morphology-guided graph search that relies on a probabilistic model of the worm poses,
learned from training data. We model the skeleton of a worm cluster by a graph whose
vertices correspond to worm segments and search over paths in the graph that are more
likely to represent complete individual worms while minimizing overlap. We formulate
the problem as a minimization of a cost function. To reduce computational complexity,
we use a greedy search strategy to approximate the optimal exhaustive search.

The elongated, thin structure of the worms, together with the similarity in their thick-
ness profiles, motivate the use of their medial axis transform (skeleton) as their shape
descriptor [12,13,14]. Since the deformations of the worms are nearly isometric (no
stretching, shrinkage, etc.), the worms’ variability in appearance can be captured by
a low-dimensional feature space. We apply principal component analysis (PCA) to a
comprehensive set of worm shapes from the training set. Only a limited number of
eigen vectors are needed to reliably represent the entire population. We use the shape
space to define a probability distribution that guides the detection of the most probable
worm descriptors within the graph search.

While the PCA-based representation of the worms’ shape has been demonstrated be-
fore [15], the contributions of this paper include the graph representation, the graph
search algorithm and the greedy approximation. To the best of our knowledge, we
demonstrate the first robust, automatic method for identifying a large number of ob-
jects (worms) in cluttered clusters.

We test the algorithm on 236 microscopy images, each containing a well with 15 C. el-
egans worms, and demonstrate successful cluster untangling and high worm-detection
accuracy. The quality of the results obtained with a relatively low computational com-
plexity shows the promise of our method to remove the computational bottleneck in
large-scale biological experiments.

2 Probabilistic Shape Model

In this section, we briefly review the shape representation we use in our algorithm. The
details are described elsewhere [15]. A worm descriptor consists of n equally spaced
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control points c ∈ R2 along the worm skeleton and the average worm thickness, ob-
tained by using the medial axis transform [12,13]. This (2n + 1) dimensional vector
is used for reconstruction and retrieval. The worm descriptors are aligned by similarity
transformation (translation and rotation) based on their first and second moments.

We use PCA to project the descriptors of the worms in the training set onto a low-
dimensional feature space. The PCA model implies a probability measure on the space
spanned by the most significant eigen vectors,

P (x) ∝ exp(−wMΣ−1
M w), (1)

where ΣM = diag(λ1 . . . λM ) are the highest eigen values and w = {w1, . . . , wM}
are the weights obtained by projecting the worm descriptor x onto the space spanned
by the M most significant eigen vectors. The dimensionality M is chosen so that the
selected eigen values explain 99% of the variance.

3 Graph Representation and Search Algorithm

We now focus on the main contribution of the paper, namely performing cluster un-
tangling using morphology-guided graph search. We assume that the worm clusters are
already segmented from the background and a worm likelihood measure P (x) is de-
fined based on the training set, according to Eq. (1).

3.1 Graph Representation of the Worm Cluster Skeleton

Let Gs = {V,E} denote a sparse, directed graph that represents the skeleton S of a
worm cluster, where V = {vi} and E = {ei,j} denote the graph vertices and edges,
respectively. We denote the number of vertices by V = |V |. Fig. 1b shows the skele-
ton that corresponds to the worm cluster shown in Fig. 1a with the intersection points
marked in red. These cluster intersection points partition the skeleton into segments
that are represented by the graph vertices, as demonstrated in Fig. 1c. The length of
a skeleton segment is determined by the number of pixels it contains. An edge ei,j

(a) (b) (c) (d) (e)

Fig. 1. Graph representation of a worm cluster. (a) Original image. (b) Cluster skeleton. Inter-
section points are marked in red. (c) Graph representation Gs of the skeleton shown in b. Each
segment becomes a node and each intersection becomes a clique in the graph. (d) A simple path in
Gs and (e) the corresponding skeleton segments. These skeleton segments form a branch which
is unlikely to represent a worm skeleton.
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connects two vertices {vi, vj} if their corresponding segments share a common inter-
section point. To avoid path duplication we impose an order on the graph nodes, making
the graph directed, i.e., ei,j = 1 and ej,i = 0 if i < j. A simple path in the graph is a
chain of connected vertices without cycles. Note, however, that not every simple path
in the graph represents a probable worm skeleton. A path in the graph that includes,
for example, a 3-clique represents 3 worm segments with a common intersection point.
These segments form a branch rather than an open curve and therefore are not likely to
represent a worm skeleton. See Fig. 1d-e for an example of a path that forms a branch.

We construct an V×V adjacency matrix representing Gs. Neighborhoods of vertices
are determined by detecting the intersections associated with each skeleton segment.
We use the breadth-first search (BFS) algorithm to detect the paths in Gs. Let L denote
the maximal length of a path, i.e., its total number of vertices minus one. We construct
length-l paths, where l = 0 . . . L, by visiting the end vertices of each of the existing
length-(l−1) paths and attaching the neighboring vertices. That is, if the last node of a
length-(l−1) path has two neighbors, then two additional length-l paths are detected.

A general graph search of this form (as in the traveling-salesman problem) has a
combinatorial complexity of O(V !) when L = V . Yet, the nature of the problem re-
duces its complexity significantly. Since branches (cliques of more than two vertices)
are excluded, the maximal length L of the likely paths corresponds to the number of
intersection points. Let D denote the maximal size of the clique associated with an in-
tersection point in the graph (i.e., the number of segments attached to it). Then the num-
ber of likely paths in the graph is in on the order of O(L2D2). In practice we limit the
length of the paths even further so that the length in pixels of the corresponding skeleton
segments does not exceed the length of the longest worm seen during the training.

In the example shown in Fig. 1 there are 3 intersection points, thus L = 3. For all
intersection points in this example D = 3. In this particular graph the probable paths
include 7 length-0 paths, 9 length-1 paths, 6 length-2 paths and 4 length-3 paths.

3.2 Search for the Most Probable Paths in the Graph

We obtain the approximated number of worms in a given cluster, denoted here by K,
from the ratio of the cluster area and the median area of the training worms. Let ρk

denote a path in Gs that represents the skeleton of the k-th worm. We can now formalize
the cluster untangling problem as a search for K paths is Gs that minimize the cost
function

E(ρ1 . . . ρK) = −
K∑

k=1

logP (ρk) + α
K∑

k=2

k−1∑
l=1

|ρk ∩ ρl| + β|ṼK |, (2)

where ṼK = {v|v ∈ Gs, v /∈ [ρ1 ∪ ρ2 . . . ∪ ρK ]}. Let us now take a closer look at
this function. The first term (the likelihood cost) encourages selection of the paths that
are most likely to represent complete, individual worms. The second term (the overlap
cost) encourages minimization of the pairwise overlap between the selected paths:

|ρk ∩ ρl| = {v|v ∈ ρk and v ∈ ρl}. (3)

The third term (the leftover cost) is the number of vertices |Ṽk| in Gs that are not
included in the union of the selected paths {ρk}. This term encourages the ‘coverage’
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of the worm cluster skeleton S. The scalar weights α and β balance the terms in the
function. In all of our experiments we set α and β to 2.

The global minimum of this optimization problem can be obtained by an exhaustive
search for all subsets of K out of P (all) paths in Gs. This is, however, a combinatorial
problem of order

(P
K

)
. To reduce the computational time we apply a greedy strategy. At

each stage we make a locally optimized choice of a path in the graph until we select K
paths. Given {ρ1 . . . ρk−1} selected in the previous iterations of the search, the greedy
algorithm seeks a path ρk that minimizes

E(ρk|ρ1 . . . ρk−1) = − logP (ρk) + α

k−1∑
l=1

|ρk ∩ ρl|. (4)

We can represent the cost of the first selected path ρ1 by reducing Eq. (4) for k = 1:

E(ρ1) = − logP (ρ1) (5)

Once we complete K − 1 iterations, we also test if K is the optimal number of paths to
represent the cluster. We compare the incremental cost of having only K− 1 paths, i.e.,

E(ρK = ∅|ρ1 . . . ρK−1) = β|ṼK−1|, (6)

to the cost of adding one additional path:

E(ρK |ρ1 . . . ρK−1)=− logP (ρK) + α

K−1∑
l=1

|ρK ∩ ρl| + β|ṼK |. (7)

In other words, we extract K rather than K − 1 paths from a cluster only if the cost
of having an additional path ρK is less than the cost of not having its contribution to
the ’coverage’ of the skeleton represented by Gs. This condition can be viewed as a
stopping criterion of the algorithm.

The greedy strategy still attempts to minimize the original cost function in Eq. 2
since the K−1 cost functions in the form of Eq. (4) and the cost function in Eq.(7) sum
up to the cost functional in Eq. (2) for selecting K paths in Gs. Replacing Eq. (7) with
Eq. (6), we obtain the cost function in Eq. (2) for K − 1 paths.

3.3 Morphology-Guided Graph Search Algorithm

The proposed algorithm can be summarized as follows:

– Initialize
• Calculate K.
• Use a breadth-first search to detect P paths in Gs as described in Section 3.1.

This is the path candidates set.
• Define an empty set of selected paths.
• Calculate the likelihood cost E(ρ) = − logP (ρ) of each path.

– For k = 1 to (K − 1):
• Move the path ρk with the lowest cost E(ρk|ρ1 . . . ρk−1) in the path candidates

set to the selected paths set.
• For each path ρl in the path candidates set compute the overlap cost (Eq. (3))

due to its intersection with the path ρk.



Morphology-Guided Graph Search for Untangling Objects 639

Fig. 2. Example images (odd rows) with their clusters resolved by the algorithm (even rows)

– Determine the total number of selected paths
• Update the costs of the remaining paths in the path candidates set by adding

the leftover cost, (Eq. 7). Let CK denote the lowest cost. This is the cost for
adding the K-th path to the selected paths set.

• Calculate the leftover cost for not selecting an additional path (Eq. 6). Let
CK−1 denote this cost.

• If CK < CK−1 output {ρ1 . . . , ρK}, otherwise output {ρ1 . . . ρK−1}.

4 Experiments

We evaluated the algorithm on an image set from a viability screen of C. elegans that
were infected by a bacterial pathogen, washed, transferred to 384-well plates containing
liquid medium with the compound to be tested and incubated until the infection killed
untreated worms. The worm plates were imaged within 3, 24, 48, 72, 96, 120 and 144
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Total Live

Fig. 3. Histograms of the differ-
ences in count between the au-
tomatic worm detection and the
manual worm count for each of
the 236 images, containing 3479

worms. Left: Total worm count
differences. Right: Live worm
count differences.

hours after treatment by an automated microscope with a 2× magnification lens. De-
tails of the sample preparation and image acquisition are available elsewhere [4]. The
worms were segmented from the background using thresholding [15]. The training set
contained 454 individual manually detected worms. Worm descriptors were generated
using 21 equally-spaced control points along the worm skeletons, together with their
average thickness. The feature space of the worm descriptors was spanned by the 10
most significant eigen vectors.

We applied the proposed algorithm to 236 images containing 3479 worms for which
we had manual annotations by an expert. Fig. 2 presents successful untangling examples
of images with complex worm clusters. To quantify the performance of the algorithm,
we compared the number of worms detected by our algorithm with the manual count. In
addition, we classified the detected worms as dead or alive, based on a simple classifier
we trained on the training set used to construct the PCA space. Typically, dead worms
are stiff and therefore straight. We then compared the number of worms classified as
live to the manual live worm counts. Fig. 3 shows histograms of the count differences
between the automatic worm detection and the manual worm count for each of the 236
images. Due to uneven illumination, worms near the well edges are not always de-
tected by the preliminary segmentation. This leads to an underestimated worm counts.
Overestimated total worm counts are caused by worm splitting or misclassifying debris
as worms. In summary, 9% of the worms were not detected while the false detection
percentage was 0.23%. Note, that underestimation in the total worm counts implies ig-
noring part of the data while overestimated counts (very few here) may introduce larger
bias to the classification results.

5 Conclusions

This paper addresses a particulary challenging problem of extracting clustered objects.
The objects are entangled and their poses vary, thus hierarchical models [16] or dis-
criminative boosting algorithms [17] that have been proposed for image parcellation
into multiple (brain) structures, are not applicable.

By exploiting the specific characteristics of our data, we developed a novel detec-
tion method based on concepts from machine learning and graph theory. Representing
clustered worm segments as graph vertices, we search for paths in the graph that are
more likely to represent complete, individual worms. The thin, elongated structure of
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the worms motivates the use of their skeletons as a shape descriptor and allows a re-
duction in the computation complexity of the graph search. Yet, we believe that our
morphology-guided graph search can be generalized to detect cluttered objects of dif-
ferent shapes with a suitable choice of descriptors.
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P01-AI083214, R01-AI085581 and NAMIC U54-EB005149 and by the NSF CAREER
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Abstract. We address the problem of automatically analyzing lateral cephalo-
metric images as a diagnostic tool for patients suffering from Sleep Disordered
Breathing (SDB). First, multiple landmarks and anatomical structures that were
previously associated with SDB are localized. Then statistical regression is ap-
plied in order to estimate the Respiratory Disturbance Index (RDI), which is
the standard measure for the severity of obstructive sleep apnea. The landmark
localization employs a new registration method that is based on Local Affine
Frames (LAF). Multiple LAFs are sampled per image based on random selection
of triplets of keypoints, and are used to register the input image to the training
images. The landmarks are then projected from the training images to the query
image. Following a refinement step, the tongue, velum and pharyngeal wall are
localized. We collected a dataset of 70 images and compare the accuracy of the
anatomical landmarks with recent publications, showing preferable performance
in localizing most of the anatomical points. Furthermore, we are able to show that
the location of the anatomical landmarks and structures predicts the severity of
the disorder, obtaining an error of less than 7.5 RDI units for 44% of the patients.

1 Introduction

Sleep-Disordered Breathing (SDB) consists of a continuous upper airway resistance
with clinical indications ranging from snoring to Obstructive Sleep Apnea (OSA). In
this disorder, the breathing temporarily stops during sleep as the throat muscles relax
and block the patient’s airway. The patient then wakes up in order to restart his breath-
ing, and the quality of sleep is impaired. OSA symptoms include daytime sleepiness
and fatigue, as well as an increased risk of cardiovascular disease, stroke, high blood
pressure, arrhythmias, and diabetes.

The prevalence of sleep apnea is estimated to be 3.3% in the adult male population
and increasing to almost 5% in the middle age group [1]. The objective diagnosis of
OSA and its severity, and establishing a baseline for future changes require a referral
to a sleep laboratory. The evaluation involves an overnight stay and monitoring of the
breathing during sleep following an analysis by a specialist. While the resulting report
is considered the gold standard in current diagnosis, its reliability is questionable since
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(a) (b)

Fig. 1. Landmarks and anatomical structures. The 8 landmarks are marked with green points.
(a) The tongue, velum and Pharyngeal Wall are marked in red (from right to left). The three
angular measurements (in yellow) are: bony nasopharyngeal angle (BaSPtm), skull base angle
(BaSN) and mandibular plane hyoid angle (GnGoH). (b) The five line measurements marked in
yellow. Vw is the maximal width of the velum (velar width). RVPAS is the minimum distance
between the velum and the posterior pharyngeal wall. MPH is the distance between landmark
H (hyoid) to line GnGo (mandibular plain). PPW is the distance from the basion (Ba) to the
wall (defined slightly differently from [4]). MPAS is the minimum distance between the tongue
and the posterior pharyngeal wall. Notice that landmark sn (end of tongue) is different from Prn,
which is detected in some previous work.

patients may fail to sleep naturally at the laboratory [2,3]. Moreover, the main drawback
of the polysomnography is that it is only a descriptive tool which does not provide any
information regarding the pathophysiology of SDB. Diagnosis of the anatomic factors
that predispose the airway to collapse during sleep is required for tailoring the best
treatment modality to the individual patient. Therefore, due to the high prevalence of
OSA, its implications of the public health, the cost, length, and inherent limitations of
the sleep-laboratory examination, an imaging based diagnosis might be beneficial.

Finkelstein et al. [4] lay the groundwork for 3D cephalometric analysis of SDB by
the instillation of contrast media and adding a frontal view to the traditionally used
lateral radiographs, demonstrating that worsening of SDB was generally associated
with increased numbers of discovered compromised cephalometric parameters. The
cephalometric analysis is performed by manually marking the anatomical landmarks
and measuring various angles and distances, and interpreted by a skilled expert.

Here, we (i) automate the process described in [4]: The cephalometric landmarks
are detected automatically using a new registration method, followed by an automatic
detection of the anatomical structures; and (ii) the Respiratory Disturbance Index (RDI)
that measures the severity of the SDB is predicted based on the image measurements.
Therefore we switch from manual marking that requires a high level of expertise to an
automatic one, and at the same time provide predictability and not just correlation.
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Previous Work. To our knowledge, there is no existing research on automatic anal-
ysis of cephalometric images for SDB. Previous research focused on cephalometric
landmark detection for orthodontics. The more recent methods use Active Shape Mod-
els (ASM) or Active Appearance Models (AAM) [5,6,7,8,9]. Typically, models with a
large number (∼250) of landmarks are learned, an initial localization is provided by
heuristically detecting the easiest landmarks (e.g., Prn and Gn in [9]), and ASM/AAM
is then used for fine-tuning.

2 Triplet-Based LAF for Image Registration

We represent each image by a set of local regions, each associated with its own affine
coordinate frame. Such a representation is sometimes called a Local Affine Frames
(LAF) representation, and was introduced in [10]. In the literature LAFs are derived
based on Maximally Stable Extremal Regions (MSERs) [11], which do not provide
desirable output on cephalometric images. Here, triplets of keypoints are used as the
basis for our LAFs, each detected using the DoG interest point operator [12].

1. Keypoint detection. The SIFT DoG operator [12] is applied to the image obtaining
a large group of keypoints p1, .., pn (n varies between images).
2. Random triplet selection. A large number of triplets (nT = 10, 000 in all of our
experiments) is selected by random.

triplet-based LAF matches Sift matches

Fig. 2. Top triplets-based LAF matches (left) and SIFT matches (right). Coherent matches pro-
duce parallel lines. As can be seen the proposed LAF method provides matches that are much
more coherent. The top row demonstrates results on frontal cephalometric images.
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3. Triplet ordering. The points of each triplet are ordered to provide a 6 fold reduc-
tion in the number of potential triplets. The order is obtained by computing for each
keypoint the local SIFT descriptor, and then projecting the descriptor vector to the first
principle component obtained from a large group of SIFT features that were collected
beforehand. Each triplet Ti = {pi,1, pi,2, pi,3}, i = 1..nT is then ordered such that
pi,1 < pi,2 < pi,3, where the order is given by the projection of the SIFT vector.
4. Region of interest extraction. We compute an affine transformation that maps the
three points of each triangle to the coordinates (1, 1),(128, 1),(64, 128), and use it to
warp the image. Then an enclosing square of corner coordinates (1, 1) and (128, 128)
is used to obtain local appearance information for each triplet.
5. Appearance encoding. We record for each triangle the histogram of edge directions
at the enclosing square, by using the SIFT descriptor [12].

After each image (I) is encoded as a collection of triplets and matching ROI descrip-
tors, it can be compared to another image (J). The matching score between pairs of
triplets, one from I and one from J , is provided by the distance measure of the SIFT
descriptors. The highest scoring pairs provide information on the overall match quality.
Figure 2 compares triplet-based matches to matches based on DoG (SIFT) keypoints.

3 Landmarks Detection

We are given mt training images that are manually marked with the relevant anatomical
landmarks. Two different sets of tracings and measurements were conducted by A.N.
and Y.F. for each roentgenogram. The mean values of the two sets of measurements
were used. Following [4], we employ a group of 8 cephalometric landmarks: m =
{Gn,Go,Ba, S,N, sn, P tm,H} (see Figure 1). Given an unannotated test image It,
we employ the registration technique of Section 2 in order to find a multitue of matching
LAFs between It and each of the training images Ij , j = {1, 2, . . . ,mt}. Each LAF
matching provides: (i) a score computed from the distance of the SIFT descriptors; (ii)
a training image index, and (iii) an affine transformation between that training image
and the test image. We first select the 50 LAFs with the highest scores from among the
pool of all LAFs. Then, the associated affine transformations are used to transform the
locations of the landmarks from the training images to the test image.

This process results in a collection of 50 projected locations per anatomical point in
the test image (see Fig. 3(a)). A single location per landmark is obtained by employing
a mean shift algorithm [13] to locate the mode of each group of landmark projections.

Next, a fine-tuning step is applied in order to find the exact location of each land-
mark. For some landmarks, such as Go, localization can be improved by seeking the
nearest edge points. For others, such as H and Ba that are not necessarily located on
visible image edges or defined by a specific texture, a more sophisticated approach is
needed. We choose to perform the fine-tuning step to all landmarks using the same local
appearance based method.

To that end, we create a set of templates for each anatomical landmark, by projecting
for each LAF the associated training image to the test image, and cropping a template
around each anatomical point. For each landmark, an SVM classifier is trained to distin-
guish the relevant templates from nearby templates. The resulting detector is applied in
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the vicinity of the initial mean-shift based estimation, and the maximum detector score
is used to select the final location.

Once the landmarks are localized, we can evaluate the three angular measurements
of [4]: the skull base angle (BaSN); the bony nasopharyngeal angle (BaSPtm); and the
mandibular plane hyoid angle (GnGoH) (see Fig. 1(a)).

4 Detection of Cephalometric Structures

Next, we model the tongue, the velum and the posterior pharyngeal wall. These struc-
tures are critical for the evaluation of SDB since they are involved in the narrowing of
airspace and other anatomical changes. For each structure, we fit a suitable geometric
shape, whose parameters are searched in a range dictated by the training images.

In order to reduce the variability in the parameters of the structures, the images are first
aligned with accordance to the locations of the eight anatomical feature points. For each
landmark, we find the mean location in all training images m̄ =

∑mt

i=1 mi. For a given
image Ij (training or testing), we compute the affine transformation that minimizes the
least-squares error from mj to m̄ and apply it on Ij and its landmarks. All anatomical
structures are detected using the aligned images, however, the actual measurements are
performed after aligning the detections back to the original coordinate system.

Tongue. The relevant part of the tongue is from its intersection with the contour of the
chin towards the mouth’s end (sn). We found out that an ellipse E = ax2 +bxy+cy2+
dx + ey + f = 0 provides a good fitting in most cases, however, simpler models, such
as a circle do not fit well. Since an ellipse is defined by five degrees of freedom, and
since the two landmarks Go and sn are known to be on the tongue, three more degrees
of freedom are to be evaluated.

One possible solution would be to find edge points in the vicinity of the tongue and
use RANSAC to fit an ellipse, however, the velum is similar to the tongue and it is easy
to confuse between the two. Instead, we perform a search in a parameter space that is
defined by the anatomical points.

Observe Figure 3(b). We draw three lines: one from Gn to Ba, one from Gn to Ptm
and a third line forming an angle twice as large as the angle BaGnPtm. The ellipse is
defined by the points Go and sn and the intersection of its top part with the the three
lines. The distances of these three intersection points from Gn are used as the ellipse
parameters. The suitable range for each parameter is estimated from the training images.
This set of three parameters has a much more compact range than the range of the
generic ellipse parameters, since the tongue might be tilted at various angles depending
on the anatomy of each patient. The actual fitting is performed by an exhaustive search
in these ranges, and the quality of each hypothesis ellipse is measured by the edge
intensity along its path.

Velum and Pharyngeal Wall. In order to measure the Velar Width (VW) as in [4] (see
Figure 3(c)), we detect the velum in the region to the left of landmark Ptm and find
the maximum distance to the tongue. No simple geometric shape fits well to the velum,
since it may curve strongly towards its top part. We model the velum using a cubic B-
spline with four knots [14]. We set the coordinates of the first and last knots at Ptm and
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(a) (b) (c)

Fig. 3. The process of anatomical structures fitting. (a) Projected locations - the chosen points per
each anatomical landmark are marked in the same color and the green dot is the correct location.
One can see that at least one location per landmark is accurate. (b) Tongue Fitting. The tongue
is modeled by using an ellipse. The green dots are the automatically detected landmarks from
section 3. The lines that are used to define the three ellipse parameter points are plotted. The
yellow marks on each line bound the valid searching distance from Gn and the red marks are the
average distance from Gn. (c) Fitting of all structures. The yellow lines correspond to Vw, MPH,
RVPAS and PPW. The tongue is detected correctly even though the teeth are not touching.

Go respectively. Using similar ideas to the tongue fitting, we draw two lines from the
Gnathion (Gn) that intersect the velum. Then we measure the valid range from the tongue
to the velum in the training images. These ranges define the searching area for the two
additional knots and we iteratively fit B-splines to find the best fitting. The pharyngeal
wall is modeled by a straight line, since it provides an accurate enough estimation in the
region relevant to the line measurements. The model is parameterized by the intersection
of the pharyngeal wall line with the two lines GnBa and GnGo, and the search is per-
formed as above in a range dictated by the training images. Fig. 3(c) shows the detection
of the three structures (in red) and the yellow lines refer to the 4 line measurements used.

5 Results

We have collected 70 cephalometric images of patients with varying degrees of OSA. All
images were taken in accordance with recognized standards: the head was oriented in the
Frankfurt horizontal plane and stabilized with a head-holder; the teeth were in habitual
occlusion with lips together, and the tongue relaxed in the floor of mouth. Exposures
were taken during mid-expiration following a moderately deep breath. Therefore, the
variation in pose is minimal. The database in challenging since the quality varies, and in
some cases the contrast is poor and the visibility of the anatomical structures is limited.

We randomly split the dataset to 25 testing images and 45 training images and repeat
the experiments 10 times. The results discussed below are mean results that were com-
puted automatically on the testing images. First, we compare the accuracy of the land-
marks discussed in [4] with the manual detection and three other approaches (see Table
1). As far as we know, the datasets used in previous work are not available. Therefore,
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Table 1. Automatic landmarks detection results. In parenthesis, when available: a Rueda et al [8],
b Yue et al [9], and c Hutton et al [6]. Notice the high accuracy of S, Ptm, N and Gn. Landmark
H has a relatively low detection rate. However, large variation exists also between clinicians
marking this landmark. (In [9]the same landmarks are named differently, thus we compare Gn
with Me, Ptm with Pns and Ba with Co).

Landmark mean (mm) ≤ 2mm(%) ≤ 3mm(%) ≤ 4mm(%) ≤ 5mm(%)

S 0.48(2.29a ,5.5c) 100(39a ,76b) 100(70a) 100(78b) 100(98a)
Ptm 0.53(2.67a ,5.0c) 100(37a ,83b) 100(69a) 100(92b) 100(92a)
N 1.32(5.6c) 91(86b) 96 96(89b) 96

Gn 1.21(1.58a ,2.7c) 83(73a,98b) 83(86a) 87(100b) 91(99a)
Go 2.32(3.88a ,5.8c) 52(26a,86b) 74(44a) 83(94b) 95(67a)
Ba 2.06(2.7a) 65(38a,69b) 74(68a) 78(76b) 87(92a)
H 6.4 13 22 30 39

the comparison provides merely a general impression. We have achieved very accurate
results for landmarks S, Ptm, Gn and N, even though S and Ptm are not located on clear
edges. Comparing to [8] and [6], we have achieved better mean error for all reported
landmarks. Comparing with [9], we have better results for S and Ptm and similar results
for N, Ba and Gn. Regarding landmark Go, the authors of [9] assumed that the landmark
can be found by tracing the edge that starts from Gn (Me in their paper), however, this
assumption does not hold in many of our images, where the two sides of the mandible
are visible (see the double line in Fig. 1). In such cases, the location of Go is not situated
on this edge point. Results for H are not reported in previous work.

We also compare our automatic line measurements with the manual ones. The mean
absolute errors and standard derivations (x±y) are: Vw 0.94±0.78, RVPAS 1.3±1.3,
PPW 2.3 ± 2.2 and MPH 3.8 ± 3.4. The errors in computing Vw and RVPAS are
very low. The error in detecting MPH is due to the difficulty of finding landmark H.
However, considering the inter-observer variance between clinicians in marking this
landmark, our results are in the acceptable range.

Next, we predict the RDI and hence the severity of the SDB. In our testing images,
the RDI varies from 5 (borderline healthy) to 77 (severe OSA). The prediction is per-
formed via a linear Support Vector Regression model, that is based on either: (1) The
three angles measured; (2) The 4 line measurements; (3) a concatenation of (1) and (2);

Table 2. RDI prediction results. See detailed description of the methods in section 5. Column 2:
Mean squared RDI error; Columns 3 and 4: the precentage of cases that have a relatively low
RDI error (≤ 7.5) and those with a more moderate error (≤ 15). The results could be compared
to the night-to-night variability in RDI computations at sleep clinics which displays a standard
deviation of 7.2 [2].

Method Mean Squared Error (MSE) error ≤ 7.5(%) error ≤ 15(%)

Angles 324 26 61
Lines 393 30 53

Angles+Lines 361 44 57
BMI 511 17 43
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and as a baseline, (4) The Body Mass Index (BMI). Table 2 summarizes the regres-
sion results. It is well known that BMI and RDI are well correlated. Nevertheless, the
cephalometric measurements are much more predictive of the patients RDI. We there-
fore corroborate the claim of [4] that the anatomical structures are informative for OSA
diagnosis and support the link between available airspace and the degree of the disorder.

6 Conclusions

Previously it was shown that manual measurements of cephalometric images are corre-
lated with the Respiratory Disturbance Index. In this paper, we show, for the first time,
that RDI measurements can be predicted from cephalometric images, moreover, our
measurements are obtained automatically. Therefore, we make a significant advance-
ment toward an imaging based OSA diagnosis tool. The detection of the underlying
landmarks is based on a new registration technique that is potentially useful for several
other structure detection applications.
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Abstract. Automatic detection of tuberculosis (TB) on chest radio-

graphs is a difficult problem because of the diverse presentation of the

disease. A combination of detection systems for abnormalities and normal

anatomy is used to improve detection performance. A textural abnor-

mality detection system operating at the pixel level is combined with a

clavicle detection system to suppress false positive responses. The output

of a shape abnormality detection system operating at the image level is

combined in a next step to further improve performance by reducing false

negatives. Strategies for combining systems based on serial and parallel

configurations were evaluated using the minimum, maximum, product,

and mean probability combination rules. The performance of TB detec-

tion increased, as measured using the area under the ROC curve, from

0.67 for the textural abnormality detection system alone to 0.86 when

the three systems were combined. The best result was achieved using the

sum and product rule in a parallel combination of outputs.

Keywords: chest radiography, tuberculosis, computer aided detection,

system combination.

1 Introduction

Tuberculosis (TB) is a major cause of mortality and morbidity worldwide, with
9.3 million new cases and 1.8 million deaths reported in 2007 [10]. Chest ra-
diography is becoming increasingly important in the fight against TB, because
in populations with a high prevalence of AIDS existing screening diagnostics
such as sputum staining are less reliable. With the increasing availability of digi-
tal radiography, computer-aided detection (CAD) systems can be developed that
could facilitate mass population screening for TB. This work is part of the larger
CAD4TB project aimed at developing such a system.
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On chest radiographs (CXR) the presentation of TB is diverse: textural ab-
normalities are often present, but focal abnormalities (e.g. nodules) and changes
of the lung shape may be found as well. So far, only the problem of textural
abnormality detection in TB detection has been addressed [1]. If the lungs have
different shapes due to disease, texture analysis might miss abnormalities, an ex-
ample of this is shown in Figure 3d. Another problem is that chest radiographs
have a complex appearance caused by the projection of overlapping structures.
This increases the difficulty of characterizing normal structures in the lung, such
as clavicles, and can result in false positive responses of a textural abnormality
detection system (Figure 3b).

These issues provided the motivation for this work, in which multiple detection
systems are combined to improve detection performance. It is expected that
combining systems detecting different types of abnormalities as well as systems
detecting normal structures (segmentation) will lead to an overall improvement
of a CAD system. The idea of system or classifier fusion has been extensively
studied theoretically (e.g. [6]) and has also been applied to medical imaging (e.g.
[3]). To our knowledge, this work is the first to apply such a method to chest
radiographs (CXRs). Different strategies for combining subsystems are discussed.

2 Method

2.1 Detection Systems

The detection systems considered in this study are derived from pixel classifica-
tion of CXRs. Features are calculated for a number of samples (positions) in an
image. A classifier is trained using labeled samples from a database of training
images. Examples of labels are inside/outside lung field and normal/abnormal
structure. Samples in a test image are classified and assigned a probability of
belonging to a particular label. Systems for lung field, clavicle, textural abnor-
mality and shape abnormality detection will be shortly described below.

Lung field detection and clavicle detection (CD). A segmentation system
for CXRs based on pixel classification to detect the lung fields and clavicles de-
scribed by van Ginneken et al. [9] was slightly modified. Features in that system
are based on Gaussian derivative filtered images calculated at different scales and
in different directions. For clavicle detection two extra position features derived
from the lung segmentation were added: the distance of a pixel to the border of
the lung field segmentation and the distance to the center of gravity of the two
detected lung fields.

Textural abnormality detection (TAD). The detection of textural abnor-
malities is based on texture analysis of small circular image patches (radius = 32
pixels) sampled every 8 pixels from radiographs downsampled to 1024 × 1024
pixels. Features are based on the moments of intensity distributions of Gaus-
sian derivative filtered images sampled in a patch. This method has recently
successfully been used to detect textural abnormalities related to TB in chest
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radiographs [1]. The two lung segmentation derived position features described
above were added to the texture features. A total of 106 features per patch were
extracted. Image patches were sampled inside the segmented lung fields and clas-
sified as normal or abnormal using linear discriminant analysis (LDA) preceded
by feature reduction using principal component analysis (PCA) (retaining 95%
of the variance).

Shape abnormality detection (SAD). Segmentation of the unobscured lung
fields can be done accurately in normal images, or in abnormal images with
only small abnormalities such as nodules [7]. When large abnormalities close to
the lung walls are present, segmentation of the lung fields becomes much more
difficult as can be seen in Figure 3d,f. This causes the boundaries of the detected
lung fields to be displaced and abnormalities to fall outside the detected lung
fields, rendering them undetectable for the TAD system. In such situations the
changed shape of the detected lung fields can be used to detect abnormal images.

A simplified version of shape contexts [2] is used to describe shapes. Instead
of using multiple points on the shape to construct angle-distance histograms
the centroid of the shape is used. Rays are cast in multiple directions from the
centroid and the distance to the intersection with the boundary is recorded.
This creates a feature vector of length n (the number of directions used) for
each shape. The procedure is performed separately for each lung and the feature
vectors are concatenated to obtain one describing both lung shapes.

Using a training set of normal and abnormal lung shapes a classifier can be
trained to detect abnormal shapes. It was observed from preliminary experi-
ments that abnormal lungs in the training database were very varied in shape
and few in number. In a situation where the number of positive examples is
small, it is difficult for two-class classifiers to obtain good performance and one-
class classifiers might perform better [8]. A one-class classifier based on a PCA
model of normal shapes (retaining 90% of the variance) was used to detect ab-
normal shapes. A large Mahalanobis distance (generalisation of the standard
score) of a test shape to the model indicates that the shape is more abnormal.
By thresholding this value an image can be classified as normal or abnormal.

2.2 Combining Detections

The three detection systems (TAD, CD and SAD) are combined to improve
the performance of the system in discriminating between normal and abnormal
images. The texture and clavicle detection output is combined at the pixel level,
fused to an image decision and combined with the shape decision to give a final
decision (Figure 1). Each step is now described in detail.

Clavicle corrected TAD. Clavicle induced false positive responses in the TAD
system are reduced by combining it with the probabilistic output of the clavicle
detection system. This gives one clavicle corrected output ptcc = pt · (1 − pc) per
pixel, where pt and pc are the probabilistic outputs of the TAD and CD systems re-
spectively. The combination reduces the probability of abnormality from the TAD
system when the probability of the clavicle being located at that position is high.
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Fig. 1. Combination of detection systems. The detection combination is shown in detail

in Figure 2

Image fusion. The texture detection system operates at the pixel level. Before
combining it with the shape system the pixel decisions are fused to one image
decision, which is performed using the quantile rule. This rule has been shown
to have a good performance in texture classification for TB detection [1].

Detection combination. In general the output of a classification system - e.g.
LDA, the quantile rule, Mahalanobis distance - is not a real probability estimate.
Therefore, different outputs cannot be directly combined and first need to be
converted to calibrated probability estimates in the range 0−1. In this work the
probability of an output being normal is calibrated by taking the percentage of
false positives (1− specificity) produced by the classifier at a decision threshold
equal to the output.

Fig. 2. Detail of detection combination of TAD and

SAD system. Optional blocks are indicated by a

dashed border.

System combination (see
Figure 2) can be performed
in a serial fashion, where the
output of one system is the in-
put for the next one, or in a
parallel fashion, in which out-
puts of multiple systems are
combined. For serial combina-
tion the shape system serves
as a filter for the texture sys-
tem: if the output of the shape
system is higher than a cer-
tain threshold the image is
judged to be abnormal. The
threshold is set to a calibrated probability of being abnormal of 0.95. Shape
probabilities above this threshold are considered abnormal and set to 1, and
0 otherwise. In parallel combination the population probabilities were directly
combined. Widely used combination rules - taking the minimum, maximum,
product and mean value - were used to combine outputs.
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2.3 Experiments

Data. A database containing 365 digital CXRs (2048 × 2048 resolution, pixel
size 0.25 mm, Delft Imaging Systems, The Netherlands) was used. The training
database consisted of 216 images (110 normal, 106 abnormal) for which full
manual outlines of abnormalities were created by a chest radiologist in training.
The training database contained 15 images with abnormal shapes as judged by
the author of this work. The test database consisted of 149 consecutive images
from a TB clinic in Africa of which the normal/abnormal decision was made by a
local expert (69 normal, 80 abnormal). The database is part of a larger database
of CXRs from areas in Africa with high TB incidence that is constructed within
the CAD4TB project.

Analysis. Three types of systems were evaluated: (1) TAD, (2) TAD with clav-
icle correction, and (3) TAD with clavicle correction combined with SAD. The
performance of the systems was evaluated using receiver operator characteristic
(ROC) analysis and calculation of the area under the ROC curve (Az). The dif-
ferent combination rules (minimum, maximum, product and mean) for system
3 were also evaluated.

3 Results

3.1 Detection Systems

Figure 3 shows examples of the effect of the clavicle correction and the combina-
tion of texture and shape system. Clavicle correction of the TAD system reduces
false positive pixel responses (a,b,c) and the SAD system reduces false negatives
when the texture inside the detected lung fields is normal (d,e,f).

3.2 Combination

Figure 4 shows a comparison of ROC curves for the different detection system
combinations. The TAD system (1) achieved a performance, measured using Az ,
of 0.69. When false positive responses were corrected using the CD system the
performance of the TAD system increased to 0.75. The combination of outputs
from the clavicle corrected TAD system and the SAD system increased the Az

to 0.85. Differences between Az values were computed according to the method
by Hanley et al. [4]: system 1 and 3, and 2 and 3 were significantly different
(p < 0.05). The difference between 1 and 2 was not significant, but in the low
false positive rate region of the ROC curve, which is important for screening,
there was a clear improvement in sensitivity.

The effect of different combination strategies of the TAD system and the SAD
system is shown in table 1. When outputs are combined in a parallel configuration
(no threshold on shape probabilities) the sum and product rule give the best
results. For a serial configuration (shape probabilities are thresholded) the sum
and maximum rule perform best. In a serial configuration the maximum rule is
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(a) Normal radiograph (b) Clavicles give false re-

sponse in texture analysis

(c) Clavicle correction re-

duces the abnormality score

(d) Abnormal radiograph

with shape change

(e) Texture analysis gives a

low abnormality score

(f) Shape analysis gives a

high abnormality score

Fig. 3. Examples of results for the clavicle corrected TAD system (a,b,c) and the

combination of the clavicle corrected TAD system and the SAD system (d,e,f). Figure

b, c and e are maps indicating the probability of being abnormal for each pixel (white

= high).
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Table 1. Effect of different combination strategies (values indicate Az)

Fusion method Shape threshold Practical effect of shape threshold

No (parallel) Yes (serial)

Sum 0.86 0.85 Filtering of abnormal shapes

Maximum 0.84 0.85 Filtering of abnormal shapes

Minimum 0.81 0.76 Filtering of normal shapes

Product 0.86 0.76 Filtering of normal shapes

equivalent to preventing images with abnormal shapes to be further analyzed
using texture analysis. The (unweighted) sum had the same practical effect.
The minimum and product rule, which have the effect of analyzing only images
which have abnormal shapes in the TAD system, perform worse than the other
strategies.

4 Discussion and Conclusion

This paper described the combination of multiple subsystems to automatically
detect tuberculosis in digital chest radiographs. The combination of a lung field,
clavicle, textural abnormality and shape abnormality detection system improved
detection performance.

The performance improvement of the addition of the shape abnormality detec-
tion system demonstrates the potential of combining systems at different levels
(pixel and image). Alternatively the lung field segmentation algorithm could be
made robust so that it can provide accurate lung field segmentations in the pres-
ence of pathology. Although an interesting research topic on its own the problem
of segmenting abnormal images has not been solved yet [7]. Normal undiseased
anatomy already shows substantial variation and this problem is even larger
when pathology is present. Training a system which could solve that problem
would require a far larger amount of training data than a system based on normal
anatomy would use.

Parallel and serial configurations of the combination system were evaluated
using a few well known probability combination rules. Generally, configurations
and rules that retained the most information about the systems (sum rule and
no thresholding) performed best. Depending on computational or other resource
restraints (e.g. the choice of using expensive tests) other configurations might
be useful in practical applications.

Instead of using multiple separate detection systems to detect disease in im-
ages it might be possible to design one large detection system to handle that task.
However, there are a number of reasons to prefer multiple small systems over
one large complex system. The generalization ability of a classification system
drops when it becomes more complex [5], requiring larger amounts of training
data to achieve good performance. From a perspective of system design, multiple
highly specialized subsystems are also preferable since these can be more easily
tested and evaluated than larger general ones. A practical reason to use multiple
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subsystems, such as the clavicle and texture detection system, is that they can
be developed parallelly by different research groups.

Within a framework for detection system combination such as presented in
this paper other subsystems can be easily added. For example, in the application
of TB detection in CXRs, detection of focal lesions and hilar abnormalities could
further improve the performance of the whole system. It was demonstrated in
this paper that the combination of multiple detection subsystems improves the
detection of TB on CXRs.
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Abstract. Morphology of anatomical structures can provide important

diagnostic information regarding disease. Implicit features of morphol-

ogy, such as contour smoothness or perimeter-to-area ratio, have been

used in the context of computerized decision support classifiers to aid

disease diagnosis. These features are usually specific to the domain and

application (e.g. margin irregularity is a predictor of malignant breast

lesions on DCE-MRI). In this paper we present a framework for ex-

tracting Diffeomorphic Based Similarity (DBS) features to capture sub-

tle morphometric differences between shapes that may not be captured

by implicit features. Object morphology is represented using the medial

axis model and objects are compared by determining correspondences be-

tween medial axis models using a cluster-based diffeomorphic registration

scheme. To visualize and classify morphometric differences, a manifold

learning scheme (Graph Embedding) is employed to identify nonlinear

dependencies between medial axis model similarity and calculate DBS.

We evaluated our DBS on two clinical problems discriminating: (a) dif-

ferent Gleason grades of prostate cancer using gland morphology on a

set of 102 images, and (b) benign and malignant lesions on 44 breast

DCE-MRI studies. Precision-recall curves demonstrate DBS features are

better able to classify shapes belonging to the same class compared to

implicit features. A support vector machine (SVM) classifier is trained to

distinguish between different classes utilizing DBS. SVM accuracy was

83 ± 4.47% for distinguishing benign from malignant lesions on breast

DCE-MRI and over 80% in distinguishing between intermediate Gleason

grades of prostate cancer on digitized histology.

1 Introduction

Morphological features of suspicious structures on imaging can provide useful di-
agnostic and prognostic cues. In BIRADSTM classification, benign breast masses
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often present as smooth round masses while cancerous masses tend to have spic-
ulated edges [1]. Morphological cues are a critical component of Gleason grading,
a scheme employed to assess the invasiveness of prostate cancer (CaP) [2]. Inter-
mediate Gleason grade patterns 3 and 4 have poor interobserver reproducibility
among trained pathologists [3]. Creating a reliable system to grade CaP on
histology could have profound clinical impact on CaP survival rate [4]. Gland
morphology is a particularly important feature for distinguishing between in-
termediate Gleason grades; higher Gleason grades of CaP are characterized by
irregularly shaped glands while lower Gleason grades of CaP have smooth mar-
gins with a distinct lumen.

Computerized decision support classifiers have employed features implicitly
related to object morphology for discriminating pathological structures [1,4].
Implicit features quantify particular traits typically relating to the contour or
area of objects. For example the knowledge that a spiculated lesion boundary in
breast DCE-MRI is associated with malignancy has lead to inclusion of boundary
irregularity within the BIRADSTM lexicon of descriptors for MR mammography
[1]. However, it may not always be obvious which morphological traits are most
beneficial in discriminating pathologies. Implicit features (such as area overlap
ratio) may be unable to capture subtle shape differences between objects, differ-
ences which may be highly relevant to disease classification.

We present a new shape characterization framework to (1) accurately distin-
guish between the morphology of shapes (independent of domain or application)
and (2) distinguish subtle differences between similar shapes (such as glands in
Gleason grade 3 and grade 4 of CaP histology). The medial axis model repre-
sents shape as a connected skeleton with corresponding vectors to the object
surface [5]. We employ a point-based diffeomorphic registration algorithm to
find a mapping between two medial axis models. Diffeomorphic mapping allows
for the alignment of medial axis models so that a pairwise shape dissimilarity
can be formulated between corresponding points on two medial axis models to
obtain a shape dissimilarity measure. A pairwise dissimilarity matrix is then
used to define the nonlinear high dimensional shape space. Graph embedding
[6], a nonlinear dimensionality reduction method that preserves local topology
between points, is employed to reconstruct a low dimensional shape space within
which shapes are arranged as a continuum on a smooth shape manifold; distances
between shapes on this manifold being a function of morphological differences
between shapes. Our integrated quantitative morphometric framework employ-
ing, (1) the medial axis model, (2) a diffeomorphic algorithm to evaluate shape
dissimilarity, (3) a graph embedding scheme to obtain DBS features is illustrated
in the flowchart in Figure 1.

In this work we evaluate our framework in the context of distinguishing (a)
benign, Gleason grade 3, and Gleason grade 4 glands on digital histology images
of needle core prostate biopsies (611 glands from 102 images) and (b) malig-
nant and benign lesions on 44 DCE-MRI studies. We compared our framework
against implicit features (e.g. contour smoothness, area overlap ratio) in terms
of classification performance.
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(a) (b) (c)

(d) (e) (f)

Fig. 1. Framework for extracting DBS features to (top row) distinguish Gleason grades

of CaP and (bottom row) benign and malignant lesions on DCE-MRI. (a) For digi-

tal histology, both nuclear (blue) and lumen (red) boundaries of prostate glands are

segmented [4]. (d) Lesion boundary (blue) segmentation is preformed on breast DCE-

MRI [1]. (b) Medial axis model (green, black) is fit to the nuclear or the luminal layer

(not shown). (e) Lesion boundary on breast DCE-MRI is likewise fit with a model

(red, magenta). (c), (f) A cluster-based diffeomorphic registration for mapping between

template (blue) and registered (green) medial axis models helps guide a point-based

dissimilarity measure. Object contours (black) are also displayed.

2 Shape Model Representation and Shape Dissimilarity

We define an image scene C = (C, f) where C is a 2D grid of image pixels c ∈ C
and an image intensity function f(c) : c ∈ C. The image pixels c are located
in the X-Y Cartesian space. Objects of interest are segmented via application
of a hybrid active contour model [7] such that X ⊂ C defines the set of pixels
comprising the boundary of the object of interest.

2.1 Medial Axis Model

From an object contour X a medial axis model M can be constructed, where
m ∈ M is a set of pixels m ⊂ C pertaining to the skeletal backbone of the
object [5]. To determine m backbone pixels, an image distance map for the
object defined as Ce = (C, fe) is constructed. The distance map function fe(c)
is defined as:
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fe(c) =

⎧⎪⎨⎪⎩
0 c ∈ X ,

−minp∈X ||c− p|| c ∈ X h,

minp∈X ||c− p|| c ∈ X o,

(1)

where X h ⊂ C is the set of pixels in the image contained within X , and X o ⊂ C
refers to the pixels outside of X . A gradient map of an object, Ĉe = (C, f̂e) is
calculated for c ∈ C as,

f̂e(c) =
(
∂fe(c)
∂x

)2

+
(
∂fe(c)
∂y

)2

. (2)

where ∂()
∂x , ∂()

∂y are the partial derivatives along the Cartesian X and Y axes

respectively. Points on the medial axis are defined as, M = {m : m ∈ C, f̂e(m) <
τ}. Empirically, τ = 0.05 argmin

c∈C
(f̂e(c)) was found to give a well defined medial

axis with few spurious branches. Then for m ∈ M , the two closest points on the
surface can be defined as

p̂1 = argmin
p∈X

||m− p||, and p̂2 = argmin
p∈X ,p=p̂1

||m− p||,

and the corresponding surface vectors are defined v1 = p̂1−m, and v2 = p̂2−m.

2.2 Shape Model Dissimilarity Metric

To compare a set of N medial axis models {Mα : α ∈ {1, . . . , N}}, a dissimi-
larity metric based on model correspondence is calculated. Mα denotes sets of
unlabeled points m ∈ Mα. Hence the problem of determining the correspondence
between models is reduced to the problem of determining point correspondences.
We use a diffeomorphic registration guided by point clustering to find a mapping
between point clouds [8].

Cluster Update. Point clusters are determined using simulated annealing [9].
For a set of medial axis points m ∈ {Mα : α ∈ {1, . . . , N}}, a set of K cluster
centers at some iteration i may be represented as {m̂k,i

α : k ∈ {1, . . . ,K}}. The
number of clusters K is a user selected parameter. The probability of a point
m ∈ Mα belong to the cluster centered at m̂k,i

α is determined by,

P (m|m̂k,i
α ) =

e−σi||m−m̂k,i
α ||2∑K

k=1 e
−σi||m−m̂k,i

α ||2 . (3)

Similarly, P (m|m̂k,i
β ) is defined for a different medial axis model {m ∈ Mβ : β ∈

{1, . . . , N}}. The variable σi is defined as, σi = (ε)iσ0, for some ε > 1. So that
σi become progressively larger as i increases, causing the probability function
P (m|m̂k,i

α ) to be more likely a member of closer cluster centers. The initialization
term σ0 is defined as 1/σ0 = maxm∈Mα ||m− μα||+ maxm∈Mβ

||m− μβ ||, where
Mα, Mβ represent any two shapes with corresponding centroids μα, μβ .
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Cluster centers at the next iteration i+1 are updated as in [8]. As each point
has partial membership in several clusters, cluster centers are updated to reflect
this membership structure according to the following update equation,

m̂k,i+1
α =

m̂k,i
β +

∑
m∈Mα

mP (m|m̂k,i
α )

1 +
∑

m∈Mα
P (m|m̂k,i

α )
. (4)

The term m̂k,i
β in Equation 4 ensures that m̂k,i

α does not move too far from
its counterpoint in Mβ . Similarly, m̂k,i+1

β is defined for Mβ . After each cluster
center update a diffeomorphic mapping is used to align the corresponding cluster
centers in m̂k,i+1

α and m̂k,i+1
β .

Diffeomorphic Mapping. A diffeomorphism over the image space C can be
constructed from a set of paths qk,i(t) : {t ∈ {0, . . . T}, k ∈ {1, . . . ,K}}. Each
path qk,i(t) describes the movement of a point which starts at the location of the
cluster centroid of one medial axis qk,i(0) = m̂k,i

α and ends at the corresponding
cluster centroid of the other medial axis qk,i(T ) = m̂k,i

β transversing a subset
of the image space C [10]. Additionally, we contrain qk,i(t) to minimize the
deformation of the image space C using a kernel function G to smooth the
image space. We choose to utilize Greene’s function defined as, G(Γ,Θ) = −(Γ−
Θ)2 log(Γ −Θ)2, where Γ ∈ C and Θ ∈ qk,i(t).

An iterative update function is solved for where qk,i(t) is initialized as a line
between the beginning and end points and iteratively updated to minimize the
energy equation defined as,

q̂k,i(t) = argmin
q̂k,i(t)

K∑
k=1

T∑
t=0

ωi(t) ·
( K∑

η=1

ωη(t)G(qη,i(t), qk,i(t))
)
, (5)

where the variables ωi(t) and ωη(t) must also be solved for. We alternate mini-
mizing over the variables ωi(t), ωη(t), and the path qk,i(t) [10].

Point Correspondence For the set of paths q̂k,i(t) obtained, Mα can be
mapped to M̃α. The mapped medial axis model M̃α shares the coordinate space
of Mβ. In this shared coordinate space point correspondences are determined by,

(û, v̂) = argmin
û,v̂

||m̃u
α −mv

β||, (6)

where m̃û
α ∈ M̃α : û ∈ {1, . . . , S} is the set of S medial axis points contained

in M̃α; similarly mv̂
β is defined for Mβ. The matched indices (û, v̂) are used to

calculates dissimilarity between 2 shapes in the original space by,

A(α, β) =
N∑

(û,v̂=1)

κ1||mû
α −mv̂

β || + κ2||vû
α,1 − vv̂

β,1|| + κ3||vû
α,2 − vv̂

β,2||. (7)

For N objects A ∈ RN×N is a high dimensional dissimilarity matrix. A is positive
definite when the user selected weights κ1,κ2, and κ3 > 0.
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2.3 Manifold Learning

Graph embedding [6] reduces A to a low dimensional space y ∈ Rd, where N >>
d. Optimal low dimensional projections y = [y1, y2, . . . yN ] and can be found by,

y = arg min
( N∑

a,b=1

||ya − yb||2wab

)
, (8)

where wab = e−A(a,b)/γ , and γ > 0 is used to normalize A. If W is positive
definite, Equation 8 reduces to a minimum eigenvalue decomposition problem,

Wy = λDy, (9)

where D is a diagonal matrix Daa =
∑

b Wab. The top d eigenvalues in λ corre-
spond to the d-dimensional embeddings in y, and the top d DBS.

3 Quantitative Evaluation

3.1 Datasets

Prostate needle core biopsy tissue samples stained for hematoxylin and eosin
were digitally imaged at 40x optical magnification. An expert pathologist man-
ually graded the tissue samples. A total of 24 samples containing 94 glands were
identified as benign, 67 samples containing 470 glands were identified as grade 3,
and 11 samples containing 47 glands were identified as grade 4. The 44 patient
breast lesion DCE-MRI comprised of 16 benign and 28 malignant masses.

We compared DBS to implicit features: contour smoothness, contour standard
deviation, compactness, area overlap ratio, average radial ratio, radial ratio stan-
dard deviation [1].

3.2 Precision Recall Curves

Precision-recall (PR) curves are generated as follows: the closest objects within
differently sized neighborhoods of a query object are identified. Relevant objects
are defined as belonging to the same class as the query object. Precision is
relevant objects in the neighborhood over the neighborhood size. Recall is all
relevant objects in the neighborhood over all relevant objects in the dataset. PR
curves are generated by measuring average precision and recall over different
neighborhood sizes for several query objects in the database with the same class
label. Table 1 reports area under the PR curve. DBS consistently outperforms
implicit features.

3.3 Support Vector Machine Accuracy

The ability of DBS or implicit features to determine disease state was evaluated
using a SVM classifier [11]. The SVM used 5-fold cross validation where 2/3
of the dataset was used to train the SVM and 1/3 of the dataset used to test.
For the multiclass digial histology problem a one-against-all SVM scheme was
implemented. DBS outperformed implicit features for all tasks (see Table 2).
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Table 1. Area under the PR curve (AUC) for implicit and DBS features. A perfect

AUC score is dependent on the distribution of the query object in the database and

feature performance, higher numbers represent better distinction between classes. The

best AUC values for each task is bolded.

Morphological

Query Object

Feature

DCE-MRI Histology

Benign Malignant Benign Grade 3 Grade 4

Implicit 0.39 ± 0.08 0.63 ± 0.70 0.12 ± 0.05 0.82 ± 0.03 0.10 ± 0.02

DBS 0.40 ± 0.07 0.62 ± 0.05 0.21 ± 0.07 0.85 ± 0.08 0.20 ± 0.09

Table 2. SVM classification accuracy evaluated on two feature sets with 5-fold cross

validation. For DCE-MRI the dataset was evaluated on lesions classified as benign

(n=16) or malignant (n=28). For the digital histology glands were classified as belong-

ing to one of three classes: benign (n=94), Gleason grade 3 (n=470), and Gleason grade

4 (n=47). The best feature set for all classification tasks is bolded.

Morphological Digital Histology

Feature DCE-MRI Benign Grade 3 Grade 4

Implicit 77.5 ± 3.73% 79.47 ± 4.71% 69.47 ± 7.58% 75.26 ± 5.77%

DBS 83.00 ± 4.47% 82.89 ± 3.97% 86.58 ± 7.39% 84.74 ± 3.23%

(a)

(b) (c) (d)
Grade 4

(e) (f) (g)

Grade 3

(h) (i) (j)

Benign

Fig. 2. (a) DBS feautres for prostate digital histology with benign (blue), Gleason

grade 3 (green), and Gleason grade 4 (red) glands. The first and second DBS features

are plotted on the X and Y axes respectively. Lumen (red) and nuclear (blue) layers are

shown, for glands labeled (b)-(d) grade 4, (e)-(g) grade 3, and (h)-(j) benign. Ground

truth for mislabeled glands, displayed in the far right row, are (d) grade 3, (g) benign,

(j) grade 3. Similar shapes are nearby on the manifold while dissimilar shapes are far.
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4 Concluding Remarks

We presented a framework to calculate a set of new morphological features DBS.
Pairwise comparisons of medial axis models describes a high dimensional shape
space. Graph Embedding of the shape space allows for extraction of DBS fea-
tures which were evaluated on two medical classification problems: (a) Gleason
grading of CaP digital histology (611 glands on 102 images), and (b) distinguish-
ing benign from malignant lesions on DCE-MRI (44 studies). DBS outperform
implicit features for both classification tasks considered in this paper, both in
terms of area under precision-recall curves and SVM classifier accuracy. We
believe this improved performance was due to DBS capturing subtle shape dif-
ferences that could not be appreciated by the implicit features. Future work will
involve evaluating DBS for more applications.
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Abstract. With the wide array of multi scale, multi-modal data now available
for disease characterization, the major challenge in integrated disease diagnos-
tics is to able to represent the different data streams in a common framework
while overcoming differences in scale and dimensionality. This common knowl-
edge representation framework is an important pre-requisite to develop integrated
meta-classifiers for disease classification. In this paper, we present a unified data
fusion framework, Semi Supervised Multi Kernel Graph Embedding (SeSMiK-
GE). Our method allows for representation of individual data modalities via a
combined multi-kernel framework followed by semi- supervised dimensionality
reduction, where partial label information is incorporated to embed high dimen-
sional data in a reduced space. In this work we evaluate SeSMiK-GE for distin-
guishing (a) benign from cancerous (CaP) areas, and (b) aggressive high-grade
prostate cancer from indolent low-grade by integrating information from 1.5 Tesla
in vivo Magnetic Resonance Imaging (anatomic) and Spectroscopy (metabolic).
Comparing SeSMiK-GE with unimodal T2w, MRS classifiers and a previous pub-
lished non-linear dimensionality reduction driven combination scheme (ScEPTre)
yielded classification accuracies of (a) 91.3% (SeSMiK), 66.1% (MRI), 82.6%
(MRS) and 86.8% (ScEPTre) for distinguishing benign from CaP regions, and (b)
87.5% (SeSMiK), 79.8% (MRI), 83.7% (MRS) and 83.9% (ScEPTre) for distin-
guishing high and low grade CaP over a total of 19 multi-modal MRI patient
studies.

1 Introduction

With the rapid growth of new imaging modalities and availability of multi-scale, multi-
modal information, data fusion has become extremely important for improved disease
diagnostics. However one of the major challenges in integrating independent chan-
nels of heterogeneous information is representing them in a unified framework prior
to data integration [1]. Typically, information fusing algorithms may be categorized as
being either combination of data (COD) or interpretation (COI) methodologies [2]. In

 This work was supported by the Wallace H. Coulter Foundation, the National Cancer Institute
under Grants R01CA136535, R21CA127186, R03CA128081, and R03CA143991, the Cancer
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COD, features Fm1 and Fm2 from two disparate modalities m1 and m2 may be combined
as Fm1m2 = [Fm1 ,Fm2 ]. However directly aggregating data from very different sources
without accounting for differences in the number of features and relative scaling can
lead to classifier bias towards the modality with more attributes. In [3], Lanckriet et
al transformed data from amino acid sequences, protein complex data, gene expres-
sion data, and protein interactions into a common kernel space. Kernels are positive
definite functions which capture the similarities of the input data into a dot product
space such that K(F(ci),F(c j)) =

〈
ΦK(F(ci),ΦKF(c j))

〉
, where Φ is the implicit pair-

wise embedding between points F(ci) and F(c j). This multi-kernel learning (MKL)
(Figure 1(a)) involves similarity matrices for kernels from individual modalities being
combined and used to train classifiers (within the fused kernel space) in order to make
meta-predictions. However, due to the large amount of information present in each input
source, all COD methods, including MKL, suffer from the curse of dimensionality.

In [1], we introduced ScEPTre (Figure 1(b)) which employed graph embedding
(GE) [4] to combine low dimensional data representations obtained from individual
modalities. GE accounts for the non-linearities in the data by constructing a similarity
graph G = (V,W ), where V corresponds to the vertex between pairwise points and W
is a n×n weight matrix of n data points. However GE, like most other dimensionality
reduction (DR) schemes, is unsupervised and does not include any domain knowledge
while transforming the data to lower dimensions which often leads to overlapping em-
beddings. A few supervised DR schemes such as linear discriminant analysis (LDA)
employ class label information to obtain low dimensional embeddings. However ob-
taining labels for biomedical data is extremely expensive and time consuming. Recently
semi-supervised DR (SSDR) schemes based on GE have been proposed [5], which con-
struct a weight matrix leveraging the known labels such that higher weights are given
to within-class points and lower weights to points from different classes. The proximity
of labeled and unlabeled data is then used to construct the low dimensional manifold.

In this work, we present a unified data fusion DR framework called Semi Supervised
Multi Kernel Graph Embedding (SeSMiK-GE), a novel data fusion and dimensional-
ity reduction scheme that leverages the strengths of GE, semi-supervised learning, and
MKL into a single integrated framework for simultaneous data reduction, fusion, and
classification. Only the work of Lin et al [6], that we are aware of, has used MKL in con-
junction with GE. However their approach does not leverage learning in constructing
the embeddings. SeSMiK-GE involves first transforming each individual modality in a
common kernel framework, followed by weighted combination of individual kernels as
K̂ =∑M

m=1βmKm, where Km,m∈ {1,2, ...,M} is the kernel obtained from each modality,
βm is the weight assigned to each kernel, and M is the total number of kernels employed.
DR is then performed on K̂ using semi-supervised GE (SSGE) which incorporates par-
tial labels to provide a better low dimensional representation of the data allowing for
better class separation and hence improved classification with limited training samples.

In this paper we show an application of SeSMiK-GE to combine structural informa-
tion obtained from T2-weighted Magnetic Resonance (MR) Imaging (T2w MRI) and
metabolic information obtained from MR Spectroscopy (MRS) for detection of high-
grade prostate cancer (CaP) in vivo. The Gleason grading system is the most commonly
used system world-wide for identifying aggressivity of CaP, and hence patient outcome.



668 P. Tiwari et al.

-0.02

-0.01

-0.015
-0.01

-0.005
0

0.005
0.01

0.015
-0.02

-0.01

0

0.01

0.02

-0.01
0

0.01
0.02

0.03
0.04

-0.04

-0.02

0

0.02

0.04
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

-0.02
-0.01

0
0.01

0.02

-0.02

-0.01

0

0.01

0.02
-0.02

-0.01

0

0.01

0.02

Modality 1 
(MRI) 

Modality 2 
(MRS) 

∑
=

=
M

m

mmKK
1

βˆ
Kernel combination 

Kernel 
representation 

(K2) 

Kernel 
representation 

(K1)
 
 
 
 
 
 
 
 
 
 
 
 

(b) ScEPTre 
(a) Multi-kernel learning 

Modality 1 
(MRI) 

Modality 2 
(MRS) 

classification classification 

-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015
-0.02

-0.01

0

0.01

0.02

-0.02

-0.01

0

0.01

0.02

0.03

[ ]ijW

∑
=

=
M

m

mmKK
1

βˆ
Kernel combination 

Kernel 
representation 

(K2) 

Kernel 
representation 

(K1)
 
 
 
 
 
 
 

Modality 1 
(MRI) 

Modality 2 
(MRS) 

classification 

Fig. 1. (a) MKL employs a kernel combination strategy, (b) ScEPTre-based data fusion where low
dimensional embedding representations are combined, and (c) SeSMiK-GE method where MKL
is performed to first combine the data in a common kernel space followed by semi-supervised
GE. The two colors in each 3D embedding plot represent two different classes.

High Gleason scores are associated with poor outcome, while lower scores are typically
associated with better patient outcome. Recently, researchers have been attempting to
identify MR imaging signatures for high- and low-grade CaP in vivo [7,8].

2 Graph Embedding Framework

The aim of GE [4] is to reduce the data matrix F ∈ R
D into a low-dimensional space

y ∈ Rd (D >> d), such that object adjacencies are preserved from RD to Rd . Let
F = [F(c1),F(c2), ...,F(cn)] ∈ RD be a data matrix of n objects, i ∈ {1, ...,n}, with
dimensionality D, and y = [y1,y2, ...,yn] be the corresponding optimal low dimensional
projection matrix. y can be obtained by solving,

y = argmin
y

(
n

∑
i, j=1

||yi − y j||2wi j), (1)

where W = [wi j] is a similarity matrix which assigns edge weights to characterize simi-
larities between pairwise points ci and c j, i, j ∈ {1, ...,n}. The minimization of Equation
1 reduces it to an eigenvalue decomposition problem,

Wy = λDy, (2)
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where D is a diagonal matrix, Dii =∑i Wi j. According to the Representer Theorem [9],
to calculate the kernel representation K(F(ci),F(c j)) of input data, it is assumed that
the optimal embedding y lies in the input space such that y = ∑n

j=1α jK(F(ci),F(c j)).
Thus, the kernel formulation of Equation 2 can be re-written as,

KWKTα = λKDKTα , (3)

where K is a valid positive semi-definite kernel and α is the d dimensional eigenvector
of the kernel representation in Equation 3.

3 Semi-Supervised Multi-kernel Graph Embedding (SeSMiK-GE)

1. Constructing Kernels for each modality: Kernel functions embed input data in the
implicit dot product space, evaluating which yields a symmetric, positive definite matrix
(gram matrix). A kernel gram matrix Km defining the similarities between n data points
in each modality m may be obtained as Km = [K(F(ci),F(c j))] ∀i, j ∈ {1, ...,n}.
2. Combining Multiple kernels: A linear combination of different kernels has the advan-
tage of also yielding a symmetric, positive definite matrix. Assuming we have M base
kernel functions for M modalities, {Km}M

m=1, corresponding individual kernel weights
βm, the combined kernel function may be expressed as,

K̂(F(ci),F(c j)) =
M

∑
m=1

βmKm(F(ci),F(c j)),βm ≥ 0,∀(i, j) ∈ {1, ...,n}

=
M

∑
m=1

βmKm,βm ≥ 0. (4)

3. Constructing the adjacency graph using partial labels: Assuming the first l of n
samples are labeled ωl ∈ {+1,−1}, we can incorporate the partial known labels into
the similarity matrix W = [wi j]. A N nearest neighbor graph, N > 0, is created to
obtain W such that pairwise points in N neighborhood with same labels are given high
weights and points with different class labels are given low weights [5]. If the points
are not in N , the corresponding edges are not connected. Thus the weight matrix is,

wi j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
γ(1 + γ), if F(ci) ∈ N j or F(c j) ∈ Ni and ωi = ω j,

γ(1− γ), if F(ci) ∈ N j or F(c j) ∈ Ni and ωi �= ω j,

γ, if F(ci) ∈ N j or F(c j) ∈ Ni, i > l or j > l,

0, otherwise.

(5)

where γ = e
||F(c)i−F(c) j ||2

σ and σ is the scaling parameter. The weight matrix Wm obtained
from each modality may be averaged to obtain Ŵ = 1

m ∑
M
m=1 Wm.

4. Obtaining the low dimensional embedding: The combined kernel K̂ and associated
weight matrix Ŵ obtained from Equations (4) and (5) can be used to reduce Equation
(3) to the eigenvalue decomposition problem,

K̂Ŵ K̂Tα = λ K̂D̃K̂Tα , (6)

where D̃ = ∑ j ŵ ji. The optimal d dimensional eigenvectors α = {α1,α2, ...,αn} are
obtained using standard kernel ridge regression optimization as described in [10].
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4 SeSMiK-GE for Prostate Cancer Detection and Grading

4.1 Data Description

A total of 19 1.5 Tesla (T) T2w MRI and corresponding MRS pre-operative endorectal
in vivo prostate studies were obtained from the University of California, San Francisco.
The 3D prostate T2w MRI scene is represented by Ĉ = (Ĉ, f̂ ), where Ĉ is a 3D grid of
voxels ĉ ∈ Ĉ and f̂ (ĉ) is a function that assigns an intensity value to every ĉ ∈ Ĉ. We
also define a spectral scene C = (C,F) where C is a 3D grid of MRS metavoxels, c ∈C,
and F is a spectral vector associated with each c ∈C. Note that multiple MRI resolution
voxels are present within the region Rcd between any two adjacent MRS resolution
metavoxels c,d ∈C. An expert spectroscopist (JK) manually annotated individual MRS
metavoxels across all 19 patient studies as firstly (a) CaP/benign, and secondly, (b) as
low/high grade CaP. The 19 1.5 T studies comprised a total of (a) 573 CaP and 696
benign metavoxels, and (b) 175 low and 96 high grade CaP metavoxels.

4.2 Feature Extraction from MRI and MRS

(a) Feature extraction from MRS: For each c ∈ C, F(c) = [ fa(c)|a ∈ {1, ...U}], repre-
sents the MR spectral vector, reflecting the frequency component of each of U metabo-
lites. The corresponding spectral data matrix is given as F = [F1(c);F2(c), ...;Fn(c)]
∈ Rn×U where n = |C|, |C| is the cardinality of C.
(b) Feature extraction from MRI: 38 texture features were extracted to define CaP ap-
pearance on in vivo T2w MRI [11]. We calculated the feature scenes Ĝu = (Ĉ, f̂u) for
each Ĉ by applying the feature operators Φu,u ∈ {1, . . . ,38} within a local neighbor-
hood associated with every ĉ ∈ Ĉ. 13 gradient, 12 first order statistical and 13 Haralick
features were extracted at each ĉ ∈ Ĉ. We define a T2w MRI texture feature vector for
each metavoxel c ∈C by taking the average of the feature values within the correspond-
ing metavoxel as gu(c) = 1

|Rcd | ∑ĉ∈Rcd

[
f̂u(ĉ)

]
. The corresponding feature vector is then

given as G(c) = [gu(c)|u ∈ {1, . . . ,38}],∀c ∈ C, and the MRI data matrix is given as
G = [G1;G2; ...;Gn] ∈ Rn×38.

4.3 SeSMiK-GE for Integration of MRI and MRS

A Gaussian kernel K(F(ci),F(c j)) = e
||F(ci)−F(c j )||2

σ was employed within SeSMiK-GE to
obtain KMRS and KMRI from input MRS data F and MRI data G . 40% of the total sam-
ples were randomly selected to train the algorithm over 25 iterations of cross validation.
WMRI and WMRS were obtained using Equation (5) and averaged to obtained the fused
gram matrix Ŵ . The algorithm was evaluated over different values of β ∈ [0,1] over
intervals of 0.1 to obtain 11 embedding outputs αq, q ∈ {1, ...,11}, where α1 represents
the embedding obtained purely from KMRS (β = 0) and α11 represents the embedding
obtained purely from KMRI (β = 1). A probabilistic boosting tree (PBT) classifier [12],
was then trained using the same set of samples exposed for SeSMiK over each iter-
ation of 25 cross validation runs. During each iteration, the optimal αq which results
in the maximum classification accuracy is selected as the final embedding result. The
algorithm for SeSMiK-GE is presented below.
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Algorithm SeSMiK-GE
Input: F , G , N , d
Output: α
begin

0. Obtain KMRS ← F and KMRI ← G
1. Obtain WMRI and WMRS using N ; obtain Ŵ using Equation (6)
2. Initialize β = 0, q = 1
3. while β = 1, compute K̂q = β ×KMRI +(1−β )×KMRS

4. Substitute K̂q and Ŵ in Equation (3)
5. Obtain d-dimensional αq by solving Equation (7)
6. return αq

7. β = β + 0.1, q = q + 1
8. endwhile

end

The algorithm above was applied to the problems of (a) discriminating CaP vs. benign
regions, and (b) identifying high-grade CaP using multi-protocol MRI.

5 Results and Discussion

5.1 Qualitative

A PBT classifier [12] was trained on the low dimensional embedding representations
obtained from application of SeSMiK-GE to the 19 MRI, MRS studies. Figure 2(a)
shows a T2w MRI slice with high grade CaP, while Figure 2(b) shows signature spectra
corresponding to low and high grade CaP, in turn illustrating the difficulty in visually

(c)

Grade 5 (2+3) Grade 8 (4+4)

(a) (d)

(e) (f) (g) (h)

(b)

Fig. 2. (a) Original T2w MRI, (b) MRS signatures for high/low grade CaP. Red regions on (c)-(d)
show the classification results obtained using SeSMiK-GE for identifying CaP and high grade
CaP on in vivo MRI, MRS. White ROI delineates the ground truth for CaP extent in (c) and high-
grade CaP in (d). (e), (g) show 3D embedding plots obtained from SeSMiK-GE (with partial
training labels for each class) for cancer metavoxels (red) and benign metavoxels (blue). The
spectra in the evaluation (test set) are shown via green squares. (f), (h) illustrate the classification
results via PBTs on the same embedding for detection of CaP ((f)), and high-grade CaP ((h)).
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identifying high grade CaP on in vivo MRI and MRS. Figures 2(c)-(d) show the PBT
classifier prediction results (as red regions) on the same T2w MRI slice using SeSMiK-
GE for identifying CaP (Figure 2(c)) and high-grade CaP (Figure 2(d)). Note the high
detection accuracy obtained using SeSMiK-GE for both CaP (Figure 2(c)) and high-
grade CaP (Figure 2(d)) identification. Ground truth for CaP and high-grade CaP extent
is shown via a white ROI on Figures 2(c) and 2(d).

Embedding plots obtained from SeSMiK-GE for cancer (red)/benign (blue) and high
(red)/low (blue) grade CaP are shown in Figures 2(e)-(h). Figures 2 (e), (g) show the par-
tial labels provided to SeSMiK-GE, allowing for better separation between the classes
(green squares represent the unlabeled samples). Figures 2(f), (h) show corresponding
PBT classification labels for identifying CaP (2(f)) and high-grade CaP (2(h)). Note that
in Figures 2(f) and (h), a majority of the unlabeled samples are accurately identified by
our scheme, despite using limited partial labels for training.

5.2 Quantitative

Table 1(a) shows mean area under the ROC curve (AUC) and accuracy results averaged
over 19 studies for identifying cancer vs. benign using SeSMiK-GE on (a) only MRI,
(b) only MRS, and (c) in combining MRS and MRI (results shown are for optimal αq

obtained at β = 0.8). We compared our results with ScEPTre [1], where GE [4] was
first performed on each of F and G followed by concatenation of the resulting low

Table 1. (a) Average AUC and accuracy for CaP detection, compared to MRI-MRS alone, and
ScEPTre [1] based data fusion, averaged over a total of 19 MRI-MRS studies using the 30 top-
ranked eigen values, (b) Average CaP detection accuracy and AUC results of SeSMiK-GE and
ScEPTre for different dimensions d ∈ {10,20,30}.

Method AUC Accuracy
T2w MRI 66.1 ± 1.5 61.9 ± 1.3

MRS 82.6 ± 1.3 76.8 ± 1.3
ScEPTre 86.8 ± 1.26 78.2 ± 1.2

SeSMiK-GE 91.3 ± 0.2 83.0 ± 0.1

(a)

d AUC Accuracy
SeSMiK ScEPTre SeSMiK ScEPTre

10 89.8 ± 0.8 86.8 ± 0.9 84.2 ± 1.1 80.6 ± 1.3
20 90.7 ± 0.9 87.5 ± 0.8 84.6 ± 0.1 79.1 ± 1.2
30 91.3 ± 0.2 86.8 ± 1.26 83.0 ± 0.1 78.2 ± 1.2

(b)

Table 2. (a) Average AUC and accuracy for high-grade CaP detection, compared to MRI or MRS
alone, and ScEPTre [1] data fusion averaged over a total of 19 MRI-MRS studies using the 10
top-ranked eigen values, (b) high-grade CaP detection accuracy and AUC results of SeSMiK-GE
and ScEPTre for different dimensions d ∈ {10,20,30}.

Method AUC Accuracy
T2w MRI 79.8 ± 3.3 74.1 ± 4.0

MRS 83.7 ± 3.5 78.5 ± 3.0
ScEPTre 83.9 ± 3.5 76.8 ± 3.1

SeSMiK-GE 87.5 ± 2.5 82.5 ± 2.6

(a)
d AUC Accuracy

SeSMiK ScEPTre SeSMiK ScEPTre
10 86.9 ± 2.2 84.4 ± 2.7 80.5 ± 2.6 79.1 ± 3.6
20 87.5 ± 2.5 83.9 ± 3.5 82.5 ± 2.6 76.8 ± 3.1
30 86.5 ± 2.8 83.8 ± 3.5 79.5 ± 3.3 77.2 ± 3.5

(b)
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dimensional eigenvectors. Note the high detection accuracy obtained using SeSMiK-
GE for CaP (Table 1(a)) and high-grade CaP (Table 2(a)) detection. Table 1(b) shows the
low variability in AUC and accuracy results over different values of reduced dimensions
(d). Similar results for discriminating high and low grade CaP are shown in Table 2(b).

6 Conclusions and Future Work

We presented a novel semi-supervised multi-kernel (SeSMiK) scheme which is well
integrated in a graph embedding framework for simultaneous data fusion and dimen-
sionality reduction. Multi-kernel learning is first used to combine heterogeneous infor-
mation from various data sources in a common kernel framework. The method lever-
ages partial domain knowledge to create an optimal embedding from the combined data
such that object classes are optimally separable. We demonstrated the application of
our scheme in discriminating cancer/benign and high/low grade prostate cancer regions
using metabolic information obtained from MRS and anatomic information obtained
from T2w MRI. Quantitative results demonstrate a high detection accuracy in identify-
ing cancer and high-grade prostate cancer regions, suggesting that SeSMiK can serve as
a powerful tool for both computer aided diagnosis and prognosis applications. In future
work we intend to explore the application of SeSMiK in other domains and problems.
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